code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowerCAmelCase_ = { "configuration_efficientformer": [ "EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "EfficientFormerConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ["EfficientFormerImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ "EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "EfficientFormerForImageClassification", "EfficientFormerForImageClassificationWithTeacher", "EfficientFormerModel", "EfficientFormerPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ "TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TFEfficientFormerForImageClassification", "TFEfficientFormerForImageClassificationWithTeacher", "TFEfficientFormerModel", "TFEfficientFormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientformer import EfficientFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientformer import ( EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientFormerForImageClassification, EfficientFormerForImageClassificationWithTeacher, EfficientFormerModel, EfficientFormerPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, TFEfficientFormerPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
411
a__ : Tuple = "Tobias Carryer" from time import time class UpperCAmelCase__: '''simple docstring''' def __init__( self : str , lowerCAmelCase : List[str] , lowerCAmelCase : Any , lowerCAmelCase : str , lowerCAmelCase : str=int(time())) -> List[Any]: # noqa: B008 """simple docstring""" lowercase__ = multiplier lowercase__ = increment lowercase__ = modulo lowercase__ = seed def UpperCAmelCase ( self : int) -> Tuple: """simple docstring""" lowercase__ = (self.multiplier * self.seed + self.increment) % self.modulo return self.seed if __name__ == "__main__": # Show the LCG in action. a__ : str = LinearCongruentialGenerator(1_66_45_25, 10_13_90_42_23, 2 << 31) while True: print(lcg.next_number())
622
0
"""simple docstring""" from sklearn.metrics import mean_squared_error import datasets UpperCamelCase_ : Optional[Any] = '''\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' UpperCamelCase_ : List[Any] = '''\ Mean Squared Error(MSE) is the average of the square of difference between the predicted and actual values. ''' UpperCamelCase_ : Optional[Any] = ''' Args: predictions: array-like of shape (n_samples,) or (n_samples, n_outputs) Estimated target values. references: array-like of shape (n_samples,) or (n_samples, n_outputs) Ground truth (correct) target values. sample_weight: array-like of shape (n_samples,), default=None Sample weights. multioutput: {"raw_values", "uniform_average"} or array-like of shape (n_outputs,), default="uniform_average" Defines aggregating of multiple output values. Array-like value defines weights used to average errors. "raw_values" : Returns a full set of errors in case of multioutput input. "uniform_average" : Errors of all outputs are averaged with uniform weight. squared : bool, default=True If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value. Returns: mse : mean squared error. Examples: >>> mse_metric = datasets.load_metric("mse") >>> predictions = [2.5, 0.0, 2, 8] >>> references = [3, -0.5, 2, 7] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {\'mse\': 0.375} >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False) >>> print(rmse_result) {\'mse\': 0.6123724356957945} If you\'re using multi-dimensional lists, then set the config as follows : >>> mse_metric = datasets.load_metric("mse", "multilist") >>> predictions = [[0.5, 1], [-1, 1], [7, -6]] >>> references = [[0, 2], [-1, 2], [8, -5]] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {\'mse\': 0.7083333333333334} >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput=\'raw_values\') >>> print(results) # doctest: +NORMALIZE_WHITESPACE {\'mse\': array([0.41666667, 1. ])} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCAmelCase ( datasets.Metric ): """simple docstring""" def lowerCamelCase__ ( self : Tuple ) -> List[Any]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ "https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html" ] , ) def lowerCamelCase__ ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value("float" ) ), "references": datasets.Sequence(datasets.Value("float" ) ), } else: return { "predictions": datasets.Value("float" ), "references": datasets.Value("float" ), } def lowerCamelCase__ ( self : Dict , _snake_case : Union[str, Any] , _snake_case : List[str] , _snake_case : Dict=None , _snake_case : Tuple="uniform_average" , _snake_case : str=True ) -> List[str]: """simple docstring""" A_ = mean_squared_error( _snake_case , _snake_case , sample_weight=_snake_case , multioutput=_snake_case , squared=_snake_case ) return {"mse": mse}
482
"""simple docstring""" import hashlib import unittest from typing import Dict import numpy as np from transformers import ( MODEL_FOR_MASK_GENERATION_MAPPING, TF_MODEL_FOR_MASK_GENERATION_MAPPING, is_vision_available, pipeline, ) from transformers.pipelines import MaskGenerationPipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) if is_vision_available(): from PIL import Image else: class __lowerCAmelCase : """simple docstring""" @staticmethod def lowerCamelCase__ ( *_snake_case : int , **_snake_case : Optional[Any] ) -> str: """simple docstring""" pass def A_ (__a ): '''simple docstring''' A_ = hashlib.mda(image.tobytes() ) return m.hexdigest()[:10] def A_ (__a ): '''simple docstring''' A_ = np.array(__a ) A_ = npimg.shape return {"hash": hashimage(__a ), "shape": shape} @is_pipeline_test @require_vision @require_torch class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" snake_case = dict( (list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) ) snake_case = dict( (list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) ) def lowerCamelCase__ ( self : List[Any] , _snake_case : List[str] , _snake_case : Dict , _snake_case : int ) -> str: """simple docstring""" A_ = MaskGenerationPipeline(model=_snake_case , image_processor=_snake_case ) return image_segmenter, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def lowerCamelCase__ ( self : int , _snake_case : int , _snake_case : Optional[Any] ) -> Dict: """simple docstring""" pass @require_tf @unittest.skip("Image segmentation not implemented in TF" ) def lowerCamelCase__ ( self : Optional[Any] ) -> Tuple: """simple docstring""" pass @slow @require_torch def lowerCamelCase__ ( self : Tuple ) -> int: """simple docstring""" A_ = pipeline("mask-generation" , model="facebook/sam-vit-huge" ) A_ = image_segmenter("http://images.cocodataset.org/val2017/000000039769.jpg" , points_per_batch=256 ) # Shortening by hashing A_ = [] for i, o in enumerate(outputs["masks"] ): new_outupt += [{"mask": mask_to_test_readable(_snake_case ), "scores": outputs["scores"][i]}] # fmt: off self.assertEqual( nested_simplify(_snake_case , decimals=4 ) , [ {"mask": {"hash": "115ad19f5f", "shape": (480, 640)}, "scores": 1.0_4_4_4}, {"mask": {"hash": "6affa964c6", "shape": (480, 640)}, "scores": 1.0_2_1}, {"mask": {"hash": "dfe28a0388", "shape": (480, 640)}, "scores": 1.0_1_6_7}, {"mask": {"hash": "c0a5f4a318", "shape": (480, 640)}, "scores": 1.0_1_3_2}, {"mask": {"hash": "fe8065c197", "shape": (480, 640)}, "scores": 1.0_0_5_3}, {"mask": {"hash": "e2d0b7a0b7", "shape": (480, 640)}, "scores": 0.9_9_6_7}, {"mask": {"hash": "453c7844bd", "shape": (480, 640)}, "scores": 0.9_9_3}, {"mask": {"hash": "3d44f2926d", "shape": (480, 640)}, "scores": 0.9_9_0_9}, {"mask": {"hash": "64033ddc3f", "shape": (480, 640)}, "scores": 0.9_8_7_9}, {"mask": {"hash": "801064ff79", "shape": (480, 640)}, "scores": 0.9_8_3_4}, {"mask": {"hash": "6172f276ef", "shape": (480, 640)}, "scores": 0.9_7_1_6}, {"mask": {"hash": "b49e60e084", "shape": (480, 640)}, "scores": 0.9_6_1_2}, {"mask": {"hash": "a811e775fd", "shape": (480, 640)}, "scores": 0.9_5_9_9}, {"mask": {"hash": "a6a8ebcf4b", "shape": (480, 640)}, "scores": 0.9_5_5_2}, {"mask": {"hash": "9d8257e080", "shape": (480, 640)}, "scores": 0.9_5_3_2}, {"mask": {"hash": "32de6454a8", "shape": (480, 640)}, "scores": 0.9_5_1_6}, {"mask": {"hash": "af3d4af2c8", "shape": (480, 640)}, "scores": 0.9_4_9_9}, {"mask": {"hash": "3c6db475fb", "shape": (480, 640)}, "scores": 0.9_4_8_3}, {"mask": {"hash": "c290813fb9", "shape": (480, 640)}, "scores": 0.9_4_6_4}, {"mask": {"hash": "b6f0b8f606", "shape": (480, 640)}, "scores": 0.9_4_3}, {"mask": {"hash": "92ce16bfdf", "shape": (480, 640)}, "scores": 0.9_4_3}, {"mask": {"hash": "c749b25868", "shape": (480, 640)}, "scores": 0.9_4_0_8}, {"mask": {"hash": "efb6cab859", "shape": (480, 640)}, "scores": 0.9_3_3_5}, {"mask": {"hash": "1ff2eafb30", "shape": (480, 640)}, "scores": 0.9_3_2_6}, {"mask": {"hash": "788b798e24", "shape": (480, 640)}, "scores": 0.9_2_6_2}, {"mask": {"hash": "abea804f0e", "shape": (480, 640)}, "scores": 0.8_9_9_9}, {"mask": {"hash": "7b9e8ddb73", "shape": (480, 640)}, "scores": 0.8_9_8_6}, {"mask": {"hash": "cd24047c8a", "shape": (480, 640)}, "scores": 0.8_9_8_4}, {"mask": {"hash": "6943e6bcbd", "shape": (480, 640)}, "scores": 0.8_8_7_3}, {"mask": {"hash": "b5f47c9191", "shape": (480, 640)}, "scores": 0.8_8_7_1} ] , ) # fmt: on @require_torch @slow def lowerCamelCase__ ( self : List[Any] ) -> Optional[int]: """simple docstring""" A_ = "facebook/sam-vit-huge" A_ = pipeline("mask-generation" , model=_snake_case ) A_ = image_segmenter( "http://images.cocodataset.org/val2017/000000039769.jpg" , pred_iou_thresh=1 , points_per_batch=256 ) # Shortening by hashing A_ = [] for i, o in enumerate(outputs["masks"] ): new_outupt += [{"mask": mask_to_test_readable(_snake_case ), "scores": outputs["scores"][i]}] self.assertEqual( nested_simplify(_snake_case , decimals=4 ) , [ {"mask": {"hash": "115ad19f5f", "shape": (480, 640)}, "scores": 1.0_4_4_4}, {"mask": {"hash": "6affa964c6", "shape": (480, 640)}, "scores": 1.0_2_1_0}, {"mask": {"hash": "dfe28a0388", "shape": (480, 640)}, "scores": 1.0_1_6_7}, {"mask": {"hash": "c0a5f4a318", "shape": (480, 640)}, "scores": 1.0_1_3_2}, {"mask": {"hash": "fe8065c197", "shape": (480, 640)}, "scores": 1.0_0_5_3}, ] , )
482
1
"""simple docstring""" from __future__ import annotations import math def _UpperCamelCase ( _A ) -> list[int]: """simple docstring""" if num <= 0: _UpperCAmelCase = F"""{num}: Invalid input, please enter a positive integer.""" raise ValueError(_A ) _UpperCAmelCase = [True] * (num + 1) _UpperCAmelCase = [] _UpperCAmelCase = 2 _UpperCAmelCase = int(math.sqrt(_A ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(_A ) # Set multiples of start be False for i in range(start * start , num + 1 , _A ): if sieve[i] is True: _UpperCAmelCase = False start += 1 for j in range(end + 1 , num + 1 ): if sieve[j] is True: prime.append(_A ) return prime if __name__ == "__main__": print(prime_sieve(int(input('''Enter a positive integer: ''').strip())))
555
"""simple docstring""" import warnings from functools import wraps from typing import Callable def _UpperCamelCase ( _A ) -> Callable: """simple docstring""" @wraps(_A ) def _inner_fn(*_A , **_A ): warnings.warn( (F"""'{fn.__name__}' is experimental and might be subject to breaking changes in the future.""") , _A , ) return fn(*_A , **_A ) return _inner_fn
555
1
'''simple docstring''' import json import os import unittest from transformers import AutoTokenizer, GPTaTokenizer, GPTaTokenizerFast from transformers.models.gpta.tokenization_gpta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _a ( SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" A = GPTaTokenizer A = GPTaTokenizerFast A = True A = {'add_prefix_space': True} A = False def __a ( self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt SCREAMING_SNAKE_CASE : Tuple = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', '<|endoftext|>', ] SCREAMING_SNAKE_CASE : Optional[Any] = dict(zip(__SCREAMING_SNAKE_CASE ,range(len(__SCREAMING_SNAKE_CASE ) ) ) ) SCREAMING_SNAKE_CASE : Any = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] SCREAMING_SNAKE_CASE : List[str] = {'unk_token': '<unk>'} SCREAMING_SNAKE_CASE : Any = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['vocab_file'] ) SCREAMING_SNAKE_CASE : str = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file ,'w' ,encoding='utf-8' ) as fp: fp.write(json.dumps(__SCREAMING_SNAKE_CASE ) + '\n' ) with open(self.merges_file ,'w' ,encoding='utf-8' ) as fp: fp.write('\n'.join(__SCREAMING_SNAKE_CASE ) ) def __a ( self ,**__SCREAMING_SNAKE_CASE ): kwargs.update(self.special_tokens_map ) return GPTaTokenizer.from_pretrained(self.tmpdirname ,**__SCREAMING_SNAKE_CASE ) def __a ( self ,**__SCREAMING_SNAKE_CASE ): kwargs.update(self.special_tokens_map ) return GPTaTokenizerFast.from_pretrained(self.tmpdirname ,**__SCREAMING_SNAKE_CASE ) def __a ( self ,__SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE : List[str] = 'lower newer' SCREAMING_SNAKE_CASE : str = 'lower newer' return input_text, output_text def __a ( self ): SCREAMING_SNAKE_CASE : Union[str, Any] = GPTaTokenizer(self.vocab_file ,self.merges_file ,**self.special_tokens_map ) SCREAMING_SNAKE_CASE : Optional[int] = 'lower newer' SCREAMING_SNAKE_CASE : Union[str, Any] = ['\u0120low', 'er', '\u0120', 'n', 'e', 'w', 'er'] SCREAMING_SNAKE_CASE : List[str] = tokenizer.tokenize(__SCREAMING_SNAKE_CASE ,add_prefix_space=__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : Optional[Any] = tokens + [tokenizer.unk_token] SCREAMING_SNAKE_CASE : Union[str, Any] = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) ,__SCREAMING_SNAKE_CASE ) def __a ( self ): if not self.test_rust_tokenizer: return SCREAMING_SNAKE_CASE : int = self.get_tokenizer() SCREAMING_SNAKE_CASE : List[str] = self.get_rust_tokenizer(add_prefix_space=__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : Optional[Any] = 'lower newer' # Testing tokenization SCREAMING_SNAKE_CASE : int = tokenizer.tokenize(__SCREAMING_SNAKE_CASE ,add_prefix_space=__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : int = rust_tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ) # Testing conversion to ids without special tokens SCREAMING_SNAKE_CASE : Optional[int] = tokenizer.encode(__SCREAMING_SNAKE_CASE ,add_special_tokens=__SCREAMING_SNAKE_CASE ,add_prefix_space=__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : Optional[int] = rust_tokenizer.encode(__SCREAMING_SNAKE_CASE ,add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ) # Testing conversion to ids with special tokens SCREAMING_SNAKE_CASE : Optional[Any] = self.get_rust_tokenizer(add_prefix_space=__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : Optional[int] = tokenizer.encode(__SCREAMING_SNAKE_CASE ,add_prefix_space=__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : List[Any] = rust_tokenizer.encode(__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ) # Testing the unknown token SCREAMING_SNAKE_CASE : Dict = tokens + [rust_tokenizer.unk_token] SCREAMING_SNAKE_CASE : str = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) ,__SCREAMING_SNAKE_CASE ) def __a ( self ,*__SCREAMING_SNAKE_CASE ,**__SCREAMING_SNAKE_CASE ): # It's very difficult to mix/test pretokenization with byte-level # And get both GPT2 and Roberta to work at the same time (mostly an issue of adding a space before the string) pass def __a ( self ,__SCREAMING_SNAKE_CASE=15 ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): SCREAMING_SNAKE_CASE : Optional[int] = self.rust_tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE ,**__SCREAMING_SNAKE_CASE ) # Simple input SCREAMING_SNAKE_CASE : Dict = 'This is a simple input' SCREAMING_SNAKE_CASE : str = ['This is a simple input 1', 'This is a simple input 2'] SCREAMING_SNAKE_CASE : Union[str, Any] = ('This is a simple input', 'This is a pair') SCREAMING_SNAKE_CASE : Optional[int] = [ ('This is a simple input 1', 'This is a simple input 2'), ('This is a simple pair 1', 'This is a simple pair 2'), ] # Simple input tests self.assertRaises(__SCREAMING_SNAKE_CASE ,tokenizer_r.encode ,__SCREAMING_SNAKE_CASE ,max_length=__SCREAMING_SNAKE_CASE ,padding='max_length' ) # Simple input self.assertRaises(__SCREAMING_SNAKE_CASE ,tokenizer_r.encode_plus ,__SCREAMING_SNAKE_CASE ,max_length=__SCREAMING_SNAKE_CASE ,padding='max_length' ) # Simple input self.assertRaises( __SCREAMING_SNAKE_CASE ,tokenizer_r.batch_encode_plus ,__SCREAMING_SNAKE_CASE ,max_length=__SCREAMING_SNAKE_CASE ,padding='max_length' ,) # Pair input self.assertRaises(__SCREAMING_SNAKE_CASE ,tokenizer_r.encode ,__SCREAMING_SNAKE_CASE ,max_length=__SCREAMING_SNAKE_CASE ,padding='max_length' ) # Pair input self.assertRaises(__SCREAMING_SNAKE_CASE ,tokenizer_r.encode_plus ,__SCREAMING_SNAKE_CASE ,max_length=__SCREAMING_SNAKE_CASE ,padding='max_length' ) # Pair input self.assertRaises( __SCREAMING_SNAKE_CASE ,tokenizer_r.batch_encode_plus ,__SCREAMING_SNAKE_CASE ,max_length=__SCREAMING_SNAKE_CASE ,padding='max_length' ,) def __a ( self ): SCREAMING_SNAKE_CASE : Optional[int] = GPTaTokenizer.from_pretrained(self.tmpdirname ,pad_token='<pad>' ) # Simple input SCREAMING_SNAKE_CASE : List[str] = 'This is a simple input' SCREAMING_SNAKE_CASE : Optional[Any] = ['This is a simple input looooooooong', 'This is a simple input'] SCREAMING_SNAKE_CASE : Union[str, Any] = ('This is a simple input', 'This is a pair') SCREAMING_SNAKE_CASE : Optional[Any] = [ ('This is a simple input loooooong', 'This is a simple input'), ('This is a simple pair loooooong', 'This is a simple pair'), ] SCREAMING_SNAKE_CASE : List[str] = tokenizer.pad_token_id SCREAMING_SNAKE_CASE : List[Any] = tokenizer(__SCREAMING_SNAKE_CASE ,padding='max_length' ,max_length=30 ,return_tensors='np' ) SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer(__SCREAMING_SNAKE_CASE ,padding=__SCREAMING_SNAKE_CASE ,truncate=__SCREAMING_SNAKE_CASE ,return_tensors='np' ) SCREAMING_SNAKE_CASE : str = tokenizer(*__SCREAMING_SNAKE_CASE ,padding='max_length' ,max_length=60 ,return_tensors='np' ) SCREAMING_SNAKE_CASE : List[str] = tokenizer(__SCREAMING_SNAKE_CASE ,padding=__SCREAMING_SNAKE_CASE ,truncate=__SCREAMING_SNAKE_CASE ,return_tensors='np' ) # s # test single string max_length padding self.assertEqual(out_s['input_ids'].shape[-1] ,30 ) self.assertTrue(pad_token_id in out_s['input_ids'] ) self.assertTrue(0 in out_s['attention_mask'] ) # s2 # test automatic padding self.assertEqual(out_sa['input_ids'].shape[-1] ,33 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa['input_ids'][0] ) self.assertFalse(0 in out_sa['attention_mask'][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa['input_ids'][1] ) self.assertTrue(0 in out_sa['attention_mask'][1] ) # p # test single pair max_length padding self.assertEqual(out_p['input_ids'].shape[-1] ,60 ) self.assertTrue(pad_token_id in out_p['input_ids'] ) self.assertTrue(0 in out_p['attention_mask'] ) # p2 # test automatic padding pair self.assertEqual(out_pa['input_ids'].shape[-1] ,52 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa['input_ids'][0] ) self.assertFalse(0 in out_pa['attention_mask'][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa['input_ids'][1] ) self.assertTrue(0 in out_pa['attention_mask'][1] ) def __a ( self ): SCREAMING_SNAKE_CASE : int = '$$$' SCREAMING_SNAKE_CASE : Optional[Any] = GPTaTokenizer.from_pretrained(self.tmpdirname ,bos_token=__SCREAMING_SNAKE_CASE ,add_bos_token=__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : Optional[int] = 'This is a simple input' SCREAMING_SNAKE_CASE : Union[str, Any] = ['This is a simple input 1', 'This is a simple input 2'] SCREAMING_SNAKE_CASE : Any = tokenizer.bos_token_id SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer(__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : int = tokenizer(__SCREAMING_SNAKE_CASE ) self.assertEqual(out_s.input_ids[0] ,__SCREAMING_SNAKE_CASE ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) SCREAMING_SNAKE_CASE : Any = tokenizer.decode(out_s.input_ids ) SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] ,__SCREAMING_SNAKE_CASE ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) def __a ( self ): pass def __a ( self ): # TODO: change to self.get_tokenizers() when the fast version is implemented SCREAMING_SNAKE_CASE : Any = [self.get_tokenizer(do_lower_case=__SCREAMING_SNAKE_CASE ,add_bos_token=__SCREAMING_SNAKE_CASE )] for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): SCREAMING_SNAKE_CASE : Any = 'Encode this.' SCREAMING_SNAKE_CASE : List[str] = 'This one too please.' SCREAMING_SNAKE_CASE : List[str] = tokenizer.encode(__SCREAMING_SNAKE_CASE ,add_special_tokens=__SCREAMING_SNAKE_CASE ) encoded_sequence += tokenizer.encode(__SCREAMING_SNAKE_CASE ,add_special_tokens=__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : List[Any] = tokenizer.encode_plus( __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,add_special_tokens=__SCREAMING_SNAKE_CASE ,return_special_tokens_mask=__SCREAMING_SNAKE_CASE ,) SCREAMING_SNAKE_CASE : Optional[int] = encoded_sequence_dict['input_ids'] SCREAMING_SNAKE_CASE : int = encoded_sequence_dict['special_tokens_mask'] self.assertEqual(len(__SCREAMING_SNAKE_CASE ) ,len(__SCREAMING_SNAKE_CASE ) ) SCREAMING_SNAKE_CASE : Optional[Any] = [ (x if not special_tokens_mask[i] else None) for i, x in enumerate(__SCREAMING_SNAKE_CASE ) ] SCREAMING_SNAKE_CASE : Dict = [x for x in filtered_sequence if x is not None] self.assertEqual(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ) @require_tokenizers class _a ( unittest.TestCase ): """simple docstring""" def __a ( self ): # More context: # https://huggingface.co/wjmcat/opt-350m-paddle/discussions/1 # https://huggingface.slack.com/archives/C01N44FJDHT/p1653511495183519 # https://github.com/huggingface/transformers/pull/17088#discussion_r871246439 SCREAMING_SNAKE_CASE : Tuple = AutoTokenizer.from_pretrained('facebook/opt-350m' ,from_slow=__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : List[Any] = 'A photo of a cat' SCREAMING_SNAKE_CASE : Tuple = tokenizer.encode( __SCREAMING_SNAKE_CASE ,) self.assertEqual(__SCREAMING_SNAKE_CASE ,[2, 250, 1345, 9, 10, 4758] ) tokenizer.save_pretrained('test_opt' ) SCREAMING_SNAKE_CASE : Dict = AutoTokenizer.from_pretrained('./test_opt' ) SCREAMING_SNAKE_CASE : List[str] = tokenizer.encode( __SCREAMING_SNAKE_CASE ,) self.assertEqual(__SCREAMING_SNAKE_CASE ,[2, 250, 1345, 9, 10, 4758] ) def __a ( self ): SCREAMING_SNAKE_CASE : int = AutoTokenizer.from_pretrained('facebook/opt-350m' ,use_slow=__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : int = 'A photo of a cat' SCREAMING_SNAKE_CASE : int = tokenizer.encode( __SCREAMING_SNAKE_CASE ,) # Same as above self.assertEqual(__SCREAMING_SNAKE_CASE ,[2, 250, 1345, 9, 10, 4758] ) @unittest.skip('This test is failing because of a bug in the fast tokenizer' ) def __a ( self ): SCREAMING_SNAKE_CASE : Dict = AutoTokenizer.from_pretrained('facebook/opt-350m' ,from_slow=__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : Optional[int] = 'bos' SCREAMING_SNAKE_CASE : Dict = tokenizer.get_vocab()['bos'] SCREAMING_SNAKE_CASE : Optional[Any] = 'A photo of a cat' SCREAMING_SNAKE_CASE : Optional[int] = tokenizer.encode( __SCREAMING_SNAKE_CASE ,) # We changed the bos token self.assertEqual(__SCREAMING_SNAKE_CASE ,[31957, 250, 1345, 9, 10, 4758] ) tokenizer.save_pretrained('./tok' ) SCREAMING_SNAKE_CASE : Dict = AutoTokenizer.from_pretrained('./tok' ) self.assertTrue(tokenizer.is_fast ) SCREAMING_SNAKE_CASE : List[Any] = tokenizer.encode( __SCREAMING_SNAKE_CASE ,) self.assertEqual(__SCREAMING_SNAKE_CASE ,[31957, 250, 1345, 9, 10, 4758] )
220
'''simple docstring''' from __future__ import annotations from random import random from typing import Generic, TypeVar __UpperCAmelCase = TypeVar('KT') __UpperCAmelCase = TypeVar('VT') class _a ( Generic[KT, VT] ): """simple docstring""" def __init__( self ,__SCREAMING_SNAKE_CASE = "root" ,__SCREAMING_SNAKE_CASE = None ): SCREAMING_SNAKE_CASE : Optional[Any] = key SCREAMING_SNAKE_CASE : Optional[Any] = value SCREAMING_SNAKE_CASE : list[Node[KT, VT]] = [] def __repr__( self ): return f"""Node({self.key}: {self.value})""" @property def __a ( self ): return len(self.forward ) class _a ( Generic[KT, VT] ): """simple docstring""" def __init__( self ,__SCREAMING_SNAKE_CASE = 0.5 ,__SCREAMING_SNAKE_CASE = 16 ): SCREAMING_SNAKE_CASE : Node[KT, VT] = Node[KT, VT]() SCREAMING_SNAKE_CASE : Tuple = 0 SCREAMING_SNAKE_CASE : Optional[Any] = p SCREAMING_SNAKE_CASE : Dict = max_level def __str__( self ): SCREAMING_SNAKE_CASE : Union[str, Any] = list(self ) if len(__SCREAMING_SNAKE_CASE ) == 0: return f"""SkipList(level={self.level})""" SCREAMING_SNAKE_CASE : Optional[Any] = max((len(str(__SCREAMING_SNAKE_CASE ) ) for item in items) ,default=4 ) SCREAMING_SNAKE_CASE : List[str] = max(__SCREAMING_SNAKE_CASE ,4 ) + 4 SCREAMING_SNAKE_CASE : List[Any] = self.head SCREAMING_SNAKE_CASE : List[str] = [] SCREAMING_SNAKE_CASE : Optional[int] = node.forward.copy() lines.append(f"""[{node.key}]""".ljust(__SCREAMING_SNAKE_CASE ,'-' ) + '* ' * len(__SCREAMING_SNAKE_CASE ) ) lines.append(' ' * label_size + '| ' * len(__SCREAMING_SNAKE_CASE ) ) while len(node.forward ) != 0: SCREAMING_SNAKE_CASE : str = node.forward[0] lines.append( f"""[{node.key}]""".ljust(__SCREAMING_SNAKE_CASE ,'-' ) + ' '.join(str(n.key ) if n.key == node.key else '|' for n in forwards ) ) lines.append(' ' * label_size + '| ' * len(__SCREAMING_SNAKE_CASE ) ) SCREAMING_SNAKE_CASE : Optional[Any] = node.forward lines.append('None'.ljust(__SCREAMING_SNAKE_CASE ) + '* ' * len(__SCREAMING_SNAKE_CASE ) ) return f"""SkipList(level={self.level})\n""" + "\n".join(__SCREAMING_SNAKE_CASE ) def __iter__( self ): SCREAMING_SNAKE_CASE : Tuple = self.head while len(node.forward ) != 0: yield node.forward[0].key SCREAMING_SNAKE_CASE : Any = node.forward[0] def __a ( self ): SCREAMING_SNAKE_CASE : Dict = 1 while random() < self.p and level < self.max_level: level += 1 return level def __a ( self ,__SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE : int = [] SCREAMING_SNAKE_CASE : str = self.head for i in reversed(range(self.level ) ): # i < node.level - When node level is lesser than `i` decrement `i`. # node.forward[i].key < key - Jumping to node with key value higher # or equal to searched key would result # in skipping searched key. while i < node.level and node.forward[i].key < key: SCREAMING_SNAKE_CASE : Dict = node.forward[i] # Each leftmost node (relative to searched node) will potentially have to # be updated. update_vector.append(__SCREAMING_SNAKE_CASE ) update_vector.reverse() # Note that we were inserting values in reverse order. # len(node.forward) != 0 - If current node doesn't contain any further # references then searched key is not present. # node.forward[0].key == key - Next node key should be equal to search key # if key is present. if len(node.forward ) != 0 and node.forward[0].key == key: return node.forward[0], update_vector else: return None, update_vector def __a ( self ,__SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = self._locate_node(__SCREAMING_SNAKE_CASE ) if node is not None: for i, update_node in enumerate(__SCREAMING_SNAKE_CASE ): # Remove or replace all references to removed node. if update_node.level > i and update_node.forward[i].key == key: if node.level > i: SCREAMING_SNAKE_CASE : Dict = node.forward[i] else: SCREAMING_SNAKE_CASE : Optional[Any] = update_node.forward[:i] def __a ( self ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = self._locate_node(__SCREAMING_SNAKE_CASE ) if node is not None: SCREAMING_SNAKE_CASE : Optional[Any] = value else: SCREAMING_SNAKE_CASE : Optional[Any] = self.random_level() if level > self.level: # After level increase we have to add additional nodes to head. for _ in range(self.level - 1 ,__SCREAMING_SNAKE_CASE ): update_vector.append(self.head ) SCREAMING_SNAKE_CASE : str = level SCREAMING_SNAKE_CASE : List[str] = Node(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ) for i, update_node in enumerate(update_vector[:level] ): # Change references to pass through new node. if update_node.level > i: new_node.forward.append(update_node.forward[i] ) if update_node.level < i + 1: update_node.forward.append(__SCREAMING_SNAKE_CASE ) else: SCREAMING_SNAKE_CASE : List[Any] = new_node def __a ( self ,__SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = self._locate_node(__SCREAMING_SNAKE_CASE ) if node is not None: return node.value return None def SCREAMING_SNAKE_CASE_ ( ) -> List[Any]: SCREAMING_SNAKE_CASE : Any = SkipList() skip_list.insert('Key1' , 3 ) skip_list.insert('Key2' , 12 ) skip_list.insert('Key3' , 41 ) skip_list.insert('Key4' , -19 ) SCREAMING_SNAKE_CASE : int = skip_list.head SCREAMING_SNAKE_CASE : List[str] = {} while node.level != 0: SCREAMING_SNAKE_CASE : Union[str, Any] = node.forward[0] SCREAMING_SNAKE_CASE : List[str] = node.value assert len(snake_case_ ) == 4 assert all_values["Key1"] == 3 assert all_values["Key2"] == 12 assert all_values["Key3"] == 41 assert all_values["Key4"] == -19 def SCREAMING_SNAKE_CASE_ ( ) -> List[Any]: SCREAMING_SNAKE_CASE : Optional[Any] = SkipList() skip_list.insert('Key1' , 10 ) skip_list.insert('Key1' , 12 ) skip_list.insert('Key5' , 7 ) skip_list.insert('Key7' , 10 ) skip_list.insert('Key10' , 5 ) skip_list.insert('Key7' , 7 ) skip_list.insert('Key5' , 5 ) skip_list.insert('Key10' , 10 ) SCREAMING_SNAKE_CASE : List[str] = skip_list.head SCREAMING_SNAKE_CASE : str = {} while node.level != 0: SCREAMING_SNAKE_CASE : int = node.forward[0] SCREAMING_SNAKE_CASE : Any = node.value if len(snake_case_ ) != 4: print() assert len(snake_case_ ) == 4 assert all_values["Key1"] == 12 assert all_values["Key7"] == 7 assert all_values["Key5"] == 5 assert all_values["Key10"] == 10 def SCREAMING_SNAKE_CASE_ ( ) -> str: SCREAMING_SNAKE_CASE : Tuple = SkipList() assert skip_list.find('Some key' ) is None def SCREAMING_SNAKE_CASE_ ( ) -> List[Any]: SCREAMING_SNAKE_CASE : Union[str, Any] = SkipList() skip_list.insert('Key2' , 20 ) assert skip_list.find('Key2' ) == 20 skip_list.insert('Some Key' , 10 ) skip_list.insert('Key2' , 8 ) skip_list.insert('V' , 13 ) assert skip_list.find('Y' ) is None assert skip_list.find('Key2' ) == 8 assert skip_list.find('Some Key' ) == 10 assert skip_list.find('V' ) == 13 def SCREAMING_SNAKE_CASE_ ( ) -> List[Any]: SCREAMING_SNAKE_CASE : Dict = SkipList() skip_list.delete('Some key' ) assert len(skip_list.head.forward ) == 0 def SCREAMING_SNAKE_CASE_ ( ) -> Any: SCREAMING_SNAKE_CASE : int = SkipList() skip_list.insert('Key1' , 12 ) skip_list.insert('V' , 13 ) skip_list.insert('X' , 14 ) skip_list.insert('Key2' , 15 ) skip_list.delete('V' ) skip_list.delete('Key2' ) assert skip_list.find('V' ) is None assert skip_list.find('Key2' ) is None def SCREAMING_SNAKE_CASE_ ( ) -> Optional[Any]: SCREAMING_SNAKE_CASE : Optional[int] = SkipList() skip_list.insert('Key1' , 12 ) skip_list.insert('V' , 13 ) skip_list.insert('X' , 14 ) skip_list.insert('Key2' , 15 ) skip_list.delete('V' ) assert skip_list.find('V' ) is None assert skip_list.find('X' ) == 14 assert skip_list.find('Key1' ) == 12 assert skip_list.find('Key2' ) == 15 skip_list.delete('X' ) assert skip_list.find('V' ) is None assert skip_list.find('X' ) is None assert skip_list.find('Key1' ) == 12 assert skip_list.find('Key2' ) == 15 skip_list.delete('Key1' ) assert skip_list.find('V' ) is None assert skip_list.find('X' ) is None assert skip_list.find('Key1' ) is None assert skip_list.find('Key2' ) == 15 skip_list.delete('Key2' ) assert skip_list.find('V' ) is None assert skip_list.find('X' ) is None assert skip_list.find('Key1' ) is None assert skip_list.find('Key2' ) is None def SCREAMING_SNAKE_CASE_ ( ) -> Dict: SCREAMING_SNAKE_CASE : Optional[int] = SkipList() skip_list.insert('Key1' , 12 ) skip_list.insert('V' , 13 ) skip_list.insert('X' , 142 ) skip_list.insert('Key2' , 15 ) skip_list.delete('X' ) def traverse_keys(snake_case_ : Optional[int] ): yield node.key for forward_node in node.forward: yield from traverse_keys(snake_case_ ) assert len(set(traverse_keys(skip_list.head ) ) ) == 4 def SCREAMING_SNAKE_CASE_ ( ) -> Optional[Any]: def is_sorted(snake_case_ : int ): return all(next_item >= item for item, next_item in zip(snake_case_ , lst[1:] ) ) SCREAMING_SNAKE_CASE : Optional[int] = SkipList() for i in range(10 ): skip_list.insert(snake_case_ , snake_case_ ) assert is_sorted(list(snake_case_ ) ) skip_list.delete(5 ) skip_list.delete(8 ) skip_list.delete(2 ) assert is_sorted(list(snake_case_ ) ) skip_list.insert(-12 , -12 ) skip_list.insert(77 , 77 ) assert is_sorted(list(snake_case_ ) ) def SCREAMING_SNAKE_CASE_ ( ) -> List[Any]: for _ in range(100 ): # Repeat test 100 times due to the probabilistic nature of skip list # random values == random bugs test_insert() test_insert_overrides_existing_value() test_searching_empty_list_returns_none() test_search() test_deleting_item_from_empty_list_do_nothing() test_deleted_items_are_not_founded_by_find_method() test_delete_removes_only_given_key() test_delete_doesnt_leave_dead_nodes() test_iter_always_yields_sorted_values() def SCREAMING_SNAKE_CASE_ ( ) -> Union[str, Any]: SCREAMING_SNAKE_CASE : List[str] = SkipList() skip_list.insert(2 , '2' ) skip_list.insert(4 , '4' ) skip_list.insert(6 , '4' ) skip_list.insert(4 , '5' ) skip_list.insert(8 , '4' ) skip_list.insert(9 , '4' ) skip_list.delete(4 ) print(snake_case_ ) if __name__ == "__main__": import doctest doctest.testmod() main()
220
1
'''simple docstring''' from ...processing_utils import ProcessorMixin class _snake_case ( __UpperCAmelCase ): _A : Optional[int] = 'WhisperFeatureExtractor' _A : Optional[Any] = 'WhisperTokenizer' def __init__( self : str ,SCREAMING_SNAKE_CASE__ : int ,SCREAMING_SNAKE_CASE__ : List[str] ): super().__init__(lowerCAmelCase_ ,lowerCAmelCase_ ) SCREAMING_SNAKE_CASE:int = self.feature_extractor SCREAMING_SNAKE_CASE:Optional[int] = False def __UpperCamelCase ( self : List[str] ,SCREAMING_SNAKE_CASE__ : int=None ,SCREAMING_SNAKE_CASE__ : Optional[int]=None ,SCREAMING_SNAKE_CASE__ : List[Any]=True ): return self.tokenizer.get_decoder_prompt_ids(task=lowerCAmelCase_ ,language=lowerCAmelCase_ ,no_timestamps=lowerCAmelCase_ ) def __call__( self : Any ,*SCREAMING_SNAKE_CASE__ : List[Any] ,**SCREAMING_SNAKE_CASE__ : List[str] ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*lowerCAmelCase_ ,**lowerCAmelCase_ ) SCREAMING_SNAKE_CASE:List[str] = kwargs.pop("audio" ,lowerCAmelCase_ ) SCREAMING_SNAKE_CASE:Optional[Any] = kwargs.pop("sampling_rate" ,lowerCAmelCase_ ) SCREAMING_SNAKE_CASE:Optional[int] = kwargs.pop("text" ,lowerCAmelCase_ ) if len(lowerCAmelCase_ ) > 0: SCREAMING_SNAKE_CASE:List[Any] = args[0] SCREAMING_SNAKE_CASE:List[Any] = args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process." ) if audio is not None: SCREAMING_SNAKE_CASE:str = self.feature_extractor(lowerCAmelCase_ ,*lowerCAmelCase_ ,sampling_rate=lowerCAmelCase_ ,**lowerCAmelCase_ ) if text is not None: SCREAMING_SNAKE_CASE:Union[str, Any] = self.tokenizer(lowerCAmelCase_ ,**lowerCAmelCase_ ) if text is None: return inputs elif audio is None: return encodings else: SCREAMING_SNAKE_CASE:Tuple = encodings['input_ids'] return inputs def __UpperCamelCase ( self : Optional[int] ,*SCREAMING_SNAKE_CASE__ : Dict ,**SCREAMING_SNAKE_CASE__ : Optional[int] ): return self.tokenizer.batch_decode(*lowerCAmelCase_ ,**lowerCAmelCase_ ) def __UpperCamelCase ( self : List[Any] ,*SCREAMING_SNAKE_CASE__ : Dict ,**SCREAMING_SNAKE_CASE__ : Optional[int] ): return self.tokenizer.decode(*lowerCAmelCase_ ,**lowerCAmelCase_ ) def __UpperCamelCase ( self : List[str] ,SCREAMING_SNAKE_CASE__ : Dict ,SCREAMING_SNAKE_CASE__ : Union[str, Any]="np" ): return self.tokenizer.get_prompt_ids(lowerCAmelCase_ ,return_tensors=lowerCAmelCase_ )
143
"""simple docstring""" import inspect import jax import jax.lax as lax import jax.numpy as jnp from ..utils import add_start_docstrings from ..utils.logging import get_logger lowerCAmelCase__ = get_logger(__name__) lowerCAmelCase__ = r'\n Args:\n input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`):\n Indices of input sequence tokens in the vocabulary.\n\n Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and\n [`PreTrainedTokenizer.__call__`] for details.\n\n [What are input IDs?](../glossary#input-ids)\n scores (`jnp.ndarray` of shape `(batch_size, config.vocab_size)`):\n Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam\n search or log softmax for each vocabulary token when using beam search\n kwargs (`Dict[str, Any]`, *optional*):\n Additional logits processor specific kwargs.\n\n Return:\n `jnp.ndarray` of shape `(batch_size, config.vocab_size)`: The processed prediction scores.\n\n' class _lowerCAmelCase : @add_start_docstrings(lowerCAmelCase_ ) def __call__( self , lowerCAmelCase_ , lowerCAmelCase_ ) -> jnp.ndarray: raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) class _lowerCAmelCase : @add_start_docstrings(lowerCAmelCase_ ) def __call__( self , lowerCAmelCase_ , lowerCAmelCase_ ) -> jnp.ndarray: raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) class _lowerCAmelCase ( __UpperCAmelCase ): @add_start_docstrings(lowerCAmelCase_ ) def __call__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ ) -> jnp.ndarray: for processor in self: _SCREAMING_SNAKE_CASE : int = inspect.signature(processor.__call__ ).parameters if len(lowerCAmelCase_ ) > 3: if not all(arg in kwargs for arg in list(function_args.keys() )[2:] ): raise ValueError( F"""Make sure that all the required parameters: {list(function_args.keys() )} for """ F"""{processor.__class__} are passed to the logits processor.""" ) _SCREAMING_SNAKE_CASE : Any = processor(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ ) else: _SCREAMING_SNAKE_CASE : Optional[int] = processor(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) return scores class _lowerCAmelCase ( __UpperCAmelCase ): def __init__( self , lowerCAmelCase_ ) -> Any: if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) or not (temperature > 0): raise ValueError(F"""`temperature` has to be a strictly positive float, but is {temperature}""" ) _SCREAMING_SNAKE_CASE : Tuple = temperature def __call__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> jnp.ndarray: _SCREAMING_SNAKE_CASE : Optional[int] = scores / self.temperature return scores class _lowerCAmelCase ( __UpperCAmelCase ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ = -float('Inf' ) , lowerCAmelCase_ = 1 ) -> int: if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) or (top_p < 0 or top_p > 1.0): raise ValueError(F"""`top_p` has to be a float > 0 and < 1, but is {top_p}""" ) if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) or (min_tokens_to_keep < 1): raise ValueError(F"""`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}""" ) _SCREAMING_SNAKE_CASE : Union[str, Any] = top_p _SCREAMING_SNAKE_CASE : Optional[int] = filter_value _SCREAMING_SNAKE_CASE : Any = min_tokens_to_keep def __call__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> jnp.ndarray: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Dict = lax.top_k(lowerCAmelCase_ , scores.shape[-1] ) _SCREAMING_SNAKE_CASE : Dict = jnp.full_like(lowerCAmelCase_ , self.filter_value ) _SCREAMING_SNAKE_CASE : int = jax.nn.softmax(lowerCAmelCase_ , axis=-1 ).cumsum(axis=-1 ) _SCREAMING_SNAKE_CASE : List[str] = cumulative_probs < self.top_p # include the token that is higher than top_p as well _SCREAMING_SNAKE_CASE : Optional[int] = jnp.roll(lowerCAmelCase_ , 1 ) score_mask |= score_mask.at[:, 0].set(lowerCAmelCase_ ) # min tokens to keep _SCREAMING_SNAKE_CASE : Optional[Any] = score_mask.at[:, : self.min_tokens_to_keep].set(lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE : Tuple = jnp.where(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE : Dict = jax.lax.sort_key_val(lowerCAmelCase_ , lowerCAmelCase_ )[-1] return next_scores class _lowerCAmelCase ( __UpperCAmelCase ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ = -float('Inf' ) , lowerCAmelCase_ = 1 ) -> Tuple: if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) or top_k <= 0: raise ValueError(F"""`top_k` has to be a strictly positive integer, but is {top_k}""" ) _SCREAMING_SNAKE_CASE : Tuple = max(lowerCAmelCase_ , lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE : Union[str, Any] = filter_value def __call__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> jnp.ndarray: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : int = scores.shape _SCREAMING_SNAKE_CASE : int = jnp.full(batch_size * vocab_size , self.filter_value ) _SCREAMING_SNAKE_CASE : Union[str, Any] = min(self.top_k , scores.shape[-1] ) # Safety check _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : List[Any] = lax.top_k(lowerCAmelCase_ , lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE : List[Any] = jnp.broadcast_to((jnp.arange(lowerCAmelCase_ ) * vocab_size)[:, None] , (batch_size, topk) ).flatten() _SCREAMING_SNAKE_CASE : List[Any] = topk_scores.flatten() _SCREAMING_SNAKE_CASE : Dict = topk_indices.flatten() + shift _SCREAMING_SNAKE_CASE : List[str] = next_scores_flat.at[topk_indices_flat].set(lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE : int = next_scores_flat.reshape(lowerCAmelCase_ , lowerCAmelCase_ ) return next_scores class _lowerCAmelCase ( __UpperCAmelCase ): def __init__( self , lowerCAmelCase_ ) -> Dict: _SCREAMING_SNAKE_CASE : List[Any] = bos_token_id def __call__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> jnp.ndarray: _SCREAMING_SNAKE_CASE : Optional[int] = jnp.full(scores.shape , -float('inf' ) ) _SCREAMING_SNAKE_CASE : int = 1 - jnp.bool_(cur_len - 1 ) _SCREAMING_SNAKE_CASE : List[str] = jnp.where(lowerCAmelCase_ , new_scores.at[:, self.bos_token_id].set(0 ) , lowerCAmelCase_ ) return scores class _lowerCAmelCase ( __UpperCAmelCase ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ ) -> List[Any]: _SCREAMING_SNAKE_CASE : Optional[Any] = max_length _SCREAMING_SNAKE_CASE : Any = eos_token_id def __call__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> jnp.ndarray: _SCREAMING_SNAKE_CASE : List[Any] = jnp.full(scores.shape , -float('inf' ) ) _SCREAMING_SNAKE_CASE : Dict = 1 - jnp.bool_(cur_len - self.max_length + 1 ) _SCREAMING_SNAKE_CASE : Tuple = jnp.where(lowerCAmelCase_ , new_scores.at[:, self.eos_token_id].set(0 ) , lowerCAmelCase_ ) return scores class _lowerCAmelCase ( __UpperCAmelCase ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ ) -> Optional[int]: if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) or min_length < 0: raise ValueError(F"""`min_length` has to be a positive integer, but is {min_length}""" ) if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) or eos_token_id < 0: raise ValueError(F"""`eos_token_id` has to be a positive integer, but is {eos_token_id}""" ) _SCREAMING_SNAKE_CASE : Union[str, Any] = min_length _SCREAMING_SNAKE_CASE : str = eos_token_id def __call__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> jnp.ndarray: # create boolean flag to decide if min length penalty should be applied _SCREAMING_SNAKE_CASE : Tuple = 1 - jnp.clip(cur_len - self.min_length , 0 , 1 ) _SCREAMING_SNAKE_CASE : Optional[Any] = jnp.where(lowerCAmelCase_ , scores.at[:, self.eos_token_id].set(-float('inf' ) ) , lowerCAmelCase_ ) return scores class _lowerCAmelCase ( __UpperCAmelCase ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ ) -> List[str]: _SCREAMING_SNAKE_CASE : List[str] = list(lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE : Optional[Any] = begin_index def __call__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> str: _SCREAMING_SNAKE_CASE : Any = 1 - jnp.bool_(cur_len - self.begin_index ) _SCREAMING_SNAKE_CASE : List[Any] = jnp.where(lowerCAmelCase_ , scores.at[:, self.begin_suppress_tokens].set(-float('inf' ) ) , lowerCAmelCase_ ) return scores class _lowerCAmelCase ( __UpperCAmelCase ): def __init__( self , lowerCAmelCase_ ) -> Optional[Any]: _SCREAMING_SNAKE_CASE : str = list(lowerCAmelCase_ ) def __call__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> jnp.ndarray: _SCREAMING_SNAKE_CASE : Union[str, Any] = scores.at[..., self.suppress_tokens].set(-float('inf' ) ) return scores class _lowerCAmelCase ( __UpperCAmelCase ): def __init__( self , lowerCAmelCase_ ) -> Any: _SCREAMING_SNAKE_CASE : Optional[Any] = dict(lowerCAmelCase_ ) # Converts the dictionary of format {index: token} containing the tokens to be forced to an array, where the # index of the array corresponds to the index of the token to be forced, for XLA compatibility. # Indexes without forced tokens will have a negative value. _SCREAMING_SNAKE_CASE : Dict = jnp.ones((max(force_token_map.keys() ) + 1) , dtype=jnp.intaa ) * -1 for index, token in force_token_map.items(): if token is not None: _SCREAMING_SNAKE_CASE : Dict = force_token_array.at[index].set(lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE : str = jnp.intaa(lowerCAmelCase_ ) def __call__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> jnp.ndarray: def _force_token(lowerCAmelCase_ ): _SCREAMING_SNAKE_CASE : str = scores.shape[0] _SCREAMING_SNAKE_CASE : List[Any] = self.force_token_array[generation_idx] _SCREAMING_SNAKE_CASE : Dict = jnp.ones_like(lowerCAmelCase_ , dtype=scores.dtype ) * -float('inf' ) _SCREAMING_SNAKE_CASE : Optional[Any] = jnp.zeros((batch_size, 1) , dtype=scores.dtype ) _SCREAMING_SNAKE_CASE : str = lax.dynamic_update_slice(lowerCAmelCase_ , lowerCAmelCase_ , (0, current_token) ) return new_scores _SCREAMING_SNAKE_CASE : Optional[int] = lax.cond( cur_len >= self.force_token_array.shape[0] , lambda: scores , lambda: lax.cond( self.force_token_array[cur_len] >= 0 , lambda: _force_token(lowerCAmelCase_ ) , lambda: scores , ) , ) return scores class _lowerCAmelCase ( __UpperCAmelCase ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> str: _SCREAMING_SNAKE_CASE : Tuple = generate_config.eos_token_id _SCREAMING_SNAKE_CASE : str = generate_config.no_timestamps_token_id _SCREAMING_SNAKE_CASE : Optional[int] = generate_config.no_timestamps_token_id + 1 _SCREAMING_SNAKE_CASE : str = decoder_input_length + 1 if generate_config.is_multilingual: # room for language token and task token self.begin_index += 2 if hasattr(lowerCAmelCase_ , 'max_initial_timestamp_index' ): _SCREAMING_SNAKE_CASE : Union[str, Any] = generate_config.max_initial_timestamp_index else: _SCREAMING_SNAKE_CASE : Union[str, Any] = model_config.vocab_size if self.max_initial_timestamp_index is None: _SCREAMING_SNAKE_CASE : Dict = model_config.vocab_size def __call__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Dict: # suppress <|notimestamps|> which is handled by without_timestamps _SCREAMING_SNAKE_CASE : Optional[Any] = scores.at[:, self.no_timestamps_token_id].set(-float('inf' ) ) def handle_pairs(lowerCAmelCase_ , lowerCAmelCase_ ): _SCREAMING_SNAKE_CASE : int = jnp.where((cur_len - self.begin_index) >= 1 , lowerCAmelCase_ , lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE : Tuple = jnp.where( input_ids_k[cur_len - 1] >= self.timestamp_begin , True and last_was_timestamp , lowerCAmelCase_ , ) _SCREAMING_SNAKE_CASE : Any = jnp.where((cur_len - self.begin_index) < 2 , lowerCAmelCase_ , lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE : Any = jnp.where( input_ids_k[cur_len - 2] >= self.timestamp_begin , lowerCAmelCase_ , lowerCAmelCase_ , ) return jnp.where( lowerCAmelCase_ , jnp.where( penultimate_was_timestamp > 0 , scores_k.at[self.timestamp_begin :].set(-float('inf' ) ) , scores_k.at[: self.eos_token_id].set(-float('inf' ) ) , ) , lowerCAmelCase_ , ) _SCREAMING_SNAKE_CASE : Optional[Any] = jax.vmap(lowerCAmelCase_ )(lowerCAmelCase_ , lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE : List[str] = jnp.where(cur_len == self.begin_index , lowerCAmelCase_ , lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE : Optional[int] = jnp.where( self.max_initial_timestamp_index is not None , True and apply_max_initial_timestamp , lowerCAmelCase_ , ) _SCREAMING_SNAKE_CASE : Tuple = self.timestamp_begin + self.max_initial_timestamp_index _SCREAMING_SNAKE_CASE : Union[str, Any] = jnp.where( lowerCAmelCase_ , scores.at[:, last_allowed + 1 :].set(-float('inf' ) ) , lowerCAmelCase_ , ) # if sum of probability over timestamps is above any other token, sample timestamp _SCREAMING_SNAKE_CASE : str = jax.nn.log_softmax(lowerCAmelCase_ , axis=-1 ) def handle_cumulative_probs(lowerCAmelCase_ , lowerCAmelCase_ ): _SCREAMING_SNAKE_CASE : Any = jax.nn.logsumexp(logprobs_k[self.timestamp_begin :] , axis=-1 ) _SCREAMING_SNAKE_CASE : int = jnp.max(logprobs_k[: self.timestamp_begin] ) return jnp.where( timestamp_logprob > max_text_token_logprob , scores_k.at[: self.timestamp_begin].set(-float('inf' ) ) , lowerCAmelCase_ , ) _SCREAMING_SNAKE_CASE : Dict = jax.vmap(lowerCAmelCase_ )(lowerCAmelCase_ , lowerCAmelCase_ ) return scores
621
0
import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse('0.12.2'): raise Exception('requires fairseq >= 0.12.2') if version.parse(fairseq.__version__) > version.parse('2'): raise Exception('requires fairseq < v2') logging.set_verbosity_info() lowercase_ : List[Any] = logging.get_logger(__name__) lowercase_ : Optional[Any] = 'Hello, World!' lowercase_ : Tuple = 'en_XX' def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __lowerCamelCase : Tuple = Path('data_bin' ) __lowerCamelCase : List[Any] = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(SCREAMING_SNAKE_CASE__ ).parent ) , checkpoint_file=Path(SCREAMING_SNAKE_CASE__ ).name , _name='xmod_base' , arch='xmod_base' , task='multilingual_masked_lm' , data_name_or_path=str(SCREAMING_SNAKE_CASE__ ) , bpe='sentencepiece' , sentencepiece_model=str(Path(SCREAMING_SNAKE_CASE__ ).parent / 'sentencepiece.bpe.model' ) , src_dict=str(data_dir / 'dict.txt' ) , ) xmod.eval() # disable dropout print(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase : Any = xmod.model.encoder.sentence_encoder __lowerCamelCase : Optional[int] = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1e-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , 'bottleneck' , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: __lowerCamelCase : List[str] = xmod.model.classification_heads['mnli'].out_proj.weight.shape[0] print('Our X-MOD config:' , SCREAMING_SNAKE_CASE__ ) __lowerCamelCase : Dict = XmodForSequenceClassification(SCREAMING_SNAKE_CASE__ ) if classification_head else XmodForMaskedLM(SCREAMING_SNAKE_CASE__ ) model.eval() # Now let's copy all the weights. # Embeddings __lowerCamelCase : Tuple = xmod_sent_encoder.embed_tokens.weight __lowerCamelCase : Tuple = xmod_sent_encoder.embed_positions.weight __lowerCamelCase : Dict = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. __lowerCamelCase : Tuple = xmod_sent_encoder.layernorm_embedding.weight __lowerCamelCase : int = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer __lowerCamelCase : List[str] = model.roberta.encoder.layer[i] __lowerCamelCase : Union[str, Any] = xmod_sent_encoder.layers[i] # self attention __lowerCamelCase : Optional[int] = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError('Dimensions of self-attention weights do not match.' ) __lowerCamelCase : Optional[int] = xmod_layer.self_attn.q_proj.weight __lowerCamelCase : Tuple = xmod_layer.self_attn.q_proj.bias __lowerCamelCase : Optional[Any] = xmod_layer.self_attn.k_proj.weight __lowerCamelCase : Tuple = xmod_layer.self_attn.k_proj.bias __lowerCamelCase : Tuple = xmod_layer.self_attn.v_proj.weight __lowerCamelCase : Union[str, Any] = xmod_layer.self_attn.v_proj.bias # self-attention output __lowerCamelCase : Optional[Any] = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError('Dimensions of self-attention output weights do not match.' ) __lowerCamelCase : Tuple = xmod_layer.self_attn.out_proj.weight __lowerCamelCase : Dict = xmod_layer.self_attn.out_proj.bias __lowerCamelCase : Dict = xmod_layer.self_attn_layer_norm.weight __lowerCamelCase : Optional[Any] = xmod_layer.self_attn_layer_norm.bias # intermediate __lowerCamelCase : int = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('Dimensions of intermediate weights do not match.' ) __lowerCamelCase : Union[str, Any] = xmod_layer.fca.weight __lowerCamelCase : List[Any] = xmod_layer.fca.bias # output __lowerCamelCase : Optional[Any] = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('Dimensions of feed-forward weights do not match.' ) __lowerCamelCase : str = xmod_layer.fca.weight __lowerCamelCase : Union[str, Any] = xmod_layer.fca.bias __lowerCamelCase : Tuple = xmod_layer.final_layer_norm.weight __lowerCamelCase : Optional[Any] = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: __lowerCamelCase : List[Any] = xmod_layer.adapter_layer_norm.weight __lowerCamelCase : int = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError('Lists of language adapters do not match.' ) for lang_code, adapter in xmod_layer.adapter_modules.items(): __lowerCamelCase : List[Any] = bert_output.adapter_modules[lang_code] __lowerCamelCase : Optional[int] = xmod_layer.adapter_modules[lang_code] __lowerCamelCase : str = from_adapter.fca.weight __lowerCamelCase : List[Any] = from_adapter.fca.bias __lowerCamelCase : int = from_adapter.fca.weight __lowerCamelCase : Tuple = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: __lowerCamelCase : str = xmod_sent_encoder.layer_norm.weight __lowerCamelCase : Tuple = xmod_sent_encoder.layer_norm.bias if classification_head: __lowerCamelCase : Any = xmod.model.classification_heads['mnli'].dense.weight __lowerCamelCase : Dict = xmod.model.classification_heads['mnli'].dense.bias __lowerCamelCase : str = xmod.model.classification_heads['mnli'].out_proj.weight __lowerCamelCase : Dict = xmod.model.classification_heads['mnli'].out_proj.bias else: # LM Head __lowerCamelCase : Any = xmod.model.encoder.lm_head.dense.weight __lowerCamelCase : int = xmod.model.encoder.lm_head.dense.bias __lowerCamelCase : Optional[Any] = xmod.model.encoder.lm_head.layer_norm.weight __lowerCamelCase : Dict = xmod.model.encoder.lm_head.layer_norm.bias __lowerCamelCase : Dict = xmod.model.encoder.lm_head.weight __lowerCamelCase : Optional[int] = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. __lowerCamelCase : Optional[Any] = xmod.encode(SCREAMING_SNAKE_CASE__ ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase : Any = model(SCREAMING_SNAKE_CASE__ )[0] if classification_head: __lowerCamelCase : int = xmod.model.classification_heads['mnli'](xmod.extract_features(SCREAMING_SNAKE_CASE__ ) ) else: __lowerCamelCase : Union[str, Any] = xmod.model(SCREAMING_SNAKE_CASE__ , lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape , their_output.shape ) __lowerCamelCase : List[str] = torch.max(torch.abs(our_output - their_output ) ).item() print(f'max_absolute_diff = {max_absolute_diff}' ) # ~ 1e-7 __lowerCamelCase : int = torch.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , atol=1e-3 ) print('Do both models output the same tensors?' , '🔥' if success else '💩' ) if not success: raise Exception('Something went wRoNg' ) Path(SCREAMING_SNAKE_CASE__ ).mkdir(parents=SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) print(f'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": lowercase_ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--xmod_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--classification_head', action='store_true', help='Whether to convert a final classification head.' ) lowercase_ : List[str] = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
713
from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class A_ ( __UpperCamelCase ): '''simple docstring''' __snake_case = 42 class A_ ( nn.Module ): '''simple docstring''' def __init__( self: List[Any] , a: Optional[Any]=3 , a: Tuple=3 , a: str=("DownEncoderBlock2D",) , a: str=(64,) , a: Optional[int]=2 , a: int=32 , a: str="silu" , a: Optional[Any]=True , ): super().__init__() __lowerCamelCase : int = layers_per_block __lowerCamelCase : List[Any] = torch.nn.Convad( a , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , ) __lowerCamelCase : Tuple = None __lowerCamelCase : Dict = nn.ModuleList([] ) # down __lowerCamelCase : Optional[int] = block_out_channels[0] for i, down_block_type in enumerate(a ): __lowerCamelCase : str = output_channel __lowerCamelCase : Optional[int] = block_out_channels[i] __lowerCamelCase : Dict = i == len(a ) - 1 __lowerCamelCase : List[Any] = get_down_block( a , num_layers=self.layers_per_block , in_channels=a , out_channels=a , add_downsample=not is_final_block , resnet_eps=1e-6 , downsample_padding=0 , resnet_act_fn=a , resnet_groups=a , attention_head_dim=a , temb_channels=a , ) self.down_blocks.append(a ) # mid __lowerCamelCase : Optional[Any] = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=a , output_scale_factor=1 , resnet_time_scale_shift='default' , attention_head_dim=block_out_channels[-1] , resnet_groups=a , temb_channels=a , ) # out __lowerCamelCase : str = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=a , eps=1e-6 ) __lowerCamelCase : Optional[Any] = nn.SiLU() __lowerCamelCase : int = 2 * out_channels if double_z else out_channels __lowerCamelCase : Tuple = nn.Convad(block_out_channels[-1] , a , 3 , padding=1 ) __lowerCamelCase : List[Any] = False def _snake_case ( self: List[str] , a: List[Any] ): __lowerCamelCase : List[str] = x __lowerCamelCase : Dict = self.conv_in(a ) if self.training and self.gradient_checkpointing: def create_custom_forward(a: int ): def custom_forward(*a: Optional[Any] ): return module(*a ) return custom_forward # down if is_torch_version('>=' , '1.11.0' ): for down_block in self.down_blocks: __lowerCamelCase : Union[str, Any] = torch.utils.checkpoint.checkpoint( create_custom_forward(a ) , a , use_reentrant=a ) # middle __lowerCamelCase : Any = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , a , use_reentrant=a ) else: for down_block in self.down_blocks: __lowerCamelCase : Any = torch.utils.checkpoint.checkpoint(create_custom_forward(a ) , a ) # middle __lowerCamelCase : int = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , a ) else: # down for down_block in self.down_blocks: __lowerCamelCase : List[Any] = down_block(a ) # middle __lowerCamelCase : Union[str, Any] = self.mid_block(a ) # post-process __lowerCamelCase : Tuple = self.conv_norm_out(a ) __lowerCamelCase : List[str] = self.conv_act(a ) __lowerCamelCase : int = self.conv_out(a ) return sample class A_ ( nn.Module ): '''simple docstring''' def __init__( self: int , a: List[str]=3 , a: Tuple=3 , a: str=("UpDecoderBlock2D",) , a: Union[str, Any]=(64,) , a: Optional[Any]=2 , a: Optional[Any]=32 , a: str="silu" , a: Union[str, Any]="group" , ): super().__init__() __lowerCamelCase : List[Any] = layers_per_block __lowerCamelCase : Any = nn.Convad( a , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , ) __lowerCamelCase : Tuple = None __lowerCamelCase : int = nn.ModuleList([] ) __lowerCamelCase : Optional[Any] = in_channels if norm_type == 'spatial' else None # mid __lowerCamelCase : List[Any] = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=a , output_scale_factor=1 , resnet_time_scale_shift='default' if norm_type == 'group' else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=a , temb_channels=a , ) # up __lowerCamelCase : Any = list(reversed(a ) ) __lowerCamelCase : Dict = reversed_block_out_channels[0] for i, up_block_type in enumerate(a ): __lowerCamelCase : List[Any] = output_channel __lowerCamelCase : List[str] = reversed_block_out_channels[i] __lowerCamelCase : Optional[Any] = i == len(a ) - 1 __lowerCamelCase : Optional[Any] = get_up_block( a , num_layers=self.layers_per_block + 1 , in_channels=a , out_channels=a , prev_output_channel=a , add_upsample=not is_final_block , resnet_eps=1e-6 , resnet_act_fn=a , resnet_groups=a , attention_head_dim=a , temb_channels=a , resnet_time_scale_shift=a , ) self.up_blocks.append(a ) __lowerCamelCase : List[str] = output_channel # out if norm_type == "spatial": __lowerCamelCase : int = SpatialNorm(block_out_channels[0] , a ) else: __lowerCamelCase : Optional[Any] = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=a , eps=1e-6 ) __lowerCamelCase : Union[str, Any] = nn.SiLU() __lowerCamelCase : List[Any] = nn.Convad(block_out_channels[0] , a , 3 , padding=1 ) __lowerCamelCase : List[str] = False def _snake_case ( self: Optional[int] , a: Tuple , a: List[str]=None ): __lowerCamelCase : List[str] = z __lowerCamelCase : Union[str, Any] = self.conv_in(a ) __lowerCamelCase : List[str] = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(a: Any ): def custom_forward(*a: str ): return module(*a ) return custom_forward if is_torch_version('>=' , '1.11.0' ): # middle __lowerCamelCase : Union[str, Any] = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , a , a , use_reentrant=a ) __lowerCamelCase : str = sample.to(a ) # up for up_block in self.up_blocks: __lowerCamelCase : Union[str, Any] = torch.utils.checkpoint.checkpoint( create_custom_forward(a ) , a , a , use_reentrant=a ) else: # middle __lowerCamelCase : Dict = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , a , a ) __lowerCamelCase : int = sample.to(a ) # up for up_block in self.up_blocks: __lowerCamelCase : List[str] = torch.utils.checkpoint.checkpoint(create_custom_forward(a ) , a , a ) else: # middle __lowerCamelCase : int = self.mid_block(a , a ) __lowerCamelCase : List[str] = sample.to(a ) # up for up_block in self.up_blocks: __lowerCamelCase : List[str] = up_block(a , a ) # post-process if latent_embeds is None: __lowerCamelCase : Optional[int] = self.conv_norm_out(a ) else: __lowerCamelCase : Dict = self.conv_norm_out(a , a ) __lowerCamelCase : Any = self.conv_act(a ) __lowerCamelCase : str = self.conv_out(a ) return sample class A_ ( nn.Module ): '''simple docstring''' def __init__( self: Optional[int] , a: List[Any] , a: List[Any] , a: List[Any] , a: Tuple=None , a: Tuple="random" , a: List[Any]=False , a: List[str]=True ): super().__init__() __lowerCamelCase : Optional[Any] = n_e __lowerCamelCase : Optional[int] = vq_embed_dim __lowerCamelCase : Tuple = beta __lowerCamelCase : List[str] = legacy __lowerCamelCase : str = nn.Embedding(self.n_e , self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e ) __lowerCamelCase : str = remap if self.remap is not None: self.register_buffer('used' , torch.tensor(np.load(self.remap ) ) ) __lowerCamelCase : Dict = self.used.shape[0] __lowerCamelCase : Optional[Any] = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": __lowerCamelCase : Any = self.re_embed __lowerCamelCase : Optional[int] = self.re_embed + 1 print( F'Remapping {self.n_e} indices to {self.re_embed} indices. ' F'Using {self.unknown_index} for unknown indices.' ) else: __lowerCamelCase : int = n_e __lowerCamelCase : Optional[Any] = sane_index_shape def _snake_case ( self: Tuple , a: Union[str, Any] ): __lowerCamelCase : Optional[Any] = inds.shape assert len(a ) > 1 __lowerCamelCase : List[Any] = inds.reshape(ishape[0] , -1 ) __lowerCamelCase : Any = self.used.to(a ) __lowerCamelCase : Union[str, Any] = (inds[:, :, None] == used[None, None, ...]).long() __lowerCamelCase : Dict = match.argmax(-1 ) __lowerCamelCase : List[Any] = match.sum(2 ) < 1 if self.unknown_index == "random": __lowerCamelCase : Tuple = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device ) else: __lowerCamelCase : str = self.unknown_index return new.reshape(a ) def _snake_case ( self: Tuple , a: Optional[int] ): __lowerCamelCase : List[Any] = inds.shape assert len(a ) > 1 __lowerCamelCase : Optional[int] = inds.reshape(ishape[0] , -1 ) __lowerCamelCase : Union[str, Any] = self.used.to(a ) if self.re_embed > self.used.shape[0]: # extra token __lowerCamelCase : Optional[Any] = 0 # simply set to zero __lowerCamelCase : Optional[Any] = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , a ) return back.reshape(a ) def _snake_case ( self: int , a: List[str] ): # reshape z -> (batch, height, width, channel) and flatten __lowerCamelCase : Union[str, Any] = z.permute(0 , 2 , 3 , 1 ).contiguous() __lowerCamelCase : List[Any] = z.view(-1 , self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z __lowerCamelCase : int = torch.argmin(torch.cdist(a , self.embedding.weight ) , dim=1 ) __lowerCamelCase : str = self.embedding(a ).view(z.shape ) __lowerCamelCase : str = None __lowerCamelCase : Any = None # compute loss for embedding if not self.legacy: __lowerCamelCase : int = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: __lowerCamelCase : List[Any] = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients __lowerCamelCase : int = z + (z_q - z).detach() # reshape back to match original input shape __lowerCamelCase : Any = z_q.permute(0 , 3 , 1 , 2 ).contiguous() if self.remap is not None: __lowerCamelCase : Optional[Any] = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis __lowerCamelCase : Optional[Any] = self.remap_to_used(a ) __lowerCamelCase : Dict = min_encoding_indices.reshape(-1 , 1 ) # flatten if self.sane_index_shape: __lowerCamelCase : str = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def _snake_case ( self: Tuple , a: Optional[int] , a: Any ): # shape specifying (batch, height, width, channel) if self.remap is not None: __lowerCamelCase : Any = indices.reshape(shape[0] , -1 ) # add batch axis __lowerCamelCase : Any = self.unmap_to_all(a ) __lowerCamelCase : int = indices.reshape(-1 ) # flatten again # get quantized latent vectors __lowerCamelCase : str = self.embedding(a ) if shape is not None: __lowerCamelCase : str = z_q.view(a ) # reshape back to match original input shape __lowerCamelCase : Optional[Any] = z_q.permute(0 , 3 , 1 , 2 ).contiguous() return z_q class A_ ( __UpperCamelCase ): '''simple docstring''' def __init__( self: str , a: Dict , a: Any=False ): __lowerCamelCase : Tuple = parameters __lowerCamelCase , __lowerCamelCase : Any = torch.chunk(a , 2 , dim=1 ) __lowerCamelCase : List[str] = torch.clamp(self.logvar , -3_0.0 , 2_0.0 ) __lowerCamelCase : int = deterministic __lowerCamelCase : Dict = torch.exp(0.5 * self.logvar ) __lowerCamelCase : str = torch.exp(self.logvar ) if self.deterministic: __lowerCamelCase : Optional[Any] = torch.zeros_like( self.mean , device=self.parameters.device , dtype=self.parameters.dtype ) def _snake_case ( self: Union[str, Any] , a: Optional[torch.Generator] = None ): # make sure sample is on the same device as the parameters and has same dtype __lowerCamelCase : Union[str, Any] = randn_tensor( self.mean.shape , generator=a , device=self.parameters.device , dtype=self.parameters.dtype ) __lowerCamelCase : str = self.mean + self.std * sample return x def _snake_case ( self: List[str] , a: Union[str, Any]=None ): if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean , 2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar , dim=[1, 2, 3] , ) def _snake_case ( self: Optional[Any] , a: str , a: Any=[1, 2, 3] ): if self.deterministic: return torch.Tensor([0.0] ) __lowerCamelCase : int = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=a ) def _snake_case ( self: Optional[int] ): return self.mean
230
0
import math import os import unittest from transformers import MegatronBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, ) class __lowerCAmelCase : """simple docstring""" def __init__( self : Optional[int] , _snake_case : List[Any] , _snake_case : Optional[Any]=13 , _snake_case : Union[str, Any]=7 , _snake_case : Dict=True , _snake_case : Any=True , _snake_case : Dict=True , _snake_case : Optional[Any]=True , _snake_case : Optional[Any]=99 , _snake_case : Any=64 , _snake_case : Dict=32 , _snake_case : Optional[int]=5 , _snake_case : List[str]=4 , _snake_case : str=37 , _snake_case : List[Any]="gelu" , _snake_case : str=0.1 , _snake_case : Tuple=0.1 , _snake_case : Any=512 , _snake_case : List[str]=16 , _snake_case : Optional[Any]=2 , _snake_case : List[Any]=0.02 , _snake_case : Tuple=3 , _snake_case : Union[str, Any]=4 , _snake_case : Optional[Any]=None , ): __lowercase : Optional[int] = parent __lowercase : str = batch_size __lowercase : List[str] = seq_length __lowercase : str = is_training __lowercase : List[str] = use_input_mask __lowercase : Optional[int] = use_token_type_ids __lowercase : Optional[Any] = use_labels __lowercase : Any = vocab_size __lowercase : Any = hidden_size __lowercase : List[str] = embedding_size __lowercase : List[Any] = num_hidden_layers __lowercase : int = num_attention_heads __lowercase : Optional[Any] = intermediate_size __lowercase : Optional[int] = hidden_act __lowercase : str = hidden_dropout_prob __lowercase : int = attention_probs_dropout_prob __lowercase : str = max_position_embeddings __lowercase : List[str] = type_vocab_size __lowercase : int = type_sequence_label_size __lowercase : Dict = initializer_range __lowercase : int = num_labels __lowercase : Optional[Any] = num_choices __lowercase : int = scope def snake_case_ ( self : Any ): __lowercase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase : List[str] = None if self.use_input_mask: __lowercase : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase : str = None if self.use_token_type_ids: __lowercase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowercase : Optional[int] = None __lowercase : Any = None __lowercase : Dict = None if self.use_labels: __lowercase : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase : Optional[int] = ids_tensor([self.batch_size] , self.num_choices ) __lowercase : Any = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case_ ( self : List[Any] ): return MegatronBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_snake_case , initializer_range=self.initializer_range , ) def snake_case_ ( self : Union[str, Any] , _snake_case : str , _snake_case : List[str] , _snake_case : int , _snake_case : Optional[Any] , _snake_case : Dict , _snake_case : Union[str, Any] , _snake_case : Any ): __lowercase : Optional[int] = MegatronBertModel(config=_snake_case ) model.to(_snake_case ) model.eval() __lowercase : Tuple = model(_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case ) __lowercase : Tuple = model(_snake_case , token_type_ids=_snake_case ) __lowercase : str = model(_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def snake_case_ ( self : str , _snake_case : int , _snake_case : Optional[Any] , _snake_case : Optional[Any] , _snake_case : Dict , _snake_case : Optional[int] , _snake_case : List[str] , _snake_case : Dict ): __lowercase : str = MegatronBertForMaskedLM(config=_snake_case ) model.to(_snake_case ) model.eval() __lowercase : List[Any] = model(_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , labels=_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case_ ( self : Optional[Any] , _snake_case : List[str] , _snake_case : Optional[Any] , _snake_case : Union[str, Any] , _snake_case : int , _snake_case : List[str] , _snake_case : str , _snake_case : Dict ): __lowercase : Optional[Any] = MegatronBertForCausalLM(config=_snake_case ) model.to(_snake_case ) model.eval() __lowercase : Optional[int] = model(_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , labels=_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case_ ( self : Tuple , _snake_case : List[str] , _snake_case : Union[str, Any] , _snake_case : List[str] , _snake_case : Optional[int] , _snake_case : Dict , _snake_case : Optional[int] , _snake_case : Optional[Any] ): __lowercase : Any = MegatronBertForNextSentencePrediction(config=_snake_case ) model.to(_snake_case ) model.eval() __lowercase : Any = model( _snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , labels=_snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def snake_case_ ( self : Optional[Any] , _snake_case : Any , _snake_case : Optional[int] , _snake_case : Union[str, Any] , _snake_case : Optional[Any] , _snake_case : str , _snake_case : str , _snake_case : Dict ): __lowercase : Any = MegatronBertForPreTraining(config=_snake_case ) model.to(_snake_case ) model.eval() __lowercase : Optional[Any] = model( _snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , labels=_snake_case , next_sentence_label=_snake_case , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def snake_case_ ( self : Any , _snake_case : Union[str, Any] , _snake_case : List[str] , _snake_case : int , _snake_case : Any , _snake_case : Optional[int] , _snake_case : Optional[Any] , _snake_case : Optional[Any] ): __lowercase : Optional[int] = MegatronBertForQuestionAnswering(config=_snake_case ) model.to(_snake_case ) model.eval() __lowercase : List[Any] = model( _snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , start_positions=_snake_case , end_positions=_snake_case , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def snake_case_ ( self : str , _snake_case : List[str] , _snake_case : Dict , _snake_case : Optional[Any] , _snake_case : Optional[Any] , _snake_case : List[Any] , _snake_case : Any , _snake_case : List[Any] ): __lowercase : Optional[int] = self.num_labels __lowercase : Dict = MegatronBertForSequenceClassification(_snake_case ) model.to(_snake_case ) model.eval() __lowercase : str = model(_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , labels=_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case_ ( self : Union[str, Any] , _snake_case : Union[str, Any] , _snake_case : Dict , _snake_case : int , _snake_case : Tuple , _snake_case : Optional[Any] , _snake_case : Dict , _snake_case : List[Any] ): __lowercase : Any = self.num_labels __lowercase : Optional[Any] = MegatronBertForTokenClassification(config=_snake_case ) model.to(_snake_case ) model.eval() __lowercase : Dict = model(_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , labels=_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def snake_case_ ( self : str , _snake_case : List[str] , _snake_case : Optional[Any] , _snake_case : List[Any] , _snake_case : Any , _snake_case : int , _snake_case : str , _snake_case : List[str] ): __lowercase : Optional[int] = self.num_choices __lowercase : Optional[int] = MegatronBertForMultipleChoice(config=_snake_case ) model.to(_snake_case ) model.eval() __lowercase : Union[str, Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase : Tuple = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase : Dict = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase : Any = model( _snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , labels=_snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def snake_case_ ( self : Optional[int] ): __lowercase : Tuple = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) : List[str] = config_and_inputs __lowercase : Dict = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __lowerCAmelCase ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): """simple docstring""" A__ : List[Any] = ( ( MegatronBertModel, MegatronBertForMaskedLM, MegatronBertForCausalLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, ) if is_torch_available() else () ) A__ : str = ( { '''feature-extraction''': MegatronBertModel, '''fill-mask''': MegatronBertForMaskedLM, '''question-answering''': MegatronBertForQuestionAnswering, '''text-classification''': MegatronBertForSequenceClassification, '''text-generation''': MegatronBertForCausalLM, '''token-classification''': MegatronBertForTokenClassification, '''zero-shot''': MegatronBertForSequenceClassification, } if is_torch_available() else {} ) A__ : Any = True # test_resize_embeddings = False A__ : Dict = False def snake_case_ ( self : str , _snake_case : Dict , _snake_case : Dict , _snake_case : Any=False ): __lowercase : Optional[Any] = super()._prepare_for_class(_snake_case , _snake_case , return_labels=_snake_case ) if return_labels: if model_class in get_values(_snake_case ): __lowercase : int = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=_snake_case ) __lowercase : Tuple = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_snake_case ) return inputs_dict def snake_case_ ( self : Any ): __lowercase : str = MegatronBertModelTester(self ) __lowercase : int = ConfigTester(self , config_class=_snake_case , hidden_size=37 ) def snake_case_ ( self : Optional[int] ): self.config_tester.run_common_tests() def snake_case_ ( self : Dict ): __lowercase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_model(*_snake_case ) def snake_case_ ( self : Union[str, Any] ): __lowercase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_masked_lm(*_snake_case ) def snake_case_ ( self : Dict ): __lowercase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*_snake_case ) def snake_case_ ( self : Any ): __lowercase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*_snake_case ) def snake_case_ ( self : Tuple ): __lowercase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_pretraining(*_snake_case ) def snake_case_ ( self : Dict ): __lowercase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_question_answering(*_snake_case ) def snake_case_ ( self : Optional[Any] ): __lowercase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*_snake_case ) def snake_case_ ( self : Dict ): __lowercase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_token_classification(*_snake_case ) def UpperCAmelCase_ ( __lowerCAmelCase ) -> Tuple: return torch.tensor( __lowerCAmelCase , dtype=torch.long , device=__lowerCAmelCase , ) __lowerCAmelCase : int = 1e-4 @require_torch @require_sentencepiece @require_tokenizers class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow @unittest.skip('''Model is not available.''' ) def snake_case_ ( self : List[Any] ): __lowercase : List[Any] = '''nvidia/megatron-bert-uncased-345m''' if "MYDIR" in os.environ: __lowercase : List[Any] = os.path.join(os.environ['''MYDIR'''] , _snake_case ) __lowercase : Tuple = MegatronBertModel.from_pretrained(_snake_case ) model.to(_snake_case ) model.half() __lowercase : int = _long_tensor([[101, 7110, 1005, 1056, 2023, 1_1333, 1_7413, 1029, 102]] ) with torch.no_grad(): __lowercase : Union[str, Any] = model(_snake_case )[0] __lowercase : Tuple = torch.Size((1, 9, 1024) ) self.assertEqual(output.shape , _snake_case ) __lowercase : Optional[Any] = [-0.60_40, -0.25_17, -0.10_25, 0.34_20, -0.67_58, -0.00_17, -0.10_89, -0.19_90, 0.57_28] for ii in range(3 ): for jj in range(3 ): __lowercase : Union[str, Any] = output[0, ii, jj] __lowercase : int = expected[3 * ii + jj] __lowercase : Union[str, Any] = '''ii={} jj={} a={} b={}'''.format(_snake_case , _snake_case , _snake_case , _snake_case ) self.assertTrue(math.isclose(_snake_case , _snake_case , rel_tol=_snake_case , abs_tol=_snake_case ) , msg=_snake_case )
509
import os import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from huggingface_hub.file_download import http_get from requests.exceptions import HTTPError from transformers import ( AlbertTokenizer, AutoTokenizer, BertTokenizer, BertTokenizerFast, GPTaTokenizerFast, is_tokenizers_available, ) from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers from transformers.tokenization_utils import Trie sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def snake_case_ ( self : Tuple ): # A mock response for an HTTP head request to emulate server down __lowercase : List[Any] = mock.Mock() __lowercase : Optional[Any] = 500 __lowercase : List[Any] = {} __lowercase : str = HTTPError __lowercase : Optional[int] = {} # Download this model to make sure it's in the cache. __lowercase : str = BertTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('''requests.Session.request''' , return_value=_snake_case ) as mock_head: __lowercase : Optional[int] = BertTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) # This check we did call the fake head request mock_head.assert_called() @require_tokenizers def snake_case_ ( self : Any ): # A mock response for an HTTP head request to emulate server down __lowercase : int = mock.Mock() __lowercase : List[str] = 500 __lowercase : int = {} __lowercase : List[Any] = HTTPError __lowercase : Optional[Any] = {} # Download this model to make sure it's in the cache. __lowercase : Dict = GPTaTokenizerFast.from_pretrained('''gpt2''' ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('''requests.Session.request''' , return_value=_snake_case ) as mock_head: __lowercase : Union[str, Any] = GPTaTokenizerFast.from_pretrained('''gpt2''' ) # This check we did call the fake head request mock_head.assert_called() def snake_case_ ( self : int ): # This test is for deprecated behavior and can be removed in v5 try: __lowercase : Tuple = tempfile.mktemp() with open(_snake_case , '''wb''' ) as f: http_get('''https://huggingface.co/albert-base-v1/resolve/main/spiece.model''' , _snake_case ) __lowercase : List[str] = AlbertTokenizer.from_pretrained(_snake_case ) finally: os.remove(_snake_case ) # Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in # the current folder and have the right name. if os.path.isfile('''tokenizer.json''' ): # We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it. return try: with open('''tokenizer.json''' , '''wb''' ) as f: http_get('''https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json''' , _snake_case ) __lowercase : str = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) # The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000 self.assertEqual(tokenizer.vocab_size , 1000 ) # Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file. finally: os.remove('''tokenizer.json''' ) def snake_case_ ( self : Union[str, Any] ): # This test is for deprecated behavior and can be removed in v5 __lowercase : List[str] = AlbertTokenizer.from_pretrained('''https://huggingface.co/albert-base-v1/resolve/main/spiece.model''' ) @is_staging_test class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" A__ : Dict = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''bla''', '''blou'''] @classmethod def snake_case_ ( cls : Optional[Any] ): __lowercase : List[str] = TOKEN HfFolder.save_token(_snake_case ) @classmethod def snake_case_ ( cls : Optional[int] ): try: delete_repo(token=cls._token , repo_id='''test-tokenizer''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-tokenizer-org''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-tokenizer''' ) except HTTPError: pass def snake_case_ ( self : List[str] ): with tempfile.TemporaryDirectory() as tmp_dir: __lowercase : List[Any] = os.path.join(_snake_case , '''vocab.txt''' ) with open(_snake_case , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) __lowercase : Optional[Any] = BertTokenizer(_snake_case ) tokenizer.push_to_hub('''test-tokenizer''' , use_auth_token=self._token ) __lowercase : List[str] = BertTokenizer.from_pretrained(F'{USER}/test-tokenizer' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) # Reset repo delete_repo(token=self._token , repo_id='''test-tokenizer''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_snake_case , repo_id='''test-tokenizer''' , push_to_hub=_snake_case , use_auth_token=self._token ) __lowercase : List[str] = BertTokenizer.from_pretrained(F'{USER}/test-tokenizer' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) def snake_case_ ( self : Any ): with tempfile.TemporaryDirectory() as tmp_dir: __lowercase : List[str] = os.path.join(_snake_case , '''vocab.txt''' ) with open(_snake_case , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) __lowercase : Tuple = BertTokenizer(_snake_case ) tokenizer.push_to_hub('''valid_org/test-tokenizer-org''' , use_auth_token=self._token ) __lowercase : Any = BertTokenizer.from_pretrained('''valid_org/test-tokenizer-org''' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-tokenizer-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained( _snake_case , repo_id='''valid_org/test-tokenizer-org''' , push_to_hub=_snake_case , use_auth_token=self._token ) __lowercase : int = BertTokenizer.from_pretrained('''valid_org/test-tokenizer-org''' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) @require_tokenizers def snake_case_ ( self : Dict ): CustomTokenizer.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: __lowercase : Any = os.path.join(_snake_case , '''vocab.txt''' ) with open(_snake_case , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) __lowercase : Tuple = CustomTokenizer(_snake_case ) # No fast custom tokenizer tokenizer.push_to_hub('''test-dynamic-tokenizer''' , use_auth_token=self._token ) __lowercase : Optional[int] = AutoTokenizer.from_pretrained(F'{USER}/test-dynamic-tokenizer' , trust_remote_code=_snake_case ) # Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , '''CustomTokenizer''' ) # Fast and slow custom tokenizer CustomTokenizerFast.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: __lowercase : List[str] = os.path.join(_snake_case , '''vocab.txt''' ) with open(_snake_case , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) __lowercase : Union[str, Any] = BertTokenizerFast.from_pretrained(_snake_case ) bert_tokenizer.save_pretrained(_snake_case ) __lowercase : List[Any] = CustomTokenizerFast.from_pretrained(_snake_case ) tokenizer.push_to_hub('''test-dynamic-tokenizer''' , use_auth_token=self._token ) __lowercase : Tuple = AutoTokenizer.from_pretrained(F'{USER}/test-dynamic-tokenizer' , trust_remote_code=_snake_case ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , '''CustomTokenizerFast''' ) __lowercase : Optional[Any] = AutoTokenizer.from_pretrained( F'{USER}/test-dynamic-tokenizer' , use_fast=_snake_case , trust_remote_code=_snake_case ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , '''CustomTokenizer''' ) class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def snake_case_ ( self : Optional[Any] ): __lowercase : List[Any] = Trie() trie.add('''Hello 友達''' ) self.assertEqual(trie.data , {'''H''': {'''e''': {'''l''': {'''l''': {'''o''': {''' ''': {'''友''': {'''達''': {'''''': 1}}}}}}}}} ) trie.add('''Hello''' ) trie.data self.assertEqual(trie.data , {'''H''': {'''e''': {'''l''': {'''l''': {'''o''': {'''''': 1, ''' ''': {'''友''': {'''達''': {'''''': 1}}}}}}}}} ) def snake_case_ ( self : int ): __lowercase : int = Trie() self.assertEqual(trie.split('''[CLS] This is a extra_id_100''' ) , ['''[CLS] This is a extra_id_100'''] ) trie.add('''[CLS]''' ) trie.add('''extra_id_1''' ) trie.add('''extra_id_100''' ) self.assertEqual(trie.split('''[CLS] This is a extra_id_100''' ) , ['''[CLS]''', ''' This is a ''', '''extra_id_100'''] ) def snake_case_ ( self : Dict ): __lowercase : List[str] = Trie() trie.add('''A''' ) self.assertEqual(trie.split('''ABC''' ) , ['''A''', '''BC'''] ) self.assertEqual(trie.split('''BCA''' ) , ['''BC''', '''A'''] ) def snake_case_ ( self : int ): __lowercase : Optional[int] = Trie() trie.add('''TOKEN]''' ) trie.add('''[SPECIAL_TOKEN]''' ) self.assertEqual(trie.split('''This is something [SPECIAL_TOKEN]''' ) , ['''This is something ''', '''[SPECIAL_TOKEN]'''] ) def snake_case_ ( self : List[Any] ): __lowercase : List[Any] = Trie() trie.add('''A''' ) trie.add('''P''' ) trie.add('''[SPECIAL_TOKEN]''' ) self.assertEqual(trie.split('''This is something [SPECIAL_TOKEN]''' ) , ['''This is something ''', '''[SPECIAL_TOKEN]'''] ) def snake_case_ ( self : Optional[Any] ): __lowercase : List[str] = Trie() trie.add('''AB''' ) trie.add('''B''' ) trie.add('''C''' ) self.assertEqual(trie.split('''ABC''' ) , ['''AB''', '''C'''] ) def snake_case_ ( self : Any ): __lowercase : str = Trie() trie.add('''ABC''' ) trie.add('''B''' ) trie.add('''CD''' ) self.assertEqual(trie.split('''ABCD''' ) , ['''ABC''', '''D'''] ) def snake_case_ ( self : Tuple ): # Even if the offsets are wrong, we necessarily output correct string # parts. __lowercase : List[str] = Trie() __lowercase : Optional[Any] = trie.cut_text('''ABC''' , [0, 0, 2, 1, 2, 3] ) self.assertEqual(_snake_case , ['''AB''', '''C'''] )
509
1
from .data_collator import ( DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForSeqaSeq, DataCollatorForSOP, DataCollatorForTokenClassification, DataCollatorForWholeWordMask, DataCollatorWithPadding, DefaultDataCollator, default_data_collator, ) from .metrics import glue_compute_metrics, xnli_compute_metrics from .processors import ( DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor, SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels, squad_convert_examples_to_features, xnli_output_modes, xnli_processors, xnli_tasks_num_labels, )
664
from __future__ import annotations def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : list )->list: if len(_SCREAMING_SNAKE_CASE ) == 0: return [] _lowerCAmelCase , _lowerCAmelCase = min(_SCREAMING_SNAKE_CASE ), max(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = int(max_value - min_value ) + 1 _lowerCAmelCase = [[] for _ in range(_SCREAMING_SNAKE_CASE )] for i in my_list: buckets[int(i - min_value )].append(_SCREAMING_SNAKE_CASE ) return [v for bucket in buckets for v in sorted(_SCREAMING_SNAKE_CASE )] if __name__ == "__main__": from doctest import testmod testmod() assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bucket_sort([0, 1, -1_0, 1_5, 2, -2]) == [-1_0, -2, 0, 1, 2, 1_5]
664
1
"""simple docstring""" from __future__ import annotations from sys import maxsize from typing import Generic, TypeVar UpperCAmelCase = TypeVar("""T""") def _snake_case ( __snake_case : int ): """simple docstring""" return (position - 1) // 2 def _snake_case ( __snake_case : int ): """simple docstring""" return (2 * position) + 1 def _snake_case ( __snake_case : int ): """simple docstring""" return (2 * position) + 2 class lowercase__ ( Generic[T] ): def __init__( self) -> None: _lowerCamelCase : list[tuple[T, int]] = [] _lowerCamelCase : dict[T, int] = {} _lowerCamelCase : int = 0 def __len__( self) -> int: return self.elements def __repr__( self) -> str: return str(self.heap) def UpperCamelCase_ ( self) -> bool: # Check if the priority queue is empty return self.elements == 0 def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) -> None: # Add an element with given priority to the queue self.heap.append((elem, weight)) _lowerCamelCase : Any = self.elements self.elements += 1 self._bubble_up(SCREAMING_SNAKE_CASE) def UpperCamelCase_ ( self) -> T: # Remove and return the element with lowest weight (highest priority) if self.elements > 1: self._swap_nodes(0 , self.elements - 1) _lowerCamelCase , _lowerCamelCase : Dict = self.heap.pop() del self.position_map[elem] self.elements -= 1 if self.elements > 0: _lowerCamelCase , _lowerCamelCase : Tuple = self.heap[0] self._bubble_down(SCREAMING_SNAKE_CASE) return elem def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) -> None: # Update the weight of the given key _lowerCamelCase : List[Any] = self.position_map[elem] _lowerCamelCase : Tuple = (elem, weight) if position > 0: _lowerCamelCase : List[str] = get_parent_position(SCREAMING_SNAKE_CASE) _lowerCamelCase , _lowerCamelCase : int = self.heap[parent_position] if parent_weight > weight: self._bubble_up(SCREAMING_SNAKE_CASE) else: self._bubble_down(SCREAMING_SNAKE_CASE) else: self._bubble_down(SCREAMING_SNAKE_CASE) def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE) -> None: # Place a node at the proper position (upward movement) [to be used internally # only] _lowerCamelCase : int = self.position_map[elem] if curr_pos == 0: return None _lowerCamelCase : List[Any] = get_parent_position(SCREAMING_SNAKE_CASE) _lowerCamelCase , _lowerCamelCase : Dict = self.heap[curr_pos] _lowerCamelCase , _lowerCamelCase : List[Any] = self.heap[parent_position] if parent_weight > weight: self._swap_nodes(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) return self._bubble_up(SCREAMING_SNAKE_CASE) return None def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE) -> None: # Place a node at the proper position (downward movement) [to be used # internally only] _lowerCamelCase : int = self.position_map[elem] _lowerCamelCase , _lowerCamelCase : Dict = self.heap[curr_pos] _lowerCamelCase : str = get_child_left_position(SCREAMING_SNAKE_CASE) _lowerCamelCase : int = get_child_right_position(SCREAMING_SNAKE_CASE) if child_left_position < self.elements and child_right_position < self.elements: _lowerCamelCase , _lowerCamelCase : Optional[Any] = self.heap[child_left_position] _lowerCamelCase , _lowerCamelCase : Dict = self.heap[child_right_position] if child_right_weight < child_left_weight and child_right_weight < weight: self._swap_nodes(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) return self._bubble_down(SCREAMING_SNAKE_CASE) if child_left_position < self.elements: _lowerCamelCase , _lowerCamelCase : Dict = self.heap[child_left_position] if child_left_weight < weight: self._swap_nodes(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) return self._bubble_down(SCREAMING_SNAKE_CASE) else: return None if child_right_position < self.elements: _lowerCamelCase , _lowerCamelCase : int = self.heap[child_right_position] if child_right_weight < weight: self._swap_nodes(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) return self._bubble_down(SCREAMING_SNAKE_CASE) return None def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) -> None: # Swap the nodes at the given positions _lowerCamelCase : List[str] = self.heap[nodea_pos][0] _lowerCamelCase : Dict = self.heap[nodea_pos][0] _lowerCamelCase , _lowerCamelCase : List[Any] = ( self.heap[nodea_pos], self.heap[nodea_pos], ) _lowerCamelCase : Optional[Any] = nodea_pos _lowerCamelCase : int = nodea_pos class lowercase__ ( Generic[T] ): def __init__( self) -> None: _lowerCamelCase : dict[T, dict[T, int]] = {} _lowerCamelCase : int = 0 def __repr__( self) -> str: return str(self.connections) def __len__( self) -> int: return self.nodes def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE) -> None: # Add a node in the graph if it is not in the graph if node not in self.connections: _lowerCamelCase : int = {} self.nodes += 1 def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) -> None: # Add an edge between 2 nodes in the graph self.add_node(SCREAMING_SNAKE_CASE) self.add_node(SCREAMING_SNAKE_CASE) _lowerCamelCase : List[Any] = weight _lowerCamelCase : int = weight def _snake_case ( __snake_case : GraphUndirectedWeighted[T] , ): """simple docstring""" _lowerCamelCase : dict[T, int] = {node: maxsize for node in graph.connections} _lowerCamelCase : dict[T, T | None] = {node: None for node in graph.connections} _lowerCamelCase : MinPriorityQueue[T] = MinPriorityQueue() for node, weight in dist.items(): priority_queue.push(__snake_case , __snake_case ) if priority_queue.is_empty(): return dist, parent # initialization _lowerCamelCase : List[str] = priority_queue.extract_min() _lowerCamelCase : str = 0 for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: _lowerCamelCase : List[Any] = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(__snake_case , dist[neighbour] ) _lowerCamelCase : Tuple = node # running prim's algorithm while not priority_queue.is_empty(): _lowerCamelCase : List[Any] = priority_queue.extract_min() for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: _lowerCamelCase : Tuple = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(__snake_case , dist[neighbour] ) _lowerCamelCase : List[str] = node return dist, parent
