code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
def UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ) -> List[Any]: if index == r: for j in range(SCREAMING_SNAKE_CASE_ ): print(data[j] , end=""" """ ) print(""" """ ) return # When no more elements are there to put in data[] if i >= n: return # current is included, put next at next location _lowercase = arr[i] combination_util(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , index + 1 , SCREAMING_SNAKE_CASE_ , i + 1 ) # current is excluded, replace it with # next (Note that i+1 is passed, but # index is not changed) combination_util(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , i + 1 ) # The main function that prints all combinations # of size r in arr[] of size n. This function # mainly uses combinationUtil() def UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Dict ) -> int: # A temporary array to store all combination one by one _lowercase = [0] * r # Print all combination using temporary array 'data[]' combination_util(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , 0 , SCREAMING_SNAKE_CASE_ , 0 ) if __name__ == "__main__": # Driver code to check the function above A : int = [10, 20, 30, 40, 50] print_combination(arr, len(arr), 3) # This code is contributed by Ambuj sahu
287
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import ( BaseOutput, OptionalDependencyNotAvailable, is_flax_available, is_k_diffusion_available, is_k_diffusion_version, is_onnx_available, is_torch_available, is_transformers_available, is_transformers_version, ) @dataclass class a_ ( _a ): a : Union[List[PIL.Image.Image], np.ndarray] a : Optional[List[bool]] try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_cycle_diffusion import CycleDiffusionPipeline from .pipeline_stable_diffusion import StableDiffusionPipeline from .pipeline_stable_diffusion_attend_and_excite import StableDiffusionAttendAndExcitePipeline from .pipeline_stable_diffusion_imgaimg import StableDiffusionImgaImgPipeline from .pipeline_stable_diffusion_inpaint import StableDiffusionInpaintPipeline from .pipeline_stable_diffusion_inpaint_legacy import StableDiffusionInpaintPipelineLegacy from .pipeline_stable_diffusion_instruct_pixapix import StableDiffusionInstructPixaPixPipeline from .pipeline_stable_diffusion_latent_upscale import StableDiffusionLatentUpscalePipeline from .pipeline_stable_diffusion_ldmad import StableDiffusionLDMaDPipeline from .pipeline_stable_diffusion_model_editing import StableDiffusionModelEditingPipeline from .pipeline_stable_diffusion_panorama import StableDiffusionPanoramaPipeline from .pipeline_stable_diffusion_paradigms import StableDiffusionParadigmsPipeline from .pipeline_stable_diffusion_sag import StableDiffusionSAGPipeline from .pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from .pipeline_stable_unclip import StableUnCLIPPipeline from .pipeline_stable_unclip_imgaimg import StableUnCLIPImgaImgPipeline from .safety_checker import StableDiffusionSafetyChecker from .stable_unclip_image_normalizer import StableUnCLIPImageNormalizer try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('''>=''', '''4.25.0''')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import StableDiffusionImageVariationPipeline else: from .pipeline_stable_diffusion_image_variation import StableDiffusionImageVariationPipeline try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('''>=''', '''4.26.0''')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionPixaPixZeroPipeline, ) else: from .pipeline_stable_diffusion_depthaimg import StableDiffusionDepthaImgPipeline from .pipeline_stable_diffusion_diffedit import StableDiffusionDiffEditPipeline from .pipeline_stable_diffusion_pixapix_zero import StableDiffusionPixaPixZeroPipeline try: if not ( is_torch_available() and is_transformers_available() and is_k_diffusion_available() and is_k_diffusion_version('''>=''', '''0.0.12''') ): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipeline_stable_diffusion_k_diffusion import StableDiffusionKDiffusionPipeline try: if not (is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_onnx_objects import * # noqa F403 else: from .pipeline_onnx_stable_diffusion import OnnxStableDiffusionPipeline, StableDiffusionOnnxPipeline from .pipeline_onnx_stable_diffusion_imgaimg import OnnxStableDiffusionImgaImgPipeline from .pipeline_onnx_stable_diffusion_inpaint import OnnxStableDiffusionInpaintPipeline from .pipeline_onnx_stable_diffusion_inpaint_legacy import OnnxStableDiffusionInpaintPipelineLegacy from .pipeline_onnx_stable_diffusion_upscale import OnnxStableDiffusionUpscalePipeline if is_transformers_available() and is_flax_available(): import flax @flax.struct.dataclass class a_ ( _a ): a : np.ndarray a : List[bool] from ...schedulers.scheduling_pndm_flax import PNDMSchedulerState from .pipeline_flax_stable_diffusion import FlaxStableDiffusionPipeline from .pipeline_flax_stable_diffusion_imgaimg import FlaxStableDiffusionImgaImgPipeline from .pipeline_flax_stable_diffusion_inpaint import FlaxStableDiffusionInpaintPipeline from .safety_checker_flax import FlaxStableDiffusionSafetyChecker
287
1
import json import logging import os import sys from time import time from unittest.mock import patch from transformers.testing_utils import TestCasePlus, require_torch_tpu logging.basicConfig(level=logging.DEBUG) __lowerCamelCase : Optional[int] = logging.getLogger() def lowercase__ ( __A: Union[str, Any] ): '''simple docstring''' __magic_name__ : Union[str, Any] = {} __magic_name__ : Optional[int] = os.path.join(__A ,'''all_results.json''' ) if os.path.exists(__A ): with open(__A ,'''r''' ) as f: __magic_name__ : int = json.load(__A ) else: raise ValueError(F'''can\'t find {path}''' ) return results __lowerCamelCase : Tuple = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) @require_torch_tpu class lowerCamelCase ( _lowerCamelCase ): '''simple docstring''' def UpperCAmelCase__ ( self : Optional[Any] ) -> List[Any]: import xla_spawn __magic_name__ : List[Any] = self.get_auto_remove_tmp_dir() __magic_name__ : List[str] = F''' ./examples/pytorch/text-classification/run_glue.py --num_cores=8 ./examples/pytorch/text-classification/run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --overwrite_output_dir --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --do_train --do_eval --debug tpu_metrics_debug --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --max_steps=10 --warmup_steps=2 --seed=42 --max_seq_length=128 '''.split() with patch.object(lowerCamelCase_ , '''argv''' , lowerCamelCase_ ): __magic_name__ : Any = time() xla_spawn.main() __magic_name__ : List[str] = time() __magic_name__ : List[Any] = get_results(lowerCamelCase_ ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.7_5 ) # Assert that the script takes less than 500 seconds to make sure it doesn't hang. self.assertLess(end - start , 500 ) def UpperCAmelCase__ ( self : Union[str, Any] ) -> Tuple: import xla_spawn __magic_name__ : Union[str, Any] = ''' ./tests/test_trainer_tpu.py --num_cores=8 ./tests/test_trainer_tpu.py '''.split() with patch.object(lowerCamelCase_ , '''argv''' , lowerCamelCase_ ): xla_spawn.main()
501
import dataclasses import json import sys import types from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, ArgumentTypeError from copy import copy from enum import Enum from inspect import isclass from pathlib import Path from typing import Any, Callable, Dict, Iterable, List, Literal, NewType, Optional, Tuple, Union, get_type_hints import yaml __lowerCamelCase : int = NewType('''DataClass''', Any) __lowerCamelCase : Optional[Any] = NewType('''DataClassType''', Any) def lowercase__ ( __A: List[Any] ): '''simple docstring''' if isinstance(__A ,__A ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise ArgumentTypeError( F'''Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive).''' ) def lowercase__ ( __A: list ): '''simple docstring''' __magic_name__ : Dict = {str(__A ): choice for choice in choices} return lambda __A : str_to_choice.get(__A ,__A ) def lowercase__ ( *, __A: Union[str, List[str]] = None ,__A: str = None ,__A: Any = dataclasses.MISSING ,__A: Callable[[], Any] = dataclasses.MISSING ,__A: dict = None ,**__A: Optional[int] ,): '''simple docstring''' if metadata is None: # Important, don't use as default param in function signature because dict is mutable and shared across function calls __magic_name__ : Optional[Any] = {} if aliases is not None: __magic_name__ : str = aliases if help is not None: __magic_name__ : Optional[int] = help return dataclasses.field(metadata=__A ,default=__A ,default_factory=__A ,**__A ) class lowerCamelCase ( _lowerCamelCase ): '''simple docstring''' UpperCamelCase__ =42 def __init__( self : List[str] , lowerCamelCase_ : Union[DataClassType, Iterable[DataClassType]] , **lowerCamelCase_ : str ) -> Optional[Any]: # To make the default appear when using --help if "formatter_class" not in kwargs: __magic_name__ : List[str] = ArgumentDefaultsHelpFormatter super().__init__(**lowerCamelCase_ ) if dataclasses.is_dataclass(lowerCamelCase_ ): __magic_name__ : Union[str, Any] = [dataclass_types] __magic_name__ : Tuple = list(lowerCamelCase_ ) for dtype in self.dataclass_types: self._add_dataclass_arguments(lowerCamelCase_ ) @staticmethod def UpperCAmelCase__ ( lowerCamelCase_ : ArgumentParser , lowerCamelCase_ : dataclasses.Field ) -> str: __magic_name__ : int = F'''--{field.name}''' __magic_name__ : str = field.metadata.copy() # field.metadata is not used at all by Data Classes, # it is provided as a third-party extension mechanism. if isinstance(field.type , lowerCamelCase_ ): raise RuntimeError( '''Unresolved type detected, which should have been done with the help of ''' '''`typing.get_type_hints` method by default''' ) __magic_name__ : Union[str, Any] = kwargs.pop('''aliases''' , [] ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ): __magic_name__ : Tuple = [aliases] __magic_name__ : Optional[int] = getattr(field.type , '''__origin__''' , field.type ) if origin_type is Union or (hasattr(lowerCamelCase_ , '''UnionType''' ) and isinstance(lowerCamelCase_ , types.UnionType )): if str not in field.type.__args__ and ( len(field.type.__args__ ) != 2 or type(lowerCamelCase_ ) not in field.type.__args__ ): raise ValueError( '''Only `Union[X, NoneType]` (i.e., `Optional[X]`) is allowed for `Union` because''' ''' the argument parser only supports one type per argument.''' F''' Problem encountered in field \'{field.name}\'.''' ) if type(lowerCamelCase_ ) not in field.type.__args__: # filter `str` in Union __magic_name__ : int = field.type.__args__[0] if field.type.__args__[1] == str else field.type.__args__[1] __magic_name__ : str = getattr(field.type , '''__origin__''' , field.type ) elif bool not in field.type.__args__: # filter `NoneType` in Union (except for `Union[bool, NoneType]`) __magic_name__ : List[str] = ( field.type.__args__[0] if isinstance(lowerCamelCase_ , field.type.__args__[1] ) else field.type.__args__[1] ) __magic_name__ : Union[str, Any] = getattr(field.type , '''__origin__''' , field.type ) # A variable to store kwargs for a boolean field, if needed # so that we can init a `no_*` complement argument (see below) __magic_name__ : Any = {} if origin_type is Literal or (isinstance(field.type , lowerCamelCase_ ) and issubclass(field.type , lowerCamelCase_ )): if origin_type is Literal: __magic_name__ : Optional[int] = field.type.__args__ else: __magic_name__ : Dict = [x.value for x in field.type] __magic_name__ : Union[str, Any] = make_choice_type_function(kwargs['''choices'''] ) if field.default is not dataclasses.MISSING: __magic_name__ : List[Any] = field.default else: __magic_name__ : List[str] = True elif field.type is bool or field.type == Optional[bool]: # Copy the currect kwargs to use to instantiate a `no_*` complement argument below. # We do not initialize it here because the `no_*` alternative must be instantiated after the real argument __magic_name__ : Union[str, Any] = copy(lowerCamelCase_ ) # Hack because type=bool in argparse does not behave as we want. __magic_name__ : str = string_to_bool if field.type is bool or (field.default is not None and field.default is not dataclasses.MISSING): # Default value is False if we have no default when of type bool. __magic_name__ : Union[str, Any] = False if field.default is dataclasses.MISSING else field.default # This is the value that will get picked if we don't include --field_name in any way __magic_name__ : int = default # This tells argparse we accept 0 or 1 value after --field_name __magic_name__ : Tuple = '''?''' # This is the value that will get picked if we do --field_name (without value) __magic_name__ : Any = True elif isclass(lowerCamelCase_ ) and issubclass(lowerCamelCase_ , lowerCamelCase_ ): __magic_name__ : Tuple = field.type.__args__[0] __magic_name__ : List[str] = '''+''' if field.default_factory is not dataclasses.MISSING: __magic_name__ : int = field.default_factory() elif field.default is dataclasses.MISSING: __magic_name__ : str = True else: __magic_name__ : Tuple = field.type if field.default is not dataclasses.MISSING: __magic_name__ : str = field.default elif field.default_factory is not dataclasses.MISSING: __magic_name__ : Any = field.default_factory() else: __magic_name__ : Any = True parser.add_argument(lowerCamelCase_ , *lowerCamelCase_ , **lowerCamelCase_ ) # Add a complement `no_*` argument for a boolean field AFTER the initial field has already been added. # Order is important for arguments with the same destination! # We use a copy of earlier kwargs because the original kwargs have changed a lot before reaching down # here and we do not need those changes/additional keys. if field.default is True and (field.type is bool or field.type == Optional[bool]): __magic_name__ : Dict = False parser.add_argument(F'''--no_{field.name}''' , action='''store_false''' , dest=field.name , **lowerCamelCase_ ) def UpperCAmelCase__ ( self : Any , lowerCamelCase_ : DataClassType ) -> Optional[int]: if hasattr(lowerCamelCase_ , '''_argument_group_name''' ): __magic_name__ : Tuple = self.add_argument_group(dtype._argument_group_name ) else: __magic_name__ : Any = self try: __magic_name__ : Dict[str, type] = get_type_hints(lowerCamelCase_ ) except NameError: raise RuntimeError( F'''Type resolution failed for {dtype}. Try declaring the class in global scope or ''' '''removing line of `from __future__ import annotations` which opts in Postponed ''' '''Evaluation of Annotations (PEP 563)''' ) except TypeError as ex: # Remove this block when we drop Python 3.9 support if sys.version_info[:2] < (3, 10) and "unsupported operand type(s) for |" in str(lowerCamelCase_ ): __magic_name__ : Any = '''.'''.join(map(lowerCamelCase_ , sys.version_info[:3] ) ) raise RuntimeError( F'''Type resolution failed for {dtype} on Python {python_version}. Try removing ''' '''line of `from __future__ import annotations` which opts in union types as ''' '''`X | Y` (PEP 604) via Postponed Evaluation of Annotations (PEP 563). To ''' '''support Python versions that lower than 3.10, you need to use ''' '''`typing.Union[X, Y]` instead of `X | Y` and `typing.Optional[X]` instead of ''' '''`X | None`.''' ) from ex raise for field in dataclasses.fields(lowerCamelCase_ ): if not field.init: continue __magic_name__ : Tuple = type_hints[field.name] self._parse_dataclass_field(lowerCamelCase_ , lowerCamelCase_ ) def UpperCAmelCase__ ( self : List[Any] , lowerCamelCase_ : Union[str, Any]=None , lowerCamelCase_ : List[str]=False , lowerCamelCase_ : List[Any]=True , lowerCamelCase_ : Union[str, Any]=None , lowerCamelCase_ : List[Any]=None , ) -> Tuple[DataClass, ...]: if args_file_flag or args_filename or (look_for_args_file and len(sys.argv )): __magic_name__ : int = [] if args_filename: args_files.append(Path(lowerCamelCase_ ) ) elif look_for_args_file and len(sys.argv ): args_files.append(Path(sys.argv[0] ).with_suffix('''.args''' ) ) # args files specified via command line flag should overwrite default args files so we add them last if args_file_flag: # Create special parser just to extract the args_file_flag values __magic_name__ : str = ArgumentParser() args_file_parser.add_argument(lowerCamelCase_ , type=lowerCamelCase_ , action='''append''' ) # Use only remaining args for further parsing (remove the args_file_flag) __magic_name__ , __magic_name__ : List[str] = args_file_parser.parse_known_args(args=lowerCamelCase_ ) __magic_name__ : List[Any] = vars(lowerCamelCase_ ).get(args_file_flag.lstrip('''-''' ) , lowerCamelCase_ ) if cmd_args_file_paths: args_files.extend([Path(lowerCamelCase_ ) for p in cmd_args_file_paths] ) __magic_name__ : List[str] = [] for args_file in args_files: if args_file.exists(): file_args += args_file.read_text().split() # in case of duplicate arguments the last one has precedence # args specified via the command line should overwrite args from files, so we add them last __magic_name__ : Optional[int] = file_args + args if args is not None else file_args + sys.argv[1:] __magic_name__ , __magic_name__ : Tuple = self.parse_known_args(args=lowerCamelCase_ ) __magic_name__ : Any = [] for dtype in self.dataclass_types: __magic_name__ : str = {f.name for f in dataclasses.fields(lowerCamelCase_ ) if f.init} __magic_name__ : Tuple = {k: v for k, v in vars(lowerCamelCase_ ).items() if k in keys} for k in keys: delattr(lowerCamelCase_ , lowerCamelCase_ ) __magic_name__ : Optional[Any] = dtype(**lowerCamelCase_ ) outputs.append(lowerCamelCase_ ) if len(namespace.__dict__ ) > 0: # additional namespace. outputs.append(lowerCamelCase_ ) if return_remaining_strings: return (*outputs, remaining_args) else: if remaining_args: raise ValueError(F'''Some specified arguments are not used by the HfArgumentParser: {remaining_args}''' ) return (*outputs,) def UpperCAmelCase__ ( self : int , lowerCamelCase_ : Dict[str, Any] , lowerCamelCase_ : bool = False ) -> Tuple[DataClass, ...]: __magic_name__ : int = set(args.keys() ) __magic_name__ : Any = [] for dtype in self.dataclass_types: __magic_name__ : int = {f.name for f in dataclasses.fields(lowerCamelCase_ ) if f.init} __magic_name__ : List[str] = {k: v for k, v in args.items() if k in keys} unused_keys.difference_update(inputs.keys() ) __magic_name__ : Optional[Any] = dtype(**lowerCamelCase_ ) outputs.append(lowerCamelCase_ ) if not allow_extra_keys and unused_keys: raise ValueError(F'''Some keys are not used by the HfArgumentParser: {sorted(lowerCamelCase_ )}''' ) return tuple(lowerCamelCase_ ) def UpperCAmelCase__ ( self : Dict , lowerCamelCase_ : str , lowerCamelCase_ : bool = False ) -> Tuple[DataClass, ...]: with open(Path(lowerCamelCase_ ) , encoding='''utf-8''' ) as open_json_file: __magic_name__ : Any = json.loads(open_json_file.read() ) __magic_name__ : Tuple = self.parse_dict(lowerCamelCase_ , allow_extra_keys=lowerCamelCase_ ) return tuple(lowerCamelCase_ ) def UpperCAmelCase__ ( self : str , lowerCamelCase_ : str , lowerCamelCase_ : bool = False ) -> Tuple[DataClass, ...]: __magic_name__ : Any = self.parse_dict(yaml.safe_load(Path(lowerCamelCase_ ).read_text() ) , allow_extra_keys=lowerCamelCase_ ) return tuple(lowerCamelCase_ )
501
1
from __future__ import annotations import typing from collections.abc import Iterable import numpy as np SCREAMING_SNAKE_CASE : Dict = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 SCREAMING_SNAKE_CASE : List[str] = typing.Union[np.floataa, int, float] # noqa: UP007 def UpperCamelCase ( _a , _a ) -> VectorOut: '''simple docstring''' return np.sqrt(np.sum((np.asarray(_a ) - np.asarray(_a )) ** 2 ) ) def UpperCamelCase ( _a , _a ) -> VectorOut: '''simple docstring''' return sum((va - va) ** 2 for va, va in zip(_a , _a ) ) ** (1 / 2) if __name__ == "__main__": def UpperCamelCase ( ) -> None: '''simple docstring''' from timeit import timeit print('''Without Numpy''' ) print( timeit( '''euclidean_distance_no_np([1, 2, 3], [4, 5, 6])''' , number=1_0_0_0_0 , globals=globals() , ) ) print('''With Numpy''' ) print( timeit( '''euclidean_distance([1, 2, 3], [4, 5, 6])''' , number=1_0_0_0_0 , globals=globals() , ) ) benchmark()
257
def UpperCamelCase ( _a = 1 , _a = 1_0_0_0 ) -> int: '''simple docstring''' lowercase_ :str = 1 lowercase_ :Union[str, Any] = 0 for divide_by_number in range(_a , digit + 1 ): lowercase_ :list[int] = [] lowercase_ :Any = numerator for _ in range(1 , digit + 1 ): if now_divide in has_been_divided: if longest_list_length < len(_a ): lowercase_ :Optional[Any] = len(_a ) lowercase_ :str = divide_by_number else: has_been_divided.append(_a ) lowercase_ :str = now_divide * 1_0 % divide_by_number return the_digit # Tests if __name__ == "__main__": import doctest doctest.testmod()
257
1
"""simple docstring""" import os import re import shutil import sys import tempfile import unittest import black lowercase__ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated. lowercase__ = """ def __init__(self, config): super().__init__() self.transform = BertPredictionHeadTransform(config) # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` self.decoder.bias = self.bias def forward(self, hidden_states): hidden_states = self.transform(hidden_states) hidden_states = self.decoder(hidden_states) return hidden_states """ class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def A_ ( self ): _lowerCamelCase : Any = tempfile.mkdtemp() os.makedirs(os.path.join(self.transformer_dir , 'models/bert/' ) ) _lowerCamelCase : Tuple = self.transformer_dir shutil.copy( os.path.join(lowercase , 'src/transformers/models/bert/modeling_bert.py' ) , os.path.join(self.transformer_dir , 'models/bert/modeling_bert.py' ) , ) def A_ ( self ): _lowerCamelCase : str = 'src/transformers' shutil.rmtree(self.transformer_dir ) def A_ ( self , lowercase , lowercase , lowercase , lowercase=None ): _lowerCamelCase : Tuple = comment + F'''\nclass {class_name}(nn.Module):\n''' + class_code if overwrite_result is not None: _lowerCamelCase : List[str] = comment + F'''\nclass {class_name}(nn.Module):\n''' + overwrite_result _lowerCamelCase : Optional[Any] = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) _lowerCamelCase : str = black.format_str(lowercase , mode=lowercase ) _lowerCamelCase : Tuple = os.path.join(self.transformer_dir , 'new_code.py' ) with open(lowercase , 'w' , newline='\n' ) as f: f.write(lowercase ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(lowercase ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=lowercase ) with open(lowercase , 'r' ) as f: self.assertTrue(f.read() , lowercase ) def A_ ( self ): _lowerCamelCase : Union[str, Any] = check_copies.find_code_in_transformers('models.bert.modeling_bert.BertLMPredictionHead' ) self.assertEqual(lowercase , lowercase ) def A_ ( self ): # Base copy consistency self.check_copy_consistency( '# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead' , 'BertLMPredictionHead' , REFERENCE_CODE + '\n' , ) # With no empty line at the end self.check_copy_consistency( '# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead' , 'BertLMPredictionHead' , lowercase , ) # Copy consistency with rename self.check_copy_consistency( '# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel' , 'TestModelLMPredictionHead' , re.sub('Bert' , 'TestModel' , lowercase ) , ) # Copy consistency with a really long name _lowerCamelCase : Dict = 'TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason' self.check_copy_consistency( F'''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}''' , F'''{long_class_name}LMPredictionHead''' , re.sub('Bert' , lowercase , lowercase ) , ) # Copy consistency with overwrite self.check_copy_consistency( '# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel' , 'TestModelLMPredictionHead' , lowercase , overwrite_result=re.sub('Bert' , 'TestModel' , lowercase ) , ) def A_ ( self ): _lowerCamelCase : List[Any] = check_copies.LOCALIZED_READMES['README_zh-hans.md'] _lowerCamelCase : str = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the' ' Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for' ' Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong' ' Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1.' ' **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace),' ' released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and' ' lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same' ' method has been applied to compress GPT2 into' ' [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into' ' [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),' ' Multilingual BERT into' ' [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German' ' version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**' ' (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders' ' as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang' ' Luong, Quoc V. Le, Christopher D. Manning.' ) _lowerCamelCase : Optional[Any] = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the' ' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of' ' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian' ' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n' ) _lowerCamelCase : Union[str, Any] = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the' ' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of' ' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian' ' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1.' ' **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文' ' [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and' ' lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same' ' method has been applied to compress GPT2 into' ' [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into' ' [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),' ' Multilingual BERT into' ' [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German' ' version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自' ' Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather' ' than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le,' ' Christopher D. Manning 发布。\n' ) _lowerCamelCase, _lowerCamelCase : Union[str, Any] = check_copies.convert_to_localized_md( lowercase , lowercase , localized_readme['format_model_list'] ) self.assertFalse(lowercase ) self.assertEqual(lowercase , lowercase ) _lowerCamelCase, _lowerCamelCase : List[str] = check_copies.convert_to_localized_md( lowercase , lowercase , localized_readme['format_model_list'] ) # Check whether the number of models is equal to README.md after conversion. self.assertTrue(lowercase ) _lowerCamelCase : Tuple = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the' ' Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for' ' Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong' ' Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.' ) _lowerCamelCase : List[str] = ( '1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and' ' the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of' ' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian' ' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n' ) _lowerCamelCase : str = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the' ' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of' ' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian' ' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n' ) _lowerCamelCase, _lowerCamelCase : int = check_copies.convert_to_localized_md( lowercase , lowercase , localized_readme['format_model_list'] ) # Check if the model link is synchronized. self.assertEqual(lowercase , lowercase )
492
"""simple docstring""" def _snake_case ( lowercase__ ): _lowerCamelCase : List[str] = abs(lowercase__ ) _lowerCamelCase : Optional[int] = 0 while n > 0: res += n % 10 n //= 10 return res def _snake_case ( lowercase__ ): _lowerCamelCase : List[str] = abs(lowercase__ ) return n if n < 10 else n % 10 + sum_of_digits(n // 10 ) def _snake_case ( lowercase__ ): return sum(int(lowercase__ ) for c in str(abs(lowercase__ ) ) ) def _snake_case ( ): from collections.abc import Callable from timeit import timeit def benchmark_a_function(lowercase__ , lowercase__ ) -> None: _lowerCamelCase : int = f'''{func.__name__}({value})''' _lowerCamelCase : Optional[Any] = timeit(f'''__main__.{call}''' , setup='import __main__' ) print(f'''{call:56} = {func(lowercase__ )} -- {timing:.4f} seconds''' ) for value in (262144, 1125899906842624, 1267650600228229401496703205376): for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact): benchmark_a_function(lowercase__ , lowercase__ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
492
1
"""simple docstring""" import argparse import datetime import json import time import warnings from logging import getLogger from pathlib import Path from typing import Dict, List import torch from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params __SCREAMING_SNAKE_CASE : Optional[int] = getLogger(__name__) __SCREAMING_SNAKE_CASE : str = '''cuda''' if torch.cuda.is_available() else '''cpu''' def lowerCAmelCase_( lowercase_ : List[str] , lowercase_ : str , lowercase_ : str , lowercase_ : int = 8 , lowercase_ : str = DEFAULT_DEVICE , lowercase_ : Union[str, Any]=False , lowercase_ : Tuple="summarization" , lowercase_ : Union[str, Any]=None , **lowercase_ : Optional[Any] , ) -> Dict: _lowerCamelCase = Path(lowercase_ ).open('''w''' , encoding='''utf-8''' ) _lowerCamelCase = str(lowercase_ ) _lowerCamelCase = AutoModelForSeqaSeqLM.from_pretrained(lowercase_ ).to(lowercase_ ) if fpaa: _lowerCamelCase = model.half() _lowerCamelCase = AutoTokenizer.from_pretrained(lowercase_ ) logger.info(F"""Inferred tokenizer type: {tokenizer.__class__}""" ) # if this is wrong, check config.model_type. _lowerCamelCase = time.time() # update config with task specific params use_task_specific_params(lowercase_ , lowercase_ ) if prefix is None: _lowerCamelCase = prefix or getattr(model.config , '''prefix''' , '''''' ) or '''''' for examples_chunk in tqdm(list(chunks(lowercase_ , lowercase_ ) ) ): _lowerCamelCase = [prefix + text for text in examples_chunk] _lowerCamelCase = tokenizer(lowercase_ , return_tensors='''pt''' , truncation=lowercase_ , padding='''longest''' ).to(lowercase_ ) _lowerCamelCase = model.generate( input_ids=batch.input_ids , attention_mask=batch.attention_mask , **lowercase_ , ) _lowerCamelCase = tokenizer.batch_decode(lowercase_ , skip_special_tokens=lowercase_ , clean_up_tokenization_spaces=lowercase_ ) for hypothesis in dec: fout.write(hypothesis + '''\n''' ) fout.flush() fout.close() _lowerCamelCase = int(time.time() - start_time ) # seconds _lowerCamelCase = len(lowercase_ ) return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )} def lowerCAmelCase_( ) -> Tuple: return datetime.datetime.now().strftime('''%Y-%m-%d %H:%M:%S''' ) def lowerCAmelCase_( lowercase_ : List[Any]=True ) -> List[str]: _lowerCamelCase = argparse.ArgumentParser() parser.add_argument('''model_name''' , type=lowercase_ , help='''like facebook/bart-large-cnn,t5-base, etc.''' ) parser.add_argument('''input_path''' , type=lowercase_ , help='''like cnn_dm/test.source''' ) parser.add_argument('''save_path''' , type=lowercase_ , help='''where to save summaries''' ) parser.add_argument('''--reference_path''' , type=lowercase_ , required=lowercase_ , help='''like cnn_dm/test.target''' ) parser.add_argument('''--score_path''' , type=lowercase_ , required=lowercase_ , default='''metrics.json''' , help='''where to save metrics''' ) parser.add_argument('''--device''' , type=lowercase_ , required=lowercase_ , default=lowercase_ , help='''cuda, cuda:1, cpu etc.''' ) parser.add_argument( '''--prefix''' , type=lowercase_ , required=lowercase_ , default=lowercase_ , help='''will be added to the begininng of src examples''' ) parser.add_argument('''--task''' , type=lowercase_ , default='''summarization''' , help='''used for task_specific_params + metrics''' ) parser.add_argument('''--bs''' , type=lowercase_ , default=8 , required=lowercase_ , help='''batch size''' ) parser.add_argument( '''--n_obs''' , type=lowercase_ , default=-1 , required=lowercase_ , help='''How many observations. Defaults to all.''' ) parser.add_argument('''--fp16''' , action='''store_true''' ) parser.add_argument('''--dump-args''' , action='''store_true''' , help='''print the custom hparams with the results''' ) parser.add_argument( '''--info''' , nargs='''?''' , type=lowercase_ , const=datetime_now() , help=( '''use in conjunction w/ --dump-args to print with the results whatever other info you\'d like, e.g.''' ''' lang=en-ru. If no value is passed, the current datetime string will be used.''' ) , ) # Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate _lowerCamelCase , _lowerCamelCase = parser.parse_known_args() _lowerCamelCase = parse_numeric_n_bool_cl_kwargs(lowercase_ ) if parsed_args and verbose: print(F"""parsed the following generate kwargs: {parsed_args}""" ) _lowerCamelCase = [''' ''' + x.rstrip() if '''t5''' in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()] if args.n_obs > 0: _lowerCamelCase = examples[: args.n_obs] Path(args.save_path ).parent.mkdir(exist_ok=lowercase_ ) if args.reference_path is None and Path(args.score_path ).exists(): warnings.warn(F"""score_path {args.score_path} will be overwritten unless you type ctrl-c.""" ) if args.device == "cpu" and args.fpaa: # this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half' raise ValueError('''Can\'t mix --fp16 and --device cpu''' ) _lowerCamelCase = generate_summaries_or_translations( lowercase_ , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **lowercase_ , ) if args.reference_path is None: return {} # Compute scores _lowerCamelCase = calculate_bleu if '''translation''' in args.task else calculate_rouge _lowerCamelCase = [x.rstrip() for x in open(args.save_path ).readlines()] _lowerCamelCase = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(lowercase_ )] _lowerCamelCase = score_fn(lowercase_ , lowercase_ ) scores.update(lowercase_ ) if args.dump_args: scores.update(lowercase_ ) if args.info: _lowerCamelCase = args.info if verbose: print(lowercase_ ) if args.score_path is not None: json.dump(lowercase_ , open(args.score_path , '''w''' ) ) return scores if __name__ == "__main__": # Usage for MT: # python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@ run_generate(verbose=True)
661
"""simple docstring""" import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ASTConfig from transformers.testing_utils import require_torch, require_torchaudio, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_torchaudio_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ASTForAudioClassification, ASTModel from transformers.models.audio_spectrogram_transformer.modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_torchaudio_available(): import torchaudio from transformers import ASTFeatureExtractor class lowerCamelCase_: '''simple docstring''' def __init__( self , lowerCamelCase__ , lowerCamelCase__=1_3 , lowerCamelCase__=2 , lowerCamelCase__=2_4 , lowerCamelCase__=1_6 , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=3_2 , lowerCamelCase__=5 , lowerCamelCase__=4 , lowerCamelCase__=3_7 , lowerCamelCase__="gelu" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=1_0 , lowerCamelCase__=0.0_2 , lowerCamelCase__=None , lowerCamelCase__=2 , lowerCamelCase__=2 , ): _lowerCamelCase = parent _lowerCamelCase = batch_size _lowerCamelCase = patch_size _lowerCamelCase = max_length _lowerCamelCase = num_mel_bins _lowerCamelCase = is_training _lowerCamelCase = use_labels _lowerCamelCase = hidden_size _lowerCamelCase = num_hidden_layers _lowerCamelCase = num_attention_heads _lowerCamelCase = intermediate_size _lowerCamelCase = hidden_act _lowerCamelCase = hidden_dropout_prob _lowerCamelCase = attention_probs_dropout_prob _lowerCamelCase = type_sequence_label_size _lowerCamelCase = initializer_range _lowerCamelCase = scope _lowerCamelCase = frequency_stride _lowerCamelCase = time_stride # in AST, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) _lowerCamelCase = (self.num_mel_bins - self.patch_size) // self.frequency_stride + 1 _lowerCamelCase = (self.max_length - self.patch_size) // self.time_stride + 1 _lowerCamelCase = frequency_out_dimension * time_out_dimension _lowerCamelCase = num_patches + 2 def snake_case__ ( self ): _lowerCamelCase = floats_tensor([self.batch_size, self.max_length, self.num_mel_bins] ) _lowerCamelCase = None if self.use_labels: _lowerCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCamelCase = self.get_config() return config, input_values, labels def snake_case__ ( self ): return ASTConfig( patch_size=self.patch_size , max_length=self.max_length , num_mel_bins=self.num_mel_bins , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCamelCase__ , initializer_range=self.initializer_range , frequency_stride=self.frequency_stride , time_stride=self.time_stride , ) def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): _lowerCamelCase = ASTModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() _lowerCamelCase = model(lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case__ ( self ): _lowerCamelCase = self.prepare_config_and_inputs() ( ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ) = config_and_inputs _lowerCamelCase = {'''input_values''': input_values} return config, inputs_dict @require_torch class lowerCamelCase_( A__, A__, unittest.TestCase ): '''simple docstring''' lowercase__ : Any = ( ( ASTModel, ASTForAudioClassification, ) if is_torch_available() else () ) lowercase__ : List[str] = ( {'audio-classification': ASTForAudioClassification, 'feature-extraction': ASTModel} if is_torch_available() else {} ) lowercase__ : int = False lowercase__ : str = False lowercase__ : Union[str, Any] = False lowercase__ : List[str] = False def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): if pipeline_test_casse_name == "AudioClassificationPipelineTests": return True return False def snake_case__ ( self ): _lowerCamelCase = ASTModelTester(self ) _lowerCamelCase = ConfigTester(self , config_class=lowerCamelCase__ , has_text_modality=lowerCamelCase__ , hidden_size=3_7 ) def snake_case__ ( self ): self.config_tester.run_common_tests() @unittest.skip(reason='''AST does not use inputs_embeds''' ) def snake_case__ ( self ): pass def snake_case__ ( self ): _lowerCamelCase , _lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase = model_class(lowerCamelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _lowerCamelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase__ , nn.Linear ) ) def snake_case__ ( self ): _lowerCamelCase , _lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase = model_class(lowerCamelCase__ ) _lowerCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCamelCase = [*signature.parameters.keys()] _lowerCamelCase = ['''input_values'''] self.assertListEqual(arg_names[:1] , lowerCamelCase__ ) def snake_case__ ( self ): _lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase__ ) @slow def snake_case__ ( self ): for model_name in AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase = ASTModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def lowerCAmelCase_( ) -> str: _lowerCamelCase = hf_hub_download( repo_id='''nielsr/audio-spectogram-transformer-checkpoint''' , filename='''sample_audio.flac''' , repo_type='''dataset''' ) _lowerCamelCase , _lowerCamelCase = torchaudio.load(lowercase_ ) return audio, sampling_rate @require_torch @require_torchaudio class lowerCamelCase_( unittest.TestCase ): '''simple docstring''' @cached_property def snake_case__ ( self ): return ( ASTFeatureExtractor.from_pretrained('''MIT/ast-finetuned-audioset-10-10-0.4593''' ) if is_torchaudio_available() else None ) @slow def snake_case__ ( self ): _lowerCamelCase = self.default_feature_extractor _lowerCamelCase = ASTForAudioClassification.from_pretrained('''MIT/ast-finetuned-audioset-10-10-0.4593''' ).to(lowerCamelCase__ ) _lowerCamelCase = self.default_feature_extractor _lowerCamelCase , _lowerCamelCase = prepare_audio() _lowerCamelCase = audio.squeeze().numpy() _lowerCamelCase = feature_extractor(lowerCamelCase__ , sampling_rate=lowerCamelCase__ , return_tensors='''pt''' ).to(lowerCamelCase__ ) # forward pass with torch.no_grad(): _lowerCamelCase = model(**lowerCamelCase__ ) # verify the logits _lowerCamelCase = torch.Size((1, 5_2_7) ) self.assertEqual(outputs.logits.shape , lowerCamelCase__ ) _lowerCamelCase = torch.tensor([-0.8_7_6_0, -7.0_0_4_2, -8.6_6_0_2] ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCamelCase__ , atol=1e-4 ) )
661
1
import warnings from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/config.json", # See all BART models at https://huggingface.co/models?filter=bart } class lowerCAmelCase__ ( __lowercase ): UpperCamelCase_ : Optional[Any] = "bart" UpperCamelCase_ : Optional[Any] = ["past_key_values"] UpperCamelCase_ : Any = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self , a=5_02_65 , a=10_24 , a=12 , a=40_96 , a=16 , a=12 , a=40_96 , a=16 , a=0.0 , a=0.0 , a="gelu" , a=10_24 , a=0.1 , a=0.0 , a=0.0 , a=0.02 , a=0.0 , a=False , a=True , a=3 , a=1 , a=0 , a=2 , a=True , a=2 , a=2 , **a , ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = vocab_size _UpperCamelCase = max_position_embeddings _UpperCamelCase = d_model _UpperCamelCase = encoder_ffn_dim _UpperCamelCase = encoder_layers _UpperCamelCase = encoder_attention_heads _UpperCamelCase = decoder_ffn_dim _UpperCamelCase = decoder_layers _UpperCamelCase = decoder_attention_heads _UpperCamelCase = dropout _UpperCamelCase = attention_dropout _UpperCamelCase = activation_dropout _UpperCamelCase = activation_function _UpperCamelCase = init_std _UpperCamelCase = encoder_layerdrop _UpperCamelCase = decoder_layerdrop _UpperCamelCase = classifier_dropout _UpperCamelCase = use_cache _UpperCamelCase = encoder_layers _UpperCamelCase = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( num_labels=a , pad_token_id=a , bos_token_id=a , eos_token_id=a , is_encoder_decoder=a , decoder_start_token_id=a , forced_eos_token_id=a , **a , ) # ensure backward compatibility for BART CNN models if self.forced_bos_token_id is None and kwargs.get("""force_bos_token_to_be_generated""" , a ): _UpperCamelCase = self.bos_token_id warnings.warn( F'Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. ' """The config can simply be saved and uploaded again to be fixed.""" ) class lowerCAmelCase__ ( __lowercase ): @property def A_ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: _UpperCamelCase = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ] ) if self.use_past: _UpperCamelCase = {0: """batch"""} _UpperCamelCase = {0: """batch""", 1: """past_decoder_sequence + sequence"""} else: _UpperCamelCase = {0: """batch""", 1: """decoder_sequence"""} _UpperCamelCase = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(a , direction="""inputs""" ) elif self.task == "causal-lm": # TODO: figure this case out. _UpperCamelCase = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ] ) if self.use_past: _UpperCamelCase , _UpperCamelCase = self.num_layers for i in range(a ): _UpperCamelCase = {0: """batch""", 2: """past_sequence + sequence"""} _UpperCamelCase = {0: """batch""", 2: """past_sequence + sequence"""} else: _UpperCamelCase = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ("""decoder_input_ids""", {0: """batch""", 1: """decoder_sequence"""}), ("""decoder_attention_mask""", {0: """batch""", 1: """decoder_sequence"""}), ] ) return common_inputs @property def A_ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: _UpperCamelCase = super().outputs else: _UpperCamelCase = super(a , self ).outputs if self.use_past: _UpperCamelCase , _UpperCamelCase = self.num_layers for i in range(a ): _UpperCamelCase = {0: """batch""", 2: """past_sequence + sequence"""} _UpperCamelCase = {0: """batch""", 2: """past_sequence + sequence"""} return common_outputs def A_ ( self , a , a = -1 , a = -1 , a = False , a = None , ) -> Mapping[str, Any]: '''simple docstring''' _UpperCamelCase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( a , a , a , a , a ) # Generate decoder inputs _UpperCamelCase = seq_length if not self.use_past else 1 _UpperCamelCase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( a , a , a , a , a ) _UpperCamelCase = {F'decoder_{name}': tensor for name, tensor in decoder_inputs.items()} _UpperCamelCase = dict(**a , **a ) if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch _UpperCamelCase , _UpperCamelCase = common_inputs["""input_ids"""].shape _UpperCamelCase = common_inputs["""decoder_input_ids"""].shape[1] _UpperCamelCase , _UpperCamelCase = self.num_attention_heads _UpperCamelCase = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) _UpperCamelCase = decoder_seq_length + 3 _UpperCamelCase = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) _UpperCamelCase = torch.cat( [common_inputs["""decoder_attention_mask"""], torch.ones(a , a )] , dim=1 ) _UpperCamelCase = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered _UpperCamelCase , _UpperCamelCase = self.num_layers _UpperCamelCase = min(a , a ) _UpperCamelCase = max(a , a ) - min_num_layers _UpperCamelCase = """encoder""" if num_encoder_layers > num_decoder_layers else """decoder""" for _ in range(a ): common_inputs["past_key_values"].append( ( torch.zeros(a ), torch.zeros(a ), torch.zeros(a ), torch.zeros(a ), ) ) # TODO: test this. _UpperCamelCase = encoder_shape if remaining_side_name == """encoder""" else decoder_shape for _ in range(a , a ): common_inputs["past_key_values"].append((torch.zeros(a ), torch.zeros(a )) ) return common_inputs def A_ ( self , a , a = -1 , a = -1 , a = False , a = None , ) -> Mapping[str, Any]: '''simple docstring''' _UpperCamelCase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( a , a , a , a , a ) if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch _UpperCamelCase , _UpperCamelCase = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values _UpperCamelCase = seqlen + 2 _UpperCamelCase , _UpperCamelCase = self.num_layers _UpperCamelCase , _UpperCamelCase = self.num_attention_heads _UpperCamelCase = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) _UpperCamelCase = common_inputs["""attention_mask"""].dtype _UpperCamelCase = torch.cat( [common_inputs["""attention_mask"""], torch.ones(a , a , dtype=a )] , dim=1 ) _UpperCamelCase = [ (torch.zeros(a ), torch.zeros(a )) for _ in range(a ) ] return common_inputs def A_ ( self , a , a = -1 , a = -1 , a = False , a = None , ) -> Mapping[str, Any]: '''simple docstring''' _UpperCamelCase = compute_effective_axis_dimension( a , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX _UpperCamelCase = tokenizer.num_special_tokens_to_add(a ) _UpperCamelCase = compute_effective_axis_dimension( a , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=a ) # Generate dummy inputs according to compute batch and sequence _UpperCamelCase = [""" """.join([tokenizer.unk_token] ) * seq_length] * batch_size _UpperCamelCase = dict(tokenizer(a , return_tensors=a ) ) return common_inputs def A_ ( self , a , a = -1 , a = -1 , a = False , a = None , ) -> Mapping[str, Any]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: _UpperCamelCase = self._generate_dummy_inputs_for_default_and_seqaseq_lm( a , batch_size=a , seq_length=a , is_pair=a , framework=a ) elif self.task == "causal-lm": _UpperCamelCase = self._generate_dummy_inputs_for_causal_lm( a , batch_size=a , seq_length=a , is_pair=a , framework=a ) else: _UpperCamelCase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( a , batch_size=a , seq_length=a , is_pair=a , framework=a ) return common_inputs def A_ ( self , a , a , a , a ) -> Optional[Any]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: _UpperCamelCase = super()._flatten_past_key_values_(a , a , a , a ) else: _UpperCamelCase = super(a , self )._flatten_past_key_values_( a , a , a , a )
202
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCamelCase__ = {"configuration_yolos": ["YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP", "YolosConfig", "YolosOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ["YolosFeatureExtractor"] lowerCamelCase__ = ["YolosImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ "YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST", "YolosForObjectDetection", "YolosModel", "YolosPreTrainedModel", ] if TYPE_CHECKING: from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_yolos import YolosFeatureExtractor from .image_processing_yolos import YolosImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_yolos import ( YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST, YolosForObjectDetection, YolosModel, YolosPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
202
1
'''simple docstring''' import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def __snake_case ( SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Dict=True , SCREAMING_SNAKE_CASE_ : Dict="pt" ) -> List[Any]: """simple docstring""" UpperCAmelCase = {'''add_prefix_space''': True} if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and not line.startswith(''' ''' ) else {} UpperCAmelCase = padding_side return tokenizer( [line] , max_length=SCREAMING_SNAKE_CASE__ , padding='''max_length''' if pad_to_max_length else None , truncation=SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) def __snake_case ( SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : int=None , ) -> Tuple: """simple docstring""" UpperCAmelCase = input_ids.ne(SCREAMING_SNAKE_CASE__ ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class lowerCAmelCase__ ( __A ): '''simple docstring''' def __init__( self : Optional[int] , a__ : Dict , a__ : int , a__ : Tuple , a__ : int , a__ : Tuple="train" , a__ : Dict=None , a__ : Optional[int]=None , a__ : List[str]=None , a__ : int="" , ): super().__init__() UpperCAmelCase = Path(_UpperCamelCase ).joinpath(type_path + '''.source''' ) UpperCAmelCase = Path(_UpperCamelCase ).joinpath(type_path + '''.target''' ) UpperCAmelCase = self.get_char_lens(self.src_file ) UpperCAmelCase = max_source_length UpperCAmelCase = max_target_length assert min(self.src_lens ) > 0, f"found empty line in {self.src_file}" UpperCAmelCase = tokenizer UpperCAmelCase = prefix if n_obs is not None: UpperCAmelCase = self.src_lens[:n_obs] UpperCAmelCase = src_lang UpperCAmelCase = tgt_lang def __len__( self : List[str] ): return len(self.src_lens ) def __getitem__( self : Tuple , a__ : Tuple ): UpperCAmelCase = index + 1 # linecache starts at 1 UpperCAmelCase = self.prefix + linecache.getline(str(self.src_file ) , _UpperCamelCase ).rstrip('''\n''' ) UpperCAmelCase = linecache.getline(str(self.tgt_file ) , _UpperCamelCase ).rstrip('''\n''' ) assert source_line, f"empty source line for index {index}" assert tgt_line, f"empty tgt line for index {index}" # Need to add eos token manually for T5 if isinstance(self.tokenizer , _UpperCamelCase ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right UpperCAmelCase = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , _UpperCamelCase ) else self.tokenizer ) UpperCAmelCase = self.tokenizer.generator if isinstance(self.tokenizer , _UpperCamelCase ) else self.tokenizer UpperCAmelCase = encode_line(_UpperCamelCase , _UpperCamelCase , self.max_source_length , '''right''' ) UpperCAmelCase = encode_line(_UpperCamelCase , _UpperCamelCase , self.max_target_length , '''right''' ) UpperCAmelCase = source_inputs['''input_ids'''].squeeze() UpperCAmelCase = target_inputs['''input_ids'''].squeeze() UpperCAmelCase = source_inputs['''attention_mask'''].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def __snake_case ( a__ : Tuple ): return [len(_UpperCamelCase ) for x in Path(_UpperCamelCase ).open().readlines()] def __snake_case ( self : Tuple , a__ : Optional[Any] ): UpperCAmelCase = torch.stack([x['''input_ids'''] for x in batch] ) UpperCAmelCase = torch.stack([x['''attention_mask'''] for x in batch] ) UpperCAmelCase = torch.stack([x['''decoder_input_ids'''] for x in batch] ) UpperCAmelCase = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , _UpperCamelCase ) else self.tokenizer.pad_token_id ) UpperCAmelCase = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , _UpperCamelCase ) else self.tokenizer.pad_token_id ) UpperCAmelCase = trim_batch(_UpperCamelCase , _UpperCamelCase ) UpperCAmelCase, UpperCAmelCase = trim_batch(_UpperCamelCase , _UpperCamelCase , attention_mask=_UpperCamelCase ) UpperCAmelCase = { '''input_ids''': source_ids, '''attention_mask''': source_mask, '''decoder_input_ids''': y, } return batch a__ : List[Any] = getLogger(__name__) def __snake_case ( SCREAMING_SNAKE_CASE_ : List[Any] ) -> int: """simple docstring""" return list(itertools.chain.from_iterable(SCREAMING_SNAKE_CASE__ ) ) def __snake_case ( SCREAMING_SNAKE_CASE_ : Dict ) -> Optional[Any]: """simple docstring""" UpperCAmelCase = get_git_info() save_json(SCREAMING_SNAKE_CASE__ , os.path.join(SCREAMING_SNAKE_CASE__ , '''git_log.json''' ) ) def __snake_case ( SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Any=4 , **SCREAMING_SNAKE_CASE_ : Tuple ) -> List[Any]: """simple docstring""" with open(SCREAMING_SNAKE_CASE__ , '''w''' ) as f: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , indent=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def __snake_case ( SCREAMING_SNAKE_CASE_ : Optional[int] ) -> int: """simple docstring""" with open(SCREAMING_SNAKE_CASE__ ) as f: return json.load(SCREAMING_SNAKE_CASE__ ) def __snake_case ( ) -> Dict: """simple docstring""" UpperCAmelCase = git.Repo(search_parent_directories=SCREAMING_SNAKE_CASE__ ) UpperCAmelCase = { '''repo_id''': str(SCREAMING_SNAKE_CASE__ ), '''repo_sha''': str(repo.head.object.hexsha ), '''repo_branch''': str(repo.active_branch ), '''hostname''': str(socket.gethostname() ), } return repo_infos def __snake_case ( SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Dict ) -> Dict: """simple docstring""" return list(map(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) def __snake_case ( SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Any ) -> Any: """simple docstring""" with open(SCREAMING_SNAKE_CASE__ , '''wb''' ) as f: return pickle.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __snake_case ( SCREAMING_SNAKE_CASE_ : str ) -> str: """simple docstring""" def remove_articles(SCREAMING_SNAKE_CASE_ : Union[str, Any] ): return re.sub(R'''\b(a|an|the)\b''' , ''' ''' , SCREAMING_SNAKE_CASE__ ) def white_space_fix(SCREAMING_SNAKE_CASE_ : Dict ): return " ".join(text.split() ) def remove_punc(SCREAMING_SNAKE_CASE_ : Tuple ): UpperCAmelCase = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(SCREAMING_SNAKE_CASE_ : Optional[int] ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(SCREAMING_SNAKE_CASE__ ) ) ) ) def __snake_case ( SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Optional[int]: """simple docstring""" UpperCAmelCase = normalize_answer(SCREAMING_SNAKE_CASE__ ).split() UpperCAmelCase = normalize_answer(SCREAMING_SNAKE_CASE__ ).split() UpperCAmelCase = Counter(SCREAMING_SNAKE_CASE__ ) & Counter(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase = sum(common.values() ) if num_same == 0: return 0 UpperCAmelCase = 1.0 * num_same / len(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase = 1.0 * num_same / len(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase = (2 * precision * recall) / (precision + recall) return fa def __snake_case ( SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : str ) -> Union[str, Any]: """simple docstring""" return normalize_answer(SCREAMING_SNAKE_CASE__ ) == normalize_answer(SCREAMING_SNAKE_CASE__ ) def __snake_case ( SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Any ) -> Union[str, Any]: """simple docstring""" assert len(SCREAMING_SNAKE_CASE__ ) == len(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase = 0 for hypo, pred in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): em += exact_match_score(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if len(SCREAMING_SNAKE_CASE__ ) > 0: em /= len(SCREAMING_SNAKE_CASE__ ) return {"em": em} def __snake_case ( SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Dict: """simple docstring""" return model_prefix.startswith('''rag''' ) def __snake_case ( SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> str: """simple docstring""" UpperCAmelCase = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead UpperCAmelCase = '''dropout_rate''' for p in extra_params: if getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): if not hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and not hasattr(SCREAMING_SNAKE_CASE__ , equivalent_param[p] ): logger.info('''config doesn\'t have a `{}` attribute'''.format(SCREAMING_SNAKE_CASE__ ) ) delattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) continue UpperCAmelCase = p if hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else equivalent_param[p] setattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) delattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return hparams, config
51
import cmath import math def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = math.radians(SCREAMING_SNAKE_CASE__ ) snake_case_ = math.radians(SCREAMING_SNAKE_CASE__ ) # Convert voltage and current to rectangular form snake_case_ = cmath.rect(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ = cmath.rect(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Calculate apparent power return voltage_rect * current_rect if __name__ == "__main__": import doctest doctest.testmod()
39
0
"""simple docstring""" import argparse import intel_extension_for_pytorch as ipex import torch from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline _UpperCAmelCase = argparse.ArgumentParser("""Stable Diffusion script with intel optimization""", add_help=False) parser.add_argument("""--dpm""", action="""store_true""", help="""Enable DPMSolver or not""") parser.add_argument("""--steps""", default=None, type=int, help="""Num inference steps""") _UpperCAmelCase = parser.parse_args() _UpperCAmelCase = """cpu""" _UpperCAmelCase = """a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings""" _UpperCAmelCase = """path-to-your-trained-model""" _UpperCAmelCase = StableDiffusionPipeline.from_pretrained(model_id) if args.dpm: _UpperCAmelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) _UpperCAmelCase = pipe.to(device) # to channels last _UpperCAmelCase = pipe.unet.to(memory_format=torch.channels_last) _UpperCAmelCase = pipe.vae.to(memory_format=torch.channels_last) _UpperCAmelCase = pipe.text_encoder.to(memory_format=torch.channels_last) if pipe.requires_safety_checker: _UpperCAmelCase = pipe.safety_checker.to(memory_format=torch.channels_last) # optimize with ipex _UpperCAmelCase = torch.randn(2, 4, 6_4, 6_4) _UpperCAmelCase = torch.rand(1) * 9_9_9 _UpperCAmelCase = torch.randn(2, 7_7, 7_6_8) _UpperCAmelCase = (sample, timestep, encoder_hidden_status) try: _UpperCAmelCase = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example) except Exception: _UpperCAmelCase = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True) _UpperCAmelCase = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True) _UpperCAmelCase = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True) if pipe.requires_safety_checker: _UpperCAmelCase = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True) # compute _UpperCAmelCase = 6_6_6 _UpperCAmelCase = torch.Generator(device).manual_seed(seed) _UpperCAmelCase = {"""generator""": generator} if args.steps is not None: _UpperCAmelCase = args.steps with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa): _UpperCAmelCase = pipe(prompt, **generate_kwargs).images[0] # save image image.save("""generated.png""")
708
"""simple docstring""" def __magic_name__ ( lowercase = 200_0000 ): SCREAMING_SNAKE_CASE_: List[Any] =[0 for i in range(n + 1 )] SCREAMING_SNAKE_CASE_: Union[str, Any] =1 SCREAMING_SNAKE_CASE_: Optional[Any] =1 for i in range(2 , int(n**0.5 ) + 1 ): if primality_list[i] == 0: for j in range(i * i , n + 1 , lowercase ): SCREAMING_SNAKE_CASE_: Optional[int] =1 SCREAMING_SNAKE_CASE_: Dict =0 for i in range(lowercase ): if primality_list[i] == 0: sum_of_primes += i return sum_of_primes if __name__ == "__main__": print(f"""{solution() = }""")
36
0
"""simple docstring""" from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING __UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) @add_end_docstrings(a__ ) class a ( a__ ): def __init__( self , *_snake_case , **_snake_case ): """simple docstring""" super().__init__(*_snake_case , **_snake_case ) requires_backends(self , 'vision' ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == 'tf' else MODEL_FOR_VISION_2_SEQ_MAPPING ) def UpperCamelCase__ ( self , _snake_case=None , _snake_case=None , _snake_case=None ): """simple docstring""" lowerCAmelCase = {} lowerCAmelCase = {} if prompt is not None: lowerCAmelCase = prompt if generate_kwargs is not None: lowerCAmelCase = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: lowerCAmelCase = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( '\'max_new_tokens\' is defined twice, once in \'generate_kwargs\' and once as a direct parameter,' ' please use only one' ) lowerCAmelCase = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self , _snake_case , **_snake_case ): """simple docstring""" return super().__call__(_snake_case , **_snake_case ) def UpperCamelCase__ ( self , _snake_case , _snake_case=None ): """simple docstring""" lowerCAmelCase = load_image(_snake_case ) if prompt is not None: if not isinstance(_snake_case , _snake_case ): raise ValueError( F'Received an invalid text input, got - {type(_snake_case )} - but expected a single string. ' 'Note also that one single text can be provided for conditional image to text generation.' ) lowerCAmelCase = self.model.config.model_type if model_type == "git": lowerCAmelCase = self.image_processor(images=_snake_case , return_tensors=self.framework ) lowerCAmelCase = self.tokenizer(text=_snake_case , add_special_tokens=_snake_case ).input_ids lowerCAmelCase = [self.tokenizer.cls_token_id] + input_ids lowerCAmelCase = torch.tensor(_snake_case ).unsqueeze(0 ) model_inputs.update({'input_ids': input_ids} ) elif model_type == "pix2struct": lowerCAmelCase = self.image_processor(images=_snake_case , header_text=_snake_case , return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation lowerCAmelCase = self.image_processor(images=_snake_case , return_tensors=self.framework ) lowerCAmelCase = self.tokenizer(_snake_case , return_tensors=self.framework ) model_inputs.update(_snake_case ) else: raise ValueError(F'Model type {model_type} does not support conditional text generation' ) else: lowerCAmelCase = self.image_processor(images=_snake_case , return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: lowerCAmelCase = None return model_inputs def UpperCamelCase__ ( self , _snake_case , _snake_case=None ): """simple docstring""" if ( "input_ids" in model_inputs and isinstance(model_inputs['input_ids'] , _snake_case ) and all(x is None for x in model_inputs['input_ids'] ) ): lowerCAmelCase = None if generate_kwargs is None: lowerCAmelCase = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. lowerCAmelCase = model_inputs.pop(self.model.main_input_name ) lowerCAmelCase = self.model.generate(_snake_case , **_snake_case , **_snake_case ) return model_outputs def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" lowerCAmelCase = [] for output_ids in model_outputs: lowerCAmelCase = { 'generated_text': self.tokenizer.decode( _snake_case , skip_special_tokens=_snake_case , ) } records.append(_snake_case ) return records
4
"""simple docstring""" import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss __UpperCamelCase : Optional[int] = pytest.mark.integration @require_faiss class a ( a__ ): def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = Dataset.from_dict({'filename': ['my_name-train' + '_' + str(_snake_case ) for x in np.arange(30 ).tolist()]} ) return dset def UpperCamelCase__ ( self ): """simple docstring""" import faiss lowerCAmelCase = self._create_dummy_dataset() lowerCAmelCase = dset.map( lambda _snake_case , _snake_case : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=_snake_case , keep_in_memory=_snake_case ) lowerCAmelCase = dset.add_faiss_index('vecs' , batch_size=1_00 , metric_type=faiss.METRIC_INNER_PRODUCT ) lowerCAmelCase ,lowerCAmelCase = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) dset.drop_index('vecs' ) def UpperCamelCase__ ( self ): """simple docstring""" import faiss lowerCAmelCase = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' , batch_size=1_00 , metric_type=faiss.METRIC_INNER_PRODUCT , ) lowerCAmelCase ,lowerCAmelCase = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) def UpperCamelCase__ ( self ): """simple docstring""" import faiss lowerCAmelCase = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=_snake_case ) as tmp_file: dset.save_faiss_index('vecs' , tmp_file.name ) dset.load_faiss_index('vecs2' , tmp_file.name ) os.unlink(tmp_file.name ) lowerCAmelCase ,lowerCAmelCase = dset.get_nearest_examples('vecs2' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' ) dset.drop_index('vecs' ) self.assertRaises(_snake_case , partial(dset.get_nearest_examples , 'vecs2' , np.ones(5 , dtype=np.floataa ) ) ) def UpperCamelCase__ ( self ): """simple docstring""" from elasticsearch import Elasticsearch lowerCAmelCase = self._create_dummy_dataset() with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch( 'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk: lowerCAmelCase = {'acknowledged': True} mocked_bulk.return_value([(True, None)] * 30 ) lowerCAmelCase = {'hits': {'hits': [{'_score': 1, '_id': 29}]}} lowerCAmelCase = Elasticsearch() dset.add_elasticsearch_index('filename' , es_client=_snake_case ) lowerCAmelCase ,lowerCAmelCase = dset.get_nearest_examples('filename' , 'my_name-train_29' ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) @require_faiss class a ( a__ ): def UpperCamelCase__ ( self ): """simple docstring""" import faiss lowerCAmelCase = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal , 5 ) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal , 10 ) # single query lowerCAmelCase = np.zeros(5 , dtype=np.floataa ) lowerCAmelCase = 1 lowerCAmelCase ,lowerCAmelCase = index.search(_snake_case ) self.assertRaises(_snake_case , index.search , query.reshape(-1 , 1 ) ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) # batched queries lowerCAmelCase = np.eye(5 , dtype=np.floataa )[::-1] lowerCAmelCase ,lowerCAmelCase = index.search_batch(_snake_case ) self.assertRaises(_snake_case , index.search_batch , queries[0] ) lowerCAmelCase = [scores[0] for scores in total_scores] lowerCAmelCase = [indices[0] for indices in total_indices] self.assertGreater(np.min(_snake_case ) , 0 ) self.assertListEqual([4, 3, 2, 1, 0] , _snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" import faiss lowerCAmelCase = FaissIndex(string_factory='Flat' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) lowerCAmelCase = FaissIndex(string_factory='LSH' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexLSH ) with self.assertRaises(_snake_case ): lowerCAmelCase = FaissIndex(string_factory='Flat' , custom_index=faiss.IndexFlat(5 ) ) def UpperCamelCase__ ( self ): """simple docstring""" import faiss lowerCAmelCase = faiss.IndexFlat(5 ) lowerCAmelCase = FaissIndex(custom_index=_snake_case ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) def UpperCamelCase__ ( self ): """simple docstring""" import faiss lowerCAmelCase = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=_snake_case ) as tmp_file: index.save(tmp_file.name ) lowerCAmelCase = FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) lowerCAmelCase = np.zeros(5 , dtype=np.floataa ) lowerCAmelCase = 1 lowerCAmelCase ,lowerCAmelCase = index.search(_snake_case ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) @require_faiss def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Dict ): import faiss lowerCAmelCase = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) lowerCAmelCase = 'index.faiss' lowerCAmelCase = F'mock://{index_name}' index.save(_UpperCAmelCase , storage_options=mockfs.storage_options ) lowerCAmelCase = FaissIndex.load(_UpperCAmelCase , storage_options=mockfs.storage_options ) lowerCAmelCase = np.zeros(5 , dtype=np.floataa ) lowerCAmelCase = 1 lowerCAmelCase ,lowerCAmelCase = index.search(_UpperCAmelCase ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class a ( a__ ): def UpperCamelCase__ ( self ): """simple docstring""" from elasticsearch import Elasticsearch with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch( 'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk: lowerCAmelCase = Elasticsearch() lowerCAmelCase = {'acknowledged': True} lowerCAmelCase = ElasticSearchIndex(es_client=_snake_case ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(['foo', 'bar', 'foobar'] ) # single query lowerCAmelCase = 'foo' lowerCAmelCase = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} lowerCAmelCase ,lowerCAmelCase = index.search(_snake_case ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # single query with timeout lowerCAmelCase = 'foo' lowerCAmelCase = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} lowerCAmelCase ,lowerCAmelCase = index.search(_snake_case , request_timeout=30 ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # batched queries lowerCAmelCase = ['foo', 'bar', 'foobar'] lowerCAmelCase = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} lowerCAmelCase ,lowerCAmelCase = index.search_batch(_snake_case ) lowerCAmelCase = [scores[0] for scores in total_scores] lowerCAmelCase = [indices[0] for indices in total_indices] self.assertGreater(np.min(_snake_case ) , 0 ) self.assertListEqual([1, 1, 1] , _snake_case ) # batched queries with timeout lowerCAmelCase = ['foo', 'bar', 'foobar'] lowerCAmelCase = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} lowerCAmelCase ,lowerCAmelCase = index.search_batch(_snake_case , request_timeout=30 ) lowerCAmelCase = [scores[0] for scores in total_scores] lowerCAmelCase = [indices[0] for indices in total_indices] self.assertGreater(np.min(_snake_case ) , 0 ) self.assertListEqual([1, 1, 1] , _snake_case )
4
1
from __future__ import annotations import requests __lowerCamelCase = set( '''approved_at_utc approved_by author_flair_background_color author_flair_css_class author_flair_richtext author_flair_template_id author_fullname author_premium can_mod_post category clicked content_categories created_utc downs edited gilded gildings hidden hide_score is_created_from_ads_ui is_meta is_original_content is_reddit_media_domain is_video link_flair_css_class link_flair_richtext link_flair_text link_flair_text_color media_embed mod_reason_title name permalink pwls quarantine saved score secure_media secure_media_embed selftext subreddit subreddit_name_prefixed subreddit_type thumbnail title top_awarded_type total_awards_received ups upvote_ratio url user_reports'''.split() ) def _snake_case ( __snake_case , __snake_case = 1 , __snake_case = "new" , __snake_case = None ) -> dict: '''simple docstring''' UpperCAmelCase_ : Optional[int] = wanted_data or [] if invalid_search_terms := ", ".join(sorted(set(__snake_case ) - valid_terms ) ): UpperCAmelCase_ : int = F"""Invalid search term: {invalid_search_terms}""" raise ValueError(__snake_case ) UpperCAmelCase_ : List[Any] = requests.get( F"""https://reddit.com/r/{subreddit}/{age}.json?limit={limit}""" , headers={"User-agent": "A random string"} , ) if response.status_code == 4_2_9: raise requests.HTTPError UpperCAmelCase_ : List[str] = response.json() if not wanted_data: return {id_: data["data"]["children"][id_] for id_ in range(__snake_case )} UpperCAmelCase_ : Dict = {} for id_ in range(__snake_case ): UpperCAmelCase_ : Tuple = { item: data["data"]["children"][id_]["data"][item] for item in wanted_data } return data_dict if __name__ == "__main__": # If you get Error 429, that means you are rate limited.Try after some time print(get_subreddit_data('''learnpython''', wanted_data=['''title''', '''url''', '''selftext''']))
455
import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import BatchEncoding, MarianTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available if is_sentencepiece_available(): from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin __lowerCamelCase = get_tests_dir('''fixtures/test_sentencepiece.model''') __lowerCamelCase = {'''target_lang''': '''fi''', '''source_lang''': '''en'''} __lowerCamelCase = '''>>zh<<''' __lowerCamelCase = '''Helsinki-NLP/''' if is_torch_available(): __lowerCamelCase = '''pt''' elif is_tf_available(): __lowerCamelCase = '''tf''' else: __lowerCamelCase = '''jax''' @require_sentencepiece class snake_case_ (lowercase__ , unittest.TestCase ): """simple docstring""" _lowerCamelCase = MarianTokenizer _lowerCamelCase = False _lowerCamelCase = True def A_ ( self): """simple docstring""" super().setUp() UpperCAmelCase_ : Union[str, Any] = ["</s>", "<unk>", "▁This", "▁is", "▁a", "▁t", "est", "\u0120", "<pad>"] UpperCAmelCase_ : Union[str, Any] = dict(zip(lowercase ,range(len(lowercase)))) UpperCAmelCase_ : int = Path(self.tmpdirname) save_json(lowercase ,save_dir / VOCAB_FILES_NAMES["vocab"]) save_json(lowercase ,save_dir / VOCAB_FILES_NAMES["tokenizer_config_file"]) if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists(): copyfile(lowercase ,save_dir / VOCAB_FILES_NAMES["source_spm"]) copyfile(lowercase ,save_dir / VOCAB_FILES_NAMES["target_spm"]) UpperCAmelCase_ : str = MarianTokenizer.from_pretrained(self.tmpdirname) tokenizer.save_pretrained(self.tmpdirname) def A_ ( self ,**lowercase): """simple docstring""" return MarianTokenizer.from_pretrained(self.tmpdirname ,**lowercase) def A_ ( self ,lowercase): """simple docstring""" return ( "This is a test", "This is a test", ) def A_ ( self): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = "</s>" UpperCAmelCase_ : List[str] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase) ,lowercase) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase) ,lowercase) def A_ ( self): """simple docstring""" UpperCAmelCase_ : List[str] = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] ,"</s>") self.assertEqual(vocab_keys[1] ,"<unk>") self.assertEqual(vocab_keys[-1] ,"<pad>") self.assertEqual(len(lowercase) ,9) def A_ ( self): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size ,9) def A_ ( self): """simple docstring""" UpperCAmelCase_ : List[str] = MarianTokenizer.from_pretrained(F"""{ORG_NAME}opus-mt-en-de""") UpperCAmelCase_ : Optional[int] = en_de_tokenizer(["I am a small frog"] ,return_tensors=lowercase) self.assertIsInstance(lowercase ,lowercase) UpperCAmelCase_ : Union[str, Any] = [38, 121, 14, 697, 38848, 0] self.assertListEqual(lowercase ,batch.input_ids[0]) UpperCAmelCase_ : Optional[int] = tempfile.mkdtemp() en_de_tokenizer.save_pretrained(lowercase) UpperCAmelCase_ : Any = [x.name for x in Path(lowercase).glob("*")] self.assertIn("source.spm" ,lowercase) MarianTokenizer.from_pretrained(lowercase) def A_ ( self): """simple docstring""" UpperCAmelCase_ : Any = self.get_tokenizer() UpperCAmelCase_ : List[Any] = tok( ["I am a small frog" * 1000, "I am a small frog"] ,padding=lowercase ,truncation=lowercase ,return_tensors=lowercase) self.assertIsInstance(lowercase ,lowercase) self.assertEqual(batch.input_ids.shape ,(2, 512)) def A_ ( self): """simple docstring""" UpperCAmelCase_ : List[Any] = self.get_tokenizer() UpperCAmelCase_ : Optional[int] = tok(["I am a tiny frog", "I am a small frog"] ,padding=lowercase ,return_tensors=lowercase) self.assertIsInstance(lowercase ,lowercase) self.assertEqual(batch_smaller.input_ids.shape ,(2, 10)) @slow def A_ ( self): """simple docstring""" UpperCAmelCase_ : Dict = {"input_ids": [[43495, 462, 20, 42164, 1369, 52, 464, 132, 1703, 492, 13, 7491, 38999, 6, 8, 464, 132, 1703, 492, 13, 4669, 37867, 13, 7525, 27, 1593, 988, 13, 33972, 7029, 6, 20, 8251, 383, 2, 270, 5866, 3788, 2, 2353, 8251, 12338, 2, 13958, 387, 2, 3629, 6953, 188, 2900, 2, 13958, 8011, 11501, 23, 8460, 4073, 34009, 20, 435, 11439, 27, 8, 8460, 4073, 6004, 20, 9988, 375, 27, 33, 266, 1945, 1076, 1350, 37867, 3288, 5, 577, 1076, 4374, 8, 5082, 5, 26453, 257, 556, 403, 2, 242, 132, 383, 316, 492, 8, 10767, 6, 316, 304, 4239, 3, 0], [148, 15722, 19, 1839, 12, 1350, 13, 22327, 5082, 5418, 47567, 35938, 59, 318, 19552, 108, 2183, 54, 14976, 4835, 32, 547, 1114, 8, 315, 2417, 5, 92, 19088, 3, 0, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100], [36, 6395, 12570, 39147, 11597, 6, 266, 4, 45405, 7296, 3, 0, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowercase ,model_name="Helsinki-NLP/opus-mt-en-de" ,revision="1a8c2263da11e68e50938f97e10cd57820bd504c" ,decode_kwargs={"use_source_tokenizer": True} ,) def A_ ( self): """simple docstring""" UpperCAmelCase_ : Dict = MarianTokenizer.from_pretrained("hf-internal-testing/test-marian-two-vocabs") UpperCAmelCase_ : Any = "Tämä on testi" UpperCAmelCase_ : List[str] = "This is a test" UpperCAmelCase_ : int = [76, 7, 2047, 2] UpperCAmelCase_ : Any = [69, 12, 11, 940, 2] UpperCAmelCase_ : Any = tokenizer(lowercase).input_ids self.assertListEqual(lowercase ,lowercase) UpperCAmelCase_ : Any = tokenizer(text_target=lowercase).input_ids self.assertListEqual(lowercase ,lowercase) UpperCAmelCase_ : List[Any] = tokenizer.decode(lowercase ,skip_special_tokens=lowercase) self.assertEqual(lowercase ,lowercase)
455
1
import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py UpperCAmelCase__ = "src/diffusers" UpperCAmelCase__ = "." # This is to make sure the diffusers module imported is the one in the repo. UpperCAmelCase__ = importlib.util.spec_from_file_location( "diffusers", os.path.join(DIFFUSERS_PATH, "__init__.py"), submodule_search_locations=[DIFFUSERS_PATH], ) UpperCAmelCase__ = spec.loader.load_module() def _a ( a :str , a :List[str] ) -> List[Any]: return line.startswith(a ) or len(a ) <= 1 or re.search(r'''^\s*\)(\s*->.*:|:)\s*$''' , a ) is not None def _a ( a :Optional[int] ) -> Any: a = object_name.split('''.''' ) a = 0 # First let's find the module where our object lives. a = parts[i] while i < len(a ) and not os.path.isfile(os.path.join(a , F"""{module}.py""" ) ): i += 1 if i < len(a ): a = os.path.join(a , parts[i] ) if i >= len(a ): raise ValueError(F"""`object_name` should begin with the name of a module of diffusers but got {object_name}.""" ) with open(os.path.join(a , F"""{module}.py""" ) , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: a = f.readlines() # Now let's find the class / func in the code! a = '''''' a = 0 for name in parts[i + 1 :]: while ( line_index < len(a ) and re.search(rF"""^{indent}(class|def)\s+{name}(\(|\:)""" , lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(a ): raise ValueError(F""" {object_name} does not match any function or class in {module}.""" ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). a = line_index while line_index < len(a ) and _should_continue(lines[line_index] , a ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 a = lines[start_index:line_index] return "".join(a ) UpperCAmelCase__ = re.compile(R"^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)") UpperCAmelCase__ = re.compile(R"^\s*(\S+)->(\S+)(\s+.*|$)") UpperCAmelCase__ = re.compile(R"<FILL\s+[^>]*>") def _a ( a :int ) -> Union[str, Any]: a = code.split('''\n''' ) a = 0 while idx < len(a ) and len(lines[idx] ) == 0: idx += 1 if idx < len(a ): return re.search(r'''^(\s*)\S''' , lines[idx] ).groups()[0] return "" def _a ( a :List[Any] ) -> List[Any]: a = len(get_indent(a ) ) > 0 if has_indent: a = F"""class Bla:\n{code}""" a = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 , preview=a ) a = black.format_str(a , mode=a ) a , a = style_docstrings_in_code(a ) return result[len('''class Bla:\n''' ) :] if has_indent else result def _a ( a :int , a :Dict=False ) -> Tuple: with open(a , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: a = f.readlines() a = [] a = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(a ): a = _re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. a , a , a = search.groups() a = find_code_in_diffusers(a ) a = get_indent(a ) a = line_index + 1 if indent == theoretical_indent else line_index + 2 a = theoretical_indent a = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. a = True while line_index < len(a ) and should_continue: line_index += 1 if line_index >= len(a ): break a = lines[line_index] a = _should_continue(a , a ) and re.search(F"""^{indent}# End copy""" , a ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 a = lines[start_index:line_index] a = ''''''.join(a ) # Remove any nested `Copied from` comments to avoid circular copies a = [line for line in theoretical_code.split('''\n''' ) if _re_copy_warning.search(a ) is None] a = '''\n'''.join(a ) # Before comparing, use the `replace_pattern` on the original code. if len(a ) > 0: a = replace_pattern.replace('''with''' , '''''' ).split(''',''' ) a = [_re_replace_pattern.search(a ) for p in patterns] for pattern in patterns: if pattern is None: continue a , a , a = pattern.groups() a = re.sub(a , a , a ) if option.strip() == "all-casing": a = re.sub(obja.lower() , obja.lower() , a ) a = re.sub(obja.upper() , obja.upper() , a ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line a = blackify(lines[start_index - 1] + theoretical_code ) a = theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: a = lines[:start_index] + [theoretical_code] + lines[line_index:] a = start_index + 1 if overwrite and len(a ) > 0: # Warn the user a file has been modified. print(F"""Detected changes, rewriting {filename}.""" ) with open(a , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(a ) return diffs def _a ( a :bool = False ) -> List[Any]: a = glob.glob(os.path.join(a , '''**/*.py''' ) , recursive=a ) a = [] for filename in all_files: a = is_copy_consistent(a , a ) diffs += [F"""- {filename}: copy does not match {d[0]} at line {d[1]}""" for d in new_diffs] if not overwrite and len(a ) > 0: a = '''\n'''.join(a ) raise Exception( '''Found the following copy inconsistencies:\n''' + diff + '''\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them.''' ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") UpperCAmelCase__ = parser.parse_args() check_copies(args.fix_and_overwrite)
117
