code
stringlengths 82
53.2k
| code_codestyle
int64 0
721
| style_context
stringlengths 91
41.9k
| style_context_codestyle
int64 0
699
| label
int64 0
1
|
|---|---|---|---|---|
def lowercase ( __A : int ) -> int:
'''simple docstring'''
if divisor % 5 == 0 or divisor % 2 == 0:
return 0
snake_case : Tuple = 1
snake_case : Union[str, Any] = 1
while repunit:
snake_case : Tuple = (10 * repunit + 1) % divisor
repunit_index += 1
return repunit_index
def lowercase ( __A : int = 100_0000 ) -> int:
'''simple docstring'''
snake_case : Union[str, Any] = limit - 1
if divisor % 2 == 0:
divisor += 1
while least_divisible_repunit(__A ) <= limit:
divisor += 2
return divisor
if __name__ == "__main__":
print(f'''{solution() = }''')
| 36
|
import unittest
from transformers import DebertaConfig, is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
DebertaForMaskedLM,
DebertaForQuestionAnswering,
DebertaForSequenceClassification,
DebertaForTokenClassification,
DebertaModel,
)
from transformers.models.deberta.modeling_deberta import DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST
class UpperCAmelCase ( UpperCAmelCase__ ):
'''simple docstring'''
def __init__( self : Dict , __lowercase : Any , __lowercase : str=13 , __lowercase : Optional[Any]=7 , __lowercase : Tuple=True , __lowercase : Optional[int]=True , __lowercase : List[str]=True , __lowercase : Dict=True , __lowercase : Any=99 , __lowercase : Any=32 , __lowercase : List[Any]=5 , __lowercase : Any=4 , __lowercase : List[str]=37 , __lowercase : Union[str, Any]="gelu" , __lowercase : Union[str, Any]=0.1 , __lowercase : str=0.1 , __lowercase : List[str]=5_12 , __lowercase : Tuple=16 , __lowercase : List[str]=2 , __lowercase : Tuple=0.02 , __lowercase : Optional[Any]=False , __lowercase : Optional[int]=True , __lowercase : Union[str, Any]="None" , __lowercase : Union[str, Any]=3 , __lowercase : int=4 , __lowercase : Tuple=None , ):
"""simple docstring"""
snake_case_ = parent
snake_case_ = batch_size
snake_case_ = seq_length
snake_case_ = is_training
snake_case_ = use_input_mask
snake_case_ = use_token_type_ids
snake_case_ = use_labels
snake_case_ = vocab_size
snake_case_ = hidden_size
snake_case_ = num_hidden_layers
snake_case_ = num_attention_heads
snake_case_ = intermediate_size
snake_case_ = hidden_act
snake_case_ = hidden_dropout_prob
snake_case_ = attention_probs_dropout_prob
snake_case_ = max_position_embeddings
snake_case_ = type_vocab_size
snake_case_ = type_sequence_label_size
snake_case_ = initializer_range
snake_case_ = num_labels
snake_case_ = num_choices
snake_case_ = relative_attention
snake_case_ = position_biased_input
snake_case_ = pos_att_type
snake_case_ = scope
def snake_case__ ( self : str ):
"""simple docstring"""
snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
snake_case_ = None
if self.use_input_mask:
snake_case_ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
snake_case_ = None
if self.use_token_type_ids:
snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
snake_case_ = None
snake_case_ = None
snake_case_ = None
if self.use_labels:
snake_case_ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
snake_case_ = ids_tensor([self.batch_size] , self.num_choices )
snake_case_ = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def snake_case__ ( self : Optional[int] ):
"""simple docstring"""
return DebertaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , )
def snake_case__ ( self : int ):
"""simple docstring"""
snake_case_ = self.get_config()
snake_case_ = 3_00
return config
def snake_case__ ( self : List[Any] , __lowercase : List[Any] ):
"""simple docstring"""
self.parent.assertListEqual(list(result.loss.size() ) , [] )
def snake_case__ ( self : List[str] , __lowercase : Tuple , __lowercase : Union[str, Any] , __lowercase : Tuple , __lowercase : Dict , __lowercase : str , __lowercase : Optional[int] , __lowercase : int ):
"""simple docstring"""
snake_case_ = DebertaModel(config=__lowercase )
model.to(__lowercase )
model.eval()
snake_case_ = model(__lowercase , attention_mask=__lowercase , token_type_ids=__lowercase )[0]
snake_case_ = model(__lowercase , token_type_ids=__lowercase )[0]
snake_case_ = model(__lowercase )[0]
self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] )
def snake_case__ ( self : Any , __lowercase : Any , __lowercase : Dict , __lowercase : Any , __lowercase : Any , __lowercase : Tuple , __lowercase : Union[str, Any] , __lowercase : List[str] ):
"""simple docstring"""
snake_case_ = DebertaForMaskedLM(config=__lowercase )
model.to(__lowercase )
model.eval()
snake_case_ = model(__lowercase , attention_mask=__lowercase , token_type_ids=__lowercase , labels=__lowercase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def snake_case__ ( self : List[str] , __lowercase : Tuple , __lowercase : List[str] , __lowercase : Dict , __lowercase : str , __lowercase : Optional[Any] , __lowercase : Optional[Any] , __lowercase : Union[str, Any] ):
"""simple docstring"""
snake_case_ = self.num_labels
snake_case_ = DebertaForSequenceClassification(__lowercase )
model.to(__lowercase )
model.eval()
snake_case_ = model(__lowercase , attention_mask=__lowercase , token_type_ids=__lowercase , labels=__lowercase )
self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] )
self.check_loss_output(__lowercase )
def snake_case__ ( self : List[Any] , __lowercase : List[str] , __lowercase : Any , __lowercase : List[Any] , __lowercase : str , __lowercase : List[str] , __lowercase : Optional[Any] , __lowercase : Optional[int] ):
"""simple docstring"""
snake_case_ = self.num_labels
snake_case_ = DebertaForTokenClassification(config=__lowercase )
model.to(__lowercase )
model.eval()
snake_case_ = model(__lowercase , attention_mask=__lowercase , token_type_ids=__lowercase , labels=__lowercase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def snake_case__ ( self : List[str] , __lowercase : str , __lowercase : List[str] , __lowercase : Optional[int] , __lowercase : Optional[Any] , __lowercase : Optional[Any] , __lowercase : Optional[Any] , __lowercase : Union[str, Any] ):
"""simple docstring"""
snake_case_ = DebertaForQuestionAnswering(config=__lowercase )
model.to(__lowercase )
model.eval()
snake_case_ = model(
__lowercase , attention_mask=__lowercase , token_type_ids=__lowercase , start_positions=__lowercase , end_positions=__lowercase , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def snake_case__ ( self : Tuple ):
"""simple docstring"""
snake_case_ = self.prepare_config_and_inputs()
(
(
snake_case_
) , (
snake_case_
) , (
snake_case_
) , (
snake_case_
) , (
snake_case_
) , (
snake_case_
) , (
snake_case_
) ,
) = config_and_inputs
snake_case_ = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_torch
class UpperCAmelCase ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ):
'''simple docstring'''
lowerCAmelCase_ = (
(
DebertaModel,
DebertaForMaskedLM,
DebertaForSequenceClassification,
DebertaForTokenClassification,
DebertaForQuestionAnswering,
)
if is_torch_available()
else ()
)
lowerCAmelCase_ = (
{
'''feature-extraction''': DebertaModel,
'''fill-mask''': DebertaForMaskedLM,
'''question-answering''': DebertaForQuestionAnswering,
'''text-classification''': DebertaForSequenceClassification,
'''token-classification''': DebertaForTokenClassification,
'''zero-shot''': DebertaForSequenceClassification,
}
if is_torch_available()
else {}
)
lowerCAmelCase_ = True
lowerCAmelCase_ = False
lowerCAmelCase_ = False
lowerCAmelCase_ = False
lowerCAmelCase_ = False
def snake_case__ ( self : int ):
"""simple docstring"""
snake_case_ = DebertaModelTester(self )
snake_case_ = ConfigTester(self , config_class=__lowercase , hidden_size=37 )
def snake_case__ ( self : Optional[int] ):
"""simple docstring"""
self.config_tester.run_common_tests()
def snake_case__ ( self : Dict ):
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_deberta_model(*__lowercase )
def snake_case__ ( self : str ):
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_deberta_for_sequence_classification(*__lowercase )
def snake_case__ ( self : str ):
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_deberta_for_masked_lm(*__lowercase )
def snake_case__ ( self : Optional[Any] ):
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_deberta_for_question_answering(*__lowercase )
def snake_case__ ( self : Optional[Any] ):
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_deberta_for_token_classification(*__lowercase )
@slow
def snake_case__ ( self : str ):
"""simple docstring"""
for model_name in DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
snake_case_ = DebertaModel.from_pretrained(__lowercase )
self.assertIsNotNone(__lowercase )
@require_torch
@require_sentencepiece
@require_tokenizers
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
@unittest.skip(reason="Model not available yet" )
def snake_case__ ( self : str ):
"""simple docstring"""
pass
@slow
def snake_case__ ( self : Optional[int] ):
"""simple docstring"""
snake_case_ = DebertaModel.from_pretrained("microsoft/deberta-base" )
snake_case_ = torch.tensor([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]] )
snake_case_ = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] )
with torch.no_grad():
snake_case_ = model(__lowercase , attention_mask=__lowercase )[0]
# compare the actual values for a slice.
snake_case_ = torch.tensor(
[[[-0.5986, -0.8055, -0.8462], [1.4484, -0.9348, -0.8059], [0.3123, 0.0032, -1.4131]]] )
self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __lowercase , atol=1E-4 ) , f"{output[:, 1:4, 1:4]}" )
| 376
| 0
|
import argparse
import os
import shutil
import torch
from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer
def lowerCamelCase__ ( snake_case_ : List[Any] ) -> List[str]:
__snake_case = args.pruning_method
__snake_case = args.threshold
__snake_case = args.model_name_or_path.rstrip('''/''' )
__snake_case = args.target_model_path
print(f"""Load fine-pruned model from {model_name_or_path}""" )
__snake_case = torch.load(os.path.join(lowercase_ , '''pytorch_model.bin''' ) )
__snake_case = {}
for name, tensor in model.items():
if "embeddings" in name or "LayerNorm" in name or "pooler" in name:
__snake_case = tensor
print(f"""Copied layer {name}""" )
elif "classifier" in name or "qa_output" in name:
__snake_case = tensor
print(f"""Copied layer {name}""" )
elif "bias" in name:
__snake_case = tensor
print(f"""Copied layer {name}""" )
else:
if pruning_method == "magnitude":
__snake_case = MagnitudeBinarizer.apply(inputs=lowercase_ , threshold=lowercase_ )
__snake_case = tensor * mask
print(f"""Pruned layer {name}""" )
elif pruning_method == "topK":
if "mask_scores" in name:
continue
__snake_case = name[:-6]
__snake_case = model[f"""{prefix_}mask_scores"""]
__snake_case = TopKBinarizer.apply(lowercase_ , lowercase_ )
__snake_case = tensor * mask
print(f"""Pruned layer {name}""" )
elif pruning_method == "sigmoied_threshold":
if "mask_scores" in name:
continue
__snake_case = name[:-6]
__snake_case = model[f"""{prefix_}mask_scores"""]
__snake_case = ThresholdBinarizer.apply(lowercase_ , lowercase_ , lowercase_ )
__snake_case = tensor * mask
print(f"""Pruned layer {name}""" )
elif pruning_method == "l0":
if "mask_scores" in name:
continue
__snake_case = name[:-6]
__snake_case = model[f"""{prefix_}mask_scores"""]
__snake_case = -0.1, 1.1
__snake_case = torch.sigmoid(lowercase_ )
__snake_case = s * (r - l) + l
__snake_case = s_bar.clamp(min=0.0 , max=1.0 )
__snake_case = tensor * mask
print(f"""Pruned layer {name}""" )
else:
raise ValueError('''Unknown pruning method''' )
if target_model_path is None:
__snake_case = os.path.join(
os.path.dirname(lowercase_ ) , f"""bertarized_{os.path.basename(lowercase_ )}""" )
if not os.path.isdir(lowercase_ ):
shutil.copytree(lowercase_ , lowercase_ )
print(f"""\nCreated folder {target_model_path}""" )
torch.save(lowercase_ , os.path.join(lowercase_ , '''pytorch_model.bin''' ) )
print('''\nPruned model saved! See you later!''' )
if __name__ == "__main__":
snake_case_ = argparse.ArgumentParser()
parser.add_argument(
'--pruning_method',
choices=['l0', 'magnitude', 'topK', 'sigmoied_threshold'],
type=str,
required=True,
help=(
'Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning,'
' sigmoied_threshold = Soft movement pruning)'
),
)
parser.add_argument(
'--threshold',
type=float,
required=False,
help=(
'For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model.'
'For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared.'
'Not needed for `l0`'
),
)
parser.add_argument(
'--model_name_or_path',
type=str,
required=True,
help='Folder containing the model that was previously fine-pruned',
)
parser.add_argument(
'--target_model_path',
default=None,
type=str,
required=False,
help='Folder containing the model that was previously fine-pruned',
)
snake_case_ = parser.parse_args()
main(args)
| 707
|
import warnings
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
snake_case_ = logging.get_logger(__name__)
snake_case_ = {
'nvidia/segformer-b0-finetuned-ade-512-512': (
'https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json'
),
# See all SegFormer models at https://huggingface.co/models?filter=segformer
}
class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ):
A_ : str = 'segformer'
def __init__(self : List[Any] , a__ : int=3 , a__ : Optional[Any]=4 , a__ : Any=[2, 2, 2, 2] , a__ : Union[str, Any]=[8, 4, 2, 1] , a__ : str=[32, 64, 160, 256] , a__ : Optional[Any]=[7, 3, 3, 3] , a__ : Tuple=[4, 2, 2, 2] , a__ : Tuple=[1, 2, 5, 8] , a__ : List[Any]=[4, 4, 4, 4] , a__ : Dict="gelu" , a__ : Union[str, Any]=0.0 , a__ : List[str]=0.0 , a__ : Dict=0.1 , a__ : Any=0.0_2 , a__ : Optional[int]=0.1 , a__ : Tuple=1E-6 , a__ : Any=256 , a__ : Optional[Any]=255 , **a__ : Optional[Any] , ):
"""simple docstring"""
super().__init__(**a__ )
if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False:
warnings.warn(
'''Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be'''
''' removed, as the behaviour will default to that of reshape_last_stage = True.''' , a__ , )
__snake_case = num_channels
__snake_case = num_encoder_blocks
__snake_case = depths
__snake_case = sr_ratios
__snake_case = hidden_sizes
__snake_case = patch_sizes
__snake_case = strides
__snake_case = mlp_ratios
__snake_case = num_attention_heads
__snake_case = hidden_act
__snake_case = hidden_dropout_prob
__snake_case = attention_probs_dropout_prob
__snake_case = classifier_dropout_prob
__snake_case = initializer_range
__snake_case = drop_path_rate
__snake_case = layer_norm_eps
__snake_case = decoder_hidden_size
__snake_case = kwargs.get('''reshape_last_stage''' , a__ )
__snake_case = semantic_loss_ignore_index
class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ):
A_ : Dict = version.parse('1.11' )
@property
def a (self : List[str] ):
"""simple docstring"""
return OrderedDict(
[
('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}),
] )
@property
def a (self : Tuple ):
"""simple docstring"""
return 1E-4
@property
def a (self : int ):
"""simple docstring"""
return 12
| 388
| 0
|
import warnings
from functools import wraps
from typing import Callable
def __lowerCAmelCase ( A_ : Callable ) -> Callable:
@wraps(A_ )
def _inner_fn(*A_ : List[Any] , **A_ : Union[str, Any] ):
warnings.warn(
(F'''\'{fn.__name__}\' is experimental and might be subject to breaking changes in the future.''') , A_ , )
return fn(*A_ , **A_ )
return _inner_fn
| 221
|
import os
import tempfile
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch
if is_torch_available():
import torch
from torch import nn
from transformers import (
Adafactor,
AdamW,
get_constant_schedule,
get_constant_schedule_with_warmup,
get_cosine_schedule_with_warmup,
get_cosine_with_hard_restarts_schedule_with_warmup,
get_inverse_sqrt_schedule,
get_linear_schedule_with_warmup,
get_polynomial_decay_schedule_with_warmup,
)
def __lowerCAmelCase ( A_ : Union[str, Any] , A_ : Optional[Any]=10 ) -> Optional[int]:
__UpperCAmelCase = []
for _ in range(A_ ):
lrs.append(scheduler.get_lr()[0] )
scheduler.step()
return lrs
def __lowerCAmelCase ( A_ : str , A_ : List[Any]=10 ) -> List[Any]:
__UpperCAmelCase = []
for step in range(A_ ):
lrs.append(scheduler.get_lr()[0] )
scheduler.step()
if step == num_steps // 2:
with tempfile.TemporaryDirectory() as tmpdirname:
__UpperCAmelCase = os.path.join(A_ , "schedule.bin" )
torch.save(scheduler.state_dict() , A_ )
__UpperCAmelCase = torch.load(A_ )
scheduler.load_state_dict(A_ )
return lrs
@require_torch
class UpperCAmelCase__ ( unittest.TestCase ):
"""simple docstring"""
def _UpperCAmelCase ( self: List[str] , __lowerCAmelCase: List[str] , __lowerCAmelCase: Optional[Any] , __lowerCAmelCase: Dict ) -> str:
'''simple docstring'''
self.assertEqual(len(__lowerCAmelCase ) , len(__lowerCAmelCase ) )
for a, b in zip(__lowerCAmelCase , __lowerCAmelCase ):
self.assertAlmostEqual(__lowerCAmelCase , __lowerCAmelCase , delta=__lowerCAmelCase )
def _UpperCAmelCase ( self: Optional[int] ) -> str:
'''simple docstring'''
__UpperCAmelCase = torch.tensor([0.1, -0.2, -0.1] , requires_grad=__lowerCAmelCase )
__UpperCAmelCase = torch.tensor([0.4, 0.2, -0.5] )
__UpperCAmelCase = nn.MSELoss()
# No warmup, constant schedule, no gradient clipping
__UpperCAmelCase = AdamW(params=[w] , lr=2E-1 , weight_decay=0.0 )
for _ in range(100 ):
__UpperCAmelCase = criterion(__lowerCAmelCase , __lowerCAmelCase )
loss.backward()
optimizer.step()
w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves.
w.grad.zero_()
self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 )
def _UpperCAmelCase ( self: Optional[int] ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase = torch.tensor([0.1, -0.2, -0.1] , requires_grad=__lowerCAmelCase )
__UpperCAmelCase = torch.tensor([0.4, 0.2, -0.5] )
__UpperCAmelCase = nn.MSELoss()
# No warmup, constant schedule, no gradient clipping
__UpperCAmelCase = Adafactor(
params=[w] , lr=1E-2 , eps=(1E-30, 1E-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=__lowerCAmelCase , weight_decay=0.0 , relative_step=__lowerCAmelCase , scale_parameter=__lowerCAmelCase , warmup_init=__lowerCAmelCase , )
for _ in range(1_000 ):
__UpperCAmelCase = criterion(__lowerCAmelCase , __lowerCAmelCase )
loss.backward()
optimizer.step()
w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves.
w.grad.zero_()
self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 )
@require_torch
class UpperCAmelCase__ ( unittest.TestCase ):
"""simple docstring"""
lowerCAmelCase__ : Tuple = nn.Linear(50 , 50 ) if is_torch_available() else None
lowerCAmelCase__ : Optional[int] = AdamW(m.parameters() , lr=10.0 ) if is_torch_available() else None
lowerCAmelCase__ : Optional[int] = 10
def _UpperCAmelCase ( self: Optional[int] , __lowerCAmelCase: List[str] , __lowerCAmelCase: Any , __lowerCAmelCase: List[Any] , __lowerCAmelCase: int=None ) -> List[Any]:
'''simple docstring'''
self.assertEqual(len(__lowerCAmelCase ) , len(__lowerCAmelCase ) )
for a, b in zip(__lowerCAmelCase , __lowerCAmelCase ):
self.assertAlmostEqual(__lowerCAmelCase , __lowerCAmelCase , delta=__lowerCAmelCase , msg=__lowerCAmelCase )
def _UpperCAmelCase ( self: Union[str, Any] ) -> Any:
'''simple docstring'''
__UpperCAmelCase = {"num_warmup_steps": 2, "num_training_steps": 10}
# schedulers doct format
# function: (sched_args_dict, expected_learning_rates)
__UpperCAmelCase = {
get_constant_schedule: ({}, [10.0] * self.num_steps),
get_constant_schedule_with_warmup: (
{"num_warmup_steps": 4},
[0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0],
),
get_linear_schedule_with_warmup: (
{**common_kwargs},
[0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25],
),
get_cosine_schedule_with_warmup: (
{**common_kwargs},
[0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38],
),
get_cosine_with_hard_restarts_schedule_with_warmup: (
{**common_kwargs, "num_cycles": 2},
[0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46],
),
get_polynomial_decay_schedule_with_warmup: (
{**common_kwargs, "power": 2.0, "lr_end": 1E-7},
[0.0, 5.0, 10.0, 7.656, 5.625, 3.906, 2.5, 1.406, 0.625, 0.156],
),
get_inverse_sqrt_schedule: (
{"num_warmup_steps": 2},
[0.0, 5.0, 10.0, 8.165, 7.071, 6.325, 5.774, 5.345, 5.0, 4.714],
),
}
for scheduler_func, data in scheds.items():
__UpperCAmelCase , __UpperCAmelCase = data
__UpperCAmelCase = scheduler_func(self.optimizer , **__lowerCAmelCase )
self.assertEqual(len([scheduler.get_lr()[0]] ) , 1 )
__UpperCAmelCase = unwrap_schedule(__lowerCAmelCase , self.num_steps )
self.assertListAlmostEqual(
__lowerCAmelCase , __lowerCAmelCase , tol=1E-2 , msg=F'''failed for {scheduler_func} in normal scheduler''' , )
__UpperCAmelCase = scheduler_func(self.optimizer , **__lowerCAmelCase )
if scheduler_func.__name__ != "get_constant_schedule":
LambdaScheduleWrapper.wrap_scheduler(__lowerCAmelCase ) # wrap to test picklability of the schedule
__UpperCAmelCase = unwrap_and_save_reload_schedule(__lowerCAmelCase , self.num_steps )
self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase , msg=F'''failed for {scheduler_func} in save and reload''' )
class UpperCAmelCase__ :
"""simple docstring"""
def __init__( self: Union[str, Any] , __lowerCAmelCase: Tuple ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase = fn
def __call__( self: int , *__lowerCAmelCase: List[str] , **__lowerCAmelCase: Any ) -> List[Any]:
'''simple docstring'''
return self.fn(*__lowerCAmelCase , **__lowerCAmelCase )
@classmethod
def _UpperCAmelCase ( self: Optional[Any] , __lowerCAmelCase: List[Any] ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase = list(map(self , scheduler.lr_lambdas ) )
| 221
| 1
|
import os
import unittest
from transformers.models.transfo_xl.tokenization_transfo_xl import VOCAB_FILES_NAMES, TransfoXLTokenizer
from ...test_tokenization_common import TokenizerTesterMixin
class _lowercase (a_ , unittest.TestCase ):
'''simple docstring'''
lowercase__ = TransfoXLTokenizer
lowercase__ = False
lowercase__ = False
def _lowerCamelCase ( self ):
'''simple docstring'''
super().setUp()
UpperCamelCase_ = [
"<unk>",
"[CLS]",
"[SEP]",
"want",
"unwanted",
"wa",
"un",
"running",
",",
"low",
"l",
]
UpperCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] )
with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer:
vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) )
def _lowerCamelCase ( self , **snake_case__ ):
'''simple docstring'''
UpperCamelCase_ = True
return TransfoXLTokenizer.from_pretrained(self.tmpdirname , **snake_case__ )
def _lowerCamelCase ( self , snake_case__ ):
'''simple docstring'''
UpperCamelCase_ = "<unk> UNwanted , running"
UpperCamelCase_ = "<unk> unwanted, running"
return input_text, output_text
def _lowerCamelCase ( self ):
'''simple docstring'''
UpperCamelCase_ = TransfoXLTokenizer(vocab_file=self.vocab_file , lower_case=snake_case__ )
UpperCamelCase_ = tokenizer.tokenize("<unk> UNwanted , running" )
self.assertListEqual(snake_case__ , ["<unk>", "unwanted", ",", "running"] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case__ ) , [0, 4, 8, 7] )
def _lowerCamelCase ( self ):
'''simple docstring'''
UpperCamelCase_ = TransfoXLTokenizer(lower_case=snake_case__ )
self.assertListEqual(
tokenizer.tokenize(" \tHeLLo ! how \n Are yoU ? " ) , ["hello", "!", "how", "are", "you", "?"] )
def _lowerCamelCase ( self ):
'''simple docstring'''
UpperCamelCase_ = TransfoXLTokenizer(lower_case=snake_case__ )
self.assertListEqual(
tokenizer.tokenize(" \tHeLLo ! how \n Are yoU ? " ) , ["HeLLo", "!", "how", "Are", "yoU", "?"] )
def _lowerCamelCase ( self ):
'''simple docstring'''
UpperCamelCase_ = TransfoXLTokenizer(lower_case=snake_case__ )
UpperCamelCase_ = "Hello (bracket) and side-scrolled [and] Henry's $5,000 with 3.34 m. What's up!?"
UpperCamelCase_ = [
"Hello",
"(",
"bracket",
")",
"and",
"side",
"@-@",
"scrolled",
"[",
"and",
"]",
"Henry",
"'s",
"$",
"5",
"@,@",
"000",
"with",
"3",
"@.@",
"34",
"m",
".",
"What",
"'s",
"up",
"!",
"?",
]
self.assertListEqual(tokenizer.tokenize(snake_case__ ) , snake_case__ )
self.assertEqual(tokenizer.convert_tokens_to_string(snake_case__ ) , snake_case__ )
def _lowerCamelCase ( self ):
'''simple docstring'''
UpperCamelCase_ = self.get_tokenizer()
UpperCamelCase_ = len(snake_case__ )
tokenizer.add_tokens(["new1", "new2"] )
tokenizer.move_added_token("new1" , 1 )
# Check that moved token is not copied (duplicate)
self.assertEqual(len(snake_case__ ) , original_len + 2 )
# Check that token is moved to specified id
self.assertEqual(tokenizer.encode("new1" ) , [1] )
self.assertEqual(tokenizer.decode([1] ) , "new1" )
| 504
|
import functools
import logging
import os
import sys
import threading
from logging import (
CRITICAL, # NOQA
DEBUG, # NOQA
ERROR, # NOQA
FATAL, # NOQA
INFO, # NOQA
NOTSET, # NOQA
WARN, # NOQA
WARNING, # NOQA
)
from typing import Optional
import huggingface_hub.utils as hf_hub_utils
from tqdm import auto as tqdm_lib
UpperCAmelCase : int =threading.Lock()
UpperCAmelCase : Optional[logging.Handler] =None
UpperCAmelCase : List[Any] ={
"""debug""": logging.DEBUG,
"""info""": logging.INFO,
"""warning""": logging.WARNING,
"""error""": logging.ERROR,
"""critical""": logging.CRITICAL,
}
UpperCAmelCase : Any =logging.WARNING
UpperCAmelCase : List[Any] =True
def _lowerCAmelCase ():
UpperCamelCase_ = os.getenv("TRANSFORMERS_VERBOSITY" , _lowerCAmelCase)
if env_level_str:
if env_level_str in log_levels:
return log_levels[env_level_str]
else:
logging.getLogger().warning(
f"""Unknown option TRANSFORMERS_VERBOSITY={env_level_str}, """
f"""has to be one of: { ', '.join(log_levels.keys()) }""")
return _default_log_level
def _lowerCAmelCase ():
return __name__.split(".")[0]
def _lowerCAmelCase ():
return logging.getLogger(_get_library_name())
def _lowerCAmelCase ():
global _default_handler
with _lock:
if _default_handler:
# This library has already configured the library root logger.
return
UpperCamelCase_ = logging.StreamHandler() # Set sys.stderr as stream.