88
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_rembert import RemBertTokenizer else: _lowerCamelCase = None _lowerCamelCase = logging.get_logger(__name__) _lowerCamelCase = {'vocab_file': 'sentencepiece.model', 'tokenizer_file': 'tokenizer.json'} _lowerCamelCase = { 'vocab_file': { 'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/sentencepiece.model', }, 'tokenizer_file': { 'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/tokenizer.json', }, } _lowerCamelCase = { 'google/rembert': 2_56, } _lowerCamelCase = '▁' class a ( _A ): '''simple docstring''' lowerCAmelCase : Dict = VOCAB_FILES_NAMES lowerCAmelCase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase : List[Any] = RemBertTokenizer def __init__( self : List[str] , __snake_case : int=None , __snake_case : str=None , __snake_case : Optional[int]=True , __snake_case : Dict=True , __snake_case : Optional[int]=False , __snake_case : Tuple="[CLS]" , __snake_case : Any="[SEP]" , __snake_case : Dict="<unk>" , __snake_case : List[str]="[SEP]" , __snake_case : Dict="<pad>" , __snake_case : str="[CLS]" , __snake_case : Union[str, Any]="[MASK]" , **__snake_case : Any , ): # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase_ = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else mask_token super().__init__( __snake_case , tokenizer_file=__snake_case , do_lower_case=__snake_case , remove_space=__snake_case , keep_accents=__snake_case , bos_token=__snake_case , eos_token=__snake_case , unk_token=__snake_case , sep_token=__snake_case , pad_token=__snake_case , cls_token=__snake_case , mask_token=__snake_case , **__snake_case , ) UpperCAmelCase_ = do_lower_case UpperCAmelCase_ = remove_space UpperCAmelCase_ = keep_accents UpperCAmelCase_ = vocab_file UpperCAmelCase_ = False if not self.vocab_file else True def lowerCamelCase_ ( self : str , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ): UpperCAmelCase_ = [self.sep_token_id] UpperCAmelCase_ = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCamelCase_ ( self : Union[str, Any] , __snake_case : List[int] , __snake_case : Optional[List[int]] = None , __snake_case : bool = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(__snake_case )) + [1] + ([0] * len(__snake_case )) + [1] return [1] + ([0] * len(__snake_case )) + [1] def lowerCamelCase_ ( self : int , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ): UpperCAmelCase_ = [self.sep_token_id] UpperCAmelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCamelCase_ ( self : List[str] , __snake_case : str , __snake_case : Optional[str] = None ): if not os.path.isdir(__snake_case ): logger.error('''Vocabulary path ({}) should be a directory'''.format(__snake_case ) ) return UpperCAmelCase_ = os.path.join( __snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__snake_case ): copyfile(self.vocab_file , __snake_case ) return (out_vocab_file,)
144
0
from typing import List import numpy as np def a ( snake_case__: dict ): '''simple docstring''' lowercase_ = {key: len(snake_case__ ) for key, value in gen_kwargs.items() if isinstance(snake_case__ , snake_case__ )} if len(set(lists_lengths.values() ) ) > 1: raise RuntimeError( ( '''Sharding is ambiguous for this dataset: ''' + '''we found several data sources lists of different lengths, and we don\'t know over which list we should parallelize:\n''' + '''\n'''.join(F'''\t- key {key} has length {length}''' for key, length in lists_lengths.items() ) + '''\nTo fix this, check the \'gen_kwargs\' and make sure to use lists only for data sources, ''' + '''and use tuples otherwise. In the end there should only be one single list, or several lists with the same length.''' ) ) lowercase_ = max(lists_lengths.values() , default=0 ) return max(1 , snake_case__ ) def a ( snake_case__: int , snake_case__: int ): '''simple docstring''' lowercase_ = [] for group_idx in range(snake_case__ ): lowercase_ = num_shards // max_num_jobs + (group_idx < (num_shards % max_num_jobs)) if num_shards_to_add == 0: break lowercase_ = shards_indices_per_group[-1].stop if shards_indices_per_group else 0 lowercase_ = range(snake_case__ , start + num_shards_to_add ) shards_indices_per_group.append(snake_case__ ) return shards_indices_per_group def a ( snake_case__: dict , snake_case__: int ): '''simple docstring''' lowercase_ = _number_of_shards_in_gen_kwargs(snake_case__ ) if num_shards == 1: return [dict(snake_case__ )] else: lowercase_ = _distribute_shards(num_shards=snake_case__ , max_num_jobs=snake_case__ ) return [ { key: [value[shard_idx] for shard_idx in shard_indices_per_group[group_idx]] if isinstance(snake_case__ , snake_case__ ) else value for key, value in gen_kwargs.items() } for group_idx in range(len(snake_case__ ) ) ] def a ( snake_case__: List[dict] ): '''simple docstring''' return { key: [value for gen_kwargs in gen_kwargs_list for value in gen_kwargs[key]] if isinstance(gen_kwargs_list[0][key] , snake_case__ ) else gen_kwargs_list[0][key] for key in gen_kwargs_list[0] } def a ( snake_case__: np.random.Generator , snake_case__: dict ): '''simple docstring''' lowercase_ = {len(snake_case__ ) for value in gen_kwargs.values() if isinstance(snake_case__ , snake_case__ )} lowercase_ = {} for size in list_sizes: lowercase_ = list(range(snake_case__ ) ) rng.shuffle(indices_per_size[size] ) # Now let's copy the gen_kwargs and shuffle the lists based on their sizes lowercase_ = dict(snake_case__ ) for key, value in shuffled_kwargs.items(): if isinstance(snake_case__ , snake_case__ ): lowercase_ = [value[i] for i in indices_per_size[len(snake_case__ )]] return shuffled_kwargs
409
import os import torch from ..logging import get_logger from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME from .versions import is_torch_version if is_torch_version('>=', FSDP_PYTORCH_VERSION): import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType __a = get_logger(__name__) def a ( snake_case__: Optional[Any] , snake_case__: Any , snake_case__: int , snake_case__: int , snake_case__: Optional[Any]=0 ): '''simple docstring''' os.makedirs(snake_case__ , exist_ok=snake_case__ ) with FSDP.state_dict_type( snake_case__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): lowercase_ = model.state_dict() if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: lowercase_ = F'''{MODEL_NAME}.bin''' if model_index == 0 else F'''{MODEL_NAME}_{model_index}.bin''' lowercase_ = os.path.join(snake_case__ , snake_case__ ) if accelerator.process_index == 0: logger.info(F'''Saving model to {output_model_file}''' ) torch.save(snake_case__ , snake_case__ ) logger.info(F'''Model saved to {output_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: lowercase_ = ( F'''{MODEL_NAME}_rank{accelerator.process_index}.bin''' if model_index == 0 else F'''{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin''' ) lowercase_ = os.path.join(snake_case__ , snake_case__ ) logger.info(F'''Saving model to {output_model_file}''' ) torch.save(snake_case__ , snake_case__ ) logger.info(F'''Model saved to {output_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: lowercase_ = os.path.join(snake_case__ , F'''{MODEL_NAME}_{model_index}''' ) os.makedirs(snake_case__ , exist_ok=snake_case__ ) logger.info(F'''Saving model to {ckpt_dir}''' ) lowercase_ = {'''model''': state_dict} dist_cp.save_state_dict( state_dict=snake_case__ , storage_writer=dist_cp.FileSystemWriter(snake_case__ ) , planner=DefaultSavePlanner() , ) logger.info(F'''Model saved to {ckpt_dir}''' ) def a ( snake_case__: Any , snake_case__: Optional[Any] , snake_case__: Optional[Any] , snake_case__: Union[str, Any] , snake_case__: Tuple=0 ): '''simple docstring''' accelerator.wait_for_everyone() with FSDP.state_dict_type( snake_case__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if type(snake_case__ ) != FSDP and accelerator.process_index != 0: if not fsdp_plugin.sync_module_states: raise ValueError( '''Set the `sync_module_states` flag to `True` so that model states are synced across processes when ''' '''initializing FSDP object''' ) return lowercase_ = F'''{MODEL_NAME}.bin''' if model_index == 0 else F'''{MODEL_NAME}_{model_index}.bin''' lowercase_ = os.path.join(snake_case__ , snake_case__ ) logger.info(F'''Loading model from {input_model_file}''' ) lowercase_ = torch.load(snake_case__ ) logger.info(F'''Model loaded from {input_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: lowercase_ = ( F'''{MODEL_NAME}_rank{accelerator.process_index}.bin''' if model_index == 0 else F'''{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin''' ) lowercase_ = os.path.join(snake_case__ , snake_case__ ) logger.info(F'''Loading model from {input_model_file}''' ) lowercase_ = torch.load(snake_case__ ) logger.info(F'''Model loaded from {input_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: lowercase_ = ( os.path.join(snake_case__ , F'''{MODEL_NAME}_{model_index}''' ) if F'''{MODEL_NAME}''' not in input_dir else input_dir ) logger.info(F'''Loading model from {ckpt_dir}''' ) lowercase_ = {'''model''': model.state_dict()} dist_cp.load_state_dict( state_dict=snake_case__ , storage_reader=dist_cp.FileSystemReader(snake_case__ ) , planner=DefaultLoadPlanner() , ) lowercase_ = state_dict['''model'''] logger.info(F'''Model loaded from {ckpt_dir}''' ) model.load_state_dict(snake_case__ ) def a ( snake_case__: Dict , snake_case__: str , snake_case__: Optional[Any] , snake_case__: Any , snake_case__: str , snake_case__: str=0 ): '''simple docstring''' os.makedirs(snake_case__ , exist_ok=snake_case__ ) with FSDP.state_dict_type( snake_case__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): lowercase_ = FSDP.optim_state_dict(snake_case__ , snake_case__ ) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if accelerator.process_index == 0: lowercase_ = ( F'''{OPTIMIZER_NAME}.bin''' if optimizer_index == 0 else F'''{OPTIMIZER_NAME}_{optimizer_index}.bin''' ) lowercase_ = os.path.join(snake_case__ , snake_case__ ) logger.info(F'''Saving Optimizer state to {output_optimizer_file}''' ) torch.save(snake_case__ , snake_case__ ) logger.info(F'''Optimizer state saved in {output_optimizer_file}''' ) else: lowercase_ = os.path.join(snake_case__ , F'''{OPTIMIZER_NAME}_{optimizer_index}''' ) os.makedirs(snake_case__ , exist_ok=snake_case__ ) logger.info(F'''Saving Optimizer state to {ckpt_dir}''' ) dist_cp.save_state_dict( state_dict={'''optimizer''': optim_state} , storage_writer=dist_cp.FileSystemWriter(snake_case__ ) , planner=DefaultSavePlanner() , ) logger.info(F'''Optimizer state saved in {ckpt_dir}''' ) def a ( snake_case__: List[Any] , snake_case__: int , snake_case__: Dict , snake_case__: Union[str, Any] , snake_case__: str , snake_case__: List[str]=0 ): '''simple docstring''' accelerator.wait_for_everyone() with FSDP.state_dict_type( snake_case__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: lowercase_ = None # below check should work but currently it isn't working (mostly opytorch issue), # in the meantime disabling it at the cost of excess memory usage # if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: lowercase_ = ( F'''{OPTIMIZER_NAME}.bin''' if optimizer_index == 0 else F'''{OPTIMIZER_NAME}_{optimizer_index}.bin''' ) lowercase_ = os.path.join(snake_case__ , snake_case__ ) logger.info(F'''Loading Optimizer state from {input_optimizer_file}''' ) lowercase_ = torch.load(snake_case__ ) logger.info(F'''Optimizer state loaded from {input_optimizer_file}''' ) else: lowercase_ = ( os.path.join(snake_case__ , F'''{OPTIMIZER_NAME}_{optimizer_index}''' ) if F'''{OPTIMIZER_NAME}''' not in input_dir else input_dir ) logger.info(F'''Loading Optimizer from {ckpt_dir}''' ) lowercase_ = load_sharded_optimizer_state_dict( model_state_dict=model.state_dict() , optimizer_key='''optimizer''' , storage_reader=dist_cp.FileSystemReader(snake_case__ ) , ) lowercase_ = optim_state['''optimizer'''] logger.info(F'''Optimizer loaded from {ckpt_dir}''' ) lowercase_ = FSDP.optim_state_dict_to_load(snake_case__ , snake_case__ , snake_case__ ) optimizer.load_state_dict(snake_case__ )
409
1
import gc import unittest import numpy as np import torch from diffusers import StableDiffusionKDiffusionPipeline from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() @slow @require_torch_gpu class _lowerCamelCase( unittest.TestCase ): def UpperCamelCase ( self) -> Tuple: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" _lowercase : Any = StableDiffusionKDiffusionPipeline.from_pretrained('CompVis/stable-diffusion-v1-4') _lowercase : Optional[Any] = sd_pipe.to(lowerCamelCase) sd_pipe.set_progress_bar_config(disable=lowerCamelCase) sd_pipe.set_scheduler('sample_euler') _lowercase : str = 'A painting of a squirrel eating a burger' _lowercase : int = torch.manual_seed(0) _lowercase : int = sd_pipe([prompt], generator=lowerCamelCase, guidance_scale=9.0, num_inference_steps=20, output_type='np') _lowercase : Union[str, Any] = output.images _lowercase : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) _lowercase : Dict = np.array([0.0_4_4_7, 0.0_4_9_2, 0.0_4_6_8, 0.0_4_0_8, 0.0_3_8_3, 0.0_4_0_8, 0.0_3_5_4, 0.0_3_8_0, 0.0_3_3_9]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 def UpperCamelCase ( self) -> Dict: """simple docstring""" _lowercase : int = StableDiffusionKDiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base') _lowercase : Optional[int] = sd_pipe.to(lowerCamelCase) sd_pipe.set_progress_bar_config(disable=lowerCamelCase) sd_pipe.set_scheduler('sample_euler') _lowercase : Any = 'A painting of a squirrel eating a burger' _lowercase : Any = torch.manual_seed(0) _lowercase : Union[str, Any] = sd_pipe([prompt], generator=lowerCamelCase, guidance_scale=9.0, num_inference_steps=20, output_type='np') _lowercase : List[str] = output.images _lowercase : str = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) _lowercase : Tuple = np.array([0.1_2_3_7, 0.1_3_2_0, 0.1_4_3_8, 0.1_3_5_9, 0.1_3_9_0, 0.1_1_3_2, 0.1_2_7_7, 0.1_1_7_5, 0.1_1_1_2]) assert np.abs(image_slice.flatten() - expected_slice).max() < 5E-1 def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : Any = StableDiffusionKDiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base') _lowercase : List[str] = sd_pipe.to(lowerCamelCase) sd_pipe.set_progress_bar_config(disable=lowerCamelCase) sd_pipe.set_scheduler('sample_dpmpp_2m') _lowercase : Optional[Any] = 'A painting of a squirrel eating a burger' _lowercase : Optional[Any] = torch.manual_seed(0) _lowercase : Union[str, Any] = sd_pipe( [prompt], generator=lowerCamelCase, guidance_scale=7.5, num_inference_steps=15, output_type='np', use_karras_sigmas=lowerCamelCase, ) _lowercase : List[Any] = output.images _lowercase : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) _lowercase : Dict = np.array( [0.1_1_3_8_1_6_8_9, 0.1_2_1_1_2_9_2_1, 0.1_3_8_9_4_5_7, 0.1_2_5_4_9_6_0_6, 0.1_2_4_4_9_6_4, 0.1_0_8_3_1_5_1_7, 0.1_1_5_6_2_8_6_6, 0.1_0_8_6_7_8_1_6, 0.1_0_4_9_9_0_4_8]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2
89
import copy import os import cva import numpy as np from matplotlib import pyplot as plt class _lowercase : def __init__( self ): snake_case__ : List[str] ="""""" snake_case__ : List[Any] ="""""" snake_case__ : Optional[int] =[] snake_case__ : Tuple =0 snake_case__ : Optional[Any] =2_5_6 snake_case__ : Optional[Any] =0 snake_case__ : str =0 snake_case__ : Any =0 snake_case__ : Dict =0 def lowercase__ ( self , a ): snake_case__ : List[str] =cva.imread(a , 0 ) snake_case__ : Optional[Any] =copy.deepcopy(self.img ) snake_case__ , snake_case__ , snake_case__ : Any =plt.hist(self.img.ravel() , 2_5_6 , [0, 2_5_6] , label="""x""" ) snake_case__ : Tuple =np.sum(a ) for i in range(len(a ) ): snake_case__ : Union[str, Any] =x[i] / self.k self.sk += prk snake_case__ : Tuple =(self.L - 1) * self.sk if self.rem != 0: snake_case__ : int =int(last % last ) snake_case__ : List[Any] =int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(a ) snake_case__ : List[Any] =int(np.ma.count(self.img ) / self.img[1].size ) snake_case__ : Union[str, Any] =self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): snake_case__ : Optional[int] =self.img[j][i] if num != self.last_list[num]: snake_case__ : Any =self.last_list[num] cva.imwrite("""output_data/output.jpg""" , self.img ) def lowercase__ ( self ): plt.hist(self.img.ravel() , 2_5_6 , [0, 2_5_6] ) def lowercase__ ( self ): cva.imshow("""Output-Image""" , self.img ) cva.imshow("""Input-Image""" , self.original_image ) cva.waitKey(5_0_0_0 ) cva.destroyAllWindows() if __name__ == "__main__": __lowerCamelCase : Optional[Any] = os.path.join(os.path.basename(__file__), """image_data/input.jpg""") __lowerCamelCase : List[Any] = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
385
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCAmelCase : Any ={ """configuration_chinese_clip""": [ """CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ChineseCLIPConfig""", """ChineseCLIPOnnxConfig""", """ChineseCLIPTextConfig""", """ChineseCLIPVisionConfig""", ], """processing_chinese_clip""": ["""ChineseCLIPProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Dict =["""ChineseCLIPFeatureExtractor"""] UpperCAmelCase : List[str] =["""ChineseCLIPImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : List[Any] =[ """CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """ChineseCLIPModel""", """ChineseCLIPPreTrainedModel""", """ChineseCLIPTextModel""", """ChineseCLIPVisionModel""", ] if TYPE_CHECKING: from .configuration_chinese_clip import ( CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, ChineseCLIPConfig, ChineseCLIPOnnxConfig, ChineseCLIPTextConfig, ChineseCLIPVisionConfig, ) from .processing_chinese_clip import ChineseCLIPProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_chinese_clip import ChineseCLIPFeatureExtractor, ChineseCLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_chinese_clip import ( CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, ChineseCLIPModel, ChineseCLIPPreTrainedModel, ChineseCLIPTextModel, ChineseCLIPVisionModel, ) else: import sys UpperCAmelCase : List[str] =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
504
from argparse import ArgumentParser, Namespace from ..utils import logging from . import BaseTransformersCLICommand def _lowerCAmelCase (_lowerCAmelCase): return ConvertCommand( args.model_type , args.tf_checkpoint , args.pytorch_dump_output , args.config , args.finetuning_task_name) UpperCAmelCase : Dict =""" transformers can only be used from the commandline to convert TensorFlow models in PyTorch, In that case, it requires TensorFlow to be installed. Please see https://www.tensorflow.org/install/ for installation instructions. """ class _lowercase (a_ ): '''simple docstring''' @staticmethod def _lowerCamelCase ( snake_case__ ): '''simple docstring''' UpperCamelCase_ = parser.add_parser( "convert" , help="CLI tool to run convert model from original author checkpoints to Transformers PyTorch checkpoints." , ) train_parser.add_argument("--model_type" , type=snake_case__ , required=snake_case__ , help="Model's type." ) train_parser.add_argument( "--tf_checkpoint" , type=snake_case__ , required=snake_case__ , help="TensorFlow checkpoint path or folder." ) train_parser.add_argument( "--pytorch_dump_output" , type=snake_case__ , required=snake_case__ , help="Path to the PyTorch saved model output." ) train_parser.add_argument("--config" , type=snake_case__ , default="" , help="Configuration file path or folder." ) train_parser.add_argument( "--finetuning_task_name" , type=snake_case__ , default=snake_case__ , help="Optional fine-tuning task name if the TF model was a finetuned model." , ) train_parser.set_defaults(func=snake_case__ ) def __init__( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , *snake_case__ , ): '''simple docstring''' UpperCamelCase_ = logging.get_logger("transformers-cli/converting" ) self._logger.info(F"""Loading model {model_type}""" ) UpperCamelCase_ = model_type UpperCamelCase_ = tf_checkpoint UpperCamelCase_ = pytorch_dump_output UpperCamelCase_ = config UpperCamelCase_ = finetuning_task_name def _lowerCamelCase ( self ): '''simple docstring''' if self._model_type == "albert": try: from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(snake_case__ ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "bert": try: from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(snake_case__ ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "funnel": try: from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(snake_case__ ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "t5": try: from ..models.ta.convert_ta_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch except ImportError: raise ImportError(snake_case__ ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "gpt": from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import ( convert_openai_checkpoint_to_pytorch, ) convert_openai_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "transfo_xl": try: from ..models.transfo_xl.convert_transfo_xl_original_tf_checkpoint_to_pytorch import ( convert_transfo_xl_checkpoint_to_pytorch, ) except ImportError: raise ImportError(snake_case__ ) if "ckpt" in self._tf_checkpoint.lower(): UpperCamelCase_ = self._tf_checkpoint UpperCamelCase_ = "" else: UpperCamelCase_ = self._tf_checkpoint UpperCamelCase_ = "" convert_transfo_xl_checkpoint_to_pytorch( snake_case__ , self._config , self._pytorch_dump_output , snake_case__ ) elif self._model_type == "gpt2": try: from ..models.gpta.convert_gpta_original_tf_checkpoint_to_pytorch import ( convert_gpta_checkpoint_to_pytorch, ) except ImportError: raise ImportError(snake_case__ ) convert_gpta_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "xlnet": try: from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import ( convert_xlnet_checkpoint_to_pytorch, ) except ImportError: raise ImportError(snake_case__ ) convert_xlnet_checkpoint_to_pytorch( self._tf_checkpoint , self._config , self._pytorch_dump_output , self._finetuning_task_name ) elif self._model_type == "xlm": from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import ( convert_xlm_checkpoint_to_pytorch, ) convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "lxmert": from ..models.lxmert.convert_lxmert_original_tf_checkpoint_to_pytorch import ( convert_lxmert_checkpoint_to_pytorch, ) convert_lxmert_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "rembert": from ..models.rembert.convert_rembert_tf_checkpoint_to_pytorch import ( convert_rembert_tf_checkpoint_to_pytorch, ) convert_rembert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) else: raise ValueError( "--model_type should be selected in the list [bert, gpt, gpt2, t5, transfo_xl, xlnet, xlm, lxmert]" )
504
1
"""simple docstring""" import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class UpperCamelCase_ (unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self : int ) -> int: UpperCAmelCase_ : List[Any] = inspect.getfile(accelerate.test_utils ) UpperCAmelCase_ : int = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ["scripts", "external_deps", "test_metrics.py"] ) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 UpperCAmelCase_ : List[Any] = test_metrics @require_cpu def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union[str, Any]: debug_launcher(self.test_metrics.main , num_processes=1 ) @require_cpu def _SCREAMING_SNAKE_CASE ( self : Any ) -> str: debug_launcher(self.test_metrics.main ) @require_single_gpu def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[Any]: self.test_metrics.main() @require_multi_gpu def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[int]: print(f"""Found {torch.cuda.device_count()} devices.""" ) UpperCAmelCase_ : List[str] = ["torchrun", f"""--nproc_per_node={torch.cuda.device_count()}""", self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(lowerCAmelCase_ , env=os.environ.copy() )
95
from ...utils import logging from ..ta.modeling_tf_ta import TFTaEncoderModel, TFTaForConditionalGeneration, TFTaModel from .configuration_mta import MTaConfig A = logging.get_logger(__name__) A = 'T5Config' class SCREAMING_SNAKE_CASE ( __snake_case ): """simple docstring""" __A = """mt5""" __A = MTaConfig class SCREAMING_SNAKE_CASE ( __snake_case ): """simple docstring""" __A = """mt5""" __A = MTaConfig class SCREAMING_SNAKE_CASE ( __snake_case ): """simple docstring""" __A = """mt5""" __A = MTaConfig
187
0
import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): SCREAMING_SNAKE_CASE__ : str = """pt""" elif is_tf_available(): SCREAMING_SNAKE_CASE__ : Optional[Any] = """tf""" else: SCREAMING_SNAKE_CASE__ : Optional[int] = """jax""" class lowerCamelCase_ ( lowerCamelCase , unittest.TestCase ): a__ = PerceiverTokenizer a__ = False def A ( self ): """simple docstring""" super().setUp() __magic_name__ :Optional[int] = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def A ( self ): """simple docstring""" return PerceiverTokenizer.from_pretrained('''deepmind/language-perceiver''' ) def A ( self , **__lowerCAmelCase ): """simple docstring""" return self.tokenizer_class.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def A ( self , __lowerCAmelCase , __lowerCAmelCase=False , __lowerCAmelCase=2_0 , __lowerCAmelCase=5 ): """simple docstring""" # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for Perceiver because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. __magic_name__ :Optional[int] = [] for i in range(len(__lowerCAmelCase ) ): try: __magic_name__ :Union[str, Any] = tokenizer.decode([i] , clean_up_tokenization_spaces=__lowerCAmelCase ) except UnicodeDecodeError: pass toks.append((i, tok) ) __magic_name__ :Tuple = list(filter(lambda __lowerCAmelCase : re.match(R'''^[ a-zA-Z]+$''' , t[1] ) , __lowerCAmelCase ) ) __magic_name__ :Optional[Any] = list(filter(lambda __lowerCAmelCase : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=__lowerCAmelCase ) , __lowerCAmelCase ) ) if max_length is not None and len(__lowerCAmelCase ) > max_length: __magic_name__ :List[Any] = toks[:max_length] if min_length is not None and len(__lowerCAmelCase ) < min_length and len(__lowerCAmelCase ) > 0: while len(__lowerCAmelCase ) < min_length: __magic_name__ :Dict = toks + toks # toks_str = [t[1] for t in toks] __magic_name__ :int = [t[0] for t in toks] # Ensure consistency __magic_name__ :Dict = tokenizer.decode(__lowerCAmelCase , clean_up_tokenization_spaces=__lowerCAmelCase ) if " " not in output_txt and len(__lowerCAmelCase ) > 1: __magic_name__ :Dict = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=__lowerCAmelCase ) + ''' ''' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=__lowerCAmelCase ) ) if with_prefix_space: __magic_name__ :Optional[Any] = ''' ''' + output_txt __magic_name__ :Tuple = tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) return output_txt, output_ids def A ( self ): """simple docstring""" __magic_name__ :Any = self.perceiver_tokenizer __magic_name__ :Tuple = '''Unicode €.''' __magic_name__ :List[Any] = tokenizer(__lowerCAmelCase ) __magic_name__ :Union[str, Any] = [4, 9_1, 1_1_6, 1_1_1, 1_0_5, 1_1_7, 1_0_6, 1_0_7, 3_8, 2_3_2, 1_3_6, 1_7_8, 5_2, 5] self.assertEqual(encoded['''input_ids'''] , __lowerCAmelCase ) # decoding __magic_name__ :Union[str, Any] = tokenizer.decode(__lowerCAmelCase ) self.assertEqual(__lowerCAmelCase , '''[CLS]Unicode €.[SEP]''' ) __magic_name__ :List[Any] = tokenizer('''e è é ê ë''' ) __magic_name__ :List[str] = [4, 1_0_7, 3_8, 2_0_1, 1_7_4, 3_8, 2_0_1, 1_7_5, 3_8, 2_0_1, 1_7_6, 3_8, 2_0_1, 1_7_7, 5] self.assertEqual(encoded['''input_ids'''] , __lowerCAmelCase ) # decoding __magic_name__ :List[Any] = tokenizer.decode(__lowerCAmelCase ) self.assertEqual(__lowerCAmelCase , '''[CLS]e è é ê ë[SEP]''' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('''e è é ê ë''' ) ) , '''[CLS]e è é ê ë[SEP]''' ) def A ( self ): """simple docstring""" __magic_name__ :int = self.perceiver_tokenizer __magic_name__ :List[str] = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] # fmt: off __magic_name__ :List[str] = [4, 7_1, 3_8, 1_1_4, 1_1_7, 1_1_6, 1_0_9, 3_8, 1_1_8, 1_0_3, 1_2_0, 1_0_3, 1_0_9, 1_2_0, 1_0_3, 1_1_8, 1_1_0, 3_8, 1_0_8, 1_1_7, 1_2_0, 3_8, 1_2_1, 1_2_3, 1_1_5, 1_1_5, 1_0_3, 1_2_0, 1_1_1, 1_2_8, 1_0_3, 1_2_2, 1_1_1, 1_1_7, 1_1_6, 5_2, 5, 0] # fmt: on __magic_name__ :Optional[int] = tokenizer(__lowerCAmelCase , padding=__lowerCAmelCase , return_tensors=__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) if FRAMEWORK != "jax": __magic_name__ :List[str] = list(batch.input_ids.numpy()[0] ) else: __magic_name__ :Optional[int] = list(batch.input_ids.tolist()[0] ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) self.assertEqual((2, 3_8) , batch.input_ids.shape ) self.assertEqual((2, 3_8) , batch.attention_mask.shape ) def A ( self ): """simple docstring""" __magic_name__ :Union[str, Any] = self.perceiver_tokenizer __magic_name__ :Dict = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] __magic_name__ :Dict = tokenizer(__lowerCAmelCase , padding=__lowerCAmelCase , return_tensors=__lowerCAmelCase ) # check if input_ids are returned and no decoder_input_ids self.assertIn('''input_ids''' , __lowerCAmelCase ) self.assertIn('''attention_mask''' , __lowerCAmelCase ) self.assertNotIn('''decoder_input_ids''' , __lowerCAmelCase ) self.assertNotIn('''decoder_attention_mask''' , __lowerCAmelCase ) def A ( self ): """simple docstring""" __magic_name__ :Dict = self.perceiver_tokenizer __magic_name__ :Optional[int] = [ '''Summary of the text.''', '''Another summary.''', ] __magic_name__ :int = tokenizer( text_target=__lowerCAmelCase , max_length=3_2 , padding='''max_length''' , truncation=__lowerCAmelCase , return_tensors=__lowerCAmelCase ) self.assertEqual(3_2 , targets['''input_ids'''].shape[1] ) def A ( self ): """simple docstring""" # safety check on max_len default value so we are sure the test works __magic_name__ :List[str] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length , 4_2 ) # Now let's start the test __magic_name__ :Dict = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc __magic_name__ :Optional[int] = tempfile.mkdtemp() __magic_name__ :List[str] = ''' He is very happy, UNwant\u00E9d,running''' __magic_name__ :Optional[Any] = tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) tokenizer.save_pretrained(__lowerCAmelCase ) __magic_name__ :int = tokenizer.__class__.from_pretrained(__lowerCAmelCase ) __magic_name__ :int = after_tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) shutil.rmtree(__lowerCAmelCase ) __magic_name__ :Tuple = self.get_tokenizers(model_max_length=4_2 ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc __magic_name__ :Any = tempfile.mkdtemp() __magic_name__ :Dict = ''' He is very happy, UNwant\u00E9d,running''' tokenizer.add_tokens(['''bim''', '''bambam'''] ) __magic_name__ :Optional[Any] = tokenizer.additional_special_tokens additional_special_tokens.append('''new_additional_special_token''' ) tokenizer.add_special_tokens({'''additional_special_tokens''': additional_special_tokens} ) __magic_name__ :Tuple = tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) tokenizer.save_pretrained(__lowerCAmelCase ) __magic_name__ :Optional[int] = tokenizer.__class__.from_pretrained(__lowerCAmelCase ) __magic_name__ :Any = after_tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) self.assertIn('''new_additional_special_token''' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 4_2 ) __magic_name__ :Optional[int] = tokenizer.__class__.from_pretrained(__lowerCAmelCase , model_max_length=4_3 ) self.assertEqual(tokenizer.model_max_length , 4_3 ) shutil.rmtree(__lowerCAmelCase ) def A ( self ): """simple docstring""" __magic_name__ :List[Any] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(__lowerCAmelCase ) with open(os.path.join(__lowerCAmelCase , '''special_tokens_map.json''' ) , encoding='''utf-8''' ) as json_file: __magic_name__ :List[Any] = json.load(__lowerCAmelCase ) with open(os.path.join(__lowerCAmelCase , '''tokenizer_config.json''' ) , encoding='''utf-8''' ) as json_file: __magic_name__ :int = json.load(__lowerCAmelCase ) __magic_name__ :Optional[int] = [F'''<extra_id_{i}>''' for i in range(1_2_5 )] __magic_name__ :List[str] = added_tokens_extra_ids + [ '''an_additional_special_token''' ] __magic_name__ :Union[str, Any] = added_tokens_extra_ids + [ '''an_additional_special_token''' ] with open(os.path.join(__lowerCAmelCase , '''special_tokens_map.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(__lowerCAmelCase , __lowerCAmelCase ) with open(os.path.join(__lowerCAmelCase , '''tokenizer_config.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(__lowerCAmelCase , __lowerCAmelCase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files __magic_name__ :Optional[Any] = tokenizer_class.from_pretrained( __lowerCAmelCase , ) self.assertIn( '''an_additional_special_token''' , tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ['''an_additional_special_token'''] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['''an_additional_special_token'''] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained __magic_name__ :Any = added_tokens_extra_ids + [AddedToken('''a_new_additional_special_token''' , lstrip=__lowerCAmelCase )] __magic_name__ :str = tokenizer_class.from_pretrained( __lowerCAmelCase , additional_special_tokens=__lowerCAmelCase , ) self.assertIn('''a_new_additional_special_token''' , tokenizer.additional_special_tokens ) self.assertEqual( ['''a_new_additional_special_token'''] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['''a_new_additional_special_token'''] ) ) , ) def A ( self ): """simple docstring""" __magic_name__ :Tuple = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([1_7_8] ) , '''�''' ) def A ( self ): """simple docstring""" pass def A ( self ): """simple docstring""" pass def A ( self ): """simple docstring""" pass def A ( self ): """simple docstring""" pass def A ( self ): """simple docstring""" # The default common tokenizer tests uses invalid tokens for Perceiver that can only accept one-character # strings and special added tokens as tokens __magic_name__ :Tuple = self.get_tokenizers(fast=__lowerCAmelCase , do_lower_case=__lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): __magic_name__ :List[str] = ['''[CLS]''', '''t''', '''h''', '''i''', '''s''', ''' ''', '''i''', '''s''', ''' ''', '''a''', ''' ''', '''t''', '''e''', '''s''', '''t''', '''[SEP]'''] __magic_name__ :List[str] = tokenizer.convert_tokens_to_string(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase )
180
from __future__ import annotations from math import pi, sqrt def __lowercase ( snake_case, snake_case ): """simple docstring""" if inductance <= 0: raise ValueError('''Inductance cannot be 0 or negative''' ) elif capacitance <= 0: raise ValueError('''Capacitance cannot be 0 or negative''' ) else: return ( "Resonant frequency", float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ), ) if __name__ == "__main__": import doctest doctest.testmod()
180
1
import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class A : '''simple docstring''' def __init__(self : List[Any] , _UpperCAmelCase : str , _UpperCAmelCase : int=14 , _UpperCAmelCase : Union[str, Any]=7 , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : Dict=True , _UpperCAmelCase : Dict=False , _UpperCAmelCase : str=True , _UpperCAmelCase : Optional[Any]=99 , _UpperCAmelCase : Optional[int]=32 , _UpperCAmelCase : List[str]=4 , _UpperCAmelCase : int=4 , _UpperCAmelCase : Optional[int]=4 , _UpperCAmelCase : Optional[Any]=37 , _UpperCAmelCase : int="gelu" , _UpperCAmelCase : int=0.1 , _UpperCAmelCase : Tuple=0.1 , _UpperCAmelCase : str=512 , _UpperCAmelCase : Any=0.02 , ) -> Any: """simple docstring""" lowercase__ = parent lowercase__ = batch_size lowercase__ = seq_length lowercase__ = is_training lowercase__ = use_input_mask lowercase__ = use_token_type_ids lowercase__ = use_labels lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = rotary_dim lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = initializer_range lowercase__ = None lowercase__ = vocab_size - 1 lowercase__ = vocab_size - 1 lowercase__ = vocab_size - 1 def lowerCamelCase__ (self : Dict ) -> List[Any]: """simple docstring""" lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__ = None if self.use_input_mask: lowercase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ = GPTJConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=lowerCamelCase_ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , ) return (config, input_ids, input_mask) def lowerCamelCase__ (self : Optional[int] ) -> Optional[int]: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() lowercase__ = config_and_inputs lowercase__ = {'input_ids': input_ids, 'attention_mask': attention_mask} return config, inputs_dict def lowerCamelCase__ (self : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : List[str] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Tuple ) -> Optional[int]: """simple docstring""" lowercase__ = 20 lowercase__ = model_class_name(lowerCamelCase_ ) lowercase__ = model.init_cache(input_ids.shape[0] , lowerCamelCase_ ) lowercase__ = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype="""i4""" ) lowercase__ = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) lowercase__ = model( input_ids[:, :-1] , attention_mask=lowerCamelCase_ , past_key_values=lowerCamelCase_ , position_ids=lowerCamelCase_ , ) lowercase__ = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="""i4""" ) lowercase__ = model( input_ids[:, -1:] , attention_mask=lowerCamelCase_ , past_key_values=outputs_cache.past_key_values , position_ids=lowerCamelCase_ , ) lowercase__ = model(lowerCamelCase_ ) lowercase__ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=f'''Max diff is {diff}''' ) def lowerCamelCase__ (self : Dict , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[str] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[str] ) -> Optional[Any]: """simple docstring""" lowercase__ = 20 lowercase__ = model_class_name(lowerCamelCase_ ) lowercase__ = jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , ) lowercase__ = model.init_cache(input_ids.shape[0] , lowerCamelCase_ ) lowercase__ = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) lowercase__ = model( input_ids[:, :-1] , attention_mask=lowerCamelCase_ , past_key_values=lowerCamelCase_ , position_ids=lowerCamelCase_ , ) lowercase__ = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="""i4""" ) lowercase__ = model( input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=lowerCamelCase_ , position_ids=lowerCamelCase_ , ) lowercase__ = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ ) lowercase__ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=f'''Max diff is {diff}''' ) @require_flax class A ( A__ , A__ , unittest.TestCase ): '''simple docstring''' A__ = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () A__ = (FlaxGPTJForCausalLM,) if is_flax_available() else () def lowerCamelCase__ (self : List[str] ) -> int: """simple docstring""" lowercase__ = FlaxGPTJModelTester(self ) def lowerCamelCase__ (self : Dict ) -> Optional[int]: """simple docstring""" for model_class_name in self.all_model_classes: lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) def lowerCamelCase__ (self : int ) -> List[str]: """simple docstring""" for model_class_name in self.all_model_classes: lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) @tooslow def lowerCamelCase__ (self : Optional[int] ) -> Union[str, Any]: """simple docstring""" lowercase__ = GPTaTokenizer.from_pretrained("""gpt2""" , pad_token="""<|endoftext|>""" , padding_side="""left""" ) lowercase__ = tokenizer(["""Hello this is a long string""", """Hey"""] , return_tensors="""np""" , padding=lowerCamelCase_ , truncation=lowerCamelCase_ ) lowercase__ = FlaxGPTJForCausalLM.from_pretrained("""EleutherAI/gpt-j-6B""" ) lowercase__ = False lowercase__ = model.config.eos_token_id lowercase__ = jax.jit(model.generate ) lowercase__ = jit_generate( inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , pad_token_id=tokenizer.pad_token_id ).sequences lowercase__ = tokenizer.batch_decode(lowerCamelCase_ , skip_special_tokens=lowerCamelCase_ ) lowercase__ = [ 'Hello this is a long string of text.\n\nI\'m trying to get the text of the', 'Hey, I\'m a little late to the party. I\'m going to', ] self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) @is_pt_flax_cross_test def lowerCamelCase__ (self : Union[str, Any] ) -> Optional[int]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs lowercase__ = self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) lowercase__ = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class lowercase__ = model_class.__name__[4:] # Skip the "Flax" at the beginning lowercase__ = getattr(lowerCamelCase_ , lowerCamelCase_ ) lowercase__ = pt_inputs['input_ids'].shape lowercase__ = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(lowerCamelCase_ ): lowercase__ = 0 lowercase__ = 1 lowercase__ = 0 lowercase__ = 1 lowercase__ = pt_model_class(lowerCamelCase_ ).eval() lowercase__ = model_class(lowerCamelCase_ , dtype=jnp.floataa ) lowercase__ = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , lowerCamelCase_ ) lowercase__ = fx_state with torch.no_grad(): lowercase__ = pt_model(**lowerCamelCase_ ).to_tuple() lowercase__ = fx_model(**lowerCamelCase_ ).to_tuple() self.assertEqual(len(lowerCamelCase_ ) , len(lowerCamelCase_ ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(lowerCamelCase_ , lowerCamelCase_ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(lowerCamelCase_ ) lowercase__ = model_class.from_pretrained(lowerCamelCase_ , from_pt=lowerCamelCase_ ) lowercase__ = fx_model_loaded(**lowerCamelCase_ ).to_tuple() self.assertEqual( len(lowerCamelCase_ ) , len(lowerCamelCase_ ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output_loaded, pt_output in zip(lowerCamelCase_ , lowerCamelCase_ ): self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) @is_pt_flax_cross_test def lowerCamelCase__ (self : str ) -> Dict: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs lowercase__ = self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) lowercase__ = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class lowercase__ = model_class.__name__[4:] # Skip the "Flax" at the beginning lowercase__ = getattr(lowerCamelCase_ , lowerCamelCase_ ) lowercase__ = pt_model_class(lowerCamelCase_ ).eval() lowercase__ = model_class(lowerCamelCase_ , dtype=jnp.floataa ) lowercase__ = load_flax_weights_in_pytorch_model(lowerCamelCase_ , fx_model.params ) lowercase__ = pt_inputs['input_ids'].shape lowercase__ = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(lowerCamelCase_ ): lowercase__ = 0 lowercase__ = 1 lowercase__ = 0 lowercase__ = 1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): lowercase__ = pt_model(**lowerCamelCase_ ).to_tuple() lowercase__ = fx_model(**lowerCamelCase_ ).to_tuple() self.assertEqual(len(lowerCamelCase_ ) , len(lowerCamelCase_ ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(lowerCamelCase_ , lowerCamelCase_ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(lowerCamelCase_ ) lowercase__ = pt_model_class.from_pretrained(lowerCamelCase_ , from_flax=lowerCamelCase_ ) with torch.no_grad(): lowercase__ = pt_model_loaded(**lowerCamelCase_ ).to_tuple() self.assertEqual( len(lowerCamelCase_ ) , len(lowerCamelCase_ ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(lowerCamelCase_ , lowerCamelCase_ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) @tooslow def lowerCamelCase__ (self : int ) -> Dict: """simple docstring""" for model_class_name in self.all_model_classes: lowercase__ = model_class_name.from_pretrained("""EleutherAI/gpt-j-6B""" ) lowercase__ = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowerCamelCase_ )
15
"""simple docstring""" import argparse from typing import List import evaluate import numpy as np import torch from datasets import DatasetDict, load_dataset # New Code # # We'll be using StratifiedKFold for this example from sklearn.model_selection import StratifiedKFold from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to perform Cross Validation, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowerCAmelCase = 16 lowerCAmelCase = 32 def lowerCAmelCase_ ( snake_case_ : Accelerator , snake_case_ : DatasetDict , snake_case_ : List[int] , snake_case_ : List[int] , snake_case_ : int = 1_6 ) ->List[str]: lowerCamelCase__ : Union[str, Any] =AutoTokenizer.from_pretrained('bert-base-cased' ) lowerCamelCase__ : Dict =DatasetDict( { 'train': dataset['train'].select(snake_case_ ), 'validation': dataset['train'].select(snake_case_ ), 'test': dataset['validation'], } ) def tokenize_function(snake_case_ : str ): # max_length=None => use the model max length (it's actually the default) lowerCamelCase__ : Tuple =tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=snake_case_ , max_length=snake_case_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowerCamelCase__ : List[str] =datasets.map( snake_case_ , batched=snake_case_ , remove_columns=['idx', 'sentence1', 'sentence2'] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowerCamelCase__ : Dict =tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(snake_case_ : Optional[int] ): # On TPU it's best to pad everything to the same length or training will be very slow. lowerCamelCase__ : int =1_2_8 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowerCamelCase__ : str =1_6 elif accelerator.mixed_precision != "no": lowerCamelCase__ : Union[str, Any] =8 else: lowerCamelCase__ : int =None return tokenizer.pad( snake_case_ , padding='longest' , max_length=snake_case_ , pad_to_multiple_of=snake_case_ , return_tensors='pt' , ) # Instantiate dataloaders. lowerCamelCase__ : Optional[int] =DataLoader( tokenized_datasets['train'] , shuffle=snake_case_ , collate_fn=snake_case_ , batch_size=snake_case_ ) lowerCamelCase__ : int =DataLoader( tokenized_datasets['validation'] , shuffle=snake_case_ , collate_fn=snake_case_ , batch_size=snake_case_ ) lowerCamelCase__ : List[Any] =DataLoader( tokenized_datasets['test'] , shuffle=snake_case_ , collate_fn=snake_case_ , batch_size=snake_case_ ) return train_dataloader, eval_dataloader, test_dataloader def lowerCAmelCase_ ( snake_case_ : Optional[int] , snake_case_ : List[Any] ) ->Union[str, Any]: # New Code # lowerCamelCase__ : Optional[int] =[] # Download the dataset lowerCamelCase__ : Optional[int] =load_dataset('glue' , 'mrpc' ) # Create our splits lowerCamelCase__ : List[Any] =StratifiedKFold(n_splits=int(args.num_folds ) ) # Initialize accelerator lowerCamelCase__ : List[str] =Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCamelCase__ : Any =config['lr'] lowerCamelCase__ : List[str] =int(config['num_epochs'] ) lowerCamelCase__ : List[Any] =int(config['seed'] ) lowerCamelCase__ : Tuple =int(config['batch_size'] ) lowerCamelCase__ : List[str] =evaluate.load('glue' , 'mrpc' ) # If the batch size is too big we use gradient accumulation lowerCamelCase__ : int =1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: lowerCamelCase__ : Union[str, Any] =batch_size // MAX_GPU_BATCH_SIZE lowerCamelCase__ : Any =MAX_GPU_BATCH_SIZE set_seed(snake_case_ ) # New Code # # Create our folds: lowerCamelCase__ : Tuple =kfold.split(np.zeros(datasets['train'].num_rows ) , datasets['train']['label'] ) lowerCamelCase__ : List[str] =[] # Iterate over them for i, (train_idxs, valid_idxs) in enumerate(snake_case_ ): lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : List[Any] =get_fold_dataloaders( snake_case_ , snake_case_ , snake_case_ , snake_case_ , ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCamelCase__ : Optional[int] =AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=snake_case_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowerCamelCase__ : int =model.to(accelerator.device ) # Instantiate optimizer lowerCamelCase__ : Tuple =AdamW(params=model.parameters() , lr=snake_case_ ) # Instantiate scheduler lowerCamelCase__ : str =get_linear_schedule_with_warmup( optimizer=snake_case_ , num_warmup_steps=1_0_0 , num_training_steps=(len(snake_case_ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Optional[Any] =accelerator.prepare( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) # Now we train the model for epoch in range(snake_case_ ): model.train() for step, batch in enumerate(snake_case_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) lowerCamelCase__ : Dict =model(**snake_case_ ) lowerCamelCase__ : str =outputs.loss lowerCamelCase__ : Optional[int] =loss / gradient_accumulation_steps accelerator.backward(snake_case_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(snake_case_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowerCamelCase__ : List[Any] =model(**snake_case_ ) lowerCamelCase__ : Dict =outputs.logits.argmax(dim=-1 ) lowerCamelCase__ , lowerCamelCase__ : Tuple =accelerator.gather_for_metrics((predictions, batch['labels']) ) metric.add_batch( predictions=snake_case_ , references=snake_case_ , ) lowerCamelCase__ : Dict =metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , snake_case_ ) # New Code # # We also run predictions on the test set at the very end lowerCamelCase__ : Any =[] for step, batch in enumerate(snake_case_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowerCamelCase__ : Optional[Any] =model(**snake_case_ ) lowerCamelCase__ : List[Any] =outputs.logits lowerCamelCase__ , lowerCamelCase__ : str =accelerator.gather_for_metrics((predictions, batch['labels']) ) fold_predictions.append(predictions.cpu() ) if i == 0: # We need all of the test predictions test_references.append(references.cpu() ) # Use accelerator.print to print only on the main process. test_predictions.append(torch.cat(snake_case_ , dim=0 ) ) # We now need to release all our memory and get rid of the current model, optimizer, etc accelerator.free_memory() # New Code # # Finally we check the accuracy of our folded results: lowerCamelCase__ : Dict =torch.cat(snake_case_ , dim=0 ) lowerCamelCase__ : str =torch.stack(snake_case_ , dim=0 ).sum(dim=0 ).div(int(args.num_folds ) ).argmax(dim=-1 ) lowerCamelCase__ : int =metric.compute(predictions=snake_case_ , references=snake_case_ ) accelerator.print('Average test metrics from all folds:' , snake_case_ ) def lowerCAmelCase_ ( ) ->str: lowerCamelCase__ : Tuple =argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision' , type=snake_case_ , default=snake_case_ , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) # New Code # parser.add_argument('--num_folds' , type=snake_case_ , default=3 , help='The number of splits to perform across the dataset' ) lowerCamelCase__ : Tuple =parser.parse_args() lowerCamelCase__ : Optional[Any] ={'lr': 2E-5, 'num_epochs': 3, 'seed': 4_2, 'batch_size': 1_6} training_function(snake_case_ , snake_case_ ) if __name__ == "__main__": main()
174
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase__ = { "configuration_m2m_100": ["M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP", "M2M100Config", "M2M100OnnxConfig"], "tokenization_m2m_100": ["M2M100Tokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ "M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST", "M2M100ForConditionalGeneration", "M2M100Model", "M2M100PreTrainedModel", ] if TYPE_CHECKING: from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig from .tokenization_mam_aaa import MaMaaaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mam_aaa import ( M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST, MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
594
import warnings from typing import Dict, List, Optional, Tuple from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) class _a ( lowerCamelCase_ ): """simple docstring""" __SCREAMING_SNAKE_CASE = ['input_ids', 'attention_mask'] def __init__( self , lowerCAmelCase_="</s>" , lowerCAmelCase_="<unk>" , lowerCAmelCase_="<pad>" , lowerCAmelCase_=125 , lowerCAmelCase_=None , **lowerCAmelCase_ , ): # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: _lowercase =[F'''<extra_id_{i}>''' for i in range(lowerCAmelCase_ )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens _lowercase =len(set(filter(lambda lowerCAmelCase_ : bool("extra_id" in str(lowerCAmelCase_ ) ) , lowerCAmelCase_ ) ) ) if extra_tokens != extra_ids: raise ValueError( F'''Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are''' " provided to ByT5Tokenizer. In this case the additional_special_tokens must include the" " extra_ids tokens" ) _lowercase =AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else pad_token _lowercase =AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else eos_token _lowercase =AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else unk_token super().__init__( eos_token=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , extra_ids=lowerCAmelCase_ , additional_special_tokens=lowerCAmelCase_ , **lowerCAmelCase_ , ) _lowercase =extra_ids _lowercase =2**8 # utf is 8 bits # define special tokens dict _lowercase ={ self.pad_token: 0, self.eos_token: 1, self.unk_token: 2, } _lowercase =len(self.special_tokens_encoder ) _lowercase =len(lowerCAmelCase_ ) for i, token in enumerate(lowerCAmelCase_ ): _lowercase =self.vocab_size + i - n _lowercase ={v: k for k, v in self.special_tokens_encoder.items()} @property def __lowerCAmelCase ( self ): return self._utf_vocab_size + self._num_special_tokens + self._extra_ids def __lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase_ , token_ids_a=lowerCAmelCase_ , already_has_special_tokens=lowerCAmelCase_ ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(lowerCAmelCase_ )) + [1] return ([0] * len(lowerCAmelCase_ )) + [1] + ([0] * len(lowerCAmelCase_ )) + [1] def __lowerCAmelCase ( self , lowerCAmelCase_ ): if len(lowerCAmelCase_ ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( F'''This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated''' " eos tokens being added." ) return token_ids else: return token_ids + [self.eos_token_id] def __lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None ): _lowercase =[self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def __lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None ): _lowercase =self._add_eos_if_not_present(lowerCAmelCase_ ) if token_ids_a is None: return token_ids_a else: _lowercase =self._add_eos_if_not_present(lowerCAmelCase_ ) return token_ids_a + token_ids_a def __lowerCAmelCase ( self , lowerCAmelCase_ ): _lowercase =[chr(lowerCAmelCase_ ) for i in text.encode("utf-8" )] return tokens def __lowerCAmelCase ( self , lowerCAmelCase_ ): if token in self.special_tokens_encoder: _lowercase =self.special_tokens_encoder[token] elif token in self.added_tokens_encoder: _lowercase =self.added_tokens_encoder[token] elif len(lowerCAmelCase_ ) != 1: _lowercase =self.unk_token_id else: _lowercase =ord(lowerCAmelCase_ ) + self._num_special_tokens return token_id def __lowerCAmelCase ( self , lowerCAmelCase_ ): if index in self.special_tokens_decoder: _lowercase =self.special_tokens_decoder[index] else: _lowercase =chr(index - self._num_special_tokens ) return token def __lowerCAmelCase ( self , lowerCAmelCase_ ): _lowercase =b"" for token in tokens: if token in self.special_tokens_decoder: _lowercase =self.special_tokens_decoder[token].encode("utf-8" ) elif token in self.added_tokens_decoder: _lowercase =self.special_tokens_decoder[token].encode("utf-8" ) elif token in self.special_tokens_encoder: _lowercase =token.encode("utf-8" ) elif token in self.added_tokens_encoder: _lowercase =token.encode("utf-8" ) else: _lowercase =bytes([ord(lowerCAmelCase_ )] ) bstring += tok_string _lowercase =bstring.decode("utf-8" , errors="ignore" ) return string def __lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None ): return ()
594
1
"""simple docstring""" import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": __A : Dict = argparse.ArgumentParser() parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument( '''--txt2img_unclip''', default='''kakaobrain/karlo-v1-alpha''', type=str, required=False, help='''The pretrained txt2img unclip.''', ) __A : Tuple = parser.parse_args() __A : Any = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) __A : List[str] = CLIPImageProcessor() __A : List[Any] = CLIPVisionModelWithProjection.from_pretrained('''openai/clip-vit-large-patch14''') __A : Any = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
231
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __A : Optional[int] = logging.get_logger(__name__) __A : Optional[Any] = { '''google/bigbird-roberta-base''': '''https://huggingface.co/google/bigbird-roberta-base/resolve/main/config.json''', '''google/bigbird-roberta-large''': '''https://huggingface.co/google/bigbird-roberta-large/resolve/main/config.json''', '''google/bigbird-base-trivia-itc''': '''https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/config.json''', # See all BigBird models at https://huggingface.co/models?filter=big_bird } class _UpperCAmelCase ( _A ): SCREAMING_SNAKE_CASE_ : Tuple = "big_bird" def __init__( self : Tuple , A : Tuple=5_03_58 , A : Any=7_68 , A : Union[str, Any]=12 , A : List[str]=12 , A : Dict=30_72 , A : int="gelu_new" , A : Optional[int]=0.1 , A : Optional[int]=0.1 , A : Dict=40_96 , A : Tuple=2 , A : Union[str, Any]=0.02 , A : str=1e-12 , A : Optional[Any]=True , A : Union[str, Any]=0 , A : Optional[int]=1 , A : Optional[int]=2 , A : Any=66 , A : List[Any]="block_sparse" , A : List[Any]=True , A : Union[str, Any]=False , A : Optional[Any]=64 , A : Optional[Any]=3 , A : Tuple=None , **A : Union[str, Any] , ) -> Tuple: super().__init__( pad_token_id=A , bos_token_id=A , eos_token_id=A , sep_token_id=A , **A , ) lowercase_ : Tuple = vocab_size lowercase_ : int = max_position_embeddings lowercase_ : int = hidden_size lowercase_ : List[str] = num_hidden_layers lowercase_ : Union[str, Any] = num_attention_heads lowercase_ : str = intermediate_size lowercase_ : Optional[Any] = hidden_act lowercase_ : Optional[Any] = hidden_dropout_prob lowercase_ : List[str] = attention_probs_dropout_prob lowercase_ : Optional[int] = initializer_range lowercase_ : List[str] = type_vocab_size lowercase_ : Optional[Any] = layer_norm_eps lowercase_ : int = use_cache lowercase_ : int = rescale_embeddings lowercase_ : Optional[Any] = attention_type lowercase_ : str = use_bias lowercase_ : Dict = block_size lowercase_ : str = num_random_blocks lowercase_ : Optional[Any] = classifier_dropout class _UpperCAmelCase ( _A ): @property def A ( self : str ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": lowercase_ : Optional[Any] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: lowercase_ : Optional[int] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
231
1
"""simple docstring""" import argparse import glob import logging import os from argparse import Namespace from importlib import import_module import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch.nn import CrossEntropyLoss from torch.utils.data import DataLoader, TensorDataset from utils_ner import TokenClassificationTask _a : int= logging.getLogger(__name__) class UpperCamelCase ( __SCREAMING_SNAKE_CASE ): UpperCAmelCase : str = """token-classification""" def __init__(self : Tuple , _A : int) -> Union[str, Any]: if type(_a) == dict: __snake_case : str = Namespace(**_a) __snake_case : Dict = import_module('tasks') try: __snake_case : Optional[Any] = getattr(_a , hparams.task_type) __snake_case : TokenClassificationTask = token_classification_task_clazz() except AttributeError: raise ValueError( f"Task {hparams.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. " f"Available tasks classes are: {TokenClassificationTask.__subclasses__()}") __snake_case : Tuple = self.token_classification_task.get_labels(hparams.labels) __snake_case : str = CrossEntropyLoss().ignore_index super().__init__(_a , len(self.labels) , self.mode) def _lowercase (self : int , **_A : Any) -> int: return self.model(**_a) def _lowercase (self : Optional[Any] , _A : Union[str, Any] , _A : int) -> Optional[Any]: __snake_case : str = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type != "distilbert": __snake_case : str = ( batch[2] if self.config.model_type in ["""bert""", """xlnet"""] else None ) # XLM and RoBERTa don"t use token_type_ids __snake_case : str = self(**_a) __snake_case : Dict = outputs[0] # tensorboard_logs = {"loss": loss, "rate": self.lr_scheduler.get_last_lr()[-1]} return {"loss": loss} def _lowercase (self : Dict) -> Optional[Any]: __snake_case : Union[str, Any] = self.hparams for mode in ["train", "dev", "test"]: __snake_case : Union[str, Any] = self._feature_file(_a) if os.path.exists(_a) and not args.overwrite_cache: logger.info('Loading features from cached file %s' , _a) __snake_case : Any = torch.load(_a) else: logger.info('Creating features from dataset file at %s' , args.data_dir) __snake_case : List[str] = self.token_classification_task.read_examples_from_file(args.data_dir , _a) __snake_case : Optional[Any] = self.token_classification_task.convert_examples_to_features( _a , self.labels , args.max_seq_length , self.tokenizer , cls_token_at_end=bool(self.config.model_type in ['xlnet']) , cls_token=self.tokenizer.cls_token , cls_token_segment_id=2 if self.config.model_type in ['xlnet'] else 0 , sep_token=self.tokenizer.sep_token , sep_token_extra=_a , pad_on_left=bool(self.config.model_type in ['xlnet']) , pad_token=self.tokenizer.pad_token_id , pad_token_segment_id=self.tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info('Saving features into cached file %s' , _a) torch.save(_a , _a) def _lowercase (self : Dict , _A : int , _A : int , _A : bool = False) -> str: __snake_case : int = self._feature_file(_a) logger.info('Loading features from cached file %s' , _a) __snake_case : str = torch.load(_a) __snake_case : Union[str, Any] = torch.tensor([f.input_ids for f in features] , dtype=torch.long) __snake_case : List[Any] = torch.tensor([f.attention_mask for f in features] , dtype=torch.long) if features[0].token_type_ids is not None: __snake_case : int = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long) else: __snake_case : Any = torch.tensor([0 for f in features] , dtype=torch.long) # HACK(we will not use this anymore soon) __snake_case : List[Any] = torch.tensor([f.label_ids for f in features] , dtype=torch.long) return DataLoader( TensorDataset(_a , _a , _a , _a) , batch_size=_a) def _lowercase (self : Optional[int] , _A : List[str] , _A : Tuple) -> Optional[Any]: """Compute validation""" "" __snake_case : List[Any] = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type != "distilbert": __snake_case : List[str] = ( batch[2] if self.config.model_type in ["""bert""", """xlnet"""] else None ) # XLM and RoBERTa don"t use token_type_ids __snake_case : Union[str, Any] = self(**_a) __snake_case : int = outputs[:2] __snake_case : List[Any] = logits.detach().cpu().numpy() __snake_case : int = inputs["""labels"""].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def _lowercase (self : Optional[Any] , _A : List[str]) -> Dict: __snake_case : Tuple = torch.stack([x['val_loss'] for x in outputs]).mean() __snake_case : Optional[Any] = np.concatenate([x['pred'] for x in outputs] , axis=0) __snake_case : List[str] = np.argmax(_a , axis=2) __snake_case : Dict = np.concatenate([x['target'] for x in outputs] , axis=0) __snake_case : Tuple = dict(enumerate(self.labels)) __snake_case : Optional[int] = [[] for _ in range(out_label_ids.shape[0])] __snake_case : List[Any] = [[] for _ in range(out_label_ids.shape[0])] for i in range(out_label_ids.shape[0]): for j in range(out_label_ids.shape[1]): if out_label_ids[i, j] != self.pad_token_label_id: out_label_list[i].append(label_map[out_label_ids[i][j]]) preds_list[i].append(label_map[preds[i][j]]) __snake_case : Union[str, Any] = { """val_loss""": val_loss_mean, """accuracy_score""": accuracy_score(_a , _a), """precision""": precision_score(_a , _a), """recall""": recall_score(_a , _a), """f1""": fa_score(_a , _a), } __snake_case : Any = dict(results.items()) __snake_case : Any = results return ret, preds_list, out_label_list def _lowercase (self : Optional[Any] , _A : Any) -> Union[str, Any]: __snake_case : Tuple = self._eval_end(_a) __snake_case : int = ret["""log"""] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def _lowercase (self : Tuple , _A : List[Any]) -> List[str]: __snake_case : Tuple = self._eval_end(_a) # Converting to the dict required by pl # https://github.com/PyTorchLightning/pytorch-lightning/blob/master/\ # pytorch_lightning/trainer/logging.py#L139 __snake_case : str = ret["""log"""] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def _lowercase (_A : Tuple , _A : str) -> Optional[Any]: BaseTransformer.add_model_specific_args(_a , _a) parser.add_argument( '--task_type' , default='NER' , type=_a , help='Task type to fine tune in training (e.g. NER, POS, etc)') parser.add_argument( '--max_seq_length' , default=1_28 , type=_a , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--labels' , default='' , type=_a , help='Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.' , ) parser.add_argument( '--gpus' , default=0 , type=_a , help='The number of GPUs allocated for this, it is by default 0 meaning none' , ) parser.add_argument( '--overwrite_cache' , action='store_true' , help='Overwrite the cached training and evaluation sets') return parser if __name__ == "__main__": _a : str= argparse.ArgumentParser() add_generic_args(parser, os.getcwd()) _a : List[Any]= NERTransformer.add_model_specific_args(parser, os.getcwd()) _a : Dict= parser.parse_args() _a : int= NERTransformer(args) _a : List[str]= generic_train(model, args) if args.do_predict: # See https://github.com/huggingface/transformers/issues/3159 # pl use this default format to create a checkpoint: # https://github.com/PyTorchLightning/pytorch-lightning/blob/master\ # /pytorch_lightning/callbacks/model_checkpoint.py#L322 _a : Any= sorted(glob.glob(os.path.join(args.output_dir, "checkpoint-epoch=*.ckpt"), recursive=True)) _a : Any= model.load_from_checkpoint(checkpoints[-1]) trainer.test(model)
705
"""simple docstring""" from __future__ import annotations _a : str= "#" class UpperCamelCase : def __init__(self : str) -> None: __snake_case : dict = {} def _lowercase (self : Union[str, Any] , _A : str) -> None: __snake_case : Optional[Any] = self._trie for char in text: if char not in trie: __snake_case : Optional[int] = {} __snake_case : Optional[int] = trie[char] __snake_case : Optional[int] = True def _lowercase (self : List[str] , _A : str) -> tuple | list: __snake_case : str = self._trie for char in prefix: if char in trie: __snake_case : Optional[int] = trie[char] else: return [] return self._elements(_A) def _lowercase (self : List[Any] , _A : dict) -> tuple: __snake_case : str = [] for c, v in d.items(): __snake_case : Optional[Any] = [' '] if c == END else [(c + s) for s in self._elements(_A)] result.extend(_A) return tuple(_A) _a : str= Trie() _a : Any= ("depart", "detergent", "daring", "dog", "deer", "deal") for word in words: trie.insert_word(word) def __UpperCAmelCase ( UpperCAmelCase_ : str ) -> tuple: '''simple docstring''' __snake_case : Optional[int] = trie.find_word(UpperCAmelCase_ ) return tuple(string + word for word in suffixes ) def __UpperCAmelCase ( ) -> None: '''simple docstring''' print(autocomplete_using_trie('de' ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
192
0
from __future__ import annotations def A ( lowercase__ : int ) -> list[int]: UpperCamelCase__ :Union[str, Any] = [True] * limit UpperCamelCase__ :int = False UpperCamelCase__ :Optional[Any] = False UpperCamelCase__ :str = True for i in range(3 , int(limit**0.5 + 1 ) , 2 ): UpperCamelCase__ :List[Any] = i * 2 while index < limit: UpperCamelCase__ :Tuple = False UpperCamelCase__ :Tuple = index + i UpperCamelCase__ :str = [2] for i in range(3 , lowercase__ , 2 ): if is_prime[i]: primes.append(lowercase__ ) return primes def A ( lowercase__ : int = 100_0000 ) -> int: UpperCamelCase__ :Any = prime_sieve(lowercase__ ) UpperCamelCase__ :Optional[int] = 0 UpperCamelCase__ :Optional[Any] = 0 for i in range(len(lowercase__ ) ): for j in range(i + length , len(lowercase__ ) ): UpperCamelCase__ :Any = sum(primes[i:j] ) if sol >= ceiling: break if sol in primes: UpperCamelCase__ :Union[str, Any] = j - i UpperCamelCase__ :Any = sol return largest if __name__ == "__main__": print(f'''{solution() = }''')
45
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __lowerCamelCase (_a , unittest.TestCase ): _lowercase = KandinskyInpaintPipeline _lowercase = ["""prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image"""] _lowercase = [ """prompt""", """negative_prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image""", ] _lowercase = [ """generator""", """height""", """width""", """latents""", """guidance_scale""", """negative_prompt""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] _lowercase = False @property def snake_case_ ( self: int ): '''simple docstring''' return 32 @property def snake_case_ ( self: str ): '''simple docstring''' return 32 @property def snake_case_ ( self: Tuple ): '''simple docstring''' return self.time_input_dim @property def snake_case_ ( self: Union[str, Any] ): '''simple docstring''' return self.time_input_dim * 4 @property def snake_case_ ( self: Optional[int] ): '''simple docstring''' return 100 @property def snake_case_ ( self: str ): '''simple docstring''' __UpperCamelCase = XLMRobertaTokenizerFast.from_pretrained('YiYiXu/tiny-random-mclip-base' ) return tokenizer @property def snake_case_ ( self: Any ): '''simple docstring''' torch.manual_seed(0 ) __UpperCamelCase = MCLIPConfig( numDims=self.cross_attention_dim,transformerDimensions=self.text_embedder_hidden_size,hidden_size=self.text_embedder_hidden_size,intermediate_size=37,num_attention_heads=4,num_hidden_layers=5,vocab_size=1005,) __UpperCamelCase = MultilingualCLIP(A_ ) __UpperCamelCase = text_encoder.eval() return text_encoder @property def snake_case_ ( self: Any ): '''simple docstring''' torch.manual_seed(0 ) __UpperCamelCase = { 'in_channels': 9, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'text_image', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'text_image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } __UpperCamelCase = UNetaDConditionModel(**A_ ) return model @property def snake_case_ ( self: str ): '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def snake_case_ ( self: str ): '''simple docstring''' torch.manual_seed(0 ) __UpperCamelCase = VQModel(**self.dummy_movq_kwargs ) return model def snake_case_ ( self: Dict ): '''simple docstring''' __UpperCamelCase = self.dummy_text_encoder __UpperCamelCase = self.dummy_tokenizer __UpperCamelCase = self.dummy_unet __UpperCamelCase = self.dummy_movq __UpperCamelCase = DDIMScheduler( num_train_timesteps=1000,beta_schedule='linear',beta_start=0.0_0_0_8_5,beta_end=0.0_1_2,clip_sample=A_,set_alpha_to_one=A_,steps_offset=1,prediction_type='epsilon',thresholding=A_,) __UpperCamelCase = { 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def snake_case_ ( self: Tuple,A_: Optional[int],A_: Dict=0 ): '''simple docstring''' __UpperCamelCase = floats_tensor((1, self.cross_attention_dim),rng=random.Random(A_ ) ).to(A_ ) __UpperCamelCase = floats_tensor((1, self.cross_attention_dim),rng=random.Random(seed + 1 ) ).to(A_ ) # create init_image __UpperCamelCase = floats_tensor((1, 3, 64, 64),rng=random.Random(A_ ) ).to(A_ ) __UpperCamelCase = image.cpu().permute(0,2,3,1 )[0] __UpperCamelCase = Image.fromarray(np.uinta(A_ ) ).convert('RGB' ).resize((256, 256) ) # create mask __UpperCamelCase = np.ones((64, 64),dtype=np.floataa ) __UpperCamelCase = 0 if str(A_ ).startswith('mps' ): __UpperCamelCase = torch.manual_seed(A_ ) else: __UpperCamelCase = torch.Generator(device=A_ ).manual_seed(A_ ) __UpperCamelCase = { 'prompt': 'horse', 'image': init_image, 'mask_image': mask, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'generator': generator, 'height': 64, 'width': 64, 'num_inference_steps': 2, 'guidance_scale': 4.0, 'output_type': 'np', } return inputs def snake_case_ ( self: Any ): '''simple docstring''' __UpperCamelCase = 'cpu' __UpperCamelCase = self.get_dummy_components() __UpperCamelCase = self.pipeline_class(**A_ ) __UpperCamelCase = pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) __UpperCamelCase = pipe(**self.get_dummy_inputs(A_ ) ) __UpperCamelCase = output.images __UpperCamelCase = pipe( **self.get_dummy_inputs(A_ ),return_dict=A_,)[0] __UpperCamelCase = image[0, -3:, -3:, -1] __UpperCamelCase = image_from_tuple[0, -3:, -3:, -1] print(F'''image.shape {image.shape}''' ) assert image.shape == (1, 64, 64, 3) __UpperCamelCase = np.array( [0.8_3_2_6_9_1_9, 0.7_3_7_9_0_4_6_7, 0.2_0_9_1_8_5_8_1, 0.9_3_0_9_6_1_2, 0.5_5_1_1_7_9_1, 0.4_3_7_1_3_3_2_8, 0.5_5_1_3_3_2_1, 0.4_9_9_2_2_9_3_4, 0.5_9_4_9_7_7_8_6] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' def snake_case_ ( self: Optional[Any] ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class __lowerCamelCase (unittest.TestCase ): def snake_case_ ( self: Tuple ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case_ ( self: Any ): '''simple docstring''' __UpperCamelCase = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy' ) __UpperCamelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' ) __UpperCamelCase = np.ones((768, 768),dtype=np.floataa ) __UpperCamelCase = 0 __UpperCamelCase = 'a hat' __UpperCamelCase = KandinskyPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-1-prior',torch_dtype=torch.floataa ) pipe_prior.to(A_ ) __UpperCamelCase = KandinskyInpaintPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-1-inpaint',torch_dtype=torch.floataa ) __UpperCamelCase = pipeline.to(A_ ) pipeline.set_progress_bar_config(disable=A_ ) __UpperCamelCase = torch.Generator(device='cpu' ).manual_seed(0 ) __UpperCamelCase, __UpperCamelCase = pipe_prior( A_,generator=A_,num_inference_steps=5,negative_prompt='',).to_tuple() __UpperCamelCase = pipeline( A_,image=A_,mask_image=A_,image_embeds=A_,negative_image_embeds=A_,generator=A_,num_inference_steps=100,height=768,width=768,output_type='np',) __UpperCamelCase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(A_,A_ )
1
0
import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class lowercase__: """simple docstring""" def __init__( self : str , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : int=sys.maxsize ) -> Union[str, Any]: lowercase_ = '''bilinear''' lowercase_ = max_size lowercase_ = short_edge_length def __call__( self : Optional[int] , SCREAMING_SNAKE_CASE_ : List[Any] ) -> Dict: lowercase_ = [] for img in imgs: lowercase_ , lowercase_ = img.shape[:2] # later: provide list and randomly choose index for resize lowercase_ = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1 ) if size == 0: return img lowercase_ = size * 1.0 / min(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if h < w: lowercase_ , lowercase_ = size, scale * w else: lowercase_ , lowercase_ = scale * h, size if max(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) > self.max_size: lowercase_ = self.max_size * 1.0 / max(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowercase_ = newh * scale lowercase_ = neww * scale lowercase_ = int(neww + 0.5 ) lowercase_ = int(newh + 0.5 ) if img.dtype == np.uinta: lowercase_ = Image.fromarray(SCREAMING_SNAKE_CASE_ ) lowercase_ = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR ) lowercase_ = np.asarray(SCREAMING_SNAKE_CASE_ ) else: lowercase_ = img.permute(2 , 0 , 1 ).unsqueeze(0 ) # 3, 0, 1) # hw(c) -> nchw lowercase_ = nn.functional.interpolate( SCREAMING_SNAKE_CASE_ , (newh, neww) , mode=self.interp_method , align_corners=SCREAMING_SNAKE_CASE_ ).squeeze(0 ) img_augs.append(SCREAMING_SNAKE_CASE_ ) return img_augs class lowercase__: """simple docstring""" def __init__( self : List[str] , SCREAMING_SNAKE_CASE_ : Any ) -> str: lowercase_ = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST ) lowercase_ = cfg.INPUT.FORMAT lowercase_ = cfg.SIZE_DIVISIBILITY lowercase_ = cfg.PAD_VALUE lowercase_ = cfg.INPUT.MAX_SIZE_TEST lowercase_ = cfg.MODEL.DEVICE lowercase_ = torch.tensor(cfg.MODEL.PIXEL_STD ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) lowercase_ = torch.tensor(cfg.MODEL.PIXEL_MEAN ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) lowercase_ = lambda SCREAMING_SNAKE_CASE_ : (x - self.pixel_mean) / self.pixel_std def _lowercase ( self : Tuple , SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> str: lowercase_ = tuple(max(SCREAMING_SNAKE_CASE_ ) for s in zip(*[img.shape for img in images] ) ) lowercase_ = [im.shape[-2:] for im in images] lowercase_ = [ nn.functional.pad( SCREAMING_SNAKE_CASE_ , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , ) for size, im in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ] return torch.stack(SCREAMING_SNAKE_CASE_ ), torch.tensor(SCREAMING_SNAKE_CASE_ ) def __call__( self : Any , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Dict=False ) -> Any: with torch.no_grad(): if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowercase_ = [images] if single_image: assert len(SCREAMING_SNAKE_CASE_ ) == 1 for i in range(len(SCREAMING_SNAKE_CASE_ ) ): if isinstance(images[i] , torch.Tensor ): images.insert(SCREAMING_SNAKE_CASE_ , images.pop(SCREAMING_SNAKE_CASE_ ).to(self.device ).float() ) elif not isinstance(images[i] , torch.Tensor ): images.insert( SCREAMING_SNAKE_CASE_ , torch.as_tensor(img_tensorize(images.pop(SCREAMING_SNAKE_CASE_ ) , input_format=self.input_format ) ) .to(self.device ) .float() , ) # resize smallest edge lowercase_ = torch.tensor([im.shape[:2] for im in images] ) lowercase_ = self.aug(SCREAMING_SNAKE_CASE_ ) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic lowercase_ = [self.normalizer(SCREAMING_SNAKE_CASE_ ) for x in images] # now pad them to do the following operations lowercase_ , lowercase_ = self.pad(SCREAMING_SNAKE_CASE_ ) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad lowercase_ = torch.true_divide(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def a ( snake_case__: Tuple , snake_case__: Dict ): '''simple docstring''' boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def a ( snake_case__: List[str] , snake_case__: Tuple[int, int] ): '''simple docstring''' assert torch.isfinite(snake_case__ ).all(), "Box tensor contains infinite or NaN!" lowercase_ , lowercase_ = box_size tensor[:, 0].clamp_(min=0 , max=snake_case__ ) tensor[:, 1].clamp_(min=0 , max=snake_case__ ) tensor[:, 2].clamp_(min=0 , max=snake_case__ ) tensor[:, 3].clamp_(min=0 , max=snake_case__ )
409
from ...configuration_utils import PretrainedConfig from ...utils import logging __a = logging.get_logger(__name__) __a = { 'tiiuae/falcon-40b': 'https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json', 'tiiuae/falcon-7b': 'https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json', } class lowercase__( UpperCAmelCase ): """simple docstring""" a :Dict = 'falcon' a :Optional[Any] = ['past_key_values'] def __init__( self : str , SCREAMING_SNAKE_CASE_ : List[str]=6_5_0_2_4 , SCREAMING_SNAKE_CASE_ : Tuple=4_5_4_4 , SCREAMING_SNAKE_CASE_ : List[Any]=3_2 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=7_1 , SCREAMING_SNAKE_CASE_ : Optional[Any]=1e-5 , SCREAMING_SNAKE_CASE_ : Tuple=0.02 , SCREAMING_SNAKE_CASE_ : List[Any]=True , SCREAMING_SNAKE_CASE_ : str=0.0 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=0.0 , SCREAMING_SNAKE_CASE_ : List[str]=None , SCREAMING_SNAKE_CASE_ : Tuple=False , SCREAMING_SNAKE_CASE_ : str=False , SCREAMING_SNAKE_CASE_ : List[Any]=True , SCREAMING_SNAKE_CASE_ : int=True , SCREAMING_SNAKE_CASE_ : Union[str, Any]=False , SCREAMING_SNAKE_CASE_ : Tuple=1_1 , SCREAMING_SNAKE_CASE_ : int=1_1 , **SCREAMING_SNAKE_CASE_ : Any , ) -> Optional[Any]: lowercase_ = vocab_size # Backward compatibility with n_embed kwarg lowercase_ = kwargs.pop('''n_embed''' , SCREAMING_SNAKE_CASE_ ) lowercase_ = hidden_size if n_embed is None else n_embed lowercase_ = num_hidden_layers lowercase_ = num_attention_heads lowercase_ = layer_norm_epsilon lowercase_ = initializer_range lowercase_ = use_cache lowercase_ = hidden_dropout lowercase_ = attention_dropout lowercase_ = bos_token_id lowercase_ = eos_token_id lowercase_ = num_attention_heads if num_kv_heads is None else num_kv_heads lowercase_ = alibi lowercase_ = new_decoder_architecture lowercase_ = multi_query # Ignored when new_decoder_architecture is True lowercase_ = parallel_attn lowercase_ = bias super().__init__(bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) @property def _lowercase ( self : Tuple ) -> Optional[int]: return self.hidden_size // self.num_attention_heads @property def _lowercase ( self : Union[str, Any] ) -> Union[str, Any]: return not self.alibi
409
1
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING import torch from ..models.auto import AutoModelForVisualQuestionAnswering, AutoProcessor from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class __UpperCAmelCase ( _lowerCamelCase ): __lowercase = """dandelin/vilt-b32-finetuned-vqa""" __lowercase = ( """This is a tool that answers a question about an image. It takes an input named `image` which should be the """ """image containing the information, as well as a `question` which should be the question in English. It """ """returns a text that is the answer to the question.""" ) __lowercase = """image_qa""" __lowercase = AutoProcessor __lowercase = AutoModelForVisualQuestionAnswering __lowercase = ["""image""", """text"""] __lowercase = ["""text"""] def __init__( self , *lowerCAmelCase_ , **lowerCAmelCase_ ): """simple docstring""" requires_backends(self , ['vision'] ) super().__init__(*lowerCAmelCase_ , **lowerCAmelCase_ ) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" return self.pre_processor(lowerCAmelCase_ , lowerCAmelCase_ , return_tensors='pt' ) def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" with torch.no_grad(): return self.model(**lowerCAmelCase_ ).logits def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" _snake_case = outputs.argmax(-1 ).item() return self.model.config.idalabel[idx]
495
'''simple docstring''' # Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowercase : Optional[Any] = { "configuration_cpmant": ["CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP", "CpmAntConfig"], "tokenization_cpmant": ["CpmAntTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Any = [ "CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST", "CpmAntForCausalLM", "CpmAntModel", "CpmAntPreTrainedModel", ] if TYPE_CHECKING: from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig from .tokenization_cpmant import CpmAntTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_cpmant import ( CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST, CpmAntForCausalLM, CpmAntModel, CpmAntPreTrainedModel, ) else: import sys lowercase : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
495
1
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class _lowerCamelCase (lowerCamelCase ): lowercase__ = 42 lowercase__ = 42 class _lowerCamelCase (lowerCamelCase , lowerCamelCase ): lowercase__ = 1 @register_to_config def __init__( self , SCREAMING_SNAKE_CASE_ = 2_000 , SCREAMING_SNAKE_CASE_ = 0.1_5 , SCREAMING_SNAKE_CASE_ = 0.0_1 , SCREAMING_SNAKE_CASE_ = 1_3_4_8.0 , SCREAMING_SNAKE_CASE_ = 1E-5 , SCREAMING_SNAKE_CASE_ = 1 , ): # standard deviation of the initial noise distribution __snake_case = sigma_max # setable values __snake_case = None self.set_sigmas(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ): return sample def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None ): __snake_case = sampling_eps if sampling_eps is not None else self.config.sampling_eps __snake_case = torch.linspace(1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , device=SCREAMING_SNAKE_CASE_ ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None ): __snake_case = sigma_min if sigma_min is not None else self.config.sigma_min __snake_case = sigma_max if sigma_max is not None else self.config.sigma_max __snake_case = sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) __snake_case = torch.exp(torch.linspace(math.log(SCREAMING_SNAKE_CASE_ ) , math.log(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) ) __snake_case = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps] ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): return torch.where( timesteps == 0 , torch.zeros_like(t.to(timesteps.device ) ) , self.discrete_sigmas[timesteps - 1].to(timesteps.device ) , ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = True , ): if self.timesteps is None: raise ValueError( '`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler' ) __snake_case = timestep * torch.ones( sample.shape[0] , device=sample.device ) # torch.repeat_interleave(timestep, sample.shape[0]) __snake_case = (timestep * (len(self.timesteps ) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda __snake_case = timesteps.to(self.discrete_sigmas.device ) __snake_case = self.discrete_sigmas[timesteps].to(sample.device ) __snake_case = self.get_adjacent_sigma(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).to(sample.device ) __snake_case = torch.zeros_like(SCREAMING_SNAKE_CASE_ ) __snake_case = (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods __snake_case = diffusion.flatten() while len(diffusion.shape ) < len(sample.shape ): __snake_case = diffusion.unsqueeze(-1 ) __snake_case = drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of __snake_case = randn_tensor( sample.shape , layout=sample.layout , generator=SCREAMING_SNAKE_CASE_ , device=sample.device , dtype=sample.dtype ) __snake_case = sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? __snake_case = prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=SCREAMING_SNAKE_CASE_ , prev_sample_mean=SCREAMING_SNAKE_CASE_ ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = True , ): if self.timesteps is None: raise ValueError( '`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler' ) # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction __snake_case = randn_tensor(sample.shape , layout=sample.layout , generator=SCREAMING_SNAKE_CASE_ ).to(sample.device ) # compute step size from the model_output, the noise, and the snr __snake_case = torch.norm(model_output.reshape(model_output.shape[0] , -1 ) , dim=-1 ).mean() __snake_case = torch.norm(noise.reshape(noise.shape[0] , -1 ) , dim=-1 ).mean() __snake_case = (self.config.snr * noise_norm / grad_norm) ** 2 * 2 __snake_case = step_size * torch.ones(sample.shape[0] ).to(sample.device ) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term __snake_case = step_size.flatten() while len(step_size.shape ) < len(sample.shape ): __snake_case = step_size.unsqueeze(-1 ) __snake_case = sample + step_size * model_output __snake_case = prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=SCREAMING_SNAKE_CASE_ ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ): # Make sure sigmas and timesteps have the same device and dtype as original_samples __snake_case = timesteps.to(original_samples.device ) __snake_case = self.discrete_sigmas.to(original_samples.device )[timesteps] __snake_case = ( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(SCREAMING_SNAKE_CASE_ ) * sigmas[:, None, None, None] ) __snake_case = noise + original_samples return noisy_samples def __len__( self ): return self.config.num_train_timesteps
345
from __future__ import annotations from typing import Any def __lowercase( __snake_case : list ) -> int: if not postfix_notation: return 0 __snake_case = {'+', '-', '*', '/'} __snake_case = [] for token in postfix_notation: if token in operations: __snake_case , __snake_case = stack.pop(), stack.pop() if token == "+": stack.append(a + b ) elif token == "-": stack.append(a - b ) elif token == "*": stack.append(a * b ) else: if a * b < 0 and a % b != 0: stack.append(a // b + 1 ) else: stack.append(a // b ) else: stack.append(int(__snake_case ) ) return stack.pop() if __name__ == "__main__": import doctest doctest.testmod()
345
1
"""simple docstring""" import functools def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ): # Validation if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) or not all(isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) for day in days ): raise ValueError("The parameter days should be a list of integers" ) if len(lowerCAmelCase__ ) != 3 or not all(isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) for cost in costs ): raise ValueError("The parameter costs should be a list of three integers" ) if len(lowerCAmelCase__ ) == 0: return 0 if min(lowerCAmelCase__ ) <= 0: raise ValueError("All days elements should be greater than 0" ) if max(lowerCAmelCase__ ) >= 366: raise ValueError("All days elements should be less than 366" ) UpperCAmelCase_ = set(lowerCAmelCase__ ) @functools.cache def dynamic_programming(lowerCAmelCase__ ) -> int: if index > 365: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
82