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = "▁" UpperCAmelCase__ = {"vocab_file": "sentencepiece.bpe.model"} UpperCAmelCase__ = { "vocab_file": { "facebook/nllb-200-distilled-600M": ( "https://huggingface.co/facebook/nllb-200-distilled-600M/blob/main/sentencepiece.bpe.model" ), } } UpperCAmelCase__ = { "facebook/nllb-200-distilled-600M": 1024, } # fmt: off UpperCAmelCase__ = ["ace_Arab", "ace_Latn", "acm_Arab", "acq_Arab", "aeb_Arab", "afr_Latn", "ajp_Arab", "aka_Latn", "amh_Ethi", "apc_Arab", "arb_Arab", "ars_Arab", "ary_Arab", "arz_Arab", "asm_Beng", "ast_Latn", "awa_Deva", "ayr_Latn", "azb_Arab", "azj_Latn", "bak_Cyrl", "bam_Latn", "ban_Latn", "bel_Cyrl", "bem_Latn", "ben_Beng", "bho_Deva", "bjn_Arab", "bjn_Latn", "bod_Tibt", "bos_Latn", "bug_Latn", "bul_Cyrl", "cat_Latn", "ceb_Latn", "ces_Latn", "cjk_Latn", "ckb_Arab", "crh_Latn", "cym_Latn", "dan_Latn", "deu_Latn", "dik_Latn", "dyu_Latn", "dzo_Tibt", "ell_Grek", "eng_Latn", "epo_Latn", "est_Latn", "eus_Latn", "ewe_Latn", "fao_Latn", "pes_Arab", "fij_Latn", "fin_Latn", "fon_Latn", "fra_Latn", "fur_Latn", "fuv_Latn", "gla_Latn", "gle_Latn", "glg_Latn", "grn_Latn", "guj_Gujr", "hat_Latn", "hau_Latn", "heb_Hebr", "hin_Deva", "hne_Deva", "hrv_Latn", "hun_Latn", "hye_Armn", "ibo_Latn", "ilo_Latn", "ind_Latn", "isl_Latn", "ita_Latn", "jav_Latn", "jpn_Jpan", "kab_Latn", "kac_Latn", "kam_Latn", "kan_Knda", "kas_Arab", "kas_Deva", "kat_Geor", "knc_Arab", "knc_Latn", "kaz_Cyrl", "kbp_Latn", "kea_Latn", "khm_Khmr", "kik_Latn", "kin_Latn", "kir_Cyrl", "kmb_Latn", "kon_Latn", "kor_Hang", "kmr_Latn", "lao_Laoo", "lvs_Latn", "lij_Latn", "lim_Latn", "lin_Latn", "lit_Latn", "lmo_Latn", "ltg_Latn", "ltz_Latn", "lua_Latn", "lug_Latn", "luo_Latn", "lus_Latn", "mag_Deva", "mai_Deva", "mal_Mlym", "mar_Deva", "min_Latn", "mkd_Cyrl", "plt_Latn", "mlt_Latn", "mni_Beng", "khk_Cyrl", "mos_Latn", "mri_Latn", "zsm_Latn", "mya_Mymr", "nld_Latn", "nno_Latn", "nob_Latn", "npi_Deva", "nso_Latn", "nus_Latn", "nya_Latn", "oci_Latn", "gaz_Latn", "ory_Orya", "pag_Latn", "pan_Guru", "pap_Latn", "pol_Latn", "por_Latn", "prs_Arab", "pbt_Arab", "quy_Latn", "ron_Latn", "run_Latn", "rus_Cyrl", "sag_Latn", "san_Deva", "sat_Beng", "scn_Latn", "shn_Mymr", "sin_Sinh", "slk_Latn", "slv_Latn", "smo_Latn", "sna_Latn", "snd_Arab", "som_Latn", "sot_Latn", "spa_Latn", "als_Latn", "srd_Latn", "srp_Cyrl", "ssw_Latn", "sun_Latn", "swe_Latn", "swh_Latn", "szl_Latn", "tam_Taml", "tat_Cyrl", "tel_Telu", "tgk_Cyrl", "tgl_Latn", "tha_Thai", "tir_Ethi", "taq_Latn", "taq_Tfng", "tpi_Latn", "tsn_Latn", "tso_Latn", "tuk_Latn", "tum_Latn", "tur_Latn", "twi_Latn", "tzm_Tfng", "uig_Arab", "ukr_Cyrl", "umb_Latn", "urd_Arab", "uzn_Latn", "vec_Latn", "vie_Latn", "war_Latn", "wol_Latn", "xho_Latn", "ydd_Hebr", "yor_Latn", "yue_Hant", "zho_Hans", "zho_Hant", "zul_Latn"] class lowercase_ ( lowercase ): '''simple docstring''' __snake_case = VOCAB_FILES_NAMES __snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __snake_case = PRETRAINED_VOCAB_FILES_MAP __snake_case = ['''input_ids''', '''attention_mask'''] __snake_case = [] __snake_case = [] def __init__( self : int , __UpperCAmelCase : str , __UpperCAmelCase : Optional[int]="<s>" , __UpperCAmelCase : Union[str, Any]="</s>" , __UpperCAmelCase : List[Any]="</s>" , __UpperCAmelCase : List[Any]="<s>" , __UpperCAmelCase : Optional[int]="<unk>" , __UpperCAmelCase : Optional[int]="<pad>" , __UpperCAmelCase : Tuple="<mask>" , __UpperCAmelCase : Any=None , __UpperCAmelCase : Dict=None , __UpperCAmelCase : int=None , __UpperCAmelCase : Optional[Dict[str, Any]] = None , __UpperCAmelCase : List[Any]=None , __UpperCAmelCase : int=False , **__UpperCAmelCase : Dict , ) ->List[str]: """simple docstring""" a = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else mask_token a = {} if sp_model_kwargs is None else sp_model_kwargs a = legacy_behaviour super().__init__( bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , tokenizer_file=__UpperCAmelCase , src_lang=__UpperCAmelCase , tgt_lang=__UpperCAmelCase , additional_special_tokens=__UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , legacy_behaviour=__UpperCAmelCase , **__UpperCAmelCase , ) a = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__UpperCAmelCase ) ) a = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | ---- | ---- | ---- | ---- | ---- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' # spm | '<unk>' | '<s>' | '</s>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' | '▁s' # Mimic fairseq token-to-id alignment for the first 4 token a = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab a = 1 a = len(self.sp_model ) a = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(__UpperCAmelCase ) } a = {v: k for k, v in self.lang_code_to_id.items()} a = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) a = {v: k for k, v in self.fairseq_tokens_to_ids.items()} a = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) a = src_lang if src_lang is not None else '''eng_Latn''' a = self.lang_code_to_id[self._src_lang] a = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self : str ) ->Any: """simple docstring""" a = self.__dict__.copy() a = None a = self.sp_model.serialized_model_proto() return state def __setstate__( self : List[str] , __UpperCAmelCase : Optional[Any] ) ->int: """simple docstring""" a = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): a = {} a = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def __lowerCAmelCase ( self : Tuple ) ->Optional[Any]: """simple docstring""" return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def __lowerCAmelCase ( self : Any ) ->str: """simple docstring""" return self._src_lang @src_lang.setter def __lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : str ) ->None: """simple docstring""" a = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __lowerCAmelCase ( self : Any , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None , __UpperCAmelCase : bool = False ) ->List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCAmelCase , token_ids_a=__UpperCAmelCase , already_has_special_tokens=__UpperCAmelCase ) a = [1] * len(self.prefix_tokens ) a = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(__UpperCAmelCase )) + suffix_ones return prefix_ones + ([0] * len(__UpperCAmelCase )) + ([0] * len(__UpperCAmelCase )) + suffix_ones def __lowerCAmelCase ( self : Any , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None ) ->List[int]: """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __lowerCAmelCase ( self : int , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None ) ->List[int]: """simple docstring""" a = [self.sep_token_id] a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __lowerCAmelCase ( self : str , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : str , __UpperCAmelCase : Optional[str] , __UpperCAmelCase : Optional[str] , **__UpperCAmelCase : Tuple ) ->Tuple: """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) a = src_lang a = self(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) a = self.convert_tokens_to_ids(__UpperCAmelCase ) a = tgt_lang_id return inputs def __lowerCAmelCase ( self : Optional[int] ) ->Union[str, Any]: """simple docstring""" a = {self.convert_ids_to_tokens(__UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : str ) ->List[str]: """simple docstring""" return self.sp_model.encode(__UpperCAmelCase , out_type=__UpperCAmelCase ) def __lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : str ) ->List[Any]: """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] a = self.sp_model.PieceToId(__UpperCAmelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def __lowerCAmelCase ( self : Union[str, Any] , __UpperCAmelCase : int ) ->Optional[Any]: """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def __lowerCAmelCase ( self : Tuple , __UpperCAmelCase : List[str] ) ->List[Any]: """simple docstring""" a = ''''''.join(__UpperCAmelCase ).replace(__UpperCAmelCase , ''' ''' ).strip() return out_string def __lowerCAmelCase ( self : str , __UpperCAmelCase : str , __UpperCAmelCase : Optional[str] = None ) ->Tuple[str]: """simple docstring""" if not os.path.isdir(__UpperCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return a = os.path.join( __UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(__UpperCAmelCase , '''wb''' ) as fi: a = self.sp_model.serialized_model_proto() fi.write(__UpperCAmelCase ) return (out_vocab_file,) def __lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : List[str] , __UpperCAmelCase : str = "eng_Latn" , __UpperCAmelCase : Optional[List[str]] = None , __UpperCAmelCase : str = "fra_Latn" , **__UpperCAmelCase : Optional[int] , ) ->BatchEncoding: """simple docstring""" a = src_lang a = tgt_lang return super().prepare_seqaseq_batch(__UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ) def __lowerCAmelCase ( self : Dict ) ->List[str]: """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def __lowerCAmelCase ( self : Any ) ->Any: """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __lowerCAmelCase ( self : Any , __UpperCAmelCase : Tuple ) ->None: """simple docstring""" a = self.lang_code_to_id[src_lang] if self.legacy_behaviour: a = [] a = [self.eos_token_id, self.cur_lang_code] else: a = [self.cur_lang_code] a = [self.eos_token_id] def __lowerCAmelCase ( self : List[str] , __UpperCAmelCase : str ) ->None: """simple docstring""" a = self.lang_code_to_id[lang] if self.legacy_behaviour: a = [] a = [self.eos_token_id, self.cur_lang_code] else: a = [self.cur_lang_code] a = [self.eos_token_id]
117
1
'''simple docstring''' from argparse import ArgumentParser, Namespace from typing import Any, List, Optional from ..pipelines import Pipeline, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand try: from fastapi import Body, FastAPI, HTTPException from fastapi.routing import APIRoute from pydantic import BaseModel from starlette.responses import JSONResponse from uvicorn import run lowercase_ = True except (ImportError, AttributeError): lowercase_ = object def a__ ( *snake_case , **snake_case ): """simple docstring""" pass lowercase_ = False lowercase_ = logging.get_logger("""transformers-cli/serving""") def a__ ( snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = pipeline( task=args.task , model=args.model if args.model else None , config=args.config , tokenizer=args.tokenizer , device=args.device , ) return ServeCommand(snake_case , args.host , args.port , args.workers ) class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" lowerCAmelCase_ = 42 class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" lowerCAmelCase_ = 42 class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" lowerCAmelCase_ = 42 class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" @staticmethod def UpperCAmelCase__ ( _A : ArgumentParser ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = parser.add_parser( '''serve''' , help='''CLI tool to run inference requests through REST and GraphQL endpoints.''' ) serve_parser.add_argument( '''--task''' , type=_A , choices=get_supported_tasks() , help='''The task to run the pipeline on''' , ) serve_parser.add_argument('''--host''' , type=_A , default='''localhost''' , help='''Interface the server will listen on.''' ) serve_parser.add_argument('''--port''' , type=_A , default=8888 , help='''Port the serving will listen to.''' ) serve_parser.add_argument('''--workers''' , type=_A , default=1 , help='''Number of http workers''' ) serve_parser.add_argument('''--model''' , type=_A , help='''Model\'s name or path to stored model.''' ) serve_parser.add_argument('''--config''' , type=_A , help='''Model\'s config name or path to stored model.''' ) serve_parser.add_argument('''--tokenizer''' , type=_A , help='''Tokenizer name to use.''' ) serve_parser.add_argument( '''--device''' , type=_A , default=-1 , help='''Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)''' , ) serve_parser.set_defaults(func=_A ) def __init__( self : Optional[int] , _A : Pipeline , _A : str , _A : int , _A : int ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = pipeline __SCREAMING_SNAKE_CASE : str = host __SCREAMING_SNAKE_CASE : Optional[int] = port __SCREAMING_SNAKE_CASE : Optional[Any] = workers if not _serve_dependencies_installed: raise RuntimeError( '''Using serve command requires FastAPI and uvicorn. ''' '''Please install transformers with [serving]: pip install "transformers[serving]".''' '''Or install FastAPI and uvicorn separately.''' ) else: logger.info(F'''Serving model over {host}:{port}''' ) __SCREAMING_SNAKE_CASE : List[str] = FastAPI( routes=[ APIRoute( '''/''' , self.model_info , response_model=_A , response_class=_A , methods=['''GET'''] , ), APIRoute( '''/tokenize''' , self.tokenize , response_model=_A , response_class=_A , methods=['''POST'''] , ), APIRoute( '''/detokenize''' , self.detokenize , response_model=_A , response_class=_A , methods=['''POST'''] , ), APIRoute( '''/forward''' , self.forward , response_model=_A , response_class=_A , methods=['''POST'''] , ), ] , timeout=600 , ) def UpperCAmelCase__ ( self : Optional[Any] ): """simple docstring""" run(self._app , host=self.host , port=self.port , workers=self.workers ) def UpperCAmelCase__ ( self : Optional[Any] ): """simple docstring""" return ServeModelInfoResult(infos=vars(self._pipeline.model.config ) ) def UpperCAmelCase__ ( self : List[str] , _A : str = Body(_A , embed=_A ) , _A : bool = Body(_A , embed=_A ) ): """simple docstring""" try: __SCREAMING_SNAKE_CASE : List[Any] = self._pipeline.tokenizer.tokenize(_A ) if return_ids: __SCREAMING_SNAKE_CASE : Any = self._pipeline.tokenizer.convert_tokens_to_ids(_A ) return ServeTokenizeResult(tokens=_A , tokens_ids=_A ) else: return ServeTokenizeResult(tokens=_A ) except Exception as e: raise HTTPException(status_code=500 , detail={'''model''': '''''', '''error''': str(_A )} ) def UpperCAmelCase__ ( self : Tuple , _A : List[int] = Body(_A , embed=_A ) , _A : bool = Body(_A , embed=_A ) , _A : bool = Body(_A , embed=_A ) , ): """simple docstring""" try: __SCREAMING_SNAKE_CASE : str = self._pipeline.tokenizer.decode(_A , _A , _A ) return ServeDeTokenizeResult(model='''''' , text=_A ) except Exception as e: raise HTTPException(status_code=500 , detail={'''model''': '''''', '''error''': str(_A )} ) async def UpperCAmelCase__ ( self : Dict , _A : Optional[int]=Body(_A , embed=_A ) ): """simple docstring""" if len(_A ) == 0: return ServeForwardResult(output=[] , attention=[] ) try: # Forward through the model __SCREAMING_SNAKE_CASE : Dict = self._pipeline(_A ) return ServeForwardResult(output=_A ) except Exception as e: raise HTTPException(500 , {'''error''': str(_A )} )
713
import pprint import requests lowercase_ = """https://zenquotes.io/api""" def a__ ( ): """simple docstring""" return requests.get(API_ENDPOINT_URL + '''/today''' ).json() def a__ ( ): """simple docstring""" return requests.get(API_ENDPOINT_URL + '''/random''' ).json() if __name__ == "__main__": lowercase_ = random_quotes() pprint.pprint(response)
131
0
import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class lowerCAmelCase__ ( unittest.TestCase ): def __init__( self : List[Any] , __UpperCamelCase : Dict , __UpperCamelCase : Union[str, Any]=13 , __UpperCamelCase : Optional[int]=7 , __UpperCamelCase : str=True , __UpperCamelCase : Optional[int]=True , __UpperCamelCase : str=True , __UpperCamelCase : Dict=True , __UpperCamelCase : Tuple=99 , __UpperCamelCase : Tuple=32 , __UpperCamelCase : int=5 , __UpperCamelCase : Dict=4 , __UpperCamelCase : Dict=37 , __UpperCamelCase : Dict="gelu" , __UpperCamelCase : int=0.1 , __UpperCamelCase : Dict=0.1 , __UpperCamelCase : List[str]=512 , __UpperCamelCase : Optional[int]=16 , __UpperCamelCase : Any=2 , __UpperCamelCase : int=0.0_2 , __UpperCamelCase : str=4 , ) -> Union[str, Any]: A = parent A = batch_size A = seq_length A = is_training A = use_attention_mask A = use_token_type_ids A = use_labels A = vocab_size A = hidden_size A = num_hidden_layers A = num_attention_heads A = intermediate_size A = hidden_act A = hidden_dropout_prob A = attention_probs_dropout_prob A = max_position_embeddings A = type_vocab_size A = type_sequence_label_size A = initializer_range A = num_choices def __UpperCamelCase ( self : Optional[int] ) -> Any: A = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A = None if self.use_attention_mask: A = random_attention_mask([self.batch_size, self.seq_length] ) A = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , tie_weights_=__UpperCamelCase , ) return config, input_ids, attention_mask def __UpperCamelCase ( self : Union[str, Any] ) -> Optional[Any]: A = self.prepare_config_and_inputs() A , A , A = config_and_inputs A = {'input_ids': input_ids, 'attention_mask': attention_mask} return config, inputs_dict @require_flax class lowerCAmelCase__ ( _lowerCamelCase , unittest.TestCase ): A_ : str = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def __UpperCamelCase ( self : Optional[int] ) -> Union[str, Any]: A = FlaxDistilBertModelTester(self ) @slow def __UpperCamelCase ( self : Union[str, Any] ) -> List[str]: for model_class_name in self.all_model_classes: A = model_class_name.from_pretrained('distilbert-base-uncased' ) A = model(np.ones((1, 1) ) ) self.assertIsNotNone(__UpperCamelCase ) @require_flax class lowerCAmelCase__ ( unittest.TestCase ): @slow def __UpperCamelCase ( self : Dict ) -> Union[str, Any]: A = FlaxDistilBertModel.from_pretrained('distilbert-base-uncased' ) A = np.array([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] ) A = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) A = model(__UpperCamelCase , attention_mask=__UpperCamelCase )[0] A = (1, 11, 768) self.assertEqual(output.shape , __UpperCamelCase ) A = np.array([[[-0.1_6_3_9, 0.3_2_9_9, 0.1_6_4_8], [-0.1_7_4_6, 0.3_2_8_9, 0.1_7_1_0], [-0.1_8_8_4, 0.3_3_5_7, 0.1_8_1_0]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , __UpperCamelCase , atol=1e-4 ) )
106
'''simple docstring''' import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer UpperCAmelCase_ : str = logging.get_logger(__name__) UpperCAmelCase_ : List[Any] = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} UpperCAmelCase_ : Union[str, Any] = { 'vocab_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json', }, 'merges_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt', }, 'tokenizer_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json', }, } UpperCAmelCase_ : List[str] = { 'allenai/led-base-16384': 1_6384, } class UpperCAmelCase__ ( A ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = LEDTokenizer lowerCAmelCase_ = ['input_ids', 'attention_mask'] def __init__( self : Union[str, Any],__A : List[Any]=None,__A : str=None,__A : str=None,__A : Optional[int]="replace",__A : Union[str, Any]="<s>",__A : Union[str, Any]="</s>",__A : Any="</s>",__A : Optional[int]="<s>",__A : List[str]="<unk>",__A : str="<pad>",__A : Tuple="<mask>",__A : Union[str, Any]=False,__A : Optional[int]=True,**__A : Optional[int],): super().__init__( __A,__A,tokenizer_file=__A,errors=__A,bos_token=__A,eos_token=__A,sep_token=__A,cls_token=__A,unk_token=__A,pad_token=__A,mask_token=__A,add_prefix_space=__A,trim_offsets=__A,**__A,) _lowerCamelCase : List[str] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space",__A ) != add_prefix_space: _lowerCamelCase : str = getattr(__A,pre_tok_state.pop("type" ) ) _lowerCamelCase : List[Any] = add_prefix_space _lowerCamelCase : Tuple = pre_tok_class(**__A ) _lowerCamelCase : Optional[int] = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` _lowerCamelCase : List[str] = "post_processor" _lowerCamelCase : int = getattr(self.backend_tokenizer,__A,__A ) if tokenizer_component_instance: _lowerCamelCase : Tuple = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: _lowerCamelCase : str = tuple(state["sep"] ) if "cls" in state: _lowerCamelCase : List[str] = tuple(state["cls"] ) _lowerCamelCase : Dict = False if state.get("add_prefix_space",__A ) != add_prefix_space: _lowerCamelCase : List[str] = add_prefix_space _lowerCamelCase : List[Any] = True if state.get("trim_offsets",__A ) != trim_offsets: _lowerCamelCase : List[str] = trim_offsets _lowerCamelCase : List[str] = True if changes_to_apply: _lowerCamelCase : Tuple = getattr(__A,state.pop("type" ) ) _lowerCamelCase : Any = component_class(**__A ) setattr(self.backend_tokenizer,__A,__A ) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def lowerCamelCase_ ( self : str ): if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def lowerCamelCase_ ( self : List[str],__A : str ): _lowerCamelCase : Optional[Any] = AddedToken(__A,lstrip=__A,rstrip=__A ) if isinstance(__A,__A ) else value _lowerCamelCase : str = value def lowerCamelCase_ ( self : List[str],*__A : List[Any],**__A : int ): _lowerCamelCase : List[str] = kwargs.get("is_split_into_words",__A ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__A,**__A ) def lowerCamelCase_ ( self : Optional[int],*__A : Optional[Any],**__A : Union[str, Any] ): _lowerCamelCase : List[Any] = kwargs.get("is_split_into_words",__A ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*__A,**__A ) def lowerCamelCase_ ( self : Dict,__A : str,__A : Optional[str] = None ): _lowerCamelCase : List[str] = self._tokenizer.model.save(__A,name=__A ) return tuple(__A ) def lowerCamelCase_ ( self : List[str],__A : Optional[Any],__A : List[str]=None ): _lowerCamelCase : Optional[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowerCamelCase_ ( self : Dict,__A : List[int],__A : Optional[List[int]] = None ): _lowerCamelCase : Tuple = [self.sep_token_id] _lowerCamelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCamelCase_ ( self : Any,__A : Union[Dict[str, EncodedInput], BatchEncoding],__A : Optional[int] = None,__A : PaddingStrategy = PaddingStrategy.DO_NOT_PAD,__A : Optional[int] = None,__A : Optional[bool] = None,): _lowerCamelCase : List[str] = super()._pad( encoded_inputs=__A,max_length=__A,padding_strategy=__A,pad_to_multiple_of=__A,return_attention_mask=__A,) # Load from model defaults if return_attention_mask is None: _lowerCamelCase : Any = "attention_mask" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: _lowerCamelCase : Union[str, Any] = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. _lowerCamelCase : Optional[Any] = len(encoded_inputs["global_attention_mask"] ) != len(__A ) if needs_to_be_padded: _lowerCamelCase : str = len(__A ) - len(encoded_inputs["global_attention_mask"] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` _lowerCamelCase : Tuple = ( encoded_inputs["global_attention_mask"] + [-1] * difference ) elif self.padding_side == "left": _lowerCamelCase : int = [-1] * difference + encoded_inputs[ "global_attention_mask" ] else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return encoded_inputs
44
0
import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) snake_case_ : Any = "\\n Text data.\n Second line of data." snake_case_ : Union[str, Any] = "file" @pytest.fixture(scope='''session''' ) def A (__A : Optional[int] ) -> Optional[int]: """simple docstring""" UpperCAmelCase_ = tmp_path_factory.mktemp('''data''' ) / (FILE_PATH + '''.zstd''') UpperCAmelCase_ = bytes(__A , '''utf-8''' ) with zstd.open(__A , '''wb''' ) as f: f.write(__A ) return path @pytest.fixture def A (__A : Optional[int] ) -> Tuple: """simple docstring""" with open(os.path.join(tmpfs.local_root_dir , __A ) , '''w''' ) as f: f.write(__A ) return FILE_PATH @pytest.mark.parametrize('''compression_format''' , ['''gzip''', '''xz''', '''zstd'''] ) def A (__A : Union[str, Any] , __A : Tuple , __A : Union[str, Any] , __A : Optional[Any] , __A : Any , __A : List[Any] ) -> Dict: """simple docstring""" UpperCAmelCase_ = {'''gzip''': gz_file, '''xz''': xz_file, '''zstd''': zstd_path} UpperCAmelCase_ = input_paths[compression_format] UpperCAmelCase_ = tmp_path / '''cache''' UpperCAmelCase_ = DownloadConfig(cache_dir=__A , extract_compressed_file=__A ) UpperCAmelCase_ = cached_path(__A , download_config=__A ) with open(__A ) as f: UpperCAmelCase_ = f.read() with open(__A ) as f: UpperCAmelCase_ = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize('''default_extracted''' , [True, False] ) @pytest.mark.parametrize('''default_cache_dir''' , [True, False] ) def A (__A : int , __A : Any , __A : Optional[Any] , __A : int , __A : List[str] ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase_ = '''custom_cache''' UpperCAmelCase_ = '''custom_extracted_dir''' UpperCAmelCase_ = tmp_path / '''custom_extracted_path''' if default_extracted: UpperCAmelCase_ = ('''downloads''' if default_cache_dir else custom_cache_dir, '''extracted''') else: monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_DIR''' , __A ) monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_PATH''' , str(__A ) ) UpperCAmelCase_ = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) UpperCAmelCase_ = xz_file UpperCAmelCase_ = ( DownloadConfig(extract_compressed_file=__A ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=__A ) ) UpperCAmelCase_ = cached_path(__A , download_config=__A ) assert Path(__A ).parent.parts[-2:] == expected def A (__A : List[str] ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase_ = str(Path(__A ).resolve() ) assert cached_path(__A ) == text_file # relative path UpperCAmelCase_ = str(Path(__A ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(__A ) == text_file def A (__A : int ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase_ = str(tmp_path.resolve() / '''__missing_file__.txt''' ) with pytest.raises(__A ): cached_path(__A ) # relative path UpperCAmelCase_ = '''./__missing_file__.txt''' with pytest.raises(__A ): cached_path(__A ) def A (__A : Tuple ) -> List[Any]: """simple docstring""" UpperCAmelCase_ = get_from_cache(F"""tmp://{tmpfs_file}""" ) with open(__A ) as f: UpperCAmelCase_ = f.read() assert output_file_content == FILE_CONTENT @patch('''datasets.config.HF_DATASETS_OFFLINE''' , __A ) def A () -> List[str]: """simple docstring""" with pytest.raises(__A ): cached_path('''https://huggingface.co''' ) @patch('''datasets.config.HF_DATASETS_OFFLINE''' , __A ) def A (__A : Any ) -> Dict: """simple docstring""" UpperCAmelCase_ = tmp_path_factory.mktemp('''data''' ) / '''file.html''' with pytest.raises(__A ): http_get('''https://huggingface.co''' , temp_file=__A ) with pytest.raises(__A ): http_head('''https://huggingface.co''' ) @patch('''datasets.config.HF_DATASETS_OFFLINE''' , __A ) def A (__A : List[str] ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase_ = tmp_path_factory.mktemp('''data''' ) / '''file.html''' with pytest.raises(__A ): ftp_get('''ftp://huggingface.co''' , temp_file=__A ) with pytest.raises(__A ): ftp_head('''ftp://huggingface.co''' ) @patch('''datasets.config.HF_DATASETS_OFFLINE''' , __A ) def A (__A : Optional[int] ) -> Optional[Any]: """simple docstring""" UpperCAmelCase_ = tmp_path_factory.mktemp('''data''' ) / '''file.html''' with pytest.raises(__A ): fsspec_get('''s3://huggingface.co''' , temp_file=__A ) with pytest.raises(__A ): fsspec_head('''s3://huggingface.co''' )
720
from ...processing_utils import ProcessorMixin class __snake_case ( a ): UpperCAmelCase__ : Optional[int] = '''WhisperFeatureExtractor''' UpperCAmelCase__ : Union[str, Any] = '''WhisperTokenizer''' def __init__( self : str , _snake_case : int , _snake_case : Any): """simple docstring""" super().__init__(_snake_case , _snake_case) UpperCAmelCase_ = self.feature_extractor UpperCAmelCase_ = False def lowerCamelCase ( self : int , _snake_case : List[Any]=None , _snake_case : Dict=None , _snake_case : Union[str, Any]=True): """simple docstring""" return self.tokenizer.get_decoder_prompt_ids(task=_snake_case , language=_snake_case , no_timestamps=_snake_case) def __call__( self : List[str] , *_snake_case : Union[str, Any] , **_snake_case : str): """simple docstring""" if self._in_target_context_manager: return self.current_processor(*_snake_case , **_snake_case) UpperCAmelCase_ = kwargs.pop('''audio''' , _snake_case) UpperCAmelCase_ = kwargs.pop('''sampling_rate''' , _snake_case) UpperCAmelCase_ = kwargs.pop('''text''' , _snake_case) if len(_snake_case) > 0: UpperCAmelCase_ = args[0] UpperCAmelCase_ = args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''') if audio is not None: UpperCAmelCase_ = self.feature_extractor(_snake_case , *_snake_case , sampling_rate=_snake_case , **_snake_case) if text is not None: UpperCAmelCase_ = self.tokenizer(_snake_case , **_snake_case) if text is None: return inputs elif audio is None: return encodings else: UpperCAmelCase_ = encodings['''input_ids'''] return inputs def lowerCamelCase ( self : str , *_snake_case : Tuple , **_snake_case : List[Any]): """simple docstring""" return self.tokenizer.batch_decode(*_snake_case , **_snake_case) def lowerCamelCase ( self : Dict , *_snake_case : List[Any] , **_snake_case : List[str]): """simple docstring""" return self.tokenizer.decode(*_snake_case , **_snake_case) def lowerCamelCase ( self : str , _snake_case : str , _snake_case : List[Any]="np"): """simple docstring""" return self.tokenizer.get_prompt_ids(_snake_case , return_tensors=_snake_case)
169
0
import os from math import logaa def UpperCamelCase_( lowerCamelCase_ = "base_exp.txt" ) -> int: _lowercase : float = 0 _lowercase : Dict = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(lowerCamelCase_ ) , lowerCamelCase_ ) ) ): _lowercase , _lowercase : Union[str, Any] = list(map(lowerCamelCase_ , line.split(',' ) ) ) if x * logaa(lowerCamelCase_ ) > largest: _lowercase : Any = x * logaa(lowerCamelCase_ ) _lowercase : Union[str, Any] = i + 1 return result if __name__ == "__main__": print(solution())
89
import json import os import unittest from transformers import OpenAIGPTTokenizer, OpenAIGPTTokenizerFast from transformers.models.openai.tokenization_openai import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_spacy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCAmelCase__ ( a , unittest.TestCase): '''simple docstring''' __SCREAMING_SNAKE_CASE = OpenAIGPTTokenizer __SCREAMING_SNAKE_CASE = OpenAIGPTTokenizerFast __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = False def _lowerCamelCase ( self) -> Dict: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _A : str = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "w</w>", "r</w>", "t</w>", "lo", "low", "er</w>", "low</w>", "lowest</w>", "newer</w>", "wider</w>", "<unk>", ] _A : Tuple = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase)))) _A : Optional[int] = ["#version: 0.2", "l o", "lo w", "e r</w>", ""] _A : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"]) _A : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"]) with open(self.vocab_file , "w") as fp: fp.write(json.dumps(__lowerCamelCase)) with open(self.merges_file , "w") as fp: fp.write("\n".join(__lowerCamelCase)) def _lowerCamelCase ( self , __lowerCamelCase) -> List[str]: return "lower newer", "lower newer" def _lowerCamelCase ( self) -> Any: _A : str = OpenAIGPTTokenizer(self.vocab_file , self.merges_file) _A : Any = "lower" _A : Dict = ["low", "er</w>"] _A : List[Any] = tokenizer.tokenize(__lowerCamelCase) self.assertListEqual(__lowerCamelCase , __lowerCamelCase) _A : List[str] = tokens + ["<unk>"] _A : Tuple = [1_4, 1_5, 2_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowerCamelCase) , __lowerCamelCase) def _lowerCamelCase ( self , __lowerCamelCase=1_5) -> Tuple: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})"): _A : Optional[int] = self.rust_tokenizer_class.from_pretrained(__lowerCamelCase , **__lowerCamelCase) # Simple input _A : int = "This is a simple input" _A : str = ["This is a simple input 1", "This is a simple input 2"] _A : Optional[Any] = ("This is a simple input", "This is a pair") _A : List[Any] = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests self.assertRaises(__lowerCamelCase , tokenizer_r.encode , __lowerCamelCase , max_length=__lowerCamelCase , padding="max_length") # Simple input self.assertRaises(__lowerCamelCase , tokenizer_r.encode_plus , __lowerCamelCase , max_length=__lowerCamelCase , padding="max_length") # Simple input self.assertRaises( __lowerCamelCase , tokenizer_r.batch_encode_plus , __lowerCamelCase , max_length=__lowerCamelCase , padding="max_length" , ) # Pair input self.assertRaises(__lowerCamelCase , tokenizer_r.encode , __lowerCamelCase , max_length=__lowerCamelCase , padding="max_length") # Pair input self.assertRaises(__lowerCamelCase , tokenizer_r.encode_plus , __lowerCamelCase , max_length=__lowerCamelCase , padding="max_length") # Pair input self.assertRaises( __lowerCamelCase , tokenizer_r.batch_encode_plus , __lowerCamelCase , max_length=__lowerCamelCase , padding="max_length" , ) def _lowerCamelCase ( self) -> Dict: pass @require_ftfy @require_spacy @require_tokenizers class lowerCAmelCase__ ( a): '''simple docstring''' pass
503
0
'''simple docstring''' def UpperCAmelCase_ ( lowercase__ = 1_0_0_0 ): '''simple docstring''' return sum(2 * a * ((a - 1) // 2) for a in range(3 , n + 1 ) ) if __name__ == "__main__": print(solution())
41
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig lowercase = { '''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/config.json''', '''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/config.json''', '''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/config.json''', '''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json''', '''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/config.json''', '''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/config.json''', '''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/config.json''', '''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json''', } class UpperCAmelCase ( __a): '''simple docstring''' __magic_name__ : int = "albert" def __init__( self , lowerCAmelCase_=3_0_0_0_0 , lowerCAmelCase_=1_2_8 , lowerCAmelCase_=4_0_9_6 , lowerCAmelCase_=1_2 , lowerCAmelCase_=1 , lowerCAmelCase_=6_4 , lowerCAmelCase_=1_6_3_8_4 , lowerCAmelCase_=1 , lowerCAmelCase_="gelu_new" , lowerCAmelCase_=0 , lowerCAmelCase_=0 , lowerCAmelCase_=5_1_2 , lowerCAmelCase_=2 , lowerCAmelCase_=0.0_2 , lowerCAmelCase_=1e-12 , lowerCAmelCase_=0.1 , lowerCAmelCase_="absolute" , lowerCAmelCase_=0 , lowerCAmelCase_=2 , lowerCAmelCase_=3 , **lowerCAmelCase_ , ) -> Any: """simple docstring""" super().__init__(pad_token_id=lowerCAmelCase_ , bos_token_id=lowerCAmelCase_ , eos_token_id=lowerCAmelCase_ , **lowerCAmelCase_) a_ =vocab_size a_ =embedding_size a_ =hidden_size a_ =num_hidden_layers a_ =num_hidden_groups a_ =num_attention_heads a_ =inner_group_num a_ =hidden_act a_ =intermediate_size a_ =hidden_dropout_prob a_ =attention_probs_dropout_prob a_ =max_position_embeddings a_ =type_vocab_size a_ =initializer_range a_ =layer_norm_eps a_ =classifier_dropout_prob a_ =position_embedding_type class UpperCAmelCase ( __a): '''simple docstring''' @property def lowercase_ ( self) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": a_ ={0: "batch", 1: "choice", 2: "sequence"} else: a_ ={0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ])
41
1
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConformerConfig, WavaVecaConformerForCTC, WavaVecaConformerForPreTraining, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() A = logging.get_logger(__name__) A = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.linear_k": "encoder.layers.*.self_attn.linear_k", "self_attn.linear_v": "encoder.layers.*.self_attn.linear_v", "self_attn.linear_q": "encoder.layers.*.self_attn.linear_q", "self_attn.pos_bias_u": "encoder.layers.*.self_attn.pos_bias_u", "self_attn.pos_bias_v": "encoder.layers.*.self_attn.pos_bias_v", "self_attn.linear_out": "encoder.layers.*.self_attn.linear_out", "self_attn.linear_pos": "encoder.layers.*.self_attn.linear_pos", "self_attn.rotary_emb": "encoder.embed_positions", "self_attn_layer_norm": "encoder.layers.*.self_attn_layer_norm", "conv_module.pointwise_conv1": "encoder.layers.*.conv_module.pointwise_conv1", "conv_module.pointwise_conv2": "encoder.layers.*.conv_module.pointwise_conv2", "conv_module.depthwise_conv": "encoder.layers.*.conv_module.depthwise_conv", "conv_module.batch_norm": "encoder.layers.*.conv_module.batch_norm", "conv_module.layer_norm": "encoder.layers.*.conv_module.layer_norm", "ffn1.w_1": "encoder.layers.*.ffn1.intermediate_dense", "ffn1.w_2": "encoder.layers.*.ffn1.output_dense", "ffn1.layer_norm": "encoder.layers.*.ffn1_layer_norm", "ffn2.w_1": "encoder.layers.*.ffn2.intermediate_dense", "ffn2.w_2": "encoder.layers.*.ffn2.output_dense", "ffn2.layer_norm": "encoder.layers.*.ffn2_layer_norm", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } A = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def __UpperCAmelCase ( __A , __A , __A , __A , __A ) -> Any: '''simple docstring''' for attribute in key.split("." ): UpperCAmelCase__ = getattr(__A , __A ) if weight_type is not None: UpperCAmelCase__ = getattr(__A , __A ).shape else: UpperCAmelCase__ = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": UpperCAmelCase__ = value elif weight_type == "weight_g": UpperCAmelCase__ = value elif weight_type == "weight_v": UpperCAmelCase__ = value elif weight_type == "bias": UpperCAmelCase__ = value elif weight_type == "running_mean": UpperCAmelCase__ = value elif weight_type == "running_var": UpperCAmelCase__ = value elif weight_type == "num_batches_tracked": UpperCAmelCase__ = value elif weight_type == "inv_freq": UpperCAmelCase__ = value else: UpperCAmelCase__ = value logger.info(F"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def __UpperCAmelCase ( __A , __A , __A ) -> List[str]: '''simple docstring''' UpperCAmelCase__ = [] UpperCAmelCase__ = fairseq_model.state_dict() UpperCAmelCase__ = hf_model.wavaveca_conformer.feature_extractor for name, value in fairseq_dict.items(): UpperCAmelCase__ = False if "conv_layers" in name: load_conv_layer( __A , __A , __A , __A , hf_model.config.feat_extract_norm == "group" , ) UpperCAmelCase__ = True else: for key, mapped_key in MAPPING.items(): UpperCAmelCase__ = '''wav2vec2_conformer.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: UpperCAmelCase__ = True if "*" in mapped_key: UpperCAmelCase__ = name.split(__A )[0].split("." )[-2] UpperCAmelCase__ = mapped_key.replace("*" , __A ) if "pos_bias_u" in name: UpperCAmelCase__ = None elif "pos_bias_v" in name: UpperCAmelCase__ = None elif "weight_g" in name: UpperCAmelCase__ = '''weight_g''' elif "weight_v" in name: UpperCAmelCase__ = '''weight_v''' elif "bias" in name: UpperCAmelCase__ = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj UpperCAmelCase__ = '''weight''' elif "running_mean" in name: UpperCAmelCase__ = '''running_mean''' elif "inv_freq" in name: UpperCAmelCase__ = '''inv_freq''' elif "running_var" in name: UpperCAmelCase__ = '''running_var''' elif "num_batches_tracked" in name: UpperCAmelCase__ = '''num_batches_tracked''' else: UpperCAmelCase__ = None set_recursively(__A , __A , __A , __A , __A ) continue if not is_used: unused_weights.append(__A ) logger.warning(F"""Unused weights: {unused_weights}""" ) def __UpperCAmelCase ( __A , __A , __A , __A , __A ) -> Dict: '''simple docstring''' UpperCAmelCase__ = full_name.split("conv_layers." )[-1] UpperCAmelCase__ = name.split("." ) UpperCAmelCase__ = int(items[0] ) UpperCAmelCase__ = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) UpperCAmelCase__ = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) UpperCAmelCase__ = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) UpperCAmelCase__ = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) UpperCAmelCase__ = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(__A ) @torch.no_grad() def __UpperCAmelCase ( __A , __A , __A=None , __A=None , __A=True ) -> Union[str, Any]: '''simple docstring''' if config_path is not None: UpperCAmelCase__ = WavaVecaConformerConfig.from_pretrained(__A , hidden_act="swish" ) else: UpperCAmelCase__ = WavaVecaConformerConfig() if "rope" in checkpoint_path: UpperCAmelCase__ = '''rotary''' if is_finetuned: if dict_path: UpperCAmelCase__ = Dictionary.load(__A ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq UpperCAmelCase__ = target_dict.pad_index UpperCAmelCase__ = target_dict.bos_index UpperCAmelCase__ = target_dict.eos_index UpperCAmelCase__ = len(target_dict.symbols ) UpperCAmelCase__ = os.path.join(__A , "vocab.json" ) if not os.path.isdir(__A ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(__A ) ) return os.makedirs(__A , exist_ok=__A ) UpperCAmelCase__ = target_dict.indices # fairseq has the <pad> and <s> switched UpperCAmelCase__ = 0 UpperCAmelCase__ = 1 with open(__A , "w" , encoding="utf-8" ) as vocab_handle: json.dump(__A , __A ) UpperCAmelCase__ = WavaVecaCTCTokenizer( __A , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=__A , ) UpperCAmelCase__ = True if config.feat_extract_norm == '''layer''' else False UpperCAmelCase__ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6_0_0_0 , padding_value=0 , do_normalize=__A , return_attention_mask=__A , ) UpperCAmelCase__ = WavaVecaProcessor(feature_extractor=__A , tokenizer=__A ) processor.save_pretrained(__A ) UpperCAmelCase__ = WavaVecaConformerForCTC(__A ) else: UpperCAmelCase__ = WavaVecaConformerForPreTraining(__A ) if is_finetuned: UpperCAmelCase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) else: UpperCAmelCase__ = argparse.Namespace(task="audio_pretraining" ) UpperCAmelCase__ = fairseq.tasks.setup_task(__A ) UpperCAmelCase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=__A ) UpperCAmelCase__ = model[0].eval() recursively_load_weights(__A , __A , not is_finetuned ) hf_wavavec.save_pretrained(__A ) if __name__ == "__main__": A = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) A = parser.parse_args() convert_wavaveca_conformer_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
475
import inspect from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel, VQModel from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class A__ ( __SCREAMING_SNAKE_CASE ): def __init__( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Tuple: """simple docstring""" super().__init__() self.register_modules(vqvae=lowerCamelCase , unet=lowerCamelCase , scheduler=lowerCamelCase ) @torch.no_grad() def __call__( self , lowerCamelCase = 1 , lowerCamelCase = None , lowerCamelCase = 0.0 , lowerCamelCase = 50 , lowerCamelCase = "pil" , lowerCamelCase = True , **lowerCamelCase , ) -> Union[Tuple, ImagePipelineOutput]: """simple docstring""" __magic_name__ : int = randn_tensor( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , generator=lowerCamelCase , ) __magic_name__ : Optional[int] = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler __magic_name__ : Optional[int] = latents * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(lowerCamelCase ) # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature __magic_name__ : Tuple = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) __magic_name__ : Union[str, Any] = {} if accepts_eta: __magic_name__ : Union[str, Any] = eta for t in self.progress_bar(self.scheduler.timesteps ): __magic_name__ : Dict = self.scheduler.scale_model_input(lowerCamelCase , lowerCamelCase ) # predict the noise residual __magic_name__ : List[Any] = self.unet(lowerCamelCase , lowerCamelCase ).sample # compute the previous noisy sample x_t -> x_t-1 __magic_name__ : List[str] = self.scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , **lowerCamelCase ).prev_sample # decode the image latents with the VAE __magic_name__ : int = self.vqvae.decode(lowerCamelCase ).sample __magic_name__ : List[str] = (image / 2 + 0.5).clamp(0 , 1 ) __magic_name__ : List[str] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __magic_name__ : Dict = self.numpy_to_pil(lowerCamelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowerCamelCase )
154
0
'''simple docstring''' import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) UpperCamelCase : Any = [ """cross_validation.py""", """gradient_accumulation.py""", """local_sgd.py""", """multi_process_metrics.py""", """memory.py""", """automatic_gradient_accumulation.py""", """fsdp_with_peak_mem_tracking.py""", """deepspeed_with_config_support.py""", """megatron_lm_gpt_pretraining.py""", ] class UpperCamelCase ( unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , UpperCAmelCase_ : str , UpperCAmelCase_ : bool , UpperCAmelCase_ : str = None , UpperCAmelCase_ : list = None): """simple docstring""" a : List[Any] = None a : List[Any] = os.path.abspath(os.path.join('examples' , 'by_feature')) a : int = os.path.abspath('examples') for item in os.listdir(UpperCAmelCase_): if item not in EXCLUDE_EXAMPLES: a : Union[str, Any] = os.path.join(UpperCAmelCase_ , UpperCAmelCase_) if os.path.isfile(UpperCAmelCase_) and ".py" in item_path: with self.subTest( tested_script=UpperCAmelCase_ , feature_script=UpperCAmelCase_ , tested_section='main()' if parser_only else 'training_function()' , ): a : Optional[int] = compare_against_test( os.path.join(UpperCAmelCase_ , UpperCAmelCase_) , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) a : Union[str, Any] = '\n'.join(UpperCAmelCase_) if special_strings is not None: for string in special_strings: a : List[str] = diff.replace(UpperCAmelCase_ , '') self.assertEqual(UpperCAmelCase_ , '') def SCREAMING_SNAKE_CASE_ ( self : Optional[int]): """simple docstring""" self.one_complete_example('complete_nlp_example.py' , UpperCAmelCase_) self.one_complete_example('complete_nlp_example.py' , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Optional[int]): """simple docstring""" a : List[str] = os.path.abspath(os.path.join('examples' , 'cv_example.py')) a : Optional[int] = [ ' ' * 1_6 + '{\n\n', ' ' * 2_0 + '"accuracy": eval_metric["accuracy"],\n\n', ' ' * 2_0 + '"f1": eval_metric["f1"],\n\n', ' ' * 2_0 + '"train_loss": total_loss.item() / len(train_dataloader),\n\n', ' ' * 2_0 + '"epoch": epoch,\n\n', ' ' * 1_6 + '},\n\n', ' ' * 1_6 + 'step=epoch,\n', ' ' * 1_2, ' ' * 8 + 'for step, batch in enumerate(active_dataloader):\n', ] self.one_complete_example('complete_cv_example.py' , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) self.one_complete_example('complete_cv_example.py' , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) @mock.patch.dict(os.environ , {"TESTING_MOCKED_DATALOADERS": "1"} ) class UpperCamelCase ( a_ ): """simple docstring""" A : Tuple = False @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Any): """simple docstring""" super().setUpClass() a : Union[str, Any] = tempfile.mkdtemp() a : Optional[Any] = os.path.join(cls._tmpdir , 'default_config.yml') write_basic_config(save_location=cls.configPath) a : Tuple = ['accelerate', 'launch', '--config_file', cls.configPath] @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Dict): """simple docstring""" super().tearDownClass() shutil.rmtree(cls._tmpdir) def SCREAMING_SNAKE_CASE_ ( self : List[str]): """simple docstring""" a : Union[str, Any] = f""" examples/by_feature/checkpointing.py --checkpointing_steps epoch --output_dir {self.tmpdir} """.split() run_command(self._launch_args + testargs) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , 'epoch_0'))) def SCREAMING_SNAKE_CASE_ ( self : List[str]): """simple docstring""" a : Optional[int] = f""" examples/by_feature/checkpointing.py --checkpointing_steps 1 --output_dir {self.tmpdir} """.split() a : Any = run_command(self._launch_args + testargs) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , 'step_2'))) def SCREAMING_SNAKE_CASE_ ( self : str): """simple docstring""" a : int = f""" examples/by_feature/checkpointing.py --resume_from_checkpoint {os.path.join(self.tmpdir , 'epoch_0')} """.split() a : Dict = run_command(self._launch_args + testargs , return_stdout=UpperCAmelCase_) self.assertNotIn('epoch 0:' , UpperCAmelCase_) self.assertIn('epoch 1:' , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any]): """simple docstring""" a : List[str] = f""" examples/by_feature/checkpointing.py --resume_from_checkpoint {os.path.join(self.tmpdir , 'step_2')} """.split() a : int = run_command(self._launch_args + testargs , return_stdout=UpperCAmelCase_) if torch.cuda.is_available(): a : Any = torch.cuda.device_count() else: a : Any = 1 if num_processes > 1: self.assertNotIn('epoch 0:' , UpperCAmelCase_) self.assertIn('epoch 1:' , UpperCAmelCase_) else: self.assertIn('epoch 0:' , UpperCAmelCase_) self.assertIn('epoch 1:' , UpperCAmelCase_) @slow def SCREAMING_SNAKE_CASE_ ( self : Optional[int]): """simple docstring""" a : Optional[int] = '\n examples/by_feature/cross_validation.py\n --num_folds 2\n '.split() with mock.patch.dict(os.environ , {'TESTING_MOCKED_DATALOADERS': '0'}): a : Union[str, Any] = run_command(self._launch_args + testargs , return_stdout=UpperCAmelCase_) a : int = re.findall('({.+})' , UpperCAmelCase_) a : Any = [r for r in results if 'accuracy' in r][-1] a : int = ast.literal_eval(UpperCAmelCase_) self.assertGreaterEqual(results['accuracy'] , 0.75) def SCREAMING_SNAKE_CASE_ ( self : List[Any]): """simple docstring""" a : List[str] = ['examples/by_feature/multi_process_metrics.py'] run_command(self._launch_args + testargs) @require_trackers @mock.patch.dict(os.environ , {'WANDB_MODE': 'offline'}) def SCREAMING_SNAKE_CASE_ ( self : List[str]): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdir: a : Tuple = f""" examples/by_feature/tracking.py --with_tracking --project_dir {tmpdir} """.split() run_command(self._launch_args + testargs) self.assertTrue(os.path.exists(os.path.join(UpperCAmelCase_ , 'tracking'))) def SCREAMING_SNAKE_CASE_ ( self : Optional[int]): """simple docstring""" a : List[str] = ['examples/by_feature/gradient_accumulation.py'] run_command(self._launch_args + testargs) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any]): """simple docstring""" a : List[Any] = ['examples/by_feature/local_sgd.py'] run_command(self._launch_args + testargs)
714
'''simple docstring''' def SCREAMING_SNAKE_CASE__ ( snake_case : int = 10**9 ) -> int: """simple docstring""" a : List[str] = 1 a : Any = 2 a : List[Any] = 0 a : Optional[Any] = 0 a : Union[str, Any] = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value a : Union[str, Any] = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(f'''{solution() = }''')
610
0
'''simple docstring''' __SCREAMING_SNAKE_CASE = 2_5_6 # Modulus to hash a string __SCREAMING_SNAKE_CASE = 1_0_0_0_0_0_3 def __a ( lowerCAmelCase__ : str , lowerCAmelCase__ : str ): a__ : Any = len(lowerCAmelCase__ ) a__ : Dict = len(lowerCAmelCase__ ) if p_len > t_len: return False a__ : Any = 0 a__ : Optional[Any] = 0 a__ : int = 1 # Calculating the hash of pattern and substring of text for i in range(lowerCAmelCase__ ): a__ : Union[str, Any] = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus a__ : str = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue a__ : Optional[Any] = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash a__ : Dict = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def __a ( ): a__ : Dict = '''abc1abc12''' a__ : Tuple = '''alskfjaldsabc1abc1abc12k23adsfabcabc''' a__ : List[Any] = '''alskfjaldsk23adsfabcabc''' assert rabin_karp(lowerCAmelCase__ , lowerCAmelCase__ ) and not rabin_karp(lowerCAmelCase__ , lowerCAmelCase__ ) # Test 2) a__ : List[str] = '''ABABX''' a__ : Optional[Any] = '''ABABZABABYABABX''' assert rabin_karp(lowerCAmelCase__ , lowerCAmelCase__ ) # Test 3) a__ : Any = '''AAAB''' a__ : Tuple = '''ABAAAAAB''' assert rabin_karp(lowerCAmelCase__ , lowerCAmelCase__ ) # Test 4) a__ : List[str] = '''abcdabcy''' a__ : str = '''abcxabcdabxabcdabcdabcy''' assert rabin_karp(lowerCAmelCase__ , lowerCAmelCase__ ) # Test 5) a__ : Optional[Any] = '''Lü''' a__ : str = '''Lüsai''' assert rabin_karp(lowerCAmelCase__ , lowerCAmelCase__ ) a__ : Any = '''Lue''' assert not rabin_karp(lowerCAmelCase__ , lowerCAmelCase__ ) print('''Success.''' ) if __name__ == "__main__": test_rabin_karp()
688
'''simple docstring''' from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) # pylint: disable=invalid-name __SCREAMING_SNAKE_CASE = '\n Examples:\n ```py\n >>> import torch\n >>> import numpy as np\n\n >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline\n >>> from transformers import pipeline\n >>> from diffusers.utils import load_image\n\n\n >>> def make_hint(image, depth_estimator):\n ... image = depth_estimator(image)["depth"]\n ... image = np.array(image)\n ... image = image[:, :, None]\n ... image = np.concatenate([image, image, image], axis=2)\n ... detected_map = torch.from_numpy(image).float() / 255.0\n ... hint = detected_map.permute(2, 0, 1)\n ... return hint\n\n\n >>> depth_estimator = pipeline("depth-estimation")\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16\n ... )\n >>> pipe_prior = pipe_prior.to("cuda")\n\n >>> pipe = KandinskyV22ControlnetPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-controlnet-depth", torch_dtype=torch.float16\n ... )\n >>> pipe = pipe.to("cuda")\n\n\n >>> img = load_image(\n ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"\n ... "/kandinsky/cat.png"\n ... ).resize((768, 768))\n\n >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to("cuda")\n\n >>> prompt = "A robot, 4k photo"\n >>> negative_prior_prompt = "lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature"\n\n >>> generator = torch.Generator(device="cuda").manual_seed(43)\n\n >>> image_emb, zero_image_emb = pipe_prior(\n ... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator\n ... ).to_tuple()\n\n >>> images = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... hint=hint,\n ... num_inference_steps=50,\n ... generator=generator,\n ... height=768,\n ... width=768,\n ... ).images\n\n >>> images[0].save("robot_cat.png")\n ```\n' def __a ( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Any , lowerCAmelCase__ : str=8 ): a__ : Tuple = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 a__ : Union[str, Any] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class lowerCAmelCase__ ( lowerCAmelCase_ ): """simple docstring""" def __init__( self : Dict , A__ : UNetaDConditionModel , A__ : DDPMScheduler , A__ : VQModel , ) -> Union[str, Any]: '''simple docstring''' super().__init__() self.register_modules( unet=A__ , scheduler=A__ , movq=A__ , ) a__ : Union[str, Any] = 2 ** (len(self.movq.config.block_out_channels ) - 1) def __lowerCAmelCase ( self : Optional[Any] , A__ : List[Any] , A__ : List[str] , A__ : Optional[Any] , A__ : Dict , A__ : Dict , A__ : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' if latents is None: a__ : List[str] = randn_tensor(A__ , generator=A__ , device=A__ , dtype=A__ ) else: if latents.shape != shape: raise ValueError(F'Unexpected latents shape, got {latents.shape}, expected {shape}' ) a__ : int = latents.to(A__ ) a__ : Tuple = latents * scheduler.init_noise_sigma return latents def __lowerCAmelCase ( self : Union[str, Any] , A__ : int=0 ) -> str: '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) a__ : Union[str, Any] = torch.device(F'cuda:{gpu_id}' ) a__ : Union[str, Any] = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(A__ , A__ ) def __lowerCAmelCase ( self : Union[str, Any] , A__ : Tuple=0 ) -> Dict: '''simple docstring''' if is_accelerate_available() and is_accelerate_version('''>=''' , '''0.17.0.dev0''' ): from accelerate import cpu_offload_with_hook else: raise ImportError('''`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.''' ) a__ : int = torch.device(F'cuda:{gpu_id}' ) if self.device.type != "cpu": self.to('''cpu''' , silence_dtype_warnings=A__ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) a__ : Dict = None for cpu_offloaded_model in [self.unet, self.movq]: a__ , a__ : List[str] = cpu_offload_with_hook(A__ , A__ , prev_module_hook=A__ ) # We'll offload the last model manually. a__ : Dict = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def __lowerCAmelCase ( self : Union[str, Any] ) -> Any: '''simple docstring''' if not hasattr(self.unet , '''_hf_hook''' ): return self.device for module in self.unet.modules(): if ( hasattr(A__ , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(A__ ) def __call__( self : Any , A__ : Union[torch.FloatTensor, List[torch.FloatTensor]] , A__ : Union[torch.FloatTensor, List[torch.FloatTensor]] , A__ : torch.FloatTensor , A__ : int = 5_1_2 , A__ : int = 5_1_2 , A__ : int = 1_0_0 , A__ : float = 4.0 , A__ : int = 1 , A__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , A__ : Optional[torch.FloatTensor] = None , A__ : Optional[str] = "pil" , A__ : bool = True , ) -> str: '''simple docstring''' a__ : Optional[Any] = self._execution_device a__ : List[str] = guidance_scale > 1.0 if isinstance(A__ , A__ ): a__ : int = torch.cat(A__ , dim=0 ) if isinstance(A__ , A__ ): a__ : Optional[int] = torch.cat(A__ , dim=0 ) if isinstance(A__ , A__ ): a__ : int = torch.cat(A__ , dim=0 ) a__ : Union[str, Any] = image_embeds.shape[0] * num_images_per_prompt if do_classifier_free_guidance: a__ : Tuple = image_embeds.repeat_interleave(A__ , dim=0 ) a__ : Optional[int] = negative_image_embeds.repeat_interleave(A__ , dim=0 ) a__ : Optional[int] = hint.repeat_interleave(A__ , dim=0 ) a__ : Union[str, Any] = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=A__ ) a__ : Tuple = torch.cat([hint, hint] , dim=0 ).to(dtype=self.unet.dtype , device=A__ ) self.scheduler.set_timesteps(A__ , device=A__ ) a__ : int = self.scheduler.timesteps a__ : str = self.movq.config.latent_channels a__ , a__ : Optional[int] = downscale_height_and_width(A__ , A__ , self.movq_scale_factor ) # create initial latent a__ : List[Any] = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , A__ , A__ , A__ , self.scheduler , ) for i, t in enumerate(self.progress_bar(A__ ) ): # expand the latents if we are doing classifier free guidance a__ : Union[str, Any] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents a__ : List[str] = {'''image_embeds''': image_embeds, '''hint''': hint} a__ : Union[str, Any] = self.unet( sample=A__ , timestep=A__ , encoder_hidden_states=A__ , added_cond_kwargs=A__ , return_dict=A__ , )[0] if do_classifier_free_guidance: a__ , a__ : Dict = noise_pred.split(latents.shape[1] , dim=1 ) a__ , a__ : Dict = noise_pred.chunk(2 ) a__ , a__ : Optional[Any] = variance_pred.chunk(2 ) a__ : Union[str, Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) a__ : Union[str, Any] = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , '''variance_type''' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): a__ , a__ : Union[str, Any] = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 a__ : Union[str, Any] = self.scheduler.step( A__ , A__ , A__ , generator=A__ , )[0] # post-processing a__ : Tuple = self.movq.decode(A__ , force_not_quantize=A__ )['''sample'''] if output_type not in ["pt", "np", "pil"]: raise ValueError(F'Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}' ) if output_type in ["np", "pil"]: a__ : Union[str, Any] = image * 0.5 + 0.5 a__ : str = image.clamp(0 , 1 ) a__ : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": a__ : int = self.numpy_to_pil(A__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=A__ )
688
1
from pathlib import Path import fire from tqdm import tqdm def lowerCamelCase ( UpperCamelCase : List[Any]="ro" , UpperCamelCase : Optional[int]="en" , UpperCamelCase : List[str]="wmt16" , UpperCamelCase : List[Any]=None ) -> None: try: import datasets except (ModuleNotFoundError, ImportError): raise ImportError('run pip install datasets' ) _lowerCamelCase = F"""{src_lang}-{tgt_lang}""" print(F"""Converting {dataset}-{pair}""" ) _lowerCamelCase = datasets.load_dataset(UpperCamelCase , UpperCamelCase ) if save_dir is None: _lowerCamelCase = F"""{dataset}-{pair}""" _lowerCamelCase = Path(UpperCamelCase ) save_dir.mkdir(exist_ok=UpperCamelCase ) for split in ds.keys(): print(F"""Splitting {split} with {ds[split].num_rows} records""" ) # to save to val.source, val.target like summary datasets _lowerCamelCase = 'val' if split == 'validation' else split _lowerCamelCase = save_dir.joinpath(F"""{fn}.source""" ) _lowerCamelCase = save_dir.joinpath(F"""{fn}.target""" ) _lowerCamelCase = src_path.open('w+' ) _lowerCamelCase = tgt_path.open('w+' ) # reader is the bottleneck so writing one record at a time doesn't slow things down for x in tqdm(ds[split] ): _lowerCamelCase = x['translation'] src_fp.write(ex[src_lang] + '\n' ) tgt_fp.write(ex[tgt_lang] + '\n' ) print(F"""Saved {dataset} dataset to {save_dir}""" ) if __name__ == "__main__": fire.Fire(download_wmt_dataset)
234
from ...configuration_utils import PretrainedConfig from ...utils import logging A = logging.get_logger(__name__) A = { 'microsoft/cvt-13': 'https://huggingface.co/microsoft/cvt-13/resolve/main/config.json', # See all Cvt models at https://huggingface.co/models?filter=cvt } class lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' lowerCAmelCase_ = 'cvt' def __init__( self : Optional[Any] , snake_case__ : Dict=3 , snake_case__ : str=[7, 3, 3] , snake_case__ : str=[4, 2, 2] , snake_case__ : List[Any]=[2, 1, 1] , snake_case__ : Tuple=[6_4, 1_9_2, 3_8_4] , snake_case__ : Any=[1, 3, 6] , snake_case__ : Any=[1, 2, 1_0] , snake_case__ : Union[str, Any]=[4.0, 4.0, 4.0] , snake_case__ : Union[str, Any]=[0.0, 0.0, 0.0] , snake_case__ : str=[0.0, 0.0, 0.0] , snake_case__ : List[str]=[0.0, 0.0, 0.1] , snake_case__ : List[str]=[True, True, True] , snake_case__ : Union[str, Any]=[False, False, True] , snake_case__ : Optional[Any]=["dw_bn", "dw_bn", "dw_bn"] , snake_case__ : int=[3, 3, 3] , snake_case__ : Union[str, Any]=[1, 1, 1] , snake_case__ : Optional[Any]=[2, 2, 2] , snake_case__ : str=[1, 1, 1] , snake_case__ : Optional[int]=[1, 1, 1] , snake_case__ : Tuple=0.02 , snake_case__ : List[str]=1e-12 , **snake_case__ : str , ) -> Optional[int]: super().__init__(**snake_case__ ) _lowerCamelCase = num_channels _lowerCamelCase = patch_sizes _lowerCamelCase = patch_stride _lowerCamelCase = patch_padding _lowerCamelCase = embed_dim _lowerCamelCase = num_heads _lowerCamelCase = depth _lowerCamelCase = mlp_ratio _lowerCamelCase = attention_drop_rate _lowerCamelCase = drop_rate _lowerCamelCase = drop_path_rate _lowerCamelCase = qkv_bias _lowerCamelCase = cls_token _lowerCamelCase = qkv_projection_method _lowerCamelCase = kernel_qkv _lowerCamelCase = padding_kv _lowerCamelCase = stride_kv _lowerCamelCase = padding_q _lowerCamelCase = stride_q _lowerCamelCase = initializer_range _lowerCamelCase = layer_norm_eps
234
1
'''simple docstring''' _A = [ """Audio""", """Array2D""", """Array3D""", """Array4D""", """Array5D""", """ClassLabel""", """Features""", """Sequence""", """Value""", """Image""", """Translation""", """TranslationVariableLanguages""", ] from .audio import Audio from .features import ArrayaD, ArrayaD, ArrayaD, ArrayaD, ClassLabel, Features, Sequence, Value from .image import Image from .translation import Translation, TranslationVariableLanguages
158
'''simple docstring''' def __lowerCamelCase ( lowerCAmelCase_ ) -> bool: if not all(x.isalpha() for x in string ): raise ValueError('String must only contain alphabetic characters.' ) _a : Tuple = sorted(string.lower() ) return len(lowerCAmelCase_ ) == len(set(lowerCAmelCase_ ) ) if __name__ == "__main__": __lowerCAmelCase = input('''Enter a string ''').strip() __lowerCAmelCase = is_isogram(input_str) print(f"""{input_str} is {'an' if isogram else 'not an'} isogram.""")
358
0
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging UpperCAmelCase_ : List[Any] = logging.get_logger(__name__) UpperCAmelCase_ : Tuple = '''▁''' UpperCAmelCase_ : int = {'''vocab_file''': '''sentencepiece.bpe.model'''} UpperCAmelCase_ : Optional[int] = { '''vocab_file''': { '''facebook/mbart-large-en-ro''': ( '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model''' ), '''facebook/mbart-large-cc25''': ( '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model''' ), } } UpperCAmelCase_ : List[str] = { '''facebook/mbart-large-en-ro''': 1024, '''facebook/mbart-large-cc25''': 1024, } # fmt: off UpperCAmelCase_ : List[Any] = ['''ar_AR''', '''cs_CZ''', '''de_DE''', '''en_XX''', '''es_XX''', '''et_EE''', '''fi_FI''', '''fr_XX''', '''gu_IN''', '''hi_IN''', '''it_IT''', '''ja_XX''', '''kk_KZ''', '''ko_KR''', '''lt_LT''', '''lv_LV''', '''my_MM''', '''ne_NP''', '''nl_XX''', '''ro_RO''', '''ru_RU''', '''si_LK''', '''tr_TR''', '''vi_VN''', '''zh_CN'''] class UpperCAmelCase__ ( _UpperCAmelCase ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = ['input_ids', 'attention_mask'] lowerCAmelCase_ = [] lowerCAmelCase_ = [] def __init__( self : Tuple,__A : Any,__A : Any="<s>",__A : Any="</s>",__A : Dict="</s>",__A : Optional[Any]="<s>",__A : str="<unk>",__A : Optional[Any]="<pad>",__A : List[Any]="<mask>",__A : Union[str, Any]=None,__A : Optional[int]=None,__A : Union[str, Any]=None,__A : Optional[Dict[str, Any]] = None,__A : Any=None,**__A : Tuple,): _lowerCamelCase : Any = AddedToken(__UpperCamelCase,lstrip=__UpperCamelCase,rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase,__UpperCamelCase ) else mask_token _lowerCamelCase : Dict = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__UpperCamelCase,eos_token=__UpperCamelCase,unk_token=__UpperCamelCase,sep_token=__UpperCamelCase,cls_token=__UpperCamelCase,pad_token=__UpperCamelCase,mask_token=__UpperCamelCase,tokenizer_file=__UpperCamelCase,src_lang=__UpperCamelCase,tgt_lang=__UpperCamelCase,additional_special_tokens=__UpperCamelCase,sp_model_kwargs=self.sp_model_kwargs,**__UpperCamelCase,) _lowerCamelCase : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__UpperCamelCase ) ) _lowerCamelCase : Dict = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token _lowerCamelCase : int = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab _lowerCamelCase : Optional[int] = 1 _lowerCamelCase : Optional[int] = len(self.sp_model ) _lowerCamelCase : Dict = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(__UpperCamelCase ) } _lowerCamelCase : Dict = {v: k for k, v in self.lang_code_to_id.items()} _lowerCamelCase : Tuple = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) _lowerCamelCase : Any = {v: k for k, v in self.fairseq_tokens_to_ids.items()} _lowerCamelCase : List[str] = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) _lowerCamelCase : Optional[int] = src_lang if src_lang is not None else "en_XX" _lowerCamelCase : Optional[Any] = self.lang_code_to_id[self._src_lang] _lowerCamelCase : Optional[int] = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self : List[str] ): _lowerCamelCase : Optional[int] = self.__dict__.copy() _lowerCamelCase : str = None _lowerCamelCase : Optional[int] = self.sp_model.serialized_model_proto() return state def __setstate__( self : Union[str, Any],__A : Dict ): _lowerCamelCase : Union[str, Any] = d # for backward compatibility if not hasattr(self,"sp_model_kwargs" ): _lowerCamelCase : List[str] = {} _lowerCamelCase : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def lowerCamelCase_ ( self : Any ): return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def lowerCamelCase_ ( self : Optional[Any] ): return self._src_lang @src_lang.setter def lowerCamelCase_ ( self : int,__A : str ): _lowerCamelCase : str = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def lowerCamelCase_ ( self : List[str],__A : List[int],__A : Optional[List[int]] = None,__A : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCamelCase,token_ids_a=__UpperCamelCase,already_has_special_tokens=__UpperCamelCase ) _lowerCamelCase : int = [1] * len(self.prefix_tokens ) _lowerCamelCase : Any = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(__UpperCamelCase )) + suffix_ones return prefix_ones + ([0] * len(__UpperCamelCase )) + ([0] * len(__UpperCamelCase )) + suffix_ones def lowerCamelCase_ ( self : str,__A : List[int],__A : Optional[List[int]] = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def lowerCamelCase_ ( self : List[Any],__A : List[int],__A : Optional[List[int]] = None ): _lowerCamelCase : Any = [self.sep_token_id] _lowerCamelCase : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCamelCase_ ( self : Optional[Any],__A : Union[str, Any],__A : str,__A : Optional[str],__A : Optional[str],**__A : Tuple ): if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model" ) _lowerCamelCase : int = src_lang _lowerCamelCase : List[str] = self(__UpperCamelCase,add_special_tokens=__UpperCamelCase,return_tensors=__UpperCamelCase,**__UpperCamelCase ) _lowerCamelCase : Union[str, Any] = self.convert_tokens_to_ids(__UpperCamelCase ) _lowerCamelCase : Tuple = tgt_lang_id return inputs def lowerCamelCase_ ( self : Optional[int] ): _lowerCamelCase : Union[str, Any] = {self.convert_ids_to_tokens(__UpperCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCamelCase_ ( self : Tuple,__A : str ): return self.sp_model.encode(__UpperCamelCase,out_type=__UpperCamelCase ) def lowerCamelCase_ ( self : Dict,__A : Any ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] _lowerCamelCase : Tuple = self.sp_model.PieceToId(__UpperCamelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def lowerCamelCase_ ( self : int,__A : List[Any] ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def lowerCamelCase_ ( self : Dict,__A : Dict ): _lowerCamelCase : str = "".join(__UpperCamelCase ).replace(__UpperCamelCase," " ).strip() return out_string def lowerCamelCase_ ( self : Tuple,__A : str,__A : Optional[str] = None ): if not os.path.isdir(__UpperCamelCase ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return _lowerCamelCase : Optional[int] = os.path.join( __UpperCamelCase,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file,__UpperCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(__UpperCamelCase,"wb" ) as fi: _lowerCamelCase : Optional[int] = self.sp_model.serialized_model_proto() fi.write(__UpperCamelCase ) return (out_vocab_file,) def lowerCamelCase_ ( self : List[Any],__A : List[str],__A : str = "en_XX",__A : Optional[List[str]] = None,__A : str = "ro_RO",**__A : Tuple,): _lowerCamelCase : List[Any] = src_lang _lowerCamelCase : str = tgt_lang return super().prepare_seqaseq_batch(__UpperCamelCase,__UpperCamelCase,**__UpperCamelCase ) def lowerCamelCase_ ( self : Tuple ): return self.set_src_lang_special_tokens(self.src_lang ) def lowerCamelCase_ ( self : Optional[int] ): return self.set_tgt_lang_special_tokens(self.tgt_lang ) def lowerCamelCase_ ( self : List[str],__A : Tuple ): _lowerCamelCase : Union[str, Any] = self.lang_code_to_id[src_lang] _lowerCamelCase : List[str] = [] _lowerCamelCase : str = [self.eos_token_id, self.cur_lang_code] def lowerCamelCase_ ( self : Optional[int],__A : str ): _lowerCamelCase : Union[str, Any] = self.lang_code_to_id[lang] _lowerCamelCase : List[Any] = [] _lowerCamelCase : int = [self.eos_token_id, self.cur_lang_code]
718
'''simple docstring''' from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass UpperCAmelCase_ : str = (3, 9, -11, 0, 7, 5, 1, -1) UpperCAmelCase_ : int = (4, 6, 2, 0, 8, 10, 3, -2) @dataclass class UpperCAmelCase__ : lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 class UpperCAmelCase__ : def __init__( self : Optional[int],__A : Iterable[int] ): _lowerCamelCase : Node | None = None for i in sorted(__A,reverse=__A ): _lowerCamelCase : Dict = Node(__A,self.head ) def __iter__( self : str ): _lowerCamelCase : Dict = self.head while node: yield node.data _lowerCamelCase : Optional[Any] = node.next_node def __len__( self : str ): return sum(1 for _ in self ) def __str__( self : str ): return " -> ".join([str(__A ) for node in self] ) def A_ ( _lowerCAmelCase : SortedLinkedList , _lowerCAmelCase : SortedLinkedList ): """simple docstring""" return SortedLinkedList(list(_lowerCAmelCase ) + list(_lowerCAmelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase_ : List[str] = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
11
0
"""simple docstring""" import argparse import fairseq import torch from torch import nn from transformers import ( MBartaaTokenizer, MBartConfig, MBartForCausalLM, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } SCREAMING_SNAKE_CASE = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def lowerCamelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )-> Optional[int]: """simple docstring""" for attribute in key.split("." ): UpperCamelCase = getattr(_UpperCamelCase , _UpperCamelCase ) if weight_type is not None: UpperCamelCase = getattr(_UpperCamelCase , _UpperCamelCase ).shape else: UpperCamelCase = hf_pointer.shape assert hf_shape == value.shape, ( F"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" F" {value.shape} for {full_name}" ) if weight_type == "weight": UpperCamelCase = value elif weight_type == "weight_g": UpperCamelCase = value elif weight_type == "weight_v": UpperCamelCase = value elif weight_type == "bias": UpperCamelCase = value else: UpperCamelCase = value logger.info(F"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def lowerCamelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ )-> Tuple: """simple docstring""" UpperCamelCase = [] UpperCamelCase = fairseq_model.state_dict() UpperCamelCase = hf_model.feature_extractor UpperCamelCase = hf_model.adapter for name, value in fairseq_dict.items(): UpperCamelCase = False if "conv_layers" in name: load_conv_layer( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , hf_model.config.feat_extract_norm == "group" , ) UpperCamelCase = True elif any(x in name for x in ["adaptor", "w2v_encoder.proj.", "w2v_proj_ln."] ): load_adapter(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) UpperCamelCase = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: UpperCamelCase = True if "*" in mapped_key: UpperCamelCase = name.split(_UpperCamelCase )[0].split("." )[-2] UpperCamelCase = mapped_key.replace("*" , _UpperCamelCase ) if "weight_g" in name: UpperCamelCase = "weight_g" elif "weight_v" in name: UpperCamelCase = "weight_v" elif "bias" in name: UpperCamelCase = "bias" elif "weight" in name: UpperCamelCase = "weight" else: UpperCamelCase = None set_recursively(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) continue if not is_used: unused_weights.append(_UpperCamelCase ) logger.warning(F"Unused weights: {unused_weights}" ) def lowerCamelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )-> Optional[Any]: """simple docstring""" UpperCamelCase = full_name.split("conv_layers." )[-1] UpperCamelCase = name.split("." ) UpperCamelCase = int(items[0] ) UpperCamelCase = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) UpperCamelCase = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) UpperCamelCase = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was" " found." ) UpperCamelCase = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found." ) UpperCamelCase = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(_UpperCamelCase ) def lowerCamelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )-> int: """simple docstring""" UpperCamelCase = full_name.split("adaptor." )[-1] UpperCamelCase = name.split("." ) if items[1].isdigit(): UpperCamelCase = int(items[1] ) else: UpperCamelCase = None if "adaptor" not in full_name: if "proj_ln" in full_name: # has to be layer norm if "bias" in name: assert ( value.shape == adapter.proj_layer_norm.bias.data.shape ), F"{full_name} has size {value.shape}, but {adapter.proj_layer_norm.bias.data.shape} was found." UpperCamelCase = value logger.info(F"Adapter proj layer norm bias was initialized from {full_name}." ) if "weight" in name: assert ( value.shape == adapter.proj_layer_norm.weight.data.shape ), F"{full_name} has size {value.shape}, but {adapter.proj_layer_norm.weight.data.shape} was found." UpperCamelCase = value else: # has to be projection layer if "bias" in name: assert ( value.shape == adapter.proj.bias.data.shape ), F"{full_name} has size {value.shape}, but {adapter.proj.bias.data.shape} was found." UpperCamelCase = value logger.info(F"Adapter proj layer bias was initialized from {full_name}." ) if "weight" in name: assert ( value.shape == adapter.proj.weight.data.shape ), F"{full_name} has size {value.shape}, but {adapter.proj.weight.data.shape} was found." UpperCamelCase = value logger.info(F"Adapter proj layer weight was initialized from {full_name}." ) elif isinstance(_UpperCamelCase , _UpperCamelCase ): if "bias" in name: assert ( value.shape == adapter.layers[layer_id].conv.bias.data.shape ), F"{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.bias.data.shape} was found." UpperCamelCase = value logger.info(F"Adapter layer {layer_id} bias was initialized from {full_name}." ) elif "weight" in name: assert ( value.shape == adapter.layers[layer_id].conv.weight.data.shape ), F"{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.weight.data.shape} was found." UpperCamelCase = value logger.info(F"Adapter layer {layer_id} bias was initialized from {full_name}." ) else: unused_weights.append(_UpperCamelCase ) def lowerCamelCase__ ( UpperCAmelCase_ )-> str: """simple docstring""" UpperCamelCase , UpperCamelCase = emb.weight.shape UpperCamelCase = nn.Linear(_UpperCamelCase , _UpperCamelCase , bias=_UpperCamelCase ) UpperCamelCase = emb.weight.data return lin_layer @torch.no_grad() def lowerCamelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , )-> int: """simple docstring""" UpperCamelCase = WavaVecaConfig.from_pretrained( _UpperCamelCase , add_adapter=_UpperCamelCase , adapter_stride=_UpperCamelCase , adapter_kernel_size=_UpperCamelCase , use_auth_token=_UpperCamelCase , output_hidden_size=_UpperCamelCase , ) UpperCamelCase = MBartConfig.from_pretrained(_UpperCamelCase ) # load model UpperCamelCase , UpperCamelCase , UpperCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={ "config_yaml": config_yaml_path, "data": "/".join(dict_path.split("/" )[:-1] ), "w2v_path": checkpoint_path, "load_pretrained_decoder_from": None, } , ) UpperCamelCase = model[0].eval() # load feature extractor UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained(_UpperCamelCase , use_auth_token=_UpperCamelCase ) # set weights for wav2vec2 encoder UpperCamelCase = WavaVecaModel(_UpperCamelCase ) recursively_load_weights_wavaveca(model.encoder , _UpperCamelCase ) # load decoder weights UpperCamelCase = MBartForCausalLM(_UpperCamelCase ) UpperCamelCase , UpperCamelCase = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=_UpperCamelCase ) logger.warning(F"The following keys are missing when loading the decoder weights: {missing_keys}" ) logger.warning(F"The following keys are unexpected when loading the decoder weights: {unexpected_keys}" ) UpperCamelCase = SpeechEncoderDecoderModel(encoder=_UpperCamelCase , decoder=_UpperCamelCase ) UpperCamelCase = False UpperCamelCase = MBartaaTokenizer(_UpperCamelCase ) tokenizer.save_pretrained(_UpperCamelCase ) UpperCamelCase = hf_wavavec.config.to_dict() UpperCamelCase = tokenizer.pad_token_id UpperCamelCase = tokenizer.bos_token_id UpperCamelCase = tokenizer.eos_token_id UpperCamelCase = "mbart50" UpperCamelCase = "wav2vec2" UpperCamelCase = tokenizer.eos_token_id UpperCamelCase = 25_00_04 UpperCamelCase = tokenizer.eos_token_id UpperCamelCase = SpeechEncoderDecoderConfig.from_dict(_UpperCamelCase ) hf_wavavec.save_pretrained(_UpperCamelCase ) feature_extractor.save_pretrained(_UpperCamelCase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_yaml_path""", default=None, type=str, help="""Path to yaml file of fine-tuned model""") parser.add_argument( """--encoder_config_path""", default="""facebook/wav2vec2-xls-r-1b""", type=str, help="""Path to hf encoder wav2vec2 checkpoint config""", ) parser.add_argument( """--decoder_config_path""", default="""facebook/mbart-large-50-one-to-many-mmt""", type=str, help="""Path to hf decoder checkpoint config""", ) parser.add_argument("""--add_adapter""", default=True, type=bool, help="""whethere to add model adapter layers""") parser.add_argument("""--adapter_stride""", default=2, type=int, help="""stride of adapter layers""") parser.add_argument("""--adapter_kernel_size""", default=3, type=int, help="""kernel size of adapter layers""") parser.add_argument("""--encoder_output_dim""", default=1_024, type=int, help="""encoder output dim""") parser.add_argument("""--start_token_id""", default=250_004, type=int, help="""`decoder_start_token_id` of model config""") SCREAMING_SNAKE_CASE = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, args.config_yaml_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, add_adapter=args.add_adapter, adapter_kernel_size=args.adapter_kernel_size, adapter_stride=args.adapter_stride, decoder_start_token_id=args.start_token_id, encoder_output_dim=args.encoder_output_dim, )
554
from graphs.minimum_spanning_tree_kruskal import kruskal def __lowerCAmelCase ( ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = 9 SCREAMING_SNAKE_CASE = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] SCREAMING_SNAKE_CASE = kruskal(_UpperCamelCase , _UpperCamelCase ) SCREAMING_SNAKE_CASE = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] assert sorted(_UpperCamelCase ) == sorted(_UpperCamelCase )
439
0
from __future__ import annotations from functools import lru_cache from math import ceil __A = 100 __A = set(range(3, NUM_PRIMES, 2)) primes.add(2) __A = 42 for prime in range(3, ceil(NUM_PRIMES**0.5), 2): if prime not in primes: continue primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime))) @lru_cache(maxsize=100 ) def lowerCAmelCase_ ( __a ) -> set[int]: """simple docstring""" if number_to_partition < 0: return set() elif number_to_partition == 0: return {1} lowerCamelCase__: set[int] =set() lowerCamelCase__: int lowerCamelCase__: int for prime in primes: if prime > number_to_partition: continue for sub in partition(number_to_partition - prime ): ret.add(sub * prime ) return ret def lowerCAmelCase_ ( __a = 5000 ) -> int | None: """simple docstring""" for number_to_partition in range(1 , __a ): if len(partition(__a ) ) > number_unique_partitions: return number_to_partition return None if __name__ == "__main__": print(f'{solution() = }')
437
from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass __A = (3, 9, -11, 0, 7, 5, 1, -1) __A = (4, 6, 2, 0, 8, 10, 3, -2) @dataclass class _SCREAMING_SNAKE_CASE : '''simple docstring''' lowercase_ = 42 lowercase_ = 42 class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__(self : Dict , UpperCAmelCase_ : Iterable[int]) ->None: '''simple docstring''' lowerCamelCase__: Node | None =None for i in sorted(UpperCAmelCase_ , reverse=UpperCAmelCase_): lowerCamelCase__: Any =Node(UpperCAmelCase_ , self.head) def __iter__(self : Optional[int]) ->Iterator[int]: '''simple docstring''' lowerCamelCase__: int =self.head while node: yield node.data lowerCamelCase__: List[str] =node.next_node def __len__(self : int) ->int: '''simple docstring''' return sum(1 for _ in self) def __str__(self : Union[str, Any]) ->str: '''simple docstring''' return " -> ".join([str(UpperCAmelCase_) for node in self]) def lowerCAmelCase_ ( __a , __a ) -> SortedLinkedList: """simple docstring""" return SortedLinkedList(list(__a ) + list(__a ) ) if __name__ == "__main__": import doctest doctest.testmod() __A = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
437
1
import os from glob import glob import imageio import torch import torchvision import wandb from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan from loaders import load_vqgan from PIL import Image from torch import nn from transformers import CLIPModel, CLIPTokenizerFast from utils import get_device, get_timestamp, show_pil class __UpperCamelCase : """simple docstring""" def __init__( self : int , _A : Dict = "cpu" , _A : str = "openai/clip-vit-large-patch14" ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = device __SCREAMING_SNAKE_CASE : List[Any] = CLIPTokenizerFast.from_pretrained(_lowercase ) __SCREAMING_SNAKE_CASE : Optional[int] = [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73] __SCREAMING_SNAKE_CASE : Union[str, Any] = [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11] __SCREAMING_SNAKE_CASE : str = torchvision.transforms.Normalize(self.image_mean , self.image_std ) __SCREAMING_SNAKE_CASE : Any = torchvision.transforms.Resize(224 ) __SCREAMING_SNAKE_CASE : str = torchvision.transforms.CenterCrop(224 ) def UpperCAmelCase__ ( self : int , _A : Tuple ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = self.resize(_lowercase ) __SCREAMING_SNAKE_CASE : int = self.center_crop(_lowercase ) __SCREAMING_SNAKE_CASE : Union[str, Any] = self.normalize(_lowercase ) return images def __call__( self : Optional[Any] , _A : int=None , _A : Optional[int]=None , **_A : List[str] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = self.tokenizer(text=_lowercase , **_lowercase ) __SCREAMING_SNAKE_CASE : Optional[int] = self.preprocess_img(_lowercase ) __SCREAMING_SNAKE_CASE : Optional[Any] = {key: value.to(self.device ) for (key, value) in encoding.items()} return encoding class __UpperCamelCase ( nn.Module ): """simple docstring""" def __init__( self : Union[str, Any] , _A : Union[str, Any]=10 , _A : Optional[int]=0.01 , _A : int=None , _A : str=None , _A : Union[str, Any]=None , _A : int=None , _A : Optional[Any]=None , _A : Optional[Any]=None , _A : str=False , _A : Any=True , _A : Any="image" , _A : Union[str, Any]=True , _A : List[Any]=False , _A : int=False , _A : Tuple=False , ): """simple docstring""" super().__init__() __SCREAMING_SNAKE_CASE : List[Any] = None __SCREAMING_SNAKE_CASE : List[str] = device if device else get_device() if vqgan: __SCREAMING_SNAKE_CASE : str = vqgan else: __SCREAMING_SNAKE_CASE : Any = load_vqgan(self.device , conf_path=_lowercase , ckpt_path=_lowercase ) self.vqgan.eval() if clip: __SCREAMING_SNAKE_CASE : int = clip else: __SCREAMING_SNAKE_CASE : List[str] = CLIPModel.from_pretrained('''openai/clip-vit-base-patch32''' ) self.clip.to(self.device ) __SCREAMING_SNAKE_CASE : Tuple = ProcessorGradientFlow(device=self.device ) __SCREAMING_SNAKE_CASE : int = iterations __SCREAMING_SNAKE_CASE : str = lr __SCREAMING_SNAKE_CASE : int = log __SCREAMING_SNAKE_CASE : List[Any] = make_grid __SCREAMING_SNAKE_CASE : Tuple = return_val __SCREAMING_SNAKE_CASE : Any = quantize __SCREAMING_SNAKE_CASE : Optional[int] = self.vqgan.decoder.z_shape def UpperCAmelCase__ ( self : Optional[Any] , _A : List[Any]=None , _A : Any=None , _A : List[Any]=5 , _A : List[str]=True ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = [] if output_path is None: __SCREAMING_SNAKE_CASE : List[Any] = """./animation.gif""" if input_path is None: __SCREAMING_SNAKE_CASE : Dict = self.save_path __SCREAMING_SNAKE_CASE : Optional[Any] = sorted(glob(input_path + '''/*''' ) ) if not len(_lowercase ): raise ValueError( '''No images found in save path, aborting (did you pass save_intermediate=True to the generate''' ''' function?)''' ) if len(_lowercase ) == 1: print('''Only one image found in save path, (did you pass save_intermediate=True to the generate function?)''' ) __SCREAMING_SNAKE_CASE : List[Any] = total_duration / len(_lowercase ) __SCREAMING_SNAKE_CASE : List[str] = [frame_duration] * len(_lowercase ) if extend_frames: __SCREAMING_SNAKE_CASE : Dict = 1.5 __SCREAMING_SNAKE_CASE : Union[str, Any] = 3 for file_name in paths: if file_name.endswith('''.png''' ): images.append(imageio.imread(_lowercase ) ) imageio.mimsave(_lowercase , _lowercase , duration=_lowercase ) print(F'''gif saved to {output_path}''' ) def UpperCAmelCase__ ( self : List[Any] , _A : Dict=None , _A : Tuple=None ): """simple docstring""" if not (path or img): raise ValueError('''Input either path or tensor''' ) if img is not None: raise NotImplementedError __SCREAMING_SNAKE_CASE : Any = preprocess(Image.open(_lowercase ) , target_image_size=256 ).to(self.device ) __SCREAMING_SNAKE_CASE : Dict = preprocess_vqgan(_lowercase ) __SCREAMING_SNAKE_CASE : str = self.vqgan.encode(_lowercase ) return z def UpperCAmelCase__ ( self : Optional[int] , _A : Optional[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = self.latent.detach().requires_grad_() __SCREAMING_SNAKE_CASE : Union[str, Any] = base_latent + transform_vector if self.quantize: __SCREAMING_SNAKE_CASE : Optional[int] = self.vqgan.quantize(_lowercase ) else: __SCREAMING_SNAKE_CASE : List[str] = trans_latent return self.vqgan.decode(_lowercase ) def UpperCAmelCase__ ( self : int , _A : Any , _A : Any , _A : Optional[Any]=None ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = self.clip_preprocessor(text=_lowercase , images=_lowercase , return_tensors='''pt''' , padding=_lowercase ) __SCREAMING_SNAKE_CASE : Union[str, Any] = self.clip(**_lowercase ) __SCREAMING_SNAKE_CASE : List[Any] = clip_outputs.logits_per_image if weights is not None: __SCREAMING_SNAKE_CASE : int = similarity_logits * weights return similarity_logits.sum() def UpperCAmelCase__ ( self : List[str] , _A : Optional[Any] , _A : Optional[int] , _A : str ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = self._get_clip_similarity(pos_prompts['''prompts'''] , _lowercase , weights=(1 / pos_prompts['''weights''']) ) if neg_prompts: __SCREAMING_SNAKE_CASE : Tuple = self._get_clip_similarity(neg_prompts['''prompts'''] , _lowercase , weights=neg_prompts['''weights'''] ) else: __SCREAMING_SNAKE_CASE : Any = torch.tensor([1] , device=self.device ) __SCREAMING_SNAKE_CASE : Any = -torch.log(_lowercase ) + torch.log(_lowercase ) return loss def UpperCAmelCase__ ( self : Any , _A : Dict , _A : Any , _A : Dict ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = torch.randn_like(self.latent , requires_grad=_lowercase , device=self.device ) __SCREAMING_SNAKE_CASE : Dict = torch.optim.Adam([vector] , lr=self.lr ) for i in range(self.iterations ): optim.zero_grad() __SCREAMING_SNAKE_CASE : List[str] = self._add_vector(_lowercase ) __SCREAMING_SNAKE_CASE : Union[str, Any] = loop_post_process(_lowercase ) __SCREAMING_SNAKE_CASE : int = self._get_CLIP_loss(_lowercase , _lowercase , _lowercase ) print('''CLIP loss''' , _lowercase ) if self.log: wandb.log({'''CLIP Loss''': clip_loss} ) clip_loss.backward(retain_graph=_lowercase ) optim.step() if self.return_val == "image": yield custom_to_pil(transformed_img[0] ) else: yield vector def UpperCAmelCase__ ( self : Tuple , _A : List[Any] , _A : List[Any] , _A : Tuple ): """simple docstring""" wandb.init(reinit=_lowercase , project='''face-editor''' ) wandb.config.update({'''Positive Prompts''': positive_prompts} ) wandb.config.update({'''Negative Prompts''': negative_prompts} ) wandb.config.update({'''lr''': self.lr, '''iterations''': self.iterations} ) if image_path: __SCREAMING_SNAKE_CASE : Tuple = Image.open(_lowercase ) __SCREAMING_SNAKE_CASE : str = image.resize((256, 256) ) wandb.log('''Original Image''' , wandb.Image(_lowercase ) ) def UpperCAmelCase__ ( self : str , _A : Tuple ): """simple docstring""" if not prompts: return [] __SCREAMING_SNAKE_CASE : List[str] = [] __SCREAMING_SNAKE_CASE : str = [] if isinstance(_lowercase , _lowercase ): __SCREAMING_SNAKE_CASE : Union[str, Any] = [prompt.strip() for prompt in prompts.split('''|''' )] for prompt in prompts: if isinstance(_lowercase , (tuple, list) ): __SCREAMING_SNAKE_CASE : Union[str, Any] = prompt[0] __SCREAMING_SNAKE_CASE : Dict = float(prompt[1] ) elif ":" in prompt: __SCREAMING_SNAKE_CASE : Tuple = prompt.split(''':''' ) __SCREAMING_SNAKE_CASE : Optional[Any] = float(_lowercase ) else: __SCREAMING_SNAKE_CASE : Dict = prompt __SCREAMING_SNAKE_CASE : Optional[Any] = 1.0 processed_prompts.append(_lowercase ) weights.append(_lowercase ) return { "prompts": processed_prompts, "weights": torch.tensor(_lowercase , device=self.device ), } def UpperCAmelCase__ ( self : List[str] , _A : Dict , _A : Tuple=None , _A : Union[str, Any]=None , _A : Union[str, Any]=True , _A : List[str]=False , _A : Dict=True , _A : str=True , _A : Tuple=None , ): """simple docstring""" if image_path: __SCREAMING_SNAKE_CASE : Tuple = self._get_latent(_lowercase ) else: __SCREAMING_SNAKE_CASE : Dict = torch.randn(self.latent_dim , device=self.device ) if self.log: self._init_logging(_lowercase , _lowercase , _lowercase ) assert pos_prompts, "You must provide at least one positive prompt." __SCREAMING_SNAKE_CASE : Tuple = self.process_prompts(_lowercase ) __SCREAMING_SNAKE_CASE : int = self.process_prompts(_lowercase ) if save_final and save_path is None: __SCREAMING_SNAKE_CASE : Optional[Any] = os.path.join('''./outputs/''' , '''_'''.join(pos_prompts['''prompts'''] ) ) if not os.path.exists(_lowercase ): os.makedirs(_lowercase ) else: __SCREAMING_SNAKE_CASE : List[str] = save_path + """_""" + get_timestamp() os.makedirs(_lowercase ) __SCREAMING_SNAKE_CASE : List[str] = save_path __SCREAMING_SNAKE_CASE : Dict = self.vqgan.decode(self.latent )[0] if show_intermediate: print('''Original Image''' ) show_pil(custom_to_pil(_lowercase ) ) __SCREAMING_SNAKE_CASE : Tuple = loop_post_process(_lowercase ) for iter, transformed_img in enumerate(self._optimize_CLIP(_lowercase , _lowercase , _lowercase ) ): if show_intermediate: show_pil(_lowercase ) if save_intermediate: transformed_img.save(os.path.join(self.save_path , F'''iter_{iter:03d}.png''' ) ) if self.log: wandb.log({'''Image''': wandb.Image(_lowercase )} ) if show_final: show_pil(_lowercase ) if save_final: transformed_img.save(os.path.join(self.save_path , F'''iter_{iter:03d}_final.png''' ) )
