code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import inspect import unittest import torch import torch.nn as nn from accelerate.hooks import ( AlignDevicesHook, ModelHook, SequentialHook, add_hook_to_module, attach_align_device_hook, remove_hook_from_module, remove_hook_from_submodules, ) from accelerate.test_utils import require_multi_gpu class lowerCamelCase_ ( nn.Module ): def __init__( self : Optional[int] ): super().__init__() __A : Optional[int] = nn.Linear(3 , 4 ) __A : Optional[Any] = nn.BatchNormad(4 ) __A : Optional[int] = nn.Linear(4 , 5 ) def lowerCAmelCase_ ( self : str , __A : Any ): return self.lineara(self.batchnorm(self.lineara(__A ) ) ) class lowerCamelCase_ ( _lowercase ): def lowerCAmelCase_ ( self : Union[str, Any] , __A : int , *__A : List[Any] , **__A : Any ): return (args[0] + 1,) + args[1:], kwargs class lowerCamelCase_ ( _lowercase ): def lowerCAmelCase_ ( self : Optional[int] , __A : List[str] , __A : str ): return output + 1 class lowerCamelCase_ ( unittest.TestCase ): def lowerCAmelCase_ ( self : List[str] ): __A : Union[str, Any] = ModelForTest() __A : Union[str, Any] = ModelHook() add_hook_to_module(__A , __A ) self.assertEqual(test_model._hf_hook , __A ) self.assertTrue(hasattr(__A , """_old_forward""" ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , """forward""" ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ["""x"""] ) remove_hook_from_module(__A ) self.assertFalse(hasattr(__A , """_hf_hook""" ) ) self.assertFalse(hasattr(__A , """_old_forward""" ) ) def lowerCAmelCase_ ( self : Dict ): __A : str = ModelForTest() __A : Tuple = ModelHook() add_hook_to_module(__A , __A ) add_hook_to_module(__A , __A , append=__A ) self.assertEqual(isinstance(test_model._hf_hook , __A ) , __A ) self.assertEqual(len(test_model._hf_hook.hooks ) , 2 ) self.assertTrue(hasattr(__A , """_old_forward""" ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , """forward""" ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ["""x"""] ) remove_hook_from_module(__A ) self.assertFalse(hasattr(__A , """_hf_hook""" ) ) self.assertFalse(hasattr(__A , """_old_forward""" ) ) def lowerCAmelCase_ ( self : int ): __A : int = ModelForTest() __A : List[str] = torch.randn(2 , 3 ) __A : Tuple = test_model(x + 1 ) __A : List[str] = test_model(x + 2 ) __A : int = PreForwardHook() add_hook_to_module(__A , __A ) __A : Union[str, Any] = test_model(__A ) self.assertTrue(torch.allclose(__A , __A , atol=1e-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain __A : Dict = PreForwardHook() add_hook_to_module(__A , __A ) __A : Union[str, Any] = test_model(__A ) self.assertTrue(torch.allclose(__A , __A , atol=1e-5 ) ) # You need to use the sequential hook to chain two or more hooks __A : List[Any] = SequentialHook(PreForwardHook() , PreForwardHook() ) add_hook_to_module(__A , __A ) __A : List[str] = test_model(__A ) assert torch.allclose(__A , __A , atol=1e-5 ) def lowerCAmelCase_ ( self : Dict ): __A : Any = ModelForTest() __A : List[str] = torch.randn(2 , 3 ) __A : Union[str, Any] = test_model(__A ) __A : Dict = PostForwardHook() add_hook_to_module(__A , __A ) __A : int = test_model(__A ) self.assertTrue(torch.allclose(__A , output + 1 , atol=1e-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain __A : Optional[int] = PostForwardHook() add_hook_to_module(__A , __A ) __A : int = test_model(__A ) self.assertTrue(torch.allclose(__A , output + 1 , atol=1e-5 ) ) # You need to use the sequential hook to chain two or more hooks __A : Dict = SequentialHook(PostForwardHook() , PostForwardHook() ) add_hook_to_module(__A , __A ) __A : Union[str, Any] = test_model(__A ) assert torch.allclose(__A , output + 2 , atol=1e-5 ) def lowerCAmelCase_ ( self : Tuple ): __A : Optional[Any] = ModelForTest() __A : List[Any] = torch.randn(2 , 3 ) __A : int = test_model(__A ) __A : Tuple = PostForwardHook() add_hook_to_module(__A , __A ) __A : List[Any] = test_model(__A ) self.assertTrue(torch.allclose(__A , output + 1 ) ) self.assertTrue(outputa.requires_grad ) __A : int = True __A : Any = test_model(__A ) self.assertFalse(outputa.requires_grad ) @require_multi_gpu def lowerCAmelCase_ ( self : str ): __A : Union[str, Any] = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=1 ) ) self.assertEqual(model.lineara.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device(0 ) ) self.assertEqual(model.lineara.weight.device , torch.device(1 ) ) # We can still make a forward pass. The input does not need to be on any particular device __A : Tuple = torch.randn(2 , 3 ) __A : Tuple = model(__A ) self.assertEqual(output.device , torch.device(1 ) ) # We can add a general hook to put back output on same device as input. add_hook_to_module(__A , AlignDevicesHook(io_same_device=__A ) ) __A : List[str] = torch.randn(2 , 3 ).to(0 ) __A : Tuple = model(__A ) self.assertEqual(output.device , torch.device(0 ) ) def lowerCAmelCase_ ( self : Any ): __A : str = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices __A : Optional[int] = {"""execution_device""": 0 if torch.cuda.is_available() else """cpu""", """offload""": True} add_hook_to_module(model.lineara , AlignDevicesHook(**__A ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**__A ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**__A ) ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device __A : List[str] = torch.device(hook_kwargs["""execution_device"""] ) self.assertEqual(model.batchnorm.running_mean.device , __A ) __A : Optional[Any] = torch.randn(2 , 3 ) __A : Optional[int] = model(__A ) self.assertEqual(output.device , __A ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload __A : str = { """execution_device""": 0 if torch.cuda.is_available() else """cpu""", """offload""": True, """offload_buffers""": True, } add_hook_to_module(model.lineara , AlignDevicesHook(**__A ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**__A ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**__A ) ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) __A : int = torch.randn(2 , 3 ) __A : Optional[Any] = model(__A ) self.assertEqual(output.device , __A ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) def lowerCAmelCase_ ( self : List[str] ): __A : Dict = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices __A : str = 0 if torch.cuda.is_available() else """cpu""" attach_align_device_hook(__A , execution_device=__A , offload=__A ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device __A : List[Any] = torch.device(__A ) self.assertEqual(model.batchnorm.running_mean.device , __A ) __A : List[str] = torch.randn(2 , 3 ) __A : Dict = model(__A ) self.assertEqual(output.device , __A ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__A ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload attach_align_device_hook(__A , execution_device=__A , offload=__A , offload_buffers=__A ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) __A : Dict = torch.randn(2 , 3 ) __A : List[str] = model(__A ) self.assertEqual(output.device , __A ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__A ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) def lowerCAmelCase_ ( self : Optional[int] ): __A : Any = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices __A : int = 0 if torch.cuda.is_available() else """cpu""" attach_align_device_hook( __A , execution_device=__A , offload=__A , weights_map=model.state_dict() ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device __A : Optional[int] = torch.device(__A ) self.assertEqual(model.batchnorm.running_mean.device , __A ) __A : Optional[Any] = torch.randn(2 , 3 ) __A : Any = model(__A ) self.assertEqual(output.device , __A ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__A ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload attach_align_device_hook( __A , execution_device=__A , offload=__A , weights_map=model.state_dict() , offload_buffers=__A , ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) __A : Any = torch.randn(2 , 3 ) __A : int = model(__A ) self.assertEqual(output.device , __A ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__A ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
17
from math import sqrt def lowerCAmelCase_ ( __lowerCamelCase = 1_0_0_0_0_0_0 ): __snake_case : int = 0 __snake_case : int = 0 __snake_case : int while num_cuboids <= limit: max_cuboid_size += 1 for sum_shortest_sides in range(2 , 2 * max_cuboid_size + 1 ): if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer(): num_cuboids += ( min(__lowerCamelCase , sum_shortest_sides // 2 ) - max(1 , sum_shortest_sides - max_cuboid_size ) + 1 ) return max_cuboid_size if __name__ == "__main__": print(f'''{solution() = }''')
81
0
import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging __lowerCamelCase : Dict = logging.get_logger(__name__) class lowerCAmelCase__ ( UpperCamelCase__ ): A = """linear""" A = """cosine""" A = """cosine_with_restarts""" A = """polynomial""" A = """constant""" A = """constant_with_warmup""" A = """piecewise_constant""" def __snake_case (__UpperCAmelCase , __UpperCAmelCase = -1 ): """simple docstring""" return LambdaLR(__UpperCAmelCase , lambda __UpperCAmelCase : 1 , last_epoch=__UpperCAmelCase ) def __snake_case (__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = -1 ): """simple docstring""" def lr_lambda(__UpperCAmelCase ): if current_step < num_warmup_steps: return float(__UpperCAmelCase ) / float(max(1.0 , __UpperCAmelCase ) ) return 1.0 return LambdaLR(__UpperCAmelCase , __UpperCAmelCase , last_epoch=__UpperCAmelCase ) def __snake_case (__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = -1 ): """simple docstring""" lowerCamelCase_ : Union[str, Any] = {} lowerCamelCase_ : Union[str, Any] = step_rules.split(''',''' ) for rule_str in rule_list[:-1]: lowerCamelCase_ , lowerCamelCase_ : Optional[int] = rule_str.split(''':''' ) lowerCamelCase_ : Any = int(__UpperCAmelCase ) lowerCamelCase_ : List[Any] = float(__UpperCAmelCase ) lowerCamelCase_ : Optional[int] = value lowerCamelCase_ : Tuple = float(rule_list[-1] ) def create_rules_function(__UpperCAmelCase , __UpperCAmelCase ): def rule_func(__UpperCAmelCase ) -> float: lowerCamelCase_ : Optional[int] = sorted(rules_dict.keys() ) for i, sorted_step in enumerate(__UpperCAmelCase ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func lowerCamelCase_ : Any = create_rules_function(__UpperCAmelCase , __UpperCAmelCase ) return LambdaLR(__UpperCAmelCase , __UpperCAmelCase , last_epoch=__UpperCAmelCase ) def __snake_case (__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=-1 ): """simple docstring""" def lr_lambda(__UpperCAmelCase ): if current_step < num_warmup_steps: return float(__UpperCAmelCase ) / float(max(1 , __UpperCAmelCase ) ) return max( 0.0 , float(num_training_steps - current_step ) / float(max(1 , num_training_steps - num_warmup_steps ) ) ) return LambdaLR(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def __snake_case (__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 0.5 , __UpperCAmelCase = -1 ): """simple docstring""" def lr_lambda(__UpperCAmelCase ): if current_step < num_warmup_steps: return float(__UpperCAmelCase ) / float(max(1 , __UpperCAmelCase ) ) lowerCamelCase_ : Optional[int] = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(__UpperCAmelCase ) * 2.0 * progress )) ) return LambdaLR(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def __snake_case (__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 1 , __UpperCAmelCase = -1 ): """simple docstring""" def lr_lambda(__UpperCAmelCase ): if current_step < num_warmup_steps: return float(__UpperCAmelCase ) / float(max(1 , __UpperCAmelCase ) ) lowerCamelCase_ : List[str] = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(__UpperCAmelCase ) * progress) % 1.0) )) ) return LambdaLR(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def __snake_case (__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=1E-7 , __UpperCAmelCase=1.0 , __UpperCAmelCase=-1 ): """simple docstring""" lowerCamelCase_ : int = optimizer.defaults['''lr'''] if not (lr_init > lr_end): raise ValueError(F"""lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})""" ) def lr_lambda(__UpperCAmelCase ): if current_step < num_warmup_steps: return float(__UpperCAmelCase ) / float(max(1 , __UpperCAmelCase ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: lowerCamelCase_ : Optional[int] = lr_init - lr_end lowerCamelCase_ : List[str] = num_training_steps - num_warmup_steps lowerCamelCase_ : int = 1 - (current_step - num_warmup_steps) / decay_steps lowerCamelCase_ : str = lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) __lowerCamelCase : Any = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def __snake_case (__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = 1 , __UpperCAmelCase = 1.0 , __UpperCAmelCase = -1 , ): """simple docstring""" lowerCamelCase_ : Optional[int] = SchedulerType(__UpperCAmelCase ) lowerCamelCase_ : Union[str, Any] = TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(__UpperCAmelCase , last_epoch=__UpperCAmelCase ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(__UpperCAmelCase , step_rules=__UpperCAmelCase , last_epoch=__UpperCAmelCase ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(F"""{name} requires `num_warmup_steps`, please provide that argument.""" ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(__UpperCAmelCase , num_warmup_steps=__UpperCAmelCase , last_epoch=__UpperCAmelCase ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(F"""{name} requires `num_training_steps`, please provide that argument.""" ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( __UpperCAmelCase , num_warmup_steps=__UpperCAmelCase , num_training_steps=__UpperCAmelCase , num_cycles=__UpperCAmelCase , last_epoch=__UpperCAmelCase , ) if name == SchedulerType.POLYNOMIAL: return schedule_func( __UpperCAmelCase , num_warmup_steps=__UpperCAmelCase , num_training_steps=__UpperCAmelCase , power=__UpperCAmelCase , last_epoch=__UpperCAmelCase , ) return schedule_func( __UpperCAmelCase , num_warmup_steps=__UpperCAmelCase , num_training_steps=__UpperCAmelCase , last_epoch=__UpperCAmelCase )
717
'''simple docstring''' __lowerCamelCase : int = [ 999, 800, 799, 600, 599, 500, 400, 399, 377, 355, 333, 311, 288, 266, 244, 222, 200, 199, 177, 155, 133, 111, 88, 66, 44, 22, 0, ] __lowerCamelCase : Dict = [ 999, 976, 952, 928, 905, 882, 858, 857, 810, 762, 715, 714, 572, 429, 428, 286, 285, 238, 190, 143, 142, 118, 95, 71, 47, 24, 0, ] __lowerCamelCase : str = [ 999, 988, 977, 966, 955, 944, 933, 922, 911, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 350, 300, 299, 266, 233, 200, 199, 179, 159, 140, 120, 100, 99, 88, 77, 66, 55, 44, 33, 22, 11, 0, ] __lowerCamelCase : Tuple = [ 999, 995, 992, 989, 985, 981, 978, 975, 971, 967, 964, 961, 957, 956, 951, 947, 942, 937, 933, 928, 923, 919, 914, 913, 908, 903, 897, 892, 887, 881, 876, 871, 870, 864, 858, 852, 846, 840, 834, 828, 827, 820, 813, 806, 799, 792, 785, 784, 777, 770, 763, 756, 749, 742, 741, 733, 724, 716, 707, 699, 698, 688, 677, 666, 656, 655, 645, 634, 623, 613, 612, 598, 584, 570, 569, 555, 541, 527, 526, 505, 484, 483, 462, 440, 439, 396, 395, 352, 351, 308, 307, 264, 263, 220, 219, 176, 132, 88, 44, 0, ] __lowerCamelCase : Dict = [ 999, 997, 995, 992, 990, 988, 986, 984, 981, 979, 977, 975, 972, 970, 968, 966, 964, 961, 959, 957, 956, 954, 951, 949, 946, 944, 941, 939, 936, 934, 931, 929, 926, 924, 921, 919, 916, 914, 913, 910, 907, 905, 902, 899, 896, 893, 891, 888, 885, 882, 879, 877, 874, 871, 870, 867, 864, 861, 858, 855, 852, 849, 846, 843, 840, 837, 834, 831, 828, 827, 824, 821, 817, 814, 811, 808, 804, 801, 798, 795, 791, 788, 785, 784, 780, 777, 774, 770, 766, 763, 760, 756, 752, 749, 746, 742, 741, 737, 733, 730, 726, 722, 718, 714, 710, 707, 703, 699, 698, 694, 690, 685, 681, 677, 673, 669, 664, 660, 656, 655, 650, 646, 641, 636, 632, 627, 622, 618, 613, 612, 607, 602, 596, 591, 586, 580, 575, 570, 569, 563, 557, 551, 545, 539, 533, 527, 526, 519, 512, 505, 498, 491, 484, 483, 474, 466, 457, 449, 440, 439, 428, 418, 407, 396, 395, 381, 366, 352, 351, 330, 308, 307, 286, 264, 263, 242, 220, 219, 176, 175, 132, 131, 88, 44, 0, ] __lowerCamelCase : Tuple = [ 999, 991, 982, 974, 966, 958, 950, 941, 933, 925, 916, 908, 900, 899, 874, 850, 825, 800, 799, 700, 600, 500, 400, 300, 200, 100, 0, ] __lowerCamelCase : Tuple = [ 999, 992, 985, 978, 971, 964, 957, 949, 942, 935, 928, 921, 914, 907, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 300, 299, 200, 199, 100, 99, 0, ] __lowerCamelCase : List[Any] = [ 999, 996, 992, 989, 985, 982, 979, 975, 972, 968, 965, 961, 958, 955, 951, 948, 944, 941, 938, 934, 931, 927, 924, 920, 917, 914, 910, 907, 903, 900, 899, 891, 884, 876, 869, 861, 853, 846, 838, 830, 823, 815, 808, 800, 799, 788, 777, 766, 755, 744, 733, 722, 711, 700, 699, 688, 677, 666, 655, 644, 633, 622, 611, 600, 599, 585, 571, 557, 542, 528, 514, 500, 499, 485, 471, 457, 442, 428, 414, 400, 399, 379, 359, 340, 320, 300, 299, 279, 259, 240, 220, 200, 199, 166, 133, 100, 99, 66, 33, 0, ]
418
0
import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger _lowercase : Tuple = "<<<<<<< This should probably be modified because it mentions: " _lowercase : str = "=======\n>>>>>>>\n" _lowercase : Any = [ "TextEncoderConfig", "ByteTextEncoder", "SubwordTextEncoder", "encoder_config", "maybe_build_from_corpus", "manual_dir", ] _lowercase : Union[str, Any] = [ # (pattern, replacement) # Order is important here for some replacements (R"tfds\.core", R"datasets"), (R"tf\.io\.gfile\.GFile", R"open"), (R"tf\.([\w\d]+)", R"datasets.Value('\1')"), (R"tfds\.features\.Text\(\)", R"datasets.Value('string')"), (R"tfds\.features\.Text\(", R"datasets.Value('string'),"), (R"features\s*=\s*tfds.features.FeaturesDict\(", R"features=datasets.Features("), (R"tfds\.features\.FeaturesDict\(", R"dict("), (R"The TensorFlow Datasets Authors", R"The TensorFlow Datasets Authors and the HuggingFace Datasets Authors"), (R"tfds\.", R"datasets."), (R"dl_manager\.manual_dir", R"self.config.data_dir"), (R"self\.builder_config", R"self.config"), ] def _lowerCAmelCase ( UpperCamelCase__: Namespace ) -> Optional[Any]: """simple docstring""" return ConvertCommand(args.tfds_path , args.datasets_directory ) class _UpperCamelCase ( __snake_case ): """simple docstring""" @staticmethod def _UpperCAmelCase ( a__ ) -> List[str]: A = parser.add_parser( """convert""" , help="""Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset.""" , ) train_parser.add_argument( """--tfds_path""" , type=a__ , required=a__ , help="""Path to a TensorFlow Datasets folder to convert or a single tfds file to convert.""" , ) train_parser.add_argument( """--datasets_directory""" , type=a__ , required=a__ , help="""Path to the HuggingFace Datasets folder.""" ) train_parser.set_defaults(func=a__ ) def __init__( self , a__ , a__ , *a__ ) -> Dict: A = get_logger("""datasets-cli/converting""" ) A = tfds_path A = datasets_directory def _UpperCAmelCase ( self ) -> List[str]: if os.path.isdir(self._tfds_path ): A = os.path.abspath(self._tfds_path ) elif os.path.isfile(self._tfds_path ): A = os.path.dirname(self._tfds_path ) else: raise ValueError("""--tfds_path is neither a directory nor a file. Please check path.""" ) A = os.path.abspath(self._datasets_directory ) self._logger.info(f'Converting datasets from {abs_tfds_path} to {abs_datasets_path}' ) A = [] A = [] A = {} if os.path.isdir(self._tfds_path ): A = os.listdir(a__ ) else: A = [os.path.basename(self._tfds_path )] for f_name in file_names: self._logger.info(f'Looking at file {f_name}' ) A = os.path.join(a__ , a__ ) A = os.path.join(a__ , a__ ) if not os.path.isfile(a__ ) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info("""Skipping file""" ) continue with open(a__ , encoding="""utf-8""" ) as f: A = f.readlines() A = [] A = False A = False A = [] for line in lines: A = line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: A = """import datasets\n""" elif "import tensorflow" in out_line: # order is important here A = """""" continue elif "from absl import logging" in out_line: A = """from datasets import logging\n""" elif "getLogger" in out_line: A = out_line.replace("""getLogger""" , """get_logger""" ) elif any(expression in out_line for expression in TO_HIGHLIGHT ): A = True A = list(filter(lambda a__ : e in out_line , a__ ) ) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(a__ ) + """\n""" ) out_lines.append(a__ ) out_lines.append(a__ ) continue else: for pattern, replacement in TO_CONVERT: A = re.sub(a__ , a__ , a__ ) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: A = re.match(r"""from\stensorflow_datasets.*import\s([^\.\r\n]+)""" , a__ ) tfds_imports.extend(imp.strip() for imp in match.group(1 ).split(""",""" ) ) A = """from . import """ + match.group(1 ) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(f'Error converting {out_line.strip()}' ) if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: A = True out_lines.append(a__ ) if is_builder or "wmt" in f_name: # We create a new directory for each dataset A = f_name.replace(""".py""" , """""" ) A = os.path.join(a__ , a__ ) A = os.path.join(a__ , a__ ) os.makedirs(a__ , exist_ok=a__ ) self._logger.info(f'Adding directory {output_dir}' ) imports_to_builder_map.update({imp: output_dir for imp in tfds_imports} ) else: # Utilities will be moved at the end utils_files.append(a__ ) if needs_manual_update: with_manual_update.append(a__ ) with open(a__ , """w""" , encoding="""utf-8""" ) as f: f.writelines(a__ ) self._logger.info(f'Converted in {output_file}' ) for utils_file in utils_files: try: A = os.path.basename(a__ ) A = imports_to_builder_map[f_name.replace(""".py""" , """""" )] self._logger.info(f'Moving {dest_folder} to {utils_file}' ) shutil.copy(a__ , a__ ) except KeyError: self._logger.error(f'Cannot find destination folder for {utils_file}. Please copy manually.' ) if with_manual_update: for file_path in with_manual_update: self._logger.warning( f'You need to manually update file {file_path} to remove configurations using \'TextEncoderConfig\'.' )
641
import numpy as np from transformers import Pipeline def _lowerCAmelCase ( UpperCamelCase__: Optional[Any] ) -> Optional[int]: """simple docstring""" A = np.max(UpperCamelCase__ , axis=-1 , keepdims=UpperCamelCase__ ) A = np.exp(outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=UpperCamelCase__ ) class _UpperCamelCase ( __snake_case ): """simple docstring""" def _UpperCAmelCase ( self , **a__ ) -> Union[str, Any]: A = {} if "second_text" in kwargs: A = kwargs["""second_text"""] return preprocess_kwargs, {}, {} def _UpperCAmelCase ( self , a__ , a__=None ) -> str: return self.tokenizer(a__ , text_pair=a__ , return_tensors=self.framework ) def _UpperCAmelCase ( self , a__ ) -> Tuple: return self.model(**a__ ) def _UpperCAmelCase ( self , a__ ) -> Optional[int]: A = model_outputs.logits[0].numpy() A = softmax(a__ ) A = np.argmax(a__ ) A = self.model.config.idalabel[best_class] A = probabilities[best_class].item() A = logits.tolist() return {"label": label, "score": score, "logits": logits}
641
1
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionInstructPixaPixPipeline, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.utils import floats_tensor, load_image, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ =StableDiffusionInstructPixaPixPipeline UpperCAmelCase_ =TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width", "cross_attention_kwargs"} UpperCAmelCase_ =TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS UpperCAmelCase_ =IMAGE_TO_IMAGE_IMAGE_PARAMS UpperCAmelCase_ =IMAGE_TO_IMAGE_IMAGE_PARAMS def _UpperCamelCase ( self ) -> Optional[Any]: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=8 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) SCREAMING_SNAKE_CASE_ = PNDMScheduler(skip_prk_steps=_A ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) SCREAMING_SNAKE_CASE_ = CLIPTextModel(_A ) SCREAMING_SNAKE_CASE_ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) SCREAMING_SNAKE_CASE_ = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def _UpperCamelCase ( self , _A , _A=0 ) -> List[str]: SCREAMING_SNAKE_CASE_ = floats_tensor((1, 3, 32, 32) , rng=random.Random(_A ) ).to(_A ) SCREAMING_SNAKE_CASE_ = image.cpu().permute(0 , 2 , 3 , 1 )[0] SCREAMING_SNAKE_CASE_ = Image.fromarray(np.uinta(_A ) ).convert('''RGB''' ) if str(_A ).startswith('''mps''' ): SCREAMING_SNAKE_CASE_ = torch.manual_seed(_A ) else: SCREAMING_SNAKE_CASE_ = torch.Generator(device=_A ).manual_seed(_A ) SCREAMING_SNAKE_CASE_ = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''image_guidance_scale''': 1, '''output_type''': '''numpy''', } return inputs def _UpperCamelCase ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = '''cpu''' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE_ = self.get_dummy_components() SCREAMING_SNAKE_CASE_ = StableDiffusionInstructPixaPixPipeline(**_A ) SCREAMING_SNAKE_CASE_ = sd_pipe.to(_A ) sd_pipe.set_progress_bar_config(disable=_A ) SCREAMING_SNAKE_CASE_ = self.get_dummy_inputs(_A ) SCREAMING_SNAKE_CASE_ = sd_pipe(**_A ).images SCREAMING_SNAKE_CASE_ = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE_ = np.array([0.7526, 0.3750, 0.4547, 0.6117, 0.5866, 0.5016, 0.4327, 0.5642, 0.4815] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def _UpperCamelCase ( self ) -> Tuple: SCREAMING_SNAKE_CASE_ = '''cpu''' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE_ = self.get_dummy_components() SCREAMING_SNAKE_CASE_ = StableDiffusionInstructPixaPixPipeline(**_A ) SCREAMING_SNAKE_CASE_ = sd_pipe.to(_A ) sd_pipe.set_progress_bar_config(disable=_A ) SCREAMING_SNAKE_CASE_ = self.get_dummy_inputs(_A ) SCREAMING_SNAKE_CASE_ = '''french fries''' SCREAMING_SNAKE_CASE_ = sd_pipe(**_A , negative_prompt=_A ) SCREAMING_SNAKE_CASE_ = output.images SCREAMING_SNAKE_CASE_ = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE_ = np.array([0.7511, 0.3642, 0.4553, 0.6236, 0.5797, 0.5013, 0.4343, 0.5611, 0.4831] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE_ = '''cpu''' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE_ = self.get_dummy_components() SCREAMING_SNAKE_CASE_ = StableDiffusionInstructPixaPixPipeline(**_A ) SCREAMING_SNAKE_CASE_ = sd_pipe.to(_A ) sd_pipe.set_progress_bar_config(disable=_A ) SCREAMING_SNAKE_CASE_ = self.get_dummy_inputs(_A ) SCREAMING_SNAKE_CASE_ = [inputs['''prompt''']] * 2 SCREAMING_SNAKE_CASE_ = np.array(inputs['''image'''] ).astype(np.floataa ) / 255.0 SCREAMING_SNAKE_CASE_ = torch.from_numpy(_A ).unsqueeze(0 ).to(_A ) SCREAMING_SNAKE_CASE_ = image / 2 + 0.5 SCREAMING_SNAKE_CASE_ = image.permute(0 , 3 , 1 , 2 ) SCREAMING_SNAKE_CASE_ = image.repeat(2 , 1 , 1 , 1 ) SCREAMING_SNAKE_CASE_ = sd_pipe(**_A ).images SCREAMING_SNAKE_CASE_ = image[-1, -3:, -3:, -1] assert image.shape == (2, 32, 32, 3) SCREAMING_SNAKE_CASE_ = np.array([0.5812, 0.5748, 0.5222, 0.5908, 0.5695, 0.7174, 0.6804, 0.5523, 0.5579] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def _UpperCamelCase ( self ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = '''cpu''' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE_ = self.get_dummy_components() SCREAMING_SNAKE_CASE_ = EulerAncestralDiscreteScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='''scaled_linear''' ) SCREAMING_SNAKE_CASE_ = StableDiffusionInstructPixaPixPipeline(**_A ) SCREAMING_SNAKE_CASE_ = sd_pipe.to(_A ) sd_pipe.set_progress_bar_config(disable=_A ) SCREAMING_SNAKE_CASE_ = self.get_dummy_inputs(_A ) SCREAMING_SNAKE_CASE_ = sd_pipe(**_A ).images SCREAMING_SNAKE_CASE_ = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE_ = [round(_A , 4 ) for x in image_slice.flatten().tolist()] print(''','''.join([str(_A ) for x in slice] ) ) assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE_ = np.array([0.7417, 0.3842, 0.4732, 0.5776, 0.5891, 0.5139, 0.4052, 0.5673, 0.4986] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def _UpperCamelCase ( self ) -> Dict: super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def _UpperCamelCase ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = self.get_dummy_components() SCREAMING_SNAKE_CASE_ = StableDiffusionInstructPixaPixPipeline(**_A ) SCREAMING_SNAKE_CASE_ = VaeImageProcessor(do_resize=_A , do_normalize=_A ) SCREAMING_SNAKE_CASE_ = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) SCREAMING_SNAKE_CASE_ = pipe(**self.get_dummy_inputs_by_type(_A , input_image_type='''pt''' ) )[0] SCREAMING_SNAKE_CASE_ = components['''vae'''] SCREAMING_SNAKE_CASE_ = self.get_dummy_inputs_by_type(_A , input_image_type='''pt''' ) for image_param in self.image_latents_params: if image_param in inputs.keys(): SCREAMING_SNAKE_CASE_ = vae.encode(inputs[image_param] ).latent_dist.mode() SCREAMING_SNAKE_CASE_ = pipe(**_A )[0] SCREAMING_SNAKE_CASE_ = np.abs(out - out_latents_inputs ).max() self.assertLess(_A , 1E-4 , '''passing latents as image input generate different result from passing image''' ) @slow @require_torch_gpu class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def _UpperCamelCase ( self ) -> Optional[Any]: super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCamelCase ( self , _A=0 ) -> Dict: SCREAMING_SNAKE_CASE_ = torch.manual_seed(_A ) SCREAMING_SNAKE_CASE_ = load_image( '''https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_pix2pix/example.jpg''' ) SCREAMING_SNAKE_CASE_ = { '''prompt''': '''turn him into a cyborg''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 7.5, '''image_guidance_scale''': 1.0, '''output_type''': '''numpy''', } return inputs def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE_ = StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''' , safety_checker=_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE_ = self.get_inputs() SCREAMING_SNAKE_CASE_ = pipe(**_A ).images SCREAMING_SNAKE_CASE_ = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE_ = np.array([0.5902, 0.6015, 0.6027, 0.5983, 0.6092, 0.6061, 0.5765, 0.5785, 0.5555] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def _UpperCamelCase ( self ) -> List[str]: SCREAMING_SNAKE_CASE_ = StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''' , safety_checker=_A ) SCREAMING_SNAKE_CASE_ = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE_ = self.get_inputs() SCREAMING_SNAKE_CASE_ = pipe(**_A ).images SCREAMING_SNAKE_CASE_ = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE_ = np.array([0.6578, 0.6817, 0.6972, 0.6761, 0.6856, 0.6916, 0.6428, 0.6516, 0.6301] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def _UpperCamelCase ( self ) -> int: SCREAMING_SNAKE_CASE_ = StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''' , safety_checker=_A ) SCREAMING_SNAKE_CASE_ = DDIMScheduler.from_config(pipe.scheduler.config ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE_ = self.get_inputs() SCREAMING_SNAKE_CASE_ = pipe(**_A ).images SCREAMING_SNAKE_CASE_ = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE_ = np.array([0.3828, 0.3834, 0.3818, 0.3792, 0.3865, 0.3752, 0.3792, 0.3847, 0.3753] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def _UpperCamelCase ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = 0 def callback_fn(_A , _A , _A ) -> None: SCREAMING_SNAKE_CASE_ = True nonlocal number_of_steps number_of_steps += 1 if step == 1: SCREAMING_SNAKE_CASE_ = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) SCREAMING_SNAKE_CASE_ = latents[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE_ = np.array([-0.2463, -0.4644, -0.9756, 1.5176, 1.4414, 0.7866, 0.9897, 0.8521, 0.7983] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 elif step == 2: SCREAMING_SNAKE_CASE_ = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) SCREAMING_SNAKE_CASE_ = latents[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE_ = np.array([-0.2644, -0.4626, -0.9653, 1.5176, 1.4551, 0.7686, 0.9805, 0.8452, 0.8115] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''' , safety_checker=_A , torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE_ = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE_ = self.get_inputs() pipe(**_A , callback=_A , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def _UpperCamelCase ( self ) -> Optional[int]: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() SCREAMING_SNAKE_CASE_ = StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''' , safety_checker=_A , torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE_ = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() SCREAMING_SNAKE_CASE_ = self.get_inputs() SCREAMING_SNAKE_CASE_ = pipe(**_A ) SCREAMING_SNAKE_CASE_ = torch.cuda.max_memory_allocated() # make sure that less than 2.2 GB is allocated assert mem_bytes < 2.2 * 10**9 def _UpperCamelCase ( self ) -> Tuple: SCREAMING_SNAKE_CASE_ = self.get_inputs() # resize to resolution that is divisible by 8 but not 16 or 32 SCREAMING_SNAKE_CASE_ = inputs['''image'''].resize((504, 504) ) SCREAMING_SNAKE_CASE_ = '''timbrooks/instruct-pix2pix''' SCREAMING_SNAKE_CASE_ = StableDiffusionInstructPixaPixPipeline.from_pretrained( _A , safety_checker=_A , ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE_ = pipe(**_A ) SCREAMING_SNAKE_CASE_ = output.images[0] SCREAMING_SNAKE_CASE_ = image[255:258, 383:386, -1] assert image.shape == (504, 504, 3) SCREAMING_SNAKE_CASE_ = np.array([0.2726, 0.2529, 0.2664, 0.2655, 0.2641, 0.2642, 0.2591, 0.2649, 0.2590] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3
597
def A__ ( __lowerCamelCase, __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = len(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): SCREAMING_SNAKE_CASE_ = True # sum is not zero and set is empty then false for i in range(1, required_sum + 1 ): SCREAMING_SNAKE_CASE_ = False for i in range(1, arr_len + 1 ): for j in range(1, required_sum + 1 ): if arr[i - 1] > j: SCREAMING_SNAKE_CASE_ = subset[i - 1][j] if arr[i - 1] <= j: SCREAMING_SNAKE_CASE_ = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
597
1
def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list , __magic_name__ : int ) -> int: """simple docstring""" if len(__magic_name__ ) != len(__magic_name__ ): raise ValueError("""The length of profit and weight must be same.""" ) if max_weight <= 0: raise ValueError("""max_weight must greater than zero.""" ) if any(p < 0 for p in profit ): raise ValueError("""Profit can not be negative.""" ) if any(w < 0 for w in weight ): raise ValueError("""Weight can not be negative.""" ) # List created to store profit gained for the 1kg in case of each weight # respectively. Calculate and append profit/weight for each element. lowercase__ = [p / w for p, w in zip(__magic_name__ , __magic_name__ )] # Creating a copy of the list and sorting profit/weight in ascending order lowercase__ = sorted(__magic_name__ ) # declaring useful variables lowercase__ = len(__magic_name__ ) lowercase__ = 0 lowercase__ = 0 lowercase__ = 0 # loop till the total weight do not reach max limit e.g. 15 kg and till i<length while limit <= max_weight and i < length: # flag value for encountered greatest element in sorted_profit_by_weight lowercase__ = sorted_profit_by_weight[length - i - 1] lowercase__ = profit_by_weight.index(__magic_name__ ) lowercase__ = -1 # check if the weight encountered is less than the total weight # encountered before. if max_weight - limit >= weight[index]: limit += weight[index] # Adding profit gained for the given weight 1 === # weight[index]/weight[index] gain += 1 * profit[index] else: # Since the weight encountered is greater than limit, therefore take the # required number of remaining kgs and calculate profit for it. # weight remaining / weight[index] gain += (max_weight - limit) / weight[index] * profit[index] break i += 1 return gain if __name__ == "__main__": print( 'Input profits, weights, and then max_weight (all positive ints) separated by ' 'spaces.' ) A : Tuple = [int(x) for x in input('Input profits separated by spaces: ').split()] A : Optional[int] = [int(x) for x in input('Input weights separated by spaces: ').split()] A : Optional[int] = int(input('Max weight allowed: ')) # Function Call calc_profit(profit, weight, max_weight)
15
'''simple docstring''' def _lowerCAmelCase ( lowercase : int ) ->List[Any]: """simple docstring""" lowercase__ = [] lowercase__ = [] lowercase__ = { '''^''': 3, '''*''': 2, '''/''': 2, '''%''': 2, '''+''': 1, '''-''': 1, } # Priority of each operator lowercase__ = len(lowercase ) if (len(lowercase ) > 7) else 7 # Print table header for output print( '''Symbol'''.center(8 ) , '''Stack'''.center(lowercase ) , '''Postfix'''.center(lowercase ) , sep=''' | ''' , ) print('''-''' * (print_width * 3 + 7) ) for x in infix: if x.isalpha() or x.isdigit(): post_fix.append(lowercase ) # if x is Alphabet / Digit, add it to Postfix elif x == "(": stack.append(lowercase ) # if x is "(" push to Stack elif x == ")": # if x is ")" pop stack until "(" is encountered while stack[-1] != "(": post_fix.append(stack.pop() ) # Pop stack & add the content to Postfix stack.pop() else: if len(lowercase ) == 0: stack.append(lowercase ) # If stack is empty, push x to stack else: # while priority of x is not > priority of element in the stack while len(lowercase ) > 0 and priority[x] <= priority[stack[-1]]: post_fix.append(stack.pop() ) # pop stack & add to Postfix stack.append(lowercase ) # push x to stack print( x.center(8 ) , (''''''.join(lowercase )).ljust(lowercase ) , (''''''.join(lowercase )).ljust(lowercase ) , sep=''' | ''' , ) # Output in tabular format while len(lowercase ) > 0: # while stack is not empty post_fix.append(stack.pop() ) # pop stack & add to Postfix print( ''' '''.center(8 ) , (''''''.join(lowercase )).ljust(lowercase ) , (''''''.join(lowercase )).ljust(lowercase ) , sep=''' | ''' , ) # Output in tabular format return "".join(lowercase ) # return Postfix as str def _lowerCAmelCase ( lowercase : Tuple ) ->int: """simple docstring""" lowercase__ = list(infix[::-1] ) # reverse the infix equation for i in range(len(lowercase ) ): if infix[i] == "(": lowercase__ = ''')''' # change "(" to ")" elif infix[i] == ")": lowercase__ = '''(''' # change ")" to "(" return (infix_2_postfix(''''''.join(lowercase ) ))[ ::-1 ] # call infix_2_postfix on Infix, return reverse of Postfix if __name__ == "__main__": _lowerCAmelCase = input("\nEnter an Infix Equation = ") # Input an Infix equation _lowerCAmelCase = "".join(Infix.split()) # Remove spaces from the input print("\n\t", Infix, "(Infix) -> ", infix_2_prefix(Infix), "(Prefix)")
161
0
"""simple docstring""" def lowerCAmelCase__ ( lowerCamelCase__ ) -> float: if not nums: # Makes sure that the list is not empty raise ValueError('List is empty' ) A = sum(lowerCamelCase__ ) / len(lowerCamelCase__ ) # Calculate the average return sum(abs(x - average ) for x in nums ) / len(lowerCamelCase__ ) if __name__ == "__main__": import doctest doctest.testmod()
109
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available A = { 'configuration_gpt_neo': ['GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GPTNeoConfig', 'GPTNeoOnnxConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = [ 'GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST', 'GPTNeoForCausalLM', 'GPTNeoForQuestionAnswering', 'GPTNeoForSequenceClassification', 'GPTNeoForTokenClassification', 'GPTNeoModel', 'GPTNeoPreTrainedModel', 'load_tf_weights_in_gpt_neo', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = [ 'FlaxGPTNeoForCausalLM', 'FlaxGPTNeoModel', 'FlaxGPTNeoPreTrainedModel', ] if TYPE_CHECKING: from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neo import ( GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoForCausalLM, GPTNeoForQuestionAnswering, GPTNeoForSequenceClassification, GPTNeoForTokenClassification, GPTNeoModel, GPTNeoPreTrainedModel, load_tf_weights_in_gpt_neo, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel else: import sys A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
109
1
"""simple docstring""" import unittest from transformers import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device if is_torch_available(): import torch from transformers import AutoModelForImageClassification if is_vision_available(): from transformers import AutoImageProcessor @require_torch @require_vision class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Any = AutoImageProcessor.from_pretrained('microsoft/dit-base-finetuned-rvlcdip' ) lowerCAmelCase__ :str = AutoModelForImageClassification.from_pretrained('microsoft/dit-base-finetuned-rvlcdip' ) model.to(lowerCAmelCase__ ) from datasets import load_dataset lowerCAmelCase__ :Any = load_dataset('nielsr/rvlcdip-demo' ) lowerCAmelCase__ :List[Any] = dataset["train"][0]["image"].convert('RGB' ) lowerCAmelCase__ :Optional[int] = image_processor(lowerCAmelCase__ , return_tensors='pt' ).to(lowerCAmelCase__ ) # forward pass with torch.no_grad(): lowerCAmelCase__ :Union[str, Any] = model(**lowerCAmelCase__ ) lowerCAmelCase__ :Dict = outputs.logits lowerCAmelCase__ :int = torch.Size((1, 1_6) ) self.assertEqual(logits.shape , lowerCAmelCase__ ) lowerCAmelCase__ :List[Any] = torch.tensor( [-0.41_58, -0.40_92, -0.43_47] , device=lowerCAmelCase__ , dtype=torch.float , ) self.assertTrue(torch.allclose(logits[0, :3] , lowerCAmelCase__ , atol=1E-4 ) )
93
from typing import TYPE_CHECKING from ....utils import _LazyModule _lowercase = {'''tokenization_tapex''': ['''TapexTokenizer''']} if TYPE_CHECKING: from .tokenization_tapex import TapexTokenizer else: import sys _lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
659
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available __a = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ["MLukeTokenizer"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys __a = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
310
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input __a = "Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine" def A_ ( ): '''simple docstring''' snake_case_ :Dict = _ask_options( """In which compute environment are you running?""", ["""This machine""", """AWS (Amazon SageMaker)"""], _convert_compute_environment, ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: snake_case_ :Optional[int] = get_sagemaker_input() else: snake_case_ :int = get_cluster_input() return config def A_ ( _lowercase=None ): '''simple docstring''' if subparsers is not None: snake_case_ :Dict = subparsers.add_parser("""config""", description=_lowercase ) else: snake_case_ :int = argparse.ArgumentParser("""Accelerate config command""", description=_lowercase ) parser.add_argument( """--config_file""", default=_lowercase, help=( """The path to use to store the config file. Will default to a file named default_config.yaml in the cache """ """location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have """ """such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed """ """with 'huggingface'.""" ), ) if subparsers is not None: parser.set_defaults(func=_lowercase ) return parser def A_ ( _lowercase ): '''simple docstring''' snake_case_ :Optional[int] = get_user_input() if args.config_file is not None: snake_case_ :Dict = args.config_file else: if not os.path.isdir(_lowercase ): os.makedirs(_lowercase ) snake_case_ :Dict = default_yaml_config_file if config_file.endswith(""".json""" ): config.to_json_file(_lowercase ) else: config.to_yaml_file(_lowercase ) print(f"""accelerate configuration saved at {config_file}""" ) def A_ ( ): '''simple docstring''' snake_case_ :List[str] = config_command_parser() snake_case_ :Tuple = parser.parse_args() config_command(_lowercase ) if __name__ == "__main__": main()
310
1
from typing import Optional from .. import Features, NamedSplit from ..packaged_modules.text.text import Text from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class _lowerCamelCase ( UpperCamelCase ): """simple docstring""" def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , )->List[str]: '''simple docstring''' super().__init__( SCREAMING_SNAKE_CASE_ , split=SCREAMING_SNAKE_CASE_ , features=SCREAMING_SNAKE_CASE_ , cache_dir=SCREAMING_SNAKE_CASE_ , keep_in_memory=SCREAMING_SNAKE_CASE_ , streaming=SCREAMING_SNAKE_CASE_ , num_proc=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) A_ : Any = path_or_paths if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else {self.split: path_or_paths} A_ : str = Text( cache_dir=SCREAMING_SNAKE_CASE_ , data_files=SCREAMING_SNAKE_CASE_ , features=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) def _snake_case ( self )->Optional[int]: '''simple docstring''' if self.streaming: A_ : List[str] = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: A_ : int = None A_ : Tuple = None A_ : str = None A_ : List[str] = None self.builder.download_and_prepare( download_config=SCREAMING_SNAKE_CASE_ , download_mode=SCREAMING_SNAKE_CASE_ , verification_mode=SCREAMING_SNAKE_CASE_ , base_path=SCREAMING_SNAKE_CASE_ , num_proc=self.num_proc , ) A_ : Any = self.builder.as_dataset( split=self.split , verification_mode=SCREAMING_SNAKE_CASE_ , in_memory=self.keep_in_memory ) return dataset
590
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowercase : Any = logging.get_logger(__name__) __lowercase : str = { '''google/mobilenet_v1_1.0_224''': '''https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json''', '''google/mobilenet_v1_0.75_192''': '''https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json''', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 } class _A ( snake_case ): '''simple docstring''' __lowerCamelCase : Dict = '''mobilenet_v1''' def __init__( self ,SCREAMING_SNAKE_CASE_=3 ,SCREAMING_SNAKE_CASE_=224 ,SCREAMING_SNAKE_CASE_=1.0 ,SCREAMING_SNAKE_CASE_=8 ,SCREAMING_SNAKE_CASE_="relu6" ,SCREAMING_SNAKE_CASE_=True ,SCREAMING_SNAKE_CASE_=0.9_99 ,SCREAMING_SNAKE_CASE_=0.02 ,SCREAMING_SNAKE_CASE_=0.0_01 ,**SCREAMING_SNAKE_CASE_ ,): '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE_ ) if depth_multiplier <= 0: raise ValueError("""depth_multiplier must be greater than zero.""" ) snake_case : List[Any] = num_channels snake_case : str = image_size snake_case : List[Any] = depth_multiplier snake_case : Optional[int] = min_depth snake_case : Union[str, Any] = hidden_act snake_case : int = tf_padding snake_case : Optional[int] = classifier_dropout_prob snake_case : Tuple = initializer_range snake_case : List[str] = layer_norm_eps class _A ( snake_case ): '''simple docstring''' __lowerCamelCase : Optional[Any] = version.parse('''1.11''' ) @property def snake_case_ ( self ): '''simple docstring''' return OrderedDict([("""pixel_values""", {0: """batch"""})] ) @property def snake_case_ ( self ): '''simple docstring''' if self.task == "image-classification": return OrderedDict([("""logits""", {0: """batch"""})] ) else: return OrderedDict([("""last_hidden_state""", {0: """batch"""}), ("""pooler_output""", {0: """batch"""})] ) @property def snake_case_ ( self ): '''simple docstring''' return 1E-4
36
0
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import _LazyModule lowercase_ = {'''tokenization_tapex''': ['''TapexTokenizer''']} if TYPE_CHECKING: from .tokenization_tapex import TapexTokenizer else: import sys lowercase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
703
import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class A__ ( unittest.TestCase ): def lowercase ( self ) -> Dict: """simple docstring""" __magic_name__ : List[Any] = { '''task_specific_params''': { '''summarization''': {'''length_penalty''': 1.0, '''max_length''': 128, '''min_length''': 12, '''num_beams''': 4}, '''summarization_cnn''': {'''length_penalty''': 2.0, '''max_length''': 142, '''min_length''': 56, '''num_beams''': 4}, '''summarization_xsum''': {'''length_penalty''': 1.0, '''max_length''': 62, '''min_length''': 11, '''num_beams''': 6}, } } __magic_name__ : int = { '''task_specific_params.summarization.length_penalty''': 1.0, '''task_specific_params.summarization.max_length''': 128, '''task_specific_params.summarization.min_length''': 12, '''task_specific_params.summarization.num_beams''': 4, '''task_specific_params.summarization_cnn.length_penalty''': 2.0, '''task_specific_params.summarization_cnn.max_length''': 142, '''task_specific_params.summarization_cnn.min_length''': 56, '''task_specific_params.summarization_cnn.num_beams''': 4, '''task_specific_params.summarization_xsum.length_penalty''': 1.0, '''task_specific_params.summarization_xsum.max_length''': 62, '''task_specific_params.summarization_xsum.min_length''': 11, '''task_specific_params.summarization_xsum.num_beams''': 6, } self.assertEqual(flatten_dict(lowerCamelCase ) , lowerCamelCase ) def lowercase ( self ) -> Tuple: """simple docstring""" __magic_name__ : Optional[Any] = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(transpose(lowerCamelCase ) , x.transpose() ) ) __magic_name__ : Union[str, Any] = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(transpose(lowerCamelCase , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) ) @require_torch def lowercase ( self ) -> Optional[int]: """simple docstring""" __magic_name__ : Union[str, Any] = np.random.randn(3 , 4 ) __magic_name__ : List[str] = torch.tensor(lowerCamelCase ) self.assertTrue(np.allclose(transpose(lowerCamelCase ) , transpose(lowerCamelCase ).numpy() ) ) __magic_name__ : int = np.random.randn(3 , 4 , 5 ) __magic_name__ : Union[str, Any] = torch.tensor(lowerCamelCase ) self.assertTrue(np.allclose(transpose(lowerCamelCase , axes=(1, 2, 0) ) , transpose(lowerCamelCase , axes=(1, 2, 0) ).numpy() ) ) @require_tf def lowercase ( self ) -> Tuple: """simple docstring""" __magic_name__ : Dict = np.random.randn(3 , 4 ) __magic_name__ : Any = tf.constant(lowerCamelCase ) self.assertTrue(np.allclose(transpose(lowerCamelCase ) , transpose(lowerCamelCase ).numpy() ) ) __magic_name__ : str = np.random.randn(3 , 4 , 5 ) __magic_name__ : Optional[int] = tf.constant(lowerCamelCase ) self.assertTrue(np.allclose(transpose(lowerCamelCase , axes=(1, 2, 0) ) , transpose(lowerCamelCase , axes=(1, 2, 0) ).numpy() ) ) @require_flax def lowercase ( self ) -> int: """simple docstring""" __magic_name__ : Union[str, Any] = np.random.randn(3 , 4 ) __magic_name__ : Optional[Any] = jnp.array(lowerCamelCase ) self.assertTrue(np.allclose(transpose(lowerCamelCase ) , np.asarray(transpose(lowerCamelCase ) ) ) ) __magic_name__ : int = np.random.randn(3 , 4 , 5 ) __magic_name__ : Tuple = jnp.array(lowerCamelCase ) self.assertTrue(np.allclose(transpose(lowerCamelCase , axes=(1, 2, 0) ) , np.asarray(transpose(lowerCamelCase , axes=(1, 2, 0) ) ) ) ) def lowercase ( self ) -> Optional[Any]: """simple docstring""" __magic_name__ : Dict = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(reshape(lowerCamelCase , (4, 3) ) , np.reshape(lowerCamelCase , (4, 3) ) ) ) __magic_name__ : Optional[int] = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(reshape(lowerCamelCase , (12, 5) ) , np.reshape(lowerCamelCase , (12, 5) ) ) ) @require_torch def lowercase ( self ) -> int: """simple docstring""" __magic_name__ : Tuple = np.random.randn(3 , 4 ) __magic_name__ : List[Any] = torch.tensor(lowerCamelCase ) self.assertTrue(np.allclose(reshape(lowerCamelCase , (4, 3) ) , reshape(lowerCamelCase , (4, 3) ).numpy() ) ) __magic_name__ : List[str] = np.random.randn(3 , 4 , 5 ) __magic_name__ : Tuple = torch.tensor(lowerCamelCase ) self.assertTrue(np.allclose(reshape(lowerCamelCase , (12, 5) ) , reshape(lowerCamelCase , (12, 5) ).numpy() ) ) @require_tf def lowercase ( self ) -> Union[str, Any]: """simple docstring""" __magic_name__ : Union[str, Any] = np.random.randn(3 , 4 ) __magic_name__ : List[str] = tf.constant(lowerCamelCase ) self.assertTrue(np.allclose(reshape(lowerCamelCase , (4, 3) ) , reshape(lowerCamelCase , (4, 3) ).numpy() ) ) __magic_name__ : Optional[Any] = np.random.randn(3 , 4 , 5 ) __magic_name__ : str = tf.constant(lowerCamelCase ) self.assertTrue(np.allclose(reshape(lowerCamelCase , (12, 5) ) , reshape(lowerCamelCase , (12, 5) ).numpy() ) ) @require_flax def lowercase ( self ) -> Tuple: """simple docstring""" __magic_name__ : Dict = np.random.randn(3 , 4 ) __magic_name__ : Optional[Any] = jnp.array(lowerCamelCase ) self.assertTrue(np.allclose(reshape(lowerCamelCase , (4, 3) ) , np.asarray(reshape(lowerCamelCase , (4, 3) ) ) ) ) __magic_name__ : Union[str, Any] = np.random.randn(3 , 4 , 5 ) __magic_name__ : List[Any] = jnp.array(lowerCamelCase ) self.assertTrue(np.allclose(reshape(lowerCamelCase , (12, 5) ) , np.asarray(reshape(lowerCamelCase , (12, 5) ) ) ) ) def lowercase ( self ) -> Dict: """simple docstring""" __magic_name__ : Optional[Any] = np.random.randn(1 , 3 , 4 ) self.assertTrue(np.allclose(squeeze(lowerCamelCase ) , np.squeeze(lowerCamelCase ) ) ) __magic_name__ : int = np.random.randn(1 , 4 , 1 , 5 ) self.assertTrue(np.allclose(squeeze(lowerCamelCase , axis=2 ) , np.squeeze(lowerCamelCase , axis=2 ) ) ) @require_torch def lowercase ( self ) -> List[Any]: """simple docstring""" __magic_name__ : Any = np.random.randn(1 , 3 , 4 ) __magic_name__ : List[str] = torch.tensor(lowerCamelCase ) self.assertTrue(np.allclose(squeeze(lowerCamelCase ) , squeeze(lowerCamelCase ).numpy() ) ) __magic_name__ : Union[str, Any] = np.random.randn(1 , 4 , 1 , 5 ) __magic_name__ : Tuple = torch.tensor(lowerCamelCase ) self.assertTrue(np.allclose(squeeze(lowerCamelCase , axis=2 ) , squeeze(lowerCamelCase , axis=2 ).numpy() ) ) @require_tf def lowercase ( self ) -> str: """simple docstring""" __magic_name__ : Optional[int] = np.random.randn(1 , 3 , 4 ) __magic_name__ : Any = tf.constant(lowerCamelCase ) self.assertTrue(np.allclose(squeeze(lowerCamelCase ) , squeeze(lowerCamelCase ).numpy() ) ) __magic_name__ : int = np.random.randn(1 , 4 , 1 , 5 ) __magic_name__ : str = tf.constant(lowerCamelCase ) self.assertTrue(np.allclose(squeeze(lowerCamelCase , axis=2 ) , squeeze(lowerCamelCase , axis=2 ).numpy() ) ) @require_flax def lowercase ( self ) -> List[Any]: """simple docstring""" __magic_name__ : str = np.random.randn(1 , 3 , 4 ) __magic_name__ : List[str] = jnp.array(lowerCamelCase ) self.assertTrue(np.allclose(squeeze(lowerCamelCase ) , np.asarray(squeeze(lowerCamelCase ) ) ) ) __magic_name__ : Optional[int] = np.random.randn(1 , 4 , 1 , 5 ) __magic_name__ : Optional[int] = jnp.array(lowerCamelCase ) self.assertTrue(np.allclose(squeeze(lowerCamelCase , axis=2 ) , np.asarray(squeeze(lowerCamelCase , axis=2 ) ) ) ) def lowercase ( self ) -> Optional[int]: """simple docstring""" __magic_name__ : Tuple = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(expand_dims(lowerCamelCase , axis=1 ) , np.expand_dims(lowerCamelCase , axis=1 ) ) ) @require_torch def lowercase ( self ) -> List[Any]: """simple docstring""" __magic_name__ : Union[str, Any] = np.random.randn(3 , 4 ) __magic_name__ : str = torch.tensor(lowerCamelCase ) self.assertTrue(np.allclose(expand_dims(lowerCamelCase , axis=1 ) , expand_dims(lowerCamelCase , axis=1 ).numpy() ) ) @require_tf def lowercase ( self ) -> Any: """simple docstring""" __magic_name__ : List[str] = np.random.randn(3 , 4 ) __magic_name__ : Union[str, Any] = tf.constant(lowerCamelCase ) self.assertTrue(np.allclose(expand_dims(lowerCamelCase , axis=1 ) , expand_dims(lowerCamelCase , axis=1 ).numpy() ) ) @require_flax def lowercase ( self ) -> Optional[Any]: """simple docstring""" __magic_name__ : List[Any] = np.random.randn(3 , 4 ) __magic_name__ : int = jnp.array(lowerCamelCase ) self.assertTrue(np.allclose(expand_dims(lowerCamelCase , axis=1 ) , np.asarray(expand_dims(lowerCamelCase , axis=1 ) ) ) )
336
0
"""simple docstring""" from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def _snake_case ( _snake_case : int , _snake_case : int , _snake_case : float = 1 / sqrt(2 ) ) -> IIRFilter: '''simple docstring''' _A = tau * frequency / samplerate _A = sin(_snake_case ) _A = cos(_snake_case ) _A = _sin / (2 * q_factor) _A = (1 - _cos) / 2 _A = 1 - _cos _A = 1 + alpha _A = -2 * _cos _A = 1 - alpha _A = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _snake_case ( _snake_case : int , _snake_case : int , _snake_case : float = 1 / sqrt(2 ) ) -> IIRFilter: '''simple docstring''' _A = tau * frequency / samplerate _A = sin(_snake_case ) _A = cos(_snake_case ) _A = _sin / (2 * q_factor) _A = (1 + _cos) / 2 _A = -1 - _cos _A = 1 + alpha _A = -2 * _cos _A = 1 - alpha _A = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _snake_case ( _snake_case : int , _snake_case : int , _snake_case : float = 1 / sqrt(2 ) ) -> IIRFilter: '''simple docstring''' _A = tau * frequency / samplerate _A = sin(_snake_case ) _A = cos(_snake_case ) _A = _sin / (2 * q_factor) _A = _sin / 2 _A = 0 _A = -ba _A = 1 + alpha _A = -2 * _cos _A = 1 - alpha _A = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _snake_case ( _snake_case : int , _snake_case : int , _snake_case : float = 1 / sqrt(2 ) ) -> IIRFilter: '''simple docstring''' _A = tau * frequency / samplerate _A = sin(_snake_case ) _A = cos(_snake_case ) _A = _sin / (2 * q_factor) _A = 1 - alpha _A = -2 * _cos _A = 1 + alpha _A = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] ) return filt def _snake_case ( _snake_case : int , _snake_case : int , _snake_case : float , _snake_case : float = 1 / sqrt(2 ) , ) -> IIRFilter: '''simple docstring''' _A = tau * frequency / samplerate _A = sin(_snake_case ) _A = cos(_snake_case ) _A = _sin / (2 * q_factor) _A = 10 ** (gain_db / 40) _A = 1 + alpha * big_a _A = -2 * _cos _A = 1 - alpha * big_a _A = 1 + alpha / big_a _A = -2 * _cos _A = 1 - alpha / big_a _A = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _snake_case ( _snake_case : int , _snake_case : int , _snake_case : float , _snake_case : float = 1 / sqrt(2 ) , ) -> IIRFilter: '''simple docstring''' _A = tau * frequency / samplerate _A = sin(_snake_case ) _A = cos(_snake_case ) _A = _sin / (2 * q_factor) _A = 10 ** (gain_db / 40) _A = (big_a + 1) - (big_a - 1) * _cos _A = (big_a + 1) + (big_a - 1) * _cos _A = (big_a - 1) - (big_a + 1) * _cos _A = (big_a - 1) + (big_a + 1) * _cos _A = 2 * sqrt(_snake_case ) * alpha _A = big_a * (pmc + aaa) _A = 2 * big_a * mpc _A = big_a * (pmc - aaa) _A = ppmc + aaa _A = -2 * pmpc _A = ppmc - aaa _A = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _snake_case ( _snake_case : int , _snake_case : int , _snake_case : float , _snake_case : float = 1 / sqrt(2 ) , ) -> IIRFilter: '''simple docstring''' _A = tau * frequency / samplerate _A = sin(_snake_case ) _A = cos(_snake_case ) _A = _sin / (2 * q_factor) _A = 10 ** (gain_db / 40) _A = (big_a + 1) - (big_a - 1) * _cos _A = (big_a + 1) + (big_a - 1) * _cos _A = (big_a - 1) - (big_a + 1) * _cos _A = (big_a - 1) + (big_a + 1) * _cos _A = 2 * sqrt(_snake_case ) * alpha _A = big_a * (ppmc + aaa) _A = -2 * big_a * pmpc _A = big_a * (ppmc - aaa) _A = pmc + aaa _A = 2 * mpc _A = pmc - aaa _A = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt
7
"""simple docstring""" import torch from diffusers import KDPMaDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : Optional[int] = (KDPMaDiscreteScheduler,) UpperCAmelCase : Any = 10 def lowerCAmelCase_ ( self : Dict , **_UpperCAmelCase : Optional[Any] ): _A = { 'num_train_timesteps': 1_100, 'beta_start': 0.0001, 'beta_end': 0.02, 'beta_schedule': 'linear', } config.update(**_UpperCAmelCase ) return config def lowerCAmelCase_ ( self : Any ): for timesteps in [10, 50, 100, 1_000]: self.check_over_configs(num_train_timesteps=_UpperCAmelCase ) def lowerCAmelCase_ ( self : Dict ): for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=_UpperCAmelCase , beta_end=_UpperCAmelCase ) def lowerCAmelCase_ ( self : Tuple ): for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=_UpperCAmelCase ) def lowerCAmelCase_ ( self : Optional[int] ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_UpperCAmelCase ) def lowerCAmelCase_ ( self : Optional[int] ): _A = self.scheduler_classes[0] _A = self.get_scheduler_config(prediction_type='v_prediction' ) _A = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(self.num_inference_steps ) _A = self.dummy_model() _A = self.dummy_sample_deter * scheduler.init_noise_sigma _A = sample.to(_UpperCAmelCase ) for i, t in enumerate(scheduler.timesteps ): _A = scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase ) _A = model(_UpperCAmelCase , _UpperCAmelCase ) _A = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) _A = output.prev_sample _A = torch.sum(torch.abs(_UpperCAmelCase ) ) _A = torch.mean(torch.abs(_UpperCAmelCase ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 4.6_9_3_4E-0_7 ) < 1E-2 assert abs(result_mean.item() - 6.1_1_1_2E-1_0 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 4.6_9_3_4_2_8_6_5_0_1_7_0_9_7_2E-0_7 ) < 1E-2 assert abs(result_mean.item() - 0.0002 ) < 1E-3 def lowerCAmelCase_ ( self : Optional[Any] ): if torch_device == "mps": return _A = self.scheduler_classes[0] _A = self.get_scheduler_config() _A = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(self.num_inference_steps ) _A = self.dummy_model() _A = self.dummy_sample_deter * scheduler.init_noise_sigma _A = sample.to(_UpperCAmelCase ) for i, t in enumerate(scheduler.timesteps ): _A = scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase ) _A = model(_UpperCAmelCase , _UpperCAmelCase ) _A = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) _A = output.prev_sample _A = torch.sum(torch.abs(_UpperCAmelCase ) ) _A = torch.mean(torch.abs(_UpperCAmelCase ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 20.4125 ) < 1E-2 assert abs(result_mean.item() - 0.0266 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 20.4125 ) < 1E-2 assert abs(result_mean.item() - 0.0266 ) < 1E-3 def lowerCAmelCase_ ( self : Any ): if torch_device == "mps": return _A = self.scheduler_classes[0] _A = self.get_scheduler_config() _A = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(self.num_inference_steps , device=_UpperCAmelCase ) _A = self.dummy_model() _A = self.dummy_sample_deter.to(_UpperCAmelCase ) * scheduler.init_noise_sigma for t in scheduler.timesteps: _A = scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase ) _A = model(_UpperCAmelCase , _UpperCAmelCase ) _A = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) _A = output.prev_sample _A = torch.sum(torch.abs(_UpperCAmelCase ) ) _A = torch.mean(torch.abs(_UpperCAmelCase ) ) if str(_UpperCAmelCase ).startswith('cpu' ): # The following sum varies between 148 and 156 on mps. Why? assert abs(result_sum.item() - 20.4125 ) < 1E-2 assert abs(result_mean.item() - 0.0266 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 20.4125 ) < 1E-2 assert abs(result_mean.item() - 0.0266 ) < 1E-3
7
1
'''simple docstring''' import pprint import requests SCREAMING_SNAKE_CASE_: Dict ='https://zenquotes.io/api' def lowerCAmelCase_ ( ) -> list: '''simple docstring''' return requests.get(API_ENDPOINT_URL + "/today" ).json() def lowerCAmelCase_ ( ) -> list: '''simple docstring''' return requests.get(API_ENDPOINT_URL + "/random" ).json() if __name__ == "__main__": SCREAMING_SNAKE_CASE_: List[str] =random_quotes() pprint.pprint(response)
415
'''simple docstring''' from typing import Optional, Tuple import jax import jax.numpy as jnp from flax import linen as nn from flax.core.frozen_dict import FrozenDict from transformers import CLIPConfig, FlaxPreTrainedModel from transformers.models.clip.modeling_flax_clip import FlaxCLIPVisionModule def lowerCAmelCase_ ( snake_case_ : Dict , snake_case_ : List[Any] , snake_case_ : List[Any]=1E-1_2 ) -> Any: '''simple docstring''' UpperCAmelCase_ = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(snake_case_ , axis=1 ) , a_min=snake_case_ ) ).T UpperCAmelCase_ = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(snake_case_ , axis=1 ) , a_min=snake_case_ ) ).T return jnp.matmul(snake_case_ , norm_emb_a.T ) class __A ( nn.Module ): a__ : CLIPConfig a__ : jnp.dtype = jnp.floataa def _lowercase (self : str ): UpperCAmelCase_ = FlaxCLIPVisionModule(self.config.vision_config ) UpperCAmelCase_ = nn.Dense(self.config.projection_dim , use_bias=__a , dtype=self.dtype ) UpperCAmelCase_ = self.param("concept_embeds" , jax.nn.initializers.ones , (17, self.config.projection_dim) ) UpperCAmelCase_ = self.param( "special_care_embeds" , jax.nn.initializers.ones , (3, self.config.projection_dim) ) UpperCAmelCase_ = self.param("concept_embeds_weights" , jax.nn.initializers.ones , (17,) ) UpperCAmelCase_ = self.param("special_care_embeds_weights" , jax.nn.initializers.ones , (3,) ) def __call__(self : int , __a : Union[str, Any] ): UpperCAmelCase_ = self.vision_model(__a )[1] UpperCAmelCase_ = self.visual_projection(__a ) UpperCAmelCase_ = jax_cosine_distance(__a , self.special_care_embeds ) UpperCAmelCase_ = jax_cosine_distance(__a , self.concept_embeds ) # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign image inputs UpperCAmelCase_ = 0.0 UpperCAmelCase_ = special_cos_dist - self.special_care_embeds_weights[None, :] + adjustment UpperCAmelCase_ = jnp.round(__a , 3 ) UpperCAmelCase_ = jnp.any(special_scores > 0 , axis=1 , keepdims=__a ) # Use a lower threshold if an image has any special care concept UpperCAmelCase_ = is_special_care * 0.01 UpperCAmelCase_ = cos_dist - self.concept_embeds_weights[None, :] + special_adjustment UpperCAmelCase_ = jnp.round(__a , 3 ) UpperCAmelCase_ = jnp.any(concept_scores > 0 , axis=1 ) return has_nsfw_concepts class __A ( UpperCamelCase__ ): a__ : str = CLIPConfig a__ : int = """clip_input""" a__ : str = FlaxStableDiffusionSafetyCheckerModule def __init__(self : Optional[int] , __a : CLIPConfig , __a : Optional[Tuple] = None , __a : int = 0 , __a : jnp.dtype = jnp.floataa , __a : bool = True , **__a : Optional[int] , ): if input_shape is None: UpperCAmelCase_ = (1, 224, 224, 3) UpperCAmelCase_ = self.module_class(config=__a , dtype=__a , **__a ) super().__init__(__a , __a , input_shape=__a , seed=__a , dtype=__a , _do_init=_do_init ) def _lowercase (self : Tuple , __a : jax.random.KeyArray , __a : Tuple , __a : FrozenDict = None ): # init input tensor UpperCAmelCase_ = jax.random.normal(__a , __a ) UpperCAmelCase_ , UpperCAmelCase_ = jax.random.split(__a ) UpperCAmelCase_ = {"params": params_rng, "dropout": dropout_rng} UpperCAmelCase_ = self.module.init(__a , __a )["params"] return random_params def __call__(self : Optional[int] , __a : Any , __a : dict = None , ): UpperCAmelCase_ = jnp.transpose(__a , (0, 2, 3, 1) ) return self.module.apply( {"params": params or self.params} , jnp.array(__a , dtype=jnp.floataa ) , rngs={} , )
415
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase =logging.get_logger(__name__) __UpperCAmelCase ={ """google/canine-s""": """https://huggingface.co/google/canine-s/resolve/main/config.json""", # See all CANINE models at https://huggingface.co/models?filter=canine } class lowerCAmelCase__ ( UpperCAmelCase_ ): lowercase__ : Optional[Any] = 'canine' def __init__( self , UpperCamelCase__=7_68 , UpperCamelCase__=12 , UpperCamelCase__=12 , UpperCamelCase__=30_72 , UpperCamelCase__="gelu" , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=1_63_84 , UpperCamelCase__=16 , UpperCamelCase__=0.02 , UpperCamelCase__=1e-12 , UpperCamelCase__=0 , UpperCamelCase__=0Xe000 , UpperCamelCase__=0Xe001 , UpperCamelCase__=4 , UpperCamelCase__=4 , UpperCamelCase__=8 , UpperCamelCase__=1_63_84 , UpperCamelCase__=1_28 , **UpperCamelCase__ , ): '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase__ , bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , **UpperCamelCase__ ) A__ = max_position_embeddings A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = initializer_range A__ = type_vocab_size A__ = layer_norm_eps # Character config: A__ = downsampling_rate A__ = upsampling_kernel_size A__ = num_hash_functions A__ = num_hash_buckets A__ = local_transformer_stride
337
from __future__ import annotations import numpy as np def UpperCamelCase_( _A :list[float] )-> Optional[Any]: return np.maximum(0 , _A ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
551
0
"""simple docstring""" import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class __A (snake_case__): '''simple docstring''' __lowercase: int = (DPMSolverSDEScheduler,) __lowercase: Optional[Any] = 10 def lowerCAmelCase ( self : Any , **UpperCAmelCase_ : List[Any] ) ->int: """simple docstring""" snake_case_ = { """num_train_timesteps""": 1_100, """beta_start""": 0.0_001, """beta_end""": 0.02, """beta_schedule""": """linear""", """noise_sampler_seed""": 0, } config.update(**UpperCAmelCase_ ) return config def lowerCAmelCase ( self : Tuple ) ->str: """simple docstring""" for timesteps in [10, 50, 100, 1_000]: self.check_over_configs(num_train_timesteps=UpperCAmelCase_ ) def lowerCAmelCase ( self : Any ) ->Union[str, Any]: """simple docstring""" for beta_start, beta_end in zip([0.00_001, 0.0_001, 0.001] , [0.0_002, 0.002, 0.02] ): self.check_over_configs(beta_start=UpperCAmelCase_ , beta_end=UpperCAmelCase_ ) def lowerCAmelCase ( self : Optional[int] ) ->Union[str, Any]: """simple docstring""" for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=UpperCAmelCase_ ) def lowerCAmelCase ( self : Tuple ) ->Optional[Any]: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=UpperCAmelCase_ ) def lowerCAmelCase ( self : Optional[int] ) ->Dict: """simple docstring""" snake_case_ = self.scheduler_classes[0] snake_case_ = self.get_scheduler_config() snake_case_ = scheduler_class(**UpperCAmelCase_ ) scheduler.set_timesteps(self.num_inference_steps ) snake_case_ = self.dummy_model() snake_case_ = self.dummy_sample_deter * scheduler.init_noise_sigma snake_case_ = sample.to(UpperCAmelCase_ ) for i, t in enumerate(scheduler.timesteps ): snake_case_ = scheduler.scale_model_input(UpperCAmelCase_ , UpperCAmelCase_ ) snake_case_ = model(UpperCAmelCase_ , UpperCAmelCase_ ) snake_case_ = scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) snake_case_ = output.prev_sample snake_case_ = torch.sum(torch.abs(UpperCAmelCase_ ) ) snake_case_ = torch.mean(torch.abs(UpperCAmelCase_ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.47_821_044_921_875 ) < 1E-2 assert abs(result_mean.item() - 0.2_178_705_964_565_277 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59_352_111_816_406 ) < 1E-2 assert abs(result_mean.item() - 0.22_342_906_892_299_652 ) < 1E-3 else: assert abs(result_sum.item() - 162.52_383_422_851_562 ) < 1E-2 assert abs(result_mean.item() - 0.211_619_570_851_326 ) < 1E-3 def lowerCAmelCase ( self : int ) ->Optional[int]: """simple docstring""" snake_case_ = self.scheduler_classes[0] snake_case_ = self.get_scheduler_config(prediction_type="""v_prediction""" ) snake_case_ = scheduler_class(**UpperCAmelCase_ ) scheduler.set_timesteps(self.num_inference_steps ) snake_case_ = self.dummy_model() snake_case_ = self.dummy_sample_deter * scheduler.init_noise_sigma snake_case_ = sample.to(UpperCAmelCase_ ) for i, t in enumerate(scheduler.timesteps ): snake_case_ = scheduler.scale_model_input(UpperCAmelCase_ , UpperCAmelCase_ ) snake_case_ = model(UpperCAmelCase_ , UpperCAmelCase_ ) snake_case_ = scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) snake_case_ = output.prev_sample snake_case_ = torch.sum(torch.abs(UpperCAmelCase_ ) ) snake_case_ = torch.mean(torch.abs(UpperCAmelCase_ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 124.77_149_200_439_453 ) < 1E-2 assert abs(result_mean.item() - 0.16_226_289_014_816_284 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 128.1_663_360_595_703 ) < 1E-2 assert abs(result_mean.item() - 0.16_688_326_001_167_297 ) < 1E-3 else: assert abs(result_sum.item() - 119.8_487_548_828_125 ) < 1E-2 assert abs(result_mean.item() - 0.1_560_530_662_536_621 ) < 1E-3 def lowerCAmelCase ( self : str ) ->str: """simple docstring""" snake_case_ = self.scheduler_classes[0] snake_case_ = self.get_scheduler_config() snake_case_ = scheduler_class(**UpperCAmelCase_ ) scheduler.set_timesteps(self.num_inference_steps , device=UpperCAmelCase_ ) snake_case_ = self.dummy_model() snake_case_ = self.dummy_sample_deter.to(UpperCAmelCase_ ) * scheduler.init_noise_sigma for t in scheduler.timesteps: snake_case_ = scheduler.scale_model_input(UpperCAmelCase_ , UpperCAmelCase_ ) snake_case_ = model(UpperCAmelCase_ , UpperCAmelCase_ ) snake_case_ = scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) snake_case_ = output.prev_sample snake_case_ = torch.sum(torch.abs(UpperCAmelCase_ ) ) snake_case_ = torch.mean(torch.abs(UpperCAmelCase_ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.46_957_397_460_938 ) < 1E-2 assert abs(result_mean.item() - 0.21_805_934_607_982_635 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59_353_637_695_312 ) < 1E-2 assert abs(result_mean.item() - 0.22_342_908_382_415_771 ) < 1E-3 else: assert abs(result_sum.item() - 162.52_383_422_851_562 ) < 1E-2 assert abs(result_mean.item() - 0.211_619_570_851_326 ) < 1E-3 def lowerCAmelCase ( self : int ) ->Optional[int]: """simple docstring""" snake_case_ = self.scheduler_classes[0] snake_case_ = self.get_scheduler_config() snake_case_ = scheduler_class(**UpperCAmelCase_ , use_karras_sigmas=UpperCAmelCase_ ) scheduler.set_timesteps(self.num_inference_steps , device=UpperCAmelCase_ ) snake_case_ = self.dummy_model() snake_case_ = self.dummy_sample_deter.to(UpperCAmelCase_ ) * scheduler.init_noise_sigma snake_case_ = sample.to(UpperCAmelCase_ ) for t in scheduler.timesteps: snake_case_ = scheduler.scale_model_input(UpperCAmelCase_ , UpperCAmelCase_ ) snake_case_ = model(UpperCAmelCase_ , UpperCAmelCase_ ) snake_case_ = scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) snake_case_ = output.prev_sample snake_case_ = torch.sum(torch.abs(UpperCAmelCase_ ) ) snake_case_ = torch.mean(torch.abs(UpperCAmelCase_ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 176.66_974_135_742_188 ) < 1E-2 assert abs(result_mean.item() - 0.23_003_872_730_981_811 ) < 1E-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 177.63_653_564_453_125 ) < 1E-2 assert abs(result_mean.item() - 0.23_003_872_730_981_811 ) < 1E-2 else: assert abs(result_sum.item() - 170.3_135_223_388_672 ) < 1E-2 assert abs(result_mean.item() - 0.23_003_872_730_981_811 ) < 1E-2
2
"""simple docstring""" def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: if index == number_of_items: return 0 snake_case_ = 0 snake_case_ = 0 snake_case_ = knapsack(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , index + 1 ) if weights[index] <= max_weight: snake_case_ = values[index] + knapsack( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , max_weight - weights[index] , index + 1 ) return max(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
2
1
'''simple docstring''' def A__ ( A : list[list[int]] , A : int , A : int , A : set): '''simple docstring''' UpperCamelCase , UpperCamelCase : int = len(A), len(grid[0]) if ( min(A , A) < 0 or row == row_length or col == col_length or (row, col) in visit or grid[row][col] == 1 ): return 0 if row == row_length - 1 and col == col_length - 1: return 1 visit.add((row, col)) UpperCamelCase : str = 0 count += depth_first_search(A , row + 1 , A , A) count += depth_first_search(A , row - 1 , A , A) count += depth_first_search(A , A , col + 1 , A) count += depth_first_search(A , A , col - 1 , A) visit.remove((row, col)) return count if __name__ == "__main__": import doctest doctest.testmod()
173
'''simple docstring''' from abc import ABC, abstractmethod from typing import Optional, Union from .. import Dataset, DatasetDict, Features, IterableDataset, IterableDatasetDict, NamedSplit from ..utils.typing import NestedDataStructureLike, PathLike class UpperCAmelCase_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = False , lowerCamelCase = False , lowerCamelCase = None , **lowerCamelCase , ) -> Dict: '''simple docstring''' UpperCamelCase : Optional[Any] = path_or_paths UpperCamelCase : List[str] = split if split or isinstance(lowerCamelCase , lowerCamelCase ) else "train" UpperCamelCase : Any = features UpperCamelCase : Optional[int] = cache_dir UpperCamelCase : str = keep_in_memory UpperCamelCase : str = streaming UpperCamelCase : List[Any] = num_proc UpperCamelCase : Optional[Any] = kwargs @abstractmethod def SCREAMING_SNAKE_CASE__ ( self ) -> Union[Dataset, DatasetDict, IterableDataset, IterableDatasetDict]: '''simple docstring''' pass class UpperCAmelCase_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = False , lowerCamelCase = False , lowerCamelCase = None , **lowerCamelCase , ) -> str: '''simple docstring''' UpperCamelCase : Tuple = features UpperCamelCase : str = cache_dir UpperCamelCase : List[Any] = keep_in_memory UpperCamelCase : int = streaming UpperCamelCase : int = num_proc UpperCamelCase : Tuple = kwargs @abstractmethod def SCREAMING_SNAKE_CASE__ ( self ) -> Union[Dataset, IterableDataset]: '''simple docstring''' pass
173
1
'''simple docstring''' import argparse import torch from transformers import OpenAIGPTConfig, OpenAIGPTModel, load_tf_weights_in_openai_gpt from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def lowercase_ ( lowercase__ , lowercase__ , lowercase__ ) ->Union[str, Any]: # Construct model if openai_config_file == "": _snake_case: Union[str, Any] = OpenAIGPTConfig() else: _snake_case: Optional[int] = OpenAIGPTConfig.from_json_file(lowercase__ ) _snake_case: List[Any] = OpenAIGPTModel(lowercase__ ) # Load weights from numpy load_tf_weights_in_openai_gpt(lowercase__ , lowercase__ , lowercase__ ) # Save pytorch-model _snake_case: Tuple = pytorch_dump_folder_path + '/' + WEIGHTS_NAME _snake_case: int = pytorch_dump_folder_path + '/' + CONFIG_NAME print(F'''Save PyTorch model to {pytorch_weights_dump_path}''' ) torch.save(model.state_dict() , lowercase__ ) print(F'''Save configuration file to {pytorch_config_dump_path}''' ) with open(lowercase__ , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": A : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--openai_checkpoint_folder_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--openai_config_file', default='', type=str, help=( 'An optional config json file corresponding to the pre-trained OpenAI model. \n' 'This specifies the model architecture.' ), ) A : Union[str, Any] = parser.parse_args() convert_openai_checkpoint_to_pytorch( args.openai_checkpoint_folder_path, args.openai_config_file, args.pytorch_dump_folder_path )
273
'''simple docstring''' def lowercase_ ( lowercase__ = 50 ) ->int: _snake_case: Union[str, Any] = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(F'{solution() = }')
273
1
'''simple docstring''' import unittest from transformers import RoFormerTokenizer, RoFormerTokenizerFast from transformers.testing_utils import require_rjieba, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_rjieba @require_tokenizers class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ): """simple docstring""" _snake_case : Tuple = RoFormerTokenizer _snake_case : Union[str, Any] = RoFormerTokenizerFast _snake_case : Optional[Any] = True _snake_case : Dict = True def snake_case__ ( self : Any ) -> str: '''simple docstring''' super().setUp() def snake_case__ ( self : List[str] , **lowerCAmelCase__ : Dict ) -> List[Any]: '''simple docstring''' return self.tokenizer_class.from_pretrained('''junnyu/roformer_chinese_base''' , **lowerCAmelCase__ ) def snake_case__ ( self : int , **lowerCAmelCase__ : Optional[int] ) -> List[Any]: '''simple docstring''' return self.rust_tokenizer_class.from_pretrained('''junnyu/roformer_chinese_base''' , **lowerCAmelCase__ ) def snake_case__ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = '''永和服装饰品有限公司,今天天气非常好''' _UpperCamelCase = '''永和 服装 饰品 有限公司 , 今 天 天 气 非常 好''' return input_text, output_text def snake_case__ ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = self.get_tokenizer() _UpperCamelCase , _UpperCamelCase = self.get_chinese_input_output_texts() _UpperCamelCase = tokenizer.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , output_text.split() ) _UpperCamelCase = tokens + [tokenizer.unk_token] _UpperCamelCase = [22943, 21332, 34431, 45904, 117, 306, 1231, 1231, 2653, 33994, 1266, 100] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) , lowerCAmelCase__ ) def snake_case__ ( self : int ) -> str: '''simple docstring''' _UpperCamelCase = self.get_rust_tokenizer() _UpperCamelCase , _UpperCamelCase = self.get_chinese_input_output_texts() _UpperCamelCase = tokenizer.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , output_text.split() ) _UpperCamelCase = tokens + [tokenizer.unk_token] _UpperCamelCase = [22943, 21332, 34431, 45904, 117, 306, 1231, 1231, 2653, 33994, 1266, 100] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) , lowerCAmelCase__ ) def snake_case__ ( self : str ) -> int: '''simple docstring''' pass def snake_case__ ( self : Optional[int] ) -> List[Any]: '''simple docstring''' pass def snake_case__ ( self : Optional[int] ) -> Any: '''simple docstring''' pass
98