"""simple docstring""" import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class lowercase__ : '''simple docstring''' def __init__( self : List[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Tuple=2 , _UpperCAmelCase : Union[str, Any]=8 , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : Tuple=True , _UpperCAmelCase : Any=True , _UpperCAmelCase : Optional[int]=99 , _UpperCAmelCase : Tuple=16 , _UpperCAmelCase : Union[str, Any]=5 , _UpperCAmelCase : Optional[Any]=2 , _UpperCAmelCase : Dict=36 , _UpperCAmelCase : List[str]="gelu" , _UpperCAmelCase : Optional[int]=0.0 , _UpperCAmelCase : Dict=0.0 , _UpperCAmelCase : Tuple=512 , _UpperCAmelCase : Optional[int]=16 , _UpperCAmelCase : List[Any]=2 , _UpperCAmelCase : str=0.02 , _UpperCAmelCase : Dict=3 , _UpperCAmelCase : List[str]=4 , _UpperCAmelCase : Optional[Any]=None , ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = seq_length UpperCAmelCase_ = is_training UpperCAmelCase_ = use_input_mask UpperCAmelCase_ = use_token_type_ids UpperCAmelCase_ = use_labels UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_act UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = type_vocab_size UpperCAmelCase_ = type_sequence_label_size UpperCAmelCase_ = initializer_range UpperCAmelCase_ = num_labels UpperCAmelCase_ = num_choices UpperCAmelCase_ = scope def lowercase__ ( self : Union[str, Any] ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ = None if self.use_input_mask: UpperCAmelCase_ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_ = None if self.use_token_type_ids: UpperCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase_ = None UpperCAmelCase_ = None UpperCAmelCase_ = None if self.use_labels: UpperCAmelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase_ = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase_ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase__ ( self : int ) -> Dict: '''simple docstring''' return MraConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , ) def lowercase__ ( self : Dict ) -> str: '''simple docstring''' UpperCAmelCase_ = self.get_config() UpperCAmelCase_ = 300 return config def lowercase__ ( self : int ) -> List[Any]: '''simple docstring''' ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) = self.prepare_config_and_inputs() UpperCAmelCase_ = True UpperCAmelCase_ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) UpperCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def lowercase__ ( self : int , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Tuple ) -> Any: '''simple docstring''' UpperCAmelCase_ = MraModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase_ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase ) UpperCAmelCase_ = model(_UpperCAmelCase , token_type_ids=_UpperCAmelCase ) UpperCAmelCase_ = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self : int , _UpperCAmelCase : Tuple , _UpperCAmelCase : Dict , _UpperCAmelCase : Dict , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[int] , ) -> int: '''simple docstring''' UpperCAmelCase_ = True UpperCAmelCase_ = MraModel(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase_ = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase , encoder_attention_mask=_UpperCAmelCase , ) UpperCAmelCase_ = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase , ) UpperCAmelCase_ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[int] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = MraForMaskedLM(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase_ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self : str , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Tuple ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = MraForQuestionAnswering(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase_ = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase__ ( self : Any , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : int , _UpperCAmelCase : List[str] , _UpperCAmelCase : Any , _UpperCAmelCase : Dict ) -> Any: '''simple docstring''' UpperCAmelCase_ = self.num_labels UpperCAmelCase_ = MraForSequenceClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase_ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self : Dict , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Any , _UpperCAmelCase : List[str] , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[Any] ) -> int: '''simple docstring''' UpperCAmelCase_ = self.num_labels UpperCAmelCase_ = MraForTokenClassification(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase_ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase__ ( self : Optional[int] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : int , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : List[str] ) -> str: '''simple docstring''' UpperCAmelCase_ = self.num_choices UpperCAmelCase_ = MraForMultipleChoice(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase_ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase_ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase_ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase_ = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase__ ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) = config_and_inputs UpperCAmelCase_ = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class lowercase__ ( SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' UpperCamelCase = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = () def lowercase__ ( self : Optional[int] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = MraModelTester(self ) UpperCAmelCase_ = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37 ) def lowercase__ ( self : Optional[int] ) -> Dict: '''simple docstring''' self.config_tester.run_common_tests() def lowercase__ ( self : List[Any] ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def lowercase__ ( self : Tuple ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCAmelCase_ = type self.model_tester.create_and_check_model(*_UpperCAmelCase ) def lowercase__ ( self : List[str] ) -> str: '''simple docstring''' UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_UpperCAmelCase ) def lowercase__ ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_UpperCAmelCase ) def lowercase__ ( self : Any ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_UpperCAmelCase ) def lowercase__ ( self : Optional[int] ) -> str: '''simple docstring''' UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_UpperCAmelCase ) def lowercase__ ( self : str ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_UpperCAmelCase ) @slow def lowercase__ ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ = MraModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) @unittest.skip(reason="MRA does not output attentions" ) def lowercase__ ( self : Optional[Any] ) -> Any: '''simple docstring''' return @require_torch class lowercase__ ( unittest.TestCase ): '''simple docstring''' @slow def lowercase__ ( self : Any ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = MraModel.from_pretrained("uw-madison/mra-base-512-4" ) UpperCAmelCase_ = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): UpperCAmelCase_ = model(_UpperCAmelCase )[0] UpperCAmelCase_ = torch.Size((1, 256, 768) ) self.assertEqual(output.shape , _UpperCAmelCase ) UpperCAmelCase_ = torch.tensor( [[[-0.0140, 0.0830, -0.0381], [0.1546, 0.1402, 0.0220], [0.1162, 0.0851, 0.0165]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _UpperCAmelCase , atol=1e-4 ) ) @slow def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = MraForMaskedLM.from_pretrained("uw-madison/mra-base-512-4" ) UpperCAmelCase_ = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): UpperCAmelCase_ = model(_UpperCAmelCase )[0] UpperCAmelCase_ = 50265 UpperCAmelCase_ = torch.Size((1, 256, vocab_size) ) self.assertEqual(output.shape , _UpperCAmelCase ) UpperCAmelCase_ = torch.tensor( [[[9.2595, -3.6038, 11.8819], [9.3869, -3.2693, 11.0956], [11.8524, -3.4938, 13.1210]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _UpperCAmelCase , atol=1e-4 ) ) @slow def lowercase__ ( self : Tuple ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = MraForMaskedLM.from_pretrained("uw-madison/mra-base-4096-8-d3" ) UpperCAmelCase_ = torch.arange(4096 ).unsqueeze(0 ) with torch.no_grad(): UpperCAmelCase_ = model(_UpperCAmelCase )[0] UpperCAmelCase_ = 50265 UpperCAmelCase_ = torch.Size((1, 4096, vocab_size) ) self.assertEqual(output.shape , _UpperCAmelCase ) UpperCAmelCase_ = torch.tensor( [[[5.4789, -2.3564, 7.5064], [7.9067, -1.3369, 9.9668], [9.0712, -1.8106, 7.0380]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _UpperCAmelCase , atol=1e-4 ) )
82
1
import unittest from diffusers import FlaxAutoencoderKL from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax from .test_modeling_common_flax import FlaxModelTesterMixin if is_flax_available(): import jax @require_flax class UpperCAmelCase ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ = FlaxAutoencoderKL @property def snake_case__ ( self : str ): """simple docstring""" snake_case_ = 4 snake_case_ = 3 snake_case_ = (32, 32) snake_case_ = jax.random.PRNGKey(0 ) snake_case_ = jax.random.uniform(__lowercase , ((batch_size, num_channels) + sizes) ) return {"sample": image, "prng_key": prng_key} def snake_case__ ( self : Union[str, Any] ): """simple docstring""" snake_case_ = { "block_out_channels": [32, 64], "in_channels": 3, "out_channels": 3, "down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"], "up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"], "latent_channels": 4, } snake_case_ = self.dummy_input return init_dict, inputs_dict
139
lowercase__ : Optional[int] = range(2, 20 + 1) lowercase__ : List[str] = [10**k for k in range(ks[-1] + 1)] lowercase__ : dict[int, dict[int, list[list[int]]]] = {} def lowerCamelCase__ ( _A , _A , _A , _A ): '''simple docstring''' snake_case_ = sum(a_i[j] for j in range(_A , len(_A ) ) ) snake_case_ = sum(a_i[j] * base[j] for j in range(min(len(_A ) , _A ) ) ) snake_case_ , snake_case_ = 0, 0 snake_case_ = n - i snake_case_ = memo.get(_A ) if sub_memo is not None: snake_case_ = sub_memo.get(_A ) if jumps is not None and len(_A ) > 0: # find and make the largest jump without going over snake_case_ = -1 for _k in range(len(_A ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: snake_case_ = _k break if max_jump >= 0: snake_case_ , snake_case_ , snake_case_ = jumps[max_jump] # since the difference between jumps is cached, add c snake_case_ = diff + c for j in range(min(_A , len(_A ) ) ): snake_case_ , snake_case_ = divmod(_A , 10 ) if new_c > 0: add(_A , _A , _A ) else: snake_case_ = [] else: snake_case_ = {c: []} snake_case_ = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps snake_case_ , snake_case_ = next_term(_A , k - 1 , i + dn , _A ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead snake_case_ , snake_case_ = compute(_A , _A , i + dn , _A ) diff += _diff dn += terms_jumped snake_case_ = sub_memo[c] # keep jumps sorted by # of terms skipped snake_case_ = 0 while j < len(_A ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(_A , (diff, dn, k) ) return (diff, dn) def lowerCamelCase__ ( _A , _A , _A , _A ): '''simple docstring''' if i >= n: return 0, i if k > len(_A ): a_i.extend([0 for _ in range(k - len(_A ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) snake_case_ = i snake_case_ , snake_case_ , snake_case_ = 0, 0, 0 for j in range(len(_A ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 snake_case_ = ds_c + ds_b diff += addend snake_case_ = 0 for j in range(_A ): snake_case_ = a_i[j] + addend snake_case_ , snake_case_ = divmod(_A , 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(_A , _A , _A ) return diff, i - start_i def lowerCamelCase__ ( _A , _A , _A ): '''simple docstring''' for j in range(_A , len(_A ) ): snake_case_ = digits[j] + addend if s >= 10: snake_case_ , snake_case_ = divmod(_A , 10 ) snake_case_ = addend // 10 + quotient else: snake_case_ = s snake_case_ = addend // 10 if addend == 0: break while addend > 0: snake_case_ , snake_case_ = divmod(_A , 10 ) digits.append(_A ) def lowerCamelCase__ ( _A = 10**15 ): '''simple docstring''' snake_case_ = [1] snake_case_ = 1 snake_case_ = 0 while True: snake_case_ , snake_case_ = next_term(_A , 20 , i + dn , _A ) dn += terms_jumped if dn == n - i: break snake_case_ = 0 for j in range(len(_A ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(f'''{solution() = }''')
139
1
import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging __magic_name__ = logging.get_logger(__name__) __magic_name__ = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt'''} # See all LED models at https://huggingface.co/models?filter=LED __magic_name__ = { '''vocab_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json''', }, '''merges_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json''', }, } __magic_name__ = { '''allenai/led-base-16384''': 16_384, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def UpperCAmelCase__( ): __snake_case : Union[str, Any] = ( list(range(ord('!' ) , ord('~' ) + 1 ) ) + list(range(ord('¡' ) , ord('¬' ) + 1 ) ) + list(range(ord('®' ) , ord('ÿ' ) + 1 ) ) ) __snake_case : Optional[int] = bs[:] __snake_case : Optional[Any] = 0 for b in range(2**8 ): if b not in bs: bs.append(__UpperCAmelCase ) cs.append(2**8 + n ) n += 1 __snake_case : str = [chr(__UpperCAmelCase ) for n in cs] return dict(zip(__UpperCAmelCase , __UpperCAmelCase ) ) def UpperCAmelCase__( __UpperCAmelCase : Union[str, Any] ): __snake_case : Optional[int] = set() __snake_case : List[Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __snake_case : Dict = char return pairs class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = VOCAB_FILES_NAMES __UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase = ["input_ids", "attention_mask"] def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase="replace" , _UpperCAmelCase="<s>" , _UpperCAmelCase="</s>" , _UpperCAmelCase="</s>" , _UpperCAmelCase="<s>" , _UpperCAmelCase="<unk>" , _UpperCAmelCase="<pad>" , _UpperCAmelCase="<mask>" , _UpperCAmelCase=False , **_UpperCAmelCase , ): __snake_case : Optional[Any] = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else bos_token __snake_case : str = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else eos_token __snake_case : int = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else sep_token __snake_case : Tuple = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else cls_token __snake_case : List[str] = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else unk_token __snake_case : List[str] = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __snake_case : Tuple = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else mask_token super().__init__( errors=_UpperCAmelCase , bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase , **_UpperCAmelCase , ) with open(_UpperCAmelCase , encoding='utf-8' ) as vocab_handle: __snake_case : Dict = json.load(_UpperCAmelCase ) __snake_case : Dict = {v: k for k, v in self.encoder.items()} __snake_case : List[Any] = errors # how to handle errors in decoding __snake_case : Tuple = bytes_to_unicode() __snake_case : Dict = {v: k for k, v in self.byte_encoder.items()} with open(_UpperCAmelCase , encoding='utf-8' ) as merges_handle: __snake_case : int = merges_handle.read().split('\n' )[1:-1] __snake_case : str = [tuple(merge.split() ) for merge in bpe_merges] __snake_case : int = dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase ) ) ) ) __snake_case : Optional[int] = {} __snake_case : Union[str, Any] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __snake_case : List[Any] = re.compile(R'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+' ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def lowercase_ ( self ): return len(self.encoder ) def lowercase_ ( self ): return dict(self.encoder , **self.added_tokens_encoder ) def lowercase_ ( self , _UpperCAmelCase ): if token in self.cache: return self.cache[token] __snake_case : int = tuple(_UpperCAmelCase ) __snake_case : List[Any] = get_pairs(_UpperCAmelCase ) if not pairs: return token while True: __snake_case : Tuple = min(_UpperCAmelCase , key=lambda _UpperCAmelCase : self.bpe_ranks.get(_UpperCAmelCase , float('inf' ) ) ) if bigram not in self.bpe_ranks: break __snake_case , __snake_case : str = bigram __snake_case : str = [] __snake_case : str = 0 while i < len(_UpperCAmelCase ): try: __snake_case : Optional[int] = word.index(_UpperCAmelCase , _UpperCAmelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __snake_case : Any = j if word[i] == first and i < len(_UpperCAmelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __snake_case : str = tuple(_UpperCAmelCase ) __snake_case : List[str] = new_word if len(_UpperCAmelCase ) == 1: break else: __snake_case : List[Any] = get_pairs(_UpperCAmelCase ) __snake_case : Tuple = ' '.join(_UpperCAmelCase ) __snake_case : int = word return word def lowercase_ ( self , _UpperCAmelCase ): __snake_case : Union[str, Any] = [] for token in re.findall(self.pat , _UpperCAmelCase ): __snake_case : int = ''.join( self.byte_encoder[b] for b in token.encode('utf-8' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(_UpperCAmelCase ).split(' ' ) ) return bpe_tokens def lowercase_ ( self , _UpperCAmelCase ): return self.encoder.get(_UpperCAmelCase , self.encoder.get(self.unk_token ) ) def lowercase_ ( self , _UpperCAmelCase ): return self.decoder.get(_UpperCAmelCase ) def lowercase_ ( self , _UpperCAmelCase ): __snake_case : List[str] = ''.join(_UpperCAmelCase ) __snake_case : Any = bytearray([self.byte_decoder[c] for c in text] ).decode('utf-8' , errors=self.errors ) return text def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase = None ): if not os.path.isdir(_UpperCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return __snake_case : List[Any] = os.path.join( _UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) __snake_case : int = os.path.join( _UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(_UpperCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=_UpperCAmelCase , ensure_ascii=_UpperCAmelCase ) + '\n' ) __snake_case : Union[str, Any] = 0 with open(_UpperCAmelCase , 'w' , encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda _UpperCAmelCase : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ' Please check that the tokenizer is not corrupted!' ) __snake_case : Optional[Any] = token_index writer.write(' '.join(_UpperCAmelCase ) + '\n' ) index += 1 return vocab_file, merge_file def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __snake_case : Optional[int] = [self.cls_token_id] __snake_case : List[str] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCAmelCase , token_ids_a=_UpperCAmelCase , already_has_special_tokens=_UpperCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(_UpperCAmelCase )) + [1] return [1] + ([0] * len(_UpperCAmelCase )) + [1, 1] + ([0] * len(_UpperCAmelCase )) + [1] def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase = None ): __snake_case : str = [self.sep_token_id] __snake_case : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase=False , **_UpperCAmelCase ): __snake_case : Tuple = kwargs.pop('add_prefix_space' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(_UpperCAmelCase ) > 0 and not text[0].isspace()): __snake_case : Optional[int] = ' ' + text return (text, kwargs) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = PaddingStrategy.DO_NOT_PAD , _UpperCAmelCase = None , _UpperCAmelCase = None , ): __snake_case : str = super()._pad( encoded_inputs=_UpperCAmelCase , max_length=_UpperCAmelCase , padding_strategy=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , ) # Load from model defaults if return_attention_mask is None: __snake_case : int = 'attention_mask' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: __snake_case : Tuple = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. __snake_case : Tuple = len(encoded_inputs['global_attention_mask'] ) != len(_UpperCAmelCase ) if needs_to_be_padded: __snake_case : Dict = len(_UpperCAmelCase ) - len(encoded_inputs['global_attention_mask'] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` __snake_case : Optional[int] = ( encoded_inputs['global_attention_mask'] + [-1] * difference ) elif self.padding_side == "left": __snake_case : List[str] = [-1] * difference + encoded_inputs[ 'global_attention_mask' ] else: raise ValueError('Invalid padding strategy:' + str(self.padding_side ) ) return encoded_inputs
576
import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer __magic_name__ = '''bart''' __magic_name__ = True @st.cache(allow_output_mutation=__UpperCAmelCase ) def UpperCAmelCase__( ): if LOAD_DENSE_INDEX: __snake_case : str = AutoTokenizer.from_pretrained('yjernite/retribert-base-uncased' ) __snake_case : List[Any] = AutoModel.from_pretrained('yjernite/retribert-base-uncased' ).to('cuda:0' ) __snake_case : Any = qar_model.eval() else: __snake_case , __snake_case : Optional[int] = (None, None) if MODEL_TYPE == "bart": __snake_case : Tuple = AutoTokenizer.from_pretrained('yjernite/bart_eli5' ) __snake_case : List[str] = AutoModelForSeqaSeqLM.from_pretrained('yjernite/bart_eli5' ).to('cuda:0' ) __snake_case : List[Any] = torch.load('seq2seq_models/eli5_bart_model_blm_2.pth' ) sas_model.load_state_dict(save_dict['model'] ) __snake_case : List[str] = sas_model.eval() else: __snake_case , __snake_case : Union[str, Any] = make_qa_sas_model( model_name='t5-small' , from_file='seq2seq_models/eli5_t5_model_1024_4.pth' , device='cuda:0' ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=__UpperCAmelCase ) def UpperCAmelCase__( ): if LOAD_DENSE_INDEX: __snake_case : List[Any] = faiss.StandardGpuResources() __snake_case : List[Any] = datasets.load_dataset(path='wiki_snippets' , name='wiki40b_en_100_0' )['train'] __snake_case : Dict = np.memmap( 'wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat' , dtype='float32' , mode='r' , shape=(wikiaab_passages.num_rows, 1_28) , ) __snake_case : List[str] = faiss.IndexFlatIP(1_28 ) __snake_case : int = faiss.index_cpu_to_gpu(__UpperCAmelCase , 1 , __UpperCAmelCase ) wikiaab_gpu_index_flat.add(__UpperCAmelCase ) # TODO fix for larger GPU else: __snake_case , __snake_case : Tuple = (None, None) __snake_case : List[str] = Elasticsearch([{'host': 'localhost', 'port': '9200'}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=__UpperCAmelCase ) def UpperCAmelCase__( ): __snake_case : str = datasets.load_dataset('eli5' , name='LFQA_reddit' ) __snake_case : List[Any] = elia['train_eli5'] __snake_case : Dict = np.memmap( 'eli5_questions_reps.dat' , dtype='float32' , mode='r' , shape=(elia_train.num_rows, 1_28) ) __snake_case : str = faiss.IndexFlatIP(1_28 ) eli5_train_q_index.add(__UpperCAmelCase ) return (elia_train, eli5_train_q_index) __magic_name__ , __magic_name__ , __magic_name__ = load_indexes() __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ = load_models() __magic_name__ , __magic_name__ = load_train_data() def UpperCAmelCase__( __UpperCAmelCase : Tuple , __UpperCAmelCase : Tuple=10 ): __snake_case : str = embed_questions_for_retrieval([question] , __UpperCAmelCase , __UpperCAmelCase ) __snake_case , __snake_case : Union[str, Any] = eli5_train_q_index.search(__UpperCAmelCase , __UpperCAmelCase ) __snake_case : Optional[int] = [elia_train[int(__UpperCAmelCase )] for i in I[0]] return nn_examples def UpperCAmelCase__( __UpperCAmelCase : List[Any] , __UpperCAmelCase : int="wiki40b" , __UpperCAmelCase : List[str]="dense" , __UpperCAmelCase : Any=10 ): if source == "none": __snake_case , __snake_case : Union[str, Any] = (' <P> '.join(['' for _ in range(11 )] ).strip(), []) else: if method == "dense": __snake_case , __snake_case : int = query_qa_dense_index( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) else: __snake_case , __snake_case : Dict = query_es_index( __UpperCAmelCase , __UpperCAmelCase , index_name='english_wiki40b_snippets_100w' , n_results=__UpperCAmelCase , ) __snake_case : Union[str, Any] = [ (res['article_title'], res['section_title'].strip(), res['score'], res['passage_text']) for res in hit_lst ] __snake_case : Any = 'question: {} context: {}'.format(__UpperCAmelCase , __UpperCAmelCase ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda __UpperCAmelCase : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda __UpperCAmelCase : None), } ) def UpperCAmelCase__( __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Dict , __UpperCAmelCase : List[str] , __UpperCAmelCase : str=64 , __UpperCAmelCase : int=2_56 , __UpperCAmelCase : int=False , __UpperCAmelCase : Tuple=2 , __UpperCAmelCase : Union[str, Any]=0.95 , __UpperCAmelCase : Tuple=0.8 ): with torch.no_grad(): __snake_case : Union[str, Any] = qa_sas_generate( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , num_answers=1 , num_beams=__UpperCAmelCase , min_len=__UpperCAmelCase , max_len=__UpperCAmelCase , do_sample=__UpperCAmelCase , temp=__UpperCAmelCase , top_p=__UpperCAmelCase , top_k=__UpperCAmelCase , max_input_length=10_24 , device='cuda:0' , )[0] return (answer, support_list) st.title('''Long Form Question Answering with ELI5''') # Start sidebar __magic_name__ = '''<img src=\'https://huggingface.co/front/assets/huggingface_logo.svg\'>''' __magic_name__ = ''' <html> <head> <style> .img-container { padding-left: 90px; padding-right: 90px; padding-top: 50px; padding-bottom: 50px; background-color: #f0f3f9; } </style> </head> <body> <span class="img-container"> <!-- Inline parent element --> %s </span> </body> </html> ''' % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia __magic_name__ = ''' This demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html). First, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset, a pre-processed fixed snapshot of Wikipedia. ''' st.sidebar.markdown(description, unsafe_allow_html=True) __magic_name__ = [ '''Answer the question''', '''View the retrieved document only''', '''View the most similar ELI5 question and answer''', '''Show me everything, please!''', ] __magic_name__ = st.sidebar.checkbox('''Demo options''') if demo_options: __magic_name__ = st.sidebar.selectbox( '''''', action_list, index=3, ) __magic_name__ = action_list.index(action_st) __magic_name__ = st.sidebar.selectbox( '''''', ['''Show full text of passages''', '''Show passage section titles'''], index=0, ) __magic_name__ = show_type == '''Show full text of passages''' else: __magic_name__ = 3 __magic_name__ = True __magic_name__ = st.sidebar.checkbox('''Retrieval options''') if retrieval_options: __magic_name__ = ''' ### Information retriever options The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs. The answer is then generated by sequence to sequence model which takes the question and retrieved document as input. ''' st.sidebar.markdown(retriever_info) __magic_name__ = st.sidebar.selectbox('''Which Wikipedia format should the model use?''', ['''wiki40b''', '''none''']) __magic_name__ = st.sidebar.selectbox('''Which Wikipedia indexer should the model use?''', ['''dense''', '''sparse''', '''mixed''']) else: __magic_name__ = '''wiki40b''' __magic_name__ = '''dense''' __magic_name__ = '''beam''' __magic_name__ = 2 __magic_name__ = 64 __magic_name__ = 256 __magic_name__ = None __magic_name__ = None __magic_name__ = st.sidebar.checkbox('''Generation options''') if generate_options: __magic_name__ = ''' ### Answer generation options The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large) weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with **beam** search, or **sample** from the decoder\'s output probabilities. ''' st.sidebar.markdown(generate_info) __magic_name__ = st.sidebar.selectbox('''Would you like to use beam search or sample an answer?''', ['''beam''', '''sampled''']) __magic_name__ = st.sidebar.slider( '''Minimum generation length''', min_value=8, max_value=256, value=64, step=8, format=None, key=None ) __magic_name__ = st.sidebar.slider( '''Maximum generation length''', min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": __magic_name__ = st.sidebar.slider('''Beam size''', min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: __magic_name__ = st.sidebar.slider( '''Nucleus sampling p''', min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) __magic_name__ = st.sidebar.slider( '''Temperature''', min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) __magic_name__ = None # start main text __magic_name__ = [ '''<MY QUESTION>''', '''How do people make chocolate?''', '''Why do we get a fever when we are sick?''', '''How can different animals perceive different colors?''', '''What is natural language processing?''', '''What\'s the best way to treat a sunburn?''', '''What exactly are vitamins ?''', '''How does nuclear energy provide electricity?''', '''What\'s the difference between viruses and bacteria?''', '''Why are flutes classified as woodwinds when most of them are made out of metal ?''', '''Why do people like drinking coffee even though it tastes so bad?''', '''What happens when wine ages? How does it make the wine taste better?''', '''If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?''', '''How can we set a date to the beginning or end of an artistic period? Doesn\'t the change happen gradually?''', '''How does New Zealand have so many large bird predators?''', ] __magic_name__ = st.selectbox( '''What would you like to ask? ---- select <MY QUESTION> to enter a new query''', questions_list, index=1, ) if question_s == "<MY QUESTION>": __magic_name__ = st.text_input('''Enter your question here:''', '''''') else: __magic_name__ = question_s if st.button('''Show me!'''): if action in [0, 1, 3]: if index_type == "mixed": __magic_name__ , __magic_name__ = make_support(question, source=wiki_source, method='''dense''', n_results=10) __magic_name__ , __magic_name__ = make_support(question, source=wiki_source, method='''sparse''', n_results=10) __magic_name__ = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] __magic_name__ = support_list[:10] __magic_name__ = '''<P> ''' + ''' <P> '''.join([res[-1] for res in support_list]) else: __magic_name__ , __magic_name__ = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: __magic_name__ , __magic_name__ = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == '''sampled'''), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown('''### The model generated answer is:''') st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown('''--- \n ### The model is drawing information from the following Wikipedia passages:''') for i, res in enumerate(support_list): __magic_name__ = '''https://en.wikipedia.org/wiki/{}'''.format(res[0].replace(''' ''', '''_''')) __magic_name__ = res[1].strip() if sec_titles == "": __magic_name__ = '''[{}]({})'''.format(res[0], wiki_url) else: __magic_name__ = sec_titles.split(''' & ''') __magic_name__ = ''' & '''.join( ['''[{}]({}#{})'''.format(sec.strip(), wiki_url, sec.strip().replace(''' ''', '''_''')) for sec in sec_list] ) st.markdown( '''{0:02d} - **Article**: {1:<18} <br> _Section_: {2}'''.format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( '''> <span style="font-family:arial; font-size:10pt;">''' + res[-1] + '''</span>''', unsafe_allow_html=True ) if action in [2, 3]: __magic_name__ = find_nearest_training(question) __magic_name__ = nn_train_list[0] st.markdown( '''--- \n ### The most similar question in the ELI5 training set was: \n\n {}'''.format(train_exple['''title''']) ) __magic_name__ = [ '''{}. {}'''.format(i + 1, ''' \n'''.join([line.strip() for line in ans.split('''\n''') if line.strip() != ''''''])) for i, (ans, sc) in enumerate(zip(train_exple['''answers''']['''text'''], train_exple['''answers''']['''score'''])) if i == 0 or sc > 2 ] st.markdown('''##### Its answers were: \n\n {}'''.format('''\n'''.join(answers_st))) __magic_name__ = ''' --- **Disclaimer** *The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system. Evaluating biases of such a model and ensuring factual generations are still very much open research problems. Therefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.* ''' st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
576
1
'''simple docstring''' from __future__ import annotations def snake_case_ ( _lowerCAmelCase : int ) -> bool: UpperCAmelCase : Dict = str(UpperCamelCase__ ) return len(UpperCamelCase__ ) == 9 and set(UpperCamelCase__ ) == set('''123456789''' ) def snake_case_ ( ) -> int | None: for base_num in range(9999 , 4999 , -1 ): UpperCAmelCase : List[Any] = 100002 * base_num if is_9_pandigital(UpperCamelCase__ ): return candidate for base_num in range(333 , 99 , -1 ): UpperCAmelCase : Tuple = 1002003 * base_num if is_9_pandigital(UpperCamelCase__ ): return candidate return None if __name__ == "__main__": print(F"{solution() = }")
720
'''simple docstring''' from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup UpperCamelCase__: Union[str, Any] = "https://www.indeed.co.in/jobs?q=mobile+app+development&l=" def snake_case_ ( _lowerCAmelCase : str = "mumbai" ) -> Generator[tuple[str, str], None, None]: UpperCAmelCase : Optional[int] = BeautifulSoup(requests.get(url + location ).content , '''html.parser''' ) # This attribute finds out all the specifics listed in a job for job in soup.find_all('''div''' , attrs={'''data-tn-component''': '''organicJob'''} ): UpperCAmelCase : Optional[Any] = job.find('''a''' , attrs={'''data-tn-element''': '''jobTitle'''} ).text.strip() UpperCAmelCase : int = job.find('''span''' , {'''class''': '''company'''} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs("Bangalore"), 1): print(F"Job {i:>2} is {job[0]} at {job[1]}")
528
0
"""simple docstring""" import os from datetime import datetime as dt from github import Github UpperCamelCase = [ 'good first issue', 'good second issue', 'good difficult issue', 'enhancement', 'new pipeline/model', 'new scheduler', 'wip', ] def lowerCAmelCase_ () -> int: a_ : Optional[Any] = Github(os.environ["GITHUB_TOKEN"] ) a_ : Union[str, Any] = g.get_repo("huggingface/diffusers" ) a_ : Optional[int] = repo.get_issues(state="open" ) for issue in open_issues: a_ : Optional[Any] = sorted(issue.get_comments() , key=lambda _SCREAMING_SNAKE_CASE : i.created_at , reverse=_SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = comments[0] if len(_SCREAMING_SNAKE_CASE ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state="closed" ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state="open" ) issue.remove_from_labels("stale" ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( "This issue has been automatically marked as stale because it has not had " "recent activity. If you think this still needs to be addressed " "please comment on this thread.\n\nPlease note that issues that do not follow the " "[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) " "are likely to be ignored." ) issue.add_to_labels("stale" ) if __name__ == "__main__": main()
473
"""simple docstring""" import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def A ( self ) -> Dict: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def A ( self ) -> int: a_ : Any = 1 a_ : str = 3 a_ : Dict = (3_2, 3_2) a_ : Tuple = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(_SCREAMING_SNAKE_CASE ) return image @property def A ( self ) -> Tuple: torch.manual_seed(0 ) a_ : Dict = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=3_2 , ) return model @property def A ( self ) -> Any: torch.manual_seed(0 ) a_ : int = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) return model @property def A ( self ) -> List[Any]: torch.manual_seed(0 ) a_ : Dict = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) return CLIPTextModel(_SCREAMING_SNAKE_CASE ) @property def A ( self ) -> Optional[int]: def extract(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ): class UpperCAmelCase__ : """simple docstring""" def __init__( self ) -> Union[str, Any]: a_ : Optional[int] = torch.ones([0] ) def A ( self , _SCREAMING_SNAKE_CASE ) -> Tuple: self.pixel_values.to(_SCREAMING_SNAKE_CASE ) return self return Out() return extract def A ( self ) -> Optional[Any]: a_ : Optional[int] = "cpu" # ensure determinism for the device-dependent torch.Generator a_ : Union[str, Any] = self.dummy_cond_unet a_ : Any = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="scaled_linear" , clip_sample=_SCREAMING_SNAKE_CASE , set_alpha_to_one=_SCREAMING_SNAKE_CASE , ) a_ : List[str] = self.dummy_vae a_ : List[str] = self.dummy_text_encoder a_ : Optional[int] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) # make sure here that pndm scheduler skips prk a_ : Union[str, Any] = StableDiffusionPipeline( unet=_SCREAMING_SNAKE_CASE , scheduler=_SCREAMING_SNAKE_CASE , vae=_SCREAMING_SNAKE_CASE , text_encoder=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE , safety_checker=_SCREAMING_SNAKE_CASE , feature_extractor=self.dummy_extractor , ) a_ : Optional[Any] = sd_pipe.to(_SCREAMING_SNAKE_CASE ) sd_pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) a_ : Tuple = "A painting of a squirrel eating a burger" a_ : List[Any] = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(0 ) a_ : Union[str, Any] = sd_pipe([prompt] , generator=_SCREAMING_SNAKE_CASE , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" ) a_ : List[str] = output.images a_ : Optional[Any] = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(0 ) a_ : Dict = sd_pipe( [prompt] , generator=_SCREAMING_SNAKE_CASE , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , return_dict=_SCREAMING_SNAKE_CASE , )[0] a_ : List[str] = image[0, -3:, -3:, -1] a_ : List[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) a_ : Union[str, Any] = np.array([0.5_7_5_6, 0.6_1_1_8, 0.5_0_0_5, 0.5_0_4_1, 0.5_4_7_1, 0.4_7_2_6, 0.4_9_7_6, 0.4_8_6_5, 0.4_8_6_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def A ( self ) -> Optional[Any]: a_ : Optional[Any] = "cpu" # ensure determinism for the device-dependent torch.Generator a_ : List[str] = self.dummy_cond_unet a_ : int = PNDMScheduler(skip_prk_steps=_SCREAMING_SNAKE_CASE ) a_ : Any = self.dummy_vae a_ : int = self.dummy_text_encoder a_ : Optional[Any] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) # make sure here that pndm scheduler skips prk a_ : str = StableDiffusionPipeline( unet=_SCREAMING_SNAKE_CASE , scheduler=_SCREAMING_SNAKE_CASE , vae=_SCREAMING_SNAKE_CASE , text_encoder=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE , safety_checker=_SCREAMING_SNAKE_CASE , feature_extractor=self.dummy_extractor , ) a_ : List[str] = sd_pipe.to(_SCREAMING_SNAKE_CASE ) sd_pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) a_ : Dict = "A painting of a squirrel eating a burger" a_ : Optional[int] = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(0 ) a_ : Union[str, Any] = sd_pipe([prompt] , generator=_SCREAMING_SNAKE_CASE , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" ) a_ : Union[str, Any] = output.images a_ : Union[str, Any] = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(0 ) a_ : Optional[int] = sd_pipe( [prompt] , generator=_SCREAMING_SNAKE_CASE , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , return_dict=_SCREAMING_SNAKE_CASE , )[0] a_ : Any = image[0, -3:, -3:, -1] a_ : str = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) a_ : Tuple = np.array([0.5_1_2_5, 0.5_7_1_6, 0.4_8_2_8, 0.5_0_6_0, 0.5_6_5_0, 0.4_7_6_8, 0.5_1_8_5, 0.4_8_9_5, 0.4_9_9_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def A ( self ) -> List[str]: a_ : Tuple = StableDiffusionPipeline.from_pretrained( "hf-internal-testing/tiny-stable-diffusion-lms-pipe" , safety_checker=_SCREAMING_SNAKE_CASE ) assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) assert isinstance(pipe.scheduler , _SCREAMING_SNAKE_CASE ) assert pipe.safety_checker is None a_ : List[Any] = pipe("example prompt" , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(_SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = StableDiffusionPipeline.from_pretrained(_SCREAMING_SNAKE_CASE ) # sanity check that the pipeline still works assert pipe.safety_checker is None a_ : Optional[int] = pipe("example prompt" , num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def A ( self ) -> Union[str, Any]: a_ : Tuple = self.dummy_cond_unet a_ : int = PNDMScheduler(skip_prk_steps=_SCREAMING_SNAKE_CASE ) a_ : Tuple = self.dummy_vae a_ : Optional[Any] = self.dummy_text_encoder a_ : Tuple = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) # put models in fp16 a_ : Union[str, Any] = unet.half() a_ : Optional[Any] = vae.half() a_ : Optional[int] = bert.half() # make sure here that pndm scheduler skips prk a_ : Tuple = StableDiffusionPipeline( unet=_SCREAMING_SNAKE_CASE , scheduler=_SCREAMING_SNAKE_CASE , vae=_SCREAMING_SNAKE_CASE , text_encoder=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE , safety_checker=_SCREAMING_SNAKE_CASE , feature_extractor=self.dummy_extractor , ) a_ : Optional[int] = sd_pipe.to(_SCREAMING_SNAKE_CASE ) sd_pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) a_ : int = "A painting of a squirrel eating a burger" a_ : Tuple = sd_pipe([prompt] , num_inference_steps=2 , output_type="np" ).images assert image.shape == (1, 6_4, 6_4, 3) @nightly @require_torch_gpu class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def A ( self ) -> str: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def A ( self ) -> Optional[Any]: a_ : List[Any] = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5" , safety_checker=_SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) a_ : List[str] = sd_pipe.to(_SCREAMING_SNAKE_CASE ) sd_pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) a_ : str = ( "portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle" " coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with" " anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and" " children from bahnhof zoo, detailed " ) a_ : Optional[int] = 4_0_0_3_6_6_0_3_4_6 a_ : Optional[int] = 7 # without safety guidance (sld_guidance_scale = 0) a_ : Tuple = torch.manual_seed(_SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = sd_pipe( [prompt] , generator=_SCREAMING_SNAKE_CASE , guidance_scale=_SCREAMING_SNAKE_CASE , num_inference_steps=5_0 , output_type="np" , width=5_1_2 , height=5_1_2 , sld_guidance_scale=0 , ) a_ : Any = output.images a_ : Any = image[0, -3:, -3:, -1] a_ : List[str] = [0.2_2_7_8, 0.2_2_3_1, 0.2_2_4_9, 0.2_3_3_3, 0.2_3_0_3, 0.1_8_8_5, 0.2_2_7_3, 0.2_1_4_4, 0.2_1_7_6] assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 # without safety guidance (strong configuration) a_ : List[str] = torch.manual_seed(_SCREAMING_SNAKE_CASE ) a_ : List[str] = sd_pipe( [prompt] , generator=_SCREAMING_SNAKE_CASE , guidance_scale=_SCREAMING_SNAKE_CASE , num_inference_steps=5_0 , output_type="np" , width=5_1_2 , height=5_1_2 , sld_guidance_scale=2_0_0_0 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) a_ : List[str] = output.images a_ : Union[str, Any] = image[0, -3:, -3:, -1] a_ : List[Any] = [0.2_3_8_3, 0.2_2_7_6, 0.2_3_6, 0.2_1_9_2, 0.2_1_8_6, 0.2_0_5_3, 0.1_9_7_1, 0.1_9_0_1, 0.1_7_1_9] assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def A ( self ) -> Dict: a_ : Union[str, Any] = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5" , safety_checker=_SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) a_ : Dict = sd_pipe.to(_SCREAMING_SNAKE_CASE ) sd_pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) a_ : Tuple = "padme amidala taking a bath artwork, safe for work, no nudity" a_ : List[Any] = 2_7_3_4_9_7_1_7_5_5 a_ : Tuple = 7 a_ : Dict = torch.manual_seed(_SCREAMING_SNAKE_CASE ) a_ : Dict = sd_pipe( [prompt] , generator=_SCREAMING_SNAKE_CASE , guidance_scale=_SCREAMING_SNAKE_CASE , num_inference_steps=5_0 , output_type="np" , width=5_1_2 , height=5_1_2 , sld_guidance_scale=0 , ) a_ : str = output.images a_ : Optional[Any] = image[0, -3:, -3:, -1] a_ : Optional[int] = [0.3_5_0_2, 0.3_6_2_2, 0.3_3_9_6, 0.3_6_4_2, 0.3_4_7_8, 0.3_3_1_8, 0.3_5, 0.3_3_4_8, 0.3_2_9_7] assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 a_ : Any = torch.manual_seed(_SCREAMING_SNAKE_CASE ) a_ : str = sd_pipe( [prompt] , generator=_SCREAMING_SNAKE_CASE , guidance_scale=_SCREAMING_SNAKE_CASE , num_inference_steps=5_0 , output_type="np" , width=5_1_2 , height=5_1_2 , sld_guidance_scale=2_0_0_0 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) a_ : str = output.images a_ : Optional[Any] = image[0, -3:, -3:, -1] a_ : Tuple = [0.5_5_3_1, 0.5_2_0_6, 0.4_8_9_5, 0.5_1_5_6, 0.5_1_8_2, 0.4_7_5_1, 0.4_8_0_2, 0.4_8_0_3, 0.4_4_4_3] assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def A ( self ) -> int: a_ : Optional[Any] = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5" ) a_ : Dict = sd_pipe.to(_SCREAMING_SNAKE_CASE ) sd_pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) a_ : Tuple = ( "the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c." " leyendecker" ) a_ : List[str] = 1_0_4_4_3_5_5_2_3_4 a_ : Dict = 1_2 a_ : List[Any] = torch.manual_seed(_SCREAMING_SNAKE_CASE ) a_ : Tuple = sd_pipe( [prompt] , generator=_SCREAMING_SNAKE_CASE , guidance_scale=_SCREAMING_SNAKE_CASE , num_inference_steps=5_0 , output_type="np" , width=5_1_2 , height=5_1_2 , sld_guidance_scale=0 , ) a_ : Any = output.images a_ : List[str] = image[0, -3:, -3:, -1] a_ : Tuple = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-7 a_ : Optional[Any] = torch.manual_seed(_SCREAMING_SNAKE_CASE ) a_ : Optional[int] = sd_pipe( [prompt] , generator=_SCREAMING_SNAKE_CASE , guidance_scale=_SCREAMING_SNAKE_CASE , num_inference_steps=5_0 , output_type="np" , width=5_1_2 , height=5_1_2 , sld_guidance_scale=2_0_0_0 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) a_ : int = output.images a_ : Union[str, Any] = image[0, -3:, -3:, -1] a_ : Tuple = np.array([0.5_8_1_8, 0.6_2_8_5, 0.6_8_3_5, 0.6_0_1_9, 0.6_2_5, 0.6_7_5_4, 0.6_0_9_6, 0.6_3_3_4, 0.6_5_6_1] ) assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
473
1
import argparse import hashlib import os import urllib import warnings import torch from torch import nn from tqdm import tqdm from transformers import WhisperConfig, WhisperForConditionalGeneration _lowercase = { '''tiny.en''': '''https://openaipublic.azureedge.net/main/whisper/models/d3dd57d32accea0b295c96e26691aa14d8822fac7d9d27d5dc00b4ca2826dd03/tiny.en.pt''', '''tiny''': '''https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt''', '''base.en''': '''https://openaipublic.azureedge.net/main/whisper/models/25a8566e1d0c1e2231d1c762132cd20e0f96a85d16145c3a00adf5d1ac670ead/base.en.pt''', '''base''': '''https://openaipublic.azureedge.net/main/whisper/models/ed3a0b6b1c0edf879ad9b11b1af5a0e6ab5db9205f891f668f8b0e6c6326e34e/base.pt''', '''small.en''': '''https://openaipublic.azureedge.net/main/whisper/models/f953ad0fd29cacd07d5a9eda5624af0f6bcf2258be67c92b79389873d91e0872/small.en.pt''', '''small''': '''https://openaipublic.azureedge.net/main/whisper/models/9ecf779972d90ba49c06d968637d720dd632c55bbf19d441fb42bf17a411e794/small.pt''', '''medium.en''': '''https://openaipublic.azureedge.net/main/whisper/models/d7440d1dc186f76616474e0ff0b3b6b879abc9d1a4926b7adfa41db2d497ab4f/medium.en.pt''', '''medium''': '''https://openaipublic.azureedge.net/main/whisper/models/345ae4da62f9b3d59415adc60127b97c714f32e89e936602e85993674d08dcb1/medium.pt''', '''large''': '''https://openaipublic.azureedge.net/main/whisper/models/e4b87e7e0bf463eb8e6956e646f1e277e901512310def2c24bf0e11bd3c28e9a/large.pt''', '''large-v2''': '''https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt''', } def _A (UpperCamelCase : Any ) ->List[str]: '''simple docstring''' lowerCamelCase__ : List[str] = ["""layers""", """blocks"""] for k in ignore_keys: state_dict.pop(UpperCamelCase , UpperCamelCase ) _lowercase = { '''blocks''': '''layers''', '''mlp.0''': '''fc1''', '''mlp.2''': '''fc2''', '''mlp_ln''': '''final_layer_norm''', '''.attn.query''': '''.self_attn.q_proj''', '''.attn.key''': '''.self_attn.k_proj''', '''.attn.value''': '''.self_attn.v_proj''', '''.attn_ln''': '''.self_attn_layer_norm''', '''.attn.out''': '''.self_attn.out_proj''', '''.cross_attn.query''': '''.encoder_attn.q_proj''', '''.cross_attn.key''': '''.encoder_attn.k_proj''', '''.cross_attn.value''': '''.encoder_attn.v_proj''', '''.cross_attn_ln''': '''.encoder_attn_layer_norm''', '''.cross_attn.out''': '''.encoder_attn.out_proj''', '''decoder.ln.''': '''decoder.layer_norm.''', '''encoder.ln.''': '''encoder.layer_norm.''', '''token_embedding''': '''embed_tokens''', '''encoder.positional_embedding''': '''encoder.embed_positions.weight''', '''decoder.positional_embedding''': '''decoder.embed_positions.weight''', '''ln_post''': '''layer_norm''', } def _A (UpperCamelCase : Union[str, Any] ) ->Optional[Any]: '''simple docstring''' lowerCamelCase__ : Union[str, Any] = list(s_dict.keys() ) for key in keys: lowerCamelCase__ : Dict = key for k, v in WHISPER_MAPPING.items(): if k in key: lowerCamelCase__ : Tuple = new_key.replace(UpperCamelCase , UpperCamelCase ) print(f"{key} -> {new_key}" ) lowerCamelCase__ : int = s_dict.pop(UpperCamelCase ) return s_dict def _A (UpperCamelCase : List[Any] ) ->Optional[Any]: '''simple docstring''' lowerCamelCase__ : int = emb.weight.shape lowerCamelCase__ : Optional[int] = nn.Linear(UpperCamelCase , UpperCamelCase , bias=UpperCamelCase ) lowerCamelCase__ : List[str] = emb.weight.data return lin_layer def _A (UpperCamelCase : str , UpperCamelCase : str ) ->bytes: '''simple docstring''' os.makedirs(UpperCamelCase , exist_ok=UpperCamelCase ) lowerCamelCase__ : Any = os.path.basename(UpperCamelCase ) lowerCamelCase__ : int = url.split("""/""" )[-2] lowerCamelCase__ : Optional[int] = os.path.join(UpperCamelCase , UpperCamelCase ) if os.path.exists(UpperCamelCase ) and not os.path.isfile(UpperCamelCase ): raise RuntimeError(f"{download_target} exists and is not a regular file" ) if os.path.isfile(UpperCamelCase ): lowerCamelCase__ : Dict = open(UpperCamelCase , """rb""" ).read() if hashlib.shaaaa(UpperCamelCase ).hexdigest() == expected_shaaaa: return model_bytes else: warnings.warn(f"{download_target} exists, but the SHA256 checksum does not match; re-downloading the file" ) with urllib.request.urlopen(UpperCamelCase ) as source, open(UpperCamelCase , """wb""" ) as output: with tqdm( total=int(source.info().get("""Content-Length""" ) ) , ncols=80 , unit="""iB""" , unit_scale=UpperCamelCase , unit_divisor=1024 ) as loop: while True: lowerCamelCase__ : Tuple = source.read(8192 ) if not buffer: break output.write(UpperCamelCase ) loop.update(len(UpperCamelCase ) ) lowerCamelCase__ : Any = open(UpperCamelCase , """rb""" ).read() if hashlib.shaaaa(UpperCamelCase ).hexdigest() != expected_shaaaa: raise RuntimeError( """Model has been downloaded but the SHA256 checksum does not not match. Please retry loading the model.""" ) return model_bytes def _A (UpperCamelCase : Dict , UpperCamelCase : Any ) ->Optional[Any]: '''simple docstring''' if ".pt" not in checkpoint_path: lowerCamelCase__ : Optional[Any] = _download(_MODELS[checkpoint_path] ) else: lowerCamelCase__ : Optional[Any] = torch.load(UpperCamelCase , map_location="""cpu""" ) lowerCamelCase__ : Optional[int] = original_checkpoint["""dims"""] lowerCamelCase__ : int = original_checkpoint["""model_state_dict"""] lowerCamelCase__ : Optional[int] = state_dict["""decoder.token_embedding.weight"""] remove_ignore_keys_(UpperCamelCase ) rename_keys(UpperCamelCase ) lowerCamelCase__ : Optional[int] = True lowerCamelCase__ : str = state_dict["""decoder.layers.0.fc1.weight"""].shape[0] lowerCamelCase__ : List[str] = WhisperConfig( vocab_size=dimensions["""n_vocab"""] , encoder_ffn_dim=UpperCamelCase , decoder_ffn_dim=UpperCamelCase , num_mel_bins=dimensions["""n_mels"""] , d_model=dimensions["""n_audio_state"""] , max_target_positions=dimensions["""n_text_ctx"""] , encoder_layers=dimensions["""n_audio_layer"""] , encoder_attention_heads=dimensions["""n_audio_head"""] , decoder_layers=dimensions["""n_text_layer"""] , decoder_attention_heads=dimensions["""n_text_state"""] , max_source_positions=dimensions["""n_audio_ctx"""] , ) lowerCamelCase__ : List[str] = WhisperForConditionalGeneration(UpperCamelCase ) lowerCamelCase__ : str = model.model.load_state_dict(UpperCamelCase , strict=UpperCamelCase ) if len(UpperCamelCase ) > 0 and not set(UpperCamelCase ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( """Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,""" f" but all the following weights are missing {missing}" ) if tie_embeds: lowerCamelCase__ : List[str] = make_linear_from_emb(model.model.decoder.embed_tokens ) else: lowerCamelCase__ : int = proj_out_weights model.save_pretrained(UpperCamelCase ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() # # Required parameters parser.add_argument('''--checkpoint_path''', type=str, help='''Patht to the downloaded checkpoints''') parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') _lowercase = parser.parse_args() convert_openai_whisper_to_tfms(args.checkpoint_path, args.pytorch_dump_folder_path)
703
from ... import PretrainedConfig _lowercase = { '''sijunhe/nezha-cn-base''': '''https://huggingface.co/sijunhe/nezha-cn-base/resolve/main/config.json''', } class __A ( A_ ): UpperCamelCase :Optional[Any] = NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP UpperCamelCase :int = '''nezha''' def __init__(self , __magic_name__=21128 , __magic_name__=768 , __magic_name__=12 , __magic_name__=12 , __magic_name__=3072 , __magic_name__="gelu" , __magic_name__=0.1 , __magic_name__=0.1 , __magic_name__=512 , __magic_name__=64 , __magic_name__=2 , __magic_name__=0.02 , __magic_name__=1E-12 , __magic_name__=0.1 , __magic_name__=0 , __magic_name__=2 , __magic_name__=3 , __magic_name__=True , **__magic_name__ , ): super().__init__(pad_token_id=__magic_name__ , bos_token_id=__magic_name__ , eos_token_id=__magic_name__ , **__magic_name__ ) lowerCamelCase__ : List[str] = vocab_size lowerCamelCase__ : int = hidden_size lowerCamelCase__ : int = num_hidden_layers lowerCamelCase__ : Optional[int] = num_attention_heads lowerCamelCase__ : Dict = hidden_act lowerCamelCase__ : str = intermediate_size lowerCamelCase__ : Optional[Any] = hidden_dropout_prob lowerCamelCase__ : Dict = attention_probs_dropout_prob lowerCamelCase__ : str = max_position_embeddings lowerCamelCase__ : Optional[Any] = max_relative_position lowerCamelCase__ : Optional[int] = type_vocab_size lowerCamelCase__ : Optional[Any] = initializer_range lowerCamelCase__ : Any = layer_norm_eps lowerCamelCase__ : Union[str, Any] = classifier_dropout lowerCamelCase__ : Union[str, Any] = use_cache
96
0
import warnings from .generation import TFGenerationMixin class a ( _A ): '''simple docstring''' warnings.warn( 'Importing `TFGenerationMixin` from `src/transformers/generation_tf_utils.py` is deprecated and will ' 'be removed in Transformers v5. Import as `from transformers import TFGenerationMixin` instead.' , _A , )
144
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetaImageProcessor class a ( unittest.TestCase ): '''simple docstring''' def __init__( self : int , __snake_case : Tuple , __snake_case : Tuple=7 , __snake_case : int=3 , __snake_case : List[str]=30 , __snake_case : Optional[Any]=4_00 , __snake_case : Dict=True , __snake_case : Optional[Any]=None , __snake_case : Dict=True , __snake_case : Any=[0.5, 0.5, 0.5] , __snake_case : Tuple=[0.5, 0.5, 0.5] , __snake_case : Any=True , __snake_case : str=1 / 2_55 , __snake_case : List[Any]=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p UpperCAmelCase_ = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 13_33} UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = min_resolution UpperCAmelCase_ = max_resolution UpperCAmelCase_ = do_resize UpperCAmelCase_ = size UpperCAmelCase_ = do_normalize UpperCAmelCase_ = image_mean UpperCAmelCase_ = image_std UpperCAmelCase_ = do_rescale UpperCAmelCase_ = rescale_factor UpperCAmelCase_ = do_pad def lowerCamelCase_ ( self : Tuple ): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def lowerCamelCase_ ( self : int , __snake_case : Union[str, Any] , __snake_case : List[Any]=False ): if not batched: UpperCAmelCase_ = image_inputs[0] if isinstance(__snake_case , Image.Image ): UpperCAmelCase_ , UpperCAmelCase_ = image.size else: UpperCAmelCase_ , UpperCAmelCase_ = image.shape[1], image.shape[2] if w < h: UpperCAmelCase_ = int(self.size['''shortest_edge'''] * h / w ) UpperCAmelCase_ = self.size['''shortest_edge'''] elif w > h: UpperCAmelCase_ = self.size['''shortest_edge'''] UpperCAmelCase_ = int(self.size['''shortest_edge'''] * w / h ) else: UpperCAmelCase_ = self.size['''shortest_edge'''] UpperCAmelCase_ = self.size['''shortest_edge'''] else: UpperCAmelCase_ = [] for image in image_inputs: UpperCAmelCase_ , UpperCAmelCase_ = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) UpperCAmelCase_ = max(__snake_case , key=lambda __snake_case : item[0] )[0] UpperCAmelCase_ = max(__snake_case , key=lambda __snake_case : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class a ( _A , unittest.TestCase ): '''simple docstring''' lowerCAmelCase : Any = DetaImageProcessor if is_vision_available() else None def lowerCamelCase_ ( self : Optional[Any] ): UpperCAmelCase_ = DetaImageProcessingTester(self ) @property def lowerCamelCase_ ( self : Any ): return self.image_processor_tester.prepare_image_processor_dict() def lowerCamelCase_ ( self : Optional[Any] ): UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__snake_case , '''image_mean''' ) ) self.assertTrue(hasattr(__snake_case , '''image_std''' ) ) self.assertTrue(hasattr(__snake_case , '''do_normalize''' ) ) self.assertTrue(hasattr(__snake_case , '''do_resize''' ) ) self.assertTrue(hasattr(__snake_case , '''do_rescale''' ) ) self.assertTrue(hasattr(__snake_case , '''do_pad''' ) ) self.assertTrue(hasattr(__snake_case , '''size''' ) ) def lowerCamelCase_ ( self : List[Any] ): UpperCAmelCase_ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 13_33} ) self.assertEqual(image_processor.do_pad , __snake_case ) def lowerCamelCase_ ( self : Optional[int] ): pass def lowerCamelCase_ ( self : Optional[int] ): # Initialize image_processing UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , Image.Image ) # Test not batched input UpperCAmelCase_ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values UpperCAmelCase_ , UpperCAmelCase_ = self.image_processor_tester.get_expected_values(__snake_case ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase_ , UpperCAmelCase_ = self.image_processor_tester.get_expected_values(__snake_case , batched=__snake_case ) UpperCAmelCase_ = image_processing(__snake_case , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCamelCase_ ( self : Union[str, Any] ): # Initialize image_processing UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case , numpify=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , np.ndarray ) # Test not batched input UpperCAmelCase_ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values UpperCAmelCase_ , UpperCAmelCase_ = self.image_processor_tester.get_expected_values(__snake_case ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase_ = image_processing(__snake_case , return_tensors='''pt''' ).pixel_values UpperCAmelCase_ , UpperCAmelCase_ = self.image_processor_tester.get_expected_values(__snake_case , batched=__snake_case ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCamelCase_ ( self : Tuple ): # Initialize image_processing UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case , torchify=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , torch.Tensor ) # Test not batched input UpperCAmelCase_ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values UpperCAmelCase_ , UpperCAmelCase_ = self.image_processor_tester.get_expected_values(__snake_case ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase_ = image_processing(__snake_case , return_tensors='''pt''' ).pixel_values UpperCAmelCase_ , UpperCAmelCase_ = self.image_processor_tester.get_expected_values(__snake_case , batched=__snake_case ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def lowerCamelCase_ ( self : Union[str, Any] ): # prepare image and target UpperCAmelCase_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: UpperCAmelCase_ = json.loads(f.read() ) UpperCAmelCase_ = {'''image_id''': 3_97_69, '''annotations''': target} # encode them UpperCAmelCase_ = DetaImageProcessor() UpperCAmelCase_ = image_processing(images=__snake_case , annotations=__snake_case , return_tensors='''pt''' ) # verify pixel values UpperCAmelCase_ = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding['''pixel_values'''].shape , __snake_case ) UpperCAmelCase_ = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , __snake_case , atol=1E-4 ) ) # verify area UpperCAmelCase_ = torch.tensor([5_887.9_600, 11_250.2_061, 489_353.8_438, 837_122.7_500, 147_967.5_156, 165_732.3_438] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , __snake_case ) ) # verify boxes UpperCAmelCase_ = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , __snake_case ) UpperCAmelCase_ = torch.tensor([0.5_503, 0.2_765, 0.0_604, 0.2_215] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , __snake_case , atol=1E-3 ) ) # verify image_id UpperCAmelCase_ = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , __snake_case ) ) # verify is_crowd UpperCAmelCase_ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , __snake_case ) ) # verify class_labels UpperCAmelCase_ = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , __snake_case ) ) # verify orig_size UpperCAmelCase_ = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , __snake_case ) ) # verify size UpperCAmelCase_ = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , __snake_case ) ) @slow def lowerCamelCase_ ( self : int ): # prepare image, target and masks_path UpperCAmelCase_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: UpperCAmelCase_ = json.loads(f.read() ) UpperCAmelCase_ = {'''file_name''': '''000000039769.png''', '''image_id''': 3_97_69, '''segments_info''': target} UpperCAmelCase_ = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them UpperCAmelCase_ = DetaImageProcessor(format='''coco_panoptic''' ) UpperCAmelCase_ = image_processing(images=__snake_case , annotations=__snake_case , masks_path=__snake_case , return_tensors='''pt''' ) # verify pixel values UpperCAmelCase_ = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding['''pixel_values'''].shape , __snake_case ) UpperCAmelCase_ = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , __snake_case , atol=1E-4 ) ) # verify area UpperCAmelCase_ = torch.tensor([147_979.6_875, 165_527.0_469, 484_638.5_938, 11_292.9_375, 5_879.6_562, 7_634.1_147] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , __snake_case ) ) # verify boxes UpperCAmelCase_ = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , __snake_case ) UpperCAmelCase_ = torch.tensor([0.2_625, 0.5_437, 0.4_688, 0.8_625] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , __snake_case , atol=1E-3 ) ) # verify image_id UpperCAmelCase_ = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , __snake_case ) ) # verify is_crowd UpperCAmelCase_ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , __snake_case ) ) # verify class_labels UpperCAmelCase_ = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , __snake_case ) ) # verify masks UpperCAmelCase_ = 82_28_73 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , __snake_case ) # verify orig_size UpperCAmelCase_ = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , __snake_case ) ) # verify size UpperCAmelCase_ = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , __snake_case ) )
144
1
"""simple docstring""" from math import sqrt def __a ( _lowercase ): """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(sqrt(_lowercase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def __a ( _lowercase = 10001 ): """simple docstring""" lowerCamelCase__ : Optional[int] = 0 lowerCamelCase__ : Union[str, Any] = 1 while count != nth and number < 3: number += 1 if is_prime(_lowercase ): count += 1 while count != nth: number += 2 if is_prime(_lowercase ): count += 1 return number if __name__ == "__main__": print(f'''{solution() = }''')
121
"""simple docstring""" import fire from utils import calculate_rouge, save_json def __a ( _lowercase , _lowercase , _lowercase=None , **_lowercase ): """simple docstring""" lowerCamelCase__ : str = [x.strip() for x in open(_lowercase ).readlines()] lowerCamelCase__ : str = [x.strip() for x in open(_lowercase ).readlines()][: len(_lowercase )] lowerCamelCase__ : Optional[int] = calculate_rouge(_lowercase , _lowercase , **_lowercase ) if save_path is not None: save_json(_lowercase , _lowercase , indent=_lowercase ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
121
1
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = " " ): snake_case_ = [] snake_case_ = 0 for index, char in enumerate(a_ ): if char == separator: split_words.append(string[last_index:index] ) snake_case_ = index + 1 elif index + 1 == len(a_ ): split_words.append(string[last_index : index + 1] ) return split_words if __name__ == "__main__": from doctest import testmod testmod()
39
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __a = logging.get_logger(__name__) __a = { 'microsoft/wavlm-base': 'https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json', # See all WavLM models at https://huggingface.co/models?filter=wavlm } class A__ ( UpperCamelCase ): """simple docstring""" UpperCamelCase_ : Tuple = '''wavlm''' def __init__( self : Optional[int] , lowerCAmelCase__ : int=3_2 , lowerCAmelCase__ : Any=7_6_8 , lowerCAmelCase__ : Any=1_2 , lowerCAmelCase__ : List[Any]=1_2 , lowerCAmelCase__ : List[Any]=3_0_7_2 , lowerCAmelCase__ : Dict="gelu" , lowerCAmelCase__ : Tuple=0.1 , lowerCAmelCase__ : List[str]=0.1 , lowerCAmelCase__ : int=0.1 , lowerCAmelCase__ : Optional[int]=0.0 , lowerCAmelCase__ : Optional[Any]=0.1 , lowerCAmelCase__ : Any=0.1 , lowerCAmelCase__ : Dict=0.02 , lowerCAmelCase__ : Union[str, Any]=1e-5 , lowerCAmelCase__ : Optional[Any]="group" , lowerCAmelCase__ : str="gelu" , lowerCAmelCase__ : str=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , lowerCAmelCase__ : Optional[int]=(5, 2, 2, 2, 2, 2, 2) , lowerCAmelCase__ : int=(1_0, 3, 3, 3, 3, 2, 2) , lowerCAmelCase__ : Optional[Any]=False , lowerCAmelCase__ : str=1_2_8 , lowerCAmelCase__ : str=1_6 , lowerCAmelCase__ : Tuple=3_2_0 , lowerCAmelCase__ : Optional[int]=8_0_0 , lowerCAmelCase__ : Any=False , lowerCAmelCase__ : List[Any]=True , lowerCAmelCase__ : Union[str, Any]=0.05 , lowerCAmelCase__ : Union[str, Any]=1_0 , lowerCAmelCase__ : str=2 , lowerCAmelCase__ : Optional[int]=0.0 , lowerCAmelCase__ : Union[str, Any]=1_0 , lowerCAmelCase__ : List[str]=3_2_0 , lowerCAmelCase__ : List[Any]=2 , lowerCAmelCase__ : str=0.1 , lowerCAmelCase__ : Optional[Any]=1_0_0 , lowerCAmelCase__ : Union[str, Any]=2_5_6 , lowerCAmelCase__ : Tuple=2_5_6 , lowerCAmelCase__ : Tuple=0.1 , lowerCAmelCase__ : Any="mean" , lowerCAmelCase__ : List[Any]=False , lowerCAmelCase__ : List[str]=False , lowerCAmelCase__ : Optional[int]=2_5_6 , lowerCAmelCase__ : List[str]=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 1_5_0_0) , lowerCAmelCase__ : str=(5, 3, 3, 1, 1) , lowerCAmelCase__ : Optional[Any]=(1, 2, 3, 1, 1) , lowerCAmelCase__ : List[str]=5_1_2 , lowerCAmelCase__ : Tuple=8_0 , lowerCAmelCase__ : List[Any]=0 , lowerCAmelCase__ : Dict=1 , lowerCAmelCase__ : int=2 , lowerCAmelCase__ : str=False , lowerCAmelCase__ : Optional[int]=3 , lowerCAmelCase__ : Optional[int]=2 , lowerCAmelCase__ : Optional[Any]=3 , lowerCAmelCase__ : Optional[int]=None , **lowerCAmelCase__ : Dict , ) -> Any: """simple docstring""" super().__init__(**lowerCAmelCase__ , pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ ) _UpperCAmelCase : Tuple = hidden_size _UpperCAmelCase : int = feat_extract_norm _UpperCAmelCase : Optional[int] = feat_extract_activation _UpperCAmelCase : List[str] = list(lowerCAmelCase__ ) _UpperCAmelCase : Any = list(lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = list(lowerCAmelCase__ ) _UpperCAmelCase : int = conv_bias _UpperCAmelCase : Union[str, Any] = num_buckets _UpperCAmelCase : Dict = max_bucket_distance _UpperCAmelCase : int = num_conv_pos_embeddings _UpperCAmelCase : str = num_conv_pos_embedding_groups _UpperCAmelCase : Optional[Any] = len(self.conv_dim ) _UpperCAmelCase : str = num_hidden_layers _UpperCAmelCase : str = intermediate_size _UpperCAmelCase : str = hidden_act _UpperCAmelCase : Optional[Any] = num_attention_heads _UpperCAmelCase : List[Any] = hidden_dropout _UpperCAmelCase : Optional[Any] = attention_dropout _UpperCAmelCase : List[Any] = activation_dropout _UpperCAmelCase : int = feat_proj_dropout _UpperCAmelCase : List[str] = final_dropout _UpperCAmelCase : Optional[Any] = layerdrop _UpperCAmelCase : Dict = layer_norm_eps _UpperCAmelCase : Optional[Any] = initializer_range _UpperCAmelCase : List[Any] = num_ctc_classes _UpperCAmelCase : Optional[Any] = vocab_size _UpperCAmelCase : Optional[Any] = do_stable_layer_norm _UpperCAmelCase : str = use_weighted_layer_sum _UpperCAmelCase : Optional[Any] = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" F""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" F""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _UpperCAmelCase : str = apply_spec_augment _UpperCAmelCase : List[str] = mask_time_prob _UpperCAmelCase : Tuple = mask_time_length _UpperCAmelCase : Optional[int] = mask_time_min_masks _UpperCAmelCase : str = mask_feature_prob _UpperCAmelCase : Tuple = mask_feature_length # parameters for pretraining with codevector quantized representations _UpperCAmelCase : List[Any] = num_codevectors_per_group _UpperCAmelCase : Tuple = num_codevector_groups _UpperCAmelCase : Optional[Any] = contrastive_logits_temperature _UpperCAmelCase : Optional[int] = num_negatives _UpperCAmelCase : List[Any] = codevector_dim _UpperCAmelCase : int = proj_codevector_dim _UpperCAmelCase : Optional[Any] = diversity_loss_weight # ctc loss _UpperCAmelCase : Dict = ctc_loss_reduction _UpperCAmelCase : int = ctc_zero_infinity # adapter _UpperCAmelCase : Optional[Any] = add_adapter _UpperCAmelCase : Tuple = adapter_kernel_size _UpperCAmelCase : str = adapter_stride _UpperCAmelCase : Optional[Any] = num_adapter_layers _UpperCAmelCase : Any = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. _UpperCAmelCase : str = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _UpperCAmelCase : Union[str, Any] = list(lowerCAmelCase__ ) _UpperCAmelCase : str = list(lowerCAmelCase__ ) _UpperCAmelCase : List[str] = list(lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = xvector_output_dim @property def _lowerCAmelCase ( self : Optional[int] ) -> int: """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1 )
494
0
import json import os import unittest from typing import Tuple from transformers import WavaVecaPhonemeCTCTokenizer from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.models.wavaveca_phoneme.tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizerOutput from transformers.testing_utils import require_phonemizer from ...test_tokenization_common import TokenizerTesterMixin @require_phonemizer class SCREAMING_SNAKE_CASE ( a_ , unittest.TestCase ): """simple docstring""" lowerCamelCase : Optional[Any] =WavaVecaPhonemeCTCTokenizer lowerCamelCase : Dict =False def SCREAMING_SNAKE_CASE ( self : Dict ) -> Tuple: """simple docstring""" super().setUp() __lowerCAmelCase : Optional[int] = ( """<s> <pad> </s> <unk> n s t ə l a i k d m ɛ ɾ e ɪ p o ɐ z ð f j v b ɹ ʁ ʊ iː r w ʌ u ɡ æ aɪ ʃ h ɔ ɑː """ """ŋ ɚ eɪ β uː y ɑ̃ oʊ ᵻ eː θ aʊ ts oː ɔ̃ ɣ ɜ ɑ dʒ əl x ɜː ç ʒ tʃ ɔː ɑːɹ ɛ̃ ʎ ɔːɹ ʋ aː ɕ œ ø oːɹ ɲ yː """ """ʔ iə i5 s. tɕ ?? nʲ ɛː œ̃ ɭ ɔø ʑ tʲ ɨ ɛɹ ts. rʲ ɪɹ ɭʲ i.5 ɔɪ q sʲ u5 ʊɹ iɜ a5 iɛ5 øː ʕ ja əɜ th ɑ5 """ """oɪ dʲ ə5 tɕh ts.h mʲ ɯ dʑ vʲ e̞ tʃʲ ei5 o5 onɡ5 ɑu5 iɑ5 ai5 aɪɚ kh ə1 ʐ i2 ʉ ħ t[ aɪə ʲ ju ə2 u2 oɜ """ """pː iɛɜ ou5 y5 uɜ tː uo5 d[ uoɜ tsh ɑɜ ɵ i̪5 uei5 ɟ aɜ ɑɨ i.ɜ eʊ o2 ɐ̃ ä pʲ kʲ n̩ ɒ ph ɑu2 uɨ əɪ ɫ ɬ """ """yɜ bʲ ɑ2 s̪ aiɜ χ ɐ̃ʊ̃ 1 ə4 yæɜ a2 ɨː t̪ iouɜ ũ onɡɜ aɨ iɛ2 ɔɨ ɑuɜ o̞ ei2 iou2 c kː y2 ɖ oe dˤ yɛɜ """ """əʊ S ɡʲ onɡ2 u\" eiɜ ʈ ɯᵝ iou5 dZ r̝̊ i.2 tS s^ ʝ yə5 iɑɜ uə5 pf ɨu iɑ2 ou2 ər2 fʲ ai2 r̝ uəɜ ɳ əɨ """ """ua5 uɪ ɽ bː yu5 uo2 yɛ5 l̩ ɻ ərɜ ʂ i̪2 ouɜ uaɜ a. a.ː yæ5 dː r̩ ee ɪu ər5 i̪ ɜ æi u: i.ː t^ o1 ɪ^ """ """ai ueiɜ æː ɛɪ eə i. ɴ ie ua2 ɑ1 o4 tʃː o: ɑ: u1 N i̪1 au yæ2 u. qː yəɜ y: kʰ tʃʰ iʊ sx õ uo tʰ """ """uai5 bʰ u.ː uə2 ʊə d^ s̪ː yiɜ dʰ r. oe: i1 ɟː yu2 nʲʲ i̪4 uei2 tsʲ ɸ ĩ ɑ4 t̪ː eɑ u4 e: tsː ʈʰ ɡʰ """ """ɯɯ dʒʲ ʂʲ X ɵː uaiɜ tɕʲ ã t^ː ẽː yɛ2 cː i.1 ɛʊ dˤdˤ dʒː i4 ɡː yi ɕʲ ɟʰ pʰ dʑʲ yuɜ ua1 ua4 æiː ɐɐ """ """ui iou1 ʊː a1 iou4 cʰ iɛ1 yə2 ɖʰ ẽ ʒʲ ää ər4 iːː ɪː iɑ1 ər1 œː øi ɪuː cʰcʰ əː1 iː1 ũ kʰː o̞o̞ xʲ """ """ou1 iɛ4 e̞e̞ y1 dzː dʲʲ dʰː ɯᵝɯᵝ lː uo1 i.4 i: yɛ5ʲ a4""" ).split(""" """ ) __lowerCAmelCase : str = dict(zip(lowerCAmelCase , range(len(lowerCAmelCase ) ) ) ) __lowerCAmelCase : Optional[Any] = {"""pad_token""": """<pad>""", """unk_token""": """<unk>""", """bos_token""": """<s>""", """eos_token""": """</s>"""} __lowerCAmelCase : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(lowerCAmelCase ) + """\n""" ) def SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Optional[int]=False , lowerCAmelCase : str=20 , lowerCAmelCase : Union[str, Any]=5 ) -> Tuple[str, list]: """simple docstring""" __lowerCAmelCase : int = [(i, tokenizer.decode([i] , clean_up_tokenization_spaces=lowerCAmelCase )) for i in range(len(lowerCAmelCase ) )] __lowerCAmelCase : Dict = list(filter(lambda lowerCAmelCase : [t[0]] == tokenizer.encode(t[1] , do_phonemize=lowerCAmelCase ) , lowerCAmelCase ) ) if max_length is not None and len(lowerCAmelCase ) > max_length: __lowerCAmelCase : int = toks[:max_length] if min_length is not None and len(lowerCAmelCase ) < min_length and len(lowerCAmelCase ) > 0: while len(lowerCAmelCase ) < min_length: __lowerCAmelCase : int = toks + toks # toks_str = [t[1] for t in toks] __lowerCAmelCase : Dict = [t[0] for t in toks] # Ensure consistency __lowerCAmelCase : List[Any] = tokenizer.decode(lowerCAmelCase , clean_up_tokenization_spaces=lowerCAmelCase ) if " " not in output_txt and len(lowerCAmelCase ) > 1: __lowerCAmelCase : Optional[Any] = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=lowerCAmelCase ) + """ """ + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=lowerCAmelCase ) ) if with_prefix_space: __lowerCAmelCase : Any = """ """ + output_txt __lowerCAmelCase : List[str] = tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) return output_txt, output_ids def SCREAMING_SNAKE_CASE ( self : Optional[Any] , **lowerCAmelCase : Optional[int] ) -> List[str]: """simple docstring""" kwargs.update(self.special_tokens_map ) return WavaVecaPhonemeCTCTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase : Tuple = self.tokenizer_class.from_pretrained("""facebook/wav2vec2-lv-60-espeak-cv-ft""" ) # check adding a single token tokenizer.add_tokens("""xxx""" ) __lowerCAmelCase : int = tokenizer("""m xxx ɪ""" , do_phonemize=lowerCAmelCase ).input_ids self.assertEqual(lowerCAmelCase , [13, 3_92, 17] ) # xxx should be last token tokenizer.add_tokens(["""aaa""", """bbb""", """ccc"""] ) __lowerCAmelCase : Optional[Any] = tokenizer("""m aaa ɪ ccc""" , do_phonemize=lowerCAmelCase ).input_ids self.assertEqual(lowerCAmelCase , [13, 3_93, 17, 3_95] ) # aaa and ccc should be after xxx and 2 after aaa __lowerCAmelCase : int = tokenizer("""maɪ c""" , do_phonemize=lowerCAmelCase ).input_ids self.assertEqual(lowerCAmelCase , [3, 2_00] ) # mai should be <unk> (=3) def SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[int]: """simple docstring""" __lowerCAmelCase : List[Any] = self.tokenizer_class.from_pretrained("""facebook/wav2vec2-lv-60-espeak-cv-ft""" ) __lowerCAmelCase : Tuple = """Hello how are you""" __lowerCAmelCase : List[str] = tokenizer.phonemize(lowerCAmelCase , phonemizer_lang="""en-us""" ) self.assertEqual(lowerCAmelCase , """h ə l oʊ h aʊ ɑːɹ j uː""" ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[Any]: """simple docstring""" __lowerCAmelCase : List[Any] = self.tokenizer_class.from_pretrained("""facebook/wav2vec2-lv-60-espeak-cv-ft""" ) __lowerCAmelCase : str = """Hello how are you""" __lowerCAmelCase : int = tokenizer.phonemize(lowerCAmelCase , phonemizer_lang="""en-us""" ) self.assertEqual(tokenizer(lowerCAmelCase ).input_ids , tokenizer(lowerCAmelCase , do_phonemize=lowerCAmelCase ).input_ids ) def SCREAMING_SNAKE_CASE ( self : str ) -> List[Any]: """simple docstring""" __lowerCAmelCase : Optional[Any] = self.tokenizer_class.from_pretrained("""facebook/wav2vec2-lv-60-espeak-cv-ft""" ) __lowerCAmelCase : int = """Hello how are you""" __lowerCAmelCase : Optional[Any] = tokenizer.phonemize(lowerCAmelCase , phonemizer_lang="""en-us""" ) __lowerCAmelCase : Dict = tokenizer.decode(tokenizer(lowerCAmelCase ).input_ids ) self.assertEqual(lowerCAmelCase , lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: """simple docstring""" __lowerCAmelCase : List[Any] = self.tokenizer_class.from_pretrained("""facebook/wav2vec2-lv-60-espeak-cv-ft""" ) __lowerCAmelCase : Dict = [ [11, 5, 15, tokenizer.pad_token_id, 15, 8, 98], [24, 22, 5, 24, 22, 5, 77], ] __lowerCAmelCase : List[Any] = tokenizer.decode(sample_ids[0] ) __lowerCAmelCase : Union[str, Any] = tokenizer.batch_decode(lowerCAmelCase ) self.assertEqual(lowerCAmelCase , batch_tokens[0] ) self.assertEqual(lowerCAmelCase , ["""k s ɾ ɾ l ɭʲ""", """j ð s j ð s oːɹ"""] ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> int: """simple docstring""" __lowerCAmelCase : int = self.tokenizer_class.from_pretrained( """facebook/wav2vec2-lv-60-espeak-cv-ft""" , word_delimiter_token="""|""" ) tokenizer.add_tokens("""|""" ) __lowerCAmelCase : List[Any] = """Hello how are you""" __lowerCAmelCase : List[str] = tokenizer.phonemize(lowerCAmelCase , phonemizer_lang="""en-us""" ) self.assertEqual(lowerCAmelCase , """h ə l oʊ | h aʊ | ɑːɹ | j uː |""" ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> Dict: """simple docstring""" __lowerCAmelCase : Dict = self.tokenizer_class.from_pretrained( """facebook/wav2vec2-lv-60-espeak-cv-ft""" , word_delimiter_token="""|""" ) tokenizer.add_tokens("""|""" ) __lowerCAmelCase : int = """Hello how are you""" __lowerCAmelCase : Optional[int] = tokenizer.phonemize(lowerCAmelCase , phonemizer_lang="""en-us""" ) self.assertEqual(tokenizer(lowerCAmelCase ).input_ids , tokenizer(lowerCAmelCase , do_phonemize=lowerCAmelCase ).input_ids ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[int]: """simple docstring""" __lowerCAmelCase : Tuple = self.tokenizer_class.from_pretrained( """facebook/wav2vec2-lv-60-espeak-cv-ft""" , word_delimiter_token="""|""" ) tokenizer.add_tokens("""|""" ) # fmt: off __lowerCAmelCase : List[Any] = [ [11, 5, 15, tokenizer.pad_token_id, tokenizer.word_delimiter_token_id, 15, 8, tokenizer.word_delimiter_token_id, 98], [tokenizer.word_delimiter_token_id, 24, 22, tokenizer.word_delimiter_token_id, 5, 24, 22, 5, 77], ] # fmt: on # decode with word_del_token filter __lowerCAmelCase : Any = tokenizer.decode(sample_ids[0] ) __lowerCAmelCase : Tuple = tokenizer.batch_decode(lowerCAmelCase ) self.assertEqual(lowerCAmelCase , batch_tokens[0] ) self.assertEqual(lowerCAmelCase , ["""k s ɾ ɾ l ɭʲ""", """j ð s j ð s oːɹ"""] ) # decode with no word_del_token filter __lowerCAmelCase : Optional[int] = tokenizer.decode(sample_ids[0] , filter_word_delimiter_token=lowerCAmelCase ) __lowerCAmelCase : Dict = tokenizer.batch_decode(lowerCAmelCase , filter_word_delimiter_token=lowerCAmelCase ) self.assertEqual(lowerCAmelCase , batch_tokens[0] ) self.assertEqual(lowerCAmelCase , ["""k s ɾ | ɾ l | ɭʲ""", """| j ð | s j ð s oːɹ"""] ) def SCREAMING_SNAKE_CASE ( self : int ) -> str: """simple docstring""" __lowerCAmelCase : List[Any] = self.tokenizer_class.from_pretrained( """facebook/wav2vec2-lv-60-espeak-cv-ft""" , word_delimiter_token="""|""" ) tokenizer.add_tokens("""|""" ) __lowerCAmelCase : Any = """Hello how are you""" __lowerCAmelCase : str = tokenizer.phonemize(lowerCAmelCase , phonemizer_lang="""en-us""" ) __lowerCAmelCase : List[str] = tokenizer.decode(tokenizer(lowerCAmelCase ).input_ids , filter_word_delimiter_token=lowerCAmelCase ) self.assertEqual(lowerCAmelCase , lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : int ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase : Dict = self.tokenizer_class.from_pretrained( """facebook/wav2vec2-lv-60-espeak-cv-ft""" , word_delimiter_token="""|""" ) tokenizer.add_tokens("""|""" ) __lowerCAmelCase : int = """Hello how are you""" __lowerCAmelCase : Optional[int] = tokenizer.phonemize(lowerCAmelCase , phonemizer_lang="""en-us""" ) __lowerCAmelCase : Tuple = tokenizer.decode(tokenizer(lowerCAmelCase ).input_ids , filter_word_delimiter_token=lowerCAmelCase ) self.assertEqual(""" """.join([p.strip() for p in phonemes.split(""" |""" )] ).strip() , lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase : int = self.tokenizer_class.from_pretrained( """facebook/wav2vec2-lv-60-espeak-cv-ft""" , word_delimiter_token=lowerCAmelCase ) __lowerCAmelCase : List[Any] = """Hello how are you""" __lowerCAmelCase : int = tokenizer(lowerCAmelCase , phonemizer_lang="""en-us""" ).input_ids __lowerCAmelCase : str = tokenizer(lowerCAmelCase , phonemizer_lang="""fr-fr""" ).input_ids self.assertNotEqual(lowerCAmelCase , lowerCAmelCase ) __lowerCAmelCase : Tuple = tokenizer.decode(lowerCAmelCase ) __lowerCAmelCase : List[str] = tokenizer.decode(lowerCAmelCase ) self.assertEqual(lowerCAmelCase , """h ə l oʊ h aʊ ɑːɹ j uː""" ) self.assertEqual(lowerCAmelCase , """ɛ l o h aʊ a ʁ j u""" ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[str]: """simple docstring""" __lowerCAmelCase : int = self.tokenizer_class.from_pretrained("""facebook/wav2vec2-lv-60-espeak-cv-ft""" ) __lowerCAmelCase : Union[str, Any] = """Hello how Are you""" __lowerCAmelCase : int = """hello how are you""" __lowerCAmelCase : List[str] = tokenizer(lowerCAmelCase ).input_ids __lowerCAmelCase : Dict = tokenizer(lowerCAmelCase ).input_ids self.assertEqual(lowerCAmelCase , lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : int ) -> str: """simple docstring""" __lowerCAmelCase : Union[str, Any] = self.tokenizer_class.from_pretrained("""facebook/wav2vec2-lv-60-espeak-cv-ft""" ) tokenizer.add_tokens(["""!""", """?"""] ) tokenizer.add_special_tokens({"""cls_token""": """$$$"""} ) # fmt: off __lowerCAmelCase : Optional[int] = [ [11, 5, 15, tokenizer.pad_token_id, 15, 8, 98, 3_92, 3_92, 3_93, 3_92, 3_92, 3_93, 3_94, 3_94], [24, 22, 5, 24, 22, 5, 77, tokenizer.pad_token_id, 3_94, 3_94], ] # fmt: on __lowerCAmelCase : Tuple = tokenizer.batch_decode(lowerCAmelCase ) self.assertEqual(lowerCAmelCase , ["""k s ɾ ɾ l ɭʲ!?!? $$$""", """j ð s j ð s oːɹ $$$"""] ) @staticmethod def SCREAMING_SNAKE_CASE ( lowerCAmelCase : Optional[Any] , lowerCAmelCase : Optional[Any] ) -> List[Any]: """simple docstring""" __lowerCAmelCase : List[Any] = [d[key] for d in offsets] return retrieved_list def SCREAMING_SNAKE_CASE ( self : int ) -> Tuple: """simple docstring""" __lowerCAmelCase : Union[str, Any] = self.get_tokenizer(word_delimiter_token="""|""" ) tokenizer.add_tokens("""|""" ) # fmt: off # ksssɾɾ|ɾɾ<pad>ɾɾ|<pad>ɾlll|ɭʲ -> k s ɾ ɾ | ɾ l | ɭʲ" __lowerCAmelCase : str = [11, 5, 5, 5, 15, 15, tokenizer.pad_token_id, 15, 15, tokenizer.word_delimiter_token_id, tokenizer.pad_token_id, 15, 8, 8, 8, tokenizer.word_delimiter_token_id, 98] # fmt: on __lowerCAmelCase : List[Any] = tokenizer.decode(lowerCAmelCase , output_char_offsets=lowerCAmelCase , filter_word_delimiter_token=lowerCAmelCase ) # check Wav2Vec2CTCTokenizerOutput keys for char self.assertEqual(len(outputs.keys() ) , 2 ) self.assertTrue("""text""" in outputs ) self.assertTrue("""char_offsets""" in outputs ) self.assertTrue(isinstance(lowerCAmelCase , lowerCAmelCase ) ) # check that order of chars is correct and identical for both outputs self.assertEqual(""" """.join(self.get_from_offsets(outputs["""char_offsets"""] , """char""" ) ) , outputs.text ) self.assertListEqual( self.get_from_offsets(outputs["""char_offsets"""] , """char""" ) , ["""k""", """s""", """ɾ""", """ɾ""", """|""", """ɾ""", """l""", """|""", """ɭʲ"""] ) # check that offsets are actually correct for char # 0-1 is 11, 1-4 is 5, 4-6 is first 15, 6-7 is <pad> (thus not shown), 7-9 is second 15, 9-10 is word_delimiter_token, # 10-11 is <pad> (thus not shown), 11-12 is third 15, 12-15 is 8, 15-16 is word_delimiter_token, 16-17 is 98 self.assertListEqual( self.get_from_offsets(outputs["""char_offsets"""] , """start_offset""" ) , [0, 1, 4, 7, 9, 11, 12, 15, 16] ) self.assertListEqual( self.get_from_offsets(outputs["""char_offsets"""] , """end_offset""" ) , [1, 4, 6, 9, 10, 12, 15, 16, 17] ) def SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[int]: """simple docstring""" __lowerCAmelCase : str = self.get_tokenizer(word_delimiter_token="""|""" ) def check_list_tuples_equal(lowerCAmelCase : Any , lowerCAmelCase : Union[str, Any] ): self.assertTrue(isinstance(lowerCAmelCase , lowerCAmelCase ) ) self.assertTrue(isinstance(outputs_list[0] , lowerCAmelCase ) ) # transform list to ModelOutput __lowerCAmelCase : str = WavaVecaPhonemeCTCTokenizerOutput( {k: [d[k] for d in outputs_list] for k in outputs_list[0]} ) self.assertListEqual(outputs_batch["""text"""] , outputs_batch_a["""text"""] ) def recursive_check(lowerCAmelCase : Tuple , lowerCAmelCase : Tuple ): if isinstance(lowerCAmelCase , lowerCAmelCase ): [recursive_check(lowerCAmelCase , lowerCAmelCase ) for la, la in zip(lowerCAmelCase , lowerCAmelCase )] self.assertEqual(lowerCAmelCase , lowerCAmelCase ) if "char_offsets" in outputs_batch: recursive_check(outputs_batch["""char_offsets"""] , outputs_batch_a["""char_offsets"""] ) # fmt: off __lowerCAmelCase : List[str] = [ [11, 5, 15, tokenizer.pad_token_id, 15, 4, 8, 98, 32, 32, 32, 32, 4, 33, tokenizer.word_delimiter_token_id, 32, 32, 33, 34, 34], [24, 22, 5, tokenizer.word_delimiter_token_id, tokenizer.word_delimiter_token_id, 24, 22, 22, 22, 4, 5, 77, tokenizer.pad_token_id, 22, 22, 4, 34, 34, 34, 34], ] # fmt: on # We assume that `decode` works as expected. All we will check now is # the output type is correct and the output is identical to `decode` # char __lowerCAmelCase : List[str] = tokenizer.batch_decode(lowerCAmelCase , output_char_offsets=lowerCAmelCase ) __lowerCAmelCase : Dict = [tokenizer.decode(lowerCAmelCase , output_char_offsets=lowerCAmelCase ) for ids in sample_ids] check_list_tuples_equal(lowerCAmelCase , lowerCAmelCase ) @unittest.skip("""Wav2Vec2PhonemeTokenizer always lower cases letters to correctly map to phonemes""" ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Any: """simple docstring""" pass @unittest.skip("""Wav2Vec2PhonemeTokenizer always puts spaces between phonemes""" ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip("""encodes to text to ids, but decodes ids to phonemes -> not possible to have internal consistency""" ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> str: """simple docstring""" pass @unittest.skip("""Wav2Vec2PhonemeModel has no max model length => no testing""" ) def SCREAMING_SNAKE_CASE ( self : Any ) -> Dict: """simple docstring""" pass def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Dict: """simple docstring""" __lowerCAmelCase : Tuple = self.get_tokenizers(do_lower_case=lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __lowerCAmelCase : int = tokenizer.vocab_size __lowerCAmelCase : int = len(lowerCAmelCase ) self.assertNotEqual(lowerCAmelCase , 0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) __lowerCAmelCase : int = ["""aaaaa bbbbbb""", """cccccccccdddddddd"""] __lowerCAmelCase : str = tokenizer.add_tokens(lowerCAmelCase ) __lowerCAmelCase : int = tokenizer.vocab_size __lowerCAmelCase : Union[str, Any] = len(lowerCAmelCase ) self.assertNotEqual(lowerCAmelCase , 0 ) self.assertEqual(lowerCAmelCase , lowerCAmelCase ) self.assertEqual(lowerCAmelCase , len(lowerCAmelCase ) ) self.assertEqual(lowerCAmelCase , all_size + len(lowerCAmelCase ) ) __lowerCAmelCase : int = tokenizer.encode("""aaaaa bbbbbb low cccccccccdddddddd l""" , add_special_tokens=lowerCAmelCase ) self.assertGreaterEqual(len(lowerCAmelCase ) , 4 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) __lowerCAmelCase : Optional[Any] = {"""eos_token""": """>>>>|||<||<<|<<""", """pad_token""": """<<<<<|||>|>>>>|>"""} __lowerCAmelCase : Optional[Any] = tokenizer.add_special_tokens(lowerCAmelCase ) __lowerCAmelCase : List[str] = tokenizer.vocab_size __lowerCAmelCase : Dict = len(lowerCAmelCase ) self.assertNotEqual(lowerCAmelCase , 0 ) self.assertEqual(lowerCAmelCase , lowerCAmelCase ) self.assertEqual(lowerCAmelCase , len(lowerCAmelCase ) ) self.assertEqual(lowerCAmelCase , all_size_a + len(lowerCAmelCase ) ) __lowerCAmelCase : str = tokenizer.encode( """>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l""" , add_special_tokens=lowerCAmelCase ) self.assertGreaterEqual(len(lowerCAmelCase ) , 6 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] , tokens[1] ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokens[-4] ) self.assertEqual(tokens[0] , tokenizer.eos_token_id ) self.assertEqual(tokens[-3] , tokenizer.pad_token_id ) @unittest.skip("""The tokenizer shouldn't be used to encode input IDs (except for labels), only to decode.""" ) def SCREAMING_SNAKE_CASE ( self : str ) -> Optional[int]: """simple docstring""" pass @unittest.skip("""The tokenizer shouldn't be used to encode input IDs (except for labels), only to decode.""" ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> int: """simple docstring""" pass def SCREAMING_SNAKE_CASE ( self : Dict ) -> List[Any]: """simple docstring""" __lowerCAmelCase : int = self.get_tokenizers(fast=lowerCAmelCase , do_lower_case=lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __lowerCAmelCase : Union[str, Any] = ["""ð""", """ɪ""", """s""", """ɪ""", """z""", """ɐ""", """t""", """ɛ""", """k""", """s""", """t"""] __lowerCAmelCase : Tuple = tokenizer.convert_tokens_to_string(lowerCAmelCase ) self.assertIsInstance(output["""text"""] , lowerCAmelCase )
218
def snake_case_ (__A : int = 1_0**9 ) -> int: __lowerCAmelCase : Any = 1 __lowerCAmelCase : Optional[int] = 2 __lowerCAmelCase : List[Any] = 0 __lowerCAmelCase : Union[str, Any] = 0 __lowerCAmelCase : Dict = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value __lowerCAmelCase : int = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(F'{solution() = }')
218
1