UpperCamelCase_ = sys.stderr.flush
# Apply our default configuration to the library root logger.
UpperCamelCase_ = _get_library_root_logger()
library_root_logger.addHandler(_default_handler)
library_root_logger.setLevel(_get_default_logging_level())
UpperCamelCase_ = False
def _lowerCAmelCase ():
global _default_handler
with _lock:
if not _default_handler:
return
UpperCamelCase_ = _get_library_root_logger()
library_root_logger.removeHandler(_default_handler)
library_root_logger.setLevel(logging.NOTSET)
UpperCamelCase_ = None
def _lowerCAmelCase ():
return log_levels
def _lowerCAmelCase (_lowerCAmelCase = None):
if name is None:
UpperCamelCase_ = _get_library_name()
_configure_library_root_logger()
return logging.getLogger(_lowerCAmelCase)
def _lowerCAmelCase ():
_configure_library_root_logger()
return _get_library_root_logger().getEffectiveLevel()
def _lowerCAmelCase (_lowerCAmelCase):
_configure_library_root_logger()
_get_library_root_logger().setLevel(_lowerCAmelCase)
def _lowerCAmelCase ():
return set_verbosity(_lowerCAmelCase)
def _lowerCAmelCase ():
return set_verbosity(_lowerCAmelCase)
def _lowerCAmelCase ():
return set_verbosity(_lowerCAmelCase)
def _lowerCAmelCase ():
return set_verbosity(_lowerCAmelCase)
def _lowerCAmelCase ():
_configure_library_root_logger()
assert _default_handler is not None
_get_library_root_logger().removeHandler(_default_handler)
def _lowerCAmelCase ():
_configure_library_root_logger()
assert _default_handler is not None
_get_library_root_logger().addHandler(_default_handler)
def _lowerCAmelCase (_lowerCAmelCase):
_configure_library_root_logger()
assert handler is not None
_get_library_root_logger().addHandler(_lowerCAmelCase)
def _lowerCAmelCase (_lowerCAmelCase):
_configure_library_root_logger()
assert handler is not None and handler not in _get_library_root_logger().handlers
_get_library_root_logger().removeHandler(_lowerCAmelCase)
def _lowerCAmelCase ():
_configure_library_root_logger()
UpperCamelCase_ = False
def _lowerCAmelCase ():
_configure_library_root_logger()
UpperCamelCase_ = True
def _lowerCAmelCase ():
UpperCamelCase_ = _get_library_root_logger().handlers
for handler in handlers:
UpperCamelCase_ = logging.Formatter("[%(levelname)s|%(filename)s:%(lineno)s] %(asctime)s >> %(message)s")
handler.setFormatter(_lowerCAmelCase)
def _lowerCAmelCase ():
UpperCamelCase_ = _get_library_root_logger().handlers
for handler in handlers:
handler.setFormatter(_lowerCAmelCase)
def _lowerCAmelCase (self , *_lowerCAmelCase , **_lowerCAmelCase):
UpperCamelCase_ = os.getenv("TRANSFORMERS_NO_ADVISORY_WARNINGS" , _lowerCAmelCase)
if no_advisory_warnings:
return
self.warning(*_lowerCAmelCase , **_lowerCAmelCase)
UpperCAmelCase : Dict =warning_advice
@functools.lru_cache(_lowerCAmelCase)
def _lowerCAmelCase (self , *_lowerCAmelCase , **_lowerCAmelCase):
self.warning(*_lowerCAmelCase , **_lowerCAmelCase)
UpperCAmelCase : Optional[Any] =warning_once
class _lowercase :
'''simple docstring'''
def __init__( self , *snake_case__ , **snake_case__ ): # pylint: disable=unused-argument
'''simple docstring'''
UpperCamelCase_ = args[0] if args else None
def __iter__( self ):
'''simple docstring'''
return iter(self._iterator )
def __getattr__( self , snake_case__ ):
'''simple docstring'''
def empty_fn(*snake_case__ , **snake_case__ ): # pylint: disable=unused-argument
return
return empty_fn
def __enter__( self ):
'''simple docstring'''
return self
def __exit__( self , snake_case__ , snake_case__ , snake_case__ ):
'''simple docstring'''
return
class _lowercase :
'''simple docstring'''
def __call__( self , *snake_case__ , **snake_case__ ):
'''simple docstring'''
if _tqdm_active:
return tqdm_lib.tqdm(*snake_case__ , **snake_case__ )
else:
return EmptyTqdm(*snake_case__ , **snake_case__ )
def _lowerCamelCase ( self , *snake_case__ , **snake_case__ ):
'''simple docstring'''
UpperCamelCase_ = None
if _tqdm_active:
return tqdm_lib.tqdm.set_lock(*snake_case__ , **snake_case__ )
def _lowerCamelCase ( self ):
'''simple docstring'''
if _tqdm_active:
return tqdm_lib.tqdm.get_lock()
UpperCAmelCase : Tuple =_tqdm_cls()
def _lowerCAmelCase ():
global _tqdm_active
return bool(_tqdm_active)
def _lowerCAmelCase ():
global _tqdm_active
UpperCamelCase_ = True
hf_hub_utils.enable_progress_bars()
def _lowerCAmelCase ():
global _tqdm_active
UpperCamelCase_ = False
hf_hub_utils.disable_progress_bars()
| 504
| 1
|
from ...configuration_utils import PretrainedConfig
from ...utils import logging
SCREAMING_SNAKE_CASE__ : int = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ : Optional[Any] = {
"abeja/gpt-neox-japanese-2.7b": "https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/config.json",
}
class snake_case ( UpperCamelCase_ ):
lowercase_ = 'gpt_neox_japanese'
def __init__( self : Any , a_ : Optional[int]=3_2000 , a_ : List[Any]=2560 , a_ : Any=32 , a_ : Union[str, Any]=32 , a_ : Any=4 , a_ : List[Any]="gelu" , a_ : Optional[int]=1.00 , a_ : int=1_0000 , a_ : Optional[int]=2048 , a_ : str=0.02 , a_ : Any=1e-5 , a_ : Dict=True , a_ : Tuple=3_1996 , a_ : Any=3_1999 , a_ : str=0.1 , a_ : Optional[int]=0.0 , **a_ : List[Any] , )-> List[str]:
"""simple docstring"""
super().__init__(bos_token_id=a_ , eos_token_id=a_ , **a_ )
SCREAMING_SNAKE_CASE__ : str = vocab_size
SCREAMING_SNAKE_CASE__ : Tuple = max_position_embeddings
SCREAMING_SNAKE_CASE__ : Any = hidden_size
SCREAMING_SNAKE_CASE__ : Dict = num_hidden_layers
SCREAMING_SNAKE_CASE__ : Optional[Any] = num_attention_heads
SCREAMING_SNAKE_CASE__ : List[Any] = intermediate_multiple_size
SCREAMING_SNAKE_CASE__ : Optional[int] = hidden_act
SCREAMING_SNAKE_CASE__ : int = rotary_pct
SCREAMING_SNAKE_CASE__ : Tuple = rotary_emb_base
SCREAMING_SNAKE_CASE__ : Union[str, Any] = initializer_range
SCREAMING_SNAKE_CASE__ : Optional[Any] = layer_norm_eps
SCREAMING_SNAKE_CASE__ : Tuple = use_cache
SCREAMING_SNAKE_CASE__ : str = attention_dropout
SCREAMING_SNAKE_CASE__ : int = hidden_dropout
| 85
|
"""simple docstring"""
from __future__ import annotations
def __UpperCAmelCase ( __UpperCamelCase = 4 ):
__lowercase : Dict = abs(__UpperCamelCase ) or 4
return [[1 + x + y * row_size for x in range(__UpperCamelCase )] for y in range(__UpperCamelCase )]
def __UpperCAmelCase ( __UpperCamelCase ):
return reverse_row(transpose(__UpperCamelCase ) )
# OR.. transpose(reverse_column(matrix))
def __UpperCAmelCase ( __UpperCamelCase ):
return reverse_row(reverse_column(__UpperCamelCase ) )
# OR.. reverse_column(reverse_row(matrix))
def __UpperCAmelCase ( __UpperCamelCase ):
return reverse_column(transpose(__UpperCamelCase ) )
# OR.. transpose(reverse_row(matrix))
def __UpperCAmelCase ( __UpperCamelCase ):
__lowercase : Dict = [list(__UpperCamelCase ) for x in zip(*__UpperCamelCase )]
return matrix
def __UpperCAmelCase ( __UpperCamelCase ):
__lowercase : Union[str, Any] = matrix[::-1]
return matrix
def __UpperCAmelCase ( __UpperCamelCase ):
__lowercase : Dict = [x[::-1] for x in matrix]
return matrix
def __UpperCAmelCase ( __UpperCamelCase ):
for i in matrix:
print(*__UpperCamelCase )
if __name__ == "__main__":
a_ = make_matrix()
print('\norigin:\n')
print_matrix(matrix)
print('\nrotate 90 counterclockwise:\n')
print_matrix(rotate_aa(matrix))
a_ = make_matrix()
print('\norigin:\n')
print_matrix(matrix)
print('\nrotate 180:\n')
print_matrix(rotate_aaa(matrix))
a_ = make_matrix()
print('\norigin:\n')
print_matrix(matrix)
print('\nrotate 270 counterclockwise:\n')
print_matrix(rotate_aaa(matrix))
| 76
| 0
|
import json
import os
from functools import lru_cache
from typing import List, Optional, Tuple
import regex as re
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
__A = logging.get_logger(__name__)
__A = {"vocab_file": "vocab.json", "merges_file": "merges.txt"}
# See all BART models at https://huggingface.co/models?filter=bart
__A = {
"vocab_file": {
"facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json",
"facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json",
"facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json",
"facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json",
"facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json",
"yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json",
},
"merges_file": {
"facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt",
"facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt",
"facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt",
"facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt",
"facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt",
"yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt",
},
}
__A = {
"facebook/bart-base": 10_24,
"facebook/bart-large": 10_24,
"facebook/bart-large-mnli": 10_24,
"facebook/bart-large-cnn": 10_24,
"facebook/bart-large-xsum": 10_24,
"yjernite/bart_eli5": 10_24,
}
@lru_cache()
def lowerCamelCase_ ( ) -> str:
"""simple docstring"""
__lowerCamelCase = (
list(range(ord('!' ) , ord('~' ) + 1 ) ) + list(range(ord('¡' ) , ord('¬' ) + 1 ) ) + list(range(ord('®' ) , ord('ÿ' ) + 1 ) )
)
__lowerCamelCase = bs[:]
__lowerCamelCase = 0
for b in range(2**8 ):
if b not in bs:
bs.append(UpperCamelCase__ )
cs.append(2**8 + n )
n += 1
__lowerCamelCase = [chr(UpperCamelCase__ ) for n in cs]
return dict(zip(UpperCamelCase__ , UpperCamelCase__ ) )
def lowerCamelCase_ ( UpperCamelCase__ : Tuple ) -> Optional[Any]:
"""simple docstring"""
__lowerCamelCase = set()
__lowerCamelCase = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
__lowerCamelCase = char
return pairs
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
snake_case_ = VOCAB_FILES_NAMES
snake_case_ = PRETRAINED_VOCAB_FILES_MAP
snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
snake_case_ = ['''input_ids''', '''attention_mask''']
def __init__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__="replace" , lowerCamelCase__="<s>" , lowerCamelCase__="</s>" , lowerCamelCase__="</s>" , lowerCamelCase__="<s>" , lowerCamelCase__="<unk>" , lowerCamelCase__="<pad>" , lowerCamelCase__="<mask>" , lowerCamelCase__=False , **lowerCamelCase__ , ) -> str:
'''simple docstring'''
__lowerCamelCase = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else bos_token
__lowerCamelCase = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else eos_token
__lowerCamelCase = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else sep_token
__lowerCamelCase = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else cls_token
__lowerCamelCase = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else unk_token
__lowerCamelCase = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
__lowerCamelCase = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else mask_token
super().__init__(
errors=lowerCamelCase__ , bos_token=lowerCamelCase__ , eos_token=lowerCamelCase__ , unk_token=lowerCamelCase__ , sep_token=lowerCamelCase__ , cls_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , mask_token=lowerCamelCase__ , add_prefix_space=lowerCamelCase__ , **lowerCamelCase__ , )
with open(lowerCamelCase__ , encoding='utf-8' ) as vocab_handle:
__lowerCamelCase = json.load(lowerCamelCase__ )
__lowerCamelCase = {v: k for k, v in self.encoder.items()}
__lowerCamelCase = errors # how to handle errors in decoding
__lowerCamelCase = bytes_to_unicode()
__lowerCamelCase = {v: k for k, v in self.byte_encoder.items()}
with open(lowerCamelCase__ , encoding='utf-8' ) as merges_handle:
__lowerCamelCase = merges_handle.read().split('\n' )[1:-1]
__lowerCamelCase = [tuple(merge.split() ) for merge in bpe_merges]
__lowerCamelCase = dict(zip(lowerCamelCase__ , range(len(lowerCamelCase__ ) ) ) )
__lowerCamelCase = {}
__lowerCamelCase = add_prefix_space
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
__lowerCamelCase = re.compile(R'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+' )
@property
def lowercase_ ( self ) -> List[Any]:
'''simple docstring'''
return len(self.encoder )
def lowercase_ ( self ) -> str:
'''simple docstring'''
return dict(self.encoder , **self.added_tokens_encoder )
def lowercase_ ( self , lowerCamelCase__ ) -> Dict:
'''simple docstring'''
if token in self.cache:
return self.cache[token]
__lowerCamelCase = tuple(lowerCamelCase__ )
__lowerCamelCase = get_pairs(lowerCamelCase__ )
if not pairs:
return token
while True:
__lowerCamelCase = min(lowerCamelCase__ , key=lambda lowerCamelCase__ : self.bpe_ranks.get(lowerCamelCase__ , float('inf' ) ) )
if bigram not in self.bpe_ranks:
break
__lowerCamelCase , __lowerCamelCase = bigram
__lowerCamelCase = []
__lowerCamelCase = 0
while i < len(lowerCamelCase__ ):
try:
__lowerCamelCase = word.index(lowerCamelCase__ , lowerCamelCase__ )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
__lowerCamelCase = j
if word[i] == first and i < len(lowerCamelCase__ ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
__lowerCamelCase = tuple(lowerCamelCase__ )
__lowerCamelCase = new_word
if len(lowerCamelCase__ ) == 1:
break
else:
__lowerCamelCase = get_pairs(lowerCamelCase__ )
__lowerCamelCase = ' '.join(lowerCamelCase__ )
__lowerCamelCase = word
return word
def lowercase_ ( self , lowerCamelCase__ ) -> Tuple:
'''simple docstring'''
__lowerCamelCase = []
for token in re.findall(self.pat , lowerCamelCase__ ):
__lowerCamelCase = ''.join(
self.byte_encoder[b] for b in token.encode('utf-8' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCamelCase__ ).split(' ' ) )
return bpe_tokens
def lowercase_ ( self , lowerCamelCase__ ) -> List[Any]:
'''simple docstring'''
return self.encoder.get(lowerCamelCase__ , self.encoder.get(self.unk_token ) )
def lowercase_ ( self , lowerCamelCase__ ) -> Dict:
'''simple docstring'''
return self.decoder.get(lowerCamelCase__ )
def lowercase_ ( self , lowerCamelCase__ ) -> Dict:
'''simple docstring'''
__lowerCamelCase = ''.join(lowerCamelCase__ )
__lowerCamelCase = bytearray([self.byte_decoder[c] for c in text] ).decode('utf-8' , errors=self.errors )
return text
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = None ) -> Tuple[str]:
'''simple docstring'''
if not os.path.isdir(lowerCamelCase__ ):
logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" )
return
__lowerCamelCase = os.path.join(
lowerCamelCase__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
__lowerCamelCase = os.path.join(
lowerCamelCase__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] )
with open(lowerCamelCase__ , 'w' , encoding='utf-8' ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCamelCase__ , ensure_ascii=lowerCamelCase__ ) + '\n' )
__lowerCamelCase = 0
with open(lowerCamelCase__ , 'w' , encoding='utf-8' ) as writer:
writer.write('#version: 0.2\n' )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCamelCase__ : kv[1] ):
if index != token_index:
logger.warning(
f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."""
' Please check that the tokenizer is not corrupted!' )
__lowerCamelCase = token_index
writer.write(' '.join(lowerCamelCase__ ) + '\n' )
index += 1
return vocab_file, merge_file
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = None ) -> List[int]:
'''simple docstring'''
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
__lowerCamelCase = [self.cls_token_id]
__lowerCamelCase = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = False ) -> List[int]:
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=lowerCamelCase__ , token_ids_a=lowerCamelCase__ , already_has_special_tokens=lowerCamelCase__ )
if token_ids_a is None:
return [1] + ([0] * len(lowerCamelCase__ )) + [1]
return [1] + ([0] * len(lowerCamelCase__ )) + [1, 1] + ([0] * len(lowerCamelCase__ )) + [1]
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = None ) -> List[int]:
'''simple docstring'''
__lowerCamelCase = [self.sep_token_id]
__lowerCamelCase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__=False , **lowerCamelCase__ ) -> Tuple:
'''simple docstring'''
__lowerCamelCase = kwargs.pop('add_prefix_space' , self.add_prefix_space )
if (is_split_into_words or add_prefix_space) and (len(lowerCamelCase__ ) > 0 and not text[0].isspace()):
__lowerCamelCase = ' ' + text
return (text, kwargs)
| 167
|
def lowerCamelCase_ ( UpperCamelCase__ : int ) -> int:
"""simple docstring"""
assert isinstance(UpperCamelCase__ , UpperCamelCase__ ), F"""The input value of [n={number}] is not an integer"""
if number == 1:
return 2
elif number < 1:
__lowerCamelCase = F"""The input value of [n={number}] has to be > 0"""
raise ValueError(UpperCamelCase__ )
else:
__lowerCamelCase = sylvester(number - 1 )
__lowerCamelCase = num - 1
__lowerCamelCase = num
return lower * upper + 1
if __name__ == "__main__":
print(f'''The 8th number in Sylvester\'s sequence: {sylvester(8)}''')
| 167
| 1
|
"""simple docstring"""
from __future__ import annotations
import inspect
import unittest
from typing import List, Tuple
from transformers import RegNetConfig
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import cached_property, is_tf_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFRegNetForImageClassification, TFRegNetModel
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class lowercase__ :
def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=3 , SCREAMING_SNAKE_CASE=32 , SCREAMING_SNAKE_CASE=3 , SCREAMING_SNAKE_CASE=10 , SCREAMING_SNAKE_CASE=[10, 20, 30, 40] , SCREAMING_SNAKE_CASE=[1, 1, 2, 1] , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE="relu" , SCREAMING_SNAKE_CASE=3 , SCREAMING_SNAKE_CASE=None , ) -> Any:
_lowerCamelCase : Dict = parent
_lowerCamelCase : Dict = batch_size
_lowerCamelCase : Optional[Any] = image_size
_lowerCamelCase : Any = num_channels
_lowerCamelCase : Any = embeddings_size
_lowerCamelCase : Optional[int] = hidden_sizes
_lowerCamelCase : Tuple = depths
_lowerCamelCase : List[Any] = is_training
_lowerCamelCase : int = use_labels
_lowerCamelCase : str = hidden_act
_lowerCamelCase : Dict = num_labels
_lowerCamelCase : int = scope
_lowerCamelCase : Optional[Any] = len(SCREAMING_SNAKE_CASE)
def UpperCamelCase_ ( self) -> List[Any]:
_lowerCamelCase : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
_lowerCamelCase : Dict = None
if self.use_labels:
_lowerCamelCase : Tuple = ids_tensor([self.batch_size] , self.num_labels)
_lowerCamelCase : Tuple = self.get_config()
return config, pixel_values, labels
def UpperCamelCase_ ( self) -> Dict:
return RegNetConfig(
num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , )
def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) -> Any:
_lowerCamelCase : Optional[int] = TFRegNetModel(config=SCREAMING_SNAKE_CASE)
_lowerCamelCase : int = model(SCREAMING_SNAKE_CASE , training=SCREAMING_SNAKE_CASE)
# expected last hidden states: B, C, H // 32, W // 32
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) -> int:
_lowerCamelCase : Optional[Any] = self.num_labels
_lowerCamelCase : List[str] = TFRegNetForImageClassification(SCREAMING_SNAKE_CASE)
_lowerCamelCase : Tuple = model(SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE , training=SCREAMING_SNAKE_CASE)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels))
def UpperCamelCase_ ( self) -> List[str]:
_lowerCamelCase : Optional[int] = self.prepare_config_and_inputs()
_lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Optional[Any] = config_and_inputs
_lowerCamelCase : Tuple = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_tf
class lowercase__ ( A_ ,A_ ,unittest.TestCase ):
__UpperCAmelCase = (TFRegNetModel, TFRegNetForImageClassification) if is_tf_available() else ()
__UpperCAmelCase = (
{'''feature-extraction''': TFRegNetModel, '''image-classification''': TFRegNetForImageClassification}
if is_tf_available()
else {}
)
__UpperCAmelCase = False
__UpperCAmelCase = False
__UpperCAmelCase = False
__UpperCAmelCase = False
__UpperCAmelCase = False
def UpperCamelCase_ ( self) -> List[str]:
_lowerCamelCase : str = TFRegNetModelTester(self)
_lowerCamelCase : Union[str, Any] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE , has_text_modality=SCREAMING_SNAKE_CASE)
def UpperCamelCase_ ( self) -> Optional[Any]:
return
@unittest.skip(reason="""RegNet does not use inputs_embeds""")
def UpperCamelCase_ ( self) -> List[str]:
pass
@unittest.skipIf(
not is_tf_available() or len(tf.config.list_physical_devices("""GPU""")) == 0 , reason="""TF does not support backprop for grouped convolutions on CPU.""" , )
@slow
def UpperCamelCase_ ( self) -> List[str]:
super().test_keras_fit()
@unittest.skip(reason="""RegNet does not support input and output embeddings""")
def UpperCamelCase_ ( self) -> Optional[Any]:
pass
def UpperCamelCase_ ( self) -> Dict:
_lowerCamelCase , _lowerCamelCase : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_lowerCamelCase : Dict = model_class(SCREAMING_SNAKE_CASE)
_lowerCamelCase : Tuple = inspect.signature(model.call)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_lowerCamelCase : Any = [*signature.parameters.keys()]
_lowerCamelCase : List[str] = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE)
def UpperCamelCase_ ( self) -> Union[str, Any]:
_lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE)
def UpperCamelCase_ ( self) -> Union[str, Any]:
def check_hidden_states_output(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE):
_lowerCamelCase : int = model_class(SCREAMING_SNAKE_CASE)
_lowerCamelCase : Tuple = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) , training=SCREAMING_SNAKE_CASE)
_lowerCamelCase : Any = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
_lowerCamelCase : Union[str, Any] = self.model_tester.num_stages
self.assertEqual(len(SCREAMING_SNAKE_CASE) , expected_num_stages + 1)
# RegNet's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:]) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , )
_lowerCamelCase , _lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
_lowerCamelCase : Any = ["""basic""", """bottleneck"""]
for model_class in self.all_model_classes:
for layer_type in layers_type:
_lowerCamelCase : Union[str, Any] = layer_type
_lowerCamelCase : List[Any] = True
check_hidden_states_output(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE)
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
_lowerCamelCase : Tuple = True
check_hidden_states_output(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE)
def UpperCamelCase_ ( self) -> Union[str, Any]:
_lowerCamelCase , _lowerCamelCase : str = self.model_tester.prepare_config_and_inputs_for_common()
def check_equivalence(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE={}):
_lowerCamelCase : int = model(SCREAMING_SNAKE_CASE , return_dict=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE)
_lowerCamelCase : Optional[Any] = model(SCREAMING_SNAKE_CASE , return_dict=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE).to_tuple()
def recursive_check(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE):
if isinstance(SCREAMING_SNAKE_CASE , (List, Tuple)):
for tuple_iterable_value, dict_iterable_value in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE):
recursive_check(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE)
elif tuple_object is None:
return
else:
self.assertTrue(
all(tf.equal(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE)) , msg=(
"""Tuple and dict output are not equal. Difference:"""
F' {tf.math.reduce_max(tf.abs(tuple_object - dict_object))}'
) , )
recursive_check(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE)
for model_class in self.all_model_classes:
_lowerCamelCase : Tuple = model_class(SCREAMING_SNAKE_CASE)
_lowerCamelCase : str = self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE)
_lowerCamelCase : Optional[int] = self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE)
check_equivalence(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE)
_lowerCamelCase : Optional[Any] = self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , return_labels=SCREAMING_SNAKE_CASE)
_lowerCamelCase : Optional[Any] = self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , return_labels=SCREAMING_SNAKE_CASE)
check_equivalence(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE)
_lowerCamelCase : Any = self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE)
_lowerCamelCase : Any = self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE)
check_equivalence(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , {"""output_hidden_states""": True})
_lowerCamelCase : int = self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , return_labels=SCREAMING_SNAKE_CASE)
_lowerCamelCase : Any = self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , return_labels=SCREAMING_SNAKE_CASE)
check_equivalence(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , {"""output_hidden_states""": True})
def UpperCamelCase_ ( self) -> Optional[int]:
_lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE)
@slow
def UpperCamelCase_ ( self) -> int:
for model_name in TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_lowerCamelCase : List[str] = TFRegNetModel.from_pretrained(SCREAMING_SNAKE_CASE)
self.assertIsNotNone(SCREAMING_SNAKE_CASE)
def _snake_case ( ):
"""simple docstring"""
_lowerCamelCase : str = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_tf
@require_vision
class lowercase__ ( unittest.TestCase ):
@cached_property
def UpperCamelCase_ ( self) -> Any:
return (
AutoImageProcessor.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0])
if is_vision_available()
else None
)
@slow
def UpperCamelCase_ ( self) -> List[Any]:
_lowerCamelCase : str = TFRegNetForImageClassification.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0])
_lowerCamelCase : Optional[int] = self.default_image_processor
_lowerCamelCase : int = prepare_img()
_lowerCamelCase : List[Any] = image_processor(images=SCREAMING_SNAKE_CASE , return_tensors="""tf""")
# forward pass
_lowerCamelCase : Dict = model(**SCREAMING_SNAKE_CASE , training=SCREAMING_SNAKE_CASE)
# verify the logits
_lowerCamelCase : Tuple = tf.TensorShape((1, 1000))
self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE)
_lowerCamelCase : Optional[Any] = tf.constant([-0.41_80, -1.50_51, -3.48_36])
tf.debugging.assert_near(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE , atol=1e-4)
| 88
|
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_torch_available,
is_vision_available,
)
UpperCamelCase = {
"configuration_convnext": ["CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConvNextConfig", "ConvNextOnnxConfig"]
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase = ["ConvNextFeatureExtractor"]
UpperCamelCase = ["ConvNextImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase = [
"CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST",
"ConvNextForImageClassification",
"ConvNextModel",
"ConvNextPreTrainedModel",
"ConvNextBackbone",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase = [
"TFConvNextForImageClassification",
"TFConvNextModel",
"TFConvNextPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_convnext import ConvNextFeatureExtractor
from .image_processing_convnext import ConvNextImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_convnext import (
CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST,
ConvNextBackbone,
ConvNextForImageClassification,
ConvNextModel,
ConvNextPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel
else:
import sys
UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure)
| 66
| 0
|
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
EulerAncestralDiscreteScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
StableDiffusionPanoramaPipeline,
UNetaDConditionModel,
)
from diffusers.utils import slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
@skip_mps
class SCREAMING_SNAKE_CASE__ ( snake_case__ , snake_case__ , unittest.TestCase ):
'''simple docstring'''
_lowerCamelCase = StableDiffusionPanoramaPipeline
_lowerCamelCase = TEXT_TO_IMAGE_PARAMS
_lowerCamelCase = TEXT_TO_IMAGE_BATCH_PARAMS
_lowerCamelCase = TEXT_TO_IMAGE_IMAGE_PARAMS
_lowerCamelCase = TEXT_TO_IMAGE_IMAGE_PARAMS
def lowerCamelCase ( self : int ) -> str:
"""simple docstring"""
torch.manual_seed(0 )
_UpperCAmelCase = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , )
_UpperCAmelCase = DDIMScheduler()
torch.manual_seed(0 )
_UpperCAmelCase = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , )
torch.manual_seed(0 )
_UpperCAmelCase = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , )
_UpperCAmelCase = CLIPTextModel(_A )
_UpperCAmelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
_UpperCAmelCase = {
'unet': unet,
'scheduler': scheduler,
'vae': vae,
'text_encoder': text_encoder,
'tokenizer': tokenizer,
'safety_checker': None,
'feature_extractor': None,
}
return components
def lowerCamelCase ( self : Tuple , lowerCamelCase : Tuple , lowerCamelCase : str=0 ) -> int:
"""simple docstring"""
_UpperCAmelCase = torch.manual_seed(_A )