'''simple docstring''' import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def _UpperCamelCase ()-> int: '''simple docstring''' __snake_case = '''https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png''' __snake_case = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ).convert('''RGB''' ) return image def _UpperCamelCase (_lowerCamelCase : Union[str, Any] )-> List[Any]: '''simple docstring''' __snake_case = [] # fmt: off # vision encoder rename_keys.append(('''visual_encoder.cls_token''', '''vision_model.embeddings.class_embedding''') ) rename_keys.append(('''visual_encoder.pos_embed''', '''vision_model.embeddings.position_embedding''') ) rename_keys.append(('''visual_encoder.patch_embed.proj.weight''', '''vision_model.embeddings.patch_embedding.weight''') ) rename_keys.append(('''visual_encoder.patch_embed.proj.bias''', '''vision_model.embeddings.patch_embedding.bias''') ) rename_keys.append(('''ln_vision.weight''', '''vision_model.post_layernorm.weight''') ) rename_keys.append(('''ln_vision.bias''', '''vision_model.post_layernorm.bias''') ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((f'''visual_encoder.blocks.{i}.norm1.weight''', f'''vision_model.encoder.layers.{i}.layer_norm1.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.norm1.bias''', f'''vision_model.encoder.layers.{i}.layer_norm1.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.norm2.weight''', f'''vision_model.encoder.layers.{i}.layer_norm2.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.norm2.bias''', f'''vision_model.encoder.layers.{i}.layer_norm2.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.attn.qkv.weight''', f'''vision_model.encoder.layers.{i}.self_attn.qkv.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.attn.proj.weight''', f'''vision_model.encoder.layers.{i}.self_attn.projection.weight''',) ) rename_keys.append((f'''visual_encoder.blocks.{i}.attn.proj.bias''', f'''vision_model.encoder.layers.{i}.self_attn.projection.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc1.weight''', f'''vision_model.encoder.layers.{i}.mlp.fc1.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc1.bias''', f'''vision_model.encoder.layers.{i}.mlp.fc1.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc2.weight''', f'''vision_model.encoder.layers.{i}.mlp.fc2.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc2.bias''', f'''vision_model.encoder.layers.{i}.mlp.fc2.bias''') ) # QFormer rename_keys.append(('''Qformer.bert.embeddings.LayerNorm.weight''', '''qformer.layernorm.weight''') ) rename_keys.append(('''Qformer.bert.embeddings.LayerNorm.bias''', '''qformer.layernorm.bias''') ) # fmt: on return rename_keys def _UpperCamelCase (_lowerCamelCase : Dict , _lowerCamelCase : List[str] , _lowerCamelCase : Optional[int] )-> Tuple: '''simple docstring''' __snake_case = dct.pop(_lowerCamelCase ) __snake_case = val def _UpperCamelCase (_lowerCamelCase : List[Any] , _lowerCamelCase : Tuple )-> str: '''simple docstring''' for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases __snake_case = state_dict.pop(f'''visual_encoder.blocks.{i}.attn.q_bias''' ) __snake_case = state_dict.pop(f'''visual_encoder.blocks.{i}.attn.v_bias''' ) # next, set bias in the state dict __snake_case = torch.cat((q_bias, torch.zeros_like(_lowerCamelCase , requires_grad=_lowerCamelCase ), v_bias) ) __snake_case = qkv_bias def _UpperCamelCase (_lowerCamelCase : Tuple , _lowerCamelCase : Tuple )-> Dict: '''simple docstring''' __snake_case = 3_64 if '''coco''' in model_name else 2_24 __snake_case = BlipaVisionConfig(image_size=_lowerCamelCase ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: __snake_case = OPTConfig.from_pretrained('''facebook/opt-2.7b''' , eos_token_id=_lowerCamelCase ).to_dict() elif "opt-6.7b" in model_name: __snake_case = OPTConfig.from_pretrained('''facebook/opt-6.7b''' , eos_token_id=_lowerCamelCase ).to_dict() elif "t5-xl" in model_name: __snake_case = TaConfig.from_pretrained('''google/flan-t5-xl''' , dense_act_fn='''gelu''' , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: __snake_case = TaConfig.from_pretrained('''google/flan-t5-xxl''' , dense_act_fn='''gelu''' , bos_token_id=1 ).to_dict() __snake_case = BlipaConfig(vision_config=_lowerCamelCase , text_config=_lowerCamelCase ) return config, image_size @torch.no_grad() def _UpperCamelCase (_lowerCamelCase : List[Any] , _lowerCamelCase : Union[str, Any]=None , _lowerCamelCase : Any=False )-> Dict: '''simple docstring''' __snake_case = ( AutoTokenizer.from_pretrained('''facebook/opt-2.7b''' ) if '''opt''' in model_name else AutoTokenizer.from_pretrained('''google/flan-t5-xl''' ) ) __snake_case = tokenizer('''\n''' , add_special_tokens=_lowerCamelCase ).input_ids[0] __snake_case , __snake_case = get_blipa_config(_lowerCamelCase , eos_token_id=_lowerCamelCase ) __snake_case = BlipaForConditionalGeneration(_lowerCamelCase ).eval() __snake_case = { '''blip2-opt-2.7b''': ('''blip2_opt''', '''pretrain_opt2.7b'''), '''blip2-opt-6.7b''': ('''blip2_opt''', '''pretrain_opt6.7b'''), '''blip2-opt-2.7b-coco''': ('''blip2_opt''', '''caption_coco_opt2.7b'''), '''blip2-opt-6.7b-coco''': ('''blip2_opt''', '''caption_coco_opt6.7b'''), '''blip2-flan-t5-xl''': ('''blip2_t5''', '''pretrain_flant5xl'''), '''blip2-flan-t5-xl-coco''': ('''blip2_t5''', '''caption_coco_flant5xl'''), '''blip2-flan-t5-xxl''': ('''blip2_t5''', '''pretrain_flant5xxl'''), } __snake_case , __snake_case = model_name_to_original[model_name] # load original model print('''Loading original model...''' ) __snake_case = '''cuda''' if torch.cuda.is_available() else '''cpu''' __snake_case , __snake_case , __snake_case = load_model_and_preprocess( name=_lowerCamelCase , model_type=_lowerCamelCase , is_eval=_lowerCamelCase , device=_lowerCamelCase ) original_model.eval() print('''Done!''' ) # update state dict keys __snake_case = original_model.state_dict() __snake_case = create_rename_keys(_lowerCamelCase ) for src, dest in rename_keys: rename_key(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): __snake_case = state_dict.pop(_lowerCamelCase ) if key.startswith('''Qformer.bert''' ): __snake_case = key.replace('''Qformer.bert''' , '''qformer''' ) if "attention.self" in key: __snake_case = key.replace('''self''' , '''attention''' ) if "opt_proj" in key: __snake_case = key.replace('''opt_proj''' , '''language_projection''' ) if "t5_proj" in key: __snake_case = key.replace('''t5_proj''' , '''language_projection''' ) if key.startswith('''opt''' ): __snake_case = key.replace('''opt''' , '''language''' ) if key.startswith('''t5''' ): __snake_case = key.replace('''t5''' , '''language''' ) __snake_case = val # read in qv biases read_in_q_v_bias(_lowerCamelCase , _lowerCamelCase ) __snake_case , __snake_case = hf_model.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase ) assert len(_lowerCamelCase ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] __snake_case = load_demo_image() __snake_case = vis_processors['''eval'''](_lowerCamelCase ).unsqueeze(0 ).to(_lowerCamelCase ) __snake_case = tokenizer(['''\n'''] , return_tensors='''pt''' ).input_ids.to(_lowerCamelCase ) # create processor __snake_case = BlipImageProcessor( size={'''height''': image_size, '''width''': image_size} , image_mean=_lowerCamelCase , image_std=_lowerCamelCase ) __snake_case = BlipaProcessor(image_processor=_lowerCamelCase , tokenizer=_lowerCamelCase ) __snake_case = processor(images=_lowerCamelCase , return_tensors='''pt''' ).pixel_values.to(_lowerCamelCase ) # make sure processor creates exact same pixel values assert torch.allclose(_lowerCamelCase , _lowerCamelCase ) original_model.to(_lowerCamelCase ) hf_model.to(_lowerCamelCase ) with torch.no_grad(): if "opt" in model_name: __snake_case = original_model({'''image''': original_pixel_values, '''text_input''': ['''''']} ).logits __snake_case = hf_model(_lowerCamelCase , _lowerCamelCase ).logits else: __snake_case = original_model( {'''image''': original_pixel_values, '''text_input''': ['''\n'''], '''text_output''': ['''\n''']} ).logits __snake_case = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -1_00 ) __snake_case = hf_model(_lowerCamelCase , _lowerCamelCase , labels=_lowerCamelCase ).logits assert original_logits.shape == logits.shape print('''First values of original logits:''' , original_logits[0, :3, :3] ) print('''First values of HF logits:''' , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": __snake_case = torch.tensor( [[-41.5850, -4.4440, -8.9922], [-47.4322, -5.9143, -1.7340]] , device=_lowerCamelCase ) assert torch.allclose(logits[0, :3, :3] , _lowerCamelCase , atol=1E-4 ) elif model_name == "blip2-flan-t5-xl-coco": __snake_case = torch.tensor( [[-57.0109, -9.8967, -12.6280], [-68.6578, -12.7191, -10.5065]] , device=_lowerCamelCase ) else: # cast to same type __snake_case = logits.dtype assert torch.allclose(original_logits.to(_lowerCamelCase ) , _lowerCamelCase , atol=1E-2 ) print('''Looks ok!''' ) print('''Generating a caption...''' ) __snake_case = '''''' __snake_case = tokenizer(_lowerCamelCase , return_tensors='''pt''' ).input_ids.to(_lowerCamelCase ) __snake_case = original_model.generate({'''image''': original_pixel_values} ) __snake_case = hf_model.generate( _lowerCamelCase , _lowerCamelCase , do_sample=_lowerCamelCase , num_beams=5 , max_length=30 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print('''Original generation:''' , _lowerCamelCase ) __snake_case = input_ids.shape[1] __snake_case = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=_lowerCamelCase ) __snake_case = [text.strip() for text in output_text] print('''HF generation:''' , _lowerCamelCase ) if pytorch_dump_folder_path is not None: processor.save_pretrained(_lowerCamelCase ) hf_model.save_pretrained(_lowerCamelCase ) if push_to_hub: processor.push_to_hub(f'''nielsr/{model_name}''' ) hf_model.push_to_hub(f'''nielsr/{model_name}''' ) if __name__ == "__main__": UpperCAmelCase_ : Any = argparse.ArgumentParser() UpperCAmelCase_ : Tuple = [ '''blip2-opt-2.7b''', '''blip2-opt-6.7b''', '''blip2-opt-2.7b-coco''', '''blip2-opt-6.7b-coco''', '''blip2-flan-t5-xl''', '''blip2-flan-t5-xl-coco''', '''blip2-flan-t5-xxl''', ] parser.add_argument( '''--model_name''', default='''blip2-opt-2.7b''', choices=choices, type=str, help='''Path to hf config.json of model to convert''', ) parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to push the model and processor to the hub after converting''', ) UpperCAmelCase_ : List[str] = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
24
0
"""simple docstring""" from __future__ import annotations from collections.abc import Sequence from typing import Literal def __A ( a_ :str , a_ :str) -> str | Literal[False]: __a : Any = list(a_) __a : Optional[int] = list(a_) __a : Union[str, Any] = 0 for i in range(len(a_)): if lista[i] != lista[i]: count += 1 __a : str = '''_''' if count > 1: return False else: return "".join(a_) def __A ( a_ :list[str]) -> list[str]: __a : Tuple = [] while True: __a : Optional[int] = ['''$'''] * len(a_) __a : str = [] for i in range(len(a_)): for j in range(i + 1 , len(a_)): __a : Union[str, Any] = compare_string(binary[i] , binary[j]) if k is False: __a : Tuple = '''*''' __a : List[str] = '''*''' temp.append('''X''') for i in range(len(a_)): if checka[i] == "$": pi.append(binary[i]) if len(a_) == 0: return pi __a : List[Any] = list(set(a_)) def __A ( a_ :int , a_ :Sequence[float]) -> list[str]: __a : List[str] = [] for minterm in minterms: __a : List[Any] = '''''' for _ in range(a_): __a : Tuple = str(minterm % 2) + string minterm //= 2 temp.append(a_) return temp def __A ( a_ :str , a_ :str , a_ :int) -> bool: __a : List[str] = list(a_) __a : List[str] = list(a_) __a : List[Any] = 0 for i in range(len(a_)): if lista[i] != lista[i]: count_n += 1 return count_n == count def __A ( a_ :list[list[int]] , a_ :list[str]) -> list[str]: __a : str = [] __a : Dict = [0] * len(a_) for i in range(len(chart[0])): __a : Optional[int] = 0 __a : Optional[int] = -1 for j in range(len(a_)): if chart[j][i] == 1: count += 1 __a : List[str] = j if count == 1: __a : Optional[Any] = 1 for i in range(len(a_)): if select[i] == 1: for j in range(len(chart[0])): if chart[i][j] == 1: for k in range(len(a_)): __a : Tuple = 0 temp.append(prime_implicants[i]) while True: __a : str = 0 __a : Union[str, Any] = -1 __a : Any = 0 for i in range(len(a_)): __a : Optional[Any] = chart[i].count(1) if count_n > max_n: __a : Dict = count_n __a : Optional[Any] = i if max_n == 0: return temp temp.append(prime_implicants[rem]) for i in range(len(chart[0])): if chart[rem][i] == 1: for j in range(len(a_)): __a : Dict = 0 def __A ( a_ :list[str] , a_ :list[str]) -> list[list[int]]: __a : Tuple = [[0 for x in range(len(a_))] for x in range(len(a_))] for i in range(len(a_)): __a : Optional[int] = prime_implicants[i].count('''_''') for j in range(len(a_)): if is_for_table(prime_implicants[i] , binary[j] , a_): __a : Union[str, Any] = 1 return chart def __A ( ) -> None: __a : str = int(input('''Enter the no. of variables\n''')) __a : Union[str, Any] = [ float(a_) for x in input( '''Enter the decimal representation of Minterms \'Spaces Separated\'\n''').split() ] __a : Optional[int] = decimal_to_binary(a_ , a_) __a : Tuple = check(a_) print('''Prime Implicants are:''') print(a_) __a : Optional[Any] = prime_implicant_chart(a_ , a_) __a : int = selection(a_ , a_) print('''Essential Prime Implicants are:''') print(a_) if __name__ == "__main__": import doctest doctest.testmod() main()
101
"""simple docstring""" def __A ( a_ :float , a_ :float) -> float: return price * (1 + tax_rate) if __name__ == "__main__": print(F'{price_plus_tax(100, 0.25) = }') print(F'{price_plus_tax(125.50, 0.05) = }')
101
1
"""simple docstring""" from ..utils import DummyObject, requires_backends class UpperCAmelCase_ ( metaclass=_a): lowerCamelCase__ : Dict = ["sentencepiece"] def __init__( self , *a , **a ) -> List[Any]: requires_backends(self , ['sentencepiece'] ) class UpperCAmelCase_ ( metaclass=_a): lowerCamelCase__ : List[Any] = ["sentencepiece"] def __init__( self , *a , **a ) -> List[str]: requires_backends(self , ['sentencepiece'] ) class UpperCAmelCase_ ( metaclass=_a): lowerCamelCase__ : str = ["sentencepiece"] def __init__( self , *a , **a ) -> Union[str, Any]: requires_backends(self , ['sentencepiece'] ) class UpperCAmelCase_ ( metaclass=_a): lowerCamelCase__ : Union[str, Any] = ["sentencepiece"] def __init__( self , *a , **a ) -> Optional[int]: requires_backends(self , ['sentencepiece'] ) class UpperCAmelCase_ ( metaclass=_a): lowerCamelCase__ : Optional[int] = ["sentencepiece"] def __init__( self , *a , **a ) -> List[str]: requires_backends(self , ['sentencepiece'] ) class UpperCAmelCase_ ( metaclass=_a): lowerCamelCase__ : int = ["sentencepiece"] def __init__( self , *a , **a ) -> Union[str, Any]: requires_backends(self , ['sentencepiece'] ) class UpperCAmelCase_ ( metaclass=_a): lowerCamelCase__ : int = ["sentencepiece"] def __init__( self , *a , **a ) -> Tuple: requires_backends(self , ['sentencepiece'] ) class UpperCAmelCase_ ( metaclass=_a): lowerCamelCase__ : Dict = ["sentencepiece"] def __init__( self , *a , **a ) -> Tuple: requires_backends(self , ['sentencepiece'] ) class UpperCAmelCase_ ( metaclass=_a): lowerCamelCase__ : Any = ["sentencepiece"] def __init__( self , *a , **a ) -> Optional[Any]: requires_backends(self , ['sentencepiece'] ) class UpperCAmelCase_ ( metaclass=_a): lowerCamelCase__ : Optional[int] = ["sentencepiece"] def __init__( self , *a , **a ) -> List[str]: requires_backends(self , ['sentencepiece'] ) class UpperCAmelCase_ ( metaclass=_a): lowerCamelCase__ : Any = ["sentencepiece"] def __init__( self , *a , **a ) -> int: requires_backends(self , ['sentencepiece'] ) class UpperCAmelCase_ ( metaclass=_a): lowerCamelCase__ : List[Any] = ["sentencepiece"] def __init__( self , *a , **a ) -> Any: requires_backends(self , ['sentencepiece'] ) class UpperCAmelCase_ ( metaclass=_a): lowerCamelCase__ : Any = ["sentencepiece"] def __init__( self , *a , **a ) -> Optional[int]: requires_backends(self , ['sentencepiece'] ) class UpperCAmelCase_ ( metaclass=_a): lowerCamelCase__ : Optional[int] = ["sentencepiece"] def __init__( self , *a , **a ) -> Union[str, Any]: requires_backends(self , ['sentencepiece'] ) class UpperCAmelCase_ ( metaclass=_a): lowerCamelCase__ : Optional[int] = ["sentencepiece"] def __init__( self , *a , **a ) -> List[str]: requires_backends(self , ['sentencepiece'] ) class UpperCAmelCase_ ( metaclass=_a): lowerCamelCase__ : Optional[int] = ["sentencepiece"] def __init__( self , *a , **a ) -> Tuple: requires_backends(self , ['sentencepiece'] ) class UpperCAmelCase_ ( metaclass=_a): lowerCamelCase__ : Tuple = ["sentencepiece"] def __init__( self , *a , **a ) -> Optional[Any]: requires_backends(self , ['sentencepiece'] ) class UpperCAmelCase_ ( metaclass=_a): lowerCamelCase__ : int = ["sentencepiece"] def __init__( self , *a , **a ) -> Tuple: requires_backends(self , ['sentencepiece'] ) class UpperCAmelCase_ ( metaclass=_a): lowerCamelCase__ : Optional[int] = ["sentencepiece"] def __init__( self , *a , **a ) -> int: requires_backends(self , ['sentencepiece'] ) class UpperCAmelCase_ ( metaclass=_a): lowerCamelCase__ : List[str] = ["sentencepiece"] def __init__( self , *a , **a ) -> Tuple: requires_backends(self , ['sentencepiece'] ) class UpperCAmelCase_ ( metaclass=_a): lowerCamelCase__ : str = ["sentencepiece"] def __init__( self , *a , **a ) -> int: requires_backends(self , ['sentencepiece'] ) class UpperCAmelCase_ ( metaclass=_a): lowerCamelCase__ : int = ["sentencepiece"] def __init__( self , *a , **a ) -> Any: requires_backends(self , ['sentencepiece'] ) class UpperCAmelCase_ ( metaclass=_a): lowerCamelCase__ : Optional[Any] = ["sentencepiece"] def __init__( self , *a , **a ) -> str: requires_backends(self , ['sentencepiece'] ) class UpperCAmelCase_ ( metaclass=_a): lowerCamelCase__ : int = ["sentencepiece"] def __init__( self , *a , **a ) -> List[Any]: requires_backends(self , ['sentencepiece'] ) class UpperCAmelCase_ ( metaclass=_a): lowerCamelCase__ : Dict = ["sentencepiece"] def __init__( self , *a , **a ) -> Tuple: requires_backends(self , ['sentencepiece'] ) class UpperCAmelCase_ ( metaclass=_a): lowerCamelCase__ : Dict = ["sentencepiece"] def __init__( self , *a , **a ) -> Optional[int]: requires_backends(self , ['sentencepiece'] ) class UpperCAmelCase_ ( metaclass=_a): lowerCamelCase__ : List[str] = ["sentencepiece"] def __init__( self , *a , **a ) -> Optional[int]: requires_backends(self , ['sentencepiece'] ) class UpperCAmelCase_ ( metaclass=_a): lowerCamelCase__ : int = ["sentencepiece"] def __init__( self , *a , **a ) -> Dict: requires_backends(self , ['sentencepiece'] ) class UpperCAmelCase_ ( metaclass=_a): lowerCamelCase__ : Any = ["sentencepiece"] def __init__( self , *a , **a ) -> Optional[Any]: requires_backends(self , ['sentencepiece'] ) class UpperCAmelCase_ ( metaclass=_a): lowerCamelCase__ : str = ["sentencepiece"] def __init__( self , *a , **a ) -> Tuple: requires_backends(self , ['sentencepiece'] ) class UpperCAmelCase_ ( metaclass=_a): lowerCamelCase__ : Tuple = ["sentencepiece"] def __init__( self , *a , **a ) -> Optional[int]: requires_backends(self , ['sentencepiece'] )
599
"""simple docstring""" import copy from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging _UpperCamelCase : Tuple = logging.get_logger(__name__) class UpperCAmelCase_ ( _a): lowerCamelCase__ : Union[str, Any] = ["input_features"] def __init__( self , a=8_0 , a=1_6_0_0_0 , a=1_6_0 , a=3_0 , a=4_0_0 , a=0.0 , a=False , **a , ) -> Any: super().__init__( feature_size=a , sampling_rate=a , padding_value=a , return_attention_mask=a , **a , ) lowercase__ : Any = n_fft lowercase__ : List[Any] = hop_length lowercase__ : str = chunk_length lowercase__ : Optional[int] = chunk_length * sampling_rate lowercase__ : Any = self.n_samples // hop_length lowercase__ : Union[str, Any] = sampling_rate lowercase__ : str = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=a , min_frequency=0.0 , max_frequency=8_000.0 , sampling_rate=a , norm='slaney' , mel_scale='slaney' , ) def _UpperCAmelCase ( self , a ) -> np.ndarray: lowercase__ : List[str] = spectrogram( a , window_function(self.n_fft , 'hann' ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters , log_mel='log10' , ) lowercase__ : int = log_spec[:, :-1] lowercase__ : List[Any] = np.maximum(a , log_spec.max() - 8.0 ) lowercase__ : Union[str, Any] = (log_spec + 4.0) / 4.0 return log_spec @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def _UpperCAmelCase ( a , a , a = 0.0 ) -> List[np.ndarray]: if attention_mask is not None: lowercase__ : Dict = np.array(a , np.intaa ) lowercase__ : Any = [] for vector, length in zip(a , attention_mask.sum(-1 ) ): lowercase__ : Dict = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1e-7 ) if length < normed_slice.shape[0]: lowercase__ : Optional[int] = padding_value normed_input_values.append(a ) else: lowercase__ : Any = [(x - x.mean()) / np.sqrt(x.var() + 1e-7 ) for x in input_values] return normed_input_values def __call__( self , a , a = True , a = None , a = None , a = None , a = "max_length" , a = None , a = None , a = None , **a , ) -> BatchFeature: if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"""The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a""" f""" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input""" f""" was sampled with {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) lowercase__ : str = isinstance(a , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" ) lowercase__ : Optional[Any] = is_batched_numpy or ( isinstance(a , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: lowercase__ : Union[str, Any] = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(a , np.ndarray ): lowercase__ : int = np.asarray(a , dtype=np.floataa ) elif isinstance(a , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowercase__ : int = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowercase__ : Tuple = [np.asarray([raw_speech] ).T] lowercase__ : Any = BatchFeature({'input_features': raw_speech} ) # convert into correct format for padding lowercase__ : int = self.pad( a , padding=a , max_length=max_length if max_length else self.n_samples , truncation=a , pad_to_multiple_of=a , return_attention_mask=return_attention_mask or do_normalize , ) # zero-mean and unit-variance normalization if do_normalize: lowercase__ : Dict = self.zero_mean_unit_var_norm( padded_inputs['input_features'] , attention_mask=padded_inputs['attention_mask'] , padding_value=self.padding_value , ) lowercase__ : str = np.stack(padded_inputs['input_features'] , axis=0 ) # make sure list is in array format lowercase__ : Any = padded_inputs.get('input_features' ).transpose(2 , 0 , 1 ) lowercase__ : Union[str, Any] = [self._np_extract_fbank_features(a ) for waveform in input_features[0]] if isinstance(input_features[0] , a ): lowercase__ : Union[str, Any] = [np.asarray(a , dtype=np.floataa ) for feature in input_features] else: lowercase__ : List[str] = input_features if return_attention_mask: # rescale from sample (48000) to feature (3000) lowercase__ : List[str] = padded_inputs['attention_mask'][:, :: self.hop_length] if return_tensors is not None: lowercase__ : Tuple = padded_inputs.convert_to_tensors(a ) return padded_inputs def _UpperCAmelCase ( self ) -> Dict[str, Any]: lowercase__ : Tuple = copy.deepcopy(self.__dict__ ) lowercase__ : List[Any] = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] return output
599
1
import argparse import gc import json import os import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler lowerCAmelCase__ = 1_6 lowerCAmelCase__ = 3_2 def __lowerCamelCase ( __a : List[Any] ) -> List[str]: return int(x / 2**20 ) class _a : """simple docstring""" def __enter__( self ): gc.collect() torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() # reset the peak gauge to zero _lowercase =torch.cuda.memory_allocated() return self def __exit__( self , *lowerCAmelCase_ ): gc.collect() torch.cuda.empty_cache() _lowercase =torch.cuda.memory_allocated() _lowercase =torch.cuda.max_memory_allocated() _lowercase =bamb(self.end - self.begin ) _lowercase =bamb(self.peak - self.begin ) # print(f"delta used/peak {self.used:4d}/{self.peaked:4d}") def __lowerCamelCase ( __a : Accelerator , __a : int = 16 , __a : str = "bert-base-cased" , __a : int = 320 , __a : int = 160 , ) -> str: _lowercase =AutoTokenizer.from_pretrained(__a ) _lowercase =load_dataset( "glue" , "mrpc" , split={"train": f'''train[:{n_train}]''', "validation": f'''validation[:{n_val}]'''} ) def tokenize_function(__a : Dict ): # max_length=None => use the model max length (it's actually the default) _lowercase =tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=__a , max_length=__a ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset _lowercase =datasets.map( __a , batched=__a , remove_columns=["idx", "sentence1", "sentence2"] , load_from_cache_file=__a ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _lowercase =tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(__a : Optional[Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(__a , padding="max_length" , max_length=128 , return_tensors="pt" ) return tokenizer.pad(__a , padding="longest" , return_tensors="pt" ) # Instantiate dataloaders. _lowercase =DataLoader( tokenized_datasets["train"] , shuffle=__a , collate_fn=__a , batch_size=__a ) _lowercase =DataLoader( tokenized_datasets["validation"] , shuffle=__a , collate_fn=__a , batch_size=__a ) return train_dataloader, eval_dataloader def __lowerCamelCase ( __a : str , __a : Optional[Any] ) -> Optional[int]: # Initialize accelerator _lowercase =Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _lowercase =config["lr"] _lowercase =int(config["num_epochs"] ) _lowercase =int(config["seed"] ) _lowercase =int(config["batch_size"] ) _lowercase =args.model_name_or_path set_seed(__a ) _lowercase , _lowercase =get_dataloaders(__a , __a , __a , args.n_train , args.n_val ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _lowercase =AutoModelForSequenceClassification.from_pretrained(__a , return_dict=__a ) # Instantiate optimizer _lowercase =( AdamW if accelerator.state.deepspeed_plugin is None or "optimizer" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) _lowercase =optimizer_cls(params=model.parameters() , lr=__a ) if accelerator.state.deepspeed_plugin is not None: _lowercase =accelerator.state.deepspeed_plugin.deepspeed_config[ "gradient_accumulation_steps" ] else: _lowercase =1 _lowercase =(len(__a ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): _lowercase =get_linear_schedule_with_warmup( optimizer=__a , num_warmup_steps=0 , num_training_steps=__a , ) else: _lowercase =DummyScheduler(__a , total_num_steps=__a , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _lowercase , _lowercase , _lowercase , _lowercase , _lowercase =accelerator.prepare( __a , __a , __a , __a , __a ) # We need to keep track of how many total steps we have iterated over _lowercase =0 # We also need to keep track of the stating epoch so files are named properly _lowercase =0 # Now we train the model _lowercase ={} for epoch in range(__a , __a ): with TorchTracemalloc() as tracemalloc: model.train() for step, batch in enumerate(__a ): _lowercase =model(**__a ) _lowercase =outputs.loss _lowercase =loss / gradient_accumulation_steps accelerator.backward(__a ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 # Printing the GPU memory usage details such as allocated memory, peak memory, and total memory usage accelerator.print("Memory before entering the train : {}".format(bamb(tracemalloc.begin ) ) ) accelerator.print("Memory consumed at the end of the train (end-begin): {}".format(tracemalloc.used ) ) accelerator.print("Peak Memory consumed during the train (max-begin): {}".format(tracemalloc.peaked ) ) accelerator.print( "Total Peak Memory consumed during the train (max): {}".format( tracemalloc.peaked + bamb(tracemalloc.begin ) ) ) _lowercase =tracemalloc.peaked + bamb(tracemalloc.begin ) if args.peak_memory_upper_bound is not None: assert ( train_total_peak_memory[f'''epoch-{epoch}'''] <= args.peak_memory_upper_bound ), "Peak memory usage exceeded the upper bound" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , "peak_memory_utilization.json" ) , "w" ) as f: json.dump(__a , __a ) def __lowerCamelCase ( ) -> Tuple: _lowercase =argparse.ArgumentParser(description="Simple example of training script tracking peak GPU memory usage." ) parser.add_argument( "--model_name_or_path" , type=__a , default="bert-base-cased" , help="Path to pretrained model or model identifier from huggingface.co/models." , required=__a , ) parser.add_argument( "--output_dir" , type=__a , default="." , help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory." , ) parser.add_argument( "--peak_memory_upper_bound" , type=__a , default=__a , help="The upper bound of peak memory usage in MB. If set, the training will throw an error if the peak memory usage exceeds this value." , ) parser.add_argument( "--n_train" , type=__a , default=320 , help="Number of training examples to use." , ) parser.add_argument( "--n_val" , type=__a , default=160 , help="Number of validation examples to use." , ) parser.add_argument( "--num_epochs" , type=__a , default=1 , help="Number of train epochs." , ) _lowercase =parser.parse_args() _lowercase ={"lr": 2E-5, "num_epochs": args.num_epochs, "seed": 42, "batch_size": 16} training_function(__a , __a ) if __name__ == "__main__": main()
703
import warnings from typing import Dict, List, Optional, Tuple from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) class _a ( lowerCamelCase_ ): """simple docstring""" __SCREAMING_SNAKE_CASE = ['input_ids', 'attention_mask'] def __init__( self , lowerCAmelCase_="</s>" , lowerCAmelCase_="<unk>" , lowerCAmelCase_="<pad>" , lowerCAmelCase_=125 , lowerCAmelCase_=None , **lowerCAmelCase_ , ): # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: _lowercase =[F'''<extra_id_{i}>''' for i in range(lowerCAmelCase_ )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens _lowercase =len(set(filter(lambda lowerCAmelCase_ : bool("extra_id" in str(lowerCAmelCase_ ) ) , lowerCAmelCase_ ) ) ) if extra_tokens != extra_ids: raise ValueError( F'''Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are''' " provided to ByT5Tokenizer. In this case the additional_special_tokens must include the" " extra_ids tokens" ) _lowercase =AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else pad_token _lowercase =AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else eos_token _lowercase =AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else unk_token super().__init__( eos_token=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , extra_ids=lowerCAmelCase_ , additional_special_tokens=lowerCAmelCase_ , **lowerCAmelCase_ , ) _lowercase =extra_ids _lowercase =2**8 # utf is 8 bits # define special tokens dict _lowercase ={ self.pad_token: 0, self.eos_token: 1, self.unk_token: 2, } _lowercase =len(self.special_tokens_encoder ) _lowercase =len(lowerCAmelCase_ ) for i, token in enumerate(lowerCAmelCase_ ): _lowercase =self.vocab_size + i - n _lowercase ={v: k for k, v in self.special_tokens_encoder.items()} @property def __lowerCAmelCase ( self ): return self._utf_vocab_size + self._num_special_tokens + self._extra_ids def __lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase_ , token_ids_a=lowerCAmelCase_ , already_has_special_tokens=lowerCAmelCase_ ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(lowerCAmelCase_ )) + [1] return ([0] * len(lowerCAmelCase_ )) + [1] + ([0] * len(lowerCAmelCase_ )) + [1] def __lowerCAmelCase ( self , lowerCAmelCase_ ): if len(lowerCAmelCase_ ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( F'''This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated''' " eos tokens being added." ) return token_ids else: return token_ids + [self.eos_token_id] def __lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None ): _lowercase =[self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def __lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None ): _lowercase =self._add_eos_if_not_present(lowerCAmelCase_ ) if token_ids_a is None: return token_ids_a else: _lowercase =self._add_eos_if_not_present(lowerCAmelCase_ ) return token_ids_a + token_ids_a def __lowerCAmelCase ( self , lowerCAmelCase_ ): _lowercase =[chr(lowerCAmelCase_ ) for i in text.encode("utf-8" )] return tokens def __lowerCAmelCase ( self , lowerCAmelCase_ ): if token in self.special_tokens_encoder: _lowercase =self.special_tokens_encoder[token] elif token in self.added_tokens_encoder: _lowercase =self.added_tokens_encoder[token] elif len(lowerCAmelCase_ ) != 1: _lowercase =self.unk_token_id else: _lowercase =ord(lowerCAmelCase_ ) + self._num_special_tokens return token_id def __lowerCAmelCase ( self , lowerCAmelCase_ ): if index in self.special_tokens_decoder: _lowercase =self.special_tokens_decoder[index] else: _lowercase =chr(index - self._num_special_tokens ) return token def __lowerCAmelCase ( self , lowerCAmelCase_ ): _lowercase =b"" for token in tokens: if token in self.special_tokens_decoder: _lowercase =self.special_tokens_decoder[token].encode("utf-8" ) elif token in self.added_tokens_decoder: _lowercase =self.special_tokens_decoder[token].encode("utf-8" ) elif token in self.special_tokens_encoder: _lowercase =token.encode("utf-8" ) elif token in self.added_tokens_encoder: _lowercase =token.encode("utf-8" ) else: _lowercase =bytes([ord(lowerCAmelCase_ )] ) bstring += tok_string _lowercase =bstring.decode("utf-8" , errors="ignore" ) return string def __lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None ): return ()
594
0
'''simple docstring''' import inspect import unittest from transformers import ViTHybridConfig from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class UpperCamelCase__ : def __init__( self : List[Any] , lowerCamelCase : Dict , lowerCamelCase : Optional[Any]=1_3 , lowerCamelCase : Tuple=6_4 , lowerCamelCase : Optional[int]=2 , lowerCamelCase : Optional[int]=3 , lowerCamelCase : Union[str, Any]=True , lowerCamelCase : Any=True , lowerCamelCase : Optional[int]=3_2 , lowerCamelCase : Tuple=5 , lowerCamelCase : str=4 , lowerCamelCase : Optional[int]=3_7 , lowerCamelCase : str="gelu" , lowerCamelCase : List[Any]=0.1 , lowerCamelCase : List[Any]=0.1 , lowerCamelCase : int=1_0 , lowerCamelCase : str=0.02 , lowerCamelCase : List[Any]=[1, 1_6, 4, 4] , lowerCamelCase : List[Any]=None , ): '''simple docstring''' a__ = parent a__ = batch_size a__ = image_size a__ = patch_size a__ = num_channels a__ = is_training a__ = use_labels a__ = hidden_size a__ = num_hidden_layers a__ = num_attention_heads a__ = intermediate_size a__ = hidden_act a__ = hidden_dropout_prob a__ = attention_probs_dropout_prob a__ = type_sequence_label_size a__ = initializer_range a__ = scope a__ = backbone_featmap_shape # in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) # the number of patches is based on the feature map of the backbone, which by default uses an output stride # of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size a__ = (self.image_size // 3_2) ** 2 a__ = num_patches + 1 def __a ( self : Any ): '''simple docstring''' a__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a__ = None if self.use_labels: a__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a__ = self.get_config() return config, pixel_values, labels def __a ( self : Optional[int] ): '''simple docstring''' a__ = { "global_padding": "same", "layer_type": "bottleneck", "depths": [3, 4, 9], "out_features": ["stage1", "stage2", "stage3"], "embedding_dynamic_padding": True, "hidden_sizes": [4, 8, 1_6, 3_2], "num_groups": 2, } return ViTHybridConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCamelCase , initializer_range=self.initializer_range , backbone_featmap_shape=self.backbone_featmap_shape , backbone_config=lowerCamelCase , ) def __a ( self : int , lowerCamelCase : List[Any] , lowerCamelCase : Optional[int] , lowerCamelCase : Optional[Any] ): '''simple docstring''' a__ = ViTHybridModel(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() a__ = model(lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __a ( self : Optional[int] , lowerCamelCase : Optional[Any] , lowerCamelCase : Dict , lowerCamelCase : List[Any] ): '''simple docstring''' a__ = self.type_sequence_label_size a__ = ViTHybridForImageClassification(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() a__ = model(lowerCamelCase , labels=lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __a ( self : List[str] ): '''simple docstring''' a__ = self.prepare_config_and_inputs() a__ , a__ , a__ = config_and_inputs a__ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class UpperCamelCase__ ( __lowerCAmelCase ,__lowerCAmelCase ,unittest.TestCase ): lowerCAmelCase__ : Tuple = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else () lowerCAmelCase__ : str = ( {"feature-extraction": ViTHybridModel, "image-classification": ViTHybridForImageClassification} if is_torch_available() else {} ) lowerCAmelCase__ : Tuple = False lowerCAmelCase__ : int = False lowerCAmelCase__ : int = False def __a ( self : Dict ): '''simple docstring''' a__ = ViTHybridModelTester(self ) a__ = ConfigTester(self , config_class=lowerCamelCase , has_text_modality=lowerCamelCase , hidden_size=3_7 ) def __a ( self : Any ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="ViT does not use inputs_embeds" ) def __a ( self : Any ): '''simple docstring''' pass def __a ( self : str ): '''simple docstring''' a__ , a__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ = model_class(lowerCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) a__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase , nn.Linear ) ) def __a ( self : str ): '''simple docstring''' a__ , a__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ = model_class(lowerCamelCase ) a__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a__ = [*signature.parameters.keys()] a__ = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCamelCase ) def __a ( self : Any ): '''simple docstring''' a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase ) def __a ( self : List[str] ): '''simple docstring''' a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase ) def __a ( self : Optional[Any] ): '''simple docstring''' a__ , a__ = self.model_tester.prepare_config_and_inputs_for_common() a__ = _config_zero_init(lowerCamelCase ) for model_class in self.all_model_classes: a__ = model_class(config=lowerCamelCase ) # Skip the check for the backbone for name, module in model.named_modules(): if module.__class__.__name__ == "ViTHybridPatchEmbeddings": a__ = [F'''{name}.{key}''' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @slow def __a ( self : Any ): '''simple docstring''' for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a__ = ViTHybridModel.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) def _lowerCamelCase () -> Tuple: a__ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class UpperCamelCase__ ( unittest.TestCase ): @cached_property def __a ( self : str ): '''simple docstring''' return ( ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def __a ( self : List[Any] ): '''simple docstring''' a__ = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( lowerCamelCase ) a__ = self.default_image_processor a__ = prepare_img() a__ = image_processor(images=lowerCamelCase , return_tensors="pt" ).to(lowerCamelCase ) # forward pass with torch.no_grad(): a__ = model(**lowerCamelCase ) # verify the logits a__ = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , lowerCamelCase ) a__ = torch.tensor([-1.9090, -0.4993, -0.2389] ).to(lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCamelCase , atol=1e-4 ) ) @slow @require_accelerate def __a ( self : Union[str, Any] ): '''simple docstring''' a__ = ViTHybridImageProcessor.from_pretrained("google/vit-hybrid-base-bit-384" ) a__ = ViTHybridForImageClassification.from_pretrained("google/vit-hybrid-base-bit-384" , device_map="auto" ) a__ = prepare_img() a__ = image_processor(images=lowerCamelCase , return_tensors="pt" ) a__ = model(**lowerCamelCase ) a__ = outputs.logits # model predicts one of the 1000 ImageNet classes a__ = logits.argmax(-1 ).item() self.assertTrue(model.config.idalabel[predicted_class_idx] , "tabby, tabby cat" )
489
'''simple docstring''' import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class UpperCamelCase__ ( unittest.TestCase ): def __init__( self : Dict , lowerCamelCase : Tuple , lowerCamelCase : bool = True , lowerCamelCase : Dict[str, int] = None , lowerCamelCase : int = 3_2 , lowerCamelCase : bool = True , lowerCamelCase : Union[int, float] = 1 / 2_5_5 , lowerCamelCase : bool = True , lowerCamelCase : bool = True , lowerCamelCase : Optional[Union[float, List[float]]] = [0.48145466, 0.4578275, 0.40821073] , lowerCamelCase : Optional[Union[float, List[float]]] = [0.26862954, 0.26130258, 0.27577711] , lowerCamelCase : bool = True , lowerCamelCase : Any=7 , lowerCamelCase : Any=3_0 , lowerCamelCase : Optional[int]=4_0_0 , lowerCamelCase : Any=3 , ): '''simple docstring''' a__ = parent a__ = do_resize a__ = size if size is not None else {"shortest_edge": 2_8_8} a__ = size_divisor a__ = do_rescale a__ = rescale_factor a__ = do_normalize a__ = do_center_crop a__ = image_mean a__ = image_std a__ = do_pad a__ = batch_size a__ = num_channels a__ = min_resolution a__ = max_resolution def __a ( self : int ): '''simple docstring''' return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def __a ( self : Tuple , lowerCamelCase : List[Any] , lowerCamelCase : Tuple=False ): '''simple docstring''' if not batched: a__ = self.size["shortest_edge"] a__ = image_inputs[0] if isinstance(lowerCamelCase , Image.Image ): a__ , a__ = image.size else: a__ , a__ = image.shape[1], image.shape[2] a__ = size / min(lowerCamelCase , lowerCamelCase ) if h < w: a__ , a__ = size, scale * w else: a__ , a__ = scale * h, size a__ = int((1_3_3_3 / 8_0_0) * size ) if max(lowerCamelCase , lowerCamelCase ) > max_size: a__ = max_size / max(lowerCamelCase , lowerCamelCase ) a__ = newh * scale a__ = neww * scale a__ , a__ = int(newh + 0.5 ), int(neww + 0.5 ) a__ , a__ = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: a__ = [] for image in image_inputs: a__ , a__ = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) a__ = max(lowerCamelCase , key=lambda lowerCamelCase : item[0] )[0] a__ = max(lowerCamelCase , key=lambda lowerCamelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class UpperCamelCase__ ( __lowerCAmelCase ,unittest.TestCase ): lowerCAmelCase__ : List[Any] = BridgeTowerImageProcessor if is_vision_available() else None def __a ( self : Optional[Any] ): '''simple docstring''' a__ = BridgeTowerImageProcessingTester(self ) @property def __a ( self : List[str] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def __a ( self : Union[str, Any] ): '''simple docstring''' a__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase , "image_mean" ) ) self.assertTrue(hasattr(lowerCamelCase , "image_std" ) ) self.assertTrue(hasattr(lowerCamelCase , "do_normalize" ) ) self.assertTrue(hasattr(lowerCamelCase , "do_resize" ) ) self.assertTrue(hasattr(lowerCamelCase , "size" ) ) self.assertTrue(hasattr(lowerCamelCase , "size_divisor" ) ) def __a ( self : List[Any] ): '''simple docstring''' pass def __a ( self : Optional[int] ): '''simple docstring''' # Initialize image processor a__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images a__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase , Image.Image ) # Test not batched input a__ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values a__ , a__ = self.image_processor_tester.get_expected_values(lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched a__ = image_processing(lowerCamelCase , return_tensors="pt" ).pixel_values a__ , a__ = self.image_processor_tester.get_expected_values(lowerCamelCase , batched=lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __a ( self : List[str] ): '''simple docstring''' # Initialize image processor a__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors a__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase , numpify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase , np.ndarray ) # Test not batched input a__ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values a__ , a__ = self.image_processor_tester.get_expected_values(lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched a__ = image_processing(lowerCamelCase , return_tensors="pt" ).pixel_values a__ , a__ = self.image_processor_tester.get_expected_values(lowerCamelCase , batched=lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __a ( self : List[Any] ): '''simple docstring''' # Initialize image processor a__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors a__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase , torchify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase , torch.Tensor ) # Test not batched input a__ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values a__ , a__ = self.image_processor_tester.get_expected_values(lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched a__ = image_processing(lowerCamelCase , return_tensors="pt" ).pixel_values a__ , a__ = self.image_processor_tester.get_expected_values(lowerCamelCase , batched=lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , )
489
1
import math def lowerCamelCase__ ( _lowerCamelCase ) ->bool: _UpperCAmelCase =math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 ) return exponent == int(_lowerCamelCase ) def lowerCamelCase__ ( _lowerCamelCase = 1 / 1_2345 ) ->int: _UpperCAmelCase =0 _UpperCAmelCase =0 _UpperCAmelCase =3 while True: _UpperCAmelCase =(integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(_lowerCamelCase ): _UpperCAmelCase =int(_lowerCamelCase ) total_partitions += 1 if check_partition_perfect(_lowerCamelCase ): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(_lowerCamelCase ) integer += 1 if __name__ == "__main__": print(F"""{solution() = }""")
592
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case__ : Optional[int] = { 'configuration_mctct': ['MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MCTCTConfig'], 'feature_extraction_mctct': ['MCTCTFeatureExtractor'], 'processing_mctct': ['MCTCTProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Optional[int] = [ 'MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MCTCTForCTC', 'MCTCTModel', 'MCTCTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys snake_case__ : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
592
1
from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case : Dict = logging.get_logger(__name__) snake_case : Tuple = { 'google/switch-base-8': 'https://huggingface.co/google/switch-base-8/blob/main/config.json', } class __lowercase ( UpperCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = "switch_transformers" SCREAMING_SNAKE_CASE : Union[str, Any] = ["past_key_values"] SCREAMING_SNAKE_CASE : Dict = {"hidden_size": "d_model", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers"} def __init__( self , A_=32128 , A_=768 , A_=64 , A_=2048 , A_=64 , A_=12 , A_=3 , A_=12 , A_=3 , A_=12 , A_=8 , A_=False , A_=0.01 , A_="float32" , A_=False , A_=32 , A_=128 , A_=0.1 , A_=1e-6 , A_=0.001 , A_=0.001 , A_=1.0 , A_="relu" , A_=True , A_=False , A_=True , A_=0 , A_=1 , **A_ , )-> int: _SCREAMING_SNAKE_CASE = vocab_size _SCREAMING_SNAKE_CASE = d_model _SCREAMING_SNAKE_CASE = d_kv _SCREAMING_SNAKE_CASE = d_ff _SCREAMING_SNAKE_CASE = num_sparse_encoder_layers _SCREAMING_SNAKE_CASE = num_layers _SCREAMING_SNAKE_CASE = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry _SCREAMING_SNAKE_CASE = num_sparse_decoder_layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_encoder_layers > 0: _SCREAMING_SNAKE_CASE = self.num_layers // self.num_sparse_encoder_layers else: _SCREAMING_SNAKE_CASE = self.num_layers # HACK: this will create 0 sparse layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_decoder_layers > 0: _SCREAMING_SNAKE_CASE = self.num_decoder_layers // self.num_sparse_decoder_layers else: _SCREAMING_SNAKE_CASE = self.num_decoder_layers # HACK: this will create 0 sparse layers _SCREAMING_SNAKE_CASE = num_heads _SCREAMING_SNAKE_CASE = num_experts _SCREAMING_SNAKE_CASE = expert_capacity _SCREAMING_SNAKE_CASE = router_bias _SCREAMING_SNAKE_CASE = router_jitter_noise if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(F'''`router_dtype` must be one of \'float32\', \'float16\' or \'bfloat16\', got {router_dtype}''' ) _SCREAMING_SNAKE_CASE = router_dtype _SCREAMING_SNAKE_CASE = router_ignore_padding_tokens _SCREAMING_SNAKE_CASE = relative_attention_num_buckets _SCREAMING_SNAKE_CASE = relative_attention_max_distance _SCREAMING_SNAKE_CASE = dropout_rate _SCREAMING_SNAKE_CASE = layer_norm_epsilon _SCREAMING_SNAKE_CASE = initializer_factor _SCREAMING_SNAKE_CASE = feed_forward_proj _SCREAMING_SNAKE_CASE = use_cache _SCREAMING_SNAKE_CASE = add_router_probs _SCREAMING_SNAKE_CASE = router_z_loss_coef _SCREAMING_SNAKE_CASE = router_aux_loss_coef _SCREAMING_SNAKE_CASE = self.feed_forward_proj.split('-' ) _SCREAMING_SNAKE_CASE = act_info[-1] _SCREAMING_SNAKE_CASE = act_info[0] == 'gated' if len(A_ ) > 1 and act_info[0] != "gated" or len(A_ ) > 2: raise ValueError( F'''`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.''' 'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ' '\'gated-gelu\' or \'relu\'' ) # for backwards compatibility if feed_forward_proj == "gated-gelu": _SCREAMING_SNAKE_CASE = 'gelu_new' super().__init__( pad_token_id=A_ , eos_token_id=A_ , is_encoder_decoder=A_ , **A_ , )
605
def SCREAMING_SNAKE_CASE ( UpperCAmelCase__ = 1000 ): """simple docstring""" return sum(2 * a * ((a - 1) // 2) for a in range(3 ,n + 1 ) ) if __name__ == "__main__": print(solution())
605
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE__ = {'''configuration_xlnet''': ['''XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLNetConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = ['''XLNetTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = ['''XLNetTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ '''XLNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLNetForMultipleChoice''', '''XLNetForQuestionAnswering''', '''XLNetForQuestionAnsweringSimple''', '''XLNetForSequenceClassification''', '''XLNetForTokenClassification''', '''XLNetLMHeadModel''', '''XLNetModel''', '''XLNetPreTrainedModel''', '''load_tf_weights_in_xlnet''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ '''TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXLNetForMultipleChoice''', '''TFXLNetForQuestionAnsweringSimple''', '''TFXLNetForSequenceClassification''', '''TFXLNetForTokenClassification''', '''TFXLNetLMHeadModel''', '''TFXLNetMainLayer''', '''TFXLNetModel''', '''TFXLNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
52
import inspect import jax import jax.lax as lax import jax.numpy as jnp from ..utils import add_start_docstrings from ..utils.logging import get_logger SCREAMING_SNAKE_CASE__ = get_logger(__name__) SCREAMING_SNAKE_CASE__ = r''' Args: input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) scores (`jnp.ndarray` of shape `(batch_size, config.vocab_size)`): Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam search or log softmax for each vocabulary token when using beam search kwargs (`Dict[str, Any]`, *optional*): Additional logits processor specific kwargs. Return: `jnp.ndarray` of shape `(batch_size, config.vocab_size)`: The processed prediction scores. ''' class __lowerCAmelCase : """simple docstring""" @add_start_docstrings(_snake_case ) def __call__( self : Optional[int] , _snake_case : jnp.ndarray , _snake_case : jnp.ndarray ): """simple docstring""" raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) class __lowerCAmelCase : """simple docstring""" @add_start_docstrings(_snake_case ) def __call__( self : List[Any] , _snake_case : jnp.ndarray , _snake_case : jnp.ndarray ): """simple docstring""" raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" @add_start_docstrings(_snake_case ) def __call__( self : Any , _snake_case : jnp.ndarray , _snake_case : jnp.ndarray , _snake_case : int , **_snake_case : Optional[int] ): """simple docstring""" for processor in self: A__ = inspect.signature(processor.__call__ ).parameters if len(_snake_case ) > 3: if not all(arg in kwargs for arg in list(function_args.keys() )[2:] ): raise ValueError( F'''Make sure that all the required parameters: {list(function_args.keys() )} for ''' F'''{processor.__class__} are passed to the logits processor.''' ) A__ = processor(_snake_case , _snake_case , _snake_case , **_snake_case ) else: A__ = processor(_snake_case , _snake_case , _snake_case ) return scores class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" def __init__( self : Any , _snake_case : float ): """simple docstring""" if not isinstance(_snake_case , _snake_case ) or not (temperature > 0): raise ValueError(F'''`temperature` has to be a strictly positive float, but is {temperature}''' ) A__ = temperature def __call__( self : str , _snake_case : jnp.ndarray , _snake_case : jnp.ndarray , _snake_case : int ): """simple docstring""" A__ = scores / self.temperature return scores class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" def __init__( self : Optional[Any] , _snake_case : float , _snake_case : float = -float('Inf' ) , _snake_case : int = 1 ): """simple docstring""" if not isinstance(_snake_case , _snake_case ) or (top_p < 0 or top_p > 1.0): raise ValueError(F'''`top_p` has to be a float > 0 and < 1, but is {top_p}''' ) if not isinstance(_snake_case , _snake_case ) or (min_tokens_to_keep < 1): raise ValueError(F'''`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}''' ) A__ = top_p A__ = filter_value A__ = min_tokens_to_keep def __call__( self : str , _snake_case : jnp.ndarray , _snake_case : jnp.ndarray , _snake_case : int ): """simple docstring""" A__ , A__ = lax.top_k(_snake_case , scores.shape[-1] ) A__ = jnp.full_like(_snake_case , self.filter_value ) A__ = jax.nn.softmax(_snake_case , axis=-1 ).cumsum(axis=-1 ) A__ = cumulative_probs < self.top_p # include the token that is higher than top_p as well A__ = jnp.roll(_snake_case , 1 ) score_mask |= score_mask.at[:, 0].set(_snake_case ) # min tokens to keep A__ = score_mask.at[:, : self.min_tokens_to_keep].set(_snake_case ) A__ = jnp.where(_snake_case , _snake_case , _snake_case ) A__ = jax.lax.sort_key_val(_snake_case , _snake_case )[-1] return next_scores class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" def __init__( self : Union[str, Any] , _snake_case : int , _snake_case : float = -float('Inf' ) , _snake_case : int = 1 ): """simple docstring""" if not isinstance(_snake_case , _snake_case ) or top_k <= 0: raise ValueError(F'''`top_k` has to be a strictly positive integer, but is {top_k}''' ) A__ = max(_snake_case , _snake_case ) A__ = filter_value def __call__( self : Optional[Any] , _snake_case : jnp.ndarray , _snake_case : jnp.ndarray , _snake_case : int ): """simple docstring""" A__ , A__ = scores.shape A__ = jnp.full(batch_size * vocab_size , self.filter_value ) A__ = min(self.top_k , scores.shape[-1] ) # Safety check A__ , A__ = lax.top_k(_snake_case , _snake_case ) A__ = jnp.broadcast_to((jnp.arange(_snake_case ) * vocab_size)[:, None] , (batch_size, topk) ).flatten() A__ = topk_scores.flatten() A__ = topk_indices.flatten() + shift A__ = next_scores_flat.at[topk_indices_flat].set(_snake_case ) A__ = next_scores_flat.reshape(_snake_case , _snake_case ) return next_scores class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" def __init__( self : Any , _snake_case : int ): """simple docstring""" A__ = bos_token_id def __call__( self : Optional[int] , _snake_case : jnp.ndarray , _snake_case : jnp.ndarray , _snake_case : int ): """simple docstring""" A__ = jnp.full(scores.shape , -float('inf' ) ) A__ = 1 - jnp.bool_(cur_len - 1 ) A__ = jnp.where(_snake_case , new_scores.at[:, self.bos_token_id].set(0 ) , _snake_case ) return scores class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" def __init__( self : Any , _snake_case : int , _snake_case : int ): """simple docstring""" A__ = max_length A__ = eos_token_id def __call__( self : List[Any] , _snake_case : jnp.ndarray , _snake_case : jnp.ndarray , _snake_case : int ): """simple docstring""" A__ = jnp.full(scores.shape , -float('inf' ) ) A__ = 1 - jnp.bool_(cur_len - self.max_length + 1 ) A__ = jnp.where(_snake_case , new_scores.at[:, self.eos_token_id].set(0 ) , _snake_case ) return scores class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" def __init__( self : Dict , _snake_case : int , _snake_case : int ): """simple docstring""" if not isinstance(_snake_case , _snake_case ) or min_length < 0: raise ValueError(F'''`min_length` has to be a positive integer, but is {min_length}''' ) if not isinstance(_snake_case , _snake_case ) or eos_token_id < 0: raise ValueError(F'''`eos_token_id` has to be a positive integer, but is {eos_token_id}''' ) A__ = min_length A__ = eos_token_id def __call__( self : int , _snake_case : jnp.ndarray , _snake_case : jnp.ndarray , _snake_case : int ): """simple docstring""" A__ = 1 - jnp.clip(cur_len - self.min_length , 0 , 1 ) A__ = jnp.where(_snake_case , scores.at[:, self.eos_token_id].set(-float('inf' ) ) , _snake_case ) return scores class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" def __init__( self : int , _snake_case : Tuple , _snake_case : Union[str, Any] ): """simple docstring""" A__ = list(_snake_case ) A__ = begin_index def __call__( self : Union[str, Any] , _snake_case : Optional[Any] , _snake_case : str , _snake_case : int ): """simple docstring""" A__ = 1 - jnp.bool_(cur_len - self.begin_index ) A__ = jnp.where(_snake_case , scores.at[:, self.begin_suppress_tokens].set(-float('inf' ) ) , _snake_case ) return scores class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" def __init__( self : int , _snake_case : list ): """simple docstring""" A__ = list(_snake_case ) def __call__( self : List[Any] , _snake_case : jnp.ndarray , _snake_case : jnp.ndarray , _snake_case : int ): """simple docstring""" A__ = scores.at[..., self.suppress_tokens].set(-float('inf' ) ) return scores class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" def __init__( self : List[str] , _snake_case : Optional[Any] ): """simple docstring""" A__ = dict(_snake_case ) # Converts the dictionary of format {index: token} containing the tokens to be forced to an array, where the # index of the array corresponds to the index of the token to be forced, for XLA compatibility. # Indexes without forced tokens will have a negative value. A__ = jnp.ones((max(force_token_map.keys() ) + 1) , dtype=jnp.intaa ) * -1 for index, token in force_token_map.items(): if token is not None: A__ = force_token_array.at[index].set(_snake_case ) A__ = jnp.intaa(_snake_case ) def __call__( self : List[Any] , _snake_case : jnp.ndarray , _snake_case : jnp.ndarray , _snake_case : int ): """simple docstring""" def _force_token(_snake_case : Dict ): A__ = scores.shape[0] A__ = self.force_token_array[generation_idx] A__ = jnp.ones_like(_snake_case , dtype=scores.dtype ) * -float('inf' ) A__ = jnp.zeros((batch_size, 1) , dtype=scores.dtype ) A__ = lax.dynamic_update_slice(_snake_case , _snake_case , (0, current_token) ) return new_scores A__ = lax.cond( cur_len >= self.force_token_array.shape[0] , lambda: scores , lambda: lax.cond( self.force_token_array[cur_len] >= 0 , lambda: _force_token(_snake_case ) , lambda: scores , ) , ) return scores class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" def __init__( self : Union[str, Any] , _snake_case : Union[str, Any] , _snake_case : Dict , _snake_case : List[Any] ): """simple docstring""" A__ = generate_config.eos_token_id A__ = generate_config.no_timestamps_token_id A__ = generate_config.no_timestamps_token_id + 1 A__ = decoder_input_length + 1 if generate_config.is_multilingual: # room for language token and task token self.begin_index += 2 if hasattr(_snake_case , 'max_initial_timestamp_index' ): A__ = generate_config.max_initial_timestamp_index else: A__ = model_config.vocab_size if self.max_initial_timestamp_index is None: A__ = model_config.vocab_size def __call__( self : Tuple , _snake_case : List[Any] , _snake_case : Dict , _snake_case : Dict ): """simple docstring""" A__ = scores.at[:, self.no_timestamps_token_id].set(-float('inf' ) ) def handle_pairs(_snake_case : Dict , _snake_case : str ): A__ = jnp.where((cur_len - self.begin_index) >= 1 , _snake_case , _snake_case ) A__ = jnp.where( input_ids_k[cur_len - 1] >= self.timestamp_begin , True and last_was_timestamp , _snake_case , ) A__ = jnp.where((cur_len - self.begin_index) < 2 , _snake_case , _snake_case ) A__ = jnp.where( input_ids_k[cur_len - 2] >= self.timestamp_begin , _snake_case , _snake_case , ) return jnp.where( _snake_case , jnp.where( penultimate_was_timestamp > 0 , scores_k.at[self.timestamp_begin :].set(-float('inf' ) ) , scores_k.at[: self.eos_token_id].set(-float('inf' ) ) , ) , _snake_case , ) A__ = jax.vmap(_snake_case )(_snake_case , _snake_case ) A__ = jnp.where(cur_len == self.begin_index , _snake_case , _snake_case ) A__ = jnp.where( self.max_initial_timestamp_index is not None , True and apply_max_initial_timestamp , _snake_case , ) A__ = self.timestamp_begin + self.max_initial_timestamp_index A__ = jnp.where( _snake_case , scores.at[:, last_allowed + 1 :].set(-float('inf' ) ) , _snake_case , ) # if sum of probability over timestamps is above any other token, sample timestamp A__ = jax.nn.log_softmax(_snake_case , axis=-1 ) def handle_cumulative_probs(_snake_case : List[Any] , _snake_case : Union[str, Any] ): A__ = jax.nn.logsumexp(logprobs_k[self.timestamp_begin :] , axis=-1 ) A__ = jnp.max(logprobs_k[: self.timestamp_begin] ) return jnp.where( timestamp_logprob > max_text_token_logprob , scores_k.at[: self.timestamp_begin].set(-float('inf' ) ) , _snake_case , ) A__ = jax.vmap(_snake_case )(_snake_case , _snake_case ) return scores
52
1
'''simple docstring''' from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging lowerCamelCase = logging.get_logger(__name__) class _UpperCamelCase ( A ): '''simple docstring''' lowerCAmelCase__ = ["""pixel_values"""] def __init__( self : List[str] , _lowerCAmelCase : bool = True , _lowerCAmelCase : int = 3_2 , _lowerCAmelCase : List[Any]=PILImageResampling.BILINEAR , _lowerCAmelCase : bool = True , **_lowerCAmelCase : str , ): '''simple docstring''' __lowercase =do_resize __lowercase =do_rescale __lowercase =size_divisor __lowercase =resample super().__init__(**_lowerCAmelCase) def __lowerCamelCase ( self : Any , _lowerCAmelCase : np.ndarray , _lowerCAmelCase : int , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[ChannelDimension] = None , **_lowerCAmelCase : Optional[Any]): '''simple docstring''' __lowercase , __lowercase =get_image_size(_lowerCAmelCase) # Rounds the height and width down to the closest multiple of size_divisor __lowercase =height // size_divisor * size_divisor __lowercase =width // size_divisor * size_divisor __lowercase =resize(_lowerCAmelCase , (new_h, new_w) , resample=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase) return image def __lowerCamelCase ( self : Dict , _lowerCAmelCase : np.ndarray , _lowerCAmelCase : float , _lowerCAmelCase : Optional[ChannelDimension] = None , **_lowerCAmelCase : Any): '''simple docstring''' return rescale(image=_lowerCAmelCase , scale=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase) def __lowerCamelCase ( self : Tuple , _lowerCAmelCase : Union["PIL.Image.Image", TensorType, List["PIL.Image.Image"], List[TensorType]] , _lowerCAmelCase : Optional[bool] = None , _lowerCAmelCase : Optional[int] = None , _lowerCAmelCase : Optional[Any]=None , _lowerCAmelCase : Optional[bool] = None , _lowerCAmelCase : Optional[Union[TensorType, str]] = None , _lowerCAmelCase : ChannelDimension = ChannelDimension.FIRST , **_lowerCAmelCase : Tuple , ): '''simple docstring''' __lowercase =do_resize if do_resize is not None else self.do_resize __lowercase =do_rescale if do_rescale is not None else self.do_rescale __lowercase =size_divisor if size_divisor is not None else self.size_divisor __lowercase =resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError('size_divisor is required for resizing') __lowercase =make_list_of_images(_lowerCAmelCase) if not valid_images(_lowerCAmelCase): raise ValueError('Invalid image(s)') # All transformations expect numpy arrays. __lowercase =[to_numpy_array(_lowerCAmelCase) for img in images] if do_resize: __lowercase =[self.resize(_lowerCAmelCase , size_divisor=_lowerCAmelCase , resample=_lowerCAmelCase) for image in images] if do_rescale: __lowercase =[self.rescale(_lowerCAmelCase , scale=1 / 2_5_5) for image in images] __lowercase =[to_channel_dimension_format(_lowerCAmelCase , _lowerCAmelCase) for image in images] __lowercase ={'pixel_values': images} return BatchFeature(data=_lowerCAmelCase , tensor_type=_lowerCAmelCase)
474
'''simple docstring''' from maths.prime_check import is_prime def _A ( _lowerCAmelCase ): """simple docstring""" if not isinstance(_lowerCAmelCase , _lowerCAmelCase ): __lowercase =f"""Input value of [number={number}] must be an integer""" raise TypeError(_lowerCAmelCase ) if is_prime(_lowerCAmelCase ) and is_prime(number + 2 ): return number + 2 else: return -1 if __name__ == "__main__": import doctest doctest.testmod()
474
1
"""simple docstring""" import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class __lowerCamelCase ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: UpperCamelCase__ = '| <pad> <unk> <s> </s> a b c d e f g h i j k'.split() UpperCamelCase__ = dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_ ) ) ) ) UpperCamelCase__ = { 'unk_token': '<unk>', 'bos_token': '<s>', 'eos_token': '</s>', } UpperCamelCase__ = { 'feature_size': 1, 'padding_value': 0.0, 'sampling_rate': 1_6000, 'return_attention_mask': False, 'do_normalize': True, } UpperCamelCase__ = tempfile.mkdtemp() UpperCamelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) UpperCamelCase__ = os.path.join(self.tmpdirname , UpperCAmelCase_ ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(UpperCAmelCase_ ) + '\n' ) with open(self.feature_extraction_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(UpperCAmelCase_ ) + '\n' ) # load decoder from hub UpperCamelCase__ = 'hf-internal-testing/ngram-beam-search-decoder' def SCREAMING_SNAKE_CASE__ ( self , **snake_case_ ) -> int: UpperCamelCase__ = self.add_kwargs_tokens_map.copy() kwargs.update(UpperCAmelCase_ ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ) def SCREAMING_SNAKE_CASE__ ( self , **snake_case_ ) -> Union[str, Any]: return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ) def SCREAMING_SNAKE_CASE__ ( self , **snake_case_ ) -> List[str]: return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **UpperCAmelCase_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: UpperCamelCase__ = self.get_tokenizer() UpperCamelCase__ = self.get_feature_extractor() UpperCamelCase__ = self.get_decoder() UpperCamelCase__ = WavaVecaProcessorWithLM(tokenizer=UpperCAmelCase_ , feature_extractor=UpperCAmelCase_ , decoder=UpperCAmelCase_ ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase__ = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCAmelCase_ ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , UpperCAmelCase_ ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , UpperCAmelCase_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Any: UpperCamelCase__ = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match UpperCamelCase__ = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def SCREAMING_SNAKE_CASE__ ( self ) -> str: UpperCamelCase__ = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(['xx'] ) with self.assertRaisesRegex(UpperCAmelCase_ , 'include' ): WavaVecaProcessorWithLM( tokenizer=UpperCAmelCase_ , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: UpperCamelCase__ = self.get_feature_extractor() UpperCamelCase__ = self.get_tokenizer() UpperCamelCase__ = self.get_decoder() UpperCamelCase__ = WavaVecaProcessorWithLM(tokenizer=UpperCAmelCase_ , feature_extractor=UpperCAmelCase_ , decoder=UpperCAmelCase_ ) UpperCamelCase__ = floats_list((3, 1000) ) UpperCamelCase__ = feature_extractor(UpperCAmelCase_ , return_tensors='np' ) UpperCamelCase__ = processor(UpperCAmelCase_ , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: UpperCamelCase__ = self.get_feature_extractor() UpperCamelCase__ = self.get_tokenizer() UpperCamelCase__ = self.get_decoder() UpperCamelCase__ = WavaVecaProcessorWithLM(tokenizer=UpperCAmelCase_ , feature_extractor=UpperCAmelCase_ , decoder=UpperCAmelCase_ ) UpperCamelCase__ = 'This is a test string' UpperCamelCase__ = processor(text=UpperCAmelCase_ ) UpperCamelCase__ = tokenizer(UpperCAmelCase_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_=(2, 10, 16) , snake_case_=77 ) -> int: np.random.seed(UpperCAmelCase_ ) return np.random.rand(*UpperCAmelCase_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: UpperCamelCase__ = self.get_feature_extractor() UpperCamelCase__ = self.get_tokenizer() UpperCamelCase__ = self.get_decoder() UpperCamelCase__ = WavaVecaProcessorWithLM(tokenizer=UpperCAmelCase_ , feature_extractor=UpperCAmelCase_ , decoder=UpperCAmelCase_ ) UpperCamelCase__ = self._get_dummy_logits(shape=(10, 16) , seed=13 ) UpperCamelCase__ = processor.decode(UpperCAmelCase_ ) UpperCamelCase__ = decoder.decode_beams(UpperCAmelCase_ )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual('</s> <s> </s>' , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ['fork'], ['spawn']] ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> List[str]: UpperCamelCase__ = self.get_feature_extractor() UpperCamelCase__ = self.get_tokenizer() UpperCamelCase__ = self.get_decoder() UpperCamelCase__ = WavaVecaProcessorWithLM(tokenizer=UpperCAmelCase_ , feature_extractor=UpperCAmelCase_ , decoder=UpperCAmelCase_ ) UpperCamelCase__ = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: UpperCamelCase__ = processor.batch_decode(UpperCAmelCase_ ) else: with get_context(UpperCAmelCase_ ).Pool() as pool: UpperCamelCase__ = processor.batch_decode(UpperCAmelCase_ , UpperCAmelCase_ ) UpperCamelCase__ = list(UpperCAmelCase_ ) with get_context('fork' ).Pool() as p: UpperCamelCase__ = decoder.decode_beams_batch(UpperCAmelCase_ , UpperCAmelCase_ ) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(UpperCAmelCase_ , decoded_processor.text ) self.assertListEqual(['<s> <s> </s>', '<s> <s> <s>'] , decoded_processor.text ) self.assertListEqual(UpperCAmelCase_ , decoded_processor.logit_score ) self.assertListEqual(UpperCAmelCase_ , decoded_processor.lm_score ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: UpperCamelCase__ = self.get_feature_extractor() UpperCamelCase__ = self.get_tokenizer() UpperCamelCase__ = self.get_decoder() UpperCamelCase__ = WavaVecaProcessorWithLM(tokenizer=UpperCAmelCase_ , feature_extractor=UpperCAmelCase_ , decoder=UpperCAmelCase_ ) UpperCamelCase__ = self._get_dummy_logits() UpperCamelCase__ = 15 UpperCamelCase__ = -20.0 UpperCamelCase__ = -4.0 UpperCamelCase__ = processor.batch_decode( UpperCAmelCase_ , beam_width=UpperCAmelCase_ , beam_prune_logp=UpperCAmelCase_ , token_min_logp=UpperCAmelCase_ , ) UpperCamelCase__ = decoded_processor_out.text UpperCamelCase__ = list(UpperCAmelCase_ ) with get_context('fork' ).Pool() as pool: UpperCamelCase__ = decoder.decode_beams_batch( UpperCAmelCase_ , UpperCAmelCase_ , beam_width=UpperCAmelCase_ , beam_prune_logp=UpperCAmelCase_ , token_min_logp=UpperCAmelCase_ , ) UpperCamelCase__ = [d[0][0] for d in decoded_decoder_out] UpperCamelCase__ = [d[0][2] for d in decoded_decoder_out] UpperCamelCase__ = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) self.assertListEqual(['</s> <s> <s>', '<s> <s> <s>'] , UpperCAmelCase_ ) self.assertTrue(np.array_equal(UpperCAmelCase_ , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-20.054, -18.447] , UpperCAmelCase_ , atol=1E-3 ) ) self.assertTrue(np.array_equal(UpperCAmelCase_ , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-15.554, -13.9_474] , UpperCAmelCase_ , atol=1E-3 ) ) def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: UpperCamelCase__ = self.get_feature_extractor() UpperCamelCase__ = self.get_tokenizer() UpperCamelCase__ = self.get_decoder() UpperCamelCase__ = WavaVecaProcessorWithLM(tokenizer=UpperCAmelCase_ , feature_extractor=UpperCAmelCase_ , decoder=UpperCAmelCase_ ) UpperCamelCase__ = self._get_dummy_logits() UpperCamelCase__ = 2.0 UpperCamelCase__ = 5.0 UpperCamelCase__ = -20.0 UpperCamelCase__ = True UpperCamelCase__ = processor.batch_decode( UpperCAmelCase_ , alpha=UpperCAmelCase_ , beta=UpperCAmelCase_ , unk_score_offset=UpperCAmelCase_ , lm_score_boundary=UpperCAmelCase_ , ) UpperCamelCase__ = decoded_processor_out.text UpperCamelCase__ = list(UpperCAmelCase_ ) decoder.reset_params( alpha=UpperCAmelCase_ , beta=UpperCAmelCase_ , unk_score_offset=UpperCAmelCase_ , lm_score_boundary=UpperCAmelCase_ , ) with get_context('fork' ).Pool() as pool: UpperCamelCase__ = decoder.decode_beams_batch( UpperCAmelCase_ , UpperCAmelCase_ , ) UpperCamelCase__ = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) self.assertListEqual(['<s> </s> <s> </s> </s>', '</s> </s> <s> </s> </s>'] , UpperCAmelCase_ ) UpperCamelCase__ = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -20.0 ) self.assertEqual(lm_model.score_boundary , UpperCAmelCase_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: UpperCamelCase__ = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm' ) UpperCamelCase__ = processor.decoder.model_container[processor.decoder._model_key] UpperCamelCase__ = Path(language_model._kenlm_model.path.decode('utf-8' ) ).parent.parent.absolute() UpperCamelCase__ = os.listdir(UpperCAmelCase_ ) UpperCamelCase__ = ['alphabet.json', 'language_model'] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: UpperCamelCase__ = snapshot_download('hf-internal-testing/processor_with_lm' ) UpperCamelCase__ = WavaVecaProcessorWithLM.from_pretrained(UpperCAmelCase_ ) UpperCamelCase__ = processor.decoder.model_container[processor.decoder._model_key] UpperCamelCase__ = Path(language_model._kenlm_model.path.decode('utf-8' ) ).parent.parent.absolute() UpperCamelCase__ = os.listdir(UpperCAmelCase_ ) UpperCamelCase__ = os.listdir(UpperCAmelCase_ ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: UpperCamelCase__ = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm' ) UpperCamelCase__ = AutoProcessor.from_pretrained('hf-internal-testing/processor_with_lm' ) UpperCamelCase__ = floats_list((3, 1000) ) UpperCamelCase__ = processor_wavaveca(UpperCAmelCase_ , return_tensors='np' ) UpperCamelCase__ = processor_auto(UpperCAmelCase_ , return_tensors='np' ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1E-2 ) UpperCamelCase__ = self._get_dummy_logits() UpperCamelCase__ = processor_wavaveca.batch_decode(UpperCAmelCase_ ) UpperCamelCase__ = processor_auto.batch_decode(UpperCAmelCase_ ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: UpperCamelCase__ = self.get_feature_extractor() UpperCamelCase__ = self.get_tokenizer() UpperCamelCase__ = self.get_decoder() UpperCamelCase__ = WavaVecaProcessorWithLM(tokenizer=UpperCAmelCase_ , feature_extractor=UpperCAmelCase_ , decoder=UpperCAmelCase_ ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg='`processor` and `feature_extractor` model input names do not match' , ) @staticmethod def SCREAMING_SNAKE_CASE__ ( snake_case_ , snake_case_ ) -> Union[str, Any]: UpperCamelCase__ = [d[key] for d in offsets] return retrieved_list def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: UpperCamelCase__ = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm' ) UpperCamelCase__ = self._get_dummy_logits()[0] UpperCamelCase__ = processor.decode(UpperCAmelCase_ , output_word_offsets=UpperCAmelCase_ ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('text' in outputs ) self.assertTrue('word_offsets' in outputs ) self.assertTrue(isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) ) self.assertEqual(' '.join(self.get_from_offsets(outputs['word_offsets'] , 'word' ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'] , 'word' ) , ['<s>', '<s>', '</s>'] ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'] , 'start_offset' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'] , 'end_offset' ) , [1, 3, 5] ) def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: UpperCamelCase__ = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm' ) UpperCamelCase__ = self._get_dummy_logits() UpperCamelCase__ = processor.batch_decode(UpperCAmelCase_ , output_word_offsets=UpperCAmelCase_ ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('text' in outputs ) self.assertTrue('word_offsets' in outputs ) self.assertTrue(isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) ) self.assertListEqual( [' '.join(self.get_from_offsets(UpperCAmelCase_ , 'word' ) ) for o in outputs['word_offsets']] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'][0] , 'word' ) , ['<s>', '<s>', '</s>'] ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'][0] , 'start_offset' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'][0] , 'end_offset' ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: import torch UpperCamelCase__ = load_dataset('common_voice' , 'en' , split='train' , streaming=UpperCAmelCase_ ) UpperCamelCase__ = ds.cast_column('audio' , datasets.Audio(sampling_rate=1_6000 ) ) UpperCamelCase__ = iter(UpperCAmelCase_ ) UpperCamelCase__ = next(UpperCAmelCase_ ) UpperCamelCase__ = AutoProcessor.from_pretrained('patrickvonplaten/wav2vec2-base-100h-with-lm' ) UpperCamelCase__ = WavaVecaForCTC.from_pretrained('patrickvonplaten/wav2vec2-base-100h-with-lm' ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train UpperCamelCase__ = processor(sample['audio']['array'] , return_tensors='pt' ).input_values with torch.no_grad(): UpperCamelCase__ = model(UpperCAmelCase_ ).logits.cpu().numpy() UpperCamelCase__ = processor.decode(logits[0] , output_word_offsets=UpperCAmelCase_ ) UpperCamelCase__ = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate UpperCamelCase__ = [ { 'start_time': d['start_offset'] * time_offset, 'end_time': d['end_offset'] * time_offset, 'word': d['word'], } for d in output['word_offsets'] ] UpperCamelCase__ = 'WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL' # output words self.assertEqual(' '.join(self.get_from_offsets(UpperCAmelCase_ , 'word' ) ) , UpperCAmelCase_ ) self.assertEqual(' '.join(self.get_from_offsets(UpperCAmelCase_ , 'word' ) ) , output.text ) # output times UpperCamelCase__ = torch.tensor(self.get_from_offsets(UpperCAmelCase_ , 'start_time' ) ) UpperCamelCase__ = torch.tensor(self.get_from_offsets(UpperCAmelCase_ , 'end_time' ) ) # fmt: off UpperCamelCase__ = torch.tensor([1.4_199, 1.6_599, 2.2_599, 3.0, 3.24, 3.5_999, 3.7_999, 4.0_999, 4.26, 4.94, 5.28, 5.6_599, 5.78, 5.94, 6.32, 6.5_399, 6.6_599] ) UpperCamelCase__ = torch.tensor([1.5_399, 1.8_999, 2.9, 3.16, 3.5_399, 3.72, 4.0_199, 4.1_799, 4.76, 5.1_599, 5.5_599, 5.6_999, 5.86, 6.1_999, 6.38, 6.6_199, 6.94] ) # fmt: on self.assertTrue(torch.allclose(UpperCAmelCase_ , UpperCAmelCase_ , atol=0.01 ) ) self.assertTrue(torch.allclose(UpperCAmelCase_ , UpperCAmelCase_ , atol=0.01 ) )
710
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType A__ : Any= logging.get_logger(__name__) A__ : str= { """microsoft/layoutlmv3-base""": """https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json""", } class __lowerCamelCase ( _a ): a : List[str] ="""layoutlmv3""" def __init__( self , snake_case_=5_0265 , snake_case_=768 , snake_case_=12 , snake_case_=12 , snake_case_=3072 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=512 , snake_case_=2 , snake_case_=0.02 , snake_case_=1E-5 , snake_case_=1 , snake_case_=0 , snake_case_=2 , snake_case_=1024 , snake_case_=128 , snake_case_=128 , snake_case_=True , snake_case_=32 , snake_case_=128 , snake_case_=64 , snake_case_=256 , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=224 , snake_case_=3 , snake_case_=16 , snake_case_=None , **snake_case_ , ) -> Union[str, Any]: super().__init__( vocab_size=snake_case_ , hidden_size=snake_case_ , num_hidden_layers=snake_case_ , num_attention_heads=snake_case_ , intermediate_size=snake_case_ , hidden_act=snake_case_ , hidden_dropout_prob=snake_case_ , attention_probs_dropout_prob=snake_case_ , max_position_embeddings=snake_case_ , type_vocab_size=snake_case_ , initializer_range=snake_case_ , layer_norm_eps=snake_case_ , pad_token_id=snake_case_ , bos_token_id=snake_case_ , eos_token_id=snake_case_ , **snake_case_ , ) UpperCamelCase__ = max_ad_position_embeddings UpperCamelCase__ = coordinate_size UpperCamelCase__ = shape_size UpperCamelCase__ = has_relative_attention_bias UpperCamelCase__ = rel_pos_bins UpperCamelCase__ = max_rel_pos UpperCamelCase__ = has_spatial_attention_bias UpperCamelCase__ = rel_ad_pos_bins UpperCamelCase__ = max_rel_ad_pos UpperCamelCase__ = text_embed UpperCamelCase__ = visual_embed UpperCamelCase__ = input_size UpperCamelCase__ = num_channels UpperCamelCase__ = patch_size UpperCamelCase__ = classifier_dropout class __lowerCamelCase ( _a ): a : Tuple =version.parse("""1.12""" ) @property def SCREAMING_SNAKE_CASE__ ( self ) -> Mapping[str, Mapping[int, str]]: # The order of inputs is different for question answering and sequence classification if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ('attention_mask', {0: 'batch', 1: 'sequence'}), ('bbox', {0: 'batch', 1: 'sequence'}), ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) else: return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ('bbox', {0: 'batch', 1: 'sequence'}), ('attention_mask', {0: 'batch', 1: 'sequence'}), ('pixel_values', {0: 'batch', 1: 'num_channels'}), ] ) @property def SCREAMING_SNAKE_CASE__ ( self ) -> float: return 1E-5 @property def SCREAMING_SNAKE_CASE__ ( self ) -> int: return 12 def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ = -1 , snake_case_ = -1 , snake_case_ = False , snake_case_ = None , snake_case_ = 3 , snake_case_ = 40 , snake_case_ = 40 , ) -> Mapping[str, Any]: setattr(processor.image_processor , 'apply_ocr' , snake_case_ ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX UpperCamelCase__ = compute_effective_axis_dimension( snake_case_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX UpperCamelCase__ = processor.tokenizer.num_special_tokens_to_add(snake_case_ ) UpperCamelCase__ = compute_effective_axis_dimension( snake_case_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=snake_case_ ) # Generate dummy inputs according to compute batch and sequence UpperCamelCase__ = [[' '.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes UpperCamelCase__ = [[[48, 84, 73, 128]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) UpperCamelCase__ = self._generate_dummy_images(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) UpperCamelCase__ = dict( processor( snake_case_ , text=snake_case_ , boxes=snake_case_ , return_tensors=snake_case_ , ) ) return inputs
20
0
import collections import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = '▁' SCREAMING_SNAKE_CASE = {'vocab_file': 'prophetnet.tokenizer'} SCREAMING_SNAKE_CASE = { 'vocab_file': { 'microsoft/xprophetnet-large-wiki100-cased': ( 'https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/prophetnet.tokenizer' ), } } SCREAMING_SNAKE_CASE = { 'microsoft/xprophetnet-large-wiki100-cased': {'do_lower_case': False}, } SCREAMING_SNAKE_CASE = { 'microsoft/xprophetnet-large-wiki100-cased': 5_1_2, } def a (lowerCAmelCase__ ): __a = collections.OrderedDict() with open(lowerCAmelCase__ , """r""" , encoding="""utf-8""" ) as reader: __a = reader.readlines() for index, token in enumerate(lowerCAmelCase__ ): __a = token.rstrip("""\n""" ) __a = index return vocab class __UpperCAmelCase ( __A ): """simple docstring""" _lowerCamelCase = VOCAB_FILES_NAMES _lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase = ["""input_ids""", """attention_mask"""] def __init__( self , __A , __A="[SEP]" , __A="[SEP]" , __A="[SEP]" , __A="[UNK]" , __A="[PAD]" , __A="[CLS]" , __A="[MASK]" , __A = None , **__A , ): __a = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__A , eos_token=__A , sep_token=__A , unk_token=__A , pad_token=__A , cls_token=__A , mask_token=__A , sp_model_kwargs=self.sp_model_kwargs , **__A , ) try: import sentencepiece as spm except ImportError: logger.warning( """You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece""" """ pip install sentencepiece""" ) raise __a = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__A ) ) __a = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # put special tokens and [unused] tokens into the vocab __a = {"""[PAD]""": 0, """[CLS]""": 1, """[SEP]""": 2, """[UNK]""": 3, """[MASK]""": 4} for i in range(10 ): __a = f'''[unused{i}]''' __a = 5 + i # The first "real" token "," has position 15 in the embedding vocab and position 3 in the spm vocab __a = 12 __a = {v: k for k, v in self.fairseq_tokens_to_ids.items()} for k in self.fairseq_tokens_to_ids.keys(): self.unique_no_split_tokens.append(__A ) def __getstate__( self ): __a = self.__dict__.copy() __a = None return state def __setstate__( self , __A ): __a = d try: import sentencepiece as spm except ImportError: logger.warning( """You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece""" """ pip install sentencepiece""" ) raise # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): __a = {} __a = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def snake_case_ ( self , __A , __A = None , __A = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__A , token_ids_a=__A , already_has_special_tokens=__A ) if token_ids_a is None: return ([0] * len(__A )) + [1] return ([0] * len(__A )) + [1] + ([0] * len(__A )) + [1] def snake_case_ ( self , __A , __A = None ): __a = [self.sep_token_id] if token_ids_a is None: return len(token_ids_a + sep ) * [0] return len(token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def snake_case_ ( self ): return len(self.sp_model ) + self.fairseq_offset def snake_case_ ( self ): __a = {self.convert_ids_to_tokens(__A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def snake_case_ ( self , __A ): return self.sp_model.encode(__A , out_type=__A ) def snake_case_ ( self , __A ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] __a = self.sp_model.PieceToId(__A ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def snake_case_ ( self , __A ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def snake_case_ ( self , __A ): __a = """""".join(__A ).replace(__A , """ """ ).strip() return out_string def snake_case_ ( self , __A , __A = None ): if not os.path.isdir(__A ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __a = os.path.join( __A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __A ) elif not os.path.isfile(self.vocab_file ): with open(__A , """wb""" ) as fi: __a = self.sp_model.serialized_model_proto() fi.write(__A ) return (out_vocab_file,) def snake_case_ ( self , __A , __A = None ): if token_ids_a is None: return token_ids_a + [self.sep_token_id] __a = [self.sep_token_id] return token_ids_a + sep + token_ids_a + sep
99
import argparse from copy import deepcopy import numpy as np from datasets import ClassLabel, DatasetDict, load_dataset from evaluate import load from transformers import ( AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, Trainer, TrainerCallback, TrainingArguments, set_seed, ) def a (): __a = argparse.ArgumentParser() parser.add_argument("""--model_ckpt""" , type=lowerCAmelCase__ , default="""microsoft/unixcoder-base-nine""" ) parser.add_argument("""--num_epochs""" , type=lowerCAmelCase__ , default=5 ) parser.add_argument("""--batch_size""" , type=lowerCAmelCase__ , default=6 ) parser.add_argument("""--gradient_accumulation_steps""" , type=lowerCAmelCase__ , default=1 ) parser.add_argument("""--freeze""" , type=lowerCAmelCase__ , default=lowerCAmelCase__ ) parser.add_argument("""--learning_rate""" , type=lowerCAmelCase__ , default=5E-4 ) parser.add_argument("""--seed""" , type=lowerCAmelCase__ , default=0 ) parser.add_argument("""--lr_scheduler_type""" , type=lowerCAmelCase__ , default="""cosine""" ) parser.add_argument("""--num_warmup_steps""" , type=lowerCAmelCase__ , default=10 ) parser.add_argument("""--weight_decay""" , type=lowerCAmelCase__ , default=0.0_1 ) parser.add_argument("""--output_dir""" , type=lowerCAmelCase__ , default="""./results""" ) return parser.parse_args() SCREAMING_SNAKE_CASE = load('accuracy') def a (lowerCAmelCase__ ): __a , __a = eval_pred __a = np.argmax(lowerCAmelCase__ , axis=1 ) return metric.compute(predictions=lowerCAmelCase__ , references=lowerCAmelCase__ ) class __UpperCAmelCase ( __A ): """simple docstring""" def __init__( self , __A ): super().__init__() __a = trainer def snake_case_ ( self , __A , __A , __A , **__A ): if control.should_evaluate: __a = deepcopy(__A ) self._trainer.evaluate(eval_dataset=self._trainer.train_dataset , metric_key_prefix="""train""" ) return control_copy def a (): __a = get_args() set_seed(args.seed ) __a = load_dataset("""codeparrot/codecomplex""" , split="""train""" ) __a = dataset.train_test_split(test_size=0.2 ) __a = train_test["""test"""].train_test_split(test_size=0.5 ) __a = DatasetDict( { """train""": train_test["""train"""], """test""": test_validation["""train"""], """valid""": test_validation["""test"""], } ) print("""Loading tokenizer and model""" ) __a = AutoTokenizer.from_pretrained(args.model_ckpt ) __a = tokenizer.eos_token __a = AutoModelForSequenceClassification.from_pretrained(args.model_ckpt , num_labels=7 ) __a = model.config.eos_token_id if args.freeze: for param in model.roberta.parameters(): __a = False __a = ClassLabel(num_classes=7 , names=list(set(train_test_validation["""train"""]["""complexity"""] ) ) ) def tokenize(lowerCAmelCase__ ): __a = tokenizer(example["""src"""] , truncation=lowerCAmelCase__ , max_length=1_024 ) __a = labels.straint(example["""complexity"""] ) return { "input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"], "label": label, } __a = train_test_validation.map( lowerCAmelCase__ , batched=lowerCAmelCase__ , remove_columns=train_test_validation["""train"""].column_names , ) __a = DataCollatorWithPadding(tokenizer=lowerCAmelCase__ ) __a = TrainingArguments( output_dir=args.output_dir , learning_rate=args.learning_rate , lr_scheduler_type=args.lr_scheduler_type , evaluation_strategy="""epoch""" , save_strategy="""epoch""" , logging_strategy="""epoch""" , per_device_train_batch_size=args.batch_size , per_device_eval_batch_size=args.batch_size , num_train_epochs=args.num_epochs , gradient_accumulation_steps=args.gradient_accumulation_steps , weight_decay=0.0_1 , metric_for_best_model="""accuracy""" , run_name="""complexity-java""" , report_to="""wandb""" , ) __a = Trainer( model=lowerCAmelCase__ , args=lowerCAmelCase__ , train_dataset=tokenized_datasets["""train"""] , eval_dataset=tokenized_datasets["""valid"""] , tokenizer=lowerCAmelCase__ , data_collator=lowerCAmelCase__ , compute_metrics=lowerCAmelCase__ , ) print("""Training...""" ) trainer.add_callback(CustomCallback(lowerCAmelCase__ ) ) trainer.train() if __name__ == "__main__": main()