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import OwlViTImageProcessor, OwlViTProcessor @require_vision class A_ ( unittest.TestCase ): def lowerCAmelCase ( self : List[str]): __lowerCamelCase : Any = tempfile.mkdtemp() # fmt: off __lowerCamelCase : str = ['''''', '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>'''] # fmt: on __lowerCamelCase : Optional[Any] = dict(zip(A__ ,range(len(A__)))) __lowerCamelCase : str = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>''', ''''''] __lowerCamelCase : Optional[Any] = {'''unk_token''': '''<unk>'''} __lowerCamelCase : List[str] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['vocab_file']) __lowerCamelCase : Optional[Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['merges_file']) with open(self.vocab_file ,'w' ,encoding='utf-8') as fp: fp.write(json.dumps(A__) + '\n') with open(self.merges_file ,'w' ,encoding='utf-8') as fp: fp.write('\n'.join(A__)) __lowerCamelCase : Tuple = { '''do_resize''': True, '''size''': 2_0, '''do_center_crop''': True, '''crop_size''': 1_8, '''do_normalize''': True, '''image_mean''': [0.48145466, 0.4578275, 0.40821073], '''image_std''': [0.26862954, 0.26130258, 0.27577711], } __lowerCamelCase : Optional[int] = os.path.join(self.tmpdirname ,A__) with open(self.image_processor_file ,'w' ,encoding='utf-8') as fp: json.dump(A__ ,A__) def lowerCAmelCase ( self : Any ,**SCREAMING_SNAKE_CASE__ : Union[str, Any]): return CLIPTokenizer.from_pretrained(self.tmpdirname ,pad_token='!' ,**A__) def lowerCAmelCase ( self : Union[str, Any] ,**SCREAMING_SNAKE_CASE__ : str): return CLIPTokenizerFast.from_pretrained(self.tmpdirname ,pad_token='!' ,**A__) def lowerCAmelCase ( self : Tuple ,**SCREAMING_SNAKE_CASE__ : Tuple): return OwlViTImageProcessor.from_pretrained(self.tmpdirname ,**A__) def lowerCAmelCase ( self : Optional[int]): shutil.rmtree(self.tmpdirname) def lowerCAmelCase ( self : List[Any]): __lowerCamelCase : Tuple = [np.random.randint(2_5_5 ,size=(3, 3_0, 4_0_0) ,dtype=np.uinta)] __lowerCamelCase : Union[str, Any] = [Image.fromarray(np.moveaxis(A__ ,0 ,-1)) for x in image_inputs] return image_inputs def lowerCAmelCase ( self : Union[str, Any]): __lowerCamelCase : Optional[Any] = self.get_tokenizer() __lowerCamelCase : List[str] = self.get_rust_tokenizer() __lowerCamelCase : str = self.get_image_processor() __lowerCamelCase : Optional[int] = OwlViTProcessor(tokenizer=A__ ,image_processor=A__) processor_slow.save_pretrained(self.tmpdirname) __lowerCamelCase : Any = OwlViTProcessor.from_pretrained(self.tmpdirname ,use_fast=A__) __lowerCamelCase : List[str] = OwlViTProcessor(tokenizer=A__ ,image_processor=A__) processor_fast.save_pretrained(self.tmpdirname) __lowerCamelCase : List[str] = OwlViTProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor_slow.tokenizer.get_vocab() ,tokenizer_slow.get_vocab()) self.assertEqual(processor_fast.tokenizer.get_vocab() ,tokenizer_fast.get_vocab()) self.assertEqual(tokenizer_slow.get_vocab() ,tokenizer_fast.get_vocab()) self.assertIsInstance(processor_slow.tokenizer ,A__) self.assertIsInstance(processor_fast.tokenizer ,A__) self.assertEqual(processor_slow.image_processor.to_json_string() ,image_processor.to_json_string()) self.assertEqual(processor_fast.image_processor.to_json_string() ,image_processor.to_json_string()) self.assertIsInstance(processor_slow.image_processor ,A__) self.assertIsInstance(processor_fast.image_processor ,A__) def lowerCAmelCase ( self : Optional[int]): __lowerCamelCase : Optional[Any] = OwlViTProcessor(tokenizer=self.get_tokenizer() ,image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) __lowerCamelCase : Union[str, Any] = self.get_tokenizer(bos_token='(BOS)' ,eos_token='(EOS)') __lowerCamelCase : List[str] = self.get_image_processor(do_normalize=A__) __lowerCamelCase : List[Any] = OwlViTProcessor.from_pretrained( self.tmpdirname ,bos_token='(BOS)' ,eos_token='(EOS)' ,do_normalize=A__) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer ,A__) self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor ,A__) def lowerCAmelCase ( self : Tuple): __lowerCamelCase : Dict = self.get_image_processor() __lowerCamelCase : int = self.get_tokenizer() __lowerCamelCase : Union[str, Any] = OwlViTProcessor(tokenizer=A__ ,image_processor=A__) __lowerCamelCase : Optional[Any] = self.prepare_image_inputs() __lowerCamelCase : Optional[int] = image_processor(A__ ,return_tensors='np') __lowerCamelCase : Optional[int] = processor(images=A__ ,return_tensors='np') for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() ,input_processor[key].sum() ,delta=1E-2) def lowerCAmelCase ( self : Any): __lowerCamelCase : str = self.get_image_processor() __lowerCamelCase : Union[str, Any] = self.get_tokenizer() __lowerCamelCase : Optional[Any] = OwlViTProcessor(tokenizer=A__ ,image_processor=A__) __lowerCamelCase : Tuple = '''lower newer''' __lowerCamelCase : Optional[Any] = processor(text=A__ ,return_tensors='np') __lowerCamelCase : Union[str, Any] = tokenizer(A__ ,return_tensors='np') for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key][0].tolist() ,encoded_processor[key][0].tolist()) def lowerCAmelCase ( self : Any): __lowerCamelCase : Tuple = self.get_image_processor() __lowerCamelCase : str = self.get_tokenizer() __lowerCamelCase : Union[str, Any] = OwlViTProcessor(tokenizer=A__ ,image_processor=A__) __lowerCamelCase : Tuple = '''lower newer''' __lowerCamelCase : str = self.prepare_image_inputs() __lowerCamelCase : Any = processor(text=A__ ,images=A__) self.assertListEqual(list(inputs.keys()) ,['input_ids', 'attention_mask', 'pixel_values']) # test if it raises when no input is passed with pytest.raises(A__): processor() def lowerCAmelCase ( self : int): __lowerCamelCase : Optional[Any] = '''google/owlvit-base-patch32''' __lowerCamelCase : List[Any] = OwlViTProcessor.from_pretrained(A__) __lowerCamelCase : List[str] = ['''cat''', '''nasa badge'''] __lowerCamelCase : Tuple = processor(text=A__) __lowerCamelCase : Dict = 1_6 self.assertListEqual(list(inputs.keys()) ,['input_ids', 'attention_mask']) self.assertEqual(inputs['input_ids'].shape ,(2, seq_length)) # test if it raises when no input is passed with pytest.raises(A__): processor() def lowerCAmelCase ( self : Optional[Any]): __lowerCamelCase : Optional[Any] = '''google/owlvit-base-patch32''' __lowerCamelCase : List[Any] = OwlViTProcessor.from_pretrained(A__) __lowerCamelCase : str = [['''cat''', '''nasa badge'''], ['''person''']] __lowerCamelCase : Tuple = processor(text=A__) __lowerCamelCase : Any = 1_6 __lowerCamelCase : Tuple = len(A__) __lowerCamelCase : str = max([len(A__) for texts in input_texts]) self.assertListEqual(list(inputs.keys()) ,['input_ids', 'attention_mask']) self.assertEqual(inputs['input_ids'].shape ,(batch_size * num_max_text_queries, seq_length)) # test if it raises when no input is passed with pytest.raises(A__): processor() def lowerCAmelCase ( self : List[str]): __lowerCamelCase : str = '''google/owlvit-base-patch32''' __lowerCamelCase : List[str] = OwlViTProcessor.from_pretrained(A__) __lowerCamelCase : str = ['''cat''', '''nasa badge'''] __lowerCamelCase : Any = processor(text=A__) __lowerCamelCase : Any = 1_6 __lowerCamelCase : List[str] = inputs['''input_ids'''] __lowerCamelCase : List[str] = [ [4_9_4_0_6, 2_3_6_8, 4_9_4_0_7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4_9_4_0_6, 6_8_4_1, 1_1_3_0_1, 4_9_4_0_7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] self.assertListEqual(list(inputs.keys()) ,['input_ids', 'attention_mask']) self.assertEqual(inputs['input_ids'].shape ,(2, seq_length)) self.assertListEqual(list(input_ids[0]) ,predicted_ids[0]) self.assertListEqual(list(input_ids[1]) ,predicted_ids[1]) def lowerCAmelCase ( self : Tuple): __lowerCamelCase : List[str] = self.get_image_processor() __lowerCamelCase : Tuple = self.get_tokenizer() __lowerCamelCase : Any = OwlViTProcessor(tokenizer=A__ ,image_processor=A__) __lowerCamelCase : Tuple = self.prepare_image_inputs() __lowerCamelCase : Optional[int] = self.prepare_image_inputs() __lowerCamelCase : int = processor(images=A__ ,query_images=A__) self.assertListEqual(list(inputs.keys()) ,['query_pixel_values', 'pixel_values']) # test if it raises when no input is passed with pytest.raises(A__): processor() def lowerCAmelCase ( self : Optional[Any]): __lowerCamelCase : Optional[int] = self.get_image_processor() __lowerCamelCase : Any = self.get_tokenizer() __lowerCamelCase : int = OwlViTProcessor(tokenizer=A__ ,image_processor=A__) __lowerCamelCase : List[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __lowerCamelCase : str = processor.batch_decode(A__) __lowerCamelCase : Union[str, Any] = tokenizer.batch_decode(A__) self.assertListEqual(A__ ,A__)
652
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} __SCREAMING_SNAKE_CASE = { 'vocab_file': { 'distilbert-base-uncased': 'https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt', 'distilbert-base-uncased-distilled-squad': ( 'https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt' ), 'distilbert-base-cased': 'https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt', 'distilbert-base-cased-distilled-squad': ( 'https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt' ), 'distilbert-base-german-cased': 'https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt', 'distilbert-base-multilingual-cased': ( 'https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'distilbert-base-uncased': 'https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json', 'distilbert-base-uncased-distilled-squad': ( 'https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json' ), 'distilbert-base-cased': 'https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json', 'distilbert-base-cased-distilled-squad': ( 'https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json' ), 'distilbert-base-german-cased': ( 'https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json' ), 'distilbert-base-multilingual-cased': ( 'https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json' ), }, } __SCREAMING_SNAKE_CASE = { 'distilbert-base-uncased': 5_1_2, 'distilbert-base-uncased-distilled-squad': 5_1_2, 'distilbert-base-cased': 5_1_2, 'distilbert-base-cased-distilled-squad': 5_1_2, 'distilbert-base-german-cased': 5_1_2, 'distilbert-base-multilingual-cased': 5_1_2, } __SCREAMING_SNAKE_CASE = { 'distilbert-base-uncased': {'do_lower_case': True}, 'distilbert-base-uncased-distilled-squad': {'do_lower_case': True}, 'distilbert-base-cased': {'do_lower_case': False}, 'distilbert-base-cased-distilled-squad': {'do_lower_case': False}, 'distilbert-base-german-cased': {'do_lower_case': False}, 'distilbert-base-multilingual-cased': {'do_lower_case': False}, } class lowerCAmelCase__ ( lowerCAmelCase_ ): """simple docstring""" __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = PRETRAINED_INIT_CONFIGURATION __UpperCamelCase = ["input_ids", "attention_mask"] __UpperCamelCase = DistilBertTokenizer def __init__( self : str , A__ : Optional[Any]=None , A__ : Any=None , A__ : Tuple=True , A__ : List[Any]="[UNK]" , A__ : List[str]="[SEP]" , A__ : Tuple="[PAD]" , A__ : Optional[int]="[CLS]" , A__ : Union[str, Any]="[MASK]" , A__ : List[str]=True , A__ : Any=None , **A__ : int , ) -> str: '''simple docstring''' super().__init__( A__ , tokenizer_file=A__ , do_lower_case=A__ , unk_token=A__ , sep_token=A__ , pad_token=A__ , cls_token=A__ , mask_token=A__ , tokenize_chinese_chars=A__ , strip_accents=A__ , **A__ , ) a__ : Dict = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , A__ ) != do_lower_case or normalizer_state.get('''strip_accents''' , A__ ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , A__ ) != tokenize_chinese_chars ): a__ : int = getattr(A__ , normalizer_state.pop('''type''' ) ) a__ : List[Any] = do_lower_case a__ : str = strip_accents a__ : List[str] = tokenize_chinese_chars a__ : Dict = normalizer_class(**A__ ) a__ : List[Any] = do_lower_case def __lowerCAmelCase ( self : Tuple , A__ : List[str] , A__ : Dict=None ) -> List[str]: '''simple docstring''' a__ : List[str] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __lowerCAmelCase ( self : int , A__ : List[int] , A__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' a__ : List[str] = [self.sep_token_id] a__ : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowerCAmelCase ( self : str , A__ : str , A__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' a__ : int = self._tokenizer.model.save(A__ , name=A__ ) return tuple(A__ )
688
0
import numpy as np def snake_case_ (_a : np.ndarray , _a : float ): return np.where(vector > 0 , _a , (alpha * (np.exp(_a ) - 1)) ) if __name__ == "__main__": import doctest doctest.testmod()
717
'''simple docstring''' import unittest import numpy as np from transformers import RobertaPreLayerNormConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, ) class _a ( unittest.TestCase ): def __init__( self : List[Any] , lowercase : Dict , lowercase : List[str]=13 , lowercase : str=7 , lowercase : List[str]=True , lowercase : List[str]=True , lowercase : Optional[Any]=True , lowercase : Optional[Any]=True , lowercase : Any=99 , lowercase : Any=32 , lowercase : Any=5 , lowercase : Tuple=4 , lowercase : List[Any]=37 , lowercase : List[Any]="gelu" , lowercase : int=0.1 , lowercase : Any=0.1 , lowercase : Optional[int]=512 , lowercase : List[str]=16 , lowercase : Union[str, Any]=2 , lowercase : int=0.02 , lowercase : int=4 , ): '''simple docstring''' UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = seq_length UpperCAmelCase = is_training UpperCAmelCase = use_attention_mask UpperCAmelCase = use_token_type_ids UpperCAmelCase = use_labels UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_act UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = type_vocab_size UpperCAmelCase = type_sequence_label_size UpperCAmelCase = initializer_range UpperCAmelCase = num_choices def A ( self : Any ): '''simple docstring''' UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase = None if self.use_attention_mask: UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase = None if self.use_token_type_ids: UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase = RobertaPreLayerNormConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def A ( self : List[Any] ): '''simple docstring''' UpperCAmelCase = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = config_and_inputs UpperCAmelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict def A ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = config_and_inputs UpperCAmelCase = True UpperCAmelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax # Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40 class _a ( __a , unittest.TestCase ): __a : Any = True __a : str = ( ( FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, ) if is_flax_available() else () ) def A ( self : Any ): '''simple docstring''' UpperCAmelCase = FlaxRobertaPreLayerNormModelTester(self ) @slow def A ( self : Optional[int] ): '''simple docstring''' for model_class_name in self.all_model_classes: UpperCAmelCase = model_class_name.from_pretrained('''andreasmadsen/efficient_mlm_m0.40''' , from_pt=lowercase ) UpperCAmelCase = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowercase ) @require_flax class _a ( unittest.TestCase ): @slow def A ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase = FlaxRobertaPreLayerNormForMaskedLM.from_pretrained('''andreasmadsen/efficient_mlm_m0.40''' , from_pt=lowercase ) UpperCAmelCase = np.array([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] , dtype=jnp.intaa ) UpperCAmelCase = model(lowercase )[0] UpperCAmelCase = [1, 11, 50_265] self.assertEqual(list(output.shape ) , lowercase ) # compare the actual values for a slice. UpperCAmelCase = np.array( [[[40.4880, 18.0199, -5.2367], [-1.8877, -4.0885, 10.7085], [-2.2613, -5.6110, 7.2665]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , lowercase , atol=1E-4 ) ) @slow def A ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase = FlaxRobertaPreLayerNormModel.from_pretrained('''andreasmadsen/efficient_mlm_m0.40''' , from_pt=lowercase ) UpperCAmelCase = np.array([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] , dtype=jnp.intaa ) UpperCAmelCase = model(lowercase )[0] # compare the actual values for a slice. UpperCAmelCase = np.array( [[[0.0208, -0.0356, 0.0237], [-0.1569, -0.0411, -0.2626], [0.1879, 0.0125, -0.0089]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , lowercase , atol=1E-4 ) )
358
0
import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase_ : Any = logging.get_logger(__name__) UpperCAmelCase_ : List[str] = { "nvidia/segformer-b0-finetuned-ade-512-512": ( "https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json" ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class __A ( UpperCamelCase__ ): UpperCamelCase = """segformer""" def __init__( self :List[str] , __snake_case :str=3 , __snake_case :Optional[Any]=4 , __snake_case :List[Any]=[2, 2, 2, 2] , __snake_case :Dict=[8, 4, 2, 1] , __snake_case :Optional[int]=[32, 64, 1_60, 2_56] , __snake_case :Union[str, Any]=[7, 3, 3, 3] , __snake_case :Optional[Any]=[4, 2, 2, 2] , __snake_case :Tuple=[1, 2, 5, 8] , __snake_case :List[Any]=[4, 4, 4, 4] , __snake_case :Optional[Any]="gelu" , __snake_case :Tuple=0.0 , __snake_case :Dict=0.0 , __snake_case :Optional[int]=0.1 , __snake_case :Optional[int]=0.02 , __snake_case :Tuple=0.1 , __snake_case :Union[str, Any]=1E-6 , __snake_case :int=2_56 , __snake_case :Optional[int]=2_55 , **__snake_case :Dict , ): '''simple docstring''' super().__init__(**__snake_case ) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( """Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be""" """ removed, as the behaviour will default to that of reshape_last_stage = True.""" , __snake_case , ) __magic_name__ : Dict =num_channels __magic_name__ : str =num_encoder_blocks __magic_name__ : List[Any] =depths __magic_name__ : Optional[Any] =sr_ratios __magic_name__ : List[str] =hidden_sizes __magic_name__ : List[str] =patch_sizes __magic_name__ : Any =strides __magic_name__ : Optional[Any] =mlp_ratios __magic_name__ : str =num_attention_heads __magic_name__ : int =hidden_act __magic_name__ : List[Any] =hidden_dropout_prob __magic_name__ : Optional[Any] =attention_probs_dropout_prob __magic_name__ : Optional[Any] =classifier_dropout_prob __magic_name__ : List[str] =initializer_range __magic_name__ : List[str] =drop_path_rate __magic_name__ : List[Any] =layer_norm_eps __magic_name__ : List[str] =decoder_hidden_size __magic_name__ : Union[str, Any] =kwargs.get("""reshape_last_stage""" , __snake_case ) __magic_name__ : Dict =semantic_loss_ignore_index class __A ( UpperCamelCase__ ): UpperCamelCase = version.parse("""1.11""" ) @property def A__ ( self :List[str] ): '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def A__ ( self :Any ): '''simple docstring''' return 1E-4 @property def A__ ( self :int ): '''simple docstring''' return 12
21
'''simple docstring''' def _a (__SCREAMING_SNAKE_CASE ): """simple docstring""" _UpperCamelCase =[0] * len(__SCREAMING_SNAKE_CASE ) for i in range(1 , len(__SCREAMING_SNAKE_CASE ) ): # use last results for better performance - dynamic programming _UpperCamelCase =prefix_result[i - 1] while j > 0 and input_string[i] != input_string[j]: _UpperCamelCase =prefix_result[j - 1] if input_string[i] == input_string[j]: j += 1 _UpperCamelCase =j return prefix_result def _a (__SCREAMING_SNAKE_CASE ): """simple docstring""" return max(prefix_function(__SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": import doctest doctest.testmod()
404
0
"""simple docstring""" def lowerCamelCase__ ( __snake_case = 1_00_00_00 ) -> int: """simple docstring""" _UpperCamelCase = limit + 1 _UpperCamelCase = [0] * limit for first_term in range(1, __snake_case ): for n in range(__snake_case, __snake_case, __snake_case ): _UpperCamelCase = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a _UpperCamelCase = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(F"""{solution() = }""")
703
"""simple docstring""" import argparse import os.path as osp import re import torch from safetensors.torch import load_file, save_file # =================# # UNet Conversion # # =================# _a = [ # (stable-diffusion, HF Diffusers) ("""time_embed.0.weight""", """time_embedding.linear_1.weight"""), ("""time_embed.0.bias""", """time_embedding.linear_1.bias"""), ("""time_embed.2.weight""", """time_embedding.linear_2.weight"""), ("""time_embed.2.bias""", """time_embedding.linear_2.bias"""), ("""input_blocks.0.0.weight""", """conv_in.weight"""), ("""input_blocks.0.0.bias""", """conv_in.bias"""), ("""out.0.weight""", """conv_norm_out.weight"""), ("""out.0.bias""", """conv_norm_out.bias"""), ("""out.2.weight""", """conv_out.weight"""), ("""out.2.bias""", """conv_out.bias"""), ] _a = [ # (stable-diffusion, HF Diffusers) ("""in_layers.0""", """norm1"""), ("""in_layers.2""", """conv1"""), ("""out_layers.0""", """norm2"""), ("""out_layers.3""", """conv2"""), ("""emb_layers.1""", """time_emb_proj"""), ("""skip_connection""", """conv_shortcut"""), ] _a = [] # hardcoded number of downblocks and resnets/attentions... # would need smarter logic for other networks. for i in range(4): # loop over downblocks/upblocks for j in range(2): # loop over resnets/attentions for downblocks _a = F"""down_blocks.{i}.resnets.{j}.""" _a = F"""input_blocks.{3*i + j + 1}.0.""" unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix)) if i < 3: # no attention layers in down_blocks.3 _a = F"""down_blocks.{i}.attentions.{j}.""" _a = F"""input_blocks.{3*i + j + 1}.1.""" unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix)) for j in range(3): # loop over resnets/attentions for upblocks _a = F"""up_blocks.{i}.resnets.{j}.""" _a = F"""output_blocks.{3*i + j}.0.""" unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix)) if i > 0: # no attention layers in up_blocks.0 _a = F"""up_blocks.{i}.attentions.{j}.""" _a = F"""output_blocks.{3*i + j}.1.""" unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix)) if i < 3: # no downsample in down_blocks.3 _a = F"""down_blocks.{i}.downsamplers.0.conv.""" _a = F"""input_blocks.{3*(i+1)}.0.op.""" unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix)) # no upsample in up_blocks.3 _a = F"""up_blocks.{i}.upsamplers.0.""" _a = F"""output_blocks.{3*i + 2}.{1 if i == 0 else 2}.""" unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix)) _a = """mid_block.attentions.0.""" _a = """middle_block.1.""" unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix)) for j in range(2): _a = F"""mid_block.resnets.{j}.""" _a = F"""middle_block.{2*j}.""" unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix)) def lowerCamelCase__ ( __snake_case ) -> str: """simple docstring""" _UpperCamelCase = {k: k for k in unet_state_dict.keys()} for sd_name, hf_name in unet_conversion_map: _UpperCamelCase = sd_name for k, v in mapping.items(): if "resnets" in k: for sd_part, hf_part in unet_conversion_map_resnet: _UpperCamelCase = v.replace(__snake_case, __snake_case ) _UpperCamelCase = v for k, v in mapping.items(): for sd_part, hf_part in unet_conversion_map_layer: _UpperCamelCase = v.replace(__snake_case, __snake_case ) _UpperCamelCase = v _UpperCamelCase = {v: unet_state_dict[k] for k, v in mapping.items()} return new_state_dict # ================# # VAE Conversion # # ================# _a = [ # (stable-diffusion, HF Diffusers) ("""nin_shortcut""", """conv_shortcut"""), ("""norm_out""", """conv_norm_out"""), ("""mid.attn_1.""", """mid_block.attentions.0."""), ] for i in range(4): # down_blocks have two resnets for j in range(2): _a = F"""encoder.down_blocks.{i}.resnets.{j}.""" _a = F"""encoder.down.{i}.block.{j}.""" vae_conversion_map.append((sd_down_prefix, hf_down_prefix)) if i < 3: _a = F"""down_blocks.{i}.downsamplers.0.""" _a = F"""down.{i}.downsample.""" vae_conversion_map.append((sd_downsample_prefix, hf_downsample_prefix)) _a = F"""up_blocks.{i}.upsamplers.0.""" _a = F"""up.{3-i}.upsample.""" vae_conversion_map.append((sd_upsample_prefix, hf_upsample_prefix)) # up_blocks have three resnets # also, up blocks in hf are numbered in reverse from sd for j in range(3): _a = F"""decoder.up_blocks.{i}.resnets.{j}.""" _a = F"""decoder.up.{3-i}.block.{j}.""" vae_conversion_map.append((sd_up_prefix, hf_up_prefix)) # this part accounts for mid blocks in both the encoder and the decoder for i in range(2): _a = F"""mid_block.resnets.{i}.""" _a = F"""mid.block_{i+1}.""" vae_conversion_map.append((sd_mid_res_prefix, hf_mid_res_prefix)) _a = [ # (stable-diffusion, HF Diffusers) ("""norm.""", """group_norm."""), ("""q.""", """query."""), ("""k.""", """key."""), ("""v.""", """value."""), ("""proj_out.""", """proj_attn."""), ] def lowerCamelCase__ ( __snake_case ) -> List[str]: """simple docstring""" return w.reshape(*w.shape, 1, 1 ) def lowerCamelCase__ ( __snake_case ) -> Optional[Any]: """simple docstring""" _UpperCamelCase = {k: k for k in vae_state_dict.keys()} for k, v in mapping.items(): for sd_part, hf_part in vae_conversion_map: _UpperCamelCase = v.replace(__snake_case, __snake_case ) _UpperCamelCase = v for k, v in mapping.items(): if "attentions" in k: for sd_part, hf_part in vae_conversion_map_attn: _UpperCamelCase = v.replace(__snake_case, __snake_case ) _UpperCamelCase = v _UpperCamelCase = {v: vae_state_dict[k] for k, v in mapping.items()} _UpperCamelCase = ['''q''', '''k''', '''v''', '''proj_out'''] for k, v in new_state_dict.items(): for weight_name in weights_to_convert: if F'''mid.attn_1.{weight_name}.weight''' in k: print(F'''Reshaping {k} for SD format''' ) _UpperCamelCase = reshape_weight_for_sd(__snake_case ) return new_state_dict # =========================# # Text Encoder Conversion # # =========================# _a = [ # (stable-diffusion, HF Diffusers) ("""resblocks.""", """text_model.encoder.layers."""), ("""ln_1""", """layer_norm1"""), ("""ln_2""", """layer_norm2"""), (""".c_fc.""", """.fc1."""), (""".c_proj.""", """.fc2."""), (""".attn""", """.self_attn"""), ("""ln_final.""", """transformer.text_model.final_layer_norm."""), ("""token_embedding.weight""", """transformer.text_model.embeddings.token_embedding.weight"""), ("""positional_embedding""", """transformer.text_model.embeddings.position_embedding.weight"""), ] _a = {re.escape(x[1]): x[0] for x in textenc_conversion_lst} _a = re.compile("""|""".join(protected.keys())) # Ordering is from https://github.com/pytorch/pytorch/blob/master/test/cpp/api/modules.cpp _a = {"""q""": 0, """k""": 1, """v""": 2} def lowerCamelCase__ ( __snake_case ) -> Any: """simple docstring""" _UpperCamelCase = {} _UpperCamelCase = {} _UpperCamelCase = {} for k, v in text_enc_dict.items(): if ( k.endswith('''.self_attn.q_proj.weight''' ) or k.endswith('''.self_attn.k_proj.weight''' ) or k.endswith('''.self_attn.v_proj.weight''' ) ): _UpperCamelCase = k[: -len('''.q_proj.weight''' )] _UpperCamelCase = k[-len('''q_proj.weight''' )] if k_pre not in capture_qkv_weight: _UpperCamelCase = [None, None, None] _UpperCamelCase = v continue if ( k.endswith('''.self_attn.q_proj.bias''' ) or k.endswith('''.self_attn.k_proj.bias''' ) or k.endswith('''.self_attn.v_proj.bias''' ) ): _UpperCamelCase = k[: -len('''.q_proj.bias''' )] _UpperCamelCase = k[-len('''q_proj.bias''' )] if k_pre not in capture_qkv_bias: _UpperCamelCase = [None, None, None] _UpperCamelCase = v continue _UpperCamelCase = textenc_pattern.sub(lambda __snake_case : protected[re.escape(m.group(0 ) )], __snake_case ) _UpperCamelCase = v for k_pre, tensors in capture_qkv_weight.items(): if None in tensors: raise Exception('''CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing''' ) _UpperCamelCase = textenc_pattern.sub(lambda __snake_case : protected[re.escape(m.group(0 ) )], __snake_case ) _UpperCamelCase = torch.cat(__snake_case ) for k_pre, tensors in capture_qkv_bias.items(): if None in tensors: raise Exception('''CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing''' ) _UpperCamelCase = textenc_pattern.sub(lambda __snake_case : protected[re.escape(m.group(0 ) )], __snake_case ) _UpperCamelCase = torch.cat(__snake_case ) return new_state_dict def lowerCamelCase__ ( __snake_case ) -> Tuple: """simple docstring""" return text_enc_dict if __name__ == "__main__": _a = argparse.ArgumentParser() parser.add_argument("""--model_path""", default=None, type=str, required=True, help="""Path to the model to convert.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument("""--half""", action="""store_true""", help="""Save weights in half precision.""") parser.add_argument( """--use_safetensors""", action="""store_true""", help="""Save weights use safetensors, default is ckpt.""" ) _a = parser.parse_args() assert args.model_path is not None, "Must provide a model path!" assert args.checkpoint_path is not None, "Must provide a checkpoint path!" # Path for safetensors _a = osp.join(args.model_path, """unet""", """diffusion_pytorch_model.safetensors""") _a = osp.join(args.model_path, """vae""", """diffusion_pytorch_model.safetensors""") _a = osp.join(args.model_path, """text_encoder""", """model.safetensors""") # Load models from safetensors if it exists, if it doesn't pytorch if osp.exists(unet_path): _a = load_file(unet_path, device="""cpu""") else: _a = osp.join(args.model_path, """unet""", """diffusion_pytorch_model.bin""") _a = torch.load(unet_path, map_location="""cpu""") if osp.exists(vae_path): _a = load_file(vae_path, device="""cpu""") else: _a = osp.join(args.model_path, """vae""", """diffusion_pytorch_model.bin""") _a = torch.load(vae_path, map_location="""cpu""") if osp.exists(text_enc_path): _a = load_file(text_enc_path, device="""cpu""") else: _a = osp.join(args.model_path, """text_encoder""", """pytorch_model.bin""") _a = torch.load(text_enc_path, map_location="""cpu""") # Convert the UNet model _a = convert_unet_state_dict(unet_state_dict) _a = {"""model.diffusion_model.""" + k: v for k, v in unet_state_dict.items()} # Convert the VAE model _a = convert_vae_state_dict(vae_state_dict) _a = {"""first_stage_model.""" + k: v for k, v in vae_state_dict.items()} # Easiest way to identify v2.0 model seems to be that the text encoder (OpenCLIP) is deeper _a = """text_model.encoder.layers.22.layer_norm2.bias""" in text_enc_dict if is_vaa_model: # Need to add the tag 'transformer' in advance so we can knock it out from the final layer-norm _a = {"""transformer.""" + k: v for k, v in text_enc_dict.items()} _a = convert_text_enc_state_dict_vaa(text_enc_dict) _a = {"""cond_stage_model.model.""" + k: v for k, v in text_enc_dict.items()} else: _a = convert_text_enc_state_dict(text_enc_dict) _a = {"""cond_stage_model.transformer.""" + k: v for k, v in text_enc_dict.items()} # Put together new checkpoint _a = {**unet_state_dict, **vae_state_dict, **text_enc_dict} if args.half: _a = {k: v.half() for k, v in state_dict.items()} if args.use_safetensors: save_file(state_dict, args.checkpoint_path) else: _a = {"""state_dict""": state_dict} torch.save(state_dict, args.checkpoint_path)
78
0
import os import numpy import onnx def __snake_case ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : List[Any] ) -> Optional[int]: A_ : Union[str, Any] = a.name A_ : List[str] = b.name A_ : Any = "" A_ : List[str] = "" A_ : Dict = a == b A_ : Optional[int] = name_a A_ : str = name_b return res def __snake_case ( _lowerCAmelCase : Dict , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Optional[Any] ) -> Any: for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(_lowerCAmelCase , _lowerCAmelCase ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , _lowerCAmelCase , _lowerCAmelCase ) _graph_replace_input_with(node_proto.attribute[1].g , _lowerCAmelCase , _lowerCAmelCase ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , _lowerCAmelCase , _lowerCAmelCase ) def __snake_case ( _lowerCAmelCase : Dict , _lowerCAmelCase : int , _lowerCAmelCase : List[Any] ) -> Optional[int]: for n in graph_proto.node: _node_replace_input_with(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def __snake_case ( _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : int ) -> Optional[Any]: A_ : Tuple = list(model.graph.initializer ) A_ : Optional[int] = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i A_ : str = inits[i].name A_ : List[Any] = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , _lowerCAmelCase , _lowerCAmelCase ) def __snake_case ( _lowerCAmelCase : str ) -> Tuple: A_ : Dict = os.path.dirname(_lowerCAmelCase ) A_ : Optional[int] = os.path.basename(_lowerCAmelCase ) A_ : List[Any] = onnx.load(os.path.join(_lowerCAmelCase , _lowerCAmelCase ) ) A_ : List[Any] = list(model.graph.initializer ) A_ : Union[str, Any] = set() A_ : Optional[Any] = {} A_ : Optional[Any] = [] A_ : Any = 0 for i in range(len(_lowerCAmelCase ) ): if i in dup_set: continue for j in range(i + 1 , len(_lowerCAmelCase ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(_lowerCAmelCase ) dup_set.add(_lowerCAmelCase ) A_ : Union[str, Any] = inits[j].data_type A_ : Dict = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print("unexpected data type: " , _lowerCAmelCase ) total_reduced_size += mem_size A_ : List[str] = inits[i].name A_ : List[Any] = inits[j].name if name_i in dup_map: dup_map[name_i].append(_lowerCAmelCase ) else: A_ : Tuple = [name_j] ind_to_replace.append((j, i) ) print("total reduced size: " , total_reduced_size / 1024 / 1024 / 1024 , "GB" ) A_ : Optional[Any] = sorted(_lowerCAmelCase ) _remove_dup_initializers_from_model(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) A_ : Any = "optimized_" + model_file_name A_ : List[Any] = os.path.join(_lowerCAmelCase , _lowerCAmelCase ) onnx.save(_lowerCAmelCase , _lowerCAmelCase ) return new_model
454
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTConfig, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() snake_case__ : Optional[Any] = logging.get_logger(__name__) def lowercase ( _lowerCAmelCase ): UpperCAmelCase__ = MobileViTConfig() # size of the architecture if "mobilevit_s" in mobilevit_name: UpperCAmelCase__ = [144, 192, 240] UpperCAmelCase__ = [16, 32, 64, 96, 128, 160, 640] elif "mobilevit_xs" in mobilevit_name: UpperCAmelCase__ = [96, 120, 144] UpperCAmelCase__ = [16, 32, 48, 64, 80, 96, 384] elif "mobilevit_xxs" in mobilevit_name: UpperCAmelCase__ = [64, 80, 96] UpperCAmelCase__ = [16, 16, 24, 48, 64, 80, 320] UpperCAmelCase__ = 0.05 UpperCAmelCase__ = 2.0 if mobilevit_name.startswith("""deeplabv3_""" ): UpperCAmelCase__ = 512 UpperCAmelCase__ = 16 UpperCAmelCase__ = 21 UpperCAmelCase__ = """pascal-voc-id2label.json""" else: UpperCAmelCase__ = 1000 UpperCAmelCase__ = """imagenet-1k-id2label.json""" UpperCAmelCase__ = """huggingface/label-files""" UpperCAmelCase__ = json.load(open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type="""dataset""" ) , """r""" ) ) UpperCAmelCase__ = {int(_lowerCAmelCase ): v for k, v in idalabel.items()} UpperCAmelCase__ = idalabel UpperCAmelCase__ = {v: k for k, v in idalabel.items()} return config def lowercase ( _lowerCAmelCase , _lowerCAmelCase=False ): for i in range(1 , 6 ): if F'''layer_{i}.''' in name: UpperCAmelCase__ = name.replace(F'''layer_{i}.''' , F'''encoder.layer.{i - 1}.''' ) if "conv_1." in name: UpperCAmelCase__ = name.replace("""conv_1.""" , """conv_stem.""" ) if ".block." in name: UpperCAmelCase__ = name.replace(""".block.""" , """.""" ) if "exp_1x1" in name: UpperCAmelCase__ = name.replace("""exp_1x1""" , """expand_1x1""" ) if "red_1x1" in name: UpperCAmelCase__ = name.replace("""red_1x1""" , """reduce_1x1""" ) if ".local_rep.conv_3x3." in name: UpperCAmelCase__ = name.replace(""".local_rep.conv_3x3.""" , """.conv_kxk.""" ) if ".local_rep.conv_1x1." in name: UpperCAmelCase__ = name.replace(""".local_rep.conv_1x1.""" , """.conv_1x1.""" ) if ".norm." in name: UpperCAmelCase__ = name.replace(""".norm.""" , """.normalization.""" ) if ".conv." in name: UpperCAmelCase__ = name.replace(""".conv.""" , """.convolution.""" ) if ".conv_proj." in name: UpperCAmelCase__ = name.replace(""".conv_proj.""" , """.conv_projection.""" ) for i in range(0 , 2 ): for j in range(0 , 4 ): if F'''.{i}.{j}.''' in name: UpperCAmelCase__ = name.replace(F'''.{i}.{j}.''' , F'''.{i}.layer.{j}.''' ) for i in range(2 , 6 ): for j in range(0 , 4 ): if F'''.{i}.{j}.''' in name: UpperCAmelCase__ = name.replace(F'''.{i}.{j}.''' , F'''.{i}.''' ) if "expand_1x1" in name: UpperCAmelCase__ = name.replace("""expand_1x1""" , """downsampling_layer.expand_1x1""" ) if "conv_3x3" in name: UpperCAmelCase__ = name.replace("""conv_3x3""" , """downsampling_layer.conv_3x3""" ) if "reduce_1x1" in name: UpperCAmelCase__ = name.replace("""reduce_1x1""" , """downsampling_layer.reduce_1x1""" ) for i in range(2 , 5 ): if F'''.global_rep.{i}.weight''' in name: UpperCAmelCase__ = name.replace(F'''.global_rep.{i}.weight''' , """.layernorm.weight""" ) if F'''.global_rep.{i}.bias''' in name: UpperCAmelCase__ = name.replace(F'''.global_rep.{i}.bias''' , """.layernorm.bias""" ) if ".global_rep." in name: UpperCAmelCase__ = name.replace(""".global_rep.""" , """.transformer.""" ) if ".pre_norm_mha.0." in name: UpperCAmelCase__ = name.replace(""".pre_norm_mha.0.""" , """.layernorm_before.""" ) if ".pre_norm_mha.1.out_proj." in name: UpperCAmelCase__ = name.replace(""".pre_norm_mha.1.out_proj.""" , """.attention.output.dense.""" ) if ".pre_norm_ffn.0." in name: UpperCAmelCase__ = name.replace(""".pre_norm_ffn.0.""" , """.layernorm_after.""" ) if ".pre_norm_ffn.1." in name: UpperCAmelCase__ = name.replace(""".pre_norm_ffn.1.""" , """.intermediate.dense.""" ) if ".pre_norm_ffn.4." in name: UpperCAmelCase__ = name.replace(""".pre_norm_ffn.4.""" , """.output.dense.""" ) if ".transformer." in name: UpperCAmelCase__ = name.replace(""".transformer.""" , """.transformer.layer.""" ) if ".aspp_layer." in name: UpperCAmelCase__ = name.replace(""".aspp_layer.""" , """.""" ) if ".aspp_pool." in name: UpperCAmelCase__ = name.replace(""".aspp_pool.""" , """.""" ) if "seg_head." in name: UpperCAmelCase__ = name.replace("""seg_head.""" , """segmentation_head.""" ) if "segmentation_head.classifier.classifier." in name: UpperCAmelCase__ = name.replace("""segmentation_head.classifier.classifier.""" , """segmentation_head.classifier.""" ) if "classifier.fc." in name: UpperCAmelCase__ = name.replace("""classifier.fc.""" , """classifier.""" ) elif (not base_model) and ("segmentation_head." not in name): UpperCAmelCase__ = """mobilevit.""" + name return name def lowercase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=False ): if base_model: UpperCAmelCase__ = """""" else: UpperCAmelCase__ = """mobilevit.""" for key in orig_state_dict.copy().keys(): UpperCAmelCase__ = orig_state_dict.pop(_lowerCAmelCase ) if key[:8] == "encoder.": UpperCAmelCase__ = key[8:] if "qkv" in key: UpperCAmelCase__ = key.split(""".""" ) UpperCAmelCase__ = int(key_split[0][6:] ) - 1 UpperCAmelCase__ = int(key_split[3] ) UpperCAmelCase__ = model.get_submodule(F'''{model_prefix}encoder.layer.{layer_num}''' ) UpperCAmelCase__ = layer.transformer.layer[transformer_num].attention.attention.all_head_size UpperCAmelCase__ = ( F'''{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention.''' ) if "weight" in key: UpperCAmelCase__ = val[:dim, :] UpperCAmelCase__ = val[dim : dim * 2, :] UpperCAmelCase__ = val[-dim:, :] else: UpperCAmelCase__ = val[:dim] UpperCAmelCase__ = val[dim : dim * 2] UpperCAmelCase__ = val[-dim:] else: UpperCAmelCase__ = val return orig_state_dict def lowercase ( ): UpperCAmelCase__ = """http://images.cocodataset.org/val2017/000000039769.jpg""" UpperCAmelCase__ = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ) return im @torch.no_grad() def lowercase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=False ): UpperCAmelCase__ = get_mobilevit_config(_lowerCAmelCase ) # load original state_dict UpperCAmelCase__ = torch.load(_lowerCAmelCase , map_location="""cpu""" ) # load 🤗 model if mobilevit_name.startswith("""deeplabv3_""" ): UpperCAmelCase__ = MobileViTForSemanticSegmentation(_lowerCAmelCase ).eval() else: UpperCAmelCase__ = MobileViTForImageClassification(_lowerCAmelCase ).eval() UpperCAmelCase__ = convert_state_dict(_lowerCAmelCase , _lowerCAmelCase ) model.load_state_dict(_lowerCAmelCase ) # Check outputs on an image, prepared by MobileViTImageProcessor UpperCAmelCase__ = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) UpperCAmelCase__ = image_processor(images=prepare_img() , return_tensors="""pt""" ) UpperCAmelCase__ = model(**_lowerCAmelCase ) UpperCAmelCase__ = outputs.logits if mobilevit_name.startswith("""deeplabv3_""" ): assert logits.shape == (1, 21, 32, 32) if mobilevit_name == "deeplabv3_mobilevit_s": UpperCAmelCase__ = torch.tensor( [ [[6.2065, 6.1292, 6.2070], [6.1079, 6.1254, 6.1747], [6.0042, 6.1071, 6.1034]], [[-6.9253, -6.8653, -7.0398], [-7.3218, -7.3983, -7.3670], [-7.1961, -7.2482, -7.1569]], [[-4.4723, -4.4348, -4.3769], [-5.3629, -5.4632, -5.4598], [-5.1587, -5.3402, -5.5059]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xs": UpperCAmelCase__ = torch.tensor( [ [[5.4449, 5.5733, 5.6314], [5.1815, 5.3930, 5.5963], [5.1656, 5.4333, 5.4853]], [[-9.4423, -9.7766, -9.6714], [-9.1581, -9.5720, -9.5519], [-9.1006, -9.6458, -9.5703]], [[-7.7721, -7.3716, -7.1583], [-8.4599, -8.0624, -7.7944], [-8.4172, -7.8366, -7.5025]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xxs": UpperCAmelCase__ = torch.tensor( [ [[6.9811, 6.9743, 7.3123], [7.1777, 7.1931, 7.3938], [7.5633, 7.8050, 7.8901]], [[-10.5536, -10.2332, -10.2924], [-10.2336, -9.8624, -9.5964], [-10.8840, -10.8158, -10.6659]], [[-3.4938, -3.0631, -2.8620], [-3.4205, -2.8135, -2.6875], [-3.4179, -2.7945, -2.8750]], ] ) else: raise ValueError(F'''Unknown mobilevit_name: {mobilevit_name}''' ) assert torch.allclose(logits[0, :3, :3, :3] , _lowerCAmelCase , atol=1e-4 ) else: assert logits.shape == (1, 1000) if mobilevit_name == "mobilevit_s": UpperCAmelCase__ = torch.tensor([-0.9866, 0.2392, -1.1241] ) elif mobilevit_name == "mobilevit_xs": UpperCAmelCase__ = torch.tensor([-2.4761, -0.9399, -1.9587] ) elif mobilevit_name == "mobilevit_xxs": UpperCAmelCase__ = torch.tensor([-1.9364, -1.2327, -0.4653] ) else: raise ValueError(F'''Unknown mobilevit_name: {mobilevit_name}''' ) assert torch.allclose(logits[0, :3] , _lowerCAmelCase , atol=1e-4 ) Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) print(F'''Saving model {mobilevit_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(_lowerCAmelCase ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(_lowerCAmelCase ) if push_to_hub: UpperCAmelCase__ = { """mobilevit_s""": """mobilevit-small""", """mobilevit_xs""": """mobilevit-x-small""", """mobilevit_xxs""": """mobilevit-xx-small""", """deeplabv3_mobilevit_s""": """deeplabv3-mobilevit-small""", """deeplabv3_mobilevit_xs""": """deeplabv3-mobilevit-x-small""", """deeplabv3_mobilevit_xxs""": """deeplabv3-mobilevit-xx-small""", } print("""Pushing to the hub...""" ) UpperCAmelCase__ = model_mapping[mobilevit_name] image_processor.push_to_hub(_lowerCAmelCase , organization="""apple""" ) model.push_to_hub(_lowerCAmelCase , organization="""apple""" ) if __name__ == "__main__": snake_case__ : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--mobilevit_name''', default='''mobilevit_s''', type=str, help=( '''Name of the MobileViT model you\'d like to convert. Should be one of \'mobilevit_s\', \'mobilevit_xs\',''' ''' \'mobilevit_xxs\', \'deeplabv3_mobilevit_s\', \'deeplabv3_mobilevit_xs\', \'deeplabv3_mobilevit_xxs\'.''' ), ) parser.add_argument( '''--checkpoint_path''', required=True, type=str, help='''Path to the original state dict (.pt file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) snake_case__ : Optional[int] = parser.parse_args() convert_movilevit_checkpoint( args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
392
0
from collections import Counter from timeit import timeit def lowerCAmelCase_ ( lowerCamelCase = "" , ): return sum(c % 2 for c in Counter(input_str.replace(""" """ , """""" ).lower() ).values() ) < 2 def lowerCAmelCase_ ( lowerCamelCase = "" ): if len(lowerCamelCase ) == 0: return True __magic_name__ : Union[str, Any] =input_str.replace(""" """ , """""" ).lower() # character_freq_dict: Stores the frequency of every character in the input string __magic_name__ : dict[str, int] ={} for character in lower_case_input_str: __magic_name__ : int =character_freq_dict.get(lowerCamelCase , 0 ) + 1 __magic_name__ : List[Any] =0 for character_count in character_freq_dict.values(): if character_count % 2: odd_char += 1 if odd_char > 1: return False return True def lowerCAmelCase_ ( lowerCamelCase = "" ): print("""\nFor string = """ , lowerCamelCase , """:""" ) print( """> can_string_be_rearranged_as_palindrome_counter()""" , """\tans =""" , can_string_be_rearranged_as_palindrome_counter(lowerCamelCase ) , """\ttime =""" , timeit( """z.can_string_be_rearranged_as_palindrome_counter(z.check_str)""" , setup="""import __main__ as z""" , ) , """seconds""" , ) print( """> can_string_be_rearranged_as_palindrome()""" , """\tans =""" , can_string_be_rearranged_as_palindrome(lowerCamelCase ) , """\ttime =""" , timeit( """z.can_string_be_rearranged_as_palindrome(z.check_str)""" , setup="""import __main__ as z""" , ) , """seconds""" , ) if __name__ == "__main__": UpperCAmelCase_ : Optional[Any] = input( "Enter string to determine if it can be rearranged as a palindrome or not: " ).strip() benchmark(check_str) UpperCAmelCase_ : Union[str, Any] = can_string_be_rearranged_as_palindrome_counter(check_str) print(F"""{check_str} can {"" if status else "not "}be rearranged as a palindrome""")
719
# coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import sys import transformers UpperCAmelCase_ : str = "3" print("Python version:", sys.version) print("transformers version:", transformers.__version__) try: import torch print("Torch version:", torch.__version__) print("Cuda available:", torch.cuda.is_available()) print("Cuda version:", torch.version.cuda) print("CuDNN version:", torch.backends.cudnn.version()) print("Number of GPUs available:", torch.cuda.device_count()) print("NCCL version:", torch.cuda.nccl.version()) except ImportError: print("Torch version:", None) try: import deepspeed print("DeepSpeed version:", deepspeed.__version__) except ImportError: print("DeepSpeed version:", None) try: import tensorflow as tf print("TensorFlow version:", tf.__version__) print("TF GPUs available:", bool(tf.config.list_physical_devices("GPU"))) print("Number of TF GPUs available:", len(tf.config.list_physical_devices("GPU"))) except ImportError: print("TensorFlow version:", None)
367
0
"""simple docstring""" def a ( __snake_case : list ): '''simple docstring''' if len(__snake_case ) <= 1: return lst UpperCAmelCase_ :Union[str, Any] = 1 while i < len(__snake_case ): if lst[i - 1] <= lst[i]: i += 1 else: UpperCAmelCase_ ,UpperCAmelCase_ :Tuple = lst[i], lst[i - 1] i -= 1 if i == 0: UpperCAmelCase_ :str = 1 return lst if __name__ == "__main__": __lowerCamelCase = input("Enter numbers separated by a comma:\n").strip() __lowerCamelCase = [int(item) for item in user_input.split(",")] print(gnome_sort(unsorted))
608
"""simple docstring""" from __future__ import annotations from collections.abc import MutableSequence class _snake_case : '''simple docstring''' def __init__( self : Dict , snake_case : int , snake_case : MutableSequence[float] ): if len(snake_case ) != degree + 1: raise ValueError( '''The number of coefficients should be equal to the degree + 1.''' ) UpperCAmelCase_ :list[float] = list(snake_case ) UpperCAmelCase_ :str = degree def __add__( self : Any , snake_case : Polynomial ): if self.degree > polynomial_a.degree: UpperCAmelCase_ :int = self.coefficients[:] for i in range(polynomial_a.degree + 1 ): coefficients[i] += polynomial_a.coefficients[i] return Polynomial(self.degree , snake_case ) else: UpperCAmelCase_ :Any = polynomial_a.coefficients[:] for i in range(self.degree + 1 ): coefficients[i] += self.coefficients[i] return Polynomial(polynomial_a.degree , snake_case ) def __sub__( self : List[str] , snake_case : Polynomial ): return self + polynomial_a * Polynomial(0 , [-1] ) def __neg__( self : Union[str, Any] ): return Polynomial(self.degree , [-c for c in self.coefficients] ) def __mul__( self : Any , snake_case : Polynomial ): UpperCAmelCase_ :list[float] = [0] * (self.degree + polynomial_a.degree + 1) for i in range(self.degree + 1 ): for j in range(polynomial_a.degree + 1 ): coefficients[i + j] += ( self.coefficients[i] * polynomial_a.coefficients[j] ) return Polynomial(self.degree + polynomial_a.degree , snake_case ) def snake_case_ ( self : Optional[Any] , snake_case : int | float ): UpperCAmelCase_ :int | float = 0 for i in range(self.degree + 1 ): result += self.coefficients[i] * (substitution**i) return result def __str__( self : List[Any] ): UpperCAmelCase_ :List[str] = '''''' for i in range(self.degree , -1 , -1 ): if self.coefficients[i] == 0: continue elif self.coefficients[i] > 0: if polynomial: polynomial += " + " else: polynomial += " - " if i == 0: polynomial += str(abs(self.coefficients[i] ) ) elif i == 1: polynomial += str(abs(self.coefficients[i] ) ) + "x" else: polynomial += str(abs(self.coefficients[i] ) ) + "x^" + str(snake_case ) return polynomial def __repr__( self : int ): return self.__str__() def snake_case_ ( self : str ): UpperCAmelCase_ :list[float] = [0] * self.degree for i in range(self.degree ): UpperCAmelCase_ :str = self.coefficients[i + 1] * (i + 1) return Polynomial(self.degree - 1 , snake_case ) def snake_case_ ( self : Optional[int] , snake_case : int | float = 0 ): UpperCAmelCase_ :list[float] = [0] * (self.degree + 2) UpperCAmelCase_ :List[str] = constant for i in range(self.degree + 1 ): UpperCAmelCase_ :Optional[int] = self.coefficients[i] / (i + 1) return Polynomial(self.degree + 1 , snake_case ) def __eq__( self : int , snake_case : object ): if not isinstance(snake_case , snake_case ): return False if self.degree != polynomial_a.degree: return False for i in range(self.degree + 1 ): if self.coefficients[i] != polynomial_a.coefficients[i]: return False return True def __ne__( self : Optional[Any] , snake_case : object ): return not self.__eq__(snake_case )
608
1
import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import EsmForMaskedLM, EsmForSequenceClassification, EsmForTokenClassification, EsmModel from transformers.models.esm.modeling_esm import ( ESM_PRETRAINED_MODEL_ARCHIVE_LIST, EsmEmbeddings, create_position_ids_from_input_ids, ) class lowerCamelCase__ : def __init__( self : Optional[Any] , lowercase__ : str , lowercase__ : List[Any]=13 , lowercase__ : List[str]=7 , lowercase__ : Optional[Any]=False , lowercase__ : List[Any]=True , lowercase__ : Tuple=False , lowercase__ : Any=True , lowercase__ : int=33 , lowercase__ : Any=32 , lowercase__ : int=5 , lowercase__ : int=4 , lowercase__ : Optional[int]=37 , lowercase__ : Union[str, Any]="gelu" , lowercase__ : Optional[int]=0.1 , lowercase__ : str=0.1 , lowercase__ : Optional[Any]=5_12 , lowercase__ : List[Any]=16 , lowercase__ : Any=2 , lowercase__ : int=0.0_2 , lowercase__ : str=3 , lowercase__ : List[Any]=4 , lowercase__ : List[str]=None , ): _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = seq_length _lowerCAmelCase = is_training _lowerCAmelCase = use_input_mask _lowerCAmelCase = use_token_type_ids _lowerCAmelCase = use_labels _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_act _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = type_vocab_size _lowerCAmelCase = type_sequence_label_size _lowerCAmelCase = initializer_range _lowerCAmelCase = num_labels _lowerCAmelCase = num_choices _lowerCAmelCase = scope def SCREAMING_SNAKE_CASE__ ( self : Tuple ): _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase = None if self.use_input_mask: _lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = None if self.use_labels: _lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) _lowerCAmelCase = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): return EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE__ ( self : Tuple , lowercase__ : Dict , lowercase__ : List[Any] , lowercase__ : str , lowercase__ : Optional[int] , lowercase__ : Any , lowercase__ : int ): _lowerCAmelCase = EsmModel(config=lowercase__ ) model.to(lowercase__ ) model.eval() _lowerCAmelCase = model(lowercase__ , attention_mask=lowercase__ ) _lowerCAmelCase = model(lowercase__ ) _lowerCAmelCase = model(lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , lowercase__ : Any , lowercase__ : List[Any] , lowercase__ : List[str] , lowercase__ : Dict , lowercase__ : Dict , lowercase__ : int ): _lowerCAmelCase = EsmForMaskedLM(config=lowercase__ ) model.to(lowercase__ ) model.eval() _lowerCAmelCase = model(lowercase__ , attention_mask=lowercase__ , labels=lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE__ ( self : Tuple , lowercase__ : Tuple , lowercase__ : int , lowercase__ : List[Any] , lowercase__ : Any , lowercase__ : Dict , lowercase__ : str ): _lowerCAmelCase = self.num_labels _lowerCAmelCase = EsmForTokenClassification(config=lowercase__ ) model.to(lowercase__ ) model.eval() _lowerCAmelCase = model(lowercase__ , attention_mask=lowercase__ , labels=lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self : Dict ): _lowerCAmelCase = self.prepare_config_and_inputs() ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) = config_and_inputs _lowerCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowerCamelCase__ ( UpperCAmelCase ,UpperCAmelCase ,unittest.TestCase ): UpperCamelCase__ =False UpperCamelCase__ =( ( EsmForMaskedLM, EsmModel, EsmForSequenceClassification, EsmForTokenClassification, ) if is_torch_available() else () ) UpperCamelCase__ =() UpperCamelCase__ =( { "feature-extraction": EsmModel, "fill-mask": EsmForMaskedLM, "text-classification": EsmForSequenceClassification, "token-classification": EsmForTokenClassification, "zero-shot": EsmForSequenceClassification, } if is_torch_available() else {} ) UpperCamelCase__ =True def SCREAMING_SNAKE_CASE__ ( self : Dict ): _lowerCAmelCase = EsmModelTester(self ) _lowerCAmelCase = ConfigTester(self , config_class=lowercase__ , hidden_size=37 ) def SCREAMING_SNAKE_CASE__ ( self : int ): self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self : Dict ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase__ ) def SCREAMING_SNAKE_CASE__ ( self : int ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _lowerCAmelCase = type self.model_tester.create_and_check_model(*lowercase__ ) def SCREAMING_SNAKE_CASE__ ( self : str ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowercase__ ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowercase__ ) @slow def SCREAMING_SNAKE_CASE__ ( self : str ): for model_name in ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase = EsmModel.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) def SCREAMING_SNAKE_CASE__ ( self : Dict ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs()[0] _lowerCAmelCase = EsmEmbeddings(config=lowercase__ ) _lowerCAmelCase = torch.as_tensor([[12, 31, 13, model.padding_idx]] ) _lowerCAmelCase = torch.as_tensor( [ [ 0 + model.padding_idx + 1, 1 + model.padding_idx + 1, 2 + model.padding_idx + 1, model.padding_idx, ] ] ) _lowerCAmelCase = create_position_ids_from_input_ids(lowercase__ , model.padding_idx ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(lowercase__ , lowercase__ ) ) ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs()[0] _lowerCAmelCase = EsmEmbeddings(config=lowercase__ ) _lowerCAmelCase = torch.empty(2 , 4 , 30 ) _lowerCAmelCase = [ 0 + embeddings.padding_idx + 1, 1 + embeddings.padding_idx + 1, 2 + embeddings.padding_idx + 1, 3 + embeddings.padding_idx + 1, ] _lowerCAmelCase = torch.as_tensor([expected_single_positions, expected_single_positions] ) _lowerCAmelCase = embeddings.create_position_ids_from_inputs_embeds(lowercase__ ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(lowercase__ , lowercase__ ) ) ) @unittest.skip('Esm does not support embedding resizing' ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): pass @unittest.skip('Esm does not support embedding resizing' ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ): pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ): pass @require_torch class lowerCamelCase__ ( UpperCAmelCase ): @slow def SCREAMING_SNAKE_CASE__ ( self : Any ): with torch.no_grad(): _lowerCAmelCase = EsmForMaskedLM.from_pretrained('facebook/esm2_t6_8M_UR50D' ) model.eval() _lowerCAmelCase = torch.tensor([[0, 1, 2, 3, 4, 5]] ) _lowerCAmelCase = model(lowercase__ )[0] _lowerCAmelCase = 33 _lowerCAmelCase = torch.Size((1, 6, vocab_size) ) self.assertEqual(output.shape , lowercase__ ) _lowerCAmelCase = torch.tensor( [[[8.9_2_1_5, -1_0.5_8_9_8, -6.4_6_7_1], [-6.3_9_6_7, -1_3.9_1_1_4, -1.1_2_1_2], [-7.7_8_1_2, -1_3.9_5_1_6, -3.7_4_0_6]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowercase__ , atol=1e-4 ) ) @slow def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): with torch.no_grad(): _lowerCAmelCase = EsmModel.from_pretrained('facebook/esm2_t6_8M_UR50D' ) model.eval() _lowerCAmelCase = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) _lowerCAmelCase = model(lowercase__ )[0] # compare the actual values for a slice. _lowerCAmelCase = torch.tensor( [[[0.1_4_4_4, 0.5_4_1_3, 0.3_2_4_8], [0.3_0_3_4, 0.0_0_5_3, 0.3_1_0_8], [0.3_2_2_8, -0.2_4_9_9, 0.3_4_1_5]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowercase__ , atol=1e-4 ) )
225
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor @require_vision class lowerCamelCase__ ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self : str ): _lowerCAmelCase = tempfile.mkdtemp() _lowerCAmelCase = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', '的', '价', '格', '是', '15', '便', 'alex', '##andra', ',', '。', '-', 't', 'shirt', ] _lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) _lowerCAmelCase = { 'do_resize': True, 'size': {'height': 2_24, 'width': 2_24}, 'do_center_crop': True, 'crop_size': {'height': 18, 'width': 18}, 'do_normalize': True, 'image_mean': [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], 'image_std': [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], 'do_convert_rgb': True, } _lowerCAmelCase = os.path.join(self.tmpdirname , lowercase__ ) with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp: json.dump(lowercase__ , lowercase__ ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] , **lowercase__ : Any ): return BertTokenizer.from_pretrained(self.tmpdirname , **lowercase__ ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , **lowercase__ : List[Any] ): return BertTokenizerFast.from_pretrained(self.tmpdirname , **lowercase__ ) def SCREAMING_SNAKE_CASE__ ( self : Tuple , **lowercase__ : Tuple ): return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname , **lowercase__ ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ): shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): _lowerCAmelCase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] _lowerCAmelCase = [Image.fromarray(np.moveaxis(lowercase__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): _lowerCAmelCase = self.get_tokenizer() _lowerCAmelCase = self.get_rust_tokenizer() _lowerCAmelCase = self.get_image_processor() _lowerCAmelCase = ChineseCLIPProcessor(tokenizer=lowercase__ , image_processor=lowercase__ ) processor_slow.save_pretrained(self.tmpdirname ) _lowerCAmelCase = ChineseCLIPProcessor.from_pretrained(self.tmpdirname , use_fast=lowercase__ ) _lowerCAmelCase = ChineseCLIPProcessor(tokenizer=lowercase__ , image_processor=lowercase__ ) processor_fast.save_pretrained(self.tmpdirname ) _lowerCAmelCase = ChineseCLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , lowercase__ ) self.assertIsInstance(processor_fast.tokenizer , lowercase__ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , lowercase__ ) self.assertIsInstance(processor_fast.image_processor , lowercase__ ) def SCREAMING_SNAKE_CASE__ ( self : Dict ): _lowerCAmelCase = ChineseCLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _lowerCAmelCase = self.get_tokenizer(cls_token='(CLS)' , sep_token='(SEP)' ) _lowerCAmelCase = self.get_image_processor(do_normalize=lowercase__ ) _lowerCAmelCase = ChineseCLIPProcessor.from_pretrained( self.tmpdirname , cls_token='(CLS)' , sep_token='(SEP)' , do_normalize=lowercase__ ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowercase__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowercase__ ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): _lowerCAmelCase = self.get_image_processor() _lowerCAmelCase = self.get_tokenizer() _lowerCAmelCase = ChineseCLIPProcessor(tokenizer=lowercase__ , image_processor=lowercase__ ) _lowerCAmelCase = self.prepare_image_inputs() _lowerCAmelCase = image_processor(lowercase__ , return_tensors='np' ) _lowerCAmelCase = processor(images=lowercase__ , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): _lowerCAmelCase = self.get_image_processor() _lowerCAmelCase = self.get_tokenizer() _lowerCAmelCase = ChineseCLIPProcessor(tokenizer=lowercase__ , image_processor=lowercase__ ) _lowerCAmelCase = 'Alexandra,T-shirt的价格是15便士。' _lowerCAmelCase = processor(text=lowercase__ ) _lowerCAmelCase = tokenizer(lowercase__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def SCREAMING_SNAKE_CASE__ ( self : Any ): _lowerCAmelCase = self.get_image_processor() _lowerCAmelCase = self.get_tokenizer() _lowerCAmelCase = ChineseCLIPProcessor(tokenizer=lowercase__ , image_processor=lowercase__ ) _lowerCAmelCase = 'Alexandra,T-shirt的价格是15便士。' _lowerCAmelCase = self.prepare_image_inputs() _lowerCAmelCase = processor(text=lowercase__ , images=lowercase__ ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'token_type_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(lowercase__ ): processor() def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): _lowerCAmelCase = self.get_image_processor() _lowerCAmelCase = self.get_tokenizer() _lowerCAmelCase = ChineseCLIPProcessor(tokenizer=lowercase__ , image_processor=lowercase__ ) _lowerCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _lowerCAmelCase = processor.batch_decode(lowercase__ ) _lowerCAmelCase = tokenizer.batch_decode(lowercase__ ) self.assertListEqual(lowercase__ , lowercase__ ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ): _lowerCAmelCase = self.get_image_processor() _lowerCAmelCase = self.get_tokenizer() _lowerCAmelCase = ChineseCLIPProcessor(tokenizer=lowercase__ , image_processor=lowercase__ ) _lowerCAmelCase = 'Alexandra,T-shirt的价格是15便士。' _lowerCAmelCase = self.prepare_image_inputs() _lowerCAmelCase = processor(text=lowercase__ , images=lowercase__ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
225
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case : Dict = logging.get_logger(__name__) __snake_case : Tuple = { """sayakpaul/vit-msn-base""": """https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json""", # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class A__(a_ ): """simple docstring""" _A : List[str] = '''vit_msn''' def __init__( self , _lowercase=768 , _lowercase=12 , _lowercase=12 , _lowercase=3_072 , _lowercase="gelu" , _lowercase=0.0 , _lowercase=0.0 , _lowercase=0.0_2 , _lowercase=1e-06 , _lowercase=224 , _lowercase=16 , _lowercase=3 , _lowercase=True , **_lowercase , ) -> Optional[int]: super().__init__(**_lowercase ) a_ : Optional[int] = hidden_size a_ : Any = num_hidden_layers a_ : Optional[int] = num_attention_heads a_ : Optional[Any] = intermediate_size a_ : List[Any] = hidden_act a_ : int = hidden_dropout_prob a_ : Optional[int] = attention_probs_dropout_prob a_ : int = initializer_range a_ : Union[str, Any] = layer_norm_eps a_ : Union[str, Any] = image_size a_ : Any = patch_size a_ : Dict = num_channels a_ : List[Any] = qkv_bias
540
import inspect import unittest from transformers import SegformerConfig, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_MAPPING, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerModel, ) from transformers.models.segformer.modeling_segformer import SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import SegformerImageProcessor class A__(a_ ): """simple docstring""" def UpperCamelCase__ ( self ) -> List[str]: a_ : Optional[Any] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_lowercase , """hidden_sizes""" ) ) self.parent.assertTrue(hasattr(_lowercase , """num_attention_heads""" ) ) self.parent.assertTrue(hasattr(_lowercase , """num_encoder_blocks""" ) ) class A__: """simple docstring""" def __init__( self , _lowercase , _lowercase=13 , _lowercase=64 , _lowercase=3 , _lowercase=4 , _lowercase=[2, 2, 2, 2] , _lowercase=[8, 4, 2, 1] , _lowercase=[16, 32, 64, 128] , _lowercase=[1, 4, 8, 16] , _lowercase=[1, 2, 4, 8] , _lowercase=True , _lowercase=True , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=0.0_2 , _lowercase=3 , _lowercase=None , ) -> Any: a_ : List[str] = parent a_ : int = batch_size a_ : Dict = image_size a_ : Any = num_channels a_ : Optional[int] = num_encoder_blocks a_ : Optional[Any] = sr_ratios a_ : List[str] = depths a_ : int = hidden_sizes a_ : List[Any] = downsampling_rates a_ : List[Any] = num_attention_heads a_ : Any = is_training a_ : List[Any] = use_labels a_ : List[Any] = hidden_act a_ : Dict = hidden_dropout_prob a_ : Any = attention_probs_dropout_prob a_ : List[str] = initializer_range a_ : Dict = num_labels a_ : Union[str, Any] = scope def UpperCamelCase__ ( self ) -> List[str]: a_ : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a_ : int = None if self.use_labels: a_ : List[Any] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) a_ : Dict = self.get_config() return config, pixel_values, labels def UpperCamelCase__ ( self ) -> Any: return SegformerConfig( image_size=self.image_size , num_channels=self.num_channels , num_encoder_blocks=self.num_encoder_blocks , depths=self.depths , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def UpperCamelCase__ ( self , _lowercase , _lowercase , _lowercase ) -> List[Any]: a_ : Optional[Any] = SegformerModel(config=_lowercase ) model.to(_lowercase ) model.eval() a_ : List[str] = model(_lowercase ) a_ : int = self.image_size // (self.downsampling_rates[-1] * 2) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], expected_height, expected_width) ) def UpperCamelCase__ ( self , _lowercase , _lowercase , _lowercase ) -> Optional[int]: a_ : Any = self.num_labels a_ : Union[str, Any] = SegformerForSemanticSegmentation(_lowercase ) model.to(_lowercase ) model.eval() a_ : str = model(_lowercase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) a_ : Optional[Any] = model(_lowercase , labels=_lowercase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) self.parent.assertGreater(result.loss , 0.0 ) def UpperCamelCase__ ( self , _lowercase , _lowercase , _lowercase ) -> List[Any]: a_ : int = 1 a_ : Union[str, Any] = SegformerForSemanticSegmentation(config=_lowercase ) model.to(_lowercase ) model.eval() a_ : int = torch.randint(0 , 1 , (self.batch_size, self.image_size, self.image_size) ).to(_lowercase ) a_ : Optional[int] = model(_lowercase , labels=_lowercase ) self.parent.assertGreater(result.loss , 0.0 ) def UpperCamelCase__ ( self ) -> Optional[int]: a_ : Union[str, Any] = self.prepare_config_and_inputs() a_ , a_ , a_ : Optional[int] = config_and_inputs a_ : int = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class A__(a_, a_, unittest.TestCase ): """simple docstring""" _A : Dict = ( ( SegformerModel, SegformerForSemanticSegmentation, SegformerForImageClassification, ) if is_torch_available() else () ) _A : List[Any] = ( { '''feature-extraction''': SegformerModel, '''image-classification''': SegformerForImageClassification, '''image-segmentation''': SegformerForSemanticSegmentation, } if is_torch_available() else {} ) _A : Optional[int] = True _A : Optional[Any] = False _A : int = False _A : Optional[int] = False def UpperCamelCase__ ( self ) -> Dict: a_ : str = SegformerModelTester(self ) a_ : Optional[int] = SegformerConfigTester(self , config_class=_lowercase ) def UpperCamelCase__ ( self ) -> Union[str, Any]: self.config_tester.run_common_tests() def UpperCamelCase__ ( self ) -> List[Any]: a_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowercase ) def UpperCamelCase__ ( self ) -> int: a_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_binary_image_segmentation(*_lowercase ) def UpperCamelCase__ ( self ) -> Optional[int]: a_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_segmentation(*_lowercase ) @unittest.skip("""SegFormer does not use inputs_embeds""" ) def UpperCamelCase__ ( self ) -> Optional[int]: pass @unittest.skip("""SegFormer does not have get_input_embeddings method and get_output_embeddings methods""" ) def UpperCamelCase__ ( self ) -> List[Any]: pass def UpperCamelCase__ ( self ) -> Dict: a_ , a_ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a_ : int = model_class(_lowercase ) a_ : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a_ : Dict = [*signature.parameters.keys()] a_ : List[str] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _lowercase ) def UpperCamelCase__ ( self ) -> Optional[int]: a_ , a_ : Any = self.model_tester.prepare_config_and_inputs_for_common() a_ : Optional[int] = True for model_class in self.all_model_classes: a_ : List[Any] = True a_ : Optional[Any] = False a_ : Tuple = True a_ : Any = model_class(_lowercase ) model.to(_lowercase ) model.eval() with torch.no_grad(): a_ : Dict = model(**self._prepare_for_class(_lowercase , _lowercase ) ) a_ : Union[str, Any] = outputs.attentions a_ : Optional[int] = sum(self.model_tester.depths ) self.assertEqual(len(_lowercase ) , _lowercase ) # check that output_attentions also work using config del inputs_dict["output_attentions"] a_ : Dict = True a_ : List[str] = model_class(_lowercase ) model.to(_lowercase ) model.eval() with torch.no_grad(): a_ : int = model(**self._prepare_for_class(_lowercase , _lowercase ) ) a_ : Optional[Any] = outputs.attentions self.assertEqual(len(_lowercase ) , _lowercase ) # verify the first attentions (first block, first layer) a_ : List[str] = (self.model_tester.image_size // 4) ** 2 a_ : int = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) # verify the last attentions (last block, last layer) a_ : int = (self.model_tester.image_size // 32) ** 2 a_ : Optional[int] = (self.model_tester.image_size // (32 * self.model_tester.sr_ratios[-1])) ** 2 self.assertListEqual( list(attentions[-1].shape[-3:] ) , [self.model_tester.num_attention_heads[-1], expected_seq_len, expected_reduced_seq_len] , ) a_ : Dict = len(_lowercase ) # Check attention is always last and order is fine a_ : List[str] = True a_ : List[Any] = True a_ : int = model_class(_lowercase ) model.to(_lowercase ) model.eval() with torch.no_grad(): a_ : int = model(**self._prepare_for_class(_lowercase , _lowercase ) ) self.assertEqual(out_len + 1 , len(_lowercase ) ) a_ : Optional[int] = outputs.attentions self.assertEqual(len(_lowercase ) , _lowercase ) # verify the first attentions (first block, first layer) a_ : int = (self.model_tester.image_size // 4) ** 2 a_ : Union[str, Any] = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) def UpperCamelCase__ ( self ) -> Optional[int]: def check_hidden_states_output(_lowercase , _lowercase , _lowercase ): a_ : Tuple = model_class(_lowercase ) model.to(_lowercase ) model.eval() with torch.no_grad(): a_ : Tuple = model(**self._prepare_for_class(_lowercase , _lowercase ) ) a_ : Optional[Any] = outputs.hidden_states a_ : Optional[Any] = self.model_tester.num_encoder_blocks self.assertEqual(len(_lowercase ) , _lowercase ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.hidden_sizes[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) a_ , a_ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a_ : List[Any] = True check_hidden_states_output(_lowercase , _lowercase , _lowercase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] a_ : Dict = True check_hidden_states_output(_lowercase , _lowercase , _lowercase ) def UpperCamelCase__ ( self ) -> Optional[Any]: if not self.model_tester.is_training: return a_ , a_ : Dict = self.model_tester.prepare_config_and_inputs_for_common() a_ : List[Any] = True for model_class in self.all_model_classes: if model_class in get_values(_lowercase ): continue a_ : Union[str, Any] = model_class(_lowercase ) model.to(_lowercase ) model.train() a_ : List[str] = self._prepare_for_class(_lowercase , _lowercase , return_labels=_lowercase ) a_ : List[Any] = model(**_lowercase ).loss loss.backward() @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def UpperCamelCase__ ( self ) -> Union[str, Any]: pass @slow def UpperCamelCase__ ( self ) -> Optional[Any]: for model_name in SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a_ : Union[str, Any] = SegformerModel.from_pretrained(_lowercase ) self.assertIsNotNone(_lowercase ) def _UpperCAmelCase ( ): '''simple docstring''' a_ : List[str] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""") return image @require_torch class A__(unittest.TestCase ): """simple docstring""" @slow def UpperCamelCase__ ( self ) -> List[str]: # only resize + normalize a_ : Tuple = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=_lowercase , align=_lowercase , do_random_crop=_lowercase ) a_ : Dict = SegformerForSemanticSegmentation.from_pretrained("""nvidia/segformer-b0-finetuned-ade-512-512""" ).to( _lowercase ) a_ : str = prepare_img() a_ : str = image_processor(images=_lowercase , return_tensors="""pt""" ) a_ : List[str] = encoded_inputs.pixel_values.to(_lowercase ) with torch.no_grad(): a_ : Union[str, Any] = model(_lowercase ) a_ : Tuple = torch.Size((1, model.config.num_labels, 128, 128) ) self.assertEqual(outputs.logits.shape , _lowercase ) a_ : Any = torch.tensor( [ [[-4.6_3_1_0, -5.5_2_3_2, -6.2_3_5_6], [-5.1_9_2_1, -6.1_4_4_4, -6.5_9_9_6], [-5.4_4_2_4, -6.2_7_9_0, -6.7_5_7_4]], [[-1_2.1_3_9_1, -1_3.3_1_2_2, -1_3.9_5_5_4], [-1_2.8_7_3_2, -1_3.9_3_5_2, -1_4.3_5_6_3], [-1_2.9_4_3_8, -1_3.8_2_2_6, -1_4.2_5_1_3]], [[-1_2.5_1_3_4, -1_3.4_6_8_6, -1_4.4_9_1_5], [-1_2.8_6_6_9, -1_4.4_3_4_3, -1_4.7_7_5_8], [-1_3.2_5_2_3, -1_4.5_8_1_9, -1_5.0_6_9_4]], ] ).to(_lowercase ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , _lowercase , atol=1e-4 ) ) @slow def UpperCamelCase__ ( self ) -> Optional[Any]: # only resize + normalize a_ : Optional[Any] = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=_lowercase , align=_lowercase , do_random_crop=_lowercase ) a_ : int = SegformerForSemanticSegmentation.from_pretrained( """nvidia/segformer-b1-finetuned-cityscapes-1024-1024""" ).to(_lowercase ) a_ : Any = prepare_img() a_ : List[Any] = image_processor(images=_lowercase , return_tensors="""pt""" ) a_ : Optional[int] = encoded_inputs.pixel_values.to(_lowercase ) with torch.no_grad(): a_ : List[str] = model(_lowercase ) a_ : Tuple = torch.Size((1, model.config.num_labels, 128, 128) ) self.assertEqual(outputs.logits.shape , _lowercase ) a_ : Any = torch.tensor( [ [[-1_3.5_7_4_8, -1_3.9_1_1_1, -1_2.6_5_0_0], [-1_4.3_5_0_0, -1_5.3_6_8_3, -1_4.2_3_2_8], [-1_4.7_5_3_2, -1_6.0_4_2_4, -1_5.6_0_8_7]], [[-1_7.1_6_5_1, -1_5.8_7_2_5, -1_2.9_6_5_3], [-1_7.2_5_8_0, -1_7.3_7_1_8, -1_4.8_2_2_3], [-1_6.6_0_5_8, -1_6.8_7_8_3, -1_6.7_4_5_2]], [[-3.6_4_5_6, -3.0_2_0_9, -1.4_2_0_3], [-3.0_7_9_7, -3.1_9_5_9, -2.0_0_0_0], [-1.8_7_5_7, -1.9_2_1_7, -1.6_9_9_7]], ] ).to(_lowercase ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , _lowercase , atol=1e-1 ) ) @slow def UpperCamelCase__ ( self ) -> List[str]: # only resize + normalize a_ : Tuple = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=_lowercase , align=_lowercase , do_random_crop=_lowercase ) a_ : str = SegformerForSemanticSegmentation.from_pretrained("""nvidia/segformer-b0-finetuned-ade-512-512""" ).to( _lowercase ) a_ : int = prepare_img() a_ : Any = image_processor(images=_lowercase , return_tensors="""pt""" ) a_ : Optional[int] = encoded_inputs.pixel_values.to(_lowercase ) with torch.no_grad(): a_ : Any = model(_lowercase ) a_ : str = outputs.logits.detach().cpu() a_ : int = image_processor.post_process_semantic_segmentation(outputs=_lowercase , target_sizes=[(500, 300)] ) a_ : Any = torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape , _lowercase ) a_ : Tuple = image_processor.post_process_semantic_segmentation(outputs=_lowercase ) a_ : Optional[Any] = torch.Size((128, 128) ) self.assertEqual(segmentation[0].shape , _lowercase )
540
1
import math def A_ ( snake_case : Optional[Any] ) -> bool: '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__SCREAMING_SNAKE_CASE ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def A_ ( snake_case : Union[str, Any] = 10001 ) -> int: '''simple docstring''' try: __UpperCamelCase = int(__SCREAMING_SNAKE_CASE ) except (TypeError, ValueError): raise TypeError('''Parameter nth must be int or castable to int.''' ) from None if nth <= 0: raise ValueError('''Parameter nth must be greater than or equal to one.''' ) __UpperCamelCase = [] __UpperCamelCase = 2 while len(__SCREAMING_SNAKE_CASE ) < nth: if is_prime(__SCREAMING_SNAKE_CASE ): primes.append(__SCREAMING_SNAKE_CASE ) num += 1 else: num += 1 return primes[len(__SCREAMING_SNAKE_CASE ) - 1] if __name__ == "__main__": print(F"{solution() = }")
701
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING lowercase__ : Tuple = logging.get_logger(__name__) lowercase__ : int = { "microsoft/table-transformer-detection": ( "https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json" ), } class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" _snake_case = 'table-transformer' _snake_case = ['past_key_values'] _snake_case = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=100 , SCREAMING_SNAKE_CASE_=6 , SCREAMING_SNAKE_CASE_=2048 , SCREAMING_SNAKE_CASE_=8 , SCREAMING_SNAKE_CASE_=6 , SCREAMING_SNAKE_CASE_=2048 , SCREAMING_SNAKE_CASE_=8 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_="relu" , SCREAMING_SNAKE_CASE_=256 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=1.0 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_="sine" , SCREAMING_SNAKE_CASE_="resnet50" , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.1 , **SCREAMING_SNAKE_CASE_ , )-> Tuple: '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' ) if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) __UpperCamelCase = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] ) elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): __UpperCamelCase = backbone_config.get('''model_type''' ) __UpperCamelCase = CONFIG_MAPPING[backbone_model_type] __UpperCamelCase = config_class.from_dict(SCREAMING_SNAKE_CASE_ ) # set timm attributes to None __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = None, None, None __UpperCamelCase = use_timm_backbone __UpperCamelCase = backbone_config __UpperCamelCase = num_channels __UpperCamelCase = num_queries __UpperCamelCase = d_model __UpperCamelCase = encoder_ffn_dim __UpperCamelCase = encoder_layers __UpperCamelCase = encoder_attention_heads __UpperCamelCase = decoder_ffn_dim __UpperCamelCase = decoder_layers __UpperCamelCase = decoder_attention_heads __UpperCamelCase = dropout __UpperCamelCase = attention_dropout __UpperCamelCase = activation_dropout __UpperCamelCase = activation_function __UpperCamelCase = init_std __UpperCamelCase = init_xavier_std __UpperCamelCase = encoder_layerdrop __UpperCamelCase = decoder_layerdrop __UpperCamelCase = encoder_layers __UpperCamelCase = auxiliary_loss __UpperCamelCase = position_embedding_type __UpperCamelCase = backbone __UpperCamelCase = use_pretrained_backbone __UpperCamelCase = dilation # Hungarian matcher __UpperCamelCase = class_cost __UpperCamelCase = bbox_cost __UpperCamelCase = giou_cost # Loss coefficients __UpperCamelCase = mask_loss_coefficient __UpperCamelCase = dice_loss_coefficient __UpperCamelCase = bbox_loss_coefficient __UpperCamelCase = giou_loss_coefficient __UpperCamelCase = eos_coefficient super().__init__(is_encoder_decoder=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) @property def A__ ( self )-> int: '''simple docstring''' return self.encoder_attention_heads @property def A__ ( self )-> int: '''simple docstring''' return self.d_model class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" _snake_case = version.parse('1.11' ) @property def A__ ( self )-> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''pixel_mask''', {0: '''batch'''}), ] ) @property def A__ ( self )-> float: '''simple docstring''' return 1E-5 @property def A__ ( self )-> int: '''simple docstring''' return 12
451
0
'''simple docstring''' def A_( A : int): UpperCamelCase , UpperCamelCase = [], [] while len(A) > 1: UpperCamelCase , UpperCamelCase = min(A), max(A) start.append(A) end.append(A) collection.remove(A) collection.remove(A) end.reverse() return start + collection + end if __name__ == "__main__": lowerCAmelCase : Union[str, Any] = input('Enter numbers separated by a comma:\n').strip() lowerCAmelCase : Dict = [int(item) for item in user_input.split(',')] print(*merge_sort(unsorted), sep=',')
3
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL _lowercase : Tuple =logging.get_logger(__name__) class UpperCamelCase_ ( snake_case__ ): _a : List[str] = ['pixel_values'] def __init__( self : List[Any] , lowerCamelCase : bool = True , lowerCamelCase : Dict[str, int] = None , lowerCamelCase : PILImageResampling = PILImageResampling.BICUBIC , lowerCamelCase : bool = True , lowerCamelCase : Union[int, float] = 1 / 2_55 , lowerCamelCase : bool = True , lowerCamelCase : Optional[Union[float, List[float]]] = None , lowerCamelCase : Optional[Union[float, List[float]]] = None , lowerCamelCase : bool = True , **lowerCamelCase : Optional[Any] , ): super().__init__(**lowerCamelCase ) lowerCamelCase_ : List[Any] = size if size is not None else {'height': 3_84, 'width': 3_84} lowerCamelCase_ : List[str] = get_size_dict(lowerCamelCase , default_to_square=lowerCamelCase ) lowerCamelCase_ : Dict = do_resize lowerCamelCase_ : int = size lowerCamelCase_ : Union[str, Any] = resample lowerCamelCase_ : Tuple = do_rescale lowerCamelCase_ : Dict = rescale_factor lowerCamelCase_ : int = do_normalize lowerCamelCase_ : Any = image_mean if image_mean is not None else OPENAI_CLIP_MEAN lowerCamelCase_ : str = image_std if image_std is not None else OPENAI_CLIP_STD lowerCamelCase_ : int = do_convert_rgb def __a ( self : Tuple , lowerCamelCase : np.ndarray , lowerCamelCase : Dict[str, int] , lowerCamelCase : PILImageResampling = PILImageResampling.BICUBIC , lowerCamelCase : Optional[Union[str, ChannelDimension]] = None , **lowerCamelCase : List[Any] , ): lowerCamelCase_ : List[Any] = get_size_dict(lowerCamelCase , default_to_square=lowerCamelCase ) if "height" not in size or "width" not in size: raise ValueError(F"The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}" ) lowerCamelCase_ : Optional[Any] = (size['height'], size['width']) return resize(lowerCamelCase , size=lowerCamelCase , resample=lowerCamelCase , data_format=lowerCamelCase , **lowerCamelCase ) def __a ( self : Union[str, Any] , lowerCamelCase : np.ndarray , lowerCamelCase : Union[int, float] , lowerCamelCase : Optional[Union[str, ChannelDimension]] = None , **lowerCamelCase : Union[str, Any] , ): return rescale(lowerCamelCase , scale=lowerCamelCase , data_format=lowerCamelCase , **lowerCamelCase ) def __a ( self : str , lowerCamelCase : np.ndarray , lowerCamelCase : Union[float, List[float]] , lowerCamelCase : Union[float, List[float]] , lowerCamelCase : Optional[Union[str, ChannelDimension]] = None , **lowerCamelCase : Optional[int] , ): return normalize(lowerCamelCase , mean=lowerCamelCase , std=lowerCamelCase , data_format=lowerCamelCase , **lowerCamelCase ) def __a ( self : List[Any] , lowerCamelCase : ImageInput , lowerCamelCase : Optional[bool] = None , lowerCamelCase : Optional[Dict[str, int]] = None , lowerCamelCase : PILImageResampling = None , lowerCamelCase : Optional[bool] = None , lowerCamelCase : Optional[float] = None , lowerCamelCase : Optional[bool] = None , lowerCamelCase : Optional[Union[float, List[float]]] = None , lowerCamelCase : Optional[Union[float, List[float]]] = None , lowerCamelCase : Optional[Union[str, TensorType]] = None , lowerCamelCase : bool = None , lowerCamelCase : ChannelDimension = ChannelDimension.FIRST , **lowerCamelCase : Any , ): lowerCamelCase_ : Optional[Any] = do_resize if do_resize is not None else self.do_resize lowerCamelCase_ : int = resample if resample is not None else self.resample lowerCamelCase_ : Dict = do_rescale if do_rescale is not None else self.do_rescale lowerCamelCase_ : Any = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCamelCase_ : str = do_normalize if do_normalize is not None else self.do_normalize lowerCamelCase_ : List[str] = image_mean if image_mean is not None else self.image_mean lowerCamelCase_ : str = image_std if image_std is not None else self.image_std lowerCamelCase_ : int = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb lowerCamelCase_ : Union[str, Any] = size if size is not None else self.size lowerCamelCase_ : Optional[int] = get_size_dict(lowerCamelCase , default_to_square=lowerCamelCase ) lowerCamelCase_ : Dict = make_list_of_images(lowerCamelCase ) if not valid_images(lowerCamelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # PIL RGBA images are converted to RGB if do_convert_rgb: lowerCamelCase_ : int = [convert_to_rgb(lowerCamelCase ) for image in images] # All transformations expect numpy arrays. lowerCamelCase_ : List[Any] = [to_numpy_array(lowerCamelCase ) for image in images] if do_resize: lowerCamelCase_ : Optional[int] = [self.resize(image=lowerCamelCase , size=lowerCamelCase , resample=lowerCamelCase ) for image in images] if do_rescale: lowerCamelCase_ : Dict = [self.rescale(image=lowerCamelCase , scale=lowerCamelCase ) for image in images] if do_normalize: lowerCamelCase_ : Optional[int] = [self.normalize(image=lowerCamelCase , mean=lowerCamelCase , std=lowerCamelCase ) for image in images] lowerCamelCase_ : Optional[int] = [to_channel_dimension_format(lowerCamelCase , lowerCamelCase ) for image in images] lowerCamelCase_ : Optional[int] = BatchFeature(data={'pixel_values': images} , tensor_type=lowerCamelCase ) return encoded_outputs
364
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase : List[Any] = logging.get_logger(__name__) __lowerCamelCase : Tuple = { '''RWKV/rwkv-4-169m-pile''': '''https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-430m-pile''': '''https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-1b5-pile''': '''https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json''', '''RWKV/rwkv-4-3b-pile''': '''https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-7b-pile''': '''https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-14b-pile''': '''https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json''', '''RWKV/rwkv-raven-1b5''': '''https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json''', '''RWKV/rwkv-raven-3b''': '''https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json''', '''RWKV/rwkv-raven-7b''': '''https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json''', '''RWKV/rwkv-raven-14b''': '''https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json''', } class lowerCamelCase ( _lowerCamelCase ): '''simple docstring''' UpperCamelCase__ ='''rwkv''' UpperCamelCase__ ={'''max_position_embeddings''': '''context_length'''} def __init__( self : Union[str, Any] , lowerCamelCase_ : Any=50277 , lowerCamelCase_ : Optional[int]=1024 , lowerCamelCase_ : List[Any]=4096 , lowerCamelCase_ : str=32 , lowerCamelCase_ : Dict=None , lowerCamelCase_ : List[str]=None , lowerCamelCase_ : List[str]=1E-5 , lowerCamelCase_ : str=0 , lowerCamelCase_ : Optional[int]=0 , lowerCamelCase_ : List[Any]=6 , lowerCamelCase_ : Tuple=False , lowerCamelCase_ : Any=True , **lowerCamelCase_ : Optional[int] , ) -> Tuple: __magic_name__ : Optional[int] = vocab_size __magic_name__ : Any = context_length __magic_name__ : Tuple = hidden_size __magic_name__ : Any = num_hidden_layers __magic_name__ : List[str] = attention_hidden_size if attention_hidden_size is not None else hidden_size __magic_name__ : List[str] = intermediate_size if intermediate_size is not None else 4 * hidden_size __magic_name__ : str = layer_norm_epsilon __magic_name__ : List[Any] = rescale_every __magic_name__ : Any = use_cache __magic_name__ : str = bos_token_id __magic_name__ : Tuple = eos_token_id super().__init__( tie_word_embeddings=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , **lowerCamelCase_ )
501
# flake8: noqa # Lint as: python3 from typing import Dict, List, Optional, Type from .. import config from ..utils import logging from .formatting import ( ArrowFormatter, CustomFormatter, Formatter, PandasFormatter, PythonFormatter, TensorFormatter, format_table, query_table, ) from .np_formatter import NumpyFormatter __lowerCamelCase : int = logging.get_logger(__name__) __lowerCamelCase : Dict[Optional[str], Type[Formatter]] = {} __lowerCamelCase : Dict[Optional[str], str] = {} __lowerCamelCase : Dict[Optional[str], Exception] = {} def lowercase__ ( __A: type ,__A: Optional[str] ,__A: Optional[List[str]] = None ,): '''simple docstring''' __magic_name__ : Union[str, Any] = aliases if aliases is not None else [] if format_type in _FORMAT_TYPES: logger.warning( F'''Overwriting format type \'{format_type}\' ({_FORMAT_TYPES[format_type].__name__} -> {formatter_cls.__name__})''' ) __magic_name__ : Tuple = formatter_cls for alias in set(aliases + [format_type] ): if alias in _FORMAT_TYPES_ALIASES: logger.warning( F'''Overwriting format type alias \'{alias}\' ({_FORMAT_TYPES_ALIASES[alias]} -> {format_type})''' ) __magic_name__ : Optional[int] = format_type def lowercase__ ( __A: Exception ,__A: Optional[str] ,__A: Optional[List[str]] = None ): '''simple docstring''' __magic_name__ : Union[str, Any] = aliases if aliases is not None else [] for alias in set(aliases + [format_type] ): __magic_name__ : List[str] = unavailable_error # Here we define all the available formatting functions that can be used by `Dataset.set_format` _register_formatter(PythonFormatter, None, aliases=['''python''']) _register_formatter(ArrowFormatter, '''arrow''', aliases=['''pa''', '''pyarrow''']) _register_formatter(NumpyFormatter, '''numpy''', aliases=['''np''']) _register_formatter(PandasFormatter, '''pandas''', aliases=['''pd''']) _register_formatter(CustomFormatter, '''custom''') if config.TORCH_AVAILABLE: from .torch_formatter import TorchFormatter _register_formatter(TorchFormatter, '''torch''', aliases=['''pt''', '''pytorch''']) else: __lowerCamelCase : str = ValueError('''PyTorch needs to be installed to be able to return PyTorch tensors.''') _register_unavailable_formatter(_torch_error, '''torch''', aliases=['''pt''', '''pytorch''']) if config.TF_AVAILABLE: from .tf_formatter import TFFormatter _register_formatter(TFFormatter, '''tensorflow''', aliases=['''tf''']) else: __lowerCamelCase : int = ValueError('''Tensorflow needs to be installed to be able to return Tensorflow tensors.''') _register_unavailable_formatter(_tf_error, '''tensorflow''', aliases=['''tf''']) if config.JAX_AVAILABLE: from .jax_formatter import JaxFormatter _register_formatter(JaxFormatter, '''jax''', aliases=[]) else: __lowerCamelCase : str = ValueError('''JAX needs to be installed to be able to return JAX arrays.''') _register_unavailable_formatter(_jax_error, '''jax''', aliases=[]) def lowercase__ ( __A: Optional[str] ): '''simple docstring''' if format_type in _FORMAT_TYPES_ALIASES: return _FORMAT_TYPES_ALIASES[format_type] else: return format_type def lowercase__ ( __A: Optional[str] ,**__A: Any ): '''simple docstring''' __magic_name__ : Tuple = get_format_type_from_alias(__A ) if format_type in _FORMAT_TYPES: return _FORMAT_TYPES[format_type](**__A ) if format_type in _FORMAT_TYPES_ALIASES_UNAVAILABLE: raise _FORMAT_TYPES_ALIASES_UNAVAILABLE[format_type] else: raise ValueError( F'''Return type should be None or selected in {list(type for type in _FORMAT_TYPES.keys() if type != None )}, but got \'{format_type}\'''' )
501
1
import pytest from datasets.splits import SplitDict, SplitInfo from datasets.utils.py_utils import asdict @pytest.mark.parametrize( "split_dict" , [ SplitDict(), SplitDict({"train": SplitInfo(name="train" , num_bytes=1_3_3_7 , num_examples=4_2 , dataset_name="my_dataset" )} ), SplitDict({"train": SplitInfo(name="train" , num_bytes=1_3_3_7 , num_examples=4_2 )} ), SplitDict({"train": SplitInfo()} ), ] , ) def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =split_dict._to_yaml_list() assert len(lowercase__ ) == len(lowercase__ ) UpperCAmelCase_ =SplitDict._from_yaml_list(lowercase__ ) for split_name, split_info in split_dict.items(): # dataset_name field is deprecated, and is therefore not part of the YAML dump UpperCAmelCase_ =None # the split name of split_dict takes over the name of the split info object UpperCAmelCase_ =split_name assert split_dict == reloaded @pytest.mark.parametrize( "split_info" , [SplitInfo(), SplitInfo(dataset_name=lowercase__ ), SplitInfo(dataset_name="my_dataset" )] ) def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =asdict(SplitDict({"train": split_info} ) ) assert "dataset_name" in split_dict_asdict["train"] assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
54
from __future__ import annotations def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ , lowercase__ = position lowercase__ = [ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] lowercase__ = [] for position in positions: lowercase__ , lowercase__ = position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(SCREAMING_SNAKE_CASE ) return permissible_positions def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" return not any(elem == 0 for row in board for elem in row ) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" if is_complete(SCREAMING_SNAKE_CASE ): return True for position in get_valid_pos(SCREAMING_SNAKE_CASE , len(SCREAMING_SNAKE_CASE ) ): lowercase__ , lowercase__ = position if board[y][x] == 0: lowercase__ = curr + 1 if open_knight_tour_helper(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , curr + 1 ): return True lowercase__ = 0 return False def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = [[0 for i in range(SCREAMING_SNAKE_CASE )] for j in range(SCREAMING_SNAKE_CASE )] for i in range(SCREAMING_SNAKE_CASE ): for j in range(SCREAMING_SNAKE_CASE ): lowercase__ = 1 if open_knight_tour_helper(SCREAMING_SNAKE_CASE , (i, j) , 1 ): return board lowercase__ = 0 lowercase__ = f'Open Kight Tour cannot be performed on a board of size {n}' raise ValueError(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
43
0
'''simple docstring''' import math _A = 1_0 _A = 7 _A = BALLS_PER_COLOUR * NUM_COLOURS def _UpperCamelCase ( SCREAMING_SNAKE_CASE_ = 20 ): lowercase_ : int = math.comb(lowerCamelCase_ , lowerCamelCase_ ) lowercase_ : List[str] = math.comb(NUM_BALLS - BALLS_PER_COLOUR , lowerCamelCase_ ) lowercase_ : Dict = NUM_COLOURS * (1 - missing_colour / total) return f'''{result:.9f}''' if __name__ == "__main__": print(solution(2_0))
713
'''simple docstring''' import math import os import sys def _UpperCamelCase ( SCREAMING_SNAKE_CASE_ ): lowercase_ : List[str] = '' try: with open(SCREAMING_SNAKE_CASE_ , 'rb' ) as binary_file: lowercase_ : Dict = binary_file.read() for dat in data: lowercase_ : Union[str, Any] = f'''{dat:08b}''' result += curr_byte return result except OSError: print('File not accessible' ) sys.exit() def _UpperCamelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lexicon.pop(SCREAMING_SNAKE_CASE_ ) lowercase_ : Any = last_match_id if math.loga(SCREAMING_SNAKE_CASE_ ).is_integer(): for curr_key in lexicon: lowercase_ : Tuple = '0' + lexicon[curr_key] lowercase_ : Any = bin(SCREAMING_SNAKE_CASE_ )[2:] def _UpperCamelCase ( SCREAMING_SNAKE_CASE_ ): lowercase_ : Dict = {'0': '0', '1': '1'} lowercase_ ,lowercase_ : Any = '', '' lowercase_ : List[Any] = len(SCREAMING_SNAKE_CASE_ ) for i in range(len(SCREAMING_SNAKE_CASE_ ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue lowercase_ : str = lexicon[curr_string] result += last_match_id add_key_to_lexicon(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) index += 1 lowercase_ : List[Any] = '' while curr_string != "" and curr_string not in lexicon: curr_string += "0" if curr_string != "": lowercase_ : Optional[Any] = lexicon[curr_string] result += last_match_id return result def _UpperCamelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowercase_ : List[str] = os.path.getsize(SCREAMING_SNAKE_CASE_ ) lowercase_ : Any = bin(SCREAMING_SNAKE_CASE_ )[2:] lowercase_ : Optional[Any] = len(SCREAMING_SNAKE_CASE_ ) return "0" * (length_length - 1) + file_length_binary + compressed def _UpperCamelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowercase_ : List[str] = 8 try: with open(SCREAMING_SNAKE_CASE_ , 'wb' ) as opened_file: lowercase_ : List[Any] = [ to_write[i : i + byte_length] for i in range(0 , len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append('10000000' ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array: opened_file.write(int(SCREAMING_SNAKE_CASE_ , 2 ).to_bytes(1 , byteorder='big' ) ) except OSError: print('File not accessible' ) sys.exit() def _UpperCamelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowercase_ : List[str] = read_file_binary(SCREAMING_SNAKE_CASE_ ) lowercase_ : List[str] = compress_data(SCREAMING_SNAKE_CASE_ ) lowercase_ : Union[str, Any] = add_file_length(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) write_file_binary(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