_UpperCAmelCase = {
'prompt': 'a photo of the dolomites',
'generator': generator,
# Setting height and width to None to prevent OOMs on CPU.
'height': None,
'width': None,
'num_inference_steps': 1,
'guidance_scale': 6.0,
'output_type': 'numpy',
}
return inputs
def lowerCamelCase ( self : Any ) -> int:
"""simple docstring"""
_UpperCAmelCase = 'cpu' # ensure determinism for the device-dependent torch.Generator
_UpperCAmelCase = self.get_dummy_components()
_UpperCAmelCase = StableDiffusionPanoramaPipeline(**_A )
_UpperCAmelCase = sd_pipe.to(_A )
sd_pipe.set_progress_bar_config(disable=_A )
_UpperCAmelCase = self.get_dummy_inputs(_A )
_UpperCAmelCase = sd_pipe(**_A ).images
_UpperCAmelCase = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
_UpperCAmelCase = np.array([0.6186, 0.5374, 0.4915, 0.4135, 0.4114, 0.4563, 0.5128, 0.4977, 0.4757] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def lowerCamelCase ( self : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
super().test_inference_batch_consistent(batch_sizes=[1, 2] )
def lowerCamelCase ( self : int ) -> Optional[Any]:
"""simple docstring"""
super().test_inference_batch_single_identical(batch_size=2 , expected_max_diff=3.25E-3 )
def lowerCamelCase ( self : str ) -> str:
"""simple docstring"""
_UpperCAmelCase = 'cpu' # ensure determinism for the device-dependent torch.Generator
_UpperCAmelCase = self.get_dummy_components()
_UpperCAmelCase = StableDiffusionPanoramaPipeline(**_A )
_UpperCAmelCase = sd_pipe.to(_A )
sd_pipe.set_progress_bar_config(disable=_A )
_UpperCAmelCase = self.get_dummy_inputs(_A )
_UpperCAmelCase = 'french fries'
_UpperCAmelCase = sd_pipe(**_A , negative_prompt=_A )
_UpperCAmelCase = output.images
_UpperCAmelCase = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
_UpperCAmelCase = np.array([0.6187, 0.5375, 0.4915, 0.4136, 0.4114, 0.4563, 0.5128, 0.4976, 0.4757] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def lowerCamelCase ( self : str ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase = 'cpu' # ensure determinism for the device-dependent torch.Generator
_UpperCAmelCase = self.get_dummy_components()
_UpperCAmelCase = StableDiffusionPanoramaPipeline(**_A )
_UpperCAmelCase = sd_pipe.to(_A )
sd_pipe.set_progress_bar_config(disable=_A )
_UpperCAmelCase = self.get_dummy_inputs(_A )
_UpperCAmelCase = sd_pipe(**_A , view_batch_size=2 )
_UpperCAmelCase = output.images
_UpperCAmelCase = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
_UpperCAmelCase = np.array([0.6187, 0.5375, 0.4915, 0.4136, 0.4114, 0.4563, 0.5128, 0.4976, 0.4757] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def lowerCamelCase ( self : Optional[Any] ) -> Any:
"""simple docstring"""
_UpperCAmelCase = 'cpu' # ensure determinism for the device-dependent torch.Generator
_UpperCAmelCase = self.get_dummy_components()
_UpperCAmelCase = EulerAncestralDiscreteScheduler(
beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" )
_UpperCAmelCase = StableDiffusionPanoramaPipeline(**_A )
_UpperCAmelCase = sd_pipe.to(_A )
sd_pipe.set_progress_bar_config(disable=_A )
_UpperCAmelCase = self.get_dummy_inputs(_A )
_UpperCAmelCase = sd_pipe(**_A ).images
_UpperCAmelCase = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
_UpperCAmelCase = np.array([0.4024, 0.6510, 0.4901, 0.5378, 0.5813, 0.5622, 0.4795, 0.4467, 0.4952] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def lowerCamelCase ( self : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase = 'cpu' # ensure determinism for the device-dependent torch.Generator
_UpperCAmelCase = self.get_dummy_components()
_UpperCAmelCase = PNDMScheduler(
beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , skip_prk_steps=_A )
_UpperCAmelCase = StableDiffusionPanoramaPipeline(**_A )
_UpperCAmelCase = sd_pipe.to(_A )
sd_pipe.set_progress_bar_config(disable=_A )
_UpperCAmelCase = self.get_dummy_inputs(_A )
_UpperCAmelCase = sd_pipe(**_A ).images
_UpperCAmelCase = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
_UpperCAmelCase = np.array([0.6391, 0.6291, 0.4861, 0.5134, 0.5552, 0.4578, 0.5032, 0.5023, 0.4539] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
@slow
@require_torch_gpu
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
'''simple docstring'''
def lowerCamelCase ( self : Any ) -> int:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowerCamelCase ( self : str , lowerCamelCase : Tuple=0 ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase = torch.manual_seed(_A )
_UpperCAmelCase = {
'prompt': 'a photo of the dolomites',
'generator': generator,
'num_inference_steps': 3,
'guidance_scale': 7.5,
'output_type': 'numpy',
}
return inputs
def lowerCamelCase ( self : Union[str, Any] ) -> str:
"""simple docstring"""
_UpperCAmelCase = 'stabilityai/stable-diffusion-2-base'
_UpperCAmelCase = DDIMScheduler.from_pretrained(_A , subfolder="""scheduler""" )
_UpperCAmelCase = StableDiffusionPanoramaPipeline.from_pretrained(_A , scheduler=_A , safety_checker=_A )
pipe.to(_A )
pipe.set_progress_bar_config(disable=_A )
pipe.enable_attention_slicing()
_UpperCAmelCase = self.get_inputs()
_UpperCAmelCase = pipe(**_A ).images
_UpperCAmelCase = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 512, 2048, 3)
_UpperCAmelCase = np.array(
[
0.3696_8392,
0.2702_5372,
0.3244_6766,
0.2837_9387,
0.3636_3274,
0.3073_3347,
0.2710_0027,
0.2705_4125,
0.2553_6096,
] )
assert np.abs(expected_slice - image_slice ).max() < 1E-2
def lowerCamelCase ( self : List[Any] ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase = StableDiffusionPanoramaPipeline.from_pretrained(
"""stabilityai/stable-diffusion-2-base""" , safety_checker=_A )
_UpperCAmelCase = LMSDiscreteScheduler.from_config(pipe.scheduler.config )
pipe.to(_A )
pipe.set_progress_bar_config(disable=_A )
pipe.enable_attention_slicing()
_UpperCAmelCase = self.get_inputs()
_UpperCAmelCase = pipe(**_A ).images
_UpperCAmelCase = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 512, 2048, 3)
_UpperCAmelCase = np.array(
[
[
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
]
] )
assert np.abs(expected_slice - image_slice ).max() < 1E-3
def lowerCamelCase ( self : Union[str, Any] ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase = 0
def callback_fn(lowerCamelCase : Union[str, Any] , lowerCamelCase : Union[str, Any] , lowerCamelCase : Optional[Any] ) -> None:
_UpperCAmelCase = True
nonlocal number_of_steps
number_of_steps += 1
if step == 1:
_UpperCAmelCase = latents.detach().cpu().numpy()
assert latents.shape == (1, 4, 64, 256)
_UpperCAmelCase = latents[0, -3:, -3:, -1]
_UpperCAmelCase = np.array(
[
0.1868_1869,
0.3390_7816,
0.536_1276,
0.1443_2865,
-0.0285_6611,
-0.7394_1123,
0.2339_7987,
0.4732_2682,
-0.3782_3164,
] )
assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2
elif step == 2:
_UpperCAmelCase = latents.detach().cpu().numpy()
assert latents.shape == (1, 4, 64, 256)
_UpperCAmelCase = latents[0, -3:, -3:, -1]
_UpperCAmelCase = np.array(
[
0.1853_9645,
0.3398_7248,
0.537_8559,
0.1443_7142,
-0.0245_5261,
-0.733_8317,
0.2399_0755,
0.4735_6272,
-0.378_6505,
] )
assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2
_UpperCAmelCase = False
_UpperCAmelCase = 'stabilityai/stable-diffusion-2-base'
_UpperCAmelCase = DDIMScheduler.from_pretrained(_A , subfolder="""scheduler""" )
_UpperCAmelCase = StableDiffusionPanoramaPipeline.from_pretrained(_A , scheduler=_A , safety_checker=_A )
_UpperCAmelCase = pipe.to(_A )
pipe.set_progress_bar_config(disable=_A )
pipe.enable_attention_slicing()
_UpperCAmelCase = self.get_inputs()
pipe(**_A , callback=_A , callback_steps=1 )
assert callback_fn.has_been_called
assert number_of_steps == 3
def lowerCamelCase ( self : Optional[int] ) -> List[str]:
"""simple docstring"""
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
_UpperCAmelCase = 'stabilityai/stable-diffusion-2-base'
_UpperCAmelCase = DDIMScheduler.from_pretrained(_A , subfolder="""scheduler""" )
_UpperCAmelCase = StableDiffusionPanoramaPipeline.from_pretrained(_A , scheduler=_A , safety_checker=_A )
_UpperCAmelCase = pipe.to(_A )
pipe.set_progress_bar_config(disable=_A )
pipe.enable_attention_slicing(1 )
pipe.enable_sequential_cpu_offload()
_UpperCAmelCase = self.get_inputs()
_UpperCAmelCase = pipe(**_A )
_UpperCAmelCase = torch.cuda.max_memory_allocated()
# make sure that less than 5.2 GB is allocated
assert mem_bytes < 5.5 * 10**9
| 711
|
def _SCREAMING_SNAKE_CASE ( __snake_case ) -> list[int]:
_UpperCAmelCase = [0 for i in range(len(__snake_case ) )]
# initialize interval's left pointer and right pointer
_UpperCAmelCase , _UpperCAmelCase = 0, 0
for i in range(1 , len(__snake_case ) ):
# case when current index is inside the interval
if i <= right_pointer:
_UpperCAmelCase = min(right_pointer - i + 1 , z_result[i - left_pointer] )
_UpperCAmelCase = min_edge
while go_next(__snake_case , __snake_case , __snake_case ):
z_result[i] += 1
# if new index's result gives us more right interval,
# we've to update left_pointer and right_pointer
if i + z_result[i] - 1 > right_pointer:
_UpperCAmelCase , _UpperCAmelCase = i, i + z_result[i] - 1
return z_result
def _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case , __snake_case ) -> bool:
return i + z_result[i] < len(__snake_case ) and s[z_result[i]] == s[i + z_result[i]]
def _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case ) -> int:
_UpperCAmelCase = 0
# concatenate 'pattern' and 'input_str' and call z_function
# with concatenated string
_UpperCAmelCase = z_function(pattern + input_str )
for val in z_result:
# if value is greater then length of the pattern string
# that means this index is starting position of substring
# which is equal to pattern string
if val >= len(__snake_case ):
answer += 1
return answer
if __name__ == "__main__":
import doctest
doctest.testmod()
| 402
| 0
|
import pytest
from datasets.parallel import ParallelBackendConfig, parallel_backend
from datasets.utils.py_utils import map_nested
from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows
def a__ ( A__ ): # picklable for multiprocessing
return i + 1
@require_dill_gt_0_3_2
@require_joblibspark
@require_not_windows
def a__ ( ):
with parallel_backend('spark' ):
assert ParallelBackendConfig.backend_name == "spark"
SCREAMING_SNAKE_CASE_ : Tuple = [1, 2, 3]
with pytest.raises(lowerCAmelCase_ ):
with parallel_backend('unsupported backend' ):
map_nested(lowerCAmelCase_, lowerCAmelCase_, num_proc=2 )
with pytest.raises(lowerCAmelCase_ ):
with parallel_backend('unsupported backend' ):
map_nested(lowerCAmelCase_, lowerCAmelCase_, num_proc=-1 )
@require_dill_gt_0_3_2
@require_joblibspark
@require_not_windows
@pytest.mark.parametrize('num_proc', [2, -1] )
def a__ ( A__ ):
SCREAMING_SNAKE_CASE_ : Optional[Any] = [1, 2]
SCREAMING_SNAKE_CASE_ : Any = {"a": 1, "b": 2}
SCREAMING_SNAKE_CASE_ : List[Any] = {"a": [1, 2], "b": [3, 4]}
SCREAMING_SNAKE_CASE_ : Any = {"a": {"1": 1}, "b": 2}
SCREAMING_SNAKE_CASE_ : Tuple = {"a": 1, "b": 2, "c": 3, "d": 4}
SCREAMING_SNAKE_CASE_ : Any = [2, 3]
SCREAMING_SNAKE_CASE_ : str = {"a": 2, "b": 3}
SCREAMING_SNAKE_CASE_ : str = {"a": [2, 3], "b": [4, 5]}
SCREAMING_SNAKE_CASE_ : Union[str, Any] = {"a": {"1": 2}, "b": 3}
SCREAMING_SNAKE_CASE_ : Optional[int] = {"a": 2, "b": 3, "c": 4, "d": 5}
with parallel_backend('spark' ):
assert map_nested(lowerCAmelCase_, lowerCAmelCase_, num_proc=lowerCAmelCase_ ) == expected_map_nested_sa
assert map_nested(lowerCAmelCase_, lowerCAmelCase_, num_proc=lowerCAmelCase_ ) == expected_map_nested_sa
assert map_nested(lowerCAmelCase_, lowerCAmelCase_, num_proc=lowerCAmelCase_ ) == expected_map_nested_sa
assert map_nested(lowerCAmelCase_, lowerCAmelCase_, num_proc=lowerCAmelCase_ ) == expected_map_nested_sa
assert map_nested(lowerCAmelCase_, lowerCAmelCase_, num_proc=lowerCAmelCase_ ) == expected_map_nested_sa
| 101
|
import math
def SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_: int ):
snake_case_ : Any = []
snake_case_ : List[str] = 2
snake_case_ : Optional[int] = int(math.sqrt(lowerCAmelCase_ ) ) # Size of every segment
snake_case_ : str = [True] * (end + 1)
snake_case_ : Any = []
while start <= end:
if temp[start] is True:
in_prime.append(lowerCAmelCase_ )
for i in range(start * start , end + 1 , lowerCAmelCase_ ):
snake_case_ : Union[str, Any] = False
start += 1
prime += in_prime
snake_case_ : Dict = end + 1
snake_case_ : Dict = min(2 * end , lowerCAmelCase_ )
while low <= n:
snake_case_ : Any = [True] * (high - low + 1)
for each in in_prime:
snake_case_ : Optional[Any] = math.floor(low / each ) * each
if t < low:
t += each
for j in range(lowerCAmelCase_ , high + 1 , lowerCAmelCase_ ):
snake_case_ : List[Any] = False
for j in range(len(lowerCAmelCase_ ) ):
if temp[j] is True:
prime.append(j + low )
snake_case_ : int = high + 1
snake_case_ : Union[str, Any] = min(high + end , lowerCAmelCase_ )
return prime
print(sieve(1_0**6))
| 666
| 0
|
import pickle
import shutil
import tempfile
import unittest
from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
_lowercase = get_tests_dir('''fixtures/test_sentencepiece.model''')
@require_sentencepiece
@require_tokenizers
class __snake_case ( snake_case__ , unittest.TestCase ):
"""simple docstring"""
UpperCamelCase_ = XGLMTokenizer
UpperCamelCase_ = XGLMTokenizerFast
UpperCamelCase_ = True
UpperCamelCase_ = True
def UpperCAmelCase_ ( self : List[Any] ) -> Union[str, Any]:
'''simple docstring'''
super().setUp()
# We have a SentencePiece fixture for testing
lowerCAmelCase_ : Dict = XGLMTokenizer(lowerCAmelCase__ ,keep_accents=lowerCAmelCase__ )
tokenizer.save_pretrained(self.tmpdirname )
def UpperCAmelCase_ ( self : Optional[int] ) -> List[str]:
'''simple docstring'''
lowerCAmelCase_ : Union[str, Any] = "<pad>"
lowerCAmelCase_ : List[str] = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase__ ) ,lowerCAmelCase__ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase__ ) ,lowerCAmelCase__ )
def UpperCAmelCase_ ( self : str ) -> str:
'''simple docstring'''
lowerCAmelCase_ : Dict = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] ,"<s>" )
self.assertEqual(vocab_keys[1] ,"<pad>" )
self.assertEqual(len(lowerCAmelCase__ ) ,10_08 )
def UpperCAmelCase_ ( self : Any ) -> Tuple:
'''simple docstring'''
self.assertEqual(self.get_tokenizer().vocab_size ,10_08 )
def UpperCAmelCase_ ( self : Union[str, Any] ) -> Optional[Any]:
'''simple docstring'''
lowerCAmelCase_ : str = XGLMTokenizer(lowerCAmelCase__ ,keep_accents=lowerCAmelCase__ )
lowerCAmelCase_ : Optional[int] = tokenizer.tokenize("This is a test" )
self.assertListEqual(lowerCAmelCase__ ,["▁This", "▁is", "▁a", "▁t", "est"] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) ,[value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] ,)
lowerCAmelCase_ : Union[str, Any] = tokenizer.tokenize("I was born in 92000, and this is falsé." )
self.assertListEqual(
lowerCAmelCase__ ,[
SPIECE_UNDERLINE + "I",
SPIECE_UNDERLINE + "was",
SPIECE_UNDERLINE + "b",
"or",
"n",
SPIECE_UNDERLINE + "in",
SPIECE_UNDERLINE + "",
"9",
"2",
"0",
"0",
"0",
",",
SPIECE_UNDERLINE + "and",
SPIECE_UNDERLINE + "this",
SPIECE_UNDERLINE + "is",
SPIECE_UNDERLINE + "f",
"al",
"s",
"é",
".",
] ,)
lowerCAmelCase_ : Any = tokenizer.convert_tokens_to_ids(lowerCAmelCase__ )
self.assertListEqual(
lowerCAmelCase__ ,[
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4]
] ,)
lowerCAmelCase_ : Optional[Any] = tokenizer.convert_ids_to_tokens(lowerCAmelCase__ )
self.assertListEqual(
lowerCAmelCase__ ,[
SPIECE_UNDERLINE + "I",
SPIECE_UNDERLINE + "was",
SPIECE_UNDERLINE + "b",
"or",
"n",
SPIECE_UNDERLINE + "in",
SPIECE_UNDERLINE + "",
"<unk>",
"2",
"0",
"0",
"0",
",",
SPIECE_UNDERLINE + "and",
SPIECE_UNDERLINE + "this",
SPIECE_UNDERLINE + "is",
SPIECE_UNDERLINE + "f",
"al",
"s",
"<unk>",
".",
] ,)
@cached_property
def UpperCAmelCase_ ( self : int ) -> List[Any]:
'''simple docstring'''
return XGLMTokenizer.from_pretrained("facebook/xglm-564M" )
def UpperCAmelCase_ ( self : Optional[int] ) -> Any:
'''simple docstring'''
with tempfile.NamedTemporaryFile() as f:
shutil.copyfile(lowerCAmelCase__ ,f.name )
lowerCAmelCase_ : str = XGLMTokenizer(f.name ,keep_accents=lowerCAmelCase__ )
lowerCAmelCase_ : Union[str, Any] = pickle.dumps(lowerCAmelCase__ )
pickle.loads(lowerCAmelCase__ )
def UpperCAmelCase_ ( self : List[str] ) -> List[str]:
'''simple docstring'''
if not self.test_rust_tokenizer:
return
lowerCAmelCase_ : int = self.get_tokenizer()
lowerCAmelCase_ : List[Any] = self.get_rust_tokenizer()
lowerCAmelCase_ : Tuple = "I was born in 92000, and this is falsé."
lowerCAmelCase_ : Dict = tokenizer.tokenize(lowerCAmelCase__ )
lowerCAmelCase_ : Tuple = rust_tokenizer.tokenize(lowerCAmelCase__ )
self.assertListEqual(lowerCAmelCase__ ,lowerCAmelCase__ )
lowerCAmelCase_ : List[Any] = tokenizer.encode(lowerCAmelCase__ ,add_special_tokens=lowerCAmelCase__ )
lowerCAmelCase_ : Optional[Any] = rust_tokenizer.encode(lowerCAmelCase__ ,add_special_tokens=lowerCAmelCase__ )
self.assertListEqual(lowerCAmelCase__ ,lowerCAmelCase__ )
lowerCAmelCase_ : Optional[Any] = self.get_rust_tokenizer()
lowerCAmelCase_ : Optional[int] = tokenizer.encode(lowerCAmelCase__ )
lowerCAmelCase_ : Optional[Any] = rust_tokenizer.encode(lowerCAmelCase__ )
self.assertListEqual(lowerCAmelCase__ ,lowerCAmelCase__ )
@slow
def UpperCAmelCase_ ( self : str ) -> int:
'''simple docstring'''
lowerCAmelCase_ : List[str] = "Hello World!"
lowerCAmelCase_ : Tuple = [2, 3_12_27, 44_47, 35]
self.assertListEqual(lowerCAmelCase__ ,self.big_tokenizer.encode(lowerCAmelCase__ ) )
@slow
def UpperCAmelCase_ ( self : Optional[Any] ) -> int:
'''simple docstring'''
lowerCAmelCase_ : Union[str, Any] = (
"This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will"
" add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth"
)
# fmt: off
lowerCAmelCase_ : Dict = [2, 10_18, 67, 11, 19_88, 26_17, 56_31, 2_78, 11, 34_07, 48, 7_16_30, 2_80_85, 4, 32_34, 1_57, 13, 6, 5, 6, 4, 35_26, 7_68, 15, 6_59, 57, 2_98, 39_83, 8_64, 1_29, 21, 6, 5, 1_36_75, 3_77, 6_52, 75_80, 1_03_41, 1_55, 28_17, 4_22, 16_66, 7, 16_74, 53, 1_13, 20_22_77, 1_78_92, 33, 60, 87, 4, 32_34, 1_57, 61, 26_67, 5_23_76, 19, 88, 23, 7_35]
# fmt: on
self.assertListEqual(lowerCAmelCase__ ,self.big_tokenizer.encode(lowerCAmelCase__ ) )
@slow
def UpperCAmelCase_ ( self : Tuple ) -> str:
'''simple docstring'''
lowerCAmelCase_ : Union[str, Any] = {
"input_ids": [[2, 10_88_25, 11_63, 15, 8_80_10, 4_73, 1_58_98, 1_57, 1_36_72, 18_57, 3_12, 8, 23_80_21, 11_63, 53, 1_36_72, 18_57, 3_12, 8, 5_32_83, 18_23_96, 8, 1_85_66, 16, 3_67_33, 41_01, 8, 2_30, 24_40_17, 12_25_53, 7, 15, 13_25_97, 4, 2_93, 1_25_11, 76_10, 4, 34_14, 13_25_97, 9, 4, 3_23_61, 3_62, 4, 7_34, 2_85_12, 3_25_69, 18, 4, 3_23_61, 2_60_96, 1_49_82, 73, 1_87_15, 2_14_33, 23_52_61, 15, 4_92, 1_24_27, 16, 53, 1_87_15, 2_14_33, 6_54_54, 15, 2_36_59, 5_63, 16, 2_78, 5_97, 28_43, 5_95, 79_31, 18_23_96, 6_41_86, 22, 8_86, 5_95, 13_29_81, 53, 2_55_40, 34_49, 4_39_82, 3_99_01, 59_51, 8_78, 3_30, 4, 2_76_94, 8_02_69, 3_12, 53, 65_17, 1_17_80, 6_11, 2_04_08, 5], [2, 6, 13_25_97, 67, 4_28_97, 33, 5_92, 8, 16_37_29, 2_55_40, 3_61, 13_69_97, 10_95_14, 17_32_30, 7, 5_01, 60, 10_29_13, 1_96, 56_31, 2_35, 6_32_43, 4_73, 6, 23_17_57, 74, 52_77, 79_05, 53, 30_95, 3_73_17, 22, 4_54, 18_38_74, 5], [2, 2_68, 3_12_98, 4_65_30, 6, 13_29_35, 4_38_31, 7, 5_97, 32, 24, 36_88, 98_65, 5]],
"attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]
} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=lowerCAmelCase__ ,model_name="facebook/xglm-564M" ,padding=lowerCAmelCase__ ,)
| 715
|
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_funnel import FunnelTokenizer
_lowercase = logging.get_logger(__name__)
_lowercase = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''}
_lowercase = [
'''small''',
'''small-base''',
'''medium''',
'''medium-base''',
'''intermediate''',
'''intermediate-base''',
'''large''',
'''large-base''',
'''xlarge''',
'''xlarge-base''',
]
_lowercase = {
'''vocab_file''': {
'''funnel-transformer/small''': '''https://huggingface.co/funnel-transformer/small/resolve/main/vocab.txt''',
'''funnel-transformer/small-base''': '''https://huggingface.co/funnel-transformer/small-base/resolve/main/vocab.txt''',
'''funnel-transformer/medium''': '''https://huggingface.co/funnel-transformer/medium/resolve/main/vocab.txt''',
'''funnel-transformer/medium-base''': (
'''https://huggingface.co/funnel-transformer/medium-base/resolve/main/vocab.txt'''
),
'''funnel-transformer/intermediate''': (
'''https://huggingface.co/funnel-transformer/intermediate/resolve/main/vocab.txt'''
),
'''funnel-transformer/intermediate-base''': (
'''https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/vocab.txt'''
),
'''funnel-transformer/large''': '''https://huggingface.co/funnel-transformer/large/resolve/main/vocab.txt''',
'''funnel-transformer/large-base''': '''https://huggingface.co/funnel-transformer/large-base/resolve/main/vocab.txt''',
'''funnel-transformer/xlarge''': '''https://huggingface.co/funnel-transformer/xlarge/resolve/main/vocab.txt''',
'''funnel-transformer/xlarge-base''': (
'''https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/vocab.txt'''
),
},
'''tokenizer_file''': {
'''funnel-transformer/small''': '''https://huggingface.co/funnel-transformer/small/resolve/main/tokenizer.json''',
'''funnel-transformer/small-base''': (
'''https://huggingface.co/funnel-transformer/small-base/resolve/main/tokenizer.json'''
),
'''funnel-transformer/medium''': '''https://huggingface.co/funnel-transformer/medium/resolve/main/tokenizer.json''',
'''funnel-transformer/medium-base''': (
'''https://huggingface.co/funnel-transformer/medium-base/resolve/main/tokenizer.json'''
),
'''funnel-transformer/intermediate''': (
'''https://huggingface.co/funnel-transformer/intermediate/resolve/main/tokenizer.json'''
),
'''funnel-transformer/intermediate-base''': (
'''https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/tokenizer.json'''
),
'''funnel-transformer/large''': '''https://huggingface.co/funnel-transformer/large/resolve/main/tokenizer.json''',
'''funnel-transformer/large-base''': (
'''https://huggingface.co/funnel-transformer/large-base/resolve/main/tokenizer.json'''
),
'''funnel-transformer/xlarge''': '''https://huggingface.co/funnel-transformer/xlarge/resolve/main/tokenizer.json''',
'''funnel-transformer/xlarge-base''': (
'''https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/tokenizer.json'''
),
},
}
_lowercase = {f"funnel-transformer/{name}": 512 for name in _model_names}
_lowercase = {f"funnel-transformer/{name}": {'''do_lower_case''': True} for name in _model_names}
class __snake_case ( snake_case__ ):
"""simple docstring"""
UpperCamelCase_ = VOCAB_FILES_NAMES
UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP
UpperCamelCase_ = PRETRAINED_INIT_CONFIGURATION
UpperCamelCase_ = FunnelTokenizer
UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCamelCase_ = 2
def __init__( self : Optional[Any] ,lowerCAmelCase__ : Any=None ,lowerCAmelCase__ : Optional[int]=None ,lowerCAmelCase__ : Optional[Any]=True ,lowerCAmelCase__ : List[str]="<unk>" ,lowerCAmelCase__ : int="<sep>" ,lowerCAmelCase__ : Union[str, Any]="<pad>" ,lowerCAmelCase__ : List[str]="<cls>" ,lowerCAmelCase__ : Optional[int]="<mask>" ,lowerCAmelCase__ : Union[str, Any]="<s>" ,lowerCAmelCase__ : List[str]="</s>" ,lowerCAmelCase__ : Optional[int]=True ,lowerCAmelCase__ : Tuple=True ,lowerCAmelCase__ : Any=None ,lowerCAmelCase__ : List[Any]="##" ,**lowerCAmelCase__ : int ,) -> List[Any]:
'''simple docstring'''
super().__init__(
lowerCAmelCase__ ,tokenizer_file=lowerCAmelCase__ ,do_lower_case=lowerCAmelCase__ ,unk_token=lowerCAmelCase__ ,sep_token=lowerCAmelCase__ ,pad_token=lowerCAmelCase__ ,cls_token=lowerCAmelCase__ ,mask_token=lowerCAmelCase__ ,bos_token=lowerCAmelCase__ ,eos_token=lowerCAmelCase__ ,clean_text=lowerCAmelCase__ ,tokenize_chinese_chars=lowerCAmelCase__ ,strip_accents=lowerCAmelCase__ ,wordpieces_prefix=lowerCAmelCase__ ,**lowerCAmelCase__ ,)
lowerCAmelCase_ : str = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get("lowercase" ,lowerCAmelCase__ ) != do_lower_case
or normalizer_state.get("strip_accents" ,lowerCAmelCase__ ) != strip_accents
or normalizer_state.get("handle_chinese_chars" ,lowerCAmelCase__ ) != tokenize_chinese_chars
):
lowerCAmelCase_ : Optional[int] = getattr(lowerCAmelCase__ ,normalizer_state.pop("type" ) )
lowerCAmelCase_ : List[Any] = do_lower_case
lowerCAmelCase_ : List[str] = strip_accents
lowerCAmelCase_ : Any = tokenize_chinese_chars
lowerCAmelCase_ : List[Any] = normalizer_class(**lowerCAmelCase__ )
lowerCAmelCase_ : int = do_lower_case
def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : int ,lowerCAmelCase__ : str=None ) -> List[Any]:
'''simple docstring'''
lowerCAmelCase_ : Union[str, Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def UpperCAmelCase_ ( self : List[str] ,lowerCAmelCase__ : List[int] ,lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
lowerCAmelCase_ : str = [self.sep_token_id]
lowerCAmelCase_ : Optional[Any] = [self.cls_token_id]
if token_ids_a is None:
return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0]
return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : str ,lowerCAmelCase__ : Optional[str] = None ) -> Tuple[str]:
'''simple docstring'''
lowerCAmelCase_ : str = self._tokenizer.model.save(lowerCAmelCase__ ,name=lowerCAmelCase__ )
return tuple(lowerCAmelCase__ )
| 683
| 0
|
import gc
import unittest
import torch
from parameterized import parameterized
from diffusers import AutoencoderKL
from diffusers.utils import floats_tensor, load_hf_numpy, require_torch_gpu, slow, torch_all_close, torch_device
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import enable_full_determinism
from .test_modeling_common import ModelTesterMixin, UNetTesterMixin
enable_full_determinism()
class a (_lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ):
"""simple docstring"""
__UpperCAmelCase : str = AutoencoderKL
__UpperCAmelCase : Optional[Any] = "sample"
__UpperCAmelCase : Optional[int] = 1e-2
@property
def __snake_case ( self : Dict ) -> Optional[Any]:
__snake_case : Optional[Any] = 4
__snake_case : Tuple = 3
__snake_case : List[str] = (32, 32)
__snake_case : str = floats_tensor((batch_size, num_channels) + sizes ).to(lowerCamelCase )
return {"sample": image}
@property
def __snake_case ( self : Union[str, Any] ) -> Tuple:
return (3, 32, 32)
@property
def __snake_case ( self : int ) -> int:
return (3, 32, 32)
def __snake_case ( self : Optional[Any] ) -> Dict:
__snake_case : Optional[Any] = {
"block_out_channels": [32, 64],
"in_channels": 3,
"out_channels": 3,
"down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"],
"up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"],
"latent_channels": 4,
}
__snake_case : Any = self.dummy_input
return init_dict, inputs_dict
def __snake_case ( self : str ) -> Dict:
pass
def __snake_case ( self : Tuple ) -> List[str]:
pass
@unittest.skipIf(torch_device == "mps" , "Gradient checkpointing skipped on MPS" )
def __snake_case ( self : Any ) -> Optional[Any]:
# enable deterministic behavior for gradient checkpointing
__snake_case , __snake_case : int = self.prepare_init_args_and_inputs_for_common()
__snake_case : str = self.model_class(**lowerCamelCase )
model.to(lowerCamelCase )
assert not model.is_gradient_checkpointing and model.training
__snake_case : str = model(**lowerCamelCase ).sample
# run the backwards pass on the model. For backwards pass, for simplicity purpose,
# we won't calculate the loss and rather backprop on out.sum()
model.zero_grad()
__snake_case : Any = torch.randn_like(lowerCamelCase )
__snake_case : str = (out - labels).mean()
loss.backward()
# re-instantiate the model now enabling gradient checkpointing
__snake_case : Optional[int] = self.model_class(**lowerCamelCase )
# clone model
model_a.load_state_dict(model.state_dict() )
model_a.to(lowerCamelCase )
model_a.enable_gradient_checkpointing()
assert model_a.is_gradient_checkpointing and model_a.training
__snake_case : int = model_a(**lowerCamelCase ).sample
# run the backwards pass on the model. For backwards pass, for simplicity purpose,
# we won't calculate the loss and rather backprop on out.sum()
model_a.zero_grad()
__snake_case : Union[str, Any] = (out_a - labels).mean()
loss_a.backward()
# compare the output and parameters gradients
self.assertTrue((loss - loss_a).abs() < 1E-5 )
__snake_case : Optional[int] = dict(model.named_parameters() )
__snake_case : List[Any] = dict(model_a.named_parameters() )
for name, param in named_params.items():
self.assertTrue(torch_all_close(param.grad.data , named_params_a[name].grad.data , atol=5E-5 ) )
def __snake_case ( self : List[Any] ) -> Optional[int]:
__snake_case , __snake_case : Optional[Any] = AutoencoderKL.from_pretrained("fusing/autoencoder-kl-dummy" , output_loading_info=lowerCamelCase )
self.assertIsNotNone(lowerCamelCase )
self.assertEqual(len(loading_info["missing_keys"] ) , 0 )
model.to(lowerCamelCase )
__snake_case : Optional[Any] = model(**self.dummy_input )
assert image is not None, "Make sure output is not None"
def __snake_case ( self : Optional[Any] ) -> Union[str, Any]:
__snake_case : Tuple = AutoencoderKL.from_pretrained("fusing/autoencoder-kl-dummy" )
__snake_case : Dict = model.to(lowerCamelCase )
model.eval()
if torch_device == "mps":
__snake_case : int = torch.manual_seed(0 )
else:
__snake_case : str = torch.Generator(device=lowerCamelCase ).manual_seed(0 )
__snake_case : List[str] = torch.randn(
1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , )
__snake_case : Union[str, Any] = image.to(lowerCamelCase )
with torch.no_grad():