74
"""simple docstring""" from __future__ import absolute_import, division, print_function, unicode_literals from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers import RobertaConfig from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.roberta.modeling_roberta import ( ROBERTA_INPUTS_DOCSTRING, ROBERTA_START_DOCSTRING, RobertaEmbeddings, ) from .modeling_highway_bert import BertPreTrainedModel, DeeBertModel, HighwayException, entropy @add_start_docstrings( '''The RoBERTa Model transformer with early exiting (DeeRoBERTa). ''' , SCREAMING_SNAKE_CASE__ , ) class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = RobertaConfig _lowerCamelCase = '''roberta''' def __init__( self , _lowercase ) -> Optional[Any]: '''simple docstring''' super().__init__(_lowercase ) snake_case_ : str = RobertaEmbeddings(_lowercase ) self.init_weights() @add_start_docstrings( '''RoBERTa Model (with early exiting - DeeRoBERTa) with a classifier on top, also takes care of multi-layer training. ''' , SCREAMING_SNAKE_CASE__ , ) class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = RobertaConfig _lowerCamelCase = '''roberta''' def __init__( self , _lowercase ) -> List[Any]: '''simple docstring''' super().__init__(_lowercase ) snake_case_ : Optional[Any] = config.num_labels snake_case_ : Dict = config.num_hidden_layers snake_case_ : str = DeeRobertaModel(_lowercase ) snake_case_ : Dict = nn.Dropout(config.hidden_dropout_prob ) snake_case_ : List[str] = nn.Linear(config.hidden_size , self.config.num_labels ) @add_start_docstrings_to_model_forward(_lowercase ) def UpperCAmelCase__ ( self , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=-1 , _lowercase=False , ) -> Tuple: '''simple docstring''' snake_case_ : Any = self.num_layers try: snake_case_ : int = self.roberta( _lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , position_ids=_lowercase , head_mask=_lowercase , inputs_embeds=_lowercase , ) snake_case_ : str = outputs[1] snake_case_ : Union[str, Any] = self.dropout(_lowercase ) snake_case_ : Tuple = self.classifier(_lowercase ) snake_case_ : Dict = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: snake_case_ : List[Any] = e.message snake_case_ : Union[str, Any] = e.exit_layer snake_case_ : Dict = outputs[0] if not self.training: snake_case_ : Dict = entropy(_lowercase ) snake_case_ : Optional[int] = [] snake_case_ : Union[str, Any] = [] if labels is not None: if self.num_labels == 1: # We are doing regression snake_case_ : Dict = MSELoss() snake_case_ : Dict = loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: snake_case_ : Union[str, Any] = CrossEntropyLoss() snake_case_ : Union[str, Any] = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits snake_case_ : int = [] for highway_exit in outputs[-1]: snake_case_ : Tuple = highway_exit[0] if not self.training: highway_logits_all.append(_lowercase ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression snake_case_ : Optional[int] = MSELoss() snake_case_ : Optional[Any] = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: snake_case_ : Optional[int] = CrossEntropyLoss() snake_case_ : Union[str, Any] = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(_lowercase ) if train_highway: snake_case_ : Dict = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: snake_case_ : List[str] = (loss,) + outputs if not self.training: snake_case_ : Optional[Any] = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: snake_case_ : Tuple = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), entropy
58
0
import operator as op def a(lowercase__ ): '''simple docstring''' snake_case_ = [] snake_case_ = lambda lowercase__ , lowercase__ : int(x / y ) # noqa: E731 integer division operation snake_case_ = { '^': op.pow, '*': op.mul, '/': div, '+': op.add, '-': op.sub, } # operators & their respective operation # print table header print('Symbol'.center(8 ) , 'Action'.center(12 ) , 'Stack' , sep=' | ' ) print('-' * (30 + len(lowercase__ )) ) for x in post_fix: if x.isdigit(): # if x in digit stack.append(lowercase__ ) # append x to stack # output in tabular format print(x.rjust(8 ) , ('push(' + x + ')').ljust(12 ) , ','.join(lowercase__ ) , sep=' | ' ) else: snake_case_ = stack.pop() # pop stack # output in tabular format print(''.rjust(8 ) , ('pop(' + b + ')').ljust(12 ) , ','.join(lowercase__ ) , sep=' | ' ) snake_case_ = stack.pop() # pop stack # output in tabular format print(''.rjust(8 ) , ('pop(' + a + ')').ljust(12 ) , ','.join(lowercase__ ) , sep=' | ' ) stack.append( str(opr[x](int(lowercase__ ) , int(lowercase__ ) ) ) ) # evaluate the 2 values popped from stack & push result to stack # output in tabular format print( x.rjust(8 ) , ('push(' + a + x + b + ')').ljust(12 ) , ','.join(lowercase__ ) , sep=' | ' , ) return int(stack[0] ) if __name__ == "__main__": A = input('\n\nEnter a Postfix Equation (space separated) = ').split(' ') print('\n\tResult = ', solve(Postfix))
46
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import platform import sys A = '3' print('Python version:', sys.version) print('OS platform:', platform.platform()) print('OS architecture:', platform.machine()) try: import torch print('Torch version:', torch.__version__) print('Cuda available:', torch.cuda.is_available()) print('Cuda version:', torch.version.cuda) print('CuDNN version:', torch.backends.cudnn.version()) print('Number of GPUs available:', torch.cuda.device_count()) except ImportError: print('Torch version:', None) try: import transformers print('transformers version:', transformers.__version__) except ImportError: print('transformers version:', None)
46
1
'''simple docstring''' from abc import ABC, abstractmethod from argparse import ArgumentParser class __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" @staticmethod @abstractmethod def _UpperCAmelCase ( lowerCAmelCase : ArgumentParser ): raise NotImplementedError() @abstractmethod def _UpperCAmelCase ( self : Dict ): raise NotImplementedError()
452
"""simple docstring""" from __future__ import annotations def snake_case ( _a: int , _a: int )-> tuple[int, int]: '''simple docstring''' if b == 0: return (1, 0) ((lowerCamelCase__) , (lowerCamelCase__)) = extended_euclid(_a , a % b ) lowerCamelCase__ = a // b return (y, x - k * y) def snake_case ( _a: int , _a: int , _a: int , _a: int )-> int: '''simple docstring''' ((lowerCamelCase__) , (lowerCamelCase__)) = extended_euclid(_a , _a ) lowerCamelCase__ = na * na lowerCamelCase__ = ra * x * na + ra * y * na return (n % m + m) % m def snake_case ( _a: int , _a: int )-> int: '''simple docstring''' ((lowerCamelCase__) , (lowerCamelCase__)) = extended_euclid(_a , _a ) if b < 0: lowerCamelCase__ = (b % n + n) % n return b def snake_case ( _a: int , _a: int , _a: int , _a: int )-> int: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ = invert_modulo(_a , _a ), invert_modulo(_a , _a ) lowerCamelCase__ = na * na lowerCamelCase__ = ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name="chinese_remainder_theorem", verbose=True) testmod(name="chinese_remainder_theorem2", verbose=True) testmod(name="invert_modulo", verbose=True) testmod(name="extended_euclid", verbose=True)
510
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A_ = { '''configuration_upernet''': ['''UperNetConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ '''UperNetForSemanticSegmentation''', '''UperNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_upernet import UperNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_upernet import UperNetForSemanticSegmentation, UperNetPreTrainedModel else: import sys A_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
498
"""simple docstring""" from __future__ import annotations class __SCREAMING_SNAKE_CASE : def __init__( self : Any , snake_case : str , snake_case : str ): '''simple docstring''' A__ , A__ : List[str] = text, pattern A__ , A__ : List[str] = len(snake_case ), len(snake_case ) def _UpperCamelCase ( self : str , snake_case : str ): '''simple docstring''' for i in range(self.patLen - 1 , -1 , -1 ): if char == self.pattern[i]: return i return -1 def _UpperCamelCase ( self : Any , snake_case : int ): '''simple docstring''' for i in range(self.patLen - 1 , -1 , -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def _UpperCamelCase ( self : Union[str, Any] ): '''simple docstring''' A__ : str = [] for i in range(self.textLen - self.patLen + 1 ): A__ : List[Any] = self.mismatch_in_text(snake_case ) if mismatch_index == -1: positions.append(snake_case ) else: A__ : Dict = self.match_in_pattern(self.text[mismatch_index] ) A__ : Union[str, Any] = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions A_ = '''ABAABA''' A_ = '''AB''' A_ = BoyerMooreSearch(text, pattern) A_ = bms.bad_character_heuristic() if len(positions) == 0: print('''No match found''') else: print('''Pattern found in following positions: ''') print(positions)
498
1
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType __SCREAMING_SNAKE_CASE =logging.get_logger(__name__) __SCREAMING_SNAKE_CASE ={ """microsoft/deberta-v2-xlarge""": """https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json""", """microsoft/deberta-v2-xxlarge""": """https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json""", """microsoft/deberta-v2-xlarge-mnli""": ( """https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json""" ), """microsoft/deberta-v2-xxlarge-mnli""": ( """https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json""" ), } class __magic_name__ ( lowerCamelCase__): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = 'deberta-v2' def __init__( self: int , _lowerCamelCase: Optional[Any]=12_81_00 , _lowerCamelCase: str=15_36 , _lowerCamelCase: List[Any]=24 , _lowerCamelCase: Union[str, Any]=24 , _lowerCamelCase: Optional[Any]=61_44 , _lowerCamelCase: Union[str, Any]="gelu" , _lowerCamelCase: Union[str, Any]=0.1 , _lowerCamelCase: Tuple=0.1 , _lowerCamelCase: Dict=5_12 , _lowerCamelCase: List[str]=0 , _lowerCamelCase: int=0.02 , _lowerCamelCase: str=1E-7 , _lowerCamelCase: Any=False , _lowerCamelCase: Union[str, Any]=-1 , _lowerCamelCase: Optional[int]=0 , _lowerCamelCase: List[str]=True , _lowerCamelCase: List[str]=None , _lowerCamelCase: Optional[int]=0 , _lowerCamelCase: str="gelu" , **_lowerCamelCase: Optional[Any] , ): super().__init__(**lowercase__ ) SCREAMING_SNAKE_CASE_ = hidden_size SCREAMING_SNAKE_CASE_ = num_hidden_layers SCREAMING_SNAKE_CASE_ = num_attention_heads SCREAMING_SNAKE_CASE_ = intermediate_size SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = hidden_dropout_prob SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ = max_position_embeddings SCREAMING_SNAKE_CASE_ = type_vocab_size SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = relative_attention SCREAMING_SNAKE_CASE_ = max_relative_positions SCREAMING_SNAKE_CASE_ = pad_token_id SCREAMING_SNAKE_CASE_ = position_biased_input # Backwards compatibility if type(lowercase__ ) == str: SCREAMING_SNAKE_CASE_ = [x.strip() for x in pos_att_type.lower().split('''|''' )] SCREAMING_SNAKE_CASE_ = pos_att_type SCREAMING_SNAKE_CASE_ = vocab_size SCREAMING_SNAKE_CASE_ = layer_norm_eps SCREAMING_SNAKE_CASE_ = kwargs.get('''pooler_hidden_size''' , lowercase__ ) SCREAMING_SNAKE_CASE_ = pooler_dropout SCREAMING_SNAKE_CASE_ = pooler_hidden_act class __magic_name__ ( lowerCamelCase__): '''simple docstring''' @property def _A ( self: Dict ): if self.task == "multiple-choice": SCREAMING_SNAKE_CASE_ = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: SCREAMING_SNAKE_CASE_ = {0: '''batch''', 1: '''sequence'''} if self._config.type_vocab_size > 0: return OrderedDict( [('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis)] ) else: return OrderedDict([('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis)] ) @property def _A ( self: str ): return 12 def _A ( self: List[Any] , _lowerCamelCase: Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , _lowerCamelCase: int = -1 , _lowerCamelCase: int = -1 , _lowerCamelCase: int = -1 , _lowerCamelCase: bool = False , _lowerCamelCase: Optional["TensorType"] = None , _lowerCamelCase: int = 3 , _lowerCamelCase: int = 40 , _lowerCamelCase: int = 40 , _lowerCamelCase: "PreTrainedTokenizerBase" = None , ): SCREAMING_SNAKE_CASE_ = super().generate_dummy_inputs(preprocessor=lowercase__ , framework=lowercase__ ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
234
'''simple docstring''' import os from math import logaa def _A ( A__ = "base_exp.txt" ): """simple docstring""" __lowercase = 0 __lowercase = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(A__ ) , A__ ) ) ): __lowercase , __lowercase = list(map(A__ , line.split(''',''' ) ) ) if x * logaa(A__ ) > largest: __lowercase = x * logaa(A__ ) __lowercase = i + 1 return result if __name__ == "__main__": print(solution())
41
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : Dict = logging.get_logger(__name__) __UpperCamelCase : str = { "google/pegasus-large": "https://huggingface.co/google/pegasus-large/resolve/main/config.json", # See all PEGASUS models at https://huggingface.co/models?filter=pegasus } class __magic_name__ ( __lowerCAmelCase): A: List[Any] = "pegasus" A: int = ["past_key_values"] A: Union[str, Any] = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self : int , lowerCamelCase__ : Dict=50265 , lowerCamelCase__ : Tuple=1024 , lowerCamelCase__ : str=12 , lowerCamelCase__ : Dict=4096 , lowerCamelCase__ : Optional[Any]=16 , lowerCamelCase__ : Union[str, Any]=12 , lowerCamelCase__ : str=4096 , lowerCamelCase__ : str=16 , lowerCamelCase__ : Dict=0.0 , lowerCamelCase__ : Any=0.0 , lowerCamelCase__ : Dict=True , lowerCamelCase__ : Union[str, Any]=True , lowerCamelCase__ : Dict="gelu" , lowerCamelCase__ : int=1024 , lowerCamelCase__ : Dict=0.1 , lowerCamelCase__ : Any=0.0 , lowerCamelCase__ : int=0.0 , lowerCamelCase__ : Optional[int]=0.02 , lowerCamelCase__ : List[str]=0 , lowerCamelCase__ : Tuple=False , lowerCamelCase__ : List[Any]=0 , lowerCamelCase__ : List[str]=1 , lowerCamelCase__ : Tuple=1 , **lowerCamelCase__ : List[Any] , ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ : Tuple = vocab_size UpperCamelCase__ : int = max_position_embeddings UpperCamelCase__ : Optional[int] = d_model UpperCamelCase__ : Dict = encoder_ffn_dim UpperCamelCase__ : str = encoder_layers UpperCamelCase__ : Union[str, Any] = encoder_attention_heads UpperCamelCase__ : Any = decoder_ffn_dim UpperCamelCase__ : Union[str, Any] = decoder_layers UpperCamelCase__ : Optional[int] = decoder_attention_heads UpperCamelCase__ : Any = dropout UpperCamelCase__ : Any = attention_dropout UpperCamelCase__ : Optional[int] = activation_dropout UpperCamelCase__ : Union[str, Any] = activation_function UpperCamelCase__ : Union[str, Any] = init_std UpperCamelCase__ : Any = encoder_layerdrop UpperCamelCase__ : int = decoder_layerdrop UpperCamelCase__ : Optional[Any] = use_cache UpperCamelCase__ : str = encoder_layers UpperCamelCase__ : Union[str, Any] = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ , is_encoder_decoder=lowerCamelCase__ , decoder_start_token_id=lowerCamelCase__ , forced_eos_token_id=lowerCamelCase__ , **lowerCamelCase__ , ) @property def UpperCAmelCase__ ( self : Optional[int] ) -> int: '''simple docstring''' return self.encoder_attention_heads @property def UpperCAmelCase__ ( self : Any ) -> int: '''simple docstring''' return self.d_model
717
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCamelCase : Any = logging.get_logger(__name__) __UpperCamelCase : Any = { "andreasmadsen/efficient_mlm_m0.40": ( "https://huggingface.co/andreasmadsen/efficient_mlm_m0.40/resolve/main/config.json" ), } class __magic_name__ ( __lowerCAmelCase): A: List[Any] = "roberta-prelayernorm" def __init__( self : Tuple , lowerCamelCase__ : List[Any]=50265 , lowerCamelCase__ : Optional[Any]=768 , lowerCamelCase__ : str=12 , lowerCamelCase__ : Union[str, Any]=12 , lowerCamelCase__ : Dict=3072 , lowerCamelCase__ : int="gelu" , lowerCamelCase__ : Tuple=0.1 , lowerCamelCase__ : Tuple=0.1 , lowerCamelCase__ : List[str]=512 , lowerCamelCase__ : int=2 , lowerCamelCase__ : Tuple=0.02 , lowerCamelCase__ : List[Any]=1E-1_2 , lowerCamelCase__ : str=1 , lowerCamelCase__ : int=0 , lowerCamelCase__ : int=2 , lowerCamelCase__ : Union[str, Any]="absolute" , lowerCamelCase__ : Optional[Any]=True , lowerCamelCase__ : Dict=None , **lowerCamelCase__ : Any , ) -> Optional[int]: '''simple docstring''' super().__init__(pad_token_id=lowerCamelCase__ , bos_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ , **lowerCamelCase__ ) UpperCamelCase__ : Optional[int] = vocab_size UpperCamelCase__ : Union[str, Any] = hidden_size UpperCamelCase__ : List[str] = num_hidden_layers UpperCamelCase__ : Optional[int] = num_attention_heads UpperCamelCase__ : List[str] = hidden_act UpperCamelCase__ : Optional[int] = intermediate_size UpperCamelCase__ : Optional[int] = hidden_dropout_prob UpperCamelCase__ : List[str] = attention_probs_dropout_prob UpperCamelCase__ : Optional[int] = max_position_embeddings UpperCamelCase__ : Optional[Any] = type_vocab_size UpperCamelCase__ : Union[str, Any] = initializer_range UpperCamelCase__ : Dict = layer_norm_eps UpperCamelCase__ : Union[str, Any] = position_embedding_type UpperCamelCase__ : Optional[int] = use_cache UpperCamelCase__ : int = classifier_dropout class __magic_name__ ( __lowerCAmelCase): @property def UpperCAmelCase__ ( self : int ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": UpperCamelCase__ : Dict = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: UpperCamelCase__ : Any = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
106
0
'''simple docstring''' from __future__ import annotations _lowerCAmelCase = 10 def UpperCamelCase ( a ) -> list[int]: '''simple docstring''' __magic_name__ = 1 __magic_name__ = max(a ) while placement <= max_digit: # declare and initialize empty buckets __magic_name__ = [[] for _ in range(a )] # split list_of_ints between the buckets for i in list_of_ints: __magic_name__ = int((i / placement) % RADIX ) buckets[tmp].append(a ) # put each buckets' contents into list_of_ints __magic_name__ = 0 for b in range(a ): for i in buckets[b]: __magic_name__ = i a += 1 # move to next placement *= RADIX return list_of_ints if __name__ == "__main__": import doctest doctest.testmod()
432
'''simple docstring''' import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("""TEST_SAGEMAKER""" ,"""False""" ) ) is not True ,reason="""Skipping test because should only be run when releasing minor transformers version""" ,) @pytest.mark.usefixtures("""sm_env""" ) @parameterized_class( [ { """framework""": """pytorch""", """script""": """run_glue.py""", """model_name_or_path""": """distilbert-base-cased""", """instance_type""": """ml.g4dn.xlarge""", """results""": {"""train_runtime""": 650, """eval_accuracy""": 0.6, """eval_loss""": 0.9}, }, { """framework""": """tensorflow""", """script""": """run_tf.py""", """model_name_or_path""": """distilbert-base-cased""", """instance_type""": """ml.g4dn.xlarge""", """results""": {"""train_runtime""": 600, """eval_accuracy""": 0.3, """eval_loss""": 0.9}, }, ] ) class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def snake_case__ ( self : int ): if self.framework == "pytorch": subprocess.run( F'''cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'''.split() , encoding='''utf-8''' , check=a__ , ) assert hasattr(self , '''env''' ) def snake_case__ ( self : str , a__ : int=1 ): # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=F'''{self.env.base_job_name}-single''' , instance_count=a__ , instance_type=self.instance_type , debugger_hook_config=a__ , hyperparameters={**self.env.hyperparameters, '''model_name_or_path''': self.model_name_or_path} , metric_definitions=self.env.metric_definitions , py_version='''py36''' , ) def snake_case__ ( self : Optional[int] , a__ : Tuple ): TrainingJobAnalytics(a__ ).export_csv(F'''{self.env.test_path}/{job_name}_metrics.csv''' ) def snake_case__ ( self : Any ): # create estimator __magic_name__ = self.create_estimator() # run training estimator.fit() # result dataframe __magic_name__ = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis __magic_name__ = list(result_metrics_df[result_metrics_df.metric_name == '''eval_accuracy''']['''value'''] ) __magic_name__ = list(result_metrics_df[result_metrics_df.metric_name == '''eval_loss''']['''value'''] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping __magic_name__ = ( Session().describe_training_job(estimator.latest_training_job.name ).get('''TrainingTimeInSeconds''' , 99_9999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['''eval_accuracy'''] for t in eval_accuracy ) assert all(t <= self.results['''eval_loss'''] for t in eval_loss ) # dump tests result into json file to share in PR with open(F'''{estimator.latest_training_job.name}.json''' , '''w''' ) as outfile: json.dump({'''train_time''': train_runtime, '''eval_accuracy''': eval_accuracy, '''eval_loss''': eval_loss} , a__ )
432
1
from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "microsoft/swinv2-tiny-patch4-window8-256": ( "https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json" ), } class lowercase ( UpperCamelCase__ ): _a = "swinv2" _a = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self , _a=224 , _a=4 , _a=3 , _a=96 , _a=[2, 2, 6, 2] , _a=[3, 6, 12, 24] , _a=7 , _a=4.0 , _a=True , _a=0.0 , _a=0.0 , _a=0.1 , _a="gelu" , _a=False , _a=0.02 , _a=1e-5 , _a=32 , **_a , ) -> List[str]: super().__init__(**_a ) _A : Optional[int] = image_size _A : List[Any] = patch_size _A : List[str] = num_channels _A : Optional[Any] = embed_dim _A : List[str] = depths _A : List[Any] = len(_a ) _A : str = num_heads _A : Optional[int] = window_size _A : List[str] = mlp_ratio _A : Union[str, Any] = qkv_bias _A : List[Any] = hidden_dropout_prob _A : List[str] = attention_probs_dropout_prob _A : List[str] = drop_path_rate _A : Optional[int] = hidden_act _A : List[str] = use_absolute_embeddings _A : Dict = layer_norm_eps _A : Optional[Any] = initializer_range _A : List[Any] = encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _A : str = int(embed_dim * 2 ** (len(_a ) - 1) ) _A : Tuple = (0, 0, 0, 0)
54
def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : Union[str, Any] = """""" for i in table: res += inp[i - 1] return res def lowerCAmelCase_ ( snake_case_ ): return data[1:] + data[0] def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : Dict = """""" for i in range(len(snake_case_ ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : int = int("""0b""" + data[0] + data[-1],2 ) _A : Any = int("""0b""" + data[1:3],2 ) return bin(s[row][col] )[2:] def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_,snake_case_ ): _A : List[str] = message[:4] _A : List[Any] = message[4:] _A : Union[str, Any] = apply_table(snake_case_,snake_case_ ) _A : List[Any] = xor(snake_case_,snake_case_ ) _A : Optional[Any] = apply_sbox(snake_case_,temp[:4] ) # noqa: E741 _A : List[Any] = apply_sbox(snake_case_,temp[4:] ) _A : int = """0""" * (2 - len(snake_case_ )) + l # noqa: E741 _A : Union[str, Any] = """0""" * (2 - len(snake_case_ )) + r _A : List[Any] = apply_table(l + r,snake_case_ ) _A : Any = xor(snake_case_,snake_case_ ) return temp + right if __name__ == "__main__": _snake_case = input("Enter 10 bit key: ") _snake_case = input("Enter 8 bit message: ") _snake_case = [6, 3, 7, 4, 8, 5, 10, 9] _snake_case = [3, 5, 2, 7, 4, 10, 1, 9, 8, 6] _snake_case = [2, 4, 3, 1] _snake_case = [2, 6, 3, 1, 4, 8, 5, 7] _snake_case = [4, 1, 3, 5, 7, 2, 8, 6] _snake_case = [4, 1, 2, 3, 2, 3, 4, 1] _snake_case = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] _snake_case = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation _snake_case = apply_table(key, paa_table) _snake_case = temp[:5] _snake_case = temp[5:] _snake_case = left_shift(left) _snake_case = left_shift(right) _snake_case = apply_table(left + right, pa_table) _snake_case = left_shift(left) _snake_case = left_shift(right) _snake_case = left_shift(left) _snake_case = left_shift(right) _snake_case = apply_table(left + right, pa_table) # encryption _snake_case = apply_table(message, IP) _snake_case = function(expansion, sa, sa, keya, temp) _snake_case = temp[4:] + temp[:4] _snake_case = function(expansion, sa, sa, keya, temp) _snake_case = apply_table(temp, IP_inv) print("Cipher text is:", CT) # decryption _snake_case = apply_table(CT, IP) _snake_case = function(expansion, sa, sa, keya, temp) _snake_case = temp[4:] + temp[:4] _snake_case = function(expansion, sa, sa, keya, temp) _snake_case = apply_table(temp, IP_inv) print("Plain text after decypting is:", PT)
54
1
'''simple docstring''' def a__ ( UpperCamelCase_ : Optional[Any] ): if len(SCREAMING_SNAKE_CASE_ ) <= 1: return [tuple(SCREAMING_SNAKE_CASE_ )] UpperCAmelCase__ :List[Any] = [] def generate(UpperCamelCase_ : Tuple, UpperCamelCase_ : Tuple ): if k == 1: res.append(tuple(arr[:] ) ) return generate(k - 1, SCREAMING_SNAKE_CASE_ ) for i in range(k - 1 ): if k % 2 == 0: # k is even UpperCAmelCase__ , UpperCAmelCase__ :Dict = arr[k - 1], arr[i] else: # k is odd UpperCAmelCase__ , UpperCAmelCase__ :Optional[Any] = arr[k - 1], arr[0] generate(k - 1, SCREAMING_SNAKE_CASE_ ) generate(len(SCREAMING_SNAKE_CASE_ ), SCREAMING_SNAKE_CASE_ ) return res if __name__ == "__main__": __lowerCamelCase = input('''Enter numbers separated by a comma:\n''').strip() __lowerCamelCase = [int(item) for item in user_input.split(''',''')] print(heaps(arr))
467
'''simple docstring''' def A_ ( SCREAMING_SNAKE_CASE_ ) ->bool: if number < 0: raise ValueError("""number must not be negative""" ) return number & (number - 1) == 0 if __name__ == "__main__": import doctest doctest.testmod()
451
0
import math import qiskit def UpperCAmelCase_( a__ = 1 , a__ = 1 , a__ = 1 ): """simple docstring""" if ( isinstance(a__ , a__ ) or isinstance(a__ , a__ ) or isinstance(a__ , a__ ) ): raise TypeError('''inputs must be integers.''' ) if (input_a < 0) or (input_a < 0) or (carry_in < 0): raise ValueError('''inputs must be positive.''' ) if ( (math.floor(a__ ) != input_a) or (math.floor(a__ ) != input_a) or (math.floor(a__ ) != carry_in) ): raise ValueError('''inputs must be exact integers.''' ) if (input_a > 2) or (input_a > 2) or (carry_in > 2): raise ValueError('''inputs must be less or equal to 2.''' ) # build registers SCREAMING_SNAKE_CASE : List[Any] = qiskit.QuantumRegister(4 , '''qr''' ) SCREAMING_SNAKE_CASE : Optional[int] = qiskit.ClassicalRegister(2 , '''cr''' ) # list the entries SCREAMING_SNAKE_CASE : Tuple = [input_a, input_a, carry_in] SCREAMING_SNAKE_CASE : Optional[int] = qiskit.QuantumCircuit(a__ , a__ ) for i in range(0 , 3 ): if entry[i] == 2: quantum_circuit.h(a__ ) # for hadamard entries elif entry[i] == 1: quantum_circuit.x(a__ ) # for 1 entries elif entry[i] == 0: quantum_circuit.i(a__ ) # for 0 entries # build the circuit quantum_circuit.ccx(0 , 1 , 3 ) # ccx = toffoli gate quantum_circuit.cx(0 , 1 ) quantum_circuit.ccx(1 , 2 , 3 ) quantum_circuit.cx(1 , 2 ) quantum_circuit.cx(0 , 1 ) quantum_circuit.measure([2, 3] , a__ ) # measure the last two qbits SCREAMING_SNAKE_CASE : Tuple = qiskit.Aer.get_backend('''aer_simulator''' ) SCREAMING_SNAKE_CASE : str = qiskit.execute(a__ , a__ , shots=1_000 ) return job.result().get_counts(a__ ) if __name__ == "__main__": print(F"Total sum count for state is: {quantum_full_adder(1, 1, 1)}")
333
import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class a_ : """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=13 , _lowerCamelCase=32 , _lowerCamelCase=3 , _lowerCamelCase=4 , _lowerCamelCase=[10, 20, 30, 40] , _lowerCamelCase=[2, 2, 3, 2] , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=37 , _lowerCamelCase="gelu" , _lowerCamelCase=10 , _lowerCamelCase=0.0_2 , _lowerCamelCase=["stage2", "stage3", "stage4"] , _lowerCamelCase=3 , _lowerCamelCase=None , ) ->Dict: SCREAMING_SNAKE_CASE : List[Any] = parent SCREAMING_SNAKE_CASE : Optional[Any] = batch_size SCREAMING_SNAKE_CASE : Tuple = image_size SCREAMING_SNAKE_CASE : Optional[int] = num_channels SCREAMING_SNAKE_CASE : Optional[Any] = num_stages SCREAMING_SNAKE_CASE : str = hidden_sizes SCREAMING_SNAKE_CASE : List[str] = depths SCREAMING_SNAKE_CASE : Tuple = is_training SCREAMING_SNAKE_CASE : str = use_labels SCREAMING_SNAKE_CASE : List[str] = intermediate_size SCREAMING_SNAKE_CASE : List[Any] = hidden_act SCREAMING_SNAKE_CASE : Dict = type_sequence_label_size SCREAMING_SNAKE_CASE : List[Any] = initializer_range SCREAMING_SNAKE_CASE : Optional[Any] = out_features SCREAMING_SNAKE_CASE : List[Any] = num_labels SCREAMING_SNAKE_CASE : str = scope SCREAMING_SNAKE_CASE : str = num_stages def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE : int = None if self.use_labels: SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE : Any = self.get_config() return config, pixel_values, labels def __lowerCAmelCase ( self ) ->Dict: return ConvNextConfig( num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , ) def __lowerCAmelCase ( self ) ->List[Any]: return UperNetConfig( backbone_config=self.get_backbone_config() , hidden_size=512 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=_lowerCamelCase , auxiliary_loss_weight=0.4 , auxiliary_in_channels=40 , auxiliary_channels=256 , auxiliary_num_convs=1 , auxiliary_concat_input=_lowerCamelCase , loss_ignore_index=255 , num_labels=self.num_labels , ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->Optional[Any]: SCREAMING_SNAKE_CASE : Optional[Any] = UperNetForSemanticSegmentation(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE : Dict = model(_lowerCamelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def __lowerCAmelCase ( self ) ->List[Any]: SCREAMING_SNAKE_CASE : Any = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ) : List[str] = config_and_inputs SCREAMING_SNAKE_CASE : int = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class a_ ( a__ , a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = (UperNetForSemanticSegmentation,) if is_torch_available() else () __SCREAMING_SNAKE_CASE : Union[str, Any] = {'image-segmentation': UperNetForSemanticSegmentation} if is_torch_available() else {} __SCREAMING_SNAKE_CASE : Union[str, Any] = False __SCREAMING_SNAKE_CASE : Optional[int] = False __SCREAMING_SNAKE_CASE : Optional[int] = False __SCREAMING_SNAKE_CASE : List[Any] = False __SCREAMING_SNAKE_CASE : Union[str, Any] = False __SCREAMING_SNAKE_CASE : Optional[int] = False def __lowerCAmelCase ( self ) ->str: SCREAMING_SNAKE_CASE : int = UperNetModelTester(self ) SCREAMING_SNAKE_CASE : Tuple = ConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase , hidden_size=37 ) def __lowerCAmelCase ( self ) ->Optional[int]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __lowerCAmelCase ( self ) ->Optional[int]: return def __lowerCAmelCase ( self ) ->Union[str, Any]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : str = model_class(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE : str = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE : List[str] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _lowerCamelCase ) def __lowerCAmelCase ( self ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_lowerCamelCase ) @unittest.skip(reason='''UperNet does not use inputs_embeds''' ) def __lowerCAmelCase ( self ) ->Optional[Any]: pass @unittest.skip(reason='''UperNet does not support input and output embeddings''' ) def __lowerCAmelCase ( self ) ->str: pass @unittest.skip(reason='''UperNet does not have a base model''' ) def __lowerCAmelCase ( self ) ->Optional[Any]: pass @unittest.skip(reason='''UperNet does not have a base model''' ) def __lowerCAmelCase ( self ) ->Optional[int]: pass @require_torch_multi_gpu @unittest.skip(reason='''UperNet has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' ) def __lowerCAmelCase ( self ) ->Dict: pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __lowerCAmelCase ( self ) ->List[str]: pass def __lowerCAmelCase ( self ) ->Union[str, Any]: def check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): SCREAMING_SNAKE_CASE : List[Any] = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE : Tuple = model(**self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) ) SCREAMING_SNAKE_CASE : Union[str, Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.num_stages self.assertEqual(len(_lowerCamelCase ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Dict = True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE : List[str] = True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def __lowerCAmelCase ( self ) ->Union[str, Any]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : Any = _config_zero_init(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = _config_zero_init(configs_no_init.backbone_config ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : List[str] = model_class(config=_lowerCamelCase ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip(reason='''UperNet does not have tied weights''' ) def __lowerCAmelCase ( self ) ->Dict: pass @slow def __lowerCAmelCase ( self ) ->Union[str, Any]: for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE : Optional[Any] = UperNetForSemanticSegmentation.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) def UpperCAmelCase_( ): """simple docstring""" SCREAMING_SNAKE_CASE : str = hf_hub_download( repo_id='''hf-internal-testing/fixtures_ade20k''' , repo_type='''dataset''' , filename='''ADE_val_00000001.jpg''' ) SCREAMING_SNAKE_CASE : int = Image.open(a__ ).convert('''RGB''' ) return image @require_torch @require_vision @slow class a_ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ) ->List[str]: SCREAMING_SNAKE_CASE : Union[str, Any] = AutoImageProcessor.from_pretrained('''openmmlab/upernet-swin-tiny''' ) SCREAMING_SNAKE_CASE : Tuple = UperNetForSemanticSegmentation.from_pretrained('''openmmlab/upernet-swin-tiny''' ).to(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = prepare_img() SCREAMING_SNAKE_CASE : int = processor(images=_lowerCamelCase , return_tensors='''pt''' ).to(_lowerCamelCase ) with torch.no_grad(): SCREAMING_SNAKE_CASE : int = model(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = torch.tensor( [[-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.4_7_9_7, -7.4_7_9_7, -7.3_0_6_8]] ).to(_lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , _lowerCamelCase , atol=1e-4 ) ) def __lowerCAmelCase ( self ) ->List[Any]: SCREAMING_SNAKE_CASE : List[Any] = AutoImageProcessor.from_pretrained('''openmmlab/upernet-convnext-tiny''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = UperNetForSemanticSegmentation.from_pretrained('''openmmlab/upernet-convnext-tiny''' ).to(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = prepare_img() SCREAMING_SNAKE_CASE : Any = processor(images=_lowerCamelCase , return_tensors='''pt''' ).to(_lowerCamelCase ) with torch.no_grad(): SCREAMING_SNAKE_CASE : Optional[int] = model(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = torch.tensor( [[-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.7_7_4_6, -8.7_7_4_6, -8.6_1_3_0]] ).to(_lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , _lowerCamelCase , atol=1e-4 ) )
333
1
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class __magic_name__ : def __init__( self : int ,__SCREAMING_SNAKE_CASE : Dict ,__SCREAMING_SNAKE_CASE : Any=1_3 ,__SCREAMING_SNAKE_CASE : str=7 ,__SCREAMING_SNAKE_CASE : List[str]=True ,__SCREAMING_SNAKE_CASE : Union[str, Any]=True ,__SCREAMING_SNAKE_CASE : Dict=True ,__SCREAMING_SNAKE_CASE : Union[str, Any]=9_9 ,__SCREAMING_SNAKE_CASE : Union[str, Any]=3_2 ,__SCREAMING_SNAKE_CASE : Tuple=5 ,__SCREAMING_SNAKE_CASE : List[str]=4 ,__SCREAMING_SNAKE_CASE : List[str]=3_7 ,__SCREAMING_SNAKE_CASE : int="gelu" ,__SCREAMING_SNAKE_CASE : Union[str, Any]=0.1 ,__SCREAMING_SNAKE_CASE : Optional[Any]=0.1 ,__SCREAMING_SNAKE_CASE : List[Any]=5_1_2 ,__SCREAMING_SNAKE_CASE : Tuple=1_6 ,__SCREAMING_SNAKE_CASE : Optional[Any]=2 ,__SCREAMING_SNAKE_CASE : Optional[int]=0.02 ,__SCREAMING_SNAKE_CASE : Tuple=3 ,__SCREAMING_SNAKE_CASE : Tuple=4 ,__SCREAMING_SNAKE_CASE : Dict=None ,): UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = seq_length UpperCAmelCase = is_training UpperCAmelCase = use_token_type_ids UpperCAmelCase = use_labels UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_act UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = type_vocab_size UpperCAmelCase = type_sequence_label_size UpperCAmelCase = initializer_range UpperCAmelCase = num_labels UpperCAmelCase = num_choices UpperCAmelCase = scope UpperCAmelCase = self.vocab_size - 1 def _UpperCAmelCase ( self : Dict ): UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) UpperCAmelCase = None if self.use_token_type_ids: UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None if self.use_labels: UpperCAmelCase = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) UpperCAmelCase = ids_tensor([self.batch_size] ,self.num_choices ) UpperCAmelCase = OpenAIGPTConfig( vocab_size=self.vocab_size ,n_embd=self.hidden_size ,n_layer=self.num_hidden_layers ,n_head=self.num_attention_heads ,n_positions=self.max_position_embeddings ,pad_token_id=self.pad_token_id ,) UpperCAmelCase = ids_tensor([self.num_hidden_layers, self.num_attention_heads] ,2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def _UpperCAmelCase ( self : Tuple ,__SCREAMING_SNAKE_CASE : Union[str, Any] ,__SCREAMING_SNAKE_CASE : Dict ,__SCREAMING_SNAKE_CASE : List[Any] ,__SCREAMING_SNAKE_CASE : Union[str, Any] ,*__SCREAMING_SNAKE_CASE : List[Any] ): UpperCAmelCase = OpenAIGPTModel(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() UpperCAmelCase = model(__SCREAMING_SNAKE_CASE ,token_type_ids=__SCREAMING_SNAKE_CASE ,head_mask=__SCREAMING_SNAKE_CASE ) UpperCAmelCase = model(__SCREAMING_SNAKE_CASE ,token_type_ids=__SCREAMING_SNAKE_CASE ) UpperCAmelCase = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCAmelCase ( self : int ,__SCREAMING_SNAKE_CASE : int ,__SCREAMING_SNAKE_CASE : int ,__SCREAMING_SNAKE_CASE : Optional[int] ,__SCREAMING_SNAKE_CASE : List[str] ,*__SCREAMING_SNAKE_CASE : Optional[int] ): UpperCAmelCase = OpenAIGPTLMHeadModel(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() UpperCAmelCase = model(__SCREAMING_SNAKE_CASE ,token_type_ids=__SCREAMING_SNAKE_CASE ,labels=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.loss.shape ,() ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCAmelCase ( self : Tuple ,__SCREAMING_SNAKE_CASE : Dict ,__SCREAMING_SNAKE_CASE : Any ,__SCREAMING_SNAKE_CASE : Tuple ,__SCREAMING_SNAKE_CASE : Dict ,*__SCREAMING_SNAKE_CASE : Tuple ): UpperCAmelCase = OpenAIGPTDoubleHeadsModel(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() UpperCAmelCase = model(__SCREAMING_SNAKE_CASE ,token_type_ids=__SCREAMING_SNAKE_CASE ,labels=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.loss.shape ,() ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCAmelCase ( self : List[str] ,__SCREAMING_SNAKE_CASE : int ,__SCREAMING_SNAKE_CASE : int ,__SCREAMING_SNAKE_CASE : List[Any] ,__SCREAMING_SNAKE_CASE : Dict ,*__SCREAMING_SNAKE_CASE : Optional[Any] ): UpperCAmelCase = self.num_labels UpperCAmelCase = OpenAIGPTForSequenceClassification(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() UpperCAmelCase = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) UpperCAmelCase = model(__SCREAMING_SNAKE_CASE ,token_type_ids=__SCREAMING_SNAKE_CASE ,labels=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def _UpperCAmelCase ( self : Any ): UpperCAmelCase = self.prepare_config_and_inputs() ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) = config_and_inputs UpperCAmelCase = { "input_ids": input_ids, "token_type_ids": token_type_ids, "head_mask": head_mask, } return config, inputs_dict @require_torch class __magic_name__ ( _a , _a , _a , unittest.TestCase): _UpperCAmelCase : List[str] = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) _UpperCAmelCase : Dict = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly _UpperCAmelCase : Any = ( { 'feature-extraction': OpenAIGPTModel, 'text-classification': OpenAIGPTForSequenceClassification, 'text-generation': OpenAIGPTLMHeadModel, 'zero-shot': OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def _UpperCAmelCase ( self : Union[str, Any] ,__SCREAMING_SNAKE_CASE : Any ,__SCREAMING_SNAKE_CASE : int ,__SCREAMING_SNAKE_CASE : str ,__SCREAMING_SNAKE_CASE : str ,__SCREAMING_SNAKE_CASE : Optional[Any] ): if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def _UpperCAmelCase ( self : Tuple ,__SCREAMING_SNAKE_CASE : Union[str, Any] ,__SCREAMING_SNAKE_CASE : Dict ,__SCREAMING_SNAKE_CASE : Tuple=False ): UpperCAmelCase = super()._prepare_for_class(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,return_labels=__SCREAMING_SNAKE_CASE ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": UpperCAmelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) ,dtype=torch.long ,device=__SCREAMING_SNAKE_CASE ,) UpperCAmelCase = inputs_dict["labels"] UpperCAmelCase = inputs_dict["labels"] UpperCAmelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) ,dtype=torch.long ,device=__SCREAMING_SNAKE_CASE ,) UpperCAmelCase = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=__SCREAMING_SNAKE_CASE ) return inputs_dict def _UpperCAmelCase ( self : Optional[Any] ): UpperCAmelCase = OpenAIGPTModelTester(self ) UpperCAmelCase = ConfigTester(self ,config_class=__SCREAMING_SNAKE_CASE ,n_embd=3_7 ) def _UpperCAmelCase ( self : List[Any] ): self.config_tester.run_common_tests() def _UpperCAmelCase ( self : int ): UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*__SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( self : List[Any] ): UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*__SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( self : Tuple ): UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*__SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( self : int ): UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*__SCREAMING_SNAKE_CASE ) @slow def _UpperCAmelCase ( self : Union[str, Any] ): for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase = OpenAIGPTModel.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) @require_torch class __magic_name__ ( unittest.TestCase): @slow def _UpperCAmelCase ( self : List[Any] ): UpperCAmelCase = OpenAIGPTLMHeadModel.from_pretrained("openai-gpt" ) model.to(__SCREAMING_SNAKE_CASE ) UpperCAmelCase = torch.tensor([[4_8_1, 4_7_3_5, 5_4_4]] ,dtype=torch.long ,device=__SCREAMING_SNAKE_CASE ) # the president is UpperCAmelCase = [ 4_8_1, 4_7_3_5, 5_4_4, 2_4_6, 9_6_3, 8_7_0, 7_6_2, 2_3_9, 2_4_4, 4_0_4_7_7, 2_4_4, 2_4_9, 7_1_9, 8_8_1, 4_8_7, 5_4_4, 2_4_0, 2_4_4, 6_0_3, 4_8_1, ] # the president is a very good man. " \n " i\'m sure he is, " said the UpperCAmelCase = model.generate(__SCREAMING_SNAKE_CASE ,do_sample=__SCREAMING_SNAKE_CASE ) self.assertListEqual(output_ids[0].tolist() ,__SCREAMING_SNAKE_CASE )
333
from __future__ import annotations import unittest import numpy as np from transformers import LayoutLMConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.layoutlm.modeling_tf_layoutlm import ( TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMForMaskedLM, TFLayoutLMForQuestionAnswering, TFLayoutLMForSequenceClassification, TFLayoutLMForTokenClassification, TFLayoutLMModel, ) class __magic_name__ : def __init__( self : str ,__SCREAMING_SNAKE_CASE : Union[str, Any] ,__SCREAMING_SNAKE_CASE : str=1_3 ,__SCREAMING_SNAKE_CASE : Optional[Any]=7 ,__SCREAMING_SNAKE_CASE : Optional[Any]=True ,__SCREAMING_SNAKE_CASE : List[str]=True ,__SCREAMING_SNAKE_CASE : int=True ,__SCREAMING_SNAKE_CASE : int=True ,__SCREAMING_SNAKE_CASE : Tuple=9_9 ,__SCREAMING_SNAKE_CASE : str=3_2 ,__SCREAMING_SNAKE_CASE : Any=2 ,__SCREAMING_SNAKE_CASE : Union[str, Any]=4 ,__SCREAMING_SNAKE_CASE : Tuple=3_7 ,__SCREAMING_SNAKE_CASE : List[str]="gelu" ,__SCREAMING_SNAKE_CASE : List[Any]=0.1 ,__SCREAMING_SNAKE_CASE : Optional[int]=0.1 ,__SCREAMING_SNAKE_CASE : Tuple=5_1_2 ,__SCREAMING_SNAKE_CASE : Dict=1_6 ,__SCREAMING_SNAKE_CASE : Tuple=2 ,__SCREAMING_SNAKE_CASE : List[str]=0.02 ,__SCREAMING_SNAKE_CASE : Optional[Any]=3 ,__SCREAMING_SNAKE_CASE : Dict=4 ,__SCREAMING_SNAKE_CASE : Union[str, Any]=None ,__SCREAMING_SNAKE_CASE : Dict=1_0_0_0 ,): UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = seq_length UpperCAmelCase = is_training UpperCAmelCase = use_input_mask UpperCAmelCase = use_token_type_ids UpperCAmelCase = use_labels UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_act UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = type_vocab_size UpperCAmelCase = type_sequence_label_size UpperCAmelCase = initializer_range UpperCAmelCase = num_labels UpperCAmelCase = num_choices UpperCAmelCase = scope UpperCAmelCase = range_bbox def _UpperCAmelCase ( self : Dict ): UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) # convert bbox to numpy since TF does not support item assignment UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length, 4] ,self.range_bbox ).numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: UpperCAmelCase = bbox[i, j, 3] UpperCAmelCase = bbox[i, j, 1] UpperCAmelCase = t if bbox[i, j, 2] < bbox[i, j, 0]: UpperCAmelCase = bbox[i, j, 2] UpperCAmelCase = bbox[i, j, 0] UpperCAmelCase = t UpperCAmelCase = tf.convert_to_tensor(__SCREAMING_SNAKE_CASE ) UpperCAmelCase = None if self.use_input_mask: UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase = None if self.use_token_type_ids: UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None if self.use_labels: UpperCAmelCase = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) UpperCAmelCase = ids_tensor([self.batch_size] ,self.num_choices ) UpperCAmelCase = LayoutLMConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,) return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _UpperCAmelCase ( self : Dict ,__SCREAMING_SNAKE_CASE : List[str] ,__SCREAMING_SNAKE_CASE : Optional[Any] ,__SCREAMING_SNAKE_CASE : Dict ,__SCREAMING_SNAKE_CASE : Union[str, Any] ,__SCREAMING_SNAKE_CASE : int ,__SCREAMING_SNAKE_CASE : int ,__SCREAMING_SNAKE_CASE : Optional[Any] ,__SCREAMING_SNAKE_CASE : str ): UpperCAmelCase = TFLayoutLMModel(config=__SCREAMING_SNAKE_CASE ) UpperCAmelCase = model(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,attention_mask=__SCREAMING_SNAKE_CASE ,token_type_ids=__SCREAMING_SNAKE_CASE ) UpperCAmelCase = model(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,token_type_ids=__SCREAMING_SNAKE_CASE ) UpperCAmelCase = model(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) ) def _UpperCAmelCase ( self : Dict ,__SCREAMING_SNAKE_CASE : Tuple ,__SCREAMING_SNAKE_CASE : Tuple ,__SCREAMING_SNAKE_CASE : List[str] ,__SCREAMING_SNAKE_CASE : str ,__SCREAMING_SNAKE_CASE : Union[str, Any] ,__SCREAMING_SNAKE_CASE : Any ,__SCREAMING_SNAKE_CASE : List[Any] ,__SCREAMING_SNAKE_CASE : List[Any] ): UpperCAmelCase = TFLayoutLMForMaskedLM(config=__SCREAMING_SNAKE_CASE ) UpperCAmelCase = model(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,attention_mask=__SCREAMING_SNAKE_CASE ,token_type_ids=__SCREAMING_SNAKE_CASE ,labels=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCAmelCase ( self : Union[str, Any] ,__SCREAMING_SNAKE_CASE : str ,__SCREAMING_SNAKE_CASE : List[Any] ,__SCREAMING_SNAKE_CASE : int ,__SCREAMING_SNAKE_CASE : Tuple ,__SCREAMING_SNAKE_CASE : List[str] ,__SCREAMING_SNAKE_CASE : Optional[int] ,__SCREAMING_SNAKE_CASE : Union[str, Any] ,__SCREAMING_SNAKE_CASE : Union[str, Any] ): UpperCAmelCase = self.num_labels UpperCAmelCase = TFLayoutLMForSequenceClassification(config=__SCREAMING_SNAKE_CASE ) UpperCAmelCase = model(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,attention_mask=__SCREAMING_SNAKE_CASE ,token_type_ids=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def _UpperCAmelCase ( self : List[str] ,__SCREAMING_SNAKE_CASE : List[str] ,__SCREAMING_SNAKE_CASE : int ,__SCREAMING_SNAKE_CASE : List[str] ,__SCREAMING_SNAKE_CASE : int ,__SCREAMING_SNAKE_CASE : Dict ,__SCREAMING_SNAKE_CASE : Dict ,__SCREAMING_SNAKE_CASE : str ,__SCREAMING_SNAKE_CASE : Union[str, Any] ): UpperCAmelCase = self.num_labels UpperCAmelCase = TFLayoutLMForTokenClassification(config=__SCREAMING_SNAKE_CASE ) UpperCAmelCase = model(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,attention_mask=__SCREAMING_SNAKE_CASE ,token_type_ids=__SCREAMING_SNAKE_CASE ,labels=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def _UpperCAmelCase ( self : Optional[int] ,__SCREAMING_SNAKE_CASE : Union[str, Any] ,__SCREAMING_SNAKE_CASE : Optional[int] ,__SCREAMING_SNAKE_CASE : Optional[Any] ,__SCREAMING_SNAKE_CASE : Dict ,__SCREAMING_SNAKE_CASE : int ,__SCREAMING_SNAKE_CASE : Optional[Any] ,__SCREAMING_SNAKE_CASE : List[str] ,__SCREAMING_SNAKE_CASE : str ): UpperCAmelCase = TFLayoutLMForQuestionAnswering(config=__SCREAMING_SNAKE_CASE ) UpperCAmelCase = model(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,attention_mask=__SCREAMING_SNAKE_CASE ,token_type_ids=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def _UpperCAmelCase ( self : List[Any] ): UpperCAmelCase = self.prepare_config_and_inputs() ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) = config_and_inputs UpperCAmelCase = { "input_ids": input_ids, "bbox": bbox, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_tf class __magic_name__ ( _a , _a , unittest.TestCase): _UpperCAmelCase : Optional[int] = ( ( TFLayoutLMModel, TFLayoutLMForMaskedLM, TFLayoutLMForTokenClassification, TFLayoutLMForSequenceClassification, TFLayoutLMForQuestionAnswering, ) if is_tf_available() else () ) _UpperCAmelCase : str = ( { 'feature-extraction': TFLayoutLMModel, 'fill-mask': TFLayoutLMForMaskedLM, 'text-classification': TFLayoutLMForSequenceClassification, 'token-classification': TFLayoutLMForTokenClassification, 'zero-shot': TFLayoutLMForSequenceClassification, } if is_tf_available() else {} ) _UpperCAmelCase : Tuple = False _UpperCAmelCase : int = True _UpperCAmelCase : Union[str, Any] = 10 def _UpperCAmelCase ( self : Tuple ): UpperCAmelCase = TFLayoutLMModelTester(self ) UpperCAmelCase = ConfigTester(self ,config_class=__SCREAMING_SNAKE_CASE ,hidden_size=3_7 ) def _UpperCAmelCase ( self : List[str] ): self.config_tester.run_common_tests() def _UpperCAmelCase ( self : List[str] ): UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( self : Dict ): UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( self : Dict ): UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( self : Any ): UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( self : List[str] ): UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__SCREAMING_SNAKE_CASE ) @slow def _UpperCAmelCase ( self : List[str] ): for model_name in TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase = TFLayoutLMModel.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) @unittest.skip("Onnx compliancy broke with TF 2.10" ) def _UpperCAmelCase ( self : List[str] ): pass def __UpperCamelCase ( ): """simple docstring""" UpperCAmelCase = tf.convert_to_tensor([[1_01,10_19,10_14,10_16,10_37,1_28_49,47_47,10_04,1_42_46,22_78,54_39,45_24,50_02,29_30,21_93,29_30,43_41,32_08,10_05,10_55,21_71,28_48,1_13_00,35_31,1_02],[1_01,40_70,40_34,70_20,10_24,30_58,10_15,10_13,28_61,10_13,60_70,1_92_74,27_72,62_05,2_78_14,1_61_47,1_61_47,43_43,20_47,1_02_83,1_09_69,1_43_89,10_12,23_38,1_02]] ) # noqa: E231 UpperCAmelCase = tf.convert_to_tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],] ) # noqa: E231 UpperCAmelCase = tf.convert_to_tensor([[[0,0,0,0],[4_23,2_37,4_40,2_51],[4_27,2_72,4_41,2_87],[4_19,1_15,4_37,1_29],[9_61,8_85,9_92,9_12],[2_56,38,3_30,58],[2_56,38,3_30,58],[3_36,42,3_53,57],[3_60,39,4_01,56],[3_60,39,4_01,56],[4_11,39,4_71,59],[4_79,41,5_28,59],[5_33,39,6_30,60],[67,1_13,1_34,1_31],[1_41,1_15,2_09,1_32],[68,1_49,1_33,1_66],[1_41,1_49,1_87,1_64],[1_95,1_48,2_87,1_65],[1_95,1_48,2_87,1_65],[1_95,1_48,2_87,1_65],[2_95,1_48,3_49,1_65],[4_41,1_49,4_92,1_66],[4_97,1_49,5_46,1_64],[64,2_01,1_25,2_18],[10_00,10_00,10_00,10_00]],[[0,0,0,0],[6_62,1_50,7_54,1_66],[6_65,1_99,7_42,2_11],[5_19,2_13,5_54,2_28],[5_19,2_13,5_54,2_28],[1_34,4_33,1_87,4_54],[1_30,4_67,2_04,4_80],[1_30,4_67,2_04,4_80],[1_30,4_67,2_04,4_80],[1_30,4_67,2_04,4_80],[1_30,4_67,2_04,4_80],[3_14,4_69,3_76,4_82],[5_04,6_84,5_82,7_06],[9_41,8_25,9_73,9_00],[9_41,8_25,9_73,9_00],[9_41,8_25,9_73,9_00],[9_41,8_25,9_73,9_00],[6_10,7_49,6_52,7_65],[1_30,6_59,1_68,6_72],[1_76,6_57,2_37,6_72],[2_38,6_57,3_12,6_72],[4_43,6_53,6_28,6_72],[4_43,6_53,6_28,6_72],[7_16,3_01,8_25,3_17],[10_00,10_00,10_00,10_00]]] ) # noqa: E231 UpperCAmelCase = tf.convert_to_tensor([[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]] ) # noqa: E231 # these are sequence labels (i.e. at the token level) UpperCAmelCase = tf.convert_to_tensor([[-1_00,10,10,10,9,1,-1_00,7,7,-1_00,7,7,4,2,5,2,8,8,-1_00,-1_00,5,0,3,2,-1_00],[-1_00,12,12,12,-1_00,12,10,-1_00,-1_00,-1_00,-1_00,10,12,9,-1_00,-1_00,-1_00,10,10,10,9,12,-1_00,10,-1_00]] ) # noqa: E231 # fmt: on return input_ids, attention_mask, bbox, token_type_ids, labels @require_tf class __magic_name__ ( unittest.TestCase): @slow def _UpperCAmelCase ( self : Any ): UpperCAmelCase = TFLayoutLMModel.from_pretrained("microsoft/layoutlm-base-uncased" ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = prepare_layoutlm_batch_inputs() # forward pass UpperCAmelCase = model(input_ids=__SCREAMING_SNAKE_CASE ,bbox=__SCREAMING_SNAKE_CASE ,attention_mask=__SCREAMING_SNAKE_CASE ,token_type_ids=__SCREAMING_SNAKE_CASE ) # test the sequence output on [0, :3, :3] UpperCAmelCase = tf.convert_to_tensor( [[0.1785, -0.1947, -0.0425], [-0.3254, -0.2807, 0.2553], [-0.5391, -0.3322, 0.3364]] ,) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] ,__SCREAMING_SNAKE_CASE ,atol=1e-3 ) ) # test the pooled output on [1, :3] UpperCAmelCase = tf.convert_to_tensor([-0.6580, -0.0214, 0.8552] ) self.assertTrue(np.allclose(outputs.pooler_output[1, :3] ,__SCREAMING_SNAKE_CASE ,atol=1e-3 ) ) @slow def _UpperCAmelCase ( self : Union[str, Any] ): # initialize model with randomly initialized sequence classification head UpperCAmelCase = TFLayoutLMForSequenceClassification.from_pretrained("microsoft/layoutlm-base-uncased" ,num_labels=2 ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = prepare_layoutlm_batch_inputs() # forward pass UpperCAmelCase = model( input_ids=__SCREAMING_SNAKE_CASE ,bbox=__SCREAMING_SNAKE_CASE ,attention_mask=__SCREAMING_SNAKE_CASE ,token_type_ids=__SCREAMING_SNAKE_CASE ,labels=tf.convert_to_tensor([1, 1] ) ,) # test whether we get a loss as a scalar UpperCAmelCase = outputs.loss UpperCAmelCase = (2,) self.assertEqual(loss.shape ,__SCREAMING_SNAKE_CASE ) # test the shape of the logits UpperCAmelCase = outputs.logits UpperCAmelCase = (2, 2) self.assertEqual(logits.shape ,__SCREAMING_SNAKE_CASE ) @slow def _UpperCAmelCase ( self : Tuple ): # initialize model with randomly initialized token classification head UpperCAmelCase = TFLayoutLMForTokenClassification.from_pretrained("microsoft/layoutlm-base-uncased" ,num_labels=1_3 ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = prepare_layoutlm_batch_inputs() # forward pass UpperCAmelCase = model( input_ids=__SCREAMING_SNAKE_CASE ,bbox=__SCREAMING_SNAKE_CASE ,attention_mask=__SCREAMING_SNAKE_CASE ,token_type_ids=__SCREAMING_SNAKE_CASE ,labels=__SCREAMING_SNAKE_CASE ) # test the shape of the logits UpperCAmelCase = outputs.logits UpperCAmelCase = tf.convert_to_tensor((2, 2_5, 1_3) ) self.assertEqual(logits.shape ,__SCREAMING_SNAKE_CASE ) @slow def _UpperCAmelCase ( self : List[Any] ): # initialize model with randomly initialized token classification head UpperCAmelCase = TFLayoutLMForQuestionAnswering.from_pretrained("microsoft/layoutlm-base-uncased" ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = prepare_layoutlm_batch_inputs() # forward pass UpperCAmelCase = model(input_ids=__SCREAMING_SNAKE_CASE ,bbox=__SCREAMING_SNAKE_CASE ,attention_mask=__SCREAMING_SNAKE_CASE ,token_type_ids=__SCREAMING_SNAKE_CASE ) # test the shape of the logits UpperCAmelCase = tf.convert_to_tensor((2, 2_5) ) self.assertEqual(outputs.start_logits.shape ,__SCREAMING_SNAKE_CASE ) self.assertEqual(outputs.end_logits.shape ,__SCREAMING_SNAKE_CASE )
333
1
'''simple docstring''' from __future__ import annotations from functools import lru_cache from math import ceil _SCREAMING_SNAKE_CASE = 100 _SCREAMING_SNAKE_CASE = set(range(3, NUM_PRIMES, 2)) primes.add(2) _SCREAMING_SNAKE_CASE = 42 for prime in range(3, ceil(NUM_PRIMES**0.5), 2): if prime not in primes: continue primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime))) @lru_cache(maxsize=1_00 ) def __lowerCamelCase ( __lowerCAmelCase : int ) -> set[int]: if number_to_partition < 0: return set() elif number_to_partition == 0: return {1} snake_case = set() snake_case = 42 snake_case = 42 for prime in primes: if prime > number_to_partition: continue for sub in partition(number_to_partition - prime ): ret.add(sub * prime ) return ret def __lowerCamelCase ( __lowerCAmelCase : int = 50_00 ) -> int | None: for number_to_partition in range(1 , __lowerCAmelCase ): if len(partition(__lowerCAmelCase ) ) > number_unique_partitions: return number_to_partition return None if __name__ == "__main__": print(F"""{solution() = }""")
517
'''simple docstring''' import gc import threading import time import psutil import torch class _lowerCAmelCase : """simple docstring""" def __init__( self : Tuple )-> Dict: snake_case = psutil.Process() snake_case = False def lowerCAmelCase ( self : int )-> Optional[int]: snake_case = -1 while True: snake_case = max(self.process.memory_info().rss , self.cpu_memory_peak ) # can't sleep or will not catch the peak right (this comment is here on purpose) if not self.peak_monitoring: break def lowerCAmelCase ( self : Union[str, Any] )-> Union[str, Any]: snake_case = True snake_case = threading.Thread(target=self.peak_monitor ) snake_case = True self.thread.start() def lowerCAmelCase ( self : int )-> Optional[Any]: snake_case = False self.thread.join() return self.cpu_memory_peak _SCREAMING_SNAKE_CASE = PeakCPUMemory() def __lowerCamelCase ( ) -> List[Any]: # Time snake_case = {"""time""": time.time()} gc.collect() torch.cuda.empty_cache() # CPU mem snake_case = psutil.Process().memory_info().rss cpu_peak_tracker.start() # GPU mem for i in range(torch.cuda.device_count() ): snake_case = torch.cuda.memory_allocated(__lowerCAmelCase ) torch.cuda.reset_peak_memory_stats() return measures def __lowerCamelCase ( __lowerCAmelCase : Optional[Any] ) -> str: # Time snake_case = {"""time""": time.time() - start_measures["""time"""]} gc.collect() torch.cuda.empty_cache() # CPU mem snake_case = (psutil.Process().memory_info().rss - start_measures["""cpu"""]) / 2**20 snake_case = (cpu_peak_tracker.stop() - start_measures["""cpu"""]) / 2**20 # GPU mem for i in range(torch.cuda.device_count() ): snake_case = (torch.cuda.memory_allocated(__lowerCAmelCase ) - start_measures[str(__lowerCAmelCase )]) / 2**20 snake_case = (torch.cuda.max_memory_allocated(__lowerCAmelCase ) - start_measures[str(__lowerCAmelCase )]) / 2**20 return measures def __lowerCamelCase ( __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[int] ) -> str: print(F'''{description}:''' ) print(F'''- Time: {measures["time"]:.2f}s''' ) for i in range(torch.cuda.device_count() ): print(F'''- GPU {i} allocated: {measures[str(__lowerCAmelCase )]:.2f}MiB''' ) snake_case = measures[F'''{i}-peak'''] print(F'''- GPU {i} peak: {peak:.2f}MiB''' ) print(F'''- CPU RAM allocated: {measures["cpu"]:.2f}MiB''' ) print(F'''- CPU RAM peak: {measures["cpu-peak"]:.2f}MiB''' )
517
1
'''simple docstring''' # Algorithm for the pigeonhole sorting def _a( UpperCamelCase__ : Optional[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int =min(UpperCamelCase__ ) # min() finds the minimum value SCREAMING_SNAKE_CASE__ : int =max(UpperCamelCase__ ) # max() finds the maximum value SCREAMING_SNAKE_CASE__ : List[Any] =max_val - min_val + 1 # size is difference of max and min values plus one # list of pigeonholes of size equal to the variable size SCREAMING_SNAKE_CASE__ : Tuple =[0] * size # Populate the pigeonholes. for x in a: assert isinstance(UpperCamelCase__, UpperCamelCase__ ), "integers only please" holes[x - min_val] += 1 # Putting the elements back into the array in an order. SCREAMING_SNAKE_CASE__ : List[Any] =0 for count in range(UpperCamelCase__ ): while holes[count] > 0: holes[count] -= 1 SCREAMING_SNAKE_CASE__ : Any =count + min_val i += 1 def _a( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int =[8, 3, 2, 7, 4, 6, 8] pigeonhole_sort(UpperCamelCase__ ) print('''Sorted order is:''', ''' '''.join(UpperCamelCase__ ) ) if __name__ == "__main__": main()
296
'''simple docstring''' from collections.abc import Iterable from typing import Generic, TypeVar a_ = TypeVar('_T') class __SCREAMING_SNAKE_CASE ( Generic[_T] ): def __init__( self : Union[str, Any] , __lowercase : Iterable[_T] | None = None ) -> None: SCREAMING_SNAKE_CASE__ : list[_T] =list(iterable or [] ) SCREAMING_SNAKE_CASE__ : list[_T] =[] def __len__( self : Union[str, Any] ) -> int: return len(self._stacka ) + len(self._stacka ) def __repr__( self : Dict ) -> str: return F"Queue({tuple(self._stacka[::-1] + self._stacka )})" def __magic_name__ ( self : str , __lowercase : _T ) -> None: self._stacka.append(__lowercase ) def __magic_name__ ( self : List[Any] ) -> _T: SCREAMING_SNAKE_CASE__ : Optional[int] =self._stacka.pop SCREAMING_SNAKE_CASE__ : Optional[Any] =self._stacka.append if not self._stacka: while self._stacka: stacka_append(stacka_pop() ) if not self._stacka: raise IndexError('''Queue is empty''' ) return self._stacka.pop() if __name__ == "__main__": from doctest import testmod testmod()
296
1
"""simple docstring""" import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate lowerCamelCase = TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow("""""", """|""", """|"""), datarow=DataRow("""""", """|""", """|"""), padding=1, with_header_hide=None, ) lowerCamelCase = [] lowerCamelCase = [] lowerCamelCase = {"""type""": """section""", """text""": {"""type""": """plain_text""", """text""": """No failed tests! 🤗""", """emoji""": True}} lowerCamelCase = [ { """type""": """header""", """text""": { """type""": """plain_text""", """text""": F"🤗 Accelerate nightly {os.environ.get('TEST_TYPE', '')} test results", """emoji""": True, }, } ] lowerCamelCase = 0 for log in Path().glob("""*.log"""): lowerCamelCase = 0 with open(log, """r""") as f: for line in f: lowerCamelCase = json.loads(line) if line.get("""nodeid""", """""") != "": lowerCamelCase = line["""nodeid"""] if line.get("""duration""", None) is not None: lowerCamelCase = F"{line['duration']:.4f}" if line.get("""outcome""", """""") == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split("""_""")[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) lowerCamelCase = [] log.unlink() lowerCamelCase = """""" lowerCamelCase = [] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += F"*{name[1:]}: {num_failed} failed test*\n" else: message += F"*{name[1:]}: {num_failed} failed tests*\n" lowerCamelCase = [] lowerCamelCase = {} for test in failed_tests: lowerCamelCase = test[0].split("""::""") lowerCamelCase = data[0].split("""/""")[-1] if data[0] not in filesafailed: lowerCamelCase = [data[1:]] else: filesafailed[data[0]] += [data[1:]] failed_table.append(data) lowerCamelCase = [test[0] for test in failed_table] lowerCamelCase = list(set(files)) # Count number of instances in failed_tests lowerCamelCase = [] for file in individual_files: table.append([file, len(filesafailed[file])]) lowerCamelCase = tabulate( table, headers=["""Test Location""", """Num Failed"""], tablefmt=hf_table_format, stralign="""right""", ) message += F"\n```\n{failed_table}\n```" all_filesafailed.append(filesafailed) if len(message) > 3_000: lowerCamelCase = """Too many failed tests, please see the full report in the Action results.""" lowerCamelCase = len(err) + 10 lowerCamelCase = message[: 3_000 - offset] + F"\n...\n```\n{err}" print(F"### {message}") else: lowerCamelCase = """No failed tests! 🤗""" print(F"## {message}") payload.append(no_error_payload) if os.environ.get("""TEST_TYPE""", """""") != "": from slack_sdk import WebClient lowerCamelCase = WebClient(token=os.environ["""SLACK_API_TOKEN"""]) if message != "No failed tests! 🤗": lowerCamelCase = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": message, }, } payload.append(md_report) lowerCamelCase = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": """*For more details:*""", }, """accessory""": { """type""": """button""", """text""": { """type""": """plain_text""", """text""": """Check Action results""", """emoji""": True, }, """url""": F"https://github.com/{os.environ['GITHUB_REPOSITORY']}/actions/runs/{os.environ['GITHUB_RUN_ID']}", }, } payload.append(action_button) lowerCamelCase = { """type""": """context""", """elements""": [ { """type""": """plain_text""", """text""": F"Nightly {os.environ.get('TEST_TYPE')} test results for {date.today()}", } ], } payload.append(date_report) lowerCamelCase = client.chat_postMessage(channel="""#accelerate-ci-daily""", text=message, blocks=payload) lowerCamelCase = response.data["""ts"""] for failed_file in all_filesafailed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name lowerCamelCase = """""" for i, row in enumerate(test_failures): if row[0] != test_class: lowerCamelCase = row[0] else: lowerCamelCase = """""" lowerCamelCase = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": F"Test location: {test_location}\n```\n{tabulate(test_failures, headers=['Class', 'Test'], tablefmt=hf_table_format, stralign='right')}\n```", }, } client.chat_postMessage( channel="""#accelerate-ci-daily""", thread_ts=ts, blocks=[payload], )
14
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConformerConfig, WavaVecaConformerForCTC, WavaVecaConformerForPreTraining, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.linear_k""": """encoder.layers.*.self_attn.linear_k""", """self_attn.linear_v""": """encoder.layers.*.self_attn.linear_v""", """self_attn.linear_q""": """encoder.layers.*.self_attn.linear_q""", """self_attn.pos_bias_u""": """encoder.layers.*.self_attn.pos_bias_u""", """self_attn.pos_bias_v""": """encoder.layers.*.self_attn.pos_bias_v""", """self_attn.linear_out""": """encoder.layers.*.self_attn.linear_out""", """self_attn.linear_pos""": """encoder.layers.*.self_attn.linear_pos""", """self_attn.rotary_emb""": """encoder.embed_positions""", """self_attn_layer_norm""": """encoder.layers.*.self_attn_layer_norm""", """conv_module.pointwise_conv1""": """encoder.layers.*.conv_module.pointwise_conv1""", """conv_module.pointwise_conv2""": """encoder.layers.*.conv_module.pointwise_conv2""", """conv_module.depthwise_conv""": """encoder.layers.*.conv_module.depthwise_conv""", """conv_module.batch_norm""": """encoder.layers.*.conv_module.batch_norm""", """conv_module.layer_norm""": """encoder.layers.*.conv_module.layer_norm""", """ffn1.w_1""": """encoder.layers.*.ffn1.intermediate_dense""", """ffn1.w_2""": """encoder.layers.*.ffn1.output_dense""", """ffn1.layer_norm""": """encoder.layers.*.ffn1_layer_norm""", """ffn2.w_1""": """encoder.layers.*.ffn2.intermediate_dense""", """ffn2.w_2""": """encoder.layers.*.ffn2.output_dense""", """ffn2.layer_norm""": """encoder.layers.*.ffn2_layer_norm""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", } lowerCamelCase = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", ] def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): for attribute in key.split("." ): UpperCAmelCase_ = getattr(lowerCAmelCase__ , lowerCAmelCase__ ) if weight_type is not None: UpperCAmelCase_ = getattr(lowerCAmelCase__ , lowerCAmelCase__ ).shape else: UpperCAmelCase_ = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": UpperCAmelCase_ = value elif weight_type == "weight_g": UpperCAmelCase_ = value elif weight_type == "weight_v": UpperCAmelCase_ = value elif weight_type == "bias": UpperCAmelCase_ = value elif weight_type == "running_mean": UpperCAmelCase_ = value elif weight_type == "running_var": UpperCAmelCase_ = value elif weight_type == "num_batches_tracked": UpperCAmelCase_ = value elif weight_type == "inv_freq": UpperCAmelCase_ = value else: UpperCAmelCase_ = value logger.info(f"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = [] UpperCAmelCase_ = fairseq_model.state_dict() UpperCAmelCase_ = hf_model.wavaveca_conformer.feature_extractor for name, value in fairseq_dict.items(): UpperCAmelCase_ = False if "conv_layers" in name: load_conv_layer( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , hf_model.config.feat_extract_norm == "group" , ) UpperCAmelCase_ = True else: for key, mapped_key in MAPPING.items(): UpperCAmelCase_ = "wav2vec2_conformer." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: UpperCAmelCase_ = True if "*" in mapped_key: UpperCAmelCase_ = name.split(lowerCAmelCase__ )[0].split("." )[-2] UpperCAmelCase_ = mapped_key.replace("*" , lowerCAmelCase__ ) if "pos_bias_u" in name: UpperCAmelCase_ = None elif "pos_bias_v" in name: UpperCAmelCase_ = None elif "weight_g" in name: UpperCAmelCase_ = "weight_g" elif "weight_v" in name: UpperCAmelCase_ = "weight_v" elif "bias" in name: UpperCAmelCase_ = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj UpperCAmelCase_ = "weight" elif "running_mean" in name: UpperCAmelCase_ = "running_mean" elif "inv_freq" in name: UpperCAmelCase_ = "inv_freq" elif "running_var" in name: UpperCAmelCase_ = "running_var" elif "num_batches_tracked" in name: UpperCAmelCase_ = "num_batches_tracked" else: UpperCAmelCase_ = None set_recursively(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) continue if not is_used: unused_weights.append(lowerCAmelCase__ ) logger.warning(f"""Unused weights: {unused_weights}""" ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = full_name.split("conv_layers." )[-1] UpperCAmelCase_ = name.split("." ) UpperCAmelCase_ = int(items[0] ) UpperCAmelCase_ = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) UpperCAmelCase_ = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) UpperCAmelCase_ = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) UpperCAmelCase_ = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) UpperCAmelCase_ = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(lowerCAmelCase__ ) @torch.no_grad() def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=True ): if config_path is not None: UpperCAmelCase_ = WavaVecaConformerConfig.from_pretrained(lowerCAmelCase__ , hidden_act="swish" ) else: UpperCAmelCase_ = WavaVecaConformerConfig() if "rope" in checkpoint_path: UpperCAmelCase_ = "rotary" if is_finetuned: if dict_path: UpperCAmelCase_ = Dictionary.load(lowerCAmelCase__ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq UpperCAmelCase_ = target_dict.pad_index UpperCAmelCase_ = target_dict.bos_index UpperCAmelCase_ = target_dict.eos_index UpperCAmelCase_ = len(target_dict.symbols ) UpperCAmelCase_ = os.path.join(lowerCAmelCase__ , "vocab.json" ) if not os.path.isdir(lowerCAmelCase__ ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(lowerCAmelCase__ ) ) return os.makedirs(lowerCAmelCase__ , exist_ok=lowerCAmelCase__ ) UpperCAmelCase_ = target_dict.indices # fairseq has the <pad> and <s> switched UpperCAmelCase_ = 0 UpperCAmelCase_ = 1 with open(lowerCAmelCase__ , "w" , encoding="utf-8" ) as vocab_handle: json.dump(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase_ = WavaVecaCTCTokenizer( lowerCAmelCase__ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=lowerCAmelCase__ , ) UpperCAmelCase_ = True if config.feat_extract_norm == "layer" else False UpperCAmelCase_ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , ) UpperCAmelCase_ = WavaVecaProcessor(feature_extractor=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ ) processor.save_pretrained(lowerCAmelCase__ ) UpperCAmelCase_ = WavaVecaConformerForCTC(lowerCAmelCase__ ) else: UpperCAmelCase_ = WavaVecaConformerForPreTraining(lowerCAmelCase__ ) if is_finetuned: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) else: UpperCAmelCase_ = argparse.Namespace(task="audio_pretraining" ) UpperCAmelCase_ = fairseq.tasks.setup_task(lowerCAmelCase__ ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=lowerCAmelCase__ ) UpperCAmelCase_ = model[0].eval() recursively_load_weights(lowerCAmelCase__ , lowerCAmelCase__ , not is_finetuned ) hf_wavavec.save_pretrained(lowerCAmelCase__ ) if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) lowerCamelCase = parser.parse_args() convert_wavaveca_conformer_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
14
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, is_vision_available, ) __lowerCAmelCase = {'processing_layoutxlm': ['LayoutXLMProcessor']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = ['LayoutXLMTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = ['LayoutXLMTokenizerFast'] if TYPE_CHECKING: from .processing_layoutxlm import LayoutXLMProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm import LayoutXLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
585
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger(__name__) def lowercase__ ( lowerCamelCase : Tuple , lowerCamelCase : Dict=False , lowerCamelCase : Any=False ) -> Union[str, Any]: lowerCAmelCase__ : str = "backbone." if is_semantic else "" lowerCAmelCase__ : str = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"{prefix}blocks.{i}.norm1.weight", F"beit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((F"{prefix}blocks.{i}.norm1.bias", F"beit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append( (F"{prefix}blocks.{i}.attn.proj.weight", F"beit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append( (F"{prefix}blocks.{i}.attn.proj.bias", F"beit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((F"{prefix}blocks.{i}.norm2.weight", F"beit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((F"{prefix}blocks.{i}.norm2.bias", F"beit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((F"{prefix}blocks.{i}.mlp.fc1.weight", F"beit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((F"{prefix}blocks.{i}.mlp.fc1.bias", F"beit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((F"{prefix}blocks.{i}.mlp.fc2.weight", F"beit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((F"{prefix}blocks.{i}.mlp.fc2.bias", F"beit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ (F"{prefix}cls_token", "beit.embeddings.cls_token"), (F"{prefix}patch_embed.proj.weight", "beit.embeddings.patch_embeddings.projection.weight"), (F"{prefix}patch_embed.proj.bias", "beit.embeddings.patch_embeddings.projection.bias"), (F"{prefix}pos_embed", "beit.embeddings.position_embeddings"), ] ) if has_lm_head: # mask token + layernorm rename_keys.extend( [ ("mask_token", "beit.embeddings.mask_token"), ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ] ) else: # layernorm + classification head rename_keys.extend( [ ("fc_norm.weight", "beit.pooler.layernorm.weight"), ("fc_norm.bias", "beit.pooler.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys def lowercase__ ( lowerCamelCase : int , lowerCamelCase : Tuple , lowerCamelCase : int=False , lowerCamelCase : Union[str, Any]=False ) -> List[str]: for i in range(config.num_hidden_layers ): lowerCAmelCase__ : Optional[int] = "backbone." if is_semantic else "" # queries, keys and values lowerCAmelCase__ : Any = state_dict.pop(F"{prefix}blocks.{i}.attn.qkv.weight" ) lowerCAmelCase__ : List[Any] = state_dict.pop(F"{prefix}blocks.{i}.attn.q_bias" ) lowerCAmelCase__ : Dict = state_dict.pop(F"{prefix}blocks.{i}.attn.v_bias" ) lowerCAmelCase__ : Tuple = in_proj_weight[ : config.hidden_size, : ] lowerCAmelCase__ : Optional[Any] = q_bias lowerCAmelCase__ : Optional[int] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCAmelCase__ : Union[str, Any] = in_proj_weight[ -config.hidden_size :, : ] lowerCAmelCase__ : List[Any] = v_bias # gamma_1 and gamma_2 # we call them lambda because otherwise they are renamed when using .from_pretrained lowerCAmelCase__ : Optional[Any] = state_dict.pop(F"{prefix}blocks.{i}.gamma_1" ) lowerCAmelCase__ : Optional[Any] = state_dict.pop(F"{prefix}blocks.{i}.gamma_2" ) lowerCAmelCase__ : Union[str, Any] = gamma_a lowerCAmelCase__ : Optional[Any] = gamma_a def lowercase__ ( lowerCamelCase : int , lowerCamelCase : Union[str, Any] , lowerCamelCase : Tuple ) -> List[Any]: lowerCAmelCase__ : Dict = dct.pop(lowerCamelCase ) lowerCAmelCase__ : Union[str, Any] = val def lowercase__ ( ) -> Any: lowerCAmelCase__ : List[str] = "http://images.cocodataset.org/val2017/000000039769.jpg" lowerCAmelCase__ : Tuple = Image.open(requests.get(lowerCamelCase , stream=lowerCamelCase ).raw ) return im @torch.no_grad() def lowercase__ ( lowerCamelCase : int , lowerCamelCase : int , lowerCamelCase : List[str]=False ) -> int: lowerCAmelCase__ : Optional[int] = False if "rvlcdip" in checkpoint_url else True lowerCAmelCase__ : Any = BeitConfig(use_absolute_position_embeddings=lowerCamelCase , use_mask_token=lowerCamelCase ) # size of the architecture if "large" in checkpoint_url or "dit-l" in checkpoint_url: lowerCAmelCase__ : Optional[Any] = 1_0_2_4 lowerCAmelCase__ : Any = 4_0_9_6 lowerCAmelCase__ : int = 2_4 lowerCAmelCase__ : Tuple = 1_6 # labels if "rvlcdip" in checkpoint_url: lowerCAmelCase__ : Optional[Any] = 1_6 lowerCAmelCase__ : str = "huggingface/label-files" lowerCAmelCase__ : List[str] = "rvlcdip-id2label.json" lowerCAmelCase__ : Tuple = json.load(open(hf_hub_download(lowerCamelCase , lowerCamelCase , repo_type="dataset" ) , "r" ) ) lowerCAmelCase__ : Tuple = {int(lowerCamelCase ): v for k, v in idalabel.items()} lowerCAmelCase__ : Optional[Any] = idalabel lowerCAmelCase__ : Any = {v: k for k, v in idalabel.items()} # load state_dict of original model, remove and rename some keys lowerCAmelCase__ : int = torch.hub.load_state_dict_from_url(lowerCamelCase , map_location="cpu" )["model"] lowerCAmelCase__ : Union[str, Any] = create_rename_keys(lowerCamelCase , has_lm_head=lowerCamelCase ) for src, dest in rename_keys: rename_key(lowerCamelCase , lowerCamelCase , lowerCamelCase ) read_in_q_k_v(lowerCamelCase , lowerCamelCase , has_lm_head=lowerCamelCase ) # load HuggingFace model lowerCAmelCase__ : Union[str, Any] = BeitForMaskedImageModeling(lowerCamelCase ) if has_lm_head else BeitForImageClassification(lowerCamelCase ) model.eval() model.load_state_dict(lowerCamelCase ) # Check outputs on an image lowerCAmelCase__ : Dict = BeitImageProcessor( size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=lowerCamelCase ) lowerCAmelCase__ : str = prepare_img() lowerCAmelCase__ : List[str] = image_processor(images=lowerCamelCase , return_tensors="pt" ) lowerCAmelCase__ : Any = encoding["pixel_values"] lowerCAmelCase__ : Optional[Any] = model(lowerCamelCase ) lowerCAmelCase__ : Union[str, Any] = outputs.logits # verify logits lowerCAmelCase__ : str = [1, 1_6] if "rvlcdip" in checkpoint_url else [1, 1_9_6, 8_1_9_2] assert logits.shape == torch.Size(lowerCamelCase ), "Shape of logits not as expected" Path(lowerCamelCase ).mkdir(exist_ok=lowerCamelCase ) print(F"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(lowerCamelCase ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(lowerCamelCase ) if push_to_hub: if has_lm_head: lowerCAmelCase__ : List[Any] = "dit-base" if "base" in checkpoint_url else "dit-large" else: lowerCAmelCase__ : Tuple = "dit-base-finetuned-rvlcdip" if "dit-b" in checkpoint_url else "dit-large-finetuned-rvlcdip" image_processor.push_to_hub( repo_path_or_name=Path(lowerCamelCase , lowerCamelCase ) , organization="nielsr" , commit_message="Add image processor" , use_temp_dir=lowerCamelCase , ) model.push_to_hub( repo_path_or_name=Path(lowerCamelCase , lowerCamelCase ) , organization="nielsr" , commit_message="Add model" , use_temp_dir=lowerCamelCase , ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument( "--checkpoint_url", default="https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth", type=str, help="URL to the original PyTorch checkpoint (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) parser.add_argument( "--push_to_hub", action="store_true", ) __UpperCAmelCase = parser.parse_args() convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
308
0