438
0
import argparse import tensorflow as tf import torch from transformers import BertConfig, BertForMaskedLM from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertPooler, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging logging.set_verbosity_info() def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> List[str]: def get_masked_lm_array(__lowerCAmelCase ): snake_case__ = F"""masked_lm/{name}/.ATTRIBUTES/VARIABLE_VALUE""" snake_case__ = tf.train.load_variable(__lowerCAmelCase , __lowerCAmelCase ) if "kernel" in name: snake_case__ = array.transpose() return torch.from_numpy(__lowerCAmelCase ) def get_encoder_array(__lowerCAmelCase ): snake_case__ = F"""encoder/{name}/.ATTRIBUTES/VARIABLE_VALUE""" snake_case__ = tf.train.load_variable(__lowerCAmelCase , __lowerCAmelCase ) if "kernel" in name: snake_case__ = array.transpose() return torch.from_numpy(__lowerCAmelCase ) def get_encoder_layer_array(__lowerCAmelCase , __lowerCAmelCase ): snake_case__ = F"""encoder/_transformer_layers/{layer_index}/{name}/.ATTRIBUTES/VARIABLE_VALUE""" snake_case__ = tf.train.load_variable(__lowerCAmelCase , __lowerCAmelCase ) if "kernel" in name: snake_case__ = array.transpose() return torch.from_numpy(__lowerCAmelCase ) def get_encoder_attention_layer_array(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): snake_case__ = F"""encoder/_transformer_layers/{layer_index}/_attention_layer/{name}/.ATTRIBUTES/VARIABLE_VALUE""" snake_case__ = tf.train.load_variable(__lowerCAmelCase , __lowerCAmelCase ) snake_case__ = array.reshape(__lowerCAmelCase ) if "kernel" in name: snake_case__ = array.transpose() return torch.from_numpy(__lowerCAmelCase ) print(F"""Loading model based on config from {config_path}...""" ) snake_case__ = BertConfig.from_json_file(__lowerCAmelCase ) snake_case__ = BertForMaskedLM(__lowerCAmelCase ) # Layers for layer_index in range(0 , config.num_hidden_layers ): snake_case__ = model.bert.encoder.layer[layer_index] # Self-attention snake_case__ = layer.attention.self snake_case__ = get_encoder_attention_layer_array( __lowerCAmelCase , '''_query_dense/kernel''' , self_attn.query.weight.data.shape ) snake_case__ = get_encoder_attention_layer_array( __lowerCAmelCase , '''_query_dense/bias''' , self_attn.query.bias.data.shape ) snake_case__ = get_encoder_attention_layer_array( __lowerCAmelCase , '''_key_dense/kernel''' , self_attn.key.weight.data.shape ) snake_case__ = get_encoder_attention_layer_array( __lowerCAmelCase , '''_key_dense/bias''' , self_attn.key.bias.data.shape ) snake_case__ = get_encoder_attention_layer_array( __lowerCAmelCase , '''_value_dense/kernel''' , self_attn.value.weight.data.shape ) snake_case__ = get_encoder_attention_layer_array( __lowerCAmelCase , '''_value_dense/bias''' , self_attn.value.bias.data.shape ) # Self-attention Output snake_case__ = layer.attention.output snake_case__ = get_encoder_attention_layer_array( __lowerCAmelCase , '''_output_dense/kernel''' , self_output.dense.weight.data.shape ) snake_case__ = get_encoder_attention_layer_array( __lowerCAmelCase , '''_output_dense/bias''' , self_output.dense.bias.data.shape ) snake_case__ = get_encoder_layer_array(__lowerCAmelCase , '''_attention_layer_norm/gamma''' ) snake_case__ = get_encoder_layer_array(__lowerCAmelCase , '''_attention_layer_norm/beta''' ) # Intermediate snake_case__ = layer.intermediate snake_case__ = get_encoder_layer_array(__lowerCAmelCase , '''_intermediate_dense/kernel''' ) snake_case__ = get_encoder_layer_array(__lowerCAmelCase , '''_intermediate_dense/bias''' ) # Output snake_case__ = layer.output snake_case__ = get_encoder_layer_array(__lowerCAmelCase , '''_output_dense/kernel''' ) snake_case__ = get_encoder_layer_array(__lowerCAmelCase , '''_output_dense/bias''' ) snake_case__ = get_encoder_layer_array(__lowerCAmelCase , '''_output_layer_norm/gamma''' ) snake_case__ = get_encoder_layer_array(__lowerCAmelCase , '''_output_layer_norm/beta''' ) # Embeddings snake_case__ = get_encoder_array('''_position_embedding_layer/embeddings''' ) snake_case__ = get_encoder_array('''_type_embedding_layer/embeddings''' ) snake_case__ = get_encoder_array('''_embedding_norm_layer/gamma''' ) snake_case__ = get_encoder_array('''_embedding_norm_layer/beta''' ) # LM Head snake_case__ = model.cls.predictions.transform snake_case__ = get_masked_lm_array('''dense/kernel''' ) snake_case__ = get_masked_lm_array('''dense/bias''' ) snake_case__ = get_masked_lm_array('''layer_norm/gamma''' ) snake_case__ = get_masked_lm_array('''layer_norm/beta''' ) snake_case__ = get_masked_lm_array('''embedding_table''' ) # Pooling snake_case__ = BertPooler(config=__lowerCAmelCase ) snake_case__ = get_encoder_array('''_pooler_layer/kernel''' ) snake_case__ = get_encoder_array('''_pooler_layer/bias''' ) # Export final model model.save_pretrained(__lowerCAmelCase ) # Integration test - should load without any errors ;) snake_case__ = BertForMaskedLM.from_pretrained(__lowerCAmelCase ) print(new_model.eval() ) print('''Model conversion was done sucessfully!''' ) if __name__ == "__main__": lowerCamelCase__ : List[str] = argparse.ArgumentParser() parser.add_argument( """--tf_checkpoint_path""", type=str, required=True, help="""Path to the TensorFlow Token Dropping checkpoint path.""" ) parser.add_argument( """--bert_config_file""", type=str, required=True, help="""The config json file corresponding to the BERT model. This specifies the model architecture.""", ) parser.add_argument( """--pytorch_dump_path""", type=str, required=True, help="""Path to the output PyTorch model.""", ) lowerCamelCase__ : int = parser.parse_args() convert_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
33
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class a ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self ) -> str: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def UpperCAmelCase ( self ) -> Any: _A = 1 _A = 3 _A = (32, 32) _A = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(lowerCAmelCase_ ) return image @property def UpperCAmelCase ( self ) -> List[Any]: torch.manual_seed(0 ) _A = UNetaDConditionModel( block_out_channels=(32, 32, 64) , layers_per_block=2 , sample_size=32 , in_channels=7 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=8 , use_linear_projection=lowerCAmelCase_ , only_cross_attention=(True, True, False) , num_class_embeds=1_00 , ) return model @property def UpperCAmelCase ( self ) -> int: torch.manual_seed(0 ) _A = AutoencoderKL( block_out_channels=[32, 32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) return model @property def UpperCAmelCase ( self ) -> Any: torch.manual_seed(0 ) _A = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="""gelu""" , projection_dim=5_12 , ) return CLIPTextModel(lowerCAmelCase_ ) def UpperCAmelCase ( self ) -> int: _A = """cpu""" # ensure determinism for the device-dependent torch.Generator _A = self.dummy_cond_unet_upscale _A = DDPMScheduler() _A = DDIMScheduler(prediction_type="""v_prediction""" ) _A = self.dummy_vae _A = self.dummy_text_encoder _A = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) _A = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] _A = Image.fromarray(np.uinta(lowerCAmelCase_ ) ).convert("""RGB""" ).resize((64, 64) ) # make sure here that pndm scheduler skips prk _A = StableDiffusionUpscalePipeline( unet=lowerCAmelCase_ , low_res_scheduler=lowerCAmelCase_ , scheduler=lowerCAmelCase_ , vae=lowerCAmelCase_ , text_encoder=lowerCAmelCase_ , tokenizer=lowerCAmelCase_ , max_noise_level=3_50 , ) _A = sd_pipe.to(lowerCAmelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _A = """A painting of a squirrel eating a burger""" _A = torch.Generator(device=lowerCAmelCase_ ).manual_seed(0 ) _A = sd_pipe( [prompt] , image=lowerCAmelCase_ , generator=lowerCAmelCase_ , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="""np""" , ) _A = output.images _A = torch.Generator(device=lowerCAmelCase_ ).manual_seed(0 ) _A = sd_pipe( [prompt] , image=lowerCAmelCase_ , generator=lowerCAmelCase_ , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="""np""" , return_dict=lowerCAmelCase_ , )[0] _A = image[0, -3:, -3:, -1] _A = image_from_tuple[0, -3:, -3:, -1] _A = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) _A = np.array([0.3113, 0.3910, 0.4272, 0.4859, 0.5061, 0.4652, 0.5362, 0.5715, 0.5661] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase ( self ) -> str: _A = """cpu""" # ensure determinism for the device-dependent torch.Generator _A = self.dummy_cond_unet_upscale _A = DDPMScheduler() _A = DDIMScheduler(prediction_type="""v_prediction""" ) _A = self.dummy_vae _A = self.dummy_text_encoder _A = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) _A = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] _A = Image.fromarray(np.uinta(lowerCAmelCase_ ) ).convert("""RGB""" ).resize((64, 64) ) # make sure here that pndm scheduler skips prk _A = StableDiffusionUpscalePipeline( unet=lowerCAmelCase_ , low_res_scheduler=lowerCAmelCase_ , scheduler=lowerCAmelCase_ , vae=lowerCAmelCase_ , text_encoder=lowerCAmelCase_ , tokenizer=lowerCAmelCase_ , max_noise_level=3_50 , ) _A = sd_pipe.to(lowerCAmelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _A = """A painting of a squirrel eating a burger""" _A = sd_pipe( 2 * [prompt] , image=2 * [low_res_image] , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="""np""" , ) _A = output.images assert image.shape[0] == 2 _A = torch.Generator(device=lowerCAmelCase_ ).manual_seed(0 ) _A = sd_pipe( [prompt] , image=lowerCAmelCase_ , generator=lowerCAmelCase_ , num_images_per_prompt=2 , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="""np""" , ) _A = output.images assert image.shape[0] == 2 @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def UpperCAmelCase ( self ) -> Union[str, Any]: _A = self.dummy_cond_unet_upscale _A = DDPMScheduler() _A = DDIMScheduler(prediction_type="""v_prediction""" ) _A = self.dummy_vae _A = self.dummy_text_encoder _A = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) _A = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] _A = Image.fromarray(np.uinta(lowerCAmelCase_ ) ).convert("""RGB""" ).resize((64, 64) ) # put models in fp16, except vae as it overflows in fp16 _A = unet.half() _A = text_encoder.half() # make sure here that pndm scheduler skips prk _A = StableDiffusionUpscalePipeline( unet=lowerCAmelCase_ , low_res_scheduler=lowerCAmelCase_ , scheduler=lowerCAmelCase_ , vae=lowerCAmelCase_ , text_encoder=lowerCAmelCase_ , tokenizer=lowerCAmelCase_ , max_noise_level=3_50 , ) _A = sd_pipe.to(lowerCAmelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _A = """A painting of a squirrel eating a burger""" _A = torch.manual_seed(0 ) _A = sd_pipe( [prompt] , image=lowerCAmelCase_ , generator=lowerCAmelCase_ , num_inference_steps=2 , output_type="""np""" , ).images _A = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) @slow @require_torch_gpu class a ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self ) -> List[str]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase ( self ) -> Optional[Any]: _A = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-upscale/low_res_cat.png""" ) _A = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale""" """/upsampled_cat.npy""" ) _A = """stabilityai/stable-diffusion-x4-upscaler""" _A = StableDiffusionUpscalePipeline.from_pretrained(lowerCAmelCase_ ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) pipe.enable_attention_slicing() _A = """a cat sitting on a park bench""" _A = torch.manual_seed(0 ) _A = pipe( prompt=lowerCAmelCase_ , image=lowerCAmelCase_ , generator=lowerCAmelCase_ , output_type="""np""" , ) _A = output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 1E-3 def UpperCAmelCase ( self ) -> List[str]: _A = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-upscale/low_res_cat.png""" ) _A = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale""" """/upsampled_cat_fp16.npy""" ) _A = """stabilityai/stable-diffusion-x4-upscaler""" _A = StableDiffusionUpscalePipeline.from_pretrained( lowerCAmelCase_ , torch_dtype=torch.floataa , ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) pipe.enable_attention_slicing() _A = """a cat sitting on a park bench""" _A = torch.manual_seed(0 ) _A = pipe( prompt=lowerCAmelCase_ , image=lowerCAmelCase_ , generator=lowerCAmelCase_ , output_type="""np""" , ) _A = output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 5E-1 def UpperCAmelCase ( self ) -> List[Any]: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _A = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-upscale/low_res_cat.png""" ) _A = """stabilityai/stable-diffusion-x4-upscaler""" _A = StableDiffusionUpscalePipeline.from_pretrained( lowerCAmelCase_ , torch_dtype=torch.floataa , ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() _A = """a cat sitting on a park bench""" _A = torch.manual_seed(0 ) _A = pipe( prompt=lowerCAmelCase_ , image=lowerCAmelCase_ , generator=lowerCAmelCase_ , num_inference_steps=5 , output_type="""np""" , ) _A = torch.cuda.max_memory_allocated() # make sure that less than 2.9 GB is allocated assert mem_bytes < 2.9 * 10**9
401
0
"""simple docstring""" from typing import Dict, Iterable, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract __UpperCAmelCase = logging.get_logger(__name__) def lowercase__ ( lowerCAmelCase__ : int , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[Any] ): '''simple docstring''' return [ int(1_0_0_0 * (box[0] / width) ), int(1_0_0_0 * (box[1] / height) ), int(1_0_0_0 * (box[2] / width) ), int(1_0_0_0 * (box[3] / height) ), ] def lowercase__ ( lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : Optional[str] , lowerCAmelCase__ : Optional[str] ): '''simple docstring''' a__ : Any = to_pil_image(lowerCAmelCase__ ) a__ : Optional[int] = pil_image.size a__ : List[Any] = pytesseract.image_to_data(lowerCAmelCase__ , lang=lowerCAmelCase__ , output_type="dict" , config=lowerCAmelCase__ ) a__ : List[str] = data["text"], data["left"], data["top"], data["width"], data["height"] # filter empty words and corresponding coordinates a__ : Dict = [idx for idx, word in enumerate(lowerCAmelCase__ ) if not word.strip()] a__ : List[str] = [word for idx, word in enumerate(lowerCAmelCase__ ) if idx not in irrelevant_indices] a__ : Optional[int] = [coord for idx, coord in enumerate(lowerCAmelCase__ ) if idx not in irrelevant_indices] a__ : Optional[int] = [coord for idx, coord in enumerate(lowerCAmelCase__ ) if idx not in irrelevant_indices] a__ : List[str] = [coord for idx, coord in enumerate(lowerCAmelCase__ ) if idx not in irrelevant_indices] a__ : Tuple = [coord for idx, coord in enumerate(lowerCAmelCase__ ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format a__ : Optional[int] = [] for x, y, w, h in zip(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): a__ : Dict = [x, y, x + w, y + h] actual_boxes.append(lowerCAmelCase__ ) # finally, normalize the bounding boxes a__ : Dict = [] for box in actual_boxes: normalized_boxes.append(normalize_box(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) ) assert len(lowerCAmelCase__ ) == len(lowerCAmelCase__ ), "Not as many words as there are bounding boxes" return words, normalized_boxes class __UpperCAmelCase ( _UpperCamelCase ): __lowerCamelCase : str = ["pixel_values"] def __init__( self : int , a_ : bool = True , a_ : Dict[str, int] = None , a_ : PILImageResampling = PILImageResampling.BILINEAR , a_ : bool = True , a_ : float = 1 / 2_55 , a_ : bool = True , a_ : Union[float, Iterable[float]] = None , a_ : Union[float, Iterable[float]] = None , a_ : bool = True , a_ : Optional[str] = None , a_ : Optional[str] = "" , **a_ : Optional[Any] , ) -> None: '''simple docstring''' super().__init__(**a_ ) a__ : Optional[Any] = size if size is not None else {"height": 2_24, "width": 2_24} a__ : Union[str, Any] = get_size_dict(a_ ) a__ : int = do_resize a__ : List[str] = size a__ : int = resample a__ : Union[str, Any] = do_rescale a__ : Tuple = rescale_value a__ : Dict = do_normalize a__ : Optional[int] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN a__ : str = image_std if image_std is not None else IMAGENET_STANDARD_STD a__ : Dict = apply_ocr a__ : Any = ocr_lang a__ : Tuple = tesseract_config def UpperCAmelCase ( self : Optional[int] , a_ : np.ndarray , a_ : Dict[str, int] , a_ : PILImageResampling = PILImageResampling.BILINEAR , a_ : Optional[Union[str, ChannelDimension]] = None , **a_ : Any , ) -> np.ndarray: '''simple docstring''' a__ : Any = get_size_dict(a_ ) if "height" not in size or "width" not in size: raise ValueError(F"The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}" ) a__ : Any = (size["height"], size["width"]) return resize(a_ , size=a_ , resample=a_ , data_format=a_ , **a_ ) def UpperCAmelCase ( self : List[str] , a_ : np.ndarray , a_ : Union[int, float] , a_ : Optional[Union[str, ChannelDimension]] = None , **a_ : Any , ) -> np.ndarray: '''simple docstring''' return rescale(a_ , scale=a_ , data_format=a_ , **a_ ) def UpperCAmelCase ( self : str , a_ : np.ndarray , a_ : Union[float, Iterable[float]] , a_ : Union[float, Iterable[float]] , a_ : Optional[Union[str, ChannelDimension]] = None , **a_ : List[str] , ) -> np.ndarray: '''simple docstring''' return normalize(a_ , mean=a_ , std=a_ , data_format=a_ , **a_ ) def UpperCAmelCase ( self : str , a_ : ImageInput , a_ : bool = None , a_ : Dict[str, int] = None , a_ : int=None , a_ : bool = None , a_ : float = None , a_ : bool = None , a_ : Union[float, Iterable[float]] = None , a_ : Union[float, Iterable[float]] = None , a_ : bool = None , a_ : Optional[str] = None , a_ : Optional[str] = None , a_ : Optional[Union[str, TensorType]] = None , a_ : ChannelDimension = ChannelDimension.FIRST , **a_ : str , ) -> PIL.Image.Image: '''simple docstring''' a__ : Tuple = do_resize if do_resize is not None else self.do_resize a__ : Optional[int] = size if size is not None else self.size a__ : Tuple = get_size_dict(a_ ) a__ : List[str] = resample if resample is not None else self.resample a__ : str = do_rescale if do_rescale is not None else self.do_rescale a__ : Union[str, Any] = rescale_factor if rescale_factor is not None else self.rescale_factor a__ : Dict = do_normalize if do_normalize is not None else self.do_normalize a__ : Optional[int] = image_mean if image_mean is not None else self.image_mean a__ : Optional[int] = image_std if image_std is not None else self.image_std a__ : Optional[Any] = apply_ocr if apply_ocr is not None else self.apply_ocr a__ : Optional[int] = ocr_lang if ocr_lang is not None else self.ocr_lang a__ : Union[str, Any] = tesseract_config if tesseract_config is not None else self.tesseract_config a__ : List[Any] = make_list_of_images(a_ ) if not valid_images(a_ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("If do_normalize is True, image_mean and image_std must be specified." ) # All transformations expect numpy arrays. a__ : Tuple = [to_numpy_array(a_ ) for image in images] # Tesseract OCR to get words + normalized bounding boxes if apply_ocr: requires_backends(self , "pytesseract" ) a__ : List[Any] = [] a__ : Any = [] for image in images: a__ : int = apply_tesseract(a_ , a_ , a_ ) words_batch.append(a_ ) boxes_batch.append(a_ ) if do_resize: a__ : Dict = [self.resize(image=a_ , size=a_ , resample=a_ ) for image in images] if do_rescale: a__ : Dict = [self.rescale(image=a_ , scale=a_ ) for image in images] if do_normalize: a__ : Optional[int] = [self.normalize(image=a_ , mean=a_ , std=a_ ) for image in images] a__ : Optional[Any] = [to_channel_dimension_format(a_ , a_ ) for image in images] a__ : int = BatchFeature(data={"pixel_values": images} , tensor_type=a_ ) if apply_ocr: a__ : Tuple = words_batch a__ : List[str] = boxes_batch return data
712
"""simple docstring""" import warnings from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { '''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/config.json''', # See all BART models at https://huggingface.co/models?filter=bart } class __UpperCAmelCase ( _UpperCamelCase ): __lowerCamelCase : str = "bart" __lowerCamelCase : Dict = ["past_key_values"] __lowerCamelCase : List[str] = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self : Union[str, Any] , a_ : Union[str, Any]=5_02_65 , a_ : List[str]=10_24 , a_ : str=12 , a_ : Union[str, Any]=40_96 , a_ : Tuple=16 , a_ : List[str]=12 , a_ : int=40_96 , a_ : Tuple=16 , a_ : int=0.0 , a_ : Optional[int]=0.0 , a_ : Dict="gelu" , a_ : Optional[int]=10_24 , a_ : Tuple=0.1 , a_ : str=0.0 , a_ : str=0.0 , a_ : Optional[Any]=0.02 , a_ : Any=0.0 , a_ : int=False , a_ : Dict=True , a_ : List[Any]=3 , a_ : Tuple=1 , a_ : Optional[Any]=0 , a_ : Any=2 , a_ : List[Any]=True , a_ : Dict=2 , a_ : List[str]=2 , **a_ : Dict , ) -> Dict: '''simple docstring''' a__ : List[Any] = vocab_size a__ : Dict = max_position_embeddings a__ : Optional[Any] = d_model a__ : Optional[Any] = encoder_ffn_dim a__ : Union[str, Any] = encoder_layers a__ : Union[str, Any] = encoder_attention_heads a__ : Tuple = decoder_ffn_dim a__ : Union[str, Any] = decoder_layers a__ : Union[str, Any] = decoder_attention_heads a__ : Optional[Any] = dropout a__ : str = attention_dropout a__ : Dict = activation_dropout a__ : List[Any] = activation_function a__ : Dict = init_std a__ : Dict = encoder_layerdrop a__ : List[Any] = decoder_layerdrop a__ : List[Any] = classifier_dropout a__ : Union[str, Any] = use_cache a__ : Any = encoder_layers a__ : str = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( num_labels=a_ , pad_token_id=a_ , bos_token_id=a_ , eos_token_id=a_ , is_encoder_decoder=a_ , decoder_start_token_id=a_ , forced_eos_token_id=a_ , **a_ , ) # ensure backward compatibility for BART CNN models if self.forced_bos_token_id is None and kwargs.get("force_bos_token_to_be_generated" , a_ ): a__ : List[Any] = self.bos_token_id warnings.warn( F"Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. " "The config can simply be saved and uploaded again to be fixed." ) class __UpperCAmelCase ( _UpperCamelCase ): @property def UpperCAmelCase ( self : Optional[int] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: a__ : Optional[Any] = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: a__ : Optional[int] = {0: "batch"} a__ : Dict = {0: "batch", 1: "past_decoder_sequence + sequence"} else: a__ : Dict = {0: "batch", 1: "decoder_sequence"} a__ : Union[str, Any] = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(a_ , direction="inputs" ) elif self.task == "causal-lm": # TODO: figure this case out. a__ : int = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: a__ , a__ : Any = self.num_layers for i in range(a_ ): a__ : Tuple = {0: "batch", 2: "past_sequence + sequence"} a__ : Optional[int] = {0: "batch", 2: "past_sequence + sequence"} else: a__ : List[Any] = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ("decoder_input_ids", {0: "batch", 1: "decoder_sequence"}), ("decoder_attention_mask", {0: "batch", 1: "decoder_sequence"}), ] ) return common_inputs @property def UpperCAmelCase ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: a__ : int = super().outputs else: a__ : Tuple = super(a_ , self ).outputs if self.use_past: a__ , a__ : List[str] = self.num_layers for i in range(a_ ): a__ : List[Any] = {0: "batch", 2: "past_sequence + sequence"} a__ : List[str] = {0: "batch", 2: "past_sequence + sequence"} return common_outputs def UpperCAmelCase ( self : Dict , a_ : PreTrainedTokenizer , a_ : int = -1 , a_ : int = -1 , a_ : bool = False , a_ : Optional[TensorType] = None , ) -> Mapping[str, Any]: '''simple docstring''' a__ : Optional[Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( a_ , a_ , a_ , a_ , a_ ) # Generate decoder inputs a__ : Optional[Any] = seq_length if not self.use_past else 1 a__ : Tuple = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( a_ , a_ , a_ , a_ , a_ ) a__ : Union[str, Any] = {F"decoder_{name}": tensor for name, tensor in decoder_inputs.items()} a__ : str = dict(**a_ , **a_ ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch a__ , a__ : Union[str, Any] = common_inputs["input_ids"].shape a__ : List[Any] = common_inputs["decoder_input_ids"].shape[1] a__ , a__ : Tuple = self.num_attention_heads a__ : List[Any] = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) a__ : List[str] = decoder_seq_length + 3 a__ : Tuple = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) a__ : List[Any] = torch.cat( [common_inputs["decoder_attention_mask"], torch.ones(a_ , a_ )] , dim=1 ) a__ : Tuple = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered a__ , a__ : Any = self.num_layers a__ : Dict = min(a_ , a_ ) a__ : Optional[int] = max(a_ , a_ ) - min_num_layers a__ : str = "encoder" if num_encoder_layers > num_decoder_layers else "decoder" for _ in range(a_ ): common_inputs["past_key_values"].append( ( torch.zeros(a_ ), torch.zeros(a_ ), torch.zeros(a_ ), torch.zeros(a_ ), ) ) # TODO: test this. a__ : List[Any] = encoder_shape if remaining_side_name == "encoder" else decoder_shape for _ in range(a_ , a_ ): common_inputs["past_key_values"].append((torch.zeros(a_ ), torch.zeros(a_ )) ) return common_inputs def UpperCAmelCase ( self : Optional[Any] , a_ : PreTrainedTokenizer , a_ : int = -1 , a_ : int = -1 , a_ : bool = False , a_ : Optional[TensorType] = None , ) -> Mapping[str, Any]: '''simple docstring''' a__ : List[str] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( a_ , a_ , a_ , a_ , a_ ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch a__ , a__ : List[str] = common_inputs["input_ids"].shape # Not using the same length for past_key_values a__ : Any = seqlen + 2 a__ , a__ : Any = self.num_layers a__ , a__ : List[Any] = self.num_attention_heads a__ : Optional[int] = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) a__ : str = common_inputs["attention_mask"].dtype a__ : List[str] = torch.cat( [common_inputs["attention_mask"], torch.ones(a_ , a_ , dtype=a_ )] , dim=1 ) a__ : Optional[Any] = [ (torch.zeros(a_ ), torch.zeros(a_ )) for _ in range(a_ ) ] return common_inputs def UpperCAmelCase ( self : List[Any] , a_ : PreTrainedTokenizer , a_ : int = -1 , a_ : int = -1 , a_ : bool = False , a_ : Optional[TensorType] = None , ) -> Mapping[str, Any]: '''simple docstring''' a__ : Any = compute_effective_axis_dimension( a_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX a__ : Any = tokenizer.num_special_tokens_to_add(a_ ) a__ : Dict = compute_effective_axis_dimension( a_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=a_ ) # Generate dummy inputs according to compute batch and sequence a__ : int = [" ".join([tokenizer.unk_token] ) * seq_length] * batch_size a__ : Any = dict(tokenizer(a_ , return_tensors=a_ ) ) return common_inputs def UpperCAmelCase ( self : List[Any] , a_ : PreTrainedTokenizer , a_ : int = -1 , a_ : int = -1 , a_ : bool = False , a_ : Optional[TensorType] = None , ) -> Mapping[str, Any]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: a__ : List[Any] = self._generate_dummy_inputs_for_default_and_seqaseq_lm( a_ , batch_size=a_ , seq_length=a_ , is_pair=a_ , framework=a_ ) elif self.task == "causal-lm": a__ : Optional[int] = self._generate_dummy_inputs_for_causal_lm( a_ , batch_size=a_ , seq_length=a_ , is_pair=a_ , framework=a_ ) else: a__ : int = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( a_ , batch_size=a_ , seq_length=a_ , is_pair=a_ , framework=a_ ) return common_inputs def UpperCAmelCase ( self : Optional[Any] , a_ : int , a_ : Optional[Any] , a_ : Union[str, Any] , a_ : List[Any] ) -> str: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: a__ : int = super()._flatten_past_key_values_(a_ , a_ , a_ , a_ ) else: a__ : Union[str, Any] = super(a_ , self )._flatten_past_key_values_( a_ , a_ , a_ , a_ )
251
0
import gc import unittest import torch from parameterized import parameterized from diffusers import AutoencoderKL from diffusers.utils import floats_tensor, load_hf_numpy, require_torch_gpu, slow, torch_all_close, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class SCREAMING_SNAKE_CASE ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase_ : List[Any] = AutoencoderKL UpperCamelCase_ : Any = '''sample''' UpperCamelCase_ : int = 1e-2 @property def _A ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE : Tuple = 4 SCREAMING_SNAKE_CASE : Tuple = 3 SCREAMING_SNAKE_CASE : Optional[Any] = (32, 32) SCREAMING_SNAKE_CASE : Dict = floats_tensor((batch_size, num_channels) + sizes ).to(UpperCAmelCase_ ) return {"sample": image} @property def _A ( self : Any ): return (3, 32, 32) @property def _A ( self : str ): return (3, 32, 32) def _A ( self : int ): SCREAMING_SNAKE_CASE : Union[str, Any] = { "block_out_channels": [32, 64], "in_channels": 3, "out_channels": 3, "down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"], "up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"], "latent_channels": 4, } SCREAMING_SNAKE_CASE : List[Any] = self.dummy_input return init_dict, inputs_dict def _A ( self : Optional[int] ): pass def _A ( self : Union[str, Any] ): pass @unittest.skipIf(torch_device == "mps" , "Gradient checkpointing skipped on MPS" ) def _A ( self : Optional[int] ): # enable deterministic behavior for gradient checkpointing SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = self.prepare_init_args_and_inputs_for_common() SCREAMING_SNAKE_CASE : Optional[Any] = self.model_class(**UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) assert not model.is_gradient_checkpointing and model.training SCREAMING_SNAKE_CASE : List[Any] = model(**UpperCAmelCase_ ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model.zero_grad() SCREAMING_SNAKE_CASE : Optional[Any] = torch.randn_like(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = (out - labels).mean() loss.backward() # re-instantiate the model now enabling gradient checkpointing SCREAMING_SNAKE_CASE : Any = self.model_class(**UpperCAmelCase_ ) # clone model model_a.load_state_dict(model.state_dict() ) model_a.to(UpperCAmelCase_ ) model_a.enable_gradient_checkpointing() assert model_a.is_gradient_checkpointing and model_a.training SCREAMING_SNAKE_CASE : List[str] = model_a(**UpperCAmelCase_ ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model_a.zero_grad() SCREAMING_SNAKE_CASE : Optional[int] = (out_a - labels).mean() loss_a.backward() # compare the output and parameters gradients self.assertTrue((loss - loss_a).abs() < 1E-5 ) SCREAMING_SNAKE_CASE : Any = dict(model.named_parameters() ) SCREAMING_SNAKE_CASE : Any = dict(model_a.named_parameters() ) for name, param in named_params.items(): self.assertTrue(torch_all_close(param.grad.data , named_params_a[name].grad.data , atol=5E-5 ) ) def _A ( self : Optional[Any] ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = AutoencoderKL.from_pretrained("fusing/autoencoder-kl-dummy" , output_loading_info=UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) self.assertEqual(len(loading_info["missing_keys"] ) , 0 ) model.to(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def _A ( self : int ): SCREAMING_SNAKE_CASE : List[Any] = AutoencoderKL.from_pretrained("fusing/autoencoder-kl-dummy" ) SCREAMING_SNAKE_CASE : Optional[int] = model.to(UpperCAmelCase_ ) model.eval() if torch_device == "mps": SCREAMING_SNAKE_CASE : Any = torch.manual_seed(0 ) else: SCREAMING_SNAKE_CASE : Tuple = torch.Generator(device=UpperCAmelCase_ ).manual_seed(0 ) SCREAMING_SNAKE_CASE : int = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) SCREAMING_SNAKE_CASE : Any = image.to(UpperCAmelCase_ ) with torch.no_grad(): SCREAMING_SNAKE_CASE : Optional[int] = model(UpperCAmelCase_ , sample_posterior=UpperCAmelCase_ , generator=UpperCAmelCase_ ).sample SCREAMING_SNAKE_CASE : List[Any] = output[0, -1, -3:, -3:].flatten().cpu() # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. if torch_device == "mps": SCREAMING_SNAKE_CASE : List[str] = torch.tensor( [ -4.0_078E-01, -3.8_323E-04, -1.2_681E-01, -1.1_462E-01, 2.0_095E-01, 1.0_893E-01, -8.8_247E-02, -3.0_361E-01, -9.8_644E-03, ] ) elif torch_device == "cpu": SCREAMING_SNAKE_CASE : List[Any] = torch.tensor( [-0.1_352, 0.0_878, 0.0_419, -0.0_818, -0.1_069, 0.0_688, -0.1_458, -0.4_446, -0.0_026] ) else: SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor( [-0.2_421, 0.4_642, 0.2_507, -0.0_438, 0.0_682, 0.3_160, -0.2_018, -0.0_727, 0.2_485] ) self.assertTrue(torch_all_close(UpperCAmelCase_ , UpperCAmelCase_ , rtol=1E-2 ) ) @slow class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _A ( self : List[str] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict ): return f'''gaussian_noise_s={seed}_shape={'_'.join([str(UpperCAmelCase_ ) for s in shape] )}.npy''' def _A ( self : Union[str, Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _A ( self : Tuple , UpperCAmelCase_ : List[Any]=0 , UpperCAmelCase_ : Dict=(4, 3, 512, 512) , UpperCAmelCase_ : Any=False ): SCREAMING_SNAKE_CASE : Optional[int] = torch.floataa if fpaa else torch.floataa SCREAMING_SNAKE_CASE : Dict = torch.from_numpy(load_hf_numpy(self.get_file_format(UpperCAmelCase_ , UpperCAmelCase_ ) ) ).to(UpperCAmelCase_ ).to(UpperCAmelCase_ ) return image def _A ( self : Union[str, Any] , UpperCAmelCase_ : Any="CompVis/stable-diffusion-v1-4" , UpperCAmelCase_ : List[str]=False ): SCREAMING_SNAKE_CASE : int = "fp16" if fpaa else None SCREAMING_SNAKE_CASE : List[str] = torch.floataa if fpaa else torch.floataa SCREAMING_SNAKE_CASE : Any = AutoencoderKL.from_pretrained( UpperCAmelCase_ , subfolder="vae" , torch_dtype=UpperCAmelCase_ , revision=UpperCAmelCase_ , ) model.to(UpperCAmelCase_ ).eval() return model def _A ( self : Optional[Any] , UpperCAmelCase_ : int=0 ): if torch_device == "mps": return torch.manual_seed(UpperCAmelCase_ ) return torch.Generator(device=UpperCAmelCase_ ).manual_seed(UpperCAmelCase_ ) @parameterized.expand( [ # fmt: off [33, [-0.1_603, 0.9_878, -0.0_495, -0.0_790, -0.2_709, 0.8_375, -0.2_060, -0.0_824], [-0.2_395, 0.0_098, 0.0_102, -0.0_709, -0.2_840, -0.0_274, -0.0_718, -0.1_824]], [47, [-0.2_376, 0.1_168, 0.1_332, -0.4_840, -0.2_508, -0.0_791, -0.0_493, -0.4_089], [0.0_350, 0.0_847, 0.0_467, 0.0_344, -0.0_842, -0.0_547, -0.0_633, -0.1_131]], # fmt: on ] ) def _A ( self : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[Any] ): SCREAMING_SNAKE_CASE : Tuple = self.get_sd_vae_model() SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_sd_image(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = self.get_generator(UpperCAmelCase_ ) with torch.no_grad(): SCREAMING_SNAKE_CASE : List[str] = model(UpperCAmelCase_ , generator=UpperCAmelCase_ , sample_posterior=UpperCAmelCase_ ).sample assert sample.shape == image.shape SCREAMING_SNAKE_CASE : List[Any] = sample[-1, -2:, -2:, :2].flatten().float().cpu() SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor(expected_slice_mps if torch_device == "mps" else expected_slice ) assert torch_all_close(UpperCAmelCase_ , UpperCAmelCase_ , atol=3E-3 ) @parameterized.expand( [ # fmt: off [33, [-0.0_513, 0.0_289, 1.3_799, 0.2_166, -0.2_573, -0.0_871, 0.5_103, -0.0_999]], [47, [-0.4_128, -0.1_320, -0.3_704, 0.1_965, -0.4_116, -0.2_332, -0.3_340, 0.2_247]], # fmt: on ] ) @require_torch_gpu def _A ( self : int , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : int ): SCREAMING_SNAKE_CASE : str = self.get_sd_vae_model(fpaa=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = self.get_sd_image(UpperCAmelCase_ , fpaa=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : int = self.get_generator(UpperCAmelCase_ ) with torch.no_grad(): SCREAMING_SNAKE_CASE : Any = model(UpperCAmelCase_ , generator=UpperCAmelCase_ , sample_posterior=UpperCAmelCase_ ).sample assert sample.shape == image.shape SCREAMING_SNAKE_CASE : List[Any] = sample[-1, -2:, :2, -2:].flatten().float().cpu() SCREAMING_SNAKE_CASE : str = torch.tensor(UpperCAmelCase_ ) assert torch_all_close(UpperCAmelCase_ , UpperCAmelCase_ , atol=1E-2 ) @parameterized.expand( [ # fmt: off [33, [-0.1_609, 0.9_866, -0.0_487, -0.0_777, -0.2_716, 0.8_368, -0.2_055, -0.0_814], [-0.2_395, 0.0_098, 0.0_102, -0.0_709, -0.2_840, -0.0_274, -0.0_718, -0.1_824]], [47, [-0.2_377, 0.1_147, 0.1_333, -0.4_841, -0.2_506, -0.0_805, -0.0_491, -0.4_085], [0.0_350, 0.0_847, 0.0_467, 0.0_344, -0.0_842, -0.0_547, -0.0_633, -0.1_131]], # fmt: on ] ) def _A ( self : List[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[Any] ): SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_sd_vae_model() SCREAMING_SNAKE_CASE : Tuple = self.get_sd_image(UpperCAmelCase_ ) with torch.no_grad(): SCREAMING_SNAKE_CASE : List[Any] = model(UpperCAmelCase_ ).sample assert sample.shape == image.shape SCREAMING_SNAKE_CASE : str = sample[-1, -2:, -2:, :2].flatten().float().cpu() SCREAMING_SNAKE_CASE : str = torch.tensor(expected_slice_mps if torch_device == "mps" else expected_slice ) assert torch_all_close(UpperCAmelCase_ , UpperCAmelCase_ , atol=3E-3 ) @parameterized.expand( [ # fmt: off [13, [-0.2_051, -0.1_803, -0.2_311, -0.2_114, -0.3_292, -0.3_574, -0.2_953, -0.3_323]], [37, [-0.2_632, -0.2_625, -0.2_199, -0.2_741, -0.4_539, -0.4_990, -0.3_720, -0.4_925]], # fmt: on ] ) @require_torch_gpu def _A ( self : int , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[Any] ): SCREAMING_SNAKE_CASE : Dict = self.get_sd_vae_model() SCREAMING_SNAKE_CASE : Any = self.get_sd_image(UpperCAmelCase_ , shape=(3, 4, 64, 64) ) with torch.no_grad(): SCREAMING_SNAKE_CASE : Optional[Any] = model.decode(UpperCAmelCase_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] SCREAMING_SNAKE_CASE : Dict = sample[-1, -2:, :2, -2:].flatten().cpu() SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor(UpperCAmelCase_ ) assert torch_all_close(UpperCAmelCase_ , UpperCAmelCase_ , atol=1E-3 ) @parameterized.expand( [ # fmt: off [27, [-0.0_369, 0.0_207, -0.0_776, -0.0_682, -0.1_747, -0.1_930, -0.1_465, -0.2_039]], [16, [-0.1_628, -0.2_134, -0.2_747, -0.2_642, -0.3_774, -0.4_404, -0.3_687, -0.4_277]], # fmt: on ] ) @require_torch_gpu def _A ( self : Union[str, Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Dict ): SCREAMING_SNAKE_CASE : str = self.get_sd_vae_model(fpaa=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Tuple = self.get_sd_image(UpperCAmelCase_ , shape=(3, 4, 64, 64) , fpaa=UpperCAmelCase_ ) with torch.no_grad(): SCREAMING_SNAKE_CASE : Optional[Any] = model.decode(UpperCAmelCase_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] SCREAMING_SNAKE_CASE : int = sample[-1, -2:, :2, -2:].flatten().float().cpu() SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor(UpperCAmelCase_ ) assert torch_all_close(UpperCAmelCase_ , UpperCAmelCase_ , atol=5E-3 ) @parameterized.expand([(13,), (16,), (27,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason="xformers is not required when using PyTorch 2.0." ) def _A ( self : Optional[int] , UpperCAmelCase_ : Tuple ): SCREAMING_SNAKE_CASE : Dict = self.get_sd_vae_model(fpaa=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : int = self.get_sd_image(UpperCAmelCase_ , shape=(3, 4, 64, 64) , fpaa=UpperCAmelCase_ ) with torch.no_grad(): SCREAMING_SNAKE_CASE : str = model.decode(UpperCAmelCase_ ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): SCREAMING_SNAKE_CASE : str = model.decode(UpperCAmelCase_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(UpperCAmelCase_ , UpperCAmelCase_ , atol=1E-1 ) @parameterized.expand([(13,), (16,), (37,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason="xformers is not required when using PyTorch 2.0." ) def _A ( self : Union[str, Any] , UpperCAmelCase_ : Optional[Any] ): SCREAMING_SNAKE_CASE : Tuple = self.get_sd_vae_model() SCREAMING_SNAKE_CASE : List[str] = self.get_sd_image(UpperCAmelCase_ , shape=(3, 4, 64, 64) ) with torch.no_grad(): SCREAMING_SNAKE_CASE : Dict = model.decode(UpperCAmelCase_ ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): SCREAMING_SNAKE_CASE : int = model.decode(UpperCAmelCase_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(UpperCAmelCase_ , UpperCAmelCase_ , atol=1E-2 ) @parameterized.expand( [ # fmt: off [33, [-0.3_001, 0.0_918, -2.6_984, -3.9_720, -3.2_099, -5.0_353, 1.7_338, -0.2_065, 3.4_267]], [47, [-1.5_030, -4.3_871, -6.0_355, -9.1_157, -1.6_661, -2.7_853, 2.1_607, -5.0_823, 2.5_633]], # fmt: on ] ) def _A ( self : int , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[int] ): SCREAMING_SNAKE_CASE : Optional[Any] = self.get_sd_vae_model() SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_sd_image(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[str] = self.get_generator(UpperCAmelCase_ ) with torch.no_grad(): SCREAMING_SNAKE_CASE : Optional[Any] = model.encode(UpperCAmelCase_ ).latent_dist SCREAMING_SNAKE_CASE : List[str] = dist.sample(generator=UpperCAmelCase_ ) assert list(sample.shape ) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]] SCREAMING_SNAKE_CASE : List[str] = sample[0, -1, -3:, -3:].flatten().cpu() SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Any = 3E-3 if torch_device != "mps" else 1E-2 assert torch_all_close(UpperCAmelCase_ , UpperCAmelCase_ , atol=UpperCAmelCase_ )
62
# NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.multicontrolnet import MultiControlNetModel # noqa: F401 from ..controlnet.pipeline_controlnet import StableDiffusionControlNetPipeline # noqa: F401 deprecate( '''stable diffusion controlnet''', '''0.22.0''', '''Importing `StableDiffusionControlNetPipeline` or `MultiControlNetModel` from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import StableDiffusionControlNetPipeline` instead.''', standard_warn=False, stacklevel=3, )
108
0
import inspect import os import torch from transformers import AutoModel from transformers.testing_utils import mockenv_context from transformers.trainer_utils import set_seed import accelerate from accelerate.accelerator import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils.testing import ( AccelerateTestCase, TempDirTestCase, execute_subprocess_async, require_cuda, require_fsdp, require_multi_gpu, slow, ) from accelerate.utils.constants import ( FSDP_AUTO_WRAP_POLICY, FSDP_BACKWARD_PREFETCH, FSDP_SHARDING_STRATEGY, FSDP_STATE_DICT_TYPE, ) from accelerate.utils.dataclasses import FullyShardedDataParallelPlugin from accelerate.utils.other import patch_environment set_seed(42) snake_case_ = 'bert-base-cased' snake_case_ = 'fp16' snake_case_ = 'bf16' snake_case_ = [FPaa, BFaa] @require_fsdp @require_cuda class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): def a (self : Any ): """simple docstring""" super().setUp() __snake_case = dict( ACCELERATE_USE_FSDP='''true''' , MASTER_ADDR='''localhost''' , MASTER_PORT='''10999''' , RANK='''0''' , LOCAL_RANK='''0''' , WORLD_SIZE='''1''' , ) def a (self : str ): """simple docstring""" from torch.distributed.fsdp.fully_sharded_data_parallel import ShardingStrategy for i, strategy in enumerate(_UpperCAmelCase ): __snake_case = self.dist_env.copy() __snake_case = f"""{i + 1}""" __snake_case = strategy with mockenv_context(**_UpperCAmelCase ): __snake_case = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.sharding_strategy , ShardingStrategy(i + 1 ) ) def a (self : List[str] ): """simple docstring""" from torch.distributed.fsdp.fully_sharded_data_parallel import BackwardPrefetch for i, prefetch_policy in enumerate(_UpperCAmelCase ): __snake_case = self.dist_env.copy() __snake_case = prefetch_policy with mockenv_context(**_UpperCAmelCase ): __snake_case = FullyShardedDataParallelPlugin() if prefetch_policy == "NO_PREFETCH": self.assertIsNone(fsdp_plugin.backward_prefetch ) else: self.assertEqual(fsdp_plugin.backward_prefetch , BackwardPrefetch(i + 1 ) ) def a (self : Optional[Any] ): """simple docstring""" from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType for i, state_dict_type in enumerate(_UpperCAmelCase ): __snake_case = self.dist_env.copy() __snake_case = state_dict_type with mockenv_context(**_UpperCAmelCase ): __snake_case = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.state_dict_type , StateDictType(i + 1 ) ) if state_dict_type == "FULL_STATE_DICT": self.assertTrue(fsdp_plugin.state_dict_config.offload_to_cpu ) self.assertTrue(fsdp_plugin.state_dict_config.ranka_only ) def a (self : List[Any] ): """simple docstring""" __snake_case = AutoModel.from_pretrained(_UpperCAmelCase ) for policy in FSDP_AUTO_WRAP_POLICY: __snake_case = self.dist_env.copy() __snake_case = policy if policy == "TRANSFORMER_BASED_WRAP": __snake_case = '''BertLayer''' elif policy == "SIZE_BASED_WRAP": __snake_case = '''2000''' with mockenv_context(**_UpperCAmelCase ): __snake_case = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(_UpperCAmelCase ) if policy == "NO_WRAP": self.assertIsNone(fsdp_plugin.auto_wrap_policy ) else: self.assertIsNotNone(fsdp_plugin.auto_wrap_policy ) __snake_case = self.dist_env.copy() __snake_case = '''TRANSFORMER_BASED_WRAP''' __snake_case = '''T5Layer''' with mockenv_context(**_UpperCAmelCase ): __snake_case = FullyShardedDataParallelPlugin() with self.assertRaises(_UpperCAmelCase ) as cm: fsdp_plugin.set_auto_wrap_policy(_UpperCAmelCase ) self.assertTrue('''Could not find the transformer layer class to wrap in the model.''' in str(cm.exception ) ) __snake_case = self.dist_env.copy() __snake_case = '''SIZE_BASED_WRAP''' __snake_case = '''0''' with mockenv_context(**_UpperCAmelCase ): __snake_case = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(_UpperCAmelCase ) self.assertIsNone(fsdp_plugin.auto_wrap_policy ) def a (self : List[Any] ): """simple docstring""" from torch.distributed.fsdp.fully_sharded_data_parallel import MixedPrecision from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler for mp_dtype in dtypes: __snake_case = self.dist_env.copy() __snake_case = mp_dtype with mockenv_context(**_UpperCAmelCase ): __snake_case = Accelerator() if mp_dtype == "fp16": __snake_case = torch.floataa elif mp_dtype == "bf16": __snake_case = torch.bfloataa __snake_case = MixedPrecision(param_dtype=_UpperCAmelCase , reduce_dtype=_UpperCAmelCase , buffer_dtype=_UpperCAmelCase ) self.assertEqual(accelerator.state.fsdp_plugin.mixed_precision_policy , _UpperCAmelCase ) if mp_dtype == FPaa: self.assertTrue(isinstance(accelerator.scaler , _UpperCAmelCase ) ) elif mp_dtype == BFaa: self.assertIsNone(accelerator.scaler ) AcceleratorState._reset_state(_UpperCAmelCase ) def a (self : Optional[Any] ): """simple docstring""" from torch.distributed.fsdp.fully_sharded_data_parallel import CPUOffload for flag in [True, False]: __snake_case = self.dist_env.copy() __snake_case = str(_UpperCAmelCase ).lower() with mockenv_context(**_UpperCAmelCase ): __snake_case = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.cpu_offload , CPUOffload(offload_params=_UpperCAmelCase ) ) @require_fsdp @require_multi_gpu @slow class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): def a (self : List[Any] ): """simple docstring""" super().setUp() __snake_case = 0.8_2 __snake_case = [ '''fsdp_shard_grad_op_transformer_based_wrap''', '''fsdp_full_shard_transformer_based_wrap''', ] __snake_case = { '''multi_gpu_fp16''': 3200, '''fsdp_shard_grad_op_transformer_based_wrap_fp16''': 2000, '''fsdp_full_shard_transformer_based_wrap_fp16''': 1900, # Disabling below test as it overwhelms the RAM memory usage # on CI self-hosted runner leading to tests getting killed. # "fsdp_full_shard_cpu_offload_transformer_based_wrap_fp32": 1500, # fp16 was leading to indefinite hang } __snake_case = 160 __snake_case = 160 __snake_case = inspect.getfile(accelerate.test_utils ) __snake_case = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''external_deps'''] ) def a (self : Tuple ): """simple docstring""" __snake_case = os.path.join(self.test_scripts_folder , '''test_performance.py''' ) __snake_case = ['''accelerate''', '''launch''', '''--num_processes=2''', '''--num_machines=1''', '''--machine_rank=0''', '''--use_fsdp'''] for config in self.performance_configs: __snake_case = cmd.copy() for i, strategy in enumerate(_UpperCAmelCase ): if strategy.lower() in config: cmd_config.append(f"""--fsdp_sharding_strategy={i+1}""" ) break if "fp32" in config: cmd_config.append('''--mixed_precision=no''' ) else: cmd_config.append('''--mixed_precision=fp16''' ) if "cpu_offload" in config: cmd_config.append('''--fsdp_offload_params=True''' ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in config: cmd_config.append(f"""--fsdp_auto_wrap_policy={policy}""" ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append('''--fsdp_transformer_layer_cls_to_wrap=BertLayer''' ) elif policy == "SIZE_BASED_WRAP": cmd_config.append('''--fsdp_min_num_params=2000''' ) cmd_config.extend( [ self.test_file_path, f"""--output_dir={self.tmpdir}""", f"""--performance_lower_bound={self.performance_lower_bound}""", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_UpperCAmelCase , env=os.environ.copy() ) def a (self : Any ): """simple docstring""" __snake_case = os.path.join(self.test_scripts_folder , '''test_checkpointing.py''' ) __snake_case = [ '''accelerate''', '''launch''', '''--num_processes=2''', '''--num_machines=1''', '''--machine_rank=0''', '''--use_fsdp''', '''--mixed_precision=fp16''', '''--fsdp_transformer_layer_cls_to_wrap=BertLayer''', ] for i, strategy in enumerate(_UpperCAmelCase ): __snake_case = cmd.copy() cmd_config.append(f"""--fsdp_sharding_strategy={i+1}""" ) if strategy != "FULL_SHARD": continue __snake_case = len(_UpperCAmelCase ) for state_dict_type in FSDP_STATE_DICT_TYPE: __snake_case = cmd_config[:state_dict_config_index] cmd_config.append(f"""--fsdp_state_dict_type={state_dict_type}""" ) cmd_config.extend( [ self.test_file_path, f"""--output_dir={self.tmpdir}""", '''--partial_train_epoch=1''', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_UpperCAmelCase , env=os.environ.copy() ) __snake_case = cmd_config[:-1] __snake_case = os.path.join(self.tmpdir , '''epoch_0''' ) cmd_config.extend( [ f"""--resume_from_checkpoint={resume_from_checkpoint}""", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_UpperCAmelCase , env=os.environ.copy() ) def a (self : Dict ): """simple docstring""" __snake_case = os.path.join(self.test_scripts_folder , '''test_peak_memory_usage.py''' ) __snake_case = [ '''accelerate''', '''launch''', '''--num_processes=2''', '''--num_machines=1''', '''--machine_rank=0''', ] for spec, peak_mem_upper_bound in self.peak_memory_usage_upper_bound.items(): __snake_case = cmd.copy() if "fp16" in spec: cmd_config.extend(['''--mixed_precision=fp16'''] ) else: cmd_config.extend(['''--mixed_precision=no'''] ) if "multi_gpu" in spec: continue else: cmd_config.extend(['''--use_fsdp'''] ) for i, strategy in enumerate(_UpperCAmelCase ): if strategy.lower() in spec: cmd_config.append(f"""--fsdp_sharding_strategy={i+1}""" ) break if "cpu_offload" in spec: cmd_config.append('''--fsdp_offload_params=True''' ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in spec: cmd_config.append(f"""--fsdp_auto_wrap_policy={policy}""" ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append('''--fsdp_transformer_layer_cls_to_wrap=BertLayer''' ) elif policy == "SIZE_BASED_WRAP": cmd_config.append('''--fsdp_min_num_params=2000''' ) cmd_config.extend( [ self.test_file_path, f"""--output_dir={self.tmpdir}""", f"""--peak_memory_upper_bound={peak_mem_upper_bound}""", f"""--n_train={self.n_train}""", f"""--n_val={self.n_val}""", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_UpperCAmelCase , env=os.environ.copy() )
714
from __future__ import annotations import copy import tempfile import unittest from transformers import CONFIG_MAPPING, AutoConfig, BertConfig, GPTaConfig, TaConfig, TapasConfig, is_tf_available from transformers.testing_utils import ( DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tensorflow_probability, require_tf, slow, ) from ..bert.test_modeling_bert import BertModelTester if is_tf_available(): from transformers import ( TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelForTableQuestionAnswering, TFAutoModelForTokenClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFFunnelBaseModel, TFFunnelModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, TFTapasForQuestionAnswering, ) from transformers.models.auto.modeling_tf_auto import ( TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_MAPPING, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.tapas.modeling_tf_tapas import TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): A_ : List[str] = 'new-model' if is_tf_available(): class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): A_ : Optional[Any] = NewModelConfig @require_tf class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @slow def a (self : Union[str, Any] ): """simple docstring""" __snake_case = '''bert-base-cased''' __snake_case = AutoConfig.from_pretrained(a__ ) self.assertIsNotNone(a__ ) self.assertIsInstance(a__ , a__ ) __snake_case = TFAutoModel.from_pretrained(a__ ) self.assertIsNotNone(a__ ) self.assertIsInstance(a__ , a__ ) @slow def a (self : Union[str, Any] ): """simple docstring""" __snake_case = '''bert-base-cased''' __snake_case = AutoConfig.from_pretrained(a__ ) self.assertIsNotNone(a__ ) self.assertIsInstance(a__ , a__ ) __snake_case = TFAutoModelForPreTraining.from_pretrained(a__ ) self.assertIsNotNone(a__ ) self.assertIsInstance(a__ , a__ ) @slow def a (self : int ): """simple docstring""" for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case = AutoConfig.from_pretrained(a__ ) self.assertIsNotNone(a__ ) self.assertIsInstance(a__ , a__ ) __snake_case = TFAutoModelForCausalLM.from_pretrained(a__ ) __snake_case , __snake_case = TFAutoModelForCausalLM.from_pretrained(a__ , output_loading_info=a__ ) self.assertIsNotNone(a__ ) self.assertIsInstance(a__ , a__ ) @slow def a (self : int ): """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case = AutoConfig.from_pretrained(a__ ) self.assertIsNotNone(a__ ) self.assertIsInstance(a__ , a__ ) __snake_case = TFAutoModelWithLMHead.from_pretrained(a__ ) self.assertIsNotNone(a__ ) self.assertIsInstance(a__ , a__ ) @slow def a (self : str ): """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case = AutoConfig.from_pretrained(a__ ) self.assertIsNotNone(a__ ) self.assertIsInstance(a__ , a__ ) __snake_case = TFAutoModelForMaskedLM.from_pretrained(a__ ) __snake_case , __snake_case = TFAutoModelForMaskedLM.from_pretrained(a__ , output_loading_info=a__ ) self.assertIsNotNone(a__ ) self.assertIsInstance(a__ , a__ ) @slow def a (self : Any ): """simple docstring""" for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case = AutoConfig.from_pretrained(a__ ) self.assertIsNotNone(a__ ) self.assertIsInstance(a__ , a__ ) __snake_case = TFAutoModelForSeqaSeqLM.from_pretrained(a__ ) __snake_case , __snake_case = TFAutoModelForSeqaSeqLM.from_pretrained(a__ , output_loading_info=a__ ) self.assertIsNotNone(a__ ) self.assertIsInstance(a__ , a__ ) @slow def a (self : Union[str, Any] ): """simple docstring""" for model_name in ["bert-base-uncased"]: __snake_case = AutoConfig.from_pretrained(a__ ) self.assertIsNotNone(a__ ) self.assertIsInstance(a__ , a__ ) __snake_case = TFAutoModelForSequenceClassification.from_pretrained(a__ ) self.assertIsNotNone(a__ ) self.assertIsInstance(a__ , a__ ) @slow def a (self : str ): """simple docstring""" for model_name in ["bert-base-uncased"]: __snake_case = AutoConfig.from_pretrained(a__ ) self.assertIsNotNone(a__ ) self.assertIsInstance(a__ , a__ ) __snake_case = TFAutoModelForQuestionAnswering.from_pretrained(a__ ) self.assertIsNotNone(a__ ) self.assertIsInstance(a__ , a__ ) @slow @require_tensorflow_probability def a (self : List[str] ): """simple docstring""" for model_name in TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]: __snake_case = AutoConfig.from_pretrained(a__ ) self.assertIsNotNone(a__ ) self.assertIsInstance(a__ , a__ ) __snake_case = TFAutoModelForTableQuestionAnswering.from_pretrained(a__ ) __snake_case , __snake_case = TFAutoModelForTableQuestionAnswering.from_pretrained( a__ , output_loading_info=a__ ) self.assertIsNotNone(a__ ) self.assertIsInstance(a__ , a__ ) def a (self : Optional[int] ): """simple docstring""" __snake_case = TFAutoModelWithLMHead.from_pretrained(a__ ) self.assertIsInstance(a__ , a__ ) self.assertEqual(model.num_parameters() , 1_4410 ) self.assertEqual(model.num_parameters(only_trainable=a__ ) , 1_4410 ) def a (self : List[Any] ): """simple docstring""" __snake_case = TFAutoModelWithLMHead.from_pretrained(a__ ) self.assertIsInstance(a__ , a__ ) self.assertEqual(model.num_parameters() , 1_4410 ) self.assertEqual(model.num_parameters(only_trainable=a__ ) , 1_4410 ) def a (self : List[str] ): """simple docstring""" __snake_case = TFAutoModel.from_pretrained('''sgugger/funnel-random-tiny''' ) self.assertIsInstance(a__ , a__ ) __snake_case = copy.deepcopy(model.config ) __snake_case = ['''FunnelBaseModel'''] __snake_case = TFAutoModel.from_config(a__ ) self.assertIsInstance(a__ , a__ ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(a__ ) __snake_case = TFAutoModel.from_pretrained(a__ ) self.assertIsInstance(a__ , a__ ) def a (self : str ): """simple docstring""" try: AutoConfig.register('''new-model''' , a__ ) __snake_case = [ TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSequenceClassification, TFAutoModelForTokenClassification, ] for auto_class in auto_classes: with self.subTest(auto_class.__name__ ): # Wrong config class will raise an error with self.assertRaises(a__ ): auto_class.register(a__ , a__ ) auto_class.register(a__ , a__ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(a__ ): auto_class.register(a__ , a__ ) # Now that the config is registered, it can be used as any other config with the auto-API __snake_case = BertModelTester(self ).get_config() __snake_case = NewModelConfig(**tiny_config.to_dict() ) __snake_case = auto_class.from_config(a__ ) self.assertIsInstance(a__ , a__ ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(a__ ) __snake_case = auto_class.from_pretrained(a__ ) self.assertIsInstance(a__ , a__ ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"] for mapping in ( TF_MODEL_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, ): if NewModelConfig in mapping._extra_content: del mapping._extra_content[NewModelConfig] def a (self : Tuple ): """simple docstring""" with self.assertRaisesRegex( a__ , '''bert-base is not a local folder and is not a valid model identifier''' ): __snake_case = TFAutoModel.from_pretrained('''bert-base''' ) def a (self : Dict ): """simple docstring""" with self.assertRaisesRegex( a__ , R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): __snake_case = TFAutoModel.from_pretrained(a__ , revision='''aaaaaa''' ) def a (self : Tuple ): """simple docstring""" with self.assertRaisesRegex( a__ , '''hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin''' , ): __snake_case = TFAutoModel.from_pretrained('''hf-internal-testing/config-no-model''' ) def a (self : int ): """simple docstring""" with self.assertRaisesRegex(a__ , '''Use `from_pt=True` to load this model''' ): __snake_case = TFAutoModel.from_pretrained('''hf-internal-testing/tiny-bert-pt-only''' ) def a (self : List[str] ): """simple docstring""" __snake_case = TFAutoModel.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) with RequestCounter() as counter: __snake_case = TFAutoModel.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 ) # With a sharded checkpoint __snake_case = TFAutoModel.from_pretrained('''ArthurZ/tiny-random-bert-sharded''' ) with RequestCounter() as counter: __snake_case = TFAutoModel.from_pretrained('''ArthurZ/tiny-random-bert-sharded''' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
388
0
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class _snake_case ( unittest.TestCase ): def __UpperCamelCase ( self : List[str] ): # For consistency across different places the DisjunctiveConstraint is called, # dc.token_ids is a list of integers. It is also initialized only by integers. SCREAMING_SNAKE_CASE:str = [[1, 2, 4], [1, 2, 3, 4]] SCREAMING_SNAKE_CASE:str = DisjunctiveConstraint(SCREAMING_SNAKE_CASE__ ) self.assertTrue(isinstance(dc.token_ids ,SCREAMING_SNAKE_CASE__ ) ) with self.assertRaises(SCREAMING_SNAKE_CASE__ ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(SCREAMING_SNAKE_CASE__ ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def __UpperCamelCase ( self : Any ): # We can't have constraints that are complete subsets of another. This leads to a preverse # interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint? # It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially # fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm # will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it). SCREAMING_SNAKE_CASE:str = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(SCREAMING_SNAKE_CASE__ ): DisjunctiveConstraint(SCREAMING_SNAKE_CASE__ ) # fails here def __UpperCamelCase ( self : Optional[int] ): SCREAMING_SNAKE_CASE:Dict = [[1, 2, 3], [1, 2, 4]] SCREAMING_SNAKE_CASE:Optional[Any] = DisjunctiveConstraint(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE:Dict = dc.update(1 ) SCREAMING_SNAKE_CASE:Any = stepped is True and completed is False and reset is False self.assertTrue(SCREAMING_SNAKE_CASE__ ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE:Union[str, Any] = dc.update(2 ) SCREAMING_SNAKE_CASE:Tuple = stepped is True and completed is False and reset is False self.assertTrue(SCREAMING_SNAKE_CASE__ ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE:List[Any] = dc.update(3 ) SCREAMING_SNAKE_CASE:int = stepped is True and completed is True and reset is False self.assertTrue(SCREAMING_SNAKE_CASE__ ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def __UpperCamelCase ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE:Optional[int] = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] SCREAMING_SNAKE_CASE:Tuple = DisjunctiveConstraint(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE:int = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE:Any = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE:Dict = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE:Optional[int] = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE:int = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE:Optional[int] = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE:List[str] = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
143
'''simple docstring''' def A_ ( snake_case ): SCREAMING_SNAKE_CASE:str = [1] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE:List[str] = 0, 0, 0 SCREAMING_SNAKE_CASE:List[str] = ugly_nums[ia] * 2 SCREAMING_SNAKE_CASE:Union[str, Any] = ugly_nums[ia] * 3 SCREAMING_SNAKE_CASE:Optional[Any] = ugly_nums[ia] * 5 for _ in range(1 , snake_case ): SCREAMING_SNAKE_CASE:int = min(snake_case , snake_case , snake_case ) ugly_nums.append(snake_case ) if next_num == next_a: ia += 1 SCREAMING_SNAKE_CASE:Dict = ugly_nums[ia] * 2 if next_num == next_a: ia += 1 SCREAMING_SNAKE_CASE:int = ugly_nums[ia] * 3 if next_num == next_a: ia += 1 SCREAMING_SNAKE_CASE:Optional[Any] = ugly_nums[ia] * 5 return ugly_nums[-1] if __name__ == "__main__": from doctest import testmod testmod(verbose=True) print(f'''{ugly_numbers(2_00) = }''')
143
1
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast from ...utils import logging _lowerCamelCase : Optional[int] = logging.get_logger(__name__) _lowerCamelCase : Optional[Any] = { '''EleutherAI/gpt-neo-1.3B''': '''https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json''', # See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo } class lowerCamelCase (__lowerCamelCase ): """simple docstring""" UpperCAmelCase_ = "gpt_neo" UpperCAmelCase_ = ["past_key_values"] UpperCAmelCase_ = {"num_attention_heads": "num_heads", "num_hidden_layers": "num_layers"} def __init__( self : List[Any], _UpperCAmelCase : List[Any]=5_0_2_5_7, _UpperCAmelCase : Dict=2_0_4_8, _UpperCAmelCase : int=2_0_4_8, _UpperCAmelCase : List[str]=2_4, _UpperCAmelCase : Dict=[[["global", "local"], 1_2]], _UpperCAmelCase : Optional[Any]=1_6, _UpperCAmelCase : List[str]=None, _UpperCAmelCase : Union[str, Any]=2_5_6, _UpperCAmelCase : Any="gelu_new", _UpperCAmelCase : Tuple=0.0, _UpperCAmelCase : str=0.0, _UpperCAmelCase : List[Any]=0.0, _UpperCAmelCase : Any=0.1, _UpperCAmelCase : Union[str, Any]=1E-5, _UpperCAmelCase : Dict=0.02, _UpperCAmelCase : Dict=True, _UpperCAmelCase : int=5_0_2_5_6, _UpperCAmelCase : List[str]=5_0_2_5_6, **_UpperCAmelCase : Dict, ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = vocab_size SCREAMING_SNAKE_CASE__ : Dict = max_position_embeddings SCREAMING_SNAKE_CASE__ : List[Any] = hidden_size SCREAMING_SNAKE_CASE__ : List[Any] = num_layers SCREAMING_SNAKE_CASE__ : Union[str, Any] = num_heads SCREAMING_SNAKE_CASE__ : List[str] = intermediate_size SCREAMING_SNAKE_CASE__ : Any = window_size SCREAMING_SNAKE_CASE__ : int = activation_function SCREAMING_SNAKE_CASE__ : Optional[int] = resid_dropout SCREAMING_SNAKE_CASE__ : Any = embed_dropout SCREAMING_SNAKE_CASE__ : List[Any] = attention_dropout SCREAMING_SNAKE_CASE__ : Optional[int] = classifier_dropout SCREAMING_SNAKE_CASE__ : Union[str, Any] = layer_norm_epsilon SCREAMING_SNAKE_CASE__ : List[str] = initializer_range SCREAMING_SNAKE_CASE__ : Dict = use_cache SCREAMING_SNAKE_CASE__ : Any = bos_token_id SCREAMING_SNAKE_CASE__ : Optional[int] = eos_token_id SCREAMING_SNAKE_CASE__ : int = attention_types SCREAMING_SNAKE_CASE__ : List[Any] = self.expand_attention_types_params(_UpperCAmelCase ) if len(self.attention_layers ) != self.num_layers: raise ValueError( "Configuration for convolutional module is incorrect. " "It is required that `len(config.attention_layers)` == `config.num_layers` " F'''but is `len(config.attention_layers) = {len(self.attention_layers )}`, ''' F'''`config.num_layers = {self.num_layers}`. ''' "`config.attention_layers` is prepared using `config.attention_types`. " "Please verify the value of `config.attention_types` argument." ) super().__init__(bos_token_id=_UpperCAmelCase, eos_token_id=_UpperCAmelCase, **_UpperCAmelCase ) @staticmethod def A_ ( _UpperCAmelCase : List[str] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = [] for item in attention_types: for _ in range(item[1] ): attentions.extend(item[0] ) return attentions def _a ( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Union[str, Any]: '''simple docstring''' import torch SCREAMING_SNAKE_CASE__ : Optional[int] = input.size() SCREAMING_SNAKE_CASE__ : str = len(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Any = shape[dimension] SCREAMING_SNAKE_CASE__ : Optional[int] = torch.arange(0 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : int = torch.div(sizedim - size , SCREAMING_SNAKE_CASE__ , rounding_mode="floor" ) + 1 SCREAMING_SNAKE_CASE__ : Any = torch.arange(SCREAMING_SNAKE_CASE__ ) + low_indices[:min_length][:, None] SCREAMING_SNAKE_CASE__ : int = [slice(SCREAMING_SNAKE_CASE__ )] * rank SCREAMING_SNAKE_CASE__ : Optional[int] = indices SCREAMING_SNAKE_CASE__ : List[Any] = input[s] SCREAMING_SNAKE_CASE__ : Any = list(range(0 , rank + 1 ) ) perm.append(perm.pop(dimension + 1 ) ) return sliced.permute(SCREAMING_SNAKE_CASE__ ) def _a ( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : int ) -> List[str]: '''simple docstring''' import torch SCREAMING_SNAKE_CASE__ : int = torch.arange(1 , SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : str = torch.remainder(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Optional[int] = remainders == 0 SCREAMING_SNAKE_CASE__ : int = candidates[divisor_indices] SCREAMING_SNAKE_CASE__ : Optional[int] = torch.max(SCREAMING_SNAKE_CASE__ ) return largest_divisor, torch.div(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , rounding_mode="floor" ) class lowerCamelCase (__lowerCamelCase ): """simple docstring""" @property def A_ ( self : List[str] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}} ) if self.use_past: self.fill_with_past_key_values_(_UpperCAmelCase, direction="inputs" ) SCREAMING_SNAKE_CASE__ : Optional[Any] = {0: "batch", 1: "past_sequence + sequence"} else: SCREAMING_SNAKE_CASE__ : Optional[Any] = {0: "batch", 1: "sequence"} return common_inputs @property def A_ ( self : Optional[int] ) -> int: """simple docstring""" return self._config.num_heads def A_ ( self : List[Any], _UpperCAmelCase : PreTrainedTokenizer, _UpperCAmelCase : int = -1, _UpperCAmelCase : int = -1, _UpperCAmelCase : bool = False, _UpperCAmelCase : Optional[TensorType] = None, ) -> Mapping[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = super(_UpperCAmelCase, self ).generate_dummy_inputs( _UpperCAmelCase, batch_size=_UpperCAmelCase, seq_length=_UpperCAmelCase, is_pair=_UpperCAmelCase, framework=_UpperCAmelCase ) # We need to order the input in the way they appears in the forward() SCREAMING_SNAKE_CASE__ : int = OrderedDict({"input_ids": common_inputs["input_ids"]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : int = common_inputs["input_ids"].shape # Not using the same length for past_key_values SCREAMING_SNAKE_CASE__ : Dict = seqlen + 2 SCREAMING_SNAKE_CASE__ : Union[str, Any] = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) SCREAMING_SNAKE_CASE__ : str = [ (torch.zeros(_UpperCAmelCase ), torch.zeros(_UpperCAmelCase )) for _ in range(self.num_layers ) ] SCREAMING_SNAKE_CASE__ : Dict = common_inputs["attention_mask"] if self.use_past: SCREAMING_SNAKE_CASE__ : Tuple = ordered_inputs["attention_mask"].dtype SCREAMING_SNAKE_CASE__ : Tuple = torch.cat( [ordered_inputs["attention_mask"], torch.ones(_UpperCAmelCase, _UpperCAmelCase, dtype=_UpperCAmelCase )], dim=1 ) return ordered_inputs @property def A_ ( self : Optional[Any] ) -> int: """simple docstring""" return 1_3
157
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() _lowerCamelCase : int = logging.get_logger(__name__) _lowerCamelCase : Optional[int] = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''ctc_proj''', '''mask_emb''': '''masked_spec_embed''', } _lowerCamelCase : Optional[int] = [ '''ctc_proj''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def _a ( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Dict ) -> str: '''simple docstring''' for attribute in key.split("." ): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models SCREAMING_SNAKE_CASE__ : Union[str, Any] = "lm_head" SCREAMING_SNAKE_CASE__ : List[str] = getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if weight_type is not None: SCREAMING_SNAKE_CASE__ : Optional[int] = getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).shape else: SCREAMING_SNAKE_CASE__ : Optional[int] = hf_pointer.shape assert hf_shape == value.shape, ( f'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": SCREAMING_SNAKE_CASE__ : List[Any] = value elif weight_type == "weight_g": SCREAMING_SNAKE_CASE__ : str = value elif weight_type == "weight_v": SCREAMING_SNAKE_CASE__ : str = value elif weight_type == "bias": SCREAMING_SNAKE_CASE__ : Union[str, Any] = value else: SCREAMING_SNAKE_CASE__ : str = value logger.info(f'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def _a ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[str] ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = [] SCREAMING_SNAKE_CASE__ : Optional[int] = fairseq_model.state_dict() SCREAMING_SNAKE_CASE__ : str = hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): SCREAMING_SNAKE_CASE__ : Tuple = False if "conv_layers" in name: load_conv_layer( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , hf_model.config.feat_extract_norm == "group" , ) SCREAMING_SNAKE_CASE__ : List[str] = True else: for key, mapped_key in MAPPING.items(): SCREAMING_SNAKE_CASE__ : Dict = "unispeech." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: SCREAMING_SNAKE_CASE__ : str = True if "*" in mapped_key: SCREAMING_SNAKE_CASE__ : str = name.split(SCREAMING_SNAKE_CASE__ )[0].split("." )[-2] SCREAMING_SNAKE_CASE__ : List[str] = mapped_key.replace("*" , SCREAMING_SNAKE_CASE__ ) if "weight_g" in name: SCREAMING_SNAKE_CASE__ : Optional[int] = "weight_g" elif "weight_v" in name: SCREAMING_SNAKE_CASE__ : Optional[int] = "weight_v" elif "bias" in name: SCREAMING_SNAKE_CASE__ : Dict = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj SCREAMING_SNAKE_CASE__ : str = "weight" else: SCREAMING_SNAKE_CASE__ : List[Any] = None set_recursively(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) continue if not is_used: unused_weights.append(SCREAMING_SNAKE_CASE__ ) logger.warning(f'''Unused weights: {unused_weights}''' ) def _a ( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = full_name.split("conv_layers." )[-1] SCREAMING_SNAKE_CASE__ : Any = name.split("." ) SCREAMING_SNAKE_CASE__ : List[str] = int(items[0] ) SCREAMING_SNAKE_CASE__ : Optional[int] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) SCREAMING_SNAKE_CASE__ : Dict = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) SCREAMING_SNAKE_CASE__ : int = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(SCREAMING_SNAKE_CASE__ ) @torch.no_grad() def _a ( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : str=None , SCREAMING_SNAKE_CASE__ : Tuple=None , SCREAMING_SNAKE_CASE__ : int=True ) -> List[str]: '''simple docstring''' if config_path is not None: SCREAMING_SNAKE_CASE__ : str = UniSpeechConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) else: SCREAMING_SNAKE_CASE__ : str = UniSpeechConfig() if is_finetuned: if dict_path: SCREAMING_SNAKE_CASE__ : List[Any] = Dictionary.load_from_json(SCREAMING_SNAKE_CASE__ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq SCREAMING_SNAKE_CASE__ : str = target_dict.pad_index SCREAMING_SNAKE_CASE__ : str = target_dict.bos_index SCREAMING_SNAKE_CASE__ : int = target_dict.eos_index SCREAMING_SNAKE_CASE__ : List[str] = len(target_dict.symbols ) SCREAMING_SNAKE_CASE__ : int = os.path.join(SCREAMING_SNAKE_CASE__ , "vocab.json" ) if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(SCREAMING_SNAKE_CASE__ ) ) return os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : int = target_dict.indices # fairseq has the <pad> and <s> switched SCREAMING_SNAKE_CASE__ : Dict = 42 SCREAMING_SNAKE_CASE__ : Union[str, Any] = 43 with open(SCREAMING_SNAKE_CASE__ , "w" , encoding="utf-8" ) as vocab_handle: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : int = WavaVecaPhonemeCTCTokenizer( SCREAMING_SNAKE_CASE__ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=SCREAMING_SNAKE_CASE__ , ) SCREAMING_SNAKE_CASE__ : Optional[Any] = True if config.feat_extract_norm == "layer" else False SCREAMING_SNAKE_CASE__ : int = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=SCREAMING_SNAKE_CASE__ , return_attention_mask=SCREAMING_SNAKE_CASE__ , ) SCREAMING_SNAKE_CASE__ : str = WavaVecaProcessor(feature_extractor=SCREAMING_SNAKE_CASE__ , tokenizer=SCREAMING_SNAKE_CASE__ ) processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : List[str] = UniSpeechForCTC(SCREAMING_SNAKE_CASE__ ) else: SCREAMING_SNAKE_CASE__ : Optional[int] = UniSpeechForPreTraining(SCREAMING_SNAKE_CASE__ ) if is_finetuned: SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : Tuple = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] ), "w2v_path": checkpoint_path} ) else: SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : Any = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) SCREAMING_SNAKE_CASE__ : int = model[0].eval() recursively_load_weights(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) hf_unispeech.save_pretrained(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": _lowerCamelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) _lowerCamelCase : Optional[int] = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
157
1
import warnings from ...utils import logging from .image_processing_flava import FlavaImageProcessor _snake_case : Optional[int] = logging.get_logger(__name__) class a (_lowerCAmelCase ): """simple docstring""" def __init__( self : Optional[Any] , *lowerCamelCase : Any , **lowerCamelCase : Union[str, Any] ) -> None: warnings.warn( "The class FlavaFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use FlavaImageProcessor instead." , lowerCamelCase , ) super().__init__(*lowerCamelCase , **lowerCamelCase )
81
'''simple docstring''' import math def lowercase__ ( __lowercase : int ) -> int: """simple docstring""" if not isinstance(__lowercase , __lowercase ): __UpperCamelCase = F'''Input value of [number={number}] must be an integer''' raise TypeError(__lowercase ) if number < 1: __UpperCamelCase = F'''Input value of [number={number}] must be > 0''' raise ValueError(__lowercase ) elif number == 1: return 3 elif number == 2: return 5 else: __UpperCamelCase = int(math.log(number // 3 , 2 ) ) + 2 __UpperCamelCase = [3, 5] __UpperCamelCase = 2 __UpperCamelCase = 3 for block in range(1 , __lowercase ): for _ in range(__lowercase ): proth_list.append(2 ** (block + 1) + proth_list[proth_index - 1] ) proth_index += 1 increment *= 2 return proth_list[number - 1] if __name__ == "__main__": import doctest doctest.testmod() for number in range(11): a__ : int =0 try: a__ : str =proth(number) except ValueError: print(f'ValueError: there is no {number}th Proth number') continue print(f'The {number}th Proth number: {value}')
399
0
from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class lowerCamelCase ( _lowerCamelCase ): def __init__( self : Optional[int] , lowerCamelCase_ : str , lowerCamelCase_ : List[Any] = None , lowerCamelCase_ : Optional[int] = None , lowerCamelCase_ : Union[str, Any] = True , lowerCamelCase_ : Optional[Any] = None , lowerCamelCase_ : str = False , lowerCamelCase_ : Tuple = None , lowerCamelCase_ : Optional[int] = True , lowerCamelCase_ : int = "arrow" , **lowerCamelCase_ : Optional[Any] , ) -> Optional[int]: super().__init__( split=UpperCamelCase_ , features=UpperCamelCase_ , cache_dir=UpperCamelCase_ , keep_in_memory=UpperCamelCase_ , streaming=UpperCamelCase_ , **UpperCamelCase_ , ) __magic_name__ : str = load_from_cache_file __magic_name__ : Dict = file_format __magic_name__ : Union[str, Any] = Spark( df=UpperCamelCase_ , features=UpperCamelCase_ , cache_dir=UpperCamelCase_ , working_dir=UpperCamelCase_ , **UpperCamelCase_ , ) def UpperCAmelCase__ ( self : Optional[int] ) -> Union[str, Any]: if self.streaming: return self.builder.as_streaming_dataset(split=self.split ) __magic_name__ : Optional[int] = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=UpperCamelCase_ , file_format=self._file_format , ) return self.builder.as_dataset(split=self.split )
710
# flake8: noqa # Lint as: python3 from typing import Dict, List, Optional, Type from .. import config from ..utils import logging from .formatting import ( ArrowFormatter, CustomFormatter, Formatter, PandasFormatter, PythonFormatter, TensorFormatter, format_table, query_table, ) from .np_formatter import NumpyFormatter __lowerCamelCase : int = logging.get_logger(__name__) __lowerCamelCase : Dict[Optional[str], Type[Formatter]] = {} __lowerCamelCase : Dict[Optional[str], str] = {} __lowerCamelCase : Dict[Optional[str], Exception] = {} def lowercase__ ( __A: type ,__A: Optional[str] ,__A: Optional[List[str]] = None ,): '''simple docstring''' __magic_name__ : Union[str, Any] = aliases if aliases is not None else [] if format_type in _FORMAT_TYPES: logger.warning( F'''Overwriting format type \'{format_type}\' ({_FORMAT_TYPES[format_type].__name__} -> {formatter_cls.__name__})''' ) __magic_name__ : Tuple = formatter_cls for alias in set(aliases + [format_type] ): if alias in _FORMAT_TYPES_ALIASES: logger.warning( F'''Overwriting format type alias \'{alias}\' ({_FORMAT_TYPES_ALIASES[alias]} -> {format_type})''' ) __magic_name__ : Optional[int] = format_type def lowercase__ ( __A: Exception ,__A: Optional[str] ,__A: Optional[List[str]] = None ): '''simple docstring''' __magic_name__ : Union[str, Any] = aliases if aliases is not None else [] for alias in set(aliases + [format_type] ): __magic_name__ : List[str] = unavailable_error # Here we define all the available formatting functions that can be used by `Dataset.set_format` _register_formatter(PythonFormatter, None, aliases=['''python''']) _register_formatter(ArrowFormatter, '''arrow''', aliases=['''pa''', '''pyarrow''']) _register_formatter(NumpyFormatter, '''numpy''', aliases=['''np''']) _register_formatter(PandasFormatter, '''pandas''', aliases=['''pd''']) _register_formatter(CustomFormatter, '''custom''') if config.TORCH_AVAILABLE: from .torch_formatter import TorchFormatter _register_formatter(TorchFormatter, '''torch''', aliases=['''pt''', '''pytorch''']) else: __lowerCamelCase : str = ValueError('''PyTorch needs to be installed to be able to return PyTorch tensors.''') _register_unavailable_formatter(_torch_error, '''torch''', aliases=['''pt''', '''pytorch''']) if config.TF_AVAILABLE: from .tf_formatter import TFFormatter _register_formatter(TFFormatter, '''tensorflow''', aliases=['''tf''']) else: __lowerCamelCase : int = ValueError('''Tensorflow needs to be installed to be able to return Tensorflow tensors.''') _register_unavailable_formatter(_tf_error, '''tensorflow''', aliases=['''tf''']) if config.JAX_AVAILABLE: from .jax_formatter import JaxFormatter _register_formatter(JaxFormatter, '''jax''', aliases=[]) else: __lowerCamelCase : str = ValueError('''JAX needs to be installed to be able to return JAX arrays.''') _register_unavailable_formatter(_jax_error, '''jax''', aliases=[]) def lowercase__ ( __A: Optional[str] ): '''simple docstring''' if format_type in _FORMAT_TYPES_ALIASES: return _FORMAT_TYPES_ALIASES[format_type] else: return format_type def lowercase__ ( __A: Optional[str] ,**__A: Any ): '''simple docstring''' __magic_name__ : Tuple = get_format_type_from_alias(__A ) if format_type in _FORMAT_TYPES: return _FORMAT_TYPES[format_type](**__A ) if format_type in _FORMAT_TYPES_ALIASES_UNAVAILABLE: raise _FORMAT_TYPES_ALIASES_UNAVAILABLE[format_type] else: raise ValueError( F'''Return type should be None or selected in {list(type for type in _FORMAT_TYPES.keys() if type != None )}, but got \'{format_type}\'''' )
501
0
'''simple docstring''' import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() a = logging.get_logger(__name__) a = { "b0": efficientnet.EfficientNetBa, "b1": efficientnet.EfficientNetBa, "b2": efficientnet.EfficientNetBa, "b3": efficientnet.EfficientNetBa, "b4": efficientnet.EfficientNetBa, "b5": efficientnet.EfficientNetBa, "b6": efficientnet.EfficientNetBa, "b7": efficientnet.EfficientNetBa, } a = { "b0": { "hidden_dim": 1280, "width_coef": 1.0, "depth_coef": 1.0, "image_size": 224, "dropout_rate": 0.2, "dw_padding": [], }, "b1": { "hidden_dim": 1280, "width_coef": 1.0, "depth_coef": 1.1, "image_size": 240, "dropout_rate": 0.2, "dw_padding": [16], }, "b2": { "hidden_dim": 1408, "width_coef": 1.1, "depth_coef": 1.2, "image_size": 260, "dropout_rate": 0.3, "dw_padding": [5, 8, 16], }, "b3": { "hidden_dim": 1536, "width_coef": 1.2, "depth_coef": 1.4, "image_size": 300, "dropout_rate": 0.3, "dw_padding": [5, 18], }, "b4": { "hidden_dim": 1792, "width_coef": 1.4, "depth_coef": 1.8, "image_size": 380, "dropout_rate": 0.4, "dw_padding": [6], }, "b5": { "hidden_dim": 2048, "width_coef": 1.6, "depth_coef": 2.2, "image_size": 456, "dropout_rate": 0.4, "dw_padding": [13, 27], }, "b6": { "hidden_dim": 2304, "width_coef": 1.8, "depth_coef": 2.6, "image_size": 528, "dropout_rate": 0.5, "dw_padding": [31], }, "b7": { "hidden_dim": 2560, "width_coef": 2.0, "depth_coef": 3.1, "image_size": 600, "dropout_rate": 0.5, "dw_padding": [18], }, } def __magic_name__ ( __UpperCAmelCase ) -> Tuple: '''simple docstring''' __SCREAMING_SNAKE_CASE = EfficientNetConfig() __SCREAMING_SNAKE_CASE = CONFIG_MAP[model_name]["""hidden_dim"""] __SCREAMING_SNAKE_CASE = CONFIG_MAP[model_name]["""width_coef"""] __SCREAMING_SNAKE_CASE = CONFIG_MAP[model_name]["""depth_coef"""] __SCREAMING_SNAKE_CASE = CONFIG_MAP[model_name]["""image_size"""] __SCREAMING_SNAKE_CASE = CONFIG_MAP[model_name]["""dropout_rate"""] __SCREAMING_SNAKE_CASE = CONFIG_MAP[model_name]["""dw_padding"""] __SCREAMING_SNAKE_CASE = """huggingface/label-files""" __SCREAMING_SNAKE_CASE = """imagenet-1k-id2label.json""" __SCREAMING_SNAKE_CASE = 1000 __SCREAMING_SNAKE_CASE = json.load(open(hf_hub_download(__UpperCAmelCase , __UpperCAmelCase , repo_type="""dataset""" ) , """r""" ) ) __SCREAMING_SNAKE_CASE = {int(__UpperCAmelCase ): v for k, v in idalabel.items()} __SCREAMING_SNAKE_CASE = idalabel __SCREAMING_SNAKE_CASE = {v: k for k, v in idalabel.items()} return config def __magic_name__ ( ) -> List[str]: '''simple docstring''' __SCREAMING_SNAKE_CASE = """http://images.cocodataset.org/val2017/000000039769.jpg""" __SCREAMING_SNAKE_CASE = Image.open(requests.get(__UpperCAmelCase , stream=__UpperCAmelCase ).raw ) return im def __magic_name__ ( __UpperCAmelCase ) -> Tuple: '''simple docstring''' __SCREAMING_SNAKE_CASE = CONFIG_MAP[model_name]["""image_size"""] __SCREAMING_SNAKE_CASE = EfficientNetImageProcessor( size={"""height""": size, """width""": size} , image_mean=[0.4_8_5, 0.4_5_6, 0.4_0_6] , image_std=[0.4_7_8_5_3_9_4_4, 0.4_7_3_2_8_6_4, 0.4_7_4_3_4_1_6_3] , do_center_crop=__UpperCAmelCase , ) return preprocessor def __magic_name__ ( __UpperCAmelCase ) -> List[str]: '''simple docstring''' __SCREAMING_SNAKE_CASE = [v.split("""_""" )[0].split("""block""" )[1] for v in original_param_names if v.startswith("""block""" )] __SCREAMING_SNAKE_CASE = sorted(set(__UpperCAmelCase ) ) __SCREAMING_SNAKE_CASE = len(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = {b: str(__UpperCAmelCase ) for b, i in zip(__UpperCAmelCase , range(__UpperCAmelCase ) )} __SCREAMING_SNAKE_CASE = [] rename_keys.append(("""stem_conv/kernel:0""", """embeddings.convolution.weight""") ) rename_keys.append(("""stem_bn/gamma:0""", """embeddings.batchnorm.weight""") ) rename_keys.append(("""stem_bn/beta:0""", """embeddings.batchnorm.bias""") ) rename_keys.append(("""stem_bn/moving_mean:0""", """embeddings.batchnorm.running_mean""") ) rename_keys.append(("""stem_bn/moving_variance:0""", """embeddings.batchnorm.running_var""") ) for b in block_names: __SCREAMING_SNAKE_CASE = block_name_mapping[b] rename_keys.append((f"""block{b}_expand_conv/kernel:0""", f"""encoder.blocks.{hf_b}.expansion.expand_conv.weight""") ) rename_keys.append((f"""block{b}_expand_bn/gamma:0""", f"""encoder.blocks.{hf_b}.expansion.expand_bn.weight""") ) rename_keys.append((f"""block{b}_expand_bn/beta:0""", f"""encoder.blocks.{hf_b}.expansion.expand_bn.bias""") ) rename_keys.append( (f"""block{b}_expand_bn/moving_mean:0""", f"""encoder.blocks.{hf_b}.expansion.expand_bn.running_mean""") ) rename_keys.append( (f"""block{b}_expand_bn/moving_variance:0""", f"""encoder.blocks.{hf_b}.expansion.expand_bn.running_var""") ) rename_keys.append( (f"""block{b}_dwconv/depthwise_kernel:0""", f"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight""") ) rename_keys.append((f"""block{b}_bn/gamma:0""", f"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight""") ) rename_keys.append((f"""block{b}_bn/beta:0""", f"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias""") ) rename_keys.append( (f"""block{b}_bn/moving_mean:0""", f"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean""") ) rename_keys.append( (f"""block{b}_bn/moving_variance:0""", f"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var""") ) rename_keys.append((f"""block{b}_se_reduce/kernel:0""", f"""encoder.blocks.{hf_b}.squeeze_excite.reduce.weight""") ) rename_keys.append((f"""block{b}_se_reduce/bias:0""", f"""encoder.blocks.{hf_b}.squeeze_excite.reduce.bias""") ) rename_keys.append((f"""block{b}_se_expand/kernel:0""", f"""encoder.blocks.{hf_b}.squeeze_excite.expand.weight""") ) rename_keys.append((f"""block{b}_se_expand/bias:0""", f"""encoder.blocks.{hf_b}.squeeze_excite.expand.bias""") ) rename_keys.append( (f"""block{b}_project_conv/kernel:0""", f"""encoder.blocks.{hf_b}.projection.project_conv.weight""") ) rename_keys.append((f"""block{b}_project_bn/gamma:0""", f"""encoder.blocks.{hf_b}.projection.project_bn.weight""") ) rename_keys.append((f"""block{b}_project_bn/beta:0""", f"""encoder.blocks.{hf_b}.projection.project_bn.bias""") ) rename_keys.append( (f"""block{b}_project_bn/moving_mean:0""", f"""encoder.blocks.{hf_b}.projection.project_bn.running_mean""") ) rename_keys.append( (f"""block{b}_project_bn/moving_variance:0""", f"""encoder.blocks.{hf_b}.projection.project_bn.running_var""") ) rename_keys.append(("""top_conv/kernel:0""", """encoder.top_conv.weight""") ) rename_keys.append(("""top_bn/gamma:0""", """encoder.top_bn.weight""") ) rename_keys.append(("""top_bn/beta:0""", """encoder.top_bn.bias""") ) rename_keys.append(("""top_bn/moving_mean:0""", """encoder.top_bn.running_mean""") ) rename_keys.append(("""top_bn/moving_variance:0""", """encoder.top_bn.running_var""") ) __SCREAMING_SNAKE_CASE = {} for item in rename_keys: if item[0] in original_param_names: __SCREAMING_SNAKE_CASE = """efficientnet.""" + item[1] __SCREAMING_SNAKE_CASE = """classifier.weight""" __SCREAMING_SNAKE_CASE = """classifier.bias""" return key_mapping def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: '''simple docstring''' for key, value in tf_params.items(): if "normalization" in key: continue __SCREAMING_SNAKE_CASE = key_mapping[key] if "_conv" in key and "kernel" in key: __SCREAMING_SNAKE_CASE = torch.from_numpy(__UpperCAmelCase ).permute(3 , 2 , 0 , 1 ) elif "depthwise_kernel" in key: __SCREAMING_SNAKE_CASE = torch.from_numpy(__UpperCAmelCase ).permute(2 , 3 , 0 , 1 ) elif "kernel" in key: __SCREAMING_SNAKE_CASE = torch.from_numpy(np.transpose(__UpperCAmelCase ) ) else: __SCREAMING_SNAKE_CASE = torch.from_numpy(__UpperCAmelCase ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(__UpperCAmelCase ) @torch.no_grad() def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> str: '''simple docstring''' __SCREAMING_SNAKE_CASE = model_classes[model_name]( include_top=__UpperCAmelCase , weights="""imagenet""" , input_tensor=__UpperCAmelCase , input_shape=__UpperCAmelCase , pooling=__UpperCAmelCase , classes=1000 , classifier_activation="""softmax""" , ) __SCREAMING_SNAKE_CASE = original_model.trainable_variables __SCREAMING_SNAKE_CASE = original_model.non_trainable_variables __SCREAMING_SNAKE_CASE = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: __SCREAMING_SNAKE_CASE = param.numpy() __SCREAMING_SNAKE_CASE = list(tf_params.keys() ) # Load HuggingFace model __SCREAMING_SNAKE_CASE = get_efficientnet_config(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = EfficientNetForImageClassification(__UpperCAmelCase ).eval() __SCREAMING_SNAKE_CASE = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print("""Converting parameters...""" ) __SCREAMING_SNAKE_CASE = rename_keys(__UpperCAmelCase ) replace_params(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # Initialize preprocessor and preprocess input image __SCREAMING_SNAKE_CASE = convert_image_processor(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = preprocessor(images=prepare_img() , return_tensors="""pt""" ) # HF model inference hf_model.eval() with torch.no_grad(): __SCREAMING_SNAKE_CASE = hf_model(**__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = outputs.logits.detach().numpy() # Original model inference __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = CONFIG_MAP[model_name]["""image_size"""] __SCREAMING_SNAKE_CASE = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST ) __SCREAMING_SNAKE_CASE = image.img_to_array(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = np.expand_dims(__UpperCAmelCase , axis=0 ) __SCREAMING_SNAKE_CASE = original_model.predict(__UpperCAmelCase ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1e-3 ), "The predicted logits are not the same." print("""Model outputs match!""" ) if save_model: # Create folder to save model if not os.path.isdir(__UpperCAmelCase ): os.mkdir(__UpperCAmelCase ) # Save converted model and image processor hf_model.save_pretrained(__UpperCAmelCase ) preprocessor.save_pretrained(__UpperCAmelCase ) if push_to_hub: # Push model and image processor to hub print(f"""Pushing converted {model_name} to the hub...""" ) __SCREAMING_SNAKE_CASE = f"""efficientnet-{model_name}""" preprocessor.push_to_hub(__UpperCAmelCase ) hf_model.push_to_hub(__UpperCAmelCase ) if __name__ == "__main__": a = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="b0", type=str, help="Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].", ) parser.add_argument( "--pytorch_dump_folder_path", default="hf_model", type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument("--save_model", action="store_true", help="Save model to local") parser.add_argument("--push_to_hub", action="store_true", help="Push model and image processor to the hub") a = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