__snake_case : str = model(lowerCamelCase , sample_posterior=lowerCamelCase , generator=lowerCamelCase ).sample
__snake_case : List[Any] = output[0, -1, -3:, -3:].flatten().cpu()
# Since the VAE Gaussian prior's generator is seeded on the appropriate device,
# the expected output slices are not the same for CPU and GPU.
if torch_device == "mps":
__snake_case : Union[str, Any] = torch.tensor(
[
-4.0078E-01,
-3.8323E-04,
-1.2681E-01,
-1.1462E-01,
2.0095E-01,
1.0893E-01,
-8.8247E-02,
-3.0361E-01,
-9.8644E-03,
] )
elif torch_device == "cpu":
__snake_case : Tuple = torch.tensor(
[-0.13_52, 0.08_78, 0.04_19, -0.08_18, -0.10_69, 0.06_88, -0.14_58, -0.44_46, -0.00_26] )
else:
__snake_case : List[str] = torch.tensor(
[-0.24_21, 0.46_42, 0.25_07, -0.04_38, 0.06_82, 0.31_60, -0.20_18, -0.07_27, 0.24_85] )
self.assertTrue(torch_all_close(lowerCamelCase , lowerCamelCase , rtol=1E-2 ) )
@slow
class a (unittest.TestCase ):
"""simple docstring"""
def __snake_case ( self : int , lowerCamelCase : Dict , lowerCamelCase : Optional[Any] ) -> List[str]:
return F'gaussian_noise_s={seed}_shape={"_".join([str(lowerCamelCase ) for s in shape] )}.npy'
def __snake_case ( self : List[Any] ) -> int:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __snake_case ( self : Tuple , lowerCamelCase : List[Any]=0 , lowerCamelCase : Tuple=(4, 3, 512, 512) , lowerCamelCase : Optional[int]=False ) -> str:
__snake_case : List[Any] = torch.floataa if fpaa else torch.floataa
__snake_case : Tuple = torch.from_numpy(load_hf_numpy(self.get_file_format(lowerCamelCase , lowerCamelCase ) ) ).to(lowerCamelCase ).to(lowerCamelCase )
return image
def __snake_case ( self : Optional[Any] , lowerCamelCase : int="CompVis/stable-diffusion-v1-4" , lowerCamelCase : int=False ) -> int:
__snake_case : str = "fp16" if fpaa else None
__snake_case : int = torch.floataa if fpaa else torch.floataa
__snake_case : int = AutoencoderKL.from_pretrained(
lowerCamelCase , subfolder="vae" , torch_dtype=lowerCamelCase , revision=lowerCamelCase , )
model.to(lowerCamelCase ).eval()
return model
def __snake_case ( self : str , lowerCamelCase : int=0 ) -> Optional[Any]:
if torch_device == "mps":
return torch.manual_seed(lowerCamelCase )
return torch.Generator(device=lowerCamelCase ).manual_seed(lowerCamelCase )
@parameterized.expand(
[
# fmt: off
[33, [-0.16_03, 0.98_78, -0.04_95, -0.07_90, -0.27_09, 0.83_75, -0.20_60, -0.08_24], [-0.23_95, 0.00_98, 0.01_02, -0.07_09, -0.28_40, -0.02_74, -0.07_18, -0.18_24]],
[47, [-0.23_76, 0.11_68, 0.13_32, -0.48_40, -0.25_08, -0.07_91, -0.04_93, -0.40_89], [0.03_50, 0.08_47, 0.04_67, 0.03_44, -0.08_42, -0.05_47, -0.06_33, -0.11_31]],
# fmt: on
] )
def __snake_case ( self : List[str] , lowerCamelCase : Optional[Any] , lowerCamelCase : Optional[Any] , lowerCamelCase : Optional[Any] ) -> List[Any]:
__snake_case : Optional[Any] = self.get_sd_vae_model()
__snake_case : List[Any] = self.get_sd_image(lowerCamelCase )
__snake_case : Tuple = self.get_generator(lowerCamelCase )
with torch.no_grad():
__snake_case : Optional[Any] = model(lowerCamelCase , generator=lowerCamelCase , sample_posterior=lowerCamelCase ).sample
assert sample.shape == image.shape
__snake_case : List[Any] = sample[-1, -2:, -2:, :2].flatten().float().cpu()
__snake_case : int = torch.tensor(expected_slice_mps if torch_device == "mps" else expected_slice )
assert torch_all_close(lowerCamelCase , lowerCamelCase , atol=3E-3 )
@parameterized.expand(
[
# fmt: off
[33, [-0.05_13, 0.02_89, 1.37_99, 0.21_66, -0.25_73, -0.08_71, 0.51_03, -0.09_99]],
[47, [-0.41_28, -0.13_20, -0.37_04, 0.19_65, -0.41_16, -0.23_32, -0.33_40, 0.22_47]],
# fmt: on
] )
@require_torch_gpu
def __snake_case ( self : Any , lowerCamelCase : List[str] , lowerCamelCase : List[str] ) -> Tuple:
__snake_case : Any = self.get_sd_vae_model(fpaa=lowerCamelCase )
__snake_case : List[Any] = self.get_sd_image(lowerCamelCase , fpaa=lowerCamelCase )
__snake_case : List[Any] = self.get_generator(lowerCamelCase )
with torch.no_grad():
__snake_case : str = model(lowerCamelCase , generator=lowerCamelCase , sample_posterior=lowerCamelCase ).sample
assert sample.shape == image.shape
__snake_case : Optional[Any] = sample[-1, -2:, :2, -2:].flatten().float().cpu()
__snake_case : Any = torch.tensor(lowerCamelCase )
assert torch_all_close(lowerCamelCase , lowerCamelCase , atol=1E-2 )
@parameterized.expand(
[
# fmt: off
[33, [-0.16_09, 0.98_66, -0.04_87, -0.07_77, -0.27_16, 0.83_68, -0.20_55, -0.08_14], [-0.23_95, 0.00_98, 0.01_02, -0.07_09, -0.28_40, -0.02_74, -0.07_18, -0.18_24]],
[47, [-0.23_77, 0.11_47, 0.13_33, -0.48_41, -0.25_06, -0.08_05, -0.04_91, -0.40_85], [0.03_50, 0.08_47, 0.04_67, 0.03_44, -0.08_42, -0.05_47, -0.06_33, -0.11_31]],
# fmt: on
] )
def __snake_case ( self : List[Any] , lowerCamelCase : List[Any] , lowerCamelCase : Any , lowerCamelCase : Dict ) -> int:
__snake_case : int = self.get_sd_vae_model()
__snake_case : List[Any] = self.get_sd_image(lowerCamelCase )
with torch.no_grad():
__snake_case : int = model(lowerCamelCase ).sample
assert sample.shape == image.shape
__snake_case : Union[str, Any] = sample[-1, -2:, -2:, :2].flatten().float().cpu()
__snake_case : List[str] = torch.tensor(expected_slice_mps if torch_device == "mps" else expected_slice )
assert torch_all_close(lowerCamelCase , lowerCamelCase , atol=3E-3 )
@parameterized.expand(
[
# fmt: off
[13, [-0.20_51, -0.18_03, -0.23_11, -0.21_14, -0.32_92, -0.35_74, -0.29_53, -0.33_23]],
[37, [-0.26_32, -0.26_25, -0.21_99, -0.27_41, -0.45_39, -0.49_90, -0.37_20, -0.49_25]],
# fmt: on
] )
@require_torch_gpu
def __snake_case ( self : List[str] , lowerCamelCase : Tuple , lowerCamelCase : Any ) -> Optional[Any]:
__snake_case : List[str] = self.get_sd_vae_model()
__snake_case : List[Any] = self.get_sd_image(lowerCamelCase , shape=(3, 4, 64, 64) )
with torch.no_grad():
__snake_case : str = model.decode(lowerCamelCase ).sample
assert list(sample.shape ) == [3, 3, 512, 512]
__snake_case : str = sample[-1, -2:, :2, -2:].flatten().cpu()
__snake_case : Optional[int] = torch.tensor(lowerCamelCase )
assert torch_all_close(lowerCamelCase , lowerCamelCase , atol=1E-3 )
@parameterized.expand(
[
# fmt: off
[27, [-0.03_69, 0.02_07, -0.07_76, -0.06_82, -0.17_47, -0.19_30, -0.14_65, -0.20_39]],
[16, [-0.16_28, -0.21_34, -0.27_47, -0.26_42, -0.37_74, -0.44_04, -0.36_87, -0.42_77]],
# fmt: on
] )
@require_torch_gpu
def __snake_case ( self : str , lowerCamelCase : Optional[int] , lowerCamelCase : Dict ) -> int:
__snake_case : int = self.get_sd_vae_model(fpaa=lowerCamelCase )
__snake_case : List[str] = self.get_sd_image(lowerCamelCase , shape=(3, 4, 64, 64) , fpaa=lowerCamelCase )
with torch.no_grad():
__snake_case : Union[str, Any] = model.decode(lowerCamelCase ).sample
assert list(sample.shape ) == [3, 3, 512, 512]
__snake_case : Optional[Any] = sample[-1, -2:, :2, -2:].flatten().float().cpu()
__snake_case : Optional[Any] = torch.tensor(lowerCamelCase )
assert torch_all_close(lowerCamelCase , lowerCamelCase , atol=5E-3 )
@parameterized.expand([(13,), (16,), (27,)] )
@require_torch_gpu
@unittest.skipIf(not is_xformers_available() , reason="xformers is not required when using PyTorch 2.0." )
def __snake_case ( self : Tuple , lowerCamelCase : List[Any] ) -> Tuple:
__snake_case : Dict = self.get_sd_vae_model(fpaa=lowerCamelCase )
__snake_case : Any = self.get_sd_image(lowerCamelCase , shape=(3, 4, 64, 64) , fpaa=lowerCamelCase )
with torch.no_grad():
__snake_case : str = model.decode(lowerCamelCase ).sample
model.enable_xformers_memory_efficient_attention()
with torch.no_grad():
__snake_case : Any = model.decode(lowerCamelCase ).sample
assert list(sample.shape ) == [3, 3, 512, 512]
assert torch_all_close(lowerCamelCase , lowerCamelCase , atol=1E-1 )
@parameterized.expand([(13,), (16,), (37,)] )
@require_torch_gpu
@unittest.skipIf(not is_xformers_available() , reason="xformers is not required when using PyTorch 2.0." )
def __snake_case ( self : List[Any] , lowerCamelCase : Any ) -> Optional[int]:
__snake_case : str = self.get_sd_vae_model()
__snake_case : Union[str, Any] = self.get_sd_image(lowerCamelCase , shape=(3, 4, 64, 64) )
with torch.no_grad():
__snake_case : List[Any] = model.decode(lowerCamelCase ).sample
model.enable_xformers_memory_efficient_attention()
with torch.no_grad():
__snake_case : Dict = model.decode(lowerCamelCase ).sample
assert list(sample.shape ) == [3, 3, 512, 512]
assert torch_all_close(lowerCamelCase , lowerCamelCase , atol=1E-2 )
@parameterized.expand(
[
# fmt: off
[33, [-0.30_01, 0.09_18, -2.69_84, -3.97_20, -3.20_99, -5.03_53, 1.73_38, -0.20_65, 3.42_67]],
[47, [-1.50_30, -4.38_71, -6.03_55, -9.11_57, -1.66_61, -2.78_53, 2.16_07, -5.08_23, 2.56_33]],
# fmt: on
] )
def __snake_case ( self : List[Any] , lowerCamelCase : List[Any] , lowerCamelCase : Dict ) -> Optional[int]:
__snake_case : str = self.get_sd_vae_model()
__snake_case : int = self.get_sd_image(lowerCamelCase )
__snake_case : int = self.get_generator(lowerCamelCase )
with torch.no_grad():
__snake_case : Optional[Any] = model.encode(lowerCamelCase ).latent_dist
__snake_case : Dict = dist.sample(generator=lowerCamelCase )
assert list(sample.shape ) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]]
__snake_case : List[str] = sample[0, -1, -3:, -3:].flatten().cpu()
__snake_case : Dict = torch.tensor(lowerCamelCase )
__snake_case : Dict = 3E-3 if torch_device != "mps" else 1E-2
assert torch_all_close(lowerCamelCase , lowerCamelCase , atol=lowerCamelCase )
| 81
|
from typing import Union
from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING
a_ : str = logging.get_logger(__name__)
@add_end_docstrings(_lowercase )
class __UpperCamelCase ( _lowercase ):
"""simple docstring"""
def __init__( self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> int:
super().__init__(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
self.check_model_type(SCREAMING_SNAKE_CASE )
def _UpperCAmelCase ( self , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , **SCREAMING_SNAKE_CASE ) -> Union[str, Any]:
a__ , a__ = {}, {}
if padding is not None:
a__ = padding
if truncation is not None:
a__ = truncation
if top_k is not None:
a__ = top_k
return preprocess_params, {}, postprocess_params
def __call__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , **SCREAMING_SNAKE_CASE ) -> Optional[int]:
if isinstance(SCREAMING_SNAKE_CASE , (Image.Image, str) ) and isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
a__ = {'''image''': image, '''question''': question}
else:
a__ = image
a__ = super().__call__(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
return results
def _UpperCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=False ) -> Dict:
a__ = load_image(inputs['''image'''] )
a__ = self.tokenizer(
inputs['''question'''] , return_tensors=self.framework , padding=SCREAMING_SNAKE_CASE , truncation=SCREAMING_SNAKE_CASE )
a__ = self.image_processor(images=SCREAMING_SNAKE_CASE , return_tensors=self.framework )
model_inputs.update(SCREAMING_SNAKE_CASE )
return model_inputs
def _UpperCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> Union[str, Any]:
a__ = self.model(**SCREAMING_SNAKE_CASE )
return model_outputs
def _UpperCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=5 ) -> Optional[Any]:
if top_k > self.model.config.num_labels:
a__ = self.model.config.num_labels
if self.framework == "pt":
a__ = model_outputs.logits.sigmoid()[0]
a__ , a__ = probs.topk(SCREAMING_SNAKE_CASE )
else:
raise ValueError(f"Unsupported framework: {self.framework}" )
a__ = scores.tolist()
a__ = ids.tolist()
return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )]
| 194
| 0
|
"""simple docstring"""
from dataclasses import dataclass
from typing import List, Optional, Union
import numpy as np
import PIL
from PIL import Image
from ...utils import (
BaseOutput,
OptionalDependencyNotAvailable,
is_flax_available,
is_k_diffusion_available,
is_k_diffusion_version,
is_onnx_available,
is_torch_available,
is_transformers_available,
is_transformers_version,
)
@dataclass
class lowercase ( __lowerCamelCase):
__lowerCAmelCase : Union[List[PIL.Image.Image], np.ndarray]
__lowerCAmelCase : Optional[List[bool]]
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import * # noqa F403
else:
from .pipeline_cycle_diffusion import CycleDiffusionPipeline
from .pipeline_stable_diffusion import StableDiffusionPipeline
from .pipeline_stable_diffusion_attend_and_excite import StableDiffusionAttendAndExcitePipeline
from .pipeline_stable_diffusion_imgaimg import StableDiffusionImgaImgPipeline
from .pipeline_stable_diffusion_inpaint import StableDiffusionInpaintPipeline
from .pipeline_stable_diffusion_inpaint_legacy import StableDiffusionInpaintPipelineLegacy
from .pipeline_stable_diffusion_instruct_pixapix import StableDiffusionInstructPixaPixPipeline
from .pipeline_stable_diffusion_latent_upscale import StableDiffusionLatentUpscalePipeline
from .pipeline_stable_diffusion_ldmad import StableDiffusionLDMaDPipeline
from .pipeline_stable_diffusion_model_editing import StableDiffusionModelEditingPipeline
from .pipeline_stable_diffusion_panorama import StableDiffusionPanoramaPipeline
from .pipeline_stable_diffusion_paradigms import StableDiffusionParadigmsPipeline
from .pipeline_stable_diffusion_sag import StableDiffusionSAGPipeline
from .pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline
from .pipeline_stable_unclip import StableUnCLIPPipeline
from .pipeline_stable_unclip_imgaimg import StableUnCLIPImgaImgPipeline
from .safety_checker import StableDiffusionSafetyChecker
from .stable_unclip_image_normalizer import StableUnCLIPImageNormalizer
try:
if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import StableDiffusionImageVariationPipeline
else:
from .pipeline_stable_diffusion_image_variation import StableDiffusionImageVariationPipeline
try:
if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.26.0')):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import (
StableDiffusionDepthaImgPipeline,
StableDiffusionDiffEditPipeline,
StableDiffusionPixaPixZeroPipeline,
)
else:
from .pipeline_stable_diffusion_depthaimg import StableDiffusionDepthaImgPipeline
from .pipeline_stable_diffusion_diffedit import StableDiffusionDiffEditPipeline
from .pipeline_stable_diffusion_pixapix_zero import StableDiffusionPixaPixZeroPipeline
try:
if not (
is_torch_available()
and is_transformers_available()
and is_k_diffusion_available()
and is_k_diffusion_version('>=', '0.0.12')
):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403
else:
from .pipeline_stable_diffusion_k_diffusion import StableDiffusionKDiffusionPipeline
try:
if not (is_transformers_available() and is_onnx_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_onnx_objects import * # noqa F403
else:
from .pipeline_onnx_stable_diffusion import OnnxStableDiffusionPipeline, StableDiffusionOnnxPipeline
from .pipeline_onnx_stable_diffusion_imgaimg import OnnxStableDiffusionImgaImgPipeline
from .pipeline_onnx_stable_diffusion_inpaint import OnnxStableDiffusionInpaintPipeline
from .pipeline_onnx_stable_diffusion_inpaint_legacy import OnnxStableDiffusionInpaintPipelineLegacy
from .pipeline_onnx_stable_diffusion_upscale import OnnxStableDiffusionUpscalePipeline
if is_transformers_available() and is_flax_available():
import flax
@flax.struct.dataclass
class lowercase ( __lowerCamelCase):
__lowerCAmelCase : np.ndarray
__lowerCAmelCase : List[bool]
from ...schedulers.scheduling_pndm_flax import PNDMSchedulerState
from .pipeline_flax_stable_diffusion import FlaxStableDiffusionPipeline
from .pipeline_flax_stable_diffusion_imgaimg import FlaxStableDiffusionImgaImgPipeline
from .pipeline_flax_stable_diffusion_inpaint import FlaxStableDiffusionInpaintPipeline
from .safety_checker_flax import FlaxStableDiffusionSafetyChecker
| 707
|
"""simple docstring"""
import random
from .binary_exp_mod import bin_exp_mod
def lowercase_ ( _UpperCAmelCase , _UpperCAmelCase=1000 ):
"""simple docstring"""
if n < 2:
return False
if n % 2 == 0:
return n == 2
# this means n is odd
A_ : List[Any] = n - 1
A_ : Dict = 0
while d % 2 == 0:
d /= 2
exp += 1
# n - 1=d*(2**exp)
A_ : Optional[Any] = 0
while count < prec:
A_ : Optional[int] = random.randint(2 , n - 1 )
A_ : Any = bin_exp_mod(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
if b != 1:
A_ : Dict = True
for _ in range(_UpperCAmelCase ):
if b == n - 1:
A_ : Optional[int] = False
break
A_ : Any = b * b
b %= n
if flag:
return False
count += 1
return True
if __name__ == "__main__":
_lowerCamelCase : List[str] = abs(int(input('Enter bound : ').strip()))
print('Here\'s the list of primes:')
print(', '.join(str(i) for i in range(n + 1) if is_prime_big(i)))
| 361
| 0
|
"""simple docstring"""
import math
import torch
from torch import nn
from ..configuration_utils import ConfigMixin, register_to_config
from .attention_processor import Attention
from .embeddings import get_timestep_embedding
from .modeling_utils import ModelMixin
class __UpperCAmelCase ( _a, _a ):
'''simple docstring'''
@register_to_config
def __init__( self , _A = 1_2_8 , _A = 2_5_6 , _A = 2000.0 , _A = 7_6_8 , _A = 1_2 , _A = 1_2 , _A = 6_4 , _A = 2_0_4_8 , _A = 0.1 , ):
'''simple docstring'''
super().__init__()
_SCREAMING_SNAKE_CASE =nn.Sequential(
nn.Linear(__lowerCAmelCase , d_model * 4 , bias=__lowerCAmelCase ) , nn.SiLU() , nn.Linear(d_model * 4 , d_model * 4 , bias=__lowerCAmelCase ) , nn.SiLU() , )
_SCREAMING_SNAKE_CASE =nn.Embedding(__lowerCAmelCase , __lowerCAmelCase )
_SCREAMING_SNAKE_CASE =False
_SCREAMING_SNAKE_CASE =nn.Linear(__lowerCAmelCase , __lowerCAmelCase , bias=__lowerCAmelCase )
_SCREAMING_SNAKE_CASE =nn.Dropout(p=__lowerCAmelCase )
_SCREAMING_SNAKE_CASE =nn.ModuleList()
for lyr_num in range(__lowerCAmelCase ):
# FiLM conditional T5 decoder
_SCREAMING_SNAKE_CASE =DecoderLayer(d_model=__lowerCAmelCase , d_kv=__lowerCAmelCase , num_heads=__lowerCAmelCase , d_ff=__lowerCAmelCase , dropout_rate=__lowerCAmelCase )
self.decoders.append(__lowerCAmelCase )
_SCREAMING_SNAKE_CASE =TaLayerNorm(__lowerCAmelCase )
_SCREAMING_SNAKE_CASE =nn.Dropout(p=__lowerCAmelCase )
_SCREAMING_SNAKE_CASE =nn.Linear(__lowerCAmelCase , __lowerCAmelCase , bias=__lowerCAmelCase )
def UpperCamelCase_ ( self , _A , _A ):
'''simple docstring'''
_SCREAMING_SNAKE_CASE =torch.mul(query_input.unsqueeze(-1 ) , key_input.unsqueeze(-2 ) )
return mask.unsqueeze(-3 )
def UpperCamelCase_ ( self , _A , _A , _A ):
'''simple docstring'''
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =decoder_input_tokens.shape
assert decoder_noise_time.shape == (batch,)
# decoder_noise_time is in [0, 1), so rescale to expected timing range.
_SCREAMING_SNAKE_CASE =get_timestep_embedding(
decoder_noise_time * self.config.max_decoder_noise_time , embedding_dim=self.config.d_model , max_period=self.config.max_decoder_noise_time , ).to(dtype=self.dtype )
_SCREAMING_SNAKE_CASE =self.conditioning_emb(__lowerCAmelCase ).unsqueeze(1 )
assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4)
_SCREAMING_SNAKE_CASE =decoder_input_tokens.shape[1]
# If we want to use relative positions for audio context, we can just offset
# this sequence by the length of encodings_and_masks.
_SCREAMING_SNAKE_CASE =torch.broadcast_to(
torch.arange(__lowerCAmelCase , device=decoder_input_tokens.device ) , (batch, seq_length) , )
_SCREAMING_SNAKE_CASE =self.position_encoding(__lowerCAmelCase )
_SCREAMING_SNAKE_CASE =self.continuous_inputs_projection(__lowerCAmelCase )
inputs += position_encodings
_SCREAMING_SNAKE_CASE =self.dropout(__lowerCAmelCase )
# decoder: No padding present.
_SCREAMING_SNAKE_CASE =torch.ones(
decoder_input_tokens.shape[:2] , device=decoder_input_tokens.device , dtype=inputs.dtype )
# Translate encoding masks to encoder-decoder masks.
_SCREAMING_SNAKE_CASE =[(x, self.encoder_decoder_mask(__lowerCAmelCase , __lowerCAmelCase )) for x, y in encodings_and_masks]
# cross attend style: concat encodings
_SCREAMING_SNAKE_CASE =torch.cat([x[0] for x in encodings_and_encdec_masks] , dim=1 )
_SCREAMING_SNAKE_CASE =torch.cat([x[1] for x in encodings_and_encdec_masks] , dim=-1 )
for lyr in self.decoders:
_SCREAMING_SNAKE_CASE =lyr(
__lowerCAmelCase , conditioning_emb=__lowerCAmelCase , encoder_hidden_states=__lowerCAmelCase , encoder_attention_mask=__lowerCAmelCase , )[0]
_SCREAMING_SNAKE_CASE =self.decoder_norm(__lowerCAmelCase )
_SCREAMING_SNAKE_CASE =self.post_dropout(__lowerCAmelCase )
_SCREAMING_SNAKE_CASE =self.spec_out(__lowerCAmelCase )
return spec_out
class __UpperCAmelCase ( nn.Module ):
'''simple docstring'''
def __init__( self , _A , _A , _A , _A , _A , _A=1E-6 ):
'''simple docstring'''
super().__init__()
_SCREAMING_SNAKE_CASE =nn.ModuleList()
# cond self attention: layer 0
self.layer.append(
TaLayerSelfAttentionCond(d_model=__lowerCAmelCase , d_kv=__lowerCAmelCase , num_heads=__lowerCAmelCase , dropout_rate=__lowerCAmelCase ) )
# cross attention: layer 1
self.layer.append(
TaLayerCrossAttention(
d_model=__lowerCAmelCase , d_kv=__lowerCAmelCase , num_heads=__lowerCAmelCase , dropout_rate=__lowerCAmelCase , layer_norm_epsilon=__lowerCAmelCase , ) )
# Film Cond MLP + dropout: last layer
self.layer.append(
TaLayerFFCond(d_model=__lowerCAmelCase , d_ff=__lowerCAmelCase , dropout_rate=__lowerCAmelCase , layer_norm_epsilon=__lowerCAmelCase ) )
def UpperCamelCase_ ( self , _A , _A=None , _A=None , _A=None , _A=None , _A=None , ):
'''simple docstring'''
_SCREAMING_SNAKE_CASE =self.layer[0](
__lowerCAmelCase , conditioning_emb=__lowerCAmelCase , attention_mask=__lowerCAmelCase , )
if encoder_hidden_states is not None:
_SCREAMING_SNAKE_CASE =torch.where(encoder_attention_mask > 0 , 0 , -1E10 ).to(
encoder_hidden_states.dtype )
_SCREAMING_SNAKE_CASE =self.layer[1](
__lowerCAmelCase , key_value_states=__lowerCAmelCase , attention_mask=__lowerCAmelCase , )
# Apply Film Conditional Feed Forward layer
_SCREAMING_SNAKE_CASE =self.layer[-1](__lowerCAmelCase , __lowerCAmelCase )
return (hidden_states,)
class __UpperCAmelCase ( nn.Module ):
'''simple docstring'''
def __init__( self , _A , _A , _A , _A ):
'''simple docstring'''
super().__init__()
_SCREAMING_SNAKE_CASE =TaLayerNorm(__lowerCAmelCase )
_SCREAMING_SNAKE_CASE =TaFiLMLayer(in_features=d_model * 4 , out_features=__lowerCAmelCase )
_SCREAMING_SNAKE_CASE =Attention(query_dim=__lowerCAmelCase , heads=__lowerCAmelCase , dim_head=__lowerCAmelCase , out_bias=__lowerCAmelCase , scale_qk=__lowerCAmelCase )
_SCREAMING_SNAKE_CASE =nn.Dropout(__lowerCAmelCase )
def UpperCamelCase_ ( self , _A , _A=None , _A=None , ):
'''simple docstring'''
_SCREAMING_SNAKE_CASE =self.layer_norm(__lowerCAmelCase )
if conditioning_emb is not None:
_SCREAMING_SNAKE_CASE =self.FiLMLayer(__lowerCAmelCase , __lowerCAmelCase )
# Self-attention block
_SCREAMING_SNAKE_CASE =self.attention(__lowerCAmelCase )
_SCREAMING_SNAKE_CASE =hidden_states + self.dropout(__lowerCAmelCase )
return hidden_states
class __UpperCAmelCase ( nn.Module ):
'''simple docstring'''
def __init__( self , _A , _A , _A , _A , _A ):
'''simple docstring'''
super().__init__()
_SCREAMING_SNAKE_CASE =Attention(query_dim=__lowerCAmelCase , heads=__lowerCAmelCase , dim_head=__lowerCAmelCase , out_bias=__lowerCAmelCase , scale_qk=__lowerCAmelCase )
_SCREAMING_SNAKE_CASE =TaLayerNorm(__lowerCAmelCase , eps=__lowerCAmelCase )
_SCREAMING_SNAKE_CASE =nn.Dropout(__lowerCAmelCase )
def UpperCamelCase_ ( self , _A , _A=None , _A=None , ):
'''simple docstring'''
_SCREAMING_SNAKE_CASE =self.layer_norm(__lowerCAmelCase )
_SCREAMING_SNAKE_CASE =self.attention(
__lowerCAmelCase , encoder_hidden_states=__lowerCAmelCase , attention_mask=attention_mask.squeeze(1 ) , )
_SCREAMING_SNAKE_CASE =hidden_states + self.dropout(__lowerCAmelCase )
return layer_output
class __UpperCAmelCase ( nn.Module ):
'''simple docstring'''
def __init__( self , _A , _A , _A , _A ):
'''simple docstring'''
super().__init__()
_SCREAMING_SNAKE_CASE =TaDenseGatedActDense(d_model=__lowerCAmelCase , d_ff=__lowerCAmelCase , dropout_rate=__lowerCAmelCase )
_SCREAMING_SNAKE_CASE =TaFiLMLayer(in_features=d_model * 4 , out_features=__lowerCAmelCase )
_SCREAMING_SNAKE_CASE =TaLayerNorm(__lowerCAmelCase , eps=__lowerCAmelCase )
_SCREAMING_SNAKE_CASE =nn.Dropout(__lowerCAmelCase )
def UpperCamelCase_ ( self , _A , _A=None ):
'''simple docstring'''
_SCREAMING_SNAKE_CASE =self.layer_norm(__lowerCAmelCase )
if conditioning_emb is not None:
_SCREAMING_SNAKE_CASE =self.film(__lowerCAmelCase , __lowerCAmelCase )
_SCREAMING_SNAKE_CASE =self.DenseReluDense(__lowerCAmelCase )
_SCREAMING_SNAKE_CASE =hidden_states + self.dropout(__lowerCAmelCase )
return hidden_states
class __UpperCAmelCase ( nn.Module ):
'''simple docstring'''
def __init__( self , _A , _A , _A ):
'''simple docstring'''
super().__init__()
_SCREAMING_SNAKE_CASE =nn.Linear(__lowerCAmelCase , __lowerCAmelCase , bias=__lowerCAmelCase )
_SCREAMING_SNAKE_CASE =nn.Linear(__lowerCAmelCase , __lowerCAmelCase , bias=__lowerCAmelCase )
_SCREAMING_SNAKE_CASE =nn.Linear(__lowerCAmelCase , __lowerCAmelCase , bias=__lowerCAmelCase )
_SCREAMING_SNAKE_CASE =nn.Dropout(__lowerCAmelCase )
_SCREAMING_SNAKE_CASE =NewGELUActivation()
def UpperCamelCase_ ( self , _A ):
'''simple docstring'''
_SCREAMING_SNAKE_CASE =self.act(self.wi_a(__lowerCAmelCase ) )
_SCREAMING_SNAKE_CASE =self.wi_a(__lowerCAmelCase )
_SCREAMING_SNAKE_CASE =hidden_gelu * hidden_linear
_SCREAMING_SNAKE_CASE =self.dropout(__lowerCAmelCase )
_SCREAMING_SNAKE_CASE =self.wo(__lowerCAmelCase )
return hidden_states
class __UpperCAmelCase ( nn.Module ):
'''simple docstring'''
def __init__( self , _A , _A=1E-6 ):
'''simple docstring'''
super().__init__()
_SCREAMING_SNAKE_CASE =nn.Parameter(torch.ones(__lowerCAmelCase ) )
_SCREAMING_SNAKE_CASE =eps
def UpperCamelCase_ ( self , _A ):
'''simple docstring'''
_SCREAMING_SNAKE_CASE =hidden_states.to(torch.floataa ).pow(2 ).mean(-1 , keepdim=__lowerCAmelCase )
_SCREAMING_SNAKE_CASE =hidden_states * torch.rsqrt(variance + self.variance_epsilon )
# convert into half-precision if necessary
if self.weight.dtype in [torch.floataa, torch.bfloataa]:
_SCREAMING_SNAKE_CASE =hidden_states.to(self.weight.dtype )
return self.weight * hidden_states
class __UpperCAmelCase ( nn.Module ):
'''simple docstring'''
def UpperCamelCase_ ( self , _A ):
'''simple docstring'''
return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.044715 * torch.pow(__lowerCAmelCase , 3.0 )) ))
class __UpperCAmelCase ( nn.Module ):
'''simple docstring'''
def __init__( self , _A , _A ):
'''simple docstring'''
super().__init__()
_SCREAMING_SNAKE_CASE =nn.Linear(__lowerCAmelCase , out_features * 2 , bias=__lowerCAmelCase )
def UpperCamelCase_ ( self , _A , _A ):
'''simple docstring'''
_SCREAMING_SNAKE_CASE =self.scale_bias(__lowerCAmelCase )
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =torch.chunk(__lowerCAmelCase , 2 , -1 )
_SCREAMING_SNAKE_CASE =x * (1 + scale) + shift
return x
| 255
|
import unittest
import torch
from diffusers import VQModel
from diffusers.utils import floats_tensor, torch_device
from diffusers.utils.testing_utils import enable_full_determinism
from .test_modeling_common import ModelTesterMixin, UNetTesterMixin
enable_full_determinism()
class __SCREAMING_SNAKE_CASE ( _a , _a , unittest.TestCase ):
snake_case : List[str] = VQModel
snake_case : Dict = """sample"""
@property
def _lowerCamelCase ( self , __lowerCAmelCase=(32, 32) ):
UpperCamelCase__ = 4
UpperCamelCase__ = 3
UpperCamelCase__ = floats_tensor((batch_size, num_channels) + sizes ).to(__lowerCAmelCase )
return {"sample": image}
@property
def _lowerCamelCase ( self ):
return (3, 32, 32)
@property
def _lowerCamelCase ( self ):
return (3, 32, 32)
def _lowerCamelCase ( self ):
UpperCamelCase__ = {
"""block_out_channels""": [32, 64],
"""in_channels""": 3,
"""out_channels""": 3,
"""down_block_types""": ["""DownEncoderBlock2D""", """DownEncoderBlock2D"""],
"""up_block_types""": ["""UpDecoderBlock2D""", """UpDecoderBlock2D"""],
"""latent_channels""": 3,
}
UpperCamelCase__ = self.dummy_input
return init_dict, inputs_dict
def _lowerCamelCase ( self ):
pass
def _lowerCamelCase ( self ):
pass
def _lowerCamelCase ( self ):
UpperCamelCase__ , UpperCamelCase__ = VQModel.from_pretrained("""fusing/vqgan-dummy""" , output_loading_info=__lowerCAmelCase )
self.assertIsNotNone(__lowerCAmelCase )
self.assertEqual(len(loading_info["""missing_keys"""] ) , 0 )
model.to(__lowerCAmelCase )
UpperCamelCase__ = model(**self.dummy_input )
assert image is not None, "Make sure output is not None"
def _lowerCamelCase ( self ):
UpperCamelCase__ = VQModel.from_pretrained("""fusing/vqgan-dummy""" )
model.to(__lowerCAmelCase ).eval()
torch.manual_seed(0 )
if torch.cuda.is_available():
torch.cuda.manual_seed_all(0 )
UpperCamelCase__ = torch.randn(1 , model.config.in_channels , model.config.sample_size , model.config.sample_size )
UpperCamelCase__ = image.to(__lowerCAmelCase )
with torch.no_grad():
UpperCamelCase__ = model(__lowerCAmelCase ).sample
UpperCamelCase__ = output[0, -1, -3:, -3:].flatten().cpu()
# fmt: off
UpperCamelCase__ = torch.tensor([-0.0153, -0.4044, -0.1880, -0.5161, -0.2418, -0.4072, -0.1612, -0.0633, -0.0143] )
# fmt: on
self.assertTrue(torch.allclose(__lowerCAmelCase , __lowerCAmelCase , atol=1E-3 ) )
| 619
| 0
|
import numpy as np
import torch
from torch.nn import CrossEntropyLoss
from transformers import AutoModelForCausalLM, AutoTokenizer
import datasets
from datasets import logging
A : Any = '''\
'''
A : int = '''
Perplexity (PPL) is one of the most common metrics for evaluating language models.
It is defined as the exponentiated average negative log-likelihood of a sequence.
For more information, see https://huggingface.co/docs/transformers/perplexity
'''
A : Any = '''
Args:
model_id (str): model used for calculating Perplexity
NOTE: Perplexity can only be calculated for causal language models.
This includes models such as gpt2, causal variations of bert,
causal versions of t5, and more (the full list can be found
in the AutoModelForCausalLM documentation here:
https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM )
input_texts (list of str): input text, each separate text snippet
is one list entry.
batch_size (int): the batch size to run texts through the model. Defaults to 16.
add_start_token (bool): whether to add the start token to the texts,
so the perplexity can include the probability of the first word. Defaults to True.
device (str): device to run on, defaults to \'cuda\' when available
Returns:
perplexity: dictionary containing the perplexity scores for the texts
in the input list, as well as the mean perplexity. If one of the input texts is
longer than the max input length of the model, then it is truncated to the
max length for the perplexity computation.
Examples:
Example 1:
>>> perplexity = datasets.load_metric("perplexity")
>>> input_texts = ["lorem ipsum", "Happy Birthday!", "Bienvenue"]
>>> results = perplexity.compute(model_id=\'gpt2\',
... add_start_token=False,
... input_texts=input_texts) # doctest:+ELLIPSIS
>>> print(list(results.keys()))
[\'perplexities\', \'mean_perplexity\']
>>> print(round(results["mean_perplexity"], 2))
78.22
>>> print(round(results["perplexities"][0], 2))
11.11
Example 2:
>>> perplexity = datasets.load_metric("perplexity")
>>> input_texts = datasets.load_dataset("wikitext",
... "wikitext-2-raw-v1",
... split="test")["text"][:50] # doctest:+ELLIPSIS
[...]
>>> input_texts = [s for s in input_texts if s!=\'\']
>>> results = perplexity.compute(model_id=\'gpt2\',
... input_texts=input_texts) # doctest:+ELLIPSIS
>>> print(list(results.keys()))
[\'perplexities\', \'mean_perplexity\']
>>> print(round(results["mean_perplexity"], 2))
60.35
>>> print(round(results["perplexities"][0], 2))
81.12
'''
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class A (datasets.Metric ):
'''simple docstring'''
def a_ ( self : Union[str, Any] ) -> Any:
"""simple docstring"""
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""input_texts""": datasets.Value("""string""" ),
} ) , reference_urls=["""https://huggingface.co/docs/transformers/perplexity"""] , )
def a_ ( self : int , __lowerCAmelCase : Tuple , __lowerCAmelCase : str , __lowerCAmelCase : int = 16 , __lowerCAmelCase : bool = True , __lowerCAmelCase : List[Any]=None ) -> Dict:
"""simple docstring"""
if device is not None:
assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu."
if device == "gpu":
A__ = """cuda"""
else:
A__ = """cuda""" if torch.cuda.is_available() else """cpu"""
A__ = AutoModelForCausalLM.from_pretrained(__lowerCAmelCase )
A__ = model.to(__lowerCAmelCase )
A__ = AutoTokenizer.from_pretrained(__lowerCAmelCase )
# if batch_size > 1 (which generally leads to padding being required), and
# if there is not an already assigned pad_token, assign an existing
# special token to also be the padding token
if tokenizer.pad_token is None and batch_size > 1:
A__ = list(tokenizer.special_tokens_map_extended.values() )
# check that the model already has at least one special token defined
assert (
len(__lowerCAmelCase ) > 0
), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1."