"""simple docstring""" from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES lowerCamelCase : Optional[Any] = logging.get_logger(__name__) lowerCamelCase : Tuple = OrderedDict( [ # Base model mapping ("""albert""", """FlaxAlbertModel"""), ("""bart""", """FlaxBartModel"""), ("""beit""", """FlaxBeitModel"""), ("""bert""", """FlaxBertModel"""), ("""big_bird""", """FlaxBigBirdModel"""), ("""blenderbot""", """FlaxBlenderbotModel"""), ("""blenderbot-small""", """FlaxBlenderbotSmallModel"""), ("""clip""", """FlaxCLIPModel"""), ("""distilbert""", """FlaxDistilBertModel"""), ("""electra""", """FlaxElectraModel"""), ("""gpt-sw3""", """FlaxGPT2Model"""), ("""gpt2""", """FlaxGPT2Model"""), ("""gpt_neo""", """FlaxGPTNeoModel"""), ("""gptj""", """FlaxGPTJModel"""), ("""longt5""", """FlaxLongT5Model"""), ("""marian""", """FlaxMarianModel"""), ("""mbart""", """FlaxMBartModel"""), ("""mt5""", """FlaxMT5Model"""), ("""opt""", """FlaxOPTModel"""), ("""pegasus""", """FlaxPegasusModel"""), ("""regnet""", """FlaxRegNetModel"""), ("""resnet""", """FlaxResNetModel"""), ("""roberta""", """FlaxRobertaModel"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormModel"""), ("""roformer""", """FlaxRoFormerModel"""), ("""t5""", """FlaxT5Model"""), ("""vision-text-dual-encoder""", """FlaxVisionTextDualEncoderModel"""), ("""vit""", """FlaxViTModel"""), ("""wav2vec2""", """FlaxWav2Vec2Model"""), ("""whisper""", """FlaxWhisperModel"""), ("""xglm""", """FlaxXGLMModel"""), ("""xlm-roberta""", """FlaxXLMRobertaModel"""), ] ) lowerCamelCase : int = OrderedDict( [ # Model for pre-training mapping ("""albert""", """FlaxAlbertForPreTraining"""), ("""bart""", """FlaxBartForConditionalGeneration"""), ("""bert""", """FlaxBertForPreTraining"""), ("""big_bird""", """FlaxBigBirdForPreTraining"""), ("""electra""", """FlaxElectraForPreTraining"""), ("""longt5""", """FlaxLongT5ForConditionalGeneration"""), ("""mbart""", """FlaxMBartForConditionalGeneration"""), ("""mt5""", """FlaxMT5ForConditionalGeneration"""), ("""roberta""", """FlaxRobertaForMaskedLM"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForMaskedLM"""), ("""roformer""", """FlaxRoFormerForMaskedLM"""), ("""t5""", """FlaxT5ForConditionalGeneration"""), ("""wav2vec2""", """FlaxWav2Vec2ForPreTraining"""), ("""whisper""", """FlaxWhisperForConditionalGeneration"""), ("""xlm-roberta""", """FlaxXLMRobertaForMaskedLM"""), ] ) lowerCamelCase : str = OrderedDict( [ # Model for Masked LM mapping ("""albert""", """FlaxAlbertForMaskedLM"""), ("""bart""", """FlaxBartForConditionalGeneration"""), ("""bert""", """FlaxBertForMaskedLM"""), ("""big_bird""", """FlaxBigBirdForMaskedLM"""), ("""distilbert""", """FlaxDistilBertForMaskedLM"""), ("""electra""", """FlaxElectraForMaskedLM"""), ("""mbart""", """FlaxMBartForConditionalGeneration"""), ("""roberta""", """FlaxRobertaForMaskedLM"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForMaskedLM"""), ("""roformer""", """FlaxRoFormerForMaskedLM"""), ("""xlm-roberta""", """FlaxXLMRobertaForMaskedLM"""), ] ) lowerCamelCase : Union[str, Any] = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ("""bart""", """FlaxBartForConditionalGeneration"""), ("""blenderbot""", """FlaxBlenderbotForConditionalGeneration"""), ("""blenderbot-small""", """FlaxBlenderbotSmallForConditionalGeneration"""), ("""encoder-decoder""", """FlaxEncoderDecoderModel"""), ("""longt5""", """FlaxLongT5ForConditionalGeneration"""), ("""marian""", """FlaxMarianMTModel"""), ("""mbart""", """FlaxMBartForConditionalGeneration"""), ("""mt5""", """FlaxMT5ForConditionalGeneration"""), ("""pegasus""", """FlaxPegasusForConditionalGeneration"""), ("""t5""", """FlaxT5ForConditionalGeneration"""), ] ) lowerCamelCase : List[Any] = OrderedDict( [ # Model for Image-classsification ("""beit""", """FlaxBeitForImageClassification"""), ("""regnet""", """FlaxRegNetForImageClassification"""), ("""resnet""", """FlaxResNetForImageClassification"""), ("""vit""", """FlaxViTForImageClassification"""), ] ) lowerCamelCase : Union[str, Any] = OrderedDict( [ ("""vision-encoder-decoder""", """FlaxVisionEncoderDecoderModel"""), ] ) lowerCamelCase : List[str] = OrderedDict( [ # Model for Causal LM mapping ("""bart""", """FlaxBartForCausalLM"""), ("""bert""", """FlaxBertForCausalLM"""), ("""big_bird""", """FlaxBigBirdForCausalLM"""), ("""electra""", """FlaxElectraForCausalLM"""), ("""gpt-sw3""", """FlaxGPT2LMHeadModel"""), ("""gpt2""", """FlaxGPT2LMHeadModel"""), ("""gpt_neo""", """FlaxGPTNeoForCausalLM"""), ("""gptj""", """FlaxGPTJForCausalLM"""), ("""opt""", """FlaxOPTForCausalLM"""), ("""roberta""", """FlaxRobertaForCausalLM"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForCausalLM"""), ("""xglm""", """FlaxXGLMForCausalLM"""), ("""xlm-roberta""", """FlaxXLMRobertaForCausalLM"""), ] ) lowerCamelCase : str = OrderedDict( [ # Model for Sequence Classification mapping ("""albert""", """FlaxAlbertForSequenceClassification"""), ("""bart""", """FlaxBartForSequenceClassification"""), ("""bert""", """FlaxBertForSequenceClassification"""), ("""big_bird""", """FlaxBigBirdForSequenceClassification"""), ("""distilbert""", """FlaxDistilBertForSequenceClassification"""), ("""electra""", """FlaxElectraForSequenceClassification"""), ("""mbart""", """FlaxMBartForSequenceClassification"""), ("""roberta""", """FlaxRobertaForSequenceClassification"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForSequenceClassification"""), ("""roformer""", """FlaxRoFormerForSequenceClassification"""), ("""xlm-roberta""", """FlaxXLMRobertaForSequenceClassification"""), ] ) lowerCamelCase : List[str] = OrderedDict( [ # Model for Question Answering mapping ("""albert""", """FlaxAlbertForQuestionAnswering"""), ("""bart""", """FlaxBartForQuestionAnswering"""), ("""bert""", """FlaxBertForQuestionAnswering"""), ("""big_bird""", """FlaxBigBirdForQuestionAnswering"""), ("""distilbert""", """FlaxDistilBertForQuestionAnswering"""), ("""electra""", """FlaxElectraForQuestionAnswering"""), ("""mbart""", """FlaxMBartForQuestionAnswering"""), ("""roberta""", """FlaxRobertaForQuestionAnswering"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForQuestionAnswering"""), ("""roformer""", """FlaxRoFormerForQuestionAnswering"""), ("""xlm-roberta""", """FlaxXLMRobertaForQuestionAnswering"""), ] ) lowerCamelCase : List[Any] = OrderedDict( [ # Model for Token Classification mapping ("""albert""", """FlaxAlbertForTokenClassification"""), ("""bert""", """FlaxBertForTokenClassification"""), ("""big_bird""", """FlaxBigBirdForTokenClassification"""), ("""distilbert""", """FlaxDistilBertForTokenClassification"""), ("""electra""", """FlaxElectraForTokenClassification"""), ("""roberta""", """FlaxRobertaForTokenClassification"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForTokenClassification"""), ("""roformer""", """FlaxRoFormerForTokenClassification"""), ("""xlm-roberta""", """FlaxXLMRobertaForTokenClassification"""), ] ) lowerCamelCase : Tuple = OrderedDict( [ # Model for Multiple Choice mapping ("""albert""", """FlaxAlbertForMultipleChoice"""), ("""bert""", """FlaxBertForMultipleChoice"""), ("""big_bird""", """FlaxBigBirdForMultipleChoice"""), ("""distilbert""", """FlaxDistilBertForMultipleChoice"""), ("""electra""", """FlaxElectraForMultipleChoice"""), ("""roberta""", """FlaxRobertaForMultipleChoice"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForMultipleChoice"""), ("""roformer""", """FlaxRoFormerForMultipleChoice"""), ("""xlm-roberta""", """FlaxXLMRobertaForMultipleChoice"""), ] ) lowerCamelCase : Any = OrderedDict( [ ("""bert""", """FlaxBertForNextSentencePrediction"""), ] ) lowerCamelCase : Any = OrderedDict( [ ("""speech-encoder-decoder""", """FlaxSpeechEncoderDecoderModel"""), ("""whisper""", """FlaxWhisperForConditionalGeneration"""), ] ) lowerCamelCase : Dict = OrderedDict( [ ("""whisper""", """FlaxWhisperForAudioClassification"""), ] ) lowerCamelCase : Tuple = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) lowerCamelCase : List[Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) lowerCamelCase : Dict = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) lowerCamelCase : List[str] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) lowerCamelCase : Any = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) lowerCamelCase : List[str] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) lowerCamelCase : Optional[int] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) lowerCamelCase : Dict = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) lowerCamelCase : List[str] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) lowerCamelCase : Optional[Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) lowerCamelCase : Optional[int] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) lowerCamelCase : Tuple = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) lowerCamelCase : Optional[int] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) lowerCamelCase : Any = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class __snake_case( _BaseAutoModelClass ): _A = FLAX_MODEL_MAPPING lowerCamelCase : Any = auto_class_update(FlaxAutoModel) class __snake_case( _BaseAutoModelClass ): _A = FLAX_MODEL_FOR_PRETRAINING_MAPPING lowerCamelCase : List[Any] = auto_class_update(FlaxAutoModelForPreTraining, head_doc="""pretraining""") class __snake_case( _BaseAutoModelClass ): _A = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING lowerCamelCase : Tuple = auto_class_update(FlaxAutoModelForCausalLM, head_doc="""causal language modeling""") class __snake_case( _BaseAutoModelClass ): _A = FLAX_MODEL_FOR_MASKED_LM_MAPPING lowerCamelCase : Any = auto_class_update(FlaxAutoModelForMaskedLM, head_doc="""masked language modeling""") class __snake_case( _BaseAutoModelClass ): _A = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING lowerCamelCase : List[str] = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc="""sequence-to-sequence language modeling""", checkpoint_for_example="""t5-base""" ) class __snake_case( _BaseAutoModelClass ): _A = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING lowerCamelCase : Tuple = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc="""sequence classification""" ) class __snake_case( _BaseAutoModelClass ): _A = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING lowerCamelCase : List[str] = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc="""question answering""") class __snake_case( _BaseAutoModelClass ): _A = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING lowerCamelCase : List[Any] = auto_class_update( FlaxAutoModelForTokenClassification, head_doc="""token classification""" ) class __snake_case( _BaseAutoModelClass ): _A = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING lowerCamelCase : Optional[Any] = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc="""multiple choice""") class __snake_case( _BaseAutoModelClass ): _A = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING lowerCamelCase : Optional[Any] = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc="""next sentence prediction""" ) class __snake_case( _BaseAutoModelClass ): _A = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING lowerCamelCase : Dict = auto_class_update( FlaxAutoModelForImageClassification, head_doc="""image classification""" ) class __snake_case( _BaseAutoModelClass ): _A = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING lowerCamelCase : Any = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc="""vision-to-text modeling""") class __snake_case( _BaseAutoModelClass ): _A = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING lowerCamelCase : int = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc="""sequence-to-sequence speech-to-text modeling""" )
704
"""simple docstring""" import os import string import sys lowerCamelCase : Any = 1 << 8 lowerCamelCase : Optional[int] = { """tab""": ord("""\t"""), """newline""": ord("""\r"""), """esc""": 2_7, """up""": 6_5 + ARROW_KEY_FLAG, """down""": 6_6 + ARROW_KEY_FLAG, """right""": 6_7 + ARROW_KEY_FLAG, """left""": 6_8 + ARROW_KEY_FLAG, """mod_int""": 9_1, """undefined""": sys.maxsize, """interrupt""": 3, """insert""": 5_0, """delete""": 5_1, """pg_up""": 5_3, """pg_down""": 5_4, } lowerCamelCase : str = KEYMAP["""up"""] lowerCamelCase : List[str] = KEYMAP["""left"""] if sys.platform == "win32": lowerCamelCase : Dict = [] lowerCamelCase : Optional[int] = { b"""\xe0H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, b"""\x00H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, b"""\xe0P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, b"""\x00P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, b"""\xe0M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, b"""\x00M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, b"""\xe0K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, b"""\x00K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, } for i in range(1_0): lowerCamelCase : Tuple = ord(str(i)) def A__ ( ): '''simple docstring''' if os.name == "nt": import msvcrt _SCREAMING_SNAKE_CASE = '''mbcs''' # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(UpperCamelCase__ ) == 0: # Read the keystroke _SCREAMING_SNAKE_CASE = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): _SCREAMING_SNAKE_CASE = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: _SCREAMING_SNAKE_CASE = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP['''mod_int'''] ) ) WIN_CH_BUFFER.append(UpperCamelCase__ ) if ord(UpperCamelCase__ ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(126 ) ) _SCREAMING_SNAKE_CASE = chr(KEYMAP['''esc'''] ) except KeyError: _SCREAMING_SNAKE_CASE = cha[1] else: _SCREAMING_SNAKE_CASE = ch.decode(UpperCamelCase__ ) else: _SCREAMING_SNAKE_CASE = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty _SCREAMING_SNAKE_CASE = sys.stdin.fileno() _SCREAMING_SNAKE_CASE = termios.tcgetattr(UpperCamelCase__ ) try: tty.setraw(UpperCamelCase__ ) _SCREAMING_SNAKE_CASE = sys.stdin.read(1 ) finally: termios.tcsetattr(UpperCamelCase__ , termios.TCSADRAIN , UpperCamelCase__ ) return ch def A__ ( ): '''simple docstring''' _SCREAMING_SNAKE_CASE = get_raw_chars() if ord(UpperCamelCase__ ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(UpperCamelCase__ ) == KEYMAP["esc"]: _SCREAMING_SNAKE_CASE = get_raw_chars() if ord(UpperCamelCase__ ) == KEYMAP["mod_int"]: _SCREAMING_SNAKE_CASE = get_raw_chars() if ord(UpperCamelCase__ ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(UpperCamelCase__ ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(UpperCamelCase__ ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
168
0
"""simple docstring""" from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { '''huggingface/time-series-transformer-tourism-monthly''': ( '''https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json''' ), # See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer } class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Optional[int] = """time_series_transformer""" _A : List[str] = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", """num_hidden_layers""": """encoder_layers""", } def __init__(self , lowercase__ = None , lowercase__ = None , lowercase__ = "student_t" , lowercase__ = "nll" , lowercase__ = 1 , lowercase__ = [1, 2, 3, 4, 5, 6, 7] , lowercase__ = "mean" , lowercase__ = 0 , lowercase__ = 0 , lowercase__ = 0 , lowercase__ = 0 , lowercase__ = None , lowercase__ = None , lowercase__ = 32 , lowercase__ = 32 , lowercase__ = 2 , lowercase__ = 2 , lowercase__ = 2 , lowercase__ = 2 , lowercase__ = True , lowercase__ = "gelu" , lowercase__ = 64 , lowercase__ = 0.1 , lowercase__ = 0.1 , lowercase__ = 0.1 , lowercase__ = 0.1 , lowercase__ = 0.1 , lowercase__ = 1_00 , lowercase__ = 0.02 , lowercase__=True , **lowercase__ , ): # time series specific configuration snake_case_ : Optional[int] = prediction_length snake_case_ : Any = context_length or prediction_length snake_case_ : Tuple = distribution_output snake_case_ : Any = loss snake_case_ : List[str] = input_size snake_case_ : Tuple = num_time_features snake_case_ : Optional[int] = lags_sequence snake_case_ : Union[str, Any] = scaling snake_case_ : Union[str, Any] = num_dynamic_real_features snake_case_ : Optional[int] = num_static_real_features snake_case_ : List[Any] = num_static_categorical_features if cardinality and num_static_categorical_features > 0: if len(lowercase__ ) != num_static_categorical_features: raise ValueError( """The cardinality should be a list of the same length as `num_static_categorical_features`""" ) snake_case_ : Optional[Any] = cardinality else: snake_case_ : Union[str, Any] = [0] if embedding_dimension and num_static_categorical_features > 0: if len(lowercase__ ) != num_static_categorical_features: raise ValueError( """The embedding dimension should be a list of the same length as `num_static_categorical_features`""" ) snake_case_ : int = embedding_dimension else: snake_case_ : Union[str, Any] = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] snake_case_ : str = num_parallel_samples # Transformer architecture configuration snake_case_ : int = input_size * len(lowercase__ ) + self._number_of_features snake_case_ : Tuple = d_model snake_case_ : int = encoder_attention_heads snake_case_ : List[str] = decoder_attention_heads snake_case_ : Dict = encoder_ffn_dim snake_case_ : Dict = decoder_ffn_dim snake_case_ : str = encoder_layers snake_case_ : int = decoder_layers snake_case_ : Any = dropout snake_case_ : Tuple = attention_dropout snake_case_ : List[Any] = activation_dropout snake_case_ : List[Any] = encoder_layerdrop snake_case_ : Union[str, Any] = decoder_layerdrop snake_case_ : str = activation_function snake_case_ : int = init_std snake_case_ : str = use_cache super().__init__(is_encoder_decoder=lowercase__ , **lowercase__ ) @property def __UpperCamelCase (self ): return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
480
"""simple docstring""" from __future__ import annotations def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : list[int] , SCREAMING_SNAKE_CASE__ : list[int] , SCREAMING_SNAKE_CASE__ : list[int] , SCREAMING_SNAKE_CASE__ : list[list[str]] , SCREAMING_SNAKE_CASE__ : int , ): """simple docstring""" snake_case_ : Any = len(SCREAMING_SNAKE_CASE__ ) # If row is equal to the size of the board it means there are a queen in each row in # the current board (possible_board) if row == n: # We convert the variable possible_board that looks like this: [1, 3, 0, 2] to # this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . '] boards.append([""". """ * i + """Q """ + """. """ * (n - 1 - i) for i in possible_board] ) return # We iterate each column in the row to find all possible results in each row for col in range(SCREAMING_SNAKE_CASE__ ): # We apply that we learned previously. First we check that in the current board # (possible_board) there are not other same value because if there is it means # that there are a collision in vertical. Then we apply the two formulas we # learned before: # # 45º: y - x = b or 45: row - col = b # 135º: y + x = b or row + col = b. # # And we verify if the results of this two formulas not exist in their variables # respectively. (diagonal_right_collisions, diagonal_left_collisions) # # If any or these are True it means there is a collision so we continue to the # next value in the for loop. if ( col in possible_board or row - col in diagonal_right_collisions or row + col in diagonal_left_collisions ): continue # If it is False we call dfs function again and we update the inputs depth_first_search( [*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" snake_case_ : list[list[str]] = [] depth_first_search([] , [] , [] , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Print all the boards for board in boards: for column in board: print(SCREAMING_SNAKE_CASE__ ) print("""""" ) print(len(SCREAMING_SNAKE_CASE__ ) , """solutions were found.""" ) if __name__ == "__main__": import doctest doctest.testmod() n_queens_solution(4)
480
1
import random import timeit from functools import wraps from typing import Callable, Optional from ..configuration_utils import PretrainedConfig from ..models.auto.modeling_tf_auto import TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING from ..utils import is_pyanvml_available, is_tf_available, logging from .benchmark_utils import ( Benchmark, Memory, MemorySummary, measure_peak_memory_cpu, start_memory_tracing, stop_memory_tracing, ) if is_tf_available(): import tensorflow as tf from tensorflow.python.framework.errors_impl import ResourceExhaustedError from .benchmark_args_tf import TensorFlowBenchmarkArguments if is_pyanvml_available(): import pyanvml.pyanvml as nvml UpperCAmelCase_ : Optional[int] = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE_ ( __magic_name__ : bool , __magic_name__ : bool ) -> int: """simple docstring""" def run_func(__magic_name__ : str ): @wraps(__magic_name__ ) def run_in_eager_mode(*__magic_name__ : Optional[Any] , **__magic_name__ : List[Any] ): return func(*__magic_name__ , **__magic_name__ ) @wraps(__magic_name__ ) @tf.function(experimental_compile=__magic_name__ ) def run_in_graph_mode(*__magic_name__ : Any , **__magic_name__ : List[Any] ): return func(*__magic_name__ , **__magic_name__ ) if do_eager_mode is True: if use_xla is not False: raise ValueError( """Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`.""" ) return run_in_eager_mode else: return run_in_graph_mode return run_func def SCREAMING_SNAKE_CASE_ ( __magic_name__ : int , __magic_name__ : int , __magic_name__ : int ) -> ["tf.Tensor"]: """simple docstring""" UpperCamelCase :Union[str, Any] = random.Random() UpperCamelCase :Dict = [rng.randint(0 , vocab_size - 1 ) for i in range(batch_size * sequence_length )] return tf.constant(__magic_name__ , shape=(batch_size, sequence_length) , dtype=tf.intaa ) class _SCREAMING_SNAKE_CASE ( _a ): snake_case__ : TensorFlowBenchmarkArguments snake_case__ : PretrainedConfig snake_case__ : str = "TensorFlow" @property def _A ( self : List[Any] ): return tf.__version__ def _A ( self : Optional[Any] , __lowerCamelCase : str , __lowerCamelCase : int , __lowerCamelCase : int ): # initialize GPU on separate process UpperCamelCase :List[Any] = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) UpperCamelCase :Union[str, Any] = self._prepare_inference_func(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return self._measure_speed(_inference ) def _A ( self : Optional[Any] , __lowerCamelCase : str , __lowerCamelCase : int , __lowerCamelCase : int ): UpperCamelCase :int = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) UpperCamelCase :Union[str, Any] = self._prepare_train_func(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return self._measure_speed(_train ) def _A ( self : Optional[Any] , __lowerCamelCase : str , __lowerCamelCase : int , __lowerCamelCase : int ): # initialize GPU on separate process if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , __lowerCamelCase ) UpperCamelCase :List[str] = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) UpperCamelCase :List[str] = self._prepare_inference_func(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return self._measure_memory(_inference ) def _A ( self : str , __lowerCamelCase : str , __lowerCamelCase : int , __lowerCamelCase : int ): if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , __lowerCamelCase ) UpperCamelCase :List[Any] = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) UpperCamelCase :Any = self._prepare_train_func(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return self._measure_memory(_train ) def _A ( self : List[str] , __lowerCamelCase : str , __lowerCamelCase : int , __lowerCamelCase : int ): UpperCamelCase :Optional[Any] = self.config_dict[model_name] if self.args.fpaa: raise NotImplementedError("""Mixed precision is currently not supported.""" ) UpperCamelCase :List[Any] = ( hasattr(__lowerCamelCase , """architectures""" ) and isinstance(config.architectures , __lowerCamelCase ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: UpperCamelCase :Optional[Any] = """TF""" + config.architectures[0] # prepend 'TF' for tensorflow model UpperCamelCase :List[str] = __import__("""transformers""" , fromlist=[model_class] ) UpperCamelCase :Tuple = getattr(__lowerCamelCase , __lowerCamelCase ) UpperCamelCase :int = model_cls(__lowerCamelCase ) except ImportError: raise ImportError( F"""{model_class} does not exist. If you just want to test the pretrained model, you might want to""" """ set `--only_pretrain_model` or `args.only_pretrain_model=True`.""" ) else: UpperCamelCase :int = TF_MODEL_MAPPING[config.__class__](__lowerCamelCase ) # encoder-decoder has vocab size saved differently UpperCamelCase :Optional[int] = config.vocab_size if hasattr(__lowerCamelCase , """vocab_size""" ) else config.encoder.vocab_size UpperCamelCase :str = random_input_ids(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_forward(): return model(__lowerCamelCase , decoder_input_ids=__lowerCamelCase , training=__lowerCamelCase ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_forward(): return model(__lowerCamelCase , training=__lowerCamelCase ) UpperCamelCase :int = encoder_decoder_forward if config.is_encoder_decoder else encoder_forward return _inference def _A ( self : Tuple , __lowerCamelCase : str , __lowerCamelCase : int , __lowerCamelCase : int ): UpperCamelCase :Union[str, Any] = self.config_dict[model_name] if self.args.eager_mode is not False: raise ValueError("""Training cannot be done in eager mode. Please make sure that `args.eager_mode = False`.""" ) if self.args.fpaa: raise NotImplementedError("""Mixed precision is currently not supported.""" ) UpperCamelCase :Optional[int] = ( hasattr(__lowerCamelCase , """architectures""" ) and isinstance(config.architectures , __lowerCamelCase ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: UpperCamelCase :Any = """TF""" + config.architectures[0] # prepend 'TF' for tensorflow model UpperCamelCase :List[str] = __import__("""transformers""" , fromlist=[model_class] ) UpperCamelCase :Tuple = getattr(__lowerCamelCase , __lowerCamelCase ) UpperCamelCase :List[str] = model_cls(__lowerCamelCase ) except ImportError: raise ImportError( F"""{model_class} does not exist. If you just want to test the pretrained model, you might want to""" """ set `--only_pretrain_model` or `args.only_pretrain_model=True`.""" ) else: UpperCamelCase :Tuple = TF_MODEL_WITH_LM_HEAD_MAPPING[config.__class__](__lowerCamelCase ) # encoder-decoder has vocab size saved differently UpperCamelCase :Union[str, Any] = config.vocab_size if hasattr(__lowerCamelCase , """vocab_size""" ) else config.encoder.vocab_size UpperCamelCase :List[str] = random_input_ids(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_train(): UpperCamelCase :Dict = model(__lowerCamelCase , decoder_input_ids=__lowerCamelCase , labels=__lowerCamelCase , training=__lowerCamelCase )[0] UpperCamelCase :Dict = tf.gradients(__lowerCamelCase , model.trainable_variables ) return gradients @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_train(): UpperCamelCase :List[Any] = model(__lowerCamelCase , labels=__lowerCamelCase , training=__lowerCamelCase )[0] UpperCamelCase :Tuple = tf.gradients(__lowerCamelCase , model.trainable_variables ) return gradients UpperCamelCase :Dict = encoder_decoder_train if config.is_encoder_decoder else encoder_train return _train def _A ( self : Union[str, Any] , __lowerCamelCase : List[Any] ): with self.args.strategy.scope(): try: if self.args.is_tpu or self.args.use_xla: # run additional 10 times to stabilize compilation for tpu logger.info("""Do inference on TPU. Running model 5 times to stabilize compilation""" ) timeit.repeat(__lowerCamelCase , repeat=1 , number=5 ) # as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average UpperCamelCase :List[Any] = timeit.repeat( __lowerCamelCase , repeat=self.args.repeat , number=10 , ) return min(__lowerCamelCase ) / 10.0 except ResourceExhaustedError as e: self.print_fn(F"""Doesn't fit on GPU. {e}""" ) def _A ( self : Dict , __lowerCamelCase : Callable[[], None] ): logger.info( """Note that TensorFlow allocates more memory than """ """it might need to speed up computation. """ """The memory reported here corresponds to the memory """ """reported by `nvidia-smi`, which can vary depending """ """on total available memory on the GPU that is used.""" ) with self.args.strategy.scope(): try: if self.args.trace_memory_line_by_line: if not self.args.eager_mode: raise ValueError( """`args.eager_mode` is set to `False`. Make sure to run model in eager mode to measure memory""" """ consumption line by line.""" ) UpperCamelCase :int = start_memory_tracing("""transformers""" ) if self.args.is_tpu: # tpu raise NotImplementedError( """Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking""" """ with `args.memory=False`""" ) elif self.args.is_gpu: # gpu if not is_pyanvml_available(): logger.warning( """py3nvml not installed, we won't log GPU memory usage. """ """Install py3nvml (pip install py3nvml) to log information about GPU.""" ) UpperCamelCase :Optional[Any] = """N/A""" else: logger.info( """Measuring total GPU usage on GPU device. Make sure to not have additional processes""" """ running on the same GPU.""" ) # init nvml nvml.nvmlInit() func() UpperCamelCase :int = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx ) UpperCamelCase :int = nvml.nvmlDeviceGetMemoryInfo(__lowerCamelCase ) UpperCamelCase :List[str] = meminfo.used UpperCamelCase :Optional[int] = Memory(__lowerCamelCase ) # shutdown nvml nvml.nvmlShutdown() else: # cpu if self.args.trace_memory_line_by_line: logger.info( """When enabling line by line tracing, the max peak memory for CPU is inaccurate in""" """ TensorFlow.""" ) UpperCamelCase :Optional[int] = None else: UpperCamelCase :Any = measure_peak_memory_cpu(__lowerCamelCase ) UpperCamelCase :str = Memory(__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else memory_bytes if self.args.trace_memory_line_by_line: UpperCamelCase :Optional[int] = stop_memory_tracing(__lowerCamelCase ) if memory is None: UpperCamelCase :List[Any] = summary.total else: UpperCamelCase :Dict = None return memory, summary except ResourceExhaustedError as e: self.print_fn(F"""Doesn't fit on GPU. {e}""" ) return "N/A", None
590
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCAmelCase_ : Optional[int] = { '''configuration_xlm''': ['''XLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLMConfig''', '''XLMOnnxConfig'''], '''tokenization_xlm''': ['''XLMTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Union[str, Any] = [ '''XLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLMForMultipleChoice''', '''XLMForQuestionAnswering''', '''XLMForQuestionAnsweringSimple''', '''XLMForSequenceClassification''', '''XLMForTokenClassification''', '''XLMModel''', '''XLMPreTrainedModel''', '''XLMWithLMHeadModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : List[str] = [ '''TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXLMForMultipleChoice''', '''TFXLMForQuestionAnsweringSimple''', '''TFXLMForSequenceClassification''', '''TFXLMForTokenClassification''', '''TFXLMMainLayer''', '''TFXLMModel''', '''TFXLMPreTrainedModel''', '''TFXLMWithLMHeadModel''', ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys UpperCAmelCase_ : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
590
1
"""simple docstring""" import csv import tweepy # Twitter API credentials UpperCAmelCase__ = """""" UpperCAmelCase__ = """""" UpperCAmelCase__ = """""" UpperCAmelCase__ = """""" def __UpperCAmelCase ( lowercase ): """simple docstring""" # authorize twitter, initialize tweepy _UpperCAmelCase = tweepy.OAuthHandler(lowercase ,lowercase ) auth.set_access_token(lowercase ,lowercase ) _UpperCAmelCase = tweepy.API(lowercase ) # initialize a list to hold all the tweepy Tweets _UpperCAmelCase = [] # make initial request for most recent tweets (200 is the maximum allowed count) _UpperCAmelCase = api.user_timeline(screen_name=lowercase ,count=2_00 ) # save most recent tweets alltweets.extend(lowercase ) # save the id of the oldest tweet less one _UpperCAmelCase = alltweets[-1].id - 1 # keep grabbing tweets until there are no tweets left to grab while len(lowercase ) > 0: print(f'''getting tweets before {oldest}''' ) # all subsequent requests use the max_id param to prevent duplicates _UpperCAmelCase = api.user_timeline( screen_name=lowercase ,count=2_00 ,max_id=lowercase ) # save most recent tweets alltweets.extend(lowercase ) # update the id of the oldest tweet less one _UpperCAmelCase = alltweets[-1].id - 1 print(f'''...{len(lowercase )} tweets downloaded so far''' ) # transform the tweepy tweets into a 2D array that will populate the csv _UpperCAmelCase = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets] # write the csv with open(f'''new_{screen_name}_tweets.csv''' ,"""w""" ) as f: _UpperCAmelCase = csv.writer(lowercase ) writer.writerow(["""id""", """created_at""", """text"""] ) writer.writerows(lowercase ) if __name__ == "__main__": # pass in the username of the account you want to download get_all_tweets("""FirePing32""")
277
"""simple docstring""" import pytest from datasets.utils.sharding import _distribute_shards, _number_of_shards_in_gen_kwargs, _split_gen_kwargs @pytest.mark.parametrize( """kwargs, expected""" ,[ ({"""num_shards""": 0, """max_num_jobs""": 1}, []), ({"""num_shards""": 10, """max_num_jobs""": 1}, [range(10 )]), ({"""num_shards""": 10, """max_num_jobs""": 10}, [range(lowercase ,i + 1 ) for i in range(10 )]), ({"""num_shards""": 1, """max_num_jobs""": 10}, [range(1 )]), ({"""num_shards""": 10, """max_num_jobs""": 3}, [range(0 ,4 ), range(4 ,7 ), range(7 ,10 )]), ({"""num_shards""": 3, """max_num_jobs""": 10}, [range(0 ,1 ), range(1 ,2 ), range(2 ,3 )]), ] ,) def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = _distribute_shards(**lowercase ) assert out == expected @pytest.mark.parametrize( """gen_kwargs, max_num_jobs, expected""" ,[ ({"""foo""": 0}, 10, [{"""foo""": 0}]), ({"""shards""": [0, 1, 2, 3]}, 1, [{"""shards""": [0, 1, 2, 3]}]), ({"""shards""": [0, 1, 2, 3]}, 4, [{"""shards""": [0]}, {"""shards""": [1]}, {"""shards""": [2]}, {"""shards""": [3]}]), ({"""shards""": [0, 1]}, 4, [{"""shards""": [0]}, {"""shards""": [1]}]), ({"""shards""": [0, 1, 2, 3]}, 2, [{"""shards""": [0, 1]}, {"""shards""": [2, 3]}]), ] ,) def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = _split_gen_kwargs(lowercase ,lowercase ) assert out == expected @pytest.mark.parametrize( """gen_kwargs, expected""" ,[ ({"""foo""": 0}, 1), ({"""shards""": [0]}, 1), ({"""shards""": [0, 1, 2, 3]}, 4), ({"""shards""": [0, 1, 2, 3], """foo""": 0}, 4), ({"""shards""": [0, 1, 2, 3], """other""": (0, 1)}, 4), ({"""shards""": [0, 1, 2, 3], """shards2""": [0, 1]}, RuntimeError), ] ,) def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" if expected is RuntimeError: with pytest.raises(lowercase ): _number_of_shards_in_gen_kwargs(lowercase ) else: _UpperCAmelCase = _number_of_shards_in_gen_kwargs(lowercase ) assert out == expected
277
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase_ = { "configuration_longformer": [ "LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "LongformerConfig", "LongformerOnnxConfig", ], "tokenization_longformer": ["LongformerTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ["LongformerTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "LongformerForMaskedLM", "LongformerForMultipleChoice", "LongformerForQuestionAnswering", "LongformerForSequenceClassification", "LongformerForTokenClassification", "LongformerModel", "LongformerPreTrainedModel", "LongformerSelfAttention", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TFLongformerForMaskedLM", "TFLongformerForMultipleChoice", "TFLongformerForQuestionAnswering", "TFLongformerForSequenceClassification", "TFLongformerForTokenClassification", "TFLongformerModel", "TFLongformerPreTrainedModel", "TFLongformerSelfAttention", ] if TYPE_CHECKING: from .configuration_longformer import ( LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, LongformerConfig, LongformerOnnxConfig, ) from .tokenization_longformer import LongformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_longformer_fast import LongformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longformer import ( LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, LongformerForMaskedLM, LongformerForMultipleChoice, LongformerForQuestionAnswering, LongformerForSequenceClassification, LongformerForTokenClassification, LongformerModel, LongformerPreTrainedModel, LongformerSelfAttention, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_longformer import ( TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFLongformerForMaskedLM, TFLongformerForMultipleChoice, TFLongformerForQuestionAnswering, TFLongformerForSequenceClassification, TFLongformerForTokenClassification, TFLongformerModel, TFLongformerPreTrainedModel, TFLongformerSelfAttention, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
376
from abc import ABC, abstractmethod from argparse import ArgumentParser class a ( __UpperCAmelCase ): @staticmethod @abstractmethod def UpperCAmelCase__ ( snake_case__ : ArgumentParser ): """simple docstring""" raise NotImplementedError() @abstractmethod def UpperCAmelCase__ ( self : Any ): """simple docstring""" raise NotImplementedError()
376
1
'''simple docstring''' import torch from transformers import CamembertForMaskedLM, CamembertTokenizer def _A ( lowercase__ , lowercase__ , lowercase__ , lowercase__=5 ): # Adapted from https://github.com/pytorch/fairseq/blob/master/fairseq/models/roberta/hub_interface.py assert masked_input.count("""<mask>""" ) == 1 lowercase__ = torch.tensor(tokenizer.encode(lowercase__ , add_special_tokens=lowercase__ ) ).unsqueeze(0 ) # Batch size 1 lowercase__ = model(lowercase__ )[0] # The last hidden-state is the first element of the output tuple lowercase__ = (input_ids.squeeze() == tokenizer.mask_token_id).nonzero().item() lowercase__ = logits[0, masked_index, :] lowercase__ = logits.softmax(dim=0 ) lowercase__ , lowercase__ = prob.topk(k=lowercase__ , dim=0 ) lowercase__ = """ """.join( [tokenizer.convert_ids_to_tokens(indices[i].item() ) for i in range(len(lowercase__ ) )] ) lowercase__ = tokenizer.mask_token lowercase__ = [] for index, predicted_token_bpe in enumerate(topk_predicted_token_bpe.split(""" """ ) ): lowercase__ = predicted_token_bpe.replace("""\u2581""" , """ """ ) if " {0}".format(lowercase__ ) in masked_input: topk_filled_outputs.append( ( masked_input.replace(""" {0}""".format(lowercase__ ) , lowercase__ ), values[index].item(), predicted_token, ) ) else: topk_filled_outputs.append( ( masked_input.replace(lowercase__ , lowercase__ ), values[index].item(), predicted_token, ) ) return topk_filled_outputs __A = CamembertTokenizer.from_pretrained("camembert-base") __A = CamembertForMaskedLM.from_pretrained("camembert-base") model.eval() __A = "Le camembert est <mask> :)" print(fill_mask(masked_input, model, tokenizer, topk=3))
325
'''simple docstring''' import math import qiskit def _A ( lowercase__ = 1 , lowercase__ = 1 , lowercase__ = 1 ): if ( isinstance(lowercase__ , lowercase__ ) or isinstance(lowercase__ , lowercase__ ) or isinstance(lowercase__ , lowercase__ ) ): raise TypeError("""inputs must be integers.""" ) if (input_a < 0) or (input_a < 0) or (carry_in < 0): raise ValueError("""inputs must be positive.""" ) if ( (math.floor(lowercase__ ) != input_a) or (math.floor(lowercase__ ) != input_a) or (math.floor(lowercase__ ) != carry_in) ): raise ValueError("""inputs must be exact integers.""" ) if (input_a > 2) or (input_a > 2) or (carry_in > 2): raise ValueError("""inputs must be less or equal to 2.""" ) # build registers lowercase__ = qiskit.QuantumRegister(4 , """qr""" ) lowercase__ = qiskit.ClassicalRegister(2 , """cr""" ) # list the entries lowercase__ = [input_a, input_a, carry_in] lowercase__ = qiskit.QuantumCircuit(lowercase__ , lowercase__ ) for i in range(0 , 3 ): if entry[i] == 2: quantum_circuit.h(lowercase__ ) # for hadamard entries elif entry[i] == 1: quantum_circuit.x(lowercase__ ) # for 1 entries elif entry[i] == 0: quantum_circuit.i(lowercase__ ) # for 0 entries # build the circuit quantum_circuit.ccx(0 , 1 , 3 ) # ccx = toffoli gate quantum_circuit.cx(0 , 1 ) quantum_circuit.ccx(1 , 2 , 3 ) quantum_circuit.cx(1 , 2 ) quantum_circuit.cx(0 , 1 ) quantum_circuit.measure([2, 3] , lowercase__ ) # measure the last two qbits lowercase__ = qiskit.Aer.get_backend("""aer_simulator""" ) lowercase__ = qiskit.execute(lowercase__ , lowercase__ , shots=1000 ) return job.result().get_counts(lowercase__ ) if __name__ == "__main__": print(F'''Total sum count for state is: {quantum_full_adder(1, 1, 1)}''')
325
1
def UpperCAmelCase_( a__ ): """simple docstring""" stooge(__snake_case , 0 , len(__snake_case ) - 1 ) return arr def UpperCAmelCase_( a__ , a__ , a__ ): """simple docstring""" if i >= h: return # If first element is smaller than the last then swap them if arr[i] > arr[h]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = arr[h], arr[i] # If there are more than 2 elements in the array if h - i + 1 > 2: SCREAMING_SNAKE_CASE : Optional[Any] = (int)((h - i + 1) / 3 ) # Recursively sort first 2/3 elements stooge(__snake_case , __snake_case , (h - t) ) # Recursively sort last 2/3 elements stooge(__snake_case , i + t , (__snake_case) ) # Recursively sort first 2/3 elements stooge(__snake_case , __snake_case , (h - t) ) if __name__ == "__main__": a__ : Optional[int] = input('''Enter numbers separated by a comma:\n''').strip() a__ : Optional[int] = [int(item) for item in user_input.split(''',''')] print(stooge_sort(unsorted))
712
import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = (DDPMScheduler,) def __lowerCAmelCase ( self , **_lowerCamelCase ) ->Dict: SCREAMING_SNAKE_CASE : List[Any] = { '''num_train_timesteps''': 1000, '''beta_start''': 0.0_0_0_1, '''beta_end''': 0.0_2, '''beta_schedule''': '''linear''', '''variance_type''': '''fixed_small''', '''clip_sample''': True, } config.update(**_lowerCamelCase ) return config def __lowerCAmelCase ( self ) ->int: for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=_lowerCamelCase ) def __lowerCAmelCase ( self ) ->List[Any]: for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1] , [0.0_0_2, 0.0_2, 0.2, 2] ): self.check_over_configs(beta_start=_lowerCamelCase , beta_end=_lowerCamelCase ) def __lowerCAmelCase ( self ) ->str: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_lowerCamelCase ) def __lowerCAmelCase ( self ) ->Any: for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=_lowerCamelCase ) def __lowerCAmelCase ( self ) ->Any: for clip_sample in [True, False]: self.check_over_configs(clip_sample=_lowerCamelCase ) def __lowerCAmelCase ( self ) ->Tuple: self.check_over_configs(thresholding=_lowerCamelCase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=_lowerCamelCase , prediction_type=_lowerCamelCase , sample_max_value=_lowerCamelCase , ) def __lowerCAmelCase ( self ) ->int: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=_lowerCamelCase ) def __lowerCAmelCase ( self ) ->List[Any]: for t in [0, 500, 999]: self.check_over_forward(time_step=_lowerCamelCase ) def __lowerCAmelCase ( self ) ->Any: SCREAMING_SNAKE_CASE : Dict = self.scheduler_classes[0] SCREAMING_SNAKE_CASE : Tuple = self.get_scheduler_config() SCREAMING_SNAKE_CASE : Any = scheduler_class(**_lowerCamelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0_9_7_9 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.0_2 ) ) < 1e-5 def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : List[Any] = self.scheduler_classes[0] SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_scheduler_config() SCREAMING_SNAKE_CASE : str = scheduler_class(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = len(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = self.dummy_model() SCREAMING_SNAKE_CASE : Optional[int] = self.dummy_sample_deter SCREAMING_SNAKE_CASE : str = torch.manual_seed(0 ) for t in reversed(range(_lowerCamelCase ) ): # 1. predict noise residual SCREAMING_SNAKE_CASE : Tuple = model(_lowerCamelCase , _lowerCamelCase ) # 2. predict previous mean of sample x_t-1 SCREAMING_SNAKE_CASE : int = scheduler.step(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , generator=_lowerCamelCase ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance SCREAMING_SNAKE_CASE : str = pred_prev_sample SCREAMING_SNAKE_CASE : List[Any] = torch.sum(torch.abs(_lowerCamelCase ) ) SCREAMING_SNAKE_CASE : Optional[int] = torch.mean(torch.abs(_lowerCamelCase ) ) assert abs(result_sum.item() - 2_5_8.9_6_0_6 ) < 1e-2 assert abs(result_mean.item() - 0.3_3_7_2 ) < 1e-3 def __lowerCAmelCase ( self ) ->Any: SCREAMING_SNAKE_CASE : Optional[Any] = self.scheduler_classes[0] SCREAMING_SNAKE_CASE : Tuple = self.get_scheduler_config(prediction_type='''v_prediction''' ) SCREAMING_SNAKE_CASE : Optional[Any] = scheduler_class(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = len(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = self.dummy_model() SCREAMING_SNAKE_CASE : Tuple = self.dummy_sample_deter SCREAMING_SNAKE_CASE : Union[str, Any] = torch.manual_seed(0 ) for t in reversed(range(_lowerCamelCase ) ): # 1. predict noise residual SCREAMING_SNAKE_CASE : List[Any] = model(_lowerCamelCase , _lowerCamelCase ) # 2. predict previous mean of sample x_t-1 SCREAMING_SNAKE_CASE : List[Any] = scheduler.step(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , generator=_lowerCamelCase ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance SCREAMING_SNAKE_CASE : Tuple = pred_prev_sample SCREAMING_SNAKE_CASE : Union[str, Any] = torch.sum(torch.abs(_lowerCamelCase ) ) SCREAMING_SNAKE_CASE : Optional[int] = torch.mean(torch.abs(_lowerCamelCase ) ) assert abs(result_sum.item() - 2_0_2.0_2_9_6 ) < 1e-2 assert abs(result_mean.item() - 0.2_6_3_1 ) < 1e-3 def __lowerCAmelCase ( self ) ->List[str]: SCREAMING_SNAKE_CASE : Dict = self.scheduler_classes[0] SCREAMING_SNAKE_CASE : Any = self.get_scheduler_config() SCREAMING_SNAKE_CASE : Dict = scheduler_class(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = scheduler.timesteps for i, timestep in enumerate(_lowerCamelCase ): if i == len(_lowerCamelCase ) - 1: SCREAMING_SNAKE_CASE : int = -1 else: SCREAMING_SNAKE_CASE : List[Any] = timesteps[i + 1] SCREAMING_SNAKE_CASE : int = scheduler.previous_timestep(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = prev_t.item() self.assertEqual(_lowerCamelCase , _lowerCamelCase ) def __lowerCAmelCase ( self ) ->Optional[Any]: SCREAMING_SNAKE_CASE : Optional[Any] = self.scheduler_classes[0] SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_scheduler_config() SCREAMING_SNAKE_CASE : List[str] = scheduler_class(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = [100, 87, 50, 51, 0] with self.assertRaises(_lowerCamelCase , msg='''`custom_timesteps` must be in descending order.''' ): scheduler.set_timesteps(timesteps=_lowerCamelCase ) def __lowerCAmelCase ( self ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : Dict = self.scheduler_classes[0] SCREAMING_SNAKE_CASE : List[str] = self.get_scheduler_config() SCREAMING_SNAKE_CASE : Any = scheduler_class(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = [100, 87, 50, 1, 0] SCREAMING_SNAKE_CASE : Optional[Any] = len(_lowerCamelCase ) with self.assertRaises(_lowerCamelCase , msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.''' ): scheduler.set_timesteps(num_inference_steps=_lowerCamelCase , timesteps=_lowerCamelCase ) def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : Optional[int] = self.scheduler_classes[0] SCREAMING_SNAKE_CASE : Dict = self.get_scheduler_config() SCREAMING_SNAKE_CASE : Any = scheduler_class(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = [scheduler.config.num_train_timesteps] with self.assertRaises( _lowerCamelCase , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=_lowerCamelCase )
333
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCamelCase = { 'configuration_biogpt': ['BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BioGptConfig'], 'tokenization_biogpt': ['BioGptTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ 'BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BioGptForCausalLM', 'BioGptForTokenClassification', 'BioGptForSequenceClassification', 'BioGptModel', 'BioGptPreTrainedModel', ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
61
import operator as op UpperCamelCase = 'scaler.pt' UpperCamelCase = 'pytorch_model' UpperCamelCase = 'random_states' UpperCamelCase = 'optimizer' UpperCamelCase = 'scheduler' UpperCamelCase = 'pytorch_model.bin' UpperCamelCase = 'pytorch_model.bin.index.json' UpperCamelCase = 'model.safetensors' UpperCamelCase = 'model.safetensors.index.json' UpperCamelCase = '1.10.2' UpperCamelCase = 'py38' UpperCamelCase = '4.17.0' UpperCamelCase = ['ml.p3.16xlarge', 'ml.p3dn.24xlarge', 'ml.p4dn.24xlarge'] UpperCamelCase = ['FULL_SHARD', 'SHARD_GRAD_OP', 'NO_SHARD', 'HYBRID_SHARD', 'HYBRID_SHARD_ZERO2'] UpperCamelCase = ['TRANSFORMER_BASED_WRAP', 'SIZE_BASED_WRAP', 'NO_WRAP'] UpperCamelCase = ['BACKWARD_PRE', 'BACKWARD_POST', 'NO_PREFETCH'] UpperCamelCase = ['FULL_STATE_DICT', 'LOCAL_STATE_DICT', 'SHARDED_STATE_DICT'] UpperCamelCase = '2.0.1' UpperCamelCase = ['pdsh', 'standard', 'openmpi', 'mvapich'] UpperCamelCase = ['default', 'reduce-overhead', 'max-autotune'] UpperCamelCase = {'>': op.gt, '>=': op.ge, '==': op.eq, '!=': op.ne, '<=': op.le, '<': op.lt} # These are the args for `torch.distributed.launch` for pytorch < 1.9 UpperCamelCase = [ 'nnodes', 'nproc_per_node', 'rdzv_backend', 'rdzv_endpoint', 'rdzv_id', 'rdzv_conf', 'standalone', 'max_restarts', 'monitor_interval', 'start_method', 'role', 'module', 'm', 'no_python', 'run_path', 'log_dir', 'r', 'redirects', 't', 'tee', 'node_rank', 'master_addr', 'master_port', ] UpperCamelCase = ['DEEPSPEED', 'MULTI_GPU', 'FSDP', 'MEGATRON_LM'] UpperCamelCase = ['DEEPSPEED', 'MULTI_XPU', 'FSDP']
61
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { 'facebook/s2t-small-librispeech-asr': ( 'https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/config.json' ), # See all Speech2Text models at https://huggingface.co/models?filter=speech_to_text } class __lowerCAmelCase ( UpperCamelCase_ ): _a = """speech_to_text""" _a = ["""past_key_values"""] _a = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self , lowerCAmelCase=10_000 , lowerCAmelCase=12 , lowerCAmelCase=2_048 , lowerCAmelCase=4 , lowerCAmelCase=6 , lowerCAmelCase=2_048 , lowerCAmelCase=4 , lowerCAmelCase=0.0 , lowerCAmelCase=0.0 , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase="relu" , lowerCAmelCase=256 , lowerCAmelCase=0.1 , lowerCAmelCase=0.0 , lowerCAmelCase=0.0 , lowerCAmelCase=0.02 , lowerCAmelCase=2 , lowerCAmelCase=True , lowerCAmelCase=1 , lowerCAmelCase=0 , lowerCAmelCase=2 , lowerCAmelCase=6_000 , lowerCAmelCase=1_024 , lowerCAmelCase=2 , lowerCAmelCase=(5, 5) , lowerCAmelCase=1_024 , lowerCAmelCase=80 , lowerCAmelCase=1 , **lowerCAmelCase , ) -> str: '''simple docstring''' _lowercase =vocab_size _lowercase =d_model _lowercase =encoder_ffn_dim _lowercase =encoder_layers _lowercase =encoder_attention_heads _lowercase =decoder_ffn_dim _lowercase =decoder_layers _lowercase =decoder_attention_heads _lowercase =dropout _lowercase =attention_dropout _lowercase =activation_dropout _lowercase =activation_function _lowercase =init_std _lowercase =encoder_layerdrop _lowercase =decoder_layerdrop _lowercase =use_cache _lowercase =encoder_layers _lowercase =scale_embedding # scale factor will be sqrt(d_model) if True _lowercase =max_source_positions _lowercase =max_target_positions _lowercase =num_conv_layers _lowercase =list(__a ) _lowercase =conv_channels _lowercase =input_feat_per_channel _lowercase =input_channels if len(self.conv_kernel_sizes ) != self.num_conv_layers: raise ValueError( 'Configuration for convolutional module is incorrect. ' 'It is required that `len(config.conv_kernel_sizes)` == `config.num_conv_layers` ' F'''but is `len(config.conv_kernel_sizes) = {len(self.conv_kernel_sizes )}`, ''' F'''`config.num_conv_layers = {self.num_conv_layers}`.''' ) super().__init__( pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , is_encoder_decoder=__a , decoder_start_token_id=__a , **__a , )
717
import argparse import torch from datasets import load_dataset from donut import DonutModel from transformers import ( DonutImageProcessor, DonutProcessor, DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, VisionEncoderDecoderModel, XLMRobertaTokenizerFast, ) def a ( A__ : Tuple ) -> Any: """simple docstring""" _lowercase =model.config _lowercase =DonutSwinConfig( image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 16, 32] , window_size=original_config.window_size , embed_dim=128 , ) _lowercase =MBartConfig( is_decoder=A__ , is_encoder_decoder=A__ , add_cross_attention=A__ , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len( model.decoder.tokenizer ) , scale_embedding=A__ , add_final_layer_norm=A__ , ) return encoder_config, decoder_config def a ( A__ : Union[str, Any] ) -> str: """simple docstring""" if "encoder.model" in name: _lowercase =name.replace('encoder.model' , 'encoder' ) if "decoder.model" in name: _lowercase =name.replace('decoder.model' , 'decoder' ) if "patch_embed.proj" in name: _lowercase =name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: _lowercase =name.replace('patch_embed.norm' , 'embeddings.norm' ) if name.startswith('encoder' ): if "layers" in name: _lowercase ='encoder.' + name if "attn.proj" in name: _lowercase =name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name and "mask" not in name: _lowercase =name.replace('attn' , 'attention.self' ) if "norm1" in name: _lowercase =name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: _lowercase =name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: _lowercase =name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: _lowercase =name.replace('mlp.fc2' , 'output.dense' ) if name == "encoder.norm.weight": _lowercase ='encoder.layernorm.weight' if name == "encoder.norm.bias": _lowercase ='encoder.layernorm.bias' return name def a ( A__ : Optional[Any] , A__ : List[Any] ) -> List[str]: """simple docstring""" for key in orig_state_dict.copy().keys(): _lowercase =orig_state_dict.pop(A__ ) if "qkv" in key: _lowercase =key.split('.' ) _lowercase =int(key_split[3] ) _lowercase =int(key_split[5] ) _lowercase =model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: _lowercase =val[:dim, :] _lowercase =val[dim : dim * 2, :] _lowercase =val[-dim:, :] else: _lowercase =val[:dim] _lowercase =val[dim : dim * 2] _lowercase =val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: _lowercase =val return orig_state_dict def a ( A__ : str , A__ : List[str]=None , A__ : List[Any]=False ) -> List[str]: """simple docstring""" _lowercase =DonutModel.from_pretrained(A__ ).eval() # load HuggingFace model _lowercase , _lowercase =get_configs(A__ ) _lowercase =DonutSwinModel(A__ ) _lowercase =MBartForCausalLM(A__ ) _lowercase =VisionEncoderDecoderModel(encoder=A__ , decoder=A__ ) model.eval() _lowercase =original_model.state_dict() _lowercase =convert_state_dict(A__ , A__ ) model.load_state_dict(A__ ) # verify results on scanned document _lowercase =load_dataset('hf-internal-testing/example-documents' ) _lowercase =dataset['test'][0]['image'].convert('RGB' ) _lowercase =XLMRobertaTokenizerFast.from_pretrained(A__ , from_slow=A__ ) _lowercase =DonutImageProcessor( do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] ) _lowercase =DonutProcessor(A__ , A__ ) _lowercase =processor(A__ , return_tensors='pt' ).pixel_values if model_name == "naver-clova-ix/donut-base-finetuned-docvqa": _lowercase ='<s_docvqa><s_question>{user_input}</s_question><s_answer>' _lowercase ='When is the coffee break?' _lowercase =task_prompt.replace('{user_input}' , A__ ) elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip": _lowercase ='<s_rvlcdip>' elif model_name in [ "naver-clova-ix/donut-base-finetuned-cord-v1", "naver-clova-ix/donut-base-finetuned-cord-v1-2560", ]: _lowercase ='<s_cord>' elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2": _lowercase ='s_cord-v2>' elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket": _lowercase ='<s_zhtrainticket>' elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]: # use a random prompt _lowercase ='hello world' else: raise ValueError('Model name not supported' ) _lowercase =original_model.decoder.tokenizer(A__ , add_special_tokens=A__ , return_tensors='pt' )[ 'input_ids' ] _lowercase =original_model.encoder.model.patch_embed(A__ ) _lowercase , _lowercase =model.encoder.embeddings(A__ ) assert torch.allclose(A__ , A__ , atol=1e-3 ) # verify encoder hidden states _lowercase =original_model.encoder(A__ ) _lowercase =model.encoder(A__ ).last_hidden_state assert torch.allclose(A__ , A__ , atol=1e-2 ) # verify decoder hidden states _lowercase =original_model(A__ , A__ , A__ ).logits _lowercase =model(A__ , decoder_input_ids=A__ ).logits assert torch.allclose(A__ , A__ , atol=1e-3 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(F'''Saving model and processor to {pytorch_dump_folder_path}''' ) model.save_pretrained(A__ ) processor.save_pretrained(A__ ) if push_to_hub: model.push_to_hub('nielsr/' + model_name.split('/' )[-1] , commit_message='Update model' ) processor.push_to_hub('nielsr/' + model_name.split('/' )[-1] , commit_message='Update model' ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='naver-clova-ix/donut-base-finetuned-docvqa', required=False, type=str, help='Name of the original model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, required=False, type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model and processor to the 🤗 hub.', ) lowercase_ = parser.parse_args() convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
380
0
'''simple docstring''' import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 lowercase__ : Optional[Any] = sys.version_info >= (3, 10) def _lowerCAmelCase ( __snake_case : Union[str, Any]=None , __snake_case : int=None ) -> str: return field(default_factory=lambda: default , metadata=__snake_case ) @dataclass class SCREAMING_SNAKE_CASE : lowerCAmelCase = 42 lowerCAmelCase = 42 lowerCAmelCase = 42 lowerCAmelCase = 42 @dataclass class SCREAMING_SNAKE_CASE : lowerCAmelCase = 42 lowerCAmelCase = field(default='''toto''' , metadata={'''help''': '''help message'''} ) @dataclass class SCREAMING_SNAKE_CASE : lowerCAmelCase = False lowerCAmelCase = True lowerCAmelCase = None class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = '''titi''' lowerCAmelCase = '''toto''' class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = '''titi''' lowerCAmelCase = '''toto''' lowerCAmelCase = 42 @dataclass class SCREAMING_SNAKE_CASE : lowerCAmelCase = "toto" def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Tuple = BasicEnum(self.foo) @dataclass class SCREAMING_SNAKE_CASE : lowerCAmelCase = "toto" def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[Any] = MixedTypeEnum(self.foo) @dataclass class SCREAMING_SNAKE_CASE : lowerCAmelCase = None lowerCAmelCase = field(default=a__ , metadata={'''help''': '''help message'''} ) lowerCAmelCase = None lowerCAmelCase = list_field(default=[] ) lowerCAmelCase = list_field(default=[] ) @dataclass class SCREAMING_SNAKE_CASE : lowerCAmelCase = list_field(default=[] ) lowerCAmelCase = list_field(default=[1, 2, 3] ) lowerCAmelCase = list_field(default=['''Hallo''', '''Bonjour''', '''Hello'''] ) lowerCAmelCase = list_field(default=[0.1, 0.2, 0.3] ) @dataclass class SCREAMING_SNAKE_CASE : lowerCAmelCase = field() lowerCAmelCase = field() lowerCAmelCase = field() def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[Any] = BasicEnum(self.required_enum) @dataclass class SCREAMING_SNAKE_CASE : lowerCAmelCase = 42 lowerCAmelCase = field() lowerCAmelCase = None lowerCAmelCase = field(default='''toto''' , metadata={'''help''': '''help message'''} ) lowerCAmelCase = list_field(default=['''Hallo''', '''Bonjour''', '''Hello'''] ) if is_python_no_less_than_3_10: @dataclass class SCREAMING_SNAKE_CASE : lowerCAmelCase = False lowerCAmelCase = True lowerCAmelCase = None @dataclass class SCREAMING_SNAKE_CASE : lowerCAmelCase = None lowerCAmelCase = field(default=a__ , metadata={'''help''': '''help message'''} ) lowerCAmelCase = None lowerCAmelCase = list_field(default=[] ) lowerCAmelCase = list_field(default=[] ) class SCREAMING_SNAKE_CASE (unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' self.assertEqual(len(a._actions) , len(b._actions)) for x, y in zip(a._actions , b._actions): __A : List[Any] = {k: v for k, v in vars(_UpperCAmelCase).items() if k != 'container'} __A : Union[str, Any] = {k: v for k, v in vars(_UpperCAmelCase).items() if k != 'container'} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get('choices' , _UpperCAmelCase) and yy.get('choices' , _UpperCAmelCase): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx['type'](_UpperCAmelCase) , yy['type'](_UpperCAmelCase)) del xx["type"], yy["type"] self.assertEqual(_UpperCAmelCase , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[Any] = HfArgumentParser(_UpperCAmelCase) __A : int = argparse.ArgumentParser() expected.add_argument('--foo' , type=_UpperCAmelCase , required=_UpperCAmelCase) expected.add_argument('--bar' , type=_UpperCAmelCase , required=_UpperCAmelCase) expected.add_argument('--baz' , type=_UpperCAmelCase , required=_UpperCAmelCase) expected.add_argument('--flag' , type=_UpperCAmelCase , default=_UpperCAmelCase , const=_UpperCAmelCase , nargs='?') self.argparsersEqual(_UpperCAmelCase , _UpperCAmelCase) __A : int = ['--foo', '1', '--baz', 'quux', '--bar', '0.5'] ((__A) ,) : Any = parser.parse_args_into_dataclasses(_UpperCAmelCase , look_for_args_file=_UpperCAmelCase) self.assertFalse(example.flag) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[int] = HfArgumentParser(_UpperCAmelCase) __A : List[str] = argparse.ArgumentParser() expected.add_argument('--foo' , default=42 , type=_UpperCAmelCase) expected.add_argument('--baz' , default='toto' , type=_UpperCAmelCase , help='help message') self.argparsersEqual(_UpperCAmelCase , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Union[str, Any] = argparse.ArgumentParser() expected.add_argument('--foo' , type=_UpperCAmelCase , default=_UpperCAmelCase , const=_UpperCAmelCase , nargs='?') expected.add_argument('--baz' , type=_UpperCAmelCase , default=_UpperCAmelCase , const=_UpperCAmelCase , nargs='?') # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument('--no_baz' , action='store_false' , default=_UpperCAmelCase , dest='baz') expected.add_argument('--opt' , type=_UpperCAmelCase , default=_UpperCAmelCase) __A : str = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(_UpperCAmelCase) for dataclass_type in dataclass_types: __A : Tuple = HfArgumentParser(_UpperCAmelCase) self.argparsersEqual(_UpperCAmelCase , _UpperCAmelCase) __A : str = parser.parse_args([]) self.assertEqual(_UpperCAmelCase , Namespace(foo=_UpperCAmelCase , baz=_UpperCAmelCase , opt=_UpperCAmelCase)) __A : Tuple = parser.parse_args(['--foo', '--no_baz']) self.assertEqual(_UpperCAmelCase , Namespace(foo=_UpperCAmelCase , baz=_UpperCAmelCase , opt=_UpperCAmelCase)) __A : Optional[Any] = parser.parse_args(['--foo', '--baz']) self.assertEqual(_UpperCAmelCase , Namespace(foo=_UpperCAmelCase , baz=_UpperCAmelCase , opt=_UpperCAmelCase)) __A : Optional[int] = parser.parse_args(['--foo', 'True', '--baz', 'True', '--opt', 'True']) self.assertEqual(_UpperCAmelCase , Namespace(foo=_UpperCAmelCase , baz=_UpperCAmelCase , opt=_UpperCAmelCase)) __A : List[Any] = parser.parse_args(['--foo', 'False', '--baz', 'False', '--opt', 'False']) self.assertEqual(_UpperCAmelCase , Namespace(foo=_UpperCAmelCase , baz=_UpperCAmelCase , opt=_UpperCAmelCase)) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[Any] = HfArgumentParser(_UpperCAmelCase) __A : Tuple = argparse.ArgumentParser() expected.add_argument( '--foo' , default='toto' , choices=['titi', 'toto', 42] , type=make_choice_type_function(['titi', 'toto', 42]) , ) self.argparsersEqual(_UpperCAmelCase , _UpperCAmelCase) __A : int = parser.parse_args([]) self.assertEqual(args.foo , 'toto') __A : Optional[Any] = parser.parse_args_into_dataclasses([])[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto) __A : Union[str, Any] = parser.parse_args(['--foo', 'titi']) self.assertEqual(args.foo , 'titi') __A : List[Any] = parser.parse_args_into_dataclasses(['--foo', 'titi'])[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi) __A : Dict = parser.parse_args(['--foo', '42']) self.assertEqual(args.foo , 42) __A : Tuple = parser.parse_args_into_dataclasses(['--foo', '42'])[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' @dataclass class SCREAMING_SNAKE_CASE : lowerCAmelCase = "toto" __A : str = HfArgumentParser(_UpperCAmelCase) __A : Optional[Any] = argparse.ArgumentParser() expected.add_argument( '--foo' , default='toto' , choices=('titi', 'toto', 42) , type=make_choice_type_function(['titi', 'toto', 42]) , ) self.argparsersEqual(_UpperCAmelCase , _UpperCAmelCase) __A : Dict = parser.parse_args([]) self.assertEqual(args.foo , 'toto') __A : Optional[int] = parser.parse_args(['--foo', 'titi']) self.assertEqual(args.foo , 'titi') __A : Optional[Any] = parser.parse_args(['--foo', '42']) self.assertEqual(args.foo , 42) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Tuple = HfArgumentParser(_UpperCAmelCase) __A : Union[str, Any] = argparse.ArgumentParser() expected.add_argument('--foo_int' , nargs='+' , default=[] , type=_UpperCAmelCase) expected.add_argument('--bar_int' , nargs='+' , default=[1, 2, 3] , type=_UpperCAmelCase) expected.add_argument('--foo_str' , nargs='+' , default=['Hallo', 'Bonjour', 'Hello'] , type=_UpperCAmelCase) expected.add_argument('--foo_float' , nargs='+' , default=[0.1, 0.2, 0.3] , type=_UpperCAmelCase) self.argparsersEqual(_UpperCAmelCase , _UpperCAmelCase) __A : int = parser.parse_args([]) self.assertEqual( _UpperCAmelCase , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=['Hallo', 'Bonjour', 'Hello'] , foo_float=[0.1, 0.2, 0.3]) , ) __A : Optional[int] = parser.parse_args('--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7'.split()) self.assertEqual(_UpperCAmelCase , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=['a', 'b', 'c'] , foo_float=[0.1, 0.7])) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[int] = argparse.ArgumentParser() expected.add_argument('--foo' , default=_UpperCAmelCase , type=_UpperCAmelCase) expected.add_argument('--bar' , default=_UpperCAmelCase , type=_UpperCAmelCase , help='help message') expected.add_argument('--baz' , default=_UpperCAmelCase , type=_UpperCAmelCase) expected.add_argument('--ces' , nargs='+' , default=[] , type=_UpperCAmelCase) expected.add_argument('--des' , nargs='+' , default=[] , type=_UpperCAmelCase) __A : Optional[int] = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(_UpperCAmelCase) for dataclass_type in dataclass_types: __A : Dict = HfArgumentParser(_UpperCAmelCase) self.argparsersEqual(_UpperCAmelCase , _UpperCAmelCase) __A : Union[str, Any] = parser.parse_args([]) self.assertEqual(_UpperCAmelCase , Namespace(foo=_UpperCAmelCase , bar=_UpperCAmelCase , baz=_UpperCAmelCase , ces=[] , des=[])) __A : str = parser.parse_args('--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3'.split()) self.assertEqual(_UpperCAmelCase , Namespace(foo=12 , bar=3.14 , baz='42' , ces=['a', 'b', 'c'] , des=[1, 2, 3])) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Tuple = HfArgumentParser(_UpperCAmelCase) __A : Optional[int] = argparse.ArgumentParser() expected.add_argument('--required_list' , nargs='+' , type=_UpperCAmelCase , required=_UpperCAmelCase) expected.add_argument('--required_str' , type=_UpperCAmelCase , required=_UpperCAmelCase) expected.add_argument( '--required_enum' , type=make_choice_type_function(['titi', 'toto']) , choices=['titi', 'toto'] , required=_UpperCAmelCase , ) self.argparsersEqual(_UpperCAmelCase , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[int] = HfArgumentParser(_UpperCAmelCase) __A : Tuple = argparse.ArgumentParser() expected.add_argument('--foo' , type=_UpperCAmelCase , required=_UpperCAmelCase) expected.add_argument( '--required_enum' , type=make_choice_type_function(['titi', 'toto']) , choices=['titi', 'toto'] , required=_UpperCAmelCase , ) expected.add_argument('--opt' , type=_UpperCAmelCase , default=_UpperCAmelCase) expected.add_argument('--baz' , default='toto' , type=_UpperCAmelCase , help='help message') expected.add_argument('--foo_str' , nargs='+' , default=['Hallo', 'Bonjour', 'Hello'] , type=_UpperCAmelCase) self.argparsersEqual(_UpperCAmelCase , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Tuple = HfArgumentParser(_UpperCAmelCase) __A : List[str] = { 'foo': 12, 'bar': 3.14, 'baz': '42', 'flag': True, } __A : str = parser.parse_dict(_UpperCAmelCase)[0] __A : Optional[Any] = BasicExample(**_UpperCAmelCase) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[str] = HfArgumentParser(_UpperCAmelCase) __A : List[Any] = { 'foo': 12, 'bar': 3.14, 'baz': '42', 'flag': True, 'extra': 42, } self.assertRaises(_UpperCAmelCase , parser.parse_dict , _UpperCAmelCase , allow_extra_keys=_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Any = HfArgumentParser(_UpperCAmelCase) __A : Union[str, Any] = { 'foo': 12, 'bar': 3.14, 'baz': '42', 'flag': True, } with tempfile.TemporaryDirectory() as tmp_dir: __A : List[Any] = os.path.join(_UpperCAmelCase , 'temp_json') os.mkdir(_UpperCAmelCase) with open(temp_local_path + '.json' , 'w+') as f: json.dump(_UpperCAmelCase , _UpperCAmelCase) __A : Union[str, Any] = parser.parse_yaml_file(Path(temp_local_path + '.json'))[0] __A : str = BasicExample(**_UpperCAmelCase) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Tuple = HfArgumentParser(_UpperCAmelCase) __A : Optional[Any] = { 'foo': 12, 'bar': 3.14, 'baz': '42', 'flag': True, } with tempfile.TemporaryDirectory() as tmp_dir: __A : List[str] = os.path.join(_UpperCAmelCase , 'temp_yaml') os.mkdir(_UpperCAmelCase) with open(temp_local_path + '.yaml' , 'w+') as f: yaml.dump(_UpperCAmelCase , _UpperCAmelCase) __A : str = parser.parse_yaml_file(Path(temp_local_path + '.yaml'))[0] __A : Optional[Any] = BasicExample(**_UpperCAmelCase) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[Any] = HfArgumentParser(_UpperCAmelCase) self.assertIsNotNone(_UpperCAmelCase)
8
'''simple docstring''' import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def lowerCamelCase ( __lowerCamelCase : Tuple , __lowerCamelCase : Dict=False ) ->List[Any]: _SCREAMING_SNAKE_CASE = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'module.blocks.{i}.norm1.weight', F'vit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((F'module.blocks.{i}.norm1.bias', F'vit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append( (F'module.blocks.{i}.attn.proj.weight', F'vit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append((F'module.blocks.{i}.attn.proj.bias', F'vit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((F'module.blocks.{i}.norm2.weight', F'vit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((F'module.blocks.{i}.norm2.bias', F'vit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((F'module.blocks.{i}.mlp.fc1.weight', F'vit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((F'module.blocks.{i}.mlp.fc1.bias', F'vit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((F'module.blocks.{i}.mlp.fc2.weight', F'vit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((F'module.blocks.{i}.mlp.fc2.bias', F'vit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ ("""module.cls_token""", """vit.embeddings.cls_token"""), ("""module.patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight"""), ("""module.patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias"""), ("""module.pos_embed""", """vit.embeddings.position_embeddings"""), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""module.norm.weight""", """layernorm.weight"""), ("""module.norm.bias""", """layernorm.bias"""), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" _SCREAMING_SNAKE_CASE = [(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("""norm.weight""", """vit.layernorm.weight"""), ("""norm.bias""", """vit.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) return rename_keys def lowerCamelCase ( __lowerCamelCase : List[Any] , __lowerCamelCase : Tuple , __lowerCamelCase : Optional[int]=False ) ->Optional[int]: for i in range(config.num_hidden_layers ): if base_model: _SCREAMING_SNAKE_CASE = """""" else: _SCREAMING_SNAKE_CASE = """vit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _SCREAMING_SNAKE_CASE = state_dict.pop(F'module.blocks.{i}.attn.qkv.weight' ) _SCREAMING_SNAKE_CASE = state_dict.pop(F'module.blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict _SCREAMING_SNAKE_CASE = in_proj_weight[ : config.hidden_size, : ] _SCREAMING_SNAKE_CASE = in_proj_bias[: config.hidden_size] _SCREAMING_SNAKE_CASE = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _SCREAMING_SNAKE_CASE = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _SCREAMING_SNAKE_CASE = in_proj_weight[ -config.hidden_size :, : ] _SCREAMING_SNAKE_CASE = in_proj_bias[-config.hidden_size :] def lowerCamelCase ( __lowerCamelCase : Dict ) ->Dict: _SCREAMING_SNAKE_CASE = ["""head.weight""", """head.bias"""] for k in ignore_keys: state_dict.pop(__lowerCamelCase , __lowerCamelCase ) def lowerCamelCase ( __lowerCamelCase : Union[str, Any] ) ->Union[str, Any]: # projection head is used in the self-supervised pre-training in MSN, # for downstream task it's not needed. _SCREAMING_SNAKE_CASE = [ """module.fc.fc1.weight""", """module.fc.fc1.bias""", """module.fc.bn1.weight""", """module.fc.bn1.bias""", """module.fc.bn1.running_mean""", """module.fc.bn1.running_var""", """module.fc.bn1.num_batches_tracked""", """module.fc.fc2.weight""", """module.fc.fc2.bias""", """module.fc.bn2.weight""", """module.fc.bn2.bias""", """module.fc.bn2.running_mean""", """module.fc.bn2.running_var""", """module.fc.bn2.num_batches_tracked""", """module.fc.fc3.weight""", """module.fc.fc3.bias""", ] for k in ignore_keys: state_dict.pop(__lowerCamelCase , __lowerCamelCase ) def lowerCamelCase ( __lowerCamelCase : str , __lowerCamelCase : List[str] , __lowerCamelCase : Optional[int] ) ->Optional[Any]: _SCREAMING_SNAKE_CASE = dct.pop(__lowerCamelCase ) _SCREAMING_SNAKE_CASE = val def lowerCamelCase ( __lowerCamelCase : int , __lowerCamelCase : Tuple ) ->List[str]: _SCREAMING_SNAKE_CASE = ViTMSNConfig() _SCREAMING_SNAKE_CASE = 1000 _SCREAMING_SNAKE_CASE = """datasets/huggingface/label-files""" _SCREAMING_SNAKE_CASE = """imagenet-1k-id2label.json""" _SCREAMING_SNAKE_CASE = json.load(open(hf_hub_download(__lowerCamelCase , __lowerCamelCase ) , """r""" ) ) _SCREAMING_SNAKE_CASE = {int(__lowerCamelCase ): v for k, v in idalabel.items()} _SCREAMING_SNAKE_CASE = idalabel _SCREAMING_SNAKE_CASE = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: _SCREAMING_SNAKE_CASE = 384 _SCREAMING_SNAKE_CASE = 1536 _SCREAMING_SNAKE_CASE = 6 elif "l16" in checkpoint_url: _SCREAMING_SNAKE_CASE = 1024 _SCREAMING_SNAKE_CASE = 4096 _SCREAMING_SNAKE_CASE = 24 _SCREAMING_SNAKE_CASE = 16 _SCREAMING_SNAKE_CASE = 0.1 elif "b4" in checkpoint_url: _SCREAMING_SNAKE_CASE = 4 elif "l7" in checkpoint_url: _SCREAMING_SNAKE_CASE = 7 _SCREAMING_SNAKE_CASE = 1024 _SCREAMING_SNAKE_CASE = 4096 _SCREAMING_SNAKE_CASE = 24 _SCREAMING_SNAKE_CASE = 16 _SCREAMING_SNAKE_CASE = 0.1 _SCREAMING_SNAKE_CASE = ViTMSNModel(__lowerCamelCase ) _SCREAMING_SNAKE_CASE = torch.hub.load_state_dict_from_url(__lowerCamelCase , map_location="""cpu""" )["""target_encoder"""] _SCREAMING_SNAKE_CASE = ViTImageProcessor(size=config.image_size ) remove_projection_head(__lowerCamelCase ) _SCREAMING_SNAKE_CASE = create_rename_keys(__lowerCamelCase , base_model=__lowerCamelCase ) for src, dest in rename_keys: rename_key(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) read_in_q_k_v(__lowerCamelCase , __lowerCamelCase , base_model=__lowerCamelCase ) model.load_state_dict(__lowerCamelCase ) model.eval() _SCREAMING_SNAKE_CASE = """http://images.cocodataset.org/val2017/000000039769.jpg""" _SCREAMING_SNAKE_CASE = Image.open(requests.get(__lowerCamelCase , stream=__lowerCamelCase ).raw ) _SCREAMING_SNAKE_CASE = ViTImageProcessor( size=config.image_size , image_mean=__lowerCamelCase , image_std=__lowerCamelCase ) _SCREAMING_SNAKE_CASE = image_processor(images=__lowerCamelCase , return_tensors="""pt""" ) # forward pass torch.manual_seed(2 ) _SCREAMING_SNAKE_CASE = model(**__lowerCamelCase ) _SCREAMING_SNAKE_CASE = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: _SCREAMING_SNAKE_CASE = torch.tensor([[-1.0915, -1.4876, -1.1809]] ) elif "b16" in checkpoint_url: _SCREAMING_SNAKE_CASE = torch.tensor([[14.2889, -18.9045, 11.7281]] ) elif "l16" in checkpoint_url: _SCREAMING_SNAKE_CASE = torch.tensor([[41.5028, -22.8681, 45.6475]] ) elif "b4" in checkpoint_url: _SCREAMING_SNAKE_CASE = torch.tensor([[-4.3868, 5.2932, -0.4137]] ) else: _SCREAMING_SNAKE_CASE = torch.tensor([[-0.1792, -0.6465, 2.4263]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3] , __lowerCamelCase , atol=1e-4 ) print(F'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(__lowerCamelCase ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar""", type=str, help="""URL of the checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) lowercase_ = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
314
0
"""simple docstring""" # flake8: noqa # Lint as: python3 A_ = [ '''VerificationMode''', '''Version''', '''disable_progress_bar''', '''enable_progress_bar''', '''is_progress_bar_enabled''', '''experimental''', ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
498
"""simple docstring""" import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore A_ = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" A_ = [file for file in filepaths if file != file.lower()] if upper_files: print(F'{len(upper_files)} files contain uppercase characters:') print('''\n'''.join(upper_files) + '''\n''') A_ = [file for file in filepaths if ''' ''' in file] if space_files: print(F'{len(space_files)} files contain space characters:') print('''\n'''.join(space_files) + '''\n''') A_ = [file for file in filepaths if '''-''' in file] if hyphen_files: print(F'{len(hyphen_files)} files contain hyphen characters:') print('''\n'''.join(hyphen_files) + '''\n''') A_ = [file for file in filepaths if os.sep not in file] if nodir_files: print(F'{len(nodir_files)} files are not in a directory:') print('''\n'''.join(nodir_files) + '''\n''') A_ = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
498
1
"""simple docstring""" import gc import math import unittest import torch from diffusers import UNetaDModel from diffusers.utils import floats_tensor, logging, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin __snake_case : Optional[Any] = logging.get_logger(__name__) enable_full_determinism() class UpperCamelCase ( _lowercase , _lowercase , unittest.TestCase ): """simple docstring""" _lowerCamelCase : Tuple =UNetaDModel _lowerCamelCase : Any ="""sample""" @property def A__ ( self : Optional[Any] ): A__ = 4 A__ = 3 A__ = (3_2, 3_2) A__ = floats_tensor((batch_size, num_channels) + sizes ).to(_lowerCamelCase ) A__ = torch.tensor([1_0] ).to(_lowerCamelCase ) return {"sample": noise, "timestep": time_step} @property def A__ ( self : Any ): return (3, 3_2, 3_2) @property def A__ ( self : List[str] ): return (3, 3_2, 3_2) def A__ ( self : List[str] ): A__ = { '''block_out_channels''': (3_2, 6_4), '''down_block_types''': ('''DownBlock2D''', '''AttnDownBlock2D'''), '''up_block_types''': ('''AttnUpBlock2D''', '''UpBlock2D'''), '''attention_head_dim''': 3, '''out_channels''': 3, '''in_channels''': 3, '''layers_per_block''': 2, '''sample_size''': 3_2, } A__ = self.dummy_input return init_dict, inputs_dict class UpperCamelCase ( _lowercase , _lowercase , unittest.TestCase ): """simple docstring""" _lowerCamelCase : List[str] =UNetaDModel _lowerCamelCase : Tuple ="""sample""" @property def A__ ( self : Dict ): A__ = 4 A__ = 4 A__ = (3_2, 3_2) A__ = floats_tensor((batch_size, num_channels) + sizes ).to(_lowerCamelCase ) A__ = torch.tensor([1_0] ).to(_lowerCamelCase ) return {"sample": noise, "timestep": time_step} @property def A__ ( self : Dict ): return (4, 3_2, 3_2) @property def A__ ( self : Any ): return (4, 3_2, 3_2) def A__ ( self : Union[str, Any] ): A__ = { '''sample_size''': 3_2, '''in_channels''': 4, '''out_channels''': 4, '''layers_per_block''': 2, '''block_out_channels''': (3_2, 6_4), '''attention_head_dim''': 3_2, '''down_block_types''': ('''DownBlock2D''', '''DownBlock2D'''), '''up_block_types''': ('''UpBlock2D''', '''UpBlock2D'''), } A__ = self.dummy_input return init_dict, inputs_dict def A__ ( self : int ): A__ , A__ = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' , output_loading_info=_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(_lowerCamelCase ) A__ = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != '''cuda''' , '''This test is supposed to run on GPU''' ) def A__ ( self : List[Any] ): A__ , A__ = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' , output_loading_info=_lowerCamelCase ) model.to(_lowerCamelCase ) A__ = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != '''cuda''' , '''This test is supposed to run on GPU''' ) def A__ ( self : Optional[Any] ): A__ , A__ = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' , output_loading_info=_lowerCamelCase ) model_accelerate.to(_lowerCamelCase ) model_accelerate.eval() A__ = torch.randn( 1 , model_accelerate.config.in_channels , model_accelerate.config.sample_size , model_accelerate.config.sample_size , generator=torch.manual_seed(0 ) , ) A__ = noise.to(_lowerCamelCase ) A__ = torch.tensor([1_0] * noise.shape[0] ).to(_lowerCamelCase ) A__ = model_accelerate(_lowerCamelCase , _lowerCamelCase )['''sample'''] # two models don't need to stay in the device at the same time del model_accelerate torch.cuda.empty_cache() gc.collect() A__ , A__ = UNetaDModel.from_pretrained( '''fusing/unet-ldm-dummy-update''' , output_loading_info=_lowerCamelCase , low_cpu_mem_usage=_lowerCamelCase ) model_normal_load.to(_lowerCamelCase ) model_normal_load.eval() A__ = model_normal_load(_lowerCamelCase , _lowerCamelCase )['''sample'''] assert torch_all_close(_lowerCamelCase , _lowerCamelCase , rtol=1E-3 ) def A__ ( self : str ): A__ = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' ) model.eval() model.to(_lowerCamelCase ) A__ = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) A__ = noise.to(_lowerCamelCase ) A__ = torch.tensor([1_0] * noise.shape[0] ).to(_lowerCamelCase ) with torch.no_grad(): A__ = model(_lowerCamelCase , _lowerCamelCase ).sample A__ = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off A__ = torch.tensor([-13.3_258, -20.1_100, -15.9_873, -17.6_617, -23.0_596, -17.9_419, -13.3_675, -16.1_889, -12.3_800] ) # fmt: on self.assertTrue(torch_all_close(_lowerCamelCase , _lowerCamelCase , rtol=1E-3 ) ) class UpperCamelCase ( _lowercase , _lowercase , unittest.TestCase ): """simple docstring""" _lowerCamelCase : Tuple =UNetaDModel _lowerCamelCase : Any ="""sample""" @property def A__ ( self : List[str] , _lowerCamelCase : Any=(3_2, 3_2) ): A__ = 4 A__ = 3 A__ = floats_tensor((batch_size, num_channels) + sizes ).to(_lowerCamelCase ) A__ = torch.tensor(batch_size * [1_0] ).to(dtype=torch.intaa , device=_lowerCamelCase ) return {"sample": noise, "timestep": time_step} @property def A__ ( self : Any ): return (3, 3_2, 3_2) @property def A__ ( self : Optional[int] ): return (3, 3_2, 3_2) def A__ ( self : List[Any] ): A__ = { '''block_out_channels''': [3_2, 6_4, 6_4, 6_4], '''in_channels''': 3, '''layers_per_block''': 1, '''out_channels''': 3, '''time_embedding_type''': '''fourier''', '''norm_eps''': 1E-6, '''mid_block_scale_factor''': math.sqrt(2.0 ), '''norm_num_groups''': None, '''down_block_types''': [ '''SkipDownBlock2D''', '''AttnSkipDownBlock2D''', '''SkipDownBlock2D''', '''SkipDownBlock2D''', ], '''up_block_types''': [ '''SkipUpBlock2D''', '''SkipUpBlock2D''', '''AttnSkipUpBlock2D''', '''SkipUpBlock2D''', ], } A__ = self.dummy_input return init_dict, inputs_dict @slow def A__ ( self : List[Any] ): A__ , A__ = UNetaDModel.from_pretrained('''google/ncsnpp-celebahq-256''' , output_loading_info=_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(_lowerCamelCase ) A__ = self.dummy_input A__ = floats_tensor((4, 3) + (2_5_6, 2_5_6) ).to(_lowerCamelCase ) A__ = noise A__ = model(**_lowerCamelCase ) assert image is not None, "Make sure output is not None" @slow def A__ ( self : int ): A__ = UNetaDModel.from_pretrained('''google/ncsnpp-celebahq-256''' ) model.to(_lowerCamelCase ) A__ = 4 A__ = 3 A__ = (2_5_6, 2_5_6) A__ = torch.ones((batch_size, num_channels) + sizes ).to(_lowerCamelCase ) A__ = torch.tensor(batch_size * [1E-4] ).to(_lowerCamelCase ) with torch.no_grad(): A__ = model(_lowerCamelCase , _lowerCamelCase ).sample A__ = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off A__ = torch.tensor([-4_842.8_691, -6_499.6_631, -3_800.1_953, -7_978.2_686, -1_0_9_8_0.7_1_2_9, -2_0_0_2_8.8_5_3_5, 8_148.2_822, 2_342.2_905, 567.7_608] ) # fmt: on self.assertTrue(torch_all_close(_lowerCamelCase , _lowerCamelCase , rtol=1E-2 ) ) def A__ ( self : Optional[Any] ): A__ = UNetaDModel.from_pretrained('''fusing/ncsnpp-ffhq-ve-dummy-update''' ) model.to(_lowerCamelCase ) A__ = 4 A__ = 3 A__ = (3_2, 3_2) A__ = torch.ones((batch_size, num_channels) + sizes ).to(_lowerCamelCase ) A__ = torch.tensor(batch_size * [1E-4] ).to(_lowerCamelCase ) with torch.no_grad(): A__ = model(_lowerCamelCase , _lowerCamelCase ).sample A__ = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off A__ = torch.tensor([-0.0_325, -0.0_900, -0.0_869, -0.0_332, -0.0_725, -0.0_270, -0.0_101, 0.0_227, 0.0_256] ) # fmt: on self.assertTrue(torch_all_close(_lowerCamelCase , _lowerCamelCase , rtol=1E-2 ) ) def A__ ( self : Union[str, Any] ): pass
571
from argparse import ArgumentParser from .env import EnvironmentCommand def snake_case_ ( ): __lowercase = ArgumentParser("Diffusers CLI tool" , usage="diffusers-cli <command> [<args>]" ) __lowercase = parser.add_subparsers(help="diffusers-cli command helpers" ) # Register commands EnvironmentCommand.register_subcommand(_SCREAMING_SNAKE_CASE ) # Let's go __lowercase = parser.parse_args() if not hasattr(_SCREAMING_SNAKE_CASE , "func" ): parser.print_help() exit(1 ) # Run __lowercase = args.func(_SCREAMING_SNAKE_CASE ) service.run() if __name__ == "__main__": main()
402
0
'''simple docstring''' def lowerCamelCase ( UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : List[Any] ) -> Optional[Any]: lowercase_ : List[str] = [0 for i in range(r + 1 )] # nc0 = 1 lowercase_ : Dict = 1 for i in range(1 , n + 1 ): # to compute current row from previous row. lowercase_ : Union[str, Any] = min(__a , __a ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=10, r=5))
719
'''simple docstring''' import argparse import intel_extension_for_pytorch as ipex import torch from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline _lowercase : Optional[Any] = argparse.ArgumentParser("Stable Diffusion script with intel optimization", add_help=False) parser.add_argument("--dpm", action="store_true", help="Enable DPMSolver or not") parser.add_argument("--steps", default=None, type=int, help="Num inference steps") _lowercase : Dict = parser.parse_args() _lowercase : Dict = "cpu" _lowercase : str = "a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings" _lowercase : Any = "path-to-your-trained-model" _lowercase : str = StableDiffusionPipeline.from_pretrained(model_id) if args.dpm: _lowercase : Optional[int] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) _lowercase : Any = pipe.to(device) # to channels last _lowercase : Union[str, Any] = pipe.unet.to(memory_format=torch.channels_last) _lowercase : List[Any] = pipe.vae.to(memory_format=torch.channels_last) _lowercase : Union[str, Any] = pipe.text_encoder.to(memory_format=torch.channels_last) if pipe.requires_safety_checker: _lowercase : Tuple = pipe.safety_checker.to(memory_format=torch.channels_last) # optimize with ipex _lowercase : int = torch.randn(2, 4, 64, 64) _lowercase : int = torch.rand(1) * 999 _lowercase : Union[str, Any] = torch.randn(2, 77, 768) _lowercase : Optional[Any] = (sample, timestep, encoder_hidden_status) try: _lowercase : int = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example) except Exception: _lowercase : Optional[int] = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True) _lowercase : List[Any] = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True) _lowercase : str = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True) if pipe.requires_safety_checker: _lowercase : int = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True) # compute _lowercase : int = 666 _lowercase : Any = torch.Generator(device).manual_seed(seed) _lowercase : int = {"generator": generator} if args.steps is not None: _lowercase : Optional[int] = args.steps with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa): _lowercase : List[Any] = pipe(prompt, **generate_kwargs).images[0] # save image image.save("generated.png")