109
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self ): '''simple docstring''' a_ : int = tempfile.mkdtemp() # fmt: off a_ : str = ["""l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""] # fmt: on a_ : Tuple = dict(zip(lowerCAmelCase_ , range(len(lowerCAmelCase_ ) ) ) ) a_ : Tuple = ["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>""", """"""] a_ : Tuple = {"""unk_token""": """<unk>"""} a_ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) a_ : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(lowerCAmelCase_ ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(lowerCAmelCase_ ) ) a_ : int = { """do_resize""": True, """size""": 20, """do_center_crop""": True, """crop_size""": 18, """do_normalize""": True, """image_mean""": [0.48145466, 0.4578275, 0.40821073], """image_std""": [0.26862954, 0.26130258, 0.27577711], } a_ : int = os.path.join(self.tmpdirname , lowerCAmelCase_ ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(lowerCAmelCase_ , lowerCAmelCase_ ) def _lowerCAmelCase ( self , **lowerCAmelCase_ ): '''simple docstring''' return CLIPTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) def _lowerCAmelCase ( self , **lowerCAmelCase_ ): '''simple docstring''' return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) def _lowerCAmelCase ( self , **lowerCAmelCase_ ): '''simple docstring''' return CLIPImageProcessor.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) def _lowerCAmelCase ( self ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def _lowerCAmelCase ( self ): '''simple docstring''' a_ : Any = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] a_ : Tuple = [Image.fromarray(np.moveaxis(lowerCAmelCase_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def _lowerCAmelCase ( self ): '''simple docstring''' a_ : List[Any] = self.get_tokenizer() a_ : Any = self.get_rust_tokenizer() a_ : Any = self.get_image_processor() a_ : List[Any] = CLIPProcessor(tokenizer=lowerCAmelCase_ , image_processor=lowerCAmelCase_ ) processor_slow.save_pretrained(self.tmpdirname ) a_ : Dict = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=lowerCAmelCase_ ) a_ : str = CLIPProcessor(tokenizer=lowerCAmelCase_ , image_processor=lowerCAmelCase_ ) processor_fast.save_pretrained(self.tmpdirname ) a_ : List[Any] = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , lowerCAmelCase_ ) self.assertIsInstance(processor_fast.tokenizer , lowerCAmelCase_ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , lowerCAmelCase_ ) self.assertIsInstance(processor_fast.image_processor , lowerCAmelCase_ ) def _lowerCAmelCase ( self ): '''simple docstring''' a_ : Optional[Any] = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) a_ : Optional[int] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) a_ : Any = self.get_image_processor(do_normalize=lowerCAmelCase_ , padding_value=1.0 ) a_ : Union[str, Any] = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=lowerCAmelCase_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowerCAmelCase_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowerCAmelCase_ ) def _lowerCAmelCase ( self ): '''simple docstring''' a_ : Any = self.get_image_processor() a_ : List[str] = self.get_tokenizer() a_ : str = CLIPProcessor(tokenizer=lowerCAmelCase_ , image_processor=lowerCAmelCase_ ) a_ : List[str] = self.prepare_image_inputs() a_ : Dict = image_processor(lowerCAmelCase_ , return_tensors="""np""" ) a_ : List[Any] = processor(images=lowerCAmelCase_ , return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _lowerCAmelCase ( self ): '''simple docstring''' a_ : Optional[int] = self.get_image_processor() a_ : List[Any] = self.get_tokenizer() a_ : str = CLIPProcessor(tokenizer=lowerCAmelCase_ , image_processor=lowerCAmelCase_ ) a_ : Optional[Any] = """lower newer""" a_ : List[str] = processor(text=lowerCAmelCase_ ) a_ : Union[str, Any] = tokenizer(lowerCAmelCase_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _lowerCAmelCase ( self ): '''simple docstring''' a_ : Tuple = self.get_image_processor() a_ : Union[str, Any] = self.get_tokenizer() a_ : Optional[Any] = CLIPProcessor(tokenizer=lowerCAmelCase_ , image_processor=lowerCAmelCase_ ) a_ : Dict = """lower newer""" a_ : Optional[int] = self.prepare_image_inputs() a_ : str = processor(text=lowerCAmelCase_ , images=lowerCAmelCase_ ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(lowerCAmelCase_ ): processor() def _lowerCAmelCase ( self ): '''simple docstring''' a_ : Optional[Any] = self.get_image_processor() a_ : str = self.get_tokenizer() a_ : Union[str, Any] = CLIPProcessor(tokenizer=lowerCAmelCase_ , image_processor=lowerCAmelCase_ ) a_ : int = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] a_ : int = processor.batch_decode(lowerCAmelCase_ ) a_ : int = tokenizer.batch_decode(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def _lowerCAmelCase ( self ): '''simple docstring''' a_ : Optional[int] = self.get_image_processor() a_ : List[str] = self.get_tokenizer() a_ : int = CLIPProcessor(tokenizer=lowerCAmelCase_ , image_processor=lowerCAmelCase_ ) a_ : Dict = """lower newer""" a_ : Optional[Any] = self.prepare_image_inputs() a_ : Any = processor(text=lowerCAmelCase_ , images=lowerCAmelCase_ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
577
0
from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. lowerCAmelCase = 10 def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> int: '''simple docstring''' for i in range(lowercase_ , lowercase_ ): if array[i] == target: return i return -1 def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> int: '''simple docstring''' __UpperCAmelCase : List[Any] = 0 __UpperCAmelCase : str = len(lowercase_ ) while left <= right: if right - left < precision: return lin_search(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) __UpperCAmelCase : List[Any] = (left + right) // 3 + 1 __UpperCAmelCase : Dict = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: __UpperCAmelCase : Any = one_third - 1 elif array[two_third] < target: __UpperCAmelCase : Any = two_third + 1 else: __UpperCAmelCase : Union[str, Any] = one_third + 1 __UpperCAmelCase : Any = two_third - 1 else: return -1 def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> int: '''simple docstring''' if left < right: if right - left < precision: return lin_search(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) __UpperCAmelCase : Union[str, Any] = (left + right) // 3 + 1 __UpperCAmelCase : Tuple = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(lowercase_ , one_third - 1 , lowercase_ , lowercase_ ) elif array[two_third] < target: return rec_ternary_search(two_third + 1 , lowercase_ , lowercase_ , lowercase_ ) else: return rec_ternary_search(one_third + 1 , two_third - 1 , lowercase_ , lowercase_ ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase = input("""Enter numbers separated by comma:\n""").strip() lowerCAmelCase = [int(item.strip()) for item in user_input.split(""",""")] assert collection == sorted(collection), F"List must be ordered.\n{collection}." lowerCAmelCase = int(input("""Enter the number to be found in the list:\n""").strip()) lowerCAmelCase = ite_ternary_search(collection, target) lowerCAmelCase = rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(F'Iterative search: {target} found at positions: {resulta}') print(F'Recursive search: {target} found at positions: {resulta}') else: print("""Not found""")
675
import pytest import datasets # Import fixture modules as plugins lowerCAmelCase = ["""tests.fixtures.files""", """tests.fixtures.hub""", """tests.fixtures.fsspec"""] def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: '''simple docstring''' for item in items: if any(marker in item.keywords for marker in ['''integration''', '''unit'''] ): continue item.add_marker(pytest.mark.unit ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Tuple: '''simple docstring''' config.addinivalue_line('''markers''' , '''torchaudio_latest: mark test to run with torchaudio>=0.12''' ) @pytest.fixture(autouse=lowercase_ ) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Dict: '''simple docstring''' __UpperCAmelCase : Dict = tmp_path_factory.getbasetemp() / '''cache''' __UpperCAmelCase : List[Any] = test_hf_cache_home / '''datasets''' __UpperCAmelCase : Union[str, Any] = test_hf_cache_home / '''metrics''' __UpperCAmelCase : List[Any] = test_hf_cache_home / '''modules''' monkeypatch.setattr('''datasets.config.HF_DATASETS_CACHE''' , str(lowercase_ ) ) monkeypatch.setattr('''datasets.config.HF_METRICS_CACHE''' , str(lowercase_ ) ) monkeypatch.setattr('''datasets.config.HF_MODULES_CACHE''' , str(lowercase_ ) ) __UpperCAmelCase : Any = test_hf_datasets_cache / '''downloads''' monkeypatch.setattr('''datasets.config.DOWNLOADED_DATASETS_PATH''' , str(lowercase_ ) ) __UpperCAmelCase : List[Any] = test_hf_datasets_cache / '''downloads''' / '''extracted''' monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_PATH''' , str(lowercase_ ) ) @pytest.fixture(autouse=lowercase_ , scope='''session''' ) def __SCREAMING_SNAKE_CASE ( ) -> str: '''simple docstring''' datasets.disable_progress_bar() @pytest.fixture(autouse=lowercase_ ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Tuple: '''simple docstring''' monkeypatch.setattr('''datasets.config.HF_UPDATE_DOWNLOAD_COUNTS''' , lowercase_ ) @pytest.fixture def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> List[str]: '''simple docstring''' monkeypatch.setattr('''sqlalchemy.util.deprecations.SILENCE_UBER_WARNING''' , lowercase_ )
675
1
import asyncio import os import re import sys import tempfile import unittest from contextlib import contextmanager from copy import deepcopy from distutils.util import strtobool from enum import Enum from importlib.util import find_spec from pathlib import Path from unittest.mock import patch import pyarrow as pa import pytest import requests from packaging import version from datasets import config if config.PY_VERSION < version.parse("""3.8"""): import importlib_metadata else: import importlib.metadata as importlib_metadata def snake_case_ (__A : List[str] , __A : List[Any]=False ) -> int: try: __lowerCAmelCase : List[Any] = os.environ[key] except KeyError: # KEY isn't set, default to `default`. __lowerCAmelCase : List[Any] = default else: # KEY is set, convert it to True or False. try: __lowerCAmelCase : List[Any] = strtobool(__A ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(f'''If set, {key} must be yes or no.''' ) return _value __UpperCAmelCase = parse_flag_from_env("""RUN_SLOW""", default=False) __UpperCAmelCase = parse_flag_from_env("""RUN_REMOTE""", default=False) __UpperCAmelCase = parse_flag_from_env("""RUN_LOCAL""", default=True) __UpperCAmelCase = parse_flag_from_env("""RUN_PACKAGED""", default=True) # Compression __UpperCAmelCase = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason="""test requires lz4""") __UpperCAmelCase = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason="""test requires py7zr""") __UpperCAmelCase = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason="""test requires zstandard""") # Audio __UpperCAmelCase = pytest.mark.skipif( # On Windows and OS X, soundfile installs sndfile find_spec("""soundfile""") is None or version.parse(importlib_metadata.version("""soundfile""")) < version.parse("""0.12.0"""), reason="""test requires sndfile>=0.12.1: 'pip install \"soundfile>=0.12.1\"'; """, ) # Beam __UpperCAmelCase = pytest.mark.skipif( not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse("""0.3.2"""), reason="""test requires apache-beam and a compatible dill version""", ) # Dill-cloudpickle compatibility __UpperCAmelCase = pytest.mark.skipif( config.DILL_VERSION <= version.parse("""0.3.2"""), reason="""test requires dill>0.3.2 for cloudpickle compatibility""", ) # Windows __UpperCAmelCase = pytest.mark.skipif( sys.platform == """win32""", reason="""test should not be run on Windows""", ) def snake_case_ (__A : List[Any] ) -> Tuple: try: import faiss # noqa except ImportError: __lowerCAmelCase : Union[str, Any] = unittest.skip("""test requires faiss""" )(__A ) return test_case def snake_case_ (__A : str ) -> Optional[int]: try: import regex # noqa except ImportError: __lowerCAmelCase : Tuple = unittest.skip("""test requires regex""" )(__A ) return test_case def snake_case_ (__A : Any ) -> str: try: import elasticsearch # noqa except ImportError: __lowerCAmelCase : int = unittest.skip("""test requires elasticsearch""" )(__A ) return test_case def snake_case_ (__A : str ) -> Optional[Any]: try: import sqlalchemy # noqa except ImportError: __lowerCAmelCase : Optional[int] = unittest.skip("""test requires sqlalchemy""" )(__A ) return test_case def snake_case_ (__A : Any ) -> List[str]: if not config.TORCH_AVAILABLE: __lowerCAmelCase : Union[str, Any] = unittest.skip("""test requires PyTorch""" )(__A ) return test_case def snake_case_ (__A : Any ) -> int: if not config.TF_AVAILABLE: __lowerCAmelCase : str = unittest.skip("""test requires TensorFlow""" )(__A ) return test_case def snake_case_ (__A : str ) -> Tuple: if not config.JAX_AVAILABLE: __lowerCAmelCase : Optional[Any] = unittest.skip("""test requires JAX""" )(__A ) return test_case def snake_case_ (__A : Any ) -> Any: if not config.PIL_AVAILABLE: __lowerCAmelCase : List[Any] = unittest.skip("""test requires Pillow""" )(__A ) return test_case def snake_case_ (__A : Any ) -> Optional[Any]: try: import transformers # noqa F401 except ImportError: return unittest.skip("""test requires transformers""" )(__A ) else: return test_case def snake_case_ (__A : List[Any] ) -> List[Any]: try: import tiktoken # noqa F401 except ImportError: return unittest.skip("""test requires tiktoken""" )(__A ) else: return test_case def snake_case_ (__A : Dict ) -> Any: try: import spacy # noqa F401 except ImportError: return unittest.skip("""test requires spacy""" )(__A ) else: return test_case def snake_case_ (__A : str ) -> str: def _require_spacy_model(__A : List[Any] ): try: import spacy # noqa F401 spacy.load(__A ) except ImportError: return unittest.skip("""test requires spacy""" )(__A ) except OSError: return unittest.skip("""test requires spacy model '{}'""".format(__A ) )(__A ) else: return test_case return _require_spacy_model def snake_case_ (__A : int ) -> Any: try: import pyspark # noqa F401 except ImportError: return unittest.skip("""test requires pyspark""" )(__A ) else: return test_case def snake_case_ (__A : str ) -> Optional[int]: try: import joblibspark # noqa F401 except ImportError: return unittest.skip("""test requires joblibspark""" )(__A ) else: return test_case def snake_case_ (__A : Dict ) -> Tuple: if not _run_slow_tests or _run_slow_tests == 0: __lowerCAmelCase : Optional[int] = unittest.skip("""test is slow""" )(__A ) return test_case def snake_case_ (__A : Dict ) -> List[str]: if not _run_local_tests or _run_local_tests == 0: __lowerCAmelCase : Any = unittest.skip("""test is local""" )(__A ) return test_case def snake_case_ (__A : Any ) -> Dict: if not _run_packaged_tests or _run_packaged_tests == 0: __lowerCAmelCase : Optional[int] = unittest.skip("""test is packaged""" )(__A ) return test_case def snake_case_ (__A : int ) -> Union[str, Any]: if not _run_remote_tests or _run_remote_tests == 0: __lowerCAmelCase : Union[str, Any] = unittest.skip("""test requires remote""" )(__A ) return test_case def snake_case_ (*__A : Optional[int] ) -> Optional[int]: def decorate(cls : Dict ): for name, fn in cls.__dict__.items(): if callable(__A ) and name.startswith("""test""" ): for decorator in decorators: __lowerCAmelCase : Union[str, Any] = decorator(__A ) setattr(cls , __A , __A ) return cls return decorate class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" pass class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" lowerCamelCase : int =0 lowerCamelCase : Optional[Any] =1 lowerCamelCase : str =2 @contextmanager def snake_case_ (__A : Dict=OfflineSimulationMode.CONNECTION_FAILS , __A : Optional[int]=1e-16 ) -> Optional[int]: __lowerCAmelCase : Tuple = requests.Session().request def timeout_request(__A : str , __A : Any , __A : Optional[int] , **__A : Optional[Any] ): # Change the url to an invalid url so that the connection hangs __lowerCAmelCase : str = """https://10.255.255.1""" if kwargs.get("""timeout""" ) is None: raise RequestWouldHangIndefinitelyError( f'''Tried a call to {url} in offline mode with no timeout set. Please set a timeout.''' ) __lowerCAmelCase : int = timeout try: return online_request(__A , __A , **__A ) except Exception as e: # The following changes in the error are just here to make the offline timeout error prettier __lowerCAmelCase : List[Any] = url __lowerCAmelCase : List[str] = e.args[0] __lowerCAmelCase : Optional[Any] = (max_retry_error.args[0].replace("""10.255.255.1""" , f'''OfflineMock[{url}]''' ),) __lowerCAmelCase : str = (max_retry_error,) raise def raise_connection_error(__A : Dict , __A : List[Any] , **__A : Optional[int] ): raise requests.ConnectionError("""Offline mode is enabled.""" , request=__A ) if mode is OfflineSimulationMode.CONNECTION_FAILS: with patch("""requests.Session.send""" , __A ): yield elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT: # inspired from https://stackoverflow.com/a/904609 with patch("""requests.Session.request""" , __A ): yield elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1: with patch("""datasets.config.HF_DATASETS_OFFLINE""" , __A ): yield else: raise ValueError("""Please use a value from the OfflineSimulationMode enum.""" ) @contextmanager def snake_case_ (*__A : Optional[int] , **__A : Dict ) -> int: __lowerCAmelCase : Optional[Any] = str(Path().resolve() ) with tempfile.TemporaryDirectory(*__A , **__A ) as tmp_dir: try: os.chdir(__A ) yield finally: os.chdir(__A ) @contextmanager def snake_case_ () -> Any: import gc gc.collect() __lowerCAmelCase : Optional[Any] = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase." @contextmanager def snake_case_ () -> List[Any]: import gc gc.collect() __lowerCAmelCase : int = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase." def snake_case_ (__A : Union[str, Any] , __A : List[str] ) -> int: return deepcopy(__A ).integers(0 , 1_0_0 , 1_0 ).tolist() == deepcopy(__A ).integers(0 , 1_0_0 , 1_0 ).tolist() def snake_case_ (__A : Optional[int] ) -> Tuple: import decorator from requests.exceptions import HTTPError def _wrapper(__A : List[str] , *__A : Any , **__A : int ): try: return func(*__A , **__A ) except HTTPError as err: if str(__A ).startswith("""500""" ) or str(__A ).startswith("""502""" ): pytest.xfail(str(__A ) ) raise err return decorator.decorator(_wrapper , __A ) class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : List[str] , lowerCAmelCase : str , lowerCAmelCase : Optional[int] , lowerCAmelCase : Tuple ) -> Tuple: """simple docstring""" __lowerCAmelCase : List[Any] = returncode __lowerCAmelCase : Union[str, Any] = stdout __lowerCAmelCase : Union[str, Any] = stderr async def snake_case_ (__A : Tuple , __A : Tuple ) -> Optional[int]: while True: __lowerCAmelCase : List[Any] = await stream.readline() if line: callback(__A ) else: break async def snake_case_ (__A : List[str] , __A : Union[str, Any]=None , __A : List[str]=None , __A : int=None , __A : Union[str, Any]=False , __A : List[Any]=False ) -> _RunOutput: if echo: print("""\nRunning: """ , """ """.join(__A ) ) __lowerCAmelCase : int = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=__A , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=__A , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) __lowerCAmelCase : Optional[int] = [] __lowerCAmelCase : Tuple = [] def tee(__A : Union[str, Any] , __A : Union[str, Any] , __A : Dict , __A : str="" ): __lowerCAmelCase : Any = line.decode("""utf-8""" ).rstrip() sink.append(__A ) if not quiet: print(__A , __A , file=__A ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ _read_stream(p.stdout , lambda __A : tee(__A , __A , sys.stdout , label="""stdout:""" ) ), _read_stream(p.stderr , lambda __A : tee(__A , __A , sys.stderr , label="""stderr:""" ) ), ] , timeout=__A , ) return _RunOutput(await p.wait() , __A , __A ) def snake_case_ (__A : Tuple , __A : Dict=None , __A : Optional[Any]=None , __A : Dict=1_8_0 , __A : Any=False , __A : Dict=True ) -> _RunOutput: __lowerCAmelCase : str = asyncio.get_event_loop() __lowerCAmelCase : Optional[Any] = loop.run_until_complete( _stream_subprocess(__A , env=__A , stdin=__A , timeout=__A , quiet=__A , echo=__A ) ) __lowerCAmelCase : Tuple = """ """.join(__A ) if result.returncode > 0: __lowerCAmelCase : Any = """\n""".join(result.stderr ) raise RuntimeError( f'''\'{cmd_str}\' failed with returncode {result.returncode}\n\n''' f'''The combined stderr from workers follows:\n{stderr}''' ) # check that the subprocess actually did run and produced some output, should the test rely on # the remote side to do the testing if not result.stdout and not result.stderr: raise RuntimeError(f'''\'{cmd_str}\' produced no output.''' ) return result def snake_case_ () -> Any: __lowerCAmelCase : Union[str, Any] = os.environ.get("""PYTEST_XDIST_WORKER""" , """gw0""" ) __lowerCAmelCase : List[Any] = re.sub(r"""^gw""" , """""" , __A , 0 , re.M ) return int(__A ) def snake_case_ () -> Any: __lowerCAmelCase : List[Any] = 2_9_5_0_0 __lowerCAmelCase : Optional[Any] = pytest_xdist_worker_id() return port + uniq_delta
651
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { """camembert-base""": """https://huggingface.co/camembert-base/resolve/main/config.json""", """umberto-commoncrawl-cased-v1""": ( """https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json""" ), """umberto-wikipedia-uncased-v1""": ( """https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json""" ), } class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" lowerCamelCase : Tuple ="camembert" def __init__( self : Any , lowerCAmelCase : List[str]=3_05_22 , lowerCAmelCase : Any=7_68 , lowerCAmelCase : List[str]=12 , lowerCAmelCase : List[str]=12 , lowerCAmelCase : Union[str, Any]=30_72 , lowerCAmelCase : Any="gelu" , lowerCAmelCase : Any=0.1 , lowerCAmelCase : Dict=0.1 , lowerCAmelCase : Union[str, Any]=5_12 , lowerCAmelCase : Optional[Any]=2 , lowerCAmelCase : Optional[int]=0.02 , lowerCAmelCase : Union[str, Any]=1e-12 , lowerCAmelCase : Union[str, Any]=1 , lowerCAmelCase : Dict=0 , lowerCAmelCase : Optional[int]=2 , lowerCAmelCase : Dict="absolute" , lowerCAmelCase : str=True , lowerCAmelCase : Optional[int]=None , **lowerCAmelCase : Optional[int] , ) -> List[Any]: """simple docstring""" super().__init__(pad_token_id=lowerCAmelCase , bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , **lowerCAmelCase ) __lowerCAmelCase : Optional[int] = vocab_size __lowerCAmelCase : Optional[Any] = hidden_size __lowerCAmelCase : int = num_hidden_layers __lowerCAmelCase : Dict = num_attention_heads __lowerCAmelCase : List[str] = hidden_act __lowerCAmelCase : int = intermediate_size __lowerCAmelCase : Union[str, Any] = hidden_dropout_prob __lowerCAmelCase : Optional[Any] = attention_probs_dropout_prob __lowerCAmelCase : int = max_position_embeddings __lowerCAmelCase : Union[str, Any] = type_vocab_size __lowerCAmelCase : Optional[int] = initializer_range __lowerCAmelCase : Dict = layer_norm_eps __lowerCAmelCase : Any = position_embedding_type __lowerCAmelCase : int = use_cache __lowerCAmelCase : Optional[Any] = classifier_dropout class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" @property def SCREAMING_SNAKE_CASE ( self : str ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": __lowerCAmelCase : Any = {0: """batch""", 1: """choice""", 2: """sequence"""} else: __lowerCAmelCase : Union[str, Any] = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
651
1
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging A = logging.get_logger(__name__) A = { '''facebook/wav2vec2-base-960h''': '''https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/config.json''', # See all Wav2Vec2 models at https://huggingface.co/models?filter=wav2vec2 } class __lowercase ( lowercase__ ): '''simple docstring''' __lowerCAmelCase = '''wav2vec2''' def __init__( self , _UpperCAmelCase=32 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.0_2 , _UpperCAmelCase=1e-5 , _UpperCAmelCase="group" , _UpperCAmelCase="gelu" , _UpperCAmelCase=(512, 512, 512, 512, 512, 512, 512) , _UpperCAmelCase=(5, 2, 2, 2, 2, 2, 2) , _UpperCAmelCase=(10, 3, 3, 3, 3, 2, 2) , _UpperCAmelCase=False , _UpperCAmelCase=128 , _UpperCAmelCase=16 , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=0.0_5 , _UpperCAmelCase=10 , _UpperCAmelCase=2 , _UpperCAmelCase=0.0 , _UpperCAmelCase=10 , _UpperCAmelCase=0 , _UpperCAmelCase=320 , _UpperCAmelCase=2 , _UpperCAmelCase=0.1 , _UpperCAmelCase=100 , _UpperCAmelCase=256 , _UpperCAmelCase=256 , _UpperCAmelCase=0.1 , _UpperCAmelCase="sum" , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=256 , _UpperCAmelCase=(512, 512, 512, 512, 1500) , _UpperCAmelCase=(5, 3, 3, 1, 1) , _UpperCAmelCase=(1, 2, 3, 1, 1) , _UpperCAmelCase=512 , _UpperCAmelCase=0 , _UpperCAmelCase=1 , _UpperCAmelCase=2 , _UpperCAmelCase=False , _UpperCAmelCase=3 , _UpperCAmelCase=2 , _UpperCAmelCase=3 , _UpperCAmelCase=None , _UpperCAmelCase=None , **_UpperCAmelCase , ): super().__init__(**UpperCAmelCase__ , pad_token_id=UpperCAmelCase__ , bos_token_id=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ ) __a : Union[str, Any] = hidden_size __a : Optional[int] = feat_extract_norm __a : Optional[int] = feat_extract_activation __a : Dict = list(UpperCAmelCase__ ) __a : str = list(UpperCAmelCase__ ) __a : str = list(UpperCAmelCase__ ) __a : List[Any] = conv_bias __a : List[Any] = num_conv_pos_embeddings __a : Dict = num_conv_pos_embedding_groups __a : Optional[int] = len(self.conv_dim ) __a : Any = num_hidden_layers __a : int = intermediate_size __a : List[str] = hidden_act __a : Dict = num_attention_heads __a : Tuple = hidden_dropout __a : Optional[int] = attention_dropout __a : Tuple = activation_dropout __a : str = feat_proj_dropout __a : int = final_dropout __a : Optional[Any] = layerdrop __a : Union[str, Any] = layer_norm_eps __a : List[str] = initializer_range __a : str = vocab_size __a : Optional[Any] = do_stable_layer_norm __a : List[Any] = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' f""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" f""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __a : List[Any] = apply_spec_augment __a : Optional[Any] = mask_time_prob __a : Union[str, Any] = mask_time_length __a : Optional[int] = mask_time_min_masks __a : Union[str, Any] = mask_feature_prob __a : Any = mask_feature_length __a : int = mask_feature_min_masks # parameters for pretraining with codevector quantized representations __a : Optional[int] = num_codevectors_per_group __a : int = num_codevector_groups __a : Optional[Any] = contrastive_logits_temperature __a : str = feat_quantizer_dropout __a : List[str] = num_negatives __a : int = codevector_dim __a : Any = proj_codevector_dim __a : List[Any] = diversity_loss_weight # ctc loss __a : Tuple = ctc_loss_reduction __a : Optional[Any] = ctc_zero_infinity # adapter __a : Dict = add_adapter __a : str = adapter_kernel_size __a : Optional[Any] = adapter_stride __a : Union[str, Any] = num_adapter_layers __a : Union[str, Any] = output_hidden_size or hidden_size __a : Dict = adapter_attn_dim # SequenceClassification-specific parameter. Feel free to ignore for other classes. __a : Union[str, Any] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. __a : List[str] = list(UpperCAmelCase__ ) __a : List[str] = list(UpperCAmelCase__ ) __a : Dict = list(UpperCAmelCase__ ) __a : Optional[int] = xvector_output_dim @property def _lowerCamelCase ( self ): return functools.reduce(operator.mul , self.conv_stride , 1 )
700
"""simple docstring""" import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING A = logging.get_logger(__name__) A = { '''facebook/detr-resnet-50''': '''https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json''', # See all DETR models at https://huggingface.co/models?filter=detr } class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = '''detr''' __lowerCAmelCase = ['''past_key_values'''] __lowerCAmelCase = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', } def __init__( self , _UpperCAmelCase=True , _UpperCAmelCase=None , _UpperCAmelCase=3 , _UpperCAmelCase=100 , _UpperCAmelCase=6 , _UpperCAmelCase=2048 , _UpperCAmelCase=8 , _UpperCAmelCase=6 , _UpperCAmelCase=2048 , _UpperCAmelCase=8 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=True , _UpperCAmelCase="relu" , _UpperCAmelCase=256 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0_2 , _UpperCAmelCase=1.0 , _UpperCAmelCase=False , _UpperCAmelCase="sine" , _UpperCAmelCase="resnet50" , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=1 , _UpperCAmelCase=5 , _UpperCAmelCase=2 , _UpperCAmelCase=1 , _UpperCAmelCase=1 , _UpperCAmelCase=5 , _UpperCAmelCase=2 , _UpperCAmelCase=0.1 , **_UpperCAmelCase , ): if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' ) if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) __a : Any = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] ) elif isinstance(_UpperCAmelCase , _UpperCAmelCase ): __a : Optional[int] = backbone_config.get('''model_type''' ) __a : Tuple = CONFIG_MAPPING[backbone_model_type] __a : Union[str, Any] = config_class.from_dict(_UpperCAmelCase ) # set timm attributes to None __a , __a , __a : Union[str, Any] = None, None, None __a : Union[str, Any] = use_timm_backbone __a : Any = backbone_config __a : Tuple = num_channels __a : int = num_queries __a : str = d_model __a : Any = encoder_ffn_dim __a : int = encoder_layers __a : Optional[int] = encoder_attention_heads __a : Any = decoder_ffn_dim __a : str = decoder_layers __a : Union[str, Any] = decoder_attention_heads __a : List[Any] = dropout __a : Union[str, Any] = attention_dropout __a : int = activation_dropout __a : Dict = activation_function __a : str = init_std __a : int = init_xavier_std __a : Optional[Any] = encoder_layerdrop __a : Optional[int] = decoder_layerdrop __a : str = encoder_layers __a : List[str] = auxiliary_loss __a : Optional[Any] = position_embedding_type __a : Any = backbone __a : Tuple = use_pretrained_backbone __a : int = dilation # Hungarian matcher __a : str = class_cost __a : Optional[Any] = bbox_cost __a : Any = giou_cost # Loss coefficients __a : List[str] = mask_loss_coefficient __a : Dict = dice_loss_coefficient __a : str = bbox_loss_coefficient __a : str = giou_loss_coefficient __a : Any = eos_coefficient super().__init__(is_encoder_decoder=_UpperCAmelCase , **_UpperCAmelCase ) @property def _lowerCamelCase ( self ): return self.encoder_attention_heads @property def _lowerCamelCase ( self ): return self.d_model @classmethod def _lowerCamelCase ( cls , _UpperCAmelCase , **_UpperCAmelCase ): return cls(backbone_config=_UpperCAmelCase , **_UpperCAmelCase ) def _lowerCamelCase ( self ): __a : Dict = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: __a : Tuple = self.backbone_config.to_dict() __a : Dict = self.__class__.model_type return output class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = version.parse('''1.11''' ) @property def _lowerCamelCase ( self ): return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''pixel_mask''', {0: '''batch'''}), ] ) @property def _lowerCamelCase ( self ): return 1e-5 @property def _lowerCamelCase ( self ): return 12
101
0
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging lowercase__ : List[str] = logging.get_logger(__name__) if is_vision_available(): import PIL class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = ['''pixel_values'''] def __init__( self , _UpperCAmelCase = True , _UpperCAmelCase = None , _UpperCAmelCase = PILImageResampling.BICUBIC , _UpperCAmelCase = True , _UpperCAmelCase = None , _UpperCAmelCase = True , _UpperCAmelCase = 1 / 255 , _UpperCAmelCase = True , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = True , **_UpperCAmelCase , ): '''simple docstring''' super().__init__(**_UpperCAmelCase) __A : int = size if size is not None else {'shortest_edge': 224} __A : Any = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase) __A : Union[str, Any] = crop_size if crop_size is not None else {'height': 224, 'width': 224} __A : List[str] = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase , param_name='crop_size') __A : Optional[int] = do_resize __A : str = size __A : List[Any] = resample __A : Dict = do_center_crop __A : Any = crop_size __A : Tuple = do_rescale __A : List[str] = rescale_factor __A : List[Any] = do_normalize __A : Optional[Any] = image_mean if image_mean is not None else OPENAI_CLIP_MEAN __A : Optional[int] = image_std if image_std is not None else OPENAI_CLIP_STD __A : Optional[Any] = do_convert_rgb def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = PILImageResampling.BICUBIC , _UpperCAmelCase = None , **_UpperCAmelCase , ): '''simple docstring''' __A : List[str] = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase) if "shortest_edge" not in size: raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}') __A : List[str] = get_resize_output_image_size(_UpperCAmelCase , size=size['shortest_edge'] , default_to_square=_UpperCAmelCase) return resize(_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , **_UpperCAmelCase , ): '''simple docstring''' __A : List[str] = get_size_dict(_UpperCAmelCase) if "height" not in size or "width" not in size: raise ValueError(F'The `size` parameter must contain the keys (height, width). Got {size.keys()}') return center_crop(_UpperCAmelCase , size=(size['height'], size['width']) , data_format=_UpperCAmelCase , **_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , **_UpperCAmelCase , ): '''simple docstring''' return rescale(_UpperCAmelCase , scale=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , **_UpperCAmelCase , ): '''simple docstring''' return normalize(_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = ChannelDimension.FIRST , **_UpperCAmelCase , ): '''simple docstring''' __A : Tuple = do_resize if do_resize is not None else self.do_resize __A : int = size if size is not None else self.size __A : Any = get_size_dict(_UpperCAmelCase , param_name='size' , default_to_square=_UpperCAmelCase) __A : Dict = resample if resample is not None else self.resample __A : str = do_center_crop if do_center_crop is not None else self.do_center_crop __A : str = crop_size if crop_size is not None else self.crop_size __A : str = get_size_dict(_UpperCAmelCase , param_name='crop_size' , default_to_square=_UpperCAmelCase) __A : Optional[Any] = do_rescale if do_rescale is not None else self.do_rescale __A : int = rescale_factor if rescale_factor is not None else self.rescale_factor __A : Union[str, Any] = do_normalize if do_normalize is not None else self.do_normalize __A : Union[str, Any] = image_mean if image_mean is not None else self.image_mean __A : Any = image_std if image_std is not None else self.image_std __A : Any = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __A : int = make_list_of_images(_UpperCAmelCase) if not valid_images(_UpperCAmelCase): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.') if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.') if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.') if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.') if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.') # PIL RGBA images are converted to RGB if do_convert_rgb: __A : Any = [convert_to_rgb(_UpperCAmelCase) for image in images] # All transformations expect numpy arrays. __A : Union[str, Any] = [to_numpy_array(_UpperCAmelCase) for image in images] if do_resize: __A : Any = [self.resize(image=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase) for image in images] if do_center_crop: __A : Tuple = [self.center_crop(image=_UpperCAmelCase , size=_UpperCAmelCase) for image in images] if do_rescale: __A : List[Any] = [self.rescale(image=_UpperCAmelCase , scale=_UpperCAmelCase) for image in images] if do_normalize: __A : Any = [self.normalize(image=_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase) for image in images] __A : Optional[Any] = [to_channel_dimension_format(_UpperCAmelCase , _UpperCAmelCase) for image in images] __A : int = {'pixel_values': images} return BatchFeature(data=_UpperCAmelCase , tensor_type=_UpperCAmelCase)
8
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class lowerCamelCase (unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase_ ( self : List[Any] ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = TFCamembertModel.from_pretrained("jplu/tf-camembert-base" ) SCREAMING_SNAKE_CASE__ = tf.convert_to_tensor( [[5, 121, 11, 660, 16, 730, 25543, 110, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" SCREAMING_SNAKE_CASE__ = model(_snake_case )["last_hidden_state"] SCREAMING_SNAKE_CASE__ = tf.TensorShape((1, 10, 768) ) self.assertEqual(output.shape , _snake_case ) # compare the actual values for a slice. SCREAMING_SNAKE_CASE__ = tf.convert_to_tensor( [[[-0.0254, 0.0235, 0.1027], [0.0606, -0.1811, -0.0418], [-0.1561, -0.1127, 0.2687]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
159
0
import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class snake_case__(unittest.TestCase ): """simple docstring""" def __init__( self : List[Any] , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : bool = True , SCREAMING_SNAKE_CASE : Dict[str, int] = None , SCREAMING_SNAKE_CASE : int = 32 , SCREAMING_SNAKE_CASE : bool = True , SCREAMING_SNAKE_CASE : Union[int, float] = 1 / 255 , SCREAMING_SNAKE_CASE : bool = True , SCREAMING_SNAKE_CASE : bool = True , SCREAMING_SNAKE_CASE : Optional[Union[float, List[float]]] = [0.48_145_466, 0.4_578_275, 0.40_821_073] , SCREAMING_SNAKE_CASE : Optional[Union[float, List[float]]] = [0.26_862_954, 0.26_130_258, 0.27_577_711] , SCREAMING_SNAKE_CASE : bool = True , SCREAMING_SNAKE_CASE : List[str]=7 , SCREAMING_SNAKE_CASE : Union[str, Any]=30 , SCREAMING_SNAKE_CASE : Tuple=400 , SCREAMING_SNAKE_CASE : List[Any]=3 , ): lowercase__ : Optional[Any] = parent lowercase__ : Any = do_resize lowercase__ : str = size if size is not None else {"shortest_edge": 288} lowercase__ : Any = size_divisor lowercase__ : str = do_rescale lowercase__ : Any = rescale_factor lowercase__ : Any = do_normalize lowercase__ : Union[str, Any] = do_center_crop lowercase__ : Tuple = image_mean lowercase__ : Any = image_std lowercase__ : Tuple = do_pad lowercase__ : Tuple = batch_size lowercase__ : str = num_channels lowercase__ : List[Any] = min_resolution lowercase__ : str = max_resolution def snake_case ( self : List[str] ): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def snake_case ( self : Any , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Optional[Any]=False ): if not batched: lowercase__ : int = self.size["shortest_edge"] lowercase__ : Optional[Any] = image_inputs[0] if isinstance(SCREAMING_SNAKE_CASE , Image.Image ): lowercase__ , lowercase__ : Union[str, Any] = image.size else: lowercase__ , lowercase__ : int = image.shape[1], image.shape[2] lowercase__ : Any = size / min(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if h < w: lowercase__ , lowercase__ : Dict = size, scale * w else: lowercase__ , lowercase__ : Tuple = scale * h, size lowercase__ : Tuple = int((1_333 / 800) * size ) if max(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) > max_size: lowercase__ : Tuple = max_size / max(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowercase__ : Union[str, Any] = newh * scale lowercase__ : List[str] = neww * scale lowercase__ , lowercase__ : str = int(newh + 0.5 ), int(neww + 0.5 ) lowercase__ , lowercase__ : str = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: lowercase__ : List[Any] = [] for image in image_inputs: lowercase__ , lowercase__ : Optional[Any] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) lowercase__ : List[str] = max(SCREAMING_SNAKE_CASE , key=lambda SCREAMING_SNAKE_CASE : item[0] )[0] lowercase__ : int = max(SCREAMING_SNAKE_CASE , key=lambda SCREAMING_SNAKE_CASE : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class snake_case__(_UpperCamelCase , unittest.TestCase ): """simple docstring""" lowercase_ = BridgeTowerImageProcessor if is_vision_available() else None def snake_case ( self : Dict ): lowercase__ : int = BridgeTowerImageProcessingTester(self ) @property def snake_case ( self : Union[str, Any] ): return self.image_processor_tester.prepare_image_processor_dict() def snake_case ( self : Dict ): lowercase__ : Dict = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , "image_mean" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , "image_std" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , "do_normalize" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , "do_resize" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , "size" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , "size_divisor" ) ) def snake_case ( self : Optional[int] ): pass def snake_case ( self : List[Any] ): # Initialize image processor lowercase__ : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase__ : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE , Image.Image ) # Test not batched input lowercase__ : Tuple = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values lowercase__ , lowercase__ : str = self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowercase__ : List[Any] = image_processing(SCREAMING_SNAKE_CASE , return_tensors="pt" ).pixel_values lowercase__ , lowercase__ : Tuple = self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE , batched=SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def snake_case ( self : int ): # Initialize image processor lowercase__ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase__ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE , numpify=SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE , np.ndarray ) # Test not batched input lowercase__ : str = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values lowercase__ , lowercase__ : Optional[int] = self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowercase__ : int = image_processing(SCREAMING_SNAKE_CASE , return_tensors="pt" ).pixel_values lowercase__ , lowercase__ : List[Any] = self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE , batched=SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def snake_case ( self : Optional[int] ): # Initialize image processor lowercase__ : Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase__ : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE , torchify=SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE , torch.Tensor ) # Test not batched input lowercase__ : List[str] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values lowercase__ , lowercase__ : int = self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowercase__ : List[Any] = image_processing(SCREAMING_SNAKE_CASE , return_tensors="pt" ).pixel_values lowercase__ , lowercase__ : Tuple = self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE , batched=SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , )
81
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase__ = { '''configuration_mgp_str''': ['''MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MgpstrConfig'''], '''processing_mgp_str''': ['''MgpstrProcessor'''], '''tokenization_mgp_str''': ['''MgpstrTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MgpstrModel''', '''MgpstrPreTrainedModel''', '''MgpstrForSceneTextRecognition''', ] if TYPE_CHECKING: from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig from .processing_mgp_str import MgpstrProcessor from .tokenization_mgp_str import MgpstrTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mgp_str import ( MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST, MgpstrForSceneTextRecognition, MgpstrModel, MgpstrPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
81
1
"""simple docstring""" import math import sys def lowercase__(A ) ->int: """simple docstring""" if number != int(A ): raise ValueError("the value of input must be a natural number" ) if number < 0: raise ValueError("the value of input must not be a negative number" ) if number == 0: return 1 lowercase__ : str= [-1] * (number + 1) lowercase__ : str= 0 for i in range(1 , number + 1 ): lowercase__ : str= sys.maxsize lowercase__ : List[str]= int(math.sqrt(A ) ) for j in range(1 , root + 1 ): lowercase__ : Dict= 1 + answers[i - (j**2)] lowercase__ : Optional[int]= min(A , A ) lowercase__ : Dict= answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
218
"""simple docstring""" def lowercase__(A ) ->str: """simple docstring""" if isinstance(A , A ): raise TypeError("'float' object cannot be interpreted as an integer" ) if isinstance(A , A ): raise TypeError("'str' object cannot be interpreted as an integer" ) if num == 0: return "0b0" lowercase__ : Tuple= False if num < 0: lowercase__ : str= True lowercase__ : Dict= -num lowercase__ : list[int]= [] while num > 0: binary.insert(0 , num % 2 ) num >>= 1 if negative: return "-0b" + "".join(str(A ) for e in binary ) return "0b" + "".join(str(A ) for e in binary ) if __name__ == "__main__": import doctest doctest.testmod()
218
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _lowerCAmelCase = { "configuration_ctrl": ["CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP", "CTRLConfig"], "tokenization_ctrl": ["CTRLTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = [ "CTRL_PRETRAINED_MODEL_ARCHIVE_LIST", "CTRLForSequenceClassification", "CTRLLMHeadModel", "CTRLModel", "CTRLPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = [ "TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST", "TFCTRLForSequenceClassification", "TFCTRLLMHeadModel", "TFCTRLModel", "TFCTRLPreTrainedModel", ] if TYPE_CHECKING: from .configuration_ctrl import CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRLConfig from .tokenization_ctrl import CTRLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ctrl import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, CTRLPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_ctrl import ( TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, TFCTRLForSequenceClassification, TFCTRLLMHeadModel, TFCTRLModel, TFCTRLPreTrainedModel, ) else: import sys _lowerCAmelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
719
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { "EleutherAI/gpt-neox-20b": "https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/config.json", # See all GPTNeoX models at https://huggingface.co/models?filter=gpt_neox } class lowerCAmelCase_ ( __lowercase ): UpperCAmelCase = "gpt_neox" def __init__( self : Union[str, Any] , _A : Union[str, Any]=5_0432 , _A : List[Any]=6144 , _A : int=44 , _A : int=64 , _A : Optional[Any]=2_4576 , _A : Any="gelu" , _A : Tuple=0.25 , _A : Union[str, Any]=1_0000 , _A : Tuple=0.0 , _A : Any=0.0 , _A : int=0.1 , _A : List[str]=2048 , _A : Dict=0.02 , _A : Optional[Any]=1e-5 , _A : Tuple=True , _A : List[Any]=0 , _A : Optional[int]=2 , _A : Optional[int]=False , _A : List[Any]=True , _A : Any=None , **_A : Any , ): super().__init__(bos_token_id=_A , eos_token_id=_A , **_A ) _UpperCamelCase = vocab_size _UpperCamelCase = max_position_embeddings _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = rotary_pct _UpperCamelCase = rotary_emb_base _UpperCamelCase = attention_dropout _UpperCamelCase = hidden_dropout _UpperCamelCase = classifier_dropout _UpperCamelCase = initializer_range _UpperCamelCase = layer_norm_eps _UpperCamelCase = use_cache _UpperCamelCase = tie_word_embeddings _UpperCamelCase = use_parallel_residual _UpperCamelCase = rope_scaling self._rope_scaling_validation() if self.hidden_size % self.num_attention_heads != 0: raise ValueError( '''The hidden size is not divisble by the number of attention heads! Make sure to update them!''' ) def UpperCamelCase_ ( self : str ): if self.rope_scaling is None: return if not isinstance(self.rope_scaling , _A ) or len(self.rope_scaling ) != 2: raise ValueError( '''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ''' F"""got {self.rope_scaling}""" ) _UpperCamelCase = self.rope_scaling.get('''type''' , _A ) _UpperCamelCase = self.rope_scaling.get('''factor''' , _A ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""" ) if rope_scaling_factor is None or not isinstance(_A , _A ) or rope_scaling_factor <= 1.0: raise ValueError(F"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""" )
71
0
from typing import Any def __A ( _A ): """simple docstring""" if not input_list: return [] __a = [input_list.count(_A ) for value in input_list] __a = max(_A ) # Gets the maximum count in the input list. # Gets values of modes return sorted({input_list[i] for i, value in enumerate(_A ) if value == y} ) if __name__ == "__main__": import doctest doctest.testmod()
197
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def __A ( ): """simple docstring""" __a = ArgumentParser("Accelerate CLI tool" , usage="accelerate <command> [<args>]" , allow_abbrev=_A ) __a = parser.add_subparsers(help="accelerate command helpers" ) # Register commands get_config_parser(subparsers=_A ) env_command_parser(subparsers=_A ) launch_command_parser(subparsers=_A ) tpu_command_parser(subparsers=_A ) test_command_parser(subparsers=_A ) # Let's go __a = parser.parse_args() if not hasattr(_A , "func" ): parser.print_help() exit(1 ) # Run args.func(_A ) if __name__ == "__main__": main()
197
1
'''simple docstring''' import warnings from typing import Dict import numpy as np from ..utils import ExplicitEnum, add_end_docstrings, is_tf_available, is_torch_available from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING def lowerCAmelCase_ ( a : Dict ): return 1.0 / (1.0 + np.exp(-_outputs )) def lowerCAmelCase_ ( a : List[str] ): a__ = np.max(_outputs , axis=-1 , keepdims=a ) a__ = np.exp(_outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=a ) class _UpperCamelCase ( _A ): '''simple docstring''' SCREAMING_SNAKE_CASE:int = 'sigmoid' SCREAMING_SNAKE_CASE:List[str] = 'softmax' SCREAMING_SNAKE_CASE:Optional[Any] = 'none' @add_end_docstrings( _A , R'\n return_all_scores (`bool`, *optional*, defaults to `False`):\n Whether to return all prediction scores or just the one of the predicted class.\n function_to_apply (`str`, *optional*, defaults to `"default"`):\n The function to apply to the model outputs in order to retrieve the scores. Accepts four different values:\n\n - `"default"`: if the model has a single label, will apply the sigmoid function on the output. If the model\n has several labels, will apply the softmax function on the output.\n - `"sigmoid"`: Applies the sigmoid function on the output.\n - `"softmax"`: Applies the softmax function on the output.\n - `"none"`: Does not apply any function on the output.\n ' , ) class _UpperCamelCase ( _A ): '''simple docstring''' SCREAMING_SNAKE_CASE:Optional[int] = False SCREAMING_SNAKE_CASE:List[str] = ClassificationFunction.NONE def __init__( self , **_a ): """simple docstring""" super().__init__(**_a ) self.check_model_type( TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if self.framework == 'tf' else MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING ) def lowercase__ ( self , _a=None , _a=None , _a="" , **_a ): """simple docstring""" a__ = tokenizer_kwargs a__ = {} if hasattr(self.model.config , 'return_all_scores' ) and return_all_scores is None: a__ = self.model.config.return_all_scores if isinstance(_a , _a ) or top_k is None: a__ = top_k a__ = False elif return_all_scores is not None: warnings.warn( '`return_all_scores` is now deprecated, if want a similar functionality use `top_k=None` instead of' ' `return_all_scores=True` or `top_k=1` instead of `return_all_scores=False`.' , _a , ) if return_all_scores: a__ = None else: a__ = 1 if isinstance(_a , _a ): a__ = ClassificationFunction[function_to_apply.upper()] if function_to_apply is not None: a__ = function_to_apply return preprocess_params, {}, postprocess_params def __call__( self , *_a , **_a ): """simple docstring""" a__ = super().__call__(*_a , **_a ) # TODO try and retrieve it in a nicer way from _sanitize_parameters. a__ = 'top_k' not in kwargs if isinstance(args[0] , _a ) and _legacy: # This pipeline is odd, and return a list when single item is run return [result] else: return result def lowercase__ ( self , _a , **_a ): """simple docstring""" a__ = self.framework if isinstance(_a , _a ): return self.tokenizer(**_a , return_tensors=_a , **_a ) elif isinstance(_a , _a ) and len(_a ) == 1 and isinstance(inputs[0] , _a ) and len(inputs[0] ) == 2: # It used to be valid to use a list of list of list for text pairs, keeping this path for BC return self.tokenizer( text=inputs[0][0] , text_pair=inputs[0][1] , return_tensors=_a , **_a ) elif isinstance(_a , _a ): # This is likely an invalid usage of the pipeline attempting to pass text pairs. raise ValueError( 'The pipeline received invalid inputs, if you are trying to send text pairs, you can try to send a' ' dictionary `{"text": "My text", "text_pair": "My pair"}` in order to send a text pair.' ) return self.tokenizer(_a , return_tensors=_a , **_a ) def lowercase__ ( self , _a ): """simple docstring""" return self.model(**_a ) def lowercase__ ( self , _a , _a=None , _a=1 , _a=True ): """simple docstring""" # `_legacy` is used to determine if we're running the naked pipeline and in backward # compatibility mode, or if running the pipeline with `pipeline(..., top_k=1)` we're running # the more natural result containing the list. # Default value before `set_parameters` if function_to_apply is None: if self.model.config.problem_type == "multi_label_classification" or self.model.config.num_labels == 1: a__ = ClassificationFunction.SIGMOID elif self.model.config.problem_type == "single_label_classification" or self.model.config.num_labels > 1: a__ = ClassificationFunction.SOFTMAX elif hasattr(self.model.config , 'function_to_apply' ) and function_to_apply is None: a__ = self.model.config.function_to_apply else: a__ = ClassificationFunction.NONE a__ = model_outputs['logits'][0] a__ = outputs.numpy() if function_to_apply == ClassificationFunction.SIGMOID: a__ = sigmoid(_a ) elif function_to_apply == ClassificationFunction.SOFTMAX: a__ = softmax(_a ) elif function_to_apply == ClassificationFunction.NONE: a__ = outputs else: raise ValueError(F'''Unrecognized `function_to_apply` argument: {function_to_apply}''' ) if top_k == 1 and _legacy: return {"label": self.model.config.idalabel[scores.argmax().item()], "score": scores.max().item()} a__ = [ {'label': self.model.config.idalabel[i], 'score': score.item()} for i, score in enumerate(_a ) ] if not _legacy: dict_scores.sort(key=lambda _a : x["score"] , reverse=_a ) if top_k is not None: a__ = dict_scores[:top_k] return dict_scores
715
'''simple docstring''' import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, AutoConfig, AutoFeatureExtractor, WavaVecaConfig, WavaVecaFeatureExtractor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 __A : int = get_tests_dir('fixtures') __A : Tuple = get_tests_dir('fixtures/dummy_feature_extractor_config.json') __A : List[Any] = get_tests_dir('fixtures/dummy-config.json') class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def lowercase__ ( self ): """simple docstring""" a__ = 0 def lowercase__ ( self ): """simple docstring""" a__ = AutoFeatureExtractor.from_pretrained('facebook/wav2vec2-base-960h' ) self.assertIsInstance(_a , _a ) def lowercase__ ( self ): """simple docstring""" a__ = AutoFeatureExtractor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) def lowercase__ ( self ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: a__ = WavaVecaConfig() # remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally a__ = AutoFeatureExtractor.from_pretrained(_a ).to_dict() config_dict.pop('feature_extractor_type' ) a__ = WavaVecaFeatureExtractor(**_a ) # save in new folder model_config.save_pretrained(_a ) config.save_pretrained(_a ) a__ = AutoFeatureExtractor.from_pretrained(_a ) # make sure private variable is not incorrectly saved a__ = json.loads(config.to_json_string() ) self.assertTrue('_processor_class' not in dict_as_saved ) self.assertIsInstance(_a , _a ) def lowercase__ ( self ): """simple docstring""" a__ = AutoFeatureExtractor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) def lowercase__ ( self ): """simple docstring""" with self.assertRaisesRegex( _a , 'bert-base is not a local folder and is not a valid model identifier' ): a__ = AutoFeatureExtractor.from_pretrained('bert-base' ) def lowercase__ ( self ): """simple docstring""" with self.assertRaisesRegex( _a , r'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): a__ = AutoFeatureExtractor.from_pretrained(_a , revision='aaaaaa' ) def lowercase__ ( self ): """simple docstring""" with self.assertRaisesRegex( _a , 'hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.' , ): a__ = AutoFeatureExtractor.from_pretrained('hf-internal-testing/config-no-model' ) def lowercase__ ( self ): """simple docstring""" # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(_a ): a__ = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' ) # If remote code is disabled, we can't load this config. with self.assertRaises(_a ): a__ = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=_a ) a__ = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=_a ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) # Test feature extractor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(_a ) a__ = AutoFeatureExtractor.from_pretrained(_a , trust_remote_code=_a ) self.assertEqual(reloaded_feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) def lowercase__ ( self ): """simple docstring""" try: AutoConfig.register('custom' , _a ) AutoFeatureExtractor.register(_a , _a ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_a ): AutoFeatureExtractor.register(_a , _a ) # Now that the config is registered, it can be used as any other config with the auto-API a__ = CustomFeatureExtractor.from_pretrained(_a ) with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(_a ) a__ = AutoFeatureExtractor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] def lowercase__ ( self ): """simple docstring""" class _UpperCamelCase ( _A ): '''simple docstring''' SCREAMING_SNAKE_CASE:List[Any] = True try: AutoConfig.register('custom' , _a ) AutoFeatureExtractor.register(_a , _a ) # If remote code is not set, the default is to use local a__ = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) self.assertTrue(feature_extractor.is_local ) # If remote code is disabled, we load the local one. a__ = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=_a ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) self.assertTrue(feature_extractor.is_local ) # If remote is enabled, we load from the Hub a__ = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=_a ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) self.assertTrue(not hasattr(_a , 'is_local' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
126
0
_lowerCamelCase : str = {0: [2, 3], 1: [0], 2: [1], 3: [4], 4: []} _lowerCamelCase : Union[str, Any] = {0: [1, 2, 3], 1: [2], 2: [0], 3: [4], 4: [5], 5: [3]} def _lowerCAmelCase ( __magic_name__ :dict[int, list[int]] , __magic_name__ :int , __magic_name__ :list[bool] ): UpperCAmelCase_ = True UpperCAmelCase_ = [] for neighbour in graph[vert]: if not visited[neighbour]: order += topology_sort(__magic_name__ , __magic_name__ , __magic_name__ ) order.append(__magic_name__ ) return order def _lowerCAmelCase ( __magic_name__ :dict[int, list[int]] , __magic_name__ :int , __magic_name__ :list[bool] ): UpperCAmelCase_ = True UpperCAmelCase_ = [vert] for neighbour in reversed_graph[vert]: if not visited[neighbour]: component += find_components(__magic_name__ , __magic_name__ , __magic_name__ ) return component def _lowerCAmelCase ( __magic_name__ :dict[int, list[int]] ): UpperCAmelCase_ = len(__magic_name__ ) * [False] UpperCAmelCase_ = {vert: [] for vert in range(len(__magic_name__ ) )} for vert, neighbours in graph.items(): for neighbour in neighbours: reversed_graph[neighbour].append(__magic_name__ ) UpperCAmelCase_ = [] for i, was_visited in enumerate(__magic_name__ ): if not was_visited: order += topology_sort(__magic_name__ , __magic_name__ , __magic_name__ ) UpperCAmelCase_ = [] UpperCAmelCase_ = len(__magic_name__ ) * [False] for i in range(len(__magic_name__ ) ): UpperCAmelCase_ = order[len(__magic_name__ ) - i - 1] if not visited[vert]: UpperCAmelCase_ = find_components(__magic_name__ , __magic_name__ , __magic_name__ ) components_list.append(__magic_name__ ) return components_list
121
import enum import warnings from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING _lowerCamelCase : Tuple = logging.get_logger(__name__) class snake_case__ ( enum.Enum ): '''simple docstring''' __A = 0 __A = 1 @add_end_docstrings(__snake_case ) class snake_case__ ( __snake_case ): '''simple docstring''' __A = '''generated''' def __init__( self : List[str] , *lowerCAmelCase_ : List[str] , **lowerCAmelCase_ : Optional[int] ) -> int: super().__init__(*lowerCAmelCase_ , **lowerCAmelCase_ ) self.check_model_type( TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if self.framework == '''tf''' else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING ) def UpperCamelCase ( self : Optional[Any] , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : str=None , lowerCAmelCase_ : Optional[int]=None , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : Optional[int]=None , lowerCAmelCase_ : Tuple=None , **lowerCAmelCase_ : Tuple , ) -> Dict: UpperCAmelCase_ = {} if truncation is not None: UpperCAmelCase_ = truncation UpperCAmelCase_ = generate_kwargs UpperCAmelCase_ = {} if return_tensors is not None and return_type is None: UpperCAmelCase_ = ReturnType.TENSORS if return_tensors else ReturnType.TEXT if return_type is not None: UpperCAmelCase_ = return_type if clean_up_tokenization_spaces is not None: UpperCAmelCase_ = clean_up_tokenization_spaces if stop_sequence is not None: UpperCAmelCase_ = self.tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) if len(lowerCAmelCase_ ) > 1: warnings.warn( '''Stopping on a multiple token sequence is not yet supported on transformers. The first token of''' ''' the stop sequence will be used as the stop sequence string in the interim.''' ) UpperCAmelCase_ = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def UpperCamelCase ( self : List[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : int ) -> Dict: return True def UpperCamelCase ( self : Optional[int] , *lowerCAmelCase_ : str , lowerCAmelCase_ : Union[str, Any] ) -> Optional[int]: UpperCAmelCase_ = self.model.config.prefix if self.model.config.prefix is not None else '''''' if isinstance(args[0] , lowerCAmelCase_ ): if self.tokenizer.pad_token_id is None: raise ValueError('''Please make sure that the tokenizer has a pad_token_id when using a batch input''' ) UpperCAmelCase_ = ([prefix + arg for arg in args[0]],) UpperCAmelCase_ = True elif isinstance(args[0] , lowerCAmelCase_ ): UpperCAmelCase_ = (prefix + args[0],) UpperCAmelCase_ = False else: raise ValueError( F''' `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`''' ) UpperCAmelCase_ = self.tokenizer(*lowerCAmelCase_ , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , return_tensors=self.framework ) # This is produced by tokenizers but is an invalid generate kwargs if "token_type_ids" in inputs: del inputs["token_type_ids"] return inputs def __call__( self : List[Any] , *lowerCAmelCase_ : Union[str, Any] , **lowerCAmelCase_ : Tuple ) -> Union[str, Any]: UpperCAmelCase_ = super().__call__(*lowerCAmelCase_ , **lowerCAmelCase_ ) if ( isinstance(args[0] , lowerCAmelCase_ ) and all(isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) for el in args[0] ) and all(len(lowerCAmelCase_ ) == 1 for res in result ) ): return [res[0] for res in result] return result def UpperCamelCase ( self : Optional[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any]=TruncationStrategy.DO_NOT_TRUNCATE , **lowerCAmelCase_ : Tuple ) -> str: UpperCAmelCase_ = self._parse_and_tokenize(lowerCAmelCase_ , truncation=lowerCAmelCase_ , **lowerCAmelCase_ ) return inputs def UpperCamelCase ( self : int , lowerCAmelCase_ : Optional[Any] , **lowerCAmelCase_ : Union[str, Any] ) -> Any: if self.framework == "pt": UpperCAmelCase_, UpperCAmelCase_ = model_inputs['''input_ids'''].shape elif self.framework == "tf": UpperCAmelCase_, UpperCAmelCase_ = tf.shape(model_inputs['''input_ids'''] ).numpy() UpperCAmelCase_ = generate_kwargs.get('''min_length''' , self.model.config.min_length ) UpperCAmelCase_ = generate_kwargs.get('''max_length''' , self.model.config.max_length ) self.check_inputs(lowerCAmelCase_ , generate_kwargs['''min_length'''] , generate_kwargs['''max_length'''] ) UpperCAmelCase_ = self.model.generate(**lowerCAmelCase_ , **lowerCAmelCase_ ) UpperCAmelCase_ = output_ids.shape[0] if self.framework == "pt": UpperCAmelCase_ = output_ids.reshape(lowerCAmelCase_ , out_b // in_b , *output_ids.shape[1:] ) elif self.framework == "tf": UpperCAmelCase_ = tf.reshape(lowerCAmelCase_ , (in_b, out_b // in_b, *output_ids.shape[1:]) ) return {"output_ids": output_ids} def UpperCamelCase ( self : Dict , lowerCAmelCase_ : str , lowerCAmelCase_ : Any=ReturnType.TEXT , lowerCAmelCase_ : List[str]=False ) -> Union[str, Any]: UpperCAmelCase_ = [] for output_ids in model_outputs["output_ids"][0]: if return_type == ReturnType.TENSORS: UpperCAmelCase_ = {F'''{self.return_name}_token_ids''': output_ids} elif return_type == ReturnType.TEXT: UpperCAmelCase_ = { F'''{self.return_name}_text''': self.tokenizer.decode( lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ , clean_up_tokenization_spaces=lowerCAmelCase_ , ) } records.append(lowerCAmelCase_ ) return records @add_end_docstrings(__snake_case ) class snake_case__ ( __snake_case ): '''simple docstring''' __A = '''summary''' def __call__( self : Optional[int] , *lowerCAmelCase_ : Any , **lowerCAmelCase_ : Tuple ) -> List[str]: return super().__call__(*lowerCAmelCase_ , **lowerCAmelCase_ ) def UpperCamelCase ( self : str , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : int ) -> bool: if max_length < min_length: logger.warning(F'''Your min_length={min_length} must be inferior than your max_length={max_length}.''' ) if input_length < max_length: logger.warning( F'''Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is ''' '''a summarization task, where outputs shorter than the input are typically wanted, you might ''' F'''consider decreasing max_length manually, e.g. summarizer(\'...\', max_length={input_length//2})''' ) @add_end_docstrings(__snake_case ) class snake_case__ ( __snake_case ): '''simple docstring''' __A = '''translation''' def UpperCamelCase ( self : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : int ) -> Union[str, Any]: if input_length > 0.9 * max_length: logger.warning( F'''Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider ''' '''increasing your max_length manually, e.g. translator(\'...\', max_length=400)''' ) return True def UpperCamelCase ( self : Tuple , *lowerCAmelCase_ : int , lowerCAmelCase_ : int=TruncationStrategy.DO_NOT_TRUNCATE , lowerCAmelCase_ : str=None , lowerCAmelCase_ : Union[str, Any]=None ) -> Optional[int]: if getattr(self.tokenizer , '''_build_translation_inputs''' , lowerCAmelCase_ ): return self.tokenizer._build_translation_inputs( *lowerCAmelCase_ , return_tensors=self.framework , truncation=lowerCAmelCase_ , src_lang=lowerCAmelCase_ , tgt_lang=lowerCAmelCase_ ) else: return super()._parse_and_tokenize(*lowerCAmelCase_ , truncation=lowerCAmelCase_ ) def UpperCamelCase ( self : Optional[Any] , lowerCAmelCase_ : Optional[Any]=None , lowerCAmelCase_ : int=None , **lowerCAmelCase_ : int ) -> Union[str, Any]: UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_ = super()._sanitize_parameters(**lowerCAmelCase_ ) if src_lang is not None: UpperCAmelCase_ = src_lang if tgt_lang is not None: UpperCAmelCase_ = tgt_lang if src_lang is None and tgt_lang is None: # Backward compatibility, direct arguments use is preferred. UpperCAmelCase_ = kwargs.get('''task''' , self.task ) UpperCAmelCase_ = task.split('''_''' ) if task and len(lowerCAmelCase_ ) == 4: # translation, XX, to YY UpperCAmelCase_ = items[1] UpperCAmelCase_ = items[3] return preprocess_params, forward_params, postprocess_params def __call__( self : Optional[Any] , *lowerCAmelCase_ : Union[str, Any] , **lowerCAmelCase_ : Optional[int] ) -> int: return super().__call__(*lowerCAmelCase_ , **lowerCAmelCase_ )
121
1
from __future__ import annotations def A__ ( __lowerCamelCase, __lowerCamelCase ): print(F'''Vertex\tShortest Distance from vertex {src}''' ) for i, d in enumerate(__lowerCamelCase ): print(F'''{i}\t\t{d}''' ) def A__ ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): for j in range(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = (graph[j][k] for k in ['''src''', '''dst''', '''weight''']) if distance[u] != float('''inf''' ) and distance[u] + w < distance[v]: return True return False def A__ ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = [float('''inf''' )] * vertex_count SCREAMING_SNAKE_CASE_ = 0.0 for _ in range(vertex_count - 1 ): for j in range(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = (graph[j][k] for k in ['''src''', '''dst''', '''weight''']) if distance[u] != float('''inf''' ) and distance[u] + w < distance[v]: SCREAMING_SNAKE_CASE_ = distance[u] + w SCREAMING_SNAKE_CASE_ = check_negative_cycle(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) if negative_cycle_exists: raise Exception('''Negative cycle found''' ) return distance if __name__ == "__main__": import doctest doctest.testmod() __UpperCAmelCase = int(input("Enter number of vertices: ").strip()) __UpperCAmelCase = int(input("Enter number of edges: ").strip()) __UpperCAmelCase = [{} for _ in range(E)] for i in range(E): print("Edge ", i + 1) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = ( int(x) for x in input("Enter source, destination, weight: ").strip().split(" ") ) __UpperCAmelCase = {"src": src, "dst": dest, "weight": weight} __UpperCAmelCase = int(input("\nEnter shortest path source:").strip()) __UpperCAmelCase = bellman_ford(graph, V, E, source) print_distance(shortest_distance, 0)
704
import numpy as np def A__ ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = int(np.ceil((x_end - xa) / h ) ) SCREAMING_SNAKE_CASE_ = np.zeros((n + 1,) ) SCREAMING_SNAKE_CASE_ = ya SCREAMING_SNAKE_CASE_ = xa for k in range(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = f(__lowerCamelCase, y[k] ) SCREAMING_SNAKE_CASE_ = f(x + 0.5 * h, y[k] + 0.5 * h * ka ) SCREAMING_SNAKE_CASE_ = f(x + 0.5 * h, y[k] + 0.5 * h * ka ) SCREAMING_SNAKE_CASE_ = f(x + h, y[k] + h * ka ) SCREAMING_SNAKE_CASE_ = y[k] + (1 / 6) * h * (ka + 2 * ka + 2 * ka + ka) x += h return y if __name__ == "__main__": import doctest doctest.testmod()
597
0
from dataclasses import dataclass, field from typing import Optional from transformers import AutoConfig, AutoImageProcessor, AutoTokenizer, FlaxVisionEncoderDecoderModel, HfArgumentParser @dataclass class lowerCAmelCase__ : A_ : str = field( metadata={'help': 'The output directory where the model will be written.'} , ) A_ : str = field( metadata={ 'help': ( 'The encoder model checkpoint for weights initialization.' 'Don\'t set if you want to train an encoder model from scratch.' ) } , ) A_ : str = field( metadata={ 'help': ( 'The decoder model checkpoint for weights initialization.' 'Don\'t set if you want to train a decoder model from scratch.' ) } , ) A_ : Optional[str] = field( default=_lowerCamelCase , metadata={'help': 'Pretrained encoder config name or path if not the same as encoder_model_name'} ) A_ : Optional[str] = field( default=_lowerCamelCase , metadata={'help': 'Pretrained decoder config name or path if not the same as decoder_model_name'} ) def lowerCamelCase_ ( ) -> Optional[Any]: '''simple docstring''' A = HfArgumentParser((ModelArguments,) ) ((A) , ) = parser.parse_args_into_dataclasses() # Load pretrained model and tokenizer # Use explicit specified encoder config if model_args.encoder_config_name: A = AutoConfig.from_pretrained(model_args.encoder_config_name ) # Use pretrained encoder model's config else: A = AutoConfig.from_pretrained(model_args.encoder_model_name_or_path ) # Use explicit specified decoder config if model_args.decoder_config_name: A = AutoConfig.from_pretrained(model_args.decoder_config_name ) # Use pretrained decoder model's config else: A = AutoConfig.from_pretrained(model_args.decoder_model_name_or_path ) # necessary for `from_encoder_decoder_pretrained` when `decoder_config` is passed A = True A = True A = FlaxVisionEncoderDecoderModel.from_encoder_decoder_pretrained( encoder_pretrained_model_name_or_path=model_args.encoder_model_name_or_path , decoder_pretrained_model_name_or_path=model_args.decoder_model_name_or_path , encoder_config=lowerCAmelCase__ , decoder_config=lowerCAmelCase__ , ) # GPT2 only has bos/eos tokens but not decoder_start/pad tokens A = decoder_config.decoder_start_token_id A = decoder_config.pad_token_id if decoder_start_token_id is None: A = decoder_config.bos_token_id if pad_token_id is None: A = decoder_config.eos_token_id # This is necessary to make Flax's generate() work A = decoder_config.eos_token_id A = decoder_start_token_id A = pad_token_id A = AutoImageProcessor.from_pretrained(model_args.encoder_model_name_or_path ) A = AutoTokenizer.from_pretrained(model_args.decoder_model_name_or_path ) A = tokenizer.convert_ids_to_tokens(model.config.pad_token_id ) model.save_pretrained(model_args.output_dir ) image_processor.save_pretrained(model_args.output_dir ) tokenizer.save_pretrained(model_args.output_dir ) if __name__ == "__main__": main()
106
from sklearn.metrics import mean_squared_error import datasets lowerCAmelCase_ = '''\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' lowerCAmelCase_ = '''\ Mean Squared Error(MSE) is the average of the square of difference between the predicted and actual values. ''' lowerCAmelCase_ = ''' Args: predictions: array-like of shape (n_samples,) or (n_samples, n_outputs) Estimated target values. references: array-like of shape (n_samples,) or (n_samples, n_outputs) Ground truth (correct) target values. sample_weight: array-like of shape (n_samples,), default=None Sample weights. multioutput: {"raw_values", "uniform_average"} or array-like of shape (n_outputs,), default="uniform_average" Defines aggregating of multiple output values. Array-like value defines weights used to average errors. "raw_values" : Returns a full set of errors in case of multioutput input. "uniform_average" : Errors of all outputs are averaged with uniform weight. squared : bool, default=True If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value. Returns: mse : mean squared error. Examples: >>> mse_metric = datasets.load_metric("mse") >>> predictions = [2.5, 0.0, 2, 8] >>> references = [3, -0.5, 2, 7] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {\'mse\': 0.375} >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False) >>> print(rmse_result) {\'mse\': 0.6123724356957945} If you\'re using multi-dimensional lists, then set the config as follows : >>> mse_metric = datasets.load_metric("mse", "multilist") >>> predictions = [[0.5, 1], [-1, 1], [7, -6]] >>> references = [[0, 2], [-1, 2], [8, -5]] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {\'mse\': 0.7083333333333334} >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput=\'raw_values\') >>> print(results) # doctest: +NORMALIZE_WHITESPACE {\'mse\': array([0.41666667, 1. ])} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class __lowerCAmelCase ( datasets.Metric ): def lowerCamelCase (self ) -> Optional[int]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ '''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html''' ] , ) def lowerCamelCase (self ) -> Dict: '''simple docstring''' if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value('''float''' ) ), "references": datasets.Sequence(datasets.Value('''float''' ) ), } else: return { "predictions": datasets.Value('''float''' ), "references": datasets.Value('''float''' ), } def lowerCamelCase (self , __magic_name__ , __magic_name__ , __magic_name__=None , __magic_name__="uniform_average" , __magic_name__=True ) -> Any: '''simple docstring''' snake_case_ : List[Any] = mean_squared_error( __magic_name__ , __magic_name__ , sample_weight=__magic_name__ , multioutput=__magic_name__ , squared=__magic_name__ ) return {"mse": mse}
60
0
from ...configuration_utils import PretrainedConfig from ...utils import logging a_ : Tuple = logging.get_logger(__name__) a_ : Union[str, Any] = { 'google/pegasus-large': 'https://huggingface.co/google/pegasus-large/resolve/main/config.json', # See all PEGASUS models at https://huggingface.co/models?filter=pegasus } class SCREAMING_SNAKE_CASE_ ( __lowerCamelCase ): """simple docstring""" _a = 'pegasus' _a = ['past_key_values'] _a = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self , A=5_02_65 , A=10_24 , A=12 , A=40_96 , A=16 , A=12 , A=40_96 , A=16 , A=0.0 , A=0.0 , A=True , A=True , A="gelu" , A=10_24 , A=0.1 , A=0.0 , A=0.0 , A=0.02 , A=0 , A=False , A=0 , A=1 , A=1 , **A , ) -> Union[str, Any]: '''simple docstring''' __magic_name__ = vocab_size __magic_name__ = max_position_embeddings __magic_name__ = d_model __magic_name__ = encoder_ffn_dim __magic_name__ = encoder_layers __magic_name__ = encoder_attention_heads __magic_name__ = decoder_ffn_dim __magic_name__ = decoder_layers __magic_name__ = decoder_attention_heads __magic_name__ = dropout __magic_name__ = attention_dropout __magic_name__ = activation_dropout __magic_name__ = activation_function __magic_name__ = init_std __magic_name__ = encoder_layerdrop __magic_name__ = decoder_layerdrop __magic_name__ = use_cache __magic_name__ = encoder_layers __magic_name__ = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , is_encoder_decoder=UpperCamelCase_ , decoder_start_token_id=UpperCamelCase_ , forced_eos_token_id=UpperCamelCase_ , **UpperCamelCase_ , ) @property def __A ( self ) -> List[Any]: '''simple docstring''' return self.encoder_attention_heads @property def __A ( self ) -> int: '''simple docstring''' return self.d_model
714
def _SCREAMING_SNAKE_CASE ( snake_case_ : str ): return " ".join( ''''''.join(word[::-1] ) if len(snake_case_ ) > 4 else word for word in sentence.split() ) if __name__ == "__main__": import doctest doctest.testmod() print(reverse_long_words('Hey wollef sroirraw'))
678
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mobilebert import MobileBertTokenizer a__ = logging.get_logger(__name__) a__ = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} a__ = { """vocab_file""": {"""mobilebert-uncased""": """https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt"""}, """tokenizer_file""": { """mobilebert-uncased""": """https://huggingface.co/google/mobilebert-uncased/resolve/main/tokenizer.json""" }, } a__ = {"""mobilebert-uncased""": 5_12} a__ = {} class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = VOCAB_FILES_NAMES snake_case_ : Any = PRETRAINED_VOCAB_FILES_MAP snake_case_ : Optional[int] = PRETRAINED_INIT_CONFIGURATION snake_case_ : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ : List[Any] = MobileBertTokenizer def __init__( self : Union[str, Any] , lowerCAmelCase : List[str]=None , lowerCAmelCase : Dict=None , lowerCAmelCase : str=True , lowerCAmelCase : str="[UNK]" , lowerCAmelCase : Any="[SEP]" , lowerCAmelCase : Union[str, Any]="[PAD]" , lowerCAmelCase : List[str]="[CLS]" , lowerCAmelCase : Any="[MASK]" , lowerCAmelCase : str=True , lowerCAmelCase : Optional[int]=None , **lowerCAmelCase : Tuple , ) -> Optional[Any]: """simple docstring""" super().__init__( lowerCAmelCase , tokenizer_file=lowerCAmelCase , do_lower_case=lowerCAmelCase , unk_token=lowerCAmelCase , sep_token=lowerCAmelCase , pad_token=lowerCAmelCase , cls_token=lowerCAmelCase , mask_token=lowerCAmelCase , tokenize_chinese_chars=lowerCAmelCase , strip_accents=lowerCAmelCase , **lowerCAmelCase , ) _snake_case : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__()) if ( normalizer_state.get("""lowercase""" , lowerCAmelCase) != do_lower_case or normalizer_state.get("""strip_accents""" , lowerCAmelCase) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , lowerCAmelCase) != tokenize_chinese_chars ): _snake_case : Any = getattr(lowerCAmelCase , normalizer_state.pop("""type""")) _snake_case : str = do_lower_case _snake_case : List[Any] = strip_accents _snake_case : Optional[int] = tokenize_chinese_chars _snake_case : Optional[Any] = normalizer_class(**lowerCAmelCase) _snake_case : Optional[Any] = do_lower_case def UpperCamelCase_ ( self : Optional[int] , lowerCAmelCase : int , lowerCAmelCase : str=None) -> int: """simple docstring""" _snake_case : Tuple = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase_ ( self : Tuple , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None) -> List[int]: """simple docstring""" _snake_case : str = [self.sep_token_id] _snake_case : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : str , lowerCAmelCase : Optional[str] = None) -> Tuple[str]: """simple docstring""" _snake_case : List[Any] = self._tokenizer.model.save(lowerCAmelCase , name=lowerCAmelCase) return tuple(lowerCAmelCase)
477
import importlib.util import os import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import ( is_accelerate_available, is_flax_available, is_safetensors_available, is_tf_available, is_torch_available, ) from . import BaseTransformersCLICommand def lowercase ( SCREAMING_SNAKE_CASE__ : Dict ) -> str: return EnvironmentCommand() def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Optional[Any]: return EnvironmentCommand(args.accelerate_config_file ) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' @staticmethod def UpperCamelCase_ ( lowerCAmelCase : ArgumentParser) -> Optional[int]: """simple docstring""" _snake_case : List[Any] = parser.add_parser("""env""") download_parser.set_defaults(func=lowerCAmelCase) download_parser.add_argument( """--accelerate-config_file""" , default=lowerCAmelCase , help="""The accelerate config file to use for the default values in the launching script.""" , ) download_parser.set_defaults(func=lowerCAmelCase) def __init__( self : str , lowerCAmelCase : Optional[Any] , *lowerCAmelCase : str) -> None: """simple docstring""" _snake_case : List[Any] = accelerate_config_file def UpperCamelCase_ ( self : List[Any]) -> Tuple: """simple docstring""" _snake_case : Optional[Any] = """not installed""" if is_safetensors_available(): import safetensors _snake_case : Union[str, Any] = safetensors.__version__ elif importlib.util.find_spec("""safetensors""") is not None: import safetensors _snake_case : int = F'''{safetensors.__version__} but is ignored because of PyTorch version too old.''' _snake_case : Dict = """not installed""" _snake_case : List[str] = """not found""" if is_accelerate_available(): import accelerate from accelerate.commands.config import default_config_file, load_config_from_file _snake_case : int = accelerate.__version__ # Get the default from the config file. if self._accelerate_config_file is not None or os.path.isfile(lowerCAmelCase): _snake_case : Optional[Any] = load_config_from_file(self._accelerate_config_file).to_dict() _snake_case : int = ( """\n""".join([F'''\t- {prop}: {val}''' for prop, val in accelerate_config.items()]) if isinstance(lowerCAmelCase , lowerCAmelCase) else F'''\t{accelerate_config}''' ) _snake_case : Any = """not installed""" _snake_case : int = """NA""" if is_torch_available(): import torch _snake_case : Dict = torch.__version__ _snake_case : List[Any] = torch.cuda.is_available() _snake_case : Optional[int] = """not installed""" _snake_case : Any = """NA""" if is_tf_available(): import tensorflow as tf _snake_case : Tuple = tf.__version__ try: # deprecated in v2.1 _snake_case : int = tf.test.is_gpu_available() except AttributeError: # returns list of devices, convert to bool _snake_case : Optional[int] = bool(tf.config.list_physical_devices("""GPU""")) _snake_case : Dict = """not installed""" _snake_case : Any = """not installed""" _snake_case : int = """not installed""" _snake_case : List[str] = """NA""" if is_flax_available(): import flax import jax import jaxlib _snake_case : str = flax.__version__ _snake_case : Tuple = jax.__version__ _snake_case : int = jaxlib.__version__ _snake_case : Optional[Any] = jax.lib.xla_bridge.get_backend().platform _snake_case : List[str] = { """`transformers` version""": version, """Platform""": platform.platform(), """Python version""": platform.python_version(), """Huggingface_hub version""": huggingface_hub.__version__, """Safetensors version""": F'''{safetensors_version}''', """Accelerate version""": F'''{accelerate_version}''', """Accelerate config""": F'''{accelerate_config_str}''', """PyTorch version (GPU?)""": F'''{pt_version} ({pt_cuda_available})''', """Tensorflow version (GPU?)""": F'''{tf_version} ({tf_cuda_available})''', """Flax version (CPU?/GPU?/TPU?)""": F'''{flax_version} ({jax_backend})''', """Jax version""": F'''{jax_version}''', """JaxLib version""": F'''{jaxlib_version}''', """Using GPU in script?""": """<fill in>""", """Using distributed or parallel set-up in script?""": """<fill in>""", } print("""\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n""") print(self.format_dict(lowerCAmelCase)) return info @staticmethod def UpperCamelCase_ ( lowerCAmelCase : str) -> str: """simple docstring""" return "\n".join([F'''- {prop}: {val}''' for prop, val in d.items()]) + "\n"
477
1
'''simple docstring''' from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class UpperCamelCase__ ( lowercase_ ): """simple docstring""" SCREAMING_SNAKE_CASE__ = '''''' SCREAMING_SNAKE_CASE__ = '''hf-legacy''' # "hf://"" is reserved for hffs def __init__( self : List[str] , lowerCamelCase_ : Optional[DatasetInfo] = None , lowerCamelCase_ : Optional[str] = None , **lowerCamelCase_ : Optional[int] , ): '''simple docstring''' super().__init__(self , **lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = repo_info SCREAMING_SNAKE_CASE : Any = token SCREAMING_SNAKE_CASE : Tuple = None def lowerCamelCase_ ( self : Dict ): '''simple docstring''' if self.dir_cache is None: SCREAMING_SNAKE_CASE : int = {} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes SCREAMING_SNAKE_CASE : Optional[Any] = { """name""": hf_file.rfilename, """size""": None, """type""": """file""", } self.dir_cache.update( { str(lowerCamelCase_ ): {"""name""": str(lowerCamelCase_ ), """size""": None, """type""": """directory"""} for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1] } ) def lowerCamelCase_ ( self : List[str] , lowerCamelCase_ : str , lowerCamelCase_ : str = "rb" , **lowerCamelCase_ : List[Any] , ): '''simple docstring''' if not isinstance(self.repo_info , lowerCamelCase_ ): raise NotImplementedError(f'''Open is only implemented for dataset repositories, but got {self.repo_info}''' ) SCREAMING_SNAKE_CASE : Dict = hf_hub_url(self.repo_info.id , lowerCamelCase_ , revision=self.repo_info.sha ) return fsspec.open( lowerCamelCase_ , mode=lowerCamelCase_ , headers=get_authentication_headers_for_url(lowerCamelCase_ , use_auth_token=self.token ) , client_kwargs={"""trust_env""": True} , ).open() def lowerCamelCase_ ( self : str , lowerCamelCase_ : int , **lowerCamelCase_ : List[str] ): '''simple docstring''' self._get_dirs() SCREAMING_SNAKE_CASE : Union[str, Any] = self._strip_protocol(lowerCamelCase_ ) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(lowerCamelCase_ ) def lowerCamelCase_ ( self : Union[str, Any] , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : int=False , **lowerCamelCase_ : Optional[Any] ): '''simple docstring''' self._get_dirs() SCREAMING_SNAKE_CASE : str = PurePosixPath(path.strip("""/""" ) ) SCREAMING_SNAKE_CASE : Optional[int] = {} for p, f in self.dir_cache.items(): SCREAMING_SNAKE_CASE : List[Any] = PurePosixPath(p.strip("""/""" ) ) SCREAMING_SNAKE_CASE : List[str] = p.parent if root == path: SCREAMING_SNAKE_CASE : Dict = f SCREAMING_SNAKE_CASE : List[Any] = list(paths.values() ) if detail: return out else: return sorted(f["""name"""] for f in out )
708
'''simple docstring''' import math class UpperCamelCase__ : """simple docstring""" def __init__( self : List[str] , lowerCamelCase_ : Tuple=0 ): # a graph with Node 0,1,...,N-1 '''simple docstring''' SCREAMING_SNAKE_CASE : Any = n SCREAMING_SNAKE_CASE : Optional[int] = [ [math.inf for j in range(0 , lowerCamelCase_ )] for i in range(0 , lowerCamelCase_ ) ] # adjacency matrix for weight SCREAMING_SNAKE_CASE : Union[str, Any] = [ [math.inf for j in range(0 , lowerCamelCase_ )] for i in range(0 , lowerCamelCase_ ) ] # dp[i][j] stores minimum distance from i to j def lowerCamelCase_ ( self : Dict , lowerCamelCase_ : str , lowerCamelCase_ : List[str] , lowerCamelCase_ : int ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = w def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): SCREAMING_SNAKE_CASE : Union[str, Any] = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def lowerCamelCase_ ( self : Dict , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Union[str, Any] ): '''simple docstring''' return self.dp[u][v] if __name__ == "__main__": __UpperCAmelCase = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
79
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase__ : Union[str, Any] = { """configuration_xlm_roberta_xl""": [ """XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XLMRobertaXLConfig""", """XLMRobertaXLOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : List[str] = [ """XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST""", """XLMRobertaXLForCausalLM""", """XLMRobertaXLForMaskedLM""", """XLMRobertaXLForMultipleChoice""", """XLMRobertaXLForQuestionAnswering""", """XLMRobertaXLForSequenceClassification""", """XLMRobertaXLForTokenClassification""", """XLMRobertaXLModel""", """XLMRobertaXLPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaXLConfig, XLMRobertaXLOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaXLForCausalLM, XLMRobertaXLForMaskedLM, XLMRobertaXLForMultipleChoice, XLMRobertaXLForQuestionAnswering, XLMRobertaXLForSequenceClassification, XLMRobertaXLForTokenClassification, XLMRobertaXLModel, XLMRobertaXLPreTrainedModel, ) else: import sys lowerCamelCase__ : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
33
# We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation import warnings from .state import AcceleratorState, GradientState warnings.filterwarnings('ignore', category=UserWarning, module='torch.optim.lr_scheduler') class __lowerCAmelCase : def __init__( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = True , lowerCAmelCase = False ) -> str: '''simple docstring''' _lowercase =scheduler _lowercase =optimizers if isinstance(lowerCAmelCase , (list, tuple) ) else [optimizers] _lowercase =split_batches _lowercase =step_with_optimizer _lowercase =GradientState() def A__ ( self , *lowerCAmelCase , **lowerCAmelCase ) -> List[Any]: '''simple docstring''' if not self.step_with_optimizer: # No link between scheduler and optimizer -> just step self.scheduler.step(*lowerCAmelCase , **lowerCAmelCase ) return # Otherwise, first make sure the optimizer was stepped. if not self.gradient_state.sync_gradients: if self.gradient_state.adjust_scheduler: self.scheduler._step_count += 1 return for opt in self.optimizers: if opt.step_was_skipped: return if self.split_batches: # Split batches -> the training dataloader batch size is not changed so one step per training step self.scheduler.step(*lowerCAmelCase , **lowerCAmelCase ) else: # Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do # num_processes steps per training step _lowercase =AcceleratorState().num_processes for _ in range(lowerCAmelCase ): # Special case when using OneCycle and `drop_last` was not used if hasattr(self.scheduler , 'total_steps' ): if self.scheduler._step_count <= self.scheduler.total_steps: self.scheduler.step(*lowerCAmelCase , **lowerCAmelCase ) else: self.scheduler.step(*lowerCAmelCase , **lowerCAmelCase ) def A__ ( self ) -> str: '''simple docstring''' return self.scheduler.get_last_lr() def A__ ( self ) -> Tuple: '''simple docstring''' return self.scheduler.state_dict() def A__ ( self , lowerCAmelCase ) -> str: '''simple docstring''' self.scheduler.load_state_dict(lowerCAmelCase ) def A__ ( self ) -> int: '''simple docstring''' return self.scheduler.get_lr() def A__ ( self , *lowerCAmelCase , **lowerCAmelCase ) -> Optional[int]: '''simple docstring''' return self.scheduler.print_lr(*lowerCAmelCase , **lowerCAmelCase )
291