# assign one of the special tokens to also be the pad token
tokenizer.add_special_tokens({"""pad_token""": existing_special_tokens[0]} )
if add_start_token:
# leave room for <BOS> token to be added:
assert (
tokenizer.bos_token is not None
), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False"
A__ = model.config.max_length - 1
else:
A__ = model.config.max_length
A__ = tokenizer(
__lowerCAmelCase , add_special_tokens=__lowerCAmelCase , padding=__lowerCAmelCase , truncation=__lowerCAmelCase , max_length=__lowerCAmelCase , return_tensors="""pt""" , return_attention_mask=__lowerCAmelCase , ).to(__lowerCAmelCase )
A__ = encodings["""input_ids"""]
A__ = encodings["""attention_mask"""]
# check that each input is long enough:
if add_start_token:
assert torch.all(torch.ge(attn_masks.sum(1 ) , 1 ) ), "Each input text must be at least one token long."
else:
assert torch.all(
torch.ge(attn_masks.sum(1 ) , 2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings."
A__ = []
A__ = CrossEntropyLoss(reduction="""none""" )
for start_index in logging.tqdm(range(0 , len(__lowerCAmelCase ) , __lowerCAmelCase ) ):
A__ = min(start_index + batch_size , len(__lowerCAmelCase ) )
A__ = encoded_texts[start_index:end_index]
A__ = attn_masks[start_index:end_index]
if add_start_token:
A__ = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(__lowerCAmelCase )
A__ = torch.cat([bos_tokens_tensor, encoded_batch] , dim=1 )
A__ = torch.cat(
[torch.ones(bos_tokens_tensor.size() , dtype=torch.intaa ).to(__lowerCAmelCase ), attn_mask] , dim=1 )
A__ = encoded_batch
with torch.no_grad():
A__ = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase ).logits
A__ = out_logits[..., :-1, :].contiguous()
A__ = labels[..., 1:].contiguous()
A__ = attn_mask[..., 1:].contiguous()
A__ = torch.expa(
(loss_fct(shift_logits.transpose(1 , 2 ) , __lowerCAmelCase ) * shift_attention_mask_batch).sum(1 )
/ shift_attention_mask_batch.sum(1 ) )
ppls += perplexity_batch.tolist()
return {"perplexities": ppls, "mean_perplexity": np.mean(__lowerCAmelCase )}
| 247
|
import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401
from coval.conll import reader, util
from coval.eval import evaluator
import datasets
A : Dict = datasets.logging.get_logger(__name__)
A : Optional[Any] = '''\
@InProceedings{moosavi2019minimum,
author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube},
title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection},
year = {2019},
booktitle = {Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers)},
publisher = {Association for Computational Linguistics},
address = {Florence, Italy},
}
@inproceedings{10.3115/1072399.1072405,
author = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette},
title = {A Model-Theoretic Coreference Scoring Scheme},
year = {1995},
isbn = {1558604022},
publisher = {Association for Computational Linguistics},
address = {USA},
url = {https://doi.org/10.3115/1072399.1072405},
doi = {10.3115/1072399.1072405},
booktitle = {Proceedings of the 6th Conference on Message Understanding},
pages = {45–52},
numpages = {8},
location = {Columbia, Maryland},
series = {MUC6 ’95}
}
@INPROCEEDINGS{Bagga98algorithmsfor,
author = {Amit Bagga and Breck Baldwin},
title = {Algorithms for Scoring Coreference Chains},
booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference},
year = {1998},
pages = {563--566}
}
@INPROCEEDINGS{Luo05oncoreference,
author = {Xiaoqiang Luo},
title = {On coreference resolution performance metrics},
booktitle = {In Proc. of HLT/EMNLP},
year = {2005},
pages = {25--32},
publisher = {URL}
}
@inproceedings{moosavi-strube-2016-coreference,
title = "Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric",
author = "Moosavi, Nafise Sadat and
Strube, Michael",
booktitle = "Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = aug,
year = "2016",
address = "Berlin, Germany",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/P16-1060",
doi = "10.18653/v1/P16-1060",
pages = "632--642",
}
'''
A : int = '''\
CoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which
implements of the common evaluation metrics including MUC [Vilain et al, 1995],
B-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005],
LEA [Moosavi and Strube, 2016] and the averaged CoNLL score
(the average of the F1 values of MUC, B-cubed and CEAFe)
[Denis and Baldridge, 2009a; Pradhan et al., 2011].
This wrapper of CoVal currently only work with CoNLL line format:
The CoNLL format has one word per line with all the annotation for this word in column separated by spaces:
Column Type Description
1 Document ID This is a variation on the document filename
2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc.
3 Word number
4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release.
5 Part-of-Speech
6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the "([pos] [word])" string (or leaf) and concatenating the items in the rows of that column.
7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a "-"
8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7.
9 Word sense This is the word sense of the word in Column 3.
10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data.
11 Named Entities These columns identifies the spans representing various named entities.
12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7.
N Coreference Coreference chain information encoded in a parenthesis structure.
More informations on the format can be found here (section "*_conll File Format"): http://www.conll.cemantix.org/2012/data.html
Details on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md
CoVal code was written by @ns-moosavi.
Some parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py
The test suite is taken from https://github.com/conll/reference-coreference-scorers/
Mention evaluation and the test suite are added by @andreasvc.
Parsing CoNLL files is developed by Leo Born.
'''
A : Union[str, Any] = '''
Calculates coreference evaluation metrics.
Args:
predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format.
Each prediction is a word with its annotations as a string made of columns joined with spaces.
Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)
See the details on the format in the description of the metric.
references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format.
Each reference is a word with its annotations as a string made of columns joined with spaces.
Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)
See the details on the format in the description of the metric.
keep_singletons: After extracting all mentions of key or system files,
mentions whose corresponding coreference chain is of size one,
are considered as singletons. The default evaluation mode will include
singletons in evaluations if they are included in the key or the system files.
By setting \'keep_singletons=False\', all singletons in the key and system files
will be excluded from the evaluation.
NP_only: Most of the recent coreference resolvers only resolve NP mentions and
leave out the resolution of VPs. By setting the \'NP_only\' option, the scorer will only evaluate the resolution of NPs.
min_span: By setting \'min_span\', the scorer reports the results based on automatically detected minimum spans.
Minimum spans are determined using the MINA algorithm.
Returns:
\'mentions\': mentions
\'muc\': MUC metric [Vilain et al, 1995]
\'bcub\': B-cubed [Bagga and Baldwin, 1998]
\'ceafe\': CEAFe [Luo et al., 2005]
\'lea\': LEA [Moosavi and Strube, 2016]
\'conll_score\': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe)
Examples:
>>> coval = datasets.load_metric(\'coval\')
>>> words = [\'bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -\',
... \'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)\',
... \'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)\',
... \'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -\',
... \'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -\',
... \'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -\']
>>> references = [words]
>>> predictions = [words]
>>> results = coval.compute(predictions=predictions, references=references)
>>> print(results) # doctest:+ELLIPSIS
{\'mentions/recall\': 1.0,[...] \'conll_score\': 100.0}
'''
def __lowerCamelCase ( __a :Dict , __a :int , __a :int=False , __a :Optional[Any]=False , __a :int=True , __a :Optional[int]=False , __a :Dict="dummy_doc" ) -> Any:
"""simple docstring"""
A__ = {doc: key_lines}
A__ = {doc: sys_lines}
A__ = {}
A__ = 0
A__ = 0
A__ = 0
A__ = 0
A__ = 0
A__ = 0
A__ , A__ = reader.get_doc_mentions(__a , key_doc_lines[doc] , __a )
key_singletons_num += singletons_num
if NP_only or min_span:
A__ = reader.set_annotated_parse_trees(__a , key_doc_lines[doc] , __a , __a )
A__ , A__ = reader.get_doc_mentions(__a , sys_doc_lines[doc] , __a )
sys_singletons_num += singletons_num
if NP_only or min_span:
A__ = reader.set_annotated_parse_trees(__a , key_doc_lines[doc] , __a , __a )
if remove_nested:
A__ , A__ = reader.remove_nested_coref_mentions(__a , __a )
key_nested_coref_num += nested_mentions
key_removed_nested_clusters += removed_clusters
A__ , A__ = reader.remove_nested_coref_mentions(__a , __a )
sys_nested_coref_num += nested_mentions
sys_removed_nested_clusters += removed_clusters
A__ = reader.get_mention_assignments(__a , __a )
A__ = reader.get_mention_assignments(__a , __a )
A__ = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster)
if remove_nested:
logger.info(
"""Number of removed nested coreferring mentions in the key """
F'annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}' )
logger.info(
"""Number of resulting singleton clusters in the key """
F'annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}' )
if not keep_singletons:
logger.info(
F'{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system '
"""files, respectively""" )
return doc_coref_infos
def __lowerCamelCase ( __a :Any , __a :Union[str, Any] , __a :List[str] , __a :Dict , __a :str , __a :Tuple , __a :Union[str, Any] ) -> Optional[int]:
"""simple docstring"""
A__ = get_coref_infos(__a , __a , __a , __a , __a , __a )
A__ = {}
A__ = 0
A__ = 0
for name, metric in metrics:
A__ , A__ , A__ = evaluator.evaluate_documents(__a , __a , beta=1 )
if name in ["muc", "bcub", "ceafe"]:
conll += fa
conll_subparts_num += 1
output_scores.update({F'{name}/recall': recall, F'{name}/precision': precision, F'{name}/f1': fa} )
logger.info(
name.ljust(1_0 ) , F'Recall: {recall * 1_0_0:.2f}' , F' Precision: {precision * 1_0_0:.2f}' , F' F1: {fa * 1_0_0:.2f}' , )
if conll_subparts_num == 3:
A__ = (conll / 3) * 1_0_0
logger.info(F'CoNLL score: {conll:.2f}' )
output_scores.update({"""conll_score""": conll} )
return output_scores
def __lowerCamelCase ( __a :int ) -> List[Any]:
"""simple docstring"""
A__ = False
for line in key_lines:
if not line.startswith("""#""" ):
if len(line.split() ) > 6:
A__ = line.split()[5]
if not parse_col == "-":
A__ = True
break
else:
break
return has_gold_parse
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class A (datasets.Metric ):
'''simple docstring'''
def a_ ( self : int ) -> Optional[int]:
"""simple docstring"""
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Sequence(datasets.Value("""string""" ) ),
"""references""": datasets.Sequence(datasets.Value("""string""" ) ),
} ) , codebase_urls=["""https://github.com/ns-moosavi/coval"""] , reference_urls=[
"""https://github.com/ns-moosavi/coval""",
"""https://www.aclweb.org/anthology/P16-1060""",
"""http://www.conll.cemantix.org/2012/data.html""",
] , )
def a_ ( self : str , __lowerCAmelCase : Dict , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : int=True , __lowerCAmelCase : List[str]=False , __lowerCAmelCase : List[str]=False , __lowerCAmelCase : int=False ) -> Optional[int]:
"""simple docstring"""
A__ = [
("""mentions""", evaluator.mentions),
("""muc""", evaluator.muc),
("""bcub""", evaluator.b_cubed),
("""ceafe""", evaluator.ceafe),
("""lea""", evaluator.lea),
]
if min_span:
A__ = util.check_gold_parse_annotation(__lowerCAmelCase )
if not has_gold_parse:
raise NotImplementedError("""References should have gold parse annotation to use 'min_span'.""" )
# util.parse_key_file(key_file)
# key_file = key_file + ".parsed"
A__ = evaluate(
key_lines=__lowerCAmelCase , sys_lines=__lowerCAmelCase , metrics=__lowerCAmelCase , NP_only=__lowerCAmelCase , remove_nested=__lowerCAmelCase , keep_singletons=__lowerCAmelCase , min_span=__lowerCAmelCase , )
return score
| 247
| 1
|
"""simple docstring"""
import pytest
import datasets
# Import fixture modules as plugins
A = ['''tests.fixtures.files''', '''tests.fixtures.hub''', '''tests.fixtures.fsspec''']
def __A ( a_ :Dict , a_ :Optional[Any]) -> Optional[Any]:
# Mark tests as "unit" by default if not marked as "integration" (or already marked as "unit")
for item in items:
if any(marker in item.keywords for marker in ['''integration''', '''unit''']):
continue
item.add_marker(pytest.mark.unit)
def __A ( a_ :Dict) -> Union[str, Any]:
config.addinivalue_line('''markers''' , '''torchaudio_latest: mark test to run with torchaudio>=0.12''')
@pytest.fixture(autouse=a_)
def __A ( a_ :Union[str, Any] , a_ :int) -> Any:
# test_hf_cache_home = tmp_path_factory.mktemp("cache") # TODO: why a cache dir per test function does not work?
__a : List[str] = tmp_path_factory.getbasetemp() / '''cache'''
__a : Union[str, Any] = test_hf_cache_home / '''datasets'''
__a : Tuple = test_hf_cache_home / '''metrics'''
__a : Tuple = test_hf_cache_home / '''modules'''
monkeypatch.setattr('''datasets.config.HF_DATASETS_CACHE''' , str(a_))
monkeypatch.setattr('''datasets.config.HF_METRICS_CACHE''' , str(a_))
monkeypatch.setattr('''datasets.config.HF_MODULES_CACHE''' , str(a_))
__a : List[str] = test_hf_datasets_cache / '''downloads'''
monkeypatch.setattr('''datasets.config.DOWNLOADED_DATASETS_PATH''' , str(a_))
__a : str = test_hf_datasets_cache / '''downloads''' / '''extracted'''
monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_PATH''' , str(a_))
@pytest.fixture(autouse=a_ , scope='''session''')
def __A ( ) -> Optional[int]:
datasets.disable_progress_bar()
@pytest.fixture(autouse=a_)
def __A ( a_ :int) -> Any:
# don't take tests into account when counting downloads
monkeypatch.setattr('''datasets.config.HF_UPDATE_DOWNLOAD_COUNTS''' , a_)
@pytest.fixture
def __A ( a_ :Optional[int]) -> Optional[int]:
# Required to suppress RemovedIn20Warning when feature(s) are not compatible with SQLAlchemy 2.0
# To be removed once SQLAlchemy 2.0 supported
monkeypatch.setattr('''sqlalchemy.util.deprecations.SILENCE_UBER_WARNING''' , a_)
| 52
|
'''simple docstring'''
import math
import flax.linen as nn
import jax.numpy as jnp
def _lowerCAmelCase ( __magic_name__ : jnp.ndarray , __magic_name__ : int , __magic_name__ : float = 1 , __magic_name__ : float = 1 , __magic_name__ : float = 1.0E4 , __magic_name__ : bool = False , __magic_name__ : float = 1.0 , ) -> jnp.ndarray:
assert timesteps.ndim == 1, "Timesteps should be a 1d-array"
assert embedding_dim % 2 == 0, f'''Embedding dimension {embedding_dim} should be even'''
lowercase : int =float(embedding_dim // 2 )
lowercase : Optional[int] =math.log(max_timescale / min_timescale ) / (num_timescales - freq_shift)
lowercase : Any =min_timescale * jnp.exp(jnp.arange(__magic_name__ , dtype=jnp.floataa ) * -log_timescale_increment )
lowercase : List[Any] =jnp.expand_dims(__magic_name__ , 1 ) * jnp.expand_dims(__magic_name__ , 0 )
# scale embeddings
lowercase : Tuple =scale * emb
if flip_sin_to_cos:
lowercase : Dict =jnp.concatenate([jnp.cos(__magic_name__ ), jnp.sin(__magic_name__ )] , axis=1 )
else:
lowercase : Any =jnp.concatenate([jnp.sin(__magic_name__ ), jnp.cos(__magic_name__ )] , axis=1 )
lowercase : List[str] =jnp.reshape(__magic_name__ , [jnp.shape(__magic_name__ )[0], embedding_dim] )
return signal
class __SCREAMING_SNAKE_CASE ( nn.Module ):
lowerCamelCase_ = 32
lowerCamelCase_ = jnp.floataa
@nn.compact
def __call__( self : Tuple , UpperCAmelCase__ : int ):
'''simple docstring'''
lowercase : List[Any] =nn.Dense(self.time_embed_dim , dtype=self.dtype , name='''linear_1''' )(UpperCAmelCase__ )
lowercase : Any =nn.silu(UpperCAmelCase__ )
lowercase : int =nn.Dense(self.time_embed_dim , dtype=self.dtype , name='''linear_2''' )(UpperCAmelCase__ )
return temb
class __SCREAMING_SNAKE_CASE ( nn.Module ):
lowerCamelCase_ = 32
lowerCamelCase_ = False
lowerCamelCase_ = 1
@nn.compact
def __call__( self : int , UpperCAmelCase__ : str ):
'''simple docstring'''
return get_sinusoidal_embeddings(
UpperCAmelCase__ , embedding_dim=self.dim , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.freq_shift )
| 92
| 0
|
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
UpperCAmelCase__ : List[Any] = logging.get_logger(__name__)
UpperCAmelCase__ : Any = {
'google/bigbird-roberta-base': 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/config.json',
'google/bigbird-roberta-large': 'https://huggingface.co/google/bigbird-roberta-large/resolve/main/config.json',
'google/bigbird-base-trivia-itc': 'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/config.json',
# See all BigBird models at https://huggingface.co/models?filter=big_bird
}
class lowerCAmelCase_ (a__ ):
"""simple docstring"""
__UpperCamelCase : Dict = '''big_bird'''
def __init__(self , SCREAMING_SNAKE_CASE__=5_03_58 , SCREAMING_SNAKE_CASE__=7_68 , SCREAMING_SNAKE_CASE__=12 , SCREAMING_SNAKE_CASE__=12 , SCREAMING_SNAKE_CASE__=30_72 , SCREAMING_SNAKE_CASE__="gelu_new" , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=40_96 , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__=0.02 , SCREAMING_SNAKE_CASE__=1E-12 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=0 , SCREAMING_SNAKE_CASE__=1 , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__=66 , SCREAMING_SNAKE_CASE__="block_sparse" , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=64 , SCREAMING_SNAKE_CASE__=3 , SCREAMING_SNAKE_CASE__=None , **SCREAMING_SNAKE_CASE__ , ) -> Any:
"""simple docstring"""
super().__init__(
pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ , sep_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , )
SCREAMING_SNAKE_CASE__ : List[Any] = vocab_size
SCREAMING_SNAKE_CASE__ : Optional[int] = max_position_embeddings
SCREAMING_SNAKE_CASE__ : Tuple = hidden_size
SCREAMING_SNAKE_CASE__ : Union[str, Any] = num_hidden_layers
SCREAMING_SNAKE_CASE__ : List[str] = num_attention_heads
SCREAMING_SNAKE_CASE__ : Optional[int] = intermediate_size
SCREAMING_SNAKE_CASE__ : Optional[int] = hidden_act
SCREAMING_SNAKE_CASE__ : Union[str, Any] = hidden_dropout_prob
SCREAMING_SNAKE_CASE__ : Union[str, Any] = attention_probs_dropout_prob
SCREAMING_SNAKE_CASE__ : Tuple = initializer_range
SCREAMING_SNAKE_CASE__ : int = type_vocab_size
SCREAMING_SNAKE_CASE__ : Tuple = layer_norm_eps
SCREAMING_SNAKE_CASE__ : Tuple = use_cache
SCREAMING_SNAKE_CASE__ : List[Any] = rescale_embeddings
SCREAMING_SNAKE_CASE__ : List[Any] = attention_type
SCREAMING_SNAKE_CASE__ : Union[str, Any] = use_bias
SCREAMING_SNAKE_CASE__ : int = block_size
SCREAMING_SNAKE_CASE__ : Optional[Any] = num_random_blocks
SCREAMING_SNAKE_CASE__ : List[str] = classifier_dropout
class lowerCAmelCase_ (a__ ):
"""simple docstring"""
@property
def __magic_name__ (self ) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
if self.task == "multiple-choice":
SCREAMING_SNAKE_CASE__ : Optional[Any] = {0: """batch""", 1: """choice""", 2: """sequence"""}
else:
SCREAMING_SNAKE_CASE__ : List[Any] = {0: """batch""", 1: """sequence"""}
return OrderedDict(
[
("""input_ids""", dynamic_axis),
("""attention_mask""", dynamic_axis),
] )
| 545
|
"""simple docstring"""
UpperCAmelCase__ : Dict = [
(1_0_0_0, 'M'),
(9_0_0, 'CM'),
(5_0_0, 'D'),
(4_0_0, 'CD'),
(1_0_0, 'C'),
(9_0, 'XC'),
(5_0, 'L'),
(4_0, 'XL'),
(1_0, 'X'),
(9, 'IX'),
(5, 'V'),
(4, 'IV'),
(1, 'I'),
]
def lowercase_ ( _snake_case ):
SCREAMING_SNAKE_CASE__ : Union[str, Any] = {"""I""": 1, """V""": 5, """X""": 10, """L""": 50, """C""": 100, """D""": 500, """M""": 1_000}
SCREAMING_SNAKE_CASE__ : Union[str, Any] = 0
SCREAMING_SNAKE_CASE__ : Union[str, Any] = 0
while place < len(_snake_case ):
if (place + 1 < len(_snake_case )) and (vals[roman[place]] < vals[roman[place + 1]]):
total += vals[roman[place + 1]] - vals[roman[place]]
place += 2
else:
total += vals[roman[place]]
place += 1
return total
def lowercase_ ( _snake_case ):
SCREAMING_SNAKE_CASE__ : Optional[Any] = []
for arabic, roman in ROMAN:
((SCREAMING_SNAKE_CASE__) , (SCREAMING_SNAKE_CASE__)) : List[Any] = divmod(_snake_case ,_snake_case )
result.append(roman * factor )
if number == 0:
break
return "".join(_snake_case )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 545
| 1
|
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_funnel import FunnelTokenizer
_lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__)
_lowerCAmelCase : Dict = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}
_lowerCAmelCase : str = [
"small",
"small-base",
"medium",
"medium-base",
"intermediate",
"intermediate-base",
"large",
"large-base",
"xlarge",
"xlarge-base",
]
_lowerCAmelCase : str = {
"vocab_file": {
"funnel-transformer/small": "https://huggingface.co/funnel-transformer/small/resolve/main/vocab.txt",
"funnel-transformer/small-base": "https://huggingface.co/funnel-transformer/small-base/resolve/main/vocab.txt",
"funnel-transformer/medium": "https://huggingface.co/funnel-transformer/medium/resolve/main/vocab.txt",
"funnel-transformer/medium-base": (
"https://huggingface.co/funnel-transformer/medium-base/resolve/main/vocab.txt"
),
"funnel-transformer/intermediate": (
"https://huggingface.co/funnel-transformer/intermediate/resolve/main/vocab.txt"
),
"funnel-transformer/intermediate-base": (
"https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/vocab.txt"
),
"funnel-transformer/large": "https://huggingface.co/funnel-transformer/large/resolve/main/vocab.txt",
"funnel-transformer/large-base": "https://huggingface.co/funnel-transformer/large-base/resolve/main/vocab.txt",
"funnel-transformer/xlarge": "https://huggingface.co/funnel-transformer/xlarge/resolve/main/vocab.txt",
"funnel-transformer/xlarge-base": (
"https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/vocab.txt"
),
},
"tokenizer_file": {
"funnel-transformer/small": "https://huggingface.co/funnel-transformer/small/resolve/main/tokenizer.json",
"funnel-transformer/small-base": (
"https://huggingface.co/funnel-transformer/small-base/resolve/main/tokenizer.json"
),
"funnel-transformer/medium": "https://huggingface.co/funnel-transformer/medium/resolve/main/tokenizer.json",
"funnel-transformer/medium-base": (
"https://huggingface.co/funnel-transformer/medium-base/resolve/main/tokenizer.json"
),
"funnel-transformer/intermediate": (
"https://huggingface.co/funnel-transformer/intermediate/resolve/main/tokenizer.json"
),
"funnel-transformer/intermediate-base": (
"https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/tokenizer.json"
),
"funnel-transformer/large": "https://huggingface.co/funnel-transformer/large/resolve/main/tokenizer.json",
"funnel-transformer/large-base": (
"https://huggingface.co/funnel-transformer/large-base/resolve/main/tokenizer.json"
),
"funnel-transformer/xlarge": "https://huggingface.co/funnel-transformer/xlarge/resolve/main/tokenizer.json",
"funnel-transformer/xlarge-base": (
"https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/tokenizer.json"
),
},
}
_lowerCAmelCase : List[str] = {f'''funnel-transformer/{name}''': 512 for name in _model_names}
_lowerCAmelCase : Union[str, Any] = {f'''funnel-transformer/{name}''': {"do_lower_case": True} for name in _model_names}
class __magic_name__ ( lowerCAmelCase_ ):
SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES
SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP
SCREAMING_SNAKE_CASE = PRETRAINED_INIT_CONFIGURATION
SCREAMING_SNAKE_CASE = FunnelTokenizer
SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
SCREAMING_SNAKE_CASE = 2
def __init__( self , __snake_case=None , __snake_case=None , __snake_case=True , __snake_case="<unk>" , __snake_case="<sep>" , __snake_case="<pad>" , __snake_case="<cls>" , __snake_case="<mask>" , __snake_case="<s>" , __snake_case="</s>" , __snake_case=True , __snake_case=True , __snake_case=None , __snake_case="##" , **__snake_case , ) -> Tuple:
'''simple docstring'''
super().__init__(
__snake_case , tokenizer_file=__snake_case , do_lower_case=__snake_case , unk_token=__snake_case , sep_token=__snake_case , pad_token=__snake_case , cls_token=__snake_case , mask_token=__snake_case , bos_token=__snake_case , eos_token=__snake_case , clean_text=__snake_case , tokenize_chinese_chars=__snake_case , strip_accents=__snake_case , wordpieces_prefix=__snake_case , **__snake_case , )
__a =json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get('lowercase' , __snake_case ) != do_lower_case
or normalizer_state.get('strip_accents' , __snake_case ) != strip_accents
or normalizer_state.get('handle_chinese_chars' , __snake_case ) != tokenize_chinese_chars
):
__a =getattr(__snake_case , normalizer_state.pop('type' ) )
__a =do_lower_case
__a =strip_accents
__a =tokenize_chinese_chars
__a =normalizer_class(**__snake_case )
__a =do_lower_case
def __magic_name__ ( self , __snake_case , __snake_case=None ) -> Optional[Any]:
'''simple docstring'''
__a =[self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def __magic_name__ ( self , __snake_case , __snake_case = None ) -> List[int]:
'''simple docstring'''
__a =[self.sep_token_id]
__a =[self.cls_token_id]
if token_ids_a is None:
return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0]
return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def __magic_name__ ( self , __snake_case , __snake_case = None ) -> Tuple[str]:
'''simple docstring'''
__a =self._tokenizer.model.save(__snake_case , name=__snake_case )
return tuple(__snake_case )
| 242
|
from typing import Dict, List, Optional, Tuple, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_torch_available, is_torch_tensor, logging
if is_torch_available():
import torch
_lowerCAmelCase : Dict = logging.get_logger(__name__)
class __magic_name__ ( lowerCAmelCase_ ):
SCREAMING_SNAKE_CASE = ['pixel_values']
def __init__( self , __snake_case = True , __snake_case = None , __snake_case = PILImageResampling.BILINEAR , __snake_case = True , __snake_case = None , __snake_case = True , __snake_case = 1 / 255 , __snake_case = True , __snake_case = None , __snake_case = None , **__snake_case , ) -> None:
'''simple docstring'''
super().__init__(**__snake_case )
__a =size if size is not None else {'shortest_edge': 256}
__a =get_size_dict(__snake_case , default_to_square=__snake_case )
__a =crop_size if crop_size is not None else {'height': 224, 'width': 224}
__a =get_size_dict(__snake_case , param_name='crop_size' )
__a =do_resize
__a =size
__a =resample
__a =do_center_crop
__a =crop_size
__a =do_rescale
__a =rescale_factor
__a =do_normalize
__a =image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
__a =image_std if image_std is not None else IMAGENET_STANDARD_STD
def __magic_name__ ( self , __snake_case , __snake_case , __snake_case = PILImageResampling.BICUBIC , __snake_case = None , **__snake_case , ) -> np.ndarray:
'''simple docstring'''
__a =get_size_dict(__snake_case , default_to_square=__snake_case )
if "shortest_edge" not in size:
raise ValueError(f'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' )
__a =get_resize_output_image_size(__snake_case , size=size['shortest_edge'] , default_to_square=__snake_case )
return resize(__snake_case , size=__snake_case , resample=__snake_case , data_format=__snake_case , **__snake_case )
def __magic_name__ ( self , __snake_case , __snake_case , __snake_case = None , **__snake_case , ) -> np.ndarray:
'''simple docstring'''
__a =get_size_dict(__snake_case )
if "height" not in size or "width" not in size:
raise ValueError(f'The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}' )
return center_crop(__snake_case , size=(size['height'], size['width']) , data_format=__snake_case , **__snake_case )
def __magic_name__ ( self , __snake_case , __snake_case , __snake_case = None , **__snake_case ) -> np.ndarray:
'''simple docstring'''
return rescale(__snake_case , scale=__snake_case , data_format=__snake_case , **__snake_case )
def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case = None , **__snake_case , ) -> np.ndarray:
'''simple docstring'''
return normalize(__snake_case , mean=__snake_case , std=__snake_case , data_format=__snake_case , **__snake_case )
def __magic_name__ ( self , __snake_case , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = ChannelDimension.FIRST , **__snake_case , ) -> str:
'''simple docstring'''
__a =do_resize if do_resize is not None else self.do_resize
__a =size if size is not None else self.size
__a =get_size_dict(__snake_case , default_to_square=__snake_case )
__a =resample if resample is not None else self.resample
__a =do_center_crop if do_center_crop is not None else self.do_center_crop
__a =crop_size if crop_size is not None else self.crop_size
__a =get_size_dict(__snake_case , param_name='crop_size' )
__a =do_rescale if do_rescale is not None else self.do_rescale
__a =rescale_factor if rescale_factor is not None else self.rescale_factor
__a =do_normalize if do_normalize is not None else self.do_normalize
__a =image_mean if image_mean is not None else self.image_mean
__a =image_std if image_std is not None else self.image_std
__a =make_list_of_images(__snake_case )
if not valid_images(__snake_case ):
raise ValueError(
'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '
'torch.Tensor, tf.Tensor or jax.ndarray.' )
if do_resize and size is None:
raise ValueError('Size must be specified if do_resize is True.' )
if do_center_crop and crop_size is None:
raise ValueError('Crop size must be specified if do_center_crop is True.' )
if do_rescale and rescale_factor is None:
raise ValueError('Rescale factor must be specified if do_rescale is True.' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('Image mean and std must be specified if do_normalize is True.' )