30
0
import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class lowerCAmelCase_ ( __snake_case , unittest.TestCase ): _UpperCamelCase : List[str] = BarthezTokenizer _UpperCamelCase : List[str] = BarthezTokenizerFast _UpperCamelCase : List[Any] = True _UpperCamelCase : Tuple = True def __a ( self ): super().setUp() _lowercase : int = BarthezTokenizerFast.from_pretrained('moussaKam/mbarthez' ) tokenizer.save_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname , legacy_format=_lowerCAmelCase ) _lowercase : Union[str, Any] = tokenizer def __a ( self ): _lowercase : Dict = '<pad>' _lowercase : Any = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowerCAmelCase ) , _lowerCAmelCase ) def __a ( self ): _lowercase : Dict = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-1] , '<mask>' ) self.assertEqual(len(_lowerCAmelCase ) , 1_0_1_1_2_2 ) def __a ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 1_0_1_1_2_2 ) @require_torch def __a ( self ): _lowercase : Union[str, Any] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] _lowercase : Optional[Any] = [0, 5_7, 3_0_1_8, 7_0_3_0_7, 9_1, 2] _lowercase : Any = self.tokenizer( _lowerCAmelCase , max_length=len(_lowerCAmelCase ) , padding=_lowerCAmelCase , truncation=_lowerCAmelCase , return_tensors='pt' ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) self.assertEqual((2, 6) , batch.input_ids.shape ) self.assertEqual((2, 6) , batch.attention_mask.shape ) _lowercase : Optional[int] = batch.input_ids.tolist()[0] self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) def __a ( self ): if not self.test_rust_tokenizer: return _lowercase : int = self.get_tokenizer() _lowercase : Tuple = self.get_rust_tokenizer() _lowercase : List[str] = 'I was born in 92000, and this is falsé.' _lowercase : str = tokenizer.tokenize(_lowerCAmelCase ) _lowercase : Optional[int] = rust_tokenizer.tokenize(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) _lowercase : Optional[Any] = tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) _lowercase : Tuple = rust_tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) _lowercase : Dict = self.get_rust_tokenizer() _lowercase : Optional[int] = tokenizer.encode(_lowerCAmelCase ) _lowercase : int = rust_tokenizer.encode(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) @slow def __a ( self ): # fmt: off _lowercase : List[str] = {'input_ids': [[0, 4_9_0, 1_4_3_2_8, 4_5_0_7, 3_5_4, 4_7, 4_3_6_6_9, 9_5, 2_5, 7_8_1_1_7, 2_0_2_1_5, 1_9_7_7_9, 1_9_0, 2_2, 4_0_0, 4, 3_5_3_4_3, 8_0_3_1_0, 6_0_3, 8_6, 2_4_9_3_7, 1_0_5, 3_3_4_3_8, 9_4_7_6_2, 1_9_6, 3_9_6_4_2, 7, 1_5, 1_5_9_3_3, 1_7_3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 1_0_5_3_4, 8_7, 2_5, 6_6, 3_3_5_8, 1_9_6, 5_5_2_8_9, 8, 8_2_9_6_1, 8_1, 2_2_0_4, 7_5_2_0_3, 7, 1_5, 7_6_3, 1_2_9_5_6, 2_1_6, 1_7_8, 1_4_3_2_8, 9_5_9_5, 1_3_7_7, 6_9_6_9_3, 7, 4_4_8, 7_1_0_2_1, 1_9_6, 1_8_1_0_6, 1_4_3_7, 1_3_9_7_4, 1_0_8, 9_0_8_3, 4, 4_9_3_1_5, 7, 3_9, 8_6, 1_3_2_6, 2_7_9_3, 4_6_3_3_3, 4, 4_4_8, 1_9_6, 7_4_5_8_8, 7, 4_9_3_1_5, 7, 3_9, 2_1, 8_2_2, 3_8_4_7_0, 7_4, 2_1, 6_6_7_2_3, 6_2_4_8_0, 8, 2_2_0_5_0, 5, 2]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. _lowercase : Union[str, Any] = [ 'Le transformeur est un modèle d\'apprentissage profond introduit en 2017, ' 'utilisé principalement dans le domaine du traitement automatique des langues (TAL).', 'À l\'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus ' 'pour gérer des données séquentielles, telles que le langage naturel, pour des tâches ' 'telles que la traduction et la synthèse de texte.', ] self.tokenizer_integration_test_util( expected_encoding=_lowerCAmelCase , model_name='moussaKam/mbarthez' , revision='c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6' , sequences=_lowerCAmelCase , )
66
from PIL import Image def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Image: def brightness(SCREAMING_SNAKE_CASE ) -> float: return 128 + level + (c - 128) if not -255.0 <= level <= 255.0: raise ValueError('level must be between -255.0 (black) and 255.0 (white)' ) return img.point(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": # Load image with Image.open("image_data/lena.jpg") as img: # Change brightness to 100 UpperCamelCase = change_brightness(img, 100) brigt_img.save("image_data/lena_brightness.png", format="png")
66
1
from ...configuration_utils import PretrainedConfig SCREAMING_SNAKE_CASE : Optional[Any] = { "google/tapas-base-finetuned-sqa": ( "https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json" ), "google/tapas-base-finetuned-wtq": ( "https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json" ), "google/tapas-base-finetuned-wikisql-supervised": ( "https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json" ), "google/tapas-base-finetuned-tabfact": ( "https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json" ), } class A_ ( UpperCamelCase_ ): _SCREAMING_SNAKE_CASE = """tapas""" def __init__( self : Tuple , __SCREAMING_SNAKE_CASE : Union[str, Any]=3_05_22 , __SCREAMING_SNAKE_CASE : Optional[int]=7_68 , __SCREAMING_SNAKE_CASE : Dict=12 , __SCREAMING_SNAKE_CASE : Any=12 , __SCREAMING_SNAKE_CASE : Dict=30_72 , __SCREAMING_SNAKE_CASE : Union[str, Any]="gelu" , __SCREAMING_SNAKE_CASE : Tuple=0.1 , __SCREAMING_SNAKE_CASE : Tuple=0.1 , __SCREAMING_SNAKE_CASE : str=10_24 , __SCREAMING_SNAKE_CASE : int=[3, 2_56, 2_56, 2, 2_56, 2_56, 10] , __SCREAMING_SNAKE_CASE : str=0.02 , __SCREAMING_SNAKE_CASE : List[str]=1E-12 , __SCREAMING_SNAKE_CASE : Tuple=0 , __SCREAMING_SNAKE_CASE : Optional[Any]=10.0 , __SCREAMING_SNAKE_CASE : List[str]=0 , __SCREAMING_SNAKE_CASE : Any=1.0 , __SCREAMING_SNAKE_CASE : Dict=None , __SCREAMING_SNAKE_CASE : int=1.0 , __SCREAMING_SNAKE_CASE : Optional[Any]=False , __SCREAMING_SNAKE_CASE : List[str]=None , __SCREAMING_SNAKE_CASE : Tuple=1.0 , __SCREAMING_SNAKE_CASE : Optional[Any]=1.0 , __SCREAMING_SNAKE_CASE : List[Any]=False , __SCREAMING_SNAKE_CASE : str=False , __SCREAMING_SNAKE_CASE : Any="ratio" , __SCREAMING_SNAKE_CASE : Dict=None , __SCREAMING_SNAKE_CASE : Tuple=None , __SCREAMING_SNAKE_CASE : List[str]=64 , __SCREAMING_SNAKE_CASE : List[Any]=32 , __SCREAMING_SNAKE_CASE : str=False , __SCREAMING_SNAKE_CASE : Any=True , __SCREAMING_SNAKE_CASE : str=False , __SCREAMING_SNAKE_CASE : Tuple=False , __SCREAMING_SNAKE_CASE : str=True , __SCREAMING_SNAKE_CASE : List[Any]=False , __SCREAMING_SNAKE_CASE : List[Any]=None , __SCREAMING_SNAKE_CASE : List[Any]=None , **__SCREAMING_SNAKE_CASE : Dict , ): super().__init__(pad_token_id=_a , **_a ) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) __a = vocab_size __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = hidden_act __a = intermediate_size __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = type_vocab_sizes __a = initializer_range __a = layer_norm_eps # Fine-tuning task hyperparameters __a = positive_label_weight __a = num_aggregation_labels __a = aggregation_loss_weight __a = use_answer_as_supervision __a = answer_loss_importance __a = use_normalized_answer_loss __a = huber_loss_delta __a = temperature __a = aggregation_temperature __a = use_gumbel_for_cells __a = use_gumbel_for_aggregation __a = average_approximation_function __a = cell_selection_preference __a = answer_loss_cutoff __a = max_num_rows __a = max_num_columns __a = average_logits_per_cell __a = select_one_column __a = allow_empty_column_selection __a = init_cell_selection_weights_to_zero __a = reset_position_index_per_cell __a = disable_per_token_loss # Aggregation hyperparameters __a = aggregation_labels __a = no_aggregation_label_index if isinstance(self.aggregation_labels , _a ): __a = {int(_a ): v for k, v in aggregation_labels.items()}
712
class A_ : def __init__( self : List[Any] ): __a = {} # Mapping from char to TrieNode __a = False def _UpperCAmelCase ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : list[str] ): for word in words: self.insert(__SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( self : Any , __SCREAMING_SNAKE_CASE : str ): __a = self for char in word: if char not in curr.nodes: __a = TrieNode() __a = curr.nodes[char] __a = True def _UpperCAmelCase ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : str ): __a = self for char in word: if char not in curr.nodes: return False __a = curr.nodes[char] return curr.is_leaf def _UpperCAmelCase ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : str ): def _delete(__SCREAMING_SNAKE_CASE : TrieNode , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : int ) -> bool: if index == len(__SCREAMING_SNAKE_CASE ): # If word does not exist if not curr.is_leaf: return False __a = False return len(curr.nodes ) == 0 __a = word[index] __a = curr.nodes.get(__SCREAMING_SNAKE_CASE ) # If char not in current trie node if not char_node: return False # Flag to check if node can be deleted __a = _delete(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , index + 1 ) if delete_curr: del curr.nodes[char] return len(curr.nodes ) == 0 return delete_curr _delete(self , __SCREAMING_SNAKE_CASE , 0 ) def __A ( _A , _A ): """simple docstring""" if node.is_leaf: print(_A , end=" " ) for key, value in node.nodes.items(): print_words(_A , word + key ) def __A ( ): """simple docstring""" __a = "banana bananas bandana band apple all beast".split() __a = TrieNode() root.insert_many(_A ) # print_words(root, "") assert all(root.find(_A ) for word in words ) assert root.find("banana" ) assert not root.find("bandanas" ) assert not root.find("apps" ) assert root.find("apple" ) assert root.find("all" ) root.delete("all" ) assert not root.find("all" ) root.delete("banana" ) assert not root.find("banana" ) assert root.find("bananas" ) return True def __A ( _A , _A ): """simple docstring""" print(str(_A ) , "works!" if passes else "doesn't work :(" ) def __A ( ): """simple docstring""" assert test_trie() def __A ( ): """simple docstring""" print_results("Testing trie functionality" , test_trie() ) if __name__ == "__main__": main()
525
0
"""simple docstring""" import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class lowerCAmelCase_ : '''simple docstring''' def __init__( self : List[Any] ,A_ : List[Any] ,A_ : Optional[int]=14 ,A_ : int=7 ,A_ : Dict=True ,A_ : str=True ,A_ : List[str]=False ,A_ : Optional[Any]=True ,A_ : int=99 ,A_ : List[str]=32 ,A_ : Optional[Any]=4 ,A_ : int=4 ,A_ : int=4 ,A_ : Dict=37 ,A_ : Tuple="gelu" ,A_ : Tuple=0.1 ,A_ : Union[str, Any]=0.1 ,A_ : Dict=512 ,A_ : Optional[int]=0.02 ,) -> Union[str, Any]: A = parent A = batch_size A = seq_length A = is_training A = use_input_mask A = use_token_type_ids A = use_labels A = vocab_size A = hidden_size A = rotary_dim A = num_hidden_layers A = num_attention_heads A = intermediate_size A = hidden_act A = hidden_dropout_prob A = attention_probs_dropout_prob A = max_position_embeddings A = initializer_range A = None A = vocab_size - 1 A = vocab_size - 1 A = vocab_size - 1 def _SCREAMING_SNAKE_CASE ( self : int ) -> Any: A = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) A = None if self.use_input_mask: A = random_attention_mask([self.batch_size, self.seq_length] ) A = GPTJConfig( vocab_size=self.vocab_size ,n_embd=self.hidden_size ,n_layer=self.num_hidden_layers ,n_head=self.num_attention_heads ,n_positions=self.max_position_embeddings ,use_cache=A_ ,bos_token_id=self.bos_token_id ,eos_token_id=self.eos_token_id ,pad_token_id=self.pad_token_id ,rotary_dim=self.rotary_dim ,) return (config, input_ids, input_mask) def _SCREAMING_SNAKE_CASE ( self : int ) -> Dict: A = self.prepare_config_and_inputs() A , A , A = config_and_inputs A = {'input_ids': input_ids, 'attention_mask': attention_mask} return config, inputs_dict def _SCREAMING_SNAKE_CASE ( self : str ,A_ : Optional[int] ,A_ : int ,A_ : Optional[int] ,A_ : List[str] ) -> List[Any]: A = 20 A = model_class_name(A_ ) A = model.init_cache(input_ids.shape[0] ,A_ ) A = jnp.ones((input_ids.shape[0], max_decoder_length) ,dtype='i4' ) A = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] ,(input_ids.shape[0], input_ids.shape[-1] - 1) ) A = model( input_ids[:, :-1] ,attention_mask=A_ ,past_key_values=A_ ,position_ids=A_ ,) A = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] ,dtype='i4' ) A = model( input_ids[:, -1:] ,attention_mask=A_ ,past_key_values=outputs_cache.past_key_values ,position_ids=A_ ,) A = model(A_ ) A = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 ,msg=F'Max diff is {diff}' ) def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : int ,A_ : Union[str, Any] ,A_ : int ,A_ : Optional[Any] ) -> Optional[int]: A = 20 A = model_class_name(A_ ) A = jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] ,axis=-1 ,) A = model.init_cache(input_ids.shape[0] ,A_ ) A = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] ,(input_ids.shape[0], input_ids.shape[-1] - 1) ) A = model( input_ids[:, :-1] ,attention_mask=A_ ,past_key_values=A_ ,position_ids=A_ ,) A = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] ,dtype='i4' ) A = model( input_ids[:, -1:] ,past_key_values=outputs_cache.past_key_values ,attention_mask=A_ ,position_ids=A_ ,) A = model(A_ ,attention_mask=A_ ) A = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 ,msg=F'Max diff is {diff}' ) @require_flax class lowerCAmelCase_ ( _lowercase , _lowercase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase: Optional[Any] = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () _lowerCamelCase: Tuple = (FlaxGPTJForCausalLM,) if is_flax_available() else () def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> str: A = FlaxGPTJModelTester(self ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[Any]: for model_class_name in self.all_model_classes: A , A , A = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(A_ ,A_ ,A_ ,A_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[str]: for model_class_name in self.all_model_classes: A , A , A = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( A_ ,A_ ,A_ ,A_ ) @tooslow def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[int]: A = GPTaTokenizer.from_pretrained('gpt2' ,pad_token='<|endoftext|>' ,padding_side='left' ) A = tokenizer(['Hello this is a long string', 'Hey'] ,return_tensors='np' ,padding=A_ ,truncation=A_ ) A = FlaxGPTJForCausalLM.from_pretrained('EleutherAI/gpt-j-6B' ) A = False A = model.config.eos_token_id A = jax.jit(model.generate ) A = jit_generate( inputs['input_ids'] ,attention_mask=inputs['attention_mask'] ,pad_token_id=tokenizer.pad_token_id ).sequences A = tokenizer.batch_decode(A_ ,skip_special_tokens=A_ ) A = [ 'Hello this is a long string of text.\n\nI\'m trying to get the text of the', 'Hey, I\'m a little late to the party. I\'m going to', ] self.assertListEqual(A_ ,A_ ) @is_pt_flax_cross_test def _SCREAMING_SNAKE_CASE ( self : int ) -> Union[str, Any]: A , A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs A = self._prepare_for_class(A_ ,A_ ) A = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class A = model_class.__name__[4:] # Skip the "Flax" at the beginning A = getattr(A_ ,A_ ) A , A = pt_inputs['input_ids'].shape A = np.random.randint(0 ,seq_length - 1 ,size=(batch_size,) ) for batch_idx, start_index in enumerate(A_ ): A = 0 A = 1 A = 0 A = 1 A = pt_model_class(A_ ).eval() A = model_class(A_ ,dtype=jnp.floataa ) A = convert_pytorch_state_dict_to_flax(pt_model.state_dict() ,A_ ) A = fx_state with torch.no_grad(): A = pt_model(**A_ ).to_tuple() A = fx_model(**A_ ).to_tuple() self.assertEqual(len(A_ ) ,len(A_ ) ,'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(A_ ,A_ ): self.assert_almost_equals(fx_output[:, -1] ,pt_output[:, -1].numpy() ,4e-2 ) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(A_ ) A = model_class.from_pretrained(A_ ,from_pt=A_ ) A = fx_model_loaded(**A_ ).to_tuple() self.assertEqual( len(A_ ) ,len(A_ ) ,'Output lengths differ between Flax and PyTorch' ) for fx_output_loaded, pt_output in zip(A_ ,A_ ): self.assert_almost_equals(fx_output_loaded[:, -1] ,pt_output[:, -1].numpy() ,4e-2 ) @is_pt_flax_cross_test def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Any: A , A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs A = self._prepare_for_class(A_ ,A_ ) A = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class A = model_class.__name__[4:] # Skip the "Flax" at the beginning A = getattr(A_ ,A_ ) A = pt_model_class(A_ ).eval() A = model_class(A_ ,dtype=jnp.floataa ) A = load_flax_weights_in_pytorch_model(A_ ,fx_model.params ) A , A = pt_inputs['input_ids'].shape A = np.random.randint(0 ,seq_length - 1 ,size=(batch_size,) ) for batch_idx, start_index in enumerate(A_ ): A = 0 A = 1 A = 0 A = 1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): A = pt_model(**A_ ).to_tuple() A = fx_model(**A_ ).to_tuple() self.assertEqual(len(A_ ) ,len(A_ ) ,'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(A_ ,A_ ): self.assert_almost_equals(fx_output[:, -1] ,pt_output[:, -1].numpy() ,4e-2 ) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(A_ ) A = pt_model_class.from_pretrained(A_ ,from_flax=A_ ) with torch.no_grad(): A = pt_model_loaded(**A_ ).to_tuple() self.assertEqual( len(A_ ) ,len(A_ ) ,'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(A_ ,A_ ): self.assert_almost_equals(fx_output[:, -1] ,pt_output[:, -1].numpy() ,4e-2 ) @tooslow def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict: for model_class_name in self.all_model_classes: A = model_class_name.from_pretrained('EleutherAI/gpt-j-6B' ) A = model(np.ones((1, 1) ) ) self.assertIsNotNone(A_ )
91
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowerCamelCase :Union[str, Any] = logging.get_logger(__name__) __lowerCamelCase :Union[str, Any] = { 'facebook/deit-base-distilled-patch16-224': ( 'https://huggingface.co/facebook/deit-base-patch16-224/resolve/main/config.json' ), # See all DeiT models at https://huggingface.co/models?filter=deit } class A__ ( __lowercase): """simple docstring""" snake_case__ : Optional[int] ='''deit''' def __init__( self: Optional[int] , __a: Optional[int]=768 , __a: int=12 , __a: List[Any]=12 , __a: List[Any]=3_072 , __a: Any="gelu" , __a: Optional[Any]=0.0 , __a: Dict=0.0 , __a: Dict=0.02 , __a: int=1e-1_2 , __a: int=224 , __a: Tuple=16 , __a: List[Any]=3 , __a: Union[str, Any]=True , __a: Union[str, Any]=16 , **__a: int , )-> Union[str, Any]: super().__init__(**__a ) lowerCamelCase : List[str] = hidden_size lowerCamelCase : Optional[int] = num_hidden_layers lowerCamelCase : Dict = num_attention_heads lowerCamelCase : List[str] = intermediate_size lowerCamelCase : Optional[Any] = hidden_act lowerCamelCase : int = hidden_dropout_prob lowerCamelCase : Tuple = attention_probs_dropout_prob lowerCamelCase : List[str] = initializer_range lowerCamelCase : str = layer_norm_eps lowerCamelCase : List[str] = image_size lowerCamelCase : int = patch_size lowerCamelCase : Dict = num_channels lowerCamelCase : Tuple = qkv_bias lowerCamelCase : Tuple = encoder_stride class A__ ( __lowercase): """simple docstring""" snake_case__ : str =version.parse('''1.11''') @property def a__ ( self: Optional[int] )-> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def a__ ( self: Union[str, Any] )-> float: return 1e-4
222
0
from typing import List from .keymap import KEYMAP, get_character def A ( __UpperCamelCase ) -> Optional[int]: def decorator(__UpperCamelCase ): A__ = getattr(__UpperCamelCase , 'handle_key' , [] ) handle += [key] setattr(__UpperCamelCase , 'handle_key' , __UpperCamelCase ) return func return decorator def A ( *__UpperCamelCase ) -> Any: def decorator(__UpperCamelCase ): A__ = getattr(__UpperCamelCase , 'handle_key' , [] ) handle += keys setattr(__UpperCamelCase , 'handle_key' , __UpperCamelCase ) return func return decorator class __lowerCAmelCase ( A_ ): """simple docstring""" def __new__( cls : int , _snake_case : List[str] , _snake_case : Union[str, Any] , _snake_case : List[str] ): """simple docstring""" A__ = super().__new__(cls , _snake_case , _snake_case , _snake_case ) if not hasattr(_snake_case , 'key_handler' ): setattr(_snake_case , 'key_handler' , {} ) setattr(_snake_case , 'handle_input' , KeyHandler.handle_input ) for value in attrs.values(): A__ = getattr(_snake_case , 'handle_key' , [] ) for key in handled_keys: A__ = value return new_cls @staticmethod def _a ( cls : List[Any] ): """simple docstring""" A__ = get_character() if char != KEYMAP["undefined"]: A__ = ord(_snake_case ) A__ = cls.key_handler.get(_snake_case ) if handler: A__ = char return handler(cls ) else: return None def A ( cls ) -> int: return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
707
import argparse import struct import unittest class __lowerCAmelCase : """simple docstring""" def __init__( self : List[str] , _snake_case : bytes ): """simple docstring""" A__ = data # Initialize hash values A__ = [ 0x6A09E667, 0xBB67AE85, 0x3C6EF372, 0xA54FF53A, 0x510E527F, 0x9B05688C, 0x1F83D9AB, 0x5BE0CD19, ] # Initialize round constants A__ = [ 0x428A2F98, 0x71374491, 0xB5C0FBCF, 0xE9B5DBA5, 0x3956C25B, 0x59F111F1, 0x923F82A4, 0xAB1C5ED5, 0xD807AA98, 0x12835B01, 0x243185BE, 0x550C7DC3, 0x72BE5D74, 0x80DEB1FE, 0x9BDC06A7, 0xC19BF174, 0xE49B69C1, 0xEFBE4786, 0x0FC19DC6, 0x240CA1CC, 0x2DE92C6F, 0x4A7484AA, 0x5CB0A9DC, 0x76F988DA, 0x983E5152, 0xA831C66D, 0xB00327C8, 0xBF597FC7, 0xC6E00BF3, 0xD5A79147, 0x06CA6351, 0x14292967, 0x27B70A85, 0x2E1B2138, 0x4D2C6DFC, 0x53380D13, 0x650A7354, 0x766A0ABB, 0x81C2C92E, 0x92722C85, 0xA2BFE8A1, 0xA81A664B, 0xC24B8B70, 0xC76C51A3, 0xD192E819, 0xD6990624, 0xF40E3585, 0x106AA070, 0x19A4C116, 0x1E376C08, 0x2748774C, 0x34B0BCB5, 0x391C0CB3, 0x4ED8AA4A, 0x5B9CCA4F, 0x682E6FF3, 0x748F82EE, 0x78A5636F, 0x84C87814, 0x8CC70208, 0x90BEFFFA, 0xA4506CEB, 0xBEF9A3F7, 0xC67178F2, ] A__ = self.preprocessing(self.data ) self.final_hash() @staticmethod def _a ( _snake_case : bytes ): """simple docstring""" A__ = B'\x80' + (B'\x00' * (63 - (len(_snake_case ) + 8) % 64)) A__ = struct.pack('>Q' , (len(_snake_case ) * 8) ) return data + padding + big_endian_integer def _a ( self : Optional[int] ): """simple docstring""" A__ = [ self.preprocessed_data[x : x + 64] for x in range(0 , len(self.preprocessed_data ) , 64 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers A__ = list(struct.unpack('>16L' , _snake_case ) ) # add 48 0-ed integers words += [0] * 48 A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ = self.hashes for index in range(0 , 64 ): if index > 15: # modify the zero-ed indexes at the end of the array A__ = ( self.ror(words[index - 15] , 7 ) ^ self.ror(words[index - 15] , 18 ) ^ (words[index - 15] >> 3) ) A__ = ( self.ror(words[index - 2] , 17 ) ^ self.ror(words[index - 2] , 19 ) ^ (words[index - 2] >> 10) ) A__ = ( words[index - 16] + sa + words[index - 7] + sa ) % 0x100000000 # Compression A__ = self.ror(_snake_case , 6 ) ^ self.ror(_snake_case , 11 ) ^ self.ror(_snake_case , 25 ) A__ = (e & f) ^ ((~e & 0xFFFFFFFF) & g) A__ = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0x100000000 A__ = self.ror(_snake_case , 2 ) ^ self.ror(_snake_case , 13 ) ^ self.ror(_snake_case , 22 ) A__ = (a & b) ^ (a & c) ^ (b & c) A__ = (sa + maj) % 0x100000000 A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ = ( g, f, e, ((d + tempa) % 0x100000000), c, b, a, ((tempa + tempa) % 0x100000000), ) A__ = [a, b, c, d, e, f, g, h] # Modify final values A__ = [ ((element + mutated_hash_values[index]) % 0x100000000) for index, element in enumerate(self.hashes ) ] A__ = ''.join([hex(_snake_case )[2:].zfill(8 ) for value in self.hashes] ) def _a ( self : Dict , _snake_case : int , _snake_case : int ): """simple docstring""" return 0xFFFFFFFF & (value << (32 - rotations)) | (value >> rotations) class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def _a ( self : str ): """simple docstring""" import hashlib A__ = bytes('Test String' , 'utf-8' ) self.assertEqual(SHAaaa(_snake_case ).hash , hashlib.shaaaa(_snake_case ).hexdigest() ) def A ( ) -> None: import doctest doctest.testmod() A__ = argparse.ArgumentParser() parser.add_argument( '-s' , '--string' , dest='input_string' , default='Hello World!! Welcome to Cryptography' , help='Hash the string' , ) parser.add_argument( '-f' , '--file' , dest='input_file' , help='Hash contents of a file' ) A__ = parser.parse_args() A__ = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , 'rb' ) as f: A__ = f.read() else: A__ = bytes(__UpperCamelCase , 'utf-8' ) print(SHAaaa(__UpperCamelCase ).hash ) if __name__ == "__main__": main()
52
0
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a_ : Dict = {'configuration_mra': ['MRA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MraConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Dict = [ 'MRA_PRETRAINED_MODEL_ARCHIVE_LIST', 'MraForMaskedLM', 'MraForMultipleChoice', 'MraForQuestionAnswering', 'MraForSequenceClassification', 'MraForTokenClassification', 'MraLayer', 'MraModel', 'MraPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys a_ : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure)
73
import math from datetime import datetime, timedelta def _snake_case (__lowercase): UpperCamelCase_ = year % 19 UpperCamelCase_ = year % 4 UpperCamelCase_ = year % 7 UpperCamelCase_ = math.floor(year / 100) UpperCamelCase_ = math.floor((13 + 8 * leap_day_inhibits) / 25) UpperCamelCase_ = leap_day_inhibits / 4 UpperCamelCase_ = ( 15 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number ) % 30 UpperCamelCase_ = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7 # days to be added to March 21 UpperCamelCase_ = (19 * metonic_cycle + secular_moon_shift) % 30 # PHM -> Paschal Full Moon UpperCamelCase_ = ( 2 * julian_leap_year + 4 * non_leap_year + 6 * days_to_add + century_starting_point ) % 7 if days_to_add == 29 and days_from_phm_to_sunday == 6: return datetime(__lowercase , 4 , 19) elif days_to_add == 28 and days_from_phm_to_sunday == 6: return datetime(__lowercase , 4 , 18) else: return datetime(__lowercase , 3 , 22) + timedelta( days=int(days_to_add + days_from_phm_to_sunday)) if __name__ == "__main__": for year in (1_9_9_4, 2_0_0_0, 2_0_1_0, 2_0_2_1, 2_0_2_3): snake_case__ : Dict = """will be""" if year > datetime.now().year else """was""" print(f'Easter in {year} {tense} {gauss_easter(year)}')
23
0
import logging import os import sys from pathlib import Path from unittest.mock import patch from parameterized import parameterized from run_eval import run_generate from run_eval_search import run_search from transformers.testing_utils import CaptureStdout, TestCasePlus, slow from utils import ROUGE_KEYS logging.basicConfig(level=logging.DEBUG) lowerCAmelCase : int =logging.getLogger() def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = """\n""".join(SCREAMING_SNAKE_CASE__ ) Path(SCREAMING_SNAKE_CASE__ ).open("""w""" ).writelines(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Tuple ='patrickvonplaten/t5-tiny-random' lowerCAmelCase : str ='sshleifer/bart-tiny-random' lowerCAmelCase : List[Any] ='sshleifer/tiny-mbart' lowerCAmelCase : List[str] =logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) logging.disable(logging.CRITICAL) # remove noisy download output from tracebacks class _a ( snake_case_ ): def _snake_case ( self , lowercase_ ) -> Dict: lowerCAmelCase : Dict = Path(self.get_auto_remove_tmp_dir() ) / """utest_input.source""" lowerCAmelCase : List[Any] = input_file_name.parent / """utest_output.txt""" assert not output_file_name.exists() lowerCAmelCase : Dict = [""" New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County."""] _dump_articles(lowercase_ , lowercase_ ) lowerCAmelCase : List[str] = str(Path(self.get_auto_remove_tmp_dir() ) / """scores.json""" ) lowerCAmelCase : int = """translation_en_to_de""" if model == T5_TINY else """summarization""" lowerCAmelCase : Union[str, Any] = f""" run_eval_search.py {model} {input_file_name} {output_file_name} --score_path {score_path} --task {task} --num_beams 2 --length_penalty 2.0 """.split() with patch.object(lowercase_ , """argv""" , lowercase_ ): run_generate() assert Path(lowercase_ ).exists() # os.remove(Path(output_file_name)) def _snake_case ( self ) -> Union[str, Any]: self.run_eval_tester(lowercase_ ) @parameterized.expand([BART_TINY, MBART_TINY] ) @slow def _snake_case ( self , lowercase_ ) -> Optional[int]: self.run_eval_tester(lowercase_ ) @parameterized.expand([T5_TINY, MBART_TINY] ) @slow def _snake_case ( self , lowercase_ ) -> Optional[int]: lowerCAmelCase : List[str] = Path(self.get_auto_remove_tmp_dir() ) / """utest_input.source""" lowerCAmelCase : str = input_file_name.parent / """utest_output.txt""" assert not output_file_name.exists() lowerCAmelCase : Any = { """en""": ["""Machine learning is great, isn't it?""", """I like to eat bananas""", """Tomorrow is another great day!"""], """de""": [ """Maschinelles Lernen ist großartig, oder?""", """Ich esse gerne Bananen""", """Morgen ist wieder ein toller Tag!""", ], } lowerCAmelCase : Union[str, Any] = Path(self.get_auto_remove_tmp_dir() ) lowerCAmelCase : str = str(tmp_dir / """scores.json""" ) lowerCAmelCase : List[str] = str(tmp_dir / """val.target""" ) _dump_articles(lowercase_ , text["""en"""] ) _dump_articles(lowercase_ , text["""de"""] ) lowerCAmelCase : Any = """translation_en_to_de""" if model == T5_TINY else """summarization""" lowerCAmelCase : Any = f""" run_eval_search.py {model} {str(lowercase_ )} {str(lowercase_ )} --score_path {score_path} --reference_path {reference_path} --task {task} """.split() testargs.extend(["""--search""", """num_beams=1:2 length_penalty=0.9:1.0"""] ) with patch.object(lowercase_ , """argv""" , lowercase_ ): with CaptureStdout() as cs: run_search() lowerCAmelCase : Union[str, Any] = [""" num_beams | length_penalty""", model, """Best score args"""] lowerCAmelCase : Any = ["""Info"""] if "translation" in task: expected_strings.append("""bleu""" ) else: expected_strings.extend(lowercase_ ) for w in expected_strings: assert w in cs.out for w in un_expected_strings: assert w not in cs.out assert Path(lowercase_ ).exists() os.remove(Path(lowercase_ ) )
693
import json import logging import os import sys from pathlib import Path import finetune_rag from transformers.file_utils import is_apex_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, require_ray, require_torch_gpu, require_torch_multi_gpu, ) logging.basicConfig(level=logging.DEBUG) lowerCAmelCase : int =logging.getLogger() lowerCAmelCase : str =logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class _a ( snake_case_ ): def _snake_case ( self , lowercase_ ) -> List[Any]: os.makedirs(lowercase_ , exist_ok=lowercase_ ) lowerCAmelCase : int = {"""source""": """What is love ?""", """target""": """life"""} lowerCAmelCase : Optional[Any] = {"""train""": 12, """val""": 2, """test""": 2} for split in ["train", "test", "val"]: for field in ["source", "target"]: lowerCAmelCase : Tuple = """\n""".join([contents[field]] * n_lines[split] ) with open(os.path.join(lowercase_ , f"""{split}.{field}""" ) , """w""" ) as f: f.write(lowercase_ ) def _snake_case ( self , lowercase_ , lowercase_ = "pytorch" ) -> str: lowerCAmelCase : Dict = self.get_auto_remove_tmp_dir() lowerCAmelCase : Union[str, Any] = os.path.join(lowercase_ , """output""" ) lowerCAmelCase : Dict = os.path.join(lowercase_ , """data""" ) self._create_dummy_data(data_dir=lowercase_ ) lowerCAmelCase : str = f""" --data_dir {data_dir} \ --output_dir {output_dir} \ --model_name_or_path facebook/rag-sequence-base \ --model_type rag_sequence \ --do_train \ --do_predict \ --n_val -1 \ --val_check_interval 1.0 \ --train_batch_size 2 \ --eval_batch_size 1 \ --max_source_length 25 \ --max_target_length 25 \ --val_max_target_length 25 \ --test_max_target_length 25 \ --label_smoothing 0.1 \ --dropout 0.1 \ --attention_dropout 0.1 \ --weight_decay 0.001 \ --adam_epsilon 1e-08 \ --max_grad_norm 0.1 \ --lr_scheduler polynomial \ --learning_rate 3e-04 \ --num_train_epochs 1 \ --warmup_steps 4 \ --gradient_accumulation_steps 1 \ --distributed-port 8787 \ --use_dummy_dataset 1 \ --distributed_retriever {distributed_retriever} \ """.split() if gpus > 0: testargs.append(f"""--gpus={gpus}""" ) if is_apex_available(): testargs.append("""--fp16""" ) else: testargs.append("""--gpus=0""" ) testargs.append("""--distributed_backend=ddp_cpu""" ) testargs.append("""--num_processes=2""" ) lowerCAmelCase : Optional[int] = [sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs execute_subprocess_async(lowercase_ , env=self.get_env() ) lowerCAmelCase : Union[str, Any] = os.path.join(lowercase_ , """metrics.json""" ) with open(lowercase_ ) as f: lowerCAmelCase : List[str] = json.load(lowercase_ ) return result @require_torch_gpu def _snake_case ( self ) -> Any: lowerCAmelCase : Tuple = self._run_finetune(gpus=1 ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_multi_gpu def _snake_case ( self ) -> Optional[int]: lowerCAmelCase : Dict = self._run_finetune(gpus=2 ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_gpu @require_ray def _snake_case ( self ) -> int: lowerCAmelCase : Optional[Any] = self._run_finetune(gpus=1 , distributed_retriever="""ray""" ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_multi_gpu @require_ray def _snake_case ( self ) -> Optional[Any]: lowerCAmelCase : Optional[Any] = self._run_finetune(gpus=1 , distributed_retriever="""ray""" ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 )
693
1
def lowerCAmelCase_ ( __a ) -> Any: """simple docstring""" lowerCamelCase__: int =len(__a ) while cur > 1: # Find the maximum number in arr lowerCamelCase__: str =arr.index(max(arr[0:cur] ) ) # Reverse from 0 to mi lowerCamelCase__: Tuple =arr[mi::-1] + arr[mi + 1 : len(__a )] # Reverse whole list lowerCamelCase__: Optional[Any] =arr[cur - 1 :: -1] + arr[cur : len(__a )] cur -= 1 return arr if __name__ == "__main__": __A = input("Enter numbers separated by a comma:\n").strip() __A = [int(item) for item in user_input.split(",")] print(pancake_sort(unsorted))
59
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _lowerCamelCase : Dict = { 'configuration_bloom': ['BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BloomConfig', 'BloomOnnxConfig'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : List[Any] = ['BloomTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Optional[Any] = [ 'BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST', 'BloomForCausalLM', 'BloomModel', 'BloomPreTrainedModel', 'BloomForSequenceClassification', 'BloomForTokenClassification', 'BloomForQuestionAnswering', ] if TYPE_CHECKING: from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bloom_fast import BloomTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bloom import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) else: import sys _lowerCamelCase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
121
0
import pytest from datasets.parallel import ParallelBackendConfig, parallel_backend from datasets.utils.py_utils import map_nested from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows def A ( __UpperCamelCase ) -> Optional[int]: # picklable for multiprocessing return i + 1 @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows def A ( ) -> Any: with parallel_backend('spark' ): assert ParallelBackendConfig.backend_name == "spark" A__ = [1, 2, 3] with pytest.raises(__UpperCamelCase ): with parallel_backend('unsupported backend' ): map_nested(__UpperCamelCase , __UpperCamelCase , num_proc=2 ) with pytest.raises(__UpperCamelCase ): with parallel_backend('unsupported backend' ): map_nested(__UpperCamelCase , __UpperCamelCase , num_proc=-1 ) @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows @pytest.mark.parametrize('num_proc' , [2, -1] ) def A ( __UpperCamelCase ) -> List[Any]: A__ = [1, 2] A__ = {'a': 1, 'b': 2} A__ = {'a': [1, 2], 'b': [3, 4]} A__ = {'a': {'1': 1}, 'b': 2} A__ = {'a': 1, 'b': 2, 'c': 3, 'd': 4} A__ = [2, 3] A__ = {'a': 2, 'b': 3} A__ = {'a': [2, 3], 'b': [4, 5]} A__ = {'a': {'1': 2}, 'b': 3} A__ = {'a': 2, 'b': 3, 'c': 4, 'd': 5} with parallel_backend('spark' ): assert map_nested(__UpperCamelCase , __UpperCamelCase , num_proc=__UpperCamelCase ) == expected_map_nested_sa assert map_nested(__UpperCamelCase , __UpperCamelCase , num_proc=__UpperCamelCase ) == expected_map_nested_sa assert map_nested(__UpperCamelCase , __UpperCamelCase , num_proc=__UpperCamelCase ) == expected_map_nested_sa assert map_nested(__UpperCamelCase , __UpperCamelCase , num_proc=__UpperCamelCase ) == expected_map_nested_sa assert map_nested(__UpperCamelCase , __UpperCamelCase , num_proc=__UpperCamelCase ) == expected_map_nested_sa
52
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process SCREAMING_SNAKE_CASE__ = logging.getLogger(__name__) def A ( __UpperCamelCase , __UpperCamelCase ) -> List[Any]: return (preds == labels).mean() @dataclass class __lowerCAmelCase : """simple docstring""" A__ : str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) A__ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) A__ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) A__ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) @dataclass class __lowerCAmelCase : """simple docstring""" A__ : str = field(metadata={"help": "The name of the task to train on: " + ", ".join(processors.keys() )} ) A__ : str = field(metadata={"help": "Should contain the data files for the task."} ) A__ : int = field( default=1_28 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) A__ : bool = field( default=UpperCAmelCase_ , metadata={"help": "Overwrite the cached training and evaluation sets"} ) def A ( ) -> Any: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. A__ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) A__ , A__ , A__ = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. Use''' ' --overwrite_output_dir to overcome.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( 'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s' , __UpperCamelCase ) # Set seed set_seed(training_args.seed ) try: A__ = processors[data_args.task_name]() A__ = processor.get_labels() A__ = len(__UpperCamelCase ) except KeyError: raise ValueError('Task not found: %s' % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. A__ = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=__UpperCamelCase , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) A__ = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) A__ = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=__UpperCamelCase , cache_dir=model_args.cache_dir , ) # Get datasets A__ = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=__UpperCamelCase , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) A__ = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=__UpperCamelCase , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(__UpperCamelCase ) -> Dict: A__ = np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(__UpperCamelCase , p.label_ids )} # Data collator A__ = DataCollatorWithPadding(__UpperCamelCase , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer A__ = Trainer( model=__UpperCamelCase , args=__UpperCamelCase , train_dataset=__UpperCamelCase , eval_dataset=__UpperCamelCase , compute_metrics=__UpperCamelCase , data_collator=__UpperCamelCase , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation A__ = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) A__ = trainer.evaluate() A__ = os.path.join(training_args.output_dir , 'eval_results.txt' ) if trainer.is_world_master(): with open(__UpperCamelCase , 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in result.items(): logger.info(' %s = %s' , __UpperCamelCase , __UpperCamelCase ) writer.write('%s = %s\n' % (key, value) ) results.update(__UpperCamelCase ) return results def A ( __UpperCamelCase ) -> List[Any]: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
52
1
"""simple docstring""" import copy import os from typing import TYPE_CHECKING, List, Union if TYPE_CHECKING: pass from ...configuration_utils import PretrainedConfig from ...utils import logging __magic_name__ = logging.get_logger(__name__) __magic_name__ = { """kakaobrain/align-base""": """https://huggingface.co/kakaobrain/align-base/resolve/main/config.json""", } class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase_ ): snake_case = "align_text_model" def __init__( self : Any , SCREAMING_SNAKE_CASE_ : Optional[int]=3_0522 , SCREAMING_SNAKE_CASE_ : Optional[int]=768 , SCREAMING_SNAKE_CASE_ : str=12 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=12 , SCREAMING_SNAKE_CASE_ : List[Any]=3072 , SCREAMING_SNAKE_CASE_ : List[str]="gelu" , SCREAMING_SNAKE_CASE_ : Optional[int]=0.1 , SCREAMING_SNAKE_CASE_ : str=0.1 , SCREAMING_SNAKE_CASE_ : Optional[int]=512 , SCREAMING_SNAKE_CASE_ : Optional[Any]=2 , SCREAMING_SNAKE_CASE_ : List[Any]=0.0_2 , SCREAMING_SNAKE_CASE_ : List[Any]=1e-12 , SCREAMING_SNAKE_CASE_ : List[str]=0 , SCREAMING_SNAKE_CASE_ : List[str]="absolute" , SCREAMING_SNAKE_CASE_ : Tuple=True , **SCREAMING_SNAKE_CASE_ : Optional[Any] , ): super().__init__(**_snake_case ) lowerCamelCase__ = vocab_size lowerCamelCase__ = hidden_size lowerCamelCase__ = num_hidden_layers lowerCamelCase__ = num_attention_heads lowerCamelCase__ = hidden_act lowerCamelCase__ = intermediate_size lowerCamelCase__ = hidden_dropout_prob lowerCamelCase__ = attention_probs_dropout_prob lowerCamelCase__ = max_position_embeddings lowerCamelCase__ = type_vocab_size lowerCamelCase__ = initializer_range lowerCamelCase__ = layer_norm_eps lowerCamelCase__ = position_embedding_type lowerCamelCase__ = use_cache lowerCamelCase__ = pad_token_id @classmethod def __UpperCAmelCase ( cls : List[str] , SCREAMING_SNAKE_CASE_ : Union[str, os.PathLike] , **SCREAMING_SNAKE_CASE_ : List[str] ): cls._set_token_in_kwargs(_snake_case ) lowerCamelCase__ , lowerCamelCase__ = cls.get_config_dict(_snake_case , **_snake_case ) # get the text config dict if we are loading from AlignConfig if config_dict.get("""model_type""" ) == "align": lowerCamelCase__ = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_snake_case , **_snake_case ) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase_ ): snake_case = "align_vision_model" def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : int = 3 , SCREAMING_SNAKE_CASE_ : int = 600 , SCREAMING_SNAKE_CASE_ : float = 2.0 , SCREAMING_SNAKE_CASE_ : float = 3.1 , SCREAMING_SNAKE_CASE_ : int = 8 , SCREAMING_SNAKE_CASE_ : List[int] = [3, 3, 5, 3, 5, 5, 3] , SCREAMING_SNAKE_CASE_ : List[int] = [32, 16, 24, 40, 80, 112, 192] , SCREAMING_SNAKE_CASE_ : List[int] = [16, 24, 40, 80, 112, 192, 320] , SCREAMING_SNAKE_CASE_ : List[int] = [] , SCREAMING_SNAKE_CASE_ : List[int] = [1, 2, 2, 2, 1, 2, 1] , SCREAMING_SNAKE_CASE_ : List[int] = [1, 2, 2, 3, 3, 4, 1] , SCREAMING_SNAKE_CASE_ : List[int] = [1, 6, 6, 6, 6, 6, 6] , SCREAMING_SNAKE_CASE_ : float = 0.2_5 , SCREAMING_SNAKE_CASE_ : str = "swish" , SCREAMING_SNAKE_CASE_ : int = 2560 , SCREAMING_SNAKE_CASE_ : str = "mean" , SCREAMING_SNAKE_CASE_ : float = 0.0_2 , SCREAMING_SNAKE_CASE_ : float = 0.0_0_1 , SCREAMING_SNAKE_CASE_ : float = 0.9_9 , SCREAMING_SNAKE_CASE_ : float = 0.2 , **SCREAMING_SNAKE_CASE_ : Tuple , ): super().__init__(**_snake_case ) lowerCamelCase__ = num_channels lowerCamelCase__ = image_size lowerCamelCase__ = width_coefficient lowerCamelCase__ = depth_coefficient lowerCamelCase__ = depth_divisor lowerCamelCase__ = kernel_sizes lowerCamelCase__ = in_channels lowerCamelCase__ = out_channels lowerCamelCase__ = depthwise_padding lowerCamelCase__ = strides lowerCamelCase__ = num_block_repeats lowerCamelCase__ = expand_ratios lowerCamelCase__ = squeeze_expansion_ratio lowerCamelCase__ = hidden_act lowerCamelCase__ = hidden_dim lowerCamelCase__ = pooling_type lowerCamelCase__ = initializer_range lowerCamelCase__ = batch_norm_eps lowerCamelCase__ = batch_norm_momentum lowerCamelCase__ = drop_connect_rate lowerCamelCase__ = sum(_snake_case ) * 4 @classmethod def __UpperCAmelCase ( cls : List[str] , SCREAMING_SNAKE_CASE_ : Union[str, os.PathLike] , **SCREAMING_SNAKE_CASE_ : Optional[int] ): cls._set_token_in_kwargs(_snake_case ) lowerCamelCase__ , lowerCamelCase__ = cls.get_config_dict(_snake_case , **_snake_case ) # get the vision config dict if we are loading from AlignConfig if config_dict.get("""model_type""" ) == "align": lowerCamelCase__ = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_snake_case , **_snake_case ) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase_ ): snake_case = "align" snake_case = True def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Union[str, Any]=None , SCREAMING_SNAKE_CASE_ : Union[str, Any]=None , SCREAMING_SNAKE_CASE_ : Optional[int]=640 , SCREAMING_SNAKE_CASE_ : List[str]=1.0 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=0.0_2 , **SCREAMING_SNAKE_CASE_ : Tuple , ): super().__init__(**_snake_case ) if text_config is None: lowerCamelCase__ = {} logger.info("""text_config is None. Initializing the AlignTextConfig with default values.""" ) if vision_config is None: lowerCamelCase__ = {} logger.info("""vision_config is None. Initializing the AlignVisionConfig with default values.""" ) lowerCamelCase__ = AlignTextConfig(**_snake_case ) lowerCamelCase__ = AlignVisionConfig(**_snake_case ) lowerCamelCase__ = projection_dim lowerCamelCase__ = temperature_init_value lowerCamelCase__ = initializer_range @classmethod def __UpperCAmelCase ( cls : Union[str, Any] , SCREAMING_SNAKE_CASE_ : AlignTextConfig , SCREAMING_SNAKE_CASE_ : AlignVisionConfig , **SCREAMING_SNAKE_CASE_ : Optional[int] ): return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **_snake_case ) def __UpperCAmelCase ( self : List[str] ): lowerCamelCase__ = copy.deepcopy(self.__dict__ ) lowerCamelCase__ = self.text_config.to_dict() lowerCamelCase__ = self.vision_config.to_dict() lowerCamelCase__ = self.__class__.model_type return output
129
import argparse from collections import defaultdict import yaml SCREAMING_SNAKE_CASE__ = '''docs/source/en/_toctree.yml''' def A ( __UpperCamelCase ) -> Optional[Any]: A__ = defaultdict(__UpperCamelCase ) for doc in model_doc: counts[doc["local"]] += 1 A__ = [key for key, value in counts.items() if value > 1] A__ = [] for duplicate_key in duplicates: A__ = list({doc['title'] for doc in model_doc if doc['local'] == duplicate_key} ) if len(__UpperCamelCase ) > 1: raise ValueError( f'''{duplicate_key} is present several times in the documentation table of content at ''' '`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ' 'others.' ) # Only add this once new_doc.append({'local': duplicate_key, 'title': titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in model_doc if counts[doc['local']] == 1] ) # Sort return sorted(__UpperCamelCase , key=lambda __UpperCamelCase : s["title"].lower() ) def A ( __UpperCamelCase=False ) -> str: with open(__UpperCamelCase , encoding='utf-8' ) as f: A__ = yaml.safe_load(f.read() ) # Get to the API doc A__ = 0 while content[api_idx]["title"] != "API": api_idx += 1 A__ = content[api_idx]['sections'] # Then to the model doc A__ = 0 while api_doc[model_idx]["title"] != "Models": model_idx += 1 A__ = api_doc[model_idx]['sections'] A__ = [(idx, section) for idx, section in enumerate(__UpperCamelCase ) if 'sections' in section] A__ = False for idx, modality_doc in modalities_docs: A__ = modality_doc['sections'] A__ = clean_model_doc_toc(__UpperCamelCase ) if old_modality_doc != new_modality_doc: A__ = True if overwrite: A__ = new_modality_doc if diff: if overwrite: A__ = model_doc A__ = api_doc with open(__UpperCamelCase , 'w' , encoding='utf-8' ) as f: f.write(yaml.dump(__UpperCamelCase , allow_unicode=__UpperCamelCase ) ) else: raise ValueError( 'The model doc part of the table of content is not properly sorted, run `make style` to fix this.' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') SCREAMING_SNAKE_CASE__ = parser.parse_args() check_model_doc(args.fix_and_overwrite)
9
0
import logging import os import sys from dataclasses import dataclass, field from importlib import import_module from typing import Dict, List, Optional, Tuple import numpy as np from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch import nn from utils_ner import Split, TokenClassificationDataset, TokenClassificationTask import transformers from transformers import ( AutoConfig, AutoModelForTokenClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process UpperCAmelCase__ : Union[str, Any] =logging.getLogger(__name__) @dataclass class __A : __A = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) __A = field( default=a , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) __A = field( default="""NER""" , metadata={"""help""": """Task type to fine tune in training (e.g. NER, POS, etc)"""} ) __A = field( default=a , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) __A = field(default=a , metadata={"""help""": """Set this flag to use fast tokenization."""} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. __A = field( default=a , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) @dataclass class __A : __A = field( metadata={"""help""": """The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task."""} ) __A = field( default=a , metadata={"""help""": """Path to a file containing all labels. If not specified, CoNLL-2003 labels are used."""} , ) __A = field( default=1_28 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) __A = field( default=a , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) def _lowercase ( ) -> List[str]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowerCamelCase =HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowerCamelCase , lowerCamelCase , lowerCamelCase =parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowerCamelCase , lowerCamelCase , lowerCamelCase =parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" """ --overwrite_output_dir to overcome.""" ) lowerCamelCase =import_module("""tasks""" ) try: lowerCamelCase =getattr(_UpperCAmelCase , model_args.task_type ) lowerCamelCase =token_classification_task_clazz() except AttributeError: raise ValueError( F"""Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. """ F"""Available tasks classes are: {TokenClassificationTask.__subclasses__()}""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("""Training/evaluation parameters %s""" , _UpperCAmelCase ) # Set seed set_seed(training_args.seed ) # Prepare CONLL-2003 task lowerCamelCase =token_classification_task.get_labels(data_args.labels ) lowerCamelCase =dict(enumerate(_UpperCAmelCase ) ) lowerCamelCase =len(_UpperCAmelCase ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCamelCase =AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_UpperCAmelCase , idalabel=_UpperCAmelCase , labelaid={label: i for i, label in enumerate(_UpperCAmelCase )} , cache_dir=model_args.cache_dir , ) lowerCamelCase =AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast , ) lowerCamelCase =AutoModelForTokenClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=_UpperCAmelCase , cache_dir=model_args.cache_dir , ) # Get datasets lowerCamelCase =( TokenClassificationDataset( token_classification_task=_UpperCAmelCase , data_dir=data_args.data_dir , tokenizer=_UpperCAmelCase , labels=_UpperCAmelCase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) lowerCamelCase =( TokenClassificationDataset( token_classification_task=_UpperCAmelCase , data_dir=data_args.data_dir , tokenizer=_UpperCAmelCase , labels=_UpperCAmelCase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def align_predictions(_UpperCAmelCase , _UpperCAmelCase ) -> Tuple[List[int], List[int]]: lowerCamelCase =np.argmax(_UpperCAmelCase , axis=2 ) lowerCamelCase , lowerCamelCase =preds.shape lowerCamelCase =[[] for _ in range(_UpperCAmelCase )] lowerCamelCase =[[] for _ in range(_UpperCAmelCase )] for i in range(_UpperCAmelCase ): for j in range(_UpperCAmelCase ): if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index: out_label_list[i].append(label_map[label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) return preds_list, out_label_list def compute_metrics(_UpperCAmelCase ) -> Dict: lowerCamelCase , lowerCamelCase =align_predictions(p.predictions , p.label_ids ) return { "accuracy_score": accuracy_score(_UpperCAmelCase , _UpperCAmelCase ), "precision": precision_score(_UpperCAmelCase , _UpperCAmelCase ), "recall": recall_score(_UpperCAmelCase , _UpperCAmelCase ), "f1": fa_score(_UpperCAmelCase , _UpperCAmelCase ), } # Data collator lowerCamelCase =DataCollatorWithPadding(_UpperCAmelCase , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer lowerCamelCase =Trainer( model=_UpperCAmelCase , args=_UpperCAmelCase , train_dataset=_UpperCAmelCase , eval_dataset=_UpperCAmelCase , compute_metrics=_UpperCAmelCase , data_collator=_UpperCAmelCase , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_process_zero(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation lowerCamelCase ={} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) lowerCamelCase =trainer.evaluate() lowerCamelCase =os.path.join(training_args.output_dir , """eval_results.txt""" ) if trainer.is_world_process_zero(): with open(_UpperCAmelCase , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key, value in result.items(): logger.info(""" %s = %s""" , _UpperCAmelCase , _UpperCAmelCase ) writer.write("""%s = %s\n""" % (key, value) ) results.update(_UpperCAmelCase ) # Predict if training_args.do_predict: lowerCamelCase =TokenClassificationDataset( token_classification_task=_UpperCAmelCase , data_dir=data_args.data_dir , tokenizer=_UpperCAmelCase , labels=_UpperCAmelCase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.test , ) lowerCamelCase , lowerCamelCase , lowerCamelCase =trainer.predict(_UpperCAmelCase ) lowerCamelCase , lowerCamelCase =align_predictions(_UpperCAmelCase , _UpperCAmelCase ) lowerCamelCase =os.path.join(training_args.output_dir , """test_results.txt""" ) if trainer.is_world_process_zero(): with open(_UpperCAmelCase , """w""" ) as writer: for key, value in metrics.items(): logger.info(""" %s = %s""" , _UpperCAmelCase , _UpperCAmelCase ) writer.write("""%s = %s\n""" % (key, value) ) # Save predictions lowerCamelCase =os.path.join(training_args.output_dir , """test_predictions.txt""" ) if trainer.is_world_process_zero(): with open(_UpperCAmelCase , """w""" ) as writer: with open(os.path.join(data_args.data_dir , """test.txt""" ) , """r""" ) as f: token_classification_task.write_predictions_to_file(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) return results def _lowercase ( _UpperCAmelCase ) -> Any: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
269
from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class __A ( a ): __A = 42 class __A ( nn.Module ): def __init__( self , UpperCAmelCase_=3 , UpperCAmelCase_=3 , UpperCAmelCase_=("DownEncoderBlock2D",) , UpperCAmelCase_=(64,) , UpperCAmelCase_=2 , UpperCAmelCase_=32 , UpperCAmelCase_="silu" , UpperCAmelCase_=True , ): super().__init__() lowerCamelCase =layers_per_block lowerCamelCase =torch.nn.Convad( UpperCAmelCase_ , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , ) lowerCamelCase =None lowerCamelCase =nn.ModuleList([] ) # down lowerCamelCase =block_out_channels[0] for i, down_block_type in enumerate(UpperCAmelCase_ ): lowerCamelCase =output_channel lowerCamelCase =block_out_channels[i] lowerCamelCase =i == len(UpperCAmelCase_ ) - 1 lowerCamelCase =get_down_block( UpperCAmelCase_ , num_layers=self.layers_per_block , in_channels=UpperCAmelCase_ , out_channels=UpperCAmelCase_ , add_downsample=not is_final_block , resnet_eps=1E-6 , downsample_padding=0 , resnet_act_fn=UpperCAmelCase_ , resnet_groups=UpperCAmelCase_ , attention_head_dim=UpperCAmelCase_ , temb_channels=UpperCAmelCase_ , ) self.down_blocks.append(UpperCAmelCase_ ) # mid lowerCamelCase =UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1E-6 , resnet_act_fn=UpperCAmelCase_ , output_scale_factor=1 , resnet_time_scale_shift="""default""" , attention_head_dim=block_out_channels[-1] , resnet_groups=UpperCAmelCase_ , temb_channels=UpperCAmelCase_ , ) # out lowerCamelCase =nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=UpperCAmelCase_ , eps=1E-6 ) lowerCamelCase =nn.SiLU() lowerCamelCase =2 * out_channels if double_z else out_channels lowerCamelCase =nn.Convad(block_out_channels[-1] , UpperCAmelCase_ , 3 , padding=1 ) lowerCamelCase =False def _snake_case ( self , UpperCAmelCase_ ): lowerCamelCase =x lowerCamelCase =self.conv_in(UpperCAmelCase_ ) if self.training and self.gradient_checkpointing: def create_custom_forward(UpperCAmelCase_ ): def custom_forward(*UpperCAmelCase_ ): return module(*UpperCAmelCase_ ) return custom_forward # down if is_torch_version(""">=""" , """1.11.0""" ): for down_block in self.down_blocks: lowerCamelCase =torch.utils.checkpoint.checkpoint( create_custom_forward(UpperCAmelCase_ ) , UpperCAmelCase_ , use_reentrant=UpperCAmelCase_ ) # middle lowerCamelCase =torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , UpperCAmelCase_ , use_reentrant=UpperCAmelCase_ ) else: for down_block in self.down_blocks: lowerCamelCase =torch.utils.checkpoint.checkpoint(create_custom_forward(UpperCAmelCase_ ) , UpperCAmelCase_ ) # middle lowerCamelCase =torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , UpperCAmelCase_ ) else: # down for down_block in self.down_blocks: lowerCamelCase =down_block(UpperCAmelCase_ ) # middle lowerCamelCase =self.mid_block(UpperCAmelCase_ ) # post-process lowerCamelCase =self.conv_norm_out(UpperCAmelCase_ ) lowerCamelCase =self.conv_act(UpperCAmelCase_ ) lowerCamelCase =self.conv_out(UpperCAmelCase_ ) return sample class __A ( nn.Module ): def __init__( self , UpperCAmelCase_=3 , UpperCAmelCase_=3 , UpperCAmelCase_=("UpDecoderBlock2D",) , UpperCAmelCase_=(64,) , UpperCAmelCase_=2 , UpperCAmelCase_=32 , UpperCAmelCase_="silu" , UpperCAmelCase_="group" , ): super().__init__() lowerCamelCase =layers_per_block lowerCamelCase =nn.Convad( UpperCAmelCase_ , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , ) lowerCamelCase =None lowerCamelCase =nn.ModuleList([] ) lowerCamelCase =in_channels if norm_type == """spatial""" else None # mid lowerCamelCase =UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1E-6 , resnet_act_fn=UpperCAmelCase_ , output_scale_factor=1 , resnet_time_scale_shift="""default""" if norm_type == """group""" else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=UpperCAmelCase_ , temb_channels=UpperCAmelCase_ , ) # up lowerCamelCase =list(reversed(UpperCAmelCase_ ) ) lowerCamelCase =reversed_block_out_channels[0] for i, up_block_type in enumerate(UpperCAmelCase_ ): lowerCamelCase =output_channel lowerCamelCase =reversed_block_out_channels[i] lowerCamelCase =i == len(UpperCAmelCase_ ) - 1 lowerCamelCase =get_up_block( UpperCAmelCase_ , num_layers=self.layers_per_block + 1 , in_channels=UpperCAmelCase_ , out_channels=UpperCAmelCase_ , prev_output_channel=UpperCAmelCase_ , add_upsample=not is_final_block , resnet_eps=1E-6 , resnet_act_fn=UpperCAmelCase_ , resnet_groups=UpperCAmelCase_ , attention_head_dim=UpperCAmelCase_ , temb_channels=UpperCAmelCase_ , resnet_time_scale_shift=UpperCAmelCase_ , ) self.up_blocks.append(UpperCAmelCase_ ) lowerCamelCase =output_channel # out if norm_type == "spatial": lowerCamelCase =SpatialNorm(block_out_channels[0] , UpperCAmelCase_ ) else: lowerCamelCase =nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=UpperCAmelCase_ , eps=1E-6 ) lowerCamelCase =nn.SiLU() lowerCamelCase =nn.Convad(block_out_channels[0] , UpperCAmelCase_ , 3 , padding=1 ) lowerCamelCase =False def _snake_case ( self , UpperCAmelCase_ , UpperCAmelCase_=None ): lowerCamelCase =z lowerCamelCase =self.conv_in(UpperCAmelCase_ ) lowerCamelCase =next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(UpperCAmelCase_ ): def custom_forward(*UpperCAmelCase_ ): return module(*UpperCAmelCase_ ) return custom_forward if is_torch_version(""">=""" , """1.11.0""" ): # middle lowerCamelCase =torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , UpperCAmelCase_ , UpperCAmelCase_ , use_reentrant=UpperCAmelCase_ ) lowerCamelCase =sample.to(UpperCAmelCase_ ) # up for up_block in self.up_blocks: lowerCamelCase =torch.utils.checkpoint.checkpoint( create_custom_forward(UpperCAmelCase_ ) , UpperCAmelCase_ , UpperCAmelCase_ , use_reentrant=UpperCAmelCase_ ) else: # middle lowerCamelCase =torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , UpperCAmelCase_ , UpperCAmelCase_ ) lowerCamelCase =sample.to(UpperCAmelCase_ ) # up for up_block in self.up_blocks: lowerCamelCase =torch.utils.checkpoint.checkpoint(create_custom_forward(UpperCAmelCase_ ) , UpperCAmelCase_ , UpperCAmelCase_ ) else: # middle lowerCamelCase =self.mid_block(UpperCAmelCase_ , UpperCAmelCase_ ) lowerCamelCase =sample.to(UpperCAmelCase_ ) # up for up_block in self.up_blocks: lowerCamelCase =up_block(UpperCAmelCase_ , UpperCAmelCase_ ) # post-process if latent_embeds is None: lowerCamelCase =self.conv_norm_out(UpperCAmelCase_ ) else: lowerCamelCase =self.conv_norm_out(UpperCAmelCase_ , UpperCAmelCase_ ) lowerCamelCase =self.conv_act(UpperCAmelCase_ ) lowerCamelCase =self.conv_out(UpperCAmelCase_ ) return sample class __A ( nn.Module ): def __init__( self , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_=None , UpperCAmelCase_="random" , UpperCAmelCase_=False , UpperCAmelCase_=True ): super().__init__() lowerCamelCase =n_e lowerCamelCase =vq_embed_dim lowerCamelCase =beta lowerCamelCase =legacy lowerCamelCase =nn.Embedding(self.n_e , self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e ) lowerCamelCase =remap if self.remap is not None: self.register_buffer("""used""" , torch.tensor(np.load(self.remap ) ) ) lowerCamelCase =self.used.shape[0] lowerCamelCase =unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": lowerCamelCase =self.re_embed lowerCamelCase =self.re_embed + 1 print( f"""Remapping {self.n_e} indices to {self.re_embed} indices. """ f"""Using {self.unknown_index} for unknown indices.""" ) else: lowerCamelCase =n_e lowerCamelCase =sane_index_shape def _snake_case ( self , UpperCAmelCase_ ): lowerCamelCase =inds.shape assert len(UpperCAmelCase_ ) > 1 lowerCamelCase =inds.reshape(ishape[0] , -1 ) lowerCamelCase =self.used.to(UpperCAmelCase_ ) lowerCamelCase =(inds[:, :, None] == used[None, None, ...]).long() lowerCamelCase =match.argmax(-1 ) lowerCamelCase =match.sum(2 ) < 1 if self.unknown_index == "random": lowerCamelCase =torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device ) else: lowerCamelCase =self.unknown_index return new.reshape(UpperCAmelCase_ ) def _snake_case ( self , UpperCAmelCase_ ): lowerCamelCase =inds.shape assert len(UpperCAmelCase_ ) > 1 lowerCamelCase =inds.reshape(ishape[0] , -1 ) lowerCamelCase =self.used.to(UpperCAmelCase_ ) if self.re_embed > self.used.shape[0]: # extra token lowerCamelCase =0 # simply set to zero lowerCamelCase =torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , UpperCAmelCase_ ) return back.reshape(UpperCAmelCase_ ) def _snake_case ( self , UpperCAmelCase_ ): # reshape z -> (batch, height, width, channel) and flatten lowerCamelCase =z.permute(0 , 2 , 3 , 1 ).contiguous() lowerCamelCase =z.view(-1 , self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z lowerCamelCase =torch.argmin(torch.cdist(UpperCAmelCase_ , self.embedding.weight ) , dim=1 ) lowerCamelCase =self.embedding(UpperCAmelCase_ ).view(z.shape ) lowerCamelCase =None lowerCamelCase =None # compute loss for embedding if not self.legacy: lowerCamelCase =self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: lowerCamelCase =torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients lowerCamelCase =z + (z_q - z).detach() # reshape back to match original input shape lowerCamelCase =z_q.permute(0 , 3 , 1 , 2 ).contiguous() if self.remap is not None: lowerCamelCase =min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis lowerCamelCase =self.remap_to_used(UpperCAmelCase_ ) lowerCamelCase =min_encoding_indices.reshape(-1 , 1 ) # flatten if self.sane_index_shape: lowerCamelCase =min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def _snake_case ( self , UpperCAmelCase_ , UpperCAmelCase_ ): # shape specifying (batch, height, width, channel) if self.remap is not None: lowerCamelCase =indices.reshape(shape[0] , -1 ) # add batch axis lowerCamelCase =self.unmap_to_all(UpperCAmelCase_ ) lowerCamelCase =indices.reshape(-1 ) # flatten again # get quantized latent vectors lowerCamelCase =self.embedding(UpperCAmelCase_ ) if shape is not None: lowerCamelCase =z_q.view(UpperCAmelCase_ ) # reshape back to match original input shape lowerCamelCase =z_q.permute(0 , 3 , 1 , 2 ).contiguous() return z_q class __A ( a ): def __init__( self , UpperCAmelCase_ , UpperCAmelCase_=False ): lowerCamelCase =parameters lowerCamelCase , lowerCamelCase =torch.chunk(UpperCAmelCase_ , 2 , dim=1 ) lowerCamelCase =torch.clamp(self.logvar , -3_0.0 , 2_0.0 ) lowerCamelCase =deterministic lowerCamelCase =torch.exp(0.5 * self.logvar ) lowerCamelCase =torch.exp(self.logvar ) if self.deterministic: lowerCamelCase =lowerCamelCase =torch.zeros_like( self.mean , device=self.parameters.device , dtype=self.parameters.dtype ) def _snake_case ( self , UpperCAmelCase_ = None ): # make sure sample is on the same device as the parameters and has same dtype lowerCamelCase =randn_tensor( self.mean.shape , generator=UpperCAmelCase_ , device=self.parameters.device , dtype=self.parameters.dtype ) lowerCamelCase =self.mean + self.std * sample return x def _snake_case ( self , UpperCAmelCase_=None ): if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean , 2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar , dim=[1, 2, 3] , ) def _snake_case ( self , UpperCAmelCase_ , UpperCAmelCase_=[1, 2, 3] ): if self.deterministic: return torch.Tensor([0.0] ) lowerCamelCase =np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=UpperCAmelCase_ ) def _snake_case ( self ): return self.mean
269
1
'''simple docstring''' __lowerCAmelCase = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): # Return True if there is node that has not iterated. _snake_case = [False] * len(_SCREAMING_SNAKE_CASE ) _snake_case = [s] _snake_case = True while queue: _snake_case = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(_SCREAMING_SNAKE_CASE ) _snake_case = True _snake_case = u return visited[t] def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _snake_case = [-1] * (len(_SCREAMING_SNAKE_CASE )) _snake_case = 0 _snake_case = [] _snake_case = [i[:] for i in graph] # Record original cut, copy. while bfs(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _snake_case = float("""Inf""" ) _snake_case = sink while s != source: # Find the minimum value in select path _snake_case = min(_SCREAMING_SNAKE_CASE , graph[parent[s]][s] ) _snake_case = parent[s] max_flow += path_flow _snake_case = sink while v != source: _snake_case = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow _snake_case = parent[v] for i in range(len(_SCREAMING_SNAKE_CASE ) ): for j in range(len(graph[0] ) ): if graph[i][j] == 0 and temp[i][j] > 0: res.append((i, j) ) return res if __name__ == "__main__": print(mincut(test_graph, source=0, sink=5))
585
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __lowerCAmelCase = { 'configuration_roberta_prelayernorm': [ 'ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RobertaPreLayerNormConfig', 'RobertaPreLayerNormOnnxConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ 'ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST', 'RobertaPreLayerNormForCausalLM', 'RobertaPreLayerNormForMaskedLM', 'RobertaPreLayerNormForMultipleChoice', 'RobertaPreLayerNormForQuestionAnswering', 'RobertaPreLayerNormForSequenceClassification', 'RobertaPreLayerNormForTokenClassification', 'RobertaPreLayerNormModel', 'RobertaPreLayerNormPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ 'TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFRobertaPreLayerNormForCausalLM', 'TFRobertaPreLayerNormForMaskedLM', 'TFRobertaPreLayerNormForMultipleChoice', 'TFRobertaPreLayerNormForQuestionAnswering', 'TFRobertaPreLayerNormForSequenceClassification', 'TFRobertaPreLayerNormForTokenClassification', 'TFRobertaPreLayerNormMainLayer', 'TFRobertaPreLayerNormModel', 'TFRobertaPreLayerNormPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ 'FlaxRobertaPreLayerNormForCausalLM', 'FlaxRobertaPreLayerNormForMaskedLM', 'FlaxRobertaPreLayerNormForMultipleChoice', 'FlaxRobertaPreLayerNormForQuestionAnswering', 'FlaxRobertaPreLayerNormForSequenceClassification', 'FlaxRobertaPreLayerNormForTokenClassification', 'FlaxRobertaPreLayerNormModel', 'FlaxRobertaPreLayerNormPreTrainedModel', ] if TYPE_CHECKING: from .configuration_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaPreLayerNormConfig, RobertaPreLayerNormOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaPreLayerNormForCausalLM, RobertaPreLayerNormForMaskedLM, RobertaPreLayerNormForMultipleChoice, RobertaPreLayerNormForQuestionAnswering, RobertaPreLayerNormForSequenceClassification, RobertaPreLayerNormForTokenClassification, RobertaPreLayerNormModel, RobertaPreLayerNormPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta_prelayernorm import ( TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaPreLayerNormForCausalLM, TFRobertaPreLayerNormForMaskedLM, TFRobertaPreLayerNormForMultipleChoice, TFRobertaPreLayerNormForQuestionAnswering, TFRobertaPreLayerNormForSequenceClassification, TFRobertaPreLayerNormForTokenClassification, TFRobertaPreLayerNormMainLayer, TFRobertaPreLayerNormModel, TFRobertaPreLayerNormPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormPreTrainedModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
585
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) A = { "configuration_longformer": [ "LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "LongformerConfig", "LongformerOnnxConfig", ], "tokenization_longformer": ["LongformerTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = ["LongformerTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = [ "LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "LongformerForMaskedLM", "LongformerForMultipleChoice", "LongformerForQuestionAnswering", "LongformerForSequenceClassification", "LongformerForTokenClassification", "LongformerModel", "LongformerPreTrainedModel", "LongformerSelfAttention", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = [ "TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TFLongformerForMaskedLM", "TFLongformerForMultipleChoice", "TFLongformerForQuestionAnswering", "TFLongformerForSequenceClassification", "TFLongformerForTokenClassification", "TFLongformerModel", "TFLongformerPreTrainedModel", "TFLongformerSelfAttention", ] if TYPE_CHECKING: from .configuration_longformer import ( LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, LongformerConfig, LongformerOnnxConfig, ) from .tokenization_longformer import LongformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_longformer_fast import LongformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longformer import ( LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, LongformerForMaskedLM, LongformerForMultipleChoice, LongformerForQuestionAnswering, LongformerForSequenceClassification, LongformerForTokenClassification, LongformerModel, LongformerPreTrainedModel, LongformerSelfAttention, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_longformer import ( TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFLongformerForMaskedLM, TFLongformerForMultipleChoice, TFLongformerForQuestionAnswering, TFLongformerForSequenceClassification, TFLongformerForTokenClassification, TFLongformerModel, TFLongformerPreTrainedModel, TFLongformerSelfAttention, ) else: import sys A = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
712
"""simple docstring""" # DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, get_velocity_common, ) @flax.struct.dataclass class a__ : lowercase_ = 42 # setable values lowercase_ = 42 lowercase_ = 42 lowercase_ = None @classmethod def a_ ( cls : List[str] , UpperCamelCase_ : CommonSchedulerState , UpperCamelCase_ : jnp.ndarray , UpperCamelCase_ : jnp.ndarray): """simple docstring""" return cls(common=UpperCamelCase_ , init_noise_sigma=UpperCamelCase_ , timesteps=UpperCamelCase_) @dataclass class a__ ( __magic_name__ ): lowercase_ = 42 class a__ ( __magic_name__ , __magic_name__ ): lowercase_ = [e.name for e in FlaxKarrasDiffusionSchedulers] lowercase_ = 42 @property def a_ ( self : Optional[int]): """simple docstring""" return True @register_to_config def __init__( self : str , UpperCamelCase_ : int = 1000 , UpperCamelCase_ : float = 0.0001 , UpperCamelCase_ : float = 0.02 , UpperCamelCase_ : str = "linear" , UpperCamelCase_ : Optional[jnp.ndarray] = None , UpperCamelCase_ : str = "fixed_small" , UpperCamelCase_ : bool = True , UpperCamelCase_ : str = "epsilon" , UpperCamelCase_ : jnp.dtype = jnp.floataa , ): """simple docstring""" __UpperCAmelCase : Optional[int] = dtype def a_ ( self : Optional[Any] , UpperCamelCase_ : Optional[CommonSchedulerState] = None): """simple docstring""" if common is None: __UpperCAmelCase : Tuple = CommonSchedulerState.create(self) # standard deviation of the initial noise distribution __UpperCAmelCase : Tuple = jnp.array(1.0 , dtype=self.dtype) __UpperCAmelCase : Any = jnp.arange(0 , self.config.num_train_timesteps).round()[::-1] return DDPMSchedulerState.create( common=UpperCamelCase_ , init_noise_sigma=UpperCamelCase_ , timesteps=UpperCamelCase_ , ) def a_ ( self : Optional[Any] , UpperCamelCase_ : DDPMSchedulerState , UpperCamelCase_ : jnp.ndarray , UpperCamelCase_ : Optional[int] = None): """simple docstring""" return sample def a_ ( self : Any , UpperCamelCase_ : DDPMSchedulerState , UpperCamelCase_ : int , UpperCamelCase_ : Tuple = ()): """simple docstring""" __UpperCAmelCase : List[str] = self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # rounding to avoid issues when num_inference_step is power of 3 __UpperCAmelCase : List[str] = (jnp.arange(0 , UpperCamelCase_) * step_ratio).round()[::-1] return state.replace( num_inference_steps=UpperCamelCase_ , timesteps=UpperCamelCase_ , ) def a_ ( self : Any , UpperCamelCase_ : DDPMSchedulerState , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Union[str, Any]=None , UpperCamelCase_ : Optional[int]=None): """simple docstring""" __UpperCAmelCase : List[str] = state.common.alphas_cumprod[t] __UpperCAmelCase : Optional[int] = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype)) # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample __UpperCAmelCase : Tuple = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t] if variance_type is None: __UpperCAmelCase : Optional[Any] = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small": __UpperCAmelCase : str = jnp.clip(UpperCamelCase_ , a_min=1e-20) # for rl-diffuser https://arxiv.org/abs/2205.09991 elif variance_type == "fixed_small_log": __UpperCAmelCase : Optional[int] = jnp.log(jnp.clip(UpperCamelCase_ , a_min=1e-20)) elif variance_type == "fixed_large": __UpperCAmelCase : Tuple = state.common.betas[t] elif variance_type == "fixed_large_log": # Glide max_log __UpperCAmelCase : str = jnp.log(state.common.betas[t]) elif variance_type == "learned": return predicted_variance elif variance_type == "learned_range": __UpperCAmelCase : Any = variance __UpperCAmelCase : Union[str, Any] = state.common.betas[t] __UpperCAmelCase : List[str] = (predicted_variance + 1) / 2 __UpperCAmelCase : int = frac * max_log + (1 - frac) * min_log return variance def a_ ( self : Optional[int] , UpperCamelCase_ : DDPMSchedulerState , UpperCamelCase_ : jnp.ndarray , UpperCamelCase_ : int , UpperCamelCase_ : jnp.ndarray , UpperCamelCase_ : Optional[jax.random.KeyArray] = None , UpperCamelCase_ : bool = True , ): """simple docstring""" __UpperCAmelCase : Dict = timestep if key is None: __UpperCAmelCase : List[str] = jax.random.PRNGKey(0) if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]: __UpperCAmelCase , __UpperCAmelCase : int = jnp.split(UpperCamelCase_ , sample.shape[1] , axis=1) else: __UpperCAmelCase : List[str] = None # 1. compute alphas, betas __UpperCAmelCase : str = state.common.alphas_cumprod[t] __UpperCAmelCase : str = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype)) __UpperCAmelCase : Tuple = 1 - alpha_prod_t __UpperCAmelCase : int = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": __UpperCAmelCase : Any = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": __UpperCAmelCase : Optional[int] = model_output elif self.config.prediction_type == "v_prediction": __UpperCAmelCase : Optional[int] = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output else: raise ValueError( F"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` " " for the FlaxDDPMScheduler.") # 3. Clip "predicted x_0" if self.config.clip_sample: __UpperCAmelCase : List[Any] = jnp.clip(UpperCamelCase_ , -1 , 1) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __UpperCAmelCase : Union[str, Any] = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t __UpperCAmelCase : Union[str, Any] = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __UpperCAmelCase : Optional[Any] = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise def random_variance(): __UpperCAmelCase : int = jax.random.split(UpperCamelCase_ , num=1) __UpperCAmelCase : Any = jax.random.normal(UpperCamelCase_ , shape=model_output.shape , dtype=self.dtype) return (self._get_variance(UpperCamelCase_ , UpperCamelCase_ , predicted_variance=UpperCamelCase_) ** 0.5) * noise __UpperCAmelCase : Tuple = jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype)) __UpperCAmelCase : Tuple = pred_prev_sample + variance if not return_dict: return (pred_prev_sample, state) return FlaxDDPMSchedulerOutput(prev_sample=UpperCamelCase_ , state=UpperCamelCase_) def a_ ( self : Optional[Any] , UpperCamelCase_ : DDPMSchedulerState , UpperCamelCase_ : jnp.ndarray , UpperCamelCase_ : jnp.ndarray , UpperCamelCase_ : jnp.ndarray , ): """simple docstring""" return add_noise_common(state.common , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_) def a_ ( self : Union[str, Any] , UpperCamelCase_ : DDPMSchedulerState , UpperCamelCase_ : jnp.ndarray , UpperCamelCase_ : jnp.ndarray , UpperCamelCase_ : jnp.ndarray , ): """simple docstring""" return get_velocity_common(state.common , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_) def __len__( self : int): """simple docstring""" return self.config.num_train_timesteps
487
0
def UpperCamelCase ( _a ) -> list: '''simple docstring''' if len(_a ) < 2: return collection def circle_sort_util(_a , _a , _a ) -> bool: lowercase_ :List[str] = False if low == high: return swapped lowercase_ :Dict = low lowercase_ :Optional[Any] = high while left < right: if collection[left] > collection[right]: lowercase_ , lowercase_ :List[str] = ( collection[right], collection[left], ) lowercase_ :Union[str, Any] = True left += 1 right -= 1 if left == right and collection[left] > collection[right + 1]: lowercase_ , lowercase_ :Optional[int] = ( collection[right + 1], collection[left], ) lowercase_ :List[str] = True lowercase_ :Tuple = low + int((high - low) / 2 ) lowercase_ :List[str] = circle_sort_util(_a , _a , _a ) lowercase_ :Union[str, Any] = circle_sort_util(_a , mid + 1 , _a ) return swapped or left_swap or right_swap lowercase_ :List[Any] = True while is_not_sorted is True: lowercase_ :Optional[Any] = circle_sort_util(_a , 0 , len(_a ) - 1 ) return collection if __name__ == "__main__": SCREAMING_SNAKE_CASE : Optional[int] = input("Enter numbers separated by a comma:\n").strip() SCREAMING_SNAKE_CASE : Optional[int] = [int(item) for item in user_input.split(",")] print(circle_sort(unsorted))
257
import builtins import sys from ...utils.imports import _is_package_available from . import cursor, input from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor from .keymap import KEYMAP SCREAMING_SNAKE_CASE : Any = False try: SCREAMING_SNAKE_CASE : List[Any] = _is_package_available("google.colab") except ModuleNotFoundError: pass @input.register class UpperCamelCase : '''simple docstring''' def __init__( self , UpperCamelCase_ = None , UpperCamelCase_ = [] ): lowercase_ :str = 0 lowercase_ :str = choices lowercase_ :List[str] = prompt if sys.platform == "win32": lowercase_ :List[Any] = '''*''' else: lowercase_ :str = '''➔ ''' def UpperCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ = "" ): if sys.platform != "win32": writeColor(self.choices[index] , 32 , UpperCamelCase_ ) else: forceWrite(self.choices[index] , UpperCamelCase_ ) def UpperCamelCase ( self , UpperCamelCase_ ): if index == self.position: forceWrite(f" {self.arrow_char} " ) self.write_choice(UpperCamelCase_ ) else: forceWrite(f" {self.choices[index]}" ) reset_cursor() def UpperCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ = 1 ): lowercase_ :Optional[Any] = self.position if direction == Direction.DOWN: if self.position + 1 >= len(self.choices ): return self.position += num_spaces else: if self.position - 1 < 0: return self.position -= num_spaces clear_line() self.print_choice(UpperCamelCase_ ) move_cursor(UpperCamelCase_ , direction.name ) self.print_choice(self.position ) @input.mark(KEYMAP['''up'''] ) def UpperCamelCase ( self ): self.move_direction(Direction.UP ) @input.mark(KEYMAP['''down'''] ) def UpperCamelCase ( self ): self.move_direction(Direction.DOWN ) @input.mark(KEYMAP['''newline'''] ) def UpperCamelCase ( self ): move_cursor(len(self.choices ) - self.position , '''DOWN''' ) return self.position @input.mark(KEYMAP['''interrupt'''] ) def UpperCamelCase ( self ): move_cursor(len(self.choices ) - self.position , '''DOWN''' ) raise KeyboardInterrupt @input.mark_multiple(*[KEYMAP[str(UpperCamelCase_ )] for number in range(10 )] ) def UpperCamelCase ( self ): lowercase_ :int = int(chr(self.current_selection ) ) lowercase_ :Optional[Any] = index - self.position if index == self.position: return if index < len(self.choices ): if self.position > index: self.move_direction(Direction.UP , -movement ) elif self.position < index: self.move_direction(Direction.DOWN , UpperCamelCase_ ) else: return else: return def UpperCamelCase ( self , UpperCamelCase_ = 0 ): if self.prompt: linebreak() forceWrite(self.prompt , '''\n''' ) if in_colab: forceWrite('''Please input a choice index (starting from 0), and press enter''' , '''\n''' ) else: forceWrite('''Please select a choice using the arrow or number keys, and selecting with enter''' , '''\n''' ) lowercase_ :str = default_choice for i in range(len(self.choices ) ): self.print_choice(UpperCamelCase_ ) forceWrite('''\n''' ) move_cursor(len(self.choices ) - self.position , '''UP''' ) with cursor.hide(): while True: if in_colab: try: lowercase_ :Optional[Any] = int(builtins.input() ) except ValueError: lowercase_ :List[Any] = default_choice else: lowercase_ :List[str] = self.handle_input() if choice is not None: reset_cursor() for _ in range(len(self.choices ) + 1 ): move_cursor(1 , '''UP''' ) clear_line() self.write_choice(UpperCamelCase_ , '''\n''' ) return choice
257
1
"""simple docstring""" import os import unittest from transformers import LxmertTokenizer, LxmertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _lowercase ( __UpperCAmelCase , unittest.TestCase ): _lowerCamelCase = LxmertTokenizer _lowerCamelCase = LxmertTokenizerFast _lowerCamelCase = True _lowerCamelCase = True def lowerCAmelCase__ ( self ): super().setUp() __magic_name__ = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] __magic_name__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def lowerCAmelCase__ ( self , UpperCamelCase_ ): __magic_name__ = '''UNwant\u00E9d,running''' __magic_name__ = '''unwanted, running''' return input_text, output_text def lowerCAmelCase__ ( self ): __magic_name__ = self.tokenizer_class(self.vocab_file ) __magic_name__ = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(_UpperCAmelCase , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [7, 4, 5, 10, 8, 9] ) def lowerCAmelCase__ ( self ): if not self.test_rust_tokenizer: return __magic_name__ = self.get_tokenizer() __magic_name__ = self.get_rust_tokenizer() __magic_name__ = '''I was born in 92000, and this is falsé.''' __magic_name__ = tokenizer.tokenize(_UpperCAmelCase ) __magic_name__ = rust_tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) __magic_name__ = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) __magic_name__ = rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) __magic_name__ = self.get_rust_tokenizer() __magic_name__ = tokenizer.encode(_UpperCAmelCase ) __magic_name__ = rust_tokenizer.encode(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase )
714
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __lowerCamelCase = { "configuration_m2m_100": ["M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP", "M2M100Config", "M2M100OnnxConfig"], "tokenization_m2m_100": ["M2M100Tokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ "M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST", "M2M100ForConditionalGeneration", "M2M100Model", "M2M100PreTrainedModel", ] if TYPE_CHECKING: from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig from .tokenization_mam_aaa import MaMaaaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mam_aaa import ( M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST, MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaPreTrainedModel, ) else: import sys __lowerCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
190
0
def SCREAMING_SNAKE_CASE ( __UpperCamelCase : list ) -> list: UpperCAmelCase_ = len(__UpperCamelCase ) for i in range(1 , __UpperCamelCase ): UpperCAmelCase_ = collection[i] UpperCAmelCase_ = 0 UpperCAmelCase_ = i - 1 while low <= high: UpperCAmelCase_ = (low + high) // 2 if val < collection[mid]: UpperCAmelCase_ = mid - 1 else: UpperCAmelCase_ = mid + 1 for j in range(__UpperCamelCase , __UpperCamelCase , -1 ): UpperCAmelCase_ = collection[j - 1] UpperCAmelCase_ = val return collection if __name__ == "__main__": _lowerCamelCase = input('Enter numbers separated by a comma:\n').strip() _lowerCamelCase = [int(item) for item in user_input.split(',')] print(binary_insertion_sort(unsorted))