99
1
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): __A : str = StableDiffusionInpaintPipeline __A : Union[str, Any] = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS __A : str = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS __A : Tuple = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess __A : Any = frozenset([] ) def __snake_case ( self : Union[str, Any] ): '''simple docstring''' torch.manual_seed(0 ) lowercase :Dict = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=9 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=3_2 , attention_head_dim=(2, 4) , use_linear_projection=snake_case__ , ) lowercase :Any = PNDMScheduler(skip_prk_steps=snake_case__ ) torch.manual_seed(0 ) lowercase :str = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=1_2_8 , ) torch.manual_seed(0 ) lowercase :List[str] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act='''gelu''' , projection_dim=5_1_2 , ) lowercase :int = CLIPTextModel(snake_case__ ) lowercase :List[Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) lowercase :Optional[Any] = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def __snake_case ( self : Optional[int] , snake_case__ : Tuple , snake_case__ : Optional[Any]=0 ): '''simple docstring''' lowercase :Dict = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) lowercase :Tuple = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase :Dict = Image.fromarray(np.uinta(snake_case__ ) ).convert('''RGB''' ).resize((6_4, 6_4) ) lowercase :Optional[int] = Image.fromarray(np.uinta(image + 4 ) ).convert('''RGB''' ).resize((6_4, 6_4) ) if str(snake_case__ ).startswith('''mps''' ): lowercase :Union[str, Any] = torch.manual_seed(snake_case__ ) else: lowercase :Dict = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) lowercase :Dict = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': init_image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def __snake_case ( self : Dict ): '''simple docstring''' lowercase :Dict = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase :Optional[Any] = self.get_dummy_components() lowercase :Optional[Any] = StableDiffusionInpaintPipeline(**snake_case__ ) lowercase :List[Any] = sd_pipe.to(snake_case__ ) sd_pipe.set_progress_bar_config(disable=snake_case__ ) lowercase :Optional[int] = self.get_dummy_inputs(snake_case__ ) lowercase :Any = sd_pipe(**snake_case__ ).images lowercase :Any = image[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) lowercase :Dict = np.array([0.47_27, 0.57_35, 0.39_41, 0.54_46, 0.59_26, 0.43_94, 0.50_62, 0.46_54, 0.44_76] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __snake_case ( self : List[str] ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class __magic_name__ ( unittest.TestCase ): def __snake_case ( self : List[Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __snake_case ( self : Union[str, Any] ): '''simple docstring''' lowercase :Optional[int] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) lowercase :Optional[int] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) lowercase :Optional[Any] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint''' '''/yellow_cat_sitting_on_a_park_bench.npy''' ) lowercase :List[Any] = '''stabilityai/stable-diffusion-2-inpainting''' lowercase :Dict = StableDiffusionInpaintPipeline.from_pretrained(snake_case__ , safety_checker=snake_case__ ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) pipe.enable_attention_slicing() lowercase :Tuple = '''Face of a yellow cat, high resolution, sitting on a park bench''' lowercase :List[str] = torch.manual_seed(0 ) lowercase :int = pipe( prompt=snake_case__ , image=snake_case__ , mask_image=snake_case__ , generator=snake_case__ , output_type='''np''' , ) lowercase :Any = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image ).max() < 9e-3 def __snake_case ( self : Union[str, Any] ): '''simple docstring''' lowercase :Optional[int] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) lowercase :Dict = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) lowercase :int = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint''' '''/yellow_cat_sitting_on_a_park_bench_fp16.npy''' ) lowercase :List[Any] = '''stabilityai/stable-diffusion-2-inpainting''' lowercase :Union[str, Any] = StableDiffusionInpaintPipeline.from_pretrained( snake_case__ , torch_dtype=torch.floataa , safety_checker=snake_case__ , ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) pipe.enable_attention_slicing() lowercase :int = '''Face of a yellow cat, high resolution, sitting on a park bench''' lowercase :Dict = torch.manual_seed(0 ) lowercase :Any = pipe( prompt=snake_case__ , image=snake_case__ , mask_image=snake_case__ , generator=snake_case__ , output_type='''np''' , ) lowercase :List[str] = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image ).max() < 5e-1 def __snake_case ( self : Union[str, Any] ): '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowercase :Tuple = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) lowercase :Optional[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) lowercase :int = '''stabilityai/stable-diffusion-2-inpainting''' lowercase :Optional[int] = PNDMScheduler.from_pretrained(snake_case__ , subfolder='''scheduler''' ) lowercase :int = StableDiffusionInpaintPipeline.from_pretrained( snake_case__ , safety_checker=snake_case__ , scheduler=snake_case__ , torch_dtype=torch.floataa , ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() lowercase :str = '''Face of a yellow cat, high resolution, sitting on a park bench''' lowercase :Any = torch.manual_seed(0 ) lowercase :List[Any] = pipe( prompt=snake_case__ , image=snake_case__ , mask_image=snake_case__ , generator=snake_case__ , num_inference_steps=2 , output_type='''np''' , ) lowercase :int = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 1_0**9
475
"""simple docstring""" import unittest import numpy as np def lowerCamelCase (a_ :np.ndarray , a_ :np.ndarray , a_ :np.ndarray , a_ :np.ndarray | None = None , ) -> np.ndarray: lowercase :str = np.shape(a_) lowercase :Dict = np.shape(a_) lowercase :Optional[int] = np.shape(a_) if shape_a[0] != shape_b[0]: lowercase :List[str] = ( '''Expected the same number of rows for A and B. ''' F"""Instead found A of size {shape_a} and B of size {shape_b}""" ) raise ValueError(a_) if shape_b[1] != shape_c[1]: lowercase :List[str] = ( '''Expected the same number of columns for B and C. ''' F"""Instead found B of size {shape_b} and C of size {shape_c}""" ) raise ValueError(a_) lowercase :Optional[Any] = pseudo_inv if a_inv is None: try: lowercase :int = np.linalg.inv(a_) except np.linalg.LinAlgError: raise ValueError( '''Input matrix A is not invertible. Cannot compute Schur complement.''') return mat_c - mat_b.T @ a_inv @ mat_b class __magic_name__ ( unittest.TestCase ): def __snake_case ( self : int ): '''simple docstring''' lowercase :Dict = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) lowercase :List[str] = np.array([[0, 3], [3, 0], [2, 3]] ) lowercase :List[str] = np.array([[2, 1], [6, 3]] ) lowercase :Any = schur_complement(snake_case__ , snake_case__ , snake_case__ ) lowercase :int = np.block([[a, b], [b.T, c]] ) lowercase :Tuple = np.linalg.det(snake_case__ ) lowercase :Any = np.linalg.det(snake_case__ ) lowercase :List[Any] = np.linalg.det(snake_case__ ) self.assertAlmostEqual(snake_case__ , det_a * det_s ) def __snake_case ( self : Optional[int] ): '''simple docstring''' lowercase :Union[str, Any] = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) lowercase :Union[str, Any] = np.array([[0, 3], [3, 0], [2, 3]] ) lowercase :List[str] = np.array([[2, 1], [6, 3]] ) with self.assertRaises(snake_case__ ): schur_complement(snake_case__ , snake_case__ , snake_case__ ) def __snake_case ( self : List[Any] ): '''simple docstring''' lowercase :List[str] = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) lowercase :int = np.array([[0, 3], [3, 0], [2, 3]] ) lowercase :List[Any] = np.array([[2, 1, 3], [6, 3, 5]] ) with self.assertRaises(snake_case__ ): schur_complement(snake_case__ , snake_case__ , snake_case__ ) if __name__ == "__main__": import doctest doctest.testmod() unittest.main()
475
1
import collections import gzip import os import urllib import numpy from tensorflow.python.framework import dtypes, random_seed from tensorflow.python.platform import gfile from tensorflow.python.util.deprecation import deprecated _lowerCamelCase : Dict = collections.namedtuple('''_Datasets''', ['''train''', '''validation''', '''test''']) # CVDF mirror of http://yann.lecun.com/exdb/mnist/ _lowerCamelCase : List[str] = '''https://storage.googleapis.com/cvdf-datasets/mnist/''' def a_ ( __lowercase : str ) -> Any: _snake_case = numpy.dtype(numpy.uintaa ).newbyteorder('>' ) return numpy.frombuffer(bytestream.read(4 ) , dtype=__A )[0] @deprecated(__A , 'Please use tf.data to implement this functionality.' ) def a_ ( __lowercase : Union[str, Any] ) -> List[str]: print('Extracting' , f.name ) with gzip.GzipFile(fileobj=__A ) as bytestream: _snake_case = _readaa(__A ) if magic != 2_051: raise ValueError( 'Invalid magic number %d in MNIST image file: %s' % (magic, f.name) ) _snake_case = _readaa(__A ) _snake_case = _readaa(__A ) _snake_case = _readaa(__A ) _snake_case = bytestream.read(rows * cols * num_images ) _snake_case = numpy.frombuffer(__A , dtype=numpy.uinta ) _snake_case = data.reshape(__A , __A , __A , 1 ) return data @deprecated(__A , 'Please use tf.one_hot on tensors.' ) def a_ ( __lowercase : Dict , __lowercase : Any ) -> List[str]: _snake_case = labels_dense.shape[0] _snake_case = numpy.arange(__A ) * num_classes _snake_case = numpy.zeros((num_labels, num_classes) ) _snake_case = 1 return labels_one_hot @deprecated(__A , 'Please use tf.data to implement this functionality.' ) def a_ ( __lowercase : List[str] , __lowercase : Union[str, Any]=False , __lowercase : Tuple=10 ) -> Optional[int]: print('Extracting' , f.name ) with gzip.GzipFile(fileobj=__A ) as bytestream: _snake_case = _readaa(__A ) if magic != 2_049: raise ValueError( 'Invalid magic number %d in MNIST label file: %s' % (magic, f.name) ) _snake_case = _readaa(__A ) _snake_case = bytestream.read(__A ) _snake_case = numpy.frombuffer(__A , dtype=numpy.uinta ) if one_hot: return _dense_to_one_hot(__A , __A ) return labels class SCREAMING_SNAKE_CASE__ : '''simple docstring''' @deprecated( lowercase , 'Please use alternatives such as official/mnist/_DataSet.py' ' from tensorflow/models.' , ) def __init__( self : Any , lowercase : Tuple , lowercase : Optional[int] , lowercase : Dict=False , lowercase : List[Any]=False , lowercase : Optional[Any]=dtypes.floataa , lowercase : Tuple=True , lowercase : Tuple=None , ): '''simple docstring''' _snake_case = random_seed.get_seed(lowercase ) # If op level seed is not set, use whatever graph level seed is returned numpy.random.seed(seeda if seed is None else seeda ) _snake_case = dtypes.as_dtype(lowercase ).base_dtype if dtype not in (dtypes.uinta, dtypes.floataa): raise TypeError('Invalid image dtype %r, expected uint8 or float32' % dtype ) if fake_data: _snake_case = 10_000 _snake_case = one_hot else: assert ( images.shape[0] == labels.shape[0] ), f'''images.shape: {images.shape} labels.shape: {labels.shape}''' _snake_case = images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) if reshape: assert images.shape[3] == 1 _snake_case = images.reshape( images.shape[0] , images.shape[1] * images.shape[2] ) if dtype == dtypes.floataa: # Convert from [0, 255] -> [0.0, 1.0]. _snake_case = images.astype(numpy.floataa ) _snake_case = numpy.multiply(lowercase , 1.0 / 255.0 ) _snake_case = images _snake_case = labels _snake_case = 0 _snake_case = 0 @property def A ( self : List[str] ): '''simple docstring''' return self._images @property def A ( self : str ): '''simple docstring''' return self._labels @property def A ( self : Optional[Any] ): '''simple docstring''' return self._num_examples @property def A ( self : Tuple ): '''simple docstring''' return self._epochs_completed def A ( self : List[str] , lowercase : int , lowercase : Union[str, Any]=False , lowercase : str=True ): '''simple docstring''' if fake_data: _snake_case = [1] * 784 _snake_case = [1] + [0] * 9 if self.one_hot else 0 return ( [fake_image for _ in range(lowercase )], [fake_label for _ in range(lowercase )], ) _snake_case = self._index_in_epoch # Shuffle for the first epoch if self._epochs_completed == 0 and start == 0 and shuffle: _snake_case = numpy.arange(self._num_examples ) numpy.random.shuffle(lowercase ) _snake_case = self.images[perma] _snake_case = self.labels[perma] # Go to the next epoch if start + batch_size > self._num_examples: # Finished epoch self._epochs_completed += 1 # Get the rest examples in this epoch _snake_case = self._num_examples - start _snake_case = self._images[start : self._num_examples] _snake_case = self._labels[start : self._num_examples] # Shuffle the data if shuffle: _snake_case = numpy.arange(self._num_examples ) numpy.random.shuffle(lowercase ) _snake_case = self.images[perm] _snake_case = self.labels[perm] # Start next epoch _snake_case = 0 _snake_case = batch_size - rest_num_examples _snake_case = self._index_in_epoch _snake_case = self._images[start:end] _snake_case = self._labels[start:end] return ( numpy.concatenate((images_rest_part, images_new_part) , axis=0 ), numpy.concatenate((labels_rest_part, labels_new_part) , axis=0 ), ) else: self._index_in_epoch += batch_size _snake_case = self._index_in_epoch return self._images[start:end], self._labels[start:end] @deprecated(__A , 'Please write your own downloading logic.' ) def a_ ( __lowercase : Optional[Any] , __lowercase : Union[str, Any] , __lowercase : Optional[int] ) -> Dict: if not gfile.Exists(__A ): gfile.MakeDirs(__A ) _snake_case = os.path.join(__A , __A ) if not gfile.Exists(__A ): urllib.request.urlretrieve(__A , __A ) # noqa: S310 with gfile.GFile(__A ) as f: _snake_case = f.size() print('Successfully downloaded' , __A , __A , 'bytes.' ) return filepath @deprecated( __A , 'Please use alternatives such as:' ' tensorflow_datasets.load(\'mnist\')' ) def a_ ( __lowercase : Any , __lowercase : Union[str, Any]=False , __lowercase : Tuple=False , __lowercase : Optional[Any]=dtypes.floataa , __lowercase : List[Any]=True , __lowercase : str=5_000 , __lowercase : Any=None , __lowercase : Any=DEFAULT_SOURCE_URL , ) -> Dict: if fake_data: def fake(): return _DataSet( [] , [] , fake_data=__A , one_hot=__A , dtype=__A , seed=__A ) _snake_case = fake() _snake_case = fake() _snake_case = fake() return _Datasets(train=__A , validation=__A , test=__A ) if not source_url: # empty string check _snake_case = DEFAULT_SOURCE_URL _snake_case = '''train-images-idx3-ubyte.gz''' _snake_case = '''train-labels-idx1-ubyte.gz''' _snake_case = '''t10k-images-idx3-ubyte.gz''' _snake_case = '''t10k-labels-idx1-ubyte.gz''' _snake_case = _maybe_download( __A , __A , source_url + train_images_file ) with gfile.Open(__A , 'rb' ) as f: _snake_case = _extract_images(__A ) _snake_case = _maybe_download( __A , __A , source_url + train_labels_file ) with gfile.Open(__A , 'rb' ) as f: _snake_case = _extract_labels(__A , one_hot=__A ) _snake_case = _maybe_download( __A , __A , source_url + test_images_file ) with gfile.Open(__A , 'rb' ) as f: _snake_case = _extract_images(__A ) _snake_case = _maybe_download( __A , __A , source_url + test_labels_file ) with gfile.Open(__A , 'rb' ) as f: _snake_case = _extract_labels(__A , one_hot=__A ) if not 0 <= validation_size <= len(__A ): _snake_case = ( '''Validation size should be between 0 and ''' f'''{len(__A )}. Received: {validation_size}.''' ) raise ValueError(__A ) _snake_case = train_images[:validation_size] _snake_case = train_labels[:validation_size] _snake_case = train_images[validation_size:] _snake_case = train_labels[validation_size:] _snake_case = {'''dtype''': dtype, '''reshape''': reshape, '''seed''': seed} _snake_case = _DataSet(__A , __A , **__A ) _snake_case = _DataSet(__A , __A , **__A ) _snake_case = _DataSet(__A , __A , **__A ) return _Datasets(train=__A , validation=__A , test=__A )
686
'''simple docstring''' from ..utils import DummyObject, requires_backends class UpperCAmelCase_ ( metaclass=__A ): """simple docstring""" UpperCamelCase_ = ['''flax'''] def __init__( self : Dict , *UpperCAmelCase : List[Any] , **UpperCAmelCase : Union[str, Any] ) -> List[Any]: '''simple docstring''' requires_backends(self , ['''flax'''] ) @classmethod def A__ ( cls : Any , *UpperCAmelCase : Dict , **UpperCAmelCase : List[str] ) -> List[Any]: '''simple docstring''' requires_backends(cls , ['''flax'''] ) @classmethod def A__ ( cls : Dict , *UpperCAmelCase : str , **UpperCAmelCase : Any ) -> Any: '''simple docstring''' requires_backends(cls , ['''flax'''] ) class UpperCAmelCase_ ( metaclass=__A ): """simple docstring""" UpperCamelCase_ = ['''flax'''] def __init__( self : Union[str, Any] , *UpperCAmelCase : Optional[Any] , **UpperCAmelCase : str ) -> Optional[int]: '''simple docstring''' requires_backends(self , ['''flax'''] ) @classmethod def A__ ( cls : Tuple , *UpperCAmelCase : Any , **UpperCAmelCase : List[Any] ) -> int: '''simple docstring''' requires_backends(cls , ['''flax'''] ) @classmethod def A__ ( cls : List[Any] , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : List[str] ) -> List[Any]: '''simple docstring''' requires_backends(cls , ['''flax'''] ) class UpperCAmelCase_ ( metaclass=__A ): """simple docstring""" UpperCamelCase_ = ['''flax'''] def __init__( self : Any , *UpperCAmelCase : int , **UpperCAmelCase : Optional[Any] ) -> Any: '''simple docstring''' requires_backends(self , ['''flax'''] ) @classmethod def A__ ( cls : str , *UpperCAmelCase : Tuple , **UpperCAmelCase : Union[str, Any] ) -> Optional[int]: '''simple docstring''' requires_backends(cls , ['''flax'''] ) @classmethod def A__ ( cls : Optional[int] , *UpperCAmelCase : Dict , **UpperCAmelCase : Optional[int] ) -> List[str]: '''simple docstring''' requires_backends(cls , ['''flax'''] ) class UpperCAmelCase_ ( metaclass=__A ): """simple docstring""" UpperCamelCase_ = ['''flax'''] def __init__( self : Union[str, Any] , *UpperCAmelCase : Optional[Any] , **UpperCAmelCase : int ) -> Optional[int]: '''simple docstring''' requires_backends(self , ['''flax'''] ) @classmethod def A__ ( cls : Tuple , *UpperCAmelCase : Any , **UpperCAmelCase : Optional[int] ) -> List[Any]: '''simple docstring''' requires_backends(cls , ['''flax'''] ) @classmethod def A__ ( cls : int , *UpperCAmelCase : int , **UpperCAmelCase : Dict ) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ['''flax'''] ) class UpperCAmelCase_ ( metaclass=__A ): """simple docstring""" UpperCamelCase_ = ['''flax'''] def __init__( self : Optional[int] , *UpperCAmelCase : Dict , **UpperCAmelCase : Union[str, Any] ) -> List[str]: '''simple docstring''' requires_backends(self , ['''flax'''] ) @classmethod def A__ ( cls : str , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : List[str] ) -> str: '''simple docstring''' requires_backends(cls , ['''flax'''] ) @classmethod def A__ ( cls : Dict , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : List[Any] ) -> Dict: '''simple docstring''' requires_backends(cls , ['''flax'''] ) class UpperCAmelCase_ ( metaclass=__A ): """simple docstring""" UpperCamelCase_ = ['''flax'''] def __init__( self : Union[str, Any] , *UpperCAmelCase : Any , **UpperCAmelCase : Union[str, Any] ) -> str: '''simple docstring''' requires_backends(self , ['''flax'''] ) @classmethod def A__ ( cls : Optional[Any] , *UpperCAmelCase : Optional[Any] , **UpperCAmelCase : Optional[Any] ) -> str: '''simple docstring''' requires_backends(cls , ['''flax'''] ) @classmethod def A__ ( cls : Optional[int] , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : Dict ) -> Dict: '''simple docstring''' requires_backends(cls , ['''flax'''] ) class UpperCAmelCase_ ( metaclass=__A ): """simple docstring""" UpperCamelCase_ = ['''flax'''] def __init__( self : int , *UpperCAmelCase : List[Any] , **UpperCAmelCase : Tuple ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ['''flax'''] ) @classmethod def A__ ( cls : Any , *UpperCAmelCase : int , **UpperCAmelCase : Optional[Any] ) -> str: '''simple docstring''' requires_backends(cls , ['''flax'''] ) @classmethod def A__ ( cls : Union[str, Any] , *UpperCAmelCase : List[str] , **UpperCAmelCase : List[str] ) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ['''flax'''] ) class UpperCAmelCase_ ( metaclass=__A ): """simple docstring""" UpperCamelCase_ = ['''flax'''] def __init__( self : Union[str, Any] , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : List[str] ) -> List[Any]: '''simple docstring''' requires_backends(self , ['''flax'''] ) @classmethod def A__ ( cls : Optional[Any] , *UpperCAmelCase : Optional[Any] , **UpperCAmelCase : Any ) -> List[Any]: '''simple docstring''' requires_backends(cls , ['''flax'''] ) @classmethod def A__ ( cls : Dict , *UpperCAmelCase : Any , **UpperCAmelCase : Optional[Any] ) -> List[Any]: '''simple docstring''' requires_backends(cls , ['''flax'''] ) class UpperCAmelCase_ ( metaclass=__A ): """simple docstring""" UpperCamelCase_ = ['''flax'''] def __init__( self : Optional[int] , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : Any ) -> Any: '''simple docstring''' requires_backends(self , ['''flax'''] ) @classmethod def A__ ( cls : Tuple , *UpperCAmelCase : List[str] , **UpperCAmelCase : Optional[int] ) -> List[str]: '''simple docstring''' requires_backends(cls , ['''flax'''] ) @classmethod def A__ ( cls : Union[str, Any] , *UpperCAmelCase : Any , **UpperCAmelCase : int ) -> Tuple: '''simple docstring''' requires_backends(cls , ['''flax'''] ) class UpperCAmelCase_ ( metaclass=__A ): """simple docstring""" UpperCamelCase_ = ['''flax'''] def __init__( self : Optional[int] , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : Dict ) -> int: '''simple docstring''' requires_backends(self , ['''flax'''] ) @classmethod def A__ ( cls : List[str] , *UpperCAmelCase : Dict , **UpperCAmelCase : Dict ) -> List[Any]: '''simple docstring''' requires_backends(cls , ['''flax'''] ) @classmethod def A__ ( cls : str , *UpperCAmelCase : Optional[Any] , **UpperCAmelCase : str ) -> int: '''simple docstring''' requires_backends(cls , ['''flax'''] ) class UpperCAmelCase_ ( metaclass=__A ): """simple docstring""" UpperCamelCase_ = ['''flax'''] def __init__( self : Optional[int] , *UpperCAmelCase : Any , **UpperCAmelCase : Optional[int] ) -> Optional[int]: '''simple docstring''' requires_backends(self , ['''flax'''] ) @classmethod def A__ ( cls : Optional[int] , *UpperCAmelCase : Dict , **UpperCAmelCase : Optional[Any] ) -> Dict: '''simple docstring''' requires_backends(cls , ['''flax'''] ) @classmethod def A__ ( cls : str , *UpperCAmelCase : str , **UpperCAmelCase : Any ) -> int: '''simple docstring''' requires_backends(cls , ['''flax'''] ) class UpperCAmelCase_ ( metaclass=__A ): """simple docstring""" UpperCamelCase_ = ['''flax'''] def __init__( self : Optional[int] , *UpperCAmelCase : str , **UpperCAmelCase : Any ) -> Optional[int]: '''simple docstring''' requires_backends(self , ['''flax'''] ) @classmethod def A__ ( cls : Optional[int] , *UpperCAmelCase : Tuple , **UpperCAmelCase : Any ) -> Dict: '''simple docstring''' requires_backends(cls , ['''flax'''] ) @classmethod def A__ ( cls : Optional[int] , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : Optional[Any] ) -> Dict: '''simple docstring''' requires_backends(cls , ['''flax'''] ) class UpperCAmelCase_ ( metaclass=__A ): """simple docstring""" UpperCamelCase_ = ['''flax'''] def __init__( self : Optional[Any] , *UpperCAmelCase : str , **UpperCAmelCase : int ) -> Tuple: '''simple docstring''' requires_backends(self , ['''flax'''] ) @classmethod def A__ ( cls : Dict , *UpperCAmelCase : List[Any] , **UpperCAmelCase : Optional[int] ) -> str: '''simple docstring''' requires_backends(cls , ['''flax'''] ) @classmethod def A__ ( cls : Union[str, Any] , *UpperCAmelCase : List[Any] , **UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ['''flax'''] )
94
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) UpperCAmelCase_ : str = { 'configuration_trocr': ['TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TrOCRConfig'], 'processing_trocr': ['TrOCRProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : List[Any] = [ 'TROCR_PRETRAINED_MODEL_ARCHIVE_LIST', 'TrOCRForCausalLM', 'TrOCRPreTrainedModel', ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys UpperCAmelCase_ : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
11
'''simple docstring''' import random from typing import Any def A_ ( _lowerCAmelCase : list ): """simple docstring""" for _ in range(len(_lowerCAmelCase ) ): _lowerCamelCase : Any = random.randint(0 , len(_lowerCAmelCase ) - 1 ) _lowerCamelCase : List[str] = random.randint(0 , len(_lowerCAmelCase ) - 1 ) _lowerCamelCase , _lowerCamelCase : Union[str, Any] = data[b], data[a] return data if __name__ == "__main__": UpperCAmelCase_ : Any = [0, 1, 2, 3, 4, 5, 6, 7] UpperCAmelCase_ : Dict = ['python', 'says', 'hello', '!'] print('Fisher-Yates Shuffle:') print('List', integers, strings) print('FY Shuffle', fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
11
1
from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { '''huggingface/informer-tourism-monthly''': ( '''https://huggingface.co/huggingface/informer-tourism-monthly/resolve/main/config.json''' ), # See all Informer models at https://huggingface.co/models?filter=informer } class _UpperCamelCase( __lowerCamelCase ): __SCREAMING_SNAKE_CASE : List[Any] = '''informer''' __SCREAMING_SNAKE_CASE : List[Any] = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', '''num_hidden_layers''': '''encoder_layers''', } def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : str = "student_t" , SCREAMING_SNAKE_CASE__ : str = "nll" , SCREAMING_SNAKE_CASE__ : int = 1 , SCREAMING_SNAKE_CASE__ : List[int] = None , SCREAMING_SNAKE_CASE__ : Optional[Union[str, bool]] = "mean" , SCREAMING_SNAKE_CASE__ : int = 0 , SCREAMING_SNAKE_CASE__ : int = 0 , SCREAMING_SNAKE_CASE__ : int = 0 , SCREAMING_SNAKE_CASE__ : int = 0 , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None , SCREAMING_SNAKE_CASE__ : int = 6_4 , SCREAMING_SNAKE_CASE__ : int = 3_2 , SCREAMING_SNAKE_CASE__ : int = 3_2 , SCREAMING_SNAKE_CASE__ : int = 2 , SCREAMING_SNAKE_CASE__ : int = 2 , SCREAMING_SNAKE_CASE__ : int = 2 , SCREAMING_SNAKE_CASE__ : int = 2 , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : str = "gelu" , SCREAMING_SNAKE_CASE__ : float = 0.05 , SCREAMING_SNAKE_CASE__ : float = 0.1 , SCREAMING_SNAKE_CASE__ : float = 0.1 , SCREAMING_SNAKE_CASE__ : float = 0.1 , SCREAMING_SNAKE_CASE__ : float = 0.1 , SCREAMING_SNAKE_CASE__ : int = 1_0_0 , SCREAMING_SNAKE_CASE__ : float = 0.02 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=True , SCREAMING_SNAKE_CASE__ : str = "prob" , SCREAMING_SNAKE_CASE__ : int = 5 , SCREAMING_SNAKE_CASE__ : bool = True , **SCREAMING_SNAKE_CASE__ : Tuple , ): '''simple docstring''' __a : Dict = prediction_length __a : Tuple = context_length or prediction_length __a : Tuple = distribution_output __a : Tuple = loss __a : str = input_size __a : Dict = num_time_features __a : Optional[int] = lags_sequence if lags_sequence is not None else [1, 2, 3, 4, 5, 6, 7] __a : str = scaling __a : Tuple = num_dynamic_real_features __a : int = num_static_real_features __a : Dict = num_static_categorical_features # set cardinality if cardinality and num_static_categorical_features > 0: if len(SCREAMING_SNAKE_CASE__ ) != num_static_categorical_features: raise ValueError( 'The cardinality should be a list of the same length as `num_static_categorical_features`' ) __a : Optional[Any] = cardinality else: __a : Optional[int] = [0] # set embedding_dimension if embedding_dimension and num_static_categorical_features > 0: if len(SCREAMING_SNAKE_CASE__ ) != num_static_categorical_features: raise ValueError( 'The embedding dimension should be a list of the same length as `num_static_categorical_features`' ) __a : int = embedding_dimension else: __a : List[Any] = [min(5_0 , (cat + 1) // 2 ) for cat in self.cardinality] __a : int = num_parallel_samples # Transformer architecture configuration __a : str = input_size * len(self.lags_sequence ) + self._number_of_features __a : Optional[int] = d_model __a : Union[str, Any] = encoder_attention_heads __a : int = decoder_attention_heads __a : Any = encoder_ffn_dim __a : Union[str, Any] = decoder_ffn_dim __a : List[Any] = encoder_layers __a : Optional[int] = decoder_layers __a : int = dropout __a : Optional[Any] = attention_dropout __a : Dict = activation_dropout __a : Union[str, Any] = encoder_layerdrop __a : Optional[int] = decoder_layerdrop __a : List[str] = activation_function __a : str = init_std __a : Optional[int] = use_cache # Informer __a : Union[str, Any] = attention_type __a : str = sampling_factor __a : Dict = distil super().__init__(is_encoder_decoder=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) @property def __lowerCAmelCase ( self : Any ): '''simple docstring''' return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
47
from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { '''huggingface/informer-tourism-monthly''': ( '''https://huggingface.co/huggingface/informer-tourism-monthly/resolve/main/config.json''' ), # See all Informer models at https://huggingface.co/models?filter=informer } class _UpperCamelCase( __lowerCamelCase ): __SCREAMING_SNAKE_CASE : List[Any] = '''informer''' __SCREAMING_SNAKE_CASE : List[Any] = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', '''num_hidden_layers''': '''encoder_layers''', } def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : str = "student_t" , SCREAMING_SNAKE_CASE__ : str = "nll" , SCREAMING_SNAKE_CASE__ : int = 1 , SCREAMING_SNAKE_CASE__ : List[int] = None , SCREAMING_SNAKE_CASE__ : Optional[Union[str, bool]] = "mean" , SCREAMING_SNAKE_CASE__ : int = 0 , SCREAMING_SNAKE_CASE__ : int = 0 , SCREAMING_SNAKE_CASE__ : int = 0 , SCREAMING_SNAKE_CASE__ : int = 0 , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None , SCREAMING_SNAKE_CASE__ : int = 6_4 , SCREAMING_SNAKE_CASE__ : int = 3_2 , SCREAMING_SNAKE_CASE__ : int = 3_2 , SCREAMING_SNAKE_CASE__ : int = 2 , SCREAMING_SNAKE_CASE__ : int = 2 , SCREAMING_SNAKE_CASE__ : int = 2 , SCREAMING_SNAKE_CASE__ : int = 2 , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : str = "gelu" , SCREAMING_SNAKE_CASE__ : float = 0.05 , SCREAMING_SNAKE_CASE__ : float = 0.1 , SCREAMING_SNAKE_CASE__ : float = 0.1 , SCREAMING_SNAKE_CASE__ : float = 0.1 , SCREAMING_SNAKE_CASE__ : float = 0.1 , SCREAMING_SNAKE_CASE__ : int = 1_0_0 , SCREAMING_SNAKE_CASE__ : float = 0.02 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=True , SCREAMING_SNAKE_CASE__ : str = "prob" , SCREAMING_SNAKE_CASE__ : int = 5 , SCREAMING_SNAKE_CASE__ : bool = True , **SCREAMING_SNAKE_CASE__ : Tuple , ): '''simple docstring''' __a : Dict = prediction_length __a : Tuple = context_length or prediction_length __a : Tuple = distribution_output __a : Tuple = loss __a : str = input_size __a : Dict = num_time_features __a : Optional[int] = lags_sequence if lags_sequence is not None else [1, 2, 3, 4, 5, 6, 7] __a : str = scaling __a : Tuple = num_dynamic_real_features __a : int = num_static_real_features __a : Dict = num_static_categorical_features # set cardinality if cardinality and num_static_categorical_features > 0: if len(SCREAMING_SNAKE_CASE__ ) != num_static_categorical_features: raise ValueError( 'The cardinality should be a list of the same length as `num_static_categorical_features`' ) __a : Optional[Any] = cardinality else: __a : Optional[int] = [0] # set embedding_dimension if embedding_dimension and num_static_categorical_features > 0: if len(SCREAMING_SNAKE_CASE__ ) != num_static_categorical_features: raise ValueError( 'The embedding dimension should be a list of the same length as `num_static_categorical_features`' ) __a : int = embedding_dimension else: __a : List[Any] = [min(5_0 , (cat + 1) // 2 ) for cat in self.cardinality] __a : int = num_parallel_samples # Transformer architecture configuration __a : str = input_size * len(self.lags_sequence ) + self._number_of_features __a : Optional[int] = d_model __a : Union[str, Any] = encoder_attention_heads __a : int = decoder_attention_heads __a : Any = encoder_ffn_dim __a : Union[str, Any] = decoder_ffn_dim __a : List[Any] = encoder_layers __a : Optional[int] = decoder_layers __a : int = dropout __a : Optional[Any] = attention_dropout __a : Dict = activation_dropout __a : Union[str, Any] = encoder_layerdrop __a : Optional[int] = decoder_layerdrop __a : List[str] = activation_function __a : str = init_std __a : Optional[int] = use_cache # Informer __a : Union[str, Any] = attention_type __a : str = sampling_factor __a : Dict = distil super().__init__(is_encoder_decoder=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) @property def __lowerCAmelCase ( self : Any ): '''simple docstring''' return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
47
1
"""simple docstring""" from ...processing_utils import ProcessorMixin class UpperCAmelCase_ ( _a): lowerCamelCase__ : Tuple = "SpeechT5FeatureExtractor" lowerCamelCase__ : Optional[Any] = "SpeechT5Tokenizer" def __init__( self , a , a ) -> str: super().__init__(a , a ) def __call__( self , *a , **a ) -> Optional[Any]: lowercase__ : Optional[Any] = kwargs.pop('audio' , a ) lowercase__ : Optional[Any] = kwargs.pop('text' , a ) lowercase__ : Optional[Any] = kwargs.pop('text_target' , a ) lowercase__ : int = kwargs.pop('audio_target' , a ) lowercase__ : Optional[Any] = kwargs.pop('sampling_rate' , a ) if audio is not None and text is not None: raise ValueError( 'Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?' ) if audio_target is not None and text_target is not None: raise ValueError( 'Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?' ) if audio is None and audio_target is None and text is None and text_target is None: raise ValueError( 'You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process.' ) if audio is not None: lowercase__ : List[str] = self.feature_extractor(a , *a , sampling_rate=a , **a ) elif text is not None: lowercase__ : int = self.tokenizer(a , **a ) else: lowercase__ : Dict = None if audio_target is not None: lowercase__ : List[Any] = self.feature_extractor(audio_target=a , *a , sampling_rate=a , **a ) lowercase__ : Dict = targets['input_values'] elif text_target is not None: lowercase__ : List[Any] = self.tokenizer(a , **a ) lowercase__ : List[Any] = targets['input_ids'] else: lowercase__ : Tuple = None if inputs is None: return targets if targets is not None: lowercase__ : Optional[int] = labels lowercase__ : Union[str, Any] = targets.get('attention_mask' ) if decoder_attention_mask is not None: lowercase__ : Dict = decoder_attention_mask return inputs def _UpperCAmelCase ( self , *a , **a ) -> Optional[int]: lowercase__ : Any = kwargs.pop('input_values' , a ) lowercase__ : Union[str, Any] = kwargs.pop('input_ids' , a ) lowercase__ : Union[str, Any] = kwargs.pop('labels' , a ) if input_values is not None and input_ids is not None: raise ValueError('Cannot process both `input_values` and `input_ids` inputs.' ) if input_values is None and input_ids is None and labels is None: raise ValueError( 'You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded.' ) if input_values is not None: lowercase__ : Optional[Any] = self.feature_extractor.pad(a , *a , **a ) elif input_ids is not None: lowercase__ : Optional[int] = self.tokenizer.pad(a , **a ) else: lowercase__ : Dict = None if labels is not None: if "input_ids" in labels or (isinstance(a , a ) and "input_ids" in labels[0]): lowercase__ : Union[str, Any] = self.tokenizer.pad(a , **a ) lowercase__ : str = targets['input_ids'] else: lowercase__ : List[str] = self.feature_extractor.feature_size lowercase__ : int = self.feature_extractor.num_mel_bins lowercase__ : Union[str, Any] = self.feature_extractor.pad(a , *a , **a ) lowercase__ : Optional[Any] = feature_size_hack lowercase__ : Optional[int] = targets['input_values'] else: lowercase__ : str = None if inputs is None: return targets if targets is not None: lowercase__ : Optional[int] = labels lowercase__ : str = targets.get('attention_mask' ) if decoder_attention_mask is not None: lowercase__ : str = decoder_attention_mask return inputs def _UpperCAmelCase ( self , *a , **a ) -> Any: return self.tokenizer.batch_decode(*a , **a ) def _UpperCAmelCase ( self , *a , **a ) -> Optional[int]: return self.tokenizer.decode(*a , **a )
645
"""simple docstring""" import inspect import unittest from transformers import YolosConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import YolosForObjectDetection, YolosModel from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase_ : def __init__( self , a , a=1_3 , a=[3_0, 3_0] , a=2 , a=3 , a=True , a=True , a=3_2 , a=5 , a=4 , a=3_7 , a="gelu" , a=0.1 , a=0.1 , a=1_0 , a=0.02 , a=3 , a=None , a=8 , a=1_0 , ) -> Any: lowercase__ : List[str] = parent lowercase__ : Optional[Any] = batch_size lowercase__ : Optional[int] = image_size lowercase__ : List[Any] = patch_size lowercase__ : Optional[Any] = num_channels lowercase__ : str = is_training lowercase__ : Optional[Any] = use_labels lowercase__ : Optional[Any] = hidden_size lowercase__ : Dict = num_hidden_layers lowercase__ : Optional[Any] = num_attention_heads lowercase__ : Dict = intermediate_size lowercase__ : List[Any] = hidden_act lowercase__ : List[Any] = hidden_dropout_prob lowercase__ : Any = attention_probs_dropout_prob lowercase__ : Any = type_sequence_label_size lowercase__ : Dict = initializer_range lowercase__ : Union[str, Any] = num_labels lowercase__ : Tuple = scope lowercase__ : Tuple = n_targets lowercase__ : Optional[int] = num_detection_tokens # we set the expected sequence length (which is used in several tests) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens lowercase__ : Optional[Any] = (image_size[1] // patch_size) * (image_size[0] // patch_size) lowercase__ : Tuple = num_patches + 1 + self.num_detection_tokens def _UpperCAmelCase ( self ) -> Any: lowercase__ : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]] ) lowercase__ : Tuple = None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) lowercase__ : int = [] for i in range(self.batch_size ): lowercase__ : Optional[Any] = {} lowercase__ : Any = torch.randint( high=self.num_labels , size=(self.n_targets,) , device=a ) lowercase__ : List[str] = torch.rand(self.n_targets , 4 , device=a ) labels.append(a ) lowercase__ : Tuple = self.get_config() return config, pixel_values, labels def _UpperCAmelCase ( self ) -> List[Any]: return YolosConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=a , initializer_range=self.initializer_range , num_detection_tokens=self.num_detection_tokens , num_labels=self.num_labels , ) def _UpperCAmelCase ( self , a , a , a ) -> int: lowercase__ : List[str] = YolosModel(config=a ) model.to(a ) model.eval() lowercase__ : List[Any] = model(a ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.expected_seq_len, self.hidden_size) ) def _UpperCAmelCase ( self , a , a , a ) -> Union[str, Any]: lowercase__ : str = YolosForObjectDetection(a ) model.to(a ) model.eval() lowercase__ : Dict = model(pixel_values=a ) lowercase__ : Tuple = model(a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) lowercase__ : str = model(pixel_values=a , labels=a ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : int = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ : Any = config_and_inputs lowercase__ : Any = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ ( _a , _a , unittest.TestCase): lowerCamelCase__ : Optional[int] = (YolosModel, YolosForObjectDetection) if is_torch_available() else () lowerCamelCase__ : List[str] = ( {"feature-extraction": YolosModel, "object-detection": YolosForObjectDetection} if is_torch_available() else {} ) lowerCamelCase__ : List[Any] = False lowerCamelCase__ : Dict = False lowerCamelCase__ : Tuple = False lowerCamelCase__ : Union[str, Any] = False def _UpperCAmelCase ( self , a , a , a=False ) -> Dict: lowercase__ : List[str] = super()._prepare_for_class(a , a , return_labels=a ) if return_labels: if model_class.__name__ == "YolosForObjectDetection": lowercase__ : Optional[Any] = [] for i in range(self.model_tester.batch_size ): lowercase__ : Dict = {} lowercase__ : Dict = torch.ones( size=(self.model_tester.n_targets,) , device=a , dtype=torch.long ) lowercase__ : Optional[Any] = torch.ones( self.model_tester.n_targets , 4 , device=a , dtype=torch.float ) labels.append(a ) lowercase__ : Union[str, Any] = labels return inputs_dict def _UpperCAmelCase ( self ) -> Union[str, Any]: lowercase__ : Dict = YolosModelTester(self ) lowercase__ : Optional[int] = ConfigTester(self , config_class=a , has_text_modality=a , hidden_size=3_7 ) def _UpperCAmelCase ( self ) -> str: self.config_tester.run_common_tests() def _UpperCAmelCase ( self ) -> Optional[Any]: # YOLOS does not use inputs_embeds pass def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ , lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : List[str] = model_class(a ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase__ : List[str] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(a , nn.Linear ) ) def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ , lowercase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : int = model_class(a ) lowercase__ : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ : Tuple = [*signature.parameters.keys()] lowercase__ : List[Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] , a ) def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a ) def _UpperCAmelCase ( self ) -> Dict: lowercase__ , lowercase__ : int = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : Dict = True # in YOLOS, the seq_len is different lowercase__ : Tuple = self.model_tester.expected_seq_len for model_class in self.all_model_classes: lowercase__ : Optional[int] = True lowercase__ : str = False lowercase__ : str = True lowercase__ : List[str] = model_class(a ) model.to(a ) model.eval() with torch.no_grad(): lowercase__ : Any = model(**self._prepare_for_class(a , a ) ) lowercase__ : str = outputs.attentions self.assertEqual(len(a ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowercase__ : Optional[int] = True lowercase__ : List[Any] = model_class(a ) model.to(a ) model.eval() with torch.no_grad(): lowercase__ : Union[str, Any] = model(**self._prepare_for_class(a , a ) ) lowercase__ : List[str] = outputs.attentions self.assertEqual(len(a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) lowercase__ : Dict = len(a ) # Check attention is always last and order is fine lowercase__ : Any = True lowercase__ : int = True lowercase__ : int = model_class(a ) model.to(a ) model.eval() with torch.no_grad(): lowercase__ : Any = model(**self._prepare_for_class(a , a ) ) lowercase__ : Optional[Any] = 1 self.assertEqual(out_len + added_hidden_states , len(a ) ) lowercase__ : Tuple = outputs.attentions self.assertEqual(len(a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def _UpperCAmelCase ( self ) -> List[str]: def check_hidden_states_output(a , a , a ): lowercase__ : str = model_class(a ) model.to(a ) model.eval() with torch.no_grad(): lowercase__ : int = model(**self._prepare_for_class(a , a ) ) lowercase__ : int = outputs.hidden_states lowercase__ : Any = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(a ) , a ) # YOLOS has a different seq_length lowercase__ : Optional[int] = self.model_tester.expected_seq_len self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) lowercase__ , lowercase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : Any = True check_hidden_states_output(a , a , a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ : List[Any] = True check_hidden_states_output(a , a , a ) def _UpperCAmelCase ( self ) -> List[Any]: lowercase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_object_detection(*a ) @slow def _UpperCAmelCase ( self ) -> Union[str, Any]: for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : int = YolosModel.from_pretrained(a ) self.assertIsNotNone(a ) def a_ ( ): '''simple docstring''' lowercase__ : Optional[int] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class UpperCAmelCase_ ( unittest.TestCase): @cached_property def _UpperCAmelCase ( self ) -> Union[str, Any]: return AutoImageProcessor.from_pretrained('hustvl/yolos-small' ) if is_vision_available() else None @slow def _UpperCAmelCase ( self ) -> int: lowercase__ : Dict = YolosForObjectDetection.from_pretrained('hustvl/yolos-small' ).to(a ) lowercase__ : Tuple = self.default_image_processor lowercase__ : Optional[int] = prepare_img() lowercase__ : int = image_processor(images=a , return_tensors='pt' ).to(a ) # forward pass with torch.no_grad(): lowercase__ : int = model(inputs.pixel_values ) # verify outputs lowercase__ : Tuple = torch.Size((1, 1_0_0, 9_2) ) self.assertEqual(outputs.logits.shape , a ) lowercase__ : Any = torch.tensor( [[-24.0_248, -10.3_024, -14.8_290], [-42.0_392, -16.8_200, -27.4_334], [-27.2_743, -11.8_154, -18.7_148]] , device=a , ) lowercase__ : List[str] = torch.tensor( [[0.2_559, 0.5_455, 0.4_706], [0.2_989, 0.7_279, 0.1_875], [0.7_732, 0.4_017, 0.4_462]] , device=a ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , a , atol=1e-4 ) ) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] , a , atol=1e-4 ) ) # verify postprocessing lowercase__ : Optional[Any] = image_processor.post_process_object_detection( a , threshold=0.3 , target_sizes=[image.size[::-1]] )[0] lowercase__ : str = torch.tensor([0.9_994, 0.9_790, 0.9_964, 0.9_972, 0.9_861] ).to(a ) lowercase__ : Any = [7_5, 7_5, 1_7, 6_3, 1_7] lowercase__ : Optional[int] = torch.tensor([335.0_609, 79.3_848, 375.4_216, 187.2_495] ).to(a ) self.assertEqual(len(results['scores'] ) , 5 ) self.assertTrue(torch.allclose(results['scores'] , a , atol=1e-4 ) ) self.assertSequenceEqual(results['labels'].tolist() , a ) self.assertTrue(torch.allclose(results['boxes'][0, :] , a ) )
645
1
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class lowerCAmelCase ( unittest.TestCase): def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=7 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=18 , __SCREAMING_SNAKE_CASE=30 , __SCREAMING_SNAKE_CASE=400 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , __SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , ) -> Any: '''simple docstring''' __snake_case = size if size is not None else {'''shortest_edge''': 18} __snake_case = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} __snake_case = parent __snake_case = batch_size __snake_case = num_channels __snake_case = image_size __snake_case = min_resolution __snake_case = max_resolution __snake_case = do_resize __snake_case = size __snake_case = do_center_crop __snake_case = crop_size __snake_case = do_normalize __snake_case = image_mean __snake_case = image_std def lowerCAmelCase ( self ) -> Dict: '''simple docstring''' return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "do_center_crop": self.do_center_crop, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class lowerCAmelCase ( __lowerCAmelCase , unittest.TestCase): __lowercase : List[Any] = LevitImageProcessor if is_vision_available() else None def lowerCAmelCase ( self ) -> List[Any]: '''simple docstring''' __snake_case = LevitImageProcessingTester(self ) @property def lowerCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' __snake_case = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''image_mean''' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''image_std''' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''do_normalize''' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''do_resize''' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''do_center_crop''' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''size''' ) ) def lowerCAmelCase ( self ) -> Any: '''simple docstring''' __snake_case = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) __snake_case = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) def lowerCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' pass def lowerCAmelCase ( self ) -> Optional[int]: '''simple docstring''' __snake_case = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=__SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(__SCREAMING_SNAKE_CASE , Image.Image ) # Test not batched input __snake_case = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __snake_case = image_processing(__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def lowerCAmelCase ( self ) -> List[str]: '''simple docstring''' __snake_case = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=__SCREAMING_SNAKE_CASE , numpify=__SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(__SCREAMING_SNAKE_CASE , np.ndarray ) # Test not batched input __snake_case = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __snake_case = image_processing(__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def lowerCAmelCase ( self ) -> Tuple: '''simple docstring''' __snake_case = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=__SCREAMING_SNAKE_CASE , torchify=__SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(__SCREAMING_SNAKE_CASE , torch.Tensor ) # Test not batched input __snake_case = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __snake_case = image_processing(__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
24
_SCREAMING_SNAKE_CASE = [ 9_9_9, 8_0_0, 7_9_9, 6_0_0, 5_9_9, 5_0_0, 4_0_0, 3_9_9, 3_7_7, 3_5_5, 3_3_3, 3_1_1, 2_8_8, 2_6_6, 2_4_4, 2_2_2, 2_0_0, 1_9_9, 1_7_7, 1_5_5, 1_3_3, 1_1_1, 8_8, 6_6, 4_4, 2_2, 0, ] _SCREAMING_SNAKE_CASE = [ 9_9_9, 9_7_6, 9_5_2, 9_2_8, 9_0_5, 8_8_2, 8_5_8, 8_5_7, 8_1_0, 7_6_2, 7_1_5, 7_1_4, 5_7_2, 4_2_9, 4_2_8, 2_8_6, 2_8_5, 2_3_8, 1_9_0, 1_4_3, 1_4_2, 1_1_8, 9_5, 7_1, 4_7, 2_4, 0, ] _SCREAMING_SNAKE_CASE = [ 9_9_9, 9_8_8, 9_7_7, 9_6_6, 9_5_5, 9_4_4, 9_3_3, 9_2_2, 9_1_1, 9_0_0, 8_9_9, 8_7_9, 8_5_9, 8_4_0, 8_2_0, 8_0_0, 7_9_9, 7_6_6, 7_3_3, 7_0_0, 6_9_9, 6_5_0, 6_0_0, 5_9_9, 5_0_0, 4_9_9, 4_0_0, 3_9_9, 3_5_0, 3_0_0, 2_9_9, 2_6_6, 2_3_3, 2_0_0, 1_9_9, 1_7_9, 1_5_9, 1_4_0, 1_2_0, 1_0_0, 9_9, 8_8, 7_7, 6_6, 5_5, 4_4, 3_3, 2_2, 1_1, 0, ] _SCREAMING_SNAKE_CASE = [ 9_9_9, 9_9_5, 9_9_2, 9_8_9, 9_8_5, 9_8_1, 9_7_8, 9_7_5, 9_7_1, 9_6_7, 9_6_4, 9_6_1, 9_5_7, 9_5_6, 9_5_1, 9_4_7, 9_4_2, 9_3_7, 9_3_3, 9_2_8, 9_2_3, 9_1_9, 9_1_4, 9_1_3, 9_0_8, 9_0_3, 8_9_7, 8_9_2, 8_8_7, 8_8_1, 8_7_6, 8_7_1, 8_7_0, 8_6_4, 8_5_8, 8_5_2, 8_4_6, 8_4_0, 8_3_4, 8_2_8, 8_2_7, 8_2_0, 8_1_3, 8_0_6, 7_9_9, 7_9_2, 7_8_5, 7_8_4, 7_7_7, 7_7_0, 7_6_3, 7_5_6, 7_4_9, 7_4_2, 7_4_1, 7_3_3, 7_2_4, 7_1_6, 7_0_7, 6_9_9, 6_9_8, 6_8_8, 6_7_7, 6_6_6, 6_5_6, 6_5_5, 6_4_5, 6_3_4, 6_2_3, 6_1_3, 6_1_2, 5_9_8, 5_8_4, 5_7_0, 5_6_9, 5_5_5, 5_4_1, 5_2_7, 5_2_6, 5_0_5, 4_8_4, 4_8_3, 4_6_2, 4_4_0, 4_3_9, 3_9_6, 3_9_5, 3_5_2, 3_5_1, 3_0_8, 3_0_7, 2_6_4, 2_6_3, 2_2_0, 2_1_9, 1_7_6, 1_3_2, 8_8, 4_4, 0, ] _SCREAMING_SNAKE_CASE = [ 9_9_9, 9_9_7, 9_9_5, 9_9_2, 9_9_0, 9_8_8, 9_8_6, 9_8_4, 9_8_1, 9_7_9, 9_7_7, 9_7_5, 9_7_2, 9_7_0, 9_6_8, 9_6_6, 9_6_4, 9_6_1, 9_5_9, 9_5_7, 9_5_6, 9_5_4, 9_5_1, 9_4_9, 9_4_6, 9_4_4, 9_4_1, 9_3_9, 9_3_6, 9_3_4, 9_3_1, 9_2_9, 9_2_6, 9_2_4, 9_2_1, 9_1_9, 9_1_6, 9_1_4, 9_1_3, 9_1_0, 9_0_7, 9_0_5, 9_0_2, 8_9_9, 8_9_6, 8_9_3, 8_9_1, 8_8_8, 8_8_5, 8_8_2, 8_7_9, 8_7_7, 8_7_4, 8_7_1, 8_7_0, 8_6_7, 8_6_4, 8_6_1, 8_5_8, 8_5_5, 8_5_2, 8_4_9, 8_4_6, 8_4_3, 8_4_0, 8_3_7, 8_3_4, 8_3_1, 8_2_8, 8_2_7, 8_2_4, 8_2_1, 8_1_7, 8_1_4, 8_1_1, 8_0_8, 8_0_4, 8_0_1, 7_9_8, 7_9_5, 7_9_1, 7_8_8, 7_8_5, 7_8_4, 7_8_0, 7_7_7, 7_7_4, 7_7_0, 7_6_6, 7_6_3, 7_6_0, 7_5_6, 7_5_2, 7_4_9, 7_4_6, 7_4_2, 7_4_1, 7_3_7, 7_3_3, 7_3_0, 7_2_6, 7_2_2, 7_1_8, 7_1_4, 7_1_0, 7_0_7, 7_0_3, 6_9_9, 6_9_8, 6_9_4, 6_9_0, 6_8_5, 6_8_1, 6_7_7, 6_7_3, 6_6_9, 6_6_4, 6_6_0, 6_5_6, 6_5_5, 6_5_0, 6_4_6, 6_4_1, 6_3_6, 6_3_2, 6_2_7, 6_2_2, 6_1_8, 6_1_3, 6_1_2, 6_0_7, 6_0_2, 5_9_6, 5_9_1, 5_8_6, 5_8_0, 5_7_5, 5_7_0, 5_6_9, 5_6_3, 5_5_7, 5_5_1, 5_4_5, 5_3_9, 5_3_3, 5_2_7, 5_2_6, 5_1_9, 5_1_2, 5_0_5, 4_9_8, 4_9_1, 4_8_4, 4_8_3, 4_7_4, 4_6_6, 4_5_7, 4_4_9, 4_4_0, 4_3_9, 4_2_8, 4_1_8, 4_0_7, 3_9_6, 3_9_5, 3_8_1, 3_6_6, 3_5_2, 3_5_1, 3_3_0, 3_0_8, 3_0_7, 2_8_6, 2_6_4, 2_6_3, 2_4_2, 2_2_0, 2_1_9, 1_7_6, 1_7_5, 1_3_2, 1_3_1, 8_8, 4_4, 0, ] _SCREAMING_SNAKE_CASE = [ 9_9_9, 9_9_1, 9_8_2, 9_7_4, 9_6_6, 9_5_8, 9_5_0, 9_4_1, 9_3_3, 9_2_5, 9_1_6, 9_0_8, 9_0_0, 8_9_9, 8_7_4, 8_5_0, 8_2_5, 8_0_0, 7_9_9, 7_0_0, 6_0_0, 5_0_0, 4_0_0, 3_0_0, 2_0_0, 1_0_0, 0, ] _SCREAMING_SNAKE_CASE = [ 9_9_9, 9_9_2, 9_8_5, 9_7_8, 9_7_1, 9_6_4, 9_5_7, 9_4_9, 9_4_2, 9_3_5, 9_2_8, 9_2_1, 9_1_4, 9_0_7, 9_0_0, 8_9_9, 8_7_9, 8_5_9, 8_4_0, 8_2_0, 8_0_0, 7_9_9, 7_6_6, 7_3_3, 7_0_0, 6_9_9, 6_5_0, 6_0_0, 5_9_9, 5_0_0, 4_9_9, 4_0_0, 3_9_9, 3_0_0, 2_9_9, 2_0_0, 1_9_9, 1_0_0, 9_9, 0, ] _SCREAMING_SNAKE_CASE = [ 9_9_9, 9_9_6, 9_9_2, 9_8_9, 9_8_5, 9_8_2, 9_7_9, 9_7_5, 9_7_2, 9_6_8, 9_6_5, 9_6_1, 9_5_8, 9_5_5, 9_5_1, 9_4_8, 9_4_4, 9_4_1, 9_3_8, 9_3_4, 9_3_1, 9_2_7, 9_2_4, 9_2_0, 9_1_7, 9_1_4, 9_1_0, 9_0_7, 9_0_3, 9_0_0, 8_9_9, 8_9_1, 8_8_4, 8_7_6, 8_6_9, 8_6_1, 8_5_3, 8_4_6, 8_3_8, 8_3_0, 8_2_3, 8_1_5, 8_0_8, 8_0_0, 7_9_9, 7_8_8, 7_7_7, 7_6_6, 7_5_5, 7_4_4, 7_3_3, 7_2_2, 7_1_1, 7_0_0, 6_9_9, 6_8_8, 6_7_7, 6_6_6, 6_5_5, 6_4_4, 6_3_3, 6_2_2, 6_1_1, 6_0_0, 5_9_9, 5_8_5, 5_7_1, 5_5_7, 5_4_2, 5_2_8, 5_1_4, 5_0_0, 4_9_9, 4_8_5, 4_7_1, 4_5_7, 4_4_2, 4_2_8, 4_1_4, 4_0_0, 3_9_9, 3_7_9, 3_5_9, 3_4_0, 3_2_0, 3_0_0, 2_9_9, 2_7_9, 2_5_9, 2_4_0, 2_2_0, 2_0_0, 1_9_9, 1_6_6, 1_3_3, 1_0_0, 9_9, 6_6, 3_3, 0, ]
537
0
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available from .timesteps import ( fastaa_timesteps, smartaa_timesteps, smartaa_timesteps, smartaaa_timesteps, smartaaa_timesteps, superaa_timesteps, superaa_timesteps, superaaa_timesteps, ) @dataclass class __lowerCAmelCase ( A ): '''simple docstring''' UpperCamelCase = 4_2 UpperCamelCase = 4_2 UpperCamelCase = 4_2 try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_if import IFPipeline from .pipeline_if_imgaimg import IFImgaImgPipeline from .pipeline_if_imgaimg_superresolution import IFImgaImgSuperResolutionPipeline from .pipeline_if_inpainting import IFInpaintingPipeline from .pipeline_if_inpainting_superresolution import IFInpaintingSuperResolutionPipeline from .pipeline_if_superresolution import IFSuperResolutionPipeline from .safety_checker import IFSafetyChecker from .watermark import IFWatermarker
704
import unittest from knapsack import knapsack as k class __lowerCAmelCase ( unittest.TestCase ): def _lowerCamelCase ( self : Optional[Any]) -> Any: """simple docstring""" _UpperCAmelCase = 0 _UpperCAmelCase = [0] _UpperCAmelCase = [0] _UpperCAmelCase = len(A) self.assertEqual(k.knapsack(A , A , A , A) , 0) _UpperCAmelCase = [60] _UpperCAmelCase = [10] _UpperCAmelCase = len(A) self.assertEqual(k.knapsack(A , A , A , A) , 0) def _lowerCamelCase ( self : str) -> List[str]: """simple docstring""" _UpperCAmelCase = 3 _UpperCAmelCase = [1, 2, 3] _UpperCAmelCase = [3, 2, 1] _UpperCAmelCase = len(A) self.assertEqual(k.knapsack(A , A , A , A) , 5) def _lowerCamelCase ( self : Tuple) -> Tuple: """simple docstring""" _UpperCAmelCase = 50 _UpperCAmelCase = [60, 1_00, 1_20] _UpperCAmelCase = [10, 20, 30] _UpperCAmelCase = len(A) self.assertEqual(k.knapsack(A , A , A , A) , 2_20) if __name__ == "__main__": unittest.main()
639
0
'''simple docstring''' import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class __snake_case : '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE="resnet50" , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=3_2 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , ): snake_case__ : List[str] = parent snake_case__ : List[Any] = out_indices if out_indices is not None else [4] snake_case__ : Any = stage_names snake_case__ : Union[str, Any] = out_features snake_case__ : List[str] = backbone snake_case__ : Any = batch_size snake_case__ : Union[str, Any] = image_size snake_case__ : Any = num_channels snake_case__ : Union[str, Any] = use_pretrained_backbone snake_case__ : Any = is_training def __UpperCamelCase ( self ): snake_case__ : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case__ : Any = self.get_config() return config, pixel_values def __UpperCamelCase ( self ): return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): snake_case__ : List[str] = TimmBackbone(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): snake_case__ : List[Any] = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 1_4, 1_4) , ) def __UpperCamelCase ( self ): snake_case__ : Any = self.prepare_config_and_inputs() snake_case__ , snake_case__ : List[str] = config_and_inputs snake_case__ : List[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch @require_timm class __snake_case ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = (TimmBackbone,) if is_torch_available() else () lowerCamelCase__ = {'''feature-extraction''': TimmBackbone} if is_torch_available() else {} lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False def __UpperCamelCase ( self ): snake_case__ : Tuple = TimmBackboneModelTester(self ) snake_case__ : int = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , has_text_modality=__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __UpperCamelCase ( self ): snake_case__ : Union[str, Any] = """resnet18""" snake_case__ : Optional[int] = """microsoft/resnet-18""" snake_case__ : List[Any] = AutoBackbone.from_pretrained(__SCREAMING_SNAKE_CASE , use_timm_backbone=__SCREAMING_SNAKE_CASE ) snake_case__ : Dict = AutoBackbone.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) snake_case__ : int = AutoBackbone.from_pretrained(__SCREAMING_SNAKE_CASE , use_timm_backbone=__SCREAMING_SNAKE_CASE , out_indices=[1, 2, 3] ) snake_case__ : Optional[Any] = AutoBackbone.from_pretrained(__SCREAMING_SNAKE_CASE , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip("""TimmBackbone doesn't support feed forward chunking""" ) def __UpperCamelCase ( self ): pass @unittest.skip("""TimmBackbone doesn't have num_hidden_layers attribute""" ) def __UpperCamelCase ( self ): pass @unittest.skip("""TimmBackbone initialization is managed on the timm side""" ) def __UpperCamelCase ( self ): pass @unittest.skip("""TimmBackbone models doesn't have inputs_embeds""" ) def __UpperCamelCase ( self ): pass @unittest.skip("""TimmBackbone models doesn't have inputs_embeds""" ) def __UpperCamelCase ( self ): pass @unittest.skip("""TimmBackbone model cannot be created without specifying a backbone checkpoint""" ) def __UpperCamelCase ( self ): pass @unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""" ) def __UpperCamelCase ( self ): pass @unittest.skip("""model weights aren't tied in TimmBackbone.""" ) def __UpperCamelCase ( self ): pass @unittest.skip("""model weights aren't tied in TimmBackbone.""" ) def __UpperCamelCase ( self ): pass @unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""" ) def __UpperCamelCase ( self ): pass @unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""" ) def __UpperCamelCase ( self ): pass @unittest.skip("""TimmBackbone doesn't have hidden size info in its configuration.""" ) def __UpperCamelCase ( self ): pass @unittest.skip("""TimmBackbone doesn't support output_attentions.""" ) def __UpperCamelCase ( self ): pass @unittest.skip("""Safetensors is not supported by timm.""" ) def __UpperCamelCase ( self ): pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def __UpperCamelCase ( self ): pass def __UpperCamelCase ( self ): snake_case__ , snake_case__ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ : Union[str, Any] = model_class(__SCREAMING_SNAKE_CASE ) snake_case__ : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case__ : Tuple = [*signature.parameters.keys()] snake_case__ : str = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): snake_case__ , snake_case__ : str = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ : str = True snake_case__ : List[str] = self.has_attentions # no need to test all models as different heads yield the same functionality snake_case__ : Optional[int] = self.all_model_classes[0] snake_case__ : Optional[int] = model_class(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) snake_case__ : List[str] = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) snake_case__ : int = model(**__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[int] = outputs[0][-1] # Encoder-/Decoder-only models snake_case__ : int = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: snake_case__ : Optional[Any] = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def __UpperCamelCase ( self ): snake_case__ , snake_case__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ : Optional[int] = model_class(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() snake_case__ : List[Any] = model(**__SCREAMING_SNAKE_CASE ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None snake_case__ : Any = copy.deepcopy(__SCREAMING_SNAKE_CASE ) snake_case__ : str = None snake_case__ : List[Any] = model_class(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() snake_case__ : Any = model(**__SCREAMING_SNAKE_CASE ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights snake_case__ : Union[str, Any] = copy.deepcopy(__SCREAMING_SNAKE_CASE ) snake_case__ : Tuple = False snake_case__ : List[str] = model_class(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() snake_case__ : Union[str, Any] = model(**__SCREAMING_SNAKE_CASE )
38
def __lowerCAmelCase ( __magic_name__ = 5_0 ): _lowercase: Union[str, Any] = [1] * (length + 1) for row_length in range(3 , length + 1 ): for block_length in range(3 , row_length + 1 ): for block_start in range(row_length - block_length ): ways_number[row_length] += ways_number[ row_length - block_start - block_length - 1 ] ways_number[row_length] += 1 return ways_number[length] if __name__ == "__main__": print(f'''{solution() = }''')
226
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class _lowerCAmelCase ( _lowercase ): A__ = 'openai/whisper-base' A__ = ( 'This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the ' 'transcribed text.' ) A__ = 'transcriber' A__ = WhisperProcessor A__ = WhisperForConditionalGeneration A__ = ['audio'] A__ = ['text'] def __magic_name__( self , __UpperCAmelCase ): return self.pre_processor(__UpperCAmelCase , return_tensors='''pt''' ).input_features def __magic_name__( self , __UpperCAmelCase ): return self.model.generate(inputs=__UpperCAmelCase ) def __magic_name__( self , __UpperCAmelCase ): return self.pre_processor.batch_decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase )[0]
470
import numpy as np class _lowerCAmelCase : def __init__( self ): lowerCAmelCase__ : List[Any] = (0, 0) lowerCAmelCase__ : Optional[int] = None lowerCAmelCase__ : Optional[Any] = 0 lowerCAmelCase__ : Optional[int] = 0 lowerCAmelCase__ : Tuple = 0 def __eq__( self , __UpperCAmelCase ): return self.position == cell.position def __magic_name__( self ): print(self.position ) class _lowerCAmelCase : def __init__( self , __UpperCAmelCase=(5, 5) ): lowerCAmelCase__ : List[str] = np.zeros(__UpperCAmelCase ) lowerCAmelCase__ : List[Any] = world_size[0] lowerCAmelCase__ : str = world_size[1] def __magic_name__( self ): print(self.w ) def __magic_name__( self , __UpperCAmelCase ): lowerCAmelCase__ : Optional[Any] = [ (-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1), (1, 0), (1, 1), ] lowerCAmelCase__ : Tuple = cell.position[0] lowerCAmelCase__ : Optional[int] = cell.position[1] lowerCAmelCase__ : Any = [] for n in neughbour_cord: lowerCAmelCase__ : int = current_x + n[0] lowerCAmelCase__ : Dict = current_y + n[1] if 0 <= x < self.world_x_limit and 0 <= y < self.world_y_limit: lowerCAmelCase__ : Optional[int] = Cell() lowerCAmelCase__ : Optional[int] = (x, y) lowerCAmelCase__ : Any = cell neighbours.append(__UpperCAmelCase ) return neighbours def __lowerCAmelCase ( UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> Union[str, Any]: lowerCAmelCase__ : int = [] lowerCAmelCase__ : int = [] _open.append(UpperCamelCase ) while _open: lowerCAmelCase__ : Dict = np.argmin([n.f for n in _open] ) lowerCAmelCase__ : Dict = _open[min_f] _closed.append(_open.pop(UpperCamelCase ) ) if current == goal: break for n in world.get_neigbours(UpperCamelCase ): for c in _closed: if c == n: continue lowerCAmelCase__ : Any = current.g + 1 lowerCAmelCase__ , lowerCAmelCase__ : int = n.position lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = goal.position lowerCAmelCase__ : Tuple = (ya - ya) ** 2 + (xa - xa) ** 2 lowerCAmelCase__ : Optional[Any] = n.h + n.g for c in _open: if c == n and c.f < n.f: continue _open.append(UpperCamelCase ) lowerCAmelCase__ : List[Any] = [] while current.parent is not None: path.append(current.position ) lowerCAmelCase__ : List[Any] = current.parent path.append(current.position ) return path[::-1] if __name__ == "__main__": lowerCAmelCase_ = Gridworld() # Start position and goal lowerCAmelCase_ = Cell() lowerCAmelCase_ = (0, 0) lowerCAmelCase_ = Cell() lowerCAmelCase_ = (4, 4) print(F"""path from {start.position} to {goal.position}""") lowerCAmelCase_ = astar(world, start, goal) # Just for visual reasons. for i in s: lowerCAmelCase_ = 1 print(world.w)
470
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging __a: str = logging.get_logger(__name__) if is_vision_available(): import PIL class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _lowerCamelCase = ['''pixel_values'''] def __init__( self : Optional[int] , lowerCamelCase : bool = True , lowerCamelCase : Dict[str, int] = None , lowerCamelCase : PILImageResampling = PILImageResampling.BICUBIC , lowerCamelCase : bool = True , lowerCamelCase : Dict[str, int] = None , lowerCamelCase : bool = True , lowerCamelCase : Union[int, float] = 1 / 255 , lowerCamelCase : bool = True , lowerCamelCase : Optional[Union[float, List[float]]] = None , lowerCamelCase : Optional[Union[float, List[float]]] = None , lowerCamelCase : bool = True , **lowerCamelCase : Optional[int] , ) -> None: """simple docstring""" super().__init__(**lowerCamelCase ) _UpperCAmelCase = size if size is not None else {"""shortest_edge""": 224} _UpperCAmelCase = get_size_dict(lowerCamelCase , default_to_square=lowerCamelCase ) _UpperCAmelCase = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} _UpperCAmelCase = get_size_dict(lowerCamelCase , default_to_square=lowerCamelCase , param_name="""crop_size""" ) _UpperCAmelCase = do_resize _UpperCAmelCase = size _UpperCAmelCase = resample _UpperCAmelCase = do_center_crop _UpperCAmelCase = crop_size _UpperCAmelCase = do_rescale _UpperCAmelCase = rescale_factor _UpperCAmelCase = do_normalize _UpperCAmelCase = image_mean if image_mean is not None else OPENAI_CLIP_MEAN _UpperCAmelCase = image_std if image_std is not None else OPENAI_CLIP_STD _UpperCAmelCase = do_convert_rgb def lowerCamelCase ( self : List[str] , lowerCamelCase : np.ndarray , lowerCamelCase : Dict[str, int] , lowerCamelCase : PILImageResampling = PILImageResampling.BICUBIC , lowerCamelCase : Optional[Union[str, ChannelDimension]] = None , **lowerCamelCase : Dict , ) -> np.ndarray: """simple docstring""" _UpperCAmelCase = get_size_dict(lowerCamelCase , default_to_square=lowerCamelCase ) if "shortest_edge" not in size: raise ValueError(f"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) _UpperCAmelCase = get_resize_output_image_size(lowerCamelCase , size=size["""shortest_edge"""] , default_to_square=lowerCamelCase ) return resize(lowerCamelCase , size=lowerCamelCase , resample=lowerCamelCase , data_format=lowerCamelCase , **lowerCamelCase ) def lowerCamelCase ( self : Tuple , lowerCamelCase : np.ndarray , lowerCamelCase : Dict[str, int] , lowerCamelCase : Optional[Union[str, ChannelDimension]] = None , **lowerCamelCase : Dict , ) -> np.ndarray: """simple docstring""" _UpperCAmelCase = get_size_dict(lowerCamelCase ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` parameter must contain the keys (height, width). Got {size.keys()}""" ) return center_crop(lowerCamelCase , size=(size["""height"""], size["""width"""]) , data_format=lowerCamelCase , **lowerCamelCase ) def lowerCamelCase ( self : Optional[int] , lowerCamelCase : np.ndarray , lowerCamelCase : Union[int, float] , lowerCamelCase : Optional[Union[str, ChannelDimension]] = None , **lowerCamelCase : Dict , ) -> Optional[int]: """simple docstring""" return rescale(lowerCamelCase , scale=lowerCamelCase , data_format=lowerCamelCase , **lowerCamelCase ) def lowerCamelCase ( self : List[Any] , lowerCamelCase : np.ndarray , lowerCamelCase : Union[float, List[float]] , lowerCamelCase : Union[float, List[float]] , lowerCamelCase : Optional[Union[str, ChannelDimension]] = None , **lowerCamelCase : Any , ) -> np.ndarray: """simple docstring""" return normalize(lowerCamelCase , mean=lowerCamelCase , std=lowerCamelCase , data_format=lowerCamelCase , **lowerCamelCase ) def lowerCamelCase ( self : List[str] , lowerCamelCase : ImageInput , lowerCamelCase : bool = None , lowerCamelCase : Dict[str, int] = None , lowerCamelCase : PILImageResampling = None , lowerCamelCase : bool = None , lowerCamelCase : int = None , lowerCamelCase : bool = None , lowerCamelCase : float = None , lowerCamelCase : bool = None , lowerCamelCase : Optional[Union[float, List[float]]] = None , lowerCamelCase : Optional[Union[float, List[float]]] = None , lowerCamelCase : bool = None , lowerCamelCase : Optional[Union[str, TensorType]] = None , lowerCamelCase : Optional[ChannelDimension] = ChannelDimension.FIRST , **lowerCamelCase : Any , ) -> PIL.Image.Image: """simple docstring""" _UpperCAmelCase = do_resize if do_resize is not None else self.do_resize _UpperCAmelCase = size if size is not None else self.size _UpperCAmelCase = get_size_dict(lowerCamelCase , param_name="""size""" , default_to_square=lowerCamelCase ) _UpperCAmelCase = resample if resample is not None else self.resample _UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCAmelCase = crop_size if crop_size is not None else self.crop_size _UpperCAmelCase = get_size_dict(lowerCamelCase , param_name="""crop_size""" , default_to_square=lowerCamelCase ) _UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCAmelCase = image_mean if image_mean is not None else self.image_mean _UpperCAmelCase = image_std if image_std is not None else self.image_std _UpperCAmelCase = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb _UpperCAmelCase = make_list_of_images(lowerCamelCase ) if not valid_images(lowerCamelCase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # PIL RGBA images are converted to RGB if do_convert_rgb: _UpperCAmelCase = [convert_to_rgb(lowerCamelCase ) for image in images] # All transformations expect numpy arrays. _UpperCAmelCase = [to_numpy_array(lowerCamelCase ) for image in images] if do_resize: _UpperCAmelCase = [self.resize(image=lowerCamelCase , size=lowerCamelCase , resample=lowerCamelCase ) for image in images] if do_center_crop: _UpperCAmelCase = [self.center_crop(image=lowerCamelCase , size=lowerCamelCase ) for image in images] if do_rescale: _UpperCAmelCase = [self.rescale(image=lowerCamelCase , scale=lowerCamelCase ) for image in images] if do_normalize: _UpperCAmelCase = [self.normalize(image=lowerCamelCase , mean=lowerCamelCase , std=lowerCamelCase ) for image in images] _UpperCAmelCase = [to_channel_dimension_format(lowerCamelCase , lowerCamelCase ) for image in images] _UpperCAmelCase = {"""pixel_values""": images} return BatchFeature(data=lowerCamelCase , tensor_type=lowerCamelCase )
108
"""simple docstring""" import re from filelock import FileLock try: import nltk SCREAMING_SNAKE_CASE_ = True except (ImportError, ModuleNotFoundError): SCREAMING_SNAKE_CASE_ = False if NLTK_AVAILABLE: with FileLock('''.lock''') as lock: nltk.download('''punkt''', quiet=True) def A__ ( A__ ) -> str: '''simple docstring''' re.sub("<n>" , "" , A__ ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(A__ ) )
426
0
'''simple docstring''' import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel a_ : str = '0.12' # assumed parallelism: 8 @require_flax @is_staging_test class _snake_case ( unittest.TestCase ): @classmethod def SCREAMING_SNAKE_CASE__ ( cls) -> int: SCREAMING_SNAKE_CASE = TOKEN HfFolder.save_token(a) @classmethod def SCREAMING_SNAKE_CASE__ ( cls) -> List[Any]: try: delete_repo(token=cls._token , repo_id='test-model-flax') except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-model-flax-org') except HTTPError: pass def SCREAMING_SNAKE_CASE__ ( self) -> Dict: SCREAMING_SNAKE_CASE = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37) SCREAMING_SNAKE_CASE = FlaxBertModel(a) model.push_to_hub('test-model-flax' , use_auth_token=self._token) SCREAMING_SNAKE_CASE = FlaxBertModel.from_pretrained(f'''{USER}/test-model-flax''') SCREAMING_SNAKE_CASE = flatten_dict(unfreeze(model.params)) SCREAMING_SNAKE_CASE = flatten_dict(unfreeze(new_model.params)) for key in base_params.keys(): SCREAMING_SNAKE_CASE = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(a , 1E-3 , msg=f'''{key} not identical''') # Reset repo delete_repo(token=self._token , repo_id='test-model-flax') # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(a , repo_id='test-model-flax' , push_to_hub=a , use_auth_token=self._token) SCREAMING_SNAKE_CASE = FlaxBertModel.from_pretrained(f'''{USER}/test-model-flax''') SCREAMING_SNAKE_CASE = flatten_dict(unfreeze(model.params)) SCREAMING_SNAKE_CASE = flatten_dict(unfreeze(new_model.params)) for key in base_params.keys(): SCREAMING_SNAKE_CASE = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(a , 1E-3 , msg=f'''{key} not identical''') def SCREAMING_SNAKE_CASE__ ( self) -> str: SCREAMING_SNAKE_CASE = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37) SCREAMING_SNAKE_CASE = FlaxBertModel(a) model.push_to_hub('valid_org/test-model-flax-org' , use_auth_token=self._token) SCREAMING_SNAKE_CASE = FlaxBertModel.from_pretrained('valid_org/test-model-flax-org') SCREAMING_SNAKE_CASE = flatten_dict(unfreeze(model.params)) SCREAMING_SNAKE_CASE = flatten_dict(unfreeze(new_model.params)) for key in base_params.keys(): SCREAMING_SNAKE_CASE = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(a , 1E-3 , msg=f'''{key} not identical''') # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-model-flax-org') # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( a , repo_id='valid_org/test-model-flax-org' , push_to_hub=a , use_auth_token=self._token) SCREAMING_SNAKE_CASE = FlaxBertModel.from_pretrained('valid_org/test-model-flax-org') SCREAMING_SNAKE_CASE = flatten_dict(unfreeze(model.params)) SCREAMING_SNAKE_CASE = flatten_dict(unfreeze(new_model.params)) for key in base_params.keys(): SCREAMING_SNAKE_CASE = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(a , 1E-3 , msg=f'''{key} not identical''') def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase): SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = flatten_dict(modela.params) SCREAMING_SNAKE_CASE = flatten_dict(modela.params) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key])) > 1e-4: SCREAMING_SNAKE_CASE = False return models_are_equal @require_flax class _snake_case ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self) -> List[Any]: SCREAMING_SNAKE_CASE = BertConfig.from_pretrained('hf-internal-testing/tiny-bert-flax-only') SCREAMING_SNAKE_CASE = FlaxBertModel(a) SCREAMING_SNAKE_CASE = 'bert' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(a , a)) with self.assertRaises(a): SCREAMING_SNAKE_CASE = FlaxBertModel.from_pretrained(a) SCREAMING_SNAKE_CASE = FlaxBertModel.from_pretrained(a , subfolder=a) self.assertTrue(check_models_equal(a , a)) def SCREAMING_SNAKE_CASE__ ( self) -> Optional[int]: SCREAMING_SNAKE_CASE = BertConfig.from_pretrained('hf-internal-testing/tiny-bert-flax-only') SCREAMING_SNAKE_CASE = FlaxBertModel(a) SCREAMING_SNAKE_CASE = 'bert' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(a , a) , max_shard_size='10KB') with self.assertRaises(a): SCREAMING_SNAKE_CASE = FlaxBertModel.from_pretrained(a) SCREAMING_SNAKE_CASE = FlaxBertModel.from_pretrained(a , subfolder=a) self.assertTrue(check_models_equal(a , a)) def SCREAMING_SNAKE_CASE__ ( self) -> Union[str, Any]: SCREAMING_SNAKE_CASE = 'bert' SCREAMING_SNAKE_CASE = 'hf-internal-testing/tiny-random-bert-subfolder' with self.assertRaises(a): SCREAMING_SNAKE_CASE = FlaxBertModel.from_pretrained(a) SCREAMING_SNAKE_CASE = FlaxBertModel.from_pretrained(a , subfolder=a) self.assertIsNotNone(a) def SCREAMING_SNAKE_CASE__ ( self) -> List[Any]: SCREAMING_SNAKE_CASE = 'bert' SCREAMING_SNAKE_CASE = 'hf-internal-testing/tiny-random-bert-sharded-subfolder' with self.assertRaises(a): SCREAMING_SNAKE_CASE = FlaxBertModel.from_pretrained(a) SCREAMING_SNAKE_CASE = FlaxBertModel.from_pretrained(a , subfolder=a) self.assertIsNotNone(a)
702
from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) class _snake_case : def __init__( self , a , ) -> Tuple: SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = 13 SCREAMING_SNAKE_CASE = 7 SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = 99 SCREAMING_SNAKE_CASE = 32 SCREAMING_SNAKE_CASE = 2 SCREAMING_SNAKE_CASE = 4 SCREAMING_SNAKE_CASE = 37 SCREAMING_SNAKE_CASE = 'gelu' SCREAMING_SNAKE_CASE = 0.1 SCREAMING_SNAKE_CASE = 0.1 SCREAMING_SNAKE_CASE = 512 SCREAMING_SNAKE_CASE = 16 SCREAMING_SNAKE_CASE = 2 SCREAMING_SNAKE_CASE = 0.02 SCREAMING_SNAKE_CASE = 3 SCREAMING_SNAKE_CASE = 4 SCREAMING_SNAKE_CASE = None def SCREAMING_SNAKE_CASE__ ( self) -> int: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) SCREAMING_SNAKE_CASE = None if self.use_input_mask: SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length]) SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None if self.use_labels: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size) SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_choices) SCREAMING_SNAKE_CASE = EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , pad_token_id=1 , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE__ ( self) -> Tuple: ( ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ) = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.seq_length, self.hidden_size]) SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def SCREAMING_SNAKE_CASE__ ( self , a , a , a , a , a , a) -> List[str]: SCREAMING_SNAKE_CASE = TFEsmModel(config=a) SCREAMING_SNAKE_CASE = {'input_ids': input_ids, 'attention_mask': input_mask} SCREAMING_SNAKE_CASE = model(a) SCREAMING_SNAKE_CASE = [input_ids, input_mask] SCREAMING_SNAKE_CASE = model(a) SCREAMING_SNAKE_CASE = model(a) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def SCREAMING_SNAKE_CASE__ ( self , a , a , a , a , a , a , a , a , ) -> str: SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = TFEsmModel(config=a) SCREAMING_SNAKE_CASE = { 'input_ids': input_ids, 'attention_mask': input_mask, 'encoder_hidden_states': encoder_hidden_states, 'encoder_attention_mask': encoder_attention_mask, } SCREAMING_SNAKE_CASE = model(a) SCREAMING_SNAKE_CASE = [input_ids, input_mask] SCREAMING_SNAKE_CASE = model(a , encoder_hidden_states=a) # Also check the case where encoder outputs are not passed SCREAMING_SNAKE_CASE = model(a , attention_mask=a) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def SCREAMING_SNAKE_CASE__ ( self , a , a , a , a , a , a) -> Optional[int]: SCREAMING_SNAKE_CASE = TFEsmForMaskedLM(config=a) SCREAMING_SNAKE_CASE = model([input_ids, input_mask]) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def SCREAMING_SNAKE_CASE__ ( self , a , a , a , a , a , a) -> Dict: SCREAMING_SNAKE_CASE = self.num_labels SCREAMING_SNAKE_CASE = TFEsmForTokenClassification(config=a) SCREAMING_SNAKE_CASE = {'input_ids': input_ids, 'attention_mask': input_mask} SCREAMING_SNAKE_CASE = model(a) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def SCREAMING_SNAKE_CASE__ ( self) -> Tuple: SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ) = config_and_inputs SCREAMING_SNAKE_CASE = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class _snake_case ( A__ , A__ , unittest.TestCase ): _lowercase : str = ( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) _lowercase : int = ( { '''feature-extraction''': TFEsmModel, '''fill-mask''': TFEsmForMaskedLM, '''text-classification''': TFEsmForSequenceClassification, '''token-classification''': TFEsmForTokenClassification, '''zero-shot''': TFEsmForSequenceClassification, } if is_tf_available() else {} ) _lowercase : str = False _lowercase : Tuple = False def SCREAMING_SNAKE_CASE__ ( self) -> Tuple: SCREAMING_SNAKE_CASE = TFEsmModelTester(self) SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=a , hidden_size=37) def SCREAMING_SNAKE_CASE__ ( self) -> str: self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self) -> Optional[int]: SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a) def SCREAMING_SNAKE_CASE__ ( self) -> Tuple: SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*a) def SCREAMING_SNAKE_CASE__ ( self) -> Optional[Any]: SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*a) def SCREAMING_SNAKE_CASE__ ( self) -> Optional[int]: SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*a) @slow def SCREAMING_SNAKE_CASE__ ( self) -> Optional[Any]: for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE = TFEsmModel.from_pretrained(a) self.assertIsNotNone(a) @unittest.skip('Protein models do not support embedding resizing.') def SCREAMING_SNAKE_CASE__ ( self) -> List[Any]: pass @unittest.skip('Protein models do not support embedding resizing.') def SCREAMING_SNAKE_CASE__ ( self) -> Dict: pass def SCREAMING_SNAKE_CASE__ ( self) -> Any: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class(a) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer SCREAMING_SNAKE_CASE = model.get_bias() assert isinstance(a , a) for k, v in name.items(): assert isinstance(a , tf.Variable) else: SCREAMING_SNAKE_CASE = model.get_output_embeddings() assert x is None SCREAMING_SNAKE_CASE = model.get_bias() assert name is None @require_tf class _snake_case ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE__ ( self) -> Optional[Any]: SCREAMING_SNAKE_CASE = TFEsmForMaskedLM.from_pretrained('facebook/esm2_t6_8M_UR50D') SCREAMING_SNAKE_CASE = tf.constant([[0, 1, 2, 3, 4, 5]]) SCREAMING_SNAKE_CASE = model(a)[0] SCREAMING_SNAKE_CASE = [1, 6, 33] self.assertEqual(list(output.numpy().shape) , a) # compare the actual values for a slice. SCREAMING_SNAKE_CASE = tf.constant( [ [ [8.92_15_18, -10.58_98_14, -6.4_67_13_07], [-6.3_96_71_56, -13.91_13_77, -1.1_21_19_15], [-7.78_12_47, -13.95_15_57, -3.74_05_92], ] ]) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-2)) @slow def SCREAMING_SNAKE_CASE__ ( self) -> str: SCREAMING_SNAKE_CASE = TFEsmModel.from_pretrained('facebook/esm2_t6_8M_UR50D') SCREAMING_SNAKE_CASE = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]]) SCREAMING_SNAKE_CASE = model(a)[0] # compare the actual values for a slice. SCREAMING_SNAKE_CASE = tf.constant( [ [ [0.14_44_30_92, 0.54_12_53_27, 0.3_24_77_39], [0.30_34_04_84, 0.00_52_66_76, 0.31_07_77_22], [0.32_27_80_43, -0.24_98_70_96, 0.3_41_46_28], ] ]) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4))
444
0