# All transformations expect numpy arrays.
__a =[to_numpy_array(__snake_case ) for image in images]
if do_resize:
__a =[self.resize(image=__snake_case , size=__snake_case , resample=__snake_case ) for image in images]
if do_center_crop:
__a =[self.center_crop(image=__snake_case , size=__snake_case ) for image in images]
if do_rescale:
__a =[self.rescale(image=__snake_case , scale=__snake_case ) for image in images]
if do_normalize:
__a =[self.normalize(image=__snake_case , mean=__snake_case , std=__snake_case ) for image in images]
__a =[to_channel_dimension_format(__snake_case , __snake_case ) for image in images]
__a ={'pixel_values': images}
return BatchFeature(data=__snake_case , tensor_type=__snake_case )
def __magic_name__ ( self , __snake_case , __snake_case = None ) -> Tuple:
'''simple docstring'''
__a =outputs.logits
# Resize logits and compute semantic segmentation maps
if target_sizes is not None:
if len(__snake_case ) != len(__snake_case ):
raise ValueError(
'Make sure that you pass in as many target sizes as the batch dimension of the logits' )
if is_torch_tensor(__snake_case ):
__a =target_sizes.numpy()
__a =[]
for idx in range(len(__snake_case ) ):
__a =torch.nn.functional.interpolate(
logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='bilinear' , align_corners=__snake_case )
__a =resized_logits[0].argmax(dim=0 )
semantic_segmentation.append(__snake_case )
else:
__a =logits.argmax(dim=1 )
__a =[semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )]
return semantic_segmentation
| 242
| 1
|
'''simple docstring'''
import inspect
import unittest
from transformers import BitConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_backbone_common import BackboneTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel
from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
class __magic_name__ :
"""simple docstring"""
def __init__( self , _lowercase , _lowercase=3 , _lowercase=32 , _lowercase=3 , _lowercase=10 , _lowercase=[8, 16, 32, 64] , _lowercase=[1, 1, 2, 1] , _lowercase=True , _lowercase=True , _lowercase="relu" , _lowercase=3 , _lowercase=None , _lowercase=["stage2", "stage3", "stage4"] , _lowercase=[2, 3, 4] , _lowercase=1 , ) -> str:
lowercase_ : List[Any] = parent
lowercase_ : str = batch_size
lowercase_ : Optional[int] = image_size
lowercase_ : Union[str, Any] = num_channels
lowercase_ : Any = embeddings_size
lowercase_ : List[Any] = hidden_sizes
lowercase_ : str = depths
lowercase_ : Optional[Any] = is_training
lowercase_ : Any = use_labels
lowercase_ : Tuple = hidden_act
lowercase_ : Optional[Any] = num_labels
lowercase_ : Union[str, Any] = scope
lowercase_ : Union[str, Any] = len(_lowercase )
lowercase_ : str = out_features
lowercase_ : Optional[Any] = out_indices
lowercase_ : List[Any] = num_groups
def lowerCamelCase__ ( self ) -> Optional[Any]:
lowercase_ : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
lowercase_ : List[str] = None
if self.use_labels:
lowercase_ : Any = ids_tensor([self.batch_size] , self.num_labels )
lowercase_ : Any = self.get_config()
return config, pixel_values, labels
def lowerCamelCase__ ( self ) -> Any:
return BitConfig(
num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , )
def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase ) -> int:
lowercase_ : List[str] = BitModel(config=_lowercase )
model.to(_lowercase )
model.eval()
lowercase_ : Tuple = model(_lowercase )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase ) -> Union[str, Any]:
lowercase_ : Any = self.num_labels
lowercase_ : List[Any] = BitForImageClassification(_lowercase )
model.to(_lowercase )
model.eval()
lowercase_ : Optional[Any] = model(_lowercase , labels=_lowercase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase ) -> Optional[Any]:
lowercase_ : int = BitBackbone(config=_lowercase )
model.to(_lowercase )
model.eval()
lowercase_ : str = model(_lowercase )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] )
# verify channels
self.parent.assertEqual(len(model.channels ) , len(config.out_features ) )
self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] )
# verify backbone works with out_features=None
lowercase_ : int = None
lowercase_ : int = BitBackbone(config=_lowercase )
model.to(_lowercase )
model.eval()
lowercase_ : Optional[Any] = model(_lowercase )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , 1 )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] )
# verify channels
self.parent.assertEqual(len(model.channels ) , 1 )
self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] )
def lowerCamelCase__ ( self ) -> Optional[Any]:
lowercase_ : Tuple = self.prepare_config_and_inputs()
lowercase_ : Optional[Any] = config_and_inputs
lowercase_ : int = {'pixel_values': pixel_values}
return config, inputs_dict
@require_torch
class __magic_name__ ( UpperCAmelCase_, UpperCAmelCase_, unittest.TestCase ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : List[Any] = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else ()
SCREAMING_SNAKE_CASE_ : Union[str, Any] = (
{'feature-extraction': BitModel, 'image-classification': BitForImageClassification}
if is_torch_available()
else {}
)
SCREAMING_SNAKE_CASE_ : Any = False
SCREAMING_SNAKE_CASE_ : List[Any] = False
SCREAMING_SNAKE_CASE_ : List[Any] = False
SCREAMING_SNAKE_CASE_ : List[str] = False
SCREAMING_SNAKE_CASE_ : str = False
def lowerCamelCase__ ( self ) -> str:
lowercase_ : List[Any] = BitModelTester(self )
lowercase_ : Optional[Any] = ConfigTester(self , config_class=_lowercase , has_text_modality=_lowercase )
def lowerCamelCase__ ( self ) -> str:
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def lowerCamelCase__ ( self ) -> List[Any]:
return
@unittest.skip(reason='Bit does not output attentions' )
def lowerCamelCase__ ( self ) -> str:
pass
@unittest.skip(reason='Bit does not use inputs_embeds' )
def lowerCamelCase__ ( self ) -> Any:
pass
@unittest.skip(reason='Bit does not support input and output embeddings' )
def lowerCamelCase__ ( self ) -> Any:
pass
def lowerCamelCase__ ( self ) -> Any:
lowercase_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowercase_ : Dict = model_class(_lowercase )
lowercase_ : Optional[Any] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowercase_ : Union[str, Any] = [*signature.parameters.keys()]
lowercase_ : Tuple = ['pixel_values']
self.assertListEqual(arg_names[:1] , _lowercase )
def lowerCamelCase__ ( self ) -> int:
lowercase_ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_lowercase )
def lowerCamelCase__ ( self ) -> Dict:
lowercase_ : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_backbone(*_lowercase )
def lowerCamelCase__ ( self ) -> Any:
lowercase_ : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowercase_ : Optional[int] = model_class(config=_lowercase )
for name, module in model.named_modules():
if isinstance(_lowercase , (nn.BatchNormad, nn.GroupNorm) ):
self.assertTrue(
torch.all(module.weight == 1 ) , msg=f"Parameter {name} of model {model_class} seems not properly initialized" , )
self.assertTrue(
torch.all(module.bias == 0 ) , msg=f"Parameter {name} of model {model_class} seems not properly initialized" , )
def lowerCamelCase__ ( self ) -> str:
def check_hidden_states_output(_lowercase , _lowercase , _lowercase ):
lowercase_ : int = model_class(_lowercase )
model.to(_lowercase )
model.eval()
with torch.no_grad():
lowercase_ : Optional[Any] = model(**self._prepare_for_class(_lowercase , _lowercase ) )
lowercase_ : List[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
lowercase_ : Dict = self.model_tester.num_stages
self.assertEqual(len(_lowercase ) , expected_num_stages + 1 )
# Bit's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
lowercase_ : Any = self.model_tester.prepare_config_and_inputs_for_common()
lowercase_ : List[str] = ['preactivation', 'bottleneck']
for model_class in self.all_model_classes:
for layer_type in layers_type:
lowercase_ : Dict = layer_type
lowercase_ : Optional[int] = True
check_hidden_states_output(_lowercase , _lowercase , _lowercase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
lowercase_ : Union[str, Any] = True
check_hidden_states_output(_lowercase , _lowercase , _lowercase )
@unittest.skip(reason='Bit does not use feedforward chunking' )
def lowerCamelCase__ ( self ) -> Tuple:
pass
def lowerCamelCase__ ( self ) -> Tuple:
lowercase_ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*_lowercase )
@slow
def lowerCamelCase__ ( self ) -> Dict:
for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowercase_ : Optional[Any] = BitModel.from_pretrained(_lowercase )
self.assertIsNotNone(_lowercase )
def _UpperCAmelCase ( ) -> str:
"""simple docstring"""
lowercase_ : int = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
return image
@require_torch
@require_vision
class __magic_name__ ( unittest.TestCase ):
"""simple docstring"""
@cached_property
def lowerCamelCase__ ( self ) -> Any:
return (
BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None
)
@slow
def lowerCamelCase__ ( self ) -> Optional[int]:
lowercase_ : Union[str, Any] = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(_lowercase )
lowercase_ : Optional[int] = self.default_image_processor
lowercase_ : List[Any] = prepare_img()
lowercase_ : List[Any] = image_processor(images=_lowercase , return_tensors='pt' ).to(_lowercase )
# forward pass
with torch.no_grad():
lowercase_ : Union[str, Any] = model(**_lowercase )
# verify the logits
lowercase_ : Union[str, Any] = torch.Size((1, 1000) )
self.assertEqual(outputs.logits.shape , _lowercase )
lowercase_ : Dict = torch.tensor([[-0.65_26, -0.52_63, -1.43_98]] ).to(_lowercase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowercase , atol=1E-4 ) )
@require_torch
class __magic_name__ ( UpperCAmelCase_, unittest.TestCase ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : int = (BitBackbone,) if is_torch_available() else ()
SCREAMING_SNAKE_CASE_ : List[Any] = BitConfig
SCREAMING_SNAKE_CASE_ : Optional[Any] = False
def lowerCamelCase__ ( self ) -> Tuple:
lowercase_ : str = BitModelTester(self )
| 707
|
'''simple docstring'''
def _UpperCAmelCase ( a : str ) -> str:
"""simple docstring"""
lowercase_ : Dict = 0
# if input_string is "aba" than new_input_string become "a|b|a"
lowercase_ : Dict = ''
lowercase_ : Any = ''
# append each character + "|" in new_string for range(0, length-1)
for i in input_string[: len(a ) - 1]:
new_input_string += i + "|"
# append last character
new_input_string += input_string[-1]
# we will store the starting and ending of previous furthest ending palindromic
# substring
lowercase_ , lowercase_ : Dict = 0, 0
# length[i] shows the length of palindromic substring with center i
lowercase_ : List[Any] = [1 for i in range(len(a ) )]
# for each character in new_string find corresponding palindromic string
lowercase_ : Dict = 0
for j in range(len(a ) ):
lowercase_ : Tuple = 1 if j > r else min(length[l + r - j] // 2 , r - j + 1 )
while (
j - k >= 0
and j + k < len(a )
and new_input_string[k + j] == new_input_string[j - k]
):
k += 1
lowercase_ : int = 2 * k - 1
# does this string is ending after the previously explored end (that is r) ?
# if yes the update the new r to the last index of this
if j + k - 1 > r:
lowercase_ : Tuple = j - k + 1 # noqa: E741
lowercase_ : Tuple = j + k - 1
# update max_length and start position
if max_length < length[j]:
lowercase_ : Tuple = length[j]
lowercase_ : List[Any] = j
# create that string
lowercase_ : str = new_input_string[start - max_length // 2 : start + max_length // 2 + 1]
for i in s:
if i != "|":
output_string += i
return output_string
if __name__ == "__main__":
import doctest
doctest.testmod()
| 7
| 0
|
import itertools
import os
from collections import Counter, defaultdict
from concurrent.futures import ThreadPoolExecutor, as_completed
import numpy as np
import datasets
from .execute import check_correctness
lowercase_: Any = '\\n@misc{chen2021evaluating,\n title={Evaluating Large Language Models Trained on Code},\n author={Mark Chen and Jerry Tworek and Heewoo Jun and Qiming Yuan \\nand Henrique Ponde de Oliveira Pinto and Jared Kaplan and Harri Edwards \\nand Yuri Burda and Nicholas Joseph and Greg Brockman and Alex Ray \\nand Raul Puri and Gretchen Krueger and Michael Petrov and Heidy Khlaaf \\nand Girish Sastry and Pamela Mishkin and Brooke Chan and Scott Gray \\nand Nick Ryder and Mikhail Pavlov and Alethea Power and Lukasz Kaiser \\nand Mohammad Bavarian and Clemens Winter and Philippe Tillet \\nand Felipe Petroski Such and Dave Cummings and Matthias Plappert \\nand Fotios Chantzis and Elizabeth Barnes and Ariel Herbert-Voss \\nand William Hebgen Guss and Alex Nichol and Alex Paino and Nikolas Tezak \\nand Jie Tang and Igor Babuschkin and Suchir Balaji and Shantanu Jain \\nand William Saunders and Christopher Hesse and Andrew N. Carr \\nand Jan Leike and Josh Achiam and Vedant Misra and Evan Morikawa \\nand Alec Radford and Matthew Knight and Miles Brundage and Mira Murati \\nand Katie Mayer and Peter Welinder and Bob McGrew and Dario Amodei \\nand Sam McCandlish and Ilya Sutskever and Wojciech Zaremba},\n year={2021},\n eprint={2107.03374},\n archivePrefix={arXiv},\n primaryClass={cs.LG}\n}\n'
lowercase_: Optional[Any] = '\\nThis metric implements the evaluation harness for the HumanEval problem solving dataset\ndescribed in the paper "Evaluating Large Language Models Trained on Code"\n(https://arxiv.org/abs/2107.03374).\n'
lowercase_: int = '\nCalculates how good are predictions given some references, using certain scores\nArgs:\n predictions: list of candidates to evaluate. Each candidates should be a list\n of strings with several code candidates to solve the problem.\n references: a list with a test for each prediction. Each test should evaluate the\n correctness of a code candidate.\n k: number of code candidates to consider in the evaluation (Default: [1, 10, 100])\n num_workers: number of workers used to evaluate the canidate programs (Default: 4).\n timeout:\nReturns:\n pass_at_k: dict with pass rates for each k\n results: dict with granular results of each unittest\nExamples:\n >>> code_eval = datasets.load_metric("code_eval")\n >>> test_cases = ["assert add(2,3)==5"]\n >>> candidates = [["def add(a,b): return a*b", "def add(a, b): return a+b"]]\n >>> pass_at_k, results = code_eval.compute(references=test_cases, predictions=candidates, k=[1, 2])\n >>> print(pass_at_k)\n {\'pass@1\': 0.5, \'pass@2\': 1.0}\n'
lowercase_: Tuple = '\n################################################################################\n !!!WARNING!!!\n################################################################################\nThe "code_eval" metric executes untrusted model-generated code in Python.\nAlthough it is highly unlikely that model-generated code will do something\novertly malicious in response to this test suite, model-generated code may act\ndestructively due to a lack of model capability or alignment.\nUsers are strongly encouraged to sandbox this evaluation suite so that it\ndoes not perform destructive actions on their host or network. For more\ninformation on how OpenAI sandboxes its code, see the paper "Evaluating Large\nLanguage Models Trained on Code" (https://arxiv.org/abs/2107.03374).\n\nOnce you have read this disclaimer and taken appropriate precautions,\nset the environment variable HF_ALLOW_CODE_EVAL="1". Within Python you can to this\nwith:\n\n>>> import os\n>>> os.environ["HF_ALLOW_CODE_EVAL"] = "1"\n\n################################################################################\\n'
lowercase_: Tuple = 'The MIT License\n\nCopyright (c) OpenAI (https://openai.com)\n\nPermission is hereby granted, free of charge, to any person obtaining a copy\nof this software and associated documentation files (the "Software"), to deal\nin the Software without restriction, including without limitation the rights\nto use, copy, modify, merge, publish, distribute, sublicense, and/or sell\ncopies of the Software, and to permit persons to whom the Software is\nfurnished to do so, subject to the following conditions:\n\nThe above copyright notice and this permission notice shall be included in\nall copies or substantial portions of the Software.\n\nTHE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR\nIMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,\nFITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE\nAUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER\nLIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,\nOUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN\nTHE SOFTWARE.'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class lowercase__ (datasets.Metric ):
"""simple docstring"""
def lowercase ( self : str ):
return datasets.MetricInfo(
# This is the description that will appear on the metrics page.
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Sequence(datasets.Value("""string""" ) ),
"""references""": datasets.Value("""string""" ),
} ) , homepage="""https://github.com/openai/human-eval""" , codebase_urls=["""https://github.com/openai/human-eval"""] , reference_urls=["""https://github.com/openai/human-eval"""] , license=_LICENSE , )
def lowercase ( self : str , __a : Optional[int] , __a : Optional[Any] , __a : str=[1, 1_0, 1_0_0] , __a : List[str]=4 , __a : int=3.0 ):
if os.getenv("""HF_ALLOW_CODE_EVAL""" , 0 ) != "1":
raise ValueError(_WARNING )
if os.name == "nt":
raise NotImplementedError("""This metric is currently not supported on Windows.""" )
with ThreadPoolExecutor(max_workers=__a ) as executor:
snake_case__ : List[str] = []
snake_case__ : Any = Counter()
snake_case__ : str = 0
snake_case__ : int = defaultdict(__a )
for task_id, (candidates, test_case) in enumerate(zip(__a , __a ) ):
for candidate in candidates:
snake_case__ : List[Any] = candidate + """\n""" + test_case
snake_case__ : Tuple = (test_program, timeout, task_id, completion_id[task_id])
snake_case__ : Optional[int] = executor.submit(__a , *__a )
futures.append(__a )
completion_id[task_id] += 1
n_samples += 1
for future in as_completed(__a ):
snake_case__ : Any = future.result()
results[result["task_id"]].append((result["""completion_id"""], result) )
snake_case__ , snake_case__ : str = [], []
for result in results.values():
result.sort()
snake_case__ : List[str] = [r[1]["""passed"""] for r in result]
total.append(len(__a ) )
correct.append(sum(__a ) )
snake_case__ : Dict = np.array(__a )
snake_case__ : Optional[int] = np.array(__a )
snake_case__ : Union[str, Any] = k
snake_case__ : Tuple = {f'pass@{k}': estimate_pass_at_k(__a , __a , __a ).mean() for k in ks if (total >= k).all()}
return pass_at_k, results
def _lowercase ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_):
"""simple docstring"""
def estimator(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) -> float:
if n - c < k:
return 1.0
return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1 , n + 1))
if isinstance(UpperCAmelCase_ , UpperCAmelCase_):
snake_case__ : Union[str, Any] = itertools.repeat(UpperCAmelCase_ , len(UpperCAmelCase_))
else:
assert len(UpperCAmelCase_) == len(UpperCAmelCase_)
snake_case__ : int = iter(UpperCAmelCase_)
return np.array([estimator(int(UpperCAmelCase_) , int(UpperCAmelCase_) , UpperCAmelCase_) for n, c in zip(UpperCAmelCase_ , UpperCAmelCase_)])
| 648
|
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
lowercase_: Any = {
'configuration_vivit': ['VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'VivitConfig'],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_: Dict = ['VivitImageProcessor']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_: List[str] = [
'VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST',
'VivitModel',
'VivitPreTrainedModel',
'VivitForVideoClassification',
]
if TYPE_CHECKING:
from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_vivit import VivitImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vivit import (
VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
VivitForVideoClassification,
VivitModel,
VivitPreTrainedModel,
)
else:
import sys
lowercase_: List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 648
| 1
|
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
UpperCamelCase_ = {
"""configuration_nllb_moe""": [
"""NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""NllbMoeConfig""",
]
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase_ = [
"""NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""NllbMoeForConditionalGeneration""",
"""NllbMoeModel""",
"""NllbMoePreTrainedModel""",
"""NllbMoeTop2Router""",
"""NllbMoeSparseMLP""",
]
if TYPE_CHECKING:
from .configuration_nllb_moe import (
NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP,
NllbMoeConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_nllb_moe import (
NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST,
NllbMoeForConditionalGeneration,
NllbMoeModel,
NllbMoePreTrainedModel,
NllbMoeSparseMLP,
NllbMoeTopaRouter,
)
else:
import sys
UpperCamelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 715
|
'''simple docstring'''
import mpmath # for roots of unity
import numpy as np
class __SCREAMING_SNAKE_CASE :
def __init__( self : Union[str, Any] , UpperCAmelCase__ : List[Any]=None , UpperCAmelCase__ : Optional[Any]=None ):
'''simple docstring'''
# Input as list
lowercase : Optional[int] =list(poly_a or [0] )[:]
lowercase : Optional[Any] =list(poly_b or [0] )[:]
# Remove leading zero coefficients
while self.polyA[-1] == 0:
self.polyA.pop()
lowercase : Any =len(self.polyA )
while self.polyB[-1] == 0:
self.polyB.pop()
lowercase : Dict =len(self.polyB )
# Add 0 to make lengths equal a power of 2
lowercase : int =int(
2 ** np.ceil(np.loga(len(self.polyA ) + len(self.polyB ) - 1 ) ) )
while len(self.polyA ) < self.c_max_length:
self.polyA.append(0 )
while len(self.polyB ) < self.c_max_length:
self.polyB.append(0 )
# A complex root used for the fourier transform
lowercase : Union[str, Any] =complex(mpmath.root(x=1 , n=self.c_max_length , k=1 ) )
# The product
lowercase : Tuple =self.__multiply()
def lowerCamelCase_ ( self : Union[str, Any] , UpperCAmelCase__ : Tuple ):
'''simple docstring'''
lowercase : Union[str, Any] =[[x] for x in self.polyA] if which == '''A''' else [[x] for x in self.polyB]
# Corner case
if len(UpperCAmelCase__ ) <= 1:
return dft[0]
#
lowercase : Any =self.c_max_length // 2
while next_ncol > 0:
lowercase : Optional[int] =[[] for i in range(UpperCAmelCase__ )]
lowercase : Tuple =self.root**next_ncol
# First half of next step
lowercase : str =1
for j in range(self.c_max_length // (next_ncol * 2) ):
for i in range(UpperCAmelCase__ ):
new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j] )
current_root *= root
# Second half of next step
lowercase : int =1
for j in range(self.c_max_length // (next_ncol * 2) ):
for i in range(UpperCAmelCase__ ):
new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j] )
current_root *= root
# Update
lowercase : Dict =new_dft
lowercase : Tuple =next_ncol // 2
return dft[0]
def lowerCamelCase_ ( self : List[Any] ):
'''simple docstring'''
lowercase : Any =self.__dft('''A''' )
lowercase : Any =self.__dft('''B''' )
lowercase : Optional[int] =[[dft_a[i] * dft_b[i] for i in range(self.c_max_length )]]
del dft_a
del dft_b
# Corner Case
if len(inverce_c[0] ) <= 1:
return inverce_c[0]
# Inverse DFT
lowercase : Optional[int] =2
while next_ncol <= self.c_max_length:
lowercase : Optional[int] =[[] for i in range(UpperCAmelCase__ )]
lowercase : List[str] =self.root ** (next_ncol // 2)
lowercase : Optional[int] =1
# First half of next step
for j in range(self.c_max_length // next_ncol ):
for i in range(next_ncol // 2 ):
# Even positions
new_inverse_c[i].append(
(
inverce_c[i][j]
+ inverce_c[i][j + self.c_max_length // next_ncol]
)
/ 2 )
# Odd positions
new_inverse_c[i + next_ncol // 2].append(
(
inverce_c[i][j]
- inverce_c[i][j + self.c_max_length // next_ncol]
)
/ (2 * current_root) )
current_root *= root
# Update
lowercase : List[Any] =new_inverse_c
next_ncol *= 2
# Unpack
lowercase : Tuple =[round(x[0].real , 8 ) + round(x[0].imag , 8 ) * 1J for x in inverce_c]
# Remove leading 0's
while inverce_c[-1] == 0:
inverce_c.pop()
return inverce_c
def __str__( self : Any ):
'''simple docstring'''
lowercase : Any ='''A = ''' + ''' + '''.join(
F'''{coef}*x^{i}''' for coef, i in enumerate(self.polyA[: self.len_A] ) )
lowercase : Tuple ='''B = ''' + ''' + '''.join(
F'''{coef}*x^{i}''' for coef, i in enumerate(self.polyB[: self.len_B] ) )
lowercase : List[str] ='''A*B = ''' + ''' + '''.join(
F'''{coef}*x^{i}''' for coef, i in enumerate(self.product ) )
return F'''{a}\n{b}\n{c}'''
# Unit tests
if __name__ == "__main__":
import doctest
doctest.testmod()
| 88
| 0
|
import copy
from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ..auto.configuration_auto import AutoConfig
if TYPE_CHECKING:
from ... import PreTrainedTokenizerBase, TensorType
_A = logging.get_logger(__name__)
class A ( __UpperCAmelCase ):
__snake_case = 'vision-encoder-decoder'
__snake_case = True
def __init__( self, **UpperCamelCase__ ):
"""simple docstring"""
super().__init__(**UpperCamelCase__ )
if "encoder" not in kwargs or "decoder" not in kwargs:
raise ValueError(
f"A configuraton of type {self.model_type} cannot be instantiated because "
f"not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}" )
lowerCAmelCase_ = kwargs.pop('''encoder''' )
lowerCAmelCase_ = encoder_config.pop('''model_type''' )
lowerCAmelCase_ = kwargs.pop('''decoder''' )
lowerCAmelCase_ = decoder_config.pop('''model_type''' )
lowerCAmelCase_ = AutoConfig.for_model(UpperCamelCase__, **UpperCamelCase__ )
lowerCAmelCase_ = AutoConfig.for_model(UpperCamelCase__, **UpperCamelCase__ )
lowerCAmelCase_ = True
@classmethod
def SCREAMING_SNAKE_CASE__ ( cls, UpperCamelCase__, UpperCamelCase__, **UpperCamelCase__ ):
"""simple docstring"""
logger.info('''Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config''' )
lowerCAmelCase_ = True
lowerCAmelCase_ = True
return cls(encoder=encoder_config.to_dict(), decoder=decoder_config.to_dict(), **UpperCamelCase__ )
def SCREAMING_SNAKE_CASE__ ( self ):
"""simple docstring"""
lowerCAmelCase_ = copy.deepcopy(self.__dict__ )
lowerCAmelCase_ = self.encoder.to_dict()
lowerCAmelCase_ = self.decoder.to_dict()
lowerCAmelCase_ = self.__class__.model_type
return output
class A ( __UpperCAmelCase ):
__snake_case = version.parse('1.11' )
@property
def SCREAMING_SNAKE_CASE__ ( self ):
"""simple docstring"""
return OrderedDict(
[
('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}),
] )
@property
def SCREAMING_SNAKE_CASE__ ( self ):
"""simple docstring"""
return 1E-4
@property
def SCREAMING_SNAKE_CASE__ ( self ):
"""simple docstring"""
return OrderedDict({'''last_hidden_state''': {0: '''batch''', 1: '''encoder_sequence'''}} )
class A ( __UpperCAmelCase ):
@property
def SCREAMING_SNAKE_CASE__ ( self ):
"""simple docstring"""
lowerCAmelCase_ = OrderedDict()
lowerCAmelCase_ = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''}
lowerCAmelCase_ = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''}
lowerCAmelCase_ = {0: '''batch''', 1: '''encoder_sequence'''}
return common_inputs
def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__ = -1, UpperCamelCase__ = -1, UpperCamelCase__ = False, UpperCamelCase__ = None, ):
"""simple docstring"""
import torch
lowerCAmelCase_ = OrderedDict()
lowerCAmelCase_ = super().generate_dummy_inputs(
UpperCamelCase__, batch_size=UpperCamelCase__, seq_length=UpperCamelCase__, is_pair=UpperCamelCase__, framework=UpperCamelCase__ )
lowerCAmelCase_ , lowerCAmelCase_ = dummy_input['''input_ids'''].shape
lowerCAmelCase_ = (batch, encoder_sequence, self._config.encoder_hidden_size)
lowerCAmelCase_ = dummy_input.pop('''input_ids''' )
lowerCAmelCase_ = dummy_input.pop('''attention_mask''' )
lowerCAmelCase_ = torch.zeros(UpperCamelCase__ )
return common_inputs
class A ( __UpperCAmelCase ):
@property
def SCREAMING_SNAKE_CASE__ ( self ):
"""simple docstring"""
pass
def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__ ):
"""simple docstring"""
return VisionEncoderDecoderEncoderOnnxConfig(UpperCamelCase__ )
def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ = "default" ):
"""simple docstring"""
lowerCAmelCase_ = encoder_config.hidden_size
return VisionEncoderDecoderDecoderOnnxConfig(UpperCamelCase__, UpperCamelCase__ )
| 431
|
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
_A = {
'''configuration_falcon''': ['''FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FalconConfig'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_A = [
'''FALCON_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''FalconForCausalLM''',
'''FalconModel''',
'''FalconPreTrainedModel''',
'''FalconForSequenceClassification''',
'''FalconForTokenClassification''',
'''FalconForQuestionAnswering''',
]
if TYPE_CHECKING:
from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_falcon import (
FALCON_PRETRAINED_MODEL_ARCHIVE_LIST,
FalconForCausalLM,
FalconForQuestionAnswering,
FalconForSequenceClassification,
FalconForTokenClassification,
FalconModel,
FalconPreTrainedModel,
)
else:
import sys
_A = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 431
| 1
|
"""simple docstring"""
def _lowerCAmelCase ( __lowerCamelCase:list , __lowerCamelCase:list ):
'''simple docstring'''
_validate_point(__lowerCamelCase )
_validate_point(__lowerCamelCase )
if len(__lowerCamelCase ) != len(__lowerCamelCase ):
raise ValueError("Both points must be in the same n-dimensional space" )
return float(sum(abs(a - b ) for a, b in zip(__lowerCamelCase , __lowerCamelCase ) ) )
def _lowerCAmelCase ( __lowerCamelCase:list[float] ):
'''simple docstring'''
if point:
if isinstance(__lowerCamelCase , __lowerCamelCase ):
for item in point:
if not isinstance(__lowerCamelCase , (int, float) ):
__magic_name__ = (
"Expected a list of numbers as input, found "
f'''{type(__lowerCamelCase ).__name__}'''
)
raise TypeError(__lowerCamelCase )
else:
__magic_name__ = f'''Expected a list of numbers as input, found {type(__lowerCamelCase ).__name__}'''
raise TypeError(__lowerCamelCase )
else:
raise ValueError("Missing an input" )
def _lowerCAmelCase ( __lowerCamelCase:list , __lowerCamelCase:list ):
'''simple docstring'''
_validate_point(__lowerCamelCase )
_validate_point(__lowerCamelCase )
if len(__lowerCamelCase ) != len(__lowerCamelCase ):
raise ValueError("Both points must be in the same n-dimensional space" )
return float(sum(abs(x - y ) for x, y in zip(__lowerCamelCase , __lowerCamelCase ) ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 702
|
"""simple docstring"""
from typing import List, Optional, Union
from ...image_utils import ImageInput
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class A_ ( snake_case_ ):
UpperCAmelCase__ = ['''image_processor''', '''tokenizer''']
UpperCAmelCase__ = '''BlipImageProcessor'''
UpperCAmelCase__ = '''AutoTokenizer'''
def __init__( self : Tuple , __lowerCamelCase : str , __lowerCamelCase : int ) -> str:
__magic_name__ = False
super().__init__(__lowerCamelCase , __lowerCamelCase )
__magic_name__ = self.image_processor
def __call__( self : List[Any] , __lowerCamelCase : ImageInput = None , __lowerCamelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , __lowerCamelCase : bool = True , __lowerCamelCase : Union[bool, str, PaddingStrategy] = False , __lowerCamelCase : Union[bool, str, TruncationStrategy] = None , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : int = 0 , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : Optional[bool] = None , __lowerCamelCase : bool = False , __lowerCamelCase : bool = False , __lowerCamelCase : bool = False , __lowerCamelCase : bool = False , __lowerCamelCase : bool = False , __lowerCamelCase : bool = True , __lowerCamelCase : Optional[Union[str, TensorType]] = None , **__lowerCamelCase : Optional[int] , ) -> BatchEncoding:
if images is None and text is None:
raise ValueError("You have to specify either images or text." )
# Get only text
if images is None:
__magic_name__ = self.tokenizer
__magic_name__ = self.tokenizer(
text=__lowerCamelCase , add_special_tokens=__lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=__lowerCamelCase , stride=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_attention_mask=__lowerCamelCase , return_overflowing_tokens=__lowerCamelCase , return_special_tokens_mask=__lowerCamelCase , return_offsets_mapping=__lowerCamelCase , return_token_type_ids=__lowerCamelCase , return_length=__lowerCamelCase , verbose=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase , )
return text_encoding
# add pixel_values
__magic_name__ = self.image_processor(__lowerCamelCase , return_tensors=__lowerCamelCase )
if text is not None:
__magic_name__ = self.tokenizer(
text=__lowerCamelCase , add_special_tokens=__lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=__lowerCamelCase , stride=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_attention_mask=__lowerCamelCase , return_overflowing_tokens=__lowerCamelCase , return_special_tokens_mask=__lowerCamelCase , return_offsets_mapping=__lowerCamelCase , return_token_type_ids=__lowerCamelCase , return_length=__lowerCamelCase , verbose=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase , )
else:
__magic_name__ = None
if text_encoding is not None:
encoding_image_processor.update(__lowerCamelCase )
return encoding_image_processor
def _snake_case ( self : Union[str, Any] , *__lowerCamelCase : Union[str, Any] , **__lowerCamelCase : Dict ) -> Dict:
return self.tokenizer.batch_decode(*__lowerCamelCase , **__lowerCamelCase )
def _snake_case ( self : str , *__lowerCamelCase : Optional[Any] , **__lowerCamelCase : Tuple ) -> Optional[Any]:
return self.tokenizer.decode(*__lowerCamelCase , **__lowerCamelCase )
@property
# Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names
def _snake_case ( self : List[str] ) -> Optional[Any]:
__magic_name__ = self.tokenizer.model_input_names
__magic_name__ = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
| 468
| 0
|
"""simple docstring"""
from __future__ import annotations
def _lowerCAmelCase ( UpperCamelCase_ = 4 ):
__SCREAMING_SNAKE_CASE = abs(UpperCamelCase_ ) or 4
return [[1 + x + y * row_size for x in range(UpperCamelCase_ )] for y in range(UpperCamelCase_ )]
def _lowerCAmelCase ( UpperCamelCase_ ):
return reverse_row(transpose(UpperCamelCase_ ) )
# OR.. transpose(reverse_column(matrix))
def _lowerCAmelCase ( UpperCamelCase_ ):
return reverse_row(reverse_column(UpperCamelCase_ ) )
# OR.. reverse_column(reverse_row(matrix))
def _lowerCAmelCase ( UpperCamelCase_ ):
return reverse_column(transpose(UpperCamelCase_ ) )
# OR.. transpose(reverse_row(matrix))
def _lowerCAmelCase ( UpperCamelCase_ ):
__SCREAMING_SNAKE_CASE = [list(UpperCamelCase_ ) for x in zip(*UpperCamelCase_ )]
return matrix
def _lowerCAmelCase ( UpperCamelCase_ ):
__SCREAMING_SNAKE_CASE = matrix[::-1]
return matrix
def _lowerCAmelCase ( UpperCamelCase_ ):
__SCREAMING_SNAKE_CASE = [x[::-1] for x in matrix]
return matrix
def _lowerCAmelCase ( UpperCamelCase_ ):
for i in matrix:
print(*UpperCamelCase_ )
if __name__ == "__main__":
__magic_name__ = make_matrix()
print("\norigin:\n")
print_matrix(matrix)
print("\nrotate 90 counterclockwise:\n")
print_matrix(rotate_aa(matrix))
__magic_name__ = make_matrix()
print("\norigin:\n")
print_matrix(matrix)
print("\nrotate 180:\n")
print_matrix(rotate_aaa(matrix))
__magic_name__ = make_matrix()
print("\norigin:\n")
print_matrix(matrix)
print("\nrotate 270 counterclockwise:\n")
print_matrix(rotate_aaa(matrix))
| 155
|
"""simple docstring"""
import os
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
import torch
from torch import nn
from ...models.controlnet import ControlNetModel, ControlNetOutput
from ...models.modeling_utils import ModelMixin
from ...utils import logging
__magic_name__ = logging.get_logger(__name__)
class SCREAMING_SNAKE_CASE_ ( __a ):
"""simple docstring"""
def __init__( self , lowerCAmelCase__):
super().__init__()
__SCREAMING_SNAKE_CASE = nn.ModuleList(lowerCAmelCase__)
def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = False , lowerCAmelCase__ = True , ):
for i, (image, scale, controlnet) in enumerate(zip(lowerCAmelCase__ , lowerCAmelCase__ , self.nets)):
__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = controlnet(
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , )
# merge samples
if i == 0:
__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = down_samples, mid_sample
else:
__SCREAMING_SNAKE_CASE = [
samples_prev + samples_curr
for samples_prev, samples_curr in zip(lowerCAmelCase__ , lowerCAmelCase__)
]
mid_block_res_sample += mid_sample
return down_block_res_samples, mid_block_res_sample
def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ = True , lowerCAmelCase__ = None , lowerCAmelCase__ = False , lowerCAmelCase__ = None , ):
__SCREAMING_SNAKE_CASE = 0
__SCREAMING_SNAKE_CASE = save_directory
for controlnet in self.nets:
controlnet.save_pretrained(
lowerCAmelCase__ , is_main_process=lowerCAmelCase__ , save_function=lowerCAmelCase__ , safe_serialization=lowerCAmelCase__ , variant=lowerCAmelCase__ , )
idx += 1
__SCREAMING_SNAKE_CASE = model_path_to_save + f"_{idx}"
@classmethod
def snake_case_ ( cls , lowerCAmelCase__ , **lowerCAmelCase__):
__SCREAMING_SNAKE_CASE = 0
__SCREAMING_SNAKE_CASE = []
# load controlnet and append to list until no controlnet directory exists anymore
# first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained`
# second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ...
__SCREAMING_SNAKE_CASE = pretrained_model_path
while os.path.isdir(lowerCAmelCase__):
__SCREAMING_SNAKE_CASE = ControlNetModel.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__)
controlnets.append(lowerCAmelCase__)
idx += 1
__SCREAMING_SNAKE_CASE = pretrained_model_path + f"_{idx}"
logger.info(f"{len(lowerCAmelCase__)} controlnets loaded from {pretrained_model_path}.")