144
# using dfs for finding eulerian path traversal def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[Any] , __UpperCamelCase : int , __UpperCamelCase : List[str] , __UpperCamelCase : List[str]=None ) -> Optional[Any]: UpperCAmelCase_ = (path or []) + [u] for v in graph[u]: if visited_edge[u][v] is False: UpperCAmelCase_ , UpperCAmelCase_ = True, True UpperCAmelCase_ = dfs(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) return path def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Tuple , __UpperCamelCase : Optional[int] ) -> List[Any]: UpperCAmelCase_ = 0 UpperCAmelCase_ = -1 for i in range(__UpperCamelCase ): if i not in graph.keys(): continue if len(graph[i] ) % 2 == 1: odd_degree_nodes += 1 UpperCAmelCase_ = i if odd_degree_nodes == 0: return 1, odd_node if odd_degree_nodes == 2: return 2, odd_node return 3, odd_node def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Any , __UpperCamelCase : Optional[Any] ) -> str: UpperCAmelCase_ = [[False for _ in range(max_node + 1 )] for _ in range(max_node + 1 )] UpperCAmelCase_ , UpperCAmelCase_ = check_circuit_or_path(__UpperCamelCase , __UpperCamelCase ) if check == 3: print('''graph is not Eulerian''' ) print('''no path''' ) return UpperCAmelCase_ = 1 if check == 2: UpperCAmelCase_ = odd_node print('''graph has a Euler path''' ) if check == 1: print('''graph has a Euler cycle''' ) UpperCAmelCase_ = dfs(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) print(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( ) -> Tuple: UpperCAmelCase_ = {1: [2, 3, 4], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [4]} UpperCAmelCase_ = {1: [2, 3, 4, 5], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [1, 4]} UpperCAmelCase_ = {1: [2, 3, 4], 2: [1, 3, 4], 3: [1, 2], 4: [1, 2, 5], 5: [4]} UpperCAmelCase_ = {1: [2, 3], 2: [1, 3], 3: [1, 2]} UpperCAmelCase_ = { 1: [], 2: [] # all degree is zero } UpperCAmelCase_ = 10 check_euler(__UpperCamelCase , __UpperCamelCase ) check_euler(__UpperCamelCase , __UpperCamelCase ) check_euler(__UpperCamelCase , __UpperCamelCase ) check_euler(__UpperCamelCase , __UpperCamelCase ) check_euler(__UpperCamelCase , __UpperCamelCase ) if __name__ == "__main__": main()
144
1
'''simple docstring''' from __future__ import annotations def __snake_case ( _UpperCAmelCase : int): UpperCamelCase = 2 UpperCamelCase = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(_UpperCAmelCase) if n > 1: factors.append(_UpperCAmelCase) return factors if __name__ == "__main__": import doctest doctest.testmod()
350
'''simple docstring''' from __future__ import annotations def __snake_case ( _UpperCAmelCase : list[int]): UpperCamelCase = len(_UpperCAmelCase) // 2 # choose the middle 3 elements UpperCamelCase = lst[m - 1 : m + 2] # if middle element is peak if three[1] > three[0] and three[1] > three[2]: return three[1] # if increasing, recurse on right elif three[0] < three[2]: if len(lst[:m]) == 2: m -= 1 return peak(lst[m:]) # decreasing else: if len(lst[:m]) == 2: m += 1 return peak(lst[:m]) if __name__ == "__main__": import doctest doctest.testmod()
350
1
import requests def _UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) ->None: UpperCAmelCase = {"""Content-Type""": """application/json"""} UpperCAmelCase = requests.post(lowerCAmelCase_ , json={"""text""": message_body} , headers=lowerCAmelCase_ ) if response.status_code != 2_0_0: UpperCAmelCase = ( """Request to slack returned an error """ F"""{response.status_code}, the response is:\n{response.text}""" ) raise ValueError(lowerCAmelCase_ ) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message("""<YOUR MESSAGE BODY>""", """<SLACK CHANNEL URL>""")
377
import math import time from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class __lowercase ( __snake_case ): def __init__( self : Dict , *__lowerCamelCase : Dict , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : str=None , **__lowerCamelCase : Optional[int] ) -> Optional[int]: """simple docstring""" super().__init__(*__lowerCamelCase , **__lowerCamelCase ) UpperCAmelCase = eval_examples UpperCAmelCase = post_process_function def _lowercase ( self : Any , __lowerCamelCase : int=None , __lowerCamelCase : int=None , __lowerCamelCase : Tuple=None , __lowerCamelCase : str = "eval" ) -> List[str]: """simple docstring""" UpperCAmelCase = self.eval_dataset if eval_dataset is None else eval_dataset UpperCAmelCase = self.get_eval_dataloader(__lowerCamelCase ) UpperCAmelCase = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. UpperCAmelCase = self.compute_metrics UpperCAmelCase = None UpperCAmelCase = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop UpperCAmelCase = time.time() try: UpperCAmelCase = eval_loop( __lowerCamelCase , description="""Evaluation""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__lowerCamelCase , metric_key_prefix=__lowerCamelCase , ) finally: UpperCAmelCase = compute_metrics UpperCAmelCase = self.args.eval_batch_size * self.args.world_size if F"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[F"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( __lowerCamelCase , __lowerCamelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default UpperCAmelCase = self.post_process_function(__lowerCamelCase , __lowerCamelCase , output.predictions ) UpperCAmelCase = self.compute_metrics(__lowerCamelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"""{metric_key_prefix}_""" ): UpperCAmelCase = metrics.pop(__lowerCamelCase ) metrics.update(output.metrics ) else: UpperCAmelCase = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(__lowerCamelCase ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) UpperCAmelCase = self.callback_handler.on_evaluate(self.args , self.state , self.control , __lowerCamelCase ) return metrics def _lowercase ( self : Optional[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Any , __lowerCamelCase : Dict=None , __lowerCamelCase : str = "test" ) -> Dict: """simple docstring""" UpperCAmelCase = self.get_test_dataloader(__lowerCamelCase ) # Temporarily disable metric computation, we will do it in the loop here. UpperCAmelCase = self.compute_metrics UpperCAmelCase = None UpperCAmelCase = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop UpperCAmelCase = time.time() try: UpperCAmelCase = eval_loop( __lowerCamelCase , description="""Prediction""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__lowerCamelCase , metric_key_prefix=__lowerCamelCase , ) finally: UpperCAmelCase = compute_metrics UpperCAmelCase = self.args.eval_batch_size * self.args.world_size if F"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[F"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( __lowerCamelCase , __lowerCamelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output UpperCAmelCase = self.post_process_function(__lowerCamelCase , __lowerCamelCase , output.predictions , """predict""" ) UpperCAmelCase = self.compute_metrics(__lowerCamelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"""{metric_key_prefix}_""" ): UpperCAmelCase = metrics.pop(__lowerCamelCase ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=__lowerCamelCase )
377
1
'''simple docstring''' import argparse import hashlib # hashlib is only used inside the Test class import struct class lowerCAmelCase_ : def __init__( self , _lowerCAmelCase ) -> Any: _lowerCAmelCase = data _lowerCAmelCase = [0X67_45_23_01, 0XEF_CD_AB_89, 0X98_BA_DC_FE, 0X10_32_54_76, 0XC3_D2_E1_F0] @staticmethod def _snake_case ( _lowerCAmelCase , _lowerCAmelCase ) -> Tuple: return ((n << b) | (n >> (32 - b))) & 0XFF_FF_FF_FF def _snake_case ( self ) -> Dict: _lowerCAmelCase = B"\x80" + B"\x00" * (63 - (len(self.data ) + 8) % 64) _lowerCAmelCase = self.data + padding + struct.pack(">Q" , 8 * len(self.data ) ) return padded_data def _snake_case ( self ) -> List[Any]: return [ self.padded_data[i : i + 64] for i in range(0 , len(self.padded_data ) , 64 ) ] def _snake_case ( self , _lowerCAmelCase ) -> List[Any]: _lowerCAmelCase = list(struct.unpack(">16L" , _lowerCAmelCase ) ) + [0] * 64 for i in range(16 , 80 ): _lowerCAmelCase = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]) , 1 ) return w def _snake_case ( self ) -> List[Any]: _lowerCAmelCase = self.padding() _lowerCAmelCase = self.split_blocks() for block in self.blocks: _lowerCAmelCase = self.expand_block(_lowerCAmelCase ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = self.h for i in range(0 , 80 ): if 0 <= i < 20: _lowerCAmelCase = (b & c) | ((~b) & d) _lowerCAmelCase = 0X5A_82_79_99 elif 20 <= i < 40: _lowerCAmelCase = b ^ c ^ d _lowerCAmelCase = 0X6E_D9_EB_A1 elif 40 <= i < 60: _lowerCAmelCase = (b & c) | (b & d) | (c & d) _lowerCAmelCase = 0X8F_1B_BC_DC elif 60 <= i < 80: _lowerCAmelCase = b ^ c ^ d _lowerCAmelCase = 0XCA_62_C1_D6 _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = ( self.rotate(_lowerCAmelCase , 5 ) + f + e + k + expanded_block[i] & 0XFF_FF_FF_FF, a, self.rotate(_lowerCAmelCase , 30 ), c, d, ) _lowerCAmelCase = ( self.h[0] + a & 0XFF_FF_FF_FF, self.h[1] + b & 0XFF_FF_FF_FF, self.h[2] + c & 0XFF_FF_FF_FF, self.h[3] + d & 0XFF_FF_FF_FF, self.h[4] + e & 0XFF_FF_FF_FF, ) return ("{:08x}" * 5).format(*self.h ) def __a(): '''simple docstring''' _lowerCAmelCase = B"Test String" assert SHAaHash(SCREAMING_SNAKE_CASE_ ).final_hash() == hashlib.shaa(SCREAMING_SNAKE_CASE_ ).hexdigest() # noqa: S324 def __a(): '''simple docstring''' _lowerCAmelCase = argparse.ArgumentParser(description="Process some strings or files" ) parser.add_argument( "--string" , dest="input_string" , default="Hello World!! Welcome to Cryptography" , help="Hash the string" , ) parser.add_argument("--file" , dest="input_file" , help="Hash contents of a file" ) _lowerCAmelCase = parser.parse_args() _lowerCAmelCase = args.input_string # In any case hash input should be a bytestring if args.input_file: with open(args.input_file , "rb" ) as f: _lowerCAmelCase = f.read() else: _lowerCAmelCase = bytes(SCREAMING_SNAKE_CASE_ , "utf-8" ) print(SHAaHash(SCREAMING_SNAKE_CASE_ ).final_hash() ) if __name__ == "__main__": main() import doctest doctest.testmod()
489
'''simple docstring''' _SCREAMING_SNAKE_CASE = range(2, 20 + 1) _SCREAMING_SNAKE_CASE = [10**k for k in range(ks[-1] + 1)] _SCREAMING_SNAKE_CASE = {} def __a(SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : List[str] ): '''simple docstring''' _lowerCAmelCase = sum(a_i[j] for j in range(SCREAMING_SNAKE_CASE_ , len(SCREAMING_SNAKE_CASE_ ) ) ) _lowerCAmelCase = sum(a_i[j] * base[j] for j in range(min(len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) ) ) _lowerCAmelCase , _lowerCAmelCase = 0, 0 _lowerCAmelCase = n - i _lowerCAmelCase = memo.get(SCREAMING_SNAKE_CASE_ ) if sub_memo is not None: _lowerCAmelCase = sub_memo.get(SCREAMING_SNAKE_CASE_ ) if jumps is not None and len(SCREAMING_SNAKE_CASE_ ) > 0: # find and make the largest jump without going over _lowerCAmelCase = -1 for _k in range(len(SCREAMING_SNAKE_CASE_ ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: _lowerCAmelCase = _k break if max_jump >= 0: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = jumps[max_jump] # since the difference between jumps is cached, add c _lowerCAmelCase = diff + c for j in range(min(SCREAMING_SNAKE_CASE_ , len(SCREAMING_SNAKE_CASE_ ) ) ): _lowerCAmelCase , _lowerCAmelCase = divmod(SCREAMING_SNAKE_CASE_ , 10 ) if new_c > 0: add(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else: _lowerCAmelCase = [] else: _lowerCAmelCase = {c: []} _lowerCAmelCase = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps _lowerCAmelCase , _lowerCAmelCase = next_term(SCREAMING_SNAKE_CASE_ , k - 1 , i + dn , SCREAMING_SNAKE_CASE_ ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead _lowerCAmelCase , _lowerCAmelCase = compute(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , i + dn , SCREAMING_SNAKE_CASE_ ) diff += _diff dn += terms_jumped _lowerCAmelCase = sub_memo[c] # keep jumps sorted by # of terms skipped _lowerCAmelCase = 0 while j < len(SCREAMING_SNAKE_CASE_ ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(SCREAMING_SNAKE_CASE_ , (diff, dn, k) ) return (diff, dn) def __a(SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Union[str, Any] ): '''simple docstring''' if i >= n: return 0, i if k > len(SCREAMING_SNAKE_CASE_ ): a_i.extend([0 for _ in range(k - len(SCREAMING_SNAKE_CASE_ ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) _lowerCAmelCase = i _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = 0, 0, 0 for j in range(len(SCREAMING_SNAKE_CASE_ ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 _lowerCAmelCase = ds_c + ds_b diff += addend _lowerCAmelCase = 0 for j in range(SCREAMING_SNAKE_CASE_ ): _lowerCAmelCase = a_i[j] + addend _lowerCAmelCase , _lowerCAmelCase = divmod(SCREAMING_SNAKE_CASE_ , 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return diff, i - start_i def __a(SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Any ): '''simple docstring''' for j in range(SCREAMING_SNAKE_CASE_ , len(SCREAMING_SNAKE_CASE_ ) ): _lowerCAmelCase = digits[j] + addend if s >= 10: _lowerCAmelCase , _lowerCAmelCase = divmod(SCREAMING_SNAKE_CASE_ , 10 ) _lowerCAmelCase = addend // 10 + quotient else: _lowerCAmelCase = s _lowerCAmelCase = addend // 10 if addend == 0: break while addend > 0: _lowerCAmelCase , _lowerCAmelCase = divmod(SCREAMING_SNAKE_CASE_ , 10 ) digits.append(SCREAMING_SNAKE_CASE_ ) def __a(SCREAMING_SNAKE_CASE_ : int = 10**15 ): '''simple docstring''' _lowerCAmelCase = [1] _lowerCAmelCase = 1 _lowerCAmelCase = 0 while True: _lowerCAmelCase , _lowerCAmelCase = next_term(SCREAMING_SNAKE_CASE_ , 20 , i + dn , SCREAMING_SNAKE_CASE_ ) dn += terms_jumped if dn == n - i: break _lowerCAmelCase = 0 for j in range(len(SCREAMING_SNAKE_CASE_ ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(f'''{solution() = }''')
489
1
"""simple docstring""" from ..utils import DummyObject, requires_backends class lowerCamelCase__ ( metaclass=A ): """simple docstring""" __a = ["""sentencepiece"""] def __init__( self : List[Any] , *UpperCamelCase : Union[str, Any] , **UpperCamelCase : int ): '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class lowerCamelCase__ ( metaclass=A ): """simple docstring""" __a = ["""sentencepiece"""] def __init__( self : str , *UpperCamelCase : List[Any] , **UpperCamelCase : List[Any] ): '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class lowerCamelCase__ ( metaclass=A ): """simple docstring""" __a = ["""sentencepiece"""] def __init__( self : Optional[int] , *UpperCamelCase : Any , **UpperCamelCase : List[Any] ): '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class lowerCamelCase__ ( metaclass=A ): """simple docstring""" __a = ["""sentencepiece"""] def __init__( self : int , *UpperCamelCase : List[Any] , **UpperCamelCase : List[str] ): '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class lowerCamelCase__ ( metaclass=A ): """simple docstring""" __a = ["""sentencepiece"""] def __init__( self : List[Any] , *UpperCamelCase : Union[str, Any] , **UpperCamelCase : List[Any] ): '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class lowerCamelCase__ ( metaclass=A ): """simple docstring""" __a = ["""sentencepiece"""] def __init__( self : List[Any] , *UpperCamelCase : Any , **UpperCamelCase : Any ): '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class lowerCamelCase__ ( metaclass=A ): """simple docstring""" __a = ["""sentencepiece"""] def __init__( self : Union[str, Any] , *UpperCamelCase : Union[str, Any] , **UpperCamelCase : Optional[int] ): '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class lowerCamelCase__ ( metaclass=A ): """simple docstring""" __a = ["""sentencepiece"""] def __init__( self : List[str] , *UpperCamelCase : Dict , **UpperCamelCase : List[str] ): '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class lowerCamelCase__ ( metaclass=A ): """simple docstring""" __a = ["""sentencepiece"""] def __init__( self : List[Any] , *UpperCamelCase : Optional[Any] , **UpperCamelCase : Optional[Any] ): '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class lowerCamelCase__ ( metaclass=A ): """simple docstring""" __a = ["""sentencepiece"""] def __init__( self : Optional[int] , *UpperCamelCase : Dict , **UpperCamelCase : Tuple ): '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class lowerCamelCase__ ( metaclass=A ): """simple docstring""" __a = ["""sentencepiece"""] def __init__( self : Any , *UpperCamelCase : Optional[int] , **UpperCamelCase : Optional[Any] ): '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class lowerCamelCase__ ( metaclass=A ): """simple docstring""" __a = ["""sentencepiece"""] def __init__( self : List[Any] , *UpperCamelCase : List[Any] , **UpperCamelCase : List[str] ): '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class lowerCamelCase__ ( metaclass=A ): """simple docstring""" __a = ["""sentencepiece"""] def __init__( self : str , *UpperCamelCase : Optional[Any] , **UpperCamelCase : Dict ): '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class lowerCamelCase__ ( metaclass=A ): """simple docstring""" __a = ["""sentencepiece"""] def __init__( self : Dict , *UpperCamelCase : int , **UpperCamelCase : Tuple ): '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class lowerCamelCase__ ( metaclass=A ): """simple docstring""" __a = ["""sentencepiece"""] def __init__( self : Dict , *UpperCamelCase : int , **UpperCamelCase : str ): '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class lowerCamelCase__ ( metaclass=A ): """simple docstring""" __a = ["""sentencepiece"""] def __init__( self : str , *UpperCamelCase : int , **UpperCamelCase : str ): '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class lowerCamelCase__ ( metaclass=A ): """simple docstring""" __a = ["""sentencepiece"""] def __init__( self : List[Any] , *UpperCamelCase : Tuple , **UpperCamelCase : str ): '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class lowerCamelCase__ ( metaclass=A ): """simple docstring""" __a = ["""sentencepiece"""] def __init__( self : Optional[Any] , *UpperCamelCase : Tuple , **UpperCamelCase : Union[str, Any] ): '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class lowerCamelCase__ ( metaclass=A ): """simple docstring""" __a = ["""sentencepiece"""] def __init__( self : List[Any] , *UpperCamelCase : List[str] , **UpperCamelCase : Optional[Any] ): '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class lowerCamelCase__ ( metaclass=A ): """simple docstring""" __a = ["""sentencepiece"""] def __init__( self : Tuple , *UpperCamelCase : Optional[int] , **UpperCamelCase : Optional[int] ): '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class lowerCamelCase__ ( metaclass=A ): """simple docstring""" __a = ["""sentencepiece"""] def __init__( self : Union[str, Any] , *UpperCamelCase : int , **UpperCamelCase : Any ): '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class lowerCamelCase__ ( metaclass=A ): """simple docstring""" __a = ["""sentencepiece"""] def __init__( self : Dict , *UpperCamelCase : Dict , **UpperCamelCase : List[str] ): '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class lowerCamelCase__ ( metaclass=A ): """simple docstring""" __a = ["""sentencepiece"""] def __init__( self : List[str] , *UpperCamelCase : Union[str, Any] , **UpperCamelCase : Union[str, Any] ): '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class lowerCamelCase__ ( metaclass=A ): """simple docstring""" __a = ["""sentencepiece"""] def __init__( self : int , *UpperCamelCase : List[str] , **UpperCamelCase : Dict ): '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class lowerCamelCase__ ( metaclass=A ): """simple docstring""" __a = ["""sentencepiece"""] def __init__( self : List[Any] , *UpperCamelCase : List[Any] , **UpperCamelCase : Tuple ): '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class lowerCamelCase__ ( metaclass=A ): """simple docstring""" __a = ["""sentencepiece"""] def __init__( self : Tuple , *UpperCamelCase : Tuple , **UpperCamelCase : Any ): '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class lowerCamelCase__ ( metaclass=A ): """simple docstring""" __a = ["""sentencepiece"""] def __init__( self : Optional[int] , *UpperCamelCase : Optional[int] , **UpperCamelCase : Union[str, Any] ): '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class lowerCamelCase__ ( metaclass=A ): """simple docstring""" __a = ["""sentencepiece"""] def __init__( self : List[Any] , *UpperCamelCase : Any , **UpperCamelCase : List[str] ): '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class lowerCamelCase__ ( metaclass=A ): """simple docstring""" __a = ["""sentencepiece"""] def __init__( self : int , *UpperCamelCase : Any , **UpperCamelCase : Any ): '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class lowerCamelCase__ ( metaclass=A ): """simple docstring""" __a = ["""sentencepiece"""] def __init__( self : str , *UpperCamelCase : Dict , **UpperCamelCase : Any ): '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class lowerCamelCase__ ( metaclass=A ): """simple docstring""" __a = ["""sentencepiece"""] def __init__( self : Any , *UpperCamelCase : List[str] , **UpperCamelCase : List[str] ): '''simple docstring''' requires_backends(self , ["""sentencepiece"""] )
139
"""simple docstring""" from transformers import BertTokenizerFast from .custom_tokenization import CustomTokenizer class lowerCamelCase__ ( A ): """simple docstring""" __a = CustomTokenizer pass
139
1
'''simple docstring''' import math import time from typing import Dict, List, Optional from torch.utils.data import Dataset from transformers import SeqaSeqTrainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class A ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' def __init__(self , *_UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase=None , **_UpperCAmelCase ) -> str: super().__init__(*_UpperCAmelCase , **_UpperCAmelCase ) __UpperCamelCase : Optional[int] = eval_examples __UpperCamelCase : int = post_process_function def a_ (self , _UpperCAmelCase = None , _UpperCAmelCase=None , _UpperCAmelCase = None , _UpperCAmelCase = "eval" , **_UpperCAmelCase , ) -> Dict[str, float]: __UpperCamelCase : Dict = gen_kwargs.copy() __UpperCamelCase : List[Any] = ( gen_kwargs["max_length"] if gen_kwargs.get("max_length" ) is not None else self.args.generation_max_length ) __UpperCamelCase : Tuple = ( gen_kwargs["num_beams"] if gen_kwargs.get("num_beams" ) is not None else self.args.generation_num_beams ) __UpperCamelCase : Any = gen_kwargs __UpperCamelCase : List[str] = self.eval_dataset if eval_dataset is None else eval_dataset __UpperCamelCase : int = self.get_eval_dataloader(_UpperCAmelCase ) __UpperCamelCase : int = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. __UpperCamelCase : Tuple = self.compute_metrics __UpperCamelCase : Optional[int] = None __UpperCamelCase : str = time.time() __UpperCamelCase : Any = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: __UpperCamelCase : Optional[Any] = eval_loop( _UpperCAmelCase , description="Evaluation" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_UpperCAmelCase , metric_key_prefix=_UpperCAmelCase , ) finally: __UpperCamelCase : int = compute_metrics __UpperCamelCase : Optional[Any] = self.args.eval_batch_size * self.args.world_size if f"{metric_key_prefix}_jit_compilation_time" in output.metrics: start_time += output.metrics[f"{metric_key_prefix}_jit_compilation_time"] output.metrics.update( speed_metrics( _UpperCAmelCase , _UpperCAmelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default __UpperCamelCase : int = self.post_process_function(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __UpperCamelCase : str = self.compute_metrics(_UpperCAmelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f"{metric_key_prefix}_" ): __UpperCamelCase : Dict = metrics.pop(_UpperCAmelCase ) metrics.update(output.metrics ) else: __UpperCamelCase : List[str] = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(_UpperCAmelCase ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) __UpperCamelCase : Tuple = self.callback_handler.on_evaluate(self.args , self.state , self.control , _UpperCAmelCase ) return metrics def a_ (self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase = "test" , **_UpperCAmelCase ) -> List[str]: __UpperCamelCase : Tuple = gen_kwargs.copy() __UpperCamelCase : List[str] = self.get_test_dataloader(_UpperCAmelCase ) # Temporarily disable metric computation, we will do it in the loop here. __UpperCamelCase : Optional[Any] = self.compute_metrics __UpperCamelCase : Tuple = None __UpperCamelCase : Any = time.time() __UpperCamelCase : Dict = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: __UpperCamelCase : Dict = eval_loop( _UpperCAmelCase , description="Prediction" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_UpperCAmelCase , metric_key_prefix=_UpperCAmelCase , ) finally: __UpperCamelCase : Optional[int] = compute_metrics __UpperCamelCase : Union[str, Any] = self.args.eval_batch_size * self.args.world_size if f"{metric_key_prefix}_jit_compilation_time" in output.metrics: start_time += output.metrics[f"{metric_key_prefix}_jit_compilation_time"] output.metrics.update( speed_metrics( _UpperCAmelCase , _UpperCAmelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output __UpperCamelCase : Tuple = self.post_process_function(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , "predict" ) __UpperCamelCase : Union[str, Any] = self.compute_metrics(_UpperCAmelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f"{metric_key_prefix}_" ): __UpperCamelCase : Optional[int] = metrics.pop(_UpperCAmelCase ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=_UpperCAmelCase )
720
'''simple docstring''' # Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _lowerCAmelCase = { '''configuration_cpmant''': ['''CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CpmAntConfig'''], '''tokenization_cpmant''': ['''CpmAntTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = [ '''CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CpmAntForCausalLM''', '''CpmAntModel''', '''CpmAntPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig from .tokenization_cpmant import CpmAntTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_cpmant import ( CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST, CpmAntForCausalLM, CpmAntModel, CpmAntPreTrainedModel, ) else: import sys _lowerCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
399
0
"""simple docstring""" import argparse import re from pathlib import Path import requests import torch from PIL import Image from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor from transformers import ( EfficientFormerConfig, EfficientFormerForImageClassificationWithTeacher, EfficientFormerImageProcessor, ) from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def snake_case ( A__ ,A__ ): UpperCAmelCase_ : Union[str, Any] = old_name if "patch_embed" in old_name: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : str = old_name.split("." ) if layer == "0": UpperCAmelCase_ : List[Any] = old_name.replace("0" ,"convolution1" ) elif layer == "1": UpperCAmelCase_ : List[str] = old_name.replace("1" ,"batchnorm_before" ) elif layer == "3": UpperCAmelCase_ : Union[str, Any] = old_name.replace("3" ,"convolution2" ) else: UpperCAmelCase_ : Union[str, Any] = old_name.replace("4" ,"batchnorm_after" ) if "network" in old_name and re.search(r"\d\.\d" ,A__ ): UpperCAmelCase_ : int = r"\b\d{2}\b" if bool(re.search(A__ ,A__ ) ): UpperCAmelCase_ : List[Any] = re.search(r"\d\.\d\d." ,A__ ).group() else: UpperCAmelCase_ : Tuple = re.search(r"\d\.\d." ,A__ ).group() if int(match[0] ) < 6: UpperCAmelCase_ : List[Any] = old_name.replace(A__ ,"" ) UpperCAmelCase_ : str = trimmed_name.replace("network" ,match[0] + ".meta4D_layers.blocks." + match[2:-1] ) UpperCAmelCase_ : List[Any] = "intermediate_stages." + trimmed_name else: UpperCAmelCase_ : Dict = old_name.replace(A__ ,"" ) if int(match[2] ) < num_meta4D_last_stage: UpperCAmelCase_ : List[Any] = trimmed_name.replace("network" ,"meta4D_layers.blocks." + match[2] ) else: UpperCAmelCase_ : Dict = str(int(match[2] ) - num_meta4D_last_stage ) UpperCAmelCase_ : List[Any] = trimmed_name.replace("network" ,"meta3D_layers.blocks." + layer_index ) if "norm1" in old_name: UpperCAmelCase_ : Tuple = trimmed_name.replace("norm1" ,"layernorm1" ) elif "norm2" in old_name: UpperCAmelCase_ : Dict = trimmed_name.replace("norm2" ,"layernorm2" ) elif "fc1" in old_name: UpperCAmelCase_ : Tuple = trimmed_name.replace("fc1" ,"linear_in" ) elif "fc2" in old_name: UpperCAmelCase_ : str = trimmed_name.replace("fc2" ,"linear_out" ) UpperCAmelCase_ : str = "last_stage." + trimmed_name elif "network" in old_name and re.search(r".\d." ,A__ ): UpperCAmelCase_ : Any = old_name.replace("network" ,"intermediate_stages" ) if "fc" in new_name: UpperCAmelCase_ : Dict = new_name.replace("fc" ,"convolution" ) elif ("norm1" in new_name) and ("layernorm1" not in new_name): UpperCAmelCase_ : Optional[Any] = new_name.replace("norm1" ,"batchnorm_before" ) elif ("norm2" in new_name) and ("layernorm2" not in new_name): UpperCAmelCase_ : List[str] = new_name.replace("norm2" ,"batchnorm_after" ) if "proj" in new_name: UpperCAmelCase_ : Dict = new_name.replace("proj" ,"projection" ) if "dist_head" in new_name: UpperCAmelCase_ : Tuple = new_name.replace("dist_head" ,"distillation_classifier" ) elif "head" in new_name: UpperCAmelCase_ : Any = new_name.replace("head" ,"classifier" ) elif "patch_embed" in new_name: UpperCAmelCase_ : int = "efficientformer." + new_name elif new_name == "norm.weight" or new_name == "norm.bias": UpperCAmelCase_ : Tuple = new_name.replace("norm" ,"layernorm" ) UpperCAmelCase_ : Optional[int] = "efficientformer." + new_name else: UpperCAmelCase_ : Any = "efficientformer.encoder." + new_name return new_name def snake_case ( A__ ,A__ ): for key in checkpoint.copy().keys(): UpperCAmelCase_ : int = checkpoint.pop(A__ ) UpperCAmelCase_ : Tuple = val return checkpoint def snake_case ( ): UpperCAmelCase_ : str = "http://images.cocodataset.org/val2017/000000039769.jpg" UpperCAmelCase_ : int = Image.open(requests.get(A__ ,stream=A__ ).raw ) return image def snake_case ( A__ ,A__ ,A__ ,A__ ): UpperCAmelCase_ : List[Any] = torch.load(A__ ,map_location="cpu" )["model"] UpperCAmelCase_ : Any = EfficientFormerConfig.from_json_file(A__ ) UpperCAmelCase_ : Optional[Any] = EfficientFormerForImageClassificationWithTeacher(A__ ) UpperCAmelCase_ : Optional[int] = "_".join(checkpoint_path.split("/" )[-1].split("." )[0].split("_" )[:-1] ) UpperCAmelCase_ : Optional[Any] = config.depths[-1] - config.num_metaad_blocks + 1 UpperCAmelCase_ : List[str] = convert_torch_checkpoint(A__ ,A__ ) model.load_state_dict(A__ ) model.eval() UpperCAmelCase_ : Any = { "bilinear": PILImageResampling.BILINEAR, "bicubic": PILImageResampling.BICUBIC, "nearest": PILImageResampling.NEAREST, } # prepare image UpperCAmelCase_ : Tuple = prepare_img() UpperCAmelCase_ : Tuple = 2_56 UpperCAmelCase_ : Any = 2_24 UpperCAmelCase_ : str = EfficientFormerImageProcessor( size={"shortest_edge": image_size} ,crop_size={"height": crop_size, "width": crop_size} ,resample=pillow_resamplings["bicubic"] ,) UpperCAmelCase_ : List[str] = processor(images=A__ ,return_tensors="pt" ).pixel_values # original processing pipeline UpperCAmelCase_ : List[Any] = Compose( [ Resize(A__ ,interpolation=pillow_resamplings["bicubic"] ), CenterCrop(A__ ), ToTensor(), Normalize(A__ ,A__ ), ] ) UpperCAmelCase_ : str = image_transforms(A__ ).unsqueeze(0 ) assert torch.allclose(A__ ,A__ ) UpperCAmelCase_ : Optional[Any] = model(A__ ) UpperCAmelCase_ : int = outputs.logits UpperCAmelCase_ : Tuple = (1, 10_00) if "l1" in model_name: UpperCAmelCase_ : Dict = torch.Tensor( [-0.1312, 0.4353, -1.0499, -0.5124, 0.4183, -0.6793, -1.3777, -0.0893, -0.7358, -2.4328] ) assert torch.allclose(logits[0, :10] ,A__ ,atol=1e-3 ) assert logits.shape == expected_shape elif "l3" in model_name: UpperCAmelCase_ : Optional[Any] = torch.Tensor( [-1.3150, -1.5456, -1.2556, -0.8496, -0.7127, -0.7897, -0.9728, -0.3052, 0.3751, -0.3127] ) assert torch.allclose(logits[0, :10] ,A__ ,atol=1e-3 ) assert logits.shape == expected_shape elif "l7" in model_name: UpperCAmelCase_ : int = torch.Tensor( [-1.0283, -1.4131, -0.5644, -1.3115, -0.5785, -1.2049, -0.7528, 0.1992, -0.3822, -0.0878] ) assert logits.shape == expected_shape else: raise ValueError( F"""Unknown model checkpoint: {checkpoint_path}. Supported version of efficientformer are l1, l3 and l7""" ) # Save Checkpoints Path(A__ ).mkdir(exist_ok=A__ ) model.save_pretrained(A__ ) print(F"""Checkpoint successfuly converted. Model saved at {pytorch_dump_path}""" ) processor.save_pretrained(A__ ) print(F"""Processor successfuly saved at {pytorch_dump_path}""" ) if push_to_hub: print("Pushing model to the hub..." ) model.push_to_hub( repo_id=F"""Bearnardd/{pytorch_dump_path}""" ,commit_message="Add model" ,use_temp_dir=A__ ,) processor.push_to_hub( repo_id=F"""Bearnardd/{pytorch_dump_path}""" ,commit_message="Add image processor" ,use_temp_dir=A__ ,) if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--pytorch_model_path''', default=None, type=str, required=True, help='''Path to EfficientFormer pytorch checkpoint.''', ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The json file for EfficientFormer model config.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Push model and image processor to the hub''') parser.add_argument( '''--no-push_to_hub''', dest='''push_to_hub''', action='''store_false''', help='''Do not push model and image processor to the hub''', ) parser.set_defaults(push_to_hub=True) lowerCamelCase_ = parser.parse_args() convert_efficientformer_checkpoint( checkpoint_path=args.pytorch_model_path, efficientformer_config_file=args.config_file, pytorch_dump_path=args.pytorch_dump_path, push_to_hub=args.push_to_hub, )
95
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaPriorEmbaEmbPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class UpperCAmelCase ( a__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE = KandinskyVaaControlnetImgaImgPipeline SCREAMING_SNAKE_CASE = ["image_embeds", "negative_image_embeds", "image", "hint"] SCREAMING_SNAKE_CASE = ["image_embeds", "negative_image_embeds", "image", "hint"] SCREAMING_SNAKE_CASE = [ "generator", "height", "width", "strength", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] SCREAMING_SNAKE_CASE = False @property def _lowerCAmelCase( self ) -> Optional[int]: return 32 @property def _lowerCAmelCase( self ) -> Optional[Any]: return 32 @property def _lowerCAmelCase( self ) -> List[Any]: return self.time_input_dim @property def _lowerCAmelCase( self ) -> int: return self.time_input_dim * 4 @property def _lowerCAmelCase( self ) -> List[str]: return 100 @property def _lowerCAmelCase( self ) -> List[str]: torch.manual_seed(0 ) lowercase__ : str = { '''in_channels''': 8, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''image_hint''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } lowercase__ : Optional[int] = UNetaDConditionModel(**__lowerCAmelCase ) return model @property def _lowerCAmelCase( self ) -> str: return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def _lowerCAmelCase( self ) -> Any: torch.manual_seed(0 ) lowercase__ : str = VQModel(**self.dummy_movq_kwargs ) return model def _lowerCAmelCase( self ) -> Any: lowercase__ : List[Any] = self.dummy_unet lowercase__ : Optional[int] = self.dummy_movq lowercase__ : List[str] = { '''num_train_timesteps''': 1000, '''beta_schedule''': '''linear''', '''beta_start''': 0.0_0_0_8_5, '''beta_end''': 0.0_1_2, '''clip_sample''': False, '''set_alpha_to_one''': False, '''steps_offset''': 0, '''prediction_type''': '''epsilon''', '''thresholding''': False, } lowercase__ : Union[str, Any] = DDIMScheduler(**__lowerCAmelCase ) lowercase__ : List[Any] = { '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase=0 ) -> Dict: lowercase__ : List[str] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(__lowerCAmelCase ) ).to(__lowerCAmelCase ) lowercase__ : str = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( __lowerCAmelCase ) # create init_image lowercase__ : List[str] = floats_tensor((1, 3, 64, 64) , rng=random.Random(__lowerCAmelCase ) ).to(__lowerCAmelCase ) lowercase__ : Any = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase__ : int = Image.fromarray(np.uinta(__lowerCAmelCase ) ).convert('''RGB''' ).resize((256, 256) ) # create hint lowercase__ : Any = floats_tensor((1, 3, 64, 64) , rng=random.Random(__lowerCAmelCase ) ).to(__lowerCAmelCase ) if str(__lowerCAmelCase ).startswith('''mps''' ): lowercase__ : Dict = torch.manual_seed(__lowerCAmelCase ) else: lowercase__ : Dict = torch.Generator(device=__lowerCAmelCase ).manual_seed(__lowerCAmelCase ) lowercase__ : Dict = { '''image''': init_image, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''hint''': hint, '''generator''': generator, '''height''': 64, '''width''': 64, '''num_inference_steps''': 10, '''guidance_scale''': 7.0, '''strength''': 0.2, '''output_type''': '''np''', } return inputs def _lowerCAmelCase( self ) -> List[str]: lowercase__ : Optional[int] = '''cpu''' lowercase__ : Dict = self.get_dummy_components() lowercase__ : List[str] = self.pipeline_class(**__lowerCAmelCase ) lowercase__ : Any = pipe.to(__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) lowercase__ : int = pipe(**self.get_dummy_inputs(__lowerCAmelCase ) ) lowercase__ : List[Any] = output.images lowercase__ : str = pipe( **self.get_dummy_inputs(__lowerCAmelCase ) , return_dict=__lowerCAmelCase , )[0] lowercase__ : List[Any] = image[0, -3:, -3:, -1] lowercase__ : Union[str, Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase__ : int = np.array( [0.5_4_9_8_5_0_3_4, 0.5_5_5_0_9_3_6_5, 0.5_2_5_6_1_5_0_4, 0.5_5_7_0_4_9_4, 0.5_5_9_3_8_1_8, 0.5_2_6_3_9_7_9, 0.5_0_2_8_5_6_4_3, 0.5_0_6_9_8_4_6, 0.5_1_1_9_6_7_3_6] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def _lowerCAmelCase( self ) -> Optional[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCAmelCase( self ) -> Tuple: lowercase__ : List[Any] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy''' ) lowercase__ : int = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) lowercase__ : List[Any] = init_image.resize((512, 512) ) lowercase__ : Union[str, Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/hint_image_cat.png''' ) lowercase__ : str = torch.from_numpy(np.array(__lowerCAmelCase ) ).float() / 2_5_5.0 lowercase__ : List[str] = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) lowercase__ : Union[str, Any] = '''A robot, 4k photo''' lowercase__ : int = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(__lowerCAmelCase ) lowercase__ : Dict = KandinskyVaaControlnetImgaImgPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-controlnet-depth''' , torch_dtype=torch.floataa ) lowercase__ : Optional[Any] = pipeline.to(__lowerCAmelCase ) pipeline.set_progress_bar_config(disable=__lowerCAmelCase ) lowercase__ : Any = torch.Generator(device='''cpu''' ).manual_seed(0 ) lowercase__ , lowercase__ : Optional[Any] = pipe_prior( __lowerCAmelCase , image=__lowerCAmelCase , strength=0.8_5 , generator=__lowerCAmelCase , negative_prompt='''''' , ).to_tuple() lowercase__ : Tuple = pipeline( image=__lowerCAmelCase , image_embeds=__lowerCAmelCase , negative_image_embeds=__lowerCAmelCase , hint=__lowerCAmelCase , generator=__lowerCAmelCase , num_inference_steps=100 , height=512 , width=512 , strength=0.5 , output_type='''np''' , ) lowercase__ : Optional[int] = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(__lowerCAmelCase , __lowerCAmelCase )
152
0
'''simple docstring''' from random import shuffle import tensorflow as tf from numpy import array def UpperCAmelCase_ ( lowercase__ , lowercase__ ): '''simple docstring''' a_ =int(lowercase__ ) assert noofclusters < len(lowercase__ ) # Find out the dimensionality a_ =len(vectors[0] ) # Will help select random centroids from among the available vectors a_ =list(range(len(lowercase__ ) ) ) shuffle(lowercase__ ) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. a_ =tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION a_ =tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points a_ =[ tf.Variable(vectors[vector_indices[i]] ) for i in range(lowercase__ ) ] ##These nodes will assign the centroid Variables the appropriate ##values a_ =tf.placeholder("float64" , [dim] ) a_ =[] for centroid in centroids: cent_assigns.append(tf.assign(lowercase__ , lowercase__ ) ) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) a_ =[tf.Variable(0 ) for i in range(len(lowercase__ ) )] ##These nodes will assign an assignment Variable the appropriate ##value a_ =tf.placeholder("int32" ) a_ =[] for assignment in assignments: cluster_assigns.append(tf.assign(lowercase__ , lowercase__ ) ) ##Now lets construct the node that will compute the mean # The placeholder for the input a_ =tf.placeholder("float" , [None, dim] ) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors a_ =tf.reduce_mean(lowercase__ , 0 ) ##Node for computing Euclidean distances # Placeholders for input a_ =tf.placeholder("float" , [dim] ) a_ =tf.placeholder("float" , [dim] ) a_ =tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(lowercase__ , lowercase__ ) , 2 ) ) ) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input a_ =tf.placeholder("float" , [noofclusters] ) a_ =tf.argmin(lowercase__ , 0 ) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. a_ =tf.initialize_all_variables() # Initialize all variables sess.run(lowercase__ ) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. a_ =1_0_0 for _ in range(lowercase__ ): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(lowercase__ ) ): a_ =vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. a_ =[ sess.run(lowercase__ , feed_dict={va: vect, va: sess.run(lowercase__ )} ) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input a_ =sess.run( lowercase__ , feed_dict={centroid_distances: distances} ) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n] , feed_dict={assignment_value: assignment} ) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(lowercase__ ): # Collect all the vectors assigned to this cluster a_ =[ vectors[i] for i in range(len(lowercase__ ) ) if sess.run(assignments[i] ) == cluster_n ] # Compute new centroid location a_ =sess.run( lowercase__ , feed_dict={mean_input: array(lowercase__ )} ) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n] , feed_dict={centroid_value: new_location} ) # Return centroids and assignments a_ =sess.run(lowercase__ ) a_ =sess.run(lowercase__ ) return centroids, assignments
41
'''simple docstring''' from collections.abc import Sequence def UpperCAmelCase_ ( lowercase__ = None ): '''simple docstring''' if nums is None or not nums: raise ValueError("Input sequence should not be empty" ) a_ =nums[0] for i in range(1 , len(lowercase__ ) ): a_ =nums[i] a_ =max(lowercase__ , ans + num , lowercase__ ) return ans if __name__ == "__main__": import doctest doctest.testmod() # Try on a sample input from the user lowercase = int(input('''Enter number of elements : ''').strip()) lowercase = list(map(int, input('''\nEnter the numbers : ''').strip().split()))[:n] print(max_subsequence_sum(array))
41
1
"""simple docstring""" import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler __UpperCAmelCase = 16 __UpperCAmelCase = 32 def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase = 16 , __UpperCamelCase = "bert-base-cased" ): '''simple docstring''' UpperCAmelCase__ : Tuple = AutoTokenizer.from_pretrained(__UpperCamelCase ) UpperCAmelCase__ : Dict = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(__UpperCamelCase ): # max_length=None => use the model max length (it's actually the default) UpperCAmelCase__ : List[str] = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=__UpperCamelCase , max_length=__UpperCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset UpperCAmelCase__ : Dict = datasets.map( __UpperCamelCase , batched=__UpperCamelCase , remove_columns=["""idx""", """sentence1""", """sentence2"""] , load_from_cache_file=__UpperCamelCase ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCAmelCase__ : Tuple = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(__UpperCamelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(__UpperCamelCase , padding="""max_length""" , max_length=128 , return_tensors="""pt""" ) return tokenizer.pad(__UpperCamelCase , padding="""longest""" , return_tensors="""pt""" ) # Instantiate dataloaders. UpperCAmelCase__ : Dict = DataLoader( tokenized_datasets["""train"""] , shuffle=__UpperCamelCase , collate_fn=__UpperCamelCase , batch_size=__UpperCamelCase ) UpperCAmelCase__ : Union[str, Any] = DataLoader( tokenized_datasets["""validation"""] , shuffle=__UpperCamelCase , collate_fn=__UpperCamelCase , batch_size=__UpperCamelCase ) return train_dataloader, eval_dataloader def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' UpperCAmelCase__ : Tuple = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCAmelCase__ : Union[str, Any] = config["""lr"""] UpperCAmelCase__ : List[Any] = int(config["""num_epochs"""] ) UpperCAmelCase__ : Dict = int(config["""seed"""] ) UpperCAmelCase__ : str = int(config["""batch_size"""] ) UpperCAmelCase__ : str = args.model_name_or_path set_seed(__UpperCamelCase ) UpperCAmelCase__ , UpperCAmelCase__ : str = get_dataloaders(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCAmelCase__ : Union[str, Any] = AutoModelForSequenceClassification.from_pretrained(__UpperCamelCase , return_dict=__UpperCamelCase ) # Instantiate optimizer UpperCAmelCase__ : Tuple = ( AdamW if accelerator.state.deepspeed_plugin is None or """optimizer""" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) UpperCAmelCase__ : Tuple = optimizer_cls(params=model.parameters() , lr=__UpperCamelCase ) if accelerator.state.deepspeed_plugin is not None: UpperCAmelCase__ : int = accelerator.state.deepspeed_plugin.deepspeed_config[ """gradient_accumulation_steps""" ] else: UpperCAmelCase__ : int = 1 UpperCAmelCase__ : Tuple = (len(__UpperCamelCase ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): UpperCAmelCase__ : Dict = get_linear_schedule_with_warmup( optimizer=__UpperCamelCase , num_warmup_steps=0 , num_training_steps=__UpperCamelCase , ) else: UpperCAmelCase__ : str = DummyScheduler(__UpperCamelCase , total_num_steps=__UpperCamelCase , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : str = accelerator.prepare( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # We need to keep track of how many total steps we have iterated over UpperCAmelCase__ : Optional[int] = 0 # We also need to keep track of the stating epoch so files are named properly UpperCAmelCase__ : Optional[Any] = 0 # Now we train the model UpperCAmelCase__ : str = evaluate.load("""glue""" , """mrpc""" ) UpperCAmelCase__ : List[str] = 0 UpperCAmelCase__ : int = {} for epoch in range(__UpperCamelCase , __UpperCamelCase ): model.train() for step, batch in enumerate(__UpperCamelCase ): UpperCAmelCase__ : List[Any] = model(**__UpperCamelCase ) UpperCAmelCase__ : List[str] = outputs.loss UpperCAmelCase__ : Optional[Any] = loss / gradient_accumulation_steps accelerator.backward(__UpperCamelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 model.eval() UpperCAmelCase__ : Dict = 0 for step, batch in enumerate(__UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): UpperCAmelCase__ : int = model(**__UpperCamelCase ) UpperCAmelCase__ : Optional[int] = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = accelerator.gather( (predictions, batch["""labels"""]) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(__UpperCamelCase ) - 1: UpperCAmelCase__ : Optional[Any] = predictions[: len(eval_dataloader.dataset ) - samples_seen] UpperCAmelCase__ : Optional[Any] = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=__UpperCamelCase , references=__UpperCamelCase , ) UpperCAmelCase__ : Optional[int] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"epoch {epoch}:" , __UpperCamelCase ) UpperCAmelCase__ : str = eval_metric["""accuracy"""] if best_performance < eval_metric["accuracy"]: UpperCAmelCase__ : List[Any] = eval_metric["""accuracy"""] if args.performance_lower_bound is not None: assert ( args.performance_lower_bound <= best_performance ), F"Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , """all_results.json""" ) , """w""" ) as f: json.dump(__UpperCamelCase , __UpperCamelCase ) def lowerCAmelCase ( ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = argparse.ArgumentParser(description="""Simple example of training script tracking peak GPU memory usage.""" ) parser.add_argument( """--model_name_or_path""" , type=__UpperCamelCase , default="""bert-base-cased""" , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , required=__UpperCamelCase , ) parser.add_argument( """--output_dir""" , type=__UpperCamelCase , default=""".""" , help="""Optional save directory where all checkpoint folders will be stored. Default is the current working directory.""" , ) parser.add_argument( """--performance_lower_bound""" , type=__UpperCamelCase , default=__UpperCamelCase , help="""Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value.""" , ) parser.add_argument( """--num_epochs""" , type=__UpperCamelCase , default=3 , help="""Number of train epochs.""" , ) UpperCAmelCase__ : List[Any] = parser.parse_args() UpperCAmelCase__ : Optional[int] = {"""lr""": 2e-5, """num_epochs""": args.num_epochs, """seed""": 42, """batch_size""": 16} training_function(__UpperCamelCase , __UpperCamelCase ) if __name__ == "__main__": main()
65
"""simple docstring""" import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class __lowercase ( unittest.TestCase ): def __lowercase ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : Dict = """| <pad> <unk> <s> </s> a b c d e f g h i j k""".split() UpperCAmelCase__ : Tuple = dict(zip(A ,range(len(A ) ) ) ) UpperCAmelCase__ : Optional[Any] = { """unk_token""": """<unk>""", """bos_token""": """<s>""", """eos_token""": """</s>""", } UpperCAmelCase__ : int = { """feature_size""": 1, """padding_value""": 0.0, """sampling_rate""": 16_000, """return_attention_mask""": False, """do_normalize""": True, } UpperCAmelCase__ : Optional[int] = tempfile.mkdtemp() UpperCAmelCase__ : Optional[int] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""vocab_file"""] ) UpperCAmelCase__ : Tuple = os.path.join(self.tmpdirname ,A ) with open(self.vocab_file ,"""w""" ,encoding="""utf-8""" ) as fp: fp.write(json.dumps(A ) + """\n""" ) with open(self.feature_extraction_file ,"""w""" ,encoding="""utf-8""" ) as fp: fp.write(json.dumps(A ) + """\n""" ) # load decoder from hub UpperCAmelCase__ : int = """hf-internal-testing/ngram-beam-search-decoder""" def __lowercase ( self : str ,**A : List[Any] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = self.add_kwargs_tokens_map.copy() kwargs.update(A ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname ,**A ) def __lowercase ( self : List[str] ,**A : Dict ): '''simple docstring''' return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname ,**A ) def __lowercase ( self : Any ,**A : List[Any] ): '''simple docstring''' return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name ,**A ) def __lowercase ( self : Any ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def __lowercase ( self : str ): '''simple docstring''' UpperCAmelCase__ : Tuple = self.get_tokenizer() UpperCAmelCase__ : Dict = self.get_feature_extractor() UpperCAmelCase__ : str = self.get_decoder() UpperCAmelCase__ : Tuple = WavaVecaProcessorWithLM(tokenizer=A ,feature_extractor=A ,decoder=A ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase__ : str = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer ,A ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() ,feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor ,A ) # decoder self.assertEqual(processor.decoder._alphabet.labels ,decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set ,decoder.model_container[decoder._model_key]._unigram_set ,) self.assertIsInstance(processor.decoder ,A ) def __lowercase ( self : int ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() ,feature_extractor=self.get_feature_extractor() ,decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match UpperCAmelCase__ : Tuple = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname ,alpha=5.0 ,beta=3.0 ,score_boundary=-7.0 ,unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha ,5.0 ) self.assertEqual(processor.language_model.beta ,3.0 ) self.assertEqual(processor.language_model.score_boundary ,-7.0 ) self.assertEqual(processor.language_model.unk_score_offset ,3 ) def __lowercase ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : int = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(["""xx"""] ) with self.assertRaisesRegex(A ,"""include""" ): WavaVecaProcessorWithLM( tokenizer=A ,feature_extractor=self.get_feature_extractor() ,decoder=self.get_decoder() ) def __lowercase ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : List[Any] = self.get_feature_extractor() UpperCAmelCase__ : Optional[Any] = self.get_tokenizer() UpperCAmelCase__ : Any = self.get_decoder() UpperCAmelCase__ : Union[str, Any] = WavaVecaProcessorWithLM(tokenizer=A ,feature_extractor=A ,decoder=A ) UpperCAmelCase__ : str = floats_list((3, 1_000) ) UpperCAmelCase__ : Optional[Any] = feature_extractor(A ,return_tensors="""np""" ) UpperCAmelCase__ : List[Any] = processor(A ,return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1e-2 ) def __lowercase ( self : int ): '''simple docstring''' UpperCAmelCase__ : int = self.get_feature_extractor() UpperCAmelCase__ : Union[str, Any] = self.get_tokenizer() UpperCAmelCase__ : Optional[int] = self.get_decoder() UpperCAmelCase__ : List[Any] = WavaVecaProcessorWithLM(tokenizer=A ,feature_extractor=A ,decoder=A ) UpperCAmelCase__ : List[Any] = """This is a test string""" UpperCAmelCase__ : int = processor(text=A ) UpperCAmelCase__ : Dict = tokenizer(A ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key] ) def __lowercase ( self : Tuple ,A : List[Any]=(2, 10, 16) ,A : Dict=77 ): '''simple docstring''' np.random.seed(A ) return np.random.rand(*A ) def __lowercase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Dict = self.get_feature_extractor() UpperCAmelCase__ : Optional[Any] = self.get_tokenizer() UpperCAmelCase__ : int = self.get_decoder() UpperCAmelCase__ : Optional[Any] = WavaVecaProcessorWithLM(tokenizer=A ,feature_extractor=A ,decoder=A ) UpperCAmelCase__ : Dict = self._get_dummy_logits(shape=(10, 16) ,seed=13 ) UpperCAmelCase__ : Tuple = processor.decode(A ) UpperCAmelCase__ : Union[str, Any] = decoder.decode_beams(A )[0] self.assertEqual(decoded_decoder[0] ,decoded_processor.text ) self.assertEqual("""</s> <s> </s>""" ,decoded_processor.text ) self.assertEqual(decoded_decoder[-2] ,decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] ,decoded_processor.lm_score ) @parameterized.expand([[None], ["""fork"""], ["""spawn"""]] ) def __lowercase ( self : List[str] ,A : List[Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.get_feature_extractor() UpperCAmelCase__ : int = self.get_tokenizer() UpperCAmelCase__ : List[Any] = self.get_decoder() UpperCAmelCase__ : Dict = WavaVecaProcessorWithLM(tokenizer=A ,feature_extractor=A ,decoder=A ) UpperCAmelCase__ : Optional[Any] = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: UpperCAmelCase__ : List[str] = processor.batch_decode(A ) else: with get_context(A ).Pool() as pool: UpperCAmelCase__ : Union[str, Any] = processor.batch_decode(A ,A ) UpperCAmelCase__ : Optional[Any] = list(A ) with get_context("""fork""" ).Pool() as p: UpperCAmelCase__ : Union[str, Any] = decoder.decode_beams_batch(A ,A ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(A ,decoded_processor.text ) self.assertListEqual(["""<s> <s> </s>""", """<s> <s> <s>"""] ,decoded_processor.text ) self.assertListEqual(A ,decoded_processor.logit_score ) self.assertListEqual(A ,decoded_processor.lm_score ) def __lowercase ( self : int ): '''simple docstring''' UpperCAmelCase__ : Any = self.get_feature_extractor() UpperCAmelCase__ : Tuple = self.get_tokenizer() UpperCAmelCase__ : List[Any] = self.get_decoder() UpperCAmelCase__ : Union[str, Any] = WavaVecaProcessorWithLM(tokenizer=A ,feature_extractor=A ,decoder=A ) UpperCAmelCase__ : Dict = self._get_dummy_logits() UpperCAmelCase__ : Any = 15 UpperCAmelCase__ : Dict = -2_0.0 UpperCAmelCase__ : List[Any] = -4.0 UpperCAmelCase__ : Union[str, Any] = processor.batch_decode( A ,beam_width=A ,beam_prune_logp=A ,token_min_logp=A ,) UpperCAmelCase__ : List[str] = decoded_processor_out.text UpperCAmelCase__ : List[str] = list(A ) with get_context("""fork""" ).Pool() as pool: UpperCAmelCase__ : Tuple = decoder.decode_beams_batch( A ,A ,beam_width=A ,beam_prune_logp=A ,token_min_logp=A ,) UpperCAmelCase__ : List[Any] = [d[0][0] for d in decoded_decoder_out] UpperCAmelCase__ : Any = [d[0][2] for d in decoded_decoder_out] UpperCAmelCase__ : List[str] = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(A ,A ) self.assertListEqual(["""</s> <s> <s>""", """<s> <s> <s>"""] ,A ) self.assertTrue(np.array_equal(A ,decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-2_0.0_5_4, -1_8.4_4_7] ,A ,atol=1e-3 ) ) self.assertTrue(np.array_equal(A ,decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-1_5.5_5_4, -1_3.9_4_7_4] ,A ,atol=1e-3 ) ) def __lowercase ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : Tuple = self.get_feature_extractor() UpperCAmelCase__ : Optional[Any] = self.get_tokenizer() UpperCAmelCase__ : int = self.get_decoder() UpperCAmelCase__ : str = WavaVecaProcessorWithLM(tokenizer=A ,feature_extractor=A ,decoder=A ) UpperCAmelCase__ : Tuple = self._get_dummy_logits() UpperCAmelCase__ : Tuple = 2.0 UpperCAmelCase__ : str = 5.0 UpperCAmelCase__ : Union[str, Any] = -2_0.0 UpperCAmelCase__ : Optional[Any] = True UpperCAmelCase__ : str = processor.batch_decode( A ,alpha=A ,beta=A ,unk_score_offset=A ,lm_score_boundary=A ,) UpperCAmelCase__ : Any = decoded_processor_out.text UpperCAmelCase__ : Union[str, Any] = list(A ) decoder.reset_params( alpha=A ,beta=A ,unk_score_offset=A ,lm_score_boundary=A ,) with get_context("""fork""" ).Pool() as pool: UpperCAmelCase__ : List[Any] = decoder.decode_beams_batch( A ,A ,) UpperCAmelCase__ : Union[str, Any] = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(A ,A ) self.assertListEqual(["""<s> </s> <s> </s> </s>""", """</s> </s> <s> </s> </s>"""] ,A ) UpperCAmelCase__ : Union[str, Any] = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha ,2.0 ) self.assertEqual(lm_model.beta ,5.0 ) self.assertEqual(lm_model.unk_score_offset ,-2_0.0 ) self.assertEqual(lm_model.score_boundary ,A ) def __lowercase ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Dict = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) UpperCAmelCase__ : str = processor.decoder.model_container[processor.decoder._model_key] UpperCAmelCase__ : Any = Path(language_model._kenlm_model.path.decode("""utf-8""" ) ).parent.parent.absolute() UpperCAmelCase__ : Optional[int] = os.listdir(A ) UpperCAmelCase__ : List[Any] = ["""alphabet.json""", """language_model"""] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(A ,A ) def __lowercase ( self : int ): '''simple docstring''' UpperCAmelCase__ : List[Any] = snapshot_download("""hf-internal-testing/processor_with_lm""" ) UpperCAmelCase__ : Union[str, Any] = WavaVecaProcessorWithLM.from_pretrained(A ) UpperCAmelCase__ : Tuple = processor.decoder.model_container[processor.decoder._model_key] UpperCAmelCase__ : Optional[int] = Path(language_model._kenlm_model.path.decode("""utf-8""" ) ).parent.parent.absolute() UpperCAmelCase__ : Tuple = os.listdir(A ) UpperCAmelCase__ : Dict = os.listdir(A ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(A ,A ) def __lowercase ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) UpperCAmelCase__ : Tuple = AutoProcessor.from_pretrained("""hf-internal-testing/processor_with_lm""" ) UpperCAmelCase__ : Dict = floats_list((3, 1_000) ) UpperCAmelCase__ : List[str] = processor_wavaveca(A ,return_tensors="""np""" ) UpperCAmelCase__ : Dict = processor_auto(A ,return_tensors="""np""" ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() ,input_auto[key].sum() ,delta=1e-2 ) UpperCAmelCase__ : List[str] = self._get_dummy_logits() UpperCAmelCase__ : Tuple = processor_wavaveca.batch_decode(A ) UpperCAmelCase__ : List[str] = processor_auto.batch_decode(A ) self.assertListEqual(decoded_wavaveca.text ,decoded_auto.text ) def __lowercase ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : Dict = self.get_feature_extractor() UpperCAmelCase__ : Tuple = self.get_tokenizer() UpperCAmelCase__ : List[Any] = self.get_decoder() UpperCAmelCase__ : int = WavaVecaProcessorWithLM(tokenizer=A ,feature_extractor=A ,decoder=A ) self.assertListEqual( processor.model_input_names ,feature_extractor.model_input_names ,msg="""`processor` and `feature_extractor` model input names do not match""" ,) @staticmethod def __lowercase ( A : Optional[Any] ,A : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = [d[key] for d in offsets] return retrieved_list def __lowercase ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : List[str] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) UpperCAmelCase__ : Dict = self._get_dummy_logits()[0] UpperCAmelCase__ : List[str] = processor.decode(A ,output_word_offsets=A ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) ,4 ) self.assertTrue("""text""" in outputs ) self.assertTrue("""word_offsets""" in outputs ) self.assertTrue(isinstance(A ,A ) ) self.assertEqual(""" """.join(self.get_from_offsets(outputs["""word_offsets"""] ,"""word""" ) ) ,outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] ,"""word""" ) ,["""<s>""", """<s>""", """</s>"""] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] ,"""start_offset""" ) ,[0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] ,"""end_offset""" ) ,[1, 3, 5] ) def __lowercase ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : List[Any] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) UpperCAmelCase__ : int = self._get_dummy_logits() UpperCAmelCase__ : Any = processor.batch_decode(A ,output_word_offsets=A ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) ,4 ) self.assertTrue("""text""" in outputs ) self.assertTrue("""word_offsets""" in outputs ) self.assertTrue(isinstance(A ,A ) ) self.assertListEqual( [""" """.join(self.get_from_offsets(A ,"""word""" ) ) for o in outputs["""word_offsets"""]] ,outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] ,"""word""" ) ,["""<s>""", """<s>""", """</s>"""] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] ,"""start_offset""" ) ,[0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] ,"""end_offset""" ) ,[1, 3, 5] ) @slow @require_torch @require_torchaudio def __lowercase ( self : Tuple ): '''simple docstring''' import torch UpperCAmelCase__ : Any = load_dataset("""common_voice""" ,"""en""" ,split="""train""" ,streaming=A ) UpperCAmelCase__ : Tuple = ds.cast_column("""audio""" ,datasets.Audio(sampling_rate=16_000 ) ) UpperCAmelCase__ : Tuple = iter(A ) UpperCAmelCase__ : Optional[int] = next(A ) UpperCAmelCase__ : List[Any] = AutoProcessor.from_pretrained("""patrickvonplaten/wav2vec2-base-100h-with-lm""" ) UpperCAmelCase__ : Tuple = WavaVecaForCTC.from_pretrained("""patrickvonplaten/wav2vec2-base-100h-with-lm""" ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train UpperCAmelCase__ : Tuple = processor(sample["""audio"""]["""array"""] ,return_tensors="""pt""" ).input_values with torch.no_grad(): UpperCAmelCase__ : Union[str, Any] = model(A ).logits.cpu().numpy() UpperCAmelCase__ : Any = processor.decode(logits[0] ,output_word_offsets=A ) UpperCAmelCase__ : str = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate UpperCAmelCase__ : Union[str, Any] = [ { """start_time""": d["""start_offset"""] * time_offset, """end_time""": d["""end_offset"""] * time_offset, """word""": d["""word"""], } for d in output["""word_offsets"""] ] UpperCAmelCase__ : Dict = """WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL""" # output words self.assertEqual(""" """.join(self.get_from_offsets(A ,"""word""" ) ) ,A ) self.assertEqual(""" """.join(self.get_from_offsets(A ,"""word""" ) ) ,output.text ) # output times UpperCAmelCase__ : str = torch.tensor(self.get_from_offsets(A ,"""start_time""" ) ) UpperCAmelCase__ : List[Any] = torch.tensor(self.get_from_offsets(A ,"""end_time""" ) ) # fmt: off UpperCAmelCase__ : Union[str, Any] = torch.tensor([1.4_1_9_9, 1.6_5_9_9, 2.2_5_9_9, 3.0, 3.2_4, 3.5_9_9_9, 3.7_9_9_9, 4.0_9_9_9, 4.2_6, 4.9_4, 5.2_8, 5.6_5_9_9, 5.7_8, 5.9_4, 6.3_2, 6.5_3_9_9, 6.6_5_9_9] ) UpperCAmelCase__ : List[Any] = torch.tensor([1.5_3_9_9, 1.8_9_9_9, 2.9, 3.1_6, 3.5_3_9_9, 3.7_2, 4.0_1_9_9, 4.1_7_9_9, 4.7_6, 5.1_5_9_9, 5.5_5_9_9, 5.6_9_9_9, 5.8_6, 6.1_9_9_9, 6.3_8, 6.6_1_9_9, 6.9_4] ) # fmt: on self.assertTrue(torch.allclose(A ,A ,atol=0.0_1 ) ) self.assertTrue(torch.allclose(A ,A ,atol=0.0_1 ) )
65
1
import logging import os from typing import List, TextIO, Union from conllu import parse_incr from utils_ner import InputExample, Split, TokenClassificationTask _lowerCAmelCase :str = logging.getLogger(__name__) class UpperCAmelCase ( UpperCamelCase_ ): '''simple docstring''' def __init__( self , lowercase__=-1 ) -> Dict: SCREAMING_SNAKE_CASE : List[Any] = label_idx def _UpperCamelCase ( self , lowercase__ , lowercase__ ) -> List[InputExample]: if isinstance(__a , __a ): SCREAMING_SNAKE_CASE : Dict = mode.value SCREAMING_SNAKE_CASE : Tuple = os.path.join(__a , F"""{mode}.txt""" ) SCREAMING_SNAKE_CASE : Any = 1 SCREAMING_SNAKE_CASE : int = [] with open(__a , encoding='utf-8' ) as f: SCREAMING_SNAKE_CASE : int = [] SCREAMING_SNAKE_CASE : int = [] for line in f: if line.startswith('-DOCSTART-' ) or line == "" or line == "\n": if words: examples.append(InputExample(guid=F"""{mode}-{guid_index}""" , words=__a , labels=__a ) ) guid_index += 1 SCREAMING_SNAKE_CASE : Optional[Any] = [] SCREAMING_SNAKE_CASE : int = [] else: SCREAMING_SNAKE_CASE : List[Any] = line.split(' ' ) words.append(splits[0] ) if len(__a ) > 1: labels.append(splits[self.label_idx].replace('\n' , '' ) ) else: # Examples could have no label for mode = "test" labels.append('O' ) if words: examples.append(InputExample(guid=F"""{mode}-{guid_index}""" , words=__a , labels=__a ) ) return examples def _UpperCamelCase ( self , lowercase__ , lowercase__ , lowercase__ ) -> Any: SCREAMING_SNAKE_CASE : List[Any] = 0 for line in test_input_reader: if line.startswith('-DOCSTART-' ) or line == "" or line == "\n": writer.write(__a ) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: SCREAMING_SNAKE_CASE : List[Any] = line.split()[0] + ' ' + preds_list[example_id].pop(0 ) + '\n' writer.write(__a ) else: logger.warning('Maximum sequence length exceeded: No prediction for \'%s\'.' , line.split()[0] ) def _UpperCamelCase ( self , lowercase__ ) -> List[str]: if path: with open(__a , 'r' ) as f: SCREAMING_SNAKE_CASE : Tuple = f.read().splitlines() if "O" not in labels: SCREAMING_SNAKE_CASE : Union[str, Any] = ['O'] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] class UpperCAmelCase ( UpperCamelCase_ ): '''simple docstring''' def __init__( self ) -> str: super().__init__(label_idx=-2 ) def _UpperCamelCase ( self , lowercase__ ) -> List[str]: if path: with open(__a , 'r' ) as f: SCREAMING_SNAKE_CASE : Any = f.read().splitlines() if "O" not in labels: SCREAMING_SNAKE_CASE : List[Any] = ['O'] + labels return labels else: return [ "O", "B-ADVP", "B-INTJ", "B-LST", "B-PRT", "B-NP", "B-SBAR", "B-VP", "B-ADJP", "B-CONJP", "B-PP", "I-ADVP", "I-INTJ", "I-LST", "I-PRT", "I-NP", "I-SBAR", "I-VP", "I-ADJP", "I-CONJP", "I-PP", ] class UpperCAmelCase ( UpperCamelCase_ ): '''simple docstring''' def _UpperCamelCase ( self , lowercase__ , lowercase__ ) -> List[InputExample]: if isinstance(__a , __a ): SCREAMING_SNAKE_CASE : List[Any] = mode.value SCREAMING_SNAKE_CASE : Dict = os.path.join(__a , F"""{mode}.txt""" ) SCREAMING_SNAKE_CASE : Union[str, Any] = 1 SCREAMING_SNAKE_CASE : Union[str, Any] = [] with open(__a , encoding='utf-8' ) as f: for sentence in parse_incr(__a ): SCREAMING_SNAKE_CASE : Any = [] SCREAMING_SNAKE_CASE : Dict = [] for token in sentence: words.append(token['form'] ) labels.append(token['upos'] ) assert len(__a ) == len(__a ) if words: examples.append(InputExample(guid=F"""{mode}-{guid_index}""" , words=__a , labels=__a ) ) guid_index += 1 return examples def _UpperCamelCase ( self , lowercase__ , lowercase__ , lowercase__ ) -> List[Any]: SCREAMING_SNAKE_CASE : int = 0 for sentence in parse_incr(__a ): SCREAMING_SNAKE_CASE : Optional[Any] = preds_list[example_id] SCREAMING_SNAKE_CASE : Any = '' for token in sentence: out += F"""{token["form"]} ({token["upos"]}|{s_p.pop(0 )}) """ out += "\n" writer.write(__a ) example_id += 1 def _UpperCamelCase ( self , lowercase__ ) -> List[str]: if path: with open(__a , 'r' ) as f: return f.read().splitlines() else: return [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ]
717
'''simple docstring''' def __lowerCAmelCase ( a_ , a_ ) -> str: '''simple docstring''' if number < 0 or shift_amount < 0: raise ValueError('both inputs must be positive integers' ) SCREAMING_SNAKE_CASE : str = str(bin(a_ ) ) binary_number += "0" * shift_amount return binary_number def __lowerCAmelCase ( a_ , a_ ) -> str: '''simple docstring''' if number < 0 or shift_amount < 0: raise ValueError('both inputs must be positive integers' ) SCREAMING_SNAKE_CASE : Optional[Any] = str(bin(a_ ) )[2:] if shift_amount >= len(a_ ): return "0b0" SCREAMING_SNAKE_CASE : Dict = binary_number[: len(a_ ) - shift_amount] return "0b" + shifted_binary_number def __lowerCAmelCase ( a_ , a_ ) -> str: '''simple docstring''' if number >= 0: # Get binary representation of positive number SCREAMING_SNAKE_CASE : Tuple = '0' + str(bin(a_ ) ).strip('-' )[2:] else: # Get binary (2's complement) representation of negative number SCREAMING_SNAKE_CASE : Union[str, Any] = len(bin(a_ )[3:] ) # Find 2's complement of number SCREAMING_SNAKE_CASE : Any = bin(abs(a_ ) - (1 << binary_number_length) )[3:] SCREAMING_SNAKE_CASE : Optional[Any] = ( '1' + '0' * (binary_number_length - len(a_ )) + binary_number ) if shift_amount >= len(a_ ): return "0b" + binary_number[0] * len(a_ ) return ( "0b" + binary_number[0] * shift_amount + binary_number[: len(a_ ) - shift_amount] ) if __name__ == "__main__": import doctest doctest.testmod()
179
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowerCamelCase :str = { 'configuration_swiftformer': [ 'SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SwiftFormerConfig', 'SwiftFormerOnnxConfig', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase :Optional[Any] = [ 'SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'SwiftFormerForImageClassification', 'SwiftFormerModel', 'SwiftFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys lowerCamelCase :int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
487
import argparse import torch from torch import nn from transformers import MBartConfig, MBartForConditionalGeneration def __snake_case ( _UpperCamelCase ) -> Optional[Any]: _a = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''_float_tensor''', '''decoder.output_projection.weight''', ] for k in ignore_keys: state_dict.pop(_UpperCamelCase , _UpperCamelCase ) def __snake_case ( _UpperCamelCase ) -> List[str]: _a , _a = emb.weight.shape _a = nn.Linear(_UpperCamelCase , _UpperCamelCase , bias=_UpperCamelCase ) _a = emb.weight.data return lin_layer def __snake_case ( _UpperCamelCase , _UpperCamelCase="facebook/mbart-large-en-ro" , _UpperCamelCase=False , _UpperCamelCase=False ) -> Union[str, Any]: _a = torch.load(_UpperCamelCase , map_location='''cpu''' )['''model'''] remove_ignore_keys_(_UpperCamelCase ) _a = state_dict['''encoder.embed_tokens.weight'''].shape[0] _a = MBartConfig.from_pretrained(_UpperCamelCase , vocab_size=_UpperCamelCase ) if mbart_aa and finetuned: _a = '''relu''' _a = state_dict['''decoder.embed_tokens.weight'''] _a = MBartForConditionalGeneration(_UpperCamelCase ) model.model.load_state_dict(_UpperCamelCase ) if finetuned: _a = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": lowerCamelCase :int = argparse.ArgumentParser() # Required parameters parser.add_argument( 'fairseq_path', type=str, help='bart.large, bart.large.cnn or a path to a model.pt on local filesystem.' ) parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--hf_config', default='facebook/mbart-large-cc25', type=str, help='Which huggingface architecture to use: mbart-large', ) parser.add_argument('--mbart_50', action='store_true', help='whether the model is mMART-50 checkpoint') parser.add_argument('--finetuned', action='store_true', help='whether the model is a fine-tuned checkpoint') lowerCamelCase :Optional[int] = parser.parse_args() lowerCamelCase :Optional[int] = convert_fairseq_mbart_checkpoint_from_disk( args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa ) model.save_pretrained(args.pytorch_dump_folder_path)
487
1
'''simple docstring''' import importlib.metadata import warnings from copy import deepcopy from packaging import version from ..utils import logging from .import_utils import is_accelerate_available, is_bitsandbytes_available if is_bitsandbytes_available(): import bitsandbytes as bnb import torch import torch.nn as nn from ..pytorch_utils import ConvaD if is_accelerate_available(): from accelerate import init_empty_weights from accelerate.utils import find_tied_parameters __lowerCAmelCase = logging.get_logger(__name__) def UpperCAmelCase_ (__a : str , __a : Any , __a : int , __a : Union[str, Any]=None , __a : Any=None ): """simple docstring""" if "." in tensor_name: _a : Optional[int] = tensor_name.split('.' ) for split in splits[:-1]: _a : Any = getattr(__a , __a ) if new_module is None: raise ValueError(f"""{module} has no attribute {split}.""" ) _a : int = new_module _a : Union[str, Any] = splits[-1] if tensor_name not in module._parameters and tensor_name not in module._buffers: raise ValueError(f"""{module} does not have a parameter or a buffer named {tensor_name}.""" ) _a : str = tensor_name in module._buffers _a : List[str] = getattr(__a , __a ) if old_value.device == torch.device('meta' ) and device not in ["meta", torch.device('meta' )] and value is None: raise ValueError(f"""{tensor_name} is on the meta device, we need a `value` to put in on {device}.""" ) _a : Optional[Any] = False _a : Optional[Any] = False if is_buffer or not is_bitsandbytes_available(): _a : Dict = False _a : List[Any] = False else: _a : Optional[Any] = hasattr(bnb.nn , 'Params4bit' ) and isinstance(module._parameters[tensor_name] , bnb.nn.Paramsabit ) _a : Dict = isinstance(module._parameters[tensor_name] , bnb.nn.IntaParams ) if is_abit or is_abit: _a : Union[str, Any] = module._parameters[tensor_name] if param.device.type != "cuda": if value is None: _a : Any = old_value.to(__a ) elif isinstance(__a , torch.Tensor ): _a : List[Any] = value.to('cpu' ) if value.dtype == torch.inta: _a : str = version.parse(importlib.metadata.version('bitsandbytes' ) ) > version.parse( '0.37.2' ) if not is_abit_serializable: raise ValueError( 'Detected int8 weights but the version of bitsandbytes is not compatible with int8 serialization. ' 'Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`.' ) else: _a : str = torch.tensor(__a , device='cpu' ) # Support models using `Conv1D` in place of `nn.Linear` (e.g. gpt2) by transposing the weight matrix prior to quantization. # Since weights are saved in the correct "orientation", we skip transposing when loading. if issubclass(module.source_cls , __a ) and fpaa_statistics is None: _a : List[str] = new_value.T _a : int = old_value.__dict__ if is_abit: _a : Dict = bnb.nn.IntaParams(__a , requires_grad=__a , **__a ).to(__a ) elif is_abit: _a : Optional[Any] = bnb.nn.Paramsabit(__a , requires_grad=__a , **__a ).to(__a ) _a : Union[str, Any] = new_value if fpaa_statistics is not None: setattr(module.weight , 'SCB' , fpaa_statistics.to(__a ) ) else: if value is None: _a : Tuple = old_value.to(__a ) elif isinstance(__a , torch.Tensor ): _a : Dict = value.to(__a ) else: _a : Optional[Any] = torch.tensor(__a , device=__a ) if is_buffer: _a : Any = new_value else: _a : List[Any] = nn.Parameter(__a , requires_grad=old_value.requires_grad ) _a : Tuple = new_value def UpperCAmelCase_ (__a : Optional[int] , __a : Union[str, Any]=None , __a : Tuple=None , __a : int=None , __a : Tuple=False ): """simple docstring""" for name, module in model.named_children(): if current_key_name is None: _a : List[Any] = [] current_key_name.append(__a ) if (isinstance(__a , nn.Linear ) or isinstance(__a , __a )) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` if not any(key in '.'.join(__a ) for key in modules_to_not_convert ): with init_empty_weights(): if isinstance(__a , __a ): _a, _a : List[str] = module.weight.shape else: _a : List[str] = module.in_features _a : Optional[int] = module.out_features if quantization_config.quantization_method() == "llm_int8": _a : int = bnb.nn.LinearabitLt( __a , __a , module.bias is not None , has_fpaa_weights=quantization_config.llm_inta_has_fpaa_weight , threshold=quantization_config.llm_inta_threshold , ) _a : int = True else: if ( quantization_config.llm_inta_skip_modules is not None and name in quantization_config.llm_inta_skip_modules ): pass else: _a : int = bnb.nn.Linearabit( __a , __a , module.bias is not None , quantization_config.bnb_abit_compute_dtype , compress_statistics=quantization_config.bnb_abit_use_double_quant , quant_type=quantization_config.bnb_abit_quant_type , ) _a : Optional[Any] = True # Store the module class in case we need to transpose the weight later _a : List[Any] = type(__a ) # Force requires grad to False to avoid unexpected errors model._modules[name].requires_grad_(__a ) if len(list(module.children() ) ) > 0: _a, _a : List[Any] = _replace_with_bnb_linear( __a , __a , __a , __a , has_been_replaced=__a , ) # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def UpperCAmelCase_ (__a : Optional[int] , __a : Tuple=None , __a : List[Any]=None , __a : Optional[Any]=None ): """simple docstring""" _a : List[str] = ['lm_head'] if modules_to_not_convert is None else modules_to_not_convert _a, _a : List[str] = _replace_with_bnb_linear( __a , __a , __a , __a ) if not has_been_replaced: logger.warning( 'You are loading your model in 8bit or 4bit but no linear modules were found in your model.' ' Please double check your model architecture, or submit an issue on github if you think this is' ' a bug.' ) return model def UpperCAmelCase_ (*__a : int , **__a : Dict ): """simple docstring""" warnings.warn( '`replace_8bit_linear` will be deprecated in a future version, please use `replace_with_bnb_linear` instead' , __a , ) return replace_with_bnb_linear(*__a , **__a ) def UpperCAmelCase_ (*__a : int , **__a : List[str] ): """simple docstring""" warnings.warn( '`set_module_8bit_tensor_to_device` will be deprecated in a future version, please use `set_module_quantized_tensor_to_device` instead' , __a , ) return set_module_quantized_tensor_to_device(*__a , **__a ) def UpperCAmelCase_ (__a : List[Any] ): """simple docstring""" _a : int = deepcopy(__a ) # this has 0 cost since it is done inside `init_empty_weights` context manager` tied_model.tie_weights() _a : Union[str, Any] = find_tied_parameters(__a ) # For compatibility with Accelerate < 0.18 if isinstance(__a , __a ): _a : str = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: _a : Optional[int] = sum(__a , [] ) _a : Union[str, Any] = len(__a ) > 0 # Check if it is a base model _a : str = not hasattr(__a , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head _a : int = list(model.named_children() ) _a : List[str] = [list_modules[-1][0]] # add last module together with tied weights _a : Optional[int] = set(__a ) - set(__a ) _a : str = list(set(__a ) ) + list(__a ) # remove ".weight" from the keys _a : Any = ['.weight', '.bias'] _a : List[str] = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: _a : Optional[Any] = name.replace(__a , '' ) filtered_module_names.append(__a ) return filtered_module_names
319
'''simple docstring''' import unittest from transformers import GPTSwaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin __lowerCAmelCase = get_tests_dir("""fixtures/test_sentencepiece_with_bytefallback.model""") @require_sentencepiece @require_tokenizers class UpperCAmelCase__ ( lowercase__ , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : int = GPTSwaTokenizer __UpperCAmelCase : Any = False __UpperCAmelCase : Any = True __UpperCAmelCase : List[Any] = False def __lowercase ( self : Dict ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing _a : Any = GPTSwaTokenizer(_a ,eos_token='<unk>' ,bos_token='<unk>' ,pad_token='<unk>' ) tokenizer.save_pretrained(self.tmpdirname ) def __lowercase ( self : Optional[Any] ,_a : Any ): '''simple docstring''' _a : Optional[int] = 'This is a test' _a : str = 'This is a test' return input_text, output_text def __lowercase ( self : Optional[Any] ): '''simple docstring''' _a : Tuple = '<s>' _a : Optional[int] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_a ) ,_a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_a ) ,_a ) def __lowercase ( self : List[Any] ): '''simple docstring''' _a : Optional[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,'<unk>' ) self.assertEqual(vocab_keys[1] ,'<s>' ) self.assertEqual(vocab_keys[-1] ,'j' ) self.assertEqual(len(_a ) ,2000 ) def __lowercase ( self : List[str] ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size ,2000 ) def __lowercase ( self : List[str] ): '''simple docstring''' _a : Optional[Any] = GPTSwaTokenizer(_a ) _a : int = tokenizer.tokenize('This is a test' ) self.assertListEqual(_a ,['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) ,[465, 287, 265, 631, 842] ) _a : Optional[Any] = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) # fmt: off self.assertListEqual( _a ,['▁I', '▁was', '▁bor', 'n', '▁in', '▁', '<0x39>', '2', '0', '0', '0', ',', '▁and', '▁this', '▁is', '▁f', 'al', 's', '<0xC3>', '<0xA9>', '.'] ,) # fmt: on _a : str = tokenizer.convert_tokens_to_ids(_a ) self.assertListEqual( _a ,[262, 272, 1525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260] ,) _a : str = tokenizer.convert_ids_to_tokens(_a ) # fmt: off self.assertListEqual( _a ,['▁I', '▁was', '▁bor', 'n', '▁in', '▁', '<0x39>', '2', '0', '0', '0', ',', '▁and', '▁this', '▁is', '▁f', 'al', 's', '<0xC3>', '<0xA9>', '.'] ) # fmt: on def __lowercase ( self : Union[str, Any] ): '''simple docstring''' _a : str = GPTSwaTokenizer(_a ) _a : List[Any] = ['This is a test', 'I was born in 92000, and this is falsé.'] _a : Optional[Any] = [ [465, 287, 265, 631, 842], [262, 272, 1525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260], ] # Test that encode_fast returns the same as tokenize + convert_tokens_to_ids for text, expected_ids in zip(_a ,_a ): self.assertListEqual(tokenizer.encode_fast(_a ) ,_a ) # Test that decode_fast returns the input text for text, token_ids in zip(_a ,_a ): self.assertEqual(tokenizer.decode_fast(_a ) ,_a ) @slow def __lowercase ( self : Tuple ): '''simple docstring''' _a : Dict = [ '<|python|>def fibonacci(n)\n if n < 0:\n print(\'Incorrect input\')', 'Hey there, how are you doing this fine day?', 'This is a text with a trailing spaces followed by a dot .', 'Häj sväjs lillebrör! =)', 'Det är inget fel på Mr. Cool', ] # fmt: off _a : Union[str, Any] = {'input_ids': [[6_3423, 5, 6811, 1_4954, 282, 816, 3821, 6_3466, 6_3425, 6_3462, 18, 6_3978, 678, 301, 1320, 6_3423, 6_3455, 6_3458, 18, 6_3982, 4246, 3940, 1901, 4_7789, 5547, 1_8994], [1_9630, 1100, 6_3446, 1342, 633, 544, 4488, 593, 5102, 2416, 6_3495, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1652, 428, 268, 1936, 515, 268, 5_8593, 2_2413, 9106, 546, 268, 3_3213, 6_3979, 698, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_5130, 6_3450, 924, 6_3449, 2249, 4062, 1558, 318, 6_3504, 2_1498, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [509, 377, 2827, 2559, 332, 6575, 6_3443, 2_6801, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # fmt: on self.tokenizer_integration_test_util( expected_encoding=_a ,model_name='AI-Sweden/gpt-sw3-126m' ,sequences=_a ,)
319
1
"""simple docstring""" from collections import defaultdict def snake_case_ ( A_ : str, A_ : str ): '''simple docstring''' _lowerCamelCase : List[str] = first_str.lower().strip() _lowerCamelCase : List[str] = second_str.lower().strip() # Remove whitespace _lowerCamelCase : str = first_str.replace(''' ''', '''''' ) _lowerCamelCase : Dict = second_str.replace(''' ''', '''''' ) # Strings of different lengths are not anagrams if len(A_ ) != len(A_ ): return False # Default values for count should be 0 _lowerCamelCase : defaultdict[str, int] = defaultdict(A_ ) # For each character in input strings, # increment count in the corresponding for i in range(len(A_ ) ): count[first_str[i]] += 1 count[second_str[i]] -= 1 return all(_count == 0 for _count in count.values() ) if __name__ == "__main__": from doctest import testmod testmod() lowerCAmelCase__ = input('''Enter the first string ''').strip() lowerCAmelCase__ = input('''Enter the second string ''').strip() lowerCAmelCase__ = check_anagrams(input_a, input_b) print(F"""{input_a} and {input_b} are {"" if status else "not "}anagrams.""")
83
'''simple docstring''' import inspect import unittest class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self : Dict ) -> Dict: '''simple docstring''' try: import diffusers # noqa: F401 except ImportError: assert False def __lowerCAmelCase ( self : int ) -> str: '''simple docstring''' import diffusers from diffusers.dependency_versions_table import deps a__ : Optional[int] = inspect.getmembers(A__ , inspect.isclass ) for cls_name, cls_module in all_classes: if "dummy_" in cls_module.__module__: for backend in cls_module._backends: if backend == "k_diffusion": a__ : int = '''k-diffusion''' elif backend == "invisible_watermark": a__ : int = '''invisible-watermark''' assert backend in deps, F'{backend} is not in the deps table!'