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE = logging.get_logger(__name__) def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=False ) -> int: UpperCAmelCase_ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'''blocks.{i}.norm1.weight''', f'''deit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((f'''blocks.{i}.norm1.bias''', f'''deit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append((f'''blocks.{i}.attn.proj.weight''', f'''deit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((f'''blocks.{i}.attn.proj.bias''', f'''deit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((f'''blocks.{i}.norm2.weight''', f'''deit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((f'''blocks.{i}.norm2.bias''', f'''deit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((f'''blocks.{i}.mlp.fc1.weight''', f'''deit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((f'''blocks.{i}.mlp.fc1.bias''', f'''deit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((f'''blocks.{i}.mlp.fc2.weight''', f'''deit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((f'''blocks.{i}.mlp.fc2.bias''', f'''deit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ ("cls_token", "deit.embeddings.cls_token"), ("dist_token", "deit.embeddings.distillation_token"), ("patch_embed.proj.weight", "deit.embeddings.patch_embeddings.projection.weight"), ("patch_embed.proj.bias", "deit.embeddings.patch_embeddings.projection.bias"), ("pos_embed", "deit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ("pre_logits.fc.weight", "pooler.dense.weight"), ("pre_logits.fc.bias", "pooler.dense.bias"), ] ) # if just the base model, we should remove "deit" from all keys that start with "deit" UpperCAmelCase_ = [(pair[0], pair[1][4:]) if pair[1].startswith("deit" ) else pair for pair in rename_keys] else: # layernorm + classification heads rename_keys.extend( [ ("norm.weight", "deit.layernorm.weight"), ("norm.bias", "deit.layernorm.bias"), ("head.weight", "cls_classifier.weight"), ("head.bias", "cls_classifier.bias"), ("head_dist.weight", "distillation_classifier.weight"), ("head_dist.bias", "distillation_classifier.bias"), ] ) return rename_keys def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=False ) -> List[Any]: for i in range(config.num_hidden_layers ): if base_model: UpperCAmelCase_ = "" else: UpperCAmelCase_ = "deit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCAmelCase_ = state_dict.pop(f'''blocks.{i}.attn.qkv.weight''' ) UpperCAmelCase_ = state_dict.pop(f'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ = in_proj_weight[ : config.hidden_size, : ] UpperCAmelCase_ = in_proj_bias[: config.hidden_size] UpperCAmelCase_ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCAmelCase_ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCAmelCase_ = in_proj_weight[ -config.hidden_size :, : ] UpperCAmelCase_ = in_proj_bias[-config.hidden_size :] def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> List[str]: UpperCAmelCase_ = dct.pop(lowerCamelCase__ ) UpperCAmelCase_ = val def snake_case__ ( ) -> Tuple: UpperCAmelCase_ = "http://images.cocodataset.org/val2017/000000039769.jpg" UpperCAmelCase_ = Image.open(requests.get(lowerCamelCase__ , stream=lowerCamelCase__ ).raw ) return im @torch.no_grad() def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> List[Any]: UpperCAmelCase_ = DeiTConfig() # all deit models have fine-tuned heads UpperCAmelCase_ = False # dataset (fine-tuned on ImageNet 2012), patch_size and image_size UpperCAmelCase_ = 1000 UpperCAmelCase_ = "huggingface/label-files" UpperCAmelCase_ = "imagenet-1k-id2label.json" UpperCAmelCase_ = json.load(open(hf_hub_download(lowerCamelCase__ , lowerCamelCase__ , repo_type="dataset" ) , "r" ) ) UpperCAmelCase_ = {int(lowerCamelCase__ ): v for k, v in idalabel.items()} UpperCAmelCase_ = idalabel UpperCAmelCase_ = {v: k for k, v in idalabel.items()} UpperCAmelCase_ = int(deit_name[-6:-4] ) UpperCAmelCase_ = int(deit_name[-3:] ) # size of the architecture if deit_name[9:].startswith("tiny" ): UpperCAmelCase_ = 192 UpperCAmelCase_ = 768 UpperCAmelCase_ = 12 UpperCAmelCase_ = 3 elif deit_name[9:].startswith("small" ): UpperCAmelCase_ = 384 UpperCAmelCase_ = 1536 UpperCAmelCase_ = 12 UpperCAmelCase_ = 6 if deit_name[9:].startswith("base" ): pass elif deit_name[4:].startswith("large" ): UpperCAmelCase_ = 1024 UpperCAmelCase_ = 4096 UpperCAmelCase_ = 24 UpperCAmelCase_ = 16 # load original model from timm UpperCAmelCase_ = timm.create_model(lowerCamelCase__ , pretrained=lowerCamelCase__ ) timm_model.eval() # load state_dict of original model, remove and rename some keys UpperCAmelCase_ = timm_model.state_dict() UpperCAmelCase_ = create_rename_keys(lowerCamelCase__ , lowerCamelCase__ ) for src, dest in rename_keys: rename_key(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) read_in_q_k_v(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # load HuggingFace model UpperCAmelCase_ = DeiTForImageClassificationWithTeacher(lowerCamelCase__ ).eval() model.load_state_dict(lowerCamelCase__ ) # Check outputs on an image, prepared by DeiTImageProcessor UpperCAmelCase_ = int( (256 / 224) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103 UpperCAmelCase_ = DeiTImageProcessor(size=lowerCamelCase__ , crop_size=config.image_size ) UpperCAmelCase_ = image_processor(images=prepare_img() , return_tensors="pt" ) UpperCAmelCase_ = encoding["pixel_values"] UpperCAmelCase_ = model(lowerCamelCase__ ) UpperCAmelCase_ = timm_model(lowerCamelCase__ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(lowerCamelCase__ , outputs.logits , atol=1E-3 ) Path(lowerCamelCase__ ).mkdir(exist_ok=lowerCamelCase__ ) print(f'''Saving model {deit_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowerCamelCase__ ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(lowerCamelCase__ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( "--deit_name", default="vit_deit_base_distilled_patch16_224", type=str, help="Name of the DeiT timm model you\'d like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) SCREAMING_SNAKE_CASE = parser.parse_args() convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
579
"""simple docstring""" import os import re from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowercase_ : List[str] = logging.get_logger(__name__) lowercase_ : List[Any] = {'''vocab_file''': '''spiece.model'''} lowercase_ : Optional[int] = { '''vocab_file''': { '''google/bigbird-roberta-base''': '''https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model''', '''google/bigbird-roberta-large''': ( '''https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model''' ), '''google/bigbird-base-trivia-itc''': ( '''https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model''' ), } } lowercase_ : Union[str, Any] = { '''google/bigbird-roberta-base''': 40_96, '''google/bigbird-roberta-large''': 40_96, '''google/bigbird-base-trivia-itc''': 40_96, } class UpperCamelCase ( __SCREAMING_SNAKE_CASE ): A__ = VOCAB_FILES_NAMES A__ = PRETRAINED_VOCAB_FILES_MAP A__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ = ["""input_ids""", """attention_mask"""] A__ = [] def __init__( self , snake_case__ , snake_case__="<unk>" , snake_case__="<s>" , snake_case__="</s>" , snake_case__="<pad>" , snake_case__="[SEP]" , snake_case__="[MASK]" , snake_case__="[CLS]" , snake_case__ = None , **snake_case__ , ): """simple docstring""" _SCREAMING_SNAKE_CASE : Optional[int] = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else bos_token _SCREAMING_SNAKE_CASE : Dict = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else eos_token _SCREAMING_SNAKE_CASE : Union[str, Any] = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else unk_token _SCREAMING_SNAKE_CASE : Optional[int] = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else pad_token _SCREAMING_SNAKE_CASE : Union[str, Any] = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else cls_token _SCREAMING_SNAKE_CASE : Union[str, Any] = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else sep_token # Mask token behave like a normal word, i.e. include the space before it _SCREAMING_SNAKE_CASE : Tuple = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else mask_token _SCREAMING_SNAKE_CASE : Dict = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=snake_case__ , eos_token=snake_case__ , unk_token=snake_case__ , pad_token=snake_case__ , sep_token=snake_case__ , mask_token=snake_case__ , cls_token=snake_case__ , sp_model_kwargs=self.sp_model_kwargs , **snake_case__ , ) _SCREAMING_SNAKE_CASE : Any = vocab_file _SCREAMING_SNAKE_CASE : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(snake_case__ ) @property def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" return self.sp_model.get_piece_size() def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" _SCREAMING_SNAKE_CASE : Optional[int] = {self.convert_ids_to_tokens(snake_case__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): """simple docstring""" _SCREAMING_SNAKE_CASE : Any = self.__dict__.copy() _SCREAMING_SNAKE_CASE : Optional[Any] = None return state def __setstate__( self , snake_case__ ): """simple docstring""" _SCREAMING_SNAKE_CASE : Dict = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): _SCREAMING_SNAKE_CASE : Any = {} _SCREAMING_SNAKE_CASE : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __SCREAMING_SNAKE_CASE ( self , snake_case__ ): """simple docstring""" return self.sp_model.encode(snake_case__ , out_type=snake_case__ ) def __SCREAMING_SNAKE_CASE ( self , snake_case__ ): """simple docstring""" return self.sp_model.piece_to_id(snake_case__ ) def __SCREAMING_SNAKE_CASE ( self , snake_case__ ): """simple docstring""" _SCREAMING_SNAKE_CASE : str = self.sp_model.IdToPiece(snake_case__ ) return token def __SCREAMING_SNAKE_CASE ( self , snake_case__ ): """simple docstring""" _SCREAMING_SNAKE_CASE : int = [] _SCREAMING_SNAKE_CASE : Tuple = "" _SCREAMING_SNAKE_CASE : str = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(snake_case__ ) + token _SCREAMING_SNAKE_CASE : Dict = True _SCREAMING_SNAKE_CASE : Dict = [] else: current_sub_tokens.append(snake_case__ ) _SCREAMING_SNAKE_CASE : int = False out_string += self.sp_model.decode(snake_case__ ) return out_string.strip() def __SCREAMING_SNAKE_CASE ( self , snake_case__ , snake_case__ = False , snake_case__ = None , snake_case__ = True , **snake_case__ , ): """simple docstring""" _SCREAMING_SNAKE_CASE : List[str] = kwargs.pop("use_source_tokenizer" , snake_case__ ) _SCREAMING_SNAKE_CASE : int = self.convert_ids_to_tokens(snake_case__ , skip_special_tokens=snake_case__ ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 _SCREAMING_SNAKE_CASE : List[Any] = [] _SCREAMING_SNAKE_CASE : Any = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(snake_case__ ) ) _SCREAMING_SNAKE_CASE : Any = [] sub_texts.append(snake_case__ ) else: current_sub_text.append(snake_case__ ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(snake_case__ ) ) # Mimic the behavior of the Rust tokenizer: # No space before [MASK] and [SEP] if spaces_between_special_tokens: _SCREAMING_SNAKE_CASE : Optional[int] = re.sub(r" (\[(MASK|SEP)\])" , r"\1" , " ".join(snake_case__ ) ) else: _SCREAMING_SNAKE_CASE : Dict = "".join(snake_case__ ) _SCREAMING_SNAKE_CASE : Tuple = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: _SCREAMING_SNAKE_CASE : Optional[int] = self.clean_up_tokenization(snake_case__ ) return clean_text else: return text def __SCREAMING_SNAKE_CASE ( self , snake_case__ , snake_case__ = None ): """simple docstring""" if not os.path.isdir(snake_case__ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return _SCREAMING_SNAKE_CASE : Optional[int] = os.path.join( snake_case__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , snake_case__ ) elif not os.path.isfile(self.vocab_file ): with open(snake_case__ , "wb" ) as fi: _SCREAMING_SNAKE_CASE : Any = self.sp_model.serialized_model_proto() fi.write(snake_case__ ) return (out_vocab_file,) def __SCREAMING_SNAKE_CASE ( self , snake_case__ , snake_case__ = None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _SCREAMING_SNAKE_CASE : Dict = [self.cls_token_id] _SCREAMING_SNAKE_CASE : Union[str, Any] = [self.sep_token_id] return cls + token_ids_a + sep + token_ids_a + sep def __SCREAMING_SNAKE_CASE ( self , snake_case__ , snake_case__ = None , snake_case__ = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case__ , token_ids_a=snake_case__ , already_has_special_tokens=snake_case__ ) if token_ids_a is None: return [1] + ([0] * len(snake_case__ )) + [1] return [1] + ([0] * len(snake_case__ )) + [1] + ([0] * len(snake_case__ )) + [1] def __SCREAMING_SNAKE_CASE ( self , snake_case__ , snake_case__ = None ): """simple docstring""" _SCREAMING_SNAKE_CASE : Optional[int] = [self.sep_token_id] _SCREAMING_SNAKE_CASE : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
572
0
"""simple docstring""" from math import isqrt, loga def lowercase ( UpperCamelCase : int ): """simple docstring""" A__ : Optional[int] =[True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , UpperCamelCase , UpperCamelCase ): A__ : Dict =False return [i for i in range(2 , UpperCamelCase ) if is_prime[i]] def lowercase ( UpperCamelCase : int = 800800 , UpperCamelCase : int = 800800 ): """simple docstring""" A__ : List[str] =degree * loga(UpperCamelCase ) A__ : Any =int(UpperCamelCase ) A__ : Optional[int] =calculate_prime_numbers(UpperCamelCase ) A__ : List[str] =0 A__ : Optional[int] =0 A__ : int =len(UpperCamelCase ) - 1 while left < right: while ( prime_numbers[right] * loga(prime_numbers[left] ) + prime_numbers[left] * loga(prime_numbers[right] ) > upper_bound ): right -= 1 hybrid_integers_count += right - left left += 1 return hybrid_integers_count if __name__ == "__main__": print(f"""{solution() = }""")
595
"""simple docstring""" from collections import defaultdict def lowercase ( UpperCamelCase : int ): """simple docstring""" A__ : Union[str, Any] =1 A__ : int =True for v in tree[start]: if v not in visited: ret += dfs(UpperCamelCase ) if ret % 2 == 0: cuts.append(UpperCamelCase ) return ret def lowercase ( ): """simple docstring""" dfs(1 ) if __name__ == "__main__": __A , __A : List[str] = 10, 9 __A : Dict = defaultdict(list) __A : dict[int, bool] = {} __A : list[int] = [] __A : List[str] = 0 __A : str = [(2, 1), (3, 1), (4, 3), (5, 2), (6, 1), (7, 2), (8, 6), (9, 8), (10, 8)] for u, v in edges: tree[u].append(v) tree[v].append(u) even_tree() print(len(cuts) - 1)
595
1
'''simple docstring''' import math def lowerCamelCase__ ( __lowercase , __lowercase ): if ( not isinstance(SCREAMING_SNAKE_CASE__ , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError("""power_factor must be a valid float value between -1 and 1.""" ) return apparent_power * power_factor def lowerCamelCase__ ( __lowercase , __lowercase ): if ( not isinstance(SCREAMING_SNAKE_CASE__ , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError("""power_factor must be a valid float value between -1 and 1.""" ) return apparent_power * math.sqrt(1 - power_factor**2 ) if __name__ == "__main__": import doctest doctest.testmod()
116
"""simple docstring""" from typing import Optional from .. import Features, NamedSplit from ..packaged_modules.text.text import Text from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class __lowercase ( _UpperCAmelCase): """simple docstring""" def __init__(self , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = False , lowercase__ = False , lowercase__ = None , **lowercase__ , ): super().__init__( lowercase__ , split=lowercase__ , features=lowercase__ , cache_dir=lowercase__ , keep_in_memory=lowercase__ , streaming=lowercase__ , num_proc=lowercase__ , **lowercase__ , ) snake_case_ : Tuple = path_or_paths if isinstance(lowercase__ , lowercase__ ) else {self.split: path_or_paths} snake_case_ : Dict = Text( cache_dir=lowercase__ , data_files=lowercase__ , features=lowercase__ , **lowercase__ , ) def __UpperCamelCase (self ): # Build iterable dataset if self.streaming: snake_case_ : List[str] = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: snake_case_ : str = None snake_case_ : int = None snake_case_ : int = None snake_case_ : int = None self.builder.download_and_prepare( download_config=lowercase__ , download_mode=lowercase__ , verification_mode=lowercase__ , base_path=lowercase__ , num_proc=self.num_proc , ) snake_case_ : Dict = self.builder.as_dataset( split=self.split , verification_mode=lowercase__ , in_memory=self.keep_in_memory ) return dataset
480
0
import json import os import pickle import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers import is_faiss_available from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bart.tokenization_bart import BartTokenizer from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.dpr.tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.retrieval_rag import CustomHFIndex, RagRetriever from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_sentencepiece, require_tokenizers, require_torch if is_faiss_available(): import faiss @require_faiss class a__ ( A__ ): def __UpperCamelCase ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = tempfile.mkdtemp() SCREAMING_SNAKE_CASE_ : Union[str, Any] = 8 # DPR tok SCREAMING_SNAKE_CASE_ : Union[str, Any] = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] SCREAMING_SNAKE_CASE_ : List[Any] = os.path.join(self.tmpdirname,"dpr_tokenizer" ) os.makedirs(_A,exist_ok=_A ) SCREAMING_SNAKE_CASE_ : int = os.path.join(_A,DPR_VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file,"w",encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) # BART tok SCREAMING_SNAKE_CASE_ : Optional[Any] = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] SCREAMING_SNAKE_CASE_ : Tuple = dict(zip(_A,range(len(_A ) ) ) ) SCREAMING_SNAKE_CASE_ : Optional[int] = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] SCREAMING_SNAKE_CASE_ : int = {"unk_token": "<unk>"} SCREAMING_SNAKE_CASE_ : Tuple = os.path.join(self.tmpdirname,"bart_tokenizer" ) os.makedirs(_A,exist_ok=_A ) SCREAMING_SNAKE_CASE_ : List[str] = os.path.join(_A,BART_VOCAB_FILES_NAMES["vocab_file"] ) SCREAMING_SNAKE_CASE_ : int = os.path.join(_A,BART_VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file,"w",encoding="utf-8" ) as fp: fp.write(json.dumps(_A ) + "\n" ) with open(self.merges_file,"w",encoding="utf-8" ) as fp: fp.write("\n".join(_A ) ) def __UpperCamelCase ( self : Optional[int] ): """simple docstring""" return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname,"dpr_tokenizer" ) ) def __UpperCamelCase ( self : Optional[int] ): """simple docstring""" return DPRContextEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname,"dpr_tokenizer" ) ) def __UpperCamelCase ( self : Any ): """simple docstring""" return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname,"bart_tokenizer" ) ) def __UpperCamelCase ( self : List[str] ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def __UpperCamelCase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = Dataset.from_dict( { "id": ["0", "1"], "text": ["foo", "bar"], "title": ["Foo", "Bar"], "embeddings": [np.ones(self.retrieval_vector_size ), 2 * np.ones(self.retrieval_vector_size )], } ) dataset.add_faiss_index("embeddings",string_factory="Flat",metric_type=faiss.METRIC_INNER_PRODUCT ) return dataset def __UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.get_dummy_dataset() SCREAMING_SNAKE_CASE_ : List[str] = RagConfig( retrieval_vector_size=self.retrieval_vector_size,question_encoder=DPRConfig().to_dict(),generator=BartConfig().to_dict(),) with patch("transformers.models.rag.retrieval_rag.load_dataset" ) as mock_load_dataset: SCREAMING_SNAKE_CASE_ : Union[str, Any] = dataset SCREAMING_SNAKE_CASE_ : str = RagRetriever( _A,question_encoder_tokenizer=self.get_dpr_tokenizer(),generator_tokenizer=self.get_bart_tokenizer(),) return retriever def __UpperCamelCase ( self : Any,_A : bool ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.get_dummy_dataset() SCREAMING_SNAKE_CASE_ : List[Any] = RagConfig( retrieval_vector_size=self.retrieval_vector_size,question_encoder=DPRConfig().to_dict(),generator=BartConfig().to_dict(),index_name="custom",) if from_disk: SCREAMING_SNAKE_CASE_ : List[str] = os.path.join(self.tmpdirname,"dataset" ) SCREAMING_SNAKE_CASE_ : Optional[int] = os.path.join(self.tmpdirname,"index.faiss" ) dataset.get_index("embeddings" ).save(os.path.join(self.tmpdirname,"index.faiss" ) ) dataset.drop_index("embeddings" ) dataset.save_to_disk(os.path.join(self.tmpdirname,"dataset" ) ) del dataset SCREAMING_SNAKE_CASE_ : Any = RagRetriever( _A,question_encoder_tokenizer=self.get_dpr_tokenizer(),generator_tokenizer=self.get_bart_tokenizer(),) else: SCREAMING_SNAKE_CASE_ : Any = RagRetriever( _A,question_encoder_tokenizer=self.get_dpr_tokenizer(),generator_tokenizer=self.get_bart_tokenizer(),index=CustomHFIndex(config.retrieval_vector_size,_A ),) return retriever def __UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = Dataset.from_dict( { "id": ["0", "1"], "text": ["foo", "bar"], "title": ["Foo", "Bar"], "embeddings": [np.ones(self.retrieval_vector_size + 1 ), 2 * np.ones(self.retrieval_vector_size + 1 )], } ) dataset.add_faiss_index("embeddings",string_factory="Flat",metric_type=faiss.METRIC_INNER_PRODUCT ) SCREAMING_SNAKE_CASE_ : int = os.path.join(self.tmpdirname,"hf_bert_base.hnswSQ8_correct_phi_128.c_index" ) dataset.save_faiss_index("embeddings",index_file_name + ".index.dpr" ) pickle.dump(dataset["id"],open(index_file_name + ".index_meta.dpr","wb" ) ) SCREAMING_SNAKE_CASE_ : List[Any] = os.path.join(self.tmpdirname,"psgs_w100.tsv.pkl" ) SCREAMING_SNAKE_CASE_ : Any = {sample["id"]: [sample["text"], sample["title"]] for sample in dataset} pickle.dump(_A,open(_A,"wb" ) ) SCREAMING_SNAKE_CASE_ : Dict = RagConfig( retrieval_vector_size=self.retrieval_vector_size,question_encoder=DPRConfig().to_dict(),generator=BartConfig().to_dict(),index_name="legacy",index_path=self.tmpdirname,) SCREAMING_SNAKE_CASE_ : List[Any] = RagRetriever( _A,question_encoder_tokenizer=self.get_dpr_tokenizer(),generator_tokenizer=self.get_bart_tokenizer() ) return retriever def __UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = 1 SCREAMING_SNAKE_CASE_ : Optional[Any] = self.get_dummy_canonical_hf_index_retriever() SCREAMING_SNAKE_CASE_ : str = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )],dtype=np.floataa ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = retriever.retrieve(_A,n_docs=_A ) self.assertEqual(retrieved_doc_embeds.shape,(2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(_A ),2 ) self.assertEqual(sorted(doc_dicts[0] ),["embeddings", "id", "text", "title"] ) self.assertEqual(len(doc_dicts[0]["id"] ),_A ) self.assertEqual(doc_dicts[0]["id"][0],"1" ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["id"][0],"0" ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist(),[[1], [0]] ) def __UpperCamelCase ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = self.get_dummy_canonical_hf_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: with patch("transformers.models.rag.retrieval_rag.load_dataset" ) as mock_load_dataset: SCREAMING_SNAKE_CASE_ : Any = self.get_dummy_dataset() retriever.save_pretrained(_A ) SCREAMING_SNAKE_CASE_ : Dict = RagRetriever.from_pretrained(_A ) self.assertIsInstance(_A,_A ) SCREAMING_SNAKE_CASE_ : Dict = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )],dtype=np.floataa ) SCREAMING_SNAKE_CASE_ : int = retriever.retrieve(_A,n_docs=1 ) self.assertTrue(out is not None ) def __UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = 1 SCREAMING_SNAKE_CASE_ : str = self.get_dummy_custom_hf_index_retriever(from_disk=_A ) SCREAMING_SNAKE_CASE_ : Dict = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )],dtype=np.floataa ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : str = retriever.retrieve(_A,n_docs=_A ) self.assertEqual(retrieved_doc_embeds.shape,(2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(_A ),2 ) self.assertEqual(sorted(doc_dicts[0] ),["embeddings", "id", "text", "title"] ) self.assertEqual(len(doc_dicts[0]["id"] ),_A ) self.assertEqual(doc_dicts[0]["id"][0],"1" ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["id"][0],"0" ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist(),[[1], [0]] ) def __UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = self.get_dummy_custom_hf_index_retriever(from_disk=_A ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(_A ) SCREAMING_SNAKE_CASE_ : List[str] = RagRetriever.from_pretrained(_A ) self.assertIsInstance(_A,_A ) SCREAMING_SNAKE_CASE_ : Any = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )],dtype=np.floataa ) SCREAMING_SNAKE_CASE_ : Optional[int] = retriever.retrieve(_A,n_docs=1 ) self.assertTrue(out is not None ) def __UpperCamelCase ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = 1 SCREAMING_SNAKE_CASE_ : int = self.get_dummy_custom_hf_index_retriever(from_disk=_A ) SCREAMING_SNAKE_CASE_ : Any = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )],dtype=np.floataa ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[str] = retriever.retrieve(_A,n_docs=_A ) self.assertEqual(retrieved_doc_embeds.shape,(2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(_A ),2 ) self.assertEqual(sorted(doc_dicts[0] ),["embeddings", "id", "text", "title"] ) self.assertEqual(len(doc_dicts[0]["id"] ),_A ) self.assertEqual(doc_dicts[0]["id"][0],"1" ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["id"][0],"0" ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist(),[[1], [0]] ) def __UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.get_dummy_custom_hf_index_retriever(from_disk=_A ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(_A ) SCREAMING_SNAKE_CASE_ : List[Any] = RagRetriever.from_pretrained(_A ) self.assertIsInstance(_A,_A ) SCREAMING_SNAKE_CASE_ : Any = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )],dtype=np.floataa ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = retriever.retrieve(_A,n_docs=1 ) self.assertTrue(out is not None ) def __UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = 1 SCREAMING_SNAKE_CASE_ : Optional[Any] = self.get_dummy_legacy_index_retriever() SCREAMING_SNAKE_CASE_ : Optional[int] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )],dtype=np.floataa ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int = retriever.retrieve(_A,n_docs=_A ) self.assertEqual(retrieved_doc_embeds.shape,(2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(_A ),2 ) self.assertEqual(sorted(doc_dicts[0] ),["text", "title"] ) self.assertEqual(len(doc_dicts[0]["text"] ),_A ) self.assertEqual(doc_dicts[0]["text"][0],"bar" ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["text"][0],"foo" ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist(),[[1], [0]] ) def __UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = self.get_dummy_legacy_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(_A ) SCREAMING_SNAKE_CASE_ : Optional[int] = RagRetriever.from_pretrained(_A ) self.assertIsInstance(_A,_A ) SCREAMING_SNAKE_CASE_ : Optional[int] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )],dtype=np.floataa ) SCREAMING_SNAKE_CASE_ : int = retriever.retrieve(_A,n_docs=1 ) self.assertTrue(out is not None ) @require_torch @require_tokenizers @require_sentencepiece def __UpperCamelCase ( self : str ): """simple docstring""" import torch SCREAMING_SNAKE_CASE_ : int = 1 SCREAMING_SNAKE_CASE_ : List[Any] = self.get_dummy_canonical_hf_index_retriever() SCREAMING_SNAKE_CASE_ : Optional[Any] = [[5, 7], [10, 11]] SCREAMING_SNAKE_CASE_ : Dict = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )],dtype=np.floataa ) SCREAMING_SNAKE_CASE_ : int = retriever(_A,_A,prefix=retriever.config.generator.prefix,n_docs=_A ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[str] = ( out["context_input_ids"], out["context_attention_mask"], out["retrieved_doc_embeds"], ) self.assertEqual(retrieved_doc_embeds.shape,(2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(_A,_A ) self.assertIsInstance(_A,_A ) self.assertIsInstance(_A,np.ndarray ) SCREAMING_SNAKE_CASE_ : Optional[Any] = retriever( _A,_A,prefix=retriever.config.generator.prefix,n_docs=_A,return_tensors="pt",) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[Any] = ( # noqa: F841 out["context_input_ids"], out["context_attention_mask"], out["retrieved_doc_embeds"], out["doc_ids"], ) self.assertEqual(retrieved_doc_embeds.shape,(2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(_A,torch.Tensor ) self.assertIsInstance(_A,torch.Tensor ) self.assertIsInstance(_A,torch.Tensor ) @require_torch @require_tokenizers @require_sentencepiece def __UpperCamelCase ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = self.get_dpr_ctx_encoder_tokenizer() SCREAMING_SNAKE_CASE_ : List[Any] = 1 SCREAMING_SNAKE_CASE_ : List[str] = self.get_dummy_custom_hf_index_retriever(from_disk=_A ) retriever.set_ctx_encoder_tokenizer(_A ) SCREAMING_SNAKE_CASE_ : Optional[Any] = [[5, 7], [10, 11]] SCREAMING_SNAKE_CASE_ : int = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )],dtype=np.floataa ) SCREAMING_SNAKE_CASE_ : str = retriever(_A,_A,prefix=retriever.config.generator.prefix,n_docs=_A ) self.assertEqual( len(_A ),6 ) # check whether the retriever output consist of 6 attributes including tokenized docs self.assertEqual( all(k in out for k in ("tokenized_doc_ids", "tokenized_doc_attention_mask") ),_A ) # check for doc token related keys in dictionary.
316
from collections import defaultdict from typing import Optional from ..image_utils import load_image from ..utils import ( add_end_docstrings, is_torch_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING __lowerCamelCase : List[Any] = logging.get_logger(__name__) @add_end_docstrings(A__ ) class a__ ( A__ ): def __init__( self : Dict,**_A : List[str] ): """simple docstring""" super().__init__(**_A ) requires_backends(self,"vision" ) requires_backends(self,"torch" ) if self.framework != "pt": raise ValueError(F'The {self.__class__} is only available in PyTorch.' ) self.check_model_type(_A ) def __UpperCamelCase ( self : int,**_A : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = {} SCREAMING_SNAKE_CASE_ : List[Any] = {} SCREAMING_SNAKE_CASE_ : Tuple = {} # preprocess args if "points_per_batch" in kwargs: SCREAMING_SNAKE_CASE_ : Optional[int] = kwargs["points_per_batch"] if "points_per_crop" in kwargs: SCREAMING_SNAKE_CASE_ : List[Any] = kwargs["points_per_crop"] if "crops_n_layers" in kwargs: SCREAMING_SNAKE_CASE_ : Dict = kwargs["crops_n_layers"] if "crop_overlap_ratio" in kwargs: SCREAMING_SNAKE_CASE_ : Dict = kwargs["crop_overlap_ratio"] if "crop_n_points_downscale_factor" in kwargs: SCREAMING_SNAKE_CASE_ : List[str] = kwargs["crop_n_points_downscale_factor"] # postprocess args if "pred_iou_thresh" in kwargs: SCREAMING_SNAKE_CASE_ : str = kwargs["pred_iou_thresh"] if "stability_score_offset" in kwargs: SCREAMING_SNAKE_CASE_ : Optional[int] = kwargs["stability_score_offset"] if "mask_threshold" in kwargs: SCREAMING_SNAKE_CASE_ : Union[str, Any] = kwargs["mask_threshold"] if "stability_score_thresh" in kwargs: SCREAMING_SNAKE_CASE_ : List[str] = kwargs["stability_score_thresh"] if "crops_nms_thresh" in kwargs: SCREAMING_SNAKE_CASE_ : List[Any] = kwargs["crops_nms_thresh"] if "output_rle_mask" in kwargs: SCREAMING_SNAKE_CASE_ : Optional[Any] = kwargs["output_rle_mask"] if "output_bboxes_mask" in kwargs: SCREAMING_SNAKE_CASE_ : Any = kwargs["output_bboxes_mask"] return preprocess_kwargs, forward_params, postprocess_kwargs def __call__( self : List[Any],_A : Any,*_A : int,_A : Optional[int]=None,_A : Dict=None,**_A : Union[str, Any] ): """simple docstring""" return super().__call__(_A,*_A,num_workers=_A,batch_size=_A,**_A ) def __UpperCamelCase ( self : Any,_A : List[str],_A : Optional[Any]=64,_A : int = 0,_A : float = 512 / 1500,_A : Optional[int] = 32,_A : Optional[int] = 1,): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = load_image(_A ) SCREAMING_SNAKE_CASE_ : int = self.image_processor.size["longest_edge"] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Any = self.image_processor.generate_crop_boxes( _A,_A,_A,_A,_A,_A ) SCREAMING_SNAKE_CASE_ : Optional[int] = self.image_processor(images=_A,return_tensors="pt" ) with self.device_placement(): if self.framework == "pt": SCREAMING_SNAKE_CASE_ : Any = self.get_inference_context() with inference_context(): SCREAMING_SNAKE_CASE_ : Any = self._ensure_tensor_on_device(_A,device=self.device ) SCREAMING_SNAKE_CASE_ : Any = self.model.get_image_embeddings(model_inputs.pop("pixel_values" ) ) SCREAMING_SNAKE_CASE_ : str = image_embeddings SCREAMING_SNAKE_CASE_ : Union[str, Any] = grid_points.shape[1] SCREAMING_SNAKE_CASE_ : Tuple = points_per_batch if points_per_batch is not None else n_points if points_per_batch <= 0: raise ValueError( "Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. " "To return all points at once, set points_per_batch to None" ) for i in range(0,_A,_A ): SCREAMING_SNAKE_CASE_ : Optional[int] = grid_points[:, i : i + points_per_batch, :, :] SCREAMING_SNAKE_CASE_ : Dict = input_labels[:, i : i + points_per_batch] SCREAMING_SNAKE_CASE_ : List[str] = i == n_points - points_per_batch yield { "input_points": batched_points, "input_labels": labels, "input_boxes": crop_boxes, "is_last": is_last, **model_inputs, } def __UpperCamelCase ( self : Union[str, Any],_A : int,_A : Optional[Any]=0.88,_A : Dict=0.95,_A : Union[str, Any]=0,_A : List[Any]=1,): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = model_inputs.pop("input_boxes" ) SCREAMING_SNAKE_CASE_ : Tuple = model_inputs.pop("is_last" ) SCREAMING_SNAKE_CASE_ : Tuple = model_inputs.pop("original_sizes" ).tolist() SCREAMING_SNAKE_CASE_ : List[str] = model_inputs.pop("reshaped_input_sizes" ).tolist() SCREAMING_SNAKE_CASE_ : List[Any] = self.model(**_A ) # post processing happens here in order to avoid CPU GPU copies of ALL the masks SCREAMING_SNAKE_CASE_ : Optional[int] = model_outputs["pred_masks"] SCREAMING_SNAKE_CASE_ : str = self.image_processor.post_process_masks( _A,_A,_A,_A,binarize=_A ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = model_outputs["iou_scores"] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : str = self.image_processor.filter_masks( masks[0],iou_scores[0],original_sizes[0],input_boxes[0],_A,_A,_A,_A,) return { "masks": masks, "is_last": is_last, "boxes": boxes, "iou_scores": iou_scores, } def __UpperCamelCase ( self : Optional[Any],_A : Union[str, Any],_A : Tuple=False,_A : Any=False,_A : List[str]=0.7,): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = [] SCREAMING_SNAKE_CASE_ : Dict = [] SCREAMING_SNAKE_CASE_ : str = [] for model_output in model_outputs: all_scores.append(model_output.pop("iou_scores" ) ) all_masks.extend(model_output.pop("masks" ) ) all_boxes.append(model_output.pop("boxes" ) ) SCREAMING_SNAKE_CASE_ : List[Any] = torch.cat(_A ) SCREAMING_SNAKE_CASE_ : int = torch.cat(_A ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[int] = self.image_processor.post_process_for_mask_generation( _A,_A,_A,_A ) SCREAMING_SNAKE_CASE_ : Tuple = defaultdict(_A ) for output in model_outputs: for k, v in output.items(): extra[k].append(_A ) SCREAMING_SNAKE_CASE_ : Optional[Any] = {} if output_rle_mask: SCREAMING_SNAKE_CASE_ : str = rle_mask if output_bboxes_mask: SCREAMING_SNAKE_CASE_ : str = bounding_boxes return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
316
1
import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class lowerCamelCase__ ( _A): """simple docstring""" a__ : Union[str, Any] = (DPMSolverSDEScheduler,) a__ : Any = 10 def snake_case_ ( self : List[Any] , **__lowerCAmelCase : List[Any] ) -> str: _A = { '''num_train_timesteps''': 11_00, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''noise_sampler_seed''': 0, } config.update(**__lowerCAmelCase ) return config def snake_case_ ( self : Tuple ) -> str: for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=__lowerCAmelCase ) def snake_case_ ( self : Dict ) -> Any: for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=__lowerCAmelCase , beta_end=__lowerCAmelCase ) def snake_case_ ( self : Any ) -> int: for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=__lowerCAmelCase ) def snake_case_ ( self : Optional[Any] ) -> Optional[int]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__lowerCAmelCase ) def snake_case_ ( self : Any ) -> Optional[Any]: _A = self.scheduler_classes[0] _A = self.get_scheduler_config() _A = scheduler_class(**__lowerCAmelCase ) scheduler.set_timesteps(self.num_inference_steps ) _A = self.dummy_model() _A = self.dummy_sample_deter * scheduler.init_noise_sigma _A = sample.to(__lowerCAmelCase ) for i, t in enumerate(scheduler.timesteps ): _A = scheduler.scale_model_input(__lowerCAmelCase , __lowerCAmelCase ) _A = model(__lowerCAmelCase , __lowerCAmelCase ) _A = scheduler.step(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) _A = output.prev_sample _A = torch.sum(torch.abs(__lowerCAmelCase ) ) _A = torch.mean(torch.abs(__lowerCAmelCase ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.47_8210_4492_1875 ) < 1E-2 assert abs(result_mean.item() - 0.2178_7059_6456_5277 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59_3521_1181_6406 ) < 1E-2 assert abs(result_mean.item() - 0.2_2342_9068_9229_9652 ) < 1E-3 else: assert abs(result_sum.item() - 162.52_3834_2285_1562 ) < 1E-2 assert abs(result_mean.item() - 0.211_6195_7085_1326 ) < 1E-3 def snake_case_ ( self : Dict ) -> str: _A = self.scheduler_classes[0] _A = self.get_scheduler_config(prediction_type='''v_prediction''' ) _A = scheduler_class(**__lowerCAmelCase ) scheduler.set_timesteps(self.num_inference_steps ) _A = self.dummy_model() _A = self.dummy_sample_deter * scheduler.init_noise_sigma _A = sample.to(__lowerCAmelCase ) for i, t in enumerate(scheduler.timesteps ): _A = scheduler.scale_model_input(__lowerCAmelCase , __lowerCAmelCase ) _A = model(__lowerCAmelCase , __lowerCAmelCase ) _A = scheduler.step(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) _A = output.prev_sample _A = torch.sum(torch.abs(__lowerCAmelCase ) ) _A = torch.mean(torch.abs(__lowerCAmelCase ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 124.77_1492_0043_9453 ) < 1E-2 assert abs(result_mean.item() - 0.1_6226_2890_1481_6284 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 128.1_6633_6059_5703 ) < 1E-2 assert abs(result_mean.item() - 0.1_6688_3260_0116_7297 ) < 1E-3 else: assert abs(result_sum.item() - 119.8_4875_4882_8125 ) < 1E-2 assert abs(result_mean.item() - 0.1560_5306_6253_6621 ) < 1E-3 def snake_case_ ( self : int ) -> Any: _A = self.scheduler_classes[0] _A = self.get_scheduler_config() _A = scheduler_class(**__lowerCAmelCase ) scheduler.set_timesteps(self.num_inference_steps , device=__lowerCAmelCase ) _A = self.dummy_model() _A = self.dummy_sample_deter.to(__lowerCAmelCase ) * scheduler.init_noise_sigma for t in scheduler.timesteps: _A = scheduler.scale_model_input(__lowerCAmelCase , __lowerCAmelCase ) _A = model(__lowerCAmelCase , __lowerCAmelCase ) _A = scheduler.step(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) _A = output.prev_sample _A = torch.sum(torch.abs(__lowerCAmelCase ) ) _A = torch.mean(torch.abs(__lowerCAmelCase ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.46_9573_9746_0938 ) < 1E-2 assert abs(result_mean.item() - 0.2_1805_9346_0798_2635 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59_3536_3769_5312 ) < 1E-2 assert abs(result_mean.item() - 0.2_2342_9083_8241_5771 ) < 1E-3 else: assert abs(result_sum.item() - 162.52_3834_2285_1562 ) < 1E-2 assert abs(result_mean.item() - 0.211_6195_7085_1326 ) < 1E-3 def snake_case_ ( self : Tuple ) -> Optional[Any]: _A = self.scheduler_classes[0] _A = self.get_scheduler_config() _A = scheduler_class(**__lowerCAmelCase , use_karras_sigmas=__lowerCAmelCase ) scheduler.set_timesteps(self.num_inference_steps , device=__lowerCAmelCase ) _A = self.dummy_model() _A = self.dummy_sample_deter.to(__lowerCAmelCase ) * scheduler.init_noise_sigma _A = sample.to(__lowerCAmelCase ) for t in scheduler.timesteps: _A = scheduler.scale_model_input(__lowerCAmelCase , __lowerCAmelCase ) _A = model(__lowerCAmelCase , __lowerCAmelCase ) _A = scheduler.step(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) _A = output.prev_sample _A = torch.sum(torch.abs(__lowerCAmelCase ) ) _A = torch.mean(torch.abs(__lowerCAmelCase ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 176.66_9741_3574_2188 ) < 1E-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811 ) < 1E-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 177.63_6535_6445_3125 ) < 1E-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811 ) < 1E-2 else: assert abs(result_sum.item() - 170.3_1352_2338_8672 ) < 1E-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811 ) < 1E-2
2
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class lowerCamelCase__ ( unittest.TestCase): """simple docstring""" def __init__( self : Optional[int] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Dict=7 , __lowerCAmelCase : Tuple=3 , __lowerCAmelCase : int=30 , __lowerCAmelCase : Dict=4_00 , __lowerCAmelCase : Optional[Any]=True , __lowerCAmelCase : List[str]=None , __lowerCAmelCase : Dict=True , __lowerCAmelCase : Optional[Any]=[0.5, 0.5, 0.5] , __lowerCAmelCase : Dict=[0.5, 0.5, 0.5] , __lowerCAmelCase : List[str]=True , __lowerCAmelCase : List[str]=1 / 2_55 , __lowerCAmelCase : int=True , ) -> List[str]: # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p _A = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 13_33} _A = parent _A = batch_size _A = num_channels _A = min_resolution _A = max_resolution _A = do_resize _A = size _A = do_normalize _A = image_mean _A = image_std _A = do_rescale _A = rescale_factor _A = do_pad def snake_case_ ( self : Optional[int] ) -> Any: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def snake_case_ ( self : List[Any] , __lowerCAmelCase : Tuple , __lowerCAmelCase : str=False ) -> Dict: if not batched: _A = image_inputs[0] if isinstance(__lowerCAmelCase , Image.Image ): _A , _A = image.size else: _A , _A = image.shape[1], image.shape[2] if w < h: _A = int(self.size['''shortest_edge'''] * h / w ) _A = self.size['''shortest_edge'''] elif w > h: _A = self.size['''shortest_edge'''] _A = int(self.size['''shortest_edge'''] * w / h ) else: _A = self.size['''shortest_edge'''] _A = self.size['''shortest_edge'''] else: _A = [] for image in image_inputs: _A , _A = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) _A = max(__lowerCAmelCase , key=lambda __lowerCAmelCase : item[0] )[0] _A = max(__lowerCAmelCase , key=lambda __lowerCAmelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class lowerCamelCase__ ( _A , unittest.TestCase): """simple docstring""" a__ : Any = DeformableDetrImageProcessor if is_vision_available() else None def snake_case_ ( self : Optional[int] ) -> Any: _A = DeformableDetrImageProcessingTester(self ) @property def snake_case_ ( self : Union[str, Any] ) -> Dict: return self.image_processor_tester.prepare_image_processor_dict() def snake_case_ ( self : Optional[int] ) -> List[str]: _A = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowerCAmelCase , '''image_mean''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''image_std''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''do_normalize''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''do_resize''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''do_rescale''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''do_pad''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''size''' ) ) def snake_case_ ( self : List[str] ) -> int: _A = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 13_33} ) self.assertEqual(image_processor.do_pad , __lowerCAmelCase ) _A = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=__lowerCAmelCase ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42, '''longest_edge''': 84} ) self.assertEqual(image_processor.do_pad , __lowerCAmelCase ) def snake_case_ ( self : Any ) -> Union[str, Any]: pass def snake_case_ ( self : List[str] ) -> Optional[int]: # Initialize image_processing _A = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _A = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase , Image.Image ) # Test not batched input _A = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _A , _A = self.image_processor_tester.get_expected_values(__lowerCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _A , _A = self.image_processor_tester.get_expected_values(__lowerCAmelCase , batched=__lowerCAmelCase ) _A = image_processing(__lowerCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def snake_case_ ( self : Tuple ) -> int: # Initialize image_processing _A = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _A = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCAmelCase , numpify=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase , np.ndarray ) # Test not batched input _A = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _A , _A = self.image_processor_tester.get_expected_values(__lowerCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _A = image_processing(__lowerCAmelCase , return_tensors='''pt''' ).pixel_values _A , _A = self.image_processor_tester.get_expected_values(__lowerCAmelCase , batched=__lowerCAmelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def snake_case_ ( self : Optional[Any] ) -> int: # Initialize image_processing _A = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _A = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCAmelCase , torchify=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase , torch.Tensor ) # Test not batched input _A = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _A , _A = self.image_processor_tester.get_expected_values(__lowerCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _A = image_processing(__lowerCAmelCase , return_tensors='''pt''' ).pixel_values _A , _A = self.image_processor_tester.get_expected_values(__lowerCAmelCase , batched=__lowerCAmelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def snake_case_ ( self : Optional[Any] ) -> Optional[int]: # prepare image and target _A = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: _A = json.loads(f.read() ) _A = {'''image_id''': 3_97_69, '''annotations''': target} # encode them _A = DeformableDetrImageProcessor() _A = image_processing(images=__lowerCAmelCase , annotations=__lowerCAmelCase , return_tensors='''pt''' ) # verify pixel values _A = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding['''pixel_values'''].shape , __lowerCAmelCase ) _A = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , __lowerCAmelCase , atol=1E-4 ) ) # verify area _A = torch.tensor([5887.9600, 1_1250.2061, 48_9353.8438, 83_7122.7500, 14_7967.5156, 16_5732.3438] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , __lowerCAmelCase ) ) # verify boxes _A = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , __lowerCAmelCase ) _A = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , __lowerCAmelCase , atol=1E-3 ) ) # verify image_id _A = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , __lowerCAmelCase ) ) # verify is_crowd _A = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , __lowerCAmelCase ) ) # verify class_labels _A = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , __lowerCAmelCase ) ) # verify orig_size _A = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , __lowerCAmelCase ) ) # verify size _A = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , __lowerCAmelCase ) ) @slow def snake_case_ ( self : List[str] ) -> List[str]: # prepare image, target and masks_path _A = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: _A = json.loads(f.read() ) _A = {'''file_name''': '''000000039769.png''', '''image_id''': 3_97_69, '''segments_info''': target} _A = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them _A = DeformableDetrImageProcessor(format='''coco_panoptic''' ) _A = image_processing(images=__lowerCAmelCase , annotations=__lowerCAmelCase , masks_path=__lowerCAmelCase , return_tensors='''pt''' ) # verify pixel values _A = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding['''pixel_values'''].shape , __lowerCAmelCase ) _A = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , __lowerCAmelCase , atol=1E-4 ) ) # verify area _A = torch.tensor([14_7979.6875, 16_5527.0469, 48_4638.5938, 1_1292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , __lowerCAmelCase ) ) # verify boxes _A = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , __lowerCAmelCase ) _A = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , __lowerCAmelCase , atol=1E-3 ) ) # verify image_id _A = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , __lowerCAmelCase ) ) # verify is_crowd _A = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , __lowerCAmelCase ) ) # verify class_labels _A = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , __lowerCAmelCase ) ) # verify masks _A = 82_28_73 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , __lowerCAmelCase ) # verify orig_size _A = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , __lowerCAmelCase ) ) # verify size _A = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , __lowerCAmelCase ) )
2
1
"""simple docstring""" from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( 'pipelines_utils', '0.22.0', 'Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.', standard_warn=False, stacklevel=3, )
700
"""simple docstring""" def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase ): """simple docstring""" def get_matched_characters(__UpperCamelCase , __UpperCamelCase ) -> str: __A = [] __A = min(len(_stra ) , len(_stra ) ) // 2 for i, l in enumerate(_stra ): __A = int(max(0 , i - limit ) ) __A = int(min(i + limit + 1 , len(_stra ) ) ) if l in _stra[left:right]: matched.append(__UpperCamelCase ) __A = f'{_stra[0:_stra.index(__UpperCamelCase )]} {_stra[_stra.index(__UpperCamelCase ) + 1:]}' return "".join(__UpperCamelCase ) # matching characters __A = get_matched_characters(__UpperCamelCase , __UpperCamelCase ) __A = get_matched_characters(__UpperCamelCase , __UpperCamelCase ) __A = len(__UpperCamelCase ) # transposition __A = ( len([(ca, ca) for ca, ca in zip(__UpperCamelCase , __UpperCamelCase ) if ca != ca] ) // 2 ) if not match_count: __A = 0.0 else: __A = ( 1 / 3 * ( match_count / len(__UpperCamelCase ) + match_count / len(__UpperCamelCase ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters __A = 0 for ca, ca in zip(stra[:4] , stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler('hello', 'world'))
215
0
import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse('''9.1.0'''): __a: Optional[int] = { '''linear''': PIL.Image.Resampling.BILINEAR, '''bilinear''': PIL.Image.Resampling.BILINEAR, '''bicubic''': PIL.Image.Resampling.BICUBIC, '''lanczos''': PIL.Image.Resampling.LANCZOS, '''nearest''': PIL.Image.Resampling.NEAREST, } else: __a: Tuple = { '''linear''': PIL.Image.LINEAR, '''bilinear''': PIL.Image.BILINEAR, '''bicubic''': PIL.Image.BICUBIC, '''lanczos''': PIL.Image.LANCZOS, '''nearest''': PIL.Image.NEAREST, } def _SCREAMING_SNAKE_CASE ( __snake_case ) -> Optional[int]: _UpperCAmelCase = (images / 2 + 0.5).clamp(0 , 1 ) _UpperCAmelCase = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() _UpperCAmelCase = numpy_to_pil(__snake_case ) return images def _SCREAMING_SNAKE_CASE ( __snake_case ) -> Optional[Any]: if images.ndim == 3: _UpperCAmelCase = images[None, ...] _UpperCAmelCase = (images * 2_5_5).round().astype("""uint8""" ) if images.shape[-1] == 1: # special case for grayscale (single channel) images _UpperCAmelCase = [Image.fromarray(image.squeeze() , mode="""L""" ) for image in images] else: _UpperCAmelCase = [Image.fromarray(__snake_case ) for image in images] return pil_images
108
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer __a: Tuple = logging.get_logger(__name__) __a: Optional[Any] = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} __a: Any = { '''vocab_file''': { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json''' ), }, } __a: Any = { '''vocab_file''': { '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json''' ), }, } __a: str = { '''vocab_file''': { '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json''' ), }, } __a: Dict = { '''facebook/dpr-ctx_encoder-single-nq-base''': 512, '''facebook/dpr-ctx_encoder-multiset-base''': 512, } __a: List[str] = { '''facebook/dpr-question_encoder-single-nq-base''': 512, '''facebook/dpr-question_encoder-multiset-base''': 512, } __a: Dict = { '''facebook/dpr-reader-single-nq-base''': 512, '''facebook/dpr-reader-multiset-base''': 512, } __a: Optional[int] = { '''facebook/dpr-ctx_encoder-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-ctx_encoder-multiset-base''': {'''do_lower_case''': True}, } __a: Tuple = { '''facebook/dpr-question_encoder-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-question_encoder-multiset-base''': {'''do_lower_case''': True}, } __a: Optional[int] = { '''facebook/dpr-reader-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-reader-multiset-base''': {'''do_lower_case''': True}, } class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _lowerCamelCase = VOCAB_FILES_NAMES _lowerCamelCase = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _lowerCamelCase = VOCAB_FILES_NAMES _lowerCamelCase = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION __a: List[Any] = collections.namedtuple( '''DPRSpanPrediction''', ['''span_score''', '''relevance_score''', '''doc_id''', '''start_index''', '''end_index''', '''text'''] ) __a: Optional[int] = collections.namedtuple('''DPRReaderOutput''', ['''start_logits''', '''end_logits''', '''relevance_logits''']) __a: Optional[Any] = R''' Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`. It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers), using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)` with the format: ``` [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids> ``` Args: questions (`str` or `List[str]`): The questions to be encoded. You can specify one question for many passages. In this case, the question will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in `titles` or `texts`. titles (`str` or `List[str]`): The passages titles to be encoded. This can be a string or a list of strings if there are several passages. texts (`str` or `List[str]`): The passages texts to be encoded. This can be a string or a list of strings if there are several passages. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `\'tf\'`: Return TensorFlow `tf.constant` objects. - `\'pt\'`: Return PyTorch `torch.Tensor` objects. - `\'np\'`: Return Numpy `np.ndarray` objects. return_attention_mask (`bool`, *optional*): Whether or not to return the attention mask. If not set, will return the attention mask according to the specific tokenizer\'s default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) Returns: `Dict[str, List[List[int]]]`: A dictionary with the following keys: - `input_ids`: List of token ids to be fed to a model. - `attention_mask`: List of indices specifying which tokens should be attended to by the model. ''' @add_start_docstrings(UpperCAmelCase ) class SCREAMING_SNAKE_CASE__ : '''simple docstring''' def __call__( self : int , lowerCamelCase : int , lowerCamelCase : Optional[str] = None , lowerCamelCase : Optional[str] = None , lowerCamelCase : Union[bool, str] = False , lowerCamelCase : Union[bool, str] = False , lowerCamelCase : Optional[int] = None , lowerCamelCase : Optional[Union[str, TensorType]] = None , lowerCamelCase : Optional[bool] = None , **lowerCamelCase : Optional[int] , ) -> BatchEncoding: """simple docstring""" if titles is None and texts is None: return super().__call__( lowerCamelCase , padding=lowerCamelCase , truncation=lowerCamelCase , max_length=lowerCamelCase , return_tensors=lowerCamelCase , return_attention_mask=lowerCamelCase , **lowerCamelCase , ) elif titles is None or texts is None: _UpperCAmelCase = titles if texts is None else texts return super().__call__( lowerCamelCase , lowerCamelCase , padding=lowerCamelCase , truncation=lowerCamelCase , max_length=lowerCamelCase , return_tensors=lowerCamelCase , return_attention_mask=lowerCamelCase , **lowerCamelCase , ) _UpperCAmelCase = titles if not isinstance(lowerCamelCase , lowerCamelCase ) else [titles] _UpperCAmelCase = texts if not isinstance(lowerCamelCase , lowerCamelCase ) else [texts] _UpperCAmelCase = len(lowerCamelCase ) _UpperCAmelCase = questions if not isinstance(lowerCamelCase , lowerCamelCase ) else [questions] * n_passages if len(lowerCamelCase ) != len(lowerCamelCase ): raise ValueError( f"""There should be as many titles than texts but got {len(lowerCamelCase )} titles and {len(lowerCamelCase )} texts.""" ) _UpperCAmelCase = super().__call__(lowerCamelCase , lowerCamelCase , padding=lowerCamelCase , truncation=lowerCamelCase )["""input_ids"""] _UpperCAmelCase = super().__call__(lowerCamelCase , add_special_tokens=lowerCamelCase , padding=lowerCamelCase , truncation=lowerCamelCase )["""input_ids"""] _UpperCAmelCase = { """input_ids""": [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(lowerCamelCase , lowerCamelCase ) ] } if return_attention_mask is not False: _UpperCAmelCase = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) _UpperCAmelCase = attention_mask return self.pad(lowerCamelCase , padding=lowerCamelCase , max_length=lowerCamelCase , return_tensors=lowerCamelCase ) def lowerCamelCase ( self : Tuple , lowerCamelCase : BatchEncoding , lowerCamelCase : DPRReaderOutput , lowerCamelCase : int = 16 , lowerCamelCase : int = 64 , lowerCamelCase : int = 4 , ) -> List[DPRSpanPrediction]: """simple docstring""" _UpperCAmelCase = reader_input["""input_ids"""] _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = reader_output[:3] _UpperCAmelCase = len(lowerCamelCase ) _UpperCAmelCase = sorted(range(lowerCamelCase ) , reverse=lowerCamelCase , key=relevance_logits.__getitem__ ) _UpperCAmelCase = [] for doc_id in sorted_docs: _UpperCAmelCase = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence _UpperCAmelCase = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: _UpperCAmelCase = sequence_ids.index(self.pad_token_id ) else: _UpperCAmelCase = len(lowerCamelCase ) _UpperCAmelCase = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=lowerCamelCase , top_spans=lowerCamelCase , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=lowerCamelCase , start_index=lowerCamelCase , end_index=lowerCamelCase , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(lowerCamelCase ) >= num_spans: break return nbest_spans_predictions[:num_spans] def lowerCamelCase ( self : List[Any] , lowerCamelCase : List[int] , lowerCamelCase : List[int] , lowerCamelCase : int , lowerCamelCase : int , ) -> List[DPRSpanPrediction]: """simple docstring""" _UpperCAmelCase = [] for start_index, start_score in enumerate(lowerCamelCase ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) _UpperCAmelCase = sorted(lowerCamelCase , key=lambda lowerCamelCase : x[1] , reverse=lowerCamelCase ) _UpperCAmelCase = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(f"""Wrong span indices: [{start_index}:{end_index}]""" ) _UpperCAmelCase = end_index - start_index + 1 if length > max_answer_length: raise ValueError(f"""Span is too long: {length} > {max_answer_length}""" ) if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(lowerCamelCase ) == top_spans: break return chosen_span_intervals @add_end_docstrings(UpperCAmelCase ) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase , UpperCAmelCase ): '''simple docstring''' _lowerCamelCase = VOCAB_FILES_NAMES _lowerCamelCase = READER_PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase = READER_PRETRAINED_INIT_CONFIGURATION _lowerCamelCase = ['''input_ids''', '''attention_mask''']
108
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __A : Optional[Any] = logging.get_logger(__name__) __A : Optional[int] = { 'facebook/nllb-moe-54B': 'https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json', } class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = "nllb-moe" lowerCamelCase__ = ["past_key_values"] lowerCamelCase__ = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self : Dict , __lowerCamelCase : Dict=128112 , __lowerCamelCase : Optional[Any]=1024 , __lowerCamelCase : Tuple=12 , __lowerCamelCase : Optional[Any]=4096 , __lowerCamelCase : List[Any]=16 , __lowerCamelCase : Optional[int]=12 , __lowerCamelCase : Union[str, Any]=4096 , __lowerCamelCase : Optional[Any]=16 , __lowerCamelCase : str=0.05 , __lowerCamelCase : Union[str, Any]=0.05 , __lowerCamelCase : Tuple=True , __lowerCamelCase : List[str]=True , __lowerCamelCase : Optional[int]="relu" , __lowerCamelCase : int=1024 , __lowerCamelCase : Tuple=0.1 , __lowerCamelCase : int=0.1 , __lowerCamelCase : Dict=0.0 , __lowerCamelCase : str=0.02 , __lowerCamelCase : Optional[Any]=2 , __lowerCamelCase : List[Any]=True , __lowerCamelCase : Optional[Any]=False , __lowerCamelCase : Tuple="float32" , __lowerCamelCase : List[str]=False , __lowerCamelCase : Union[str, Any]=128 , __lowerCamelCase : Optional[int]=64 , __lowerCamelCase : Optional[Any]=4 , __lowerCamelCase : Union[str, Any]=4 , __lowerCamelCase : Dict=0.001 , __lowerCamelCase : Dict=0.001 , __lowerCamelCase : List[Any]="all" , __lowerCamelCase : Optional[int]=False , __lowerCamelCase : List[Any]=False , __lowerCamelCase : Union[str, Any]=1.0 , __lowerCamelCase : Tuple=0.2 , __lowerCamelCase : str=1 , __lowerCamelCase : str=0 , __lowerCamelCase : List[Any]=2 , __lowerCamelCase : Optional[Any]=False , **__lowerCamelCase : Union[str, Any] , ): SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = d_model SCREAMING_SNAKE_CASE = encoder_ffn_dim SCREAMING_SNAKE_CASE = encoder_layers SCREAMING_SNAKE_CASE = encoder_attention_heads SCREAMING_SNAKE_CASE = decoder_ffn_dim SCREAMING_SNAKE_CASE = decoder_layers SCREAMING_SNAKE_CASE = decoder_attention_heads SCREAMING_SNAKE_CASE = dropout SCREAMING_SNAKE_CASE = attention_dropout SCREAMING_SNAKE_CASE = activation_dropout SCREAMING_SNAKE_CASE = activation_function SCREAMING_SNAKE_CASE = init_std SCREAMING_SNAKE_CASE = encoder_layerdrop SCREAMING_SNAKE_CASE = decoder_layerdrop SCREAMING_SNAKE_CASE = use_cache SCREAMING_SNAKE_CASE = encoder_layers SCREAMING_SNAKE_CASE = scale_embedding # scale factor will be sqrt(d_model) if True SCREAMING_SNAKE_CASE = router_z_loss_coef SCREAMING_SNAKE_CASE = router_aux_loss_coef SCREAMING_SNAKE_CASE = decoder_sparse_step SCREAMING_SNAKE_CASE = encoder_sparse_step SCREAMING_SNAKE_CASE = num_experts SCREAMING_SNAKE_CASE = expert_capacity SCREAMING_SNAKE_CASE = router_bias if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(f"`router_dtype` must be one of 'float32', 'float16' or 'bfloat16', got {router_dtype}" ) SCREAMING_SNAKE_CASE = router_dtype SCREAMING_SNAKE_CASE = router_ignore_padding_tokens SCREAMING_SNAKE_CASE = batch_prioritized_routing SCREAMING_SNAKE_CASE = second_expert_policy SCREAMING_SNAKE_CASE = normalize_router_prob_before_dropping SCREAMING_SNAKE_CASE = moe_eval_capacity_token_fraction SCREAMING_SNAKE_CASE = moe_token_dropout SCREAMING_SNAKE_CASE = output_router_logits super().__init__( pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , is_encoder_decoder=__lowerCamelCase , decoder_start_token_id=__lowerCamelCase , **__lowerCamelCase , )
698
import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class _SCREAMING_SNAKE_CASE : '''simple docstring''' @staticmethod def _snake_case ( *__lowerCamelCase : Optional[Any] , **__lowerCamelCase : Union[str, Any] ): pass def __a ( A__ : str ): return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. __A : Tuple = ( 'https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png' ) @is_pipeline_test @require_torch @require_vision class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def _snake_case ( self : Optional[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : Optional[Any] ): SCREAMING_SNAKE_CASE = pipeline( "document-question-answering" , model=__lowerCamelCase , tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE = INVOICE_URL SCREAMING_SNAKE_CASE = list(zip(*apply_tesseract(load_image(__lowerCamelCase ) , __lowerCamelCase , "" ) ) ) SCREAMING_SNAKE_CASE = "What is the placebo?" SCREAMING_SNAKE_CASE = [ { "image": load_image(__lowerCamelCase ), "question": question, }, { "image": image, "question": question, }, { "image": image, "question": question, "word_boxes": word_boxes, }, ] return dqa_pipeline, examples def _snake_case ( self : List[Any] , __lowerCamelCase : int , __lowerCamelCase : int ): SCREAMING_SNAKE_CASE = dqa_pipeline(__lowerCamelCase , top_k=2 ) self.assertEqual( __lowerCamelCase , [ [ {"score": ANY(__lowerCamelCase ), "answer": ANY(__lowerCamelCase ), "start": ANY(__lowerCamelCase ), "end": ANY(__lowerCamelCase )}, {"score": ANY(__lowerCamelCase ), "answer": ANY(__lowerCamelCase ), "start": ANY(__lowerCamelCase ), "end": ANY(__lowerCamelCase )}, ] ] * 3 , ) @require_torch @require_detectrona @require_pytesseract def _snake_case ( self : Optional[int] ): SCREAMING_SNAKE_CASE = pipeline("document-question-answering" , model="hf-internal-testing/tiny-random-layoutlmv2" ) SCREAMING_SNAKE_CASE = INVOICE_URL SCREAMING_SNAKE_CASE = "How many cats are there?" SCREAMING_SNAKE_CASE = [ {"score": 0.0_001, "answer": "oy 2312/2019", "start": 38, "end": 39}, {"score": 0.0_001, "answer": "oy 2312/2019 DUE", "start": 38, "end": 40}, ] SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 ) self.assertEqual(nested_simplify(__lowerCamelCase , decimals=4 ) , __lowerCamelCase ) SCREAMING_SNAKE_CASE = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual(nested_simplify(__lowerCamelCase , decimals=4 ) , __lowerCamelCase ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably SCREAMING_SNAKE_CASE = "./tests/fixtures/tests_samples/COCO/000000039769.png" SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 ) self.assertEqual(__lowerCamelCase , [] ) # We can optionnally pass directly the words and bounding boxes SCREAMING_SNAKE_CASE = "./tests/fixtures/tests_samples/COCO/000000039769.png" SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , words=__lowerCamelCase , boxes=__lowerCamelCase , top_k=2 ) self.assertEqual(__lowerCamelCase , [] ) @slow @require_torch @require_detectrona @require_pytesseract def _snake_case ( self : List[str] ): SCREAMING_SNAKE_CASE = pipeline( "document-question-answering" , model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa" , revision="9977165" , ) SCREAMING_SNAKE_CASE = INVOICE_URL SCREAMING_SNAKE_CASE = "What is the invoice number?" SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ {"score": 0.9_944, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_009, "answer": "us-001", "start": 16, "end": 16}, ] , ) SCREAMING_SNAKE_CASE = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ {"score": 0.9_944, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_009, "answer": "us-001", "start": 16, "end": 16}, ] , ) SCREAMING_SNAKE_CASE = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ [ {"score": 0.9_944, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_009, "answer": "us-001", "start": 16, "end": 16}, ], ] * 2 , ) @slow @require_torch @require_detectrona @require_pytesseract def _snake_case ( self : str ): SCREAMING_SNAKE_CASE = pipeline( "document-question-answering" , model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa" , revision="9977165" , max_seq_len=50 , ) SCREAMING_SNAKE_CASE = INVOICE_URL SCREAMING_SNAKE_CASE = "What is the invoice number?" SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ {"score": 0.9_974, "answer": "1110212019", "start": 23, "end": 23}, {"score": 0.9_948, "answer": "us-001", "start": 16, "end": 16}, ] , ) SCREAMING_SNAKE_CASE = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ {"score": 0.9_974, "answer": "1110212019", "start": 23, "end": 23}, {"score": 0.9_948, "answer": "us-001", "start": 16, "end": 16}, ] , ) SCREAMING_SNAKE_CASE = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ [ {"score": 0.9_974, "answer": "1110212019", "start": 23, "end": 23}, {"score": 0.9_948, "answer": "us-001", "start": 16, "end": 16}, ] ] * 2 , ) @slow @require_torch @require_pytesseract @require_vision def _snake_case ( self : str ): SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained( "impira/layoutlm-document-qa" , revision="3dc6de3" , add_prefix_space=__lowerCamelCase ) SCREAMING_SNAKE_CASE = pipeline( "document-question-answering" , model="impira/layoutlm-document-qa" , tokenizer=__lowerCamelCase , revision="3dc6de3" , ) SCREAMING_SNAKE_CASE = INVOICE_URL SCREAMING_SNAKE_CASE = "What is the invoice number?" SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ {"score": 0.4_251, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_819, "answer": "1110212019", "start": 23, "end": 23}, ] , ) SCREAMING_SNAKE_CASE = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ {"score": 0.4_251, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_819, "answer": "1110212019", "start": 23, "end": 23}, ] , ) SCREAMING_SNAKE_CASE = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ [ {"score": 0.4_251, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_819, "answer": "1110212019", "start": 23, "end": 23}, ] ] * 2 , ) SCREAMING_SNAKE_CASE = list(zip(*apply_tesseract(load_image(__lowerCamelCase ) , __lowerCamelCase , "" ) ) ) # This model should also work if `image` is set to None SCREAMING_SNAKE_CASE = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ {"score": 0.4_251, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_819, "answer": "1110212019", "start": 23, "end": 23}, ] , ) @slow @require_torch @require_pytesseract @require_vision def _snake_case ( self : Dict ): SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained( "impira/layoutlm-document-qa" , revision="3dc6de3" , add_prefix_space=__lowerCamelCase ) SCREAMING_SNAKE_CASE = pipeline( "document-question-answering" , model="impira/layoutlm-document-qa" , tokenizer=__lowerCamelCase , revision="3dc6de3" , max_seq_len=50 , ) SCREAMING_SNAKE_CASE = INVOICE_URL SCREAMING_SNAKE_CASE = "What is the invoice number?" SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ {"score": 0.9_999, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.9_998, "answer": "us-001", "start": 16, "end": 16}, ] , ) SCREAMING_SNAKE_CASE = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ [ {"score": 0.9_999, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.9_998, "answer": "us-001", "start": 16, "end": 16}, ] ] * 2 , ) SCREAMING_SNAKE_CASE = list(zip(*apply_tesseract(load_image(__lowerCamelCase ) , __lowerCamelCase , "" ) ) ) # This model should also work if `image` is set to None SCREAMING_SNAKE_CASE = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ {"score": 0.9_999, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.9_998, "answer": "us-001", "start": 16, "end": 16}, ] , ) @slow @require_torch def _snake_case ( self : List[str] ): SCREAMING_SNAKE_CASE = pipeline( "document-question-answering" , model="naver-clova-ix/donut-base-finetuned-docvqa" , tokenizer=AutoTokenizer.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa" ) , feature_extractor="naver-clova-ix/donut-base-finetuned-docvqa" , ) SCREAMING_SNAKE_CASE = INVOICE_URL SCREAMING_SNAKE_CASE = "What is the invoice number?" SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 ) self.assertEqual(nested_simplify(__lowerCamelCase , decimals=4 ) , [{"answer": "us-001"}] ) @require_tf @unittest.skip("Document question answering not implemented in TF" ) def _snake_case ( self : List[Any] ): pass
698
1
import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class lowerCAmelCase_ : def __init__( self , _lowerCAmelCase , _lowerCAmelCase=2 , _lowerCAmelCase=3 , _lowerCAmelCase=4 , _lowerCAmelCase=2 , _lowerCAmelCase=7 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=9_9 , _lowerCAmelCase=3_6 , _lowerCAmelCase=3 , _lowerCAmelCase=4 , _lowerCAmelCase=3_7 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=5_1_2 , _lowerCAmelCase=1_6 , _lowerCAmelCase=2 , _lowerCAmelCase=0.02 , _lowerCAmelCase=6 , _lowerCAmelCase=6 , _lowerCAmelCase=3 , _lowerCAmelCase=4 , _lowerCAmelCase=None , _lowerCAmelCase=1_0_0_0 , ): _lowercase : Optional[Any] = parent _lowercase : Optional[int] = batch_size _lowercase : List[str] = num_channels _lowercase : Tuple = image_size _lowercase : str = patch_size _lowercase : Union[str, Any] = text_seq_length _lowercase : List[str] = is_training _lowercase : Optional[int] = use_input_mask _lowercase : Dict = use_token_type_ids _lowercase : Any = use_labels _lowercase : Optional[int] = vocab_size _lowercase : int = hidden_size _lowercase : Dict = num_hidden_layers _lowercase : Optional[Any] = num_attention_heads _lowercase : List[Any] = intermediate_size _lowercase : Optional[int] = hidden_act _lowercase : Dict = hidden_dropout_prob _lowercase : List[str] = attention_probs_dropout_prob _lowercase : Union[str, Any] = max_position_embeddings _lowercase : Optional[Any] = type_vocab_size _lowercase : List[str] = type_sequence_label_size _lowercase : Union[str, Any] = initializer_range _lowercase : Optional[Any] = coordinate_size _lowercase : Tuple = shape_size _lowercase : Any = num_labels _lowercase : List[str] = num_choices _lowercase : Optional[Any] = scope _lowercase : str = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) _lowercase : Optional[Any] = text_seq_length _lowercase : Dict = (image_size // patch_size) ** 2 + 1 _lowercase : Union[str, Any] = self.text_seq_length + self.image_seq_length def __a ( self ): _lowercase : str = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) _lowercase : Dict = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: _lowercase : Optional[int] = bbox[i, j, 3] _lowercase : Optional[int] = bbox[i, j, 1] _lowercase : str = t if bbox[i, j, 2] < bbox[i, j, 0]: _lowercase : Dict = bbox[i, j, 2] _lowercase : Any = bbox[i, j, 0] _lowercase : int = t _lowercase : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowercase : int = None if self.use_input_mask: _lowercase : Union[str, Any] = random_attention_mask([self.batch_size, self.text_seq_length] ) _lowercase : int = None if self.use_token_type_ids: _lowercase : List[str] = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) _lowercase : List[Any] = None _lowercase : Union[str, Any] = None if self.use_labels: _lowercase : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowercase : Dict = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) _lowercase : List[Any] = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Optional[int] = LayoutLMvaModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() # text + image _lowercase : str = model(_lowerCAmelCase , pixel_values=_lowerCAmelCase ) _lowercase : Optional[Any] = model( _lowerCAmelCase , bbox=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) _lowercase : List[Any] = model(_lowerCAmelCase , bbox=_lowerCAmelCase , pixel_values=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) _lowercase : List[str] = model(_lowerCAmelCase , bbox=_lowerCAmelCase , pixel_values=_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only _lowercase : List[str] = model(_lowerCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only _lowercase : str = model(pixel_values=_lowerCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Any = self.num_labels _lowercase : str = LayoutLMvaForSequenceClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowercase : Any = model( _lowerCAmelCase , bbox=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : List[Any] = self.num_labels _lowercase : Optional[Any] = LayoutLMvaForTokenClassification(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowercase : Tuple = model( _lowerCAmelCase , bbox=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : str = LayoutLMvaForQuestionAnswering(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowercase : Union[str, Any] = model( _lowerCAmelCase , bbox=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , start_positions=_lowerCAmelCase , end_positions=_lowerCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __a ( self ): _lowercase : List[Any] = self.prepare_config_and_inputs() ( ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ) : Union[str, Any] = config_and_inputs _lowercase : Dict = { 'input_ids': input_ids, 'bbox': bbox, 'pixel_values': pixel_values, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_torch class lowerCAmelCase_ ( __snake_case , __snake_case , unittest.TestCase ): _UpperCamelCase : List[Any] = False _UpperCamelCase : str = False _UpperCamelCase : Any = False _UpperCamelCase : Dict = ( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) _UpperCamelCase : Any = ( {"document-question-answering": LayoutLMvaForQuestionAnswering, "feature-extraction": LayoutLMvaModel} if is_torch_available() else {} ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): # `DocumentQuestionAnsweringPipeline` is expected to work with this model, but it combines the text and visual # embedding along the sequence dimension (dim 1), which causes an error during post-processing as `p_mask` has # the sequence dimension of the text embedding only. # (see the line `embedding_output = torch.cat([embedding_output, visual_embeddings], dim=1)`) return True def __a ( self ): _lowercase : List[Any] = LayoutLMvaModelTester(self ) _lowercase : Optional[int] = ConfigTester(self , config_class=_lowerCAmelCase , hidden_size=3_7 ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=False ): _lowercase : Optional[int] = copy.deepcopy(_lowerCAmelCase ) if model_class in get_values(_lowerCAmelCase ): _lowercase : Tuple = { k: v.unsqueeze(1 ).expand(-1 , self.model_tester.num_choices , -1 ).contiguous() if isinstance(_lowerCAmelCase , torch.Tensor ) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(_lowerCAmelCase ): _lowercase : Tuple = torch.ones(self.model_tester.batch_size , dtype=torch.long , device=_lowerCAmelCase ) elif model_class in get_values(_lowerCAmelCase ): _lowercase : str = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_lowerCAmelCase ) _lowercase : Any = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_lowerCAmelCase ) elif model_class in [ *get_values(_lowerCAmelCase ), ]: _lowercase : Any = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_lowerCAmelCase ) elif model_class in [ *get_values(_lowerCAmelCase ), ]: _lowercase : List[Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=torch.long , device=_lowerCAmelCase , ) return inputs_dict def __a ( self ): self.config_tester.run_common_tests() def __a ( self ): _lowercase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def __a ( self ): _lowercase : Tuple = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _lowercase : Union[str, Any] = type self.model_tester.create_and_check_model(*_lowerCAmelCase ) def __a ( self ): _lowercase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_lowerCAmelCase ) def __a ( self ): _lowercase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_lowerCAmelCase ) def __a ( self ): _lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_lowerCAmelCase ) @slow def __a ( self ): for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowercase : Tuple = LayoutLMvaModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) def __magic_name__ ( ) -> Any: _lowercase : Any = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch class lowerCAmelCase_ ( unittest.TestCase ): @cached_property def __a ( self ): return LayoutLMvaImageProcessor(apply_ocr=_lowerCAmelCase ) if is_vision_available() else None @slow def __a ( self ): _lowercase : Tuple = LayoutLMvaModel.from_pretrained('microsoft/layoutlmv3-base' ).to(_lowerCAmelCase ) _lowercase : List[Any] = self.default_image_processor _lowercase : List[str] = prepare_img() _lowercase : Union[str, Any] = image_processor(images=_lowerCAmelCase , return_tensors='pt' ).pixel_values.to(_lowerCAmelCase ) _lowercase : Tuple = torch.tensor([[1, 2]] ) _lowercase : Any = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 ) # forward pass _lowercase : int = model( input_ids=input_ids.to(_lowerCAmelCase ) , bbox=bbox.to(_lowerCAmelCase ) , pixel_values=pixel_values.to(_lowerCAmelCase ) , ) # verify the logits _lowercase : Union[str, Any] = torch.Size((1, 1_9_9, 7_6_8) ) self.assertEqual(outputs.last_hidden_state.shape , _lowerCAmelCase ) _lowercase : int = torch.tensor( [[-0.05_29, 0.36_18, 0.16_32], [-0.15_87, -0.16_67, -0.04_00], [-0.15_57, -0.16_71, -0.05_05]] ).to(_lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , _lowerCAmelCase , atol=1E-4 ) )
66
'''simple docstring''' def _a ( __lowerCAmelCase : int , __lowerCAmelCase : int ): """simple docstring""" return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
347
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __snake_case = { '''configuration_llama''': ['''LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LlamaConfig'''], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ['''LlamaTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ['''LlamaTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''LlamaForCausalLM''', '''LlamaModel''', '''LlamaPreTrainedModel''', '''LlamaForSequenceClassification''', ] if TYPE_CHECKING: from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama import LlamaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama_fast import LlamaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
717
"""simple docstring""" def A_ ( _lowerCAmelCase : Dict=2_81_23 ): """simple docstring""" _a = [1] * (limit + 1) for i in range(2, int(limit**0.5 ) + 1 ): sum_divs[i * i] += i for k in range(i + 1, limit // i + 1 ): sum_divs[k * i] += k + i _a = set() _a = 0 for n in range(1, limit + 1 ): if sum_divs[n] > n: abundants.add(_lowerCAmelCase ) if not any((n - a in abundants) for a in abundants ): res += n return res if __name__ == "__main__": print(solution())
285
0
import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm snake_case = re.compile("""[^A-Za-z_0-9]""") # parameters used in DuplicationIndex snake_case = 10 snake_case = 256 def lowerCamelCase__ ( lowercase ): """simple docstring""" if len(lowercase ) < MIN_NUM_TOKENS: return None SCREAMING_SNAKE_CASE : int = MinHash(num_perm=lowercase ) for token in set(lowercase ): min_hash.update(token.encode() ) return min_hash def lowerCamelCase__ ( lowercase ): """simple docstring""" return {t for t in NON_ALPHA.split(lowercase ) if len(t.strip() ) > 0} class SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Optional[Any] , *, UpperCAmelCase_ : float = 0.85 , ): SCREAMING_SNAKE_CASE : Tuple = duplication_jaccard_threshold SCREAMING_SNAKE_CASE : Dict = NUM_PERM SCREAMING_SNAKE_CASE : Optional[int] = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) SCREAMING_SNAKE_CASE : Optional[Any] = defaultdict(UpperCAmelCase_ ) def _A ( self : Union[str, Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : MinHash ): SCREAMING_SNAKE_CASE : Optional[Any] = self._index.query(UpperCAmelCase_ ) if code_key in self._index.keys: print(f'''Duplicate key {code_key}''' ) return self._index.insert(UpperCAmelCase_ , UpperCAmelCase_ ) if len(UpperCAmelCase_ ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(UpperCAmelCase_ ) break else: self._duplicate_clusters[close_duplicates[0]].add(UpperCAmelCase_ ) def _A ( self : Dict ): SCREAMING_SNAKE_CASE : Any = [] for base, duplicates in self._duplicate_clusters.items(): SCREAMING_SNAKE_CASE : Dict = [base] + list(UpperCAmelCase_ ) # reformat the cluster to be a list of dict SCREAMING_SNAKE_CASE : Optional[Any] = [{"base_index": el[0], "repo_name": el[1], "path": el[2]} for el in cluster] duplicate_clusters.append(UpperCAmelCase_ ) return duplicate_clusters def _A ( self : int , UpperCAmelCase_ : Any ): SCREAMING_SNAKE_CASE : Tuple = self.get_duplicate_clusters() with open(UpperCAmelCase_ , "w" ) as f: json.dump(UpperCAmelCase_ , UpperCAmelCase_ ) def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = element SCREAMING_SNAKE_CASE : str = get_min_hash([t for t in NON_ALPHA.split(data["content"] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def lowerCamelCase__ ( lowercase ): """simple docstring""" with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(lowercase , max_queue_size=10000 ) , chunksize=100 , ): if data is not None: yield data def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = DuplicationIndex(duplication_jaccard_threshold=lowercase ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(lowercase ) ) , max_queue_size=100 ) ): di.add(lowercase , lowercase ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = get_tokens(lowercase ) SCREAMING_SNAKE_CASE : int = get_tokens(lowercase ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) snake_case = None def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : str = [] for elementa in cluster: SCREAMING_SNAKE_CASE : str = _shared_dataset[elementa["base_index"]]["content"] for elementa in extremes: SCREAMING_SNAKE_CASE : Optional[int] = _shared_dataset[elementa["base_index"]]["content"] if jaccard_similarity(lowercase , lowercase ) >= jaccard_threshold: elementa["copies"] += 1 break else: SCREAMING_SNAKE_CASE : Any = 1 extremes.append(lowercase ) return extremes def lowerCamelCase__ ( lowercase , lowercase , lowercase ): """simple docstring""" global _shared_dataset SCREAMING_SNAKE_CASE : Optional[int] = dataset SCREAMING_SNAKE_CASE : Tuple = [] SCREAMING_SNAKE_CASE : Any = partial(_find_cluster_extremes_shared , jaccard_threshold=lowercase ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( lowercase , lowercase , ) , total=len(lowercase ) , ): extremes_list.append(lowercase ) return extremes_list def lowerCamelCase__ ( lowercase , lowercase = 0.85 ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = make_duplicate_clusters(lowercase , lowercase ) SCREAMING_SNAKE_CASE : List[Any] = {x["base_index"] for cluster in duplicate_clusters for x in cluster} SCREAMING_SNAKE_CASE : Dict = {} SCREAMING_SNAKE_CASE : int = find_extremes(lowercase , lowercase , lowercase ) for extremes in extremes_clusters: for element in extremes: SCREAMING_SNAKE_CASE : Any = element SCREAMING_SNAKE_CASE : str = duplicate_indices - set(extreme_dict.keys() ) SCREAMING_SNAKE_CASE : Tuple = dataset.filter(lambda lowercase , lowercase : idx not in remove_indices , with_indices=lowercase ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: SCREAMING_SNAKE_CASE : List[str] = element["base_index"] in extreme_dict if element["is_extreme"]: SCREAMING_SNAKE_CASE : Tuple = extreme_dict[element["base_index"]]["copies"] print(F'''Original dataset size: {len(lowercase )}''' ) print(F'''Number of duplicate clusters: {len(lowercase )}''' ) print(F'''Files in duplicate cluster: {len(lowercase )}''' ) print(F'''Unique files in duplicate cluster: {len(lowercase )}''' ) print(F'''Filtered dataset size: {len(lowercase )}''' ) return ds_filter, duplicate_clusters