if len(lowerCAmelCase__) == 0:
raise ValueError(
f"No ControlNets found under {os.path.dirname(lowerCAmelCase__)}. Expected at least {pretrained_model_path + '_0'}.")
return cls(lowerCAmelCase__)
| 155
| 1
|
'''simple docstring'''
from unittest.mock import Mock, patch
from file_transfer.send_file import send_file
@patch("socket.socket" )
@patch("builtins.open" )
def UpperCAmelCase_ ( lowercase__ , lowercase__ ):
'''simple docstring'''
a_ =Mock()
a_ =conn, Mock()
a_ =iter([1, None] )
a_ =lambda lowercase__ : next(lowercase__ )
# ===== invoke =====
send_file(filename="mytext.txt" , testing=lowercase__ )
# ===== ensurance =====
sock.assert_called_once()
sock.return_value.bind.assert_called_once()
sock.return_value.listen.assert_called_once()
sock.return_value.accept.assert_called_once()
conn.recv.assert_called_once()
file.return_value.__enter__.assert_called_once()
file.return_value.__enter__.return_value.read.assert_called()
conn.send.assert_called_once()
conn.close.assert_called_once()
sock.return_value.shutdown.assert_called_once()
sock.return_value.close.assert_called_once()
| 41
|
'''simple docstring'''
from .testing import (
are_the_same_tensors,
execute_subprocess_async,
require_bnb,
require_cpu,
require_cuda,
require_huggingface_suite,
require_mps,
require_multi_gpu,
require_multi_xpu,
require_safetensors,
require_single_gpu,
require_single_xpu,
require_torch_min_version,
require_tpu,
require_xpu,
skip,
slow,
)
from .training import RegressionDataset, RegressionModel, RegressionModelaXPU
from .scripts import test_script, test_sync, test_ops # isort: skip
| 41
| 1
|
"""simple docstring"""
import os
import time
import warnings
from dataclasses import dataclass, field
from enum import Enum
from typing import List, Optional, Union
import torch
from filelock import FileLock
from torch.utils.data import Dataset
from ...tokenization_utils_base import PreTrainedTokenizerBase
from ...utils import logging
from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors
from ..processors.utils import InputFeatures
lowerCAmelCase__ = logging.get_logger(__name__)
@dataclass
class _lowerCAmelCase :
SCREAMING_SNAKE_CASE_: str = field(metadata={'help': 'The name of the task to train on: ' + ', '.join(glue_processors.keys() )} )
SCREAMING_SNAKE_CASE_: str = field(
metadata={'help': 'The input data dir. Should contain the .tsv files (or other data files) for the task.'} )
SCREAMING_SNAKE_CASE_: int = field(
default=128 , metadata={
'help': (
'The maximum total input sequence length after tokenization. Sequences longer '
'than this will be truncated, sequences shorter will be padded.'
)
} , )
SCREAMING_SNAKE_CASE_: bool = field(
default=__UpperCAmelCase , metadata={'help': 'Overwrite the cached training and evaluation sets'} )
def A ( self ) -> Dict:
_SCREAMING_SNAKE_CASE : str = self.task_name.lower()
class _lowerCAmelCase ( __UpperCAmelCase ):
SCREAMING_SNAKE_CASE_: Union[str, Any] = 'train'
SCREAMING_SNAKE_CASE_: int = 'dev'
SCREAMING_SNAKE_CASE_: int = 'test'
class _lowerCAmelCase ( __UpperCAmelCase ):
SCREAMING_SNAKE_CASE_: GlueDataTrainingArguments
SCREAMING_SNAKE_CASE_: str
SCREAMING_SNAKE_CASE_: List[InputFeatures]
def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = Split.train , lowerCAmelCase_ = None , ) -> Tuple:
warnings.warn(
'This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets '
'library. You can have a look at this example script for pointers: '
'https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py' , lowerCAmelCase_ , )
_SCREAMING_SNAKE_CASE : int = args
_SCREAMING_SNAKE_CASE : int = glue_processors[args.task_name]()
_SCREAMING_SNAKE_CASE : Optional[Any] = glue_output_modes[args.task_name]
if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ):
try:
_SCREAMING_SNAKE_CASE : Dict = Split[mode]
except KeyError:
raise KeyError('mode is not a valid split name' )
# Load data features from cache or dataset file
_SCREAMING_SNAKE_CASE : Tuple = os.path.join(
cache_dir if cache_dir is not None else args.data_dir , F"""cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}""" , )
_SCREAMING_SNAKE_CASE : int = self.processor.get_labels()
if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in (
"RobertaTokenizer",
"RobertaTokenizerFast",
"XLMRobertaTokenizer",
"BartTokenizer",
"BartTokenizerFast",
):
# HACK(label indices are swapped in RoBERTa pretrained model)
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Optional[Any] = label_list[2], label_list[1]
_SCREAMING_SNAKE_CASE : List[Any] = label_list
# Make sure only the first process in distributed training processes the dataset,
# and the others will use the cache.
_SCREAMING_SNAKE_CASE : Optional[Any] = cached_features_file + '.lock'
with FileLock(lowerCAmelCase_ ):
if os.path.exists(lowerCAmelCase_ ) and not args.overwrite_cache:
_SCREAMING_SNAKE_CASE : str = time.time()
_SCREAMING_SNAKE_CASE : Any = torch.load(lowerCAmelCase_ )
logger.info(
F"""Loading features from cached file {cached_features_file} [took %.3f s]""" , time.time() - start )
else:
logger.info(F"""Creating features from dataset file at {args.data_dir}""" )
if mode == Split.dev:
_SCREAMING_SNAKE_CASE : Tuple = self.processor.get_dev_examples(args.data_dir )
elif mode == Split.test:
_SCREAMING_SNAKE_CASE : int = self.processor.get_test_examples(args.data_dir )
else:
_SCREAMING_SNAKE_CASE : Any = self.processor.get_train_examples(args.data_dir )
if limit_length is not None:
_SCREAMING_SNAKE_CASE : List[str] = examples[:limit_length]
_SCREAMING_SNAKE_CASE : Optional[Any] = glue_convert_examples_to_features(
lowerCAmelCase_ , lowerCAmelCase_ , max_length=args.max_seq_length , label_list=lowerCAmelCase_ , output_mode=self.output_mode , )
_SCREAMING_SNAKE_CASE : List[str] = time.time()
torch.save(self.features , lowerCAmelCase_ )
# ^ This seems to take a lot of time so I want to investigate why and how we can improve.
logger.info(
F"""Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]""" )
def __len__( self ) -> List[Any]:
return len(self.features )
def __getitem__( self , lowerCAmelCase_ ) -> InputFeatures:
return self.features[i]
def A ( self ) -> str:
return self.label_list
| 621
|
"""simple docstring"""
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import DetrConfig, DetrForObjectDetection, DetrForSegmentation, DetrImageProcessor, ResNetConfig
from transformers.utils import logging
logging.set_verbosity_info()
lowerCAmelCase__ = logging.get_logger(__name__)
def lowercase__ ( lowerCamelCase ):
# initialize config
if "resnet-50" in model_name:
_SCREAMING_SNAKE_CASE : Optional[int] = ResNetConfig.from_pretrained('microsoft/resnet-50' )
elif "resnet-101" in model_name:
_SCREAMING_SNAKE_CASE : Optional[Any] = ResNetConfig.from_pretrained('microsoft/resnet-101' )
else:
raise ValueError('Model name should include either resnet50 or resnet101' )
_SCREAMING_SNAKE_CASE : Optional[Any] = DetrConfig(use_timm_backbone=lowerCamelCase, backbone_config=lowerCamelCase )
# set label attributes
_SCREAMING_SNAKE_CASE : Optional[int] = 'panoptic' in model_name
if is_panoptic:
_SCREAMING_SNAKE_CASE : List[str] = 250
else:
_SCREAMING_SNAKE_CASE : Optional[Any] = 91
_SCREAMING_SNAKE_CASE : Union[str, Any] = 'huggingface/label-files'
_SCREAMING_SNAKE_CASE : Dict = 'coco-detection-id2label.json'
_SCREAMING_SNAKE_CASE : List[str] = json.load(open(hf_hub_download(lowerCamelCase, lowerCamelCase, repo_type='dataset' ), 'r' ) )
_SCREAMING_SNAKE_CASE : Dict = {int(lowerCamelCase ): v for k, v in idalabel.items()}
_SCREAMING_SNAKE_CASE : List[Any] = idalabel
_SCREAMING_SNAKE_CASE : Tuple = {v: k for k, v in idalabel.items()}
return config, is_panoptic
def lowercase__ ( lowerCamelCase ):
# here we list all keys to be renamed (original name on the left, our name on the right)
_SCREAMING_SNAKE_CASE : Optional[int] = []
# stem
# fmt: off
rename_keys.append(('backbone.0.body.conv1.weight', 'backbone.conv_encoder.model.embedder.embedder.convolution.weight') )
rename_keys.append(('backbone.0.body.bn1.weight', 'backbone.conv_encoder.model.embedder.embedder.normalization.weight') )
rename_keys.append(('backbone.0.body.bn1.bias', 'backbone.conv_encoder.model.embedder.embedder.normalization.bias') )
rename_keys.append(('backbone.0.body.bn1.running_mean', 'backbone.conv_encoder.model.embedder.embedder.normalization.running_mean') )
rename_keys.append(('backbone.0.body.bn1.running_var', 'backbone.conv_encoder.model.embedder.embedder.normalization.running_var') )
# stages
for stage_idx in range(len(config.backbone_config.depths ) ):
for layer_idx in range(config.backbone_config.depths[stage_idx] ):
# shortcut
if layer_idx == 0:
rename_keys.append(
(
f"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.0.weight""",
f"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.convolution.weight""",
) )
rename_keys.append(
(
f"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.weight""",
f"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.weight""",
) )
rename_keys.append(
(
f"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.bias""",
f"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.bias""",
) )
rename_keys.append(
(
f"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_mean""",
f"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_mean""",
) )
rename_keys.append(
(
f"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_var""",
f"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_var""",
) )
# 3 convs
for i in range(3 ):
rename_keys.append(
(
f"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.conv{i+1}.weight""",
f"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.convolution.weight""",
) )
rename_keys.append(
(
f"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.weight""",
f"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.weight""",
) )
rename_keys.append(
(
f"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.bias""",
f"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.bias""",
) )
rename_keys.append(
(
f"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_mean""",
f"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_mean""",
) )
rename_keys.append(
(
f"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_var""",
f"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_var""",
) )
# fmt: on
for i in range(config.encoder_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append(
(
f"""transformer.encoder.layers.{i}.self_attn.out_proj.weight""",
f"""encoder.layers.{i}.self_attn.out_proj.weight""",
) )
rename_keys.append(
(f"""transformer.encoder.layers.{i}.self_attn.out_proj.bias""", f"""encoder.layers.{i}.self_attn.out_proj.bias""") )
rename_keys.append((f"""transformer.encoder.layers.{i}.linear1.weight""", f"""encoder.layers.{i}.fc1.weight""") )
rename_keys.append((f"""transformer.encoder.layers.{i}.linear1.bias""", f"""encoder.layers.{i}.fc1.bias""") )
rename_keys.append((f"""transformer.encoder.layers.{i}.linear2.weight""", f"""encoder.layers.{i}.fc2.weight""") )
rename_keys.append((f"""transformer.encoder.layers.{i}.linear2.bias""", f"""encoder.layers.{i}.fc2.bias""") )
rename_keys.append(
(f"""transformer.encoder.layers.{i}.norm1.weight""", f"""encoder.layers.{i}.self_attn_layer_norm.weight""") )
rename_keys.append(
(f"""transformer.encoder.layers.{i}.norm1.bias""", f"""encoder.layers.{i}.self_attn_layer_norm.bias""") )
rename_keys.append(
(f"""transformer.encoder.layers.{i}.norm2.weight""", f"""encoder.layers.{i}.final_layer_norm.weight""") )
rename_keys.append((f"""transformer.encoder.layers.{i}.norm2.bias""", f"""encoder.layers.{i}.final_layer_norm.bias""") )
# decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms
rename_keys.append(
(
f"""transformer.decoder.layers.{i}.self_attn.out_proj.weight""",
f"""decoder.layers.{i}.self_attn.out_proj.weight""",
) )
rename_keys.append(
(f"""transformer.decoder.layers.{i}.self_attn.out_proj.bias""", f"""decoder.layers.{i}.self_attn.out_proj.bias""") )
rename_keys.append(
(
f"""transformer.decoder.layers.{i}.multihead_attn.out_proj.weight""",
f"""decoder.layers.{i}.encoder_attn.out_proj.weight""",
) )
rename_keys.append(
(
f"""transformer.decoder.layers.{i}.multihead_attn.out_proj.bias""",
f"""decoder.layers.{i}.encoder_attn.out_proj.bias""",
) )
rename_keys.append((f"""transformer.decoder.layers.{i}.linear1.weight""", f"""decoder.layers.{i}.fc1.weight""") )
rename_keys.append((f"""transformer.decoder.layers.{i}.linear1.bias""", f"""decoder.layers.{i}.fc1.bias""") )
rename_keys.append((f"""transformer.decoder.layers.{i}.linear2.weight""", f"""decoder.layers.{i}.fc2.weight""") )
rename_keys.append((f"""transformer.decoder.layers.{i}.linear2.bias""", f"""decoder.layers.{i}.fc2.bias""") )
rename_keys.append(
(f"""transformer.decoder.layers.{i}.norm1.weight""", f"""decoder.layers.{i}.self_attn_layer_norm.weight""") )
rename_keys.append(
(f"""transformer.decoder.layers.{i}.norm1.bias""", f"""decoder.layers.{i}.self_attn_layer_norm.bias""") )
rename_keys.append(
(f"""transformer.decoder.layers.{i}.norm2.weight""", f"""decoder.layers.{i}.encoder_attn_layer_norm.weight""") )
rename_keys.append(
(f"""transformer.decoder.layers.{i}.norm2.bias""", f"""decoder.layers.{i}.encoder_attn_layer_norm.bias""") )
rename_keys.append(
(f"""transformer.decoder.layers.{i}.norm3.weight""", f"""decoder.layers.{i}.final_layer_norm.weight""") )
rename_keys.append((f"""transformer.decoder.layers.{i}.norm3.bias""", f"""decoder.layers.{i}.final_layer_norm.bias""") )
# convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads
rename_keys.extend(
[
('input_proj.weight', 'input_projection.weight'),
('input_proj.bias', 'input_projection.bias'),
('query_embed.weight', 'query_position_embeddings.weight'),
('transformer.decoder.norm.weight', 'decoder.layernorm.weight'),
('transformer.decoder.norm.bias', 'decoder.layernorm.bias'),
('class_embed.weight', 'class_labels_classifier.weight'),
('class_embed.bias', 'class_labels_classifier.bias'),
('bbox_embed.layers.0.weight', 'bbox_predictor.layers.0.weight'),
('bbox_embed.layers.0.bias', 'bbox_predictor.layers.0.bias'),
('bbox_embed.layers.1.weight', 'bbox_predictor.layers.1.weight'),
('bbox_embed.layers.1.bias', 'bbox_predictor.layers.1.bias'),
('bbox_embed.layers.2.weight', 'bbox_predictor.layers.2.weight'),
('bbox_embed.layers.2.bias', 'bbox_predictor.layers.2.bias'),
] )
return rename_keys
def lowercase__ ( lowerCamelCase, lowerCamelCase, lowerCamelCase ):
_SCREAMING_SNAKE_CASE : Dict = state_dict.pop(lowerCamelCase )
_SCREAMING_SNAKE_CASE : Optional[int] = val
def lowercase__ ( lowerCamelCase, lowerCamelCase=False ):
_SCREAMING_SNAKE_CASE : Optional[int] = ''
if is_panoptic:
_SCREAMING_SNAKE_CASE : List[Any] = 'detr.'
# first: transformer encoder
for i in range(6 ):
# read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias)
_SCREAMING_SNAKE_CASE : Optional[Any] = state_dict.pop(f"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight""" )
_SCREAMING_SNAKE_CASE : Dict = state_dict.pop(f"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias""" )
# next, add query, keys and values (in that order) to the state dict
_SCREAMING_SNAKE_CASE : Any = in_proj_weight[:256, :]
_SCREAMING_SNAKE_CASE : Optional[Any] = in_proj_bias[:256]
_SCREAMING_SNAKE_CASE : Tuple = in_proj_weight[256:512, :]
_SCREAMING_SNAKE_CASE : Tuple = in_proj_bias[256:512]
_SCREAMING_SNAKE_CASE : Optional[int] = in_proj_weight[-256:, :]
_SCREAMING_SNAKE_CASE : Optional[int] = in_proj_bias[-256:]
# next: transformer decoder (which is a bit more complex because it also includes cross-attention)
for i in range(6 ):
# read in weights + bias of input projection layer of self-attention
_SCREAMING_SNAKE_CASE : Optional[Any] = state_dict.pop(f"""{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight""" )
_SCREAMING_SNAKE_CASE : int = state_dict.pop(f"""{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias""" )
# next, add query, keys and values (in that order) to the state dict
_SCREAMING_SNAKE_CASE : Tuple = in_proj_weight[:256, :]
_SCREAMING_SNAKE_CASE : str = in_proj_bias[:256]
_SCREAMING_SNAKE_CASE : str = in_proj_weight[256:512, :]
_SCREAMING_SNAKE_CASE : int = in_proj_bias[256:512]
_SCREAMING_SNAKE_CASE : List[Any] = in_proj_weight[-256:, :]
_SCREAMING_SNAKE_CASE : List[str] = in_proj_bias[-256:]
# read in weights + bias of input projection layer of cross-attention
_SCREAMING_SNAKE_CASE : str = state_dict.pop(
f"""{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight""" )
_SCREAMING_SNAKE_CASE : List[Any] = state_dict.pop(f"""{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias""" )
# next, add query, keys and values (in that order) of cross-attention to the state dict
_SCREAMING_SNAKE_CASE : Union[str, Any] = in_proj_weight_cross_attn[:256, :]
_SCREAMING_SNAKE_CASE : Optional[int] = in_proj_bias_cross_attn[:256]
_SCREAMING_SNAKE_CASE : Union[str, Any] = in_proj_weight_cross_attn[256:512, :]
_SCREAMING_SNAKE_CASE : Optional[Any] = in_proj_bias_cross_attn[256:512]
_SCREAMING_SNAKE_CASE : int = in_proj_weight_cross_attn[-256:, :]
_SCREAMING_SNAKE_CASE : Optional[Any] = in_proj_bias_cross_attn[-256:]
def lowercase__ ( ):
_SCREAMING_SNAKE_CASE : List[Any] = 'http://images.cocodataset.org/val2017/000000039769.jpg'
_SCREAMING_SNAKE_CASE : Dict = Image.open(requests.get(lowerCamelCase, stream=lowerCamelCase ).raw )
return im
@torch.no_grad()
def lowercase__ ( lowerCamelCase, lowerCamelCase=None, lowerCamelCase=False ):
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : str = get_detr_config(lowerCamelCase )
# load original model from torch hub
_SCREAMING_SNAKE_CASE : Optional[Any] = {
'detr-resnet-50': 'detr_resnet50',
'detr-resnet-101': 'detr_resnet101',
}
logger.info(f"""Converting model {model_name}...""" )
_SCREAMING_SNAKE_CASE : int = torch.hub.load('facebookresearch/detr', model_name_to_original_name[model_name], pretrained=lowerCamelCase ).eval()
_SCREAMING_SNAKE_CASE : Optional[Any] = detr.state_dict()
# rename keys
for src, dest in create_rename_keys(lowerCamelCase ):
if is_panoptic:
_SCREAMING_SNAKE_CASE : int = 'detr.' + src
rename_key(lowerCamelCase, lowerCamelCase, lowerCamelCase )
# query, key and value matrices need special treatment
read_in_q_k_v(lowerCamelCase, is_panoptic=lowerCamelCase )
# important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them
_SCREAMING_SNAKE_CASE : str = 'detr.model.' if is_panoptic else 'model.'
for key in state_dict.copy().keys():
if is_panoptic:
if (
key.startswith('detr' )
and not key.startswith('class_labels_classifier' )
and not key.startswith('bbox_predictor' )
):
_SCREAMING_SNAKE_CASE : Optional[int] = state_dict.pop(lowerCamelCase )
_SCREAMING_SNAKE_CASE : int = val
elif "class_labels_classifier" in key or "bbox_predictor" in key:
_SCREAMING_SNAKE_CASE : Tuple = state_dict.pop(lowerCamelCase )
_SCREAMING_SNAKE_CASE : Dict = val
elif key.startswith('bbox_attention' ) or key.startswith('mask_head' ):
continue
else:
_SCREAMING_SNAKE_CASE : Optional[int] = state_dict.pop(lowerCamelCase )
_SCREAMING_SNAKE_CASE : Union[str, Any] = val
else:
if not key.startswith('class_labels_classifier' ) and not key.startswith('bbox_predictor' ):
_SCREAMING_SNAKE_CASE : List[str] = state_dict.pop(lowerCamelCase )
_SCREAMING_SNAKE_CASE : int = val
# finally, create HuggingFace model and load state dict
_SCREAMING_SNAKE_CASE : Dict = DetrForSegmentation(lowerCamelCase ) if is_panoptic else DetrForObjectDetection(lowerCamelCase )
model.load_state_dict(lowerCamelCase )
model.eval()
# verify our conversion on an image
_SCREAMING_SNAKE_CASE : Optional[Any] = 'coco_panoptic' if is_panoptic else 'coco_detection'
_SCREAMING_SNAKE_CASE : int = DetrImageProcessor(format=lowerCamelCase )
_SCREAMING_SNAKE_CASE : Any = processor(images=prepare_img(), return_tensors='pt' )
_SCREAMING_SNAKE_CASE : Tuple = encoding['pixel_values']
_SCREAMING_SNAKE_CASE : List[str] = detr(lowerCamelCase )
_SCREAMING_SNAKE_CASE : int = model(lowerCamelCase )
assert torch.allclose(outputs.logits, original_outputs['pred_logits'], atol=1E-3 )
assert torch.allclose(outputs.pred_boxes, original_outputs['pred_boxes'], atol=1E-3 )
if is_panoptic:
assert torch.allclose(outputs.pred_masks, original_outputs['pred_masks'], atol=1E-4 )
print('Looks ok!' )
if pytorch_dump_folder_path is not None:
# Save model and image processor
logger.info(f"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" )
Path(lowerCamelCase ).mkdir(exist_ok=lowerCamelCase )
model.save_pretrained(lowerCamelCase )
processor.save_pretrained(lowerCamelCase )
if push_to_hub:
# Upload model and image processor to the hub
logger.info('Uploading PyTorch model and image processor to the hub...' )
model.push_to_hub(f"""nielsr/{model_name}""" )
processor.push_to_hub(f"""nielsr/{model_name}""" )
if __name__ == "__main__":
lowerCAmelCase__ = argparse.ArgumentParser()
parser.add_argument(
'--model_name',
default='detr-resnet-50',
type=str,
choices=['detr-resnet-50', 'detr-resnet-101'],
help='Name of the DETR model you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.'
)
parser.add_argument('--push_to_hub', action='store_true', help='Whether to push the model to the hub or not.')
lowerCAmelCase__ = parser.parse_args()
convert_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 621
| 1
|
import unittest
from transformers import (
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
Pipeline,
ZeroShotClassificationPipeline,
pipeline,
)
from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow
from .test_pipelines_common import ANY
# These 2 model types require different inputs than those of the usual text models.
__A : Optional[int] = {"LayoutLMv2Config", "LayoutLMv3Config"}
@is_pipeline_test
class lowercase_ ( unittest.TestCase ):
__UpperCamelCase = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
__UpperCamelCase = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
if model_mapping is not None:
__UpperCamelCase = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP}
if tf_model_mapping is not None:
__UpperCamelCase = {
config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP
}
def _lowercase ( self: List[str], _lowercase: Union[str, Any], _lowercase: Union[str, Any], _lowercase: Tuple):
'''simple docstring'''
__lowerCAmelCase = ZeroShotClassificationPipeline(
model=_lowercase, tokenizer=_lowercase, candidate_labels=["""polics""", """health"""])
return classifier, ["Who are you voting for in 2020?", "My stomach hurts."]
def _lowercase ( self: List[str], _lowercase: Union[str, Any], _lowercase: Optional[int]):
'''simple docstring'''
__lowerCAmelCase = classifier("""Who are you voting for in 2020?""", candidate_labels="""politics""")
self.assertEqual(_lowercase, {"""sequence""": ANY(_lowercase), """labels""": [ANY(_lowercase)], """scores""": [ANY(_lowercase)]})
# No kwarg
__lowerCAmelCase = classifier("""Who are you voting for in 2020?""", ["""politics"""])
self.assertEqual(_lowercase, {"""sequence""": ANY(_lowercase), """labels""": [ANY(_lowercase)], """scores""": [ANY(_lowercase)]})
__lowerCAmelCase = classifier("""Who are you voting for in 2020?""", candidate_labels=["""politics"""])
self.assertEqual(_lowercase, {"""sequence""": ANY(_lowercase), """labels""": [ANY(_lowercase)], """scores""": [ANY(_lowercase)]})
__lowerCAmelCase = classifier("""Who are you voting for in 2020?""", candidate_labels="""politics, public health""")
self.assertEqual(
_lowercase, {"""sequence""": ANY(_lowercase), """labels""": [ANY(_lowercase), ANY(_lowercase)], """scores""": [ANY(_lowercase), ANY(_lowercase)]})
self.assertAlmostEqual(sum(nested_simplify(outputs["""scores"""])), 1.0)
__lowerCAmelCase = classifier("""Who are you voting for in 2020?""", candidate_labels=["""politics""", """public health"""])
self.assertEqual(
_lowercase, {"""sequence""": ANY(_lowercase), """labels""": [ANY(_lowercase), ANY(_lowercase)], """scores""": [ANY(_lowercase), ANY(_lowercase)]})
self.assertAlmostEqual(sum(nested_simplify(outputs["""scores"""])), 1.0)
__lowerCAmelCase = classifier(
"""Who are you voting for in 2020?""", candidate_labels="""politics""", hypothesis_template="""This text is about {}""")
self.assertEqual(_lowercase, {"""sequence""": ANY(_lowercase), """labels""": [ANY(_lowercase)], """scores""": [ANY(_lowercase)]})
# https://github.com/huggingface/transformers/issues/13846
__lowerCAmelCase = classifier(["""I am happy"""], ["""positive""", """negative"""])
self.assertEqual(
_lowercase, [
{"""sequence""": ANY(_lowercase), """labels""": [ANY(_lowercase), ANY(_lowercase)], """scores""": [ANY(_lowercase), ANY(_lowercase)]}
for i in range(1)
], )
__lowerCAmelCase = classifier(["""I am happy""", """I am sad"""], ["""positive""", """negative"""])
self.assertEqual(
_lowercase, [
{"""sequence""": ANY(_lowercase), """labels""": [ANY(_lowercase), ANY(_lowercase)], """scores""": [ANY(_lowercase), ANY(_lowercase)]}
for i in range(2)
], )
with self.assertRaises(_lowercase):
classifier("""""", candidate_labels="""politics""")
with self.assertRaises(_lowercase):
classifier(_lowercase, candidate_labels="""politics""")
with self.assertRaises(_lowercase):
classifier("""Who are you voting for in 2020?""", candidate_labels="""""")
with self.assertRaises(_lowercase):
classifier("""Who are you voting for in 2020?""", candidate_labels=_lowercase)
with self.assertRaises(_lowercase):
classifier(
"""Who are you voting for in 2020?""", candidate_labels="""politics""", hypothesis_template="""Not formatting template""", )
with self.assertRaises(_lowercase):
classifier(
"""Who are you voting for in 2020?""", candidate_labels="""politics""", hypothesis_template=_lowercase, )
self.run_entailment_id(_lowercase)
def _lowercase ( self: Tuple, _lowercase: Pipeline):
'''simple docstring'''
__lowerCAmelCase = zero_shot_classifier.model.config
__lowerCAmelCase = config.labelaid
__lowerCAmelCase = zero_shot_classifier.entailment_id
__lowerCAmelCase = {"""LABEL_0""": 0, """LABEL_1""": 1, """LABEL_2""": 2}
self.assertEqual(zero_shot_classifier.entailment_id, -1)
__lowerCAmelCase = {"""entailment""": 0, """neutral""": 1, """contradiction""": 2}
self.assertEqual(zero_shot_classifier.entailment_id, 0)
__lowerCAmelCase = {"""ENTAIL""": 0, """NON-ENTAIL""": 1}
self.assertEqual(zero_shot_classifier.entailment_id, 0)
__lowerCAmelCase = {"""ENTAIL""": 2, """NEUTRAL""": 1, """CONTR""": 0}
self.assertEqual(zero_shot_classifier.entailment_id, 2)
__lowerCAmelCase = original_labelaid
self.assertEqual(_lowercase, zero_shot_classifier.entailment_id)
@require_torch
def _lowercase ( self: List[Any]):
'''simple docstring'''
__lowerCAmelCase = pipeline(
"""zero-shot-classification""", model="""sshleifer/tiny-distilbert-base-cased-distilled-squad""", framework="""pt""", )
# There was a regression in 4.10 for this
# Adding a test so we don't make the mistake again.
# https://github.com/huggingface/transformers/issues/13381#issuecomment-912343499
zero_shot_classifier(
"""Who are you voting for in 2020?""" * 100, candidate_labels=["""politics""", """public health""", """science"""])
@require_torch
def _lowercase ( self: str):
'''simple docstring'''
__lowerCAmelCase = pipeline(
"""zero-shot-classification""", model="""sshleifer/tiny-distilbert-base-cased-distilled-squad""", framework="""pt""", )
__lowerCAmelCase = zero_shot_classifier(
"""Who are you voting for in 2020?""", candidate_labels=["""politics""", """public health""", """science"""])
self.assertEqual(
nested_simplify(_lowercase), {
"""sequence""": """Who are you voting for in 2020?""",
"""labels""": ["""science""", """public health""", """politics"""],
"""scores""": [0.333, 0.333, 0.333],
}, )
@require_tf
def _lowercase ( self: Union[str, Any]):
'''simple docstring'''
__lowerCAmelCase = pipeline(
"""zero-shot-classification""", model="""sshleifer/tiny-distilbert-base-cased-distilled-squad""", framework="""tf""", )
__lowerCAmelCase = zero_shot_classifier(
"""Who are you voting for in 2020?""", candidate_labels=["""politics""", """public health""", """science"""])
self.assertEqual(
nested_simplify(_lowercase), {
"""sequence""": """Who are you voting for in 2020?""",
"""labels""": ["""science""", """public health""", """politics"""],
"""scores""": [0.333, 0.333, 0.333],
}, )
@slow
@require_torch
def _lowercase ( self: Optional[int]):
'''simple docstring'''
__lowerCAmelCase = pipeline("""zero-shot-classification""", model="""roberta-large-mnli""", framework="""pt""")
__lowerCAmelCase = zero_shot_classifier(
"""Who are you voting for in 2020?""", candidate_labels=["""politics""", """public health""", """science"""])
self.assertEqual(
nested_simplify(_lowercase), {
"""sequence""": """Who are you voting for in 2020?""",
"""labels""": ["""politics""", """public health""", """science"""],
"""scores""": [0.976, 0.015, 0.009],
}, )
__lowerCAmelCase = zero_shot_classifier(
"""The dominant sequence transduction models are based on complex recurrent or convolutional neural networks"""
""" in an encoder-decoder configuration. The best performing models also connect the encoder and decoder"""
""" through an attention mechanism. We propose a new simple network architecture, the Transformer, based"""
""" solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two"""
""" machine translation tasks show these models to be superior in quality while being more parallelizable"""
""" and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014"""
""" English-to-German translation task, improving over the existing best results, including ensembles by"""
""" over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new"""
""" single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small"""
""" fraction of the training costs of the best models from the literature. We show that the Transformer"""
""" generalizes well to other tasks by applying it successfully to English constituency parsing both with"""
""" large and limited training data.""", candidate_labels=["""machine learning""", """statistics""", """translation""", """vision"""], multi_label=_lowercase, )
self.assertEqual(
nested_simplify(_lowercase), {
"""sequence""": (
"""The dominant sequence transduction models are based on complex recurrent or convolutional neural"""
""" networks in an encoder-decoder configuration. The best performing models also connect the"""
""" encoder and decoder through an attention mechanism. We propose a new simple network"""
""" architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence"""
""" and convolutions entirely. Experiments on two machine translation tasks show these models to be"""
""" superior in quality while being more parallelizable and requiring significantly less time to"""
""" train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,"""
""" improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014"""
""" English-to-French translation task, our model establishes a new single-model state-of-the-art"""
""" BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training"""
""" costs of the best models from the literature. We show that the Transformer generalizes well to"""
""" other tasks by applying it successfully to English constituency parsing both with large and"""
""" limited training data."""