0
"""simple docstring""" from copy import deepcopy from typing import Optional, Union import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_tf_available, is_torch_available if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf class __magic_name__ ( _UpperCamelCase ): UpperCamelCase : Dict = ["image_processor"] UpperCamelCase : Any = "SamImageProcessor" def __init__( self , __magic_name__ ): """simple docstring""" super().__init__(__magic_name__ ) _lowerCAmelCase = self.image_processor _lowerCAmelCase = -1_0 _lowerCAmelCase = self.image_processor.size['longest_edge'] def __call__( self , __magic_name__=None , __magic_name__=None , __magic_name__=None , __magic_name__=None , __magic_name__ = None , **__magic_name__ , ): """simple docstring""" _lowerCAmelCase = self.image_processor( __magic_name__ , return_tensors=__magic_name__ , **__magic_name__ , ) # pop arguments that are not used in the foward but used nevertheless _lowerCAmelCase = encoding_image_processor['original_sizes'] if hasattr(__magic_name__ , 'numpy' ): # Checks if Torch or TF tensor _lowerCAmelCase = original_sizes.numpy() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = self._check_and_preprocess_points( input_points=__magic_name__ , input_labels=__magic_name__ , input_boxes=__magic_name__ , ) _lowerCAmelCase = self._normalize_and_convert( __magic_name__ , __magic_name__ , input_points=__magic_name__ , input_labels=__magic_name__ , input_boxes=__magic_name__ , return_tensors=__magic_name__ , ) return encoding_image_processor def _lowerCamelCase ( self , __magic_name__ , __magic_name__ , __magic_name__=None , __magic_name__=None , __magic_name__=None , __magic_name__="pt" , ): """simple docstring""" if input_points is not None: if len(__magic_name__ ) != len(__magic_name__ ): _lowerCAmelCase = [ self._normalize_coordinates(self.target_size , __magic_name__ , original_sizes[0] ) for point in input_points ] else: _lowerCAmelCase = [ self._normalize_coordinates(self.target_size , __magic_name__ , __magic_name__ ) for point, original_size in zip(__magic_name__ , __magic_name__ ) ] # check that all arrays have the same shape if not all(point.shape == input_points[0].shape for point in input_points ): if input_labels is not None: _lowerCAmelCase , _lowerCAmelCase = self._pad_points_and_labels(__magic_name__ , __magic_name__ ) _lowerCAmelCase = np.array(__magic_name__ ) if input_labels is not None: _lowerCAmelCase = np.array(__magic_name__ ) if input_boxes is not None: if len(__magic_name__ ) != len(__magic_name__ ): _lowerCAmelCase = [ self._normalize_coordinates(self.target_size , __magic_name__ , original_sizes[0] , is_bounding_box=__magic_name__ ) for box in input_boxes ] else: _lowerCAmelCase = [ self._normalize_coordinates(self.target_size , __magic_name__ , __magic_name__ , is_bounding_box=__magic_name__ ) for box, original_size in zip(__magic_name__ , __magic_name__ ) ] _lowerCAmelCase = np.array(__magic_name__ ) if input_boxes is not None: if return_tensors == "pt": _lowerCAmelCase = torch.from_numpy(__magic_name__ ) # boxes batch size of 1 by default _lowerCAmelCase = input_boxes.unsqueeze(1 ) if len(input_boxes.shape ) != 3 else input_boxes elif return_tensors == "tf": _lowerCAmelCase = tf.convert_to_tensor(__magic_name__ ) # boxes batch size of 1 by default _lowerCAmelCase = tf.expand_dims(__magic_name__ , 1 ) if len(input_boxes.shape ) != 3 else input_boxes encoding_image_processor.update({'input_boxes': input_boxes} ) if input_points is not None: if return_tensors == "pt": _lowerCAmelCase = torch.from_numpy(__magic_name__ ) # point batch size of 1 by default _lowerCAmelCase = input_points.unsqueeze(1 ) if len(input_points.shape ) != 4 else input_points elif return_tensors == "tf": _lowerCAmelCase = tf.convert_to_tensor(__magic_name__ ) # point batch size of 1 by default _lowerCAmelCase = tf.expand_dims(__magic_name__ , 1 ) if len(input_points.shape ) != 4 else input_points encoding_image_processor.update({'input_points': input_points} ) if input_labels is not None: if return_tensors == "pt": _lowerCAmelCase = torch.from_numpy(__magic_name__ ) # point batch size of 1 by default _lowerCAmelCase = input_labels.unsqueeze(1 ) if len(input_labels.shape ) != 3 else input_labels elif return_tensors == "tf": _lowerCAmelCase = tf.convert_to_tensor(__magic_name__ ) # point batch size of 1 by default _lowerCAmelCase = tf.expand_dims(__magic_name__ , 1 ) if len(input_labels.shape ) != 3 else input_labels encoding_image_processor.update({'input_labels': input_labels} ) return encoding_image_processor def _lowerCamelCase ( self , __magic_name__ , __magic_name__ ): """simple docstring""" _lowerCAmelCase = max([point.shape[0] for point in input_points] ) _lowerCAmelCase = [] for i, point in enumerate(__magic_name__ ): if point.shape[0] != expected_nb_points: _lowerCAmelCase = np.concatenate( [point, np.zeros((expected_nb_points - point.shape[0], 2) ) + self.point_pad_value] , axis=0 ) _lowerCAmelCase = np.append(input_labels[i] , [self.point_pad_value] ) processed_input_points.append(__magic_name__ ) _lowerCAmelCase = processed_input_points return input_points, input_labels def _lowerCamelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__=False ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = original_size _lowerCAmelCase , _lowerCAmelCase = self.image_processor._get_preprocess_shape(__magic_name__ , longest_edge=__magic_name__ ) _lowerCAmelCase = deepcopy(__magic_name__ ).astype(__magic_name__ ) if is_bounding_box: _lowerCAmelCase = coords.reshape(-1 , 2 , 2 ) _lowerCAmelCase = coords[..., 0] * (new_w / old_w) _lowerCAmelCase = coords[..., 1] * (new_h / old_h) if is_bounding_box: _lowerCAmelCase = coords.reshape(-1 , 4 ) return coords def _lowerCamelCase ( self , __magic_name__=None , __magic_name__=None , __magic_name__=None , ): """simple docstring""" if input_points is not None: if hasattr(__magic_name__ , 'numpy' ): # Checks for TF or Torch tensor _lowerCAmelCase = input_points.numpy().tolist() if not isinstance(__magic_name__ , __magic_name__ ) or not isinstance(input_points[0] , __magic_name__ ): raise ValueError('Input points must be a list of list of floating points.' ) _lowerCAmelCase = [np.array(__magic_name__ ) for input_point in input_points] else: _lowerCAmelCase = None if input_labels is not None: if hasattr(__magic_name__ , 'numpy' ): _lowerCAmelCase = input_labels.numpy().tolist() if not isinstance(__magic_name__ , __magic_name__ ) or not isinstance(input_labels[0] , __magic_name__ ): raise ValueError('Input labels must be a list of list integers.' ) _lowerCAmelCase = [np.array(__magic_name__ ) for label in input_labels] else: _lowerCAmelCase = None if input_boxes is not None: if hasattr(__magic_name__ , 'numpy' ): _lowerCAmelCase = input_boxes.numpy().tolist() if ( not isinstance(__magic_name__ , __magic_name__ ) or not isinstance(input_boxes[0] , __magic_name__ ) or not isinstance(input_boxes[0][0] , __magic_name__ ) ): raise ValueError('Input boxes must be a list of list of list of floating points.' ) _lowerCAmelCase = [np.array(__magic_name__ ).astype(np.floataa ) for box in input_boxes] else: _lowerCAmelCase = None return input_points, input_labels, input_boxes @property def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = self.image_processor.model_input_names return list(dict.fromkeys(__magic_name__ ) ) def _lowerCamelCase ( self , *__magic_name__ , **__magic_name__ ): """simple docstring""" return self.image_processor.post_process_masks(*__magic_name__ , **__magic_name__ )
309
"""simple docstring""" import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import TimesformerConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, TimesformerForVideoClassification, TimesformerModel, ) from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class __magic_name__ : def __init__( self , __magic_name__ , __magic_name__=1_3 , __magic_name__=1_0 , __magic_name__=3 , __magic_name__=2 , __magic_name__=2 , __magic_name__=True , __magic_name__=True , __magic_name__=3_2 , __magic_name__=5 , __magic_name__=4 , __magic_name__=3_7 , __magic_name__="gelu" , __magic_name__=0.1 , __magic_name__=0.1 , __magic_name__=1_0 , __magic_name__=0.02 , __magic_name__="divided_space_time" , __magic_name__=None , ): """simple docstring""" _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = image_size _lowerCAmelCase = num_channels _lowerCAmelCase = patch_size _lowerCAmelCase = num_frames _lowerCAmelCase = is_training _lowerCAmelCase = use_labels _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_act _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = attention_type _lowerCAmelCase = initializer_range _lowerCAmelCase = scope _lowerCAmelCase = num_labels # in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token _lowerCAmelCase = (image_size // patch_size) ** 2 _lowerCAmelCase = (num_frames) * self.num_patches_per_frame + 1 def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase = None if self.use_labels: _lowerCAmelCase = ids_tensor([self.batch_size] , self.num_labels ) _lowerCAmelCase = self.get_config() return config, pixel_values, labels def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = TimesformerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , attention_type=self.attention_type , ) _lowerCAmelCase = self.num_labels return config def _lowerCamelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ ): """simple docstring""" _lowerCAmelCase = TimesformerModel(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() _lowerCAmelCase = model(__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCamelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ ): """simple docstring""" _lowerCAmelCase = TimesformerForVideoClassification(__magic_name__ ) model.to(__magic_name__ ) model.eval() _lowerCAmelCase = model(__magic_name__ ) # verify the logits shape _lowerCAmelCase = torch.Size((self.batch_size, self.num_labels) ) self.parent.assertEqual(result.logits.shape , __magic_name__ ) def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = self.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = config_and_inputs _lowerCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __magic_name__ ( _UpperCamelCase ,_UpperCamelCase ,unittest.TestCase ): UpperCamelCase : Optional[Any] = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else () UpperCamelCase : int = ( {"feature-extraction": TimesformerModel, "video-classification": TimesformerForVideoClassification} if is_torch_available() else {} ) UpperCamelCase : Dict = False UpperCamelCase : Optional[Any] = False UpperCamelCase : Any = False UpperCamelCase : Tuple = False def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = TimesformerModelTester(self ) _lowerCAmelCase = ConfigTester( self , config_class=__magic_name__ , has_text_modality=__magic_name__ , hidden_size=3_7 ) def _lowerCamelCase ( self , __magic_name__ , __magic_name__ , __magic_name__=False ): """simple docstring""" _lowerCAmelCase = copy.deepcopy(__magic_name__ ) if return_labels: if model_class in get_values(__magic_name__ ): _lowerCAmelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__magic_name__ ) return inputs_dict def _lowerCamelCase ( self ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='TimeSformer does not use inputs_embeds' ) def _lowerCamelCase ( self ): """simple docstring""" pass def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase = model_class(__magic_name__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _lowerCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__magic_name__ , nn.Linear ) ) def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase = model_class(__magic_name__ ) _lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase = [*signature.parameters.keys()] _lowerCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , __magic_name__ ) def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__magic_name__ ) def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_video_classification(*__magic_name__ ) @slow def _lowerCamelCase ( self ): """simple docstring""" for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase = TimesformerModel.from_pretrained(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) def _lowerCamelCase ( self ): """simple docstring""" if not self.has_attentions: pass else: _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase = True for model_class in self.all_model_classes: _lowerCAmelCase = self.model_tester.seq_length _lowerCAmelCase = self.model_tester.num_frames _lowerCAmelCase = True _lowerCAmelCase = False _lowerCAmelCase = True _lowerCAmelCase = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() with torch.no_grad(): _lowerCAmelCase = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) ) _lowerCAmelCase = outputs.attentions self.assertEqual(len(__magic_name__ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] _lowerCAmelCase = True _lowerCAmelCase = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() with torch.no_grad(): _lowerCAmelCase = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) ) _lowerCAmelCase = outputs.attentions self.assertEqual(len(__magic_name__ ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) _lowerCAmelCase = len(__magic_name__ ) # Check attention is always last and order is fine _lowerCAmelCase = True _lowerCAmelCase = True _lowerCAmelCase = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() with torch.no_grad(): _lowerCAmelCase = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) ) self.assertEqual(out_len + 1 , len(__magic_name__ ) ) _lowerCAmelCase = outputs.attentions self.assertEqual(len(__magic_name__ ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) def _lowerCamelCase ( self ): """simple docstring""" def check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ ): _lowerCAmelCase = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() with torch.no_grad(): _lowerCAmelCase = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) ) _lowerCAmelCase = outputs.hidden_states _lowerCAmelCase = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(__magic_name__ ) , __magic_name__ ) _lowerCAmelCase = self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase = True check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCAmelCase = True check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ ) def A__ ( ): """simple docstring""" _lowerCAmelCase = hf_hub_download( repo_id='hf-internal-testing/spaghetti-video', filename='eating_spaghetti.npy', repo_type='dataset' ) _lowerCAmelCase = np.load(__lowerCamelCase ) return list(__lowerCamelCase ) @require_torch @require_vision class __magic_name__ ( unittest.TestCase ): @cached_property def _lowerCamelCase ( self ): """simple docstring""" return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = TimesformerForVideoClassification.from_pretrained('facebook/timesformer-base-finetuned-k400' ).to( __magic_name__ ) _lowerCAmelCase = self.default_image_processor _lowerCAmelCase = prepare_video() _lowerCAmelCase = image_processor(video[:8] , return_tensors='pt' ).to(__magic_name__ ) # forward pass with torch.no_grad(): _lowerCAmelCase = model(**__magic_name__ ) # verify the logits _lowerCAmelCase = torch.Size((1, 4_0_0) ) self.assertEqual(outputs.logits.shape , __magic_name__ ) _lowerCAmelCase = torch.tensor([-0.30_16, -0.77_13, -0.42_05] ).to(__magic_name__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __magic_name__ , atol=1e-4 ) )
309
1
import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotSmallConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html lowercase_ = '''platform''' import jax import jax.numpy as jnp from transformers.models.blenderbot_small.modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, shift_tokens_right, ) def __lowerCAmelCase ( __lowerCamelCase : int , __lowerCamelCase : str , __lowerCamelCase : int=None , __lowerCamelCase : Optional[Any]=None , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : Optional[Any]=None , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : Dict=None , ) -> Union[str, Any]: if attention_mask is None: __lowerCAmelCase =np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: __lowerCAmelCase =np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: __lowerCAmelCase =np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: __lowerCAmelCase =np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: __lowerCAmelCase =np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class __a : def __init__( self : Union[str, Any] , snake_case_ : List[str] , snake_case_ : str=13 , snake_case_ : List[Any]=7 , snake_case_ : str=True , snake_case_ : str=False , snake_case_ : List[str]=99 , snake_case_ : Tuple=16 , snake_case_ : Dict=2 , snake_case_ : str=4 , snake_case_ : Tuple=4 , snake_case_ : str="gelu" , snake_case_ : Tuple=0.1 , snake_case_ : Optional[int]=0.1 , snake_case_ : int=32 , snake_case_ : List[str]=2 , snake_case_ : List[str]=1 , snake_case_ : List[str]=0 , snake_case_ : Union[str, Any]=0.0_2 , )-> Optional[int]: __lowerCAmelCase =parent __lowerCAmelCase =batch_size __lowerCAmelCase =seq_length __lowerCAmelCase =is_training __lowerCAmelCase =use_labels __lowerCAmelCase =vocab_size __lowerCAmelCase =hidden_size __lowerCAmelCase =num_hidden_layers __lowerCAmelCase =num_attention_heads __lowerCAmelCase =intermediate_size __lowerCAmelCase =hidden_act __lowerCAmelCase =hidden_dropout_prob __lowerCAmelCase =attention_probs_dropout_prob __lowerCAmelCase =max_position_embeddings __lowerCAmelCase =eos_token_id __lowerCAmelCase =pad_token_id __lowerCAmelCase =bos_token_id __lowerCAmelCase =initializer_range def UpperCamelCase ( self : List[Any])-> int: __lowerCAmelCase =np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size) , 3 , self.vocab_size) __lowerCAmelCase =np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa)) , -1) __lowerCAmelCase =shift_tokens_right(snake_case_ , 1 , 2) __lowerCAmelCase =BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=snake_case_ , ) __lowerCAmelCase =prepare_blenderbot_inputs_dict(snake_case_ , snake_case_ , snake_case_) return config, inputs_dict def UpperCamelCase ( self : str)-> List[str]: __lowerCAmelCase , __lowerCAmelCase =self.prepare_config_and_inputs() return config, inputs_dict def UpperCamelCase ( self : Optional[Any] , snake_case_ : int , snake_case_ : Dict , snake_case_ : Union[str, Any])-> str: __lowerCAmelCase =20 __lowerCAmelCase =model_class_name(snake_case_) __lowerCAmelCase =model.encode(inputs_dict["""input_ids"""]) __lowerCAmelCase , __lowerCAmelCase =( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) __lowerCAmelCase =model.init_cache(decoder_input_ids.shape[0] , snake_case_ , snake_case_) __lowerCAmelCase =jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="""i4""") __lowerCAmelCase =jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) __lowerCAmelCase =model.decode( decoder_input_ids[:, :-1] , snake_case_ , decoder_attention_mask=snake_case_ , past_key_values=snake_case_ , decoder_position_ids=snake_case_ , ) __lowerCAmelCase =jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""") __lowerCAmelCase =model.decode( decoder_input_ids[:, -1:] , snake_case_ , decoder_attention_mask=snake_case_ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=snake_case_ , ) __lowerCAmelCase =model.decode(snake_case_ , snake_case_) __lowerCAmelCase =np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1e-3 , msg=F"""Max diff is {diff}""") def UpperCamelCase ( self : List[str] , snake_case_ : Tuple , snake_case_ : int , snake_case_ : Optional[int])-> List[Any]: __lowerCAmelCase =20 __lowerCAmelCase =model_class_name(snake_case_) __lowerCAmelCase =model.encode(inputs_dict["""input_ids"""]) __lowerCAmelCase , __lowerCAmelCase =( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) __lowerCAmelCase =jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1])), ] , axis=-1 , ) __lowerCAmelCase =model.init_cache(decoder_input_ids.shape[0] , snake_case_ , snake_case_) __lowerCAmelCase =jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) __lowerCAmelCase =model.decode( decoder_input_ids[:, :-1] , snake_case_ , decoder_attention_mask=snake_case_ , past_key_values=snake_case_ , decoder_position_ids=snake_case_ , ) __lowerCAmelCase =jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""") __lowerCAmelCase =model.decode( decoder_input_ids[:, -1:] , snake_case_ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=snake_case_ , decoder_position_ids=snake_case_ , ) __lowerCAmelCase =model.decode(snake_case_ , snake_case_ , decoder_attention_mask=snake_case_) __lowerCAmelCase =np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1e-3 , msg=F"""Max diff is {diff}""") @require_flax class __a ( unittest.TestCase ): SCREAMING_SNAKE_CASE = 99 def UpperCamelCase ( self : List[Any])-> List[Any]: __lowerCAmelCase =np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) __lowerCAmelCase =input_ids.shape[0] __lowerCAmelCase =BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def UpperCamelCase ( self : List[str])-> int: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase =self._get_config_and_data() __lowerCAmelCase =FlaxBlenderbotSmallForConditionalGeneration(snake_case_) __lowerCAmelCase =lm_model(input_ids=snake_case_) __lowerCAmelCase =(batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs["""logits"""].shape , snake_case_) def UpperCamelCase ( self : str)-> List[str]: __lowerCAmelCase =BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) __lowerCAmelCase =FlaxBlenderbotSmallForConditionalGeneration(snake_case_) __lowerCAmelCase =np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa) __lowerCAmelCase =np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa) __lowerCAmelCase =lm_model(input_ids=snake_case_ , decoder_input_ids=snake_case_) __lowerCAmelCase =(*summary.shape, config.vocab_size) self.assertEqual(outputs["""logits"""].shape , snake_case_) def UpperCamelCase ( self : List[str])-> Tuple: __lowerCAmelCase =np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa) __lowerCAmelCase =shift_tokens_right(snake_case_ , 1 , 2) __lowerCAmelCase =np.equal(snake_case_ , 1).astype(np.floataa).sum() __lowerCAmelCase =np.equal(snake_case_ , 1).astype(np.floataa).sum() self.assertEqual(shifted.shape , input_ids.shape) self.assertEqual(snake_case_ , n_pad_before - 1) self.assertTrue(np.equal(shifted[:, 0] , 2).all()) @require_flax class __a ( SCREAMING_SNAKE_CASE , unittest.TestCase , SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = ( ( FlaxBlenderbotSmallModel, FlaxBlenderbotSmallForConditionalGeneration, ) if is_flax_available() else () ) SCREAMING_SNAKE_CASE = (FlaxBlenderbotSmallForConditionalGeneration,) if is_flax_available() else () def UpperCamelCase ( self : str)-> Optional[Any]: __lowerCAmelCase =FlaxBlenderbotSmallModelTester(self) def UpperCamelCase ( self : Optional[Any])-> int: __lowerCAmelCase , __lowerCAmelCase =self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(snake_case_ , snake_case_ , snake_case_) def UpperCamelCase ( self : int)-> Union[str, Any]: __lowerCAmelCase , __lowerCAmelCase =self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(snake_case_ , snake_case_ , snake_case_) def UpperCamelCase ( self : str)-> str: __lowerCAmelCase , __lowerCAmelCase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): __lowerCAmelCase =self._prepare_for_class(snake_case_ , snake_case_) __lowerCAmelCase =model_class(snake_case_) @jax.jit def encode_jitted(snake_case_ : List[Any] , snake_case_ : Optional[Any]=None , **snake_case_ : Tuple): return model.encode(input_ids=snake_case_ , attention_mask=snake_case_) with self.subTest("""JIT Enabled"""): __lowerCAmelCase =encode_jitted(**snake_case_).to_tuple() with self.subTest("""JIT Disabled"""): with jax.disable_jit(): __lowerCAmelCase =encode_jitted(**snake_case_).to_tuple() self.assertEqual(len(snake_case_) , len(snake_case_)) for jitted_output, output in zip(snake_case_ , snake_case_): self.assertEqual(jitted_output.shape , output.shape) def UpperCamelCase ( self : Any)-> List[Any]: __lowerCAmelCase , __lowerCAmelCase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): __lowerCAmelCase =model_class(snake_case_) __lowerCAmelCase =model.encode(inputs_dict["""input_ids"""] , inputs_dict["""attention_mask"""]) __lowerCAmelCase ={ """decoder_input_ids""": inputs_dict["""decoder_input_ids"""], """decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""], """encoder_outputs""": encoder_outputs, } @jax.jit def decode_jitted(snake_case_ : str , snake_case_ : int , snake_case_ : str): return model.decode( decoder_input_ids=snake_case_ , decoder_attention_mask=snake_case_ , encoder_outputs=snake_case_ , ) with self.subTest("""JIT Enabled"""): __lowerCAmelCase =decode_jitted(**snake_case_).to_tuple() with self.subTest("""JIT Disabled"""): with jax.disable_jit(): __lowerCAmelCase =decode_jitted(**snake_case_).to_tuple() self.assertEqual(len(snake_case_) , len(snake_case_)) for jitted_output, output in zip(snake_case_ , snake_case_): self.assertEqual(jitted_output.shape , output.shape) @slow def UpperCamelCase ( self : Optional[int])-> Tuple: for model_class_name in self.all_model_classes: __lowerCAmelCase =model_class_name.from_pretrained("""facebook/blenderbot_small-90M""") # FlaxBlenderbotForSequenceClassification expects eos token in input_ids __lowerCAmelCase =np.ones((1, 1)) * model.config.eos_token_id __lowerCAmelCase =model(snake_case_) self.assertIsNotNone(snake_case_)
354
from collections.abc import Sequence from queue import Queue class __a : def __init__( self : str , snake_case_ : List[str] , snake_case_ : Tuple , snake_case_ : Tuple , snake_case_ : Optional[Any]=None , snake_case_ : Dict=None)-> Optional[int]: __lowerCAmelCase =start __lowerCAmelCase =end __lowerCAmelCase =val __lowerCAmelCase =(start + end) // 2 __lowerCAmelCase =left __lowerCAmelCase =right def __repr__( self : List[Any])-> Dict: return F"""SegmentTreeNode(start={self.start}, end={self.end}, val={self.val})""" class __a : def __init__( self : List[str] , snake_case_ : Sequence , snake_case_ : int)-> str: __lowerCAmelCase =collection __lowerCAmelCase =function if self.collection: __lowerCAmelCase =self._build_tree(0 , len(snake_case_) - 1) def UpperCamelCase ( self : Dict , snake_case_ : Tuple , snake_case_ : Optional[int])-> Optional[int]: self._update_tree(self.root , snake_case_ , snake_case_) def UpperCamelCase ( self : Optional[Any] , snake_case_ : Any , snake_case_ : Union[str, Any])-> Union[str, Any]: return self._query_range(self.root , snake_case_ , snake_case_) def UpperCamelCase ( self : List[str] , snake_case_ : List[str] , snake_case_ : List[str])-> List[Any]: if start == end: return SegmentTreeNode(snake_case_ , snake_case_ , self.collection[start]) __lowerCAmelCase =(start + end) // 2 __lowerCAmelCase =self._build_tree(snake_case_ , snake_case_) __lowerCAmelCase =self._build_tree(mid + 1 , snake_case_) return SegmentTreeNode(snake_case_ , snake_case_ , self.fn(left.val , right.val) , snake_case_ , snake_case_) def UpperCamelCase ( self : Dict , snake_case_ : Tuple , snake_case_ : int , snake_case_ : int)-> List[Any]: if node.start == i and node.end == i: __lowerCAmelCase =val return if i <= node.mid: self._update_tree(node.left , snake_case_ , snake_case_) else: self._update_tree(node.right , snake_case_ , snake_case_) __lowerCAmelCase =self.fn(node.left.val , node.right.val) def UpperCamelCase ( self : Tuple , snake_case_ : str , snake_case_ : str , snake_case_ : List[Any])-> Optional[int]: if node.start == i and node.end == j: return node.val if i <= node.mid: if j <= node.mid: # range in left child tree return self._query_range(node.left , snake_case_ , snake_case_) else: # range in left child tree and right child tree return self.fn( self._query_range(node.left , snake_case_ , node.mid) , self._query_range(node.right , node.mid + 1 , snake_case_) , ) else: # range in right child tree return self._query_range(node.right , snake_case_ , snake_case_) def UpperCamelCase ( self : List[str])-> Tuple: if self.root is not None: __lowerCAmelCase =Queue() queue.put(self.root) while not queue.empty(): __lowerCAmelCase =queue.get() yield node if node.left is not None: queue.put(node.left) if node.right is not None: queue.put(node.right) if __name__ == "__main__": import operator for fn in [operator.add, max, min]: print('''*''' * 50) lowercase_ = SegmentTree([2, 1, 5, 3, 4], fn) for node in arr.traverse(): print(node) print() arr.update(1, 5) for node in arr.traverse(): print(node) print() print(arr.query_range(3, 4)) # 7 print(arr.query_range(2, 2)) # 5 print(arr.query_range(1, 3)) # 13 print()
354
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _UpperCAmelCase : Dict = {'''configuration_wavlm''': ['''WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''WavLMConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Union[str, Any] = [ '''WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''WavLMForAudioFrameClassification''', '''WavLMForCTC''', '''WavLMForSequenceClassification''', '''WavLMForXVector''', '''WavLMModel''', '''WavLMPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_wavlm import WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP, WavLMConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavlm import ( WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST, WavLMForAudioFrameClassification, WavLMForCTC, WavLMForSequenceClassification, WavLMForXVector, WavLMModel, WavLMPreTrainedModel, ) else: import sys _UpperCAmelCase : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
710
'''simple docstring''' import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _UpperCAmelCase : Optional[int] = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) _UpperCAmelCase : Any = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f"""transformer.encoder.layers.{i}.self_attn.out_proj.weight""", f"""encoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (f"""transformer.encoder.layers.{i}.self_attn.out_proj.bias""", f"""encoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.linear1.weight""", f"""encoder.layers.{i}.fc1.weight""")) rename_keys.append((f"""transformer.encoder.layers.{i}.linear1.bias""", f"""encoder.layers.{i}.fc1.bias""")) rename_keys.append((f"""transformer.encoder.layers.{i}.linear2.weight""", f"""encoder.layers.{i}.fc2.weight""")) rename_keys.append((f"""transformer.encoder.layers.{i}.linear2.bias""", f"""encoder.layers.{i}.fc2.bias""")) rename_keys.append( (f"""transformer.encoder.layers.{i}.norm1.weight""", f"""encoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.norm1.bias""", f"""encoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append((f"""transformer.encoder.layers.{i}.norm2.weight""", f"""encoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((f"""transformer.encoder.layers.{i}.norm2.bias""", f"""encoder.layers.{i}.final_layer_norm.bias""")) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (f"""transformer.decoder.layers.{i}.self_attn.out_proj.weight""", f"""decoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.self_attn.out_proj.bias""", f"""decoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append( ( f"""transformer.decoder.layers.{i}.cross_attn.out_proj.weight""", f"""decoder.layers.{i}.encoder_attn.out_proj.weight""", ) ) rename_keys.append( ( f"""transformer.decoder.layers.{i}.cross_attn.out_proj.bias""", f"""decoder.layers.{i}.encoder_attn.out_proj.bias""", ) ) rename_keys.append((f"""transformer.decoder.layers.{i}.linear1.weight""", f"""decoder.layers.{i}.fc1.weight""")) rename_keys.append((f"""transformer.decoder.layers.{i}.linear1.bias""", f"""decoder.layers.{i}.fc1.bias""")) rename_keys.append((f"""transformer.decoder.layers.{i}.linear2.weight""", f"""decoder.layers.{i}.fc2.weight""")) rename_keys.append((f"""transformer.decoder.layers.{i}.linear2.bias""", f"""decoder.layers.{i}.fc2.bias""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm1.weight""", f"""decoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm1.bias""", f"""decoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm2.weight""", f"""decoder.layers.{i}.encoder_attn_layer_norm.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm2.bias""", f"""decoder.layers.{i}.encoder_attn_layer_norm.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm3.weight""", f"""decoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((f"""transformer.decoder.layers.{i}.norm3.bias""", f"""decoder.layers.{i}.final_layer_norm.bias""")) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (f"""transformer.decoder.layers.{i}.sa_qcontent_proj.weight""", f"""decoder.layers.{i}.sa_qcontent_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.sa_kcontent_proj.weight""", f"""decoder.layers.{i}.sa_kcontent_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.sa_qpos_proj.weight""", f"""decoder.layers.{i}.sa_qpos_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.sa_kpos_proj.weight""", f"""decoder.layers.{i}.sa_kpos_proj.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.sa_v_proj.weight""", f"""decoder.layers.{i}.sa_v_proj.weight""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_qcontent_proj.weight""", f"""decoder.layers.{i}.ca_qcontent_proj.weight""") ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_kcontent_proj.weight""", f"""decoder.layers.{i}.ca_kcontent_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_kpos_proj.weight""", f"""decoder.layers.{i}.ca_kpos_proj.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.ca_v_proj.weight""", f"""decoder.layers.{i}.ca_v_proj.weight""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight""", f"""decoder.layers.{i}.ca_qpos_sine_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.sa_qcontent_proj.bias""", f"""decoder.layers.{i}.sa_qcontent_proj.bias""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.sa_kcontent_proj.bias""", f"""decoder.layers.{i}.sa_kcontent_proj.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.sa_qpos_proj.bias""", f"""decoder.layers.{i}.sa_qpos_proj.bias""")) rename_keys.append((f"""transformer.decoder.layers.{i}.sa_kpos_proj.bias""", f"""decoder.layers.{i}.sa_kpos_proj.bias""")) rename_keys.append((f"""transformer.decoder.layers.{i}.sa_v_proj.bias""", f"""decoder.layers.{i}.sa_v_proj.bias""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_qcontent_proj.bias""", f"""decoder.layers.{i}.ca_qcontent_proj.bias""") ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_kcontent_proj.bias""", f"""decoder.layers.{i}.ca_kcontent_proj.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.ca_kpos_proj.bias""", f"""decoder.layers.{i}.ca_kpos_proj.bias""")) rename_keys.append((f"""transformer.decoder.layers.{i}.ca_v_proj.bias""", f"""decoder.layers.{i}.ca_v_proj.bias""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias""", f"""decoder.layers.{i}.ca_qpos_sine_proj.bias""") ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ("""input_proj.weight""", """input_projection.weight"""), ("""input_proj.bias""", """input_projection.bias"""), ("""query_embed.weight""", """query_position_embeddings.weight"""), ("""transformer.decoder.norm.weight""", """decoder.layernorm.weight"""), ("""transformer.decoder.norm.bias""", """decoder.layernorm.bias"""), ("""class_embed.weight""", """class_labels_classifier.weight"""), ("""class_embed.bias""", """class_labels_classifier.bias"""), ("""bbox_embed.layers.0.weight""", """bbox_predictor.layers.0.weight"""), ("""bbox_embed.layers.0.bias""", """bbox_predictor.layers.0.bias"""), ("""bbox_embed.layers.1.weight""", """bbox_predictor.layers.1.weight"""), ("""bbox_embed.layers.1.bias""", """bbox_predictor.layers.1.bias"""), ("""bbox_embed.layers.2.weight""", """bbox_predictor.layers.2.weight"""), ("""bbox_embed.layers.2.bias""", """bbox_predictor.layers.2.bias"""), ("""transformer.decoder.ref_point_head.layers.0.weight""", """decoder.ref_point_head.layers.0.weight"""), ("""transformer.decoder.ref_point_head.layers.0.bias""", """decoder.ref_point_head.layers.0.bias"""), ("""transformer.decoder.ref_point_head.layers.1.weight""", """decoder.ref_point_head.layers.1.weight"""), ("""transformer.decoder.ref_point_head.layers.1.bias""", """decoder.ref_point_head.layers.1.bias"""), ("""transformer.decoder.query_scale.layers.0.weight""", """decoder.query_scale.layers.0.weight"""), ("""transformer.decoder.query_scale.layers.0.bias""", """decoder.query_scale.layers.0.bias"""), ("""transformer.decoder.query_scale.layers.1.weight""", """decoder.query_scale.layers.1.weight"""), ("""transformer.decoder.query_scale.layers.1.bias""", """decoder.query_scale.layers.1.bias"""), ("""transformer.decoder.layers.0.ca_qpos_proj.weight""", """decoder.layers.0.ca_qpos_proj.weight"""), ("""transformer.decoder.layers.0.ca_qpos_proj.bias""", """decoder.layers.0.ca_qpos_proj.bias"""), ] ) def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase): __lowerCAmelCase = state_dict.pop(lowerCamelCase) __lowerCAmelCase = val def __magic_name__( lowerCamelCase): __lowerCAmelCase = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: __lowerCAmelCase = key.replace('''backbone.0.body''', '''backbone.conv_encoder.model''') __lowerCAmelCase = value else: __lowerCAmelCase = value return new_state_dict def __magic_name__( lowerCamelCase, lowerCamelCase=False): __lowerCAmelCase = '''''' if is_panoptic: __lowerCAmelCase = '''conditional_detr.''' # first: transformer encoder for i in range(6): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) __lowerCAmelCase = state_dict.pop(F"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight""") __lowerCAmelCase = state_dict.pop(F"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias""") # next, add query, keys and values (in that order) to the state dict __lowerCAmelCase = in_proj_weight[:2_5_6, :] __lowerCAmelCase = in_proj_bias[:2_5_6] __lowerCAmelCase = in_proj_weight[2_5_6:5_1_2, :] __lowerCAmelCase = in_proj_bias[2_5_6:5_1_2] __lowerCAmelCase = in_proj_weight[-2_5_6:, :] __lowerCAmelCase = in_proj_bias[-2_5_6:] def __magic_name__( ): __lowerCAmelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __lowerCAmelCase = Image.open(requests.get(lowerCamelCase, stream=lowerCamelCase).raw) return im @torch.no_grad() def __magic_name__( lowerCamelCase, lowerCamelCase): __lowerCAmelCase = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: __lowerCAmelCase = '''resnet101''' if "dc5" in model_name: __lowerCAmelCase = True __lowerCAmelCase = '''panoptic''' in model_name if is_panoptic: __lowerCAmelCase = 2_5_0 else: __lowerCAmelCase = 9_1 __lowerCAmelCase = '''huggingface/label-files''' __lowerCAmelCase = '''coco-detection-id2label.json''' __lowerCAmelCase = json.load(open(hf_hub_download(lowerCamelCase, lowerCamelCase, repo_type='''dataset'''), '''r''')) __lowerCAmelCase = {int(lowerCamelCase): v for k, v in idalabel.items()} __lowerCAmelCase = idalabel __lowerCAmelCase = {v: k for k, v in idalabel.items()} # load image processor __lowerCAmelCase = '''coco_panoptic''' if is_panoptic else '''coco_detection''' __lowerCAmelCase = ConditionalDetrImageProcessor(format=lowerCamelCase) # prepare image __lowerCAmelCase = prepare_img() __lowerCAmelCase = image_processor(images=lowerCamelCase, return_tensors='''pt''') __lowerCAmelCase = encoding['''pixel_values'''] logger.info(F"""Converting model {model_name}...""") # load original model from torch hub __lowerCAmelCase = torch.hub.load('''DeppMeng/ConditionalDETR''', lowerCamelCase, pretrained=lowerCamelCase).eval() __lowerCAmelCase = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: __lowerCAmelCase = '''conditional_detr.''' + src rename_key(lowerCamelCase, lowerCamelCase, lowerCamelCase) __lowerCAmelCase = rename_backbone_keys(lowerCamelCase) # query, key and value matrices need special treatment read_in_q_k_v(lowerCamelCase, is_panoptic=lowerCamelCase) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them __lowerCAmelCase = '''conditional_detr.model.''' if is_panoptic else '''model.''' for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith('''conditional_detr''') and not key.startswith('''class_labels_classifier''') and not key.startswith('''bbox_predictor''') ): __lowerCAmelCase = state_dict.pop(lowerCamelCase) __lowerCAmelCase = val elif "class_labels_classifier" in key or "bbox_predictor" in key: __lowerCAmelCase = state_dict.pop(lowerCamelCase) __lowerCAmelCase = val elif key.startswith('''bbox_attention''') or key.startswith('''mask_head'''): continue else: __lowerCAmelCase = state_dict.pop(lowerCamelCase) __lowerCAmelCase = val else: if not key.startswith('''class_labels_classifier''') and not key.startswith('''bbox_predictor'''): __lowerCAmelCase = state_dict.pop(lowerCamelCase) __lowerCAmelCase = val # finally, create HuggingFace model and load state dict __lowerCAmelCase = ConditionalDetrForSegmentation(lowerCamelCase) if is_panoptic else ConditionalDetrForObjectDetection(lowerCamelCase) model.load_state_dict(lowerCamelCase) model.eval() model.push_to_hub(repo_id=lowerCamelCase, organization='''DepuMeng''', commit_message='''Add model''') # verify our conversion __lowerCAmelCase = conditional_detr(lowerCamelCase) __lowerCAmelCase = model(lowerCamelCase) assert torch.allclose(outputs.logits, original_outputs['''pred_logits'''], atol=1E-4) assert torch.allclose(outputs.pred_boxes, original_outputs['''pred_boxes'''], atol=1E-4) if is_panoptic: assert torch.allclose(outputs.pred_masks, original_outputs['''pred_masks'''], atol=1E-4) # Save model and image processor logger.info(F"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""") Path(lowerCamelCase).mkdir(exist_ok=lowerCamelCase) model.save_pretrained(lowerCamelCase) image_processor.save_pretrained(lowerCamelCase) if __name__ == "__main__": _UpperCAmelCase : str = argparse.ArgumentParser() parser.add_argument( """--model_name""", default="""conditional_detr_resnet50""", type=str, help="""Name of the CONDITIONAL_DETR model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) _UpperCAmelCase : Any = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
474
0
from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class lowerCamelCase ( __lowerCamelCase , __lowerCamelCase ): @register_to_config def __init__( self , lowercase__ = 7_6_8 , ): super().__init__() __UpperCAmelCase : str = nn.Parameter(torch.zeros(1 , _UpperCAmelCase)) __UpperCAmelCase : int = nn.Parameter(torch.ones(1 , _UpperCAmelCase)) def A( self , lowercase__ = None , lowercase__ = None , ): __UpperCAmelCase : int = nn.Parameter(self.mean.to(_UpperCAmelCase).to(_UpperCAmelCase)) __UpperCAmelCase : int = nn.Parameter(self.std.to(_UpperCAmelCase).to(_UpperCAmelCase)) return self def A( self , lowercase__): __UpperCAmelCase : Dict = (embeds - self.mean) * 1.0 / self.std return embeds def A( self , lowercase__): __UpperCAmelCase : Union[str, Any] = (embeds * self.std) + self.mean return embeds
462
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available _lowerCamelCase : List[str] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : List[Any] = ['''BartphoTokenizer'''] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys _lowerCamelCase : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
663
0
from dataclasses import dataclass from typing import Optional, Tuple import torch from torch import nn from transformers import RobertaPreTrainedModel, XLMRobertaConfig, XLMRobertaModel from transformers.utils import ModelOutput @dataclass class UpperCAmelCase_ ( _A ): a__ = None a__ = None a__ = None a__ = None class UpperCAmelCase_ ( _A ): def __init__( self : Optional[int] , UpperCamelCase__ : List[str]=1 , UpperCamelCase__ : List[str]=0 , UpperCamelCase__ : Any=2 , UpperCamelCase__ : Union[str, Any]=512 , UpperCamelCase__ : Dict="cls" , UpperCamelCase__ : List[Any]=False , UpperCamelCase__ : Optional[int]=True , **UpperCamelCase__ : int , ) -> Optional[Any]: """simple docstring""" super().__init__(pad_token_id=UpperCamelCase__ , bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , **UpperCamelCase__ ) __magic_name__ = project_dim __magic_name__ = pooler_fn __magic_name__ = learn_encoder __magic_name__ = use_attention_mask class UpperCAmelCase_ ( _A ): a__ = [R"""pooler""", R"""logit_scale"""] a__ = [R"""position_ids""", R"""predictions.decoder.bias"""] a__ = """roberta""" a__ = RobertaSeriesConfig def __init__( self : str , UpperCamelCase__ : List[str] ) -> List[str]: """simple docstring""" super().__init__(UpperCamelCase__ ) __magic_name__ = XLMRobertaModel(UpperCamelCase__ ) __magic_name__ = nn.Linear(config.hidden_size , config.project_dim ) __magic_name__ = getattr(UpperCamelCase__ , """has_pre_transformation""" , UpperCamelCase__ ) if self.has_pre_transformation: __magic_name__ = nn.Linear(config.hidden_size , config.project_dim ) __magic_name__ = nn.LayerNorm(config.hidden_size , eps=config.layer_norm_eps ) self.post_init() def _lowercase ( self : str , UpperCamelCase__ : Optional[torch.Tensor] = None , UpperCamelCase__ : Optional[torch.Tensor] = None , UpperCamelCase__ : Optional[torch.Tensor] = None , UpperCamelCase__ : Optional[torch.Tensor] = None , UpperCamelCase__ : Optional[torch.Tensor] = None , UpperCamelCase__ : Optional[torch.Tensor] = None , UpperCamelCase__ : Optional[torch.Tensor] = None , UpperCamelCase__ : Optional[torch.Tensor] = None , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Optional[bool] = None , ) -> str: """simple docstring""" __magic_name__ = return_dict if return_dict is not None else self.config.use_return_dict __magic_name__ = self.base_model( input_ids=UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , position_ids=UpperCamelCase__ , head_mask=UpperCamelCase__ , inputs_embeds=UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , encoder_attention_mask=UpperCamelCase__ , output_attentions=UpperCamelCase__ , output_hidden_states=True if self.has_pre_transformation else output_hidden_states , return_dict=UpperCamelCase__ , ) if self.has_pre_transformation: __magic_name__ = outputs["""hidden_states"""][-2] __magic_name__ = self.pre_LN(UpperCamelCase__ ) __magic_name__ = self.transformation_pre(UpperCamelCase__ ) return TransformationModelOutput( projection_state=UpperCamelCase__ , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , ) else: __magic_name__ = self.transformation(outputs.last_hidden_state ) return TransformationModelOutput( projection_state=UpperCamelCase__ , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
706
import math def a__ ( A_, A_ = 0, A_ = 0 ): '''simple docstring''' __magic_name__ = end or len(A_ ) for i in range(A_, A_ ): __magic_name__ = i __magic_name__ = array[i] while temp_index != start and temp_index_value < array[temp_index - 1]: __magic_name__ = array[temp_index - 1] temp_index -= 1 __magic_name__ = temp_index_value return array def a__ ( A_, A_, A_ ): # Max Heap '''simple docstring''' __magic_name__ = index __magic_name__ = 2 * index + 1 # Left Node __magic_name__ = 2 * index + 2 # Right Node if left_index < heap_size and array[largest] < array[left_index]: __magic_name__ = left_index if right_index < heap_size and array[largest] < array[right_index]: __magic_name__ = right_index if largest != index: __magic_name__ , __magic_name__ = array[largest], array[index] heapify(A_, A_, A_ ) def a__ ( A_ ): '''simple docstring''' __magic_name__ = len(A_ ) for i in range(n // 2, -1, -1 ): heapify(A_, A_, A_ ) for i in range(n - 1, 0, -1 ): __magic_name__ , __magic_name__ = array[0], array[i] heapify(A_, 0, A_ ) return array def a__ ( A_, A_, A_, A_ ): '''simple docstring''' if (array[first_index] > array[middle_index]) != ( array[first_index] > array[last_index] ): return array[first_index] elif (array[middle_index] > array[first_index]) != ( array[middle_index] > array[last_index] ): return array[middle_index] else: return array[last_index] def a__ ( A_, A_, A_, A_ ): '''simple docstring''' __magic_name__ = low __magic_name__ = high while True: while array[i] < pivot: i += 1 j -= 1 while pivot < array[j]: j -= 1 if i >= j: return i __magic_name__ , __magic_name__ = array[j], array[i] i += 1 def a__ ( A_ ): '''simple docstring''' if len(A_ ) == 0: return array __magic_name__ = 2 * math.ceil(math.loga(len(A_ ) ) ) __magic_name__ = 16 return intro_sort(A_, 0, len(A_ ), A_, A_ ) def a__ ( A_, A_, A_, A_, A_ ): '''simple docstring''' while end - start > size_threshold: if max_depth == 0: return heap_sort(A_ ) max_depth -= 1 __magic_name__ = median_of_a(A_, A_, start + ((end - start) // 2) + 1, end - 1 ) __magic_name__ = partition(A_, A_, A_, A_ ) intro_sort(A_, A_, A_, A_, A_ ) __magic_name__ = p return insertion_sort(A_, A_, A_ ) if __name__ == "__main__": import doctest doctest.testmod() __lowerCAmelCase : str = input('Enter numbers separated by a comma : ').strip() __lowerCAmelCase : List[Any] = [float(item) for item in user_input.split(',')] print(sort(unsorted))
76
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, is_vision_available, ) UpperCAmelCase_ : Dict = {'''processing_layoutxlm''': ['''LayoutXLMProcessor''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Optional[int] = ['''LayoutXLMTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Dict = ['''LayoutXLMTokenizerFast'''] if TYPE_CHECKING: from .processing_layoutxlm import LayoutXLMProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm import LayoutXLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast else: import sys UpperCAmelCase_ : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
17
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available __A ={ '''configuration_gpt_neo''': ['''GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTNeoConfig''', '''GPTNeoOnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A =[ '''GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GPTNeoForCausalLM''', '''GPTNeoForQuestionAnswering''', '''GPTNeoForSequenceClassification''', '''GPTNeoForTokenClassification''', '''GPTNeoModel''', '''GPTNeoPreTrainedModel''', '''load_tf_weights_in_gpt_neo''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A =[ '''FlaxGPTNeoForCausalLM''', '''FlaxGPTNeoModel''', '''FlaxGPTNeoPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neo import ( GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoForCausalLM, GPTNeoForQuestionAnswering, GPTNeoForSequenceClassification, GPTNeoForTokenClassification, GPTNeoModel, GPTNeoPreTrainedModel, load_tf_weights_in_gpt_neo, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel else: import sys __A =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
463
0
'''simple docstring''' import math def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ) -> float: if initial_intensity < 0: raise ValueError('The value of intensity cannot be negative' ) # handling of negative values of initial intensity if angle < 0 or angle > 3_60: raise ValueError('In Malus Law, the angle is in the range 0-360 degrees' ) # handling of values out of allowed range return initial_intensity * (math.cos(math.radians(__UpperCamelCase ) ) ** 2) if __name__ == "__main__": import doctest doctest.testmod(name="malus_law")
705
'''simple docstring''' def _UpperCamelCase ( __UpperCamelCase = 1 ,__UpperCamelCase = 10_00 ) -> int: lowerCamelCase_ = 1 lowerCamelCase_ = 0 for divide_by_number in range(__UpperCamelCase ,digit + 1 ): lowerCamelCase_ = [] lowerCamelCase_ = numerator for _ in range(1 ,digit + 1 ): if now_divide in has_been_divided: if longest_list_length < len(__UpperCamelCase ): lowerCamelCase_ = len(__UpperCamelCase ) lowerCamelCase_ = divide_by_number else: has_been_divided.append(__UpperCamelCase ) lowerCamelCase_ = now_divide * 10 % divide_by_number return the_digit # Tests if __name__ == "__main__": import doctest doctest.testmod()
384
0
'''simple docstring''' import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def snake_case_ ( ): '''simple docstring''' raise RuntimeError("CUDA out of memory." ) class __SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self ): super().__init__() _snake_case = nn.Linear(3 , 4 ) _snake_case = nn.BatchNormad(4 ) _snake_case = nn.Linear(4 , 5 ) def UpperCamelCase( self , lowerCamelCase ): return self.lineara(self.batchnorm(self.lineara(lowerCamelCase ) ) ) class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase( self ): _snake_case = [] @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(lowerCamelCase ): nonlocal batch_sizes batch_sizes.append(lowerCamelCase ) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(lowerCamelCase , [128, 64, 32, 16, 8] ) def UpperCamelCase( self ): _snake_case = [] @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(lowerCamelCase , lowerCamelCase ): nonlocal batch_sizes batch_sizes.append(lowerCamelCase ) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga _snake_case , _snake_case = mock_training_loop_function("hello" ) self.assertListEqual(lowerCamelCase , [128, 64, 32, 16, 8] ) self.assertListEqual([bs, arga] , [8, "hello"] ) def UpperCamelCase( self ): @find_executable_batch_size(starting_batch_size=0 ) def mock_training_loop_function(lowerCamelCase ): pass with self.assertRaises(lowerCamelCase ) as cm: mock_training_loop_function() self.assertIn("No executable batch size found, reached zero." , cm.exception.args[0] ) def UpperCamelCase( self ): @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(lowerCamelCase ): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(lowerCamelCase ) as cm: mock_training_loop_function() self.assertIn("No executable batch size found, reached zero." , cm.exception.args[0] ) def UpperCamelCase( self ): @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(lowerCamelCase , lowerCamelCase , lowerCamelCase ): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(lowerCamelCase ) as cm: mock_training_loop_function(128 , "hello" , "world" ) self.assertIn("Batch size was passed into `f`" , cm.exception.args[0] ) self.assertIn("`f(arg1='hello', arg2='world')" , cm.exception.args[0] ) def UpperCamelCase( self ): @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(lowerCamelCase ): raise ValueError("Oops, we had an error!" ) with self.assertRaises(lowerCamelCase ) as cm: mock_training_loop_function() self.assertIn("Oops, we had an error!" , cm.exception.args[0] ) @require_cuda def UpperCamelCase( self ): _snake_case = torch.cuda.memory_allocated() _snake_case = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , lowerCamelCase ) _snake_case = release_memory(lowerCamelCase ) self.assertEqual(torch.cuda.memory_allocated() , lowerCamelCase )
672
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __magic_name__ : Optional[int] = { """configuration_swiftformer""": [ """SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SwiftFormerConfig""", """SwiftFormerOnnxConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ : Optional[int] = [ """SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """SwiftFormerForImageClassification""", """SwiftFormerModel""", """SwiftFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys __magic_name__ : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
672
1
def __lowerCAmelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )-> int: """simple docstring""" return int((input_a, input_a).count(0 ) == 0 ) def __lowerCAmelCase ()-> None: """simple docstring""" assert and_gate(0 , 0 ) == 0 assert and_gate(0 , 1 ) == 0 assert and_gate(1 , 0 ) == 0 assert and_gate(1 , 1 ) == 1 if __name__ == "__main__": test_and_gate() print(and_gate(1, 0)) print(and_gate(0, 0)) print(and_gate(0, 1)) print(and_gate(1, 1))
531
import argparse import json import os import time import zipfile from get_ci_error_statistics import download_artifact, get_artifacts_links from transformers import logging UpperCAmelCase = logging.get_logger(__name__) def __lowerCAmelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )-> List[str]: """simple docstring""" snake_case_ = set() snake_case_ = [] def parse_line(SCREAMING_SNAKE_CASE ): for line in fp: if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): snake_case_ = line.decode('''UTF-8''' ) if "warnings summary (final)" in line: continue # This means we are outside the body of a warning elif not line.startswith(''' ''' ): # process a single warning and move it to `selected_warnings`. if len(SCREAMING_SNAKE_CASE ) > 0: snake_case_ = '''\n'''.join(SCREAMING_SNAKE_CASE ) # Only keep the warnings specified in `targets` if any(f''': {x}: ''' in warning for x in targets ): selected_warnings.add(SCREAMING_SNAKE_CASE ) buffer.clear() continue else: snake_case_ = line.strip() buffer.append(SCREAMING_SNAKE_CASE ) if from_gh: for filename in os.listdir(SCREAMING_SNAKE_CASE ): snake_case_ = os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if not os.path.isdir(SCREAMING_SNAKE_CASE ): # read the file if filename != "warnings.txt": continue with open(SCREAMING_SNAKE_CASE ) as fp: parse_line(SCREAMING_SNAKE_CASE ) else: try: with zipfile.ZipFile(SCREAMING_SNAKE_CASE ) as z: for filename in z.namelist(): if not os.path.isdir(SCREAMING_SNAKE_CASE ): # read the file if filename != "warnings.txt": continue with z.open(SCREAMING_SNAKE_CASE ) as fp: parse_line(SCREAMING_SNAKE_CASE ) except Exception: logger.warning( f'''{artifact_path} is either an invalid zip file or something else wrong. This file is skipped.''' ) return selected_warnings def __lowerCAmelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )-> str: """simple docstring""" snake_case_ = set() snake_case_ = [os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for p in os.listdir(SCREAMING_SNAKE_CASE ) if (p.endswith('''.zip''' ) or from_gh)] for p in paths: selected_warnings.update(extract_warnings_from_single_artifact(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) return selected_warnings if __name__ == "__main__": def __lowerCAmelCase (SCREAMING_SNAKE_CASE )-> List[str]: """simple docstring""" return values.split(''',''' ) UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument("""--workflow_run_id""", type=str, required=True, help="""A GitHub Actions workflow run id.""") parser.add_argument( """--output_dir""", type=str, required=True, help="""Where to store the downloaded artifacts and other result files.""", ) parser.add_argument("""--token""", default=None, type=str, help="""A token that has actions:read permission.""") # optional parameters parser.add_argument( """--targets""", default="""DeprecationWarning,UserWarning,FutureWarning""", type=list_str, help="""Comma-separated list of target warning(s) which we want to extract.""", ) parser.add_argument( """--from_gh""", action="""store_true""", help="""If running from a GitHub action workflow and collecting warnings from its artifacts.""", ) UpperCAmelCase = parser.parse_args() UpperCAmelCase = args.from_gh if from_gh: # The artifacts have to be downloaded using `actions/download-artifact@v3` pass else: os.makedirs(args.output_dir, exist_ok=True) # get download links UpperCAmelCase = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, """artifacts.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) # download artifacts for idx, (name, url) in enumerate(artifacts.items()): print(name) print(url) print("""=""" * 80) download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) # extract warnings from artifacts UpperCAmelCase = extract_warnings(args.output_dir, args.targets) UpperCAmelCase = sorted(selected_warnings) with open(os.path.join(args.output_dir, """selected_warnings.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(selected_warnings, fp, ensure_ascii=False, indent=4)
531
1
"""simple docstring""" import gc import unittest from transformers import CTRLConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, ) class _UpperCAmelCase : def __init__( self : List[str] , _lowercase : Union[str, Any] , _lowercase : Tuple=14 , _lowercase : List[Any]=7 , _lowercase : Optional[Any]=True , _lowercase : str=True , _lowercase : Union[str, Any]=True , _lowercase : Optional[Any]=True , _lowercase : List[str]=True , _lowercase : Union[str, Any]=99 , _lowercase : Any=32 , _lowercase : Union[str, Any]=5 , _lowercase : List[Any]=4 , _lowercase : Optional[Any]=37 , _lowercase : Dict="gelu" , _lowercase : Tuple=0.1 , _lowercase : List[str]=0.1 , _lowercase : Optional[Any]=5_12 , _lowercase : str=16 , _lowercase : List[Any]=2 , _lowercase : Union[str, Any]=0.02 , _lowercase : int=3 , _lowercase : List[Any]=4 , _lowercase : Union[str, Any]=None , ): __UpperCAmelCase = parent __UpperCAmelCase = batch_size __UpperCAmelCase = seq_length __UpperCAmelCase = is_training __UpperCAmelCase = use_token_type_ids __UpperCAmelCase = use_input_mask __UpperCAmelCase = use_labels __UpperCAmelCase = use_mc_token_ids __UpperCAmelCase = vocab_size __UpperCAmelCase = hidden_size __UpperCAmelCase = num_hidden_layers __UpperCAmelCase = num_attention_heads __UpperCAmelCase = intermediate_size __UpperCAmelCase = hidden_act __UpperCAmelCase = hidden_dropout_prob __UpperCAmelCase = attention_probs_dropout_prob __UpperCAmelCase = max_position_embeddings __UpperCAmelCase = type_vocab_size __UpperCAmelCase = type_sequence_label_size __UpperCAmelCase = initializer_range __UpperCAmelCase = num_labels __UpperCAmelCase = num_choices __UpperCAmelCase = scope __UpperCAmelCase = self.vocab_size - 1 def a ( self : Optional[Any] ): __UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase = None if self.use_input_mask: __UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCAmelCase = None if self.use_token_type_ids: __UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCAmelCase = None if self.use_mc_token_ids: __UpperCAmelCase = ids_tensor([self.batch_size, self.num_choices] , self.seq_length ) __UpperCAmelCase = None __UpperCAmelCase = None __UpperCAmelCase = None if self.use_labels: __UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) __UpperCAmelCase = self.get_config() __UpperCAmelCase = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) def a ( self : Tuple ): return CTRLConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) def a ( self : str , _lowercase : str , _lowercase : Optional[Any] , _lowercase : str , _lowercase : Tuple , _lowercase : int , *_lowercase : Tuple ): __UpperCAmelCase = CTRLModel(config=_lowercase ) model.to(_lowercase ) model.eval() model(_lowercase , token_type_ids=_lowercase , head_mask=_lowercase ) model(_lowercase , token_type_ids=_lowercase ) __UpperCAmelCase = model(_lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(len(result.past_key_values ) , config.n_layer ) def a ( self : Any , _lowercase : Any , _lowercase : List[str] , _lowercase : str , _lowercase : Optional[Any] , _lowercase : Any , *_lowercase : str ): __UpperCAmelCase = CTRLLMHeadModel(_lowercase ) model.to(_lowercase ) model.eval() __UpperCAmelCase = model(_lowercase , token_type_ids=_lowercase , labels=_lowercase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a ( self : Optional[Any] ): __UpperCAmelCase = self.prepare_config_and_inputs() ( ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ) = config_and_inputs __UpperCAmelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''head_mask''': head_mask} return config, inputs_dict def a ( self : Tuple , _lowercase : List[Any] , _lowercase : List[str] , _lowercase : Tuple , _lowercase : List[str] , *_lowercase : Optional[int] ): __UpperCAmelCase = self.num_labels __UpperCAmelCase = CTRLForSequenceClassification(_lowercase ) model.to(_lowercase ) model.eval() __UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase = model(_lowercase , token_type_ids=_lowercase , labels=_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) @require_torch class _UpperCAmelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): a__ : List[str] = (CTRLModel, CTRLLMHeadModel, CTRLForSequenceClassification) if is_torch_available() else () a__ : int = (CTRLLMHeadModel,) if is_torch_available() else () a__ : str = ( { "feature-extraction": CTRLModel, "text-classification": CTRLForSequenceClassification, "text-generation": CTRLLMHeadModel, "zero-shot": CTRLForSequenceClassification, } if is_torch_available() else {} ) a__ : List[str] = True a__ : Dict = False a__ : int = False def a ( self : Optional[int] , _lowercase : Union[str, Any] , _lowercase : List[Any] , _lowercase : Tuple , _lowercase : Union[str, Any] , _lowercase : Optional[Any] ): if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `CTRLConfig` was never used in pipeline tests, either because of a missing checkpoint or because a tiny # config could not be created. return True return False def a ( self : List[Any] ): __UpperCAmelCase = CTRLModelTester(self ) __UpperCAmelCase = ConfigTester(self , config_class=_lowercase , n_embd=37 ) def a ( self : List[Any] ): super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() def a ( self : Tuple ): self.config_tester.run_common_tests() def a ( self : Dict ): __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_ctrl_model(*_lowercase ) def a ( self : Union[str, Any] ): __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*_lowercase ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def a ( self : Tuple ): pass @slow def a ( self : List[Any] ): for model_name in CTRL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase = CTRLModel.from_pretrained(_lowercase ) self.assertIsNotNone(_lowercase ) @unittest.skip('''The model doesn\'t support left padding''' ) # and it's not used enough to be worth fixing :) def a ( self : Union[str, Any] ): pass @require_torch class _UpperCAmelCase ( unittest.TestCase ): def a ( self : Optional[Any] ): super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() @slow def a ( self : Union[str, Any] ): __UpperCAmelCase = CTRLLMHeadModel.from_pretrained('''ctrl''' ) model.to(_lowercase ) __UpperCAmelCase = torch.tensor( [[1_18_59, 0, 16_11, 8]] , dtype=torch.long , device=_lowercase ) # Legal the president is __UpperCAmelCase = [ 1_18_59, 0, 16_11, 8, 5, 1_50, 2_64_49, 2, 19, 3_48, 4_69, 3, 25_95, 48, 2_07_40, 24_65_33, 24_65_33, 19, 30, 5, ] # Legal the president is a good guy and I don't want to lose my job. \n \n I have a __UpperCAmelCase = model.generate(_lowercase , do_sample=_lowercase ) self.assertListEqual(output_ids[0].tolist() , _lowercase )
49
'''simple docstring''' import argparse from pathlib import Path from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration def lowerCAmelCase_ ( _lowerCamelCase: Optional[int] , _lowerCamelCase: str , _lowerCamelCase: str , _lowerCamelCase: Path , _lowerCamelCase: str = None , _lowerCamelCase: str = None , _lowerCamelCase: str = None , ): if config_name_or_path is None: __SCREAMING_SNAKE_CASE : List[str] = """facebook/rag-token-base""" if model_type == """rag_token""" else """facebook/rag-sequence-base""" if generator_tokenizer_name_or_path is None: __SCREAMING_SNAKE_CASE : Union[str, Any] = generator_name_or_path if question_encoder_tokenizer_name_or_path is None: __SCREAMING_SNAKE_CASE : Tuple = question_encoder_name_or_path __SCREAMING_SNAKE_CASE : int = RagTokenForGeneration if model_type == """rag_token""" else RagSequenceForGeneration # Save model. __SCREAMING_SNAKE_CASE : List[Any] = RagConfig.from_pretrained(_lowerCamelCase ) __SCREAMING_SNAKE_CASE : List[Any] = AutoConfig.from_pretrained(_lowerCamelCase ) __SCREAMING_SNAKE_CASE : Union[str, Any] = AutoConfig.from_pretrained(_lowerCamelCase ) __SCREAMING_SNAKE_CASE : Union[str, Any] = gen_config __SCREAMING_SNAKE_CASE : Union[str, Any] = question_encoder_config __SCREAMING_SNAKE_CASE : Dict = model_class.from_pretrained_question_encoder_generator( _lowerCamelCase , _lowerCamelCase , config=_lowerCamelCase ) rag_model.save_pretrained(_lowerCamelCase ) # Sanity check. model_class.from_pretrained(_lowerCamelCase ) # Save tokenizers. __SCREAMING_SNAKE_CASE : str = AutoTokenizer.from_pretrained(_lowerCamelCase ) gen_tokenizer.save_pretrained(dest_dir / """generator_tokenizer/""" ) __SCREAMING_SNAKE_CASE : Optional[Any] = AutoTokenizer.from_pretrained(_lowerCamelCase ) question_encoder_tokenizer.save_pretrained(dest_dir / """question_encoder_tokenizer/""" ) if __name__ == "__main__": UpperCamelCase__ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( '''--model_type''', choices=['''rag_sequence''', '''rag_token'''], required=True, type=str, help='''RAG model type: rag_sequence, rag_token''', ) parser.add_argument('''--dest''', type=str, required=True, help='''Path to the output checkpoint directory.''') parser.add_argument('''--generator_name_or_path''', type=str, required=True, help='''Generator model identifier''') parser.add_argument( '''--question_encoder_name_or_path''', type=str, required=True, help='''Question encoder model identifier''' ) parser.add_argument( '''--generator_tokenizer_name_or_path''', type=str, help='''Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``''', ) parser.add_argument( '''--question_encoder_tokenizer_name_or_path''', type=str, help='''Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``''', ) parser.add_argument( '''--config_name_or_path''', type=str, help=( '''Identifier of the model config to use, if not provided, resolves to a base config for a given''' ''' ``model_type``''' ), ) UpperCamelCase__ : Dict = parser.parse_args() UpperCamelCase__ : Any = Path(args.dest) dest_dir.mkdir(exist_ok=True) consolidate( args.model_type, args.generator_name_or_path, args.question_encoder_name_or_path, dest_dir, args.config_name_or_path, args.generator_tokenizer_name_or_path, args.question_encoder_tokenizer_name_or_path, )
578
0
'''simple docstring''' from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = '' SCREAMING_SNAKE_CASE_ : Union[str, Any] = 'hf-legacy' # "hf://"" is reserved for hffs def __init__( self , _lowercase = None , _lowercase = None , **_lowercase , ) -> Optional[Any]: super().__init__(self , **_lowercase ) lowercase_ : int = repo_info lowercase_ : List[Any] = token lowercase_ : Union[str, Any] = None def lowerCamelCase__ ( self ) -> Optional[Any]: if self.dir_cache is None: lowercase_ : Optional[Any] = {} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes lowercase_ : str = { 'name': hf_file.rfilename, 'size': None, 'type': 'file', } self.dir_cache.update( { str(_lowercase ): {'name': str(_lowercase ), 'size': None, 'type': 'directory'} for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1] } ) def lowerCamelCase__ ( self , _lowercase , _lowercase = "rb" , **_lowercase , ) -> Dict: if not isinstance(self.repo_info , _lowercase ): raise NotImplementedError(f"Open is only implemented for dataset repositories, but got {self.repo_info}" ) lowercase_ : Optional[int] = hf_hub_url(self.repo_info.id , _lowercase , revision=self.repo_info.sha ) return fsspec.open( _lowercase , mode=_lowercase , headers=get_authentication_headers_for_url(_lowercase , use_auth_token=self.token ) , client_kwargs={'trust_env': True} , ).open() def lowerCamelCase__ ( self , _lowercase , **_lowercase ) -> Tuple: self._get_dirs() lowercase_ : str = self._strip_protocol(_lowercase ) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(_lowercase ) def lowerCamelCase__ ( self , _lowercase , _lowercase=False , **_lowercase ) -> List[str]: self._get_dirs() lowercase_ : List[str] = PurePosixPath(path.strip('/' ) ) lowercase_ : List[str] = {} for p, f in self.dir_cache.items(): lowercase_ : Tuple = PurePosixPath(p.strip('/' ) ) lowercase_ : Optional[int] = p.parent if root == path: lowercase_ : List[str] = f lowercase_ : List[str] = list(paths.values() ) if detail: return out else: return sorted(f['name'] for f in out )
7
'''simple docstring''' from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) A: List[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name A: Union[str, Any] = "\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline\n >>> from diffusers.utils import load_image\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16\n ... )\n >>> pipe_prior.to(\"cuda\")\n\n >>> prompt = \"A red cartoon frog, 4k\"\n >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False)\n\n >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-decoder\", torch_dtype=torch.float16\n ... )\n >>> pipe.to(\"cuda\")\n\n >>> init_image = load_image(\n ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\"\n ... \"/kandinsky/frog.png\"\n ... )\n\n >>> image = pipe(\n ... image=init_image,\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... strength=0.2,\n ... ).images\n\n >>> image[0].save(\"red_frog.png\")\n ```\n" def _UpperCAmelCase ( a : Tuple , a : Union[str, Any] , a : List[Any]=8 ) -> Dict: """simple docstring""" lowercase_ : List[Any] = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 lowercase_ : List[str] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def _UpperCAmelCase ( a : Any , a : Dict=5_1_2 , a : Optional[Any]=5_1_2 ) -> Tuple: """simple docstring""" lowercase_ : int = pil_image.resize((w, h) , resample=Image.BICUBIC , reducing_gap=1 ) lowercase_ : int = np.array(pil_image.convert('RGB' ) ) lowercase_ : Optional[int] = arr.astype(np.floataa ) / 1_27.5 - 1 lowercase_ : Any = np.transpose(a , [2, 0, 1] ) lowercase_ : Any = torch.from_numpy(a ).unsqueeze(0 ) return image class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" def __init__( self , _lowercase , _lowercase , _lowercase , ) -> List[Any]: super().__init__() self.register_modules( unet=_lowercase , scheduler=_lowercase , movq=_lowercase , ) lowercase_ : Dict = 2 ** (len(self.movq.config.block_out_channels ) - 1) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase ) -> int: # get the original timestep using init_timestep lowercase_ : List[Any] = min(int(num_inference_steps * strength ) , _lowercase ) lowercase_ : Tuple = max(num_inference_steps - init_timestep , 0 ) lowercase_ : Optional[Any] = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase=None ) -> Any: if not isinstance(_lowercase , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(_lowercase )}" ) lowercase_ : Dict = image.to(device=_lowercase , dtype=_lowercase ) lowercase_ : Dict = batch_size * num_images_per_prompt if image.shape[1] == 4: lowercase_ : str = image else: if isinstance(_lowercase , _lowercase ) and len(_lowercase ) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(_lowercase )}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) elif isinstance(_lowercase , _lowercase ): lowercase_ : List[Any] = [ self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(_lowercase ) ] lowercase_ : Union[str, Any] = torch.cat(_lowercase , dim=0 ) else: lowercase_ : Union[str, Any] = self.movq.encode(_lowercase ).latent_dist.sample(_lowercase ) lowercase_ : str = self.movq.config.scaling_factor * init_latents lowercase_ : int = torch.cat([init_latents] , dim=0 ) lowercase_ : Dict = init_latents.shape lowercase_ : Dict = randn_tensor(_lowercase , generator=_lowercase , device=_lowercase , dtype=_lowercase ) # get latents lowercase_ : List[str] = self.scheduler.add_noise(_lowercase , _lowercase , _lowercase ) lowercase_ : Optional[Any] = init_latents return latents def lowerCamelCase__ ( self , _lowercase=0 ) -> int: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) lowercase_ : List[Any] = torch.device(f"cuda:{gpu_id}" ) lowercase_ : Optional[Any] = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(_lowercase , _lowercase ) def lowerCamelCase__ ( self , _lowercase=0 ) -> int: if is_accelerate_available() and is_accelerate_version('>=' , '0.17.0.dev0' ): from accelerate import cpu_offload_with_hook else: raise ImportError('`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.' ) lowercase_ : List[Any] = torch.device(f"cuda:{gpu_id}" ) if self.device.type != "cpu": self.to('cpu' , silence_dtype_warnings=_lowercase ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) lowercase_ : Tuple = None for cpu_offloaded_model in [self.unet, self.movq]: lowercase_ , lowercase_ : Dict = cpu_offload_with_hook(_lowercase , _lowercase , prev_module_hook=_lowercase ) # We'll offload the last model manually. lowercase_ : List[str] = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def lowerCamelCase__ ( self ) -> List[str]: if not hasattr(self.unet , '_hf_hook' ): return self.device for module in self.unet.modules(): if ( hasattr(_lowercase , '_hf_hook' ) and hasattr(module._hf_hook , 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(_lowercase ) def __call__( self , _lowercase , _lowercase , _lowercase , _lowercase = 512 , _lowercase = 512 , _lowercase = 100 , _lowercase = 4.0 , _lowercase = 0.3 , _lowercase = 1 , _lowercase = None , _lowercase = "pil" , _lowercase = True , ) -> str: lowercase_ : List[Any] = self._execution_device lowercase_ : List[Any] = guidance_scale > 1.0 if isinstance(_lowercase , _lowercase ): lowercase_ : Union[str, Any] = torch.cat(_lowercase , dim=0 ) lowercase_ : Optional[Any] = image_embeds.shape[0] if isinstance(_lowercase , _lowercase ): lowercase_ : List[str] = torch.cat(_lowercase , dim=0 ) if do_classifier_free_guidance: lowercase_ : List[str] = image_embeds.repeat_interleave(_lowercase , dim=0 ) lowercase_ : Dict = negative_image_embeds.repeat_interleave(_lowercase , dim=0 ) lowercase_ : Dict = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=_lowercase ) if not isinstance(_lowercase , _lowercase ): lowercase_ : Union[str, Any] = [image] if not all(isinstance(_lowercase , (PIL.Image.Image, torch.Tensor) ) for i in image ): raise ValueError( f"Input is in incorrect format: {[type(_lowercase ) for i in image]}. Currently, we only support PIL image and pytorch tensor" ) lowercase_ : List[Any] = torch.cat([prepare_image(_lowercase , _lowercase , _lowercase ) for i in image] , dim=0 ) lowercase_ : Dict = image.to(dtype=image_embeds.dtype , device=_lowercase ) lowercase_ : Dict = self.movq.encode(_lowercase )['latents'] lowercase_ : Optional[Any] = latents.repeat_interleave(_lowercase , dim=0 ) self.scheduler.set_timesteps(_lowercase , device=_lowercase ) lowercase_ , lowercase_ : str = self.get_timesteps(_lowercase , _lowercase , _lowercase ) lowercase_ : int = timesteps[:1].repeat(batch_size * num_images_per_prompt ) lowercase_ , lowercase_ : Union[str, Any] = downscale_height_and_width(_lowercase , _lowercase , self.movq_scale_factor ) lowercase_ : List[str] = self.prepare_latents( _lowercase , _lowercase , _lowercase , _lowercase , image_embeds.dtype , _lowercase , _lowercase ) for i, t in enumerate(self.progress_bar(_lowercase ) ): # expand the latents if we are doing classifier free guidance lowercase_ : int = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowercase_ : str = {'image_embeds': image_embeds} lowercase_ : str = self.unet( sample=_lowercase , timestep=_lowercase , encoder_hidden_states=_lowercase , added_cond_kwargs=_lowercase , return_dict=_lowercase , )[0] if do_classifier_free_guidance: lowercase_ , lowercase_ : Dict = noise_pred.split(latents.shape[1] , dim=1 ) lowercase_ , lowercase_ : Optional[int] = noise_pred.chunk(2 ) lowercase_ , lowercase_ : Tuple = variance_pred.chunk(2 ) lowercase_ : List[str] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) lowercase_ : Tuple = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , 'variance_type' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): lowercase_ , lowercase_ : List[str] = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 lowercase_ : Dict = self.scheduler.step( _lowercase , _lowercase , _lowercase , generator=_lowercase , )[0] # post-processing lowercase_ : Any = self.movq.decode(_lowercase , force_not_quantize=_lowercase )['sample'] if output_type not in ["pt", "np", "pil"]: raise ValueError(f"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}" ) if output_type in ["np", "pil"]: lowercase_ : Dict = image * 0.5 + 0.5 lowercase_ : Dict = image.clamp(0 , 1 ) lowercase_ : int = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": lowercase_ : int = self.numpy_to_pil(_lowercase ) if not return_dict: return (image,) return ImagePipelineOutput(images=_lowercase )
7
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCAmelCase_ : Optional[int] = { '''configuration_canine''': ['''CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CanineConfig'''], '''tokenization_canine''': ['''CanineTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Dict = [ '''CANINE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CanineForMultipleChoice''', '''CanineForQuestionAnswering''', '''CanineForSequenceClassification''', '''CanineForTokenClassification''', '''CanineLayer''', '''CanineModel''', '''CaninePreTrainedModel''', '''load_tf_weights_in_canine''', ] if TYPE_CHECKING: from .configuration_canine import CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP, CanineConfig from .tokenization_canine import CanineTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_canine import ( CANINE_PRETRAINED_MODEL_ARCHIVE_LIST, CanineForMultipleChoice, CanineForQuestionAnswering, CanineForSequenceClassification, CanineForTokenClassification, CanineLayer, CanineModel, CaninePreTrainedModel, load_tf_weights_in_canine, ) else: import sys UpperCAmelCase_ : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
255
# We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation import warnings from .state import AcceleratorState, GradientState warnings.filterwarnings('ignore', category=UserWarning, module='torch.optim.lr_scheduler') class __lowerCAmelCase : def __init__( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = True , lowerCAmelCase = False ) -> str: '''simple docstring''' _lowercase =scheduler _lowercase =optimizers if isinstance(lowerCAmelCase , (list, tuple) ) else [optimizers] _lowercase =split_batches _lowercase =step_with_optimizer _lowercase =GradientState() def A__ ( self , *lowerCAmelCase , **lowerCAmelCase ) -> List[Any]: '''simple docstring''' if not self.step_with_optimizer: # No link between scheduler and optimizer -> just step self.scheduler.step(*lowerCAmelCase , **lowerCAmelCase ) return # Otherwise, first make sure the optimizer was stepped. if not self.gradient_state.sync_gradients: if self.gradient_state.adjust_scheduler: self.scheduler._step_count += 1 return for opt in self.optimizers: if opt.step_was_skipped: return if self.split_batches: # Split batches -> the training dataloader batch size is not changed so one step per training step self.scheduler.step(*lowerCAmelCase , **lowerCAmelCase ) else: # Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do # num_processes steps per training step _lowercase =AcceleratorState().num_processes for _ in range(lowerCAmelCase ): # Special case when using OneCycle and `drop_last` was not used if hasattr(self.scheduler , 'total_steps' ): if self.scheduler._step_count <= self.scheduler.total_steps: self.scheduler.step(*lowerCAmelCase , **lowerCAmelCase ) else: self.scheduler.step(*lowerCAmelCase , **lowerCAmelCase ) def A__ ( self ) -> str: '''simple docstring''' return self.scheduler.get_last_lr() def A__ ( self ) -> Tuple: '''simple docstring''' return self.scheduler.state_dict() def A__ ( self , lowerCAmelCase ) -> str: '''simple docstring''' self.scheduler.load_state_dict(lowerCAmelCase ) def A__ ( self ) -> int: '''simple docstring''' return self.scheduler.get_lr() def A__ ( self , *lowerCAmelCase , **lowerCAmelCase ) -> Optional[int]: '''simple docstring''' return self.scheduler.print_lr(*lowerCAmelCase , **lowerCAmelCase )
291
0
import json import re from typing import TYPE_CHECKING, List, Optional, Tuple, Union import numpy as np from ...utils import is_tf_available, is_torch_available, logging if TYPE_CHECKING: if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_codegen import CodeGenTokenizer snake_case : Union[str, Any] = logging.get_logger(__name__) snake_case : Dict = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} snake_case : Any = { 'vocab_file': { 'Salesforce/codegen-350M-mono': 'https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/vocab.json', }, 'merges_file': { 'Salesforce/codegen-350M-mono': 'https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/merges.txt', }, 'tokenizer_file': { 'Salesforce/codegen-350M-mono': ( 'https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/tokenizer.json' ), }, } snake_case : str = { 'Salesforce/codegen-350M-mono': 2_0_4_8, } class lowerCAmelCase__ ( __A ): __A : Optional[int] = VOCAB_FILES_NAMES __A : List[Any] = PRETRAINED_VOCAB_FILES_MAP __A : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A : Any = ['input_ids', 'attention_mask'] __A : str = CodeGenTokenizer def __init__( self : Any , _A : Union[str, Any]=None , _A : Any=None , _A : Union[str, Any]=None , _A : str="<|endoftext|>" , _A : Dict="<|endoftext|>" , _A : Any="<|endoftext|>" , _A : Optional[int]=False , **_A : Union[str, Any] , ): super().__init__( _A , _A , tokenizer_file=_A , unk_token=_A , bos_token=_A , eos_token=_A , add_prefix_space=_A , **_A , ) if kwargs.pop("add_bos_token" , _A): A__ : List[str] = kwargs.pop("name_or_path" , "") raise ValueError( "Currenty GPT2\'s fast tokenizer does NOT support adding a BOS token." "Instead you should use GPT2\'s slow tokenizer class `CodeGenTokenizer` as follows: \n" F'`CodeGenTokenizer.from_pretrained(\'{model_id}\')`\nor\n' F'`AutoTokenizer.from_pretrained(\'{model_id}\', use_fast=False)`\n' "This issue will be fixed soon, see: https://github.com/huggingface/tokenizers/pull/1005." " so that the fast tokenizer works correctly.") A__ : List[str] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) if pre_tok_state.get("add_prefix_space" , _A) != add_prefix_space: A__ : List[Any] = getattr(_A , pre_tok_state.pop("type")) A__ : Tuple = add_prefix_space A__ : Union[str, Any] = pre_tok_class(**_A) A__ : str = add_prefix_space def _lowercase ( self : Tuple , *_A : Optional[int] , **_A : str): A__ : List[str] = kwargs.get("is_split_into_words" , _A) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*_A , **_A) def _lowercase ( self : Optional[int] , *_A : Any , **_A : str): A__ : str = kwargs.get("is_split_into_words" , _A) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*_A , **_A) def _lowercase ( self : int , _A : str , _A : Optional[str] = None): A__ : Union[str, Any] = self._tokenizer.model.save(_A , name=_A) return tuple(_A) def _lowercase ( self : Optional[int] , _A : Union[int, List[int], "np.ndarray", "torch.Tensor", "tf.Tensor"] , _A : bool = False , _A : bool = None , _A : Optional[List[str]] = None , **_A : Dict , ): A__ : str = super().decode( token_ids=_A , skip_special_tokens=_A , clean_up_tokenization_spaces=_A , **_A , ) if truncate_before_pattern is not None and len(_A) > 0: A__ : List[str] = self.truncate(_A , _A) return decoded_text def _lowercase ( self : int , _A : Tuple , _A : List[Any]): def find_re(_A : Dict , _A : Optional[int] , _A : int): A__ : Union[str, Any] = pattern.search(_A , _A) return m.start() if m else -1 A__ : str = [re.compile(_A , re.MULTILINE) for pattern in truncate_before_pattern] A__ : Any = list(re.finditer("^print" , _A , re.MULTILINE)) if len(_A) > 1: A__ : List[str] = completion[: prints[1].start()] A__ : Optional[int] = list(re.finditer("^def" , _A , re.MULTILINE)) if len(_A) > 1: A__ : Optional[Any] = completion[: defs[1].start()] A__ : Any = 0 A__ : int = [ pos for pos in [find_re(_A , _A , _A) for terminal in terminals] if pos != -1 ] if len(_A) > 0: return completion[: min(_A)] else: return completion
708
# Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib snake_case : Optional[int] = get_logger() snake_case : Optional[dict] = None class lowerCAmelCase__ ( TensorFormatter[Mapping, 'jax.Array', Mapping] ): def __init__( self : Optional[Any] , _A : Optional[int]=None , _A : str=None , **_A : Tuple): super().__init__(features=_A) import jax from jaxlib.xla_client import Device if isinstance(_A , _A): raise ValueError( F'Expected {device} to be a `str` not {type(_A)}, as `jaxlib.xla_extension.Device` ' "is not serializable neither with `pickle` nor with `dill`. Instead you can surround " "the device with `str()` to get its string identifier that will be internally mapped " "to the actual `jaxlib.xla_extension.Device`.") A__ : Union[str, Any] = device if isinstance(_A , _A) else str(jax.devices()[0]) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: A__ : Any = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys()): logger.warning( F'Device with string identifier {self.device} not listed among the available ' F'devices: {list(DEVICE_MAPPING.keys())}, so falling back to the default ' F'device: {str(jax.devices()[0])}.') A__ : str = str(jax.devices()[0]) A__ : List[Any] = jnp_array_kwargs @staticmethod def _lowercase ( ): import jax return {str(_A): device for device in jax.devices()} def _lowercase ( self : Tuple , _A : int): import jax import jax.numpy as jnp if isinstance(_A , _A) and column: if all( isinstance(_A , jax.Array) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column): return jnp.stack(_A , axis=0) return column def _lowercase ( self : List[str] , _A : Union[str, Any]): import jax import jax.numpy as jnp if isinstance(_A , (str, bytes, type(_A))): return value elif isinstance(_A , (np.character, np.ndarray)) and np.issubdtype(value.dtype , np.character): return value.tolist() A__ : Dict = {} if isinstance(_A , (np.number, np.ndarray)) and np.issubdtype(value.dtype , np.integer): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: A__ : Union[str, Any] = {"dtype": jnp.intaa} else: A__ : int = {"dtype": jnp.intaa} elif isinstance(_A , (np.number, np.ndarray)) and np.issubdtype(value.dtype , np.floating): A__ : str = {"dtype": jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(_A , PIL.Image.Image): A__ : Any = np.asarray(_A) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: A__ : Optional[Any] = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device]): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(_A , **{**default_dtype, **self.jnp_array_kwargs}) def _lowercase ( self : Dict , _A : Any): import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(_A , torch.Tensor): return self._tensorize(data_struct.detach().cpu().numpy()[()]) if hasattr(_A , "__array__") and not isinstance(_A , jax.Array): A__ : Any = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(_A , np.ndarray): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(_A) for substruct in data_struct]) elif isinstance(_A , (list, tuple)): return self._consolidate([self.recursive_tensorize(_A) for substruct in data_struct]) return self._tensorize(_A) def _lowercase ( self : Optional[Any] , _A : dict): return map_nested(self._recursive_tensorize , _A , map_list=_A) def _lowercase ( self : List[str] , _A : pa.Table): A__ : Dict = self.numpy_arrow_extractor().extract_row(_A) A__ : int = self.python_features_decoder.decode_row(_A) return self.recursive_tensorize(_A) def _lowercase ( self : int , _A : pa.Table): A__ : int = self.numpy_arrow_extractor().extract_column(_A) A__ : Optional[int] = self.python_features_decoder.decode_column(_A , pa_table.column_names[0]) A__ : Dict = self.recursive_tensorize(_A) A__ : List[Any] = self._consolidate(_A) return column def _lowercase ( self : Tuple , _A : pa.Table): A__ : Any = self.numpy_arrow_extractor().extract_batch(_A) A__ : str = self.python_features_decoder.decode_batch(_A) A__ : Optional[Any] = self.recursive_tensorize(_A) for column_name in batch: A__ : Optional[int] = self._consolidate(batch[column_name]) return batch
182
0
from __future__ import annotations a__ = list[list[int]] # assigning initial values to the grid a__ = [ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution a__ = [ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def __UpperCAmelCase ( __a : Matrix ,__a : int ,__a : int ,__a : int ) -> bool: """simple docstring""" for i in range(9 ): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3 ): for j in range(3 ): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def __UpperCAmelCase ( __a : Matrix ) -> tuple[int, int] | None: """simple docstring""" for i in range(9 ): for j in range(9 ): if grid[i][j] == 0: return i, j return None def __UpperCAmelCase ( __a : Matrix ) -> Matrix | None: """simple docstring""" if location := find_empty_location(__a ): _a , _a : Optional[Any] = location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1 ,10 ): if is_safe(__a ,__a ,__a ,__a ): _a : List[str] = digit if sudoku(__a ) is not None: return grid _a : Optional[int] = 0 return None def __UpperCAmelCase ( __a : Matrix ) -> None: """simple docstring""" for row in grid: for cell in row: print(__a ,end=''' ''' ) print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for example_grid in (initial_grid, no_solution): print('''\nExample grid:\n''' + '''=''' * 20) print_solution(example_grid) print('''\nExample grid solution:''') a__ = sudoku(example_grid) if solution is not None: print_solution(solution) else: print('''Cannot find a solution.''')