62
import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging snake_case : Optional[Any] = logging.get_logger(__name__) snake_case : Any = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt'''} # See all LED models at https://huggingface.co/models?filter=LED snake_case : Tuple = { '''vocab_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json''', }, '''merges_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json''', }, } snake_case : Tuple = { '''allenai/led-base-16384''': 1_63_84, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def __lowercase ( ): a__ = ( list(range(ord('!' ) , ord('~' ) + 1 ) ) + list(range(ord('¡' ) , ord('¬' ) + 1 ) ) + list(range(ord('®' ) , ord('ÿ' ) + 1 ) ) ) a__ = bs[:] a__ = 0 for b in range(2**8 ): if b not in bs: bs.append(__lowerCAmelCase ) cs.append(2**8 + n ) n += 1 a__ = [chr(__lowerCAmelCase ) for n in cs] return dict(zip(__lowerCAmelCase , __lowerCAmelCase ) ) def __lowercase ( __lowerCAmelCase : List[Any] ): a__ = set() a__ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) a__ = char return pairs class snake_case_ (lowerCamelCase_ ): UpperCAmelCase__ : Dict = VOCAB_FILES_NAMES UpperCAmelCase__ : Dict = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ : Any = ['''input_ids''', '''attention_mask'''] def __init__( self :Dict ,__snake_case :List[Any] ,__snake_case :Optional[Any] ,__snake_case :Tuple="replace" ,__snake_case :Tuple="<s>" ,__snake_case :Tuple="</s>" ,__snake_case :Dict="</s>" ,__snake_case :Any="<s>" ,__snake_case :List[str]="<unk>" ,__snake_case :Tuple="<pad>" ,__snake_case :Dict="<mask>" ,__snake_case :Dict=False ,**__snake_case :Union[str, Any] ,) -> Optional[Any]: a__ = AddedToken(__snake_case ,lstrip=__snake_case ,rstrip=__snake_case ) if isinstance(__snake_case ,__snake_case ) else bos_token a__ = AddedToken(__snake_case ,lstrip=__snake_case ,rstrip=__snake_case ) if isinstance(__snake_case ,__snake_case ) else eos_token a__ = AddedToken(__snake_case ,lstrip=__snake_case ,rstrip=__snake_case ) if isinstance(__snake_case ,__snake_case ) else sep_token a__ = AddedToken(__snake_case ,lstrip=__snake_case ,rstrip=__snake_case ) if isinstance(__snake_case ,__snake_case ) else cls_token a__ = AddedToken(__snake_case ,lstrip=__snake_case ,rstrip=__snake_case ) if isinstance(__snake_case ,__snake_case ) else unk_token a__ = AddedToken(__snake_case ,lstrip=__snake_case ,rstrip=__snake_case ) if isinstance(__snake_case ,__snake_case ) else pad_token # Mask token behave like a normal word, i.e. include the space before it a__ = AddedToken(__snake_case ,lstrip=__snake_case ,rstrip=__snake_case ) if isinstance(__snake_case ,__snake_case ) else mask_token super().__init__( errors=__snake_case ,bos_token=__snake_case ,eos_token=__snake_case ,unk_token=__snake_case ,sep_token=__snake_case ,cls_token=__snake_case ,pad_token=__snake_case ,mask_token=__snake_case ,add_prefix_space=__snake_case ,**__snake_case ,) with open(__snake_case ,encoding='utf-8' ) as vocab_handle: a__ = json.load(__snake_case ) a__ = {v: k for k, v in self.encoder.items()} a__ = errors # how to handle errors in decoding a__ = bytes_to_unicode() a__ = {v: k for k, v in self.byte_encoder.items()} with open(__snake_case ,encoding='utf-8' ) as merges_handle: a__ = merges_handle.read().split('\n' )[1:-1] a__ = [tuple(merge.split() ) for merge in bpe_merges] a__ = dict(zip(__snake_case ,range(len(__snake_case ) ) ) ) a__ = {} a__ = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions a__ = re.compile(R'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+' ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def lowerCamelCase__( self :Union[str, Any] ) -> List[Any]: return len(self.encoder ) def lowerCamelCase__( self :List[Any] ) -> str: return dict(self.encoder ,**self.added_tokens_encoder ) def lowerCamelCase__( self :List[str] ,__snake_case :int ) -> List[Any]: if token in self.cache: return self.cache[token] a__ = tuple(__snake_case ) a__ = get_pairs(__snake_case ) if not pairs: return token while True: a__ = min(__snake_case ,key=lambda __snake_case : self.bpe_ranks.get(__snake_case ,float('inf' ) ) ) if bigram not in self.bpe_ranks: break a__ , a__ = bigram a__ = [] a__ = 0 while i < len(__snake_case ): try: a__ = word.index(__snake_case ,__snake_case ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) a__ = j if word[i] == first and i < len(__snake_case ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 a__ = tuple(__snake_case ) a__ = new_word if len(__snake_case ) == 1: break else: a__ = get_pairs(__snake_case ) a__ = ' '.join(__snake_case ) a__ = word return word def lowerCamelCase__( self :List[Any] ,__snake_case :Tuple ) -> Any: a__ = [] for token in re.findall(self.pat ,__snake_case ): a__ = ''.join( self.byte_encoder[b] for b in token.encode('utf-8' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__snake_case ).split(' ' ) ) return bpe_tokens def lowerCamelCase__( self :Union[str, Any] ,__snake_case :Tuple ) -> Tuple: return self.encoder.get(__snake_case ,self.encoder.get(self.unk_token ) ) def lowerCamelCase__( self :str ,__snake_case :str ) -> Tuple: return self.decoder.get(__snake_case ) def lowerCamelCase__( self :int ,__snake_case :Optional[int] ) -> Any: a__ = ''.join(__snake_case ) a__ = bytearray([self.byte_decoder[c] for c in text] ).decode('utf-8' ,errors=self.errors ) return text def lowerCamelCase__( self :Union[str, Any] ,__snake_case :str ,__snake_case :Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__snake_case ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return a__ = os.path.join( __snake_case ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) a__ = os.path.join( __snake_case ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(__snake_case ,'w' ,encoding='utf-8' ) as f: f.write(json.dumps(self.encoder ,indent=2 ,sort_keys=__snake_case ,ensure_ascii=__snake_case ) + '\n' ) a__ = 0 with open(__snake_case ,'w' ,encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() ,key=lambda __snake_case : kv[1] ): if index != token_index: logger.warning( F'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' ' Please check that the tokenizer is not corrupted!' ) a__ = token_index writer.write(' '.join(__snake_case ) + '\n' ) index += 1 return vocab_file, merge_file def lowerCamelCase__( self :Union[str, Any] ,__snake_case :List[int] ,__snake_case :Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] a__ = [self.cls_token_id] a__ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCamelCase__( self :Tuple ,__snake_case :List[int] ,__snake_case :Optional[List[int]] = None ,__snake_case :bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__snake_case ,token_ids_a=__snake_case ,already_has_special_tokens=__snake_case ) if token_ids_a is None: return [1] + ([0] * len(__snake_case )) + [1] return [1] + ([0] * len(__snake_case )) + [1, 1] + ([0] * len(__snake_case )) + [1] def lowerCamelCase__( self :int ,__snake_case :List[int] ,__snake_case :Optional[List[int]] = None ) -> List[int]: a__ = [self.sep_token_id] a__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCamelCase__( self :List[Any] ,__snake_case :List[str] ,__snake_case :Dict=False ,**__snake_case :Optional[Any] ) -> Tuple: a__ = kwargs.pop('add_prefix_space' ,self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(__snake_case ) > 0 and not text[0].isspace()): a__ = ' ' + text return (text, kwargs) def lowerCamelCase__( self :Optional[Any] ,__snake_case :Union[Dict[str, EncodedInput], BatchEncoding] ,__snake_case :Optional[int] = None ,__snake_case :PaddingStrategy = PaddingStrategy.DO_NOT_PAD ,__snake_case :Optional[int] = None ,__snake_case :Optional[bool] = None ,) -> dict: a__ = super()._pad( encoded_inputs=__snake_case ,max_length=__snake_case ,padding_strategy=__snake_case ,pad_to_multiple_of=__snake_case ,return_attention_mask=__snake_case ,) # Load from model defaults if return_attention_mask is None: a__ = 'attention_mask' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: a__ = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. a__ = len(encoded_inputs['global_attention_mask'] ) != len(__snake_case ) if needs_to_be_padded: a__ = len(__snake_case ) - len(encoded_inputs['global_attention_mask'] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` a__ = ( encoded_inputs['global_attention_mask'] + [-1] * difference ) elif self.padding_side == "left": a__ = [-1] * difference + encoded_inputs[ 'global_attention_mask' ] else: raise ValueError('Invalid padding strategy:' + str(self.padding_side ) ) return encoded_inputs
335
0
'''simple docstring''' from collections import defaultdict from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst def SCREAMING_SNAKE_CASE ( ): __a , __a = 9, 14 # noqa: F841 __a = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] __a = defaultdict(a_ ) for nodea, nodea, cost in edges: adjancency[nodea].append([nodea, cost] ) adjancency[nodea].append([nodea, cost] ) __a = mst(a_ ) __a = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] for answer in expected: __a = tuple(answer[:2] ) __a = tuple(edge[::-1] ) assert edge in result or reverse in result
718
'''simple docstring''' import os from datetime import datetime as dt from github import Github UpperCAmelCase_ = [ "good first issue", "good second issue", "good difficult issue", "enhancement", "new pipeline/model", "new scheduler", "wip", ] def SCREAMING_SNAKE_CASE ( ): __a = Github(os.environ['GITHUB_TOKEN'] ) __a = g.get_repo('huggingface/diffusers' ) __a = repo.get_issues(state='open' ) for issue in open_issues: __a = sorted(issue.get_comments() , key=lambda a_ : i.created_at , reverse=a_ ) __a = comments[0] if len(a_ ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state='closed' ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state='open' ) issue.remove_from_labels('stale' ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( 'This issue has been automatically marked as stale because it has not had ' 'recent activity. If you think this still needs to be addressed ' 'please comment on this thread.\n\nPlease note that issues that do not follow the ' '[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) ' 'are likely to be ignored.' ) issue.add_to_labels('stale' ) if __name__ == "__main__": main()
490
0
"""simple docstring""" import os import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers.models.realm.configuration_realm import RealmConfig from transformers.models.realm.retrieval_realm import _REALM_BLOCK_RECORDS_FILENAME, RealmRetriever from transformers.models.realm.tokenization_realm import VOCAB_FILES_NAMES, RealmTokenizer class lowercase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" def _a ( self ): '''simple docstring''' UpperCamelCase : Union[str, Any] = tempfile.mkdtemp() UpperCamelCase : str = 5 # Realm tok UpperCamelCase : Dict = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """test""", """question""", """this""", """is""", """the""", """first""", """second""", """third""", """fourth""", """fifth""", """record""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] UpperCamelCase : str = os.path.join(self.tmpdirname , """realm_tokenizer""" ) os.makedirs(_A , exist_ok=_A ) UpperCamelCase : Optional[Any] = os.path.join(_A , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) UpperCamelCase : int = os.path.join(self.tmpdirname , """realm_block_records""" ) os.makedirs(_A , exist_ok=_A ) def _a ( self ): '''simple docstring''' return RealmTokenizer.from_pretrained(os.path.join(self.tmpdirname , """realm_tokenizer""" ) ) def _a ( self ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def _a ( self ): '''simple docstring''' UpperCamelCase : Dict = RealmConfig(num_block_records=self.num_block_records ) return config def _a ( self ): '''simple docstring''' UpperCamelCase : List[str] = Dataset.from_dict( { """id""": ["""0""", """1"""], """question""": ["""foo""", """bar"""], """answers""": [["""Foo""", """Bar"""], ["""Bar"""]], } ) return dataset def _a ( self ): '''simple docstring''' UpperCamelCase : Tuple = np.array( [ b"""This is the first record""", b"""This is the second record""", b"""This is the third record""", b"""This is the fourth record""", b"""This is the fifth record""", b"""This is a longer longer longer record""", ] , dtype=_A , ) return block_records def _a ( self ): '''simple docstring''' UpperCamelCase : List[str] = RealmRetriever( block_records=self.get_dummy_block_records() , tokenizer=self.get_tokenizer() , ) return retriever def _a ( self ): '''simple docstring''' UpperCamelCase : int = self.get_config() UpperCamelCase : Optional[int] = self.get_dummy_retriever() UpperCamelCase : Any = retriever.tokenizer UpperCamelCase : Any = np.array([0, 3] , dtype="""long""" ) UpperCamelCase : Optional[Any] = tokenizer(["""Test question"""] ).input_ids UpperCamelCase : Tuple = tokenizer( ["""the fourth"""] , add_special_tokens=_A , return_token_type_ids=_A , return_attention_mask=_A , ).input_ids UpperCamelCase : str = config.reader_seq_len UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase : Any = retriever( _A , _A , answer_ids=_A , max_length=_A , return_tensors="""np""" ) self.assertEqual(len(_A ) , 2 ) self.assertEqual(len(_A ) , 2 ) self.assertEqual(len(_A ) , 2 ) self.assertEqual(concat_inputs.input_ids.shape , (2, 1_0) ) self.assertEqual(concat_inputs.attention_mask.shape , (2, 1_0) ) self.assertEqual(concat_inputs.token_type_ids.shape , (2, 1_0) ) self.assertEqual(concat_inputs.special_tokens_mask.shape , (2, 1_0) ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[0] ) , ["""[CLS]""", """test""", """question""", """[SEP]""", """this""", """is""", """the""", """first""", """record""", """[SEP]"""] , ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[1] ) , ["""[CLS]""", """test""", """question""", """[SEP]""", """this""", """is""", """the""", """fourth""", """record""", """[SEP]"""] , ) def _a ( self ): '''simple docstring''' UpperCamelCase : Union[str, Any] = self.get_config() UpperCamelCase : List[str] = self.get_dummy_retriever() UpperCamelCase : List[Any] = retriever.tokenizer UpperCamelCase : Optional[int] = np.array([0, 3, 5] , dtype="""long""" ) UpperCamelCase : Any = tokenizer(["""Test question"""] ).input_ids UpperCamelCase : str = tokenizer( ["""the fourth""", """longer longer"""] , add_special_tokens=_A , return_token_type_ids=_A , return_attention_mask=_A , ).input_ids UpperCamelCase : Dict = config.reader_seq_len UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase : Optional[int] = retriever( _A , _A , answer_ids=_A , max_length=_A , return_tensors="""np""" ) self.assertEqual([False, True, True] , _A ) self.assertEqual([[-1, -1, -1], [6, -1, -1], [6, 7, 8]] , _A ) self.assertEqual([[-1, -1, -1], [7, -1, -1], [7, 8, 9]] , _A ) def _a ( self ): '''simple docstring''' UpperCamelCase : Optional[Any] = self.get_dummy_retriever() retriever.save_pretrained(os.path.join(self.tmpdirname , """realm_block_records""" ) ) # Test local path UpperCamelCase : Optional[int] = retriever.from_pretrained(os.path.join(self.tmpdirname , """realm_block_records""" ) ) self.assertEqual(retriever.block_records[0] , b"""This is the first record""" ) # Test mocked remote path with patch("""transformers.models.realm.retrieval_realm.hf_hub_download""" ) as mock_hf_hub_download: UpperCamelCase : Optional[Any] = os.path.join( os.path.join(self.tmpdirname , """realm_block_records""" ) , _REALM_BLOCK_RECORDS_FILENAME ) UpperCamelCase : str = RealmRetriever.from_pretrained("""google/realm-cc-news-pretrained-openqa""" ) self.assertEqual(retriever.block_records[0] , b"""This is the first record""" )
102
"""simple docstring""" import time from contextlib import contextmanager from pathlib import Path import pytest import requests from huggingface_hub.hf_api import HfApi, HfFolder A : Tuple = '__DUMMY_TRANSFORMERS_USER__' A : List[str] = 'Dummy User' A : Dict = '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' A : Dict = 'https://hub-ci.huggingface.co' A : Optional[Any] = CI_HUB_ENDPOINT + '/datasets/{repo_id}/resolve/{revision}/{path}' A : Dict = CI_HUB_ENDPOINT + '/{repo_id}/resolve/{revision}/{filename}' A : str = Path('~/.huggingface/hub_ci_token').expanduser() @pytest.fixture def snake_case__ ( _snake_case : Union[str, Any] ): """simple docstring""" monkeypatch.setattr( "huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE" , _snake_case ) @pytest.fixture def snake_case__ ( _snake_case : int ): """simple docstring""" monkeypatch.setattr("datasets.config.HF_ENDPOINT" , _snake_case ) monkeypatch.setattr("datasets.config.HUB_DATASETS_URL" , _snake_case ) @pytest.fixture def snake_case__ ( _snake_case : Union[str, Any] ): """simple docstring""" monkeypatch.setattr("huggingface_hub.hf_api.HfFolder.path_token" , _snake_case ) @pytest.fixture def snake_case__ ( _snake_case : Union[str, Any] , _snake_case : Optional[int] ): """simple docstring""" HfFolder.save_token(_snake_case ) yield HfFolder.delete_token() @pytest.fixture(scope="session" ) def snake_case__ ( ): """simple docstring""" return HfApi(endpoint=_snake_case ) @pytest.fixture(scope="session" ) def snake_case__ ( _snake_case : HfApi ): """simple docstring""" UpperCamelCase__ = HfFolder.get_token() HfFolder.save_token(_snake_case ) yield CI_HUB_USER_TOKEN if previous_token is not None: HfFolder.save_token(_snake_case ) @pytest.fixture def snake_case__ ( _snake_case : Any ): """simple docstring""" def _cleanup_repo(_snake_case : Dict ): hf_api.delete_repo(_snake_case , token=_snake_case , repo_type="dataset" ) return _cleanup_repo @pytest.fixture def snake_case__ ( _snake_case : int ): """simple docstring""" @contextmanager def _temporary_repo(_snake_case : List[str] ): try: yield repo_id finally: cleanup_repo(_snake_case ) return _temporary_repo @pytest.fixture(scope="session" ) def snake_case__ ( _snake_case : HfApi , _snake_case : Tuple , _snake_case : Any ): """simple docstring""" UpperCamelCase__ = F'repo_txt_data-{int(time.time() * 10E3 )}' UpperCamelCase__ = F'{CI_HUB_USER}/{repo_name}' hf_api.create_repo(_snake_case , token=_snake_case , repo_type="dataset" , private=_snake_case ) hf_api.upload_file( token=_snake_case , path_or_fileobj=str(_snake_case ) , path_in_repo="data/text_data.txt" , repo_id=_snake_case , repo_type="dataset" , ) yield repo_id try: hf_api.delete_repo(_snake_case , token=_snake_case , repo_type="dataset" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def snake_case__ ( _snake_case : int , _snake_case : Any , _snake_case : str ): """simple docstring""" return hf_private_dataset_repo_txt_data_ @pytest.fixture(scope="session" ) def snake_case__ ( _snake_case : HfApi , _snake_case : Optional[int] , _snake_case : List[Any] ): """simple docstring""" UpperCamelCase__ = F'repo_zipped_txt_data-{int(time.time() * 10E3 )}' UpperCamelCase__ = F'{CI_HUB_USER}/{repo_name}' hf_api.create_repo(_snake_case , token=_snake_case , repo_type="dataset" , private=_snake_case ) hf_api.upload_file( token=_snake_case , path_or_fileobj=str(_snake_case ) , path_in_repo="data.zip" , repo_id=_snake_case , repo_type="dataset" , ) yield repo_id try: hf_api.delete_repo(_snake_case , token=_snake_case , repo_type="dataset" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def snake_case__ ( _snake_case : Optional[int] , _snake_case : List[str] , _snake_case : List[str] ): """simple docstring""" return hf_private_dataset_repo_zipped_txt_data_ @pytest.fixture(scope="session" ) def snake_case__ ( _snake_case : HfApi , _snake_case : Optional[Any] , _snake_case : Optional[Any] ): """simple docstring""" UpperCamelCase__ = F'repo_zipped_img_data-{int(time.time() * 10E3 )}' UpperCamelCase__ = F'{CI_HUB_USER}/{repo_name}' hf_api.create_repo(_snake_case , token=_snake_case , repo_type="dataset" , private=_snake_case ) hf_api.upload_file( token=_snake_case , path_or_fileobj=str(_snake_case ) , path_in_repo="data.zip" , repo_id=_snake_case , repo_type="dataset" , ) yield repo_id try: hf_api.delete_repo(_snake_case , token=_snake_case , repo_type="dataset" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def snake_case__ ( _snake_case : str , _snake_case : str , _snake_case : Union[str, Any] ): """simple docstring""" return hf_private_dataset_repo_zipped_img_data_
516
0
'''simple docstring''' import torch from torch import nn class a_ ( nn.Module ): def __init__( self : List[Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : List[str] , __lowerCAmelCase : Any , __lowerCAmelCase : Optional[Any]=1 , __lowerCAmelCase : str=False ): super().__init__() __snake_case = n_token __snake_case = d_embed __snake_case = d_proj __snake_case = cutoffs + [n_token] __snake_case = [0] + self.cutoffs __snake_case = div_val __snake_case = self.cutoffs[0] __snake_case = len(self.cutoffs ) - 1 __snake_case = self.shortlist_size + self.n_clusters if self.n_clusters > 0: __snake_case = nn.Parameter(torch.zeros(self.n_clusters , self.d_embed ) ) __snake_case = nn.Parameter(torch.zeros(self.n_clusters ) ) __snake_case = nn.ModuleList() __snake_case = nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs ) ): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(__lowerCAmelCase , __lowerCAmelCase ) ) ) else: self.out_projs.append(__lowerCAmelCase ) self.out_layers.append(nn.Linear(__lowerCAmelCase , __lowerCAmelCase ) ) else: for i in range(len(self.cutoffs ) ): __snake_case = self.cutoff_ends[i], self.cutoff_ends[i + 1] __snake_case = d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(__lowerCAmelCase , __lowerCAmelCase ) ) ) self.out_layers.append(nn.Linear(__lowerCAmelCase , r_idx - l_idx ) ) __snake_case = keep_order def lowercase__ ( self : Union[str, Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : str , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[Any] ): if proj is None: __snake_case = nn.functional.linear(__lowerCAmelCase , __lowerCAmelCase , bias=__lowerCAmelCase ) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: __snake_case = nn.functional.linear(__lowerCAmelCase , proj.t().contiguous() ) __snake_case = nn.functional.linear(__lowerCAmelCase , __lowerCAmelCase , bias=__lowerCAmelCase ) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def lowercase__ ( self : List[Any] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : str=None , __lowerCAmelCase : int=False ): if labels is not None: # Shift so that tokens < n predict n __snake_case = hidden[..., :-1, :].contiguous() __snake_case = labels[..., 1:].contiguous() __snake_case = hidden.view(-1 , hidden.size(-1 ) ) __snake_case = labels.view(-1 ) if hidden.size(0 ) != labels.size(0 ): raise RuntimeError('Input and labels should have the same size in the batch dimension.' ) else: __snake_case = hidden.view(-1 , hidden.size(-1 ) ) if self.n_clusters == 0: __snake_case = self._compute_logit(__lowerCAmelCase , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) if labels is not None: __snake_case = labels != -1_0_0 __snake_case = torch.zeros_like(__lowerCAmelCase , dtype=hidden.dtype , device=hidden.device ) __snake_case = ( -nn.functional.log_softmax(__lowerCAmelCase , dim=-1 )[mask].gather(1 , labels[mask].unsqueeze(1 ) ).squeeze(1 ) ) else: __snake_case = nn.functional.log_softmax(__lowerCAmelCase , dim=-1 ) else: # construct weights and biases __snake_case = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: __snake_case = self.cutoff_ends[i], self.cutoff_ends[i + 1] __snake_case = self.out_layers[0].weight[l_idx:r_idx] __snake_case = self.out_layers[0].bias[l_idx:r_idx] else: __snake_case = self.out_layers[i].weight __snake_case = self.out_layers[i].bias if i == 0: __snake_case = torch.cat([weight_i, self.cluster_weight] , dim=0 ) __snake_case = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(__lowerCAmelCase ) biases.append(__lowerCAmelCase ) __snake_case = weights[0], biases[0], self.out_projs[0] __snake_case = self._compute_logit(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) __snake_case = nn.functional.log_softmax(__lowerCAmelCase , dim=1 ) if labels is None: __snake_case = hidden.new_empty((head_logit.size(0 ), self.n_token) ) else: __snake_case = torch.zeros_like(__lowerCAmelCase , dtype=hidden.dtype , device=hidden.device ) __snake_case = 0 __snake_case = [0] + self.cutoffs for i in range(len(__lowerCAmelCase ) - 1 ): __snake_case = cutoff_values[i], cutoff_values[i + 1] if labels is not None: __snake_case = (labels >= l_idx) & (labels < r_idx) __snake_case = mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue __snake_case = labels.index_select(0 , __lowerCAmelCase ) - l_idx __snake_case = head_logprob.index_select(0 , __lowerCAmelCase ) __snake_case = hidden.index_select(0 , __lowerCAmelCase ) else: __snake_case = hidden if i == 0: if labels is not None: __snake_case = head_logprob_i.gather(1 , target_i[:, None] ).squeeze(1 ) else: __snake_case = head_logprob[:, : self.cutoffs[0]] else: __snake_case = weights[i], biases[i], self.out_projs[i] __snake_case = self._compute_logit(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) __snake_case = nn.functional.log_softmax(__lowerCAmelCase , dim=1 ) __snake_case = self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: __snake_case = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1 , target_i[:, None] ).squeeze(1 ) else: __snake_case = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i __snake_case = logprob_i if labels is not None: if (hasattr(self , 'keep_order' ) and self.keep_order) or keep_order: out.index_copy_(0 , __lowerCAmelCase , -logprob_i ) else: out[offset : offset + logprob_i.size(0 )].copy_(-logprob_i ) offset += logprob_i.size(0 ) return out def lowercase__ ( self : int , __lowerCAmelCase : Optional[Any] ): if self.n_clusters == 0: __snake_case = self._compute_logit(__lowerCAmelCase , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) return nn.functional.log_softmax(__lowerCAmelCase , dim=-1 ) else: # construct weights and biases __snake_case = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: __snake_case = self.cutoff_ends[i], self.cutoff_ends[i + 1] __snake_case = self.out_layers[0].weight[l_idx:r_idx] __snake_case = self.out_layers[0].bias[l_idx:r_idx] else: __snake_case = self.out_layers[i].weight __snake_case = self.out_layers[i].bias if i == 0: __snake_case = torch.cat([weight_i, self.cluster_weight] , dim=0 ) __snake_case = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(__lowerCAmelCase ) biases.append(__lowerCAmelCase ) __snake_case = weights[0], biases[0], self.out_projs[0] __snake_case = self._compute_logit(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) __snake_case = hidden.new_empty((head_logit.size(0 ), self.n_token) ) __snake_case = nn.functional.log_softmax(__lowerCAmelCase , dim=1 ) __snake_case = [0] + self.cutoffs for i in range(len(__lowerCAmelCase ) - 1 ): __snake_case = cutoff_values[i], cutoff_values[i + 1] if i == 0: __snake_case = head_logprob[:, : self.cutoffs[0]] else: __snake_case = weights[i], biases[i], self.out_projs[i] __snake_case = self._compute_logit(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) __snake_case = nn.functional.log_softmax(__lowerCAmelCase , dim=1 ) __snake_case = head_logprob[:, -i] + tail_logprob_i __snake_case = logprob_i return out
706
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowercase = { """configuration_mgp_str""": ["""MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MgpstrConfig"""], """processing_mgp_str""": ["""MgpstrProcessor"""], """tokenization_mgp_str""": ["""MgpstrTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ """MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST""", """MgpstrModel""", """MgpstrPreTrainedModel""", """MgpstrForSceneTextRecognition""", ] if TYPE_CHECKING: from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig from .processing_mgp_str import MgpstrProcessor from .tokenization_mgp_str import MgpstrTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mgp_str import ( MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST, MgpstrForSceneTextRecognition, MgpstrModel, MgpstrPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
427
0
from __future__ import annotations from typing import Any class lowerCAmelCase_ : """simple docstring""" def __init__( self , _SCREAMING_SNAKE_CASE = 6 ) -> str: __UpperCamelCase = None __UpperCamelCase = None self.create_linked_list(UpperCAmelCase_ ) def __lowercase( self , _SCREAMING_SNAKE_CASE ) -> Tuple: __UpperCamelCase = Node() __UpperCamelCase = current_node __UpperCamelCase = current_node __UpperCamelCase = current_node for _ in range(1 , UpperCAmelCase_ ): __UpperCamelCase = Node() __UpperCamelCase = current_node __UpperCamelCase = previous_node __UpperCamelCase = current_node __UpperCamelCase = self.front __UpperCamelCase = previous_node def __lowercase( self ) -> str: return ( self.front == self.rear and self.front is not None and self.front.data is None ) def __lowercase( self ) -> Tuple: self.check_can_perform_operation() return self.front.data if self.front else None def __lowercase( self , _SCREAMING_SNAKE_CASE ) -> List[Any]: if self.rear is None: return self.check_is_full() if not self.is_empty(): __UpperCamelCase = self.rear.next if self.rear: __UpperCamelCase = data def __lowercase( self ) -> Any: self.check_can_perform_operation() if self.rear is None or self.front is None: return None if self.front == self.rear: __UpperCamelCase = self.front.data __UpperCamelCase = None return data __UpperCamelCase = self.front __UpperCamelCase = old_front.next __UpperCamelCase = old_front.data __UpperCamelCase = None return data def __lowercase( self ) -> Tuple: if self.is_empty(): raise Exception('Empty Queue' ) def __lowercase( self ) -> Tuple: if self.rear and self.rear.next == self.front: raise Exception('Full Queue' ) class lowerCAmelCase_ : """simple docstring""" def __init__( self ) -> Any: __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = None if __name__ == "__main__": import doctest doctest.testmod()
383
import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin __A : Tuple = ''' Hugging Face was founded in 2016 by French entrepreneurs Clément Delangue, Julien Chaumond, and Thomas Wolf originally as a company that developed a chatbot app targeted at teenagers.[2] After open-sourcing the model behind the chatbot, the company pivoted to focus on being a platform for machine learning. In March 2021, Hugging Face raised $40 million in a Series B funding round.[3] On April 28, 2021, the company launched the BigScience Research Workshop in collaboration with several other research groups to release an open large language model.[4] In 2022, the workshop concluded with the announcement of BLOOM, a multilingual large language model with 176 billion parameters.[5] ''' class __A ( unittest.TestCase , lowerCAmelCase ): def lowercase__ ( self : str ): lowerCAmelCase : List[Any] = load_tool('text-question-answering' ) self.tool.setup() lowerCAmelCase : List[Any] = load_tool('text-question-answering' , remote=UpperCAmelCase_ ) def lowercase__ ( self : str ): lowerCAmelCase : List[str] = self.tool(UpperCAmelCase_ , 'What did Hugging Face do in April 2021?' ) self.assertEqual(UpperCAmelCase_ , 'launched the BigScience Research Workshop' ) def lowercase__ ( self : str ): lowerCAmelCase : Tuple = self.remote_tool(UpperCAmelCase_ , 'What did Hugging Face do in April 2021?' ) self.assertEqual(UpperCAmelCase_ , 'launched the BigScience Research Workshop' ) def lowercase__ ( self : str ): lowerCAmelCase : str = self.tool(text=UpperCAmelCase_ , question='What did Hugging Face do in April 2021?' ) self.assertEqual(UpperCAmelCase_ , 'launched the BigScience Research Workshop' ) def lowercase__ ( self : Optional[Any] ): lowerCAmelCase : Dict = self.remote_tool(text=UpperCAmelCase_ , question='What did Hugging Face do in April 2021?' ) self.assertEqual(UpperCAmelCase_ , 'launched the BigScience Research Workshop' )
343
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available __snake_case = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ["""MLukeTokenizer"""] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys __snake_case = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
603
'''simple docstring''' from typing import List, Optional, Tuple, Union import torch from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class _a ( __a ): """simple docstring""" def __init__( self : Optional[int] , lowercase_ : Tuple , lowercase_ : Tuple ): '''simple docstring''' super().__init__() # make sure scheduler can always be converted to DDIM lowercase_ = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=lowercase_ , scheduler=lowercase_ ) @torch.no_grad() def __call__( self : Dict , lowercase_ : int = 1 , lowercase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowercase_ : float = 0.0 , lowercase_ : int = 50 , lowercase_ : Optional[bool] = None , lowercase_ : Optional[str] = "pil" , lowercase_ : bool = True , ): '''simple docstring''' if isinstance(self.unet.config.sample_size , lowercase_ ): lowercase_ = ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size, ) else: lowercase_ = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size) if isinstance(lowercase_ , lowercase_ ) and len(lowercase_ ) != batch_size: raise ValueError( F"""You have passed a list of generators of length {len(lowercase_ )}, but requested an effective batch""" F""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) lowercase_ = randn_tensor(lowercase_ , generator=lowercase_ , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(lowercase_ ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output lowercase_ = self.unet(lowercase_ , lowercase_ ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 lowercase_ = self.scheduler.step( lowercase_ , lowercase_ , lowercase_ , eta=lowercase_ , use_clipped_model_output=lowercase_ , generator=lowercase_ ).prev_sample lowercase_ = (image / 2 + 0.5).clamp(0 , 1 ) lowercase_ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowercase_ = self.numpy_to_pil(lowercase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowercase_ )
603
1
from __future__ import annotations def A__ ( SCREAMING_SNAKE_CASE_ : list[int] , SCREAMING_SNAKE_CASE_ : list[int] , SCREAMING_SNAKE_CASE_ : int ) -> tuple[float, list[float]]: """simple docstring""" _UpperCAmelCase = list(range(len(SCREAMING_SNAKE_CASE_ ) ) ) _UpperCAmelCase = [v / w for v, w in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )] index.sort(key=lambda SCREAMING_SNAKE_CASE_ : ratio[i] , reverse=SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase = 0 _UpperCAmelCase = [0] * len(SCREAMING_SNAKE_CASE_ ) for i in index: if weight[i] <= capacity: _UpperCAmelCase = 1 max_value += value[i] capacity -= weight[i] else: _UpperCAmelCase = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
32
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast @require_vision class lowercase_ (unittest.TestCase ): def __UpperCamelCase ( self) -> int: a__ =tempfile.mkdtemp() a__ =BlipImageProcessor() a__ =BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-BertModel') a__ =BlipProcessor(lowercase_ , lowercase_) processor.save_pretrained(self.tmpdirname) def __UpperCamelCase ( self , **lowercase_) -> str: return AutoProcessor.from_pretrained(self.tmpdirname , **lowercase_).tokenizer def __UpperCamelCase ( self , **lowercase_) -> List[str]: return AutoProcessor.from_pretrained(self.tmpdirname , **lowercase_).image_processor def __UpperCamelCase ( self) -> Optional[int]: shutil.rmtree(self.tmpdirname) def __UpperCamelCase ( self) -> str: a__ =[np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta)] a__ =[Image.fromarray(np.moveaxis(lowercase_ , 0 , -1)) for x in image_inputs] return image_inputs def __UpperCamelCase ( self) -> str: a__ =BlipProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) a__ =self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)') a__ =self.get_image_processor(do_normalize=lowercase_ , padding_value=1.0) a__ =BlipProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=lowercase_ , padding_value=1.0) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer , lowercase_) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor , lowercase_) def __UpperCamelCase ( self) -> int: a__ =self.get_image_processor() a__ =self.get_tokenizer() a__ =BlipProcessor(tokenizer=lowercase_ , image_processor=lowercase_) a__ =self.prepare_image_inputs() a__ =image_processor(lowercase_ , return_tensors='np') a__ =processor(images=lowercase_ , return_tensors='np') for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2) def __UpperCamelCase ( self) -> List[str]: a__ =self.get_image_processor() a__ =self.get_tokenizer() a__ =BlipProcessor(tokenizer=lowercase_ , image_processor=lowercase_) a__ ='lower newer' a__ =processor(text=lowercase_) a__ =tokenizer(lowercase_ , return_token_type_ids=lowercase_) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key]) def __UpperCamelCase ( self) -> int: a__ =self.get_image_processor() a__ =self.get_tokenizer() a__ =BlipProcessor(tokenizer=lowercase_ , image_processor=lowercase_) a__ ='lower newer' a__ =self.prepare_image_inputs() a__ =processor(text=lowercase_ , images=lowercase_) self.assertListEqual(list(inputs.keys()) , ['pixel_values', 'input_ids', 'attention_mask']) # test if it raises when no input is passed with pytest.raises(lowercase_): processor() def __UpperCamelCase ( self) -> Tuple: a__ =self.get_image_processor() a__ =self.get_tokenizer() a__ =BlipProcessor(tokenizer=lowercase_ , image_processor=lowercase_) a__ =[[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] a__ =processor.batch_decode(lowercase_) a__ =tokenizer.batch_decode(lowercase_) self.assertListEqual(lowercase_ , lowercase_) def __UpperCamelCase ( self) -> List[Any]: a__ =self.get_image_processor() a__ =self.get_tokenizer() a__ =BlipProcessor(tokenizer=lowercase_ , image_processor=lowercase_) a__ ='lower newer' a__ =self.prepare_image_inputs() a__ =processor(text=lowercase_ , images=lowercase_) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys()) , ['pixel_values', 'input_ids', 'attention_mask'])
20
0
import os import shutil from pathlib import Path from typing import Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging if is_onnx_available(): import onnxruntime as ort _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { "tensor(bool)": np.bool_, "tensor(int8)": np.inta, "tensor(uint8)": np.uinta, "tensor(int16)": np.intaa, "tensor(uint16)": np.uintaa, "tensor(int32)": np.intaa, "tensor(uint32)": np.uintaa, "tensor(int64)": np.intaa, "tensor(uint64)": np.uintaa, "tensor(float16)": np.floataa, "tensor(float)": np.floataa, "tensor(double)": np.floataa, } class __magic_name__ : """simple docstring""" def __init__( self , a__=None , **a__ ): logger.info('''`diffusers.OnnxRuntimeModel` is experimental and might change in the future.''' ) _lowerCamelCase = model _lowerCamelCase = kwargs.get('''model_save_dir''' , a__ ) _lowerCamelCase = kwargs.get('''latest_model_name''' , a__ ) def __call__( self , **a__ ): _lowerCamelCase = {k: np.array(a__ ) for k, v in kwargs.items()} return self.model.run(a__ , a__ ) @staticmethod def _UpperCAmelCase ( a__ , a__=None , a__=None ): if provider is None: logger.info('''No onnxruntime provider specified, using CPUExecutionProvider''' ) _lowerCamelCase = '''CPUExecutionProvider''' return ort.InferenceSession(a__ , providers=[provider] , sess_options=a__ ) def _UpperCAmelCase ( self , a__ , a__ = None , **a__ ): _lowerCamelCase = file_name if file_name is not None else ONNX_WEIGHTS_NAME _lowerCamelCase = self.model_save_dir.joinpath(self.latest_model_name ) _lowerCamelCase = Path(a__ ).joinpath(a__ ) try: shutil.copyfile(a__ , a__ ) except shutil.SameFileError: pass # copy external weights (for models >2GB) _lowerCamelCase = self.model_save_dir.joinpath(a__ ) if src_path.exists(): _lowerCamelCase = Path(a__ ).joinpath(a__ ) try: shutil.copyfile(a__ , a__ ) except shutil.SameFileError: pass def _UpperCAmelCase ( self , a__ , **a__ , ): if os.path.isfile(a__ ): logger.error(f'''Provided path ({save_directory}) should be a directory, not a file''' ) return os.makedirs(a__ , exist_ok=a__ ) # saving model weights/files self._save_pretrained(a__ , **a__ ) @classmethod def _UpperCAmelCase ( cls , a__ , a__ = None , a__ = None , a__ = False , a__ = None , a__ = None , a__ = None , a__ = None , **a__ , ): _lowerCamelCase = file_name if file_name is not None else ONNX_WEIGHTS_NAME # load model from local directory if os.path.isdir(a__ ): _lowerCamelCase = OnnxRuntimeModel.load_model( os.path.join(a__ , a__ ) , provider=a__ , sess_options=a__ ) _lowerCamelCase = Path(a__ ) # load model from hub else: # download model _lowerCamelCase = hf_hub_download( repo_id=a__ , filename=a__ , use_auth_token=a__ , revision=a__ , cache_dir=a__ , force_download=a__ , ) _lowerCamelCase = Path(a__ ).parent _lowerCamelCase = Path(a__ ).name _lowerCamelCase = OnnxRuntimeModel.load_model(a__ , provider=a__ , sess_options=a__ ) return cls(model=a__ , **a__ ) @classmethod def _UpperCAmelCase ( cls , a__ , a__ = True , a__ = None , a__ = None , **a__ , ): _lowerCamelCase = None if len(str(a__ ).split('''@''' ) ) == 2: _lowerCamelCase , _lowerCamelCase = model_id.split('''@''' ) return cls._from_pretrained( model_id=a__ , revision=a__ , cache_dir=a__ , force_download=a__ , use_auth_token=a__ , **a__ , )
719
def _lowerCamelCase ( _a ): """simple docstring""" if bit_count < 0: raise ValueError('''The given input must be positive''' ) # get the generated string sequence _lowerCamelCase = gray_code_sequence_string(_a ) # # convert them to integers for i in range(len(_a ) ): _lowerCamelCase = int(sequence[i] , 2 ) return sequence def _lowerCamelCase ( _a ): """simple docstring""" if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] _lowerCamelCase = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits _lowerCamelCase = gray_code_sequence_string(bit_count - 1 ) _lowerCamelCase = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): _lowerCamelCase = '''0''' + smaller_sequence[i] sequence.append(_a ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): _lowerCamelCase = '''1''' + smaller_sequence[i] sequence.append(_a ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
297
0
"""simple docstring""" import unittest from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class lowerCAmelCase__ : '''simple docstring''' @staticmethod def _lowerCAmelCase ( *_SCREAMING_SNAKE_CASE : List[Any] , **_SCREAMING_SNAKE_CASE : Tuple ) -> List[Any]: """simple docstring""" pass @is_pipeline_test @require_vision @require_torch class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' _SCREAMING_SNAKE_CASE : Dict = MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING def _lowerCAmelCase ( self : str , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Tuple ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = pipeline( 'zero-shot-object-detection' , model='hf-internal-testing/tiny-random-owlvit-object-detection' ) SCREAMING_SNAKE_CASE : Dict = [ { 'image': './tests/fixtures/tests_samples/COCO/000000039769.png', 'candidate_labels': ['cat', 'remote', 'couch'], } ] return object_detector, examples def _lowerCAmelCase ( self : List[Any] , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = object_detector(examples[0] , threshold=0.0 ) SCREAMING_SNAKE_CASE : Optional[int] = len(_SCREAMING_SNAKE_CASE ) self.assertGreater(_SCREAMING_SNAKE_CASE , 0 ) self.assertEqual( _SCREAMING_SNAKE_CASE , [ { 'score': ANY(_SCREAMING_SNAKE_CASE ), 'label': ANY(_SCREAMING_SNAKE_CASE ), 'box': {'xmin': ANY(_SCREAMING_SNAKE_CASE ), 'ymin': ANY(_SCREAMING_SNAKE_CASE ), 'xmax': ANY(_SCREAMING_SNAKE_CASE ), 'ymax': ANY(_SCREAMING_SNAKE_CASE )}, } for i in range(_SCREAMING_SNAKE_CASE ) ] , ) @require_tf @unittest.skip('Zero Shot Object Detection not implemented in TF' ) def _lowerCAmelCase ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" pass @require_torch def _lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = pipeline( 'zero-shot-object-detection' , model='hf-internal-testing/tiny-random-owlvit-object-detection' ) SCREAMING_SNAKE_CASE : List[str] = object_detector( './tests/fixtures/tests_samples/COCO/000000039769.png' , candidate_labels=['cat', 'remote', 'couch'] , threshold=0.6_4 , ) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE , decimals=4 ) , [ {'score': 0.7_2_3_5, 'label': 'cat', 'box': {'xmin': 204, 'ymin': 167, 'xmax': 232, 'ymax': 190}}, {'score': 0.7_2_1_8, 'label': 'remote', 'box': {'xmin': 204, 'ymin': 167, 'xmax': 232, 'ymax': 190}}, {'score': 0.7_1_8_4, 'label': 'couch', 'box': {'xmin': 204, 'ymin': 167, 'xmax': 232, 'ymax': 190}}, {'score': 0.6_7_4_8, 'label': 'remote', 'box': {'xmin': 571, 'ymin': 83, 'xmax': 598, 'ymax': 103}}, {'score': 0.6_6_5_6, 'label': 'cat', 'box': {'xmin': 571, 'ymin': 83, 'xmax': 598, 'ymax': 103}}, {'score': 0.6_6_1_4, 'label': 'couch', 'box': {'xmin': 571, 'ymin': 83, 'xmax': 598, 'ymax': 103}}, {'score': 0.6_4_5_6, 'label': 'remote', 'box': {'xmin': 494, 'ymin': 105, 'xmax': 521, 'ymax': 127}}, {'score': 0.6_4_2, 'label': 'remote', 'box': {'xmin': 67, 'ymin': 274, 'xmax': 93, 'ymax': 297}}, {'score': 0.6_4_1_9, 'label': 'cat', 'box': {'xmin': 494, 'ymin': 105, 'xmax': 521, 'ymax': 127}}, ] , ) SCREAMING_SNAKE_CASE : Optional[Any] = object_detector( [ { 'image': './tests/fixtures/tests_samples/COCO/000000039769.png', 'candidate_labels': ['cat', 'remote', 'couch'], } ] , threshold=0.6_4 , ) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE , decimals=4 ) , [ [ {'score': 0.7_2_3_5, 'label': 'cat', 'box': {'xmin': 204, 'ymin': 167, 'xmax': 232, 'ymax': 190}}, {'score': 0.7_2_1_8, 'label': 'remote', 'box': {'xmin': 204, 'ymin': 167, 'xmax': 232, 'ymax': 190}}, {'score': 0.7_1_8_4, 'label': 'couch', 'box': {'xmin': 204, 'ymin': 167, 'xmax': 232, 'ymax': 190}}, {'score': 0.6_7_4_8, 'label': 'remote', 'box': {'xmin': 571, 'ymin': 83, 'xmax': 598, 'ymax': 103}}, {'score': 0.6_6_5_6, 'label': 'cat', 'box': {'xmin': 571, 'ymin': 83, 'xmax': 598, 'ymax': 103}}, {'score': 0.6_6_1_4, 'label': 'couch', 'box': {'xmin': 571, 'ymin': 83, 'xmax': 598, 'ymax': 103}}, {'score': 0.6_4_5_6, 'label': 'remote', 'box': {'xmin': 494, 'ymin': 105, 'xmax': 521, 'ymax': 127}}, {'score': 0.6_4_2, 'label': 'remote', 'box': {'xmin': 67, 'ymin': 274, 'xmax': 93, 'ymax': 297}}, {'score': 0.6_4_1_9, 'label': 'cat', 'box': {'xmin': 494, 'ymin': 105, 'xmax': 521, 'ymax': 127}}, ] ] , ) @require_torch @slow def _lowerCAmelCase ( self : Tuple ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = pipeline('zero-shot-object-detection' ) SCREAMING_SNAKE_CASE : List[str] = object_detector( 'http://images.cocodataset.org/val2017/000000039769.jpg' , candidate_labels=['cat', 'remote', 'couch'] , ) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE , decimals=4 ) , [ {'score': 0.2_8_6_8, 'label': 'cat', 'box': {'xmin': 324, 'ymin': 20, 'xmax': 640, 'ymax': 373}}, {'score': 0.2_7_7, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 72, 'xmax': 177, 'ymax': 115}}, {'score': 0.2_5_3_7, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 55, 'xmax': 315, 'ymax': 472}}, {'score': 0.1_4_7_4, 'label': 'remote', 'box': {'xmin': 335, 'ymin': 74, 'xmax': 371, 'ymax': 187}}, {'score': 0.1_2_0_8, 'label': 'couch', 'box': {'xmin': 4, 'ymin': 0, 'xmax': 642, 'ymax': 476}}, ] , ) SCREAMING_SNAKE_CASE : str = object_detector( [ { 'image': 'http://images.cocodataset.org/val2017/000000039769.jpg', 'candidate_labels': ['cat', 'remote', 'couch'], }, { 'image': 'http://images.cocodataset.org/val2017/000000039769.jpg', 'candidate_labels': ['cat', 'remote', 'couch'], }, ] , ) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE , decimals=4 ) , [ [ {'score': 0.2_8_6_8, 'label': 'cat', 'box': {'xmin': 324, 'ymin': 20, 'xmax': 640, 'ymax': 373}}, {'score': 0.2_7_7, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 72, 'xmax': 177, 'ymax': 115}}, {'score': 0.2_5_3_7, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 55, 'xmax': 315, 'ymax': 472}}, {'score': 0.1_4_7_4, 'label': 'remote', 'box': {'xmin': 335, 'ymin': 74, 'xmax': 371, 'ymax': 187}}, {'score': 0.1_2_0_8, 'label': 'couch', 'box': {'xmin': 4, 'ymin': 0, 'xmax': 642, 'ymax': 476}}, ], [ {'score': 0.2_8_6_8, 'label': 'cat', 'box': {'xmin': 324, 'ymin': 20, 'xmax': 640, 'ymax': 373}}, {'score': 0.2_7_7, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 72, 'xmax': 177, 'ymax': 115}}, {'score': 0.2_5_3_7, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 55, 'xmax': 315, 'ymax': 472}}, {'score': 0.1_4_7_4, 'label': 'remote', 'box': {'xmin': 335, 'ymin': 74, 'xmax': 371, 'ymax': 187}}, {'score': 0.1_2_0_8, 'label': 'couch', 'box': {'xmin': 4, 'ymin': 0, 'xmax': 642, 'ymax': 476}}, ], ] , ) @require_tf @unittest.skip('Zero Shot Object Detection not implemented in TF' ) def _lowerCAmelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" pass @require_torch @slow def _lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = 0.2 SCREAMING_SNAKE_CASE : List[Any] = pipeline('zero-shot-object-detection' ) SCREAMING_SNAKE_CASE : List[str] = object_detector( 'http://images.cocodataset.org/val2017/000000039769.jpg' , candidate_labels=['cat', 'remote', 'couch'] , threshold=_SCREAMING_SNAKE_CASE , ) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE , decimals=4 ) , [ {'score': 0.2_8_6_8, 'label': 'cat', 'box': {'xmin': 324, 'ymin': 20, 'xmax': 640, 'ymax': 373}}, {'score': 0.2_7_7, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 72, 'xmax': 177, 'ymax': 115}}, {'score': 0.2_5_3_7, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 55, 'xmax': 315, 'ymax': 472}}, ] , ) @require_torch @slow def _lowerCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE : int = 2 SCREAMING_SNAKE_CASE : List[Any] = pipeline('zero-shot-object-detection' ) SCREAMING_SNAKE_CASE : List[str] = object_detector( 'http://images.cocodataset.org/val2017/000000039769.jpg' , candidate_labels=['cat', 'remote', 'couch'] , top_k=_SCREAMING_SNAKE_CASE , ) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE , decimals=4 ) , [ {'score': 0.2_8_6_8, 'label': 'cat', 'box': {'xmin': 324, 'ymin': 20, 'xmax': 640, 'ymax': 373}}, {'score': 0.2_7_7, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 72, 'xmax': 177, 'ymax': 115}}, ] , )
265
"""simple docstring""" from typing import TYPE_CHECKING from ..utils import _LazyModule A_ : str = { 'config': [ 'EXTERNAL_DATA_FORMAT_SIZE_LIMIT', 'OnnxConfig', 'OnnxConfigWithPast', 'OnnxSeq2SeqConfigWithPast', 'PatchingSpec', ], 'convert': ['export', 'validate_model_outputs'], 'features': ['FeaturesManager'], 'utils': ['ParameterFormat', 'compute_serialized_parameters_size'], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys A_ : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
265
1
'''simple docstring''' import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class lowerCAmelCase__ ( UpperCAmelCase__ ): def lowerCAmelCase__ ( self : Optional[Any] ) ->List[str]: '''simple docstring''' _UpperCAmelCase : Any = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(lowerCamelCase__ , "width_multiplier" ) ) class lowerCAmelCase__ : def __init__( self : Optional[Any] , lowerCamelCase__ : Dict , lowerCamelCase__ : Any=13 , lowerCamelCase__ : int=64 , lowerCamelCase__ : Any=2 , lowerCamelCase__ : List[Any]=3 , lowerCamelCase__ : Optional[Any]="swish" , lowerCamelCase__ : Union[str, Any]=3 , lowerCamelCase__ : Any=32 , lowerCamelCase__ : Tuple=0.1 , lowerCamelCase__ : Union[str, Any]=0.0_2 , lowerCamelCase__ : Union[str, Any]=True , lowerCamelCase__ : Optional[Any]=True , lowerCamelCase__ : List[Any]=10 , lowerCamelCase__ : Dict=None , lowerCamelCase__ : Dict=0.2_5 , lowerCamelCase__ : Union[str, Any]=0.0 , lowerCamelCase__ : int=0.0 , ) ->Dict: '''simple docstring''' _UpperCAmelCase : Tuple = parent _UpperCAmelCase : List[str] = batch_size _UpperCAmelCase : Union[str, Any] = image_size _UpperCAmelCase : Optional[int] = patch_size _UpperCAmelCase : List[str] = num_channels _UpperCAmelCase : List[str] = make_divisible(5_12 * width_multiplier , divisor=8 ) _UpperCAmelCase : Any = hidden_act _UpperCAmelCase : Optional[int] = conv_kernel_size _UpperCAmelCase : List[Any] = output_stride _UpperCAmelCase : List[Any] = classifier_dropout_prob _UpperCAmelCase : Optional[Any] = use_labels _UpperCAmelCase : Any = is_training _UpperCAmelCase : Optional[Any] = num_labels _UpperCAmelCase : Optional[Any] = initializer_range _UpperCAmelCase : Optional[int] = scope _UpperCAmelCase : Dict = width_multiplier _UpperCAmelCase : str = ffn_dropout _UpperCAmelCase : Tuple = attn_dropout def lowerCAmelCase__ ( self : List[str] ) ->Tuple: '''simple docstring''' _UpperCAmelCase : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCAmelCase : int = None _UpperCAmelCase : Any = None if self.use_labels: _UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size] , self.num_labels ) _UpperCAmelCase : Any = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) _UpperCAmelCase : Tuple = self.get_config() return config, pixel_values, labels, pixel_labels def lowerCAmelCase__ ( self : Union[str, Any] ) ->Optional[Any]: '''simple docstring''' return MobileViTVaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , ) def lowerCAmelCase__ ( self : int , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Dict , lowerCamelCase__ : List[Any] , lowerCamelCase__ : Union[str, Any] ) ->Dict: '''simple docstring''' _UpperCAmelCase : Optional[int] = MobileViTVaModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() _UpperCAmelCase : Optional[int] = model(lowerCamelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowerCAmelCase__ ( self : Union[str, Any] , lowerCamelCase__ : Any , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : str ) ->Any: '''simple docstring''' _UpperCAmelCase : Any = self.num_labels _UpperCAmelCase : Optional[int] = MobileViTVaForImageClassification(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() _UpperCAmelCase : Optional[int] = model(lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase__ ( self : List[Any] , lowerCamelCase__ : Tuple , lowerCamelCase__ : List[Any] , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : int ) ->List[Any]: '''simple docstring''' _UpperCAmelCase : List[Any] = self.num_labels _UpperCAmelCase : Optional[int] = MobileViTVaForSemanticSegmentation(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() _UpperCAmelCase : Optional[Any] = model(lowerCamelCase__ ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) _UpperCAmelCase : List[Any] = model(lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowerCAmelCase__ ( self : Union[str, Any] ) ->Any: '''simple docstring''' _UpperCAmelCase : Dict = self.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : List[str] = config_and_inputs _UpperCAmelCase : Any = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase__ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): lowerCAmelCase : Dict = ( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) lowerCAmelCase : Optional[Any] = ( { "feature-extraction": MobileViTVaModel, "image-classification": MobileViTVaForImageClassification, "image-segmentation": MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) lowerCAmelCase : Optional[int] = False lowerCAmelCase : Optional[Any] = False lowerCAmelCase : Dict = False lowerCAmelCase : str = False def lowerCAmelCase__ ( self : Optional[Any] ) ->List[Any]: '''simple docstring''' _UpperCAmelCase : Dict = MobileViTVaModelTester(self ) _UpperCAmelCase : List[Any] = MobileViTVaConfigTester(self , config_class=lowerCamelCase__ , has_text_modality=lowerCamelCase__ ) def lowerCAmelCase__ ( self : List[Any] ) ->List[str]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="MobileViTV2 does not use inputs_embeds" ) def lowerCAmelCase__ ( self : int ) ->Dict: '''simple docstring''' pass @unittest.skip(reason="MobileViTV2 does not support input and output embeddings" ) def lowerCAmelCase__ ( self : Tuple ) ->Dict: '''simple docstring''' pass @unittest.skip(reason="MobileViTV2 does not output attentions" ) def lowerCAmelCase__ ( self : Union[str, Any] ) ->Any: '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason="Got `CUDA error: misaligned address` for tests after this one being run." ) def lowerCAmelCase__ ( self : int ) ->Any: '''simple docstring''' pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def lowerCAmelCase__ ( self : Optional[int] ) ->Tuple: '''simple docstring''' pass def lowerCAmelCase__ ( self : Tuple ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase : str = model_class(lowerCamelCase__ ) _UpperCAmelCase : List[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase : List[str] = [*signature.parameters.keys()] _UpperCAmelCase : Any = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCamelCase__ ) def lowerCAmelCase__ ( self : Tuple ) ->str: '''simple docstring''' _UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase__ ) def lowerCAmelCase__ ( self : Union[str, Any] ) ->Tuple: '''simple docstring''' def check_hidden_states_output(lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : Dict , lowerCamelCase__ : int ): _UpperCAmelCase : str = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() with torch.no_grad(): _UpperCAmelCase : Tuple = model(**self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) ) _UpperCAmelCase : Optional[Any] = outputs.hidden_states _UpperCAmelCase : Tuple = 5 self.assertEqual(len(lowerCamelCase__ ) , lowerCamelCase__ ) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. _UpperCAmelCase : Optional[Any] = 2 for i in range(len(lowerCamelCase__ ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) _UpperCAmelCase , _UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase : Union[str, Any] = True check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCAmelCase : int = True check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def lowerCAmelCase__ ( self : str ) ->Tuple: '''simple docstring''' _UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase__ ) def lowerCAmelCase__ ( self : str ) ->Dict: '''simple docstring''' _UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*lowerCamelCase__ ) @slow def lowerCAmelCase__ ( self : Optional[int] ) ->List[Any]: '''simple docstring''' for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase : int = MobileViTVaModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def __lowerCAmelCase (): _UpperCAmelCase : Union[str, Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class lowerCAmelCase__ ( unittest.TestCase ): @cached_property def lowerCAmelCase__ ( self : str ) ->Any: '''simple docstring''' return ( MobileViTImageProcessor.from_pretrained("apple/mobilevitv2-1.0-imagenet1k-256" ) if is_vision_available() else None ) @slow def lowerCAmelCase__ ( self : List[Any] ) ->int: '''simple docstring''' _UpperCAmelCase : Any = MobileViTVaForImageClassification.from_pretrained("apple/mobilevitv2-1.0-imagenet1k-256" ).to( lowerCamelCase__ ) _UpperCAmelCase : str = self.default_image_processor _UpperCAmelCase : str = prepare_img() _UpperCAmelCase : Union[str, Any] = image_processor(images=lowerCamelCase__ , return_tensors="pt" ).to(lowerCamelCase__ ) # forward pass with torch.no_grad(): _UpperCAmelCase : Optional[Any] = model(**lowerCamelCase__ ) # verify the logits _UpperCAmelCase : List[Any] = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , lowerCamelCase__ ) _UpperCAmelCase : Tuple = torch.tensor([-1.6336E00, -7.3204E-02, -5.1883E-01] ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCamelCase__ , atol=1E-4 ) ) @slow def lowerCAmelCase__ ( self : Any ) ->List[Any]: '''simple docstring''' _UpperCAmelCase : str = MobileViTVaForSemanticSegmentation.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) _UpperCAmelCase : Union[str, Any] = model.to(lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = MobileViTImageProcessor.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) _UpperCAmelCase : Union[str, Any] = prepare_img() _UpperCAmelCase : List[Any] = image_processor(images=lowerCamelCase__ , return_tensors="pt" ).to(lowerCamelCase__ ) # forward pass with torch.no_grad(): _UpperCAmelCase : List[Any] = model(**lowerCamelCase__ ) _UpperCAmelCase : List[Any] = outputs.logits # verify the logits _UpperCAmelCase : Optional[Any] = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , lowerCamelCase__ ) _UpperCAmelCase : int = torch.tensor( [ [[7.0_8_6_3, 7.1_5_2_5, 6.8_2_0_1], [6.6_9_3_1, 6.8_7_7_0, 6.8_9_3_3], [6.2_9_7_8, 7.0_3_6_6, 6.9_6_3_6]], [[-3.7_1_3_4, -3.6_7_1_2, -3.6_6_7_5], [-3.5_8_2_5, -3.3_5_4_9, -3.4_7_7_7], [-3.3_4_3_5, -3.3_9_7_9, -3.2_8_5_7]], [[-2.9_3_2_9, -2.8_0_0_3, -2.7_3_6_9], [-3.0_5_6_4, -2.4_7_8_0, -2.0_2_0_7], [-2.6_8_8_9, -1.9_2_9_8, -1.7_6_4_0]], ] , device=lowerCamelCase__ , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , lowerCamelCase__ , atol=1E-4 ) ) @slow def lowerCAmelCase__ ( self : Any ) ->Any: '''simple docstring''' _UpperCAmelCase : Any = MobileViTVaForSemanticSegmentation.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) _UpperCAmelCase : int = model.to(lowerCamelCase__ ) _UpperCAmelCase : Any = MobileViTImageProcessor.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) _UpperCAmelCase : List[str] = prepare_img() _UpperCAmelCase : Tuple = image_processor(images=lowerCamelCase__ , return_tensors="pt" ).to(lowerCamelCase__ ) # forward pass with torch.no_grad(): _UpperCAmelCase : Optional[Any] = model(**lowerCamelCase__ ) _UpperCAmelCase : List[Any] = outputs.logits.detach().cpu() _UpperCAmelCase : Optional[Any] = image_processor.post_process_semantic_segmentation(outputs=lowerCamelCase__ , target_sizes=[(50, 60)] ) _UpperCAmelCase : Tuple = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , lowerCamelCase__ ) _UpperCAmelCase : List[Any] = image_processor.post_process_semantic_segmentation(outputs=lowerCamelCase__ ) _UpperCAmelCase : Tuple = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , lowerCamelCase__ )
40
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCamelCase__ = {'configuration_mra': ['MRA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MraConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ 'MRA_PRETRAINED_MODEL_ARCHIVE_LIST', 'MraForMaskedLM', 'MraForMultipleChoice', 'MraForQuestionAnswering', 'MraForSequenceClassification', 'MraForTokenClassification', 'MraLayer', 'MraModel', 'MraPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure)
40
1
'''simple docstring''' import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def lowerCAmelCase (__A): """simple docstring""" if "img_encoder.pos_embed" in name: _a = name.replace('''img_encoder.pos_embed''' , '''vision_model.embeddings.position_embeddings''') if "img_encoder.patch_embed.proj" in name: _a = name.replace('''img_encoder.patch_embed.proj''' , '''vision_model.embeddings.patch_embeddings.projection''') if "img_encoder.patch_embed.norm" in name: _a = name.replace('''img_encoder.patch_embed.norm''' , '''vision_model.embeddings.layernorm''') if "img_encoder.layers" in name: _a = name.replace('''img_encoder.layers''' , '''vision_model.encoder.stages''') if "blocks" in name and "res" not in name: _a = name.replace('''blocks''' , '''layers''') if "attn" in name and "pre_assign" not in name: _a = name.replace('''attn''' , '''self_attn''') if "proj" in name and "self_attn" in name and "text" not in name: _a = name.replace('''proj''' , '''out_proj''') if "pre_assign_attn.attn.proj" in name: _a = name.replace('''pre_assign_attn.attn.proj''' , '''pre_assign_attn.attn.out_proj''') if "norm1" in name: _a = name.replace('''norm1''' , '''layer_norm1''') if "norm2" in name and "pre_assign" not in name: _a = name.replace('''norm2''' , '''layer_norm2''') if "img_encoder.norm" in name: _a = name.replace('''img_encoder.norm''' , '''vision_model.layernorm''') # text encoder if "text_encoder.token_embedding" in name: _a = name.replace('''text_encoder.token_embedding''' , '''text_model.embeddings.token_embedding''') if "text_encoder.positional_embedding" in name: _a = name.replace('''text_encoder.positional_embedding''' , '''text_model.embeddings.position_embedding.weight''') if "text_encoder.transformer.resblocks." in name: _a = name.replace('''text_encoder.transformer.resblocks.''' , '''text_model.encoder.layers.''') if "ln_1" in name: _a = name.replace('''ln_1''' , '''layer_norm1''') if "ln_2" in name: _a = name.replace('''ln_2''' , '''layer_norm2''') if "c_fc" in name: _a = name.replace('''c_fc''' , '''fc1''') if "c_proj" in name: _a = name.replace('''c_proj''' , '''fc2''') if "text_encoder" in name: _a = name.replace('''text_encoder''' , '''text_model''') if "ln_final" in name: _a = name.replace('''ln_final''' , '''final_layer_norm''') # projection layers if "img_projector.linear_hidden." in name: _a = name.replace('''img_projector.linear_hidden.''' , '''visual_projection.''') if "img_projector.linear_out." in name: _a = name.replace('''img_projector.linear_out.''' , '''visual_projection.3.''') if "text_projector.linear_hidden" in name: _a = name.replace('''text_projector.linear_hidden''' , '''text_projection''') if "text_projector.linear_out" in name: _a = name.replace('''text_projector.linear_out''' , '''text_projection.3''') return name def lowerCAmelCase (__A , __A): """simple docstring""" for key in orig_state_dict.copy().keys(): _a = orig_state_dict.pop(__A) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors _a = key.split('''.''') _a , _a = int(key_split[2]), int(key_split[4]) _a = config.vision_config.hidden_size if "weight" in key: _a = val[:dim, :] _a = val[dim : dim * 2, :] _a = val[-dim:, :] else: _a = val[:dim] _a = val[dim : dim * 2] _a = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors _a = key.split('''.''') _a = int(key_split[3]) _a = config.text_config.hidden_size if "weight" in key: _a = val[:dim, :] _a = val[ dim : dim * 2, : ] _a = val[-dim:, :] else: _a = val[:dim] _a = val[dim : dim * 2] _a = val[-dim:] else: _a = rename_key(__A) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): _a = val.squeeze_() else: _a = val return orig_state_dict def lowerCAmelCase (): """simple docstring""" _a = '''http://images.cocodataset.org/val2017/000000039769.jpg''' _a = Image.open(requests.get(__A , stream=__A).raw) return im @torch.no_grad() def lowerCAmelCase (__A , __A , __A="groupvit-gcc-yfcc" , __A=False): """simple docstring""" _a = GroupViTConfig() _a = GroupViTModel(__A).eval() _a = torch.load(__A , map_location='''cpu''')['''model'''] _a = convert_state_dict(__A , __A) _a , _a = model.load_state_dict(__A , strict=__A) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(__A) == 0) # verify result _a = CLIPProcessor.from_pretrained('''openai/clip-vit-base-patch32''') _a = prepare_img() _a = processor(text=['''a photo of a cat''', '''a photo of a dog'''] , images=__A , padding=__A , return_tensors='''pt''') with torch.no_grad(): _a = model(**__A) if model_name == "groupvit-gcc-yfcc": _a = torch.tensor([[13.35_23, 6.36_29]]) elif model_name == "groupvit-gcc-redcaps": _a = torch.tensor([[16.18_73, 8.62_30]]) else: raise ValueError(F'''Model name {model_name} not supported.''') assert torch.allclose(outputs.logits_per_image , __A , atol=1e-3) processor.save_pretrained(__A) model.save_pretrained(__A) print('''Successfully saved processor and model to''' , __A) if push_to_hub: print('''Pushing to the hub...''') processor.push_to_hub(__A , organization='''nielsr''') model.push_to_hub(__A , organization='''nielsr''') if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to dump the processor and PyTorch model." ) parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to GroupViT checkpoint") parser.add_argument( "--model_name", default="groupvit-gccy-fcc", type=str, help="Name of the model. Expecting either 'groupvit-gcc-yfcc' or 'groupvit-gcc-redcaps'", ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.", ) lowercase_ = parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
11
'''simple docstring''' import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm lowercase_ = re.compile("[^A-Za-z_0-9]") # parameters used in DuplicationIndex lowercase_ = 10 lowercase_ = 256 def lowerCAmelCase (__A): """simple docstring""" if len(__A) < MIN_NUM_TOKENS: return None _a = MinHash(num_perm=__A) for token in set(__A): min_hash.update(token.encode()) return min_hash def lowerCAmelCase (__A): """simple docstring""" return {t for t in NON_ALPHA.split(__A) if len(t.strip()) > 0} class __A : '''simple docstring''' def __init__(self , *, A = 0.85 , ) -> Optional[int]: """simple docstring""" _a = duplication_jaccard_threshold _a = NUM_PERM _a = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) _a = defaultdict(A ) def a__ (self , A , A ) -> None: """simple docstring""" _a = self._index.query(A ) if code_key in self._index.keys: print(f'''Duplicate key {code_key}''' ) return self._index.insert(A , A ) if len(A ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(A ) break else: self._duplicate_clusters[close_duplicates[0]].add(A ) def a__ (self ) -> List[List[Dict]]: """simple docstring""" _a = [] for base, duplicates in self._duplicate_clusters.items(): _a = [base] + list(A ) # reformat the cluster to be a list of dict _a = [{'''base_index''': el[0], '''repo_name''': el[1], '''path''': el[2]} for el in cluster] duplicate_clusters.append(A ) return duplicate_clusters def a__ (self , A ) -> None: """simple docstring""" _a = self.get_duplicate_clusters() with open(A , '''w''' ) as f: json.dump(A , A ) def lowerCAmelCase (__A): """simple docstring""" _a , _a = element _a = get_min_hash([t for t in NON_ALPHA.split(data['''content''']) if len(t.strip()) > 0]) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def lowerCAmelCase (__A): """simple docstring""" with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(__A , max_queue_size=10_000) , chunksize=100 , ): if data is not None: yield data def lowerCAmelCase (__A , __A): """simple docstring""" _a = DuplicationIndex(duplication_jaccard_threshold=__A) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(__A)) , max_queue_size=100)): di.add(__A , __A) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def lowerCAmelCase (__A , __A): """simple docstring""" _a = get_tokens(__A) _a = get_tokens(__A) return len(tokensa & tokensa) / len(tokensa | tokensa) lowercase_ = None def lowerCAmelCase (__A , __A): """simple docstring""" _a = [] for elementa in cluster: _a = _shared_dataset[elementa['''base_index''']]['''content'''] for elementa in extremes: _a = _shared_dataset[elementa['''base_index''']]['''content'''] if jaccard_similarity(__A , __A) >= jaccard_threshold: elementa["copies"] += 1 break else: _a = 1 extremes.append(__A) return extremes def lowerCAmelCase (__A , __A , __A): """simple docstring""" global _shared_dataset _a = dataset _a = [] _a = partial(_find_cluster_extremes_shared , jaccard_threshold=__A) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( __A , __A , ) , total=len(__A) , ): extremes_list.append(__A) return extremes_list def lowerCAmelCase (__A , __A = 0.85): """simple docstring""" _a = make_duplicate_clusters(__A , __A) _a = {x['''base_index'''] for cluster in duplicate_clusters for x in cluster} _a = {} _a = find_extremes(__A , __A , __A) for extremes in extremes_clusters: for element in extremes: _a = element _a = duplicate_indices - set(extreme_dict.keys()) _a = dataset.filter(lambda __A , __A: idx not in remove_indices , with_indices=__A) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: _a = element['''base_index'''] in extreme_dict if element["is_extreme"]: _a = extreme_dict[element['''base_index''']]['''copies'''] print(F'''Original dataset size: {len(__A)}''') print(F'''Number of duplicate clusters: {len(__A)}''') print(F'''Files in duplicate cluster: {len(__A)}''') print(F'''Unique files in duplicate cluster: {len(__A)}''') print(F'''Filtered dataset size: {len(__A)}''') return ds_filter, duplicate_clusters
11
1
import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class lowerCamelCase__ : '''simple docstring''' def __init__( self : str , UpperCamelCase_ : List[str] , UpperCamelCase_ : str=sys.maxsize ) -> Union[str, Any]: '''simple docstring''' _lowercase : Optional[Any] = 'bilinear' _lowercase : str = max_size _lowercase : List[str] = short_edge_length def __call__( self : Optional[Any] , UpperCamelCase_ : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' _lowercase : Dict = [] for img in imgs: _lowercase , _lowercase : Optional[Any] = img.shape[:2] # later: provide list and randomly choose index for resize _lowercase : Tuple = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1 ) if size == 0: return img _lowercase : List[Any] = size * 1.0 / min(_lowercase , _lowercase ) if h < w: _lowercase , _lowercase : str = size, scale * w else: _lowercase , _lowercase : Optional[Any] = scale * h, size if max(_lowercase , _lowercase ) > self.max_size: _lowercase : Any = self.max_size * 1.0 / max(_lowercase , _lowercase ) _lowercase : str = newh * scale _lowercase : Dict = neww * scale _lowercase : Union[str, Any] = int(neww + 0.5 ) _lowercase : str = int(newh + 0.5 ) if img.dtype == np.uinta: _lowercase : Tuple = Image.fromarray(_lowercase ) _lowercase : Tuple = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR ) _lowercase : Optional[Any] = np.asarray(_lowercase ) else: _lowercase : Optional[int] = img.permute(2 , 0 , 1 ).unsqueeze(0 ) # 3, 0, 1) # hw(c) -> nchw _lowercase : List[str] = nn.functional.interpolate( _lowercase , (newh, neww) , mode=self.interp_method , align_corners=_lowercase ).squeeze(0 ) img_augs.append(_lowercase ) return img_augs class lowerCamelCase__ : '''simple docstring''' def __init__( self : Union[str, Any] , UpperCamelCase_ : int ) -> str: '''simple docstring''' _lowercase : str = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST ) _lowercase : Optional[int] = cfg.INPUT.FORMAT _lowercase : Union[str, Any] = cfg.SIZE_DIVISIBILITY _lowercase : int = cfg.PAD_VALUE _lowercase : Tuple = cfg.INPUT.MAX_SIZE_TEST _lowercase : Union[str, Any] = cfg.MODEL.DEVICE _lowercase : str = torch.tensor(cfg.MODEL.PIXEL_STD ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) _lowercase : str = torch.tensor(cfg.MODEL.PIXEL_MEAN ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) _lowercase : Tuple = lambda UpperCamelCase_ : (x - self.pixel_mean) / self.pixel_std def __UpperCAmelCase ( self : Any , UpperCamelCase_ : str ) -> Optional[Any]: '''simple docstring''' _lowercase : Any = tuple(max(_lowercase ) for s in zip(*[img.shape for img in images] ) ) _lowercase : int = [im.shape[-2:] for im in images] _lowercase : int = [ nn.functional.pad( _lowercase , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , ) for size, im in zip(_lowercase , _lowercase ) ] return torch.stack(_lowercase ), torch.tensor(_lowercase ) def __call__( self : Tuple , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Dict=False ) -> str: '''simple docstring''' with torch.no_grad(): if not isinstance(_lowercase , _lowercase ): _lowercase : Optional[Any] = [images] if single_image: assert len(_lowercase ) == 1 for i in range(len(_lowercase ) ): if isinstance(images[i] , torch.Tensor ): images.insert(_lowercase , images.pop(_lowercase ).to(self.device ).float() ) elif not isinstance(images[i] , torch.Tensor ): images.insert( _lowercase , torch.as_tensor(img_tensorize(images.pop(_lowercase ) , input_format=self.input_format ) ) .to(self.device ) .float() , ) # resize smallest edge _lowercase : List[Any] = torch.tensor([im.shape[:2] for im in images] ) _lowercase : Optional[Any] = self.aug(_lowercase ) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic _lowercase : Tuple = [self.normalizer(_lowercase ) for x in images] # now pad them to do the following operations _lowercase , _lowercase : Any = self.pad(_lowercase ) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad _lowercase : List[str] = torch.true_divide(_lowercase , _lowercase ) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def __UpperCamelCase ( _lowercase, _lowercase ) -> Dict: boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def __UpperCamelCase ( _lowercase, _lowercase ) -> Dict: assert torch.isfinite(UpperCamelCase__ ).all(), "Box tensor contains infinite or NaN!" _lowercase , _lowercase : str = box_size tensor[:, 0].clamp_(min=0, max=UpperCamelCase__ ) tensor[:, 1].clamp_(min=0, max=UpperCamelCase__ ) tensor[:, 2].clamp_(min=0, max=UpperCamelCase__ ) tensor[:, 3].clamp_(min=0, max=UpperCamelCase__ )
702
'''simple docstring''' import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging _A : Optional[int] =logging.get_logger(__name__) class lowerCamelCase__ ( A ): '''simple docstring''' A_ = ["""input_features""", """is_longer"""] def __init__( self : List[Any] , UpperCamelCase_ : List[Any]=64 , UpperCamelCase_ : int=4_8000 , UpperCamelCase_ : Union[str, Any]=480 , UpperCamelCase_ : Any=10 , UpperCamelCase_ : Optional[int]=1024 , UpperCamelCase_ : Optional[int]=0.0 , UpperCamelCase_ : Tuple=False , UpperCamelCase_ : float = 0 , UpperCamelCase_ : float = 1_4000 , UpperCamelCase_ : int = None , UpperCamelCase_ : str = "fusion" , UpperCamelCase_ : str = "repeatpad" , **UpperCamelCase_ : Optional[Any] , ) -> Dict: '''simple docstring''' super().__init__( feature_size=UpperCamelCase_ , sampling_rate=UpperCamelCase_ , padding_value=UpperCamelCase_ , return_attention_mask=UpperCamelCase_ , **UpperCamelCase_ , ) _lowercase : Tuple = top_db _lowercase : Any = truncation _lowercase : str = padding _lowercase : int = fft_window_size _lowercase : Any = (fft_window_size >> 1) + 1 _lowercase : int = hop_length _lowercase : Any = max_length_s _lowercase : str = max_length_s * sampling_rate _lowercase : Any = sampling_rate _lowercase : List[Any] = frequency_min _lowercase : Tuple = frequency_max _lowercase : Tuple = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=UpperCamelCase_ , min_frequency=UpperCamelCase_ , max_frequency=UpperCamelCase_ , sampling_rate=UpperCamelCase_ , norm=UpperCamelCase_ , mel_scale='htk' , ) _lowercase : Any = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=UpperCamelCase_ , min_frequency=UpperCamelCase_ , max_frequency=UpperCamelCase_ , sampling_rate=UpperCamelCase_ , norm='slaney' , mel_scale='slaney' , ) def __UpperCAmelCase ( self : Tuple ) -> Dict[str, Any]: '''simple docstring''' _lowercase : Tuple = copy.deepcopy(self.__dict__ ) _lowercase : int = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def __UpperCAmelCase ( self : Dict , UpperCamelCase_ : np.array , UpperCamelCase_ : Optional[np.array] = None ) -> np.ndarray: '''simple docstring''' _lowercase : List[str] = spectrogram( UpperCamelCase_ , window_function(self.fft_window_size , 'hann' ) , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=UpperCamelCase_ , log_mel='dB' , ) return log_mel_spectrogram.T def __UpperCAmelCase ( self : List[Any] , UpperCamelCase_ : Any , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Union[str, Any] ) -> Optional[int]: '''simple docstring''' _lowercase : Tuple = np.array_split(list(range(0 , total_frames - chunk_frames + 1 ) ) , 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk _lowercase : int = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk _lowercase : Union[str, Any] = [0] # randomly choose index for each part _lowercase : Tuple = np.random.choice(ranges[0] ) _lowercase : int = np.random.choice(ranges[1] ) _lowercase : Any = np.random.choice(ranges[2] ) _lowercase : int = mel[idx_front : idx_front + chunk_frames, :] _lowercase : int = mel[idx_middle : idx_middle + chunk_frames, :] _lowercase : Tuple = mel[idx_back : idx_back + chunk_frames, :] _lowercase : List[Any] = torch.tensor(mel[None, None, :] ) _lowercase : Optional[int] = torch.nn.functional.interpolate( UpperCamelCase_ , size=[chunk_frames, 64] , mode='bilinear' , align_corners=UpperCamelCase_ ) _lowercase : str = mel_shrink[0][0].numpy() _lowercase : int = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0 ) return mel_fusion def __UpperCAmelCase ( self : List[str] , UpperCamelCase_ : np.array , UpperCamelCase_ : List[Any] , UpperCamelCase_ : int , UpperCamelCase_ : Optional[int] ) -> np.array: '''simple docstring''' if waveform.shape[0] > max_length: if truncation == "rand_trunc": _lowercase : Tuple = True # random crop to max_length (for compatibility) -> this should be handled by self.pad _lowercase : Any = len(UpperCamelCase_ ) - max_length _lowercase : Dict = np.random.randint(0 , overflow + 1 ) _lowercase : Optional[int] = waveform[idx : idx + max_length] _lowercase : Dict = self._np_extract_fbank_features(UpperCamelCase_ , self.mel_filters_slaney )[None, :] elif truncation == "fusion": _lowercase : List[Any] = self._np_extract_fbank_features(UpperCamelCase_ , self.mel_filters ) _lowercase : List[Any] = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed _lowercase : Optional[int] = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. _lowercase : Optional[Any] = np.stack([mel, mel, mel, mel] , axis=0 ) _lowercase : List[Any] = False else: _lowercase : Union[str, Any] = self._random_mel_fusion(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) _lowercase : int = True else: raise NotImplementedError(F'''data_truncating {truncation} not implemented''' ) else: _lowercase : Any = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": _lowercase : List[Any] = int(max_length / len(UpperCamelCase_ ) ) _lowercase : List[str] = np.stack(np.tile(UpperCamelCase_ , n_repeat + 1 ) )[:max_length] if padding == "repeatpad": _lowercase : Union[str, Any] = int(max_length / len(UpperCamelCase_ ) ) _lowercase : Union[str, Any] = np.stack(np.tile(UpperCamelCase_ , UpperCamelCase_ ) ) _lowercase : Dict = np.pad(UpperCamelCase_ , (0, max_length - waveform.shape[0]) , mode='constant' , constant_values=0 ) if truncation == "fusion": _lowercase : str = self._np_extract_fbank_features(UpperCamelCase_ , self.mel_filters ) _lowercase : Dict = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0 ) else: _lowercase : List[Any] = self._np_extract_fbank_features(UpperCamelCase_ , self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self : Union[str, Any] , UpperCamelCase_ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , UpperCamelCase_ : str = None , UpperCamelCase_ : Optional[str] = None , UpperCamelCase_ : Optional[int] = None , UpperCamelCase_ : Optional[int] = None , UpperCamelCase_ : Optional[Union[str, TensorType]] = None , **UpperCamelCase_ : Dict , ) -> BatchFeature: '''simple docstring''' _lowercase : Dict = truncation if truncation is not None else self.truncation _lowercase : int = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'''The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a''' F''' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input''' F''' was sampled with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) _lowercase : Optional[Any] = isinstance(UpperCamelCase_ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' ) _lowercase : List[str] = is_batched_numpy or ( isinstance(UpperCamelCase_ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: _lowercase : Dict = [np.asarray(UpperCamelCase_ , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(UpperCamelCase_ , np.ndarray ): _lowercase : Any = np.asarray(UpperCamelCase_ , dtype=np.floataa ) elif isinstance(UpperCamelCase_ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): _lowercase : Tuple = raw_speech.astype(np.floataa ) # always return batch if not is_batched: _lowercase : int = [np.asarray(UpperCamelCase_ )] # convert to mel spectrogram, truncate and pad if needed. _lowercase : Optional[Any] = [ self._get_input_mel(UpperCamelCase_ , max_length if max_length else self.nb_max_samples , UpperCamelCase_ , UpperCamelCase_ ) for waveform in raw_speech ] _lowercase : List[Any] = [] _lowercase : Dict = [] for mel, longer in padded_inputs: input_mel.append(UpperCamelCase_ ) is_longer.append(UpperCamelCase_ ) if truncation == "fusion" and sum(UpperCamelCase_ ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer _lowercase : Optional[Any] = np.random.randint(0 , len(UpperCamelCase_ ) ) _lowercase : str = True if isinstance(input_mel[0] , UpperCamelCase_ ): _lowercase : str = [np.asarray(UpperCamelCase_ , dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool _lowercase : Tuple = [[longer] for longer in is_longer] _lowercase : Optional[Any] = {'input_features': input_mel, 'is_longer': is_longer} _lowercase : Optional[int] = BatchFeature(UpperCamelCase_ ) if return_tensors is not None: _lowercase : List[Any] = input_features.convert_to_tensors(UpperCamelCase_ ) return input_features