),
"""labels""": ["""translation""", """machine learning""", """vision""", """statistics"""],
"""scores""": [0.817, 0.713, 0.018, 0.018],
}, )
@slow
@require_tf
def _lowercase ( self: List[str]):
'''simple docstring'''
__lowerCAmelCase = pipeline("""zero-shot-classification""", model="""roberta-large-mnli""", framework="""tf""")
__lowerCAmelCase = zero_shot_classifier(
"""Who are you voting for in 2020?""", candidate_labels=["""politics""", """public health""", """science"""])
self.assertEqual(
nested_simplify(_lowercase), {
"""sequence""": """Who are you voting for in 2020?""",
"""labels""": ["""politics""", """public health""", """science"""],
"""scores""": [0.976, 0.015, 0.009],
}, )
__lowerCAmelCase = zero_shot_classifier(
"""The dominant sequence transduction models are based on complex recurrent or convolutional neural networks"""
""" in an encoder-decoder configuration. The best performing models also connect the encoder and decoder"""
""" through an attention mechanism. We propose a new simple network architecture, the Transformer, based"""
""" solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two"""
""" machine translation tasks show these models to be superior in quality while being more parallelizable"""
""" and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014"""
""" English-to-German translation task, improving over the existing best results, including ensembles by"""
""" over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new"""
""" single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small"""
""" fraction of the training costs of the best models from the literature. We show that the Transformer"""
""" generalizes well to other tasks by applying it successfully to English constituency parsing both with"""
""" large and limited training data.""", candidate_labels=["""machine learning""", """statistics""", """translation""", """vision"""], multi_label=_lowercase, )
self.assertEqual(
nested_simplify(_lowercase), {
"""sequence""": (
"""The dominant sequence transduction models are based on complex recurrent or convolutional neural"""
""" networks in an encoder-decoder configuration. The best performing models also connect the"""
""" encoder and decoder through an attention mechanism. We propose a new simple network"""
""" architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence"""
""" and convolutions entirely. Experiments on two machine translation tasks show these models to be"""
""" superior in quality while being more parallelizable and requiring significantly less time to"""
""" train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,"""
""" improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014"""
""" English-to-French translation task, our model establishes a new single-model state-of-the-art"""
""" BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training"""
""" costs of the best models from the literature. We show that the Transformer generalizes well to"""
""" other tasks by applying it successfully to English constituency parsing both with large and"""
""" limited training data."""
),
"""labels""": ["""translation""", """machine learning""", """vision""", """statistics"""],
"""scores""": [0.817, 0.713, 0.018, 0.018],
}, )
| 334
|
import argparse
import json
import os
import torch
from transformers.file_utils import has_file
from diffusers import UNetaDConditionModel, UNetaDModel
__A : Tuple = False
__A : Optional[int] = True
__A : Optional[Any] = False
if __name__ == "__main__":
__A : Any = argparse.ArgumentParser()
parser.add_argument(
"--repo_path",
default=None,
type=str,
required=True,
help="The config json file corresponding to the architecture.",
)
parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.")
__A : List[str] = parser.parse_args()
__A : List[Any] = {
"image_size": "sample_size",
"num_res_blocks": "layers_per_block",
"block_channels": "block_out_channels",
"down_blocks": "down_block_types",
"up_blocks": "up_block_types",
"downscale_freq_shift": "freq_shift",
"resnet_num_groups": "norm_num_groups",
"resnet_act_fn": "act_fn",
"resnet_eps": "norm_eps",
"num_head_channels": "attention_head_dim",
}
__A : Optional[int] = {
"time_steps": "time_proj",
"mid": "mid_block",
"downsample_blocks": "down_blocks",
"upsample_blocks": "up_blocks",
}
__A : List[str] = "" if has_file(args.repo_path, "config.json") else "unet"
with open(os.path.join(args.repo_path, subfolder, "config.json"), "r", encoding="utf-8") as reader:
__A : List[str] = reader.read()
__A : int = json.loads(text)
if do_only_config:
for key in config_parameters_to_change.keys():
config.pop(key, None)
if has_file(args.repo_path, "config.json"):
__A : List[str] = UNetaDModel(**config)
else:
__A : Dict = UNetaDConditionModel if "ldm-text2im-large-256" in args.repo_path else UNetaDModel
__A : Optional[int] = class_name(**config)
if do_only_config:
model.save_config(os.path.join(args.repo_path, subfolder))
__A : List[Any] = dict(model.config)
if do_only_renaming:
for key, value in config_parameters_to_change.items():
if key in config:
__A : Optional[Any] = config[key]
del config[key]
__A : Dict = [k.replace("UNetRes", "") for k in config["down_block_types"]]
__A : Tuple = [k.replace("UNetRes", "") for k in config["up_block_types"]]
if do_only_weights:
__A : Dict = torch.load(os.path.join(args.repo_path, subfolder, "diffusion_pytorch_model.bin"))
__A : Tuple = {}
for param_key, param_value in state_dict.items():
if param_key.endswith(".op.bias") or param_key.endswith(".op.weight"):
continue
__A : Dict = False
for key, new_key in key_parameters_to_change.items():
if not has_changed and param_key.split(".")[0] == key:
__A : List[Any] = param_value
__A : Optional[Any] = True
if not has_changed:
__A : List[Any] = param_value
model.load_state_dict(new_state_dict)
model.save_pretrained(os.path.join(args.repo_path, subfolder))
| 334
| 1
|
from __future__ import annotations
import time
from math import sqrt
# 1 for manhattan, 0 for euclidean
lowercase = 0
lowercase = [
[0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0],
[1, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0],
]
lowercase = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right
lowercase = tuple[int, int]
class __lowercase :
'''simple docstring'''
def __init__( self : Optional[int] , _a : int , _a : int , _a : int , _a : int , _a : int , _a : Node | None , ):
UpperCamelCase__ = pos_x
UpperCamelCase__ = pos_y
UpperCamelCase__ = (pos_y, pos_x)
UpperCamelCase__ = goal_x
UpperCamelCase__ = goal_y
UpperCamelCase__ = g_cost
UpperCamelCase__ = parent
UpperCamelCase__ = self.calculate_heuristic()
UpperCamelCase__ = self.g_cost + self.h_cost
def A_ ( self : List[Any] ):
UpperCamelCase__ = self.pos_x - self.goal_x
UpperCamelCase__ = self.pos_y - self.goal_y
if HEURISTIC == 1:
return abs(_a ) + abs(_a )
else:
return sqrt(dy**2 + dx**2 )
def __lt__( self : List[str] , _a : Node ):
return self.f_cost < other.f_cost
class __lowercase :
'''simple docstring'''
def __init__( self : List[Any] , _a : TPosition , _a : TPosition ):
UpperCamelCase__ = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , _a )
UpperCamelCase__ = Node(goal[1] , goal[0] , goal[1] , goal[0] , 99_999 , _a )
UpperCamelCase__ = [self.start]
UpperCamelCase__ = []
UpperCamelCase__ = False
def A_ ( self : Any ):
while self.open_nodes:
# Open Nodes are sorted using __lt__
self.open_nodes.sort()
UpperCamelCase__ = self.open_nodes.pop(0 )
if current_node.pos == self.target.pos:
return self.retrace_path(_a )
self.closed_nodes.append(_a )
UpperCamelCase__ = self.get_successors(_a )
for child_node in successors:
if child_node in self.closed_nodes:
continue
if child_node not in self.open_nodes:
self.open_nodes.append(_a )
else:
# retrieve the best current path
UpperCamelCase__ = self.open_nodes.pop(self.open_nodes.index(_a ) )
if child_node.g_cost < better_node.g_cost:
self.open_nodes.append(_a )
else:
self.open_nodes.append(_a )
return [self.start.pos]
def A_ ( self : Dict , _a : Node ):
UpperCamelCase__ = []
for action in delta:
UpperCamelCase__ = parent.pos_x + action[1]
UpperCamelCase__ = parent.pos_y + action[0]
if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(_a ) - 1):
continue
if grid[pos_y][pos_x] != 0:
continue
successors.append(
Node(
_a , _a , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , _a , ) )
return successors
def A_ ( self : List[str] , _a : Node | None ):
UpperCamelCase__ = node
UpperCamelCase__ = []
while current_node is not None:
path.append((current_node.pos_y, current_node.pos_x) )
UpperCamelCase__ = current_node.parent
path.reverse()
return path
class __lowercase :
'''simple docstring'''
def __init__( self : List[str] , _a : TPosition , _a : TPosition ):
UpperCamelCase__ = AStar(_a , _a )
UpperCamelCase__ = AStar(_a , _a )
UpperCamelCase__ = False
def A_ ( self : Tuple ):
while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes:
self.fwd_astar.open_nodes.sort()
self.bwd_astar.open_nodes.sort()
UpperCamelCase__ = self.fwd_astar.open_nodes.pop(0 )
UpperCamelCase__ = self.bwd_astar.open_nodes.pop(0 )
if current_bwd_node.pos == current_fwd_node.pos:
return self.retrace_bidirectional_path(
_a , _a )
self.fwd_astar.closed_nodes.append(_a )
self.bwd_astar.closed_nodes.append(_a )
UpperCamelCase__ = current_bwd_node
UpperCamelCase__ = current_fwd_node
UpperCamelCase__ = {
self.fwd_astar: self.fwd_astar.get_successors(_a ),
self.bwd_astar: self.bwd_astar.get_successors(_a ),
}
for astar in [self.fwd_astar, self.bwd_astar]:
for child_node in successors[astar]:
if child_node in astar.closed_nodes:
continue
if child_node not in astar.open_nodes:
astar.open_nodes.append(_a )
else:
# retrieve the best current path
UpperCamelCase__ = astar.open_nodes.pop(
astar.open_nodes.index(_a ) )
if child_node.g_cost < better_node.g_cost:
astar.open_nodes.append(_a )
else:
astar.open_nodes.append(_a )
return [self.fwd_astar.start.pos]
def A_ ( self : Any , _a : Node , _a : Node ):
UpperCamelCase__ = self.fwd_astar.retrace_path(_a )
UpperCamelCase__ = self.bwd_astar.retrace_path(_a )
bwd_path.pop()
bwd_path.reverse()
UpperCamelCase__ = fwd_path + bwd_path
return path
if __name__ == "__main__":
# all coordinates are given in format [y,x]
lowercase = (0, 0)
lowercase = (len(grid) - 1, len(grid[0]) - 1)
for elem in grid:
print(elem)
lowercase = time.time()
lowercase = AStar(init, goal)
lowercase = a_star.search()
lowercase = time.time() - start_time
print(f'AStar execution time = {end_time:f} seconds')
lowercase = time.time()
lowercase = BidirectionalAStar(init, goal)
lowercase = time.time() - bd_start_time
print(f'BidirectionalAStar execution time = {bd_end_time:f} seconds')
| 240
|
import argparse
import re
from typing import Dict
import torch
from datasets import Audio, Dataset, load_dataset, load_metric
from transformers import AutoFeatureExtractor, pipeline
def lowerCamelCase_ ( UpperCamelCase__ : Dataset, UpperCamelCase__ : Dict[str, str] ):
'''simple docstring'''
UpperCamelCase__ = args.log_outputs
UpperCamelCase__ = '''_'''.join(args.dataset.split('''/''' ) + [args.config, args.split] )
# load metric
UpperCamelCase__ = load_metric('''wer''' )
UpperCamelCase__ = load_metric('''cer''' )
# compute metrics
UpperCamelCase__ = wer.compute(references=result['''target'''], predictions=result['''prediction'''] )
UpperCamelCase__ = cer.compute(references=result['''target'''], predictions=result['''prediction'''] )
# print & log results
UpperCamelCase__ = F"""WER: {wer_result}\nCER: {cer_result}"""
print(UpperCamelCase__ )
with open(F"""{dataset_id}_eval_results.txt""", '''w''' ) as f:
f.write(UpperCamelCase__ )
# log all results in text file. Possibly interesting for analysis
if log_outputs is not None:
UpperCamelCase__ = F"""log_{dataset_id}_predictions.txt"""
UpperCamelCase__ = F"""log_{dataset_id}_targets.txt"""
with open(UpperCamelCase__, '''w''' ) as p, open(UpperCamelCase__, '''w''' ) as t:
# mapping function to write output
def write_to_file(UpperCamelCase__ : Optional[Any], UpperCamelCase__ : Tuple ):
p.write(F"""{i}""" + '''\n''' )
p.write(batch['''prediction'''] + '''\n''' )
t.write(F"""{i}""" + '''\n''' )
t.write(batch['''target'''] + '''\n''' )
result.map(UpperCamelCase__, with_indices=UpperCamelCase__ )
def lowerCamelCase_ ( UpperCamelCase__ : str ):
'''simple docstring'''
UpperCamelCase__ = '''[,?.!\-\;\:"“%‘”�—’…–]''' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training
UpperCamelCase__ = re.sub(UpperCamelCase__, '''''', text.lower() )
# In addition, we can normalize the target text, e.g. removing new lines characters etc...
# note that order is important here!
UpperCamelCase__ = ['''\n\n''', '''\n''', ''' ''', ''' ''']
for t in token_sequences_to_ignore:
UpperCamelCase__ = ''' '''.join(text.split(UpperCamelCase__ ) )
return text
def lowerCamelCase_ ( UpperCamelCase__ : Tuple ):
'''simple docstring'''
UpperCamelCase__ = load_dataset(args.dataset, args.config, split=args.split, use_auth_token=UpperCamelCase__ )
# for testing: only process the first two examples as a test
# dataset = dataset.select(range(10))
# load processor
UpperCamelCase__ = AutoFeatureExtractor.from_pretrained(args.model_id )
UpperCamelCase__ = feature_extractor.sampling_rate
# resample audio
UpperCamelCase__ = dataset.cast_column('''audio''', Audio(sampling_rate=UpperCamelCase__ ) )
# load eval pipeline
if args.device is None:
UpperCamelCase__ = 0 if torch.cuda.is_available() else -1
UpperCamelCase__ = pipeline('''automatic-speech-recognition''', model=args.model_id, device=args.device )
# map function to decode audio
def map_to_pred(UpperCamelCase__ : Any ):
UpperCamelCase__ = asr(
batch['''audio''']['''array'''], chunk_length_s=args.chunk_length_s, stride_length_s=args.stride_length_s )
UpperCamelCase__ = prediction['''text''']
UpperCamelCase__ = normalize_text(batch['''sentence'''] )
return batch
# run inference on all examples
UpperCamelCase__ = dataset.map(UpperCamelCase__, remove_columns=dataset.column_names )
# compute and log_results
# do not change function below
log_results(UpperCamelCase__, UpperCamelCase__ )
if __name__ == "__main__":
lowercase = argparse.ArgumentParser()
parser.add_argument(
"""--model_id""", type=str, required=True, help="""Model identifier. Should be loadable with 🤗 Transformers"""
)
parser.add_argument(
"""--dataset""",
type=str,
required=True,
help="""Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets""",
)
parser.add_argument(
"""--config""", type=str, required=True, help="""Config of the dataset. *E.g.* `'en'` for Common Voice"""
)
parser.add_argument("""--split""", type=str, required=True, help="""Split of the dataset. *E.g.* `'test'`""")
parser.add_argument(
"""--chunk_length_s""", type=float, default=None, help="""Chunk length in seconds. Defaults to 5 seconds."""
)
parser.add_argument(
"""--stride_length_s""", type=float, default=None, help="""Stride of the audio chunks. Defaults to 1 second."""
)
parser.add_argument(
"""--log_outputs""", action="""store_true""", help="""If defined, write outputs to log file for analysis."""
)
parser.add_argument(
"""--device""",
type=int,
default=None,
help="""The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.""",
)
lowercase = parser.parse_args()
main(args)
| 240
| 1
|
"""simple docstring"""
from argparse import ArgumentParser, Namespace
from typing import Any, List, Optional
from ..pipelines import Pipeline, get_supported_tasks, pipeline
from ..utils import logging
from . import BaseTransformersCLICommand
try:
from fastapi import Body, FastAPI, HTTPException
from fastapi.routing import APIRoute
from pydantic import BaseModel
from starlette.responses import JSONResponse
from uvicorn import run
__a = True
except (ImportError, AttributeError):
__a = object
def A_ ( *_lowercase, **_lowercase ):
'''simple docstring'''
pass
__a = False
__a = logging.get_logger("transformers-cli/serving")
def A_ ( _lowercase ):
'''simple docstring'''
snake_case_ :List[Any] = pipeline(
task=args.task, model=args.model if args.model else None, config=args.config, tokenizer=args.tokenizer, device=args.device, )
return ServeCommand(_lowercase, args.host, args.port, args.workers )
class lowerCamelCase ( _lowerCAmelCase ):
'''simple docstring'''
_A : dict
class lowerCamelCase ( _lowerCAmelCase ):
'''simple docstring'''
_A : List[str]
_A : Optional[List[int]]
class lowerCamelCase ( _lowerCAmelCase ):
'''simple docstring'''
_A : str
class lowerCamelCase ( _lowerCAmelCase ):
'''simple docstring'''
_A : Any
class lowerCamelCase ( _lowerCAmelCase ):
'''simple docstring'''
@staticmethod
def lowerCAmelCase_ ( snake_case: ArgumentParser ) -> Union[str, Any]:
snake_case_ :List[Any] = parser.add_parser(
"""serve""" , help="""CLI tool to run inference requests through REST and GraphQL endpoints.""" )
serve_parser.add_argument(
"""--task""" , type=snake_case , choices=get_supported_tasks() , help="""The task to run the pipeline on""" , )
serve_parser.add_argument("""--host""" , type=snake_case , default="""localhost""" , help="""Interface the server will listen on.""" )
serve_parser.add_argument("""--port""" , type=snake_case , default=8_888 , help="""Port the serving will listen to.""" )
serve_parser.add_argument("""--workers""" , type=snake_case , default=1 , help="""Number of http workers""" )
serve_parser.add_argument("""--model""" , type=snake_case , help="""Model's name or path to stored model.""" )
serve_parser.add_argument("""--config""" , type=snake_case , help="""Model's config name or path to stored model.""" )
serve_parser.add_argument("""--tokenizer""" , type=snake_case , help="""Tokenizer name to use.""" )
serve_parser.add_argument(
"""--device""" , type=snake_case , default=-1 , help="""Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)""" , )
serve_parser.set_defaults(func=snake_case )
def __init__( self: Optional[int] , snake_case: Pipeline , snake_case: str , snake_case: int , snake_case: int ) -> Tuple:
snake_case_ :Optional[Any] = pipeline
snake_case_ :List[Any] = host
snake_case_ :int = port
snake_case_ :Dict = workers
if not _serve_dependencies_installed:
raise RuntimeError(
"""Using serve command requires FastAPI and uvicorn. """
"""Please install transformers with [serving]: pip install \"transformers[serving]\"."""
"""Or install FastAPI and uvicorn separately.""" )
else:
logger.info(f"""Serving model over {host}:{port}""" )
snake_case_ :int = FastAPI(
routes=[
APIRoute(
"""/""" , self.model_info , response_model=snake_case , response_class=snake_case , methods=["""GET"""] , ),
APIRoute(
"""/tokenize""" , self.tokenize , response_model=snake_case , response_class=snake_case , methods=["""POST"""] , ),
APIRoute(
"""/detokenize""" , self.detokenize , response_model=snake_case , response_class=snake_case , methods=["""POST"""] , ),
APIRoute(
"""/forward""" , self.forward , response_model=snake_case , response_class=snake_case , methods=["""POST"""] , ),
] , timeout=600 , )
def lowerCAmelCase_ ( self: str ) -> List[str]:
run(self._app , host=self.host , port=self.port , workers=self.workers )
def lowerCAmelCase_ ( self: Union[str, Any] ) -> List[str]:
return ServeModelInfoResult(infos=vars(self._pipeline.model.config ) )
def lowerCAmelCase_ ( self: str , snake_case: str = Body(snake_case , embed=snake_case ) , snake_case: bool = Body(snake_case , embed=snake_case ) ) -> Dict:
try:
snake_case_ :Any = self._pipeline.tokenizer.tokenize(snake_case )
if return_ids:
snake_case_ :str = self._pipeline.tokenizer.convert_tokens_to_ids(snake_case )
return ServeTokenizeResult(tokens=snake_case , tokens_ids=snake_case )
else:
return ServeTokenizeResult(tokens=snake_case )
except Exception as e:
raise HTTPException(status_code=500 , detail={"""model""": """""", """error""": str(snake_case )} )
def lowerCAmelCase_ ( self: List[Any] , snake_case: List[int] = Body(snake_case , embed=snake_case ) , snake_case: bool = Body(snake_case , embed=snake_case ) , snake_case: bool = Body(snake_case , embed=snake_case ) , ) -> str:
try:
snake_case_ :Optional[Any] = self._pipeline.tokenizer.decode(snake_case , snake_case , snake_case )
return ServeDeTokenizeResult(model="""""" , text=snake_case )
except Exception as e:
raise HTTPException(status_code=500 , detail={"""model""": """""", """error""": str(snake_case )} )
async def lowerCAmelCase_ ( self: str , snake_case: List[str]=Body(snake_case , embed=snake_case ) ) -> int:
# Check we don't have empty string
if len(snake_case ) == 0:
return ServeForwardResult(output=[] , attention=[] )
try:
# Forward through the model
snake_case_ :List[str] = self._pipeline(snake_case )
return ServeForwardResult(output=snake_case )
except Exception as e:
raise HTTPException(500 , {"""error""": str(snake_case )} )
| 310
|
"""simple docstring"""
import numpy as np
import torch
from torch.utils.data import DataLoader
from accelerate.utils.dataclasses import DistributedType
class lowerCamelCase :
'''simple docstring'''
def __init__( self: Any , snake_case: Dict=2 , snake_case: Union[str, Any]=3 , snake_case: Dict=64 , snake_case: Union[str, Any]=None ) -> Union[str, Any]:
snake_case_ :List[Any] = np.random.default_rng(snake_case )
snake_case_ :Optional[Any] = length
snake_case_ :str = rng.normal(size=(length,) ).astype(np.floataa )
snake_case_ :Optional[int] = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa )
def __len__( self: Any ) -> Union[str, Any]:
return self.length
def __getitem__( self: Optional[int] , snake_case: Union[str, Any] ) -> Optional[Any]:
return {"x": self.x[i], "y": self.y[i]}
class lowerCamelCase ( torch.nn.Module ):
'''simple docstring'''
def __init__( self: int , snake_case: Optional[Any]=0 , snake_case: Tuple=0 , snake_case: List[Any]=False ) -> Optional[int]:
super().__init__()
snake_case_ :str = torch.nn.Parameter(torch.tensor([2, 3] ).float() )
snake_case_ :Any = torch.nn.Parameter(torch.tensor([2, 3] ).float() )
snake_case_ :Tuple = True
def lowerCAmelCase_ ( self: Optional[Any] , snake_case: Optional[Any]=None ) -> List[str]:
if self.first_batch:
print(f"""Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}""" )
snake_case_ :Union[str, Any] = False
return x * self.a[0] + self.b[0]
class lowerCamelCase ( torch.nn.Module ):
'''simple docstring'''
def __init__( self: str , snake_case: List[Any]=0 , snake_case: Tuple=0 , snake_case: List[str]=False ) -> int:
super().__init__()
snake_case_ :int = torch.nn.Parameter(torch.tensor(snake_case ).float() )
snake_case_ :List[str] = torch.nn.Parameter(torch.tensor(snake_case ).float() )
snake_case_ :List[Any] = True
def lowerCAmelCase_ ( self: Tuple , snake_case: Optional[int]=None ) -> Union[str, Any]:
if self.first_batch:
print(f"""Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}""" )
snake_case_ :List[str] = False
return x * self.a + self.b
def A_ ( _lowercase, _lowercase = 16 ):
'''simple docstring'''
from datasets import load_dataset
from transformers import AutoTokenizer
snake_case_ :Tuple = AutoTokenizer.from_pretrained("""bert-base-cased""" )
snake_case_ :Optional[int] = {"""train""": """tests/test_samples/MRPC/train.csv""", """validation""": """tests/test_samples/MRPC/dev.csv"""}
snake_case_ :Union[str, Any] = load_dataset("""csv""", data_files=_lowercase )
snake_case_ :List[str] = datasets["""train"""].unique("""label""" )
snake_case_ :Any = {v: i for i, v in enumerate(_lowercase )}
def tokenize_function(_lowercase ):
# max_length=None => use the model max length (it's actually the default)
snake_case_ :Dict = tokenizer(
examples["""sentence1"""], examples["""sentence2"""], truncation=_lowercase, max_length=_lowercase, padding="""max_length""" )
if "label" in examples:
snake_case_ :Union[str, Any] = [label_to_id[l] for l in examples["""label"""]]
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
snake_case_ :Any = datasets.map(
_lowercase, batched=_lowercase, remove_columns=["""sentence1""", """sentence2""", """label"""], )
def collate_fn(_lowercase ):
# On TPU it's best to pad everything to the same length or training will be very slow.
if accelerator.distributed_type == DistributedType.TPU:
return tokenizer.pad(_lowercase, padding="""max_length""", max_length=128, return_tensors="""pt""" )
return tokenizer.pad(_lowercase, padding="""longest""", return_tensors="""pt""" )
# Instantiate dataloaders.
snake_case_ :str = DataLoader(tokenized_datasets["""train"""], shuffle=_lowercase, collate_fn=_lowercase, batch_size=2 )
snake_case_ :Any = DataLoader(tokenized_datasets["""validation"""], shuffle=_lowercase, collate_fn=_lowercase, batch_size=1 )
return train_dataloader, eval_dataloader
| 310
| 1
|
from typing import List, Optional, Tuple, Union
import torch
from ...utils import logging, randn_tensor
from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline
A_ : Any = logging.get_logger(__name__) # pylint: disable=invalid-name
class _lowerCAmelCase( UpperCamelCase_ ):
"""simple docstring"""
def __init__( self , _lowerCamelCase , _lowerCamelCase ):
super().__init__()
self.register_modules(unet=a__ , scheduler=a__ )
@torch.no_grad()
def __call__( self , _lowerCamelCase = 1 , _lowerCamelCase = 1_0_0 , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = True , ):
if audio_length_in_s is None:
UpperCamelCase_: Tuple = self.unet.config.sample_size / self.unet.config.sample_rate
UpperCamelCase_: Tuple = audio_length_in_s * self.unet.config.sample_rate
UpperCamelCase_: Optional[Any] = 2 ** len(self.unet.up_blocks )
if sample_size < 3 * down_scale_factor:
raise ValueError(
f'''{audio_length_in_s} is too small. Make sure it\'s bigger or equal to'''
f''' {3 * down_scale_factor / self.unet.config.sample_rate}.''' )
UpperCamelCase_: Union[str, Any] = int(a__ )
if sample_size % down_scale_factor != 0:
UpperCamelCase_: str = (
(audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1
) * down_scale_factor
logger.info(
f'''{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled'''
f''' by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising'''
' process.' )
UpperCamelCase_: int = int(a__ )
UpperCamelCase_: Tuple = next(iter(self.unet.parameters() ) ).dtype
UpperCamelCase_: Any = (batch_size, self.unet.config.in_channels, sample_size)
if isinstance(a__ , a__ ) and len(a__ ) != batch_size:
raise ValueError(
f'''You have passed a list of generators of length {len(a__ )}, but requested an effective batch'''
f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' )
UpperCamelCase_: Optional[int] = randn_tensor(a__ , generator=a__ , device=self.device , dtype=a__ )
# set step values
self.scheduler.set_timesteps(a__ , device=audio.device )
UpperCamelCase_: int = self.scheduler.timesteps.to(a__ )
for t in self.progress_bar(self.scheduler.timesteps ):
# 1. predict noise model_output
UpperCamelCase_: Dict = self.unet(a__ , a__ ).sample
# 2. compute previous image: x_t -> t_t-1
UpperCamelCase_: int = self.scheduler.step(a__ , a__ , a__ ).prev_sample
UpperCamelCase_: List[str] = audio.clamp(-1 , 1 ).float().cpu().numpy()
UpperCamelCase_: Tuple = audio[:, :, :original_sample_size]
if not return_dict:
return (audio,)
return AudioPipelineOutput(audios=a__ )
| 57
|
'''simple docstring'''
import unittest
from transformers import AlbertTokenizer, AlbertTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
snake_case = get_tests_dir("""fixtures/spiece.model""")
@require_sentencepiece
@require_tokenizers
class lowerCAmelCase ( UpperCamelCase_ , unittest.TestCase ):
A_ : List[str] = AlbertTokenizer
A_ : List[Any] = AlbertTokenizerFast
A_ : List[str] = True
A_ : Any = True
A_ : List[Any] = True
def _A ( self : Optional[int] ):
'''simple docstring'''
super().setUp()
# We have a SentencePiece fixture for testing
lowerCAmelCase__ : int = AlbertTokenizer(a__ )
tokenizer.save_pretrained(self.tmpdirname )
def _A ( self : Tuple , a__ : Optional[Any] ):
'''simple docstring'''
lowerCAmelCase__ : Union[str, Any] = "this is a test"
lowerCAmelCase__ : Optional[Any] = "this is a test"
return input_text, output_text
def _A ( self : Optional[int] ):
'''simple docstring'''
lowerCAmelCase__ : Union[str, Any] = "<pad>"
lowerCAmelCase__ : Dict = 0
self.assertEqual(self.get_tokenizer()._convert_token_to_id(a__ ) , a__ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(a__ ) , a__ )
def _A ( self : Tuple ):
'''simple docstring'''
lowerCAmelCase__ : int = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , "<pad>" )
self.assertEqual(vocab_keys[1] , "<unk>" )
self.assertEqual(vocab_keys[-1] , "▁eloquent" )
self.assertEqual(len(a__ ) , 3_0000 )
def _A ( self : Optional[int] ):
'''simple docstring'''
self.assertEqual(self.get_tokenizer().vocab_size , 3_0000 )
def _A ( self : int ):
'''simple docstring'''
if not self.test_rust_tokenizer:
return
lowerCAmelCase__ : List[Any] = self.get_tokenizer()
lowerCAmelCase