14
def __lowerCamelCase ( _lowercase ) -> list: UpperCamelCase = len(_lowercase ) for _ in range(_lowercase ): for i in range(_ % 2 , arr_size - 1 , 2 ): if arr[i + 1] < arr[i]: UpperCamelCase , UpperCamelCase = arr[i + 1], arr[i] return arr if __name__ == "__main__": _snake_case = list(range(10, 0, -1)) print(F"Original: {arr}. Sorted: {odd_even_transposition(arr)}")
282
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class __UpperCamelCase : __A = XGLMConfig __A = {} __A = '''gelu''' def __init__( self , _lowerCAmelCase , _lowerCAmelCase=14 , _lowerCAmelCase=7 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=99 , _lowerCAmelCase=32 , _lowerCAmelCase=2 , _lowerCAmelCase=4 , _lowerCAmelCase=37 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=512 , _lowerCAmelCase=0.02 , ) -> Optional[Any]: '''simple docstring''' lowercase = parent lowercase = batch_size lowercase = seq_length lowercase = is_training lowercase = use_input_mask lowercase = use_labels lowercase = vocab_size lowercase = d_model lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = ffn_dim lowercase = activation_function lowercase = activation_dropout lowercase = attention_dropout lowercase = max_position_embeddings lowercase = initializer_range lowercase = None lowercase = 0 lowercase = 2 lowercase = 1 def _a ( self ) -> Dict: '''simple docstring''' return XGLMConfig.from_pretrained("""facebook/xglm-564M""" ) def _a ( self ) -> Optional[int]: '''simple docstring''' lowercase = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 ) lowercase = None if self.use_input_mask: lowercase = random_attention_mask([self.batch_size, self.seq_length] ) lowercase = self.get_config() lowercase = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, ) def _a ( self ) -> Optional[Any]: '''simple docstring''' return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=_lowerCAmelCase , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=_lowerCAmelCase , ) def _a ( self ) -> Tuple: '''simple docstring''' lowercase = self.prepare_config_and_inputs() ( ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ) = config_and_inputs lowercase = { """input_ids""": input_ids, """head_mask""": head_mask, } return config, inputs_dict @require_tf class __UpperCamelCase (_UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): __A = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () __A = (TFXGLMForCausalLM,) if is_tf_available() else () __A = ( {'''feature-extraction''': TFXGLMModel, '''text-generation''': TFXGLMForCausalLM} if is_tf_available() else {} ) __A = False __A = False __A = False def _a ( self ) -> int: '''simple docstring''' lowercase = TFXGLMModelTester(self ) lowercase = ConfigTester(self , config_class=_lowerCAmelCase , n_embd=37 ) def _a ( self ) -> Optional[int]: '''simple docstring''' self.config_tester.run_common_tests() @slow def _a ( self ) -> int: '''simple docstring''' for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase = TFXGLMModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) @unittest.skip(reason="""Currently, model embeddings are going to undergo a major refactor.""" ) def _a ( self ) -> int: '''simple docstring''' super().test_resize_token_embeddings() @require_tf class __UpperCamelCase (unittest.TestCase ): @slow def _a ( self , _lowerCAmelCase=True ) -> Dict: '''simple docstring''' lowercase = TFXGLMForCausalLM.from_pretrained("""facebook/xglm-564M""" ) lowercase = tf.convert_to_tensor([[2, 268, 9865]] , dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off lowercase = [2, 268, 9865, 67, 11, 1988, 5_7252, 9865, 5, 984, 67, 1988, 21_3838, 1658, 53, 7_0446, 33, 6657, 278, 1581] # fmt: on lowercase = model.generate(_lowerCAmelCase , do_sample=_lowerCAmelCase , num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , _lowerCAmelCase ) @slow def _a ( self ) -> List[Any]: '''simple docstring''' lowercase = XGLMTokenizer.from_pretrained("""facebook/xglm-564M""" ) lowercase = TFXGLMForCausalLM.from_pretrained("""facebook/xglm-564M""" ) tf.random.set_seed(0 ) lowercase = tokenizer("""Today is a nice day and""" , return_tensors="""tf""" ) lowercase = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(""":/CPU:0""" ): lowercase = model.generate(_lowerCAmelCase , do_sample=_lowerCAmelCase , seed=[7, 0] ) lowercase = tokenizer.decode(output_ids[0] , skip_special_tokens=_lowerCAmelCase ) lowercase = ( """Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due""" ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) @slow def _a ( self ) -> int: '''simple docstring''' lowercase = TFXGLMForCausalLM.from_pretrained("""facebook/xglm-564M""" ) lowercase = XGLMTokenizer.from_pretrained("""facebook/xglm-564M""" ) lowercase = """left""" # use different length sentences to test batching lowercase = [ """This is an extremelly long sentence that only exists to test the ability of the model to cope with """ """left-padding, such as in batched generation. The output for the sequence below should be the same """ """regardless of whether left padding is applied or not. When""", """Hello, my dog is a little""", ] lowercase = tokenizer(_lowerCAmelCase , return_tensors="""tf""" , padding=_lowerCAmelCase ) lowercase = inputs["""input_ids"""] lowercase = model.generate(input_ids=_lowerCAmelCase , attention_mask=inputs["""attention_mask"""] , max_new_tokens=12 ) lowercase = tokenizer(sentences[0] , return_tensors="""tf""" ).input_ids lowercase = model.generate(input_ids=_lowerCAmelCase , max_new_tokens=12 ) lowercase = tokenizer(sentences[1] , return_tensors="""tf""" ).input_ids lowercase = model.generate(input_ids=_lowerCAmelCase , max_new_tokens=12 ) lowercase = tokenizer.batch_decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase ) lowercase = tokenizer.decode(output_non_padded[0] , skip_special_tokens=_lowerCAmelCase ) lowercase = tokenizer.decode(output_padded[0] , skip_special_tokens=_lowerCAmelCase ) lowercase = [ """This is an extremelly long sentence that only exists to test the ability of the model to cope with """ """left-padding, such as in batched generation. The output for the sequence below should be the same """ """regardless of whether left padding is applied or not. When left padding is applied, the sequence will be """ """a single""", """Hello, my dog is a little bit of a shy one, but he is very friendly""", ] self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , [non_padded_sentence, padded_sentence] )
653
'''simple docstring''' from __future__ import annotations import os from typing import Any import requests lowercase_ : List[str] = '''https://api.github.com''' # https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user lowercase_ : Any = BASE_URL + '''/user''' # https://github.com/settings/tokens lowercase_ : Union[str, Any] = os.environ.get('''USER_TOKEN''', '''''') def SCREAMING_SNAKE_CASE ( lowercase_ : str ): lowercase = { """Authorization""": F"""token {auth_token}""", """Accept""": """application/vnd.github.v3+json""", } return requests.get(lowercase_ , headers=lowercase_ ).json() if __name__ == "__main__": # pragma: no cover if USER_TOKEN: for key, value in fetch_github_info(USER_TOKEN).items(): print(f'''{key}: {value}''') else: raise ValueError('''\'USER_TOKEN\' field cannot be empty.''')
653
1
'''simple docstring''' import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class _UpperCAmelCase ( lowerCAmelCase__ ): """simple docstring""" def __init__( self , lowerCAmelCase_ , lowerCAmelCase_=13 , lowerCAmelCase_=7 , lowerCAmelCase_=True , lowerCAmelCase_=True , lowerCAmelCase_=True , lowerCAmelCase_=True , lowerCAmelCase_=True , lowerCAmelCase_=False , lowerCAmelCase_=False , lowerCAmelCase_=False , lowerCAmelCase_=2 , lowerCAmelCase_=99 , lowerCAmelCase_=0 , lowerCAmelCase_=32 , lowerCAmelCase_=5 , lowerCAmelCase_=4 , lowerCAmelCase_=0.1 , lowerCAmelCase_=0.1 , lowerCAmelCase_=5_12 , lowerCAmelCase_=12 , lowerCAmelCase_=2 , lowerCAmelCase_=0.02 , lowerCAmelCase_=3 , lowerCAmelCase_=4 , lowerCAmelCase_="last" , lowerCAmelCase_=None , lowerCAmelCase_=None , ): '''simple docstring''' a_ : Dict = parent a_ : List[str] = batch_size a_ : Any = seq_length a_ : Tuple = is_training a_ : Optional[Any] = use_input_lengths a_ : int = use_token_type_ids a_ : List[Any] = use_labels a_ : Tuple = gelu_activation a_ : Union[str, Any] = sinusoidal_embeddings a_ : Tuple = causal a_ : List[str] = asm a_ : Any = n_langs a_ : str = vocab_size a_ : Any = n_special a_ : str = hidden_size a_ : int = num_hidden_layers a_ : str = num_attention_heads a_ : Dict = hidden_dropout_prob a_ : str = attention_probs_dropout_prob a_ : Any = max_position_embeddings a_ : Dict = type_vocab_size a_ : Tuple = type_sequence_label_size a_ : Optional[Any] = initializer_range a_ : str = num_labels a_ : Tuple = num_choices a_ : List[Any] = summary_type a_ : List[Any] = use_proj a_ : Optional[int] = scope def _lowerCAmelCase ( self ): '''simple docstring''' a_ : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a_ : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) a_ : Dict = None if self.use_input_lengths: a_ : Optional[Any] = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length a_ : Union[str, Any] = None if self.use_token_type_ids: a_ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) a_ : Tuple = None a_ : Any = None a_ : Dict = None if self.use_labels: a_ : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a_ : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) a_ : str = ids_tensor([self.batch_size] , 2 ).float() a_ : Dict = ids_tensor([self.batch_size] , self.num_choices ) a_ : Union[str, Any] = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _lowerCAmelCase ( self ): '''simple docstring''' return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def _lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , ): '''simple docstring''' a_ : Tuple = FlaubertModel(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() a_ : Tuple = model(lowerCAmelCase_ , lengths=lowerCAmelCase_ , langs=lowerCAmelCase_ ) a_ : Union[str, Any] = model(lowerCAmelCase_ , langs=lowerCAmelCase_ ) a_ : Optional[int] = model(lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , ): '''simple docstring''' a_ : int = FlaubertWithLMHeadModel(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() a_ : List[Any] = model(lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , ): '''simple docstring''' a_ : Optional[int] = FlaubertForQuestionAnsweringSimple(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() a_ : str = model(lowerCAmelCase_ ) a_ : List[Any] = model(lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , ): '''simple docstring''' a_ : Optional[Any] = FlaubertForQuestionAnswering(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() a_ : Dict = model(lowerCAmelCase_ ) a_ : Optional[Any] = model( lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ , cls_index=lowerCAmelCase_ , is_impossible=lowerCAmelCase_ , p_mask=lowerCAmelCase_ , ) a_ : Dict = model( lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ , cls_index=lowerCAmelCase_ , is_impossible=lowerCAmelCase_ , ) ((a_) , ) : List[str] = result_with_labels.to_tuple() a_ : List[Any] = model(lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ ) ((a_) , ) : Optional[Any] = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def _lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , ): '''simple docstring''' a_ : List[str] = FlaubertForSequenceClassification(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() a_ : Union[str, Any] = model(lowerCAmelCase_ ) a_ : Union[str, Any] = model(lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , ): '''simple docstring''' a_ : List[str] = self.num_labels a_ : Dict = FlaubertForTokenClassification(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() a_ : Optional[int] = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , ): '''simple docstring''' a_ : Optional[Any] = self.num_choices a_ : Tuple = FlaubertForMultipleChoice(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() a_ : Optional[int] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() a_ : Union[str, Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() a_ : Optional[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() a_ : Any = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowerCAmelCase ( self ): '''simple docstring''' a_ : List[str] = self.prepare_config_and_inputs() ( ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ) : List[Any] = config_and_inputs a_ : Optional[Any] = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """lengths""": input_lengths, """attention_mask""": input_mask, } return config, inputs_dict @require_torch class _UpperCAmelCase ( lowerCAmelCase__ ,lowerCAmelCase__ ,unittest.TestCase ): """simple docstring""" a_ = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) a_ = ( { "feature-extraction": FlaubertModel, "fill-mask": FlaubertWithLMHeadModel, "question-answering": FlaubertForQuestionAnsweringSimple, "text-classification": FlaubertForSequenceClassification, "token-classification": FlaubertForTokenClassification, "zero-shot": FlaubertForSequenceClassification, } if is_torch_available() else {} ) def _lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("""Fast""" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=False ): '''simple docstring''' a_ : List[Any] = super()._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_ ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": a_ : Dict = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase_ ) a_ : List[str] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase_ ) return inputs_dict def _lowerCAmelCase ( self ): '''simple docstring''' a_ : List[Any] = FlaubertModelTester(self ) a_ : List[str] = ConfigTester(self , config_class=lowerCAmelCase_ , emb_dim=37 ) def _lowerCAmelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() def _lowerCAmelCase ( self ): '''simple docstring''' a_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*lowerCAmelCase_ ) def _lowerCAmelCase ( self ): '''simple docstring''' a_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*lowerCAmelCase_ ) def _lowerCAmelCase ( self ): '''simple docstring''' a_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*lowerCAmelCase_ ) def _lowerCAmelCase ( self ): '''simple docstring''' a_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*lowerCAmelCase_ ) def _lowerCAmelCase ( self ): '''simple docstring''' a_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*lowerCAmelCase_ ) def _lowerCAmelCase ( self ): '''simple docstring''' a_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*lowerCAmelCase_ ) def _lowerCAmelCase ( self ): '''simple docstring''' a_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*lowerCAmelCase_ ) @slow def _lowerCAmelCase ( self ): '''simple docstring''' for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a_ : List[Any] = FlaubertModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) @slow @require_torch_gpu def _lowerCAmelCase ( self ): '''simple docstring''' a_ , a_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return a_ : List[Any] = True a_ : Optional[Any] = model_class(config=lowerCAmelCase_ ) a_ : Optional[int] = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) a_ : Tuple = torch.jit.trace( lowerCAmelCase_ , (inputs_dict["""input_ids"""].to("""cpu""" ), inputs_dict["""attention_mask"""].to("""cpu""" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(lowerCAmelCase_ , os.path.join(lowerCAmelCase_ , """traced_model.pt""" ) ) a_ : Optional[int] = torch.jit.load(os.path.join(lowerCAmelCase_ , """traced_model.pt""" ) , map_location=lowerCAmelCase_ ) loaded(inputs_dict["""input_ids"""].to(lowerCAmelCase_ ) , inputs_dict["""attention_mask"""].to(lowerCAmelCase_ ) ) @require_torch class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def _lowerCAmelCase ( self ): '''simple docstring''' a_ : List[Any] = FlaubertModel.from_pretrained("""flaubert/flaubert_base_cased""" ) a_ : Optional[Any] = torch.tensor([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) with torch.no_grad(): a_ : Dict = model(lowerCAmelCase_ )[0] a_ : Optional[Any] = torch.Size((1, 11, 7_68) ) self.assertEqual(output.shape , lowerCAmelCase_ ) a_ : Dict = torch.tensor( [[[-2.6251, -1.4298, -0.0227], [-2.8510, -1.6387, 0.2258], [-2.8114, -1.1832, -0.3066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowerCAmelCase_ , atol=1E-4 ) )
577
'''simple docstring''' import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def _snake_case ( A_ : Optional[Any] ): """simple docstring""" if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class _UpperCAmelCase ( nn.Module ): """simple docstring""" def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' super().__init__() a_ : Optional[Any] = module a_ : Union[str, Any] = nn.Sequential( nn.Linear(module.in_features , lowerCAmelCase_ , bias=lowerCAmelCase_ ) , nn.Linear(lowerCAmelCase_ , module.out_features , bias=lowerCAmelCase_ ) , ) a_ : int = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5 nn.init.normal_(self.adapter[0].weight , std=lowerCAmelCase_ ) nn.init.zeros_(self.adapter[1].weight ) self.adapter.to(module.weight.device ) def _lowerCAmelCase ( self , lowerCAmelCase_ , *lowerCAmelCase_ , **lowerCAmelCase_ ): '''simple docstring''' return self.module(lowerCAmelCase_ , *lowerCAmelCase_ , **lowerCAmelCase_ ) + self.adapter(lowerCAmelCase_ ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" a_ = "bigscience/bloom-1b7" # Constant values a_ = 2.109659552692574 a_ = "Hello my name is" a_ = set() EXPECTED_OUTPUTS.add("Hello my name is John and I am a professional photographer. I" ) EXPECTED_OUTPUTS.add("Hello my name is John.\nI am a friend of your father.\n" ) EXPECTED_OUTPUTS.add("Hello my name is John Doe, I am a student at the University" ) a_ = 10 def _lowerCAmelCase ( self ): '''simple docstring''' a_ : Any = AutoTokenizer.from_pretrained(self.model_name ) class _UpperCAmelCase ( lowerCAmelCase__ ): """simple docstring""" def _lowerCAmelCase ( self ): '''simple docstring''' super().setUp() # Models and tokenizer a_ : Optional[Any] = AutoModelForCausalLM.from_pretrained( self.model_name , torch_dtype=torch.floataa , device_map="""auto""" ) a_ : Optional[int] = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) def _lowerCAmelCase ( self ): '''simple docstring''' del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def _lowerCAmelCase ( self ): '''simple docstring''' a_ : Any = self.model_abit.config self.assertTrue(hasattr(lowerCAmelCase_ , """quantization_config""" ) ) a_ : Any = config.to_dict() a_ : Dict = config.to_diff_dict() a_ : Dict = config.to_json_string() def _lowerCAmelCase ( self ): '''simple docstring''' from bitsandbytes.nn import Paramsabit a_ : List[str] = self.model_fpaa.get_memory_footprint() a_ : Optional[int] = self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE ) a_ : Union[str, Any] = get_some_linear_layer(self.model_abit ) self.assertTrue(linear.weight.__class__ == Paramsabit ) def _lowerCAmelCase ( self ): '''simple docstring''' from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(lowerCAmelCase_ , torch.nn.Linear ): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta ) def _lowerCAmelCase ( self ): '''simple docstring''' a_ : Any = self.tokenizer(self.input_text , return_tensors="""pt""" ) a_ : str = self.model_abit.generate(input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=lowerCAmelCase_ ) , self.EXPECTED_OUTPUTS ) def _lowerCAmelCase ( self ): '''simple docstring''' a_ : Optional[Any] = BitsAndBytesConfig() a_ : Union[str, Any] = True a_ : Dict = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=lowerCAmelCase_ , device_map="""auto""" ) a_ : str = self.tokenizer(self.input_text , return_tensors="""pt""" ) a_ : Tuple = model_abit_from_config.generate( input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=lowerCAmelCase_ ) , self.EXPECTED_OUTPUTS ) def _lowerCAmelCase ( self ): '''simple docstring''' with self.assertRaises(lowerCAmelCase_ ), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(lowerCAmelCase_ ) def _lowerCAmelCase ( self ): '''simple docstring''' a_ : Any = BitsAndBytesConfig() with self.assertRaises(lowerCAmelCase_ ): a_ : List[str] = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=lowerCAmelCase_ , load_in_abit=lowerCAmelCase_ , device_map="""auto""" , bnb_abit_quant_type="""nf4""" , ) def _lowerCAmelCase ( self ): '''simple docstring''' with self.assertRaises(lowerCAmelCase_ ): # Tries with `str` self.model_abit.to("""cpu""" ) with self.assertRaises(lowerCAmelCase_ ): # Tries with a `dtype`` self.model_abit.to(torch.floataa ) with self.assertRaises(lowerCAmelCase_ ): # Tries with a `device` self.model_abit.to(torch.device("""cuda:0""" ) ) with self.assertRaises(lowerCAmelCase_ ): # Tries with a `device` self.model_abit.float() with self.assertRaises(lowerCAmelCase_ ): # Tries with a `device` self.model_abit.half() # Test if we did not break anything a_ : List[Any] = self.tokenizer(self.input_text , return_tensors="""pt""" ) a_ : Union[str, Any] = self.model_fpaa.to(torch.floataa ) a_ : Union[str, Any] = self.model_fpaa.generate(input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=10 ) # Check this does not throw an error a_ : int = self.model_fpaa.to("""cpu""" ) # Check this does not throw an error a_ : Optional[Any] = self.model_fpaa.half() # Check this does not throw an error a_ : Dict = self.model_fpaa.float() def _lowerCAmelCase ( self ): '''simple docstring''' a_ : Optional[Any] = AutoModelForSeqaSeqLM.from_pretrained("""t5-small""" , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @classmethod def _lowerCAmelCase ( cls ): '''simple docstring''' a_ : List[str] = """t5-small""" a_ : Any = """google/flan-t5-small""" # flan-t5 uses dense-act instead of dense-relu-dense a_ : Optional[Any] = AutoTokenizer.from_pretrained(cls.model_name ) a_ : int = """Translate in German: Hello, my dog is cute""" def _lowerCAmelCase ( self ): '''simple docstring''' gc.collect() torch.cuda.empty_cache() def _lowerCAmelCase ( self ): '''simple docstring''' from transformers import TaForConditionalGeneration a_ : Dict = TaForConditionalGeneration._keep_in_fpaa_modules a_ : str = None # test with `t5-small` a_ : Tuple = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) a_ : Optional[int] = self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 ) a_ : str = model.generate(**lowerCAmelCase_ ) # test with `flan-t5-small` a_ : Optional[Any] = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) a_ : str = self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 ) a_ : Any = model.generate(**lowerCAmelCase_ ) a_ : List[str] = modules def _lowerCAmelCase ( self ): '''simple docstring''' import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` a_ : List[str] = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) ) a_ : Tuple = self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 ) a_ : Union[str, Any] = model.generate(**lowerCAmelCase_ ) # test with `flan-t5-small` a_ : Dict = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) a_ : str = self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 ) a_ : Tuple = model.generate(**lowerCAmelCase_ ) class _UpperCAmelCase ( lowerCAmelCase__ ): """simple docstring""" def _lowerCAmelCase ( self ): '''simple docstring''' super().setUp() # model_name a_ : Dict = """bigscience/bloom-560m""" a_ : Any = """t5-small""" # Different types of model a_ : Tuple = AutoModel.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) # Sequence classification model a_ : Any = AutoModelForSequenceClassification.from_pretrained( self.model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) # CausalLM model a_ : str = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) # Seq2seq model a_ : str = AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) def _lowerCAmelCase ( self ): '''simple docstring''' del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def _lowerCAmelCase ( self ): '''simple docstring''' from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit ) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter ) class _UpperCAmelCase ( lowerCAmelCase__ ): """simple docstring""" def _lowerCAmelCase ( self ): '''simple docstring''' super().setUp() def _lowerCAmelCase ( self ): '''simple docstring''' del self.pipe gc.collect() torch.cuda.empty_cache() def _lowerCAmelCase ( self ): '''simple docstring''' a_ : Optional[Any] = pipeline( """text-generation""" , model=self.model_name , model_kwargs={"""device_map""": """auto""", """load_in_4bit""": True, """torch_dtype""": torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , ) # Real second forward pass a_ : List[Any] = self.pipe(self.input_text ) self.assertIn(pipeline_output[0]["""generated_text"""] , self.EXPECTED_OUTPUTS ) @require_torch_multi_gpu class _UpperCAmelCase ( lowerCAmelCase__ ): """simple docstring""" def _lowerCAmelCase ( self ): '''simple docstring''' super().setUp() def _lowerCAmelCase ( self ): '''simple docstring''' a_ : int = AutoModelForCausalLM.from_pretrained( self.model_name , load_in_abit=lowerCAmelCase_ , device_map="""balanced""" ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} ) # Check that inference pass works on the model a_ : Any = self.tokenizer(self.input_text , return_tensors="""pt""" ) # Second real batch a_ : Dict = model_parallel.generate(input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=lowerCAmelCase_ ) , self.EXPECTED_OUTPUTS ) class _UpperCAmelCase ( lowerCAmelCase__ ): """simple docstring""" def _lowerCAmelCase ( self ): '''simple docstring''' a_ : str = """facebook/opt-350m""" super().setUp() def _lowerCAmelCase ( self ): '''simple docstring''' if version.parse(importlib.metadata.version("""bitsandbytes""" ) ) < version.parse("""0.37.0""" ): return # Step 1: freeze all parameters a_ : str = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase_ ) self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} ) for param in model.parameters(): a_ : int = False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability a_ : Any = param.data.to(torch.floataa ) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(lowerCAmelCase_ ) ): a_ : List[str] = LoRALayer(module.q_proj , rank=16 ) a_ : Union[str, Any] = LoRALayer(module.k_proj , rank=16 ) a_ : Optional[Any] = LoRALayer(module.v_proj , rank=16 ) # Step 3: dummy batch a_ : Tuple = self.tokenizer("""Test batch """ , return_tensors="""pt""" ).to(0 ) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): a_ : List[str] = model.forward(**lowerCAmelCase_ ) out.logits.norm().backward() for module in model.modules(): if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): self.assertTrue(module.adapter[1].weight.grad is not None ) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 ) elif isinstance(lowerCAmelCase_ , nn.Embedding ): self.assertTrue(module.weight.grad is None ) class _UpperCAmelCase ( lowerCAmelCase__ ): """simple docstring""" a_ = "gpt2-xl" a_ = 3.3191854854152187
577
1
"""simple docstring""" import argparse import OmegaConf import torch from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel def UpperCAmelCase ( A : Optional[int] , A : Dict , A : Union[str, Any] ): '''simple docstring''' _UpperCAmelCase = OmegaConf.load(A ) _UpperCAmelCase = torch.load(A , map_location='cpu' )['model'] _UpperCAmelCase = list(state_dict.keys() ) # extract state_dict for VQVAE _UpperCAmelCase = {} _UpperCAmelCase = 'first_stage_model.' for key in keys: if key.startswith(A ): _UpperCAmelCase = state_dict[key] # extract state_dict for UNetLDM _UpperCAmelCase = {} _UpperCAmelCase = 'model.diffusion_model.' for key in keys: if key.startswith(A ): _UpperCAmelCase = state_dict[key] _UpperCAmelCase = config.model.params.first_stage_config.params _UpperCAmelCase = config.model.params.unet_config.params _UpperCAmelCase = VQModel(**A ).eval() vqvae.load_state_dict(A ) _UpperCAmelCase = UNetLDMModel(**A ).eval() unet.load_state_dict(A ) _UpperCAmelCase = DDIMScheduler( timesteps=config.model.params.timesteps , beta_schedule='scaled_linear' , beta_start=config.model.params.linear_start , beta_end=config.model.params.linear_end , clip_sample=A , ) _UpperCAmelCase = LDMPipeline(A , A , A ) pipeline.save_pretrained(A ) if __name__ == "__main__": lowercase = argparse.ArgumentParser() parser.add_argument('''--checkpoint_path''', type=str, required=True) parser.add_argument('''--config_path''', type=str, required=True) parser.add_argument('''--output_path''', type=str, required=True) lowercase = parser.parse_args() convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
710
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowercase__ ( A, unittest.TestCase ): '''simple docstring''' _UpperCAmelCase = DiTPipeline _UpperCAmelCase = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS _UpperCAmelCase = PipelineTesterMixin.required_optional_params - { '''latents''', '''num_images_per_prompt''', '''callback''', '''callback_steps''', } _UpperCAmelCase = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS _UpperCAmelCase = False def lowerCamelCase_ ( self ) -> str: torch.manual_seed(0 ) _UpperCAmelCase = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=snake_case , activation_fn='gelu-approximate' , num_embeds_ada_norm=1000 , norm_type='ada_norm_zero' , norm_elementwise_affine=snake_case , ) _UpperCAmelCase = AutoencoderKL() _UpperCAmelCase = DDIMScheduler() _UpperCAmelCase = {'transformer': transformer.eval(), 'vae': vae.eval(), 'scheduler': scheduler} return components def lowerCamelCase_ ( self , snake_case , snake_case=0 ) -> Optional[Any]: if str(snake_case ).startswith('mps' ): _UpperCAmelCase = torch.manual_seed(snake_case ) else: _UpperCAmelCase = torch.Generator(device=snake_case ).manual_seed(snake_case ) _UpperCAmelCase = { 'class_labels': [1], 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def lowerCamelCase_ ( self ) -> List[Any]: _UpperCAmelCase = 'cpu' _UpperCAmelCase = self.get_dummy_components() _UpperCAmelCase = self.pipeline_class(**snake_case ) pipe.to(snake_case ) pipe.set_progress_bar_config(disable=snake_case ) _UpperCAmelCase = self.get_dummy_inputs(snake_case ) _UpperCAmelCase = pipe(**snake_case ).images _UpperCAmelCase = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) _UpperCAmelCase = np.array([0.2946, 0.6601, 0.4329, 0.3296, 0.4144, 0.5319, 0.7273, 0.5013, 0.4457] ) _UpperCAmelCase = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(snake_case , 1E-3 ) def lowerCamelCase_ ( self ) -> Any: self._test_inference_batch_single_identical(relax_max_difference=snake_case , expected_max_diff=1E-3 ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def lowerCamelCase_ ( self ) -> Optional[int]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) @require_torch_gpu @slow class lowercase__ ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase_ ( self ) -> int: super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase_ ( self ) -> int: _UpperCAmelCase = torch.manual_seed(0 ) _UpperCAmelCase = DiTPipeline.from_pretrained('facebook/DiT-XL-2-256' ) pipe.to('cuda' ) _UpperCAmelCase = ['vase', 'umbrella', 'white shark', 'white wolf'] _UpperCAmelCase = pipe.get_label_ids(snake_case ) _UpperCAmelCase = pipe(snake_case , generator=snake_case , num_inference_steps=40 , output_type='np' ).images for word, image in zip(snake_case , snake_case ): _UpperCAmelCase = load_numpy( f'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy' ) assert np.abs((expected_image - image).max() ) < 1E-2 def lowerCamelCase_ ( self ) -> int: _UpperCAmelCase = DiTPipeline.from_pretrained('facebook/DiT-XL-2-512' ) _UpperCAmelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to('cuda' ) _UpperCAmelCase = ['vase', 'umbrella'] _UpperCAmelCase = pipe.get_label_ids(snake_case ) _UpperCAmelCase = torch.manual_seed(0 ) _UpperCAmelCase = pipe(snake_case , generator=snake_case , num_inference_steps=25 , output_type='np' ).images for word, image in zip(snake_case , snake_case ): _UpperCAmelCase = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' f'/dit/{word}_512.npy' ) assert np.abs((expected_image - image).max() ) < 1E-1
24
0
import contextlib import copy import random from typing import Any, Dict, Iterable, Optional, Union import numpy as np import torch from .utils import deprecate, is_transformers_available if is_transformers_available(): import transformers def _lowercase ( a__ : int ) -> str: """simple docstring""" random.seed(a__ ) np.random.seed(a__ ) torch.manual_seed(a__ ) torch.cuda.manual_seed_all(a__ ) # ^^ safe to call this function even if cuda is not available class lowerCamelCase_ : def __init__( self , lowerCamelCase_ , lowerCamelCase_ = 0.99_99 , lowerCamelCase_ = 0.0 , lowerCamelCase_ = 0 , lowerCamelCase_ = False , lowerCamelCase_ = 1.0 , lowerCamelCase_ = 2 / 3 , lowerCamelCase_ = None , lowerCamelCase_ = None , **lowerCamelCase_ , ) -> str: """simple docstring""" if isinstance(lowerCamelCase_ , torch.nn.Module ): _UpperCamelCase = ( "Passing a `torch.nn.Module` to `ExponentialMovingAverage` is deprecated. " "Please pass the parameters of the module instead." ) deprecate( "passing a `torch.nn.Module` to `ExponentialMovingAverage`" , "1.0.0" , lowerCamelCase_ , standard_warn=lowerCamelCase_ , ) _UpperCamelCase = parameters.parameters() # set use_ema_warmup to True if a torch.nn.Module is passed for backwards compatibility _UpperCamelCase = True if kwargs.get("max_value" , lowerCamelCase_ ) is not None: _UpperCamelCase = "The `max_value` argument is deprecated. Please use `decay` instead." deprecate("max_value" , "1.0.0" , lowerCamelCase_ , standard_warn=lowerCamelCase_ ) _UpperCamelCase = kwargs["max_value"] if kwargs.get("min_value" , lowerCamelCase_ ) is not None: _UpperCamelCase = "The `min_value` argument is deprecated. Please use `min_decay` instead." deprecate("min_value" , "1.0.0" , lowerCamelCase_ , standard_warn=lowerCamelCase_ ) _UpperCamelCase = kwargs["min_value"] _UpperCamelCase = list(lowerCamelCase_ ) _UpperCamelCase = [p.clone().detach() for p in parameters] if kwargs.get("device" , lowerCamelCase_ ) is not None: _UpperCamelCase = "The `device` argument is deprecated. Please use `to` instead." deprecate("device" , "1.0.0" , lowerCamelCase_ , standard_warn=lowerCamelCase_ ) self.to(device=kwargs["device"] ) _UpperCamelCase = None _UpperCamelCase = decay _UpperCamelCase = min_decay _UpperCamelCase = update_after_step _UpperCamelCase = use_ema_warmup _UpperCamelCase = inv_gamma _UpperCamelCase = power _UpperCamelCase = 0 _UpperCamelCase = None # set in `step()` _UpperCamelCase = model_cls _UpperCamelCase = model_config @classmethod def lowercase ( cls , lowerCamelCase_ , lowerCamelCase_ ) -> "EMAModel": """simple docstring""" _UpperCamelCase , _UpperCamelCase = model_cls.load_config(lowerCamelCase_ , return_unused_kwargs=lowerCamelCase_ ) _UpperCamelCase = model_cls.from_pretrained(lowerCamelCase_ ) _UpperCamelCase = cls(model.parameters() , model_cls=lowerCamelCase_ , model_config=model.config ) ema_model.load_state_dict(lowerCamelCase_ ) return ema_model def lowercase ( self , lowerCamelCase_ ) -> Optional[Any]: """simple docstring""" if self.model_cls is None: raise ValueError("`save_pretrained` can only be used if `model_cls` was defined at __init__." ) if self.model_config is None: raise ValueError("`save_pretrained` can only be used if `model_config` was defined at __init__." ) _UpperCamelCase = self.model_cls.from_config(self.model_config ) _UpperCamelCase = self.state_dict() state_dict.pop("shadow_params" , lowerCamelCase_ ) model.register_to_config(**lowerCamelCase_ ) self.copy_to(model.parameters() ) model.save_pretrained(lowerCamelCase_ ) def lowercase ( self , lowerCamelCase_ ) -> float: """simple docstring""" _UpperCamelCase = max(0 , optimization_step - self.update_after_step - 1 ) if step <= 0: return 0.0 if self.use_ema_warmup: _UpperCamelCase = 1 - (1 + step / self.inv_gamma) ** -self.power else: _UpperCamelCase = (1 + step) / (10 + step) _UpperCamelCase = min(lowerCamelCase_ , self.decay ) # make sure decay is not smaller than min_decay _UpperCamelCase = max(lowerCamelCase_ , self.min_decay ) return cur_decay_value @torch.no_grad() def lowercase ( self , lowerCamelCase_ ) -> List[str]: """simple docstring""" if isinstance(lowerCamelCase_ , torch.nn.Module ): _UpperCamelCase = ( "Passing a `torch.nn.Module` to `ExponentialMovingAverage.step` is deprecated. " "Please pass the parameters of the module instead." ) deprecate( "passing a `torch.nn.Module` to `ExponentialMovingAverage.step`" , "1.0.0" , lowerCamelCase_ , standard_warn=lowerCamelCase_ , ) _UpperCamelCase = parameters.parameters() _UpperCamelCase = list(lowerCamelCase_ ) self.optimization_step += 1 # Compute the decay factor for the exponential moving average. _UpperCamelCase = self.get_decay(self.optimization_step ) _UpperCamelCase = decay _UpperCamelCase = 1 - decay _UpperCamelCase = contextlib.nullcontext if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): import deepspeed for s_param, param in zip(self.shadow_params , lowerCamelCase_ ): if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): _UpperCamelCase = deepspeed.zero.GatheredParameters(lowerCamelCase_ , modifier_rank=lowerCamelCase_ ) with context_manager(): if param.requires_grad: s_param.sub_(one_minus_decay * (s_param - param) ) else: s_param.copy_(lowerCamelCase_ ) def lowercase ( self , lowerCamelCase_ ) -> None: """simple docstring""" _UpperCamelCase = list(lowerCamelCase_ ) for s_param, param in zip(self.shadow_params , lowerCamelCase_ ): param.data.copy_(s_param.to(param.device ).data ) def lowercase ( self , lowerCamelCase_=None , lowerCamelCase_=None ) -> None: """simple docstring""" _UpperCamelCase = [ p.to(device=lowerCamelCase_ , dtype=lowerCamelCase_ ) if p.is_floating_point() else p.to(device=lowerCamelCase_ ) for p in self.shadow_params ] def lowercase ( self ) -> dict: """simple docstring""" return { "decay": self.decay, "min_decay": self.min_decay, "optimization_step": self.optimization_step, "update_after_step": self.update_after_step, "use_ema_warmup": self.use_ema_warmup, "inv_gamma": self.inv_gamma, "power": self.power, "shadow_params": self.shadow_params, } def lowercase ( self , lowerCamelCase_ ) -> None: """simple docstring""" _UpperCamelCase = [param.detach().cpu().clone() for param in parameters] def lowercase ( self , lowerCamelCase_ ) -> None: """simple docstring""" if self.temp_stored_params is None: raise RuntimeError("This ExponentialMovingAverage has no `store()`ed weights " "to `restore()`" ) for c_param, param in zip(self.temp_stored_params , lowerCamelCase_ ): param.data.copy_(c_param.data ) # Better memory-wise. _UpperCamelCase = None def lowercase ( self , lowerCamelCase_ ) -> None: """simple docstring""" _UpperCamelCase = copy.deepcopy(lowerCamelCase_ ) _UpperCamelCase = state_dict.get("decay" , self.decay ) if self.decay < 0.0 or self.decay > 1.0: raise ValueError("Decay must be between 0 and 1" ) _UpperCamelCase = state_dict.get("min_decay" , self.min_decay ) if not isinstance(self.min_decay , lowerCamelCase_ ): raise ValueError("Invalid min_decay" ) _UpperCamelCase = state_dict.get("optimization_step" , self.optimization_step ) if not isinstance(self.optimization_step , lowerCamelCase_ ): raise ValueError("Invalid optimization_step" ) _UpperCamelCase = state_dict.get("update_after_step" , self.update_after_step ) if not isinstance(self.update_after_step , lowerCamelCase_ ): raise ValueError("Invalid update_after_step" ) _UpperCamelCase = state_dict.get("use_ema_warmup" , self.use_ema_warmup ) if not isinstance(self.use_ema_warmup , lowerCamelCase_ ): raise ValueError("Invalid use_ema_warmup" ) _UpperCamelCase = state_dict.get("inv_gamma" , self.inv_gamma ) if not isinstance(self.inv_gamma , (float, int) ): raise ValueError("Invalid inv_gamma" ) _UpperCamelCase = state_dict.get("power" , self.power ) if not isinstance(self.power , (float, int) ): raise ValueError("Invalid power" ) _UpperCamelCase = state_dict.get("shadow_params" , lowerCamelCase_ ) if shadow_params is not None: _UpperCamelCase = shadow_params if not isinstance(self.shadow_params , lowerCamelCase_ ): raise ValueError("shadow_params must be a list" ) if not all(isinstance(lowerCamelCase_ , torch.Tensor ) for p in self.shadow_params ): raise ValueError("shadow_params must all be Tensors" )
147
from packaging import version from .import_utils import is_accelerate_available if is_accelerate_available(): import accelerate def _lowercase ( a__ : Dict ) -> Any: """simple docstring""" if not is_accelerate_available(): return method _UpperCamelCase = version.parse(accelerate.__version__ ).base_version if version.parse(a__ ) < version.parse("0.17.0" ): return method def wrapper(self : List[str] , *a__ : str , **a__ : int ): if hasattr(self , "_hf_hook" ) and hasattr(self._hf_hook , "pre_forward" ): self._hf_hook.pre_forward(self ) return method(self , *a__ , **a__ ) return wrapper
147
1
import logging import torch from accelerate import Accelerator from arguments import EvaluationArguments from datasets import load_dataset from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed class _lowerCamelCase ( UpperCamelCase ): """simple docstring""" def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=1024 , _SCREAMING_SNAKE_CASE=1024 , _SCREAMING_SNAKE_CASE=3.6 )->List[Any]: '''simple docstring''' A_ : int = tokenizer A_ : Optional[Any] = tokenizer.bos_token_id A_ : Tuple = dataset A_ : Tuple = seq_length A_ : Optional[Any] = seq_length * chars_per_token * num_of_sequences def __iter__( self )->Optional[int]: '''simple docstring''' A_ : Any = iter(self.dataset ) A_ : Any = True while more_examples: A_ , A_ : Union[str, Any] = [], 0 while True: if buffer_len >= self.input_characters: break try: buffer.append(next(_SCREAMING_SNAKE_CASE )['''content'''] ) buffer_len += len(buffer[-1] ) except StopIteration: A_ : Union[str, Any] = False break A_ : List[str] = tokenizer(_SCREAMING_SNAKE_CASE , truncation=_SCREAMING_SNAKE_CASE )['''input_ids'''] A_ : Tuple = [] for tokenized_input in tokenized_inputs: all_token_ids.extend(tokenized_input + [self.concat_token_id] ) for i in range(0 , len(_SCREAMING_SNAKE_CASE ) , self.seq_length ): A_ : Tuple = all_token_ids[i : i + self.seq_length] if len(_SCREAMING_SNAKE_CASE ) == self.seq_length: yield torch.tensor(_SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): A_ : Union[str, Any] = {'''streaming''': True} A_ : int = load_dataset(args.dataset_name , split='''train''' , **SCREAMING_SNAKE_CASE ) A_ : str = ConstantLengthDataset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , seq_length=args.seq_length ) A_ : Tuple = DataLoader(SCREAMING_SNAKE_CASE , batch_size=args.batch_size ) return eval_dataloader def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): model.eval() A_ : Tuple = [] for step, batch in enumerate(SCREAMING_SNAKE_CASE ): with torch.no_grad(): A_ : Tuple = model(SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE ) A_ : Tuple = outputs.loss.repeat(args.batch_size ) losses.append(accelerator.gather(SCREAMING_SNAKE_CASE ) ) if args.max_eval_steps > 0 and step >= args.max_eval_steps: break A_ : Optional[Any] = torch.mean(torch.cat(SCREAMING_SNAKE_CASE ) ) try: A_ : Any = torch.exp(SCREAMING_SNAKE_CASE ) except OverflowError: A_ : Optional[Any] = float('''inf''' ) return loss.item(), perplexity.item() # Setup Accelerator UpperCamelCase = Accelerator() # Parse configuration UpperCamelCase = HfArgumentParser(EvaluationArguments) UpperCamelCase = parser.parse_args() set_seed(args.seed) # Logging UpperCamelCase = logging.getLogger(__name__) logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""", datefmt="""%m/%d/%Y %H:%M:%S""", level=logging.INFO ) # Load model and tokenizer UpperCamelCase = AutoModelForCausalLM.from_pretrained(args.model_ckpt) UpperCamelCase = AutoTokenizer.from_pretrained(args.model_ckpt) # Load dataset and dataloader UpperCamelCase = create_dataloader(args) # Prepare everything with our `accelerator`. UpperCamelCase , UpperCamelCase = accelerator.prepare(model, eval_dataloader) # Evaluate and save the last checkpoint logger.info("""Evaluating and saving model after training""") UpperCamelCase , UpperCamelCase = evaluate(args) logger.info(F'''loss/eval: {eval_loss}, perplexity: {perplexity}''')
152
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase = { """configuration_xmod""": [ """XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XmodConfig""", """XmodOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ """XMOD_PRETRAINED_MODEL_ARCHIVE_LIST""", """XmodForCausalLM""", """XmodForMaskedLM""", """XmodForMultipleChoice""", """XmodForQuestionAnswering""", """XmodForSequenceClassification""", """XmodForTokenClassification""", """XmodModel""", """XmodPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig, XmodOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xmod import ( XMOD_PRETRAINED_MODEL_ARCHIVE_LIST, XmodForCausalLM, XmodForMaskedLM, XmodForMultipleChoice, XmodForQuestionAnswering, XmodForSequenceClassification, XmodForTokenClassification, XmodModel, XmodPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
152
1
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING SCREAMING_SNAKE_CASE :int = logging.get_logger(__name__) SCREAMING_SNAKE_CASE :List[str] = { 'SenseTime/deformable-detr': 'https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json', # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = "deformable_detr" snake_case_ = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self : Dict ,A : str=True ,A : Dict=None ,A : Tuple=3 ,A : Optional[Any]=3_00 ,A : Optional[Any]=10_24 ,A : int=6 ,A : Tuple=10_24 ,A : List[Any]=8 ,A : Any=6 ,A : int=10_24 ,A : int=8 ,A : Tuple=0.0 ,A : int=True ,A : Any="relu" ,A : Dict=2_56 ,A : List[str]=0.1 ,A : Optional[int]=0.0 ,A : List[str]=0.0 ,A : List[Any]=0.02 ,A : Optional[Any]=1.0 ,A : Optional[Any]=True ,A : Optional[Any]=False ,A : Optional[Any]="sine" ,A : int="resnet50" ,A : Dict=True ,A : List[str]=False ,A : Tuple=4 ,A : int=4 ,A : str=4 ,A : Optional[int]=False ,A : Optional[Any]=3_00 ,A : Optional[int]=False ,A : Union[str, Any]=1 ,A : Optional[Any]=5 ,A : List[str]=2 ,A : List[str]=1 ,A : Dict=1 ,A : Union[str, Any]=5 ,A : Optional[int]=2 ,A : Optional[int]=0.1 ,A : Tuple=0.25 ,A : int=False ,**A : Optional[int] ,): if backbone_config is not None and use_timm_backbone: raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." ) if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) __A = CONFIG_MAPPING["resnet"](out_features=["stage4"] ) elif isinstance(A ,A ): __A = backbone_config.get("model_type" ) __A = CONFIG_MAPPING[backbone_model_type] __A = config_class.from_dict(A ) __A = use_timm_backbone __A = backbone_config __A = num_channels __A = num_queries __A = max_position_embeddings __A = d_model __A = encoder_ffn_dim __A = encoder_layers __A = encoder_attention_heads __A = decoder_ffn_dim __A = decoder_layers __A = decoder_attention_heads __A = dropout __A = attention_dropout __A = activation_dropout __A = activation_function __A = init_std __A = init_xavier_std __A = encoder_layerdrop __A = auxiliary_loss __A = position_embedding_type __A = backbone __A = use_pretrained_backbone __A = dilation # deformable attributes __A = num_feature_levels __A = encoder_n_points __A = decoder_n_points __A = two_stage __A = two_stage_num_proposals __A = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError("If two_stage is True, with_box_refine must be True." ) # Hungarian matcher __A = class_cost __A = bbox_cost __A = giou_cost # Loss coefficients __A = mask_loss_coefficient __A = dice_loss_coefficient __A = bbox_loss_coefficient __A = giou_loss_coefficient __A = eos_coefficient __A = focal_alpha __A = disable_custom_kernels super().__init__(is_encoder_decoder=A ,**A ) @property def UpperCamelCase_ ( self : List[Any] ): return self.encoder_attention_heads @property def UpperCamelCase_ ( self : Optional[Any] ): return self.d_model def UpperCamelCase_ ( self : List[str] ): __A = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: __A = self.backbone_config.to_dict() __A = self.__class__.model_type return output
55
from __future__ import annotations from dataclasses import dataclass @dataclass class UpperCAmelCase : '''simple docstring''' lowerCAmelCase_ = 42 lowerCAmelCase_ = None lowerCAmelCase_ = None def lowerCamelCase__ ( _A ): '''simple docstring''' def is_valid_tree(_A ) -> bool: if node is None: return True if not isinstance(_A , _A ): return False try: float(node.data ) except (TypeError, ValueError): return False return is_valid_tree(node.left ) and is_valid_tree(node.right ) if not is_valid_tree(_A ): raise ValueError( "Each node should be type of TreeNode and data should be float." ) def is_binary_search_tree_recursive_check( _A , _A , _A ) -> bool: if node is None: return True return ( left_bound < node.data < right_bound and is_binary_search_tree_recursive_check(node.left , _A , node.data ) and is_binary_search_tree_recursive_check( node.right , node.data , _A ) ) return is_binary_search_tree_recursive_check(_A , -float("inf" ) , float("inf" ) ) if __name__ == "__main__": import doctest doctest.testmod()
376
0
"""simple docstring""" from PIL import Image def lowercase__ ( lowercase_ ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase : Dict = image.size _UpperCamelCase : Union[str, Any] = 0 _UpperCamelCase : Optional[int] = image.load() for i in range(lowercase_ ): for j in range(lowercase_ ): _UpperCamelCase : List[str] = pixels[j, i] mean += pixel mean //= width * height for j in range(lowercase_ ): for i in range(lowercase_ ): _UpperCamelCase : Tuple = 255 if pixels[i, j] > mean else 0 return image if __name__ == "__main__": lowerCamelCase__ = mean_threshold(Image.open("path_to_image").convert("L")) image.save("output_image_path")
714
"""simple docstring""" from collections import defaultdict from math import ceil, sqrt def lowercase__ ( lowercase_ = 1_000_000 ,lowercase_ = 10 ) -> int: """simple docstring""" _UpperCamelCase : defaultdict = defaultdict(lowercase_ ) for outer_width in range(3 ,(t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: _UpperCamelCase : Any = max( ceil(sqrt(outer_width * outer_width - t_limit ) ) ,1 ) else: _UpperCamelCase : str = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(lowercase_ ,outer_width - 1 ,2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 10 ) if __name__ == "__main__": print(f"""{solution() = }""")
51
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import _LazyModule _A: Dict = {"""tokenization_wav2vec2_phoneme""": ["""Wav2Vec2PhonemeCTCTokenizer"""]} if TYPE_CHECKING: from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer else: import sys _A: int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
126
'''simple docstring''' import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class UpperCAmelCase ( UpperCAmelCase_ ): _A : str = ["""image_processor""", """tokenizer"""] _A : str = """OwlViTImageProcessor""" _A : List[str] = ("""CLIPTokenizer""", """CLIPTokenizerFast""") def __init__( self , __A=None , __A=None , **__A ): __UpperCAmelCase = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , __A , ) __UpperCAmelCase = kwargs.pop('feature_extractor' ) __UpperCAmelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(__A , __A ) def __call__( self , __A=None , __A=None , __A=None , __A="max_length" , __A="np" , **__A ): if text is None and query_images is None and images is None: raise ValueError( 'You have to specify at least one text or query image or image. All three cannot be none.' ) if text is not None: if isinstance(__A , __A ) or (isinstance(__A , __A ) and not isinstance(text[0] , __A )): __UpperCAmelCase = [self.tokenizer(__A , padding=__A , return_tensors=__A , **__A )] elif isinstance(__A , __A ) and isinstance(text[0] , __A ): __UpperCAmelCase = [] # Maximum number of queries across batch __UpperCAmelCase = max([len(__A ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(__A ) != max_num_queries: __UpperCAmelCase = t + [' '] * (max_num_queries - len(__A )) __UpperCAmelCase = self.tokenizer(__A , padding=__A , return_tensors=__A , **__A ) encodings.append(__A ) else: raise TypeError('Input text should be a string, a list of strings or a nested list of strings' ) if return_tensors == "np": __UpperCAmelCase = np.concatenate([encoding['input_ids'] for encoding in encodings] , axis=0 ) __UpperCAmelCase = np.concatenate([encoding['attention_mask'] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp __UpperCAmelCase = jnp.concatenate([encoding['input_ids'] for encoding in encodings] , axis=0 ) __UpperCAmelCase = jnp.concatenate([encoding['attention_mask'] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch __UpperCAmelCase = torch.cat([encoding['input_ids'] for encoding in encodings] , dim=0 ) __UpperCAmelCase = torch.cat([encoding['attention_mask'] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf __UpperCAmelCase = tf.stack([encoding['input_ids'] for encoding in encodings] , axis=0 ) __UpperCAmelCase = tf.stack([encoding['attention_mask'] for encoding in encodings] , axis=0 ) else: raise ValueError('Target return tensor type could not be returned' ) __UpperCAmelCase = BatchEncoding() __UpperCAmelCase = input_ids __UpperCAmelCase = attention_mask if query_images is not None: __UpperCAmelCase = BatchEncoding() __UpperCAmelCase = self.image_processor( __A , return_tensors=__A , **__A ).pixel_values __UpperCAmelCase = query_pixel_values if images is not None: __UpperCAmelCase = self.image_processor(__A , return_tensors=__A , **__A ) if text is not None and images is not None: __UpperCAmelCase = image_features.pixel_values return encoding elif query_images is not None and images is not None: __UpperCAmelCase = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**__A ) , tensor_type=__A ) def __lowerCamelCase ( self , *__A , **__A ): return self.image_processor.post_process(*__A , **__A ) def __lowerCamelCase ( self , *__A , **__A ): return self.image_processor.post_process_object_detection(*__A , **__A ) def __lowerCamelCase ( self , *__A , **__A ): return self.image_processor.post_process_image_guided_detection(*__A , **__A ) def __lowerCamelCase ( self , *__A , **__A ): return self.tokenizer.batch_decode(*__A , **__A ) def __lowerCamelCase ( self , *__A , **__A ): return self.tokenizer.decode(*__A , **__A ) @property def __lowerCamelCase ( self ): warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , __A , ) return self.image_processor_class @property def __lowerCamelCase ( self ): warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , __A , ) return self.image_processor
126
1
from collections.abc import Iterable from typing import Generic, TypeVar __UpperCAmelCase : Dict = TypeVar("_T") class __snake_case ( Generic[_T] ): '''simple docstring''' def __init__( self : Union[str, Any] , A : Iterable[_T] | None = None ): __snake_case: list[_T] = list(iterable or [] ) __snake_case: list[_T] = [] def __len__( self : Union[str, Any] ): return len(self._stacka ) + len(self._stacka ) def __repr__( self : Any ): return f'''Queue({tuple(self._stacka[::-1] + self._stacka )})''' def UpperCAmelCase__ ( self : List[Any] , A : _T ): self._stacka.append(A ) def UpperCAmelCase__ ( self : Dict ): __snake_case: Any = self._stacka.pop __snake_case: Tuple = self._stacka.append if not self._stacka: while self._stacka: stacka_append(stacka_pop() ) if not self._stacka: raise IndexError("""Queue is empty""" ) return self._stacka.pop() if __name__ == "__main__": from doctest import testmod testmod()
155
import argparse import torch from safetensors.torch import load_file from diffusers import StableDiffusionPipeline def A__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__) -> List[str]: # load base model __snake_case: str = StableDiffusionPipeline.from_pretrained(SCREAMING_SNAKE_CASE__ , torch_dtype=torch.floataa) # load LoRA weight from .safetensors __snake_case: Dict = load_file(SCREAMING_SNAKE_CASE__) __snake_case: List[str] = [] # directly update weight in diffusers model for key in state_dict: # it is suggested to print out the key, it usually will be something like below # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight" # as we have set the alpha beforehand, so just skip if ".alpha" in key or key in visited: continue if "text" in key: __snake_case: Optional[int] = key.split(""".""")[0].split(LORA_PREFIX_TEXT_ENCODER + """_""")[-1].split("""_""") __snake_case: Union[str, Any] = pipeline.text_encoder else: __snake_case: Optional[int] = key.split(""".""")[0].split(LORA_PREFIX_UNET + """_""")[-1].split("""_""") __snake_case: List[Any] = pipeline.unet # find the target layer __snake_case: Optional[Any] = layer_infos.pop(0) while len(SCREAMING_SNAKE_CASE__) > -1: try: __snake_case: Optional[Any] = curr_layer.__getattr__(SCREAMING_SNAKE_CASE__) if len(SCREAMING_SNAKE_CASE__) > 0: __snake_case: Optional[int] = layer_infos.pop(0) elif len(SCREAMING_SNAKE_CASE__) == 0: break except Exception: if len(SCREAMING_SNAKE_CASE__) > 0: temp_name += "_" + layer_infos.pop(0) else: __snake_case: Tuple = layer_infos.pop(0) __snake_case: Any = [] if "lora_down" in key: pair_keys.append(key.replace("""lora_down""" , """lora_up""")) pair_keys.append(SCREAMING_SNAKE_CASE__) else: pair_keys.append(SCREAMING_SNAKE_CASE__) pair_keys.append(key.replace("""lora_up""" , """lora_down""")) # update weight if len(state_dict[pair_keys[0]].shape) == 4: __snake_case: Union[str, Any] = state_dict[pair_keys[0]].squeeze(3).squeeze(2).to(torch.floataa) __snake_case: Dict = state_dict[pair_keys[1]].squeeze(3).squeeze(2).to(torch.floataa) curr_layer.weight.data += alpha * torch.mm(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__).unsqueeze(2).unsqueeze(3) else: __snake_case: List[Any] = state_dict[pair_keys[0]].to(torch.floataa) __snake_case: Dict = state_dict[pair_keys[1]].to(torch.floataa) curr_layer.weight.data += alpha * torch.mm(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__) # update visited list for item in pair_keys: visited.append(SCREAMING_SNAKE_CASE__) return pipeline if __name__ == "__main__": __UpperCAmelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument( "--base_model_path", default=None, type=str, required=True, help="Path to the base model in diffusers format." ) parser.add_argument( "--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert." ) parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") parser.add_argument( "--lora_prefix_unet", default="lora_unet", type=str, help="The prefix of UNet weight in safetensors" ) parser.add_argument( "--lora_prefix_text_encoder", default="lora_te", type=str, help="The prefix of text encoder weight in safetensors", ) parser.add_argument("--alpha", default=0.75, type=float, help="The merging ratio in W = W0 + alpha * deltaW") parser.add_argument( "--to_safetensors", action="store_true", help="Whether to store pipeline in safetensors format or not." ) parser.add_argument("--device", type=str, help="Device to use (e.g. cpu, cuda:0, cuda:1, etc.)") __UpperCAmelCase : str = parser.parse_args() __UpperCAmelCase : Union[str, Any] = args.base_model_path __UpperCAmelCase : str = args.checkpoint_path __UpperCAmelCase : List[str] = args.dump_path __UpperCAmelCase : Optional[int] = args.lora_prefix_unet __UpperCAmelCase : Optional[int] = args.lora_prefix_text_encoder __UpperCAmelCase : int = args.alpha __UpperCAmelCase : List[Any] = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha) __UpperCAmelCase : Union[str, Any] = pipe.to(args.device) pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
155
1
import inspect from typing import Callable, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import DiffusionPipeline from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import logging _lowerCamelCase : Optional[int] = logging.get_logger(__name__) # pylint: disable=invalid-name class __snake_case (_a ): def __init__( self : List[Any] , _UpperCAmelCase : AutoencoderKL , _UpperCAmelCase : CLIPTextModel , _UpperCAmelCase : CLIPTokenizer , _UpperCAmelCase : UNetaDConditionModel , _UpperCAmelCase : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , _UpperCAmelCase : StableDiffusionSafetyChecker , _UpperCAmelCase : CLIPImageProcessor , ) -> List[str]: '''simple docstring''' super().__init__() self.register_modules( vae=_UpperCAmelCase , text_encoder=_UpperCAmelCase , tokenizer=_UpperCAmelCase , unet=_UpperCAmelCase , scheduler=_UpperCAmelCase , safety_checker=_UpperCAmelCase , feature_extractor=_UpperCAmelCase , ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , _UpperCAmelCase : Optional[Union[str, int]] = "auto" ) -> Tuple: '''simple docstring''' if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory _lowerCAmelCase : List[Any] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : str ) -> Any: '''simple docstring''' self.enable_attention_slicing(_UpperCAmelCase ) @torch.no_grad() def __call__( self : Optional[int] , _UpperCAmelCase : Union[str, List[str]] , _UpperCAmelCase : int = 512 , _UpperCAmelCase : int = 512 , _UpperCAmelCase : int = 50 , _UpperCAmelCase : float = 7.5 , _UpperCAmelCase : Optional[Union[str, List[str]]] = None , _UpperCAmelCase : Optional[int] = 1 , _UpperCAmelCase : float = 0.0 , _UpperCAmelCase : Optional[torch.Generator] = None , _UpperCAmelCase : Optional[torch.FloatTensor] = None , _UpperCAmelCase : Optional[str] = "pil" , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , _UpperCAmelCase : int = 1 , _UpperCAmelCase : Optional[torch.FloatTensor] = None , **_UpperCAmelCase : Dict , ) -> str: '''simple docstring''' if isinstance(_UpperCAmelCase , _UpperCAmelCase ): _lowerCAmelCase : int = 1 elif isinstance(_UpperCAmelCase , _UpperCAmelCase ): _lowerCAmelCase : List[Any] = len(_UpperCAmelCase ) else: raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(_UpperCAmelCase )}" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}." ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or callback_steps <= 0) ): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(_UpperCAmelCase )}." ) # get prompt text embeddings _lowerCAmelCase : Any = self.tokenizer( _UpperCAmelCase , padding="""max_length""" , max_length=self.tokenizer.model_max_length , return_tensors="""pt""" , ) _lowerCAmelCase : List[str] = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: _lowerCAmelCase : Any = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( """The following part of your input was truncated because CLIP can only handle sequences up to""" f" {self.tokenizer.model_max_length} tokens: {removed_text}" ) _lowerCAmelCase : Any = text_input_ids[:, : self.tokenizer.model_max_length] if text_embeddings is None: _lowerCAmelCase : List[str] = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = text_embeddings.shape _lowerCAmelCase : int = text_embeddings.repeat(1 , _UpperCAmelCase , 1 ) _lowerCAmelCase : Union[str, Any] = text_embeddings.view(bs_embed * num_images_per_prompt , _UpperCAmelCase , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. _lowerCAmelCase : List[str] = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: _lowerCAmelCase : List[str] if negative_prompt is None: _lowerCAmelCase : Optional[Any] = [""""""] elif type(_UpperCAmelCase ) is not type(_UpperCAmelCase ): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(_UpperCAmelCase )} !=" f" {type(_UpperCAmelCase )}." ) elif isinstance(_UpperCAmelCase , _UpperCAmelCase ): _lowerCAmelCase : str = [negative_prompt] elif batch_size != len(_UpperCAmelCase ): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(_UpperCAmelCase )}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" """ the batch size of `prompt`.""" ) else: _lowerCAmelCase : Optional[int] = negative_prompt _lowerCAmelCase : Optional[int] = text_input_ids.shape[-1] _lowerCAmelCase : str = self.tokenizer( _UpperCAmelCase , padding="""max_length""" , max_length=_UpperCAmelCase , truncation=_UpperCAmelCase , return_tensors="""pt""" , ) _lowerCAmelCase : Optional[Any] = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method _lowerCAmelCase : Union[str, Any] = uncond_embeddings.shape[1] _lowerCAmelCase : Dict = uncond_embeddings.repeat(_UpperCAmelCase , _UpperCAmelCase , 1 ) _lowerCAmelCase : str = uncond_embeddings.view(batch_size * num_images_per_prompt , _UpperCAmelCase , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _lowerCAmelCase : Union[str, Any] = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. _lowerCAmelCase : int = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) _lowerCAmelCase : Tuple = (batch_size * num_images_per_prompt, self.unet.config.in_channels, 64, 64) _lowerCAmelCase : List[Any] = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps _lowerCAmelCase : str = torch.randn( _UpperCAmelCase , generator=_UpperCAmelCase , device="""cpu""" , dtype=_UpperCAmelCase ).to(self.device ) _lowerCAmelCase : str = torch.randn(_UpperCAmelCase , generator=_UpperCAmelCase , device="""cpu""" , dtype=_UpperCAmelCase ).to( self.device ) else: _lowerCAmelCase : Optional[int] = torch.randn( _UpperCAmelCase , generator=_UpperCAmelCase , device=self.device , dtype=_UpperCAmelCase ) _lowerCAmelCase : str = torch.randn(_UpperCAmelCase , generator=_UpperCAmelCase , device=self.device , dtype=_UpperCAmelCase ) else: if latents_reference.shape != latents_shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}" ) _lowerCAmelCase : Tuple = latents_reference.to(self.device ) _lowerCAmelCase : Optional[Any] = latents.to(self.device ) # This is the key part of the pipeline where we # try to ensure that the generated images w/ the same seed # but different sizes actually result in similar images _lowerCAmelCase : Any = (latents_shape[3] - latents_shape_reference[3]) // 2 _lowerCAmelCase : int = (latents_shape[2] - latents_shape_reference[2]) // 2 _lowerCAmelCase : Dict = latents_shape_reference[3] if dx >= 0 else latents_shape_reference[3] + 2 * dx _lowerCAmelCase : Optional[Any] = latents_shape_reference[2] if dy >= 0 else latents_shape_reference[2] + 2 * dy _lowerCAmelCase : Dict = 0 if dx < 0 else dx _lowerCAmelCase : Any = 0 if dy < 0 else dy _lowerCAmelCase : Optional[Any] = max(-dx , 0 ) _lowerCAmelCase : Union[str, Any] = max(-dy , 0 ) # import pdb # pdb.set_trace() _lowerCAmelCase : Tuple = latents_reference[:, :, dy : dy + h, dx : dx + w] # set timesteps self.scheduler.set_timesteps(_UpperCAmelCase ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand _lowerCAmelCase : Optional[Any] = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler _lowerCAmelCase : str = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] _lowerCAmelCase : int = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) _lowerCAmelCase : Dict = {} if accepts_eta: _lowerCAmelCase : Dict = eta for i, t in enumerate(self.progress_bar(_UpperCAmelCase ) ): # expand the latents if we are doing classifier free guidance _lowerCAmelCase : int = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _lowerCAmelCase : Optional[Any] = self.scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase ) # predict the noise residual _lowerCAmelCase : int = self.unet(_UpperCAmelCase , _UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase ).sample # perform guidance if do_classifier_free_guidance: _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = noise_pred.chunk(2 ) _lowerCAmelCase : int = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 _lowerCAmelCase : Optional[int] = self.scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase : List[str] = 1 / 0.18215 * latents _lowerCAmelCase : str = self.vae.decode(_UpperCAmelCase ).sample _lowerCAmelCase : Optional[Any] = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 _lowerCAmelCase : Any = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if self.safety_checker is not None: _lowerCAmelCase : Any = self.feature_extractor(self.numpy_to_pil(_UpperCAmelCase ) , return_tensors="""pt""" ).to( self.device ) _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = self.safety_checker( images=_UpperCAmelCase , clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype ) ) else: _lowerCAmelCase : Optional[int] = None if output_type == "pil": _lowerCAmelCase : Optional[int] = self.numpy_to_pil(_UpperCAmelCase ) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=_UpperCAmelCase , nsfw_content_detected=_UpperCAmelCase )
429
def _UpperCAmelCase (UpperCamelCase_ : int , UpperCamelCase_ : float , UpperCamelCase_ : float ): '''simple docstring''' return round(float(moles / volume ) * nfactor ) def _UpperCAmelCase (UpperCamelCase_ : float , UpperCamelCase_ : float , UpperCamelCase_ : float ): '''simple docstring''' return round(float((moles * 0.0_821 * temperature) / (volume) ) ) def _UpperCAmelCase (UpperCamelCase_ : float , UpperCamelCase_ : float , UpperCamelCase_ : float ): '''simple docstring''' return round(float((moles * 0.0_821 * temperature) / (pressure) ) ) def _UpperCAmelCase (UpperCamelCase_ : float , UpperCamelCase_ : float , UpperCamelCase_ : float ): '''simple docstring''' return round(float((pressure * volume) / (0.0_821 * moles) ) ) if __name__ == "__main__": import doctest doctest.testmod()
429
1
import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import SeqaSeqDataset, pickle_save def A_ ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=1024 , _lowerCAmelCase=1024 , _lowerCAmelCase=False , **_lowerCAmelCase ) -> Union[str, Any]: UpperCamelCase : Optional[int] = AutoTokenizer.from_pretrained(_lowerCAmelCase ) UpperCamelCase : int = SeqaSeqDataset(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , type_path="train" , **_lowerCAmelCase ) UpperCamelCase : List[Any] = tok.pad_token_id def get_lens(_lowerCAmelCase ): UpperCamelCase : Dict = tqdm( DataLoader(_lowerCAmelCase , batch_size=512 , num_workers=8 , shuffle=_lowerCAmelCase , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , ) UpperCamelCase : Optional[int] = [] for batch in dl: UpperCamelCase : Dict = batch["input_ids"].ne(_lowerCAmelCase ).sum(1 ).tolist() UpperCamelCase : List[Any] = batch["labels"].ne(_lowerCAmelCase ).sum(1 ).tolist() if consider_target: for src, tgt in zip(_lowerCAmelCase , _lowerCAmelCase ): max_lens.append(max(_lowerCAmelCase , _lowerCAmelCase ) ) else: max_lens.extend(_lowerCAmelCase ) return max_lens UpperCamelCase : Optional[int] = get_lens(_lowerCAmelCase ) UpperCamelCase : str = SeqaSeqDataset(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , type_path="val" , **_lowerCAmelCase ) UpperCamelCase : Any = get_lens(_lowerCAmelCase ) pickle_save(_lowerCAmelCase , train_ds.len_file ) pickle_save(_lowerCAmelCase , val_ds.len_file ) if __name__ == "__main__": fire.Fire(save_len_file)
721
import gc import random import unittest import numpy as np import torch from diffusers import DDIMScheduler, KandinskyVaaPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class A__ ( __snake_case , unittest.TestCase ): _UpperCAmelCase :str = KandinskyVaaPipeline _UpperCAmelCase :str = [ 'image_embeds', 'negative_image_embeds', ] _UpperCAmelCase :str = ['image_embeds', 'negative_image_embeds'] _UpperCAmelCase :List[str] = [ 'generator', 'height', 'width', 'latents', 'guidance_scale', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] _UpperCAmelCase :List[str] = False @property def __UpperCamelCase( self ): '''simple docstring''' return 32 @property def __UpperCamelCase( self ): '''simple docstring''' return 32 @property def __UpperCamelCase( self ): '''simple docstring''' return self.time_input_dim @property def __UpperCamelCase( self ): '''simple docstring''' return self.time_input_dim * 4 @property def __UpperCamelCase( self ): '''simple docstring''' return 100 @property def __UpperCamelCase( self ): '''simple docstring''' torch.manual_seed(0 ) UpperCamelCase : List[str] = { "in_channels": 4, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "image", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } UpperCamelCase : Dict = UNetaDConditionModel(**A_ ) return model @property def __UpperCamelCase( self ): '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def __UpperCamelCase( self ): '''simple docstring''' torch.manual_seed(0 ) UpperCamelCase : Optional[Any] = VQModel(**self.dummy_movq_kwargs ) return model def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Tuple = self.dummy_unet UpperCamelCase : Optional[Any] = self.dummy_movq UpperCamelCase : Dict = DDIMScheduler( num_train_timesteps=1000 , beta_schedule="linear" , beta_start=0.0_00_85 , beta_end=0.0_12 , clip_sample=A_ , set_alpha_to_one=A_ , steps_offset=1 , prediction_type="epsilon" , thresholding=A_ , ) UpperCamelCase : Tuple = { "unet": unet, "scheduler": scheduler, "movq": movq, } return components def __UpperCamelCase( self , A_ , A_=0 ): '''simple docstring''' UpperCamelCase : Optional[int] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(A_ ) ).to(A_ ) UpperCamelCase : Optional[Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( A_ ) if str(A_ ).startswith("mps" ): UpperCamelCase : Optional[Any] = torch.manual_seed(A_ ) else: UpperCamelCase : List[Any] = torch.Generator(device=A_ ).manual_seed(A_ ) UpperCamelCase : Optional[int] = { "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "generator": generator, "height": 64, "width": 64, "guidance_scale": 4.0, "num_inference_steps": 2, "output_type": "np", } return inputs def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Optional[Any] = "cpu" UpperCamelCase : List[str] = self.get_dummy_components() UpperCamelCase : Tuple = self.pipeline_class(**A_ ) UpperCamelCase : List[str] = pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) UpperCamelCase : Dict = pipe(**self.get_dummy_inputs(A_ ) ) UpperCamelCase : Optional[int] = output.images UpperCamelCase : int = pipe( **self.get_dummy_inputs(A_ ) , return_dict=A_ , )[0] UpperCamelCase : Tuple = image[0, -3:, -3:, -1] UpperCamelCase : List[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCamelCase : int = np.array( [0.6_23_79_76, 1.0, 0.36_44_13_32, 1.0, 0.70_63_96_34, 0.29_87_71_86, 0.85_65_21_25, 0.5_21_68_43, 0.54_45_40_46] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class A__ ( unittest.TestCase ): def __UpperCamelCase( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Dict = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/kandinskyv22_text2img_cat_fp16.npy" ) UpperCamelCase : Dict = KandinskyVaaPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-prior" , torch_dtype=torch.floataa ) pipe_prior.to(A_ ) UpperCamelCase : Dict = KandinskyVaaPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-decoder" , torch_dtype=torch.floataa ) UpperCamelCase : Tuple = pipeline.to(A_ ) pipeline.set_progress_bar_config(disable=A_ ) UpperCamelCase : str = "red cat, 4k photo" UpperCamelCase : str = torch.Generator(device="cuda" ).manual_seed(0 ) UpperCamelCase , UpperCamelCase : Tuple = pipe_prior( A_ , generator=A_ , num_inference_steps=5 , negative_prompt="" , ).to_tuple() UpperCamelCase : int = torch.Generator(device="cuda" ).manual_seed(0 ) UpperCamelCase : Tuple = pipeline( image_embeds=A_ , negative_image_embeds=A_ , generator=A_ , num_inference_steps=100 , output_type="np" , ) UpperCamelCase : Union[str, Any] = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(A_ , A_ )
38
0
import math class lowerCamelCase_ : def __init__( self : Union[str, Any] , __A : List[str]=0 ): # a graph with Node 0,1,...,N-1 __A : List[str] = n __A : List[str] = [ [math.inf for j in range(0 , __A )] for i in range(0 , __A ) ] # adjacency matrix for weight __A : str = [ [math.inf for j in range(0 , __A )] for i in range(0 , __A ) ] # dp[i][j] stores minimum distance from i to j def lowerCAmelCase_ ( self : str , __A : Union[str, Any] , __A : Any , __A : Optional[int] ): __A : List[Any] = w def lowerCAmelCase_ ( self : Union[str, Any] ): for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): __A : List[Any] = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def lowerCAmelCase_ ( self : int , __A : List[str] , __A : List[str] ): return self.dp[u][v] if __name__ == "__main__": UpperCAmelCase_ : Tuple = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
17
from typing import Dict from transformers import EvalPrediction, HfArgumentParser, TrainingArguments, is_torch_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, get_torch_dist_unique_port, require_torch_multi_gpu, require_torch_neuroncore, ) from transformers.training_args import ParallelMode from transformers.utils import logging lowercase_ = logging.get_logger(__name__) if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset from transformers import Trainer class A__ ( __SCREAMING_SNAKE_CASE ): def __init__( self , lowerCamelCase = 101 ) -> Any: """simple docstring""" __magic_name__ : List[str] = length def __len__( self ) -> Union[str, Any]: """simple docstring""" return self.length def __getitem__( self , lowerCamelCase ) -> int: """simple docstring""" return i class A__ : def __call__( self , lowerCamelCase ) -> Optional[Any]: """simple docstring""" return {"input_ids": torch.tensor(lowerCamelCase ), "labels": torch.tensor(lowerCamelCase )} class A__ ( nn.Module ): def __init__( self ) -> Tuple: """simple docstring""" super().__init__() # Add some (unused) params otherwise DDP will complain. __magic_name__ : Tuple = nn.Linear(120 , 80 ) def lowercase ( self , lowerCamelCase , lowerCamelCase=None ) -> List[str]: """simple docstring""" if labels is not None: return torch.tensor(0.0 , device=input_ids.device ), input_ids else: return input_ids class A__ ( __SCREAMING_SNAKE_CASE ): @require_torch_neuroncore def lowercase ( self ) -> List[Any]: """simple docstring""" __magic_name__ : Union[str, Any] = F'''--nproc_per_node=2 --master_port={get_torch_dist_unique_port()} {self.test_file_dir}/test_trainer_distributed.py '''.split() __magic_name__ : Dict = self.get_auto_remove_tmp_dir() __magic_name__ : str = F'''--output_dir {output_dir}'''.split() __magic_name__ : Optional[Any] = ['''torchrun'''] + distributed_args + args execute_subprocess_async(lowerCamelCase , env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call class A__ ( __SCREAMING_SNAKE_CASE ): @require_torch_multi_gpu def lowercase ( self ) -> str: """simple docstring""" __magic_name__ : Optional[Any] = F'''--nproc_per_node={torch.cuda.device_count()} --master_port={get_torch_dist_unique_port()} {self.test_file_dir}/test_trainer_distributed.py '''.split() __magic_name__ : str = self.get_auto_remove_tmp_dir() __magic_name__ : List[str] = F'''--output_dir {output_dir}'''.split() __magic_name__ : Tuple = ['''torchrun'''] + distributed_args + args execute_subprocess_async(lowerCamelCase , env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call if __name__ == "__main__": # The script below is meant to be run under torch.distributed, on a machine with multiple GPUs: # # PYTHONPATH="src" python -m torch.distributed.run --nproc_per_node 2 --output_dir output_dir ./tests/test_trainer_distributed.py lowercase_ = HfArgumentParser((TrainingArguments,)) lowercase_ = parser.parse_args_into_dataclasses()[0] logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, " f"distributed training: {training_args.parallel_mode != ParallelMode.NOT_DISTRIBUTED}" ) # Essentially, what we want to verify in the distributed case is that we get all samples back, # in the right order. (this is crucial for prediction for instance) for dataset_length in [101, 40, 7]: lowercase_ = DummyDataset(dataset_length) def lowerCAmelCase ( UpperCAmelCase ) ->Dict: """simple docstring""" __magic_name__ : str = list(range(len(UpperCAmelCase ) ) ) __magic_name__ : List[Any] = p.predictions.tolist() == sequential and p.label_ids.tolist() == sequential if not success and training_args.local_rank == 0: logger.warning( '''Predictions and/or labels do not match expected results:\n - predictions: ''' F'''{p.predictions.tolist()}\n - labels: {p.label_ids.tolist()}\n - expected: {sequential}''' ) return {"success": success} lowercase_ = Trainer( model=DummyModel(), args=training_args, data_collator=DummyDataCollator(), eval_dataset=dataset, compute_metrics=compute_metrics, ) lowercase_ = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) lowercase_ = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) lowercase_ = 2 lowercase_ = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) lowercase_ = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) lowercase_ = None
154
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available _lowerCAmelCase = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = ["MLukeTokenizer"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys _lowerCAmelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
705
"""simple docstring""" import json import logging import os import socket import git import numpy as np import torch logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) _lowerCAmelCase = logging.getLogger(__name__) def __UpperCamelCase ( snake_case__ ): A_ : List[str] = git.Repo(search_parent_directories=snake_case__ ) A_ : List[str] = { """repo_id""": str(snake_case__ ), """repo_sha""": str(repo.head.object.hexsha ), """repo_branch""": str(repo.active_branch ), } with open(os.path.join(snake_case__ , """git_log.json""" ) , """w""" ) as f: json.dump(snake_case__ , snake_case__ , indent=4 ) def __UpperCamelCase ( snake_case__ ): if params.n_gpu <= 0: A_ : Dict = 0 A_ : str = -1 A_ : int = True A_ : Union[str, Any] = False return assert torch.cuda.is_available() logger.info("""Initializing GPUs""" ) if params.n_gpu > 1: assert params.local_rank != -1 A_ : str = int(os.environ["""WORLD_SIZE"""] ) A_ : int = int(os.environ["""N_GPU_NODE"""] ) A_ : int = int(os.environ["""RANK"""] ) # number of nodes / node ID A_ : Optional[int] = params.world_size // params.n_gpu_per_node A_ : Optional[int] = params.global_rank // params.n_gpu_per_node A_ : Tuple = True assert params.n_nodes == int(os.environ["""N_NODES"""] ) assert params.node_id == int(os.environ["""NODE_RANK"""] ) # local job (single GPU) else: assert params.local_rank == -1 A_ : Dict = 1 A_ : Tuple = 0 A_ : Dict = 0 A_ : Optional[int] = 0 A_ : List[str] = 1 A_ : List[Any] = 1 A_ : List[Any] = False # sanity checks assert params.n_nodes >= 1 assert 0 <= params.node_id < params.n_nodes assert 0 <= params.local_rank <= params.global_rank < params.world_size assert params.world_size == params.n_nodes * params.n_gpu_per_node # define whether this is the master process / if we are in multi-node distributed mode A_ : Optional[int] = params.node_id == 0 and params.local_rank == 0 A_ : Optional[Any] = params.n_nodes > 1 # summary A_ : str = F"""--- Global rank: {params.global_rank} - """ logger.info(PREFIX + """Number of nodes: %i""" % params.n_nodes ) logger.info(PREFIX + """Node ID : %i""" % params.node_id ) logger.info(PREFIX + """Local rank : %i""" % params.local_rank ) logger.info(PREFIX + """World size : %i""" % params.world_size ) logger.info(PREFIX + """GPUs per node : %i""" % params.n_gpu_per_node ) logger.info(PREFIX + """Master : %s""" % str(params.is_master ) ) logger.info(PREFIX + """Multi-node : %s""" % str(params.multi_node ) ) logger.info(PREFIX + """Multi-GPU : %s""" % str(params.multi_gpu ) ) logger.info(PREFIX + """Hostname : %s""" % socket.gethostname() ) # set GPU device torch.cuda.set_device(params.local_rank ) # initialize multi-GPU if params.multi_gpu: logger.info("""Initializing PyTorch distributed""" ) torch.distributed.init_process_group( init_method="""env://""" , backend="""nccl""" , ) def __UpperCamelCase ( snake_case__ ): np.random.seed(args.seed ) torch.manual_seed(args.seed ) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed )
480
0
class lowercase_ : def __init__( self , lowercase_ , lowercase_=None , lowercase_=None) -> Tuple: a__ =data a__ =previous a__ =next_node def __str__( self) -> str: return F"""{self.data}""" def __UpperCamelCase ( self) -> int: return self.data def __UpperCamelCase ( self) -> Any: return self.next def __UpperCamelCase ( self) -> int: return self.previous class lowercase_ : def __init__( self , lowercase_) -> str: a__ =head def __iter__( self) -> Union[str, Any]: return self def __UpperCamelCase ( self) -> str: if not self.current: raise StopIteration else: a__ =self.current.get_data() a__ =self.current.get_next() return value class lowercase_ : def __init__( self) -> Union[str, Any]: a__ =None # First node in list a__ =None # Last node in list def __str__( self) -> Dict: a__ =self.head a__ =[] while current is not None: nodes.append(current.get_data()) a__ =current.get_next() return " ".join(str(lowercase_) for node in nodes) def __contains__( self , lowercase_) -> Any: a__ =self.head while current: if current.get_data() == value: return True a__ =current.get_next() return False def __iter__( self) -> Any: return LinkedListIterator(self.head) def __UpperCamelCase ( self) -> List[str]: if self.head: return self.head.get_data() return None def __UpperCamelCase ( self) -> Optional[int]: if self.tail: return self.tail.get_data() return None def __UpperCamelCase ( self , lowercase_) -> None: if self.head is None: a__ =node a__ =node else: self.insert_before_node(self.head , lowercase_) def __UpperCamelCase ( self , lowercase_) -> None: if self.head is None: self.set_head(lowercase_) else: self.insert_after_node(self.tail , lowercase_) def __UpperCamelCase ( self , lowercase_) -> None: a__ =Node(lowercase_) if self.head is None: self.set_head(lowercase_) else: self.set_tail(lowercase_) def __UpperCamelCase ( self , lowercase_ , lowercase_) -> None: a__ =node a__ =node.previous if node.get_previous() is None: a__ =node_to_insert else: a__ =node_to_insert a__ =node_to_insert def __UpperCamelCase ( self , lowercase_ , lowercase_) -> None: a__ =node a__ =node.next if node.get_next() is None: a__ =node_to_insert else: a__ =node_to_insert a__ =node_to_insert def __UpperCamelCase ( self , lowercase_ , lowercase_) -> None: a__ =1 a__ =Node(lowercase_) a__ =self.head while node: if current_position == position: self.insert_before_node(lowercase_ , lowercase_) return current_position += 1 a__ =node.next self.insert_after_node(self.tail , lowercase_) def __UpperCamelCase ( self , lowercase_) -> Node: a__ =self.head while node: if node.get_data() == item: return node a__ =node.get_next() raise Exception('Node not found') def __UpperCamelCase ( self , lowercase_) -> Dict: if (node := self.get_node(lowercase_)) is not None: if node == self.head: a__ =self.head.get_next() if node == self.tail: a__ =self.tail.get_previous() self.remove_node_pointers(lowercase_) @staticmethod def __UpperCamelCase ( lowercase_) -> None: if node.get_next(): a__ =node.previous if node.get_previous(): a__ =node.next a__ =None a__ =None def __UpperCamelCase ( self) -> Any: return self.head is None def _lowercase( ): pass if __name__ == "__main__": import doctest doctest.testmod()
20
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __magic_name__ = logging.get_logger(__name__) __magic_name__ = { 'bigcode/gpt_bigcode-santacoder': 'https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json', } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' a_ = """gpt_bigcode""" a_ = ["""past_key_values"""] a_ = { """hidden_size""": """n_embd""", """max_position_embeddings""": """n_positions""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self : Optional[int] ,_a : Optional[int]=50257 ,_a : Dict=1024 ,_a : Union[str, Any]=768 ,_a : Union[str, Any]=12 ,_a : Union[str, Any]=12 ,_a : Tuple=None ,_a : int="gelu_pytorch_tanh" ,_a : Optional[Any]=0.1 ,_a : List[str]=0.1 ,_a : Union[str, Any]=0.1 ,_a : List[Any]=1e-5 ,_a : List[str]=0.02 ,_a : Any=True ,_a : Union[str, Any]=True ,_a : Tuple=50256 ,_a : Optional[int]=50256 ,_a : int=True ,_a : Optional[int]=True ,_a : Optional[int]=True ,**_a : List[str] ,): '''simple docstring''' A_ : Optional[Any] = vocab_size A_ : int = n_positions A_ : Union[str, Any] = n_embd A_ : int = n_layer A_ : Optional[int] = n_head A_ : Union[str, Any] = n_inner A_ : List[Any] = activation_function A_ : Dict = resid_pdrop A_ : int = embd_pdrop A_ : Optional[int] = attn_pdrop A_ : Union[str, Any] = layer_norm_epsilon A_ : int = initializer_range A_ : Union[str, Any] = scale_attn_weights A_ : List[str] = use_cache A_ : Tuple = attention_softmax_in_fpaa A_ : List[str] = scale_attention_softmax_in_fpaa A_ : Union[str, Any] = multi_query A_ : Any = bos_token_id A_ : Optional[int] = eos_token_id super().__init__(bos_token_id=_a ,eos_token_id=_a ,**_a )
665
0
import itertools import random import unittest import numpy as np from transformers import is_speech_available from transformers.testing_utils import require_torch, require_torchaudio from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import SpeechaTextFeatureExtractor a__ : List[Any] = random.Random() def UpperCAmelCase_( a__ , a__=1.0 , a__=None , a__=None ): """simple docstring""" if rng is None: SCREAMING_SNAKE_CASE : List[str] = global_rng SCREAMING_SNAKE_CASE : Tuple = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class a_ ( unittest.TestCase ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=7 , _lowerCamelCase=400 , _lowerCamelCase=2000 , _lowerCamelCase=24 , _lowerCamelCase=24 , _lowerCamelCase=0.0 , _lowerCamelCase=1_6000 , _lowerCamelCase=True , _lowerCamelCase=True , ) ->str: SCREAMING_SNAKE_CASE : List[Any] = parent SCREAMING_SNAKE_CASE : List[Any] = batch_size SCREAMING_SNAKE_CASE : List[str] = min_seq_length SCREAMING_SNAKE_CASE : str = max_seq_length SCREAMING_SNAKE_CASE : Tuple = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) SCREAMING_SNAKE_CASE : Optional[Any] = feature_size SCREAMING_SNAKE_CASE : Dict = num_mel_bins SCREAMING_SNAKE_CASE : Optional[Any] = padding_value SCREAMING_SNAKE_CASE : Dict = sampling_rate SCREAMING_SNAKE_CASE : int = return_attention_mask SCREAMING_SNAKE_CASE : List[Any] = do_normalize def __lowerCAmelCase ( self ) ->Union[str, Any]: return { "feature_size": self.feature_size, "num_mel_bins": self.num_mel_bins, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def __lowerCAmelCase ( self , _lowerCamelCase=False , _lowerCamelCase=False ) ->int: def _flatten(_lowerCamelCase ): return list(itertools.chain(*_lowerCamelCase ) ) if equal_length: SCREAMING_SNAKE_CASE : Optional[int] = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size SCREAMING_SNAKE_CASE : Optional[Any] = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: SCREAMING_SNAKE_CASE : Dict = [np.asarray(_lowerCamelCase ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class a_ ( a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = SpeechaTextFeatureExtractor if is_speech_available() else None def __lowerCAmelCase ( self ) ->Optional[Any]: SCREAMING_SNAKE_CASE : int = SpeechaTextFeatureExtractionTester(self ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->Union[str, Any]: self.assertTrue(np.all(np.mean(_lowerCamelCase , axis=0 ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(_lowerCamelCase , axis=0 ) - 1 ) < 1e-3 ) ) def __lowerCAmelCase ( self ) ->int: # Tests that all call wrap to encode_plus and batch_encode_plus SCREAMING_SNAKE_CASE : Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 SCREAMING_SNAKE_CASE : List[Any] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] SCREAMING_SNAKE_CASE : Any = [np.asarray(_lowerCamelCase ) for speech_input in speech_inputs] # Test feature size SCREAMING_SNAKE_CASE : Tuple = feature_extractor(_lowerCamelCase , padding=_lowerCamelCase , return_tensors='''np''' ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.feature_size ) # Test not batched input SCREAMING_SNAKE_CASE : List[Any] = feature_extractor(speech_inputs[0] , return_tensors='''np''' ).input_features SCREAMING_SNAKE_CASE : Optional[Any] = feature_extractor(np_speech_inputs[0] , return_tensors='''np''' ).input_features self.assertTrue(np.allclose(_lowerCamelCase , _lowerCamelCase , atol=1e-3 ) ) # Test batched SCREAMING_SNAKE_CASE : Any = feature_extractor(_lowerCamelCase , return_tensors='''np''' ).input_features SCREAMING_SNAKE_CASE : Optional[int] = feature_extractor(_lowerCamelCase , return_tensors='''np''' ).input_features for enc_seq_a, enc_seq_a in zip(_lowerCamelCase , _lowerCamelCase ): self.assertTrue(np.allclose(_lowerCamelCase , _lowerCamelCase , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. SCREAMING_SNAKE_CASE : Any = [floats_list((1, x) )[0] for x in (800, 800, 800)] SCREAMING_SNAKE_CASE : Tuple = np.asarray(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = feature_extractor(_lowerCamelCase , return_tensors='''np''' ).input_features SCREAMING_SNAKE_CASE : Optional[int] = feature_extractor(_lowerCamelCase , return_tensors='''np''' ).input_features for enc_seq_a, enc_seq_a in zip(_lowerCamelCase , _lowerCamelCase ): self.assertTrue(np.allclose(_lowerCamelCase , _lowerCamelCase , atol=1e-3 ) ) def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : Optional[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) SCREAMING_SNAKE_CASE : List[Any] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] SCREAMING_SNAKE_CASE : Optional[Any] = ['''longest''', '''max_length''', '''do_not_pad'''] SCREAMING_SNAKE_CASE : List[str] = [None, 16, None] for max_length, padding in zip(_lowerCamelCase , _lowerCamelCase ): SCREAMING_SNAKE_CASE : List[Any] = feature_extractor( _lowerCamelCase , padding=_lowerCamelCase , max_length=_lowerCamelCase , return_attention_mask=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = inputs.input_features SCREAMING_SNAKE_CASE : int = inputs.attention_mask SCREAMING_SNAKE_CASE : Dict = [np.sum(_lowerCamelCase ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def __lowerCAmelCase ( self ) ->List[str]: SCREAMING_SNAKE_CASE : List[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) SCREAMING_SNAKE_CASE : Dict = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] SCREAMING_SNAKE_CASE : str = ['''longest''', '''max_length''', '''do_not_pad'''] SCREAMING_SNAKE_CASE : int = [None, 16, None] for max_length, padding in zip(_lowerCamelCase , _lowerCamelCase ): SCREAMING_SNAKE_CASE : Optional[int] = feature_extractor( _lowerCamelCase , max_length=_lowerCamelCase , padding=_lowerCamelCase , return_tensors='''np''' , return_attention_mask=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = inputs.input_features SCREAMING_SNAKE_CASE : str = inputs.attention_mask SCREAMING_SNAKE_CASE : int = [np.sum(_lowerCamelCase ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self.assertTrue(input_features[0][fbank_feat_lengths[0] :].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self.assertTrue(input_features[0][fbank_feat_lengths[1] :].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def __lowerCAmelCase ( self ) ->Any: SCREAMING_SNAKE_CASE : Optional[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) SCREAMING_SNAKE_CASE : Optional[int] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] SCREAMING_SNAKE_CASE : List[Any] = feature_extractor( _lowerCamelCase , padding='''max_length''' , max_length=4 , truncation=_lowerCamelCase , return_tensors='''np''' , return_attention_mask=_lowerCamelCase , ) SCREAMING_SNAKE_CASE : Optional[int] = inputs.input_features SCREAMING_SNAKE_CASE : int = inputs.attention_mask SCREAMING_SNAKE_CASE : Tuple = np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1] ) self._check_zero_mean_unit_variance(input_features[2] ) def __lowerCAmelCase ( self ) ->List[Any]: SCREAMING_SNAKE_CASE : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) SCREAMING_SNAKE_CASE : List[Any] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] SCREAMING_SNAKE_CASE : Dict = feature_extractor( _lowerCamelCase , padding='''longest''' , max_length=4 , truncation=_lowerCamelCase , return_tensors='''np''' , return_attention_mask=_lowerCamelCase , ) SCREAMING_SNAKE_CASE : Optional[int] = inputs.input_features SCREAMING_SNAKE_CASE : Optional[int] = inputs.attention_mask SCREAMING_SNAKE_CASE : Optional[int] = np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape , (3, 4, 24) ) SCREAMING_SNAKE_CASE : Tuple = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] SCREAMING_SNAKE_CASE : List[str] = feature_extractor( _lowerCamelCase , padding='''longest''' , max_length=16 , truncation=_lowerCamelCase , return_tensors='''np''' , return_attention_mask=_lowerCamelCase , ) SCREAMING_SNAKE_CASE : Optional[Any] = inputs.input_features SCREAMING_SNAKE_CASE : Union[str, Any] = inputs.attention_mask SCREAMING_SNAKE_CASE : Union[str, Any] = np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape , (3, 6, 24) ) def __lowerCAmelCase ( self ) ->Tuple: import torch SCREAMING_SNAKE_CASE : Optional[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) SCREAMING_SNAKE_CASE : Any = np.random.rand(100 , 32 ).astype(np.floataa ) SCREAMING_SNAKE_CASE : Dict = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: SCREAMING_SNAKE_CASE : Tuple = feature_extractor.pad([{'''input_features''': inputs}] , return_tensors='''np''' ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) SCREAMING_SNAKE_CASE : Dict = feature_extractor.pad([{'''input_features''': inputs}] , return_tensors='''pt''' ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->str: from datasets import load_dataset SCREAMING_SNAKE_CASE : Optional[Any] = load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' ) # automatic decoding with librispeech SCREAMING_SNAKE_CASE : str = ds.sort('''id''' ).select(range(_lowerCamelCase ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] def __lowerCAmelCase ( self ) ->int: # fmt: off SCREAMING_SNAKE_CASE : Any = np.array([ -1.5_7_4_5, -1.7_7_1_3, -1.7_0_2_0, -1.6_0_6_9, -1.2_2_5_0, -1.1_1_0_5, -0.9_0_7_2, -0.8_2_4_1, -1.2_3_1_0, -0.8_0_9_8, -0.3_3_2_0, -0.4_1_0_1, -0.7_9_8_5, -0.4_9_9_6, -0.8_2_1_3, -0.9_1_2_8, -1.0_4_2_0, -1.1_2_8_6, -1.0_4_4_0, -0.7_9_9_9, -0.8_4_0_5, -1.2_2_7_5, -1.5_4_4_3, -1.4_6_2_5, ] ) # fmt: on SCREAMING_SNAKE_CASE : Any = self._load_datasamples(1 ) SCREAMING_SNAKE_CASE : str = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) SCREAMING_SNAKE_CASE : List[Any] = feature_extractor(_lowerCamelCase , return_tensors='''pt''' ).input_features self.assertEquals(input_features.shape , (1, 584, 24) ) self.assertTrue(np.allclose(input_features[0, 0, :30] , _lowerCamelCase , atol=1e-4 ) )
333
def UpperCAmelCase_( a__ ): """simple docstring""" return 10 - x * x def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if equation(a__ ) * equation(a__ ) >= 0: raise ValueError('''Wrong space!''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = a while (b - a) >= 0.01: # Find middle point SCREAMING_SNAKE_CASE : Optional[Any] = (a + b) / 2 # Check if middle point is root if equation(a__ ) == 0.0: break # Decide the side to repeat the steps if equation(a__ ) * equation(a__ ) < 0: SCREAMING_SNAKE_CASE : Optional[int] = c else: SCREAMING_SNAKE_CASE : int = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
333
1