688
0
'''simple docstring''' from typing import List, Optional, Tuple, Union import torch from torch import nn from torch.nn import CrossEntropyLoss from ... import AutoBackbone from ...modeling_outputs import SemanticSegmenterOutput from ...modeling_utils import PreTrainedModel from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings from ...utils.backbone_utils import BackboneMixin from .configuration_upernet import UperNetConfig SCREAMING_SNAKE_CASE_ = [ 'openmmlab/upernet-convnext-tiny', # See all UperNet models at https://huggingface.co/models?filter=upernet ] # General docstring SCREAMING_SNAKE_CASE_ = 'UperNetConfig' class a ( nn.Module ): """simple docstring""" def __init__( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ = 0 , snake_case_ = False , snake_case_ = 1 , ): '''simple docstring''' super().__init__() __UpperCAmelCase: str = nn.Convad( in_channels=snake_case_ , out_channels=snake_case_ , kernel_size=snake_case_ , padding=snake_case_ , bias=snake_case_ , dilation=snake_case_ , ) __UpperCAmelCase: int = nn.BatchNormad(snake_case_ ) __UpperCAmelCase: Optional[int] = nn.ReLU() def lowercase_ ( self , snake_case_ ): '''simple docstring''' __UpperCAmelCase: str = self.conv(snake_case_ ) __UpperCAmelCase: Any = self.batch_norm(snake_case_ ) __UpperCAmelCase: Tuple = self.activation(snake_case_ ) return output class a ( nn.Module ): """simple docstring""" def __init__( self , snake_case_ , snake_case_ , snake_case_ ): '''simple docstring''' super().__init__() __UpperCAmelCase: List[str] = [ nn.AdaptiveAvgPoolad(snake_case_ ), UperNetConvModule(snake_case_ , snake_case_ , kernel_size=1 ), ] for i, layer in enumerate(self.layers ): self.add_module(str(snake_case_ ) , snake_case_ ) def lowercase_ ( self , snake_case_ ): '''simple docstring''' __UpperCAmelCase: List[Any] = input for layer in self.layers: __UpperCAmelCase: Optional[int] = layer(snake_case_ ) return hidden_state class a ( nn.Module ): """simple docstring""" def __init__( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): '''simple docstring''' super().__init__() __UpperCAmelCase: Dict = pool_scales __UpperCAmelCase: Dict = align_corners __UpperCAmelCase: Tuple = in_channels __UpperCAmelCase: Union[str, Any] = channels __UpperCAmelCase: str = [] for i, pool_scale in enumerate(snake_case_ ): __UpperCAmelCase: Union[str, Any] = UperNetPyramidPoolingBlock(pool_scale=snake_case_ , in_channels=snake_case_ , channels=snake_case_ ) self.blocks.append(snake_case_ ) self.add_module(str(snake_case_ ) , snake_case_ ) def lowercase_ ( self , snake_case_ ): '''simple docstring''' __UpperCAmelCase: List[Any] = [] for ppm in self.blocks: __UpperCAmelCase: Optional[Any] = ppm(snake_case_ ) __UpperCAmelCase: Any = nn.functional.interpolate( snake_case_ , size=x.size()[2:] , mode="""bilinear""" , align_corners=self.align_corners ) ppm_outs.append(snake_case_ ) return ppm_outs class a ( nn.Module ): """simple docstring""" def __init__( self , snake_case_ , snake_case_ ): '''simple docstring''' super().__init__() __UpperCAmelCase: Tuple = config __UpperCAmelCase: Optional[Any] = config.pool_scales # e.g. (1, 2, 3, 6) __UpperCAmelCase: int = in_channels __UpperCAmelCase: Any = config.hidden_size __UpperCAmelCase: Dict = False __UpperCAmelCase: List[Any] = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) # PSP Module __UpperCAmelCase: str = UperNetPyramidPoolingModule( self.pool_scales , self.in_channels[-1] , self.channels , align_corners=self.align_corners , ) __UpperCAmelCase: Optional[Any] = UperNetConvModule( self.in_channels[-1] + len(self.pool_scales ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) # FPN Module __UpperCAmelCase: Tuple = nn.ModuleList() __UpperCAmelCase: Tuple = nn.ModuleList() for in_channels in self.in_channels[:-1]: # skip the top layer __UpperCAmelCase: Any = UperNetConvModule(snake_case_ , self.channels , kernel_size=1 ) __UpperCAmelCase: List[Any] = UperNetConvModule(self.channels , self.channels , kernel_size=3 , padding=1 ) self.lateral_convs.append(snake_case_ ) self.fpn_convs.append(snake_case_ ) __UpperCAmelCase: int = UperNetConvModule( len(self.in_channels ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) def lowercase_ ( self ): '''simple docstring''' self.apply(self._init_weights ) def lowercase_ ( self , snake_case_ ): '''simple docstring''' if isinstance(snake_case_ , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def lowercase_ ( self , snake_case_ ): '''simple docstring''' __UpperCAmelCase: Optional[Any] = inputs[-1] __UpperCAmelCase: Union[str, Any] = [x] psp_outs.extend(self.psp_modules(snake_case_ ) ) __UpperCAmelCase: List[Any] = torch.cat(snake_case_ , dim=1 ) __UpperCAmelCase: Union[str, Any] = self.bottleneck(snake_case_ ) return output def lowercase_ ( self , snake_case_ ): '''simple docstring''' __UpperCAmelCase: Optional[Any] = [lateral_conv(encoder_hidden_states[i] ) for i, lateral_conv in enumerate(self.lateral_convs )] laterals.append(self.psp_forward(snake_case_ ) ) # build top-down path __UpperCAmelCase: List[str] = len(snake_case_ ) for i in range(used_backbone_levels - 1 , 0 , -1 ): __UpperCAmelCase: Optional[Any] = laterals[i - 1].shape[2:] __UpperCAmelCase: Tuple = laterals[i - 1] + nn.functional.interpolate( laterals[i] , size=snake_case_ , mode="""bilinear""" , align_corners=self.align_corners ) # build outputs __UpperCAmelCase: Optional[Any] = [self.fpn_convs[i](laterals[i] ) for i in range(used_backbone_levels - 1 )] # append psp feature fpn_outs.append(laterals[-1] ) for i in range(used_backbone_levels - 1 , 0 , -1 ): __UpperCAmelCase: str = nn.functional.interpolate( fpn_outs[i] , size=fpn_outs[0].shape[2:] , mode="""bilinear""" , align_corners=self.align_corners ) __UpperCAmelCase: List[str] = torch.cat(snake_case_ , dim=1 ) __UpperCAmelCase: Optional[Any] = self.fpn_bottleneck(snake_case_ ) __UpperCAmelCase: Optional[Any] = self.classifier(snake_case_ ) return output class a ( nn.Module ): """simple docstring""" def __init__( self , snake_case_ , snake_case_ = 2 , snake_case_ = 3 , snake_case_ = 1 ): '''simple docstring''' super().__init__() __UpperCAmelCase: int = config __UpperCAmelCase: Union[str, Any] = config.auxiliary_in_channels __UpperCAmelCase: Dict = config.auxiliary_channels __UpperCAmelCase: Tuple = config.auxiliary_num_convs __UpperCAmelCase: Union[str, Any] = config.auxiliary_concat_input __UpperCAmelCase: List[str] = in_index __UpperCAmelCase: Union[str, Any] = (kernel_size // 2) * dilation __UpperCAmelCase: str = [] convs.append( UperNetConvModule( self.in_channels , self.channels , kernel_size=snake_case_ , padding=snake_case_ , dilation=snake_case_ ) ) for i in range(self.num_convs - 1 ): convs.append( UperNetConvModule( self.channels , self.channels , kernel_size=snake_case_ , padding=snake_case_ , dilation=snake_case_ ) ) if self.num_convs == 0: __UpperCAmelCase: str = nn.Identity() else: __UpperCAmelCase: Union[str, Any] = nn.Sequential(*snake_case_ ) if self.concat_input: __UpperCAmelCase: List[Any] = UperNetConvModule( self.in_channels + self.channels , self.channels , kernel_size=snake_case_ , padding=kernel_size // 2 ) __UpperCAmelCase: List[Any] = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) def lowercase_ ( self ): '''simple docstring''' self.apply(self._init_weights ) def lowercase_ ( self , snake_case_ ): '''simple docstring''' if isinstance(snake_case_ , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def lowercase_ ( self , snake_case_ ): '''simple docstring''' __UpperCAmelCase: Union[str, Any] = encoder_hidden_states[self.in_index] __UpperCAmelCase: List[str] = self.convs(snake_case_ ) if self.concat_input: __UpperCAmelCase: int = self.conv_cat(torch.cat([hidden_states, output] , dim=1 ) ) __UpperCAmelCase: Optional[Any] = self.classifier(snake_case_ ) return output class a ( _UpperCamelCase ): """simple docstring""" __lowerCAmelCase = UperNetConfig __lowerCAmelCase = """pixel_values""" __lowerCAmelCase = True def lowercase_ ( self , snake_case_ ): '''simple docstring''' if isinstance(snake_case_ , snake_case_ ): module.backbone.init_weights() module.decode_head.init_weights() module.auxiliary_head.init_weights() def lowercase_ ( self ): '''simple docstring''' self.backbone.init_weights() self.decode_head.init_weights() self.auxiliary_head.init_weights() def lowercase_ ( self , snake_case_ , snake_case_=False ): '''simple docstring''' if isinstance(snake_case_ , snake_case_ ): __UpperCAmelCase: Any = value SCREAMING_SNAKE_CASE_ = R'\n Parameters:\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n config ([`UperNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' SCREAMING_SNAKE_CASE_ = R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using\n [`AutoImageProcessor`]. See [`SegformerImageProcessor.__call__`] for details.\n output_attentions (`bool`, *optional*):\n Whether or not to return the attentions tensors of all attention layers in case the backbone has them. See\n `attentions` under returned tensors for more detail.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers of the backbone. See `hidden_states` under\n returned tensors for more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( """UperNet framework leveraging any vision backbone e.g. for ADE20k, CityScapes.""" , _UpperCamelCase , ) class a ( _UpperCamelCase ): """simple docstring""" def __init__( self , snake_case_ ): '''simple docstring''' super().__init__(snake_case_ ) __UpperCAmelCase: Optional[Any] = AutoBackbone.from_config(config.backbone_config ) # Semantic segmentation head(s) __UpperCAmelCase: List[str] = UperNetHead(snake_case_ , in_channels=self.backbone.channels ) __UpperCAmelCase: List[str] = UperNetFCNHead(snake_case_ ) if config.use_auxiliary_head else None # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UPERNET_INPUTS_DOCSTRING.format("""batch_size, sequence_length""" ) ) @replace_return_docstrings(output_type=snake_case_ , config_class=_CONFIG_FOR_DOC ) def lowercase_ ( self , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , ): '''simple docstring''' __UpperCAmelCase: Optional[Any] = return_dict if return_dict is not None else self.config.use_return_dict __UpperCAmelCase: List[Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __UpperCAmelCase: str = output_attentions if output_attentions is not None else self.config.output_attentions __UpperCAmelCase: Any = self.backbone.forward_with_filtered_kwargs( snake_case_ , output_hidden_states=snake_case_ , output_attentions=snake_case_ ) __UpperCAmelCase: List[str] = outputs.feature_maps __UpperCAmelCase: Optional[int] = self.decode_head(snake_case_ ) __UpperCAmelCase: List[Any] = nn.functional.interpolate(snake_case_ , size=pixel_values.shape[2:] , mode="""bilinear""" , align_corners=snake_case_ ) __UpperCAmelCase: str = None if self.auxiliary_head is not None: __UpperCAmelCase: Optional[int] = self.auxiliary_head(snake_case_ ) __UpperCAmelCase: List[Any] = nn.functional.interpolate( snake_case_ , size=pixel_values.shape[2:] , mode="""bilinear""" , align_corners=snake_case_ ) __UpperCAmelCase: int = None if labels is not None: if self.config.num_labels == 1: raise ValueError("""The number of labels should be greater than one""" ) else: # compute weighted loss __UpperCAmelCase: str = CrossEntropyLoss(ignore_index=self.config.loss_ignore_index ) __UpperCAmelCase: Union[str, Any] = loss_fct(snake_case_ , snake_case_ ) __UpperCAmelCase: Any = loss_fct(snake_case_ , snake_case_ ) __UpperCAmelCase: str = main_loss + self.config.auxiliary_loss_weight * auxiliary_loss if not return_dict: if output_hidden_states: __UpperCAmelCase: List[Any] = (logits,) + outputs[1:] else: __UpperCAmelCase: Optional[Any] = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SemanticSegmenterOutput( loss=snake_case_ , logits=snake_case_ , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
715
'''simple docstring''' import inspect import jax import jax.lax as lax import jax.numpy as jnp from ..utils import add_start_docstrings from ..utils.logging import get_logger SCREAMING_SNAKE_CASE_ = get_logger(__name__) SCREAMING_SNAKE_CASE_ = R'\n Args:\n input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`):\n Indices of input sequence tokens in the vocabulary.\n\n Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and\n [`PreTrainedTokenizer.__call__`] for details.\n\n [What are input IDs?](../glossary#input-ids)\n scores (`jnp.ndarray` of shape `(batch_size, config.vocab_size)`):\n Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam\n search or log softmax for each vocabulary token when using beam search\n kwargs (`Dict[str, Any]`, *optional*):\n Additional logits processor specific kwargs.\n\n Return:\n `jnp.ndarray` of shape `(batch_size, config.vocab_size)`: The processed prediction scores.\n\n' class a : """simple docstring""" @add_start_docstrings(snake_case_ ) def __call__( self , snake_case_ , snake_case_ ): '''simple docstring''' raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) class a : """simple docstring""" @add_start_docstrings(snake_case_ ) def __call__( self , snake_case_ , snake_case_ ): '''simple docstring''' raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) class a ( __lowerCAmelCase ): """simple docstring""" @add_start_docstrings(snake_case_ ) def __call__( self , snake_case_ , snake_case_ , snake_case_ , **snake_case_ ): '''simple docstring''' for processor in self: __UpperCAmelCase: str = inspect.signature(processor.__call__ ).parameters if len(snake_case_ ) > 3: if not all(arg in kwargs for arg in list(function_args.keys() )[2:] ): raise ValueError( F'''Make sure that all the required parameters: {list(function_args.keys() )} for ''' F'''{processor.__class__} are passed to the logits processor.''' ) __UpperCAmelCase: List[Any] = processor(snake_case_ , snake_case_ , snake_case_ , **snake_case_ ) else: __UpperCAmelCase: Optional[Any] = processor(snake_case_ , snake_case_ , snake_case_ ) return scores class a ( __lowerCAmelCase ): """simple docstring""" def __init__( self , snake_case_ ): '''simple docstring''' if not isinstance(snake_case_ , snake_case_ ) or not (temperature > 0): raise ValueError(F'''`temperature` has to be a strictly positive float, but is {temperature}''' ) __UpperCAmelCase: Any = temperature def __call__( self , snake_case_ , snake_case_ , snake_case_ ): '''simple docstring''' __UpperCAmelCase: Tuple = scores / self.temperature return scores class a ( __lowerCAmelCase ): """simple docstring""" def __init__( self , snake_case_ , snake_case_ = -float("""Inf""" ) , snake_case_ = 1 ): '''simple docstring''' if not isinstance(snake_case_ , snake_case_ ) or (top_p < 0 or top_p > 1.0): raise ValueError(F'''`top_p` has to be a float > 0 and < 1, but is {top_p}''' ) if not isinstance(snake_case_ , snake_case_ ) or (min_tokens_to_keep < 1): raise ValueError(F'''`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}''' ) __UpperCAmelCase: int = top_p __UpperCAmelCase: str = filter_value __UpperCAmelCase: List[Any] = min_tokens_to_keep def __call__( self , snake_case_ , snake_case_ , snake_case_ ): '''simple docstring''' __UpperCAmelCase, __UpperCAmelCase: List[Any] = lax.top_k(snake_case_ , scores.shape[-1] ) __UpperCAmelCase: Tuple = jnp.full_like(snake_case_ , self.filter_value ) __UpperCAmelCase: Optional[int] = jax.nn.softmax(snake_case_ , axis=-1 ).cumsum(axis=-1 ) __UpperCAmelCase: List[str] = cumulative_probs < self.top_p # include the token that is higher than top_p as well __UpperCAmelCase: str = jnp.roll(snake_case_ , 1 ) score_mask |= score_mask.at[:, 0].set(snake_case_ ) # min tokens to keep __UpperCAmelCase: str = score_mask.at[:, : self.min_tokens_to_keep].set(snake_case_ ) __UpperCAmelCase: List[Any] = jnp.where(snake_case_ , snake_case_ , snake_case_ ) __UpperCAmelCase: Optional[Any] = jax.lax.sort_key_val(snake_case_ , snake_case_ )[-1] return next_scores class a ( __lowerCAmelCase ): """simple docstring""" def __init__( self , snake_case_ , snake_case_ = -float("""Inf""" ) , snake_case_ = 1 ): '''simple docstring''' if not isinstance(snake_case_ , snake_case_ ) or top_k <= 0: raise ValueError(F'''`top_k` has to be a strictly positive integer, but is {top_k}''' ) __UpperCAmelCase: Optional[Any] = max(snake_case_ , snake_case_ ) __UpperCAmelCase: List[str] = filter_value def __call__( self , snake_case_ , snake_case_ , snake_case_ ): '''simple docstring''' __UpperCAmelCase, __UpperCAmelCase: List[Any] = scores.shape __UpperCAmelCase: List[Any] = jnp.full(batch_size * vocab_size , self.filter_value ) __UpperCAmelCase: Any = min(self.top_k , scores.shape[-1] ) # Safety check __UpperCAmelCase, __UpperCAmelCase: List[Any] = lax.top_k(snake_case_ , snake_case_ ) __UpperCAmelCase: Optional[Any] = jnp.broadcast_to((jnp.arange(snake_case_ ) * vocab_size)[:, None] , (batch_size, topk) ).flatten() __UpperCAmelCase: List[Any] = topk_scores.flatten() __UpperCAmelCase: str = topk_indices.flatten() + shift __UpperCAmelCase: List[Any] = next_scores_flat.at[topk_indices_flat].set(snake_case_ ) __UpperCAmelCase: Any = next_scores_flat.reshape(snake_case_ , snake_case_ ) return next_scores class a ( __lowerCAmelCase ): """simple docstring""" def __init__( self , snake_case_ ): '''simple docstring''' __UpperCAmelCase: List[Any] = bos_token_id def __call__( self , snake_case_ , snake_case_ , snake_case_ ): '''simple docstring''' __UpperCAmelCase: List[Any] = jnp.full(scores.shape , -float("""inf""" ) ) __UpperCAmelCase: Optional[Any] = 1 - jnp.bool_(cur_len - 1 ) __UpperCAmelCase: Any = jnp.where(snake_case_ , new_scores.at[:, self.bos_token_id].set(0 ) , snake_case_ ) return scores class a ( __lowerCAmelCase ): """simple docstring""" def __init__( self , snake_case_ , snake_case_ ): '''simple docstring''' __UpperCAmelCase: Union[str, Any] = max_length __UpperCAmelCase: List[str] = eos_token_id def __call__( self , snake_case_ , snake_case_ , snake_case_ ): '''simple docstring''' __UpperCAmelCase: Optional[int] = jnp.full(scores.shape , -float("""inf""" ) ) __UpperCAmelCase: List[str] = 1 - jnp.bool_(cur_len - self.max_length + 1 ) __UpperCAmelCase: Any = jnp.where(snake_case_ , new_scores.at[:, self.eos_token_id].set(0 ) , snake_case_ ) return scores class a ( __lowerCAmelCase ): """simple docstring""" def __init__( self , snake_case_ , snake_case_ ): '''simple docstring''' if not isinstance(snake_case_ , snake_case_ ) or min_length < 0: raise ValueError(F'''`min_length` has to be a positive integer, but is {min_length}''' ) if not isinstance(snake_case_ , snake_case_ ) or eos_token_id < 0: raise ValueError(F'''`eos_token_id` has to be a positive integer, but is {eos_token_id}''' ) __UpperCAmelCase: List[Any] = min_length __UpperCAmelCase: Optional[int] = eos_token_id def __call__( self , snake_case_ , snake_case_ , snake_case_ ): '''simple docstring''' __UpperCAmelCase: Union[str, Any] = 1 - jnp.clip(cur_len - self.min_length , 0 , 1 ) __UpperCAmelCase: int = jnp.where(snake_case_ , scores.at[:, self.eos_token_id].set(-float("""inf""" ) ) , snake_case_ ) return scores class a ( __lowerCAmelCase ): """simple docstring""" def __init__( self , snake_case_ , snake_case_ ): '''simple docstring''' __UpperCAmelCase: Any = list(snake_case_ ) __UpperCAmelCase: Optional[Any] = begin_index def __call__( self , snake_case_ , snake_case_ , snake_case_ ): '''simple docstring''' __UpperCAmelCase: Union[str, Any] = 1 - jnp.bool_(cur_len - self.begin_index ) __UpperCAmelCase: str = jnp.where(snake_case_ , scores.at[:, self.begin_suppress_tokens].set(-float("""inf""" ) ) , snake_case_ ) return scores class a ( __lowerCAmelCase ): """simple docstring""" def __init__( self , snake_case_ ): '''simple docstring''' __UpperCAmelCase: Optional[Any] = list(snake_case_ ) def __call__( self , snake_case_ , snake_case_ , snake_case_ ): '''simple docstring''' __UpperCAmelCase: int = scores.at[..., self.suppress_tokens].set(-float("""inf""" ) ) return scores class a ( __lowerCAmelCase ): """simple docstring""" def __init__( self , snake_case_ ): '''simple docstring''' __UpperCAmelCase: Optional[int] = dict(snake_case_ ) # Converts the dictionary of format {index: token} containing the tokens to be forced to an array, where the # index of the array corresponds to the index of the token to be forced, for XLA compatibility. # Indexes without forced tokens will have a negative value. __UpperCAmelCase: Optional[Any] = jnp.ones((max(force_token_map.keys() ) + 1) , dtype=jnp.intaa ) * -1 for index, token in force_token_map.items(): if token is not None: __UpperCAmelCase: Union[str, Any] = force_token_array.at[index].set(snake_case_ ) __UpperCAmelCase: Union[str, Any] = jnp.intaa(snake_case_ ) def __call__( self , snake_case_ , snake_case_ , snake_case_ ): '''simple docstring''' def _force_token(snake_case_ ): __UpperCAmelCase: List[Any] = scores.shape[0] __UpperCAmelCase: int = self.force_token_array[generation_idx] __UpperCAmelCase: Union[str, Any] = jnp.ones_like(snake_case_ , dtype=scores.dtype ) * -float("""inf""" ) __UpperCAmelCase: List[Any] = jnp.zeros((batch_size, 1) , dtype=scores.dtype ) __UpperCAmelCase: List[Any] = lax.dynamic_update_slice(snake_case_ , snake_case_ , (0, current_token) ) return new_scores __UpperCAmelCase: Optional[int] = lax.cond( cur_len >= self.force_token_array.shape[0] , lambda: scores , lambda: lax.cond( self.force_token_array[cur_len] >= 0 , lambda: _force_token(snake_case_ ) , lambda: scores , ) , ) return scores class a ( __lowerCAmelCase ): """simple docstring""" def __init__( self , snake_case_ , snake_case_ , snake_case_ ): '''simple docstring''' __UpperCAmelCase: int = generate_config.eos_token_id __UpperCAmelCase: Union[str, Any] = generate_config.no_timestamps_token_id __UpperCAmelCase: Tuple = generate_config.no_timestamps_token_id + 1 __UpperCAmelCase: Any = decoder_input_length + 1 if generate_config.is_multilingual: # room for language token and task token self.begin_index += 2 if hasattr(snake_case_ , """max_initial_timestamp_index""" ): __UpperCAmelCase: Optional[int] = generate_config.max_initial_timestamp_index else: __UpperCAmelCase: List[str] = model_config.vocab_size if self.max_initial_timestamp_index is None: __UpperCAmelCase: Any = model_config.vocab_size def __call__( self , snake_case_ , snake_case_ , snake_case_ ): '''simple docstring''' __UpperCAmelCase: Any = scores.at[:, self.no_timestamps_token_id].set(-float("""inf""" ) ) def handle_pairs(snake_case_ , snake_case_ ): __UpperCAmelCase: Optional[int] = jnp.where((cur_len - self.begin_index) >= 1 , snake_case_ , snake_case_ ) __UpperCAmelCase: Union[str, Any] = jnp.where( input_ids_k[cur_len - 1] >= self.timestamp_begin , True and last_was_timestamp , snake_case_ , ) __UpperCAmelCase: Union[str, Any] = jnp.where((cur_len - self.begin_index) < 2 , snake_case_ , snake_case_ ) __UpperCAmelCase: List[str] = jnp.where( input_ids_k[cur_len - 2] >= self.timestamp_begin , snake_case_ , snake_case_ , ) return jnp.where( snake_case_ , jnp.where( penultimate_was_timestamp > 0 , scores_k.at[self.timestamp_begin :].set(-float("""inf""" ) ) , scores_k.at[: self.eos_token_id].set(-float("""inf""" ) ) , ) , snake_case_ , ) __UpperCAmelCase: Dict = jax.vmap(snake_case_ )(snake_case_ , snake_case_ ) __UpperCAmelCase: Dict = jnp.where(cur_len == self.begin_index , snake_case_ , snake_case_ ) __UpperCAmelCase: List[Any] = jnp.where( self.max_initial_timestamp_index is not None , True and apply_max_initial_timestamp , snake_case_ , ) __UpperCAmelCase: List[str] = self.timestamp_begin + self.max_initial_timestamp_index __UpperCAmelCase: List[str] = jnp.where( snake_case_ , scores.at[:, last_allowed + 1 :].set(-float("""inf""" ) ) , snake_case_ , ) # if sum of probability over timestamps is above any other token, sample timestamp __UpperCAmelCase: Union[str, Any] = jax.nn.log_softmax(snake_case_ , axis=-1 ) def handle_cumulative_probs(snake_case_ , snake_case_ ): __UpperCAmelCase: int = jax.nn.logsumexp(logprobs_k[self.timestamp_begin :] , axis=-1 ) __UpperCAmelCase: Tuple = jnp.max(logprobs_k[: self.timestamp_begin] ) return jnp.where( timestamp_logprob > max_text_token_logprob , scores_k.at[: self.timestamp_begin].set(-float("""inf""" ) ) , snake_case_ , ) __UpperCAmelCase: Tuple = jax.vmap(snake_case_ )(snake_case_ , snake_case_ ) return scores
466
0
from ...processing_utils import ProcessorMixin class __a ( A__ ): _lowerCAmelCase : List[Any] = ['''image_processor''', '''feature_extractor'''] _lowerCAmelCase : Any = '''TvltImageProcessor''' _lowerCAmelCase : List[str] = '''TvltFeatureExtractor''' def __init__( self : Any , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' super().__init__(image_processor=SCREAMING_SNAKE_CASE , feature_extractor=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[str] = image_processor UpperCamelCase__ : Optional[int] = feature_extractor def __call__( self : int , SCREAMING_SNAKE_CASE : Dict=None , SCREAMING_SNAKE_CASE : List[str]=None , SCREAMING_SNAKE_CASE : Optional[Any]=None , SCREAMING_SNAKE_CASE : Optional[int]=None , SCREAMING_SNAKE_CASE : Dict=False , SCREAMING_SNAKE_CASE : Any=False , *SCREAMING_SNAKE_CASE : Dict , **SCREAMING_SNAKE_CASE : List[Any] , ): '''simple docstring''' if images is None and audio is None: raise ValueError("You need to specify either an `images` or `audio` input to process." ) UpperCamelCase__ : List[str] = None if images is not None: UpperCamelCase__ : Dict = self.image_processor(SCREAMING_SNAKE_CASE , mask_pixel=SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) if images_mixed is not None: UpperCamelCase__ : Tuple = self.image_processor(SCREAMING_SNAKE_CASE , is_mixed=SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) if audio is not None: UpperCamelCase__ : Optional[int] = self.feature_extractor( SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE , sampling_rate=SCREAMING_SNAKE_CASE , mask_audio=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[Any] = {} if audio is not None: output_dict.update(SCREAMING_SNAKE_CASE ) if images is not None: output_dict.update(SCREAMING_SNAKE_CASE ) if images_mixed_dict is not None: output_dict.update(SCREAMING_SNAKE_CASE ) return output_dict @property def __lowercase ( self : Any ): '''simple docstring''' UpperCamelCase__ : Union[str, Any] = self.image_processor.model_input_names UpperCamelCase__ : Dict = self.feature_extractor.model_input_names return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names ) )
228
import inspect import unittest import warnings from math import ceil, floor from transformers import LevitConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_MAPPING, LevitForImageClassification, LevitForImageClassificationWithTeacher, LevitModel, ) from transformers.models.levit.modeling_levit import LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class __a ( A__ ): def __lowercase ( self : Optional[int] ): '''simple docstring''' UpperCamelCase__ : str = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(SCREAMING_SNAKE_CASE , "hidden_sizes" ) ) self.parent.assertTrue(hasattr(SCREAMING_SNAKE_CASE , "num_attention_heads" ) ) class __a : def __init__( self : List[Any] , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Tuple=13 , SCREAMING_SNAKE_CASE : List[Any]=64 , SCREAMING_SNAKE_CASE : Dict=3 , SCREAMING_SNAKE_CASE : str=3 , SCREAMING_SNAKE_CASE : Optional[Any]=2 , SCREAMING_SNAKE_CASE : List[Any]=1 , SCREAMING_SNAKE_CASE : List[Any]=16 , SCREAMING_SNAKE_CASE : Tuple=[1_28, 2_56, 3_84] , SCREAMING_SNAKE_CASE : Tuple=[4, 6, 8] , SCREAMING_SNAKE_CASE : Dict=[2, 3, 4] , SCREAMING_SNAKE_CASE : Any=[16, 16, 16] , SCREAMING_SNAKE_CASE : List[str]=0 , SCREAMING_SNAKE_CASE : List[Any]=[2, 2, 2] , SCREAMING_SNAKE_CASE : int=[2, 2, 2] , SCREAMING_SNAKE_CASE : str=0.0_2 , SCREAMING_SNAKE_CASE : List[str]=True , SCREAMING_SNAKE_CASE : List[str]=True , SCREAMING_SNAKE_CASE : int=2 , ): '''simple docstring''' UpperCamelCase__ : Dict = parent UpperCamelCase__ : Any = batch_size UpperCamelCase__ : str = image_size UpperCamelCase__ : Dict = num_channels UpperCamelCase__ : str = kernel_size UpperCamelCase__ : str = stride UpperCamelCase__ : int = padding UpperCamelCase__ : int = hidden_sizes UpperCamelCase__ : Dict = num_attention_heads UpperCamelCase__ : int = depths UpperCamelCase__ : Optional[Any] = key_dim UpperCamelCase__ : Union[str, Any] = drop_path_rate UpperCamelCase__ : List[str] = patch_size UpperCamelCase__ : str = attention_ratio UpperCamelCase__ : int = mlp_ratio UpperCamelCase__ : Optional[int] = initializer_range UpperCamelCase__ : Union[str, Any] = [ ["Subsample", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ["Subsample", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] UpperCamelCase__ : str = is_training UpperCamelCase__ : int = use_labels UpperCamelCase__ : List[str] = num_labels UpperCamelCase__ : int = initializer_range def __lowercase ( self : Optional[Any] ): '''simple docstring''' UpperCamelCase__ : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase__ : List[str] = None if self.use_labels: UpperCamelCase__ : List[str] = ids_tensor([self.batch_size] , self.num_labels ) UpperCamelCase__ : List[str] = self.get_config() return config, pixel_values, labels def __lowercase ( self : Tuple ): '''simple docstring''' return LevitConfig( image_size=self.image_size , num_channels=self.num_channels , kernel_size=self.kernel_size , stride=self.stride , padding=self.padding , patch_size=self.patch_size , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , depths=self.depths , key_dim=self.key_dim , drop_path_rate=self.drop_path_rate , mlp_ratio=self.mlp_ratio , attention_ratio=self.attention_ratio , initializer_range=self.initializer_range , down_ops=self.down_ops , ) def __lowercase ( self : Dict , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' UpperCamelCase__ : Union[str, Any] = LevitModel(config=SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase__ : Any = model(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Dict = (self.image_size, self.image_size) UpperCamelCase__ , UpperCamelCase__ : Optional[Any] = image_size[0], image_size[1] for _ in range(4 ): UpperCamelCase__ : List[Any] = floor(((height + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) UpperCamelCase__ : int = floor(((width + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, ceil(height / 4 ) * ceil(width / 4 ), self.hidden_sizes[-1]) , ) def __lowercase ( self : int , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' UpperCamelCase__ : Union[str, Any] = self.num_labels UpperCamelCase__ : Optional[Any] = LevitForImageClassification(SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase__ : str = model(SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowercase ( self : Optional[Any] ): '''simple docstring''' UpperCamelCase__ : Tuple = self.prepare_config_and_inputs() UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ : str = config_and_inputs UpperCamelCase__ : List[str] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class __a ( A__ , A__ , unittest.TestCase ): _lowerCAmelCase : str = ( (LevitModel, LevitForImageClassification, LevitForImageClassificationWithTeacher) if is_torch_available() else () ) _lowerCAmelCase : List[str] = ( { '''feature-extraction''': LevitModel, '''image-classification''': (LevitForImageClassification, LevitForImageClassificationWithTeacher), } if is_torch_available() else {} ) _lowerCAmelCase : Optional[Any] = False _lowerCAmelCase : Optional[Any] = False _lowerCAmelCase : Any = False _lowerCAmelCase : Tuple = False _lowerCAmelCase : List[Any] = False def __lowercase ( self : Any ): '''simple docstring''' UpperCamelCase__ : List[Any] = LevitModelTester(self ) UpperCamelCase__ : List[Any] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE , has_text_modality=SCREAMING_SNAKE_CASE , hidden_size=37 ) def __lowercase ( self : str ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __lowercase ( self : List[str] ): '''simple docstring''' return @unittest.skip(reason="Levit does not use inputs_embeds" ) def __lowercase ( self : Union[str, Any] ): '''simple docstring''' pass @unittest.skip(reason="Levit does not support input and output embeddings" ) def __lowercase ( self : List[str] ): '''simple docstring''' pass @unittest.skip(reason="Levit does not output attentions" ) def __lowercase ( self : List[str] ): '''simple docstring''' pass def __lowercase ( self : str ): '''simple docstring''' UpperCamelCase__ , UpperCamelCase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ : Optional[int] = model_class(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase__ : int = [*signature.parameters.keys()] UpperCamelCase__ : List[Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE ) def __lowercase ( self : Optional[Any] ): '''simple docstring''' def check_hidden_states_output(SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Union[str, Any] ): UpperCamelCase__ : Dict = model_class(SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): UpperCamelCase__ : int = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) UpperCamelCase__ : int = outputs.hidden_states UpperCamelCase__ : List[Any] = len(self.model_tester.depths ) + 1 self.assertEqual(len(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Optional[Any] = (self.model_tester.image_size, self.model_tester.image_size) UpperCamelCase__ , UpperCamelCase__ : Optional[Any] = image_size[0], image_size[1] for _ in range(4 ): UpperCamelCase__ : int = floor( ( (height + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) UpperCamelCase__ : Any = floor( ( (width + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [ height * width, self.model_tester.hidden_sizes[0], ] , ) UpperCamelCase__ , UpperCamelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ : List[Any] = True check_hidden_states_output(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase__ : List[Any] = True check_hidden_states_output(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def __lowercase ( self : List[str] ): '''simple docstring''' pass def __lowercase ( self : Tuple , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Optional[Any]=False ): '''simple docstring''' UpperCamelCase__ : Union[str, Any] = super()._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , return_labels=SCREAMING_SNAKE_CASE ) if return_labels: if model_class.__name__ == "LevitForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def __lowercase ( self : Any ): '''simple docstring''' UpperCamelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE ) def __lowercase ( self : Tuple ): '''simple docstring''' UpperCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE ) def __lowercase ( self : List[str] ): '''simple docstring''' if not self.model_tester.is_training: return UpperCamelCase__ , UpperCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase__ : Optional[int] = True for model_class in self.all_model_classes: # LevitForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(SCREAMING_SNAKE_CASE ) or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue UpperCamelCase__ : Dict = model_class(SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.train() UpperCamelCase__ : int = self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , return_labels=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Union[str, Any] = model(**SCREAMING_SNAKE_CASE ).loss loss.backward() def __lowercase ( self : int ): '''simple docstring''' UpperCamelCase__ , UpperCamelCase__ : str = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return UpperCamelCase__ : Union[str, Any] = False UpperCamelCase__ : Dict = True for model_class in self.all_model_classes: if model_class in get_values(SCREAMING_SNAKE_CASE ) or not model_class.supports_gradient_checkpointing: continue # LevitForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "LevitForImageClassificationWithTeacher": continue UpperCamelCase__ : int = model_class(SCREAMING_SNAKE_CASE ) model.gradient_checkpointing_enable() model.to(SCREAMING_SNAKE_CASE ) model.train() UpperCamelCase__ : Tuple = self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , return_labels=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Dict = model(**SCREAMING_SNAKE_CASE ).loss loss.backward() def __lowercase ( self : int ): '''simple docstring''' UpperCamelCase__ , UpperCamelCase__ : str = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase__ : Optional[int] = [ {"title": "multi_label_classification", "num_labels": 2, "dtype": torch.float}, {"title": "single_label_classification", "num_labels": 1, "dtype": torch.long}, {"title": "regression", "num_labels": 1, "dtype": torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(SCREAMING_SNAKE_CASE ), ] or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=F'Testing {model_class} with {problem_type["title"]}' ): UpperCamelCase__ : Optional[int] = problem_type["title"] UpperCamelCase__ : Tuple = problem_type["num_labels"] UpperCamelCase__ : Tuple = model_class(SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.train() UpperCamelCase__ : Dict = self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , return_labels=SCREAMING_SNAKE_CASE ) if problem_type["num_labels"] > 1: UpperCamelCase__ : Optional[int] = inputs["labels"].unsqueeze(1 ).repeat(1 , problem_type["num_labels"] ) UpperCamelCase__ : Tuple = inputs["labels"].to(problem_type["dtype"] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=SCREAMING_SNAKE_CASE ) as warning_list: UpperCamelCase__ : Any = model(**SCREAMING_SNAKE_CASE ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( F'Something is going wrong in the regression problem: intercepted {w.message}' ) loss.backward() @slow def __lowercase ( self : Dict ): '''simple docstring''' for model_name in LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ : Union[str, Any] = LevitModel.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsNotNone(SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( ) -> Optional[int]: UpperCamelCase__ : Union[str, Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class __a ( unittest.TestCase ): @cached_property def __lowercase ( self : Optional[Any] ): '''simple docstring''' return LevitImageProcessor.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def __lowercase ( self : Dict ): '''simple docstring''' UpperCamelCase__ : Tuple = LevitForImageClassificationWithTeacher.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Tuple = self.default_image_processor UpperCamelCase__ : List[str] = prepare_img() UpperCamelCase__ : Any = image_processor(images=SCREAMING_SNAKE_CASE , return_tensors="pt" ).to(SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): UpperCamelCase__ : List[Any] = model(**SCREAMING_SNAKE_CASE ) # verify the logits UpperCamelCase__ : Tuple = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Tuple = torch.tensor([1.0_4_4_8, -0.3_7_4_5, -1.8_3_1_7] ).to(SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE , atol=1e-4 ) )
228
1
from __future__ import annotations import unittest from transformers import BlenderbotConfig, BlenderbotTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotForConditionalGeneration, TFBlenderbotModel @require_tf class lowerCamelCase : """simple docstring""" UpperCAmelCase_ = BlenderbotConfig UpperCAmelCase_ = {} UpperCAmelCase_ = '''gelu''' def __init__( self : Any, _UpperCAmelCase : str, _UpperCAmelCase : Any=1_3, _UpperCAmelCase : List[str]=7, _UpperCAmelCase : Any=True, _UpperCAmelCase : Optional[Any]=False, _UpperCAmelCase : Tuple=9_9, _UpperCAmelCase : Optional[int]=3_2, _UpperCAmelCase : str=2, _UpperCAmelCase : Dict=4, _UpperCAmelCase : Dict=3_7, _UpperCAmelCase : Tuple=0.1, _UpperCAmelCase : Optional[int]=0.1, _UpperCAmelCase : Optional[Any]=2_0, _UpperCAmelCase : Optional[int]=2, _UpperCAmelCase : Union[str, Any]=1, _UpperCAmelCase : int=0, ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = parent SCREAMING_SNAKE_CASE__ : Optional[int] = batch_size SCREAMING_SNAKE_CASE__ : Any = seq_length SCREAMING_SNAKE_CASE__ : Tuple = is_training SCREAMING_SNAKE_CASE__ : Optional[Any] = use_labels SCREAMING_SNAKE_CASE__ : Union[str, Any] = vocab_size SCREAMING_SNAKE_CASE__ : Optional[int] = hidden_size SCREAMING_SNAKE_CASE__ : Optional[int] = num_hidden_layers SCREAMING_SNAKE_CASE__ : Optional[Any] = num_attention_heads SCREAMING_SNAKE_CASE__ : Dict = intermediate_size SCREAMING_SNAKE_CASE__ : Optional[int] = hidden_dropout_prob SCREAMING_SNAKE_CASE__ : List[Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ : str = max_position_embeddings SCREAMING_SNAKE_CASE__ : Dict = eos_token_id SCREAMING_SNAKE_CASE__ : Optional[Any] = pad_token_id SCREAMING_SNAKE_CASE__ : int = bos_token_id def A_ ( self : Any ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = ids_tensor([self.batch_size, self.seq_length - 1], self.vocab_size ) SCREAMING_SNAKE_CASE__ : Optional[int] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ), 1 ) SCREAMING_SNAKE_CASE__ : List[str] = tf.concat([input_ids, eos_tensor], axis=1 ) SCREAMING_SNAKE_CASE__ : Any = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.config_cls( vocab_size=self.vocab_size, d_model=self.hidden_size, encoder_layers=self.num_hidden_layers, decoder_layers=self.num_hidden_layers, encoder_attention_heads=self.num_attention_heads, decoder_attention_heads=self.num_attention_heads, encoder_ffn_dim=self.intermediate_size, decoder_ffn_dim=self.intermediate_size, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, eos_token_ids=[2], bos_token_id=self.bos_token_id, pad_token_id=self.pad_token_id, decoder_start_token_id=self.pad_token_id, **self.config_updates, ) SCREAMING_SNAKE_CASE__ : Optional[Any] = prepare_blenderbot_inputs_dict(A_, A_, A_ ) return config, inputs_dict def A_ ( self : Any, _UpperCAmelCase : int, _UpperCAmelCase : Tuple ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = TFBlenderbotModel(config=A_ ).get_decoder() SCREAMING_SNAKE_CASE__ : str = inputs_dict["input_ids"] SCREAMING_SNAKE_CASE__ : Union[str, Any] = input_ids[:1, :] SCREAMING_SNAKE_CASE__ : Union[str, Any] = inputs_dict["attention_mask"][:1, :] SCREAMING_SNAKE_CASE__ : Tuple = inputs_dict["head_mask"] SCREAMING_SNAKE_CASE__ : Tuple = 1 # first forward pass SCREAMING_SNAKE_CASE__ : Union[str, Any] = model(A_, attention_mask=A_, head_mask=A_, use_cache=A_ ) SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : Union[str, Any] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids SCREAMING_SNAKE_CASE__ : Dict = ids_tensor((self.batch_size, 3), config.vocab_size ) SCREAMING_SNAKE_CASE__ : int = tf.cast(ids_tensor((self.batch_size, 3), 2 ), tf.inta ) # append to next input_ids and SCREAMING_SNAKE_CASE__ : Dict = tf.concat([input_ids, next_tokens], axis=-1 ) SCREAMING_SNAKE_CASE__ : List[str] = tf.concat([attention_mask, next_attn_mask], axis=-1 ) SCREAMING_SNAKE_CASE__ : List[str] = model(A_, attention_mask=A_ )[0] SCREAMING_SNAKE_CASE__ : Any = model(A_, attention_mask=A_, past_key_values=A_ )[0] self.parent.assertEqual(next_tokens.shape[1], output_from_past.shape[1] ) # select random slice SCREAMING_SNAKE_CASE__ : Optional[int] = int(ids_tensor((1,), output_from_past.shape[-1] ) ) SCREAMING_SNAKE_CASE__ : Dict = output_from_no_past[:, -3:, random_slice_idx] SCREAMING_SNAKE_CASE__ : List[Any] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(A_, A_, rtol=1E-3 ) def _a ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[Any]=None , SCREAMING_SNAKE_CASE__ : Dict=None , SCREAMING_SNAKE_CASE__ : Tuple=None , SCREAMING_SNAKE_CASE__ : Dict=None , SCREAMING_SNAKE_CASE__ : List[Any]=None , ) -> Any: '''simple docstring''' if attention_mask is None: SCREAMING_SNAKE_CASE__ : str = tf.cast(tf.math.not_equal(SCREAMING_SNAKE_CASE__ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: SCREAMING_SNAKE_CASE__ : Optional[Any] = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: SCREAMING_SNAKE_CASE__ : int = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: SCREAMING_SNAKE_CASE__ : Union[str, Any] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: SCREAMING_SNAKE_CASE__ : Optional[Any] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class lowerCamelCase (_UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ = (TFBlenderbotForConditionalGeneration, TFBlenderbotModel) if is_tf_available() else () UpperCAmelCase_ = (TFBlenderbotForConditionalGeneration,) if is_tf_available() else () UpperCAmelCase_ = ( { '''conversational''': TFBlenderbotForConditionalGeneration, '''feature-extraction''': TFBlenderbotModel, '''summarization''': TFBlenderbotForConditionalGeneration, '''text2text-generation''': TFBlenderbotForConditionalGeneration, '''translation''': TFBlenderbotForConditionalGeneration, } if is_tf_available() else {} ) UpperCAmelCase_ = True UpperCAmelCase_ = False UpperCAmelCase_ = False def A_ ( self : str ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = TFBlenderbotModelTester(self ) SCREAMING_SNAKE_CASE__ : Dict = ConfigTester(self, config_class=A_ ) def A_ ( self : List[Any] ) -> str: """simple docstring""" self.config_tester.run_common_tests() def A_ ( self : List[str] ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*A_ ) @require_tokenizers @require_tf class lowerCamelCase (unittest.TestCase ): """simple docstring""" UpperCAmelCase_ = ['''My friends are cool but they eat too many carbs.'''] UpperCAmelCase_ = '''facebook/blenderbot-400M-distill''' @cached_property def A_ ( self : str ) -> Optional[int]: """simple docstring""" return BlenderbotTokenizer.from_pretrained(self.model_name ) @cached_property def A_ ( self : Tuple ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def A_ ( self : List[Any] ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = self.tokenizer(self.src_text, return_tensors="tf" ) SCREAMING_SNAKE_CASE__ : Dict = self.model.generate( model_inputs.input_ids, ) SCREAMING_SNAKE_CASE__ : Optional[Any] = self.tokenizer.batch_decode(generated_ids.numpy(), skip_special_tokens=A_ )[0] assert ( generated_words == " That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?" )
705
import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401 from coval.conll import reader, util from coval.eval import evaluator import datasets _lowerCamelCase : Tuple = datasets.logging.get_logger(__name__) _lowerCamelCase : Any = '''\ @InProceedings{moosavi2019minimum, author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube}, title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection}, year = {2019}, booktitle = {Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)}, publisher = {Association for Computational Linguistics}, address = {Florence, Italy}, } @inproceedings{10.3115/1072399.1072405, author = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette}, title = {A Model-Theoretic Coreference Scoring Scheme}, year = {1995}, isbn = {1558604022}, publisher = {Association for Computational Linguistics}, address = {USA}, url = {https://doi.org/10.3115/1072399.1072405}, doi = {10.3115/1072399.1072405}, booktitle = {Proceedings of the 6th Conference on Message Understanding}, pages = {45–52}, numpages = {8}, location = {Columbia, Maryland}, series = {MUC6 ’95} } @INPROCEEDINGS{Bagga98algorithmsfor, author = {Amit Bagga and Breck Baldwin}, title = {Algorithms for Scoring Coreference Chains}, booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference}, year = {1998}, pages = {563--566} } @INPROCEEDINGS{Luo05oncoreference, author = {Xiaoqiang Luo}, title = {On coreference resolution performance metrics}, booktitle = {In Proc. of HLT/EMNLP}, year = {2005}, pages = {25--32}, publisher = {URL} } @inproceedings{moosavi-strube-2016-coreference, title = "Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric", author = "Moosavi, Nafise Sadat and Strube, Michael", booktitle = "Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)", month = aug, year = "2016", address = "Berlin, Germany", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/P16-1060", doi = "10.18653/v1/P16-1060", pages = "632--642", } ''' _lowerCamelCase : Optional[int] = '''\ CoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which implements of the common evaluation metrics including MUC [Vilain et al, 1995], B-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005], LEA [Moosavi and Strube, 2016] and the averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe) [Denis and Baldridge, 2009a; Pradhan et al., 2011]. This wrapper of CoVal currently only work with CoNLL line format: The CoNLL format has one word per line with all the annotation for this word in column separated by spaces: Column Type Description 1 Document ID This is a variation on the document filename 2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc. 3 Word number 4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release. 5 Part-of-Speech 6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the "([pos] [word])" string (or leaf) and concatenating the items in the rows of that column. 7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a "-" 8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7. 9 Word sense This is the word sense of the word in Column 3. 10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data. 11 Named Entities These columns identifies the spans representing various named entities. 12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7. N Coreference Coreference chain information encoded in a parenthesis structure. More informations on the format can be found here (section "*_conll File Format"): http://www.conll.cemantix.org/2012/data.html Details on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md CoVal code was written by @ns-moosavi. Some parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py The test suite is taken from https://github.com/conll/reference-coreference-scorers/ Mention evaluation and the test suite are added by @andreasvc. Parsing CoNLL files is developed by Leo Born. ''' _lowerCamelCase : str = ''' Calculates coreference evaluation metrics. Args: predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format. Each prediction is a word with its annotations as a string made of columns joined with spaces. Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation) See the details on the format in the description of the metric. references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format. Each reference is a word with its annotations as a string made of columns joined with spaces. Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation) See the details on the format in the description of the metric. keep_singletons: After extracting all mentions of key or system files, mentions whose corresponding coreference chain is of size one, are considered as singletons. The default evaluation mode will include singletons in evaluations if they are included in the key or the system files. By setting \'keep_singletons=False\', all singletons in the key and system files will be excluded from the evaluation. NP_only: Most of the recent coreference resolvers only resolve NP mentions and leave out the resolution of VPs. By setting the \'NP_only\' option, the scorer will only evaluate the resolution of NPs. min_span: By setting \'min_span\', the scorer reports the results based on automatically detected minimum spans. Minimum spans are determined using the MINA algorithm. Returns: \'mentions\': mentions \'muc\': MUC metric [Vilain et al, 1995] \'bcub\': B-cubed [Bagga and Baldwin, 1998] \'ceafe\': CEAFe [Luo et al., 2005] \'lea\': LEA [Moosavi and Strube, 2016] \'conll_score\': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe) Examples: >>> coval = datasets.load_metric(\'coval\') >>> words = [\'bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -\', ... \'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)\', ... \'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)\', ... \'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -\', ... \'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -\', ... \'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -\'] >>> references = [words] >>> predictions = [words] >>> results = coval.compute(predictions=predictions, references=references) >>> print(results) # doctest:+ELLIPSIS {\'mentions/recall\': 1.0,[...] \'conll_score\': 100.0} ''' def _a ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Dict=False , SCREAMING_SNAKE_CASE__ : int=False , SCREAMING_SNAKE_CASE__ : Tuple=True , SCREAMING_SNAKE_CASE__ : List[str]=False , SCREAMING_SNAKE_CASE__ : List[Any]="dummy_doc" ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = {doc: key_lines} SCREAMING_SNAKE_CASE__ : Tuple = {doc: sys_lines} SCREAMING_SNAKE_CASE__ : List[Any] = {} SCREAMING_SNAKE_CASE__ : Optional[Any] = 0 SCREAMING_SNAKE_CASE__ : List[str] = 0 SCREAMING_SNAKE_CASE__ : Optional[Any] = 0 SCREAMING_SNAKE_CASE__ : int = 0 SCREAMING_SNAKE_CASE__ : int = 0 SCREAMING_SNAKE_CASE__ : str = 0 SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : List[str] = reader.get_doc_mentions(SCREAMING_SNAKE_CASE__ , key_doc_lines[doc] , SCREAMING_SNAKE_CASE__ ) key_singletons_num += singletons_num if NP_only or min_span: SCREAMING_SNAKE_CASE__ : str = reader.set_annotated_parse_trees(SCREAMING_SNAKE_CASE__ , key_doc_lines[doc] , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : Any = reader.get_doc_mentions(SCREAMING_SNAKE_CASE__ , sys_doc_lines[doc] , SCREAMING_SNAKE_CASE__ ) sys_singletons_num += singletons_num if NP_only or min_span: SCREAMING_SNAKE_CASE__ : Tuple = reader.set_annotated_parse_trees(SCREAMING_SNAKE_CASE__ , key_doc_lines[doc] , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if remove_nested: SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : Union[str, Any] = reader.remove_nested_coref_mentions(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) key_nested_coref_num += nested_mentions key_removed_nested_clusters += removed_clusters SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : Dict = reader.remove_nested_coref_mentions(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) sys_nested_coref_num += nested_mentions sys_removed_nested_clusters += removed_clusters SCREAMING_SNAKE_CASE__ : Dict = reader.get_mention_assignments(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Any = reader.get_mention_assignments(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Tuple = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster) if remove_nested: logger.info( "Number of removed nested coreferring mentions in the key " f'''annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}''' ) logger.info( "Number of resulting singleton clusters in the key " f'''annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}''' ) if not keep_singletons: logger.info( f'''{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system ''' "files, respectively" ) return doc_coref_infos def _a ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = get_coref_infos(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : List[str] = {} SCREAMING_SNAKE_CASE__ : Dict = 0 SCREAMING_SNAKE_CASE__ : Optional[int] = 0 for name, metric in metrics: SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : int = evaluator.evaluate_documents(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , beta=1 ) if name in ["muc", "bcub", "ceafe"]: conll += fa conll_subparts_num += 1 output_scores.update({f'''{name}/recall''': recall, f'''{name}/precision''': precision, f'''{name}/f1''': fa} ) logger.info( name.ljust(10 ) , f'''Recall: {recall * 1_00:.2f}''' , f''' Precision: {precision * 1_00:.2f}''' , f''' F1: {fa * 1_00:.2f}''' , ) if conll_subparts_num == 3: SCREAMING_SNAKE_CASE__ : List[Any] = (conll / 3) * 1_00 logger.info(f'''CoNLL score: {conll:.2f}''' ) output_scores.update({"conll_score": conll} ) return output_scores def _a ( SCREAMING_SNAKE_CASE__ : Any ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = False for line in key_lines: if not line.startswith("#" ): if len(line.split() ) > 6: SCREAMING_SNAKE_CASE__ : Optional[int] = line.split()[5] if not parse_col == "-": SCREAMING_SNAKE_CASE__ : Any = True break else: break return has_gold_parse @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCamelCase (datasets.Metric ): """simple docstring""" def A_ ( self : Optional[Any] ) -> Dict: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" ) ), "references": datasets.Sequence(datasets.Value("string" ) ), } ), codebase_urls=["https://github.com/ns-moosavi/coval"], reference_urls=[ "https://github.com/ns-moosavi/coval", "https://www.aclweb.org/anthology/P16-1060", "http://www.conll.cemantix.org/2012/data.html", ], ) def A_ ( self : Any, _UpperCAmelCase : Optional[int], _UpperCAmelCase : str, _UpperCAmelCase : str=True, _UpperCAmelCase : int=False, _UpperCAmelCase : Any=False, _UpperCAmelCase : Optional[Any]=False ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = [ ("mentions", evaluator.mentions), ("muc", evaluator.muc), ("bcub", evaluator.b_cubed), ("ceafe", evaluator.ceafe), ("lea", evaluator.lea), ] if min_span: SCREAMING_SNAKE_CASE__ : Any = util.check_gold_parse_annotation(_UpperCAmelCase ) if not has_gold_parse: raise NotImplementedError("References should have gold parse annotation to use 'min_span'." ) # util.parse_key_file(key_file) # key_file = key_file + ".parsed" SCREAMING_SNAKE_CASE__ : List[str] = evaluate( key_lines=_UpperCAmelCase, sys_lines=_UpperCAmelCase, metrics=_UpperCAmelCase, NP_only=_UpperCAmelCase, remove_nested=_UpperCAmelCase, keep_singletons=_UpperCAmelCase, min_span=_UpperCAmelCase, ) return score
157
0
from itertools import permutations def snake_case (UpperCAmelCase__ ) -> bool: if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False UpperCamelCase_: Optional[int] = [7, 1_1, 1_3, 1_7] for i, test in enumerate(UpperCAmelCase__ ): if (num[i + 4] * 1_0_0 + num[i + 5] * 1_0 + num[i + 6]) % test != 0: return False return True def snake_case (UpperCAmelCase__ = 1_0 ) -> int: return sum( int(''.join(map(UpperCAmelCase__ , UpperCAmelCase__ ) ) ) for num in permutations(range(UpperCAmelCase__ ) ) if is_substring_divisible(UpperCAmelCase__ ) ) if __name__ == "__main__": print(F'''{solution() = }''')
57
def _a ( lowercase__ : int = 60_08_51_47_51_43 ): '''simple docstring''' try: SCREAMING_SNAKE_CASE__ : Dict = int(lowercase__ ) except (TypeError, ValueError): raise TypeError('Parameter n must be int or castable to int.' ) if n <= 0: raise ValueError('Parameter n must be greater than or equal to one.' ) SCREAMING_SNAKE_CASE__ : int = 2 SCREAMING_SNAKE_CASE__ : int = 0 if n == 2: return 2 while n > 2: while n % i != 0: i += 1 SCREAMING_SNAKE_CASE__ : str = i while n % i == 0: SCREAMING_SNAKE_CASE__ : List[Any] = n // i i += 1 return int(lowercase__ ) if __name__ == "__main__": print(F"""{solution() = }""")
85
0
'''simple docstring''' from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class a__ ( lowercase_ ): __magic_name__ : Any = "" __magic_name__ : Optional[int] = "hf-legacy" # "hf://"" is reserved for hffs def __init__(self : List[str], __UpperCAmelCase : Optional[DatasetInfo] = None, __UpperCAmelCase : Optional[str] = None, **__UpperCAmelCase : Optional[int], ) -> Optional[Any]: """simple docstring""" super().__init__(self, **lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = repo_info SCREAMING_SNAKE_CASE : Any = token SCREAMING_SNAKE_CASE : Tuple = None def lowercase__ (self : Dict ) -> Union[str, Any]: """simple docstring""" if self.dir_cache is None: SCREAMING_SNAKE_CASE : int = {} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes SCREAMING_SNAKE_CASE : Optional[Any] = { """name""": hf_file.rfilename, """size""": None, """type""": """file""", } self.dir_cache.update( { str(lowerCamelCase_ ): {'''name''': str(lowerCamelCase_ ), '''size''': None, '''type''': '''directory'''} for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1] } ) def lowercase__ (self : List[str], __UpperCAmelCase : str, __UpperCAmelCase : str = "rb", **__UpperCAmelCase : List[Any], ) -> Tuple: """simple docstring""" if not isinstance(self.repo_info, lowerCamelCase_ ): raise NotImplementedError(F'''Open is only implemented for dataset repositories, but got {self.repo_info}''' ) SCREAMING_SNAKE_CASE : Dict = hf_hub_url(self.repo_info.id, lowerCamelCase_, revision=self.repo_info.sha ) return fsspec.open( lowerCamelCase_, mode=lowerCamelCase_, headers=get_authentication_headers_for_url(lowerCamelCase_, use_auth_token=self.token ), client_kwargs={'''trust_env''': True}, ).open() def lowercase__ (self : str, __UpperCAmelCase : int, **__UpperCAmelCase : List[str] ) -> Any: """simple docstring""" self._get_dirs() SCREAMING_SNAKE_CASE : Union[str, Any] = self._strip_protocol(lowerCamelCase_ ) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(lowerCamelCase_ ) def lowercase__ (self : Union[str, Any], __UpperCAmelCase : Optional[int], __UpperCAmelCase : int=False, **__UpperCAmelCase : Optional[Any] ) -> Optional[Any]: """simple docstring""" self._get_dirs() SCREAMING_SNAKE_CASE : str = PurePosixPath(path.strip('''/''' ) ) SCREAMING_SNAKE_CASE : Optional[int] = {} for p, f in self.dir_cache.items(): SCREAMING_SNAKE_CASE : List[Any] = PurePosixPath(p.strip('''/''' ) ) SCREAMING_SNAKE_CASE : List[str] = p.parent if root == path: SCREAMING_SNAKE_CASE : Dict = f SCREAMING_SNAKE_CASE : List[Any] = list(paths.values() ) if detail: return out else: return sorted(f['''name'''] for f in out )
713
'''simple docstring''' from manim import * class a__ ( _lowercase ): def lowercase__ (self : Optional[Any] ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = Rectangle(height=0.5, width=0.5 ) SCREAMING_SNAKE_CASE : str = Rectangle(height=0.46, width=0.46 ).set_stroke(width=0 ) SCREAMING_SNAKE_CASE : List[str] = [mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE : Optional[int] = [mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE : Union[str, Any] = VGroup(*__UpperCAmelCase ).arrange(__UpperCAmelCase, buff=0 ) SCREAMING_SNAKE_CASE : List[str] = VGroup(*__UpperCAmelCase ).arrange(__UpperCAmelCase, buff=0 ) SCREAMING_SNAKE_CASE : List[Any] = VGroup(__UpperCAmelCase, __UpperCAmelCase ).arrange(__UpperCAmelCase, buff=0 ) SCREAMING_SNAKE_CASE : Tuple = Text('''CPU''', font_size=24 ) SCREAMING_SNAKE_CASE : Dict = Group(__UpperCAmelCase, __UpperCAmelCase ).arrange(__UpperCAmelCase, buff=0.5, aligned_edge=__UpperCAmelCase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(__UpperCAmelCase ) SCREAMING_SNAKE_CASE : Any = [mem.copy() for i in range(1 )] SCREAMING_SNAKE_CASE : Dict = VGroup(*__UpperCAmelCase ).arrange(__UpperCAmelCase, buff=0 ) SCREAMING_SNAKE_CASE : List[str] = Text('''GPU''', font_size=24 ) SCREAMING_SNAKE_CASE : Union[str, Any] = Group(__UpperCAmelCase, __UpperCAmelCase ).arrange(__UpperCAmelCase, buff=0.5, aligned_edge=__UpperCAmelCase ) gpu.align_to(__UpperCAmelCase, __UpperCAmelCase ) gpu.set_x(gpu.get_x() - 1 ) self.add(__UpperCAmelCase ) SCREAMING_SNAKE_CASE : List[Any] = [mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE : Any = VGroup(*__UpperCAmelCase ).arrange(__UpperCAmelCase, buff=0 ) SCREAMING_SNAKE_CASE : Union[str, Any] = Text('''Model''', font_size=24 ) SCREAMING_SNAKE_CASE : Dict = Group(__UpperCAmelCase, __UpperCAmelCase ).arrange(__UpperCAmelCase, buff=0.5, aligned_edge=__UpperCAmelCase ) model.move_to([3, -1.0, 0] ) self.play( Create(__UpperCAmelCase, run_time=1 ), Create(__UpperCAmelCase, run_time=1 ), Create(__UpperCAmelCase, run_time=1 ), ) SCREAMING_SNAKE_CASE : Tuple = MarkupText( F'''First, an empty model skeleton is loaded\ninto <span fgcolor=\'{YELLOW}\'>memory</span> without using much RAM.''', font_size=24, ) SCREAMING_SNAKE_CASE : Optional[Any] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) SCREAMING_SNAKE_CASE : Union[str, Any] = MarkupText( F'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''', font_size=18, ) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(__UpperCAmelCase, run_time=2.5 ), Write(__UpperCAmelCase ), Write(__UpperCAmelCase ) ) self.add(__UpperCAmelCase ) SCREAMING_SNAKE_CASE : List[str] = [] SCREAMING_SNAKE_CASE : List[str] = [] SCREAMING_SNAKE_CASE : Dict = [] for i, rect in enumerate(__UpperCAmelCase ): SCREAMING_SNAKE_CASE : Optional[int] = Rectangle(height=0.46, width=0.46 ).set_stroke(width=0.0 ).set_fill(__UpperCAmelCase, opacity=0.7 ) cpu_target.move_to(__UpperCAmelCase ) cpu_target.generate_target() SCREAMING_SNAKE_CASE : List[str] = 0.46 / 4 SCREAMING_SNAKE_CASE : Any = 0.46 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ), buff=0.02, direction=__UpperCAmelCase ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target, direction=__UpperCAmelCase, buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target, direction=__UpperCAmelCase, buff=0.0 ) cpu_targs.append(__UpperCAmelCase ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(__UpperCAmelCase ) ) second_animations.append(MoveToTarget(__UpperCAmelCase, run_time=1.5 ) ) self.play(*__UpperCAmelCase ) self.play(*__UpperCAmelCase ) self.wait()
355
0
import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging __UpperCamelCase : List[Any] = logging.get_logger(__name__) class __lowerCAmelCase ( __magic_name__ ): UpperCamelCase__ = ['''input_features''', '''is_longer'''] def __init__( self :str , __magic_name__ :Union[str, Any]=64 , __magic_name__ :Optional[int]=4_8000 , __magic_name__ :str=480 , __magic_name__ :int=10 , __magic_name__ :List[Any]=1024 , __magic_name__ :List[Any]=0.0 , __magic_name__ :Tuple=False , __magic_name__ :float = 0 , __magic_name__ :float = 1_4000 , __magic_name__ :int = None , __magic_name__ :str = "fusion" , __magic_name__ :str = "repeatpad" , **__magic_name__ :List[Any] , ): '''simple docstring''' super().__init__( feature_size=__magic_name__ , sampling_rate=__magic_name__ , padding_value=__magic_name__ , return_attention_mask=__magic_name__ , **__magic_name__ , ) a = top_db a = truncation a = padding a = fft_window_size a = (fft_window_size >> 1) + 1 a = hop_length a = max_length_s a = max_length_s * sampling_rate a = sampling_rate a = frequency_min a = frequency_max a = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=__magic_name__ , min_frequency=__magic_name__ , max_frequency=__magic_name__ , sampling_rate=__magic_name__ , norm=__magic_name__ , mel_scale="""htk""" , ) a = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=__magic_name__ , min_frequency=__magic_name__ , max_frequency=__magic_name__ , sampling_rate=__magic_name__ , norm="""slaney""" , mel_scale="""slaney""" , ) def lowerCamelCase__ ( self :Any ): '''simple docstring''' a = copy.deepcopy(self.__dict__ ) a = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def lowerCamelCase__ ( self :Dict , __magic_name__ :np.array , __magic_name__ :Optional[np.array] = None ): '''simple docstring''' a = spectrogram( __magic_name__ , window_function(self.fft_window_size , """hann""" ) , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=__magic_name__ , log_mel="""dB""" , ) return log_mel_spectrogram.T def lowerCamelCase__ ( self :Optional[Any] , __magic_name__ :Dict , __magic_name__ :int , __magic_name__ :Union[str, Any] ): '''simple docstring''' a = np.array_split(list(range(0 , total_frames - chunk_frames + 1 ) ) , 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk a = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk a = [0] # randomly choose index for each part a = np.random.choice(ranges[0] ) a = np.random.choice(ranges[1] ) a = np.random.choice(ranges[2] ) a = mel[idx_front : idx_front + chunk_frames, :] a = mel[idx_middle : idx_middle + chunk_frames, :] a = mel[idx_back : idx_back + chunk_frames, :] a = torch.tensor(mel[None, None, :] ) a = torch.nn.functional.interpolate( __magic_name__ , size=[chunk_frames, 64] , mode="""bilinear""" , align_corners=__magic_name__ ) a = mel_shrink[0][0].numpy() a = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0 ) return mel_fusion def lowerCamelCase__ ( self :Any , __magic_name__ :np.array , __magic_name__ :Union[str, Any] , __magic_name__ :int , __magic_name__ :List[Any] ): '''simple docstring''' if waveform.shape[0] > max_length: if truncation == "rand_trunc": a = True # random crop to max_length (for compatibility) -> this should be handled by self.pad a = len(__magic_name__ ) - max_length a = np.random.randint(0 , overflow + 1 ) a = waveform[idx : idx + max_length] a = self._np_extract_fbank_features(__magic_name__ , self.mel_filters_slaney )[None, :] elif truncation == "fusion": a = self._np_extract_fbank_features(__magic_name__ , self.mel_filters ) a = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed a = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. a = np.stack([mel, mel, mel, mel] , axis=0 ) a = False else: a = self._random_mel_fusion(__magic_name__ , __magic_name__ , __magic_name__ ) a = True else: raise NotImplementedError(F'data_truncating {truncation} not implemented' ) else: a = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": a = int(max_length / len(__magic_name__ ) ) a = np.stack(np.tile(__magic_name__ , n_repeat + 1 ) )[:max_length] if padding == "repeatpad": a = int(max_length / len(__magic_name__ ) ) a = np.stack(np.tile(__magic_name__ , __magic_name__ ) ) a = np.pad(__magic_name__ , (0, max_length - waveform.shape[0]) , mode="""constant""" , constant_values=0 ) if truncation == "fusion": a = self._np_extract_fbank_features(__magic_name__ , self.mel_filters ) a = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0 ) else: a = self._np_extract_fbank_features(__magic_name__ , self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self :List[Any] , __magic_name__ :Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , __magic_name__ :str = None , __magic_name__ :Optional[str] = None , __magic_name__ :Optional[int] = None , __magic_name__ :Optional[int] = None , __magic_name__ :Optional[Union[str, TensorType]] = None , **__magic_name__ :List[str] , ): '''simple docstring''' a = truncation if truncation is not None else self.truncation a = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a' F' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input' F' was sampled with {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) a = isinstance(__magic_name__ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'Only mono-channel audio is supported for input to {self}' ) a = is_batched_numpy or ( isinstance(__magic_name__ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: a = [np.asarray(__magic_name__ , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(__magic_name__ , np.ndarray ): a = np.asarray(__magic_name__ , dtype=np.floataa ) elif isinstance(__magic_name__ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): a = raw_speech.astype(np.floataa ) # always return batch if not is_batched: a = [np.asarray(__magic_name__ )] # convert to mel spectrogram, truncate and pad if needed. a = [ self._get_input_mel(__magic_name__ , max_length if max_length else self.nb_max_samples , __magic_name__ , __magic_name__ ) for waveform in raw_speech ] a = [] a = [] for mel, longer in padded_inputs: input_mel.append(__magic_name__ ) is_longer.append(__magic_name__ ) if truncation == "fusion" and sum(__magic_name__ ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer a = np.random.randint(0 , len(__magic_name__ ) ) a = True if isinstance(input_mel[0] , __magic_name__ ): a = [np.asarray(__magic_name__ , dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool a = [[longer] for longer in is_longer] a = {"""input_features""": input_mel, """is_longer""": is_longer} a = BatchFeature(__magic_name__ ) if return_tensors is not None: a = input_features.convert_to_tensors(__magic_name__ ) return input_features
468
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) __UpperCamelCase : Optional[Any] = "▁" __UpperCamelCase : Any = {"vocab_file": "sentencepiece.bpe.model"} __UpperCamelCase : int = { "vocab_file": { "facebook/xglm-564M": "https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model", } } __UpperCamelCase : Dict = { "facebook/xglm-564M": 2_048, } class __lowerCAmelCase ( __magic_name__ ): UpperCamelCase__ = VOCAB_FILES_NAMES UpperCamelCase__ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase__ = ['''input_ids''', '''attention_mask'''] def __init__( self :Optional[Any] , __magic_name__ :List[str] , __magic_name__ :Tuple="<s>" , __magic_name__ :List[Any]="</s>" , __magic_name__ :List[str]="</s>" , __magic_name__ :Any="<s>" , __magic_name__ :Tuple="<unk>" , __magic_name__ :int="<pad>" , __magic_name__ :Optional[Dict[str, Any]] = None , **__magic_name__ :Optional[Any] , ): '''simple docstring''' a = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer a = 7 a = [F'<madeupword{i}>' for i in range(self.num_madeup_words )] a = kwargs.get("""additional_special_tokens""" , [] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=__magic_name__ , eos_token=__magic_name__ , unk_token=__magic_name__ , sep_token=__magic_name__ , cls_token=__magic_name__ , pad_token=__magic_name__ , sp_model_kwargs=self.sp_model_kwargs , **__magic_name__ , ) a = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__magic_name__ ) ) a = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab a = 1 # Mimic fairseq token-to-id alignment for the first 4 token a = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} a = len(self.sp_model ) a = {F'<madeupword{i}>': sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(__magic_name__ ) a = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self :List[Any] ): '''simple docstring''' a = self.__dict__.copy() a = None a = self.sp_model.serialized_model_proto() return state def __setstate__( self :Any , __magic_name__ :Any ): '''simple docstring''' a = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): a = {} a = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def lowerCamelCase__ ( self :Any , __magic_name__ :List[int] , __magic_name__ :Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return [self.sep_token_id] + token_ids_a a = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def lowerCamelCase__ ( self :Any , __magic_name__ :List[int] , __magic_name__ :Optional[List[int]] = None , __magic_name__ :bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__magic_name__ , token_ids_a=__magic_name__ , already_has_special_tokens=__magic_name__ ) if token_ids_a is None: return [1] + ([0] * len(__magic_name__ )) return [1] + ([0] * len(__magic_name__ )) + [1, 1] + ([0] * len(__magic_name__ )) def lowerCamelCase__ ( self :Optional[Any] , __magic_name__ :List[int] , __magic_name__ :Optional[List[int]] = None ): '''simple docstring''' a = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def lowerCamelCase__ ( self :str ): '''simple docstring''' return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def lowerCamelCase__ ( self :Dict ): '''simple docstring''' a = {self.convert_ids_to_tokens(__magic_name__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCamelCase__ ( self :Any , __magic_name__ :str ): '''simple docstring''' return self.sp_model.encode(__magic_name__ , out_type=__magic_name__ ) def lowerCamelCase__ ( self :List[str] , __magic_name__ :Any ): '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] a = self.sp_model.PieceToId(__magic_name__ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def lowerCamelCase__ ( self :List[str] , __magic_name__ :Dict ): '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def lowerCamelCase__ ( self :List[str] , __magic_name__ :List[str] ): '''simple docstring''' a = """""".join(__magic_name__ ).replace(__magic_name__ , """ """ ).strip() return out_string def lowerCamelCase__ ( self :List[Any] , __magic_name__ :str , __magic_name__ :Optional[str] = None ): '''simple docstring''' if not os.path.isdir(__magic_name__ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return a = os.path.join( __magic_name__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__magic_name__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __magic_name__ ) elif not os.path.isfile(self.vocab_file ): with open(__magic_name__ , """wb""" ) as fi: a = self.sp_model.serialized_model_proto() fi.write(__magic_name__ ) return (out_vocab_file,)
468
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase : Optional[int] = logging.get_logger(__name__) lowerCamelCase : List[Any] = { 'facebook/xmod-base': 'https://huggingface.co/facebook/xmod-base/resolve/main/config.json', 'facebook/xmod-large-prenorm': 'https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json', 'facebook/xmod-base-13-125k': 'https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json', 'facebook/xmod-base-30-125k': 'https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json', 'facebook/xmod-base-30-195k': 'https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json', 'facebook/xmod-base-60-125k': 'https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json', 'facebook/xmod-base-60-265k': 'https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json', 'facebook/xmod-base-75-125k': 'https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json', 'facebook/xmod-base-75-269k': 'https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json', } class snake_case__ ( UpperCamelCase_ ): _lowerCAmelCase ='xmod' def __init__( self : Any , _lowerCamelCase : Any=3_0_5_2_2 , _lowerCamelCase : int=7_6_8 , _lowerCamelCase : Union[str, Any]=1_2 , _lowerCamelCase : Any=1_2 , _lowerCamelCase : int=3_0_7_2 , _lowerCamelCase : Any="gelu" , _lowerCamelCase : List[Any]=0.1 , _lowerCamelCase : Optional[Any]=0.1 , _lowerCamelCase : List[Any]=5_1_2 , _lowerCamelCase : List[str]=2 , _lowerCamelCase : Dict=0.02 , _lowerCamelCase : List[str]=1E-12 , _lowerCamelCase : List[Any]=1 , _lowerCamelCase : Tuple=0 , _lowerCamelCase : Union[str, Any]=2 , _lowerCamelCase : str="absolute" , _lowerCamelCase : int=True , _lowerCamelCase : Optional[int]=None , _lowerCamelCase : int=False , _lowerCamelCase : List[str]=2 , _lowerCamelCase : List[str]=False , _lowerCamelCase : List[str]=True , _lowerCamelCase : Tuple=True , _lowerCamelCase : Dict=("en_XX",) , _lowerCamelCase : Tuple=None , **_lowerCamelCase : List[str] , ): super().__init__(pad_token_id=_lowerCamelCase , bos_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase , **_lowerCamelCase ) snake_case__ : List[str] = vocab_size snake_case__ : List[str] = hidden_size snake_case__ : int = num_hidden_layers snake_case__ : Optional[int] = num_attention_heads snake_case__ : Tuple = hidden_act snake_case__ : Optional[Any] = intermediate_size snake_case__ : Dict = hidden_dropout_prob snake_case__ : Any = attention_probs_dropout_prob snake_case__ : Any = max_position_embeddings snake_case__ : List[Any] = type_vocab_size snake_case__ : List[str] = initializer_range snake_case__ : str = layer_norm_eps snake_case__ : Optional[int] = position_embedding_type snake_case__ : Tuple = use_cache snake_case__ : Dict = classifier_dropout snake_case__ : Any = pre_norm snake_case__ : str = adapter_reduction_factor snake_case__ : Any = adapter_layer_norm snake_case__ : Optional[int] = adapter_reuse_layer_norm snake_case__ : List[Any] = ln_before_adapter snake_case__ : Dict = list(_lowerCamelCase ) snake_case__ : Union[str, Any] = default_language class snake_case__ ( UpperCamelCase_ ): @property def UpperCAmelCase__ ( self : Optional[Any] ): if self.task == "multiple-choice": snake_case__ : Any = {0: 'batch', 1: 'choice', 2: 'sequence'} else: snake_case__ : int = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
303
import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoFeatureExtractor, WavaVecaFeatureExtractor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / 'utils')) from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 lowerCamelCase : Any = get_tests_dir('fixtures') class snake_case__ ( unittest.TestCase ): def UpperCAmelCase__ ( self : str ): # A mock response for an HTTP head request to emulate server down snake_case__ : int = mock.Mock() snake_case__ : Any = 5_0_0 snake_case__ : Dict = {} snake_case__ : List[str] = HTTPError snake_case__ : str = {} # Download this model to make sure it's in the cache. snake_case__ : List[str] = WavaVecaFeatureExtractor.from_pretrained('hf-internal-testing/tiny-random-wav2vec2' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request' , return_value=_lowerCamelCase ) as mock_head: snake_case__ : Dict = WavaVecaFeatureExtractor.from_pretrained('hf-internal-testing/tiny-random-wav2vec2' ) # This check we did call the fake head request mock_head.assert_called() def UpperCAmelCase__ ( self : Optional[Any] ): # This test is for deprecated behavior and can be removed in v5 snake_case__ : List[Any] = WavaVecaFeatureExtractor.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json' ) @is_staging_test class snake_case__ ( unittest.TestCase ): @classmethod def UpperCAmelCase__ ( cls : str ): snake_case__ : Tuple = TOKEN HfFolder.save_token(_lowerCamelCase ) @classmethod def UpperCAmelCase__ ( cls : int ): try: delete_repo(token=cls._token , repo_id='test-feature-extractor' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-feature-extractor-org' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='test-dynamic-feature-extractor' ) except HTTPError: pass def UpperCAmelCase__ ( self : int ): snake_case__ : Dict = WavaVecaFeatureExtractor.from_pretrained(_lowerCamelCase ) feature_extractor.push_to_hub('test-feature-extractor' , use_auth_token=self._token ) snake_case__ : Any = WavaVecaFeatureExtractor.from_pretrained(F'''{USER}/test-feature-extractor''' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(_lowerCamelCase , getattr(_lowerCamelCase , _lowerCamelCase ) ) # Reset repo delete_repo(token=self._token , repo_id='test-feature-extractor' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( _lowerCamelCase , repo_id='test-feature-extractor' , push_to_hub=_lowerCamelCase , use_auth_token=self._token ) snake_case__ : Any = WavaVecaFeatureExtractor.from_pretrained(F'''{USER}/test-feature-extractor''' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(_lowerCamelCase , getattr(_lowerCamelCase , _lowerCamelCase ) ) def UpperCAmelCase__ ( self : List[str] ): snake_case__ : str = WavaVecaFeatureExtractor.from_pretrained(_lowerCamelCase ) feature_extractor.push_to_hub('valid_org/test-feature-extractor' , use_auth_token=self._token ) snake_case__ : Dict = WavaVecaFeatureExtractor.from_pretrained('valid_org/test-feature-extractor' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(_lowerCamelCase , getattr(_lowerCamelCase , _lowerCamelCase ) ) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-feature-extractor' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( _lowerCamelCase , repo_id='valid_org/test-feature-extractor-org' , push_to_hub=_lowerCamelCase , use_auth_token=self._token ) snake_case__ : str = WavaVecaFeatureExtractor.from_pretrained('valid_org/test-feature-extractor-org' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(_lowerCamelCase , getattr(_lowerCamelCase , _lowerCamelCase ) ) def UpperCAmelCase__ ( self : List[Any] ): CustomFeatureExtractor.register_for_auto_class() snake_case__ : Optional[int] = CustomFeatureExtractor.from_pretrained(_lowerCamelCase ) feature_extractor.push_to_hub('test-dynamic-feature-extractor' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( feature_extractor.auto_map , {'AutoFeatureExtractor': 'custom_feature_extraction.CustomFeatureExtractor'} , ) snake_case__ : int = AutoFeatureExtractor.from_pretrained( F'''{USER}/test-dynamic-feature-extractor''' , trust_remote_code=_lowerCamelCase ) # Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module self.assertEqual(new_feature_extractor.__class__.__name__ , 'CustomFeatureExtractor' )
303
1
'''simple docstring''' import argparse import torch # Step 1. clone https://github.com/microsoft/unilm # Step 2. git checkout to https://github.com/microsoft/unilm/commit/b94ec76c36f02fb2b0bf0dcb0b8554a2185173cd # Step 3. cd unilm # Step 4. ln -s $(realpath wavlm/modules.py) ./ # create simlink # import classes from unilm.wavlm.WavLM import WavLM as WavLMOrig from unilm.wavlm.WavLM import WavLMConfig as WavLMConfigOrig from transformers import WavLMConfig, WavLMModel, logging logging.set_verbosity_info() A_ : List[Any] = logging.get_logger(__name__) A_ : Optional[Any] = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn.grep_linear": "encoder.layers.*.attention.gru_rel_pos_linear", "self_attn.relative_attention_bias": "encoder.layers.*.attention.rel_attn_embed", "self_attn.grep_a": "encoder.layers.*.attention.gru_rel_pos_const", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "ctc_proj", "mask_emb": "masked_spec_embed", } A_ : List[Any] = [ "ctc_proj", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def UpperCamelCase__ ( __magic_name__ : Tuple , __magic_name__ : Optional[Any] , __magic_name__ : Union[str, Any] , __magic_name__ : int , __magic_name__ : Dict ) -> Optional[int]: '''simple docstring''' for attribute in key.split(""".""" ): snake_case__ : Optional[int] = getattr(__magic_name__ , __magic_name__ ) if weight_type is not None: snake_case__ : Optional[int] = getattr(__magic_name__ , __magic_name__ ).shape else: snake_case__ : Optional[int] = hf_pointer.shape assert hf_shape == value.shape, ( f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" f" {value.shape} for {full_name}" ) if weight_type == "weight": snake_case__ : List[str] = value elif weight_type == "weight_g": snake_case__ : Dict = value elif weight_type == "weight_v": snake_case__ : Optional[Any] = value elif weight_type == "bias": snake_case__ : List[Any] = value else: snake_case__ : Optional[Any] = value logger.info(f"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def UpperCamelCase__ ( __magic_name__ : Any , __magic_name__ : List[Any] ) -> str: '''simple docstring''' snake_case__ : List[str] = [] snake_case__ : Any = fairseq_model.state_dict() snake_case__ : Union[str, Any] = hf_model.feature_extractor for name, value in fairseq_dict.items(): snake_case__ : Dict = False if "conv_layers" in name: load_conv_layer( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , hf_model.config.feat_extract_norm == """group""" , ) snake_case__ : Dict = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: snake_case__ : List[str] = True if "*" in mapped_key: snake_case__ : Union[str, Any] = name.split(__magic_name__ )[0].split(""".""" )[-2] snake_case__ : List[str] = mapped_key.replace("""*""" , __magic_name__ ) if "weight_g" in name: snake_case__ : Any = """weight_g""" elif "weight_v" in name: snake_case__ : int = """weight_v""" elif "bias" in name and "relative_attention_bias" not in name: snake_case__ : Dict = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj snake_case__ : Optional[int] = """weight""" else: snake_case__ : Tuple = None set_recursively(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) continue if not is_used: unused_weights.append(__magic_name__ ) logger.warning(f"Unused weights: {unused_weights}" ) def UpperCamelCase__ ( __magic_name__ : Dict , __magic_name__ : Union[str, Any] , __magic_name__ : Tuple , __magic_name__ : Any , __magic_name__ : Tuple ) -> Dict: '''simple docstring''' snake_case__ : int = full_name.split("""conv_layers.""" )[-1] snake_case__ : str = name.split(""".""" ) snake_case__ : Union[str, Any] = int(items[0] ) snake_case__ : int = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) snake_case__ : Dict = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) snake_case__ : Optional[int] = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was" " found." ) snake_case__ : Any = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found." ) snake_case__ : Dict = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(__magic_name__ ) @torch.no_grad() def UpperCamelCase__ ( __magic_name__ : List[str] , __magic_name__ : Union[str, Any] , __magic_name__ : Union[str, Any]=None ) -> int: '''simple docstring''' snake_case__ : Union[str, Any] = torch.load(__magic_name__ ) snake_case__ : str = WavLMConfigOrig(checkpoint["""cfg"""] ) snake_case__ : Tuple = WavLMOrig(__magic_name__ ) model.load_state_dict(checkpoint["""model"""] ) model.eval() if config_path is not None: snake_case__ : Union[str, Any] = WavLMConfig.from_pretrained(__magic_name__ ) else: snake_case__ : Tuple = WavLMConfig() snake_case__ : str = WavLMModel(__magic_name__ ) recursively_load_weights(__magic_name__ , __magic_name__ ) hf_wavlm.save_pretrained(__magic_name__ ) if __name__ == "__main__": A_ : Optional[int] = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") A_ : Optional[int] = parser.parse_args() convert_wavlm_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
38
'''simple docstring''' from __future__ import annotations import inspect import unittest from math import floor import numpy as np from transformers import CvtConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFCvtForImageClassification, TFCvtModel from transformers.models.cvt.modeling_tf_cvt import TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __snake_case ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __UpperCamelCase ( self ): snake_case__ : Dict = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , """embed_dim""" ) ) self.parent.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , """num_heads""" ) ) class __snake_case : '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=1_3 , __SCREAMING_SNAKE_CASE=6_4 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=[1_6, 4_8, 9_6] , __SCREAMING_SNAKE_CASE=[1, 3, 6] , __SCREAMING_SNAKE_CASE=[1, 2, 1_0] , __SCREAMING_SNAKE_CASE=[7, 3, 3] , __SCREAMING_SNAKE_CASE=[4, 2, 2] , __SCREAMING_SNAKE_CASE=[2, 1, 1] , __SCREAMING_SNAKE_CASE=[2, 2, 2] , __SCREAMING_SNAKE_CASE=[False, False, True] , __SCREAMING_SNAKE_CASE=[0.0, 0.0, 0.0] , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=1e-1_2 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=2 , ): snake_case__ : List[str] = parent snake_case__ : Tuple = batch_size snake_case__ : Union[str, Any] = image_size snake_case__ : List[Any] = patch_sizes snake_case__ : Optional[int] = patch_stride snake_case__ : Optional[Any] = patch_padding snake_case__ : Any = is_training snake_case__ : int = use_labels snake_case__ : Dict = num_labels snake_case__ : Optional[Any] = num_channels snake_case__ : Optional[Any] = embed_dim snake_case__ : Optional[int] = num_heads snake_case__ : Optional[int] = stride_kv snake_case__ : int = depth snake_case__ : Optional[Any] = cls_token snake_case__ : List[Any] = attention_drop_rate snake_case__ : Union[str, Any] = initializer_range snake_case__ : List[Any] = layer_norm_eps def __UpperCamelCase ( self ): snake_case__ : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case__ : List[Any] = None if self.use_labels: # create a random int32 tensor of given shape snake_case__ : List[str] = ids_tensor([self.batch_size] , self.num_labels ) snake_case__ : List[str] = self.get_config() return config, pixel_values, labels def __UpperCamelCase ( self ): return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): snake_case__ : int = TFCvtModel(config=__SCREAMING_SNAKE_CASE ) snake_case__ : List[Any] = model(__SCREAMING_SNAKE_CASE , training=__SCREAMING_SNAKE_CASE ) snake_case__ : Tuple = (self.image_size, self.image_size) snake_case__ , snake_case__ : str = image_size[0], image_size[1] for i in range(len(self.depth ) ): snake_case__ : Any = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) snake_case__ : Optional[int] = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): snake_case__ : Any = self.num_labels snake_case__ : str = TFCvtForImageClassification(__SCREAMING_SNAKE_CASE ) snake_case__ : List[str] = model(__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE , training=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCamelCase ( self ): snake_case__ : List[Any] = self.prepare_config_and_inputs() snake_case__ , snake_case__ , snake_case__ : Any = config_and_inputs snake_case__ : Union[str, Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class __snake_case ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = (TFCvtModel, TFCvtForImageClassification) if is_tf_available() else () lowerCamelCase__ = ( {'''feature-extraction''': TFCvtModel, '''image-classification''': TFCvtForImageClassification} if is_tf_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False def __UpperCamelCase ( self ): snake_case__ : Optional[Any] = TFCvtModelTester(self ) snake_case__ : Any = TFCvtConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , has_text_modality=__SCREAMING_SNAKE_CASE , hidden_size=3_7 ) def __UpperCamelCase ( self ): self.config_tester.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() @unittest.skip(reason="""Cvt does not output attentions""" ) def __UpperCamelCase ( self ): pass @unittest.skip(reason="""Cvt does not use inputs_embeds""" ) def __UpperCamelCase ( self ): pass @unittest.skip(reason="""Cvt does not support input and output embeddings""" ) def __UpperCamelCase ( self ): pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("""GPU""" ) ) == 0 , reason="""TF does not support backprop for grouped convolutions on CPU.""" , ) def __UpperCamelCase ( self ): super().test_dataset_conversion() @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("""GPU""" ) ) == 0 , reason="""TF does not support backprop for grouped convolutions on CPU.""" , ) @slow def __UpperCamelCase ( self ): super().test_keras_fit() @unittest.skip(reason="""Get `Failed to determine best cudnn convolution algo.` error after using TF 2.12+cuda 11.8""" ) def __UpperCamelCase ( self ): snake_case__ : List[str] = tf.keras.mixed_precision.Policy("""mixed_float16""" ) tf.keras.mixed_precision.set_global_policy(__SCREAMING_SNAKE_CASE ) super().test_keras_fit() tf.keras.mixed_precision.set_global_policy("""float32""" ) def __UpperCamelCase ( self ): snake_case__ , snake_case__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ : Any = model_class(__SCREAMING_SNAKE_CASE ) snake_case__ : str = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case__ : Optional[Any] = [*signature.parameters.keys()] snake_case__ : Tuple = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): def check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): snake_case__ : str = model_class(__SCREAMING_SNAKE_CASE ) snake_case__ : List[Any] = model(**self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) snake_case__ : Optional[int] = outputs.hidden_states snake_case__ : Tuple = len(self.model_tester.depth ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) snake_case__ , snake_case__ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ : List[Any] = True check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case__ : List[str] = True check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): snake_case__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): snake_case__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__SCREAMING_SNAKE_CASE ) @slow def __UpperCamelCase ( self ): for model_name in TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case__ : str = TFCvtModel.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) def UpperCamelCase__ ( ) -> str: '''simple docstring''' snake_case__ : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class __snake_case ( unittest.TestCase ): '''simple docstring''' @cached_property def __UpperCamelCase ( self ): return AutoImageProcessor.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def __UpperCamelCase ( self ): snake_case__ : Optional[Any] = TFCvtForImageClassification.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) snake_case__ : Union[str, Any] = self.default_image_processor snake_case__ : int = prepare_img() snake_case__ : Dict = image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors="""tf""" ) # forward pass snake_case__ : Optional[int] = model(**__SCREAMING_SNAKE_CASE ) # verify the logits snake_case__ : str = tf.TensorShape((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , __SCREAMING_SNAKE_CASE ) snake_case__ : int = tf.constant([0.9285, 0.9015, -0.3150] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , __SCREAMING_SNAKE_CASE , atol=1e-4 ) )
38
1
import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger("""transformers.models.speecht5""") def lowerCamelCase_ ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int] ) -> List[str]: '''simple docstring''' hf_model.apply_weight_norm() _UpperCamelCase : Any = checkpoint['input_conv.weight_g'] _UpperCamelCase : Dict = checkpoint['input_conv.weight_v'] _UpperCamelCase : List[Any] = checkpoint['input_conv.bias'] for i in range(len(config.upsample_rates ) ): _UpperCamelCase : Optional[int] = checkpoint[F'''upsamples.{i}.1.weight_g'''] _UpperCamelCase : List[Any] = checkpoint[F'''upsamples.{i}.1.weight_v'''] _UpperCamelCase : Optional[int] = checkpoint[F'''upsamples.{i}.1.bias'''] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): _UpperCamelCase : Union[str, Any] = checkpoint[F'''blocks.{i}.convs1.{j}.1.weight_g'''] _UpperCamelCase : List[Any] = checkpoint[F'''blocks.{i}.convs1.{j}.1.weight_v'''] _UpperCamelCase : str = checkpoint[F'''blocks.{i}.convs1.{j}.1.bias'''] _UpperCamelCase : List[Any] = checkpoint[F'''blocks.{i}.convs2.{j}.1.weight_g'''] _UpperCamelCase : List[str] = checkpoint[F'''blocks.{i}.convs2.{j}.1.weight_v'''] _UpperCamelCase : Optional[Any] = checkpoint[F'''blocks.{i}.convs2.{j}.1.bias'''] _UpperCamelCase : Optional[Any] = checkpoint['output_conv.1.weight_g'] _UpperCamelCase : Optional[Any] = checkpoint['output_conv.1.weight_v'] _UpperCamelCase : Dict = checkpoint['output_conv.1.bias'] hf_model.remove_weight_norm() @torch.no_grad() def lowerCamelCase_ ( UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Optional[int]=None , ) -> Tuple: '''simple docstring''' if config_path is not None: _UpperCamelCase : Optional[Any] = SpeechTaHifiGanConfig.from_pretrained(UpperCAmelCase_ ) else: _UpperCamelCase : List[Any] = SpeechTaHifiGanConfig() _UpperCamelCase : int = SpeechTaHifiGan(UpperCAmelCase_ ) _UpperCamelCase : List[str] = torch.load(UpperCAmelCase_ ) load_weights(orig_checkpoint['model']['generator'] , UpperCAmelCase_ , UpperCAmelCase_ ) _UpperCamelCase : Tuple = np.load(UpperCAmelCase_ ) _UpperCamelCase : Optional[Any] = stats[0].reshape(-1 ) _UpperCamelCase : List[Any] = stats[1].reshape(-1 ) _UpperCamelCase : Optional[Any] = torch.from_numpy(UpperCAmelCase_ ).float() _UpperCamelCase : str = torch.from_numpy(UpperCAmelCase_ ).float() model.save_pretrained(UpperCAmelCase_ ) if repo_id: print('Pushing to the hub...' ) model.push_to_hub(UpperCAmelCase_ ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument("""--checkpoint_path""", required=True, default=None, type=str, help="""Path to original checkpoint""") parser.add_argument("""--stats_path""", required=True, default=None, type=str, help="""Path to stats.npy file""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--pytorch_dump_folder_path""", required=True, default=None, type=str, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) lowerCAmelCase__ = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
648
import logging from transformers.configuration_utils import PretrainedConfig lowerCAmelCase__ = logging.getLogger(__name__) class lowercase ( _lowercase ): """simple docstring""" a__ = "masked_bert" def __init__( self , __snake_case=3_05_22 , __snake_case=7_68 , __snake_case=12 , __snake_case=12 , __snake_case=30_72 , __snake_case="gelu" , __snake_case=0.1 , __snake_case=0.1 , __snake_case=5_12 , __snake_case=2 , __snake_case=0.0_2 , __snake_case=1e-12 , __snake_case=0 , __snake_case="topK" , __snake_case="constant" , __snake_case=0.0 , **__snake_case , ): super().__init__(pad_token_id=__snake_case , **__snake_case) _UpperCamelCase : List[Any] = vocab_size _UpperCamelCase : Union[str, Any] = hidden_size _UpperCamelCase : Optional[int] = num_hidden_layers _UpperCamelCase : Any = num_attention_heads _UpperCamelCase : int = hidden_act _UpperCamelCase : str = intermediate_size _UpperCamelCase : str = hidden_dropout_prob _UpperCamelCase : Any = attention_probs_dropout_prob _UpperCamelCase : Tuple = max_position_embeddings _UpperCamelCase : Dict = type_vocab_size _UpperCamelCase : str = initializer_range _UpperCamelCase : List[Any] = layer_norm_eps _UpperCamelCase : Tuple = pruning_method _UpperCamelCase : Tuple = mask_init _UpperCamelCase : Dict = mask_scale
648
1
'''simple docstring''' from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "google/umt5-small": "https://huggingface.co/google/umt5-small/resolve/main/config.json", # See all umt5 models at https://huggingface.co/models?filter=umt5 } class __A ( A ): '''simple docstring''' __lowerCamelCase : Tuple = 'umt5' __lowerCamelCase : Optional[int] = ['past_key_values'] def __init__(self , A=250_112 , A=512 , A=64 , A=1_024 , A=8 , A=None , A=6 , A=32 , A=128 , A=0.1 , A=1E-6 , A=1.0 , A="gated-gelu" , A=True , A=True , A="T5Tokenizer" , A=True , A=0 , A=1 , A=0 , **A , ) -> Any: """simple docstring""" super().__init__( is_encoder_decoder=A , tokenizer_class=A , tie_word_embeddings=A , pad_token_id=A , eos_token_id=A , decoder_start_token_id=A , **A , ) _a = vocab_size _a = d_model _a = d_kv _a = d_ff _a = num_layers _a = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry _a = num_heads _a = relative_attention_num_buckets _a = relative_attention_max_distance _a = dropout_rate _a = layer_norm_epsilon _a = initializer_factor _a = feed_forward_proj _a = use_cache _a = self.feed_forward_proj.split('''-''' ) _a = act_info[-1] _a = act_info[0] == '''gated''' if len(A ) > 1 and act_info[0] != "gated" or len(A ) > 2: raise ValueError( f'''`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.''' '''Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ''' '''\'gated-gelu\' or \'relu\'''' ) if feed_forward_proj == "gated-gelu": _a = '''gelu_new''' @property def a__ (self ) -> Any: """simple docstring""" return self.d_model @property def a__ (self ) -> Tuple: """simple docstring""" return self.num_heads @property def a__ (self ) -> List[Any]: """simple docstring""" return self.num_layers class __A ( A ): '''simple docstring''' @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs def a__ (self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" _a = { '''input_ids''': {0: '''batch''', 1: '''encoder_sequence'''}, '''attention_mask''': {0: '''batch''', 1: '''encoder_sequence'''}, } if self.use_past: _a = '''past_encoder_sequence + sequence''' _a = {0: '''batch'''} _a = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: _a = {0: '''batch''', 1: '''decoder_sequence'''} _a = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(A , direction='''inputs''' ) return common_inputs @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset def a__ (self ) -> int: """simple docstring""" return 13 @property def a__ (self ) -> float: """simple docstring""" return 5E-4
11