4
0
"""simple docstring""" import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel _lowerCAmelCase : Optional[int] = logging.getLogger(__name__) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Tuple: '''simple docstring''' if os.path.exists(_lowerCamelCase ): if os.path.exists(os.path.join(_lowerCamelCase , "config.json" ) ) and os.path.isfile( os.path.join(_lowerCamelCase , "config.json" ) ): os.remove(os.path.join(_lowerCamelCase , "config.json" ) ) if os.path.exists(os.path.join(_lowerCamelCase , "pytorch_model.bin" ) ) and os.path.isfile( os.path.join(_lowerCamelCase , "pytorch_model.bin" ) ): os.remove(os.path.join(_lowerCamelCase , "pytorch_model.bin" ) ) else: os.makedirs(_lowerCamelCase ) model.save_pretrained(_lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=False ) -> str: '''simple docstring''' _lowerCamelCase : List[str] = 2 if unlogit: _lowerCamelCase : List[Any] = torch.pow(_lowerCamelCase , _lowerCamelCase ) _lowerCamelCase : Dict = p * torch.log(_lowerCamelCase ) _lowerCamelCase : List[Any] = 0 return -plogp.sum(dim=-1 ) def lowerCamelCase_( _lowerCamelCase ) -> Dict: '''simple docstring''' logger.info("lv, h >\t" + "\t".join(F"""{x + 1}""" for x in range(len(_lowerCamelCase ) ) ) ) for row in range(len(_lowerCamelCase ) ): if tensor.dtype != torch.long: logger.info(F"""layer {row + 1}:\t""" + "\t".join(F"""{x:.5f}""" for x in tensor[row].cpu().data ) ) else: logger.info(F"""layer {row + 1}:\t""" + "\t".join(F"""{x:d}""" for x in tensor[row].cpu().data ) ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=None , _lowerCamelCase=False ) -> Tuple: '''simple docstring''' _lowerCamelCase : Any = model.config.num_hidden_layers, model.config.num_attention_heads _lowerCamelCase : Optional[Any] = torch.zeros(_lowerCamelCase , _lowerCamelCase ).to(args.device ) _lowerCamelCase : Tuple = torch.zeros(_lowerCamelCase , _lowerCamelCase ).to(args.device ) if head_mask is None: _lowerCamelCase : Optional[int] = torch.ones(_lowerCamelCase , _lowerCamelCase ).to(args.device ) head_mask.requires_grad_(requires_grad=_lowerCamelCase ) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: _lowerCamelCase : str = None _lowerCamelCase : str = 0.0 _lowerCamelCase : Any = 0.0 for step, inputs in enumerate(tqdm(_lowerCamelCase , desc="Iteration" , disable=args.local_rank not in [-1, 0] ) ): _lowerCamelCase : List[str] = tuple(t.to(args.device ) for t in inputs ) (_lowerCamelCase ) : int = inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) _lowerCamelCase : List[Any] = model(_lowerCamelCase , labels=_lowerCamelCase , head_mask=_lowerCamelCase ) # (loss), lm_logits, presents, (all hidden_states), (attentions) _lowerCamelCase : List[str] = ( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(_lowerCamelCase ): _lowerCamelCase : int = entropy(attn.detach() , _lowerCamelCase ) attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(_lowerCamelCase ).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: _lowerCamelCase : Any = 2 _lowerCamelCase : Dict = torch.pow(torch.pow(_lowerCamelCase , _lowerCamelCase ).sum(-1 ) , 1 / exponent ) head_importance /= norm_by_layer.unsqueeze(-1 ) + 1e-20 if not args.dont_normalize_global_importance: _lowerCamelCase : Union[str, Any] = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info("Attention entropies" ) print_ad_tensor(_lowerCamelCase ) if compute_importance: logger.info("Head importance scores" ) print_ad_tensor(_lowerCamelCase ) logger.info("Head ranked by importance scores" ) _lowerCamelCase : str = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device ) _lowerCamelCase : Optional[int] = torch.arange( head_importance.numel() , device=args.device ) _lowerCamelCase : Optional[Any] = head_ranks.view_as(_lowerCamelCase ) print_ad_tensor(_lowerCamelCase ) return attn_entropy, head_importance, total_loss def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Dict: '''simple docstring''' _lowerCamelCase : List[Any] = compute_heads_importance(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , compute_entropy=_lowerCamelCase ) _lowerCamelCase : int = 1 / loss # instead of downsteam score use the LM loss logger.info("Pruning: original score: %f, threshold: %f" , _lowerCamelCase , original_score * args.masking_threshold ) _lowerCamelCase : List[str] = torch.ones_like(_lowerCamelCase ) _lowerCamelCase : int = max(1 , int(new_head_mask.numel() * args.masking_amount ) ) _lowerCamelCase : Dict = original_score while current_score >= original_score * args.masking_threshold: _lowerCamelCase : Any = new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads _lowerCamelCase : Tuple = float("Inf" ) _lowerCamelCase : Dict = head_importance.view(-1 ).sort()[1] if len(_lowerCamelCase ) <= num_to_mask: print("BREAK BY num_to_mask" ) break # mask heads _lowerCamelCase : List[str] = current_heads_to_mask[:num_to_mask] logger.info("Heads to mask: %s" , str(current_heads_to_mask.tolist() ) ) _lowerCamelCase : Tuple = new_head_mask.view(-1 ) _lowerCamelCase : str = 0.0 _lowerCamelCase : Any = new_head_mask.view_as(_lowerCamelCase ) _lowerCamelCase : List[str] = new_head_mask.clone().detach() print_ad_tensor(_lowerCamelCase ) # Compute metric and head importance again _lowerCamelCase : Dict = compute_heads_importance( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , compute_entropy=_lowerCamelCase , head_mask=_lowerCamelCase ) _lowerCamelCase : Tuple = 1 / loss logger.info( "Masking: current score: %f, remaining heads %d (%.1f percents)" , _lowerCamelCase , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 100 , ) logger.info("Final head mask" ) print_ad_tensor(_lowerCamelCase ) np.save(os.path.join(args.output_dir , "head_mask.npy" ) , head_mask.detach().cpu().numpy() ) return head_mask def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Any: '''simple docstring''' _lowerCamelCase : Optional[Any] = datetime.now() _lowerCamelCase : List[Any] = compute_heads_importance( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , compute_entropy=_lowerCamelCase , compute_importance=_lowerCamelCase , head_mask=_lowerCamelCase ) _lowerCamelCase : Any = 1 / loss _lowerCamelCase : Union[str, Any] = datetime.now() - before_time _lowerCamelCase : Any = sum(p.numel() for p in model.parameters() ) _lowerCamelCase : int = { layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(_lowerCamelCase ) ) } for k, v in heads_to_prune.items(): if isinstance(_lowerCamelCase , _lowerCamelCase ): _lowerCamelCase : Dict = [ v, ] assert sum(len(_lowerCamelCase ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item() model.prune_heads(_lowerCamelCase ) _lowerCamelCase : List[Any] = sum(p.numel() for p in model.parameters() ) _lowerCamelCase : Any = datetime.now() _lowerCamelCase : List[Any] = compute_heads_importance( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , compute_entropy=_lowerCamelCase , compute_importance=_lowerCamelCase , head_mask=_lowerCamelCase , actually_pruned=_lowerCamelCase , ) _lowerCamelCase : Optional[int] = 1 / loss _lowerCamelCase : Any = datetime.now() - before_time logger.info( "Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)" , _lowerCamelCase , _lowerCamelCase , pruned_num_params / original_num_params * 100 , ) logger.info("Pruning: score with masking: %f score with pruning: %f" , _lowerCamelCase , _lowerCamelCase ) logger.info("Pruning: speed ratio (original timing / new timing): %f percents" , original_time / new_time * 100 ) save_model(_lowerCamelCase , args.output_dir ) def lowerCamelCase_( ) -> Dict: '''simple docstring''' _lowerCamelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--data_dir" , default=_lowerCamelCase , type=_lowerCamelCase , required=_lowerCamelCase , help="The input data dir. Should contain the .tsv files (or other data files) for the task." , ) parser.add_argument( "--model_name_or_path" , default=_lowerCamelCase , type=_lowerCamelCase , required=_lowerCamelCase , help="Path to pretrained model or model identifier from huggingface.co/models" , ) parser.add_argument( "--output_dir" , default=_lowerCamelCase , type=_lowerCamelCase , required=_lowerCamelCase , help="The output directory where the model predictions and checkpoints will be written." , ) # Other parameters parser.add_argument( "--config_name" , default="" , type=_lowerCamelCase , help="Pretrained config name or path if not the same as model_name_or_path" , ) parser.add_argument( "--tokenizer_name" , default="" , type=_lowerCamelCase , help="Pretrained tokenizer name or path if not the same as model_name_or_path" , ) parser.add_argument( "--cache_dir" , default=_lowerCamelCase , type=_lowerCamelCase , help="Where do you want to store the pre-trained models downloaded from s3" , ) parser.add_argument( "--data_subset" , type=_lowerCamelCase , default=-1 , help="If > 0: limit the data to a subset of data_subset instances." ) parser.add_argument( "--overwrite_output_dir" , action="store_true" , help="Whether to overwrite data in output directory" ) parser.add_argument( "--overwrite_cache" , action="store_true" , help="Overwrite the cached training and evaluation sets" ) parser.add_argument( "--dont_normalize_importance_by_layer" , action="store_true" , help="Don\'t normalize importance score by layers" ) parser.add_argument( "--dont_normalize_global_importance" , action="store_true" , help="Don\'t normalize all importance scores between 0 and 1" , ) parser.add_argument( "--try_masking" , action="store_true" , help="Whether to try to mask head until a threshold of accuracy." ) parser.add_argument( "--masking_threshold" , default=0.9 , type=_lowerCamelCase , help="masking threshold in term of metrics (stop masking when metric < threshold * original metric value)." , ) parser.add_argument( "--masking_amount" , default=0.1 , type=_lowerCamelCase , help="Amount to heads to masking at each masking step." ) parser.add_argument("--metric_name" , default="acc" , type=_lowerCamelCase , help="Metric to use for head masking." ) parser.add_argument( "--max_seq_length" , default=128 , type=_lowerCamelCase , help=( "The maximum total input sequence length after WordPiece tokenization. \n" "Sequences longer than this will be truncated, sequences shorter padded." ) , ) parser.add_argument("--batch_size" , default=1 , type=_lowerCamelCase , help="Batch size." ) parser.add_argument("--seed" , type=_lowerCamelCase , default=42 ) parser.add_argument("--local_rank" , type=_lowerCamelCase , default=-1 , help="local_rank for distributed training on gpus" ) parser.add_argument("--no_cuda" , action="store_true" , help="Whether not to use CUDA when available" ) parser.add_argument("--server_ip" , type=_lowerCamelCase , default="" , help="Can be used for distant debugging." ) parser.add_argument("--server_port" , type=_lowerCamelCase , default="" , help="Can be used for distant debugging." ) _lowerCamelCase : Tuple = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("Waiting for debugger attach" ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=_lowerCamelCase ) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: _lowerCamelCase : str = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu" ) _lowerCamelCase : Optional[Any] = 0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank ) _lowerCamelCase : Dict = torch.device("cuda" , args.local_rank ) _lowerCamelCase : Optional[Any] = 1 torch.distributed.init_process_group(backend="nccl" ) # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN ) logger.info("device: {} n_gpu: {}, distributed: {}".format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) ) _lowerCamelCase : List[Any] = GPTaLMHeadModel.from_pretrained(args.model_name_or_path ) # Distributed and parallel training model.to(args.device ) if args.local_rank != -1: _lowerCamelCase : Tuple = nn.parallel.DistributedDataParallel( _lowerCamelCase , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=_lowerCamelCase ) elif args.n_gpu > 1: _lowerCamelCase : Optional[Any] = nn.DataParallel(_lowerCamelCase ) # Print/save training arguments os.makedirs(args.output_dir , exist_ok=_lowerCamelCase ) torch.save(_lowerCamelCase , os.path.join(args.output_dir , "run_args.bin" ) ) logger.info("Training/evaluation parameters %s" , _lowerCamelCase ) # Prepare dataset _lowerCamelCase : Any = np.concatenate( [ np.loadtxt(args.data_dir , dtype=np.intaa ), ] ) _lowerCamelCase : int = (torch.from_numpy(_lowerCamelCase ),) _lowerCamelCase : int = TensorDataset(*_lowerCamelCase ) _lowerCamelCase : List[str] = RandomSampler(_lowerCamelCase ) _lowerCamelCase : List[str] = DataLoader(_lowerCamelCase , sampler=_lowerCamelCase , batch_size=args.batch_size ) # Compute head entropy and importance score compute_heads_importance(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: _lowerCamelCase : int = mask_heads(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) prune_heads(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if __name__ == "__main__": main()
46
'''simple docstring''' import json import os from collections import Counter import torch import torchvision import torchvision.transforms as transforms from PIL import Image from torch import nn from torch.utils.data import Dataset _UpperCamelCase : str = {1: (1, 1), 2: (2, 1), 3: (3, 1), 4: (2, 2), 5: (5, 1), 6: (3, 2), 7: (7, 1), 8: (4, 2), 9: (3, 3)} class snake_case__ ( nn.Module): def __init__( self : Optional[int] , _A : Tuple ) -> List[str]: super().__init__() UpperCAmelCase_ : Tuple = torchvision.models.resnetaaa(pretrained=_A ) UpperCAmelCase_ : Union[str, Any] = list(model.children() )[:-2] UpperCAmelCase_ : Union[str, Any] = nn.Sequential(*_A ) UpperCAmelCase_ : List[Any] = nn.AdaptiveAvgPoolad(POOLING_BREAKDOWN[args.num_image_embeds] ) def A ( self : str , _A : Optional[int] ) -> str: # Bx3x224x224 -> Bx2048x7x7 -> Bx2048xN -> BxNx2048 UpperCAmelCase_ : List[str] = self.pool(self.model(_A ) ) UpperCAmelCase_ : Tuple = torch.flatten(_A , start_dim=2 ) UpperCAmelCase_ : Union[str, Any] = out.transpose(1 , 2 ).contiguous() return out # BxNx2048 class snake_case__ ( UpperCamelCase): def __init__( self : Optional[int] , _A : int , _A : str , _A : int , _A : Dict , _A : int ) -> List[str]: UpperCAmelCase_ : Any = [json.loads(_A ) for l in open(_A )] UpperCAmelCase_ : Tuple = os.path.dirname(_A ) UpperCAmelCase_ : Any = tokenizer UpperCAmelCase_ : Optional[Any] = labels UpperCAmelCase_ : List[str] = len(_A ) UpperCAmelCase_ : int = max_seq_length UpperCAmelCase_ : str = transforms def __len__( self : Tuple ) -> Tuple: return len(self.data ) def __getitem__( self : Union[str, Any] , _A : Tuple ) -> List[Any]: UpperCAmelCase_ : Tuple = torch.LongTensor(self.tokenizer.encode(self.data[index]['''text'''] , add_special_tokens=_A ) ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : int = sentence[0], sentence[1:-1], sentence[-1] UpperCAmelCase_ : List[str] = sentence[: self.max_seq_length] UpperCAmelCase_ : List[str] = torch.zeros(self.n_classes ) UpperCAmelCase_ : Optional[int] = 1 UpperCAmelCase_ : Tuple = Image.open(os.path.join(self.data_dir , self.data[index]['''img'''] ) ).convert('''RGB''' ) UpperCAmelCase_ : List[Any] = self.transforms(_A ) return { "image_start_token": start_token, "image_end_token": end_token, "sentence": sentence, "image": image, "label": label, } def A ( self : Tuple ) -> Union[str, Any]: UpperCAmelCase_ : Tuple = Counter() for row in self.data: label_freqs.update(row['''label'''] ) return label_freqs def __UpperCAmelCase ( A : Tuple ) -> Union[str, Any]: UpperCAmelCase_ : int = [len(row['''sentence'''] ) for row in batch] UpperCAmelCase_ , UpperCAmelCase_ : Dict = len(A ), max(A ) UpperCAmelCase_ : Tuple = torch.zeros(A , A , dtype=torch.long ) UpperCAmelCase_ : Dict = torch.zeros(A , A , dtype=torch.long ) for i_batch, (input_row, length) in enumerate(zip(A , A ) ): UpperCAmelCase_ : int = input_row['''sentence'''] UpperCAmelCase_ : Optional[Any] = 1 UpperCAmelCase_ : Union[str, Any] = torch.stack([row['''image'''] for row in batch] ) UpperCAmelCase_ : Optional[int] = torch.stack([row['''label'''] for row in batch] ) UpperCAmelCase_ : Any = torch.stack([row['''image_start_token'''] for row in batch] ) UpperCAmelCase_ : int = torch.stack([row['''image_end_token'''] for row in batch] ) return text_tensor, mask_tensor, img_tensor, img_start_token, img_end_token, tgt_tensor def __UpperCAmelCase ( ) -> Union[str, Any]: return [ "Crime", "Drama", "Thriller", "Action", "Comedy", "Romance", "Documentary", "Short", "Mystery", "History", "Family", "Adventure", "Fantasy", "Sci-Fi", "Western", "Horror", "Sport", "War", "Music", "Musical", "Animation", "Biography", "Film-Noir", ] def __UpperCAmelCase ( ) -> Union[str, Any]: return transforms.Compose( [ transforms.Resize(2_5_6 ), transforms.CenterCrop(2_2_4 ), transforms.ToTensor(), transforms.Normalize( mean=[0.46777044, 0.44531429, 0.40661017] , std=[0.12221994, 0.12145835, 0.14380469] , ), ] )
541
0
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase : Union[str, Any] = logging.get_logger(__name__) UpperCAmelCase : Union[str, Any] = { '''google/vivit-b-16x2-kinetics400''': ( '''https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json''' ), # See all Vivit models at https://huggingface.co/models?filter=vivit } class _A( snake_case__ ): """simple docstring""" UpperCamelCase : Any = '''vivit''' def __init__( self , _A=224 , _A=32 , _A=[2, 16, 16] , _A=3 , _A=768 , _A=12 , _A=12 , _A=3072 , _A="gelu_fast" , _A=0.0 , _A=0.0 , _A=0.0_2 , _A=1e-0_6 , _A=True , **_A , ): __A : List[str] = hidden_size __A : Tuple = num_hidden_layers __A : Any = num_attention_heads __A : str = intermediate_size __A : Union[str, Any] = hidden_act __A : int = hidden_dropout_prob __A : Dict = attention_probs_dropout_prob __A : Union[str, Any] = initializer_range __A : List[Any] = layer_norm_eps __A : int = image_size __A : Optional[int] = num_frames __A : Optional[Any] = tubelet_size __A : Union[str, Any] = num_channels __A : Union[str, Any] = qkv_bias super().__init__(**_A )
77
from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging UpperCAmelCase : Dict = logging.get_logger(__name__) UpperCAmelCase : str = { '''Salesforce/codegen-350M-nl''': '''https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json''', '''Salesforce/codegen-350M-multi''': '''https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json''', '''Salesforce/codegen-350M-mono''': '''https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json''', '''Salesforce/codegen-2B-nl''': '''https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json''', '''Salesforce/codegen-2B-multi''': '''https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json''', '''Salesforce/codegen-2B-mono''': '''https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json''', '''Salesforce/codegen-6B-nl''': '''https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json''', '''Salesforce/codegen-6B-multi''': '''https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json''', '''Salesforce/codegen-6B-mono''': '''https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json''', '''Salesforce/codegen-16B-nl''': '''https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json''', '''Salesforce/codegen-16B-multi''': '''https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json''', '''Salesforce/codegen-16B-mono''': '''https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json''', } class _A( snake_case__ ): """simple docstring""" UpperCamelCase : List[str] = '''codegen''' UpperCamelCase : List[str] = { '''max_position_embeddings''': '''n_positions''', '''hidden_size''': '''n_embd''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self , _A=50400 , _A=2048 , _A=2048 , _A=4096 , _A=28 , _A=16 , _A=64 , _A=None , _A="gelu_new" , _A=0.0 , _A=0.0 , _A=0.0 , _A=1e-5 , _A=0.0_2 , _A=True , _A=50256 , _A=50256 , _A=False , **_A , ): __A : Any = vocab_size __A : Tuple = n_ctx __A : Union[str, Any] = n_positions __A : Optional[Any] = n_embd __A : Any = n_layer __A : Dict = n_head __A : Union[str, Any] = n_inner __A : List[Any] = rotary_dim __A : str = activation_function __A : Any = resid_pdrop __A : Tuple = embd_pdrop __A : Tuple = attn_pdrop __A : Union[str, Any] = layer_norm_epsilon __A : str = initializer_range __A : Optional[Any] = use_cache __A : Union[str, Any] = bos_token_id __A : Tuple = eos_token_id super().__init__( bos_token_id=_A , eos_token_id=_A , tie_word_embeddings=_A , **_A ) class _A( snake_case__ ): """simple docstring""" def __init__( self , _A , _A = "default" , _A = None , _A = False , ): super().__init__(_A , task=_A , patching_specs=_A , use_past=_A ) if not getattr(self._config , 'pad_token_id' , _A ): # TODO: how to do that better? __A : Dict = 0 @property def UpperCAmelCase_ ( self ): __A : List[str] = OrderedDict({'input_ids': {0: 'batch', 1: 'sequence'}} ) if self.use_past: self.fill_with_past_key_values_(_A , direction='inputs' ) __A : Tuple = {0: 'batch', 1: 'past_sequence + sequence'} else: __A : int = {0: 'batch', 1: 'sequence'} return common_inputs @property def UpperCAmelCase_ ( self ): return self._config.n_layer @property def UpperCAmelCase_ ( self ): return self._config.n_head def UpperCAmelCase_ ( self , _A , _A = -1 , _A = -1 , _A = False , _A = None , ): __A : Any = super(_A , self ).generate_dummy_inputs( _A , batch_size=_A , seq_length=_A , is_pair=_A , framework=_A ) # We need to order the input in the way they appears in the forward() __A : str = OrderedDict({'input_ids': common_inputs['input_ids']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch __A , __A : Any = common_inputs['input_ids'].shape # Not using the same length for past_key_values __A : Any = seqlen + 2 __A : List[str] = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) __A : Optional[Any] = [ (torch.zeros(_A ), torch.zeros(_A )) for _ in range(self.num_layers ) ] __A : Tuple = common_inputs['attention_mask'] if self.use_past: __A : str = ordered_inputs['attention_mask'].dtype __A : List[Any] = torch.cat( [ordered_inputs['attention_mask'], torch.ones(_A , _A , dtype=_A )] , dim=1 ) return ordered_inputs @property def UpperCAmelCase_ ( self ): return 13
77
1
'''simple docstring''' import os from typing import List, Optional, Union from ...image_processing_utils import BatchFeature from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType from ..auto import AutoTokenizer class a_ ( A__ ): lowercase_ : Dict = ['''image_processor''', '''tokenizer'''] lowercase_ : str = '''BlipImageProcessor''' lowercase_ : Any = '''AutoTokenizer''' def __init__( self : Optional[int] , __lowerCAmelCase : Tuple , __lowerCAmelCase : List[str] , __lowerCAmelCase : Any ): super().__init__(__lowerCAmelCase , __lowerCAmelCase ) # add QFormer tokenizer __snake_case = qformer_tokenizer def __call__( self : Tuple , __lowerCAmelCase : ImageInput = None , __lowerCAmelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , __lowerCAmelCase : bool = True , __lowerCAmelCase : Union[bool, str, PaddingStrategy] = False , __lowerCAmelCase : Union[bool, str, TruncationStrategy] = None , __lowerCAmelCase : Optional[int] = None , __lowerCAmelCase : int = 0 , __lowerCAmelCase : Optional[int] = None , __lowerCAmelCase : Optional[bool] = None , __lowerCAmelCase : bool = False , __lowerCAmelCase : bool = False , __lowerCAmelCase : bool = False , __lowerCAmelCase : bool = False , __lowerCAmelCase : bool = False , __lowerCAmelCase : bool = True , __lowerCAmelCase : Optional[Union[str, TensorType]] = None , **__lowerCAmelCase : str , ): if images is None and text is None: raise ValueError('You have to specify at least images or text.' ) __snake_case = BatchFeature() if text is not None: __snake_case = self.tokenizer( text=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase , padding=__lowerCAmelCase , truncation=__lowerCAmelCase , max_length=__lowerCAmelCase , stride=__lowerCAmelCase , pad_to_multiple_of=__lowerCAmelCase , return_attention_mask=__lowerCAmelCase , return_overflowing_tokens=__lowerCAmelCase , return_special_tokens_mask=__lowerCAmelCase , return_offsets_mapping=__lowerCAmelCase , return_token_type_ids=__lowerCAmelCase , return_length=__lowerCAmelCase , verbose=__lowerCAmelCase , return_tensors=__lowerCAmelCase , **__lowerCAmelCase , ) encoding.update(__lowerCAmelCase ) __snake_case = self.qformer_tokenizer( text=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase , padding=__lowerCAmelCase , truncation=__lowerCAmelCase , max_length=__lowerCAmelCase , stride=__lowerCAmelCase , pad_to_multiple_of=__lowerCAmelCase , return_attention_mask=__lowerCAmelCase , return_overflowing_tokens=__lowerCAmelCase , return_special_tokens_mask=__lowerCAmelCase , return_offsets_mapping=__lowerCAmelCase , return_token_type_ids=__lowerCAmelCase , return_length=__lowerCAmelCase , verbose=__lowerCAmelCase , return_tensors=__lowerCAmelCase , **__lowerCAmelCase , ) __snake_case = qformer_text_encoding.pop('input_ids' ) __snake_case = qformer_text_encoding.pop('attention_mask' ) if images is not None: __snake_case = self.image_processor(__lowerCAmelCase , return_tensors=__lowerCAmelCase ) encoding.update(__lowerCAmelCase ) return encoding def lowercase__ ( self : List[Any] , *__lowerCAmelCase : Optional[Any] , **__lowerCAmelCase : Optional[Any] ): return self.tokenizer.batch_decode(*__lowerCAmelCase , **__lowerCAmelCase ) def lowercase__ ( self : Dict , *__lowerCAmelCase : int , **__lowerCAmelCase : List[str] ): return self.tokenizer.decode(*__lowerCAmelCase , **__lowerCAmelCase ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def lowercase__ ( self : List[str] ): __snake_case = self.tokenizer.model_input_names __snake_case = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) def lowercase__ ( self : Union[str, Any] , __lowerCAmelCase : Optional[int] , **__lowerCAmelCase : str ): if os.path.isfile(__lowerCAmelCase ): raise ValueError(F'Provided path ({save_directory}) should be a directory, not a file' ) os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase ) __snake_case = os.path.join(__lowerCAmelCase , 'qformer_tokenizer' ) self.qformer_tokenizer.save_pretrained(__lowerCAmelCase ) return super().save_pretrained(__lowerCAmelCase , **__lowerCAmelCase ) @classmethod def lowercase__ ( cls : str , __lowerCAmelCase : List[str] , **__lowerCAmelCase : Dict ): __snake_case = AutoTokenizer.from_pretrained(__lowerCAmelCase , subfolder='qformer_tokenizer' ) __snake_case = cls._get_arguments_from_pretrained(__lowerCAmelCase , **__lowerCAmelCase ) args.append(__lowerCAmelCase ) return cls(*__lowerCAmelCase )
356
"""simple docstring""" __lowerCamelCase = { "A": ["B", "C", "E"], "B": ["A", "D", "E"], "C": ["A", "F", "G"], "D": ["B"], "E": ["A", "B", "D"], "F": ["C"], "G": ["C"], } def a ( __snake_case : dict, __snake_case : str, __snake_case : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ :List[Any] = set() # keep track of all the paths to be checked UpperCAmelCase_ :Any = [[start]] # return path if start is goal if start == goal: return [start] # keeps looping until all possible paths have been checked while queue: # pop the first path from the queue UpperCAmelCase_ :Tuple = queue.pop(0 ) # get the last node from the path UpperCAmelCase_ :str = path[-1] if node not in explored: UpperCAmelCase_ :Any = graph[node] # go through all neighbour nodes, construct a new path and # push it into the queue for neighbour in neighbours: UpperCAmelCase_ :Union[str, Any] = list(__snake_case ) new_path.append(__snake_case ) queue.append(__snake_case ) # return path if neighbour is goal if neighbour == goal: return new_path # mark node as explored explored.add(__snake_case ) # in case there's no path between the 2 nodes return [] def a ( __snake_case : dict, __snake_case : int, __snake_case : str ): '''simple docstring''' if not graph or start not in graph or target not in graph: return -1 if start == target: return 0 UpperCAmelCase_ :Optional[Any] = [start] UpperCAmelCase_ :str = set(__snake_case ) # Keep tab on distances from `start` node. UpperCAmelCase_ :Optional[Any] = {start: 0, target: -1} while queue: UpperCAmelCase_ :Optional[Any] = queue.pop(0 ) if node == target: UpperCAmelCase_ :str = ( dist[node] if dist[target] == -1 else min(dist[target], dist[node] ) ) for adjacent in graph[node]: if adjacent not in visited: visited.add(__snake_case ) queue.append(__snake_case ) UpperCAmelCase_ :Optional[int] = dist[node] + 1 return dist[target] if __name__ == "__main__": print(bfs_shortest_path(demo_graph, "G", "D")) # returns ['G', 'C', 'A', 'B', 'D'] print(bfs_shortest_path_distance(demo_graph, "G", "D")) # returns 4
608
0
import numpy as np import datasets _UpperCamelCase: List[Any] ='\nCompute the Mahalanobis Distance\n\nMahalonobis distance is the distance between a point and a distribution.\nAnd not between two distinct points. It is effectively a multivariate equivalent of the Euclidean distance.\nIt was introduced by Prof. P. C. Mahalanobis in 1936\nand has been used in various statistical applications ever since\n[source: https://www.machinelearningplus.com/statistics/mahalanobis-distance/]\n' _UpperCamelCase: Dict ='\\n@article{de2000mahalanobis,\n title={The mahalanobis distance},\n author={De Maesschalck, Roy and Jouan-Rimbaud, Delphine and Massart, D{\'e}sir{\'e} L},\n journal={Chemometrics and intelligent laboratory systems},\n volume={50},\n number={1},\n pages={1--18},\n year={2000},\n publisher={Elsevier}\n}\n' _UpperCamelCase: int ='\nArgs:\n X: List of datapoints to be compared with the `reference_distribution`.\n reference_distribution: List of datapoints from the reference distribution we want to compare to.\nReturns:\n mahalanobis: The Mahalonobis distance for each datapoint in `X`.\nExamples:\n\n >>> mahalanobis_metric = datasets.load_metric(\"mahalanobis\")\n >>> results = mahalanobis_metric.compute(reference_distribution=[[0, 1], [1, 0]], X=[[0, 1]])\n >>> print(results)\n {\'mahalanobis\': array([0.5])}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowercase( datasets.Metric ): """simple docstring""" def SCREAMING_SNAKE_CASE_ ( self : Any ) -> str: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'X': datasets.Sequence(datasets.Value('float' , id='sequence' ) , id='X' ), } ) , ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : Dict ) -> Tuple: # convert to numpy arrays _lowerCAmelCase = np.array(lowercase_ ) _lowerCAmelCase = np.array(lowercase_ ) # Assert that arrays are 2D if len(X.shape ) != 2: raise ValueError('Expected `X` to be a 2D vector' ) if len(reference_distribution.shape ) != 2: raise ValueError('Expected `reference_distribution` to be a 2D vector' ) if reference_distribution.shape[0] < 2: raise ValueError( 'Expected `reference_distribution` to be a 2D vector with more than one element in the first dimension' ) # Get mahalanobis distance for each prediction _lowerCAmelCase = X - np.mean(lowercase_ ) _lowerCAmelCase = np.cov(reference_distribution.T ) try: _lowerCAmelCase = np.linalg.inv(lowercase_ ) except np.linalg.LinAlgError: _lowerCAmelCase = np.linalg.pinv(lowercase_ ) _lowerCAmelCase = np.dot(lowercase_ , lowercase_ ) _lowerCAmelCase = np.dot(lowercase_ , X_minus_mu.T ).diagonal() return {"mahalanobis": mahal_dist}
704
from typing import Dict import numpy as np import torch from . import residue_constants as rc from .tensor_utils import tensor_tree_map, tree_map def _a ( __SCREAMING_SNAKE_CASE : Dict[str, torch.Tensor] ): """simple docstring""" _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] for rt in rc.restypes: _lowerCAmelCase = rc.restype_name_to_atomaa_names[rc.restype_atoa[rt]] restype_atomaa_to_atomaa_list.append([(rc.atom_order[name] if name else 0) for name in atom_names] ) _lowerCAmelCase = {name: i for i, name in enumerate(__SCREAMING_SNAKE_CASE )} restype_atomaa_to_atomaa_list.append( [(atom_name_to_idxaa[name] if name in atom_name_to_idxaa else 0) for name in rc.atom_types] ) restype_atomaa_mask_list.append([(1.0 if name else 0.0) for name in atom_names] ) # Add dummy mapping for restype 'UNK' restype_atomaa_to_atomaa_list.append([0] * 14 ) restype_atomaa_to_atomaa_list.append([0] * 37 ) restype_atomaa_mask_list.append([0.0] * 14 ) _lowerCAmelCase = torch.tensor( __SCREAMING_SNAKE_CASE , dtype=torch.intaa , device=protein['aatype'].device , ) _lowerCAmelCase = torch.tensor( __SCREAMING_SNAKE_CASE , dtype=torch.intaa , device=protein['aatype'].device , ) _lowerCAmelCase = torch.tensor( __SCREAMING_SNAKE_CASE , dtype=torch.floataa , device=protein['aatype'].device , ) _lowerCAmelCase = protein['aatype'].to(torch.long ) # create the mapping for (residx, atom14) --> atom37, i.e. an array # with shape (num_res, 14) containing the atom37 indices for this protein _lowerCAmelCase = restype_atomaa_to_atomaa[protein_aatype] _lowerCAmelCase = restype_atomaa_mask[protein_aatype] _lowerCAmelCase = residx_atomaa_mask _lowerCAmelCase = residx_atomaa_to_atomaa.long() # create the gather indices for mapping back _lowerCAmelCase = restype_atomaa_to_atomaa[protein_aatype] _lowerCAmelCase = residx_atomaa_to_atomaa.long() # create the corresponding mask _lowerCAmelCase = torch.zeros([21, 37] , dtype=torch.floataa , device=protein['aatype'].device ) for restype, restype_letter in enumerate(rc.restypes ): _lowerCAmelCase = rc.restype_atoa[restype_letter] _lowerCAmelCase = rc.residue_atoms[restype_name] for atom_name in atom_names: _lowerCAmelCase = rc.atom_order[atom_name] _lowerCAmelCase = 1 _lowerCAmelCase = restype_atomaa_mask[protein_aatype] _lowerCAmelCase = residx_atomaa_mask return protein def _a ( __SCREAMING_SNAKE_CASE : Dict[str, torch.Tensor] ): """simple docstring""" _lowerCAmelCase = tree_map(lambda __SCREAMING_SNAKE_CASE : torch.tensor(__SCREAMING_SNAKE_CASE , device=batch['aatype'].device ) , __SCREAMING_SNAKE_CASE , np.ndarray ) _lowerCAmelCase = tensor_tree_map(lambda __SCREAMING_SNAKE_CASE : np.array(__SCREAMING_SNAKE_CASE ) , make_atomaa_masks(__SCREAMING_SNAKE_CASE ) ) return out
585
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A_ : List[str] = logging.get_logger(__name__) A_ : Dict = { "google/mobilenet_v1_1.0_224": "https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json", "google/mobilenet_v1_0.75_192": "https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json", # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 } class __snake_case ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCamelCase__ = '''mobilenet_v1''' def __init__( self , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=2_2_4 , __SCREAMING_SNAKE_CASE=1.0 , __SCREAMING_SNAKE_CASE=8 , __SCREAMING_SNAKE_CASE="relu6" , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=0.999 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=0.001 , **__SCREAMING_SNAKE_CASE , ): super().__init__(**__SCREAMING_SNAKE_CASE ) if depth_multiplier <= 0: raise ValueError("""depth_multiplier must be greater than zero.""" ) snake_case__ : Optional[Any] = num_channels snake_case__ : Tuple = image_size snake_case__ : str = depth_multiplier snake_case__ : Tuple = min_depth snake_case__ : List[Any] = hidden_act snake_case__ : int = tf_padding snake_case__ : Tuple = classifier_dropout_prob snake_case__ : Optional[Any] = initializer_range snake_case__ : List[Any] = layer_norm_eps class __snake_case ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCamelCase__ = version.parse('''1.11''' ) @property def __UpperCamelCase ( self ): return OrderedDict([("""pixel_values""", {0: """batch"""})] ) @property def __UpperCamelCase ( self ): if self.task == "image-classification": return OrderedDict([("""logits""", {0: """batch"""})] ) else: return OrderedDict([("""last_hidden_state""", {0: """batch"""}), ("""pooler_output""", {0: """batch"""})] ) @property def __UpperCamelCase ( self ): return 1e-4
38
class A__ : """simple docstring""" def __init__( self , __snake_case ): snake_case = n snake_case = [None] * self.n snake_case = 0 # index of the first element snake_case = 0 snake_case = 0 def __len__( self ): return self.size def a_ ( self ): return self.size == 0 def a_ ( self ): return False if self.is_empty() else self.array[self.front] def a_ ( self , __snake_case ): if self.size >= self.n: raise Exception('''QUEUE IS FULL''' ) snake_case = data snake_case = (self.rear + 1) % self.n self.size += 1 return self def a_ ( self ): if self.size == 0: raise Exception('''UNDERFLOW''' ) snake_case = self.array[self.front] snake_case = None snake_case = (self.front + 1) % self.n self.size -= 1 return temp
550
0
def _A ( lowerCAmelCase_ : list ): """simple docstring""" if len(lowerCAmelCase_ ) <= 1: return [tuple(lowerCAmelCase_ )] lowerCAmelCase__ = [] def generate(lowerCAmelCase_ : int , lowerCAmelCase_ : list ): if k == 1: res.append(tuple(arr[:] ) ) return generate(k - 1 , lowerCAmelCase_ ) for i in range(k - 1 ): if k % 2 == 0: # k is even lowerCAmelCase__ , lowerCAmelCase__ = arr[k - 1], arr[i] else: # k is odd lowerCAmelCase__ , lowerCAmelCase__ = arr[k - 1], arr[0] generate(k - 1 , lowerCAmelCase_ ) generate(len(lowerCAmelCase_ ) , lowerCAmelCase_ ) return res if __name__ == "__main__": UpperCamelCase = input('Enter numbers separated by a comma:\n').strip() UpperCamelCase = [int(item) for item in user_input.split(',')] print(heaps(arr))
125
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class __lowerCamelCase ( UpperCamelCase__ ): """simple docstring""" snake_case__ = 42 class __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ ): """simple docstring""" @register_to_config def __init__( self : Any , SCREAMING_SNAKE_CASE__ : int = 3 , SCREAMING_SNAKE_CASE__ : int = 3 , SCREAMING_SNAKE_CASE__ : Tuple[str] = ("DownEncoderBlock2D",) , SCREAMING_SNAKE_CASE__ : Tuple[str] = ("UpDecoderBlock2D",) , SCREAMING_SNAKE_CASE__ : Tuple[int] = (64,) , SCREAMING_SNAKE_CASE__ : int = 1 , SCREAMING_SNAKE_CASE__ : str = "silu" , SCREAMING_SNAKE_CASE__ : int = 3 , SCREAMING_SNAKE_CASE__ : int = 32 , SCREAMING_SNAKE_CASE__ : int = 256 , SCREAMING_SNAKE_CASE__ : int = 32 , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : float = 0.18_215 , SCREAMING_SNAKE_CASE__ : str = "group" , ) -> Optional[int]: super().__init__() # pass init params to Encoder lowerCAmelCase__ = Encoder( in_channels=SCREAMING_SNAKE_CASE__ , out_channels=SCREAMING_SNAKE_CASE__ , down_block_types=SCREAMING_SNAKE_CASE__ , block_out_channels=SCREAMING_SNAKE_CASE__ , layers_per_block=SCREAMING_SNAKE_CASE__ , act_fn=SCREAMING_SNAKE_CASE__ , norm_num_groups=SCREAMING_SNAKE_CASE__ , double_z=SCREAMING_SNAKE_CASE__ , ) lowerCAmelCase__ = vq_embed_dim if vq_embed_dim is not None else latent_channels lowerCAmelCase__ = nn.Convad(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 1 ) lowerCAmelCase__ = VectorQuantizer(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , beta=0.25 , remap=SCREAMING_SNAKE_CASE__ , sane_index_shape=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = nn.Convad(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 1 ) # pass init params to Decoder lowerCAmelCase__ = Decoder( in_channels=SCREAMING_SNAKE_CASE__ , out_channels=SCREAMING_SNAKE_CASE__ , up_block_types=SCREAMING_SNAKE_CASE__ , block_out_channels=SCREAMING_SNAKE_CASE__ , layers_per_block=SCREAMING_SNAKE_CASE__ , act_fn=SCREAMING_SNAKE_CASE__ , norm_num_groups=SCREAMING_SNAKE_CASE__ , norm_type=SCREAMING_SNAKE_CASE__ , ) @apply_forward_hook def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : torch.FloatTensor , SCREAMING_SNAKE_CASE__ : bool = True ) -> VQEncoderOutput: lowerCAmelCase__ = self.encoder(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = self.quant_conv(SCREAMING_SNAKE_CASE__ ) if not return_dict: return (h,) return VQEncoderOutput(latents=SCREAMING_SNAKE_CASE__ ) @apply_forward_hook def a ( self : int , SCREAMING_SNAKE_CASE__ : torch.FloatTensor , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : bool = True ) -> Union[DecoderOutput, torch.FloatTensor]: # also go through quantization layer if not force_not_quantize: lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = self.quantize(SCREAMING_SNAKE_CASE__ ) else: lowerCAmelCase__ = h lowerCAmelCase__ = self.post_quant_conv(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = self.decoder(SCREAMING_SNAKE_CASE__ , quant if self.config.norm_type == "spatial" else None ) if not return_dict: return (dec,) return DecoderOutput(sample=SCREAMING_SNAKE_CASE__ ) def a ( self : str , SCREAMING_SNAKE_CASE__ : torch.FloatTensor , SCREAMING_SNAKE_CASE__ : bool = True ) -> Union[DecoderOutput, torch.FloatTensor]: lowerCAmelCase__ = sample lowerCAmelCase__ = self.encode(SCREAMING_SNAKE_CASE__ ).latents lowerCAmelCase__ = self.decode(SCREAMING_SNAKE_CASE__ ).sample if not return_dict: return (dec,) return DecoderOutput(sample=SCREAMING_SNAKE_CASE__ )
125
1
# Author: OMKAR PATHAK, Nwachukwu Chidiebere # Use a Python dictionary to construct the graph. from __future__ import annotations from pprint import pformat from typing import Generic, TypeVar a_ :Any = TypeVar('T') class lowercase ( Generic[T] ): def __init__( self : Union[str, Any] , _lowercase : bool = True ): SCREAMING_SNAKE_CASE__ : dict[T, list[T]] = {} # dictionary of lists SCREAMING_SNAKE_CASE__ : int = directed def lowercase__ ( self : Optional[Any] , _lowercase : T , _lowercase : T ): if not self.directed: # For undirected graphs # if both source vertex and destination vertex are both present in the # adjacency list, add destination vertex to source vertex list of adjacent # vertices and add source vertex to destination vertex list of adjacent # vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(_lowercase ) self.adj_list[destination_vertex].append(_lowercase ) # if only source vertex is present in adjacency list, add destination vertex # to source vertex list of adjacent vertices, then create a new vertex with # destination vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(_lowercase ) SCREAMING_SNAKE_CASE__ : List[str] = [source_vertex] # if only destination vertex is present in adjacency list, add source vertex # to destination vertex list of adjacent vertices, then create a new vertex # with source vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif destination_vertex in self.adj_list: self.adj_list[destination_vertex].append(_lowercase ) SCREAMING_SNAKE_CASE__ : List[Any] = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and assign a list # containing the destination vertex as it's first adjacent vertex also # create a new vertex with destination vertex as key and assign a list # containing the source vertex as it's first adjacent vertex. else: SCREAMING_SNAKE_CASE__ : List[str] = [destination_vertex] SCREAMING_SNAKE_CASE__ : str = [source_vertex] else: # For directed graphs # if both source vertex and destination vertex are present in adjacency # list, add destination vertex to source vertex list of adjacent vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(_lowercase ) # if only source vertex is present in adjacency list, add destination # vertex to source vertex list of adjacent vertices and create a new vertex # with destination vertex as key, which has no adjacent vertex elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(_lowercase ) SCREAMING_SNAKE_CASE__ : Tuple = [] # if only destination vertex is present in adjacency list, create a new # vertex with source vertex as key and assign a list containing destination # vertex as first adjacent vertex elif destination_vertex in self.adj_list: SCREAMING_SNAKE_CASE__ : Union[str, Any] = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and a list containing # destination vertex as it's first adjacent vertex. Then create a new vertex # with destination vertex as key, which has no adjacent vertex else: SCREAMING_SNAKE_CASE__ : List[Any] = [destination_vertex] SCREAMING_SNAKE_CASE__ : Any = [] return self def __repr__( self : Tuple ): return pformat(self.adj_list )
35
"""simple docstring""" def __A ( a_ : list , a_ : int = 0 )-> list: '''simple docstring''' SCREAMING_SNAKE_CASE : int = length or len(a_ ) SCREAMING_SNAKE_CASE : List[Any] = False for i in range(length - 1 ): if list_data[i] > list_data[i + 1]: SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Optional[Any] = list_data[i + 1], list_data[i] SCREAMING_SNAKE_CASE : Optional[Any] = True return list_data if not swapped else bubble_sort(a_ , length - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
698
0
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot import BlenderbotTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowerCamelCase__ : List[str] = logging.get_logger(__name__) lowerCamelCase__ : Tuple = { """vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_config_file""": """tokenizer_config.json""", } lowerCamelCase__ : Dict = { """vocab_file""": {"""facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"""}, """merges_file""": {"""facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"""}, """tokenizer_config_file""": { """facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json""" }, } lowerCamelCase__ : int = {"""facebook/blenderbot-3B""": 1_2_8} class __magic_name__ (snake_case_ ): '''simple docstring''' __lowercase : Union[str, Any] = VOCAB_FILES_NAMES __lowercase : List[str] = PRETRAINED_VOCAB_FILES_MAP __lowercase : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowercase : List[Any] = ['input_ids', 'attention_mask'] __lowercase : List[Any] = BlenderbotTokenizer def __init__( self:Union[str, Any] , _a:Optional[int]=None , _a:str=None , _a:Dict=None , _a:Optional[Any]="replace" , _a:Optional[int]="<s>" , _a:str="</s>" , _a:Dict="</s>" , _a:Optional[int]="<s>" , _a:str="<unk>" , _a:int="<pad>" , _a:Dict="<mask>" , _a:int=False , _a:Any=True , **_a:Optional[Any] , ): super().__init__( _a , _a , tokenizer_file=_a , errors=_a , bos_token=_a , eos_token=_a , sep_token=_a , cls_token=_a , unk_token=_a , pad_token=_a , mask_token=_a , add_prefix_space=_a , trim_offsets=_a , **_a , ) snake_case__ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , _a ) != add_prefix_space: snake_case__ = getattr(_a , pre_tok_state.pop('''type''' ) ) snake_case__ = add_prefix_space snake_case__ = pre_tok_class(**_a ) snake_case__ = add_prefix_space snake_case__ = '''post_processor''' snake_case__ = getattr(self.backend_tokenizer , _a , _a ) if tokenizer_component_instance: snake_case__ = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: snake_case__ = tuple(state['''sep'''] ) if "cls" in state: snake_case__ = tuple(state['''cls'''] ) snake_case__ = False if state.get('''add_prefix_space''' , _a ) != add_prefix_space: snake_case__ = add_prefix_space snake_case__ = True if state.get('''trim_offsets''' , _a ) != trim_offsets: snake_case__ = trim_offsets snake_case__ = True if changes_to_apply: snake_case__ = getattr(_a , state.pop('''type''' ) ) snake_case__ = component_class(**_a ) setattr(self.backend_tokenizer , _a , _a ) @property # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot def SCREAMING_SNAKE_CASE__ ( self:str ): if self._mask_token is None: if self.verbose: logger.error('''Using mask_token, but it is not set yet.''' ) return None return str(self._mask_token ) @mask_token.setter def SCREAMING_SNAKE_CASE__ ( self:Tuple , _a:Optional[Any] ): snake_case__ = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else value snake_case__ = value def SCREAMING_SNAKE_CASE__ ( self:str , *_a:str , **_a:Tuple ): snake_case__ = kwargs.get('''is_split_into_words''' , _a ) assert self.add_prefix_space or not is_split_into_words, ( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*_a , **_a ) def SCREAMING_SNAKE_CASE__ ( self:str , *_a:Union[str, Any] , **_a:List[str] ): snake_case__ = kwargs.get('''is_split_into_words''' , _a ) assert self.add_prefix_space or not is_split_into_words, ( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*_a , **_a ) def SCREAMING_SNAKE_CASE__ ( self:List[str] , _a:str , _a:Optional[str] = None ): snake_case__ = self._tokenizer.model.save(_a , name=_a ) return tuple(_a ) def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] , _a:List[int] , _a:Optional[List[int]] = None ): snake_case__ = [self.sep_token_id] snake_case__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def SCREAMING_SNAKE_CASE__ ( self:Dict , _a:List[int] , _a:Optional[List[int]] = None ): return token_ids_a + [self.eos_token_id] def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] , _a:"Conversation" ): snake_case__ = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(''' ''' + text ) else: # Generated responses should contain them already. inputs.append(_a ) snake_case__ = ''' '''.join(_a ) snake_case__ = self.encode(_a ) if len(_a ) > self.model_max_length: snake_case__ = input_ids[-self.model_max_length :] logger.warning(F"""Trimmed input from conversation as it was longer than {self.model_max_length} tokens.""" ) return input_ids
208
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> int: snake_case__ = abs(__lowerCAmelCase ) snake_case__ = 0 while n > 0: res += n % 10 n //= 10 return res def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> int: snake_case__ = abs(__lowerCAmelCase ) return n if n < 10 else n % 10 + sum_of_digits(n // 10 ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> int: return sum(int(__lowerCAmelCase ) for c in str(abs(__lowerCAmelCase ) ) ) def SCREAMING_SNAKE_CASE ( ) -> None: from collections.abc import Callable from timeit import timeit def benchmark_a_function(__lowerCAmelCase , __lowerCAmelCase ) -> None: snake_case__ = F"""{func.__name__}({value})""" snake_case__ = timeit(F"""__main__.{call}""" , setup='''import __main__''' ) print(F"""{call:56} = {func(__lowerCAmelCase )} -- {timing:.4f} seconds""" ) for value in (26_2144, 1125_8999_0684_2624, 126_7650_6002_2822_9401_4967_0320_5376): for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact): benchmark_a_function(__lowerCAmelCase , __lowerCAmelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
208
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL A_ : Optional[Any] = logging.get_logger(__name__) class _lowerCAmelCase( UpperCAmelCase_ ): """simple docstring""" a : Optional[Any] =['''pixel_values'''] def __init__( self , _lowerCamelCase = True , _lowerCamelCase = None , _lowerCamelCase = PILImageResampling.BICUBIC , _lowerCamelCase = True , _lowerCamelCase = 1 / 2_5_5 , _lowerCamelCase = True , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = True , **_lowerCamelCase , ): super().__init__(**_lowerCamelCase ) UpperCamelCase_: List[str] = size if size is not None else {'height': 3_8_4, 'width': 3_8_4} UpperCamelCase_: str = get_size_dict(_lowerCamelCase , default_to_square=_lowerCamelCase ) UpperCamelCase_: int = do_resize UpperCamelCase_: Union[str, Any] = size UpperCamelCase_: str = resample UpperCamelCase_: str = do_rescale UpperCamelCase_: Tuple = rescale_factor UpperCamelCase_: Any = do_normalize UpperCamelCase_: Optional[int] = image_mean if image_mean is not None else OPENAI_CLIP_MEAN UpperCamelCase_: List[Any] = image_std if image_std is not None else OPENAI_CLIP_STD UpperCamelCase_: str = do_convert_rgb def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = PILImageResampling.BICUBIC , _lowerCamelCase = None , **_lowerCamelCase , ): UpperCamelCase_: Union[str, Any] = get_size_dict(_lowerCamelCase , default_to_square=_lowerCamelCase ) if "height" not in size or "width" not in size: raise ValueError(f'''The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}''' ) UpperCamelCase_: int = (size['height'], size['width']) return resize(_lowerCamelCase , size=_lowerCamelCase , resample=_lowerCamelCase , data_format=_lowerCamelCase , **_lowerCamelCase ) def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None , **_lowerCamelCase , ): return rescale(_lowerCamelCase , scale=_lowerCamelCase , data_format=_lowerCamelCase , **_lowerCamelCase ) def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None , **_lowerCamelCase , ): return normalize(_lowerCamelCase , mean=_lowerCamelCase , std=_lowerCamelCase , data_format=_lowerCamelCase , **_lowerCamelCase ) def _a ( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = ChannelDimension.FIRST , **_lowerCamelCase , ): UpperCamelCase_: List[str] = do_resize if do_resize is not None else self.do_resize UpperCamelCase_: str = resample if resample is not None else self.resample UpperCamelCase_: List[Any] = do_rescale if do_rescale is not None else self.do_rescale UpperCamelCase_: Union[str, Any] = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCamelCase_: Tuple = do_normalize if do_normalize is not None else self.do_normalize UpperCamelCase_: List[str] = image_mean if image_mean is not None else self.image_mean UpperCamelCase_: Any = image_std if image_std is not None else self.image_std UpperCamelCase_: Optional[Any] = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb UpperCamelCase_: int = size if size is not None else self.size UpperCamelCase_: str = get_size_dict(_lowerCamelCase , default_to_square=_lowerCamelCase ) UpperCamelCase_: Optional[Any] = make_list_of_images(_lowerCamelCase ) if not valid_images(_lowerCamelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # PIL RGBA images are converted to RGB if do_convert_rgb: UpperCamelCase_: str = [convert_to_rgb(_lowerCamelCase ) for image in images] # All transformations expect numpy arrays. UpperCamelCase_: int = [to_numpy_array(_lowerCamelCase ) for image in images] if do_resize: UpperCamelCase_: Union[str, Any] = [self.resize(image=_lowerCamelCase , size=_lowerCamelCase , resample=_lowerCamelCase ) for image in images] if do_rescale: UpperCamelCase_: List[str] = [self.rescale(image=_lowerCamelCase , scale=_lowerCamelCase ) for image in images] if do_normalize: UpperCamelCase_: Optional[Any] = [self.normalize(image=_lowerCamelCase , mean=_lowerCamelCase , std=_lowerCamelCase ) for image in images] UpperCamelCase_: Dict = [to_channel_dimension_format(_lowerCamelCase , _lowerCamelCase ) for image in images] UpperCamelCase_: int = BatchFeature(data={'pixel_values': images} , tensor_type=_lowerCamelCase ) return encoded_outputs
57
"""simple docstring""" import shutil import tempfile import unittest from unittest.mock import patch from transformers import ( DefaultFlowCallback, IntervalStrategy, PrinterCallback, ProgressCallback, Trainer, TrainerCallback, TrainingArguments, is_torch_available, ) from transformers.testing_utils import require_torch if is_torch_available(): from transformers.trainer import DEFAULT_CALLBACKS from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel class UpperCamelCase__ ( a_): """simple docstring""" def __init__( self : Union[str, Any] ): '''simple docstring''' __magic_name__ = [] def a__ ( self : Tuple , UpperCamelCase_ : Dict , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : int , **UpperCamelCase_ : int ): '''simple docstring''' self.events.append('on_init_end' ) def a__ ( self : Any , UpperCamelCase_ : int , UpperCamelCase_ : str , UpperCamelCase_ : List[str] , **UpperCamelCase_ : str ): '''simple docstring''' self.events.append('on_train_begin' ) def a__ ( self : str , UpperCamelCase_ : Tuple , UpperCamelCase_ : List[str] , UpperCamelCase_ : Optional[int] , **UpperCamelCase_ : Dict ): '''simple docstring''' self.events.append('on_train_end' ) def a__ ( self : List[str] , UpperCamelCase_ : Tuple , UpperCamelCase_ : int , UpperCamelCase_ : Tuple , **UpperCamelCase_ : Optional[Any] ): '''simple docstring''' self.events.append('on_epoch_begin' ) def a__ ( self : Optional[int] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : int , UpperCamelCase_ : Tuple , **UpperCamelCase_ : List[Any] ): '''simple docstring''' self.events.append('on_epoch_end' ) def a__ ( self : Union[str, Any] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Any , UpperCamelCase_ : Union[str, Any] , **UpperCamelCase_ : Optional[Any] ): '''simple docstring''' self.events.append('on_step_begin' ) def a__ ( self : List[str] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : int , UpperCamelCase_ : Any , **UpperCamelCase_ : List[Any] ): '''simple docstring''' self.events.append('on_step_end' ) def a__ ( self : List[Any] , UpperCamelCase_ : List[str] , UpperCamelCase_ : int , UpperCamelCase_ : Tuple , **UpperCamelCase_ : Dict ): '''simple docstring''' self.events.append('on_evaluate' ) def a__ ( self : str , UpperCamelCase_ : Any , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Dict , **UpperCamelCase_ : Any ): '''simple docstring''' self.events.append('on_predict' ) def a__ ( self : Any , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : str , **UpperCamelCase_ : Optional[int] ): '''simple docstring''' self.events.append('on_save' ) def a__ ( self : Optional[Any] , UpperCamelCase_ : int , UpperCamelCase_ : str , UpperCamelCase_ : Union[str, Any] , **UpperCamelCase_ : Optional[int] ): '''simple docstring''' self.events.append('on_log' ) def a__ ( self : List[Any] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : str , **UpperCamelCase_ : List[Any] ): '''simple docstring''' self.events.append('on_prediction_step' ) @require_torch class UpperCamelCase__ ( unittest.TestCase): """simple docstring""" def a__ ( self : Optional[Any] ): '''simple docstring''' __magic_name__ = tempfile.mkdtemp() def a__ ( self : List[Any] ): '''simple docstring''' shutil.rmtree(self.output_dir ) def a__ ( self : List[str] , UpperCamelCase_ : Optional[int]=0 , UpperCamelCase_ : List[Any]=0 , UpperCamelCase_ : Optional[int]=6_4 , UpperCamelCase_ : Optional[int]=6_4 , UpperCamelCase_ : List[Any]=None , UpperCamelCase_ : Optional[Any]=False , **UpperCamelCase_ : str ): '''simple docstring''' __magic_name__ = RegressionDataset(length=UpperCamelCase_ ) __magic_name__ = RegressionDataset(length=UpperCamelCase_ ) __magic_name__ = RegressionModelConfig(a=UpperCamelCase_ , b=UpperCamelCase_ ) __magic_name__ = RegressionPreTrainedModel(UpperCamelCase_ ) __magic_name__ = TrainingArguments(self.output_dir , disable_tqdm=UpperCamelCase_ , report_to=[] , **UpperCamelCase_ ) return Trainer( UpperCamelCase_ , UpperCamelCase_ , train_dataset=UpperCamelCase_ , eval_dataset=UpperCamelCase_ , callbacks=UpperCamelCase_ , ) def a__ ( self : Optional[int] , UpperCamelCase_ : str , UpperCamelCase_ : Dict ): '''simple docstring''' self.assertEqual(len(UpperCamelCase_ ) , len(UpperCamelCase_ ) ) # Order doesn't matter __magic_name__ = sorted(UpperCamelCase_ , key=lambda UpperCamelCase_ : cb.__name__ if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else cb.__class__.__name__ ) __magic_name__ = sorted(UpperCamelCase_ , key=lambda UpperCamelCase_ : cb.__name__ if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else cb.__class__.__name__ ) for cba, cba in zip(UpperCamelCase_ , UpperCamelCase_ ): if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and isinstance(UpperCamelCase_ , UpperCamelCase_ ): self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) elif isinstance(UpperCamelCase_ , UpperCamelCase_ ) and not isinstance(UpperCamelCase_ , UpperCamelCase_ ): self.assertEqual(UpperCamelCase_ , cba.__class__ ) elif not isinstance(UpperCamelCase_ , UpperCamelCase_ ) and isinstance(UpperCamelCase_ , UpperCamelCase_ ): self.assertEqual(cba.__class__ , UpperCamelCase_ ) else: self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) def a__ ( self : Union[str, Any] , UpperCamelCase_ : Any ): '''simple docstring''' __magic_name__ = ['on_init_end', 'on_train_begin'] __magic_name__ = 0 __magic_name__ = len(trainer.get_eval_dataloader() ) __magic_name__ = ['on_prediction_step'] * len(trainer.get_eval_dataloader() ) + ['on_log', 'on_evaluate'] for _ in range(trainer.state.num_train_epochs ): expected_events.append('on_epoch_begin' ) for _ in range(UpperCamelCase_ ): step += 1 expected_events += ["on_step_begin", "on_step_end"] if step % trainer.args.logging_steps == 0: expected_events.append('on_log' ) if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0: expected_events += evaluation_events.copy() if step % trainer.args.save_steps == 0: expected_events.append('on_save' ) expected_events.append('on_epoch_end' ) if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH: expected_events += evaluation_events.copy() expected_events += ["on_log", "on_train_end"] return expected_events def a__ ( self : List[Any] ): '''simple docstring''' __magic_name__ = self.get_trainer() __magic_name__ = DEFAULT_CALLBACKS.copy() + [ProgressCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCamelCase_ ) # Callbacks passed at init are added to the default callbacks __magic_name__ = self.get_trainer(callbacks=[MyTestTrainerCallback] ) expected_callbacks.append(UpperCamelCase_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCamelCase_ ) # TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback __magic_name__ = self.get_trainer(disable_tqdm=UpperCamelCase_ ) __magic_name__ = DEFAULT_CALLBACKS.copy() + [PrinterCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCamelCase_ ) def a__ ( self : List[str] ): '''simple docstring''' __magic_name__ = DEFAULT_CALLBACKS.copy() + [ProgressCallback] __magic_name__ = self.get_trainer() # We can add, pop, or remove by class name trainer.remove_callback(UpperCamelCase_ ) expected_callbacks.remove(UpperCamelCase_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCamelCase_ ) __magic_name__ = self.get_trainer() __magic_name__ = trainer.pop_callback(UpperCamelCase_ ) self.assertEqual(cb.__class__ , UpperCamelCase_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCamelCase_ ) trainer.add_callback(UpperCamelCase_ ) expected_callbacks.insert(0 , UpperCamelCase_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCamelCase_ ) # We can also add, pop, or remove by instance __magic_name__ = self.get_trainer() __magic_name__ = trainer.callback_handler.callbacks[0] trainer.remove_callback(UpperCamelCase_ ) expected_callbacks.remove(UpperCamelCase_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCamelCase_ ) __magic_name__ = self.get_trainer() __magic_name__ = trainer.callback_handler.callbacks[0] __magic_name__ = trainer.pop_callback(UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCamelCase_ ) trainer.add_callback(UpperCamelCase_ ) expected_callbacks.insert(0 , UpperCamelCase_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCamelCase_ ) def a__ ( self : Any ): '''simple docstring''' import warnings # XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested warnings.simplefilter(action='ignore' , category=UpperCamelCase_ ) __magic_name__ = self.get_trainer(callbacks=[MyTestTrainerCallback] ) trainer.train() __magic_name__ = trainer.callback_handler.callbacks[-2].events self.assertEqual(UpperCamelCase_ , self.get_expected_events(UpperCamelCase_ ) ) # Independent log/save/eval __magic_name__ = self.get_trainer(callbacks=[MyTestTrainerCallback] , logging_steps=5 ) trainer.train() __magic_name__ = trainer.callback_handler.callbacks[-2].events self.assertEqual(UpperCamelCase_ , self.get_expected_events(UpperCamelCase_ ) ) __magic_name__ = self.get_trainer(callbacks=[MyTestTrainerCallback] , save_steps=5 ) trainer.train() __magic_name__ = trainer.callback_handler.callbacks[-2].events self.assertEqual(UpperCamelCase_ , self.get_expected_events(UpperCamelCase_ ) ) __magic_name__ = self.get_trainer(callbacks=[MyTestTrainerCallback] , eval_steps=5 , evaluation_strategy='steps' ) trainer.train() __magic_name__ = trainer.callback_handler.callbacks[-2].events self.assertEqual(UpperCamelCase_ , self.get_expected_events(UpperCamelCase_ ) ) __magic_name__ = self.get_trainer(callbacks=[MyTestTrainerCallback] , evaluation_strategy='epoch' ) trainer.train() __magic_name__ = trainer.callback_handler.callbacks[-2].events self.assertEqual(UpperCamelCase_ , self.get_expected_events(UpperCamelCase_ ) ) # A bit of everything __magic_name__ = self.get_trainer( callbacks=[MyTestTrainerCallback] , logging_steps=3 , save_steps=1_0 , eval_steps=5 , evaluation_strategy='steps' , ) trainer.train() __magic_name__ = trainer.callback_handler.callbacks[-2].events self.assertEqual(UpperCamelCase_ , self.get_expected_events(UpperCamelCase_ ) ) # warning should be emitted for duplicated callbacks with patch('transformers.trainer_callback.logger.warning' ) as warn_mock: __magic_name__ = self.get_trainer( callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] , ) assert str(UpperCamelCase_ ) in warn_mock.call_args[0][0]
545
0
def A ( __UpperCamelCase , __UpperCamelCase ) -> List[str]: A__ = [0 for i in range(r + 1 )] # nc0 = 1 A__ = 1 for i in range(1 , n + 1 ): # to compute current row from previous row. A__ = min(__UpperCamelCase , __UpperCamelCase ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=1_0, r=5))
52
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/config.json''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/config.json''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/config.json''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/config.json''', '''roberta-base-openai-detector''': '''https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json''', '''roberta-large-openai-detector''': '''https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json''', } class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" A__ : List[str] = "roberta" def __init__( self : List[str] , _snake_case : Union[str, Any]=5_02_65 , _snake_case : List[Any]=7_68 , _snake_case : List[str]=12 , _snake_case : List[str]=12 , _snake_case : Any=30_72 , _snake_case : Union[str, Any]="gelu" , _snake_case : int=0.1 , _snake_case : Union[str, Any]=0.1 , _snake_case : Tuple=5_12 , _snake_case : Union[str, Any]=2 , _snake_case : Any=0.02 , _snake_case : Any=1E-12 , _snake_case : List[Any]=1 , _snake_case : int=0 , _snake_case : Any=2 , _snake_case : Optional[Any]="absolute" , _snake_case : int=True , _snake_case : Any=None , **_snake_case : Any , ): """simple docstring""" super().__init__(pad_token_id=_snake_case , bos_token_id=_snake_case , eos_token_id=_snake_case , **_snake_case ) A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = hidden_act A__ = intermediate_size A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = type_vocab_size A__ = initializer_range A__ = layer_norm_eps A__ = position_embedding_type A__ = use_cache A__ = classifier_dropout class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" @property def _a ( self : Dict ): """simple docstring""" if self.task == "multiple-choice": A__ = {0: 'batch', 1: 'choice', 2: 'sequence'} else: A__ = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
52
1
import os from glob import glob import imageio import torch import torchvision import wandb from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan from loaders import load_vqgan from PIL import Image from torch import nn from transformers import CLIPModel, CLIPTokenizerFast from utils import get_device, get_timestamp, show_pil class lowerCamelCase_ : def __init__( self : Tuple , __A : str = "cpu" , __A : str = "openai/clip-vit-large-patch14" ): __A : List[str] = device __A : List[Any] = CLIPTokenizerFast.from_pretrained(__A ) __A : Union[str, Any] = [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] __A : Dict = [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] __A : Optional[Any] = torchvision.transforms.Normalize(self.image_mean , self.image_std ) __A : Dict = torchvision.transforms.Resize(224 ) __A : Optional[int] = torchvision.transforms.CenterCrop(224 ) def lowerCAmelCase_ ( self : Optional[Any] , __A : str ): __A : str = self.resize(__A ) __A : Any = self.center_crop(__A ) __A : Any = self.normalize(__A ) return images def __call__( self : Union[str, Any] , __A : Any=None , __A : Optional[Any]=None , **__A : Tuple ): __A : int = self.tokenizer(text=__A , **__A ) __A : List[str] = self.preprocess_img(__A ) __A : Any = {key: value.to(self.device ) for (key, value) in encoding.items()} return encoding class lowerCamelCase_ ( nn.Module ): def __init__( self : Any , __A : List[str]=10 , __A : Dict=0.0_1 , __A : List[Any]=None , __A : Dict=None , __A : Any=None , __A : List[str]=None , __A : Optional[Any]=None , __A : Optional[Any]=None , __A : Optional[int]=False , __A : Optional[Any]=True , __A : List[Any]="image" , __A : str=True , __A : Optional[Any]=False , __A : Optional[int]=False , __A : Any=False , ): super().__init__() __A : List[str] = None __A : Tuple = device if device else get_device() if vqgan: __A : Optional[Any] = vqgan else: __A : Optional[Any] = load_vqgan(self.device , conf_path=__A , ckpt_path=__A ) self.vqgan.eval() if clip: __A : List[Any] = clip else: __A : List[str] = CLIPModel.from_pretrained("""openai/clip-vit-base-patch32""" ) self.clip.to(self.device ) __A : Optional[int] = ProcessorGradientFlow(device=self.device ) __A : Any = iterations __A : str = lr __A : List[Any] = log __A : Union[str, Any] = make_grid __A : Union[str, Any] = return_val __A : Optional[Any] = quantize __A : str = self.vqgan.decoder.z_shape def lowerCAmelCase_ ( self : Any , __A : Union[str, Any]=None , __A : Any=None , __A : Tuple=5 , __A : Optional[Any]=True ): __A : Tuple = [] if output_path is None: __A : Any = """./animation.gif""" if input_path is None: __A : int = self.save_path __A : Optional[int] = sorted(glob(input_path + """/*""" ) ) if not len(__A ): raise ValueError( """No images found in save path, aborting (did you pass save_intermediate=True to the generate""" """ function?)""" ) if len(__A ) == 1: print("""Only one image found in save path, (did you pass save_intermediate=True to the generate function?)""" ) __A : Tuple = total_duration / len(__A ) __A : int = [frame_duration] * len(__A ) if extend_frames: __A : Union[str, Any] = 1.5 __A : Optional[Any] = 3 for file_name in paths: if file_name.endswith(""".png""" ): images.append(imageio.imread(__A ) ) imageio.mimsave(__A , __A , duration=__A ) print(F"""gif saved to {output_path}""" ) def lowerCAmelCase_ ( self : List[Any] , __A : List[str]=None , __A : Dict=None ): if not (path or img): raise ValueError("""Input either path or tensor""" ) if img is not None: raise NotImplementedError __A : Optional[int] = preprocess(Image.open(__A ) , target_image_size=256 ).to(self.device ) __A : List[str] = preprocess_vqgan(__A ) __A , *__A : Union[str, Any] = self.vqgan.encode(__A ) return z def lowerCAmelCase_ ( self : Dict , __A : List[Any] ): __A : Tuple = self.latent.detach().requires_grad_() __A : Tuple = base_latent + transform_vector if self.quantize: __A , *__A : int = self.vqgan.quantize(__A ) else: __A : List[Any] = trans_latent return self.vqgan.decode(__A ) def lowerCAmelCase_ ( self : List[str] , __A : Tuple , __A : int , __A : Union[str, Any]=None ): __A : int = self.clip_preprocessor(text=__A , images=__A , return_tensors="""pt""" , padding=__A ) __A : Optional[Any] = self.clip(**__A ) __A : Optional[int] = clip_outputs.logits_per_image if weights is not None: __A : Dict = similarity_logits * weights return similarity_logits.sum() def lowerCAmelCase_ ( self : Tuple , __A : int , __A : Optional[Any] , __A : Union[str, Any] ): __A : int = self._get_clip_similarity(pos_prompts["""prompts"""] , __A , weights=(1 / pos_prompts["""weights"""]) ) if neg_prompts: __A : str = self._get_clip_similarity(neg_prompts["""prompts"""] , __A , weights=neg_prompts["""weights"""] ) else: __A : Any = torch.tensor([1] , device=self.device ) __A : List[Any] = -torch.log(__A ) + torch.log(__A ) return loss def lowerCAmelCase_ ( self : Optional[Any] , __A : Dict , __A : Tuple , __A : Dict ): __A : Union[str, Any] = torch.randn_like(self.latent , requires_grad=__A , device=self.device ) __A : Tuple = torch.optim.Adam([vector] , lr=self.lr ) for i in range(self.iterations ): optim.zero_grad() __A : Optional[Any] = self._add_vector(__A ) __A : List[str] = loop_post_process(__A ) __A : str = self._get_CLIP_loss(__A , __A , __A ) print("""CLIP loss""" , __A ) if self.log: wandb.log({"""CLIP Loss""": clip_loss} ) clip_loss.backward(retain_graph=__A ) optim.step() if self.return_val == "image": yield custom_to_pil(transformed_img[0] ) else: yield vector def lowerCAmelCase_ ( self : List[str] , __A : Dict , __A : Any , __A : Tuple ): wandb.init(reinit=__A , project="""face-editor""" ) wandb.config.update({"""Positive Prompts""": positive_prompts} ) wandb.config.update({"""Negative Prompts""": negative_prompts} ) wandb.config.update({"""lr""": self.lr, """iterations""": self.iterations} ) if image_path: __A : str = Image.open(__A ) __A : Dict = image.resize((256, 256) ) wandb.log("""Original Image""" , wandb.Image(__A ) ) def lowerCAmelCase_ ( self : Tuple , __A : Optional[Any] ): if not prompts: return [] __A : List[str] = [] __A : str = [] if isinstance(__A , __A ): __A : List[str] = [prompt.strip() for prompt in prompts.split("""|""" )] for prompt in prompts: if isinstance(__A , (tuple, list) ): __A : Dict = prompt[0] __A : List[Any] = float(prompt[1] ) elif ":" in prompt: __A , __A : Union[str, Any] = prompt.split(""":""" ) __A : Union[str, Any] = float(__A ) else: __A : Dict = prompt __A : Optional[Any] = 1.0 processed_prompts.append(__A ) weights.append(__A ) return { "prompts": processed_prompts, "weights": torch.tensor(__A , device=self.device ), } def lowerCAmelCase_ ( self : List[Any] , __A : Union[str, Any] , __A : Optional[Any]=None , __A : Tuple=None , __A : Tuple=True , __A : Union[str, Any]=False , __A : Dict=True , __A : List[Any]=True , __A : Any=None , ): if image_path: __A : Optional[int] = self._get_latent(__A ) else: __A : Union[str, Any] = torch.randn(self.latent_dim , device=self.device ) if self.log: self._init_logging(__A , __A , __A ) assert pos_prompts, "You must provide at least one positive prompt." __A : str = self.process_prompts(__A ) __A : Any = self.process_prompts(__A ) if save_final and save_path is None: __A : List[str] = os.path.join("""./outputs/""" , """_""".join(pos_prompts["""prompts"""] ) ) if not os.path.exists(__A ): os.makedirs(__A ) else: __A : Tuple = save_path + """_""" + get_timestamp() os.makedirs(__A ) __A : Any = save_path __A : Dict = self.vqgan.decode(self.latent )[0] if show_intermediate: print("""Original Image""" ) show_pil(custom_to_pil(__A ) ) __A : List[str] = loop_post_process(__A ) for iter, transformed_img in enumerate(self._optimize_CLIP(__A , __A , __A ) ): if show_intermediate: show_pil(__A ) if save_intermediate: transformed_img.save(os.path.join(self.save_path , F"""iter_{iter:03d}.png""" ) ) if self.log: wandb.log({"""Image""": wandb.Image(__A )} ) if show_final: show_pil(__A ) if save_final: transformed_img.save(os.path.join(self.save_path , F"""iter_{iter:03d}_final.png""" ) )
17
from __future__ import annotations def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' if len(lowercase__ ) == 0: return False UpperCAmelCase_ =len(lowercase__ ) // 2 if a_list[midpoint] == item: return True if item < a_list[midpoint]: return binary_search(a_list[:midpoint] , lowercase__ ) else: return binary_search(a_list[midpoint + 1 :] , lowercase__ ) if __name__ == "__main__": __lowercase : Tuple =input("""Enter numbers separated by comma:\n""").strip() __lowercase : Optional[Any] =[int(item.strip()) for item in user_input.split(""",""")] __lowercase : List[Any] =int(input("""Enter the number to be found in the list:\n""").strip()) __lowercase : Optional[Any] ="""""" if binary_search(sequence, target) else """not """ print(f"""{target} was {not_str}found in {sequence}""")
54
0
import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class _A ( unittest.TestCase ): def UpperCAmelCase ( self ): _UpperCAmelCase = { """task_specific_params""": { """summarization""": {"""length_penalty""": 1.0, """max_length""": 128, """min_length""": 12, """num_beams""": 4}, """summarization_cnn""": {"""length_penalty""": 2.0, """max_length""": 142, """min_length""": 56, """num_beams""": 4}, """summarization_xsum""": {"""length_penalty""": 1.0, """max_length""": 62, """min_length""": 11, """num_beams""": 6}, } } _UpperCAmelCase = { """task_specific_params.summarization.length_penalty""": 1.0, """task_specific_params.summarization.max_length""": 128, """task_specific_params.summarization.min_length""": 12, """task_specific_params.summarization.num_beams""": 4, """task_specific_params.summarization_cnn.length_penalty""": 2.0, """task_specific_params.summarization_cnn.max_length""": 142, """task_specific_params.summarization_cnn.min_length""": 56, """task_specific_params.summarization_cnn.num_beams""": 4, """task_specific_params.summarization_xsum.length_penalty""": 1.0, """task_specific_params.summarization_xsum.max_length""": 62, """task_specific_params.summarization_xsum.min_length""": 11, """task_specific_params.summarization_xsum.num_beams""": 6, } self.assertEqual(flatten_dict(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self ): _UpperCAmelCase = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(transpose(_SCREAMING_SNAKE_CASE ) , x.transpose() ) ) _UpperCAmelCase = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(transpose(_SCREAMING_SNAKE_CASE , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) ) @require_torch def UpperCAmelCase ( self ): _UpperCAmelCase = np.random.randn(3 , 4 ) _UpperCAmelCase = torch.tensor(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(transpose(_SCREAMING_SNAKE_CASE ) , transpose(_SCREAMING_SNAKE_CASE ).numpy() ) ) _UpperCAmelCase = np.random.randn(3 , 4 , 5 ) _UpperCAmelCase = torch.tensor(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(transpose(_SCREAMING_SNAKE_CASE , axes=(1, 2, 0) ) , transpose(_SCREAMING_SNAKE_CASE , axes=(1, 2, 0) ).numpy() ) ) @require_tf def UpperCAmelCase ( self ): _UpperCAmelCase = np.random.randn(3 , 4 ) _UpperCAmelCase = tf.constant(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(transpose(_SCREAMING_SNAKE_CASE ) , transpose(_SCREAMING_SNAKE_CASE ).numpy() ) ) _UpperCAmelCase = np.random.randn(3 , 4 , 5 ) _UpperCAmelCase = tf.constant(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(transpose(_SCREAMING_SNAKE_CASE , axes=(1, 2, 0) ) , transpose(_SCREAMING_SNAKE_CASE , axes=(1, 2, 0) ).numpy() ) ) @require_flax def UpperCAmelCase ( self ): _UpperCAmelCase = np.random.randn(3 , 4 ) _UpperCAmelCase = jnp.array(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(transpose(_SCREAMING_SNAKE_CASE ) , np.asarray(transpose(_SCREAMING_SNAKE_CASE ) ) ) ) _UpperCAmelCase = np.random.randn(3 , 4 , 5 ) _UpperCAmelCase = jnp.array(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(transpose(_SCREAMING_SNAKE_CASE , axes=(1, 2, 0) ) , np.asarray(transpose(_SCREAMING_SNAKE_CASE , axes=(1, 2, 0) ) ) ) ) def UpperCAmelCase ( self ): _UpperCAmelCase = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(reshape(_SCREAMING_SNAKE_CASE , (4, 3) ) , np.reshape(_SCREAMING_SNAKE_CASE , (4, 3) ) ) ) _UpperCAmelCase = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(reshape(_SCREAMING_SNAKE_CASE , (12, 5) ) , np.reshape(_SCREAMING_SNAKE_CASE , (12, 5) ) ) ) @require_torch def UpperCAmelCase ( self ): _UpperCAmelCase = np.random.randn(3 , 4 ) _UpperCAmelCase = torch.tensor(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(reshape(_SCREAMING_SNAKE_CASE , (4, 3) ) , reshape(_SCREAMING_SNAKE_CASE , (4, 3) ).numpy() ) ) _UpperCAmelCase = np.random.randn(3 , 4 , 5 ) _UpperCAmelCase = torch.tensor(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(reshape(_SCREAMING_SNAKE_CASE , (12, 5) ) , reshape(_SCREAMING_SNAKE_CASE , (12, 5) ).numpy() ) ) @require_tf def UpperCAmelCase ( self ): _UpperCAmelCase = np.random.randn(3 , 4 ) _UpperCAmelCase = tf.constant(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(reshape(_SCREAMING_SNAKE_CASE , (4, 3) ) , reshape(_SCREAMING_SNAKE_CASE , (4, 3) ).numpy() ) ) _UpperCAmelCase = np.random.randn(3 , 4 , 5 ) _UpperCAmelCase = tf.constant(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(reshape(_SCREAMING_SNAKE_CASE , (12, 5) ) , reshape(_SCREAMING_SNAKE_CASE , (12, 5) ).numpy() ) ) @require_flax def UpperCAmelCase ( self ): _UpperCAmelCase = np.random.randn(3 , 4 ) _UpperCAmelCase = jnp.array(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(reshape(_SCREAMING_SNAKE_CASE , (4, 3) ) , np.asarray(reshape(_SCREAMING_SNAKE_CASE , (4, 3) ) ) ) ) _UpperCAmelCase = np.random.randn(3 , 4 , 5 ) _UpperCAmelCase = jnp.array(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(reshape(_SCREAMING_SNAKE_CASE , (12, 5) ) , np.asarray(reshape(_SCREAMING_SNAKE_CASE , (12, 5) ) ) ) ) def UpperCAmelCase ( self ): _UpperCAmelCase = np.random.randn(1 , 3 , 4 ) self.assertTrue(np.allclose(squeeze(_SCREAMING_SNAKE_CASE ) , np.squeeze(_SCREAMING_SNAKE_CASE ) ) ) _UpperCAmelCase = np.random.randn(1 , 4 , 1 , 5 ) self.assertTrue(np.allclose(squeeze(_SCREAMING_SNAKE_CASE , axis=2 ) , np.squeeze(_SCREAMING_SNAKE_CASE , axis=2 ) ) ) @require_torch def UpperCAmelCase ( self ): _UpperCAmelCase = np.random.randn(1 , 3 , 4 ) _UpperCAmelCase = torch.tensor(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(squeeze(_SCREAMING_SNAKE_CASE ) , squeeze(_SCREAMING_SNAKE_CASE ).numpy() ) ) _UpperCAmelCase = np.random.randn(1 , 4 , 1 , 5 ) _UpperCAmelCase = torch.tensor(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(squeeze(_SCREAMING_SNAKE_CASE , axis=2 ) , squeeze(_SCREAMING_SNAKE_CASE , axis=2 ).numpy() ) ) @require_tf def UpperCAmelCase ( self ): _UpperCAmelCase = np.random.randn(1 , 3 , 4 ) _UpperCAmelCase = tf.constant(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(squeeze(_SCREAMING_SNAKE_CASE ) , squeeze(_SCREAMING_SNAKE_CASE ).numpy() ) ) _UpperCAmelCase = np.random.randn(1 , 4 , 1 , 5 ) _UpperCAmelCase = tf.constant(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(squeeze(_SCREAMING_SNAKE_CASE , axis=2 ) , squeeze(_SCREAMING_SNAKE_CASE , axis=2 ).numpy() ) ) @require_flax def UpperCAmelCase ( self ): _UpperCAmelCase = np.random.randn(1 , 3 , 4 ) _UpperCAmelCase = jnp.array(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(squeeze(_SCREAMING_SNAKE_CASE ) , np.asarray(squeeze(_SCREAMING_SNAKE_CASE ) ) ) ) _UpperCAmelCase = np.random.randn(1 , 4 , 1 , 5 ) _UpperCAmelCase = jnp.array(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(squeeze(_SCREAMING_SNAKE_CASE , axis=2 ) , np.asarray(squeeze(_SCREAMING_SNAKE_CASE , axis=2 ) ) ) ) def UpperCAmelCase ( self ): _UpperCAmelCase = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(expand_dims(_SCREAMING_SNAKE_CASE , axis=1 ) , np.expand_dims(_SCREAMING_SNAKE_CASE , axis=1 ) ) ) @require_torch def UpperCAmelCase ( self ): _UpperCAmelCase = np.random.randn(3 , 4 ) _UpperCAmelCase = torch.tensor(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(expand_dims(_SCREAMING_SNAKE_CASE , axis=1 ) , expand_dims(_SCREAMING_SNAKE_CASE , axis=1 ).numpy() ) ) @require_tf def UpperCAmelCase ( self ): _UpperCAmelCase = np.random.randn(3 , 4 ) _UpperCAmelCase = tf.constant(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(expand_dims(_SCREAMING_SNAKE_CASE , axis=1 ) , expand_dims(_SCREAMING_SNAKE_CASE , axis=1 ).numpy() ) ) @require_flax def UpperCAmelCase ( self ): _UpperCAmelCase = np.random.randn(3 , 4 ) _UpperCAmelCase = jnp.array(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(expand_dims(_SCREAMING_SNAKE_CASE , axis=1 ) , np.asarray(expand_dims(_SCREAMING_SNAKE_CASE , axis=1 ) ) ) )
175
from __future__ import annotations def _SCREAMING_SNAKE_CASE ( snake_case , snake_case ) -> float: _UpperCAmelCase = sorted(numsa + numsa ) _UpperCAmelCase , _UpperCAmelCase = divmod(len(snake_case ) , 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() a = [float(x) for x in input("Enter the elements of first array: ").split()] a = [float(x) for x in input("Enter the elements of second array: ").split()] print(F'The median of two arrays is: {median_of_two_arrays(array_a, array_a)}')
175
1
from datetime import datetime import requests from bsa import BeautifulSoup if __name__ == "__main__": SCREAMING_SNAKE_CASE__ : Tuple = input("Enter image url: ").strip() print(F"""Downloading image from {url} ...""") SCREAMING_SNAKE_CASE__ : Any = BeautifulSoup(requests.get(url).content, "html.parser") # The image URL is in the content field of the first meta tag with property og:image SCREAMING_SNAKE_CASE__ : Optional[Any] = soup.find("meta", {"property": "og:image"})["content"] SCREAMING_SNAKE_CASE__ : Dict = requests.get(image_url).content SCREAMING_SNAKE_CASE__ : Tuple = F"""{datetime.now():%Y-%m-%d_%H:%M:%S}.jpg""" with open(file_name, "wb") as fp: fp.write(image_data) print(F"""Done. Image saved to disk as {file_name}.""")