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a__ : str = { 'configuration_roformer': ['ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RoFormerConfig', 'RoFormerOnnxConfig'], 'tokenization_roformer': ['RoFormerTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : List[Any] = ['RoFormerTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : List[str] = [ 'ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'RoFormerForCausalLM', 'RoFormerForMaskedLM', 'RoFormerForMultipleChoice', 'RoFormerForQuestionAnswering', 'RoFormerForSequenceClassification', 'RoFormerForTokenClassification', 'RoFormerLayer', 'RoFormerModel', 'RoFormerPreTrainedModel', 'load_tf_weights_in_roformer', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : List[Any] = [ 'TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFRoFormerForCausalLM', 'TFRoFormerForMaskedLM', 'TFRoFormerForMultipleChoice', 'TFRoFormerForQuestionAnswering', 'TFRoFormerForSequenceClassification', 'TFRoFormerForTokenClassification', 'TFRoFormerLayer', 'TFRoFormerModel', 'TFRoFormerPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Dict = [ 'FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'FlaxRoFormerForMaskedLM', 'FlaxRoFormerForMultipleChoice', 'FlaxRoFormerForQuestionAnswering', 'FlaxRoFormerForSequenceClassification', 'FlaxRoFormerForTokenClassification', 'FlaxRoFormerModel', 'FlaxRoFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys a__ : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
188
0
'''simple docstring''' import argparse import logging import os from pathlib import Path from typing import Any, Dict import pytorch_lightning as pl from pytorch_lightning.utilities import rank_zero_info from transformers import ( AdamW, AutoConfig, AutoModel, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelWithLMHead, AutoTokenizer, PretrainedConfig, PreTrainedTokenizer, ) from transformers.optimization import ( Adafactor, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.utils.versions import require_version __snake_case =logging.getLogger(__name__) require_version("""pytorch_lightning>=1.0.4""") __snake_case ={ """base""": AutoModel, """sequence-classification""": AutoModelForSequenceClassification, """question-answering""": AutoModelForQuestionAnswering, """pretraining""": AutoModelForPreTraining, """token-classification""": AutoModelForTokenClassification, """language-modeling""": AutoModelWithLMHead, """summarization""": AutoModelForSeqaSeqLM, """translation""": AutoModelForSeqaSeqLM, } # update this and the import above to support new schedulers from transformers.optimization __snake_case ={ """linear""": get_linear_schedule_with_warmup, """cosine""": get_cosine_schedule_with_warmup, """cosine_w_restarts""": get_cosine_with_hard_restarts_schedule_with_warmup, """polynomial""": get_polynomial_decay_schedule_with_warmup, # '': get_constant_schedule, # not supported for now # '': get_constant_schedule_with_warmup, # not supported for now } __snake_case =sorted(arg_to_scheduler.keys()) __snake_case ="""{""" + """, """.join(arg_to_scheduler_choices) + """}""" class UpperCAmelCase_ ( pl.LightningModule ): def __init__( self : str , UpperCAmelCase__ : argparse.Namespace , UpperCAmelCase__ : str=None , UpperCAmelCase__ : str="base" , UpperCAmelCase__ : List[str]=None , UpperCAmelCase__ : Dict=None , UpperCAmelCase__ : int=None , **UpperCAmelCase__ : Any , ) -> int: super().__init__() # TODO: move to self.save_hyperparameters() # self.save_hyperparameters() # can also expand arguments into trainer signature for easier reading self.save_hyperparameters(UpperCAmelCase__ ) lowerCAmelCase = 0 lowerCAmelCase = Path(self.hparams.output_dir ) lowerCAmelCase = self.hparams.cache_dir if self.hparams.cache_dir else None if config is None: lowerCAmelCase = AutoConfig.from_pretrained( self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({'num_labels': num_labels} if num_labels is not None else {}) , cache_dir=UpperCAmelCase__ , **UpperCAmelCase__ , ) else: lowerCAmelCase = config lowerCAmelCase = ('encoder_layerdrop', 'decoder_layerdrop', 'dropout', 'attention_dropout') for p in extra_model_params: if getattr(self.hparams , UpperCAmelCase__ , UpperCAmelCase__ ): assert hasattr(self.config , UpperCAmelCase__ ), F'''model config doesn\'t have a `{p}` attribute''' setattr(self.config , UpperCAmelCase__ , getattr(self.hparams , UpperCAmelCase__ ) ) if tokenizer is None: lowerCAmelCase = AutoTokenizer.from_pretrained( self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=UpperCAmelCase__ , ) else: lowerCAmelCase = tokenizer lowerCAmelCase = MODEL_MODES[mode] if model is None: lowerCAmelCase = self.model_type.from_pretrained( self.hparams.model_name_or_path , from_tf=bool('.ckpt' in self.hparams.model_name_or_path ) , config=self.config , cache_dir=UpperCAmelCase__ , ) else: lowerCAmelCase = model def __UpperCAmelCase ( self : int , *UpperCAmelCase__ : List[str] , **UpperCAmelCase__ : List[Any] ) -> Any: lowerCAmelCase = self.model_type.from_pretrained(*UpperCAmelCase__ , **UpperCAmelCase__ ) def __UpperCAmelCase ( self : Optional[int] ) -> int: lowerCAmelCase = arg_to_scheduler[self.hparams.lr_scheduler] lowerCAmelCase = get_schedule_func( self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() ) lowerCAmelCase = {'scheduler': scheduler, 'interval': 'step', 'frequency': 1} return scheduler def __UpperCAmelCase ( self : int ) -> int: lowerCAmelCase = self.model lowerCAmelCase = ['bias', 'LayerNorm.weight'] lowerCAmelCase = [ { 'params': [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay ) ], # check this named paramters 'weight_decay': self.hparams.weight_decay, }, { 'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )], 'weight_decay': 0.0, }, ] if self.hparams.adafactor: lowerCAmelCase = Adafactor( UpperCAmelCase__ , lr=self.hparams.learning_rate , scale_parameter=UpperCAmelCase__ , relative_step=UpperCAmelCase__ ) else: lowerCAmelCase = AdamW( UpperCAmelCase__ , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon ) lowerCAmelCase = optimizer lowerCAmelCase = self.get_lr_scheduler() return [optimizer], [scheduler] def __UpperCAmelCase ( self : Dict , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Union[str, Any] ) -> List[str]: return self.validation_step(UpperCAmelCase__ , UpperCAmelCase__ ) def __UpperCAmelCase ( self : Optional[int] , UpperCAmelCase__ : List[str] ) -> Optional[int]: return self.validation_end(UpperCAmelCase__ ) def __UpperCAmelCase ( self : Union[str, Any] ) -> int: lowerCAmelCase = max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores lowerCAmelCase = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs def __UpperCAmelCase ( self : Any , UpperCAmelCase__ : Any ) -> Any: if stage == "test": lowerCAmelCase = len(self.test_dataloader().dataset ) else: lowerCAmelCase = self.get_dataloader('train' , self.hparams.train_batch_size , shuffle=UpperCAmelCase__ ) lowerCAmelCase = len(self.train_dataloader().dataset ) def __UpperCAmelCase ( self : Any , UpperCAmelCase__ : str , UpperCAmelCase__ : int , UpperCAmelCase__ : bool = False ) -> Tuple: raise NotImplementedError('You must implement this for your task' ) def __UpperCAmelCase ( self : List[Any] ) -> Any: return self.train_loader def __UpperCAmelCase ( self : Optional[int] ) -> List[Any]: return self.get_dataloader('dev' , self.hparams.eval_batch_size , shuffle=UpperCAmelCase__ ) def __UpperCAmelCase ( self : List[str] ) -> List[str]: return self.get_dataloader('test' , self.hparams.eval_batch_size , shuffle=UpperCAmelCase__ ) def __UpperCAmelCase ( self : List[Any] , UpperCAmelCase__ : Any ) -> Dict: return os.path.join( self.hparams.data_dir , 'cached_{}_{}_{}'.format( UpperCAmelCase__ , list(filter(UpperCAmelCase__ , self.hparams.model_name_or_path.split('/' ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , ) @pl.utilities.rank_zero_only def __UpperCAmelCase ( self : List[str] , UpperCAmelCase__ : Dict[str, Any] ) -> None: lowerCAmelCase = self.output_dir.joinpath('best_tfmr' ) lowerCAmelCase = self.step_count self.model.save_pretrained(UpperCAmelCase__ ) self.tokenizer.save_pretrained(UpperCAmelCase__ ) @staticmethod def __UpperCAmelCase ( UpperCAmelCase__ : int , UpperCAmelCase__ : Optional[Any] ) -> List[str]: parser.add_argument( '--model_name_or_path' , default=UpperCAmelCase__ , type=UpperCAmelCase__ , required=UpperCAmelCase__ , help='Path to pretrained model or model identifier from huggingface.co/models' , ) parser.add_argument( '--config_name' , default='' , type=UpperCAmelCase__ , help='Pretrained config name or path if not the same as model_name' ) parser.add_argument( '--tokenizer_name' , default=UpperCAmelCase__ , type=UpperCAmelCase__ , help='Pretrained tokenizer name or path if not the same as model_name' , ) parser.add_argument( '--cache_dir' , default=str(Path(UpperCAmelCase__ ).parent / 'test_run' / 'cache' ) , type=UpperCAmelCase__ , help='Where do you want to store the pre-trained models downloaded from huggingface.co' , ) parser.add_argument( '--encoder_layerdrop' , type=UpperCAmelCase__ , help='Encoder layer dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--decoder_layerdrop' , type=UpperCAmelCase__ , help='Decoder layer dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--dropout' , type=UpperCAmelCase__ , help='Dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--attention_dropout' , type=UpperCAmelCase__ , help='Attention dropout probability (Optional). Goes into model.config' , ) parser.add_argument('--learning_rate' , default=5E-5 , type=UpperCAmelCase__ , help='The initial learning rate for Adam.' ) parser.add_argument( '--lr_scheduler' , default='linear' , choices=UpperCAmelCase__ , metavar=UpperCAmelCase__ , type=UpperCAmelCase__ , help='Learning rate scheduler' , ) parser.add_argument('--weight_decay' , default=0.0 , type=UpperCAmelCase__ , help='Weight decay if we apply some.' ) parser.add_argument('--adam_epsilon' , default=1E-8 , type=UpperCAmelCase__ , help='Epsilon for Adam optimizer.' ) parser.add_argument('--warmup_steps' , default=0 , type=UpperCAmelCase__ , help='Linear warmup over warmup_steps.' ) parser.add_argument('--num_workers' , default=4 , type=UpperCAmelCase__ , help='kwarg passed to DataLoader' ) parser.add_argument('--num_train_epochs' , dest='max_epochs' , default=3 , type=UpperCAmelCase__ ) parser.add_argument('--train_batch_size' , default=3_2 , type=UpperCAmelCase__ ) parser.add_argument('--eval_batch_size' , default=3_2 , type=UpperCAmelCase__ ) parser.add_argument('--adafactor' , action='store_true' ) class UpperCAmelCase_ ( pl.Callback ): def __UpperCAmelCase ( self : Optional[int] , UpperCAmelCase__ : int , UpperCAmelCase__ : int ) -> List[str]: if ( trainer.is_global_zero and trainer.global_rank == 0 ): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed. pl_module.model.rag.retriever.init_retrieval() # better to use hook functions. class UpperCAmelCase_ ( pl.Callback ): def __UpperCAmelCase ( self : Optional[int] , UpperCAmelCase__ : Any , UpperCAmelCase__ : str ) -> Dict: # print(pl_module.model.rag) for name, param in pl_module.model.rag.named_parameters(): if param.grad is None: print(UpperCAmelCase__ ) class UpperCAmelCase_ ( pl.Callback ): def __UpperCAmelCase ( self : int , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : List[str] ) -> int: lowerCAmelCase = trainer.lr_schedulers[0]['scheduler'] lowerCAmelCase = {F'''lr_group_{i}''': lr for i, lr in enumerate(lr_scheduler.get_lr() )} pl_module.logger.log_metrics(UpperCAmelCase__ ) def __UpperCAmelCase ( self : List[str] , UpperCAmelCase__ : pl.Trainer , UpperCAmelCase__ : pl.LightningModule ) -> Optional[int]: rank_zero_info('***** Validation results *****' ) lowerCAmelCase = trainer.callback_metrics # Log results for key in sorted(UpperCAmelCase__ ): if key not in ["log", "progress_bar"]: rank_zero_info('{} = {}\n'.format(UpperCAmelCase__ , str(metrics[key] ) ) ) def __UpperCAmelCase ( self : Optional[int] , UpperCAmelCase__ : pl.Trainer , UpperCAmelCase__ : pl.LightningModule ) -> List[str]: rank_zero_info('***** Test results *****' ) lowerCAmelCase = trainer.callback_metrics # Log and save results to file lowerCAmelCase = os.path.join(pl_module.hparams.output_dir , 'test_results.txt' ) with open(UpperCAmelCase__ , 'w' ) as writer: for key in sorted(UpperCAmelCase__ ): if key not in ["log", "progress_bar"]: rank_zero_info('{} = {}\n'.format(UpperCAmelCase__ , str(metrics[key] ) ) ) writer.write('{} = {}\n'.format(UpperCAmelCase__ , str(metrics[key] ) ) ) def a_ ( lowerCamelCase : Tuple , lowerCamelCase : Optional[Any] ): # To allow all pl args uncomment the following line # parser = pl.Trainer.add_argparse_args(parser) parser.add_argument( '--output_dir' , default=str(Path(lowerCamelCase ).parent / 'test_run' / 'model_checkpoints' ) , type=lowerCamelCase , help='The output directory where the model predictions and checkpoints will be written.' , ) parser.add_argument( '--fp16' , action='store_true' , help='Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit' , ) parser.add_argument( '--fp16_opt_level' , type=lowerCamelCase , default='O2' , help=( 'For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].' 'See details at https://nvidia.github.io/apex/amp.html' ) , ) parser.add_argument('--n_tpu_cores' , dest='tpu_cores' , type=lowerCamelCase ) parser.add_argument('--max_grad_norm' , dest='gradient_clip_val' , default=1.0 , type=lowerCamelCase , help='Max gradient norm' ) parser.add_argument('--do_train' , action='store_true' , help='Whether to run training.' ) parser.add_argument('--do_predict' , action='store_true' , help='Whether to run predictions on the test set.' ) parser.add_argument( '--gradient_accumulation_steps' , dest='accumulate_grad_batches' , type=lowerCamelCase , default=1 , help='Number of updates steps to accumulate before performing a backward/update pass.' , ) parser.add_argument('--seed' , type=lowerCamelCase , default=42 , help='random seed for initialization' ) parser.add_argument( '--data_dir' , default=str(Path(lowerCamelCase ).parent / 'test_run' / 'dummy-train-data' ) , type=lowerCamelCase , help='The input data dir. Should contain the training files for the CoNLL-2003 NER task.' , ) def a_ ( lowerCamelCase : BaseTransformer , lowerCamelCase : argparse.Namespace , lowerCamelCase : Optional[int]=None , lowerCamelCase : Any=True , lowerCamelCase : Tuple=[] , lowerCamelCase : Optional[int]=None , lowerCamelCase : int=None , **lowerCamelCase : Tuple , ): pl.seed_everything(args.seed ) # init model lowerCAmelCase = Path(model.hparams.output_dir ) odir.mkdir(exist_ok=lowerCamelCase ) # add custom checkpoints if checkpoint_callback is None: lowerCAmelCase = pl.callbacks.ModelCheckpoint( filepath=args.output_dir , prefix='checkpoint' , monitor='val_loss' , mode='min' , save_top_k=1 ) if early_stopping_callback: extra_callbacks.append(lowerCamelCase ) if logging_callback is None: lowerCAmelCase = LoggingCallback() lowerCAmelCase = {} if args.fpaa: lowerCAmelCase = 16 if args.gpus > 1: lowerCAmelCase = 'auto' lowerCAmelCase = 'ddp' lowerCAmelCase = args.accumulate_grad_batches lowerCAmelCase = None lowerCAmelCase = 'auto' lowerCAmelCase = pl.Trainer.from_argparse_args( lowerCamelCase , weights_summary=lowerCamelCase , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=lowerCamelCase , val_check_interval=1 , num_sanity_val_steps=2 , **lowerCamelCase , ) if args.do_train: trainer.fit(lowerCamelCase ) else: print('RAG modeling tests with new set functions successfuly executed!' ) return trainer
513
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case =logging.get_logger(__name__) __snake_case ={ """google/canine-s""": """https://huggingface.co/google/canine-s/resolve/main/config.json""", # See all CANINE models at https://huggingface.co/models?filter=canine } class UpperCAmelCase_ ( __lowercase ): lowerCamelCase : int = '''canine''' def __init__( self : Union[str, Any] , UpperCAmelCase__ : int=7_6_8 , UpperCAmelCase__ : Dict=1_2 , UpperCAmelCase__ : Optional[int]=1_2 , UpperCAmelCase__ : List[str]=3_0_7_2 , UpperCAmelCase__ : Any="gelu" , UpperCAmelCase__ : List[str]=0.1 , UpperCAmelCase__ : List[Any]=0.1 , UpperCAmelCase__ : Union[str, Any]=1_6_3_8_4 , UpperCAmelCase__ : int=1_6 , UpperCAmelCase__ : Any=0.02 , UpperCAmelCase__ : Dict=1E-12 , UpperCAmelCase__ : List[Any]=0 , UpperCAmelCase__ : List[str]=0XE_0_0_0 , UpperCAmelCase__ : Union[str, Any]=0XE_0_0_1 , UpperCAmelCase__ : Union[str, Any]=4 , UpperCAmelCase__ : Union[str, Any]=4 , UpperCAmelCase__ : List[Any]=8 , UpperCAmelCase__ : List[str]=1_6_3_8_4 , UpperCAmelCase__ : Union[str, Any]=1_2_8 , **UpperCAmelCase__ : Dict , ) -> Tuple: super().__init__(pad_token_id=UpperCAmelCase__ , bos_token_id=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ , **UpperCAmelCase__ ) lowerCAmelCase = max_position_embeddings lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_act lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = initializer_range lowerCAmelCase = type_vocab_size lowerCAmelCase = layer_norm_eps # Character config: lowerCAmelCase = downsampling_rate lowerCAmelCase = upsampling_kernel_size lowerCAmelCase = num_hash_functions lowerCAmelCase = num_hash_buckets lowerCAmelCase = local_transformer_stride
513
1
import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import BatchEncoding, MarianTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available if is_sentencepiece_available(): from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase__ = get_tests_dir('fixtures/test_sentencepiece.model') lowerCamelCase__ = {'target_lang': 'fi', 'source_lang': 'en'} lowerCamelCase__ = '>>zh<<' lowerCamelCase__ = 'Helsinki-NLP/' if is_torch_available(): lowerCamelCase__ = 'pt' elif is_tf_available(): lowerCamelCase__ = 'tf' else: lowerCamelCase__ = 'jax' @require_sentencepiece class UpperCamelCase ( __snake_case , unittest.TestCase ): __UpperCamelCase = MarianTokenizer __UpperCamelCase = False __UpperCamelCase = True def UpperCamelCase_ ( self : Tuple ): """simple docstring""" super().setUp() __snake_case = ["</s>", "<unk>", "▁This", "▁is", "▁a", "▁t", "est", "\u0120", "<pad>"] __snake_case = dict(zip(lowerCAmelCase_ ,range(len(lowerCAmelCase_ ) ) ) ) __snake_case = Path(self.tmpdirname ) save_json(lowerCAmelCase_ ,save_dir / VOCAB_FILES_NAMES["vocab"] ) save_json(lowerCAmelCase_ ,save_dir / VOCAB_FILES_NAMES["tokenizer_config_file"] ) if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists(): copyfile(lowerCAmelCase_ ,save_dir / VOCAB_FILES_NAMES["source_spm"] ) copyfile(lowerCAmelCase_ ,save_dir / VOCAB_FILES_NAMES["target_spm"] ) __snake_case = MarianTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase_ ( self : Any ,**_lowerCAmelCase : List[str] ): """simple docstring""" return MarianTokenizer.from_pretrained(self.tmpdirname ,**lowerCAmelCase_ ) def UpperCamelCase_ ( self : Tuple ,_lowerCAmelCase : List[str] ): """simple docstring""" return ( "This is a test", "This is a test", ) def UpperCamelCase_ ( self : Tuple ): """simple docstring""" __snake_case = "</s>" __snake_case = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase_ ) ,lowerCAmelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase_ ) ,lowerCAmelCase_ ) def UpperCamelCase_ ( self : List[str] ): """simple docstring""" __snake_case = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,"</s>" ) self.assertEqual(vocab_keys[1] ,"<unk>" ) self.assertEqual(vocab_keys[-1] ,"<pad>" ) self.assertEqual(len(lowerCAmelCase_ ) ,9 ) def UpperCamelCase_ ( self : Dict ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size ,9 ) def UpperCamelCase_ ( self : Tuple ): """simple docstring""" __snake_case = MarianTokenizer.from_pretrained(F"""{ORG_NAME}opus-mt-en-de""" ) __snake_case = en_de_tokenizer(["I am a small frog"] ,return_tensors=lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ ,lowerCAmelCase_ ) __snake_case = [38, 121, 14, 697, 38_848, 0] self.assertListEqual(lowerCAmelCase_ ,batch.input_ids[0] ) __snake_case = tempfile.mkdtemp() en_de_tokenizer.save_pretrained(lowerCAmelCase_ ) __snake_case = [x.name for x in Path(lowerCAmelCase_ ).glob("*" )] self.assertIn("source.spm" ,lowerCAmelCase_ ) MarianTokenizer.from_pretrained(lowerCAmelCase_ ) def UpperCamelCase_ ( self : int ): """simple docstring""" __snake_case = self.get_tokenizer() __snake_case = tok( ["I am a small frog" * 1_000, "I am a small frog"] ,padding=lowerCAmelCase_ ,truncation=lowerCAmelCase_ ,return_tensors=lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ ,lowerCAmelCase_ ) self.assertEqual(batch.input_ids.shape ,(2, 512) ) def UpperCamelCase_ ( self : List[Any] ): """simple docstring""" __snake_case = self.get_tokenizer() __snake_case = tok(["I am a tiny frog", "I am a small frog"] ,padding=lowerCAmelCase_ ,return_tensors=lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ ,lowerCAmelCase_ ) self.assertEqual(batch_smaller.input_ids.shape ,(2, 10) ) @slow def UpperCamelCase_ ( self : List[str] ): """simple docstring""" __snake_case = {"input_ids": [[43_495, 462, 20, 42_164, 1_369, 52, 464, 132, 1_703, 492, 13, 7_491, 38_999, 6, 8, 464, 132, 1_703, 492, 13, 4_669, 37_867, 13, 7_525, 27, 1_593, 988, 13, 33_972, 7_029, 6, 20, 8_251, 383, 2, 270, 5_866, 3_788, 2, 2_353, 8_251, 12_338, 2, 13_958, 387, 2, 3_629, 6_953, 188, 2_900, 2, 13_958, 8_011, 11_501, 23, 8_460, 4_073, 34_009, 20, 435, 11_439, 27, 8, 8_460, 4_073, 6_004, 20, 9_988, 375, 27, 33, 266, 1_945, 1_076, 1_350, 37_867, 3_288, 5, 577, 1_076, 4_374, 8, 5_082, 5, 26_453, 257, 556, 403, 2, 242, 132, 383, 316, 492, 8, 10_767, 6, 316, 304, 4_239, 3, 0], [148, 15_722, 19, 1_839, 12, 1_350, 13, 22_327, 5_082, 5_418, 47_567, 35_938, 59, 318, 19_552, 108, 2_183, 54, 14_976, 4_835, 32, 547, 1_114, 8, 315, 2_417, 5, 92, 19_088, 3, 0, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100], [36, 6_395, 12_570, 39_147, 11_597, 6, 266, 4, 45_405, 7_296, 3, 0, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase_ ,model_name="Helsinki-NLP/opus-mt-en-de" ,revision="1a8c2263da11e68e50938f97e10cd57820bd504c" ,decode_kwargs={"use_source_tokenizer": True} ,) def UpperCamelCase_ ( self : int ): """simple docstring""" __snake_case = MarianTokenizer.from_pretrained("hf-internal-testing/test-marian-two-vocabs" ) __snake_case = "Tämä on testi" __snake_case = "This is a test" __snake_case = [76, 7, 2_047, 2] __snake_case = [69, 12, 11, 940, 2] __snake_case = tokenizer(lowerCAmelCase_ ).input_ids self.assertListEqual(lowerCAmelCase_ ,lowerCAmelCase_ ) __snake_case = tokenizer(text_target=lowerCAmelCase_ ).input_ids self.assertListEqual(lowerCAmelCase_ ,lowerCAmelCase_ ) __snake_case = tokenizer.decode(lowerCAmelCase_ ,skip_special_tokens=lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ ,lowerCAmelCase_ )
524
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_funnel import FunnelTokenizer lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} lowerCAmelCase__ = [ 'small', 'small-base', 'medium', 'medium-base', 'intermediate', 'intermediate-base', 'large', 'large-base', 'xlarge', 'xlarge-base', ] lowerCAmelCase__ = { 'vocab_file': { 'funnel-transformer/small': 'https://huggingface.co/funnel-transformer/small/resolve/main/vocab.txt', 'funnel-transformer/small-base': 'https://huggingface.co/funnel-transformer/small-base/resolve/main/vocab.txt', 'funnel-transformer/medium': 'https://huggingface.co/funnel-transformer/medium/resolve/main/vocab.txt', 'funnel-transformer/medium-base': ( 'https://huggingface.co/funnel-transformer/medium-base/resolve/main/vocab.txt' ), 'funnel-transformer/intermediate': ( 'https://huggingface.co/funnel-transformer/intermediate/resolve/main/vocab.txt' ), 'funnel-transformer/intermediate-base': ( 'https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/vocab.txt' ), 'funnel-transformer/large': 'https://huggingface.co/funnel-transformer/large/resolve/main/vocab.txt', 'funnel-transformer/large-base': 'https://huggingface.co/funnel-transformer/large-base/resolve/main/vocab.txt', 'funnel-transformer/xlarge': 'https://huggingface.co/funnel-transformer/xlarge/resolve/main/vocab.txt', 'funnel-transformer/xlarge-base': ( 'https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'funnel-transformer/small': 'https://huggingface.co/funnel-transformer/small/resolve/main/tokenizer.json', 'funnel-transformer/small-base': ( 'https://huggingface.co/funnel-transformer/small-base/resolve/main/tokenizer.json' ), 'funnel-transformer/medium': 'https://huggingface.co/funnel-transformer/medium/resolve/main/tokenizer.json', 'funnel-transformer/medium-base': ( 'https://huggingface.co/funnel-transformer/medium-base/resolve/main/tokenizer.json' ), 'funnel-transformer/intermediate': ( 'https://huggingface.co/funnel-transformer/intermediate/resolve/main/tokenizer.json' ), 'funnel-transformer/intermediate-base': ( 'https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/tokenizer.json' ), 'funnel-transformer/large': 'https://huggingface.co/funnel-transformer/large/resolve/main/tokenizer.json', 'funnel-transformer/large-base': ( 'https://huggingface.co/funnel-transformer/large-base/resolve/main/tokenizer.json' ), 'funnel-transformer/xlarge': 'https://huggingface.co/funnel-transformer/xlarge/resolve/main/tokenizer.json', 'funnel-transformer/xlarge-base': ( 'https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/tokenizer.json' ), }, } lowerCAmelCase__ = {F"funnel-transformer/{name}": 512 for name in _model_names} lowerCAmelCase__ = {F"funnel-transformer/{name}": {'do_lower_case': True} for name in _model_names} class snake_case ( __snake_case ): """simple docstring""" __lowerCAmelCase = VOCAB_FILES_NAMES __lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase = PRETRAINED_INIT_CONFIGURATION __lowerCAmelCase = FunnelTokenizer __lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase = 2 def __init__( self , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=True , lowerCAmelCase_="<unk>" , lowerCAmelCase_="<sep>" , lowerCAmelCase_="<pad>" , lowerCAmelCase_="<cls>" , lowerCAmelCase_="<mask>" , lowerCAmelCase_="<s>" , lowerCAmelCase_="</s>" , lowerCAmelCase_=True , lowerCAmelCase_=True , lowerCAmelCase_=None , lowerCAmelCase_="##" , **lowerCAmelCase_ , ): super().__init__( lowerCAmelCase_ , tokenizer_file=lowerCAmelCase_ , do_lower_case=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , bos_token=lowerCAmelCase_ , eos_token=lowerCAmelCase_ , clean_text=lowerCAmelCase_ , tokenize_chinese_chars=lowerCAmelCase_ , strip_accents=lowerCAmelCase_ , wordpieces_prefix=lowerCAmelCase_ , **lowerCAmelCase_ , ) __lowercase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , lowerCAmelCase_ ) != do_lower_case or normalizer_state.get("strip_accents" , lowerCAmelCase_ ) != strip_accents or normalizer_state.get("handle_chinese_chars" , lowerCAmelCase_ ) != tokenize_chinese_chars ): __lowercase = getattr(lowerCAmelCase_ , normalizer_state.pop("type" ) ) __lowercase = do_lower_case __lowercase = strip_accents __lowercase = tokenize_chinese_chars __lowercase = normalizer_class(**lowerCAmelCase_ ) __lowercase = do_lower_case def snake_case__ ( self , lowerCAmelCase_ , lowerCAmelCase_=None ): __lowercase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def snake_case__ ( self , lowerCAmelCase_ , lowerCAmelCase_ = None ): __lowercase = [self.sep_token_id] __lowercase = [self.cls_token_id] if token_ids_a is None: return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def snake_case__ ( self , lowerCAmelCase_ , lowerCAmelCase_ = None ): __lowercase = self._tokenizer.model.save(lowerCAmelCase_ , name=lowerCAmelCase_ ) return tuple(lowerCAmelCase_ )
321
0
'''simple docstring''' import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def __snake_case ( ): UpperCamelCase = ArgumentParser( description=( '''PyTorch TPU distributed training launch ''' '''helper utility that will spawn up ''' '''multiple distributed processes''' )) # Optional arguments for the launch helper parser.add_argument('''--num_cores''', type=_UpperCAmelCase, default=1, help='''Number of TPU cores to use (1 or 8).''') # positional parser.add_argument( '''training_script''', type=_UpperCAmelCase, help=( '''The full path to the single TPU training ''' '''program/script to be launched in parallel, ''' '''followed by all the arguments for the ''' '''training script''' ), ) # rest from the training program parser.add_argument('''training_script_args''', nargs=_UpperCAmelCase) return parser.parse_args() def __snake_case ( ): UpperCamelCase = parse_args() # Import training_script as a module. UpperCamelCase = Path(args.training_script) sys.path.append(str(script_fpath.parent.resolve())) UpperCamelCase = script_fpath.stem UpperCamelCase = importlib.import_module(_UpperCAmelCase) # Patch sys.argv UpperCamelCase = [args.training_script] + args.training_script_args + ['''--tpu_num_cores''', str(args.num_cores)] xmp.spawn(mod._mp_fn, args=(), nprocs=args.num_cores) if __name__ == "__main__": main()
350
'''simple docstring''' import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def __snake_case ( ): UpperCamelCase = ArgumentParser( description=( '''PyTorch TPU distributed training launch ''' '''helper utility that will spawn up ''' '''multiple distributed processes''' )) # Optional arguments for the launch helper parser.add_argument('''--num_cores''', type=_UpperCAmelCase, default=1, help='''Number of TPU cores to use (1 or 8).''') # positional parser.add_argument( '''training_script''', type=_UpperCAmelCase, help=( '''The full path to the single TPU training ''' '''program/script to be launched in parallel, ''' '''followed by all the arguments for the ''' '''training script''' ), ) # rest from the training program parser.add_argument('''training_script_args''', nargs=_UpperCAmelCase) return parser.parse_args() def __snake_case ( ): UpperCamelCase = parse_args() # Import training_script as a module. UpperCamelCase = Path(args.training_script) sys.path.append(str(script_fpath.parent.resolve())) UpperCamelCase = script_fpath.stem UpperCamelCase = importlib.import_module(_UpperCAmelCase) # Patch sys.argv UpperCamelCase = [args.training_script] + args.training_script_args + ['''--tpu_num_cores''', str(args.num_cores)] xmp.spawn(mod._mp_fn, args=(), nprocs=args.num_cores) if __name__ == "__main__": main()
350
1
'''simple docstring''' import random import unittest import numpy as np import transformers from transformers import is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax if is_flax_available(): import os import jax.numpy as jnp from jax import jit from transformers import AutoTokenizer, FlaxAutoModelForCausalLM from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model __UpperCAmelCase ="0.12" # assumed parallelism: 8 if is_torch_available(): import torch def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None ) -> Any: if rng is None: __lowerCamelCase = random.Random() __lowerCamelCase = 1 for dim in shape: total_dims *= dim __lowerCamelCase = [] for _ in range(UpperCamelCase__ ): values.append(rng.randint(0 , vocab_size - 1 ) ) __lowerCamelCase = np.array(UpperCamelCase__ , dtype=jnp.intaa ).reshape(UpperCamelCase__ ) return output def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__=None ) -> int: __lowerCamelCase = ids_tensor(UpperCamelCase__ , vocab_size=2 , rng=UpperCamelCase__ ) # make sure that at least one token is attended to for each batch __lowerCamelCase = 1 return attn_mask @require_flax class a__ : lowerCamelCase : Tuple =None lowerCamelCase : Optional[Any] =() def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() # cut to half length & take max batch_size 3 __lowerCamelCase = 2 __lowerCamelCase = inputs['''input_ids'''].shape[-1] // 2 __lowerCamelCase = inputs['''input_ids'''][:max_batch_size, :sequence_length] __lowerCamelCase = jnp.ones_like(a ) __lowerCamelCase = attention_mask[:max_batch_size, :sequence_length] # generate max 5 tokens __lowerCamelCase = input_ids.shape[-1] + 5 if config.eos_token_id is not None and config.pad_token_id is None: # hack to allow generate for models such as GPT2 as is done in `generate()` __lowerCamelCase = config.eos_token_id return config, input_ids, attention_mask, max_length @is_pt_flax_cross_test def SCREAMING_SNAKE_CASE__ ( self : int ): """simple docstring""" __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = self._get_input_ids_and_config() __lowerCamelCase = False __lowerCamelCase = max_length __lowerCamelCase = 0 for model_class in self.all_generative_model_classes: __lowerCamelCase = model_class(a ) __lowerCamelCase = model_class.__name__[4:] # Skip the "Flax" at the beginning __lowerCamelCase = getattr(a , a ) __lowerCamelCase = pt_model_class(a ).eval() __lowerCamelCase = load_flax_weights_in_pytorch_model(a , flax_model.params ) __lowerCamelCase = flax_model.generate(a ).sequences __lowerCamelCase = pt_model.generate(torch.tensor(a , dtype=torch.long ) ) if flax_generation_outputs.shape[-1] > pt_generation_outputs.shape[-1]: __lowerCamelCase = flax_generation_outputs[:, : pt_generation_outputs.shape[-1]] self.assertListEqual(pt_generation_outputs.numpy().tolist() , flax_generation_outputs.tolist() ) def SCREAMING_SNAKE_CASE__ ( self : int ): """simple docstring""" __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = self._get_input_ids_and_config() __lowerCamelCase = False __lowerCamelCase = max_length for model_class in self.all_generative_model_classes: __lowerCamelCase = model_class(a ) __lowerCamelCase = model.generate(a ).sequences self.assertEqual(generation_outputs.shape[-1] , a ) __lowerCamelCase = jit(model.generate ) __lowerCamelCase = jit_generate(a ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = self._get_input_ids_and_config() __lowerCamelCase = True __lowerCamelCase = max_length for model_class in self.all_generative_model_classes: __lowerCamelCase = model_class(a ) __lowerCamelCase = model.generate(a ).sequences self.assertEqual(generation_outputs.shape[-1] , a ) __lowerCamelCase = jit(model.generate ) __lowerCamelCase = jit_generate(a ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def SCREAMING_SNAKE_CASE__ ( self : int ): """simple docstring""" __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = self._get_input_ids_and_config() __lowerCamelCase = False __lowerCamelCase = max_length __lowerCamelCase = 2 for model_class in self.all_generative_model_classes: __lowerCamelCase = model_class(a ) __lowerCamelCase = model.generate(a ).sequences self.assertEqual(generation_outputs.shape[-1] , a ) __lowerCamelCase = jit(model.generate ) __lowerCamelCase = jit_generate(a ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = self._get_input_ids_and_config() __lowerCamelCase = False __lowerCamelCase = max_length __lowerCamelCase = 2 __lowerCamelCase = 2 for model_class in self.all_generative_model_classes: __lowerCamelCase = model_class(a ) __lowerCamelCase = model.generate(a ).sequences self.assertEqual(generation_outputs.shape[0] , input_ids.shape[0] * config.num_return_sequences ) def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = self._get_input_ids_and_config() __lowerCamelCase = True __lowerCamelCase = max_length __lowerCamelCase = 0.8 __lowerCamelCase = 10 __lowerCamelCase = 0.3 __lowerCamelCase = 1 __lowerCamelCase = 8 __lowerCamelCase = 9 for model_class in self.all_generative_model_classes: __lowerCamelCase = model_class(a ) __lowerCamelCase = model.generate(a ).sequences self.assertEqual(generation_outputs.shape[-1] , a ) __lowerCamelCase = jit(model.generate ) __lowerCamelCase = jit_generate(a ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = self._get_input_ids_and_config() __lowerCamelCase = max_length __lowerCamelCase = 1 __lowerCamelCase = 8 __lowerCamelCase = 9 for model_class in self.all_generative_model_classes: __lowerCamelCase = model_class(a ) __lowerCamelCase = model.generate(a ).sequences self.assertEqual(generation_outputs.shape[-1] , a ) __lowerCamelCase = jit(model.generate ) __lowerCamelCase = jit_generate(a ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = self._get_input_ids_and_config() __lowerCamelCase = max_length __lowerCamelCase = 2 __lowerCamelCase = 1 __lowerCamelCase = 8 __lowerCamelCase = 9 for model_class in self.all_generative_model_classes: __lowerCamelCase = model_class(a ) __lowerCamelCase = model.generate(a ).sequences self.assertEqual(generation_outputs.shape[-1] , a ) __lowerCamelCase = jit(model.generate ) __lowerCamelCase = jit_generate(a ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ): """simple docstring""" __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = self._get_input_ids_and_config() # pad attention mask on the left __lowerCamelCase = attention_mask.at[(0, 0)].set(0 ) __lowerCamelCase = False __lowerCamelCase = max_length for model_class in self.all_generative_model_classes: __lowerCamelCase = model_class(a ) __lowerCamelCase = model.generate(a , attention_mask=a ).sequences self.assertEqual(generation_outputs.shape[-1] , a ) __lowerCamelCase = jit(model.generate ) __lowerCamelCase = jit_generate(a , attention_mask=a ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ): """simple docstring""" __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = self._get_input_ids_and_config() # pad attention mask on the left __lowerCamelCase = attention_mask.at[(0, 0)].set(0 ) __lowerCamelCase = True __lowerCamelCase = max_length for model_class in self.all_generative_model_classes: __lowerCamelCase = model_class(a ) __lowerCamelCase = model.generate(a , attention_mask=a ).sequences self.assertEqual(generation_outputs.shape[-1] , a ) __lowerCamelCase = jit(model.generate ) __lowerCamelCase = jit_generate(a , attention_mask=a ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = self._get_input_ids_and_config() # pad attention mask on the left __lowerCamelCase = attention_mask.at[(0, 0)].set(0 ) __lowerCamelCase = 2 __lowerCamelCase = max_length for model_class in self.all_generative_model_classes: __lowerCamelCase = model_class(a ) __lowerCamelCase = model.generate(a , attention_mask=a ).sequences self.assertEqual(generation_outputs.shape[-1] , a ) __lowerCamelCase = jit(model.generate ) __lowerCamelCase = jit_generate(a , attention_mask=a ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) @require_flax class a__ ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): """simple docstring""" __lowerCamelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-bert''' ) __lowerCamelCase = FlaxAutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) __lowerCamelCase = '''Hello world''' __lowerCamelCase = tokenizer(a , return_tensors='''np''' ).input_ids # typos are quickly detected (the correct argument is `do_sample`) with self.assertRaisesRegex(a , '''do_samples''' ): model.generate(a , do_samples=a ) # arbitrary arguments that will not be used anywhere are also not accepted with self.assertRaisesRegex(a , '''foo''' ): __lowerCamelCase = {'''foo''': '''bar'''} model.generate(a , **a )
546
'''simple docstring''' def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ ) -> float: if digit_amount > 0: return round(number - int(UpperCamelCase__ ) , UpperCamelCase__ ) return number - int(UpperCamelCase__ ) if __name__ == "__main__": print(decimal_isolate(1.53, 0)) print(decimal_isolate(35.345, 1)) print(decimal_isolate(35.345, 2)) print(decimal_isolate(35.345, 3)) print(decimal_isolate(-14.789, 3)) print(decimal_isolate(0, 2)) print(decimal_isolate(-14.123, 1)) print(decimal_isolate(-14.123, 2)) print(decimal_isolate(-14.123, 3))
546
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig __a : Union[str, Any] = { """google/tapas-base-finetuned-sqa""": ( """https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json""" ), """google/tapas-base-finetuned-wtq""": ( """https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json""" ), """google/tapas-base-finetuned-wikisql-supervised""": ( """https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json""" ), """google/tapas-base-finetuned-tabfact""": ( """https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json""" ), } class A ( __A ): _SCREAMING_SNAKE_CASE : List[Any] = '''tapas''' def __init__( self : str , __UpperCAmelCase : Optional[Any]=30522 , __UpperCAmelCase : Dict=768 , __UpperCAmelCase : Any=12 , __UpperCAmelCase : Any=12 , __UpperCAmelCase : List[str]=3072 , __UpperCAmelCase : Union[str, Any]="gelu" , __UpperCAmelCase : List[str]=0.1 , __UpperCAmelCase : Tuple=0.1 , __UpperCAmelCase : List[Any]=1024 , __UpperCAmelCase : List[str]=[3, 256, 256, 2, 256, 256, 10] , __UpperCAmelCase : Union[str, Any]=0.02 , __UpperCAmelCase : Tuple=1E-1_2 , __UpperCAmelCase : List[Any]=0 , __UpperCAmelCase : int=10.0 , __UpperCAmelCase : Optional[Any]=0 , __UpperCAmelCase : int=1.0 , __UpperCAmelCase : List[str]=None , __UpperCAmelCase : Optional[int]=1.0 , __UpperCAmelCase : List[Any]=False , __UpperCAmelCase : List[str]=None , __UpperCAmelCase : Any=1.0 , __UpperCAmelCase : Optional[Any]=1.0 , __UpperCAmelCase : str=False , __UpperCAmelCase : List[Any]=False , __UpperCAmelCase : Union[str, Any]="ratio" , __UpperCAmelCase : Any=None , __UpperCAmelCase : Union[str, Any]=None , __UpperCAmelCase : Optional[int]=64 , __UpperCAmelCase : Optional[int]=32 , __UpperCAmelCase : Optional[Any]=False , __UpperCAmelCase : List[Any]=True , __UpperCAmelCase : Any=False , __UpperCAmelCase : str=False , __UpperCAmelCase : List[Any]=True , __UpperCAmelCase : int=False , __UpperCAmelCase : Any=None , __UpperCAmelCase : Any=None , **__UpperCAmelCase : Tuple , ) -> List[str]: """simple docstring""" super().__init__(pad_token_id=__UpperCAmelCase , **__UpperCAmelCase ) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) UpperCamelCase_ = vocab_size UpperCamelCase_ = hidden_size UpperCamelCase_ = num_hidden_layers UpperCamelCase_ = num_attention_heads UpperCamelCase_ = hidden_act UpperCamelCase_ = intermediate_size UpperCamelCase_ = hidden_dropout_prob UpperCamelCase_ = attention_probs_dropout_prob UpperCamelCase_ = max_position_embeddings UpperCamelCase_ = type_vocab_sizes UpperCamelCase_ = initializer_range UpperCamelCase_ = layer_norm_eps # Fine-tuning task hyperparameters UpperCamelCase_ = positive_label_weight UpperCamelCase_ = num_aggregation_labels UpperCamelCase_ = aggregation_loss_weight UpperCamelCase_ = use_answer_as_supervision UpperCamelCase_ = answer_loss_importance UpperCamelCase_ = use_normalized_answer_loss UpperCamelCase_ = huber_loss_delta UpperCamelCase_ = temperature UpperCamelCase_ = aggregation_temperature UpperCamelCase_ = use_gumbel_for_cells UpperCamelCase_ = use_gumbel_for_aggregation UpperCamelCase_ = average_approximation_function UpperCamelCase_ = cell_selection_preference UpperCamelCase_ = answer_loss_cutoff UpperCamelCase_ = max_num_rows UpperCamelCase_ = max_num_columns UpperCamelCase_ = average_logits_per_cell UpperCamelCase_ = select_one_column UpperCamelCase_ = allow_empty_column_selection UpperCamelCase_ = init_cell_selection_weights_to_zero UpperCamelCase_ = reset_position_index_per_cell UpperCamelCase_ = disable_per_token_loss # Aggregation hyperparameters UpperCamelCase_ = aggregation_labels UpperCamelCase_ = no_aggregation_label_index if isinstance(self.aggregation_labels , __UpperCAmelCase ): UpperCamelCase_ = {int(__UpperCAmelCase ): v for k, v in aggregation_labels.items()}
704
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __a : Any = { """configuration_distilbert""": [ """DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """DistilBertConfig""", """DistilBertOnnxConfig""", ], """tokenization_distilbert""": ["""DistilBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a : List[Any] = ["""DistilBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a : List[str] = [ """DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """DistilBertForMaskedLM""", """DistilBertForMultipleChoice""", """DistilBertForQuestionAnswering""", """DistilBertForSequenceClassification""", """DistilBertForTokenClassification""", """DistilBertModel""", """DistilBertPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a : int = [ """TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFDistilBertForMaskedLM""", """TFDistilBertForMultipleChoice""", """TFDistilBertForQuestionAnswering""", """TFDistilBertForSequenceClassification""", """TFDistilBertForTokenClassification""", """TFDistilBertMainLayer""", """TFDistilBertModel""", """TFDistilBertPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a : Optional[Any] = [ """FlaxDistilBertForMaskedLM""", """FlaxDistilBertForMultipleChoice""", """FlaxDistilBertForQuestionAnswering""", """FlaxDistilBertForSequenceClassification""", """FlaxDistilBertForTokenClassification""", """FlaxDistilBertModel""", """FlaxDistilBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_distilbert import ( DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DistilBertConfig, DistilBertOnnxConfig, ) from .tokenization_distilbert import DistilBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_distilbert_fast import DistilBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_distilbert import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, DistilBertPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertMainLayer, TFDistilBertModel, TFDistilBertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, FlaxDistilBertPreTrainedModel, ) else: import sys __a : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
559
0
import os import posixpath import uuid from dataclasses import dataclass from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union import numpy as np import pyarrow as pa import datasets from datasets.arrow_writer import ArrowWriter, ParquetWriter from datasets.config import MAX_SHARD_SIZE from datasets.filesystems import ( is_remote_filesystem, rename, ) from datasets.iterable_dataset import _BaseExamplesIterable from datasets.utils.py_utils import convert_file_size_to_int _SCREAMING_SNAKE_CASE : int = datasets.utils.logging.get_logger(__name__) if TYPE_CHECKING: import pyspark @dataclass class UpperCAmelCase__ ( datasets.BuilderConfig ): """simple docstring""" a = None def UpperCAmelCase_ ( _A , _A , ): '''simple docstring''' import pyspark def generate_fn(): SCREAMING_SNAKE_CASE__ = df.select('''*''' , pyspark.sql.functions.spark_partition_id().alias('''part_id''' ) ) for partition_id in partition_order: SCREAMING_SNAKE_CASE__ = df_with_partition_id.select('''*''' ).where(F'''part_id = {partition_id}''' ).drop('''part_id''' ) SCREAMING_SNAKE_CASE__ = partition_df.collect() SCREAMING_SNAKE_CASE__ = 0 for row in rows: yield F'''{partition_id}_{row_id}''', row.asDict() row_id += 1 return generate_fn class UpperCAmelCase__ ( _BaseExamplesIterable ): """simple docstring""" def __init__( self : Optional[int] , __lowerCamelCase : Dict , __lowerCamelCase : Optional[Any]=None , ) -> Tuple: SCREAMING_SNAKE_CASE__ = df SCREAMING_SNAKE_CASE__ = partition_order or range(self.df.rdd.getNumPartitions() ) SCREAMING_SNAKE_CASE__ = _generate_iterable_examples(self.df , self.partition_order ) def __iter__( self : Optional[int] ) -> str: yield from self.generate_examples_fn() def lowercase_ ( self : int , __lowerCamelCase : int ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = list(range(self.df.rdd.getNumPartitions() ) ) generator.shuffle(__lowerCamelCase ) return SparkExamplesIterable(self.df , partition_order=__lowerCamelCase ) def lowercase_ ( self : str , __lowerCamelCase : List[Any] , __lowerCamelCase : Union[str, Any] ) -> List[Any]: SCREAMING_SNAKE_CASE__ = self.split_shard_indices_by_worker(__lowerCamelCase , __lowerCamelCase ) return SparkExamplesIterable(self.df , partition_order=__lowerCamelCase ) @property def lowercase_ ( self : Dict ) -> Any: return len(self.partition_order ) class UpperCAmelCase__ ( datasets.DatasetBuilder ): """simple docstring""" a = SparkConfig def __init__( self : str , __lowerCamelCase : Optional[int] , __lowerCamelCase : List[str] = None , __lowerCamelCase : Union[str, Any] = None , **__lowerCamelCase : Union[str, Any] , ) -> Dict: import pyspark SCREAMING_SNAKE_CASE__ = pyspark.sql.SparkSession.builder.getOrCreate() SCREAMING_SNAKE_CASE__ = df SCREAMING_SNAKE_CASE__ = working_dir super().__init__( cache_dir=__lowerCamelCase , config_name=str(self.df.semanticHash() ) , **__lowerCamelCase , ) def lowercase_ ( self : str ) -> int: def create_cache_and_write_probe(__lowerCamelCase : Union[str, Any] ): # makedirs with exist_ok will recursively create the directory. It will not throw an error if directories # already exist. os.makedirs(self._cache_dir , exist_ok=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = os.path.join(self._cache_dir , '''fs_test''' + uuid.uuida().hex ) # Opening the file in append mode will create a new file unless it already exists, in which case it will not # change the file contents. open(__lowerCamelCase , '''a''' ) return [probe_file] if self._spark.conf.get('''spark.master''' , '''''' ).startswith('''local''' ): return # If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS # accessible to the driver. # TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error. if self._cache_dir: SCREAMING_SNAKE_CASE__ = ( self._spark.sparkContext.parallelize(range(1 ) , 1 ).mapPartitions(__lowerCamelCase ).collect() ) if os.path.isfile(probe[0] ): return raise ValueError( '''When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir''' ) def lowercase_ ( self : List[str] ) -> List[Any]: return datasets.DatasetInfo(features=self.config.features ) def lowercase_ ( self : Any , __lowerCamelCase : Dict ) -> List[str]: return [datasets.SplitGenerator(name=datasets.Split.TRAIN )] def lowercase_ ( self : Dict , __lowerCamelCase : Any ) -> Union[str, Any]: import pyspark def get_arrow_batch_size(__lowerCamelCase : List[str] ): for batch in it: yield pa.RecordBatch.from_pydict({'''batch_bytes''': [batch.nbytes]} ) SCREAMING_SNAKE_CASE__ = self.df.count() SCREAMING_SNAKE_CASE__ = df_num_rows if df_num_rows <= 100 else 100 # Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample. SCREAMING_SNAKE_CASE__ = ( self.df.limit(__lowerCamelCase ) .repartition(1 ) .mapInArrow(__lowerCamelCase , '''batch_bytes: long''' ) .agg(pyspark.sql.functions.sum('''batch_bytes''' ).alias('''sample_bytes''' ) ) .collect()[0] .sample_bytes / sample_num_rows ) SCREAMING_SNAKE_CASE__ = approx_bytes_per_row * df_num_rows if approx_total_size > max_shard_size: # Make sure there is at least one row per partition. SCREAMING_SNAKE_CASE__ = min(__lowerCamelCase , int(approx_total_size / max_shard_size ) ) SCREAMING_SNAKE_CASE__ = self.df.repartition(__lowerCamelCase ) def lowercase_ ( self : Optional[int] , __lowerCamelCase : Dict , __lowerCamelCase : List[str] , __lowerCamelCase : Any , ) -> Any: import pyspark SCREAMING_SNAKE_CASE__ = ParquetWriter if file_format == '''parquet''' else ArrowWriter SCREAMING_SNAKE_CASE__ = os.path.join(self._working_dir , os.path.basename(__lowerCamelCase ) ) if self._working_dir else fpath SCREAMING_SNAKE_CASE__ = file_format == '''parquet''' # Define these so that we don't reference self in write_arrow, which will result in a pickling error due to # pickling the SparkContext. SCREAMING_SNAKE_CASE__ = self.config.features SCREAMING_SNAKE_CASE__ = self._writer_batch_size SCREAMING_SNAKE_CASE__ = self._fs.storage_options def write_arrow(__lowerCamelCase : Tuple ): # Within the same SparkContext, no two task attempts will share the same attempt ID. SCREAMING_SNAKE_CASE__ = pyspark.TaskContext().taskAttemptId() SCREAMING_SNAKE_CASE__ = next(__lowerCamelCase , __lowerCamelCase ) if first_batch is None: # Some partitions might not receive any data. return pa.RecordBatch.from_arrays( [[task_id], [0], [0]] , names=['''task_id''', '''num_examples''', '''num_bytes'''] , ) SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = writer_class( features=__lowerCamelCase , path=working_fpath.replace('''SSSSS''' , f'''{shard_id:05d}''' ).replace('''TTTTT''' , f'''{task_id:05d}''' ) , writer_batch_size=__lowerCamelCase , storage_options=__lowerCamelCase , embed_local_files=__lowerCamelCase , ) SCREAMING_SNAKE_CASE__ = pa.Table.from_batches([first_batch] ) writer.write_table(__lowerCamelCase ) for batch in it: if max_shard_size is not None and writer._num_bytes >= max_shard_size: SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=['''task_id''', '''num_examples''', '''num_bytes'''] , ) shard_id += 1 SCREAMING_SNAKE_CASE__ = writer_class( features=writer._features , path=working_fpath.replace('''SSSSS''' , f'''{shard_id:05d}''' ).replace('''TTTTT''' , f'''{task_id:05d}''' ) , writer_batch_size=__lowerCamelCase , storage_options=__lowerCamelCase , embed_local_files=__lowerCamelCase , ) SCREAMING_SNAKE_CASE__ = pa.Table.from_batches([batch] ) writer.write_table(__lowerCamelCase ) if writer._num_bytes > 0: SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=['''task_id''', '''num_examples''', '''num_bytes'''] , ) if working_fpath != fpath: for file in os.listdir(os.path.dirname(__lowerCamelCase ) ): SCREAMING_SNAKE_CASE__ = os.path.join(os.path.dirname(__lowerCamelCase ) , os.path.basename(__lowerCamelCase ) ) shutil.move(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = ( self.df.mapInArrow(__lowerCamelCase , '''task_id: long, num_examples: long, num_bytes: long''' ) .groupBy('''task_id''' ) .agg( pyspark.sql.functions.sum('''num_examples''' ).alias('''total_num_examples''' ) , pyspark.sql.functions.sum('''num_bytes''' ).alias('''total_num_bytes''' ) , pyspark.sql.functions.count('''num_bytes''' ).alias('''num_shards''' ) , pyspark.sql.functions.collect_list('''num_examples''' ).alias('''shard_lengths''' ) , ) .collect() ) for row in stats: yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths) def lowercase_ ( self : str , __lowerCamelCase : List[Any] , __lowerCamelCase : Tuple = "arrow" , __lowerCamelCase : Any = None , __lowerCamelCase : List[Any] = None , **__lowerCamelCase : Union[str, Any] , ) -> List[str]: self._validate_cache_dir() SCREAMING_SNAKE_CASE__ = convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE ) self._repartition_df_if_needed(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = not is_remote_filesystem(self._fs ) SCREAMING_SNAKE_CASE__ = os.path.join if is_local else posixpath.join SCREAMING_SNAKE_CASE__ = '''-TTTTT-SSSSS-of-NNNNN''' SCREAMING_SNAKE_CASE__ = f'''{self.name}-{split_generator.name}{SUFFIX}.{file_format}''' SCREAMING_SNAKE_CASE__ = path_join(self._output_dir , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = [] for task_id, content in self._prepare_split_single(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): ( ( SCREAMING_SNAKE_CASE__ ),( SCREAMING_SNAKE_CASE__ ),( SCREAMING_SNAKE_CASE__ ),( SCREAMING_SNAKE_CASE__ ), ) = content if num_bytes > 0: total_num_examples += num_examples total_num_bytes += num_bytes total_shards += num_shards task_id_and_num_shards.append((task_id, num_shards) ) all_shard_lengths.extend(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = total_num_examples SCREAMING_SNAKE_CASE__ = total_num_bytes # should rename everything at the end logger.debug(f'''Renaming {total_shards} shards.''' ) if total_shards > 1: SCREAMING_SNAKE_CASE__ = all_shard_lengths # Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a # pickling error due to pickling the SparkContext. SCREAMING_SNAKE_CASE__ = self._fs # use the -SSSSS-of-NNNNN pattern def _rename_shard( __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : Optional[int] , ): rename( __lowerCamelCase , fpath.replace('''SSSSS''' , f'''{shard_id:05d}''' ).replace('''TTTTT''' , f'''{task_id:05d}''' ) , fpath.replace('''TTTTT-SSSSS''' , f'''{global_shard_id:05d}''' ).replace('''NNNNN''' , f'''{total_shards:05d}''' ) , ) SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = 0 for i in range(len(__lowerCamelCase ) ): SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = task_id_and_num_shards[i] for shard_id in range(__lowerCamelCase ): args.append([task_id, shard_id, global_shard_id] ) global_shard_id += 1 self._spark.sparkContext.parallelize(__lowerCamelCase , len(__lowerCamelCase ) ).map(lambda __lowerCamelCase : _rename_shard(*__lowerCamelCase ) ).collect() else: # don't use any pattern SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = task_id_and_num_shards[0][0] self._rename( fpath.replace('''SSSSS''' , f'''{shard_id:05d}''' ).replace('''TTTTT''' , f'''{task_id:05d}''' ) , fpath.replace(__lowerCamelCase , '''''' ) , ) def lowercase_ ( self : List[str] , __lowerCamelCase : Union[str, Any] , ) -> Union[str, Any]: return SparkExamplesIterable(self.df )
493
"""simple docstring""" import logging import os from typing import List, Tuple import numpy as np import psutil import torch import torch.distributed as dist from transformers import RagRetriever SCREAMING_SNAKE_CASE : Tuple = logging.getLogger(__name__) class __lowerCamelCase ( __lowercase ): def __init__(self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase=None ): '''simple docstring''' super().__init__( lowerCamelCase , question_encoder_tokenizer=lowerCamelCase , generator_tokenizer=lowerCamelCase , index=lowerCamelCase , init_retrieval=lowerCamelCase , ) _lowerCAmelCase = None def A__ (self , lowerCamelCase ): '''simple docstring''' logger.info("""initializing retrieval""" ) # initializing a separate process group for retrieval as the default # nccl backend doesn't support gather/scatter operations while gloo # is too slow to replace nccl for the core gpu communication if dist.is_initialized(): logger.info("""dist initialized""" ) # needs to be set manually _lowerCAmelCase = self._infer_socket_ifname() # avoid clash with the NCCL port _lowerCAmelCase = str(distributed_port + 1 ) _lowerCAmelCase = dist.new_group(ranks=lowerCamelCase , backend="""gloo""" ) # initialize retriever only on the main worker if not dist.is_initialized() or self._is_main(): logger.info("""dist not initialized / main""" ) self.index.init_index() # all processes wait untill the retriever is initialized by the main process if dist.is_initialized(): torch.distributed.barrier(group=self.process_group ) def A__ (self ): '''simple docstring''' return dist.get_rank(group=self.process_group ) == 0 def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase=torch.floataa ): '''simple docstring''' _lowerCAmelCase = torch.empty(lowerCamelCase , dtype=lowerCamelCase ) dist.scatter(lowerCamelCase , src=0 , scatter_list=lowerCamelCase , group=self.process_group ) return target_tensor def A__ (self ): '''simple docstring''' _lowerCAmelCase = psutil.net_if_addrs() # a hacky way to deal with varying network interface names _lowerCAmelCase = next((addr for addr in addrs if addr.startswith("""e""" )) , lowerCamelCase ) return ifname def A__ (self , lowerCamelCase , lowerCamelCase ): '''simple docstring''' if not dist.is_initialized(): _lowerCAmelCase , _lowerCAmelCase = self._main_retrieve(lowerCamelCase , lowerCamelCase ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(lowerCamelCase ) # distributed training _lowerCAmelCase = dist.get_world_size(group=self.process_group ) # gather logic _lowerCAmelCase = None if self._is_main(): _lowerCAmelCase = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(lowerCamelCase )] dist.gather(torch.tensor(lowerCamelCase ) , dst=0 , gather_list=lowerCamelCase , group=self.process_group ) # scatter logic _lowerCAmelCase = question_hidden_states.shape[0] _lowerCAmelCase = [] _lowerCAmelCase = [] if self._is_main(): assert len(lowerCamelCase ) == world_size _lowerCAmelCase , _lowerCAmelCase = self._main_retrieve(torch.cat(lowerCamelCase ).numpy() , lowerCamelCase ) _lowerCAmelCase , _lowerCAmelCase = torch.tensor(lowerCamelCase ), torch.tensor(lowerCamelCase ) _lowerCAmelCase = self._chunk_tensor(lowerCamelCase , lowerCamelCase ) _lowerCAmelCase = self._chunk_tensor(lowerCamelCase , lowerCamelCase ) _lowerCAmelCase = self._scattered(lowerCamelCase , [n_queries, n_docs] , target_type=torch.intaa ) _lowerCAmelCase = self._scattered(lowerCamelCase , [n_queries, n_docs, question_hidden_states.shape[1]] ) return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(lowerCamelCase )
156
0
import string def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' for key in range(len(string.ascii_uppercase ) ): __UpperCamelCase :Any = '''''' for symbol in message: if symbol in string.ascii_uppercase: __UpperCamelCase :str = string.ascii_uppercase.find(_A ) __UpperCamelCase :Union[str, Any] = num - key if num < 0: __UpperCamelCase :Optional[Any] = num + len(string.ascii_uppercase ) __UpperCamelCase :str = translated + string.ascii_uppercase[num] else: __UpperCamelCase :Union[str, Any] = translated + symbol print(f"""Decryption using Key #{key}: {translated}""" ) def lowerCamelCase ( ): '''simple docstring''' __UpperCamelCase :List[Any] = input('''Encrypted message: ''' ) __UpperCamelCase :List[Any] = message.upper() decrypt(_A ) if __name__ == "__main__": import doctest doctest.testmod() main()
709
import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.esm.modeling_esmfold import EsmForProteinFolding class lowerCamelCase_ : '''simple docstring''' def __init__( self , __lowercase , __lowercase=13 , __lowercase=7 , __lowercase=False , __lowercase=True , __lowercase=False , __lowercase=False , __lowercase=19 , __lowercase=32 , __lowercase=5 , __lowercase=4 , __lowercase=37 , __lowercase="gelu" , __lowercase=0.1 , __lowercase=0.1 , __lowercase=512 , __lowercase=16 , __lowercase=2 , __lowercase=0.02 , __lowercase=3 , __lowercase=4 , __lowercase=None , ) -> Optional[Any]: __UpperCamelCase :Dict = parent __UpperCamelCase :Optional[Any] = batch_size __UpperCamelCase :Any = seq_length __UpperCamelCase :List[str] = is_training __UpperCamelCase :Any = use_input_mask __UpperCamelCase :Optional[int] = use_token_type_ids __UpperCamelCase :List[str] = use_labels __UpperCamelCase :Tuple = vocab_size __UpperCamelCase :List[Any] = hidden_size __UpperCamelCase :Optional[Any] = num_hidden_layers __UpperCamelCase :List[Any] = num_attention_heads __UpperCamelCase :Dict = intermediate_size __UpperCamelCase :List[str] = hidden_act __UpperCamelCase :Any = hidden_dropout_prob __UpperCamelCase :Union[str, Any] = attention_probs_dropout_prob __UpperCamelCase :Optional[Any] = max_position_embeddings __UpperCamelCase :List[Any] = type_vocab_size __UpperCamelCase :int = type_sequence_label_size __UpperCamelCase :str = initializer_range __UpperCamelCase :Optional[Any] = num_labels __UpperCamelCase :int = num_choices __UpperCamelCase :Optional[Any] = scope def UpperCamelCase__ ( self) -> List[Any]: __UpperCamelCase :int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) __UpperCamelCase :int = None if self.use_input_mask: __UpperCamelCase :Optional[Any] = random_attention_mask([self.batch_size, self.seq_length]) __UpperCamelCase :Dict = None __UpperCamelCase :List[Any] = None __UpperCamelCase :Tuple = None if self.use_labels: __UpperCamelCase :Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size) __UpperCamelCase :Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) __UpperCamelCase :str = ids_tensor([self.batch_size] , self.num_choices) __UpperCamelCase :Optional[Any] = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase__ ( self) -> Optional[int]: __UpperCamelCase :int = EsmConfig( vocab_size=33 , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , is_folding_model=__lowercase , esmfold_config={'''trunk''': {'''num_blocks''': 2}, '''fp16_esm''': False} , ) return config def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase) -> Union[str, Any]: __UpperCamelCase :int = EsmForProteinFolding(config=__lowercase).float() model.to(__lowercase) model.eval() __UpperCamelCase :Tuple = model(__lowercase , attention_mask=__lowercase) __UpperCamelCase :Any = model(__lowercase) __UpperCamelCase :Optional[Any] = model(__lowercase) self.parent.assertEqual(result.positions.shape , (8, self.batch_size, self.seq_length, 14, 3)) self.parent.assertEqual(result.angles.shape , (8, self.batch_size, self.seq_length, 7, 2)) def UpperCamelCase__ ( self) -> Optional[Any]: __UpperCamelCase :Dict = self.prepare_config_and_inputs() ( ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ) :List[str] = config_and_inputs __UpperCamelCase :Tuple = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class lowerCamelCase_ ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' a__ : Optional[int] = False a__ : Optional[int] = (EsmForProteinFolding,) if is_torch_available() else () a__ : str = () a__ : Tuple = {} if is_torch_available() else {} a__ : List[Any] = False def UpperCamelCase__ ( self) -> Tuple: __UpperCamelCase :Dict = EsmFoldModelTester(self) __UpperCamelCase :Dict = ConfigTester(self , config_class=__lowercase , hidden_size=37) def UpperCamelCase__ ( self) -> List[Any]: self.config_tester.run_common_tests() def UpperCamelCase__ ( self) -> List[str]: __UpperCamelCase :Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowercase) @unittest.skip('''Does not support attention outputs''') def UpperCamelCase__ ( self) -> Any: pass @unittest.skip def UpperCamelCase__ ( self) -> Any: pass @unittest.skip('''Esm does not support embedding resizing''') def UpperCamelCase__ ( self) -> Union[str, Any]: pass @unittest.skip('''Esm does not support embedding resizing''') def UpperCamelCase__ ( self) -> Optional[Any]: pass @unittest.skip('''ESMFold does not support passing input embeds!''') def UpperCamelCase__ ( self) -> List[Any]: pass @unittest.skip('''ESMFold does not support head pruning.''') def UpperCamelCase__ ( self) -> Optional[int]: pass @unittest.skip('''ESMFold does not support head pruning.''') def UpperCamelCase__ ( self) -> Optional[Any]: pass @unittest.skip('''ESMFold does not support head pruning.''') def UpperCamelCase__ ( self) -> Dict: pass @unittest.skip('''ESMFold does not support head pruning.''') def UpperCamelCase__ ( self) -> Optional[Any]: pass @unittest.skip('''ESMFold does not support head pruning.''') def UpperCamelCase__ ( self) -> Optional[int]: pass @unittest.skip('''ESMFold does not output hidden states in the normal way.''') def UpperCamelCase__ ( self) -> str: pass @unittest.skip('''ESMfold does not output hidden states in the normal way.''') def UpperCamelCase__ ( self) -> Optional[Any]: pass @unittest.skip('''ESMFold only has one output format.''') def UpperCamelCase__ ( self) -> Union[str, Any]: pass @unittest.skip('''This test doesn\'t work for ESMFold and doesn\'t test core functionality''') def UpperCamelCase__ ( self) -> List[Any]: pass @unittest.skip('''ESMFold does not support input chunking.''') def UpperCamelCase__ ( self) -> List[Any]: pass @unittest.skip('''ESMFold doesn\'t respect you and it certainly doesn\'t respect your initialization arguments.''') def UpperCamelCase__ ( self) -> int: pass @unittest.skip('''ESMFold doesn\'t support torchscript compilation.''') def UpperCamelCase__ ( self) -> str: pass @unittest.skip('''ESMFold doesn\'t support torchscript compilation.''') def UpperCamelCase__ ( self) -> List[Any]: pass @unittest.skip('''ESMFold doesn\'t support torchscript compilation.''') def UpperCamelCase__ ( self) -> List[Any]: pass @unittest.skip('''ESMFold doesn\'t support data parallel.''') def UpperCamelCase__ ( self) -> Any: pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''') def UpperCamelCase__ ( self) -> Dict: pass @require_torch class lowerCamelCase_ ( UpperCAmelCase_ ): '''simple docstring''' @slow def UpperCamelCase__ ( self) -> Tuple: __UpperCamelCase :Optional[Any] = EsmForProteinFolding.from_pretrained('''facebook/esmfold_v1''').float() model.eval() __UpperCamelCase :Tuple = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]]) __UpperCamelCase :List[Any] = model(__lowercase)['''positions'''] __UpperCamelCase :Optional[int] = torch.tensor([2.58_28, 0.79_93, -10.93_34] , dtype=torch.floataa) self.assertTrue(torch.allclose(position_outputs[0, 0, 0, 0] , __lowercase , atol=1E-4))
452
0
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from ...utils.dataclasses import ( ComputeEnvironment, DistributedType, DynamoBackend, PrecisionType, SageMakerDistributedType, ) from ..menu import BulletMenu __A : str = [ 'EAGER', 'AOT_EAGER', 'INDUCTOR', 'NVFUSER', 'AOT_NVFUSER', 'AOT_CUDAGRAPHS', 'OFI', 'FX2TRT', 'ONNXRT', 'IPEX', ] def UpperCAmelCase ( lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :Dict=None , lowerCamelCase_ :str=None , lowerCamelCase_ :Tuple=None ): '''simple docstring''' snake_case_ : Tuple = True while ask_again: snake_case_ : Any = input(lowerCamelCase_ ) try: if default is not None and len(lowerCamelCase_ ) == 0: return default return convert_value(lowerCamelCase_ ) if convert_value is not None else result except Exception: if error_message is not None: print(lowerCamelCase_ ) def UpperCAmelCase ( lowerCamelCase_ :Tuple , lowerCamelCase_ :List[Any]=[] , lowerCamelCase_ :Dict=None , lowerCamelCase_ :Union[str, Any]=0 ): '''simple docstring''' snake_case_ : List[str] = BulletMenu(lowerCamelCase_ , lowerCamelCase_ ) snake_case_ : int = menu.run(default_choice=lowerCamelCase_ ) return convert_value(lowerCamelCase_ ) if convert_value is not None else result def UpperCAmelCase ( lowerCamelCase_ :Any ): '''simple docstring''' snake_case_ : str = int(lowerCamelCase_ ) return ComputeEnvironment(["""LOCAL_MACHINE""", """AMAZON_SAGEMAKER"""][value] ) def UpperCAmelCase ( lowerCamelCase_ :Union[str, Any] ): '''simple docstring''' snake_case_ : Dict = int(lowerCamelCase_ ) return DistributedType(["""NO""", """MULTI_CPU""", """MULTI_XPU""", """MULTI_GPU""", """MULTI_NPU""", """TPU"""][value] ) def UpperCAmelCase ( lowerCamelCase_ :Optional[int] ): '''simple docstring''' snake_case_ : Optional[Any] = int(lowerCamelCase_ ) return DynamoBackend(DYNAMO_BACKENDS[value] ).value def UpperCAmelCase ( lowerCamelCase_ :int ): '''simple docstring''' snake_case_ : List[Any] = int(lowerCamelCase_ ) return PrecisionType(["""no""", """fp16""", """bf16""", """fp8"""][value] ) def UpperCAmelCase ( lowerCamelCase_ :Any ): '''simple docstring''' snake_case_ : str = int(lowerCamelCase_ ) return SageMakerDistributedType(["""NO""", """DATA_PARALLEL""", """MODEL_PARALLEL"""][value] ) def UpperCAmelCase ( lowerCamelCase_ :Dict ): '''simple docstring''' return {"yes": True, "no": False}[value.lower()] class __UpperCamelCase ( argparse.RawDescriptionHelpFormatter ): def a__ ( self :Tuple ,_UpperCamelCase :Any ,_UpperCamelCase :Any ,_UpperCamelCase :int ,_UpperCamelCase :Any ): snake_case_ : List[Any] = super()._format_usage(_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ) snake_case_ : List[Any] = usage.replace("""<command> [<args>] """ ,"""""" ) return usage
334
'''simple docstring''' from typing import Callable, Dict, Optional, Tuple import torch from torch import nn from torch.distributions import ( AffineTransform, Distribution, Independent, NegativeBinomial, Normal, StudentT, TransformedDistribution, ) class __UpperCamelCase ( lowercase__ ): def __init__( self :str ,_UpperCamelCase :Distribution ,_UpperCamelCase :int=None ,_UpperCamelCase :Optional[Any]=None ,_UpperCamelCase :Optional[Any]=0 ): snake_case_ : Any = 1.0 if scale is None else scale snake_case_ : Any = 0.0 if loc is None else loc super().__init__(_UpperCamelCase ,[AffineTransform(loc=self.loc ,scale=self.scale ,event_dim=_UpperCamelCase )] ) @property def a__ ( self :List[str] ): return self.base_dist.mean * self.scale + self.loc @property def a__ ( self :Any ): return self.base_dist.variance * self.scale**2 @property def a__ ( self :str ): return self.variance.sqrt() class __UpperCamelCase ( nn.Module ): def __init__( self :int ,_UpperCamelCase :int ,_UpperCamelCase :Dict[str, int] ,_UpperCamelCase :Callable[..., Tuple[torch.Tensor]] ,**_UpperCamelCase :Dict ): super().__init__(**_UpperCamelCase ) snake_case_ : List[str] = args_dim snake_case_ : int = nn.ModuleList([nn.Linear(_UpperCamelCase ,_UpperCamelCase ) for dim in args_dim.values()] ) snake_case_ : List[str] = domain_map def a__ ( self :int ,_UpperCamelCase :torch.Tensor ): snake_case_ : Any = [proj(_UpperCamelCase ) for proj in self.proj] return self.domain_map(*_UpperCamelCase ) class __UpperCamelCase ( nn.Module ): def __init__( self :Optional[Any] ,_UpperCamelCase :str ): super().__init__() snake_case_ : Dict = function def a__ ( self :List[Any] ,_UpperCamelCase :List[str] ,*_UpperCamelCase :Any ): return self.function(_UpperCamelCase ,*_UpperCamelCase ) class __UpperCamelCase : lowercase : type lowercase : int lowercase : Dict[str, int] def __init__( self :Any ,_UpperCamelCase :int = 1 ): snake_case_ : Optional[Any] = dim snake_case_ : Union[str, Any] = {k: dim * self.args_dim[k] for k in self.args_dim} def a__ ( self :Tuple ,_UpperCamelCase :Dict ): if self.dim == 1: return self.distribution_class(*_UpperCamelCase ) else: return Independent(self.distribution_class(*_UpperCamelCase ) ,1 ) def a__ ( self :Union[str, Any] ,_UpperCamelCase :Optional[Any] ,_UpperCamelCase :Optional[torch.Tensor] = None ,_UpperCamelCase :Optional[torch.Tensor] = None ,): snake_case_ : Dict = self._base_distribution(_UpperCamelCase ) if loc is None and scale is None: return distr else: return AffineTransformed(_UpperCamelCase ,loc=_UpperCamelCase ,scale=_UpperCamelCase ,event_dim=self.event_dim ) @property def a__ ( self :Any ): return () if self.dim == 1 else (self.dim,) @property def a__ ( self :List[Any] ): return len(self.event_shape ) @property def a__ ( self :Dict ): return 0.0 def a__ ( self :Dict ,_UpperCamelCase :int ): return ParameterProjection( in_features=_UpperCamelCase ,args_dim=self.args_dim ,domain_map=LambdaLayer(self.domain_map ) ,) def a__ ( self :Any ,*_UpperCamelCase :torch.Tensor ): raise NotImplementedError() @staticmethod def a__ ( _UpperCamelCase :torch.Tensor ): return (x + torch.sqrt(torch.square(_UpperCamelCase ) + 4.0 )) / 2.0 class __UpperCamelCase ( lowercase__ ): lowercase : Dict[str, int] = {"df": 1, "loc": 1, "scale": 1} lowercase : type = StudentT @classmethod def a__ ( cls :Optional[Any] ,_UpperCamelCase :torch.Tensor ,_UpperCamelCase :torch.Tensor ,_UpperCamelCase :torch.Tensor ): snake_case_ : int = cls.squareplus(_UpperCamelCase ).clamp_min(torch.finfo(scale.dtype ).eps ) snake_case_ : Optional[int] = 2.0 + cls.squareplus(_UpperCamelCase ) return df.squeeze(-1 ), loc.squeeze(-1 ), scale.squeeze(-1 ) class __UpperCamelCase ( lowercase__ ): lowercase : Dict[str, int] = {"loc": 1, "scale": 1} lowercase : type = Normal @classmethod def a__ ( cls :Tuple ,_UpperCamelCase :torch.Tensor ,_UpperCamelCase :torch.Tensor ): snake_case_ : int = cls.squareplus(_UpperCamelCase ).clamp_min(torch.finfo(scale.dtype ).eps ) return loc.squeeze(-1 ), scale.squeeze(-1 ) class __UpperCamelCase ( lowercase__ ): lowercase : Dict[str, int] = {"total_count": 1, "logits": 1} lowercase : type = NegativeBinomial @classmethod def a__ ( cls :Dict ,_UpperCamelCase :torch.Tensor ,_UpperCamelCase :torch.Tensor ): snake_case_ : Optional[Any] = cls.squareplus(_UpperCamelCase ) return total_count.squeeze(-1 ), logits.squeeze(-1 ) def a__ ( self :int ,_UpperCamelCase :Any ): snake_case_ , snake_case_ : str = distr_args if self.dim == 1: return self.distribution_class(total_count=_UpperCamelCase ,logits=_UpperCamelCase ) else: return Independent(self.distribution_class(total_count=_UpperCamelCase ,logits=_UpperCamelCase ) ,1 ) def a__ ( self :int ,_UpperCamelCase :List[str] ,_UpperCamelCase :Optional[torch.Tensor] = None ,_UpperCamelCase :Optional[torch.Tensor] = None ): snake_case_ , snake_case_ : Tuple = distr_args if scale is not None: # See scaling property of Gamma. logits += scale.log() return self._base_distribution((total_count, logits) )
334
1
"""simple docstring""" A_ = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] def UpperCAmelCase__ (snake_case__ : Tuple , snake_case__ : str , snake_case__ : Any , snake_case__ : str ): """simple docstring""" _snake_case : Any = [False] * len(snake_case__ ) _snake_case : Tuple = [s] _snake_case : Tuple = True while queue: _snake_case : int = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(snake_case__ ) _snake_case : Dict = True _snake_case : Union[str, Any] = u return visited[t] def UpperCAmelCase__ (snake_case__ : Tuple , snake_case__ : int , snake_case__ : str ): """simple docstring""" _snake_case : Optional[Any] = [-1] * (len(snake_case__ )) _snake_case : Tuple = 0 _snake_case : Optional[Any] = [] _snake_case : Union[str, Any] = [i[:] for i in graph] # Record original cut, copy. while bfs(snake_case__ , snake_case__ , snake_case__ , snake_case__ ): _snake_case : int = float("""Inf""" ) _snake_case : Union[str, Any] = sink while s != source: # Find the minimum value in select path _snake_case : int = min(snake_case__ , graph[parent[s]][s] ) _snake_case : Union[str, Any] = parent[s] max_flow += path_flow _snake_case : Optional[Any] = sink while v != source: _snake_case : Tuple = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow _snake_case : str = parent[v] for i in range(len(snake_case__ ) ): for j in range(len(graph[0] ) ): if graph[i][j] == 0 and temp[i][j] > 0: res.append((i, j) ) return res if __name__ == "__main__": print(mincut(test_graph, source=0, sink=5))
28
"""simple docstring""" import argparse import json import torch from diffusers import DDPMScheduler, LDMPipeline, UNetaDModel, VQModel def UpperCAmelCase__ (snake_case__ : Optional[Any] , snake_case__ : Union[str, Any]=1 ): """simple docstring""" if n_shave_prefix_segments >= 0: return ".".join(path.split(""".""" )[n_shave_prefix_segments:] ) else: return ".".join(path.split(""".""" )[:n_shave_prefix_segments] ) def UpperCAmelCase__ (snake_case__ : str , snake_case__ : List[Any]=0 ): """simple docstring""" _snake_case : Optional[Any] = [] for old_item in old_list: _snake_case : Union[str, Any] = old_item.replace("""in_layers.0""" , """norm1""" ) _snake_case : List[Any] = new_item.replace("""in_layers.2""" , """conv1""" ) _snake_case : Tuple = new_item.replace("""out_layers.0""" , """norm2""" ) _snake_case : Dict = new_item.replace("""out_layers.3""" , """conv2""" ) _snake_case : int = new_item.replace("""emb_layers.1""" , """time_emb_proj""" ) _snake_case : Optional[Any] = new_item.replace("""skip_connection""" , """conv_shortcut""" ) _snake_case : str = shave_segments(snake_case__ , n_shave_prefix_segments=snake_case__ ) mapping.append({"""old""": old_item, """new""": new_item} ) return mapping def UpperCAmelCase__ (snake_case__ : Dict , snake_case__ : Dict=0 ): """simple docstring""" _snake_case : Dict = [] for old_item in old_list: _snake_case : Dict = old_item _snake_case : int = new_item.replace("""norm.weight""" , """group_norm.weight""" ) _snake_case : str = new_item.replace("""norm.bias""" , """group_norm.bias""" ) _snake_case : Optional[Any] = new_item.replace("""proj_out.weight""" , """proj_attn.weight""" ) _snake_case : Optional[Any] = new_item.replace("""proj_out.bias""" , """proj_attn.bias""" ) _snake_case : Optional[Any] = shave_segments(snake_case__ , n_shave_prefix_segments=snake_case__ ) mapping.append({"""old""": old_item, """new""": new_item} ) return mapping def UpperCAmelCase__ (snake_case__ : str , snake_case__ : Union[str, Any] , snake_case__ : List[str] , snake_case__ : str=None , snake_case__ : str=None , snake_case__ : List[str]=None ): """simple docstring""" assert isinstance(snake_case__ , snake_case__ ), "Paths should be a list of dicts containing 'old' and 'new' keys." # Splits the attention layers into three variables. if attention_paths_to_split is not None: for path, path_map in attention_paths_to_split.items(): _snake_case : Union[str, Any] = old_checkpoint[path] _snake_case : Optional[int] = old_tensor.shape[0] // 3 _snake_case : List[Any] = (-1, channels) if len(old_tensor.shape ) == 3 else (-1) _snake_case : Union[str, Any] = old_tensor.shape[0] // config["""num_head_channels"""] // 3 _snake_case : Any = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] ) _snake_case , _snake_case , _snake_case : List[str] = old_tensor.split(channels // num_heads , dim=1 ) _snake_case : Union[str, Any] = query.reshape(snake_case__ ) _snake_case : Tuple = key.reshape(snake_case__ ) _snake_case : Any = value.reshape(snake_case__ ) for path in paths: _snake_case : List[Any] = path["""new"""] # These have already been assigned if attention_paths_to_split is not None and new_path in attention_paths_to_split: continue # Global renaming happens here _snake_case : Union[str, Any] = new_path.replace("""middle_block.0""" , """mid_block.resnets.0""" ) _snake_case : str = new_path.replace("""middle_block.1""" , """mid_block.attentions.0""" ) _snake_case : Any = new_path.replace("""middle_block.2""" , """mid_block.resnets.1""" ) if additional_replacements is not None: for replacement in additional_replacements: _snake_case : int = new_path.replace(replacement["""old"""] , replacement["""new"""] ) # proj_attn.weight has to be converted from conv 1D to linear if "proj_attn.weight" in new_path: _snake_case : Dict = old_checkpoint[path["""old"""]][:, :, 0] else: _snake_case : Optional[Any] = old_checkpoint[path["""old"""]] def UpperCAmelCase__ (snake_case__ : Any , snake_case__ : List[str] ): """simple docstring""" _snake_case : int = {} _snake_case : Tuple = checkpoint["""time_embed.0.weight"""] _snake_case : List[str] = checkpoint["""time_embed.0.bias"""] _snake_case : List[str] = checkpoint["""time_embed.2.weight"""] _snake_case : Tuple = checkpoint["""time_embed.2.bias"""] _snake_case : Dict = checkpoint["""input_blocks.0.0.weight"""] _snake_case : List[Any] = checkpoint["""input_blocks.0.0.bias"""] _snake_case : List[Any] = checkpoint["""out.0.weight"""] _snake_case : Any = checkpoint["""out.0.bias"""] _snake_case : Any = checkpoint["""out.2.weight"""] _snake_case : List[str] = checkpoint["""out.2.bias"""] # Retrieves the keys for the input blocks only _snake_case : List[str] = len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """input_blocks""" in layer} ) _snake_case : Any = { layer_id: [key for key in checkpoint if F"input_blocks.{layer_id}" in key] for layer_id in range(snake_case__ ) } # Retrieves the keys for the middle blocks only _snake_case : Optional[int] = len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """middle_block""" in layer} ) _snake_case : Optional[int] = { layer_id: [key for key in checkpoint if F"middle_block.{layer_id}" in key] for layer_id in range(snake_case__ ) } # Retrieves the keys for the output blocks only _snake_case : str = len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """output_blocks""" in layer} ) _snake_case : List[Any] = { layer_id: [key for key in checkpoint if F"output_blocks.{layer_id}" in key] for layer_id in range(snake_case__ ) } for i in range(1 , snake_case__ ): _snake_case : Union[str, Any] = (i - 1) // (config["""num_res_blocks"""] + 1) _snake_case : int = (i - 1) % (config["""num_res_blocks"""] + 1) _snake_case : List[str] = [key for key in input_blocks[i] if F"input_blocks.{i}.0" in key] _snake_case : str = [key for key in input_blocks[i] if F"input_blocks.{i}.1" in key] if F"input_blocks.{i}.0.op.weight" in checkpoint: _snake_case : Union[str, Any] = checkpoint[ F"input_blocks.{i}.0.op.weight" ] _snake_case : Dict = checkpoint[ F"input_blocks.{i}.0.op.bias" ] continue _snake_case : Optional[int] = renew_resnet_paths(snake_case__ ) _snake_case : int = {"""old""": F"input_blocks.{i}.0", """new""": F"down_blocks.{block_id}.resnets.{layer_in_block_id}"} _snake_case : Tuple = {"""old""": """resnets.2.op""", """new""": """downsamplers.0.op"""} assign_to_checkpoint( snake_case__ , snake_case__ , snake_case__ , additional_replacements=[meta_path, resnet_op] , config=snake_case__ ) if len(snake_case__ ): _snake_case : str = renew_attention_paths(snake_case__ ) _snake_case : List[str] = { """old""": F"input_blocks.{i}.1", """new""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}", } _snake_case : Optional[int] = { F"input_blocks.{i}.1.qkv.bias": { """key""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias", """query""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias", """value""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias", }, F"input_blocks.{i}.1.qkv.weight": { """key""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight", """query""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight", """value""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight", }, } assign_to_checkpoint( snake_case__ , snake_case__ , snake_case__ , additional_replacements=[meta_path] , attention_paths_to_split=snake_case__ , config=snake_case__ , ) _snake_case : int = middle_blocks[0] _snake_case : List[str] = middle_blocks[1] _snake_case : Any = middle_blocks[2] _snake_case : Dict = renew_resnet_paths(snake_case__ ) assign_to_checkpoint(snake_case__ , snake_case__ , snake_case__ , config=snake_case__ ) _snake_case : Any = renew_resnet_paths(snake_case__ ) assign_to_checkpoint(snake_case__ , snake_case__ , snake_case__ , config=snake_case__ ) _snake_case : Dict = renew_attention_paths(snake_case__ ) _snake_case : Tuple = { """middle_block.1.qkv.bias""": { """key""": """mid_block.attentions.0.key.bias""", """query""": """mid_block.attentions.0.query.bias""", """value""": """mid_block.attentions.0.value.bias""", }, """middle_block.1.qkv.weight""": { """key""": """mid_block.attentions.0.key.weight""", """query""": """mid_block.attentions.0.query.weight""", """value""": """mid_block.attentions.0.value.weight""", }, } assign_to_checkpoint( snake_case__ , snake_case__ , snake_case__ , attention_paths_to_split=snake_case__ , config=snake_case__ ) for i in range(snake_case__ ): _snake_case : Optional[Any] = i // (config["""num_res_blocks"""] + 1) _snake_case : Dict = i % (config["""num_res_blocks"""] + 1) _snake_case : List[str] = [shave_segments(snake_case__ , 2 ) for name in output_blocks[i]] _snake_case : Any = {} for layer in output_block_layers: _snake_case , _snake_case : Any = layer.split(""".""" )[0], shave_segments(snake_case__ , 1 ) if layer_id in output_block_list: output_block_list[layer_id].append(snake_case__ ) else: _snake_case : str = [layer_name] if len(snake_case__ ) > 1: _snake_case : Dict = [key for key in output_blocks[i] if F"output_blocks.{i}.0" in key] _snake_case : List[str] = [key for key in output_blocks[i] if F"output_blocks.{i}.1" in key] _snake_case : List[Any] = renew_resnet_paths(snake_case__ ) _snake_case : int = renew_resnet_paths(snake_case__ ) _snake_case : Optional[Any] = {"""old""": F"output_blocks.{i}.0", """new""": F"up_blocks.{block_id}.resnets.{layer_in_block_id}"} assign_to_checkpoint(snake_case__ , snake_case__ , snake_case__ , additional_replacements=[meta_path] , config=snake_case__ ) if ["conv.weight", "conv.bias"] in output_block_list.values(): _snake_case : str = list(output_block_list.values() ).index(["""conv.weight""", """conv.bias"""] ) _snake_case : Any = checkpoint[ F"output_blocks.{i}.{index}.conv.weight" ] _snake_case : Optional[int] = checkpoint[ F"output_blocks.{i}.{index}.conv.bias" ] # Clear attentions as they have been attributed above. if len(snake_case__ ) == 2: _snake_case : Any = [] if len(snake_case__ ): _snake_case : str = renew_attention_paths(snake_case__ ) _snake_case : str = { """old""": F"output_blocks.{i}.1", """new""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}", } _snake_case : int = { F"output_blocks.{i}.1.qkv.bias": { """key""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias", """query""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias", """value""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias", }, F"output_blocks.{i}.1.qkv.weight": { """key""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight", """query""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight", """value""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight", }, } assign_to_checkpoint( snake_case__ , snake_case__ , snake_case__ , additional_replacements=[meta_path] , attention_paths_to_split=to_split if any("""qkv""" in key for key in attentions ) else None , config=snake_case__ , ) else: _snake_case : Optional[Any] = renew_resnet_paths(snake_case__ , n_shave_prefix_segments=1 ) for path in resnet_0_paths: _snake_case : Optional[Any] = """.""".join(["""output_blocks""", str(snake_case__ ), path["""old"""]] ) _snake_case : Optional[int] = """.""".join(["""up_blocks""", str(snake_case__ ), """resnets""", str(snake_case__ ), path["""new"""]] ) _snake_case : Any = checkpoint[old_path] return new_checkpoint if __name__ == "__main__": A_ = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the architecture.''', ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') A_ = parser.parse_args() A_ = torch.load(args.checkpoint_path) with open(args.config_file) as f: A_ = json.loads(f.read()) A_ = convert_ldm_checkpoint(checkpoint, config) if "ldm" in config: del config["ldm"] A_ = UNetaDModel(**config) model.load_state_dict(converted_checkpoint) try: A_ = DDPMScheduler.from_config('''/'''.join(args.checkpoint_path.split('''/''')[:-1])) A_ = VQModel.from_pretrained('''/'''.join(args.checkpoint_path.split('''/''')[:-1])) A_ = LDMPipeline(unet=model, scheduler=scheduler, vae=vqvae) pipe.save_pretrained(args.dump_path) except: # noqa: E722 model.save_pretrained(args.dump_path)
28
1
'''simple docstring''' import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class UpperCamelCase__ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = jnp.ones((batch_size, length) ) / length return scores def UpperCamelCase_ ( self ): lowerCamelCase__ = None lowerCamelCase__ = 20 lowerCamelCase__ = self._get_uniform_logits(batch_size=2 ,length=_lowerCAmelCase ) # tweak scores to not be uniform anymore lowerCamelCase__ = scores.at[1, 5].set((1 / length) + 0.1 ) # peak, 1st batch lowerCamelCase__ = scores.at[1, 10].set((1 / length) - 0.4 ) # valley, 1st batch # compute softmax lowerCamelCase__ = jax.nn.softmax(_lowerCAmelCase ,axis=-1 ) lowerCamelCase__ = FlaxTemperatureLogitsWarper(temperature=0.5 ) lowerCamelCase__ = FlaxTemperatureLogitsWarper(temperature=1.3 ) lowerCamelCase__ = jax.nn.softmax(temp_dist_warper_sharper(_lowerCAmelCase ,scores.copy() ,cur_len=_lowerCAmelCase ) ,axis=-1 ) lowerCamelCase__ = jax.nn.softmax(temp_dist_warper_smoother(_lowerCAmelCase ,scores.copy() ,cur_len=_lowerCAmelCase ) ,axis=-1 ) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :] ,warped_prob_sharp[0, :] ,atol=1E-3 ) ) self.assertTrue(jnp.allclose(probs[0, :] ,warped_prob_smooth[0, :] ,atol=1E-3 ) ) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max() ,warped_prob_sharp[1, :].max() ) self.assertGreater(probs[1, :].min() ,warped_prob_sharp[1, :].min() ) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max() ,warped_prob_smooth[1, :].max() ) self.assertLess(probs[1, :].min() ,warped_prob_smooth[1, :].min() ) def UpperCamelCase_ ( self ): lowerCamelCase__ = None lowerCamelCase__ = 10 lowerCamelCase__ = 2 # create ramp distribution lowerCamelCase__ = np.broadcast_to(np.arange(_lowerCAmelCase )[None, :] ,(batch_size, vocab_size) ).copy() lowerCamelCase__ = ramp_logits[1:, : vocab_size // 2] + vocab_size lowerCamelCase__ = FlaxTopKLogitsWarper(3 ) lowerCamelCase__ = top_k_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0] ).tolist() ,7 * [True] + 3 * [False] ) self.assertListEqual(jnp.isinf(scores[1] ).tolist() ,2 * [True] + 3 * [False] + 5 * [True] ) # check special case lowerCamelCase__ = 5 lowerCamelCase__ = FlaxTopKLogitsWarper(top_k=1 ,filter_value=0.0 ,min_tokens_to_keep=3 ) lowerCamelCase__ = np.broadcast_to(np.arange(_lowerCAmelCase )[None, :] ,(batch_size, length) ).copy() lowerCamelCase__ = top_k_warp_safety_check(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1 ).tolist() ,[2, 2] ) def UpperCamelCase_ ( self ): lowerCamelCase__ = None lowerCamelCase__ = 10 lowerCamelCase__ = 2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) lowerCamelCase__ = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.15, 0.3, 0.3, 0.25]] ) ) lowerCamelCase__ = FlaxTopPLogitsWarper(0.8 ) lowerCamelCase__ = np.exp(top_p_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) ) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 lowerCamelCase__ = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.25]] ) self.assertTrue(np.allclose(_lowerCAmelCase ,_lowerCAmelCase ,atol=1E-3 ) ) # check edge cases with negative and extreme logits lowerCamelCase__ = np.broadcast_to(np.arange(_lowerCAmelCase )[None, :] ,(batch_size, vocab_size) ).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme lowerCamelCase__ = ramp_logits[1] * 100.0 # make sure at least 2 tokens are kept lowerCamelCase__ = FlaxTopPLogitsWarper(0.9 ,min_tokens_to_keep=2 ,filter_value=0.0 ) lowerCamelCase__ = top_p_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1 ).tolist() ,[3, 2] ) def UpperCamelCase_ ( self ): lowerCamelCase__ = 20 lowerCamelCase__ = 4 lowerCamelCase__ = 0 lowerCamelCase__ = FlaxMinLengthLogitsProcessor(min_length=10 ,eos_token_id=_lowerCAmelCase ) # check that min length is applied at length 5 lowerCamelCase__ = ids_tensor((batch_size, 20) ,vocab_size=20 ) lowerCamelCase__ = 5 lowerCamelCase__ = self._get_uniform_logits(_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = min_dist_processor(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() ,4 * [-float("""inf""" )] ) # check that min length is not applied anymore at length 15 lowerCamelCase__ = self._get_uniform_logits(_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = 15 lowerCamelCase__ = min_dist_processor(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) self.assertFalse(jnp.isinf(_lowerCAmelCase ).any() ) def UpperCamelCase_ ( self ): lowerCamelCase__ = 20 lowerCamelCase__ = 4 lowerCamelCase__ = 0 lowerCamelCase__ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=_lowerCAmelCase ) # check that all scores are -inf except the bos_token_id score lowerCamelCase__ = ids_tensor((batch_size, 1) ,vocab_size=20 ) lowerCamelCase__ = 1 lowerCamelCase__ = self._get_uniform_logits(_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = logits_processor(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, bos_token_id].tolist() ,4 * [0] ) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 lowerCamelCase__ = 3 lowerCamelCase__ = self._get_uniform_logits(_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = logits_processor(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) self.assertFalse(jnp.isinf(_lowerCAmelCase ).any() ) def UpperCamelCase_ ( self ): lowerCamelCase__ = 20 lowerCamelCase__ = 4 lowerCamelCase__ = 0 lowerCamelCase__ = 5 lowerCamelCase__ = FlaxForcedEOSTokenLogitsProcessor(max_length=_lowerCAmelCase ,eos_token_id=_lowerCAmelCase ) # check that all scores are -inf except the eos_token_id when max_length is reached lowerCamelCase__ = ids_tensor((batch_size, 4) ,vocab_size=20 ) lowerCamelCase__ = 4 lowerCamelCase__ = self._get_uniform_logits(_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = logits_processor(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, eos_token_id].tolist() ,4 * [0] ) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached lowerCamelCase__ = 3 lowerCamelCase__ = self._get_uniform_logits(_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = logits_processor(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) self.assertFalse(jnp.isinf(_lowerCAmelCase ).any() ) def UpperCamelCase_ ( self ): lowerCamelCase__ = 4 lowerCamelCase__ = 10 lowerCamelCase__ = 15 lowerCamelCase__ = 2 lowerCamelCase__ = 1 lowerCamelCase__ = 15 # dummy input_ids and scores lowerCamelCase__ = ids_tensor((batch_size, sequence_length) ,_lowerCAmelCase ) lowerCamelCase__ = input_ids.copy() lowerCamelCase__ = self._get_uniform_logits(_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = scores.copy() # instantiate all dist processors lowerCamelCase__ = FlaxTemperatureLogitsWarper(temperature=0.5 ) lowerCamelCase__ = FlaxTopKLogitsWarper(3 ) lowerCamelCase__ = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors lowerCamelCase__ = FlaxMinLengthLogitsProcessor(min_length=10 ,eos_token_id=_lowerCAmelCase ) lowerCamelCase__ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=_lowerCAmelCase ) lowerCamelCase__ = FlaxForcedEOSTokenLogitsProcessor(max_length=_lowerCAmelCase ,eos_token_id=_lowerCAmelCase ) lowerCamelCase__ = 10 # no processor list lowerCamelCase__ = temp_dist_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) lowerCamelCase__ = top_k_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) lowerCamelCase__ = top_p_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) lowerCamelCase__ = min_dist_proc(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) lowerCamelCase__ = bos_dist_proc(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) lowerCamelCase__ = eos_dist_proc(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) # with processor list lowerCamelCase__ = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) lowerCamelCase__ = processor(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) # scores should be equal self.assertTrue(jnp.allclose(_lowerCAmelCase ,_lowerCAmelCase ,atol=1E-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() ,input_ids_comp.tolist() ) def UpperCamelCase_ ( self ): lowerCamelCase__ = 4 lowerCamelCase__ = 10 lowerCamelCase__ = 15 lowerCamelCase__ = 2 lowerCamelCase__ = 1 lowerCamelCase__ = 15 # dummy input_ids and scores lowerCamelCase__ = ids_tensor((batch_size, sequence_length) ,_lowerCAmelCase ) lowerCamelCase__ = input_ids.copy() lowerCamelCase__ = self._get_uniform_logits(_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = scores.copy() # instantiate all dist processors lowerCamelCase__ = FlaxTemperatureLogitsWarper(temperature=0.5 ) lowerCamelCase__ = FlaxTopKLogitsWarper(3 ) lowerCamelCase__ = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors lowerCamelCase__ = FlaxMinLengthLogitsProcessor(min_length=10 ,eos_token_id=_lowerCAmelCase ) lowerCamelCase__ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=_lowerCAmelCase ) lowerCamelCase__ = FlaxForcedEOSTokenLogitsProcessor(max_length=_lowerCAmelCase ,eos_token_id=_lowerCAmelCase ) lowerCamelCase__ = 10 # no processor list def run_no_processor_list(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = temp_dist_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) lowerCamelCase__ = top_k_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) lowerCamelCase__ = top_p_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) lowerCamelCase__ = min_dist_proc(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) lowerCamelCase__ = bos_dist_proc(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) lowerCamelCase__ = eos_dist_proc(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) return scores # with processor list def run_processor_list(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) lowerCamelCase__ = processor(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) return scores lowerCamelCase__ = jax.jit(_lowerCAmelCase ) lowerCamelCase__ = jax.jit(_lowerCAmelCase ) lowerCamelCase__ = jitted_run_no_processor_list(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = jitted_run_processor_list(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) # scores should be equal self.assertTrue(jnp.allclose(_lowerCAmelCase ,_lowerCAmelCase ,atol=1E-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() ,input_ids_comp.tolist() )
50
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase : int = {'''configuration_ibert''': ['''IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''IBertConfig''', '''IBertOnnxConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : List[Any] = [ '''IBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''IBertForMaskedLM''', '''IBertForMultipleChoice''', '''IBertForQuestionAnswering''', '''IBertForSequenceClassification''', '''IBertForTokenClassification''', '''IBertModel''', '''IBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_ibert import IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, IBertConfig, IBertOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ibert import ( IBERT_PRETRAINED_MODEL_ARCHIVE_LIST, IBertForMaskedLM, IBertForMultipleChoice, IBertForQuestionAnswering, IBertForSequenceClassification, IBertForTokenClassification, IBertModel, IBertPreTrainedModel, ) else: import sys UpperCAmelCase : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
239
0
from itertools import product from cva import COLOR_BGR2GRAY, cvtColor, imread, imshow, waitKey from numpy import dot, exp, mgrid, pi, ravel, square, uinta, zeros def UpperCAmelCase__ ( UpperCAmelCase__ :Any , UpperCAmelCase__ :int ): '''simple docstring''' a = k_size // 2 a , a = mgrid[0 - center : k_size - center, 0 - center : k_size - center] a = 1 / (2 * pi * sigma) * exp(-(square(UpperCAmelCase__ ) + square(UpperCAmelCase__ )) / (2 * square(UpperCAmelCase__ )) ) return g def UpperCAmelCase__ ( UpperCAmelCase__ :str , UpperCAmelCase__ :Optional[int] , UpperCAmelCase__ :Optional[Any] ): '''simple docstring''' a , a = image.shape[0], image.shape[1] # dst image height and width a = height - k_size + 1 a = width - k_size + 1 # im2col, turn the k_size*k_size pixels into a row and np.vstack all rows a = zeros((dst_height * dst_width, k_size * k_size) ) a = 0 for i, j in product(range(UpperCAmelCase__ ) , range(UpperCAmelCase__ ) ): a = ravel(image[i : i + k_size, j : j + k_size] ) a = window row += 1 # turn the kernel into shape(k*k, 1) a = gen_gaussian_kernel(UpperCAmelCase__ , UpperCAmelCase__ ) a = ravel(UpperCAmelCase__ ) # reshape and get the dst image a = dot(UpperCAmelCase__ , UpperCAmelCase__ ).reshape(UpperCAmelCase__ , UpperCAmelCase__ ).astype(UpperCAmelCase__ ) return dst if __name__ == "__main__": # read original image A_ : int = imread(r'''../image_data/lena.jpg''') # turn image in gray scale value A_ : str = cvtColor(img, COLOR_BGR2GRAY) # get values with two different mask size A_ : List[str] = gaussian_filter(gray, 3, sigma=1) A_ : Optional[int] = gaussian_filter(gray, 5, sigma=0.8) # show result images imshow('''gaussian filter with 3x3 mask''', gaussianaxa) imshow('''gaussian filter with 5x5 mask''', gaussianaxa) waitKey()
32
from ...configuration_utils import PretrainedConfig from ...utils import logging A_ : str = logging.get_logger(__name__) A_ : List[Any] = { '''RWKV/rwkv-4-169m-pile''': '''https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-430m-pile''': '''https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-1b5-pile''': '''https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json''', '''RWKV/rwkv-4-3b-pile''': '''https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-7b-pile''': '''https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-14b-pile''': '''https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json''', '''RWKV/rwkv-raven-1b5''': '''https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json''', '''RWKV/rwkv-raven-3b''': '''https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json''', '''RWKV/rwkv-raven-7b''': '''https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json''', '''RWKV/rwkv-raven-14b''': '''https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json''', } class _lowercase ( UpperCAmelCase__ ): _UpperCAmelCase = '''rwkv''' _UpperCAmelCase = {'''max_position_embeddings''': '''context_length'''} def __init__( self : List[str] , __lowerCAmelCase : Union[str, Any]=5_0277 , __lowerCAmelCase : str=1024 , __lowerCAmelCase : Union[str, Any]=4096 , __lowerCAmelCase : Optional[int]=32 , __lowerCAmelCase : Optional[int]=None , __lowerCAmelCase : Optional[Any]=None , __lowerCAmelCase : List[Any]=1E-5 , __lowerCAmelCase : Union[str, Any]=0 , __lowerCAmelCase : Optional[Any]=0 , __lowerCAmelCase : Dict=6 , __lowerCAmelCase : int=False , __lowerCAmelCase : Tuple=True , **__lowerCAmelCase : List[str] , ) -> List[Any]: """simple docstring""" a = vocab_size a = context_length a = hidden_size a = num_hidden_layers a = attention_hidden_size if attention_hidden_size is not None else hidden_size a = intermediate_size if intermediate_size is not None else 4 * hidden_size a = layer_norm_epsilon a = rescale_every a = use_cache a = bos_token_id a = eos_token_id super().__init__( tie_word_embeddings=__lowerCAmelCase , bos_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase , **__lowerCAmelCase )
32
1