85
import logging import numpy as np import pytest from scipy.linalg import eigh logging.basicConfig(level=logging.INFO, format="%(message)s") def _a ( lowercase__ : np.ndarray ): '''simple docstring''' return input_array.reshape((input_array.size, 1) ) def _a ( lowercase__ : np.ndarray , lowercase__ : np.ndarray , lowercase__ : int ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = np.nan for i in range(lowercase__ ): SCREAMING_SNAKE_CASE__ : int = features[:, labels == i] SCREAMING_SNAKE_CASE__ : int = data.mean(1 ) # Centralize the data of class i SCREAMING_SNAKE_CASE__ : Optional[Any] = data - column_reshape(lowercase__ ) if i > 0: # If covariance_sum is not None covariance_sum += np.dot(lowercase__ , centered_data.T ) else: # If covariance_sum is np.nan (i.e. first loop) SCREAMING_SNAKE_CASE__ : Any = np.dot(lowercase__ , centered_data.T ) return covariance_sum / features.shape[1] def _a ( lowercase__ : np.ndarray , lowercase__ : np.ndarray , lowercase__ : int ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] = features.mean(1 ) SCREAMING_SNAKE_CASE__ : List[str] = np.nan for i in range(lowercase__ ): SCREAMING_SNAKE_CASE__ : Tuple = features[:, labels == i] SCREAMING_SNAKE_CASE__ : int = data.shape[1] SCREAMING_SNAKE_CASE__ : List[Any] = data.mean(1 ) if i > 0: # If covariance_sum is not None covariance_sum += device_data * np.dot( column_reshape(lowercase__ ) - column_reshape(lowercase__ ) , (column_reshape(lowercase__ ) - column_reshape(lowercase__ )).T , ) else: # If covariance_sum is np.nan (i.e. first loop) SCREAMING_SNAKE_CASE__ : str = device_data * np.dot( column_reshape(lowercase__ ) - column_reshape(lowercase__ ) , (column_reshape(lowercase__ ) - column_reshape(lowercase__ )).T , ) return covariance_sum / features.shape[1] def _a ( lowercase__ : np.ndarray , lowercase__ : int ): '''simple docstring''' if features.any(): SCREAMING_SNAKE_CASE__ : Any = features.mean(1 ) # Center the dataset SCREAMING_SNAKE_CASE__ : Optional[Any] = features - np.reshape(lowercase__ , (data_mean.size, 1) ) SCREAMING_SNAKE_CASE__ : List[Any] = np.dot(lowercase__ , centered_data.T ) / features.shape[1] SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[Any] = np.linalg.eigh(lowercase__ ) # Take all the columns in the reverse order (-1), and then takes only the first SCREAMING_SNAKE_CASE__ : List[Any] = eigenvectors[:, ::-1][:, 0:dimensions] # Project the database on the new space SCREAMING_SNAKE_CASE__ : Union[str, Any] = np.dot(filtered_eigenvectors.T , lowercase__ ) logging.info('Principal Component Analysis computed' ) return projected_data else: logging.basicConfig(level=logging.ERROR , format='%(message)s' , force=lowercase__ ) logging.error('Dataset empty' ) raise AssertionError def _a ( lowercase__ : np.ndarray , lowercase__ : np.ndarray , lowercase__ : int , lowercase__ : int ): '''simple docstring''' assert classes > dimensions # Check if features have been already loaded if features.any: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[Any] = eigh( covariance_between_classes(lowercase__ , lowercase__ , lowercase__ ) , covariance_within_classes(lowercase__ , lowercase__ , lowercase__ ) , ) SCREAMING_SNAKE_CASE__ : Tuple = eigenvectors[:, ::-1][:, :dimensions] SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[str] = np.linalg.svd(lowercase__ ) SCREAMING_SNAKE_CASE__ : List[Any] = svd_matrix[:, 0:dimensions] SCREAMING_SNAKE_CASE__ : int = np.dot(filtered_svd_matrix.T , lowercase__ ) logging.info('Linear Discriminant Analysis computed' ) return projected_data else: logging.basicConfig(level=logging.ERROR , format='%(message)s' , force=lowercase__ ) logging.error('Dataset empty' ) raise AssertionError def _a ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = np.array([[1, 2, 3, 4, 5], [2, 3, 4, 5, 6], [3, 4, 5, 6, 7]] ) SCREAMING_SNAKE_CASE__ : Tuple = np.array([0, 0, 0, 1, 1] ) SCREAMING_SNAKE_CASE__ : str = 2 SCREAMING_SNAKE_CASE__ : Dict = 2 # Assert that the function raises an AssertionError if dimensions > classes with pytest.raises(lowercase__ ) as error_info: SCREAMING_SNAKE_CASE__ : Optional[int] = linear_discriminant_analysis( lowercase__ , lowercase__ , lowercase__ , lowercase__ ) if isinstance(lowercase__ , np.ndarray ): raise AssertionError( 'Did not raise AssertionError for dimensions > classes' ) assert error_info.type is AssertionError def _a ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]] ) SCREAMING_SNAKE_CASE__ : List[str] = 2 SCREAMING_SNAKE_CASE__ : Union[str, Any] = np.array([[6.92820323, 8.66025404, 10.39230485], [3.0, 3.0, 3.0]] ) with pytest.raises(lowercase__ ) as error_info: SCREAMING_SNAKE_CASE__ : int = principal_component_analysis(lowercase__ , lowercase__ ) if not np.allclose(lowercase__ , lowercase__ ): raise AssertionError assert error_info.type is AssertionError if __name__ == "__main__": import doctest doctest.testmod()
85
1
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_rembert import RemBertTokenizer else: _lowerCAmelCase = None _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = {"vocab_file": "sentencepiece.model", "tokenizer_file": "tokenizer.json"} _lowerCAmelCase = { "vocab_file": { "google/rembert": "https://huggingface.co/google/rembert/resolve/main/sentencepiece.model", }, "tokenizer_file": { "google/rembert": "https://huggingface.co/google/rembert/resolve/main/tokenizer.json", }, } _lowerCAmelCase = { "google/rembert": 256, } _lowerCAmelCase = "▁" class SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): """simple docstring""" _A : Optional[int] = VOCAB_FILES_NAMES _A : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP _A : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A : Tuple = RemBertTokenizer def __init__(self , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=True , lowerCAmelCase_=True , lowerCAmelCase_=False , lowerCAmelCase_="[CLS]" , lowerCAmelCase_="[SEP]" , lowerCAmelCase_="<unk>" , lowerCAmelCase_="[SEP]" , lowerCAmelCase_="<pad>" , lowerCAmelCase_="[CLS]" , lowerCAmelCase_="[MASK]" , **lowerCAmelCase_ , ): # Mask token behave like a normal word, i.e. include the space before it A_ : List[str] = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else mask_token super().__init__( lowerCAmelCase_ , tokenizer_file=lowerCAmelCase_ , do_lower_case=lowerCAmelCase_ , remove_space=lowerCAmelCase_ , keep_accents=lowerCAmelCase_ , bos_token=lowerCAmelCase_ , eos_token=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , **lowerCAmelCase_ , ) A_ : List[Any] = do_lower_case A_ : Tuple = remove_space A_ : Optional[Any] = keep_accents A_ : List[str] = vocab_file A_ : Union[str, Any] = False if not self.vocab_file else True def lowerCamelCase(self , lowerCAmelCase_ , lowerCAmelCase_ = None ): A_ : Any = [self.sep_token_id] A_ : List[str] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCamelCase(self , lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( """You should not supply a second sequence if the provided sequence of """ """ids is already formatted with special tokens for the model.""" ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(lowerCAmelCase_ )) + [1] + ([0] * len(lowerCAmelCase_ )) + [1] return [1] + ([0] * len(lowerCAmelCase_ )) + [1] def lowerCamelCase(self , lowerCAmelCase_ , lowerCAmelCase_ = None ): A_ : Any = [self.sep_token_id] A_ : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCamelCase(self , lowerCAmelCase_ , lowerCAmelCase_ = None ): if not os.path.isdir(lowerCAmelCase_ ): logger.error("""Vocabulary path ({}) should be a directory""".format(lowerCAmelCase_ ) ) return A_ : str = os.path.join( lowerCAmelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase_ ): copyfile(self.vocab_file , lowerCAmelCase_ ) return (out_vocab_file,)
480
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): """simple docstring""" _A : Optional[int] = """facebook/bart-large-mnli""" _A : str = ( """This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which """ """should be the text to classify, and `labels`, which should be the list of labels to use for classification. """ """It returns the most likely label in the list of provided `labels` for the input text.""" ) _A : List[str] = """text_classifier""" _A : Optional[int] = AutoTokenizer _A : Optional[Any] = AutoModelForSequenceClassification _A : List[str] = ["""text""", ["""text"""]] _A : Dict = ["""text"""] def lowerCamelCase(self ): super().setup() A_ : int = self.model.config A_ : List[str] = -1 for idx, label in config.idalabel.items(): if label.lower().startswith("""entail""" ): A_ : List[Any] = int(lowerCAmelCase_ ) if self.entailment_id == -1: raise ValueError("""Could not determine the entailment ID from the model config, please pass it at init.""" ) def lowerCamelCase(self , lowerCAmelCase_ , lowerCAmelCase_ ): A_ : List[Any] = labels return self.pre_processor( [text] * len(lowerCAmelCase_ ) , [f"""This example is {label}""" for label in labels] , return_tensors="""pt""" , padding="""max_length""" , ) def lowerCamelCase(self , lowerCAmelCase_ ): A_ : str = outputs.logits A_ : Optional[int] = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
480
1
'''simple docstring''' import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights a_ : Union[str, Any] = FlaxDiffusionPipeline.from_pretrained( """hf-internal-testing/tiny-stable-diffusion-pipe""" , safety_checker=lowerCAmelCase_ , cache_dir=lowerCAmelCase_ ) a_ : List[str] = [t[-1] for t in os.walk(os.path.join(lowerCAmelCase_ , os.listdir(lowerCAmelCase_ )[0] , """snapshots""" ) )] a_ : Any = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith(""".bin""" ) for f in files ) @slow @require_flax class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self ): '''simple docstring''' a_ , a_ : Optional[int] = FlaxStableDiffusionPipeline.from_pretrained( """hf-internal-testing/tiny-stable-diffusion-pipe""" , safety_checker=lowerCAmelCase_ ) a_ : Optional[int] = ( """A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of""" """ field, close up, split lighting, cinematic""" ) a_ : List[str] = jax.random.PRNGKey(0 ) a_ : Optional[Any] = 4 a_ : Dict = jax.device_count() a_ : Any = num_samples * [prompt] a_ : Optional[Any] = pipeline.prepare_inputs(lowerCAmelCase_ ) # shard inputs and rng a_ : str = replicate(lowerCAmelCase_ ) a_ : List[Any] = jax.random.split(lowerCAmelCase_ , lowerCAmelCase_ ) a_ : Tuple = shard(lowerCAmelCase_ ) a_ : Any = pipeline(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , jit=lowerCAmelCase_ ).images assert images.shape == (num_samples, 1, 64, 64, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 4.1514745 ) < 1E-3 assert np.abs(np.abs(lowerCAmelCase_ , dtype=np.floataa ).sum() - 49947.875 ) < 5E-1 a_ : List[str] = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) ) assert len(lowerCAmelCase_ ) == num_samples def _lowerCAmelCase ( self ): '''simple docstring''' a_ , a_ : List[str] = FlaxStableDiffusionPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""flax""" , safety_checker=lowerCAmelCase_ ) a_ : int = ( """A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of""" """ field, close up, split lighting, cinematic""" ) a_ : int = jax.random.PRNGKey(0 ) a_ : Any = 50 a_ : List[str] = jax.device_count() a_ : Any = num_samples * [prompt] a_ : List[str] = pipeline.prepare_inputs(lowerCAmelCase_ ) # shard inputs and rng a_ : int = replicate(lowerCAmelCase_ ) a_ : Optional[int] = jax.random.split(lowerCAmelCase_ , lowerCAmelCase_ ) a_ : int = shard(lowerCAmelCase_ ) a_ : Any = pipeline(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , jit=lowerCAmelCase_ ).images assert images.shape == (num_samples, 1, 5_12, 5_12, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.05652401) ) < 1E-3 assert np.abs((np.abs(lowerCAmelCase_ , dtype=np.floataa ).sum() - 2383808.2) ) < 5E-1 def _lowerCAmelCase ( self ): '''simple docstring''' a_ , a_ : Dict = FlaxStableDiffusionPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""bf16""" , dtype=jnp.bfloataa , safety_checker=lowerCAmelCase_ ) a_ : Optional[int] = ( """A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of""" """ field, close up, split lighting, cinematic""" ) a_ : List[Any] = jax.random.PRNGKey(0 ) a_ : str = 50 a_ : List[Any] = jax.device_count() a_ : Optional[int] = num_samples * [prompt] a_ : List[str] = pipeline.prepare_inputs(lowerCAmelCase_ ) # shard inputs and rng a_ : Optional[int] = replicate(lowerCAmelCase_ ) a_ : Dict = jax.random.split(lowerCAmelCase_ , lowerCAmelCase_ ) a_ : Union[str, Any] = shard(lowerCAmelCase_ ) a_ : List[Any] = pipeline(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , jit=lowerCAmelCase_ ).images assert images.shape == (num_samples, 1, 5_12, 5_12, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04003906) ) < 1E-3 assert np.abs((np.abs(lowerCAmelCase_ , dtype=np.floataa ).sum() - 2373516.75) ) < 5E-1 def _lowerCAmelCase ( self ): '''simple docstring''' a_ , a_ : List[Any] = FlaxStableDiffusionPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""bf16""" , dtype=jnp.bfloataa ) a_ : Optional[Any] = ( """A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of""" """ field, close up, split lighting, cinematic""" ) a_ : Optional[Any] = jax.random.PRNGKey(0 ) a_ : str = 50 a_ : Optional[int] = jax.device_count() a_ : List[Any] = num_samples * [prompt] a_ : List[Any] = pipeline.prepare_inputs(lowerCAmelCase_ ) # shard inputs and rng a_ : str = replicate(lowerCAmelCase_ ) a_ : Dict = jax.random.split(lowerCAmelCase_ , lowerCAmelCase_ ) a_ : Optional[Any] = shard(lowerCAmelCase_ ) a_ : Optional[Any] = pipeline(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , jit=lowerCAmelCase_ ).images assert images.shape == (num_samples, 1, 5_12, 5_12, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04003906) ) < 1E-3 assert np.abs((np.abs(lowerCAmelCase_ , dtype=np.floataa ).sum() - 2373516.75) ) < 5E-1 def _lowerCAmelCase ( self ): '''simple docstring''' a_ : Any = FlaxDDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , set_alpha_to_one=lowerCAmelCase_ , steps_offset=1 , ) a_ , a_ : List[str] = FlaxStableDiffusionPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""bf16""" , dtype=jnp.bfloataa , scheduler=lowerCAmelCase_ , safety_checker=lowerCAmelCase_ , ) a_ : Optional[Any] = scheduler.create_state() a_ : Dict = scheduler_state a_ : int = ( """A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of""" """ field, close up, split lighting, cinematic""" ) a_ : Tuple = jax.random.PRNGKey(0 ) a_ : Tuple = 50 a_ : int = jax.device_count() a_ : Any = num_samples * [prompt] a_ : Optional[int] = pipeline.prepare_inputs(lowerCAmelCase_ ) # shard inputs and rng a_ : Dict = replicate(lowerCAmelCase_ ) a_ : List[Any] = jax.random.split(lowerCAmelCase_ , lowerCAmelCase_ ) a_ : int = shard(lowerCAmelCase_ ) a_ : int = pipeline(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , jit=lowerCAmelCase_ ).images assert images.shape == (num_samples, 1, 5_12, 5_12, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.045043945) ) < 1E-3 assert np.abs((np.abs(lowerCAmelCase_ , dtype=np.floataa ).sum() - 2347693.5) ) < 5E-1 def _lowerCAmelCase ( self ): '''simple docstring''' a_ : Union[str, Any] = ( """A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of""" """ field, close up, split lighting, cinematic""" ) a_ : Optional[Any] = jax.device_count() a_ : Optional[int] = num_samples * [prompt] a_ : Optional[int] = jax.random.split(jax.random.PRNGKey(0 ) , lowerCAmelCase_ ) a_ , a_ : Optional[int] = FlaxStableDiffusionPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""bf16""" , dtype=jnp.bfloataa , safety_checker=lowerCAmelCase_ , ) a_ : Dict = replicate(lowerCAmelCase_ ) a_ : Any = pipeline.prepare_inputs(lowerCAmelCase_ ) a_ : Optional[int] = shard(lowerCAmelCase_ ) a_ : str = pipeline(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , jit=lowerCAmelCase_ ).images assert images.shape == (num_samples, 1, 5_12, 5_12, 3) a_ : Union[str, Any] = images[2, 0, 2_56, 10:17, 1] # With memory efficient attention a_ , a_ : str = FlaxStableDiffusionPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""bf16""" , dtype=jnp.bfloataa , safety_checker=lowerCAmelCase_ , use_memory_efficient_attention=lowerCAmelCase_ , ) a_ : Optional[Any] = replicate(lowerCAmelCase_ ) a_ : int = pipeline.prepare_inputs(lowerCAmelCase_ ) a_ : Optional[int] = shard(lowerCAmelCase_ ) a_ : Union[str, Any] = pipeline(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , jit=lowerCAmelCase_ ).images assert images_eff.shape == (num_samples, 1, 5_12, 5_12, 3) a_ : Optional[Any] = images[2, 0, 2_56, 10:17, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice ).max() < 1E-2
577
'''simple docstring''' def _snake_case ( A_ : str , A_ : str ): """simple docstring""" if not (isinstance(A_ , A_ ) and isinstance(A_ , A_ )): raise ValueError("""longest_common_substring() takes two strings for inputs""" ) a_ : Optional[int] = len(A_ ) a_ : Dict = len(A_ ) a_ : Tuple = [[0] * (texta_length + 1) for _ in range(texta_length + 1 )] a_ : str = 0 a_ : Union[str, Any] = 0 for i in range(1 , texta_length + 1 ): for j in range(1 , texta_length + 1 ): if texta[i - 1] == texta[j - 1]: a_ : int = 1 + dp[i - 1][j - 1] if dp[i][j] > ans_length: a_ : Tuple = i a_ : Union[str, Any] = dp[i][j] return texta[ans_index - ans_length : ans_index] if __name__ == "__main__": import doctest doctest.testmod()
577
1
"""simple docstring""" from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __UpperCAmelCase ( __lowerCAmelCase ): A__ : str = ['''image_processor''', '''tokenizer'''] A__ : List[str] = '''BridgeTowerImageProcessor''' A__ : Optional[Any] = ('''RobertaTokenizer''', '''RobertaTokenizerFast''') def __init__( self , _lowerCamelCase , _lowerCamelCase ): super().__init__(_lowerCamelCase , _lowerCamelCase ) def __call__( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = True , _lowerCamelCase = False , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = 0 , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = False , _lowerCamelCase = False , _lowerCamelCase = False , _lowerCamelCase = False , _lowerCamelCase = True , _lowerCamelCase = None , **_lowerCamelCase , ): lowerCamelCase__ =self.tokenizer( text=_lowerCamelCase , add_special_tokens=_lowerCamelCase , padding=_lowerCamelCase , truncation=_lowerCamelCase , max_length=_lowerCamelCase , stride=_lowerCamelCase , pad_to_multiple_of=_lowerCamelCase , return_token_type_ids=_lowerCamelCase , return_attention_mask=_lowerCamelCase , return_overflowing_tokens=_lowerCamelCase , return_special_tokens_mask=_lowerCamelCase , return_offsets_mapping=_lowerCamelCase , return_length=_lowerCamelCase , verbose=_lowerCamelCase , return_tensors=_lowerCamelCase , **_lowerCamelCase , ) # add pixel_values + pixel_mask lowerCamelCase__ =self.image_processor( _lowerCamelCase , return_tensors=_lowerCamelCase , do_normalize=_lowerCamelCase , do_center_crop=_lowerCamelCase , **_lowerCamelCase ) encoding.update(_lowerCamelCase ) return encoding def _a ( self , *_lowerCamelCase , **_lowerCamelCase ): return self.tokenizer.batch_decode(*_lowerCamelCase , **_lowerCamelCase ) def _a ( self , *_lowerCamelCase , **_lowerCamelCase ): return self.tokenizer.decode(*_lowerCamelCase , **_lowerCamelCase ) @property def _a ( self ): lowerCamelCase__ =self.tokenizer.model_input_names lowerCamelCase__ =self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
132
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices a =logging.get_logger(__name__) a ={ 'shi-labs/dinat-mini-in1k-224': 'https://huggingface.co/shi-labs/dinat-mini-in1k-224/resolve/main/config.json', # See all Dinat models at https://huggingface.co/models?filter=dinat } class __UpperCAmelCase ( __lowerCAmelCase , __lowerCAmelCase ): A__ : str = '''dinat''' A__ : List[str] = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self , _lowerCamelCase=4 , _lowerCamelCase=3 , _lowerCamelCase=64 , _lowerCamelCase=[3, 4, 6, 5] , _lowerCamelCase=[2, 4, 8, 16] , _lowerCamelCase=7 , _lowerCamelCase=[[1, 8, 1], [1, 4, 1, 4], [1, 2, 1, 2, 1, 2], [1, 1, 1, 1, 1]] , _lowerCamelCase=3.0 , _lowerCamelCase=True , _lowerCamelCase=0.0 , _lowerCamelCase=0.0 , _lowerCamelCase=0.1 , _lowerCamelCase="gelu" , _lowerCamelCase=0.0_2 , _lowerCamelCase=1E-5 , _lowerCamelCase=0.0 , _lowerCamelCase=None , _lowerCamelCase=None , **_lowerCamelCase , ): super().__init__(**_lowerCamelCase ) lowerCamelCase__ =patch_size lowerCamelCase__ =num_channels lowerCamelCase__ =embed_dim lowerCamelCase__ =depths lowerCamelCase__ =len(_lowerCamelCase ) lowerCamelCase__ =num_heads lowerCamelCase__ =kernel_size lowerCamelCase__ =dilations lowerCamelCase__ =mlp_ratio lowerCamelCase__ =qkv_bias lowerCamelCase__ =hidden_dropout_prob lowerCamelCase__ =attention_probs_dropout_prob lowerCamelCase__ =drop_path_rate lowerCamelCase__ =hidden_act lowerCamelCase__ =layer_norm_eps lowerCamelCase__ =initializer_range # we set the hidden_size attribute in order to make Dinat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowerCamelCase__ =int(embed_dim * 2 ** (len(_lowerCamelCase ) - 1) ) lowerCamelCase__ =layer_scale_init_value lowerCamelCase__ =["stem"] + [F'''stage{idx}''' for idx in range(1 , len(_lowerCamelCase ) + 1 )] lowerCamelCase__ , lowerCamelCase__ =get_aligned_output_features_output_indices( out_features=_lowerCamelCase , out_indices=_lowerCamelCase , stage_names=self.stage_names )
132
1
import os import tempfile import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from torch import nn from transformers import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_inverse_sqrt_schedule, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase=10 ) -> List[str]: snake_case__ = [] for _ in range(__lowerCAmelCase ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() return lrs def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase=10 ) -> Dict: snake_case__ = [] for step in range(__lowerCAmelCase ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() if step == num_steps // 2: with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ = os.path.join(__lowerCAmelCase , '''schedule.bin''' ) torch.save(scheduler.state_dict() , __lowerCAmelCase ) snake_case__ = torch.load(__lowerCAmelCase ) scheduler.load_state_dict(__lowerCAmelCase ) return lrs @require_torch class __magic_name__ (unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self:int , _a:List[Any] , _a:Optional[Any] , _a:int ): self.assertEqual(len(_a ) , len(_a ) ) for a, b in zip(_a , _a ): self.assertAlmostEqual(_a , _a , delta=_a ) def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): snake_case__ = torch.tensor([0.1, -0.2, -0.1] , requires_grad=_a ) snake_case__ = torch.tensor([0.4, 0.2, -0.5] ) snake_case__ = nn.MSELoss() # No warmup, constant schedule, no gradient clipping snake_case__ = AdamW(params=[w] , lr=2e-1 , weight_decay=0.0 ) for _ in range(1_00 ): snake_case__ = criterion(_a , _a ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1e-2 ) def SCREAMING_SNAKE_CASE__ ( self:Any ): snake_case__ = torch.tensor([0.1, -0.2, -0.1] , requires_grad=_a ) snake_case__ = torch.tensor([0.4, 0.2, -0.5] ) snake_case__ = nn.MSELoss() # No warmup, constant schedule, no gradient clipping snake_case__ = Adafactor( params=[w] , lr=1e-2 , eps=(1e-30, 1e-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=_a , weight_decay=0.0 , relative_step=_a , scale_parameter=_a , warmup_init=_a , ) for _ in range(10_00 ): snake_case__ = criterion(_a , _a ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1e-2 ) @require_torch class __magic_name__ (unittest.TestCase ): '''simple docstring''' __lowercase : int = nn.Linear(50 ,50 ) if is_torch_available() else None __lowercase : Optional[Any] = AdamW(m.parameters() ,lr=10.0 ) if is_torch_available() else None __lowercase : List[str] = 10 def SCREAMING_SNAKE_CASE__ ( self:List[str] , _a:Optional[int] , _a:Optional[int] , _a:Union[str, Any] , _a:int=None ): self.assertEqual(len(_a ) , len(_a ) ) for a, b in zip(_a , _a ): self.assertAlmostEqual(_a , _a , delta=_a , msg=_a ) def SCREAMING_SNAKE_CASE__ ( self:int ): snake_case__ = {'''num_warmup_steps''': 2, '''num_training_steps''': 10} # schedulers doct format # function: (sched_args_dict, expected_learning_rates) snake_case__ = { get_constant_schedule: ({}, [10.0] * self.num_steps), get_constant_schedule_with_warmup: ( {'''num_warmup_steps''': 4}, [0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0], ), get_linear_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25], ), get_cosine_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38], ), get_cosine_with_hard_restarts_schedule_with_warmup: ( {**common_kwargs, '''num_cycles''': 2}, [0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46], ), get_polynomial_decay_schedule_with_warmup: ( {**common_kwargs, '''power''': 2.0, '''lr_end''': 1e-7}, [0.0, 5.0, 10.0, 7.656, 5.625, 3.906, 2.5, 1.406, 0.625, 0.156], ), get_inverse_sqrt_schedule: ( {'''num_warmup_steps''': 2}, [0.0, 5.0, 10.0, 8.165, 7.071, 6.325, 5.774, 5.345, 5.0, 4.714], ), } for scheduler_func, data in scheds.items(): snake_case__ , snake_case__ = data snake_case__ = scheduler_func(self.optimizer , **_a ) self.assertEqual(len([scheduler.get_lr()[0]] ) , 1 ) snake_case__ = unwrap_schedule(_a , self.num_steps ) self.assertListAlmostEqual( _a , _a , tol=1e-2 , msg=F"""failed for {scheduler_func} in normal scheduler""" , ) snake_case__ = scheduler_func(self.optimizer , **_a ) if scheduler_func.__name__ != "get_constant_schedule": LambdaScheduleWrapper.wrap_scheduler(_a ) # wrap to test picklability of the schedule snake_case__ = unwrap_and_save_reload_schedule(_a , self.num_steps ) self.assertListEqual(_a , _a , msg=F"""failed for {scheduler_func} in save and reload""" ) class __magic_name__ : '''simple docstring''' def __init__( self:Any , _a:Dict ): snake_case__ = fn def __call__( self:Any , *_a:Dict , **_a:List[str] ): return self.fn(*_a , **_a ) @classmethod def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] , _a:Tuple ): snake_case__ = list(map(self , scheduler.lr_lambdas ) )
33
import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class __UpperCamelCase ( _a ,_a ): '''simple docstring''' @register_to_config def __init__( self , *, lowerCamelCase__ = 4 , lowerCamelCase__ = 7_6_8 , lowerCamelCase__ , lowerCamelCase__ , ): super().__init__() UpperCAmelCase__: int = nn.Parameter(torch.zeros(lowerCamelCase__ ) ) # parameters for additional clip time embeddings UpperCAmelCase__: Optional[Any] = nn.Linear(lowerCamelCase__ , lowerCamelCase__ ) UpperCAmelCase__: str = nn.Linear(lowerCamelCase__ , lowerCamelCase__ ) # parameters for encoder hidden states UpperCAmelCase__: Tuple = clip_extra_context_tokens UpperCAmelCase__: List[str] = nn.Linear( lowerCamelCase__ , self.clip_extra_context_tokens * cross_attention_dim ) UpperCAmelCase__: Union[str, Any] = nn.Linear(lowerCamelCase__ , lowerCamelCase__ ) UpperCAmelCase__: str = nn.LayerNorm(lowerCamelCase__ ) def _UpperCAmelCase ( self , *, lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): if do_classifier_free_guidance: # Add the classifier free guidance embeddings to the image embeddings UpperCAmelCase__: Any = image_embeddings.shape[0] UpperCAmelCase__: Optional[Any] = self.learned_classifier_free_guidance_embeddings.unsqueeze(0 ) UpperCAmelCase__: Union[str, Any] = classifier_free_guidance_embeddings.expand( lowerCamelCase__ , -1 ) UpperCAmelCase__: Tuple = torch.cat([classifier_free_guidance_embeddings, image_embeddings] , dim=0 ) # The image embeddings batch size and the text embeddings batch size are equal assert image_embeddings.shape[0] == prompt_embeds.shape[0] UpperCAmelCase__: str = prompt_embeds.shape[0] # "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and # adding CLIP embeddings to the existing timestep embedding, ... UpperCAmelCase__: List[str] = self.embedding_proj(lowerCamelCase__ ) UpperCAmelCase__: Optional[int] = self.clip_image_embeddings_project_to_time_embeddings(lowerCamelCase__ ) UpperCAmelCase__: Any = time_projected_image_embeddings + time_projected_prompt_embeds # ... and by projecting CLIP embeddings into four # extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder" UpperCAmelCase__: Dict = self.clip_extra_context_tokens_proj(lowerCamelCase__ ) UpperCAmelCase__: Optional[Any] = clip_extra_context_tokens.reshape(lowerCamelCase__ , -1 , self.clip_extra_context_tokens ) UpperCAmelCase__: Dict = clip_extra_context_tokens.permute(0 , 2 , 1 ) UpperCAmelCase__: Any = self.encoder_hidden_states_proj(lowerCamelCase__ ) UpperCAmelCase__: List[str] = self.text_encoder_hidden_states_norm(lowerCamelCase__ ) UpperCAmelCase__: Optional[int] = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] , dim=1 ) return text_encoder_hidden_states, additive_clip_time_embeddings
113
0
class lowercase_ : def __init__( self , __A ) -> int: SCREAMING_SNAKE_CASE_ : Any =set_counts SCREAMING_SNAKE_CASE_ : Optional[int] =max(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE_ : Optional[int] =len(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE_ : str =[1] * num_sets SCREAMING_SNAKE_CASE_ : Optional[int] =list(range(UpperCAmelCase_ ) ) def _snake_case ( self , __A , __A ) -> Optional[int]: SCREAMING_SNAKE_CASE_ : int =self.get_parent(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE_ : List[str] =self.get_parent(UpperCAmelCase_ ) if src_parent == dst_parent: return False if self.ranks[dst_parent] >= self.ranks[src_parent]: self.set_counts[dst_parent] += self.set_counts[src_parent] SCREAMING_SNAKE_CASE_ : Dict =0 SCREAMING_SNAKE_CASE_ : Tuple =dst_parent if self.ranks[dst_parent] == self.ranks[src_parent]: self.ranks[dst_parent] += 1 SCREAMING_SNAKE_CASE_ : Dict =self.set_counts[dst_parent] else: self.set_counts[src_parent] += self.set_counts[dst_parent] SCREAMING_SNAKE_CASE_ : Optional[Any] =0 SCREAMING_SNAKE_CASE_ : int =src_parent SCREAMING_SNAKE_CASE_ : str =self.set_counts[src_parent] SCREAMING_SNAKE_CASE_ : str =max(self.max_set , UpperCAmelCase_ ) return True def _snake_case ( self , __A ) -> Tuple: if self.parents[disj_set] == disj_set: return disj_set SCREAMING_SNAKE_CASE_ : Any =self.get_parent(self.parents[disj_set] ) return self.parents[disj_set]
706
import timeit import numpy as np import datasets from datasets.arrow_writer import ArrowWriter from datasets.features.features import _ArrayXD def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : str ) -> int: def wrapper(*UpperCAmelCase_ : str , **UpperCAmelCase_ : str ): SCREAMING_SNAKE_CASE_ : Optional[int] =timeit.default_timer() SCREAMING_SNAKE_CASE_ : Dict =func(*UpperCAmelCase_ , **UpperCAmelCase_ ) SCREAMING_SNAKE_CASE_ : str =timeit.default_timer() - starttime return delta SCREAMING_SNAKE_CASE_ : Any =func.__name__ return wrapper def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : dict , UpperCAmelCase_ : Any=1_0_0 , UpperCAmelCase_ : Dict=None ) -> int: SCREAMING_SNAKE_CASE_ : Optional[Any] =[] SCREAMING_SNAKE_CASE_ : List[str] =seq_shapes or {} for i in range(UpperCAmelCase_ ): SCREAMING_SNAKE_CASE_ : Optional[Any] ={} for col_id, (k, v) in enumerate(features.items() ): if isinstance(UpperCAmelCase_ , _ArrayXD ): SCREAMING_SNAKE_CASE_ : Any =np.random.rand(*v.shape ).astype(v.dtype ) elif isinstance(UpperCAmelCase_ , datasets.Value ): if v.dtype == "string": SCREAMING_SNAKE_CASE_ : Optional[Any] ='''The small grey turtle was surprisingly fast when challenged.''' else: SCREAMING_SNAKE_CASE_ : int =np.random.randint(1_0 , size=1 ).astype(v.dtype ).item() elif isinstance(UpperCAmelCase_ , datasets.Sequence ): while isinstance(UpperCAmelCase_ , datasets.Sequence ): SCREAMING_SNAKE_CASE_ : Tuple =v.feature SCREAMING_SNAKE_CASE_ : Optional[Any] =seq_shapes[k] SCREAMING_SNAKE_CASE_ : Optional[Any] =np.random.rand(*UpperCAmelCase_ ).astype(v.dtype ) SCREAMING_SNAKE_CASE_ : Union[str, Any] =data dummy_data.append((i, example) ) return dummy_data def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : str=1_0_0 , UpperCAmelCase_ : Dict=None ) -> Dict: SCREAMING_SNAKE_CASE_ : Optional[int] =generate_examples(UpperCAmelCase_ , num_examples=UpperCAmelCase_ , seq_shapes=UpperCAmelCase_ ) with ArrowWriter(features=UpperCAmelCase_ , path=UpperCAmelCase_ ) as writer: for key, record in dummy_data: SCREAMING_SNAKE_CASE_ : List[Any] =features.encode_example(UpperCAmelCase_ ) writer.write(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple =writer.finalize() if not num_final_examples == num_examples: raise ValueError( f'Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}.' ) SCREAMING_SNAKE_CASE_ : List[Any] =datasets.Dataset.from_file(filename=UpperCAmelCase_ , info=datasets.DatasetInfo(features=UpperCAmelCase_ ) ) return dataset
431
0
'''simple docstring''' def _a ( _lowerCamelCase ) -> List[Any]: """simple docstring""" __snake_case : Dict = len(UpperCAmelCase_ ) for i in range(1 , UpperCAmelCase_ ): __snake_case : str = collection[i] __snake_case : Union[str, Any] = 0 __snake_case : List[str] = i - 1 while low <= high: __snake_case : str = (low + high) // 2 if val < collection[mid]: __snake_case : str = mid - 1 else: __snake_case : Any = mid + 1 for j in range(UpperCAmelCase_ , UpperCAmelCase_ , -1 ): __snake_case : Optional[Any] = collection[j - 1] __snake_case : int = val return collection if __name__ == "__main__": __UpperCamelCase = input("Enter numbers separated by a comma:\n").strip() __UpperCamelCase = [int(item) for item in user_input.split(",")] print(binary_insertion_sort(unsorted))
26
import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params snake_case__ = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ["""memory_attention""", """encoder_attn"""], ["""attention""", """attn"""], ["""/""", """."""], [""".LayerNorm.gamma""", """_layer_norm.weight"""], [""".LayerNorm.beta""", """_layer_norm.bias"""], ["""r.layer_""", """r.layers."""], ["""output_proj""", """out_proj"""], ["""ffn.dense_1.""", """fc2."""], ["""ffn.dense.""", """fc1."""], ["""ffn_layer_norm""", """final_layer_norm"""], ["""kernel""", """weight"""], ["""encoder_layer_norm.""", """encoder.layer_norm."""], ["""decoder_layer_norm.""", """decoder.layer_norm."""], ["""embeddings.weights""", """shared.weight"""], ] def lowerCamelCase_ ( UpperCAmelCase_ : Dict ): for pegasus_name, hf_name in PATTERNS: lowercase : int = k.replace(UpperCAmelCase_ , UpperCAmelCase_ ) return k def lowerCamelCase_ ( UpperCAmelCase_ : dict , UpperCAmelCase_ : dict ): lowercase : Optional[int] = DEFAULTS.copy() cfg_kwargs.update(UpperCAmelCase_ ) lowercase : Optional[Any] = PegasusConfig(**UpperCAmelCase_ ) lowercase : List[Any] = PegasusForConditionalGeneration(UpperCAmelCase_ ) lowercase : Optional[Any] = torch_model.model.state_dict() lowercase : Optional[int] = {} for k, v in tf_weights.items(): lowercase : str = rename_state_dict_key(UpperCAmelCase_ ) if new_k not in sd: raise ValueError(f'''could not find new key {new_k} in state dict. (converted from {k})''' ) if "dense" in k or "proj" in new_k: lowercase : List[str] = v.T lowercase : str = torch.tensor(UpperCAmelCase_ , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, f'''{new_k}, {k}, {v.shape}, {sd[new_k].shape}''' # make sure embedding.padding_idx is respected lowercase : Any = torch.zeros_like(mapping['''shared.weight'''][cfg.pad_token_id + 1] ) lowercase : Union[str, Any] = mapping['''shared.weight'''] lowercase : str = mapping['''shared.weight'''] lowercase : List[Any] = {k: torch.zeros_like(UpperCAmelCase_ ) for k, v in sd.items() if k.endswith('''bias''' ) and k not in mapping} mapping.update(**UpperCAmelCase_ ) lowercase , lowercase : int = torch_model.model.load_state_dict(UpperCAmelCase_ , strict=UpperCAmelCase_ ) lowercase : List[Any] = [ k for k in missing if k not in ['''encoder.embed_positions.weight''', '''decoder.embed_positions.weight'''] ] assert unexpected_missing == [], f'''no matches found for the following torch keys {unexpected_missing}''' assert extra == [], f'''no matches found for the following tf keys {extra}''' return torch_model def lowerCamelCase_ ( UpperCAmelCase_ : Union[str, Any]="./ckpt/aeslc/model.ckpt-32000" ): lowercase : Dict = tf.train.list_variables(UpperCAmelCase_ ) lowercase : Optional[Any] = {} lowercase : Optional[int] = ['''Adafactor''', '''global_step'''] for name, shape in tqdm(UpperCAmelCase_ , desc='''converting tf checkpoint to dict''' ): lowercase : Tuple = any(pat in name for pat in ignore_name ) if skip_key: continue lowercase : Tuple = tf.train.load_variable(UpperCAmelCase_ , UpperCAmelCase_ ) lowercase : List[str] = array return tf_weights def lowerCamelCase_ ( UpperCAmelCase_ : str , UpperCAmelCase_ : str ): # save tokenizer first lowercase : str = Path(UpperCAmelCase_ ).parent.name lowercase : List[Any] = task_specific_params[f'''summarization_{dataset}''']['''max_position_embeddings'''] lowercase : Dict = PegasusTokenizer.from_pretrained('''sshleifer/pegasus''' , model_max_length=UpperCAmelCase_ ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(UpperCAmelCase_ ) # convert model lowercase : List[str] = get_tf_weights_as_numpy(UpperCAmelCase_ ) lowercase : Any = task_specific_params[f'''summarization_{dataset}'''] if dataset == "large": lowercase : Optional[int] = task_specific_params lowercase : str = convert_pegasus(UpperCAmelCase_ , UpperCAmelCase_ ) torch_model.save_pretrained(UpperCAmelCase_ ) lowercase : Any = torch_model.state_dict() sd.pop('''model.decoder.embed_positions.weight''' ) sd.pop('''model.encoder.embed_positions.weight''' ) torch.save(UpperCAmelCase_ , Path(UpperCAmelCase_ ) / '''pytorch_model.bin''' ) if __name__ == "__main__": snake_case__ = argparse.ArgumentParser() # Required parameters parser.add_argument("""tf_ckpt_path""", type=str, help="""passed to tf.train.list_variables""") parser.add_argument("""save_dir""", default=None, type=str, help="""Path to the output PyTorch model.""") snake_case__ = parser.parse_args() if args.save_dir is None: snake_case__ = Path(args.tf_ckpt_path).parent.name snake_case__ = os.path.join("""pegasus""", dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
583
0
'''simple docstring''' from transformers import BertTokenizerFast from .custom_tokenization import CustomTokenizer class __magic_name__ ( lowerCAmelCase ): UpperCAmelCase =CustomTokenizer pass
331
'''simple docstring''' def lowerCamelCase__ ( __lowerCamelCase : int = 1_0_0 ): '''simple docstring''' _UpperCAmelCase : int =set() _UpperCAmelCase : Union[str, Any] =0 _UpperCAmelCase : Optional[Any] =n + 1 # maximum limit for a in range(2 , __lowerCamelCase ): for b in range(2 , __lowerCamelCase ): _UpperCAmelCase : Tuple =a**b # calculates the current power collect_powers.add(__lowerCamelCase ) # adds the result to the set return len(__lowerCamelCase ) if __name__ == "__main__": print('Number of terms ', solution(int(str(input()).strip())))
331
1
from __future__ import annotations from random import random from typing import Generic, TypeVar SCREAMING_SNAKE_CASE__ : List[str] = TypeVar("KT") SCREAMING_SNAKE_CASE__ : str = TypeVar("VT") class snake_case ( Generic[KT, VT] ): def __init__( self : Union[str, Any] , a_ : KT | str = "root" , a_ : VT | None = None )-> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = key SCREAMING_SNAKE_CASE__ : Dict = value SCREAMING_SNAKE_CASE__ : list[Node[KT, VT]] = [] def __repr__( self : Dict )-> str: """simple docstring""" return F'''Node({self.key}: {self.value})''' @property def __lowercase( self : List[str] )-> int: """simple docstring""" return len(self.forward ) class snake_case ( Generic[KT, VT] ): def __init__( self : Union[str, Any] , a_ : float = 0.5 , a_ : int = 16 )-> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Node[KT, VT] = Node[KT, VT]() SCREAMING_SNAKE_CASE__ : Tuple = 0 SCREAMING_SNAKE_CASE__ : str = p SCREAMING_SNAKE_CASE__ : Optional[int] = max_level def __str__( self : Optional[Any] )-> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = list(self ) if len(a_ ) == 0: return F'''SkipList(level={self.level})''' SCREAMING_SNAKE_CASE__ : str = max((len(str(a_ ) ) for item in items) , default=4 ) SCREAMING_SNAKE_CASE__ : Dict = max(a_ , 4 ) + 4 SCREAMING_SNAKE_CASE__ : Dict = self.head SCREAMING_SNAKE_CASE__ : Union[str, Any] = [] SCREAMING_SNAKE_CASE__ : int = node.forward.copy() lines.append(F'''[{node.key}]'''.ljust(a_ , '-' ) + '* ' * len(a_ ) ) lines.append(' ' * label_size + '| ' * len(a_ ) ) while len(node.forward ) != 0: SCREAMING_SNAKE_CASE__ : int = node.forward[0] lines.append( F'''[{node.key}]'''.ljust(a_ , '-' ) + ' '.join(str(n.key ) if n.key == node.key else '|' for n in forwards ) ) lines.append(' ' * label_size + '| ' * len(a_ ) ) SCREAMING_SNAKE_CASE__ : Optional[int] = node.forward lines.append('None'.ljust(a_ ) + '* ' * len(a_ ) ) return F'''SkipList(level={self.level})\n''' + "\n".join(a_ ) def __iter__( self : Optional[int] )-> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = self.head while len(node.forward ) != 0: yield node.forward[0].key SCREAMING_SNAKE_CASE__ : Optional[int] = node.forward[0] def __lowercase( self : str )-> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = 1 while random() < self.p and level < self.max_level: level += 1 return level def __lowercase( self : Dict , a_ : Optional[int] )-> tuple[Node[KT, VT] | None, list[Node[KT, VT]]]: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = [] SCREAMING_SNAKE_CASE__ : Any = self.head for i in reversed(range(self.level ) ): # i < node.level - When node level is lesser than `i` decrement `i`. # node.forward[i].key < key - Jumping to node with key value higher # or equal to searched key would result # in skipping searched key. while i < node.level and node.forward[i].key < key: SCREAMING_SNAKE_CASE__ : str = node.forward[i] # Each leftmost node (relative to searched node) will potentially have to # be updated. update_vector.append(a_ ) update_vector.reverse() # Note that we were inserting values in reverse order. # len(node.forward) != 0 - If current node doesn't contain any further # references then searched key is not present. # node.forward[0].key == key - Next node key should be equal to search key # if key is present. if len(node.forward ) != 0 and node.forward[0].key == key: return node.forward[0], update_vector else: return None, update_vector def __lowercase( self : Optional[Any] , a_ : KT )-> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Union[str, Any] = self._locate_node(a_ ) if node is not None: for i, update_node in enumerate(a_ ): # Remove or replace all references to removed node. if update_node.level > i and update_node.forward[i].key == key: if node.level > i: SCREAMING_SNAKE_CASE__ : List[Any] = node.forward[i] else: SCREAMING_SNAKE_CASE__ : Optional[Any] = update_node.forward[:i] def __lowercase( self : Any , a_ : KT , a_ : VT )-> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : str = self._locate_node(a_ ) if node is not None: SCREAMING_SNAKE_CASE__ : str = value else: SCREAMING_SNAKE_CASE__ : Dict = self.random_level() if level > self.level: # After level increase we have to add additional nodes to head. for _ in range(self.level - 1 , a_ ): update_vector.append(self.head ) SCREAMING_SNAKE_CASE__ : List[Any] = level SCREAMING_SNAKE_CASE__ : Union[str, Any] = Node(a_ , a_ ) for i, update_node in enumerate(update_vector[:level] ): # Change references to pass through new node. if update_node.level > i: new_node.forward.append(update_node.forward[i] ) if update_node.level < i + 1: update_node.forward.append(a_ ) else: SCREAMING_SNAKE_CASE__ : Optional[int] = new_node def __lowercase( self : Any , a_ : VT )-> VT | None: """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : int = self._locate_node(a_ ) if node is not None: return node.value return None def _a ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = SkipList() skip_list.insert('Key1' , 3 ) skip_list.insert('Key2' , 12 ) skip_list.insert('Key3' , 41 ) skip_list.insert('Key4' , -19 ) SCREAMING_SNAKE_CASE__ : Tuple = skip_list.head SCREAMING_SNAKE_CASE__ : Optional[int] = {} while node.level != 0: SCREAMING_SNAKE_CASE__ : Union[str, Any] = node.forward[0] SCREAMING_SNAKE_CASE__ : Union[str, Any] = node.value assert len(lowercase__ ) == 4 assert all_values["Key1"] == 3 assert all_values["Key2"] == 12 assert all_values["Key3"] == 41 assert all_values["Key4"] == -19 def _a ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = SkipList() skip_list.insert('Key1' , 10 ) skip_list.insert('Key1' , 12 ) skip_list.insert('Key5' , 7 ) skip_list.insert('Key7' , 10 ) skip_list.insert('Key10' , 5 ) skip_list.insert('Key7' , 7 ) skip_list.insert('Key5' , 5 ) skip_list.insert('Key10' , 10 ) SCREAMING_SNAKE_CASE__ : Dict = skip_list.head SCREAMING_SNAKE_CASE__ : Any = {} while node.level != 0: SCREAMING_SNAKE_CASE__ : int = node.forward[0] SCREAMING_SNAKE_CASE__ : List[Any] = node.value if len(lowercase__ ) != 4: print() assert len(lowercase__ ) == 4 assert all_values["Key1"] == 12 assert all_values["Key7"] == 7 assert all_values["Key5"] == 5 assert all_values["Key10"] == 10 def _a ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = SkipList() assert skip_list.find('Some key' ) is None def _a ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = SkipList() skip_list.insert('Key2' , 20 ) assert skip_list.find('Key2' ) == 20 skip_list.insert('Some Key' , 10 ) skip_list.insert('Key2' , 8 ) skip_list.insert('V' , 13 ) assert skip_list.find('Y' ) is None assert skip_list.find('Key2' ) == 8 assert skip_list.find('Some Key' ) == 10 assert skip_list.find('V' ) == 13 def _a ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any = SkipList() skip_list.delete('Some key' ) assert len(skip_list.head.forward ) == 0 def _a ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] = SkipList() skip_list.insert('Key1' , 12 ) skip_list.insert('V' , 13 ) skip_list.insert('X' , 14 ) skip_list.insert('Key2' , 15 ) skip_list.delete('V' ) skip_list.delete('Key2' ) assert skip_list.find('V' ) is None assert skip_list.find('Key2' ) is None def _a ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = SkipList() skip_list.insert('Key1' , 12 ) skip_list.insert('V' , 13 ) skip_list.insert('X' , 14 ) skip_list.insert('Key2' , 15 ) skip_list.delete('V' ) assert skip_list.find('V' ) is None assert skip_list.find('X' ) == 14 assert skip_list.find('Key1' ) == 12 assert skip_list.find('Key2' ) == 15 skip_list.delete('X' ) assert skip_list.find('V' ) is None assert skip_list.find('X' ) is None assert skip_list.find('Key1' ) == 12 assert skip_list.find('Key2' ) == 15 skip_list.delete('Key1' ) assert skip_list.find('V' ) is None assert skip_list.find('X' ) is None assert skip_list.find('Key1' ) is None assert skip_list.find('Key2' ) == 15 skip_list.delete('Key2' ) assert skip_list.find('V' ) is None assert skip_list.find('X' ) is None assert skip_list.find('Key1' ) is None assert skip_list.find('Key2' ) is None def _a ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any = SkipList() skip_list.insert('Key1' , 12 ) skip_list.insert('V' , 13 ) skip_list.insert('X' , 1_42 ) skip_list.insert('Key2' , 15 ) skip_list.delete('X' ) def traverse_keys(lowercase__ : Any ): yield node.key for forward_node in node.forward: yield from traverse_keys(lowercase__ ) assert len(set(traverse_keys(skip_list.head ) ) ) == 4 def _a ( ): '''simple docstring''' def is_sorted(lowercase__ : int ): return all(next_item >= item for item, next_item in zip(lowercase__ , lst[1:] ) ) SCREAMING_SNAKE_CASE__ : Dict = SkipList() for i in range(10 ): skip_list.insert(lowercase__ , lowercase__ ) assert is_sorted(list(lowercase__ ) ) skip_list.delete(5 ) skip_list.delete(8 ) skip_list.delete(2 ) assert is_sorted(list(lowercase__ ) ) skip_list.insert(-12 , -12 ) skip_list.insert(77 , 77 ) assert is_sorted(list(lowercase__ ) ) def _a ( ): '''simple docstring''' for _ in range(1_00 ): # Repeat test 100 times due to the probabilistic nature of skip list # random values == random bugs test_insert() test_insert_overrides_existing_value() test_searching_empty_list_returns_none() test_search() test_deleting_item_from_empty_list_do_nothing() test_deleted_items_are_not_founded_by_find_method() test_delete_removes_only_given_key() test_delete_doesnt_leave_dead_nodes() test_iter_always_yields_sorted_values() def _a ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = SkipList() skip_list.insert(2 , '2' ) skip_list.insert(4 , '4' ) skip_list.insert(6 , '4' ) skip_list.insert(4 , '5' ) skip_list.insert(8 , '4' ) skip_list.insert(9 , '4' ) skip_list.delete(4 ) print(lowercase__ ) if __name__ == "__main__": import doctest doctest.testmod() main()
85
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class a__ ( a__ , a__ , a__ , unittest.TestCase ): '''simple docstring''' lowercase__ : Optional[Any] = AltDiffusionPipeline lowercase__ : Dict = TEXT_TO_IMAGE_PARAMS lowercase__ : str = TEXT_TO_IMAGE_BATCH_PARAMS lowercase__ : Any = TEXT_TO_IMAGE_IMAGE_PARAMS lowercase__ : List[str] = TEXT_TO_IMAGE_IMAGE_PARAMS def __SCREAMING_SNAKE_CASE ( self ) -> str: torch.manual_seed(0 ) lowerCAmelCase__ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) lowerCAmelCase__ = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=lowerCamelCase_ , set_alpha_to_one=lowerCamelCase_ , ) torch.manual_seed(0 ) lowerCAmelCase__ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) # TODO: address the non-deterministic text encoder (fails for save-load tests) # torch.manual_seed(0) # text_encoder_config = RobertaSeriesConfig( # hidden_size=32, # project_dim=32, # intermediate_size=37, # layer_norm_eps=1e-05, # num_attention_heads=4, # num_hidden_layers=5, # vocab_size=5002, # ) # text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config) torch.manual_seed(0 ) lowerCAmelCase__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=50_02 , ) lowerCAmelCase__ = CLIPTextModel(lowerCamelCase_ ) lowerCAmelCase__ = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' ) lowerCAmelCase__ = 77 lowerCAmelCase__ = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_=0 ) -> List[str]: if str(lowerCamelCase_ ).startswith('''mps''' ): lowerCAmelCase__ = torch.manual_seed(lowerCamelCase_ ) else: lowerCAmelCase__ = torch.Generator(device=lowerCamelCase_ ).manual_seed(lowerCamelCase_ ) lowerCAmelCase__ = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: super().test_attention_slicing_forward_pass(expected_max_diff=3e-3 ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: lowerCAmelCase__ = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase__ = self.get_dummy_components() torch.manual_seed(0 ) lowerCAmelCase__ = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=50_02 , ) # TODO: remove after fixing the non-deterministic text encoder lowerCAmelCase__ = RobertaSeriesModelWithTransformation(lowerCamelCase_ ) lowerCAmelCase__ = text_encoder lowerCAmelCase__ = AltDiffusionPipeline(**lowerCamelCase_ ) lowerCAmelCase__ = alt_pipe.to(lowerCamelCase_ ) alt_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) lowerCAmelCase__ = self.get_dummy_inputs(lowerCamelCase_ ) lowerCAmelCase__ = '''A photo of an astronaut''' lowerCAmelCase__ = alt_pipe(**lowerCamelCase_ ) lowerCAmelCase__ = output.images lowerCAmelCase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase__ = np.array( [0.5_748_162, 0.60_447_145, 0.48_821_217, 0.50_100_636, 0.5_431_185, 0.45_763_683, 0.49_657_696, 0.48_132_733, 0.47_573_093] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: lowerCAmelCase__ = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase__ = self.get_dummy_components() lowerCAmelCase__ = PNDMScheduler(skip_prk_steps=lowerCamelCase_ ) torch.manual_seed(0 ) lowerCAmelCase__ = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=50_02 , ) # TODO: remove after fixing the non-deterministic text encoder lowerCAmelCase__ = RobertaSeriesModelWithTransformation(lowerCamelCase_ ) lowerCAmelCase__ = text_encoder lowerCAmelCase__ = AltDiffusionPipeline(**lowerCamelCase_ ) lowerCAmelCase__ = alt_pipe.to(lowerCamelCase_ ) alt_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) lowerCAmelCase__ = self.get_dummy_inputs(lowerCamelCase_ ) lowerCAmelCase__ = alt_pipe(**lowerCamelCase_ ) lowerCAmelCase__ = output.images lowerCAmelCase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase__ = np.array( [0.51_605_093, 0.5_707_241, 0.47_365_507, 0.50_578_886, 0.5_633_877, 0.4_642_503, 0.5_182_081, 0.48_763_484, 0.49_084_237] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class a__ ( unittest.TestCase ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: # make sure here that pndm scheduler skips prk lowerCAmelCase__ = AltDiffusionPipeline.from_pretrained('''BAAI/AltDiffusion''' , safety_checker=lowerCamelCase_ ) lowerCAmelCase__ = alt_pipe.to(lowerCamelCase_ ) alt_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) lowerCAmelCase__ = '''A painting of a squirrel eating a burger''' lowerCAmelCase__ = torch.manual_seed(0 ) lowerCAmelCase__ = alt_pipe([prompt] , generator=lowerCamelCase_ , guidance_scale=6.0 , num_inference_steps=20 , output_type='''np''' ) lowerCAmelCase__ = output.images lowerCAmelCase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) lowerCAmelCase__ = np.array([0.1_010, 0.0_800, 0.0_794, 0.0_885, 0.0_843, 0.0_762, 0.0_769, 0.0_729, 0.0_586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __SCREAMING_SNAKE_CASE ( self ) -> Any: lowerCAmelCase__ = DDIMScheduler.from_pretrained('''BAAI/AltDiffusion''' , subfolder='''scheduler''' ) lowerCAmelCase__ = AltDiffusionPipeline.from_pretrained('''BAAI/AltDiffusion''' , scheduler=lowerCamelCase_ , safety_checker=lowerCamelCase_ ) lowerCAmelCase__ = alt_pipe.to(lowerCamelCase_ ) alt_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) lowerCAmelCase__ = '''A painting of a squirrel eating a burger''' lowerCAmelCase__ = torch.manual_seed(0 ) lowerCAmelCase__ = alt_pipe([prompt] , generator=lowerCamelCase_ , num_inference_steps=2 , output_type='''numpy''' ) lowerCAmelCase__ = output.images lowerCAmelCase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) lowerCAmelCase__ = np.array([0.4_019, 0.4_052, 0.3_810, 0.4_119, 0.3_916, 0.3_982, 0.4_651, 0.4_195, 0.5_323] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
90
0
from __future__ import annotations import time from collections.abc import Sequence from random import randint from matplotlib import pyplot as plt def _lowercase ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_): """simple docstring""" if not arr: return None, None, 0 if low == high: return low, high, arr[low] snake_case__ : List[Any] = (low + high) // 2 snake_case__ : Union[str, Any] = max_subarray(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) snake_case__ : Union[str, Any] = max_subarray(UpperCAmelCase_ , mid + 1 , UpperCAmelCase_) snake_case__ : Optional[int] = max_cross_sum(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) if left_sum >= right_sum and left_sum >= cross_sum: return left_low, left_high, left_sum elif right_sum >= left_sum and right_sum >= cross_sum: return right_low, right_high, right_sum return cross_left, cross_right, cross_sum def _lowercase ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_): """simple docstring""" snake_case__ : Optional[Any] = float("""-inf"""), -1 snake_case__ : Dict = float("""-inf"""), -1 snake_case__ : int | float = 0 for i in range(UpperCAmelCase_ , low - 1 , -1): summ += arr[i] if summ > left_sum: snake_case__ : Optional[int] = summ snake_case__ : str = i snake_case__ : int = 0 for i in range(mid + 1 , high + 1): summ += arr[i] if summ > right_sum: snake_case__ : Dict = summ snake_case__ : List[Any] = i return max_left, max_right, (left_sum + right_sum) def _lowercase ( UpperCAmelCase_): """simple docstring""" snake_case__ : Dict = [randint(1 , UpperCAmelCase_) for _ in range(UpperCAmelCase_)] snake_case__ : Dict = time.time() max_subarray(UpperCAmelCase_ , 0 , input_size - 1) snake_case__ : Optional[Any] = time.time() return end - start def _lowercase ( ): """simple docstring""" snake_case__ : List[Any] = [10, 100, 1_000, 10_000, 50_000, 100_000, 200_000, 300_000, 400_000, 500_000] snake_case__ : int = [time_max_subarray(UpperCAmelCase_) for input_size in input_sizes] print("""No of Inputs\t\tTime Taken""") for input_size, runtime in zip(UpperCAmelCase_ , UpperCAmelCase_): print(UpperCAmelCase_ , """\t\t""" , UpperCAmelCase_) plt.plot(UpperCAmelCase_ , UpperCAmelCase_) plt.xlabel("""Number of Inputs""") plt.ylabel("""Time taken in seconds""") plt.show() if __name__ == "__main__": from doctest import testmod testmod()
706
from __future__ import annotations from typing import Any def _lowercase ( UpperCAmelCase_): """simple docstring""" if not postfix_notation: return 0 snake_case__ : List[str] = {"""+""", """-""", """*""", """/"""} snake_case__ : list[Any] = [] for token in postfix_notation: if token in operations: snake_case__ , snake_case__ : Tuple = stack.pop(), stack.pop() if token == "+": stack.append(a + b) elif token == "-": stack.append(a - b) elif token == "*": stack.append(a * b) else: if a * b < 0 and a % b != 0: stack.append(a // b + 1) else: stack.append(a // b) else: stack.append(int(UpperCAmelCase_)) return stack.pop() if __name__ == "__main__": import doctest doctest.testmod()
127
0
'''simple docstring''' from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
135
'''simple docstring''' from typing import Callable, List, Optional, Union import PIL import torch from transformers import ( CLIPImageProcessor, CLIPSegForImageSegmentation, CLIPSegProcessor, CLIPTextModel, CLIPTokenizer, ) from diffusers import DiffusionPipeline from diffusers.configuration_utils import FrozenDict from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import deprecate, is_accelerate_available, logging SCREAMING_SNAKE_CASE_: Optional[int] =logging.get_logger(__name__) # pylint: disable=invalid-name class __A ( UpperCamelCase__ ): def __init__(self : Any , __a : CLIPSegForImageSegmentation , __a : CLIPSegProcessor , __a : AutoencoderKL , __a : CLIPTextModel , __a : CLIPTokenizer , __a : UNetaDConditionModel , __a : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , __a : StableDiffusionSafetyChecker , __a : CLIPImageProcessor , ): super().__init__() if hasattr(scheduler.config , "steps_offset" ) and scheduler.config.steps_offset != 1: UpperCAmelCase_ = ( f"""The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`""" f""" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure """ "to update the config accordingly as leaving `steps_offset` might led to incorrect results" " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub," " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`" " file" ) deprecate("steps_offset!=1" , "1.0.0" , __a , standard_warn=__a ) UpperCAmelCase_ = dict(scheduler.config ) UpperCAmelCase_ = 1 UpperCAmelCase_ = FrozenDict(__a ) if hasattr(scheduler.config , "skip_prk_steps" ) and scheduler.config.skip_prk_steps is False: UpperCAmelCase_ = ( f"""The configuration file of this scheduler: {scheduler} has not set the configuration""" " `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make" " sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to" " incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face" " Hub, it would be very nice if you could open a Pull request for the" " `scheduler/scheduler_config.json` file" ) deprecate("skip_prk_steps not set" , "1.0.0" , __a , standard_warn=__a ) UpperCAmelCase_ = dict(scheduler.config ) UpperCAmelCase_ = True UpperCAmelCase_ = FrozenDict(__a ) if safety_checker is None: logger.warning( f"""You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure""" " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" " results in services or applications open to the public. Both the diffusers team and Hugging Face" " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" " it only for use-cases that involve analyzing network behavior or auditing its results. For more" " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." ) self.register_modules( segmentation_model=__a , segmentation_processor=__a , vae=__a , text_encoder=__a , tokenizer=__a , unet=__a , scheduler=__a , safety_checker=__a , feature_extractor=__a , ) def _lowercase (self : str , __a : Optional[Union[str, int]] = "auto" ): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory UpperCAmelCase_ = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(__a ) def _lowercase (self : int ): self.enable_attention_slicing(__a ) def _lowercase (self : Optional[Any] ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) UpperCAmelCase_ = torch.device("cuda" ) for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]: if cpu_offloaded_model is not None: cpu_offload(__a , __a ) @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def _lowercase (self : Optional[int] ): if self.device != torch.device("meta" ) or not hasattr(self.unet , "_hf_hook" ): return self.device for module in self.unet.modules(): if ( hasattr(__a , "_hf_hook" ) and hasattr(module._hf_hook , "execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() def __call__(self : Dict , __a : Union[str, List[str]] , __a : Union[torch.FloatTensor, PIL.Image.Image] , __a : str , __a : int = 512 , __a : int = 512 , __a : int = 50 , __a : float = 7.5 , __a : Optional[Union[str, List[str]]] = None , __a : Optional[int] = 1 , __a : float = 0.0 , __a : Optional[torch.Generator] = None , __a : Optional[torch.FloatTensor] = None , __a : Optional[str] = "pil" , __a : bool = True , __a : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __a : int = 1 , **__a : int , ): UpperCAmelCase_ = self.segmentation_processor( text=[text] , images=[image] , padding="max_length" , return_tensors="pt" ).to(self.device ) UpperCAmelCase_ = self.segmentation_model(**__a ) UpperCAmelCase_ = torch.sigmoid(outputs.logits ).cpu().detach().unsqueeze(-1 ).numpy() UpperCAmelCase_ = self.numpy_to_pil(__a )[0].resize(image.size ) # Run inpainting pipeline with the generated mask UpperCAmelCase_ = StableDiffusionInpaintPipeline( vae=self.vae , text_encoder=self.text_encoder , tokenizer=self.tokenizer , unet=self.unet , scheduler=self.scheduler , safety_checker=self.safety_checker , feature_extractor=self.feature_extractor , ) return inpainting_pipeline( prompt=__a , image=__a , mask_image=__a , height=__a , width=__a , num_inference_steps=__a , guidance_scale=__a , negative_prompt=__a , num_images_per_prompt=__a , eta=__a , generator=__a , latents=__a , output_type=__a , return_dict=__a , callback=__a , callback_steps=__a , )
78
0
import json import os import shutil import tempfile import unittest import numpy as np from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer from transformers.testing_utils import require_tokenizers, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor @require_tokenizers @require_vision class lowerCAmelCase_ ( unittest.TestCase ): def UpperCamelCase_ ( self : Any ): _UpperCamelCase = tempfile.mkdtemp() # fmt: off _UpperCamelCase = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest'''] # fmt: on _UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) _UpperCamelCase = { '''do_resize''': True, '''size''': {'''height''': 18, '''width''': 18}, '''do_normalize''': True, '''image_mean''': [0.5, 0.5, 0.5], '''image_std''': [0.5, 0.5, 0.5], } _UpperCamelCase = os.path.join(self.tmpdirname , _A ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(_A , _A ) def UpperCamelCase_ ( self : Tuple , **_A : Optional[Any] ): return BertTokenizer.from_pretrained(self.tmpdirname , **_A ) def UpperCamelCase_ ( self : List[Any] , **_A : Union[str, Any] ): return ViTImageProcessor.from_pretrained(self.tmpdirname , **_A ) def UpperCamelCase_ ( self : int ): shutil.rmtree(self.tmpdirname ) def UpperCamelCase_ ( self : List[Any] ): _UpperCamelCase = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] _UpperCamelCase = [Image.fromarray(np.moveaxis(_A , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCamelCase_ ( self : Optional[int] ): _UpperCamelCase = self.get_tokenizer() _UpperCamelCase = self.get_image_processor() _UpperCamelCase = VisionTextDualEncoderProcessor(tokenizer=_A , image_processor=_A ) processor.save_pretrained(self.tmpdirname ) _UpperCamelCase = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , _A ) def UpperCamelCase_ ( self : Optional[Any] ): _UpperCamelCase = VisionTextDualEncoderProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _UpperCamelCase = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) _UpperCamelCase = self.get_image_processor(do_normalize=_A , padding_value=1.0 ) _UpperCamelCase = VisionTextDualEncoderProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=_A , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _A ) def UpperCamelCase_ ( self : Union[str, Any] ): _UpperCamelCase = self.get_image_processor() _UpperCamelCase = self.get_tokenizer() _UpperCamelCase = VisionTextDualEncoderProcessor(tokenizer=_A , image_processor=_A ) _UpperCamelCase = self.prepare_image_inputs() _UpperCamelCase = image_processor(_A , return_tensors='''np''' ) _UpperCamelCase = processor(images=_A , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def UpperCamelCase_ ( self : Dict ): _UpperCamelCase = self.get_image_processor() _UpperCamelCase = self.get_tokenizer() _UpperCamelCase = VisionTextDualEncoderProcessor(tokenizer=_A , image_processor=_A ) _UpperCamelCase = '''lower newer''' _UpperCamelCase = processor(text=_A ) _UpperCamelCase = tokenizer(_A ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCamelCase_ ( self : Union[str, Any] ): _UpperCamelCase = self.get_image_processor() _UpperCamelCase = self.get_tokenizer() _UpperCamelCase = VisionTextDualEncoderProcessor(tokenizer=_A , image_processor=_A ) _UpperCamelCase = '''lower newer''' _UpperCamelCase = self.prepare_image_inputs() _UpperCamelCase = processor(text=_A , images=_A ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with self.assertRaises(_A ): processor() def UpperCamelCase_ ( self : List[Any] ): _UpperCamelCase = self.get_image_processor() _UpperCamelCase = self.get_tokenizer() _UpperCamelCase = VisionTextDualEncoderProcessor(tokenizer=_A , image_processor=_A ) _UpperCamelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _UpperCamelCase = processor.batch_decode(_A ) _UpperCamelCase = tokenizer.batch_decode(_A ) self.assertListEqual(_A , _A ) def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = self.get_image_processor() _UpperCamelCase = self.get_tokenizer() _UpperCamelCase = VisionTextDualEncoderProcessor(tokenizer=_A , image_processor=_A ) _UpperCamelCase = '''lower newer''' _UpperCamelCase = self.prepare_image_inputs() _UpperCamelCase = processor(text=_A , images=_A ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
71
import multiprocessing import os from typing import BinaryIO, Optional, Union import fsspec from .. import Dataset, Features, NamedSplit, config from ..formatting import query_table from ..packaged_modules.json.json import Json from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class lowerCAmelCase_ ( __lowercase ): def __init__( self : int , _A : NestedDataStructureLike[PathLike] , _A : Optional[NamedSplit] = None , _A : Optional[Features] = None , _A : str = None , _A : bool = False , _A : bool = False , _A : Optional[str] = None , _A : Optional[int] = None , **_A : str , ): super().__init__( _A , split=_A , features=_A , cache_dir=_A , keep_in_memory=_A , streaming=_A , num_proc=_A , **_A , ) _UpperCamelCase = field _UpperCamelCase = path_or_paths if isinstance(_A , _A ) else {self.split: path_or_paths} _UpperCamelCase = Json( cache_dir=_A , data_files=_A , features=_A , field=_A , **_A , ) def UpperCamelCase_ ( self : List[str] ): # Build iterable dataset if self.streaming: _UpperCamelCase = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None self.builder.download_and_prepare( download_config=_A , download_mode=_A , verification_mode=_A , base_path=_A , num_proc=self.num_proc , ) _UpperCamelCase = self.builder.as_dataset( split=self.split , verification_mode=_A , in_memory=self.keep_in_memory ) return dataset class lowerCAmelCase_ : def __init__( self : Optional[Any] , _A : Dataset , _A : Union[PathLike, BinaryIO] , _A : Optional[int] = None , _A : Optional[int] = None , **_A : List[str] , ): if num_proc is not None and num_proc <= 0: raise ValueError(F"""num_proc {num_proc} must be an integer > 0.""" ) _UpperCamelCase = dataset _UpperCamelCase = path_or_buf _UpperCamelCase = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE _UpperCamelCase = num_proc _UpperCamelCase = '''utf-8''' _UpperCamelCase = to_json_kwargs def UpperCamelCase_ ( self : Optional[Any] ): _UpperCamelCase = self.to_json_kwargs.pop('''path_or_buf''' , _A ) _UpperCamelCase = self.to_json_kwargs.pop('''orient''' , '''records''' ) _UpperCamelCase = self.to_json_kwargs.pop('''lines''' , True if orient == '''records''' else False ) _UpperCamelCase = self.to_json_kwargs.pop('''index''' , False if orient in ['''split''', '''table'''] else True ) _UpperCamelCase = self.to_json_kwargs.pop('''compression''' , _A ) if compression not in [None, "infer", "gzip", "bz2", "xz"]: raise NotImplementedError(F"""`datasets` currently does not support {compression} compression""" ) if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with fsspec.open(self.path_or_buf , '''wb''' , compression=_A ) as buffer: _UpperCamelCase = self._write(file_obj=_A , orient=_A , lines=_A , index=_A , **self.to_json_kwargs ) else: if compression: raise NotImplementedError( F"""The compression parameter is not supported when writing to a buffer, but compression={compression}""" ''' was passed. Please provide a local path instead.''' ) _UpperCamelCase = self._write( file_obj=self.path_or_buf , orient=_A , lines=_A , index=_A , **self.to_json_kwargs ) return written def UpperCamelCase_ ( self : Any , _A : Optional[Any] ): _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = args _UpperCamelCase = query_table( table=self.dataset.data , key=slice(_A , offset + self.batch_size ) , indices=self.dataset._indices , ) _UpperCamelCase = batch.to_pandas().to_json( path_or_buf=_A , orient=_A , lines=_A , index=_A , **_A ) if not json_str.endswith('''\n''' ): json_str += "\n" return json_str.encode(self.encoding ) def UpperCamelCase_ ( self : int , _A : BinaryIO , _A : Dict , _A : Optional[Any] , _A : Dict , **_A : str , ): _UpperCamelCase = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating json from Arrow format''' , ): _UpperCamelCase = self._batch_json((offset, orient, lines, index, to_json_kwargs) ) written += file_obj.write(_A ) else: _UpperCamelCase , _UpperCamelCase = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for json_str in logging.tqdm( pool.imap( self._batch_json , [(offset, orient, lines, index, to_json_kwargs) for offset in range(0 , _A , _A )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating json from Arrow format''' , ): written += file_obj.write(_A ) return written
71
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __a = { 'configuration_roc_bert': ['ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RoCBertConfig'], 'tokenization_roc_bert': ['RoCBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ 'ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'RoCBertForCausalLM', 'RoCBertForMaskedLM', 'RoCBertForMultipleChoice', 'RoCBertForPreTraining', 'RoCBertForQuestionAnswering', 'RoCBertForSequenceClassification', 'RoCBertForTokenClassification', 'RoCBertLayer', 'RoCBertModel', 'RoCBertPreTrainedModel', 'load_tf_weights_in_roc_bert', ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys __a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
97
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' A : Dict = 'openai/whisper-base' A : Optional[Any] = ( 'This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the ' 'transcribed text.' ) A : Dict = 'transcriber' A : Any = WhisperProcessor A : Any = WhisperForConditionalGeneration A : Union[str, Any] = ['audio'] A : Optional[int] = ['text'] def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE ) -> List[str]: return self.pre_processor(_SCREAMING_SNAKE_CASE , return_tensors="pt" ).input_features def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE ) -> List[Any]: return self.model.generate(inputs=_SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE ) -> Dict: return self.pre_processor.batch_decode(_SCREAMING_SNAKE_CASE , skip_special_tokens=_SCREAMING_SNAKE_CASE )[0]
568
0
def _lowerCAmelCase ( __lowerCamelCase : Union[str, Any] ): return [ { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], }, { 0: [6], 1: [9], 2: [4, 5], 3: [4], 4: [2, 3], 5: [2], 6: [0, 7], 7: [6], 8: [], 9: [1], }, { 0: [4], 1: [6], 2: [], 3: [5, 6, 7], 4: [0, 6], 5: [3, 8, 9], 6: [1, 3, 4, 7], 7: [3, 6, 8, 9], 8: [5, 7], 9: [5, 7], }, { 0: [1, 3], 1: [0, 2, 4], 2: [1, 3, 4], 3: [0, 2, 4], 4: [1, 2, 3], }, ][index] def _lowerCAmelCase ( __lowerCamelCase : dict[int, list[int]] ): __SCREAMING_SNAKE_CASE : Tuple = 0 __SCREAMING_SNAKE_CASE : Any = len(__lowerCamelCase ) # No of vertices in graph __SCREAMING_SNAKE_CASE : Tuple = [0] * n __SCREAMING_SNAKE_CASE : Dict = [False] * n def dfs(__lowerCamelCase : Optional[int] , __lowerCamelCase : Dict , __lowerCamelCase : Dict , __lowerCamelCase : Any ): __SCREAMING_SNAKE_CASE : Optional[int] = True __SCREAMING_SNAKE_CASE : int = id_ id_ += 1 for to in graph[at]: if to == parent: pass elif not visited[to]: dfs(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , id_ ) __SCREAMING_SNAKE_CASE : Optional[Any] = min(low[at] , low[to] ) if id_ <= low[to]: bridges.append((at, to) if at < to else (to, at) ) else: # This edge is a back edge and cannot be a bridge __SCREAMING_SNAKE_CASE : List[Any] = min(low[at] , low[to] ) __SCREAMING_SNAKE_CASE : list[tuple[int, int]] = [] for i in range(__lowerCamelCase ): if not visited[i]: dfs(__lowerCamelCase , -1 , __lowerCamelCase , id_ ) return bridges if __name__ == "__main__": import doctest doctest.testmod()
710
import argparse import logging import os from pathlib import Path from typing import Any, Dict import pytorch_lightning as pl from pytorch_lightning.utilities import rank_zero_info from transformers import ( AdamW, AutoConfig, AutoModel, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelWithLMHead, AutoTokenizer, PretrainedConfig, PreTrainedTokenizer, ) from transformers.optimization import ( Adafactor, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.utils.versions import require_version _lowerCamelCase = logging.getLogger(__name__) require_version("""pytorch_lightning>=1.0.4""") _lowerCamelCase = { """base""": AutoModel, """sequence-classification""": AutoModelForSequenceClassification, """question-answering""": AutoModelForQuestionAnswering, """pretraining""": AutoModelForPreTraining, """token-classification""": AutoModelForTokenClassification, """language-modeling""": AutoModelWithLMHead, """summarization""": AutoModelForSeqaSeqLM, """translation""": AutoModelForSeqaSeqLM, } # update this and the import above to support new schedulers from transformers.optimization _lowerCamelCase = { """linear""": get_linear_schedule_with_warmup, """cosine""": get_cosine_schedule_with_warmup, """cosine_w_restarts""": get_cosine_with_hard_restarts_schedule_with_warmup, """polynomial""": get_polynomial_decay_schedule_with_warmup, # '': get_constant_schedule, # not supported for now # '': get_constant_schedule_with_warmup, # not supported for now } _lowerCamelCase = sorted(arg_to_scheduler.keys()) _lowerCamelCase = """{""" + """, """.join(arg_to_scheduler_choices) + """}""" class _SCREAMING_SNAKE_CASE (pl.LightningModule ): def __init__( self : Dict , UpperCamelCase : argparse.Namespace , UpperCamelCase : str=None , UpperCamelCase : Tuple="base" , UpperCamelCase : Optional[Any]=None , UpperCamelCase : List[Any]=None , UpperCamelCase : Optional[int]=None , **UpperCamelCase : int , )->Dict: super().__init__() # TODO: move to self.save_hyperparameters() # self.save_hyperparameters() # can also expand arguments into trainer signature for easier reading self.save_hyperparameters(UpperCamelCase ) __SCREAMING_SNAKE_CASE : int = 0 __SCREAMING_SNAKE_CASE : List[Any] = Path(self.hparams.output_dir ) __SCREAMING_SNAKE_CASE : Dict = self.hparams.cache_dir if self.hparams.cache_dir else None if config is None: __SCREAMING_SNAKE_CASE : List[Any] = AutoConfig.from_pretrained( self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({"num_labels": num_labels} if num_labels is not None else {}) , cache_dir=UpperCamelCase , **UpperCamelCase , ) else: __SCREAMING_SNAKE_CASE : PretrainedConfig = config __SCREAMING_SNAKE_CASE : Any = ("encoder_layerdrop", "decoder_layerdrop", "dropout", "attention_dropout") for p in extra_model_params: if getattr(self.hparams , UpperCamelCase , UpperCamelCase ): assert hasattr(self.config , UpperCamelCase ), F"""model config doesn't have a `{p}` attribute""" setattr(self.config , UpperCamelCase , getattr(self.hparams , UpperCamelCase ) ) if tokenizer is None: __SCREAMING_SNAKE_CASE : Optional[int] = AutoTokenizer.from_pretrained( self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=UpperCamelCase , ) else: __SCREAMING_SNAKE_CASE : PreTrainedTokenizer = tokenizer __SCREAMING_SNAKE_CASE : str = MODEL_MODES[mode] if model is None: __SCREAMING_SNAKE_CASE : Optional[Any] = self.model_type.from_pretrained( self.hparams.model_name_or_path , from_tf=bool(".ckpt" in self.hparams.model_name_or_path ) , config=self.config , cache_dir=UpperCamelCase , ) else: __SCREAMING_SNAKE_CASE : Optional[int] = model def __snake_case ( self : Dict , *UpperCamelCase : Dict , **UpperCamelCase : Union[str, Any] )->Optional[Any]: __SCREAMING_SNAKE_CASE : List[Any] = self.model_type.from_pretrained(*UpperCamelCase , **UpperCamelCase ) def __snake_case ( self : Optional[Any] )->Tuple: __SCREAMING_SNAKE_CASE : Tuple = arg_to_scheduler[self.hparams.lr_scheduler] __SCREAMING_SNAKE_CASE : List[str] = get_schedule_func( self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() ) __SCREAMING_SNAKE_CASE : Union[str, Any] = {"scheduler": scheduler, "interval": "step", "frequency": 1} return scheduler def __snake_case ( self : int )->Tuple: __SCREAMING_SNAKE_CASE : List[Any] = self.model __SCREAMING_SNAKE_CASE : Any = ["bias", "LayerNorm.weight"] __SCREAMING_SNAKE_CASE : Optional[int] = [ { "params": [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay ) ], # check this named paramters "weight_decay": self.hparams.weight_decay, }, { "params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )], "weight_decay": 0.0, }, ] if self.hparams.adafactor: __SCREAMING_SNAKE_CASE : Dict = Adafactor( UpperCamelCase , lr=self.hparams.learning_rate , scale_parameter=UpperCamelCase , relative_step=UpperCamelCase ) else: __SCREAMING_SNAKE_CASE : Tuple = AdamW( UpperCamelCase , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon ) __SCREAMING_SNAKE_CASE : List[Any] = optimizer __SCREAMING_SNAKE_CASE : Any = self.get_lr_scheduler() return [optimizer], [scheduler] def __snake_case ( self : Dict , UpperCamelCase : Any , UpperCamelCase : Any )->Optional[Any]: return self.validation_step(UpperCamelCase , UpperCamelCase ) def __snake_case ( self : List[Any] , UpperCamelCase : Tuple )->List[Any]: return self.validation_end(UpperCamelCase ) def __snake_case ( self : str )->int: __SCREAMING_SNAKE_CASE : Union[str, Any] = max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores __SCREAMING_SNAKE_CASE : List[Any] = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs def __snake_case ( self : Union[str, Any] , UpperCamelCase : Tuple )->Optional[Any]: if stage == "test": __SCREAMING_SNAKE_CASE : List[str] = len(self.test_dataloader().dataset ) else: __SCREAMING_SNAKE_CASE : Optional[int] = self.get_dataloader("train" , self.hparams.train_batch_size , shuffle=UpperCamelCase ) __SCREAMING_SNAKE_CASE : Tuple = len(self.train_dataloader().dataset ) def __snake_case ( self : Optional[int] , UpperCamelCase : str , UpperCamelCase : int , UpperCamelCase : bool = False )->List[Any]: raise NotImplementedError("You must implement this for your task" ) def __snake_case ( self : List[Any] )->Union[str, Any]: return self.train_loader def __snake_case ( self : Tuple )->Union[str, Any]: return self.get_dataloader("dev" , self.hparams.eval_batch_size , shuffle=UpperCamelCase ) def __snake_case ( self : Optional[Any] )->Any: return self.get_dataloader("test" , self.hparams.eval_batch_size , shuffle=UpperCamelCase ) def __snake_case ( self : int , UpperCamelCase : List[str] )->int: return os.path.join( self.hparams.data_dir , "cached_{}_{}_{}".format( UpperCamelCase , list(filter(UpperCamelCase , self.hparams.model_name_or_path.split("/" ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , ) @pl.utilities.rank_zero_only def __snake_case ( self : Union[str, Any] , UpperCamelCase : Dict[str, Any] )->None: __SCREAMING_SNAKE_CASE : Union[str, Any] = self.output_dir.joinpath("best_tfmr" ) __SCREAMING_SNAKE_CASE : List[Any] = self.step_count self.model.save_pretrained(UpperCamelCase ) self.tokenizer.save_pretrained(UpperCamelCase ) @staticmethod def __snake_case ( UpperCamelCase : Any , UpperCamelCase : Optional[Any] )->List[str]: parser.add_argument( "--model_name_or_path" , default=UpperCamelCase , type=UpperCamelCase , required=UpperCamelCase , help="Path to pretrained model or model identifier from huggingface.co/models" , ) parser.add_argument( "--config_name" , default="" , type=UpperCamelCase , help="Pretrained config name or path if not the same as model_name" ) parser.add_argument( "--tokenizer_name" , default=UpperCamelCase , type=UpperCamelCase , help="Pretrained tokenizer name or path if not the same as model_name" , ) parser.add_argument( "--cache_dir" , default=str(Path(UpperCamelCase ).parent / "test_run" / "cache" ) , type=UpperCamelCase , help="Where do you want to store the pre-trained models downloaded from huggingface.co" , ) parser.add_argument( "--encoder_layerdrop" , type=UpperCamelCase , help="Encoder layer dropout probability (Optional). Goes into model.config" , ) parser.add_argument( "--decoder_layerdrop" , type=UpperCamelCase , help="Decoder layer dropout probability (Optional). Goes into model.config" , ) parser.add_argument( "--dropout" , type=UpperCamelCase , help="Dropout probability (Optional). Goes into model.config" , ) parser.add_argument( "--attention_dropout" , type=UpperCamelCase , help="Attention dropout probability (Optional). Goes into model.config" , ) parser.add_argument("--learning_rate" , default=5E-5 , type=UpperCamelCase , help="The initial learning rate for Adam." ) parser.add_argument( "--lr_scheduler" , default="linear" , choices=UpperCamelCase , metavar=UpperCamelCase , type=UpperCamelCase , help="Learning rate scheduler" , ) parser.add_argument("--weight_decay" , default=0.0 , type=UpperCamelCase , help="Weight decay if we apply some." ) parser.add_argument("--adam_epsilon" , default=1E-8 , type=UpperCamelCase , help="Epsilon for Adam optimizer." ) parser.add_argument("--warmup_steps" , default=0 , type=UpperCamelCase , help="Linear warmup over warmup_steps." ) parser.add_argument("--num_workers" , default=4 , type=UpperCamelCase , help="kwarg passed to DataLoader" ) parser.add_argument("--num_train_epochs" , dest="max_epochs" , default=3 , type=UpperCamelCase ) parser.add_argument("--train_batch_size" , default=3_2 , type=UpperCamelCase ) parser.add_argument("--eval_batch_size" , default=3_2 , type=UpperCamelCase ) parser.add_argument("--adafactor" , action="store_true" ) class _SCREAMING_SNAKE_CASE (pl.Callback ): def __snake_case ( self : Dict , UpperCamelCase : Optional[int] , UpperCamelCase : Tuple )->Tuple: if ( trainer.is_global_zero and trainer.global_rank == 0 ): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed. pl_module.model.rag.retriever.init_retrieval() # better to use hook functions. class _SCREAMING_SNAKE_CASE (pl.Callback ): def __snake_case ( self : List[Any] , UpperCamelCase : Optional[Any] , UpperCamelCase : Optional[Any] )->Tuple: # print(pl_module.model.rag) for name, param in pl_module.model.rag.named_parameters(): if param.grad is None: print(UpperCamelCase ) class _SCREAMING_SNAKE_CASE (pl.Callback ): def __snake_case ( self : Optional[int] , UpperCamelCase : Dict , UpperCamelCase : Dict )->List[Any]: __SCREAMING_SNAKE_CASE : Union[str, Any] = trainer.lr_schedulers[0]["scheduler"] __SCREAMING_SNAKE_CASE : Optional[int] = {F"""lr_group_{i}""": lr for i, lr in enumerate(lr_scheduler.get_lr() )} pl_module.logger.log_metrics(UpperCamelCase ) def __snake_case ( self : Tuple , UpperCamelCase : pl.Trainer , UpperCamelCase : pl.LightningModule )->Union[str, Any]: rank_zero_info("***** Validation results *****" ) __SCREAMING_SNAKE_CASE : Optional[Any] = trainer.callback_metrics # Log results for key in sorted(UpperCamelCase ): if key not in ["log", "progress_bar"]: rank_zero_info("{} = {}\n".format(UpperCamelCase , str(metrics[key] ) ) ) def __snake_case ( self : str , UpperCamelCase : pl.Trainer , UpperCamelCase : pl.LightningModule )->Optional[Any]: rank_zero_info("***** Test results *****" ) __SCREAMING_SNAKE_CASE : List[Any] = trainer.callback_metrics # Log and save results to file __SCREAMING_SNAKE_CASE : List[str] = os.path.join(pl_module.hparams.output_dir , "test_results.txt" ) with open(UpperCamelCase , "w" ) as writer: for key in sorted(UpperCamelCase ): if key not in ["log", "progress_bar"]: rank_zero_info("{} = {}\n".format(UpperCamelCase , str(metrics[key] ) ) ) writer.write("{} = {}\n".format(UpperCamelCase , str(metrics[key] ) ) ) def _lowerCAmelCase ( __lowerCamelCase : List[str] , __lowerCamelCase : int ): """simple docstring""" parser.add_argument( "--output_dir" , default=str(Path(__lowerCamelCase ).parent / "test_run" / "model_checkpoints" ) , type=__lowerCamelCase , help="The output directory where the model predictions and checkpoints will be written." , ) parser.add_argument( "--fp16" , action="store_true" , help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit" , ) parser.add_argument( "--fp16_opt_level" , type=__lowerCamelCase , default="O2" , help=( "For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']." "See details at https://nvidia.github.io/apex/amp.html" ) , ) parser.add_argument("--n_tpu_cores" , dest="tpu_cores" , type=__lowerCamelCase ) parser.add_argument("--max_grad_norm" , dest="gradient_clip_val" , default=1.0 , type=__lowerCamelCase , help="Max gradient norm" ) parser.add_argument("--do_train" , action="store_true" , help="Whether to run training." ) parser.add_argument("--do_predict" , action="store_true" , help="Whether to run predictions on the test set." ) parser.add_argument( "--gradient_accumulation_steps" , dest="accumulate_grad_batches" , type=__lowerCamelCase , default=1 , help="Number of updates steps to accumulate before performing a backward/update pass." , ) parser.add_argument("--seed" , type=__lowerCamelCase , default=42 , help="random seed for initialization" ) parser.add_argument( "--data_dir" , default=str(Path(__lowerCamelCase ).parent / "test_run" / "dummy-train-data" ) , type=__lowerCamelCase , help="The input data dir. Should contain the training files for the CoNLL-2003 NER task." , ) def _lowerCAmelCase ( __lowerCamelCase : BaseTransformer , __lowerCamelCase : argparse.Namespace , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : List[Any]=True , __lowerCamelCase : List[Any]=[] , __lowerCamelCase : Any=None , __lowerCamelCase : Optional[int]=None , **__lowerCamelCase : Any , ): """simple docstring""" pl.seed_everything(args.seed ) # init model __SCREAMING_SNAKE_CASE : List[str] = Path(model.hparams.output_dir ) odir.mkdir(exist_ok=__lowerCamelCase ) # add custom checkpoints if checkpoint_callback is None: __SCREAMING_SNAKE_CASE : Tuple = pl.callbacks.ModelCheckpoint( filepath=args.output_dir , prefix="checkpoint" , monitor="val_loss" , mode="min" , save_top_k=1 ) if early_stopping_callback: extra_callbacks.append(__lowerCamelCase ) if logging_callback is None: __SCREAMING_SNAKE_CASE : List[str] = LoggingCallback() __SCREAMING_SNAKE_CASE : str = {} if args.fpaa: __SCREAMING_SNAKE_CASE : Any = 16 if args.gpus > 1: __SCREAMING_SNAKE_CASE : List[Any] = "auto" __SCREAMING_SNAKE_CASE : List[Any] = "ddp" __SCREAMING_SNAKE_CASE : List[str] = args.accumulate_grad_batches __SCREAMING_SNAKE_CASE : List[str] = None __SCREAMING_SNAKE_CASE : Optional[int] = "auto" __SCREAMING_SNAKE_CASE : Optional[int] = pl.Trainer.from_argparse_args( __lowerCamelCase , weights_summary=__lowerCamelCase , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=__lowerCamelCase , val_check_interval=1 , num_sanity_val_steps=2 , **__lowerCamelCase , ) if args.do_train: trainer.fit(__lowerCamelCase ) else: print("RAG modeling tests with new set functions successfuly executed!" ) return trainer
447
0
'''simple docstring''' from __future__ import annotations from math import ceil, floor, sqrt def __a ( lowerCAmelCase__ : int = 2000000 ): a__ : list[int] = [0] a__ : int for idx in range(1 , ceil(sqrt(target * 2 ) * 1.1 ) ): triangle_numbers.append(triangle_numbers[-1] + idx ) # we want this to be as close as possible to target a__ : int = 0 # the area corresponding to the grid that gives the product closest to target a__ : int = 0 # an estimate of b, using the quadratic formula a__ : float # the largest integer less than b_estimate a__ : int # the largest integer less than b_estimate a__ : int # the triangle number corresponding to b_floor a__ : int # the triangle number corresponding to b_ceil a__ : int for idx_a, triangle_a in enumerate(triangle_numbers[1:] , 1 ): a__ : Any = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2 a__ : Any = floor(lowerCAmelCase__ ) a__ : Optional[int] = ceil(lowerCAmelCase__ ) a__ : List[str] = triangle_numbers[b_floor] a__ : Dict = triangle_numbers[b_ceil] if abs(target - triangle_b_first_guess * triangle_a ) < abs( target - best_product ): a__ : Tuple = triangle_b_first_guess * triangle_a a__ : str = idx_a * b_floor if abs(target - triangle_b_second_guess * triangle_a ) < abs( target - best_product ): a__ : Optional[int] = triangle_b_second_guess * triangle_a a__ : Dict = idx_a * b_ceil return area if __name__ == "__main__": print(f'{solution() = }')
688
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_fnet import FNetTokenizer else: __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} __SCREAMING_SNAKE_CASE = { 'vocab_file': { 'google/fnet-base': 'https://huggingface.co/google/fnet-base/resolve/main/spiece.model', 'google/fnet-large': 'https://huggingface.co/google/fnet-large/resolve/main/spiece.model', }, 'tokenizer_file': { 'google/fnet-base': 'https://huggingface.co/google/fnet-base/resolve/main/tokenizer.json', 'google/fnet-large': 'https://huggingface.co/google/fnet-large/resolve/main/tokenizer.json', }, } __SCREAMING_SNAKE_CASE = { 'google/fnet-base': 5_1_2, 'google/fnet-large': 5_1_2, } __SCREAMING_SNAKE_CASE = '▁' class lowerCAmelCase__ ( lowerCAmelCase_ ): """simple docstring""" __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = ["input_ids", "token_type_ids"] __UpperCamelCase = FNetTokenizer def __init__( self : Any , A__ : Any=None , A__ : int=None , A__ : List[str]=False , A__ : int=True , A__ : str=True , A__ : List[Any]="<unk>" , A__ : Dict="[SEP]" , A__ : List[str]="<pad>" , A__ : Union[str, Any]="[CLS]" , A__ : Dict="[MASK]" , **A__ : Tuple , ) -> List[str]: '''simple docstring''' a__ : Optional[int] = ( AddedToken(A__ , lstrip=A__ , rstrip=A__ , normalized=A__ ) if isinstance(A__ , A__ ) else mask_token ) super().__init__( A__ , tokenizer_file=A__ , do_lower_case=A__ , remove_space=A__ , keep_accents=A__ , unk_token=A__ , sep_token=A__ , pad_token=A__ , cls_token=A__ , mask_token=A__ , **A__ , ) a__ : Optional[Any] = do_lower_case a__ : Dict = remove_space a__ : List[Any] = keep_accents a__ : Optional[Any] = vocab_file a__ : Any = False if not self.vocab_file else True def __lowerCAmelCase ( self : str , A__ : List[int] , A__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' a__ : Optional[int] = [self.sep_token_id] a__ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __lowerCAmelCase ( self : List[Any] , A__ : List[int] , A__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' a__ : Dict = [self.sep_token_id] a__ : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowerCAmelCase ( self : Tuple , A__ : str , A__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(A__ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return a__ : Union[str, Any] = os.path.join( A__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A__ ): copyfile(self.vocab_file , A__ ) return (out_vocab_file,)
688
1
"""simple docstring""" from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging a__ : Optional[int] = logging.get_logger(__name__) a__ : List[str] = { '''EleutherAI/gpt-j-6B''': '''https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json''', # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class UpperCamelCase_ ( UpperCamelCase): snake_case__ : str = "gptj" snake_case__ : List[Any] = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : Any , UpperCAmelCase__ : List[Any]=5_0_4_0_0 , UpperCAmelCase__ : Tuple=2_0_4_8 , UpperCAmelCase__ : Any=4_0_9_6 , UpperCAmelCase__ : List[str]=2_8 , UpperCAmelCase__ : Optional[int]=1_6 , UpperCAmelCase__ : Any=6_4 , UpperCAmelCase__ : Any=None , UpperCAmelCase__ : List[Any]="gelu_new" , UpperCAmelCase__ : Any=0.0 , UpperCAmelCase__ : int=0.0 , UpperCAmelCase__ : Tuple=0.0 , UpperCAmelCase__ : List[str]=1E-5 , UpperCAmelCase__ : int=0.02 , UpperCAmelCase__ : Any=True , UpperCAmelCase__ : str=5_0_2_5_6 , UpperCAmelCase__ : Dict=5_0_2_5_6 , UpperCAmelCase__ : List[str]=False , **UpperCAmelCase__ : Tuple , ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = n_positions __SCREAMING_SNAKE_CASE = n_embd __SCREAMING_SNAKE_CASE = n_layer __SCREAMING_SNAKE_CASE = n_head __SCREAMING_SNAKE_CASE = n_inner __SCREAMING_SNAKE_CASE = rotary_dim __SCREAMING_SNAKE_CASE = activation_function __SCREAMING_SNAKE_CASE = resid_pdrop __SCREAMING_SNAKE_CASE = embd_pdrop __SCREAMING_SNAKE_CASE = attn_pdrop __SCREAMING_SNAKE_CASE = layer_norm_epsilon __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = use_cache __SCREAMING_SNAKE_CASE = bos_token_id __SCREAMING_SNAKE_CASE = eos_token_id super().__init__( bos_token_id=__A , eos_token_id=__A , tie_word_embeddings=__A , **__A ) class UpperCamelCase_ ( UpperCamelCase): def __init__( self : List[str] , UpperCAmelCase__ : PretrainedConfig , UpperCAmelCase__ : str = "default" , UpperCAmelCase__ : List[PatchingSpec] = None , UpperCAmelCase__ : bool = False , ) -> List[str]: super().__init__(__A , task=__A , patching_specs=__A , use_past=__A ) if not getattr(self._config , "pad_token_id" , __A ): # TODO: how to do that better? __SCREAMING_SNAKE_CASE = 0 @property def UpperCAmelCase_ ( self : Union[str, Any] ) -> Mapping[str, Mapping[int, str]]: __SCREAMING_SNAKE_CASE = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}} ) if self.use_past: self.fill_with_past_key_values_(__A , direction="inputs" ) __SCREAMING_SNAKE_CASE = {0: "batch", 1: "past_sequence + sequence"} else: __SCREAMING_SNAKE_CASE = {0: "batch", 1: "sequence"} return common_inputs @property def UpperCAmelCase_ ( self : Any ) -> int: return self._config.n_layer @property def UpperCAmelCase_ ( self : Any ) -> int: return self._config.n_head def UpperCAmelCase_ ( self : List[Any] , UpperCAmelCase__ : PreTrainedTokenizer , UpperCAmelCase__ : int = -1 , UpperCAmelCase__ : int = -1 , UpperCAmelCase__ : bool = False , UpperCAmelCase__ : Optional[TensorType] = None , ) -> Mapping[str, Any]: __SCREAMING_SNAKE_CASE = super(__A , self ).generate_dummy_inputs( __A , batch_size=__A , seq_length=__A , is_pair=__A , framework=__A ) # We need to order the input in the way they appears in the forward() __SCREAMING_SNAKE_CASE = OrderedDict({"input_ids": common_inputs["input_ids"]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = common_inputs["input_ids"].shape # Not using the same length for past_key_values __SCREAMING_SNAKE_CASE = seqlen + 2 __SCREAMING_SNAKE_CASE = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) __SCREAMING_SNAKE_CASE = [ (torch.zeros(__A ), torch.zeros(__A )) for _ in range(self.num_layers ) ] __SCREAMING_SNAKE_CASE = common_inputs["attention_mask"] if self.use_past: __SCREAMING_SNAKE_CASE = ordered_inputs["attention_mask"].dtype __SCREAMING_SNAKE_CASE = torch.cat( [ordered_inputs["attention_mask"], torch.ones(__A , __A , dtype=__A )] , dim=1 ) return ordered_inputs @property def UpperCAmelCase_ ( self : int ) -> int: return 1_3
718
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available a__ : List[str] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : int = ['''MLukeTokenizer'''] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys a__ : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
553
0
'''simple docstring''' from __future__ import annotations __UpperCAmelCase = list[list[int]] # assigning initial values to the grid __UpperCAmelCase = [ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution __UpperCAmelCase = [ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def _snake_case ( A , A , A , A ) -> bool: for i in range(9 ): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3 ): for j in range(3 ): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def _snake_case ( A ) -> tuple[int, int] | None: for i in range(9 ): for j in range(9 ): if grid[i][j] == 0: return i, j return None def _snake_case ( A ) -> Matrix | None: if location := find_empty_location(A ): lowerCAmelCase__ , lowerCAmelCase__ = location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1 , 10 ): if is_safe(A , A , A , A ): lowerCAmelCase__ = digit if sudoku(A ) is not None: return grid lowerCAmelCase__ = 0 return None def _snake_case ( A ) -> None: for row in grid: for cell in row: print(A , end=''' ''' ) print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for example_grid in (initial_grid, no_solution): print('''\nExample grid:\n''' + '''=''' * 20) print_solution(example_grid) print('''\nExample grid solution:''') __UpperCAmelCase = sudoku(example_grid) if solution is not None: print_solution(solution) else: print('''Cannot find a solution.''')
90
"""simple docstring""" from __future__ import annotations import os from collections.abc import Mapping __UpperCamelCase : Optional[Any] = tuple[int, int] class a : def __init__( self , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = vertices lowerCAmelCase = { (min(_snake_case ), max(_snake_case )): weight for edge, weight in edges.items() } def UpperCamelCase__ ( self , _snake_case , _snake_case ): """simple docstring""" self.vertices.add(edge[0] ) self.vertices.add(edge[1] ) lowerCAmelCase = weight def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = Graph({min(self.vertices )} , {} ) lowerCAmelCase = 42 lowerCAmelCase = 42 lowerCAmelCase = 42 lowerCAmelCase = 42 while len(subgraph.vertices ) < len(self.vertices ): lowerCAmelCase = max(self.edges.values() ) + 1 for edge, weight in self.edges.items(): if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices): if weight < min_weight: lowerCAmelCase = edge lowerCAmelCase = weight subgraph.add_edge(_snake_case , _snake_case ) return subgraph def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str = "p107_network.txt" ): lowerCAmelCase = os.path.abspath(os.path.dirname(_UpperCAmelCase ) ) lowerCAmelCase = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) lowerCAmelCase = {} lowerCAmelCase = 42 lowerCAmelCase = 42 lowerCAmelCase = 42 with open(_UpperCAmelCase ) as f: lowerCAmelCase = f.read().strip().split('\n' ) lowerCAmelCase = [line.split(',' ) for line in data] for edgea in range(1 , len(_UpperCAmelCase ) ): for edgea in range(_UpperCAmelCase ): if adjaceny_matrix[edgea][edgea] != "-": lowerCAmelCase = int(adjaceny_matrix[edgea][edgea] ) lowerCAmelCase = Graph(set(range(len(_UpperCAmelCase ) ) ) , _UpperCAmelCase ) lowerCAmelCase = graph.prims_algorithm() lowerCAmelCase = sum(graph.edges.values() ) lowerCAmelCase = sum(subgraph.edges.values() ) return initial_total - optimal_total if __name__ == "__main__": print(f'''{solution() = }''')
4
0
"""simple docstring""" from math import isqrt def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = [True] * max_number for i in range(2 ,isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 ,lowercase ,lowercase ): _UpperCAmelCase = False return [i for i in range(2 ,lowercase ) if is_prime[i]] def __UpperCAmelCase ( lowercase = 10**8 ): """simple docstring""" _UpperCAmelCase = calculate_prime_numbers(max_number // 2 ) _UpperCAmelCase = 0 _UpperCAmelCase = 0 _UpperCAmelCase = len(lowercase ) - 1 while left <= right: while prime_numbers[left] * prime_numbers[right] >= max_number: right -= 1 semiprimes_count += right - left + 1 left += 1 return semiprimes_count if __name__ == "__main__": print(F'''{solution() = }''')
275
"""simple docstring""" # Lint as: python3 import itertools import os import re UpperCAmelCase__ = re.compile(r"""([A-Z]+)([A-Z][a-z])""") UpperCAmelCase__ = re.compile(r"""([a-z\d])([A-Z])""") UpperCAmelCase__ = re.compile(r"""(?<!_)_(?!_)""") UpperCAmelCase__ = re.compile(r"""(_{2,})""") UpperCAmelCase__ = r"""^\w+(\.\w+)*$""" UpperCAmelCase__ = r"""<>:/\|?*""" def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = _uppercase_uppercase_re.sub(R"""\1_\2""" ,lowercase ) _UpperCAmelCase = _lowercase_uppercase_re.sub(R"""\1_\2""" ,lowercase ) return name.lower() def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = _single_underscore_re.split(lowercase ) _UpperCAmelCase = [_multiple_underscores_re.split(lowercase ) for n in name] return "".join(n.capitalize() for n in itertools.chain.from_iterable(lowercase ) if n != """""" ) def __UpperCAmelCase ( lowercase ): """simple docstring""" if os.path.basename(lowercase ) != name: raise ValueError(f'''Should be a dataset name, not a path: {name}''' ) return camelcase_to_snakecase(lowercase ) def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" if os.path.basename(lowercase ) != name: raise ValueError(f'''Should be a dataset name, not a path: {name}''' ) if not re.match(_split_re ,lowercase ): raise ValueError(f'''Split name should match \'{_split_re}\'\' but got \'{split}\'.''' ) return f'''{filename_prefix_for_name(lowercase )}-{split}''' def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ,lowercase=None ): """simple docstring""" _UpperCAmelCase = filename_prefix_for_split(lowercase ,lowercase ) if filetype_suffix: prefix += f'''.{filetype_suffix}''' _UpperCAmelCase = os.path.join(lowercase ,lowercase ) return f'''{filepath}*''' def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ,lowercase=None ,lowercase=None ): """simple docstring""" _UpperCAmelCase = filename_prefix_for_split(lowercase ,lowercase ) _UpperCAmelCase = os.path.join(lowercase ,lowercase ) if shard_lengths: _UpperCAmelCase = len(lowercase ) _UpperCAmelCase = [f'''{prefix}-{shard_id:05d}-of-{num_shards:05d}''' for shard_id in range(lowercase )] if filetype_suffix: _UpperCAmelCase = [filename + f'''.{filetype_suffix}''' for filename in filenames] return filenames else: _UpperCAmelCase = prefix if filetype_suffix: filename += f'''.{filetype_suffix}''' return [filename]
275
1
from maths.prime_check import is_prime def __UpperCAmelCase ( lowerCamelCase_ : int ) -> int: """simple docstring""" if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): SCREAMING_SNAKE_CASE_ : Dict = F'Input value of [number={number}] must be an integer' raise TypeError(lowerCamelCase_ ) if is_prime(lowerCamelCase_ ) and is_prime(number + 2 ): return number + 2 else: return -1 if __name__ == "__main__": import doctest doctest.testmod()
105
'''simple docstring''' import json import logging import os import sys from time import time from unittest.mock import patch from transformers.testing_utils import TestCasePlus, require_torch_tpu logging.basicConfig(level=logging.DEBUG) _lowerCAmelCase = logging.getLogger() def _lowerCAmelCase ( lowercase : Any ) ->int: """simple docstring""" lowercase__ = {} lowercase__ = os.path.join(lowercase , '''all_results.json''' ) if os.path.exists(lowercase ): with open(lowercase , '''r''' ) as f: lowercase__ = json.load(lowercase ) else: raise ValueError(F'''can\'t find {path}''' ) return results _lowerCAmelCase = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) @require_torch_tpu class __A ( a ): """simple docstring""" def snake_case_( self )-> List[str]: import xla_spawn lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = f''' ./examples/pytorch/text-classification/run_glue.py --num_cores=8 ./examples/pytorch/text-classification/run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --overwrite_output_dir --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --do_train --do_eval --debug tpu_metrics_debug --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --max_steps=10 --warmup_steps=2 --seed=42 --max_seq_length=128 '''.split() with patch.object(_lowerCamelCase , '''argv''' , _lowerCamelCase ): lowercase__ = time() xla_spawn.main() lowercase__ = time() lowercase__ = get_results(_lowerCamelCase ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.7_5 ) # Assert that the script takes less than 500 seconds to make sure it doesn't hang. self.assertLess(end - start , 5_0_0 ) def snake_case_( self )-> Tuple: import xla_spawn lowercase__ = ''' ./tests/test_trainer_tpu.py --num_cores=8 ./tests/test_trainer_tpu.py '''.split() with patch.object(_lowerCamelCase , '''argv''' , _lowerCamelCase ): xla_spawn.main()
161
0
import os import string import sys lowercase : Optional[Any] = 1 << 8 lowercase : int = { """tab""": ord("""\t"""), """newline""": ord("""\r"""), """esc""": 2_7, """up""": 6_5 + ARROW_KEY_FLAG, """down""": 6_6 + ARROW_KEY_FLAG, """right""": 6_7 + ARROW_KEY_FLAG, """left""": 6_8 + ARROW_KEY_FLAG, """mod_int""": 9_1, """undefined""": sys.maxsize, """interrupt""": 3, """insert""": 5_0, """delete""": 5_1, """pg_up""": 5_3, """pg_down""": 5_4, } lowercase : Optional[Any] = KEYMAP["""up"""] lowercase : Optional[int] = KEYMAP["""left"""] if sys.platform == "win32": lowercase : Dict = [] lowercase : int = { b"""\xe0H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, b"""\x00H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, b"""\xe0P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, b"""\x00P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, b"""\xe0M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, b"""\x00M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, b"""\xe0K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, b"""\x00K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, } for i in range(1_0): lowercase : List[str] = ord(str(i)) def UpperCAmelCase_ ( ): if os.name == "nt": import msvcrt lowerCamelCase_: Tuple = """mbcs""" # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(_UpperCAmelCase ) == 0: # Read the keystroke lowerCamelCase_: str = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): lowerCamelCase_: Any = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: lowerCamelCase_: Union[str, Any] = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP["""mod_int"""] ) ) WIN_CH_BUFFER.append(_UpperCAmelCase ) if ord(_UpperCAmelCase ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(1_2_6 ) ) lowerCamelCase_: Optional[Any] = chr(KEYMAP["""esc"""] ) except KeyError: lowerCamelCase_: Dict = cha[1] else: lowerCamelCase_: Union[str, Any] = ch.decode(_UpperCAmelCase ) else: lowerCamelCase_: List[Any] = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty lowerCamelCase_: int = sys.stdin.fileno() lowerCamelCase_: Tuple = termios.tcgetattr(_UpperCAmelCase ) try: tty.setraw(_UpperCAmelCase ) lowerCamelCase_: Optional[Any] = sys.stdin.read(1 ) finally: termios.tcsetattr(_UpperCAmelCase , termios.TCSADRAIN , _UpperCAmelCase ) return ch def UpperCAmelCase_ ( ): lowerCamelCase_: Union[str, Any] = get_raw_chars() if ord(_UpperCAmelCase ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(_UpperCAmelCase ) == KEYMAP["esc"]: lowerCamelCase_: Dict = get_raw_chars() if ord(_UpperCAmelCase ) == KEYMAP["mod_int"]: lowerCamelCase_: Optional[Any] = get_raw_chars() if ord(_UpperCAmelCase ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(_UpperCAmelCase ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(_UpperCAmelCase ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
584
from ..utils import is_flax_available, is_torch_available if is_torch_available(): from .autoencoder_kl import AutoencoderKL from .controlnet import ControlNetModel from .dual_transformer_ad import DualTransformeraDModel from .modeling_utils import ModelMixin from .prior_transformer import PriorTransformer from .ta_film_transformer import TaFilmDecoder from .transformer_ad import TransformeraDModel from .unet_ad import UNetaDModel from .unet_ad import UNetaDModel from .unet_ad_condition import UNetaDConditionModel from .unet_ad_condition import UNetaDConditionModel from .vq_model import VQModel if is_flax_available(): from .controlnet_flax import FlaxControlNetModel from .unet_ad_condition_flax import FlaxUNetaDConditionModel from .vae_flax import FlaxAutoencoderKL
584
1
"""simple docstring""" import heapq def snake_case_ ( A_ : dict ): '''simple docstring''' _lowerCamelCase : list[list] = [] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(A_, [-1 * len(A_ ), (key, value)] ) # chosen_vertices = set of chosen vertices _lowerCamelCase : str = set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices _lowerCamelCase : Dict = heapq.heappop(A_ )[1][0] chosen_vertices.add(A_ ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: _lowerCamelCase : List[str] = elem[1][1].index(A_ ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(A_ ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase__ = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(F"""Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}""")
83
"""simple docstring""" import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def snake_case_ ( A_ : Tuple, A_ : List[str], A_ : Optional[Any], A_ : Dict, A_ : Dict=True, A_ : int="pt" ): '''simple docstring''' _lowerCamelCase : str = {'''add_prefix_space''': True} if isinstance(A_, A_ ) and not line.startswith(''' ''' ) else {} _lowerCamelCase : Union[str, Any] = padding_side return tokenizer( [line], max_length=A_, padding='''max_length''' if pad_to_max_length else None, truncation=A_, return_tensors=A_, add_special_tokens=A_, **A_, ) def snake_case_ ( A_ : Any, A_ : Optional[int], A_ : List[Any]=None, ): '''simple docstring''' _lowerCamelCase : Optional[int] = input_ids.ne(A_ ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class __snake_case ( _lowercase): def __init__( self : Tuple , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Tuple="train" , __lowerCAmelCase : List[str]=None , __lowerCAmelCase : Optional[int]=None , __lowerCAmelCase : Any=None , __lowerCAmelCase : Union[str, Any]="" , ): """simple docstring""" super().__init__() _lowerCamelCase : Optional[int] = Path(__lowerCAmelCase ).joinpath(type_path + '''.source''' ) _lowerCamelCase : List[str] = Path(__lowerCAmelCase ).joinpath(type_path + '''.target''' ) _lowerCamelCase : List[Any] = self.get_char_lens(self.src_file ) _lowerCamelCase : Optional[int] = max_source_length _lowerCamelCase : Optional[Any] = max_target_length assert min(self.src_lens ) > 0, f'''found empty line in {self.src_file}''' _lowerCamelCase : List[Any] = tokenizer _lowerCamelCase : List[Any] = prefix if n_obs is not None: _lowerCamelCase : List[str] = self.src_lens[:n_obs] _lowerCamelCase : int = src_lang _lowerCamelCase : Union[str, Any] = tgt_lang def __len__( self : int ): """simple docstring""" return len(self.src_lens ) def __getitem__( self : Dict , __lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : str = index + 1 # linecache starts at 1 _lowerCamelCase : Union[str, Any] = self.prefix + linecache.getline(str(self.src_file ) , __lowerCAmelCase ).rstrip('''\n''' ) _lowerCamelCase : Optional[Any] = linecache.getline(str(self.tgt_file ) , __lowerCAmelCase ).rstrip('''\n''' ) assert source_line, f'''empty source line for index {index}''' assert tgt_line, f'''empty tgt line for index {index}''' # Need to add eos token manually for T5 if isinstance(self.tokenizer , __lowerCAmelCase ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right _lowerCamelCase : Optional[int] = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , __lowerCAmelCase ) else self.tokenizer ) _lowerCamelCase : Union[str, Any] = self.tokenizer.generator if isinstance(self.tokenizer , __lowerCAmelCase ) else self.tokenizer _lowerCamelCase : List[str] = encode_line(__lowerCAmelCase , __lowerCAmelCase , self.max_source_length , '''right''' ) _lowerCamelCase : List[str] = encode_line(__lowerCAmelCase , __lowerCAmelCase , self.max_target_length , '''right''' ) _lowerCamelCase : Optional[Any] = source_inputs['''input_ids'''].squeeze() _lowerCamelCase : Union[str, Any] = target_inputs['''input_ids'''].squeeze() _lowerCamelCase : Any = source_inputs['''attention_mask'''].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def SCREAMING_SNAKE_CASE ( __lowerCAmelCase : str ): """simple docstring""" return [len(__lowerCAmelCase ) for x in Path(__lowerCAmelCase ).open().readlines()] def SCREAMING_SNAKE_CASE ( self : List[Any] , __lowerCAmelCase : Any ): """simple docstring""" _lowerCamelCase : List[Any] = torch.stack([x['''input_ids'''] for x in batch] ) _lowerCamelCase : Tuple = torch.stack([x['''attention_mask'''] for x in batch] ) _lowerCamelCase : Union[str, Any] = torch.stack([x['''decoder_input_ids'''] for x in batch] ) _lowerCamelCase : Tuple = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , __lowerCAmelCase ) else self.tokenizer.pad_token_id ) _lowerCamelCase : Tuple = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , __lowerCAmelCase ) else self.tokenizer.pad_token_id ) _lowerCamelCase : Union[str, Any] = trim_batch(__lowerCAmelCase , __lowerCAmelCase ) _lowerCamelCase , _lowerCamelCase : List[str] = trim_batch(__lowerCAmelCase , __lowerCAmelCase , attention_mask=__lowerCAmelCase ) _lowerCamelCase : Optional[int] = { '''input_ids''': source_ids, '''attention_mask''': source_mask, '''decoder_input_ids''': y, } return batch lowerCAmelCase__ = getLogger(__name__) def snake_case_ ( A_ : List[List] ): '''simple docstring''' return list(itertools.chain.from_iterable(A_ ) ) def snake_case_ ( A_ : str ): '''simple docstring''' _lowerCamelCase : Dict = get_git_info() save_json(A_, os.path.join(A_, '''git_log.json''' ) ) def snake_case_ ( A_ : str, A_ : Union[str, Any], A_ : int=4, **A_ : Optional[int] ): '''simple docstring''' with open(A_, '''w''' ) as f: json.dump(A_, A_, indent=A_, **A_ ) def snake_case_ ( A_ : Any ): '''simple docstring''' with open(A_ ) as f: return json.load(A_ ) def snake_case_ ( ): '''simple docstring''' _lowerCamelCase : List[str] = git.Repo(search_parent_directories=A_ ) _lowerCamelCase : str = { '''repo_id''': str(A_ ), '''repo_sha''': str(repo.head.object.hexsha ), '''repo_branch''': str(repo.active_branch ), '''hostname''': str(socket.gethostname() ), } return repo_infos def snake_case_ ( A_ : Callable, A_ : Iterable ): '''simple docstring''' return list(map(A_, A_ ) ) def snake_case_ ( A_ : str, A_ : Tuple ): '''simple docstring''' with open(A_, '''wb''' ) as f: return pickle.dump(A_, A_ ) def snake_case_ ( A_ : List[str] ): '''simple docstring''' def remove_articles(A_ : str ): return re.sub(R'''\b(a|an|the)\b''', ''' ''', A_ ) def white_space_fix(A_ : Any ): return " ".join(text.split() ) def remove_punc(A_ : List[Any] ): _lowerCamelCase : Any = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(A_ : Optional[int] ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(A_ ) ) ) ) def snake_case_ ( A_ : int, A_ : List[Any] ): '''simple docstring''' _lowerCamelCase : str = normalize_answer(A_ ).split() _lowerCamelCase : int = normalize_answer(A_ ).split() _lowerCamelCase : str = Counter(A_ ) & Counter(A_ ) _lowerCamelCase : Any = sum(common.values() ) if num_same == 0: return 0 _lowerCamelCase : int = 1.0 * num_same / len(A_ ) _lowerCamelCase : str = 1.0 * num_same / len(A_ ) _lowerCamelCase : List[Any] = (2 * precision * recall) / (precision + recall) return fa def snake_case_ ( A_ : Dict, A_ : str ): '''simple docstring''' return normalize_answer(A_ ) == normalize_answer(A_ ) def snake_case_ ( A_ : List[str], A_ : List[str] ): '''simple docstring''' assert len(A_ ) == len(A_ ) _lowerCamelCase : Optional[Any] = 0 for hypo, pred in zip(A_, A_ ): em += exact_match_score(A_, A_ ) if len(A_ ) > 0: em /= len(A_ ) return {"em": em} def snake_case_ ( A_ : Optional[int] ): '''simple docstring''' return model_prefix.startswith('''rag''' ) def snake_case_ ( A_ : Dict, A_ : int, A_ : List[Any] ): '''simple docstring''' _lowerCamelCase : Dict = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead _lowerCamelCase : Tuple = '''dropout_rate''' for p in extra_params: if getattr(A_, A_, A_ ): if not hasattr(A_, A_ ) and not hasattr(A_, equivalent_param[p] ): logger.info('''config doesn\'t have a `{}` attribute'''.format(A_ ) ) delattr(A_, A_ ) continue _lowerCamelCase : Union[str, Any] = p if hasattr(A_, A_ ) else equivalent_param[p] setattr(A_, A_, getattr(A_, A_ ) ) delattr(A_, A_ ) return hparams, config
83
1
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import TensorType, logging if TYPE_CHECKING: from ...onnx.config import PatchingSpec from ...tokenization_utils_base import PreTrainedTokenizerBase lowercase__ : Dict = logging.get_logger(__name__) lowercase__ : Any = { """allenai/longformer-base-4096""": """https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json""", """allenai/longformer-large-4096""": """https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json""", """allenai/longformer-large-4096-finetuned-triviaqa""": ( """https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json""" ), """allenai/longformer-base-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json""" ), """allenai/longformer-large-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json""" ), } class UpperCamelCase__ ( lowercase_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = """longformer""" def __init__( self : str , SCREAMING_SNAKE_CASE_ : Union[List[int], int] = 5_1_2 , SCREAMING_SNAKE_CASE_ : int = 2 , SCREAMING_SNAKE_CASE_ : int = 1 , SCREAMING_SNAKE_CASE_ : int = 0 , SCREAMING_SNAKE_CASE_ : int = 2 , SCREAMING_SNAKE_CASE_ : int = 3_0_5_2_2 , SCREAMING_SNAKE_CASE_ : int = 7_6_8 , SCREAMING_SNAKE_CASE_ : int = 1_2 , SCREAMING_SNAKE_CASE_ : int = 1_2 , SCREAMING_SNAKE_CASE_ : int = 3_0_7_2 , SCREAMING_SNAKE_CASE_ : str = "gelu" , SCREAMING_SNAKE_CASE_ : float = 0.1 , SCREAMING_SNAKE_CASE_ : float = 0.1 , SCREAMING_SNAKE_CASE_ : int = 5_1_2 , SCREAMING_SNAKE_CASE_ : int = 2 , SCREAMING_SNAKE_CASE_ : float = 0.02 , SCREAMING_SNAKE_CASE_ : float = 1E-12 , SCREAMING_SNAKE_CASE_ : bool = False , **SCREAMING_SNAKE_CASE_ : Tuple , ): super().__init__(pad_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Optional[Any] = attention_window lowerCAmelCase_ : Union[str, Any] = sep_token_id lowerCAmelCase_ : Union[str, Any] = bos_token_id lowerCAmelCase_ : List[str] = eos_token_id lowerCAmelCase_ : int = vocab_size lowerCAmelCase_ : Dict = hidden_size lowerCAmelCase_ : int = num_hidden_layers lowerCAmelCase_ : Tuple = num_attention_heads lowerCAmelCase_ : Any = hidden_act lowerCAmelCase_ : Optional[int] = intermediate_size lowerCAmelCase_ : Any = hidden_dropout_prob lowerCAmelCase_ : List[str] = attention_probs_dropout_prob lowerCAmelCase_ : Union[str, Any] = max_position_embeddings lowerCAmelCase_ : Optional[int] = type_vocab_size lowerCAmelCase_ : Dict = initializer_range lowerCAmelCase_ : Any = layer_norm_eps lowerCAmelCase_ : Dict = onnx_export class UpperCamelCase__ ( lowercase_ ): """simple docstring""" def __init__( self : List[str] , SCREAMING_SNAKE_CASE_ : "PretrainedConfig" , SCREAMING_SNAKE_CASE_ : str = "default" , SCREAMING_SNAKE_CASE_ : "List[PatchingSpec]" = None ): super().__init__(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : str = True @property def SCREAMING_SNAKE_CASE__ ( self : Any ): if self.task == "multiple-choice": lowerCAmelCase_ : Union[str, Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowerCAmelCase_ : Any = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('global_attention_mask', dynamic_axis), ] ) @property def SCREAMING_SNAKE_CASE__ ( self : Tuple ): lowerCAmelCase_ : Optional[Any] = super().outputs if self.task == "default": lowerCAmelCase_ : List[str] = {0: 'batch'} return outputs @property def SCREAMING_SNAKE_CASE__ ( self : Tuple ): return 1E-4 @property def SCREAMING_SNAKE_CASE__ ( self : Tuple ): # needs to be >= 14 to support tril operator return max(super().default_onnx_opset , 1_4 ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] , SCREAMING_SNAKE_CASE_ : "PreTrainedTokenizerBase" , SCREAMING_SNAKE_CASE_ : int = -1 , SCREAMING_SNAKE_CASE_ : int = -1 , SCREAMING_SNAKE_CASE_ : bool = False , SCREAMING_SNAKE_CASE_ : Optional[TensorType] = None , ): lowerCAmelCase_ : Any = super().generate_dummy_inputs( preprocessor=SCREAMING_SNAKE_CASE_ , batch_size=SCREAMING_SNAKE_CASE_ , seq_length=SCREAMING_SNAKE_CASE_ , is_pair=SCREAMING_SNAKE_CASE_ , framework=SCREAMING_SNAKE_CASE_ ) import torch # for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64) # makes the export fail randomly lowerCAmelCase_ : str = torch.zeros_like(inputs['input_ids'] ) # make every second token global lowerCAmelCase_ : Tuple = 1 return inputs
707
"""simple docstring""" import os import re import sys import traceback import warnings from pathlib import Path from typing import Dict, Optional, Union from uuid import uuida from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami from huggingface_hub.file_download import REGEX_COMMIT_HASH from huggingface_hub.utils import ( EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError, is_jinja_available, ) from packaging import version from requests import HTTPError from .. import __version__ from .constants import ( DEPRECATED_REVISION_ARGS, DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, ) from .import_utils import ( ENV_VARS_TRUE_VALUES, _flax_version, _jax_version, _onnxruntime_version, _torch_version, is_flax_available, is_onnx_available, is_torch_available, ) from .logging import get_logger lowercase__ : Optional[Any] = get_logger(__name__) lowercase__ : Tuple = Path(__file__).parent / """model_card_template.md""" lowercase__ : Optional[Any] = uuida().hex lowercase__ : Any = os.getenv("""HF_HUB_OFFLINE""", """""").upper() in ENV_VARS_TRUE_VALUES lowercase__ : Tuple = os.getenv("""DISABLE_TELEMETRY""", """""").upper() in ENV_VARS_TRUE_VALUES lowercase__ : Dict = HUGGINGFACE_CO_RESOLVE_ENDPOINT + """/api/telemetry/""" def UpperCamelCase_ ( lowerCAmelCase__ : Union[Dict, str, None] = None ) -> str: """simple docstring""" lowerCAmelCase_ : Optional[int] = f"diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}" if DISABLE_TELEMETRY or HF_HUB_OFFLINE: return ua + "; telemetry/off" if is_torch_available(): ua += f"; torch/{_torch_version}" if is_flax_available(): ua += f"; jax/{_jax_version}" ua += f"; flax/{_flax_version}" if is_onnx_available(): ua += f"; onnxruntime/{_onnxruntime_version}" # CI will set this value to True if os.environ.get('DIFFUSERS_IS_CI' , '' ).upper() in ENV_VARS_TRUE_VALUES: ua += "; is_ci/true" if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): ua += "; " + "; ".join(f"{k}/{v}" for k, v in user_agent.items() ) elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): ua += "; " + user_agent return ua def UpperCamelCase_ ( lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None , lowerCAmelCase__ : Optional[str] = None ) -> Union[str, Any]: """simple docstring""" if token is None: lowerCAmelCase_ : Any = HfFolder.get_token() if organization is None: lowerCAmelCase_ : Union[str, Any] = whoami(lowerCAmelCase__ )['name'] return f"{username}/{model_id}" else: return f"{organization}/{model_id}" def UpperCamelCase_ ( lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[int] ) -> Optional[int]: """simple docstring""" if not is_jinja_available(): raise ValueError( 'Modelcard rendering is based on Jinja templates.' ' Please make sure to have `jinja` installed before using `create_model_card`.' ' To install it, please run `pip install Jinja2`.' ) if hasattr(lowerCAmelCase__ , 'local_rank' ) and args.local_rank not in [-1, 0]: return lowerCAmelCase_ : List[str] = args.hub_token if hasattr(lowerCAmelCase__ , 'hub_token' ) else None lowerCAmelCase_ : List[Any] = get_full_repo_name(lowerCAmelCase__ , token=lowerCAmelCase__ ) lowerCAmelCase_ : Dict = ModelCard.from_template( card_data=ModelCardData( # Card metadata object that will be converted to YAML block language='en' , license='apache-2.0' , library_name='diffusers' , tags=[] , datasets=args.dataset_name , metrics=[] , ) , template_path=lowerCAmelCase__ , model_name=lowerCAmelCase__ , repo_name=lowerCAmelCase__ , dataset_name=args.dataset_name if hasattr(lowerCAmelCase__ , 'dataset_name' ) else None , learning_rate=args.learning_rate , train_batch_size=args.train_batch_size , eval_batch_size=args.eval_batch_size , gradient_accumulation_steps=( args.gradient_accumulation_steps if hasattr(lowerCAmelCase__ , 'gradient_accumulation_steps' ) else None ) , adam_betaa=args.adam_betaa if hasattr(lowerCAmelCase__ , 'adam_beta1' ) else None , adam_betaa=args.adam_betaa if hasattr(lowerCAmelCase__ , 'adam_beta2' ) else None , adam_weight_decay=args.adam_weight_decay if hasattr(lowerCAmelCase__ , 'adam_weight_decay' ) else None , adam_epsilon=args.adam_epsilon if hasattr(lowerCAmelCase__ , 'adam_epsilon' ) else None , lr_scheduler=args.lr_scheduler if hasattr(lowerCAmelCase__ , 'lr_scheduler' ) else None , lr_warmup_steps=args.lr_warmup_steps if hasattr(lowerCAmelCase__ , 'lr_warmup_steps' ) else None , ema_inv_gamma=args.ema_inv_gamma if hasattr(lowerCAmelCase__ , 'ema_inv_gamma' ) else None , ema_power=args.ema_power if hasattr(lowerCAmelCase__ , 'ema_power' ) else None , ema_max_decay=args.ema_max_decay if hasattr(lowerCAmelCase__ , 'ema_max_decay' ) else None , mixed_precision=args.mixed_precision , ) lowerCAmelCase_ : Tuple = os.path.join(args.output_dir , 'README.md' ) model_card.save(lowerCAmelCase__ ) def UpperCamelCase_ ( lowerCAmelCase__ : Optional[str] , lowerCAmelCase__ : Optional[str] = None ) -> Tuple: """simple docstring""" if resolved_file is None or commit_hash is not None: return commit_hash lowerCAmelCase_ : Tuple = str(Path(lowerCAmelCase__ ).as_posix() ) lowerCAmelCase_ : Any = re.search(R'snapshots/([^/]+)/' , lowerCAmelCase__ ) if search is None: return None lowerCAmelCase_ : Tuple = search.groups()[0] return commit_hash if REGEX_COMMIT_HASH.match(lowerCAmelCase__ ) else None # Old default cache path, potentially to be migrated. # This logic was more or less taken from `transformers`, with the following differences: # - Diffusers doesn't use custom environment variables to specify the cache path. # - There is no need to migrate the cache format, just move the files to the new location. lowercase__ : int = os.path.expanduser( os.getenv("""HF_HOME""", os.path.join(os.getenv("""XDG_CACHE_HOME""", """~/.cache"""), """huggingface""")) ) lowercase__ : Optional[int] = os.path.join(hf_cache_home, """diffusers""") def UpperCamelCase_ ( lowerCAmelCase__ : Optional[str] = None , lowerCAmelCase__ : Optional[str] = None ) -> None: """simple docstring""" if new_cache_dir is None: lowerCAmelCase_ : Any = DIFFUSERS_CACHE if old_cache_dir is None: lowerCAmelCase_ : Optional[int] = old_diffusers_cache lowerCAmelCase_ : Optional[int] = Path(lowerCAmelCase__ ).expanduser() lowerCAmelCase_ : Dict = Path(lowerCAmelCase__ ).expanduser() for old_blob_path in old_cache_dir.glob('**/blobs/*' ): if old_blob_path.is_file() and not old_blob_path.is_symlink(): lowerCAmelCase_ : List[str] = new_cache_dir / old_blob_path.relative_to(lowerCAmelCase__ ) new_blob_path.parent.mkdir(parents=lowerCAmelCase__ , exist_ok=lowerCAmelCase__ ) os.replace(lowerCAmelCase__ , lowerCAmelCase__ ) try: os.symlink(lowerCAmelCase__ , lowerCAmelCase__ ) except OSError: logger.warning( 'Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded.' ) # At this point, old_cache_dir contains symlinks to the new cache (it can still be used). lowercase__ : Any = os.path.join(DIFFUSERS_CACHE, """version_diffusers_cache.txt""") if not os.path.isfile(cache_version_file): lowercase__ : int = 0 else: with open(cache_version_file) as f: try: lowercase__ : int = int(f.read()) except ValueError: lowercase__ : Any = 0 if cache_version < 1: lowercase__ : int = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0 if old_cache_is_not_empty: logger.warning( """The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your """ """existing cached models. This is a one-time operation, you can interrupt it or run it """ """later by calling `diffusers.utils.hub_utils.move_cache()`.""" ) try: move_cache() except Exception as e: lowercase__ : int = """\n""".join(traceback.format_tb(e.__traceback__)) logger.error( f'There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease ' """file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole """ """message and we will do our best to help.""" ) if cache_version < 1: try: os.makedirs(DIFFUSERS_CACHE, exist_ok=True) with open(cache_version_file, """w""") as f: f.write("""1""") except Exception: logger.warning( f'There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure ' """the directory exists and can be written to.""" ) def UpperCamelCase_ ( lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None ) -> str: """simple docstring""" if variant is not None: lowerCAmelCase_ : Any = weights_name.split('.' ) lowerCAmelCase_ : List[Any] = splits[:-1] + [variant] + splits[-1:] lowerCAmelCase_ : Any = '.'.join(lowerCAmelCase__ ) return weights_name def UpperCamelCase_ ( lowerCAmelCase__ : List[str] , *, lowerCAmelCase__ : str , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : str , lowerCAmelCase__ : str , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[int]=None , ) -> str: """simple docstring""" lowerCAmelCase_ : Optional[int] = str(lowerCAmelCase__ ) if os.path.isfile(lowerCAmelCase__ ): return pretrained_model_name_or_path elif os.path.isdir(lowerCAmelCase__ ): if os.path.isfile(os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) ): # Load from a PyTorch checkpoint lowerCAmelCase_ : Dict = os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) return model_file elif subfolder is not None and os.path.isfile( os.path.join(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) ): lowerCAmelCase_ : List[str] = os.path.join(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) return model_file else: raise EnvironmentError( f"Error no file named {weights_name} found in directory {pretrained_model_name_or_path}." ) else: # 1. First check if deprecated way of loading from branches is used if ( revision in DEPRECATED_REVISION_ARGS and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME) and version.parse(version.parse(lowerCAmelCase__ ).base_version ) >= version.parse('0.20.0' ) ): try: lowerCAmelCase_ : Dict = hf_hub_download( lowerCAmelCase__ , filename=_add_variant(lowerCAmelCase__ , lowerCAmelCase__ ) , cache_dir=lowerCAmelCase__ , force_download=lowerCAmelCase__ , proxies=lowerCAmelCase__ , resume_download=lowerCAmelCase__ , local_files_only=lowerCAmelCase__ , use_auth_token=lowerCAmelCase__ , user_agent=lowerCAmelCase__ , subfolder=lowerCAmelCase__ , revision=revision or commit_hash , ) warnings.warn( f"Loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'` is deprecated. Loading instead from `revision='main'` with `variant={revision}`. Loading model variants via `revision='{revision}'` will be removed in diffusers v1. Please use `variant='{revision}'` instead." , lowerCAmelCase__ , ) return model_file except: # noqa: E722 warnings.warn( f"You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant='{revision}'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(lowerCAmelCase__ , lowerCAmelCase__ )} file in the 'main' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title '{pretrained_model_name_or_path} is missing {_add_variant(lowerCAmelCase__ , lowerCAmelCase__ )}' so that the correct variant file can be added." , lowerCAmelCase__ , ) try: # 2. Load model file as usual lowerCAmelCase_ : Optional[Any] = hf_hub_download( lowerCAmelCase__ , filename=lowerCAmelCase__ , cache_dir=lowerCAmelCase__ , force_download=lowerCAmelCase__ , proxies=lowerCAmelCase__ , resume_download=lowerCAmelCase__ , local_files_only=lowerCAmelCase__ , use_auth_token=lowerCAmelCase__ , user_agent=lowerCAmelCase__ , subfolder=lowerCAmelCase__ , revision=revision or commit_hash , ) return model_file except RepositoryNotFoundError: raise EnvironmentError( f"{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier " 'listed on \'https://huggingface.co/models\'\nIf this is a private repository, make sure to pass a ' 'token having permission to this repo with `use_auth_token` or log in with `huggingface-cli ' 'login`.' ) except RevisionNotFoundError: raise EnvironmentError( f"{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for " 'this model name. Check the model page at ' f"'https://huggingface.co/{pretrained_model_name_or_path}' for available revisions." ) except EntryNotFoundError: raise EnvironmentError( f"{pretrained_model_name_or_path} does not appear to have a file named {weights_name}." ) except HTTPError as err: raise EnvironmentError( f"There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}" ) except ValueError: raise EnvironmentError( f"We couldn't connect to '{HUGGINGFACE_CO_RESOLVE_ENDPOINT}' to load this model, couldn't find it" f" in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a" f" directory containing a file named {weights_name} or" ' \nCheckout your internet connection or see how to run the library in' ' offline mode at \'https://huggingface.co/docs/diffusers/installation#offline-mode\'.' ) except EnvironmentError: raise EnvironmentError( f"Can't load the model for '{pretrained_model_name_or_path}'. If you were trying to load it from " '\'https://huggingface.co/models\', make sure you don\'t have a local directory with the same name. ' f"Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a directory " f"containing a file named {weights_name}" )
317
0
from dataclasses import dataclass from typing import Optional, Tuple import torch from torch import nn from transformers import RobertaPreTrainedModel, XLMRobertaConfig, XLMRobertaModel from transformers.utils import ModelOutput @dataclass class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : Optional[torch.FloatTensor] = None UpperCamelCase_ : torch.FloatTensor = None UpperCamelCase_ : Optional[Tuple[torch.FloatTensor]] = None UpperCamelCase_ : Optional[Tuple[torch.FloatTensor]] = None class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' def __init__( self : Optional[Any] , UpperCAmelCase_ : Optional[Any]=1 , UpperCAmelCase_ : str=0 , UpperCAmelCase_ : str=2 , UpperCAmelCase_ : Optional[int]=512 , UpperCAmelCase_ : str="cls" , UpperCAmelCase_ : int=False , UpperCAmelCase_ : Union[str, Any]=True , **UpperCAmelCase_ : List[Any] , ): super().__init__(pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ , **UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = project_dim SCREAMING_SNAKE_CASE : Optional[Any] = pooler_fn SCREAMING_SNAKE_CASE : Optional[Any] = learn_encoder SCREAMING_SNAKE_CASE : Optional[int] = use_attention_mask class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : Dict = [r'''pooler''', r'''logit_scale'''] UpperCamelCase_ : Tuple = [r'''position_ids''', r'''predictions.decoder.bias'''] UpperCamelCase_ : Tuple = '''roberta''' UpperCamelCase_ : Optional[Any] = RobertaSeriesConfig def __init__( self : Union[str, Any] , UpperCAmelCase_ : Optional[Any] ): super().__init__(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Dict = XLMRobertaModel(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = nn.Linear(config.hidden_size , config.project_dim ) SCREAMING_SNAKE_CASE : List[Any] = getattr(UpperCAmelCase_ , "has_pre_transformation" , UpperCAmelCase_ ) if self.has_pre_transformation: SCREAMING_SNAKE_CASE : Union[str, Any] = nn.Linear(config.hidden_size , config.project_dim ) SCREAMING_SNAKE_CASE : List[str] = nn.LayerNorm(config.hidden_size , eps=config.layer_norm_eps ) self.post_init() def _A ( self : Optional[Any] , UpperCAmelCase_ : Optional[torch.Tensor] = None , UpperCAmelCase_ : Optional[torch.Tensor] = None , UpperCAmelCase_ : Optional[torch.Tensor] = None , UpperCAmelCase_ : Optional[torch.Tensor] = None , UpperCAmelCase_ : Optional[torch.Tensor] = None , UpperCAmelCase_ : Optional[torch.Tensor] = None , UpperCAmelCase_ : Optional[torch.Tensor] = None , UpperCAmelCase_ : Optional[torch.Tensor] = None , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : Optional[bool] = None , ): SCREAMING_SNAKE_CASE : Union[str, Any] = return_dict if return_dict is not None else self.config.use_return_dict SCREAMING_SNAKE_CASE : Optional[Any] = self.base_model( input_ids=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , position_ids=UpperCAmelCase_ , head_mask=UpperCAmelCase_ , inputs_embeds=UpperCAmelCase_ , encoder_hidden_states=UpperCAmelCase_ , encoder_attention_mask=UpperCAmelCase_ , output_attentions=UpperCAmelCase_ , output_hidden_states=True if self.has_pre_transformation else output_hidden_states , return_dict=UpperCAmelCase_ , ) if self.has_pre_transformation: SCREAMING_SNAKE_CASE : str = outputs["hidden_states"][-2] SCREAMING_SNAKE_CASE : str = self.pre_LN(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : int = self.transformation_pre(UpperCAmelCase_ ) return TransformationModelOutput( projection_state=UpperCAmelCase_ , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , ) else: SCREAMING_SNAKE_CASE : str = self.transformation(outputs.last_hidden_state ) return TransformationModelOutput( projection_state=UpperCAmelCase_ , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
62
import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : str = {'vocab_file': 'vocab.txt'} __SCREAMING_SNAKE_CASE : Tuple = { 'vocab_file': { 'openbmb/cpm-ant-10b': 'https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt', }, } __SCREAMING_SNAKE_CASE : Any = { 'openbmb/cpm-ant-10b': 10_24, } def UpperCAmelCase__ ( __magic_name__ : Optional[Any] ): '''simple docstring''' lowerCAmelCase : int = collections.OrderedDict() with open(__magic_name__ , '''r''' , encoding='''utf-8''' ) as reader: lowerCAmelCase : int = reader.readlines() for index, token in enumerate(__magic_name__ ): lowerCAmelCase : str = token.rstrip('''\n''' ) lowerCAmelCase : Tuple = index return vocab class __magic_name__ ( snake_case ): def __init__( self : Any , lowerCamelCase__ : str , lowerCamelCase__ : List[str]="<unk>" , lowerCamelCase__ : Union[str, Any]=2_0_0 ): lowerCAmelCase : Union[str, Any] = vocab lowerCAmelCase : int = unk_token lowerCAmelCase : List[str] = max_input_chars_per_word def _A ( self : List[Any] , lowerCamelCase__ : List[str] ): lowerCAmelCase : str = list(lowerCamelCase__ ) if len(lowerCamelCase__ ) > self.max_input_chars_per_word: return [self.unk_token] lowerCAmelCase : str = 0 lowerCAmelCase : Dict = [] while start < len(lowerCamelCase__ ): lowerCAmelCase : Dict = len(lowerCamelCase__ ) lowerCAmelCase : Optional[Any] = None while start < end: lowerCAmelCase : Tuple = ''''''.join(chars[start:end] ) if substr in self.vocab: lowerCAmelCase : Dict = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token ) start += 1 else: sub_tokens.append(lowerCamelCase__ ) lowerCAmelCase : List[Any] = end return sub_tokens class __magic_name__ ( snake_case ): _lowerCAmelCase = VOCAB_FILES_NAMES _lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCAmelCase = ["input_ids", "attention_mask"] _lowerCAmelCase = False def __init__( self : Dict , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : str="<d>" , lowerCamelCase__ : Any="</d>" , lowerCamelCase__ : List[Any]="<s>" , lowerCamelCase__ : Union[str, Any]="</s>" , lowerCamelCase__ : Optional[Any]="<pad>" , lowerCamelCase__ : Any="<unk>" , lowerCamelCase__ : Union[str, Any]="</n>" , lowerCamelCase__ : Dict="</_>" , lowerCamelCase__ : Optional[int]="left" , **lowerCamelCase__ : Optional[int] , ): requires_backends(self , ['''jieba'''] ) super().__init__( bod_token=lowerCamelCase__ , eod_token=lowerCamelCase__ , bos_token=lowerCamelCase__ , eos_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , unk_token=lowerCamelCase__ , line_token=lowerCamelCase__ , space_token=lowerCamelCase__ , padding_side=lowerCamelCase__ , **lowerCamelCase__ , ) lowerCAmelCase : Tuple = bod_token lowerCAmelCase : Tuple = eod_token lowerCAmelCase : Union[str, Any] = load_vocab(lowerCamelCase__ ) lowerCAmelCase : Any = self.encoder[space_token] lowerCAmelCase : Any = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] lowerCAmelCase : Optional[Any] = collections.OrderedDict(sorted(self.encoder.items() , key=lambda lowerCamelCase__ : x[1] ) ) lowerCAmelCase : Optional[int] = {v: k for k, v in self.encoder.items()} lowerCAmelCase : Optional[Any] = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token ) @property def _A ( self : Optional[Any] ): return self.encoder[self.bod_token] @property def _A ( self : int ): return self.encoder[self.eod_token] @property def _A ( self : int ): return self.encoder["\n"] @property def _A ( self : Any ): return len(self.encoder ) def _A ( self : int ): return dict(self.encoder , **self.added_tokens_encoder ) def _A ( self : str , lowerCamelCase__ : int ): lowerCAmelCase : Optional[Any] = [] for x in jieba.cut(lowerCamelCase__ , cut_all=lowerCamelCase__ ): output_tokens.extend(self.wordpiece_tokenizer.tokenize(lowerCamelCase__ ) ) return output_tokens def _A ( self : int , lowerCamelCase__ : Tuple , **lowerCamelCase__ : Any ): lowerCAmelCase : List[Any] = [i for i in token_ids if i >= 0] lowerCAmelCase : Union[str, Any] = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(lowerCamelCase__ , **lowerCamelCase__ ) def _A ( self : Optional[int] , lowerCamelCase__ : Any ): return token in self.encoder def _A ( self : Optional[Any] , lowerCamelCase__ : List[str] ): return "".join(lowerCamelCase__ ) def _A ( self : Tuple , lowerCamelCase__ : Optional[Any] ): return self.encoder.get(lowerCamelCase__ , self.encoder.get(self.unk_token ) ) def _A ( self : Union[str, Any] , lowerCamelCase__ : Optional[Any] ): return self.decoder.get(lowerCamelCase__ , self.unk_token ) def _A ( self : int , lowerCamelCase__ : str , lowerCamelCase__ : Optional[str] = None ): if os.path.isdir(lowerCamelCase__ ): lowerCAmelCase : List[Any] = os.path.join( lowerCamelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) else: lowerCAmelCase : str = (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory lowerCAmelCase : Tuple = 0 if " " in self.encoder: lowerCAmelCase : Optional[int] = self.encoder[''' '''] del self.encoder[" "] if "\n" in self.encoder: lowerCAmelCase : List[Any] = self.encoder['''\n'''] del self.encoder["\n"] lowerCAmelCase : int = collections.OrderedDict(sorted(self.encoder.items() , key=lambda lowerCamelCase__ : x[1] ) ) with open(lowerCamelCase__ , '''w''' , encoding='''utf-8''' ) as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( f'''Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.''' ''' Please check that the vocabulary is not corrupted!''' ) lowerCAmelCase : int = token_index writer.write(token + '''\n''' ) index += 1 return (vocab_file,) def _A ( self : Any , lowerCamelCase__ : List[int] , lowerCamelCase__ : List[int] = None ): if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def _A ( self : str , lowerCamelCase__ : List[int] , lowerCamelCase__ : Optional[List[int]] = None , lowerCamelCase__ : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase__ , token_ids_a=lowerCamelCase__ , already_has_special_tokens=lowerCamelCase__ ) if token_ids_a is not None: return [1] + ([0] * len(lowerCamelCase__ )) + [1] + ([0] * len(lowerCamelCase__ )) return [1] + ([0] * len(lowerCamelCase__ ))
348
0
from __future__ import annotations def snake_case (UpperCamelCase : str , UpperCamelCase : list[str] | None = None , UpperCamelCase : dict[str, float] | None = None , UpperCamelCase : bool = False , ): '''simple docstring''' lowerCamelCase__ = cipher_alphabet or [chr(UpperCamelCase ) for i in range(97 , 123 )] # If the argument is None or the user provided an empty dictionary if not frequencies_dict: # Frequencies of letters in the english language (how much they show up) lowerCamelCase__ = { """a""": 0.0_8_4_9_7, """b""": 0.0_1_4_9_2, """c""": 0.0_2_2_0_2, """d""": 0.0_4_2_5_3, """e""": 0.1_1_1_6_2, """f""": 0.0_2_2_2_8, """g""": 0.0_2_0_1_5, """h""": 0.0_6_0_9_4, """i""": 0.0_7_5_4_6, """j""": 0.0_0_1_5_3, """k""": 0.0_1_2_9_2, """l""": 0.0_4_0_2_5, """m""": 0.0_2_4_0_6, """n""": 0.0_6_7_4_9, """o""": 0.0_7_5_0_7, """p""": 0.0_1_9_2_9, """q""": 0.0_0_0_9_5, """r""": 0.0_7_5_8_7, """s""": 0.0_6_3_2_7, """t""": 0.0_9_3_5_6, """u""": 0.0_2_7_5_8, """v""": 0.0_0_9_7_8, """w""": 0.0_2_5_6_0, """x""": 0.0_0_1_5_0, """y""": 0.0_1_9_9_4, """z""": 0.0_0_0_7_7, } else: # Custom frequencies dictionary lowerCamelCase__ = frequencies_dict if not case_sensitive: lowerCamelCase__ = ciphertext.lower() # Chi squared statistic values lowerCamelCase__ = {} # cycle through all of the shifts for shift in range(len(UpperCamelCase ) ): lowerCamelCase__ = """""" # decrypt the message with the shift for letter in ciphertext: try: # Try to index the letter in the alphabet lowerCamelCase__ = (alphabet_letters.index(letter.lower() ) - shift) % len( UpperCamelCase ) decrypted_with_shift += ( alphabet_letters[new_key].upper() if case_sensitive and letter.isupper() else alphabet_letters[new_key] ) except ValueError: # Append the character if it isn't in the alphabet decrypted_with_shift += letter lowerCamelCase__ = 0.0 # Loop through each letter in the decoded message with the shift for letter in decrypted_with_shift: if case_sensitive: lowerCamelCase__ = letter.lower() if letter in frequencies: # Get the amount of times the letter occurs in the message lowerCamelCase__ = decrypted_with_shift.lower().count(UpperCamelCase ) # Get the excepcted amount of times the letter should appear based # on letter frequencies lowerCamelCase__ = frequencies[letter] * occurrences # Complete the chi squared statistic formula lowerCamelCase__ = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value else: if letter.lower() in frequencies: # Get the amount of times the letter occurs in the message lowerCamelCase__ = decrypted_with_shift.count(UpperCamelCase ) # Get the excepcted amount of times the letter should appear based # on letter frequencies lowerCamelCase__ = frequencies[letter] * occurrences # Complete the chi squared statistic formula lowerCamelCase__ = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value # Add the data to the chi_squared_statistic_values dictionary lowerCamelCase__ = ( chi_squared_statistic, decrypted_with_shift, ) # Get the most likely cipher by finding the cipher with the smallest chi squared # statistic def chi_squared_statistic_values_sorting_key(UpperCamelCase : int ) -> tuple[float, str]: return chi_squared_statistic_values[key] lowerCamelCase__ = min( UpperCamelCase , key=UpperCamelCase , ) # Get all the data from the most likely cipher (key, decoded message) ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ) = chi_squared_statistic_values[most_likely_cipher] # Return the data on the most likely shift return ( most_likely_cipher, most_likely_cipher_chi_squared_value, decoded_most_likely_cipher, )
235
import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def snake_case (UpperCamelCase : Optional[Any] ): '''simple docstring''' lowerCamelCase__ = FileLock(str(tmpdir / """foo.lock""" ) ) lowerCamelCase__ = FileLock(str(tmpdir / """foo.lock""" ) ) lowerCamelCase__ = 0.0_1 with locka.acquire(): with pytest.raises(UpperCamelCase ): lowerCamelCase__ = time.time() locka.acquire(UpperCamelCase ) assert time.time() - _start > timeout def snake_case (UpperCamelCase : Optional[Any] ): '''simple docstring''' lowerCamelCase__ = """a""" * 1000 + """.lock""" lowerCamelCase__ = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith(""".lock""" ) assert not locka._lock_file.endswith(UpperCamelCase ) assert len(os.path.basename(locka._lock_file ) ) <= 255 lowerCamelCase__ = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(UpperCamelCase ): locka.acquire(0 )
235
1
"""simple docstring""" import argparse import logging import os import sys import numpy as np import onnxruntime import torch from bart_onnx.generation_onnx import BARTBeamSearchGenerator from bart_onnx.reduce_onnx_size import remove_dup_initializers import transformers from transformers import BartForConditionalGeneration, BartTokenizer logging.basicConfig( format="%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=os.environ.get("LOGLEVEL", "INFO").upper(), stream=sys.stdout, ) __lowercase : List[Any] = logging.getLogger(__name__) __lowercase : Dict = {"facebook/bart-base": BartForConditionalGeneration} __lowercase : Optional[Any] = {"facebook/bart-base": BartTokenizer} def SCREAMING_SNAKE_CASE ( ): __snake_case = argparse.ArgumentParser(description='''Export Bart model + Beam Search to ONNX graph.''') parser.add_argument( '''--validation_file''', type=snake_case, default=snake_case, help='''A csv or a json file containing the validation data.''') parser.add_argument( '''--max_length''', type=snake_case, default=5, help='''The maximum total input sequence length after tokenization.''', ) parser.add_argument( '''--num_beams''', type=snake_case, default=snake_case, help=( '''Number of beams to use for evaluation. This argument will be ''' '''passed to ``model.generate``, which is used during ``evaluate`` and ``predict``.''' ), ) parser.add_argument( '''--model_name_or_path''', type=snake_case, help='''Path to pretrained model or model identifier from huggingface.co/models.''', required=snake_case, ) parser.add_argument( '''--config_name''', type=snake_case, default=snake_case, help='''Pretrained config name or path if not the same as model_name''', ) parser.add_argument( '''--device''', type=snake_case, default='''cpu''', help='''Device where the model will be run''', ) parser.add_argument('''--output_file_path''', type=snake_case, default=snake_case, help='''Where to store the final ONNX file.''') __snake_case = parser.parse_args() return args def SCREAMING_SNAKE_CASE ( snake_case, snake_case="cpu"): __snake_case = model_dict[model_name].from_pretrained(snake_case).to(snake_case) __snake_case = tokenizer_dict[model_name].from_pretrained(snake_case) if model_name in ["facebook/bart-base"]: __snake_case = 0 __snake_case = None __snake_case = 0 return huggingface_model, tokenizer def SCREAMING_SNAKE_CASE ( snake_case, snake_case, snake_case, snake_case, snake_case): model.eval() __snake_case = None __snake_case = torch.jit.script(BARTBeamSearchGenerator(snake_case)) with torch.no_grad(): __snake_case = '''My friends are cool but they eat too many carbs.''' __snake_case = tokenizer([ARTICLE_TO_SUMMARIZE], max_length=10_24, return_tensors='''pt''').to(model.device) __snake_case = model.generate( inputs['''input_ids'''], attention_mask=inputs['''attention_mask'''], num_beams=snake_case, max_length=snake_case, early_stopping=snake_case, decoder_start_token_id=model.config.decoder_start_token_id, ) torch.onnx.export( snake_case, ( inputs['''input_ids'''], inputs['''attention_mask'''], num_beams, max_length, model.config.decoder_start_token_id, ), snake_case, opset_version=14, input_names=['''input_ids''', '''attention_mask''', '''num_beams''', '''max_length''', '''decoder_start_token_id'''], output_names=['''output_ids'''], dynamic_axes={ '''input_ids''': {0: '''batch''', 1: '''seq'''}, '''output_ids''': {0: '''batch''', 1: '''seq_out'''}, }, example_outputs=snake_case, ) logger.info('''Model exported to {}'''.format(snake_case)) __snake_case = remove_dup_initializers(os.path.abspath(snake_case)) logger.info('''Deduplicated and optimized model written to {}'''.format(snake_case)) __snake_case = onnxruntime.InferenceSession(snake_case) __snake_case = ort_sess.run( snake_case, { '''input_ids''': inputs['''input_ids'''].cpu().numpy(), '''attention_mask''': inputs['''attention_mask'''].cpu().numpy(), '''num_beams''': np.array(snake_case), '''max_length''': np.array(snake_case), '''decoder_start_token_id''': np.array(model.config.decoder_start_token_id), }, ) np.testing.assert_allclose(summary_ids.cpu().numpy(), ort_out[0], rtol=1E-3, atol=1E-3) logger.info('''Model outputs from torch and ONNX Runtime are similar.''') logger.info('''Success.''') def SCREAMING_SNAKE_CASE ( ): __snake_case = parse_args() __snake_case = 5 __snake_case = 4 # Make one log on every process with the configuration for debugging. logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO, ) logger.setLevel(logging.INFO) transformers.utils.logging.set_verbosity_error() __snake_case = torch.device(args.device) __snake_case , __snake_case = load_model_tokenizer(args.model_name_or_path, snake_case) if model.config.decoder_start_token_id is None: raise ValueError('''Make sure that `config.decoder_start_token_id` is correctly defined''') model.to(snake_case) if args.max_length: __snake_case = args.max_length if args.num_beams: __snake_case = args.num_beams if args.output_file_path: __snake_case = args.output_file_path else: __snake_case = '''BART.onnx''' logger.info('''Exporting model to ONNX''') export_and_validate_model(snake_case, snake_case, snake_case, snake_case, snake_case) if __name__ == "__main__": main()
564
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowercase : Union[str, Any] = {"configuration_ibert": ["IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "IBertConfig", "IBertOnnxConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Any = [ "IBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "IBertForMaskedLM", "IBertForMultipleChoice", "IBertForQuestionAnswering", "IBertForSequenceClassification", "IBertForTokenClassification", "IBertModel", "IBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_ibert import IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, IBertConfig, IBertOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ibert import ( IBERT_PRETRAINED_MODEL_ARCHIVE_LIST, IBertForMaskedLM, IBertForMultipleChoice, IBertForQuestionAnswering, IBertForSequenceClassification, IBertForTokenClassification, IBertModel, IBertPreTrainedModel, ) else: import sys __lowercase : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
564
1
"""simple docstring""" import argparse import json import numpy import torch from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def lowercase_ ( _lowerCamelCase: Dict , _lowerCamelCase: List[Any] ) -> Tuple: '''simple docstring''' __lowerCamelCase : str = torch.load(_lowercase , map_location="cpu" ) __lowerCamelCase : Union[str, Any] = chkpt['model'] # We have the base model one level deeper than the original XLM repository __lowerCamelCase : Union[str, Any] = {} for k, v in state_dict.items(): if "pred_layer" in k: __lowerCamelCase : int = v else: __lowerCamelCase : Tuple = v __lowerCamelCase : Tuple = chkpt['params'] __lowerCamelCase : Any = {n: v for n, v in config.items() if not isinstance(_lowercase , (torch.FloatTensor, numpy.ndarray) )} __lowerCamelCase : int = chkpt['dico_word2id'] __lowerCamelCase : Any = {s + '</w>' if s.find("@@" ) == -1 and i > 13 else s.replace("@@" , "" ): i for s, i in vocab.items()} # Save pytorch-model __lowerCamelCase : int = pytorch_dump_folder_path + '/' + WEIGHTS_NAME __lowerCamelCase : Union[str, Any] = pytorch_dump_folder_path + '/' + CONFIG_NAME __lowerCamelCase : str = pytorch_dump_folder_path + '/' + VOCAB_FILES_NAMES['vocab_file'] print(F"""Save PyTorch model to {pytorch_weights_dump_path}""" ) torch.save(_lowercase , _lowercase ) print(F"""Save configuration file to {pytorch_config_dump_path}""" ) with open(_lowercase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(_lowercase , indent=2 ) + "\n" ) print(F"""Save vocab file to {pytorch_config_dump_path}""" ) with open(_lowercase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(_lowercase , indent=2 ) + "\n" ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--xlm_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) __A = parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
704
"""simple docstring""" import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node __A = 4 __A = 3 class _snake_case ( a__ ): pass def lowercase_ ( _lowerCamelCase: List[str] ) -> List[str]: '''simple docstring''' for shard in shards: for i in range(_lowerCamelCase ): yield {"i": i, "shard": shard} def lowercase_ ( ) -> List[Any]: '''simple docstring''' __lowerCamelCase : List[Any] = int(os.environ["RANK"] ) __lowerCamelCase : Optional[int] = int(os.environ["WORLD_SIZE"] ) __lowerCamelCase : Any = ArgumentParser() parser.add_argument("--streaming" , type=_lowerCamelCase ) parser.add_argument("--local_rank" , type=_lowerCamelCase ) parser.add_argument("--num_workers" , type=_lowerCamelCase , default=0 ) __lowerCamelCase : Dict = parser.parse_args() __lowerCamelCase : str = args.streaming __lowerCamelCase : List[Any] = args.num_workers __lowerCamelCase : Optional[Any] = {"shards": [F"""shard_{shard_idx}""" for shard_idx in range(_lowerCamelCase )]} __lowerCamelCase : int = IterableDataset.from_generator(_lowerCamelCase , gen_kwargs=_lowerCamelCase ) if not streaming: __lowerCamelCase : Optional[int] = Dataset.from_list(list(_lowerCamelCase ) ) __lowerCamelCase : Union[str, Any] = split_dataset_by_node(_lowerCamelCase , rank=_lowerCamelCase , world_size=_lowerCamelCase ) __lowerCamelCase : Optional[Any] = torch.utils.data.DataLoader(_lowerCamelCase , num_workers=_lowerCamelCase ) __lowerCamelCase : List[Any] = NUM_SHARDS * NUM_ITEMS_PER_SHARD __lowerCamelCase : Optional[Any] = full_size // world_size expected_local_size += int(rank < (full_size % world_size) ) __lowerCamelCase : Optional[Any] = sum(1 for _ in dataloader ) if local_size != expected_local_size: raise FailedTestError(F"""local_size {local_size} != expected_local_size {expected_local_size}""" ) if __name__ == "__main__": main()
366
0
'''simple docstring''' from __future__ import annotations def _lowerCAmelCase ( __magic_name__ : list[float] ) -> float: lowercase : Any =0.0_0 lowercase : Tuple =0 for resistor in resistors: if resistor <= 0: lowercase : Dict =f'''Resistor at index {index} has a negative or zero value!''' raise ValueError(__magic_name__ ) first_sum += 1 / float(__magic_name__ ) index += 1 return 1 / first_sum def _lowerCAmelCase ( __magic_name__ : list[float] ) -> float: lowercase : Optional[Any] =0.0_0 lowercase : int =0 for resistor in resistors: sum_r += resistor if resistor < 0: lowercase : Tuple =f'''Resistor at index {index} has a negative value!''' raise ValueError(__magic_name__ ) index += 1 return sum_r if __name__ == "__main__": import doctest doctest.testmod()
92
def SCREAMING_SNAKE_CASE ( snake_case , snake_case ) -> bool: __lowercase = len(snake_case ) + 1 __lowercase = len(snake_case ) + 1 # dp is a 2d matrix where dp[i][j] denotes whether prefix string of # length i of input_string matches with prefix string of length j of # given pattern. # "dp" stands for dynamic programming. __lowercase = [[0 for i in range(snake_case )] for j in range(snake_case )] # since string of zero length match pattern of zero length __lowercase = 1 # since pattern of zero length will never match with string of non-zero length for i in range(1 , snake_case ): __lowercase = 0 # since string of zero length will match with pattern where there # is at least one * alternatively for j in range(1 , snake_case ): __lowercase = dp[0][j - 2] if pattern[j - 1] == '*' else 0 # now using bottom-up approach to find for all remaining lengths for i in range(1 , snake_case ): for j in range(1 , snake_case ): if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".": __lowercase = dp[i - 1][j - 1] elif pattern[j - 1] == "*": if dp[i][j - 2] == 1: __lowercase = 1 elif pattern[j - 2] in (input_string[i - 1], "."): __lowercase = dp[i - 1][j] else: __lowercase = 0 else: __lowercase = 0 return bool(dp[-1][-1] ) if __name__ == "__main__": import doctest doctest.testmod() # inputing the strings # input_string = input("input a string :") # pattern = input("input a pattern :") SCREAMING_SNAKE_CASE_ : Any = '''aab''' SCREAMING_SNAKE_CASE_ : str = '''c*a*b''' # using function to check whether given string matches the given pattern if match_pattern(input_string, pattern): print(F"""{input_string} matches the given pattern {pattern}""") else: print(F"""{input_string} does not match with the given pattern {pattern}""")
375
0
def lowerCamelCase__ ( ): '''simple docstring''' for n in range(1 , 1000000 ): yield n * (n + 1) // 2 def lowerCamelCase__ ( A__ : List[str] ): '''simple docstring''' __lowerCamelCase = 1 __lowerCamelCase = 2 while i * i <= n: __lowerCamelCase = 0 while n % i == 0: n //= i multiplicity += 1 divisors_count *= multiplicity + 1 i += 1 if n > 1: divisors_count *= 2 return divisors_count def lowerCamelCase__ ( ): '''simple docstring''' return next(i for i in triangle_number_generator() if count_divisors(A__ ) > 500 ) if __name__ == "__main__": print(solution())
80
class lowerCamelCase__: # Public class to implement a graph def __init__( self: Dict , UpperCamelCase_: int , UpperCamelCase_: int , UpperCamelCase_: list[list[bool]] ): __lowerCamelCase = row __lowerCamelCase = col __lowerCamelCase = graph def lowerCAmelCase__ ( self: Union[str, Any] , UpperCamelCase_: int , UpperCamelCase_: int , UpperCamelCase_: list[list[bool]] ): return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: int , UpperCamelCase_: int , UpperCamelCase_: list[list[bool]] ): # Checking all 8 elements surrounding nth element __lowerCamelCase = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order __lowerCamelCase = [-1, 0, 1, -1, 1, -1, 0, 1] __lowerCamelCase = True # Make those cells visited for k in range(8 ): if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , UpperCamelCase_ ): self.diffs(i + row_nbr[k] , j + col_nbr[k] , UpperCamelCase_ ) def lowerCAmelCase__ ( self: List[Any] ): # And finally, count all islands. __lowerCamelCase = [[False for j in range(self.COL )] for i in range(self.ROW )] __lowerCamelCase = 0 for i in range(self.ROW ): for j in range(self.COL ): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) count += 1 return count
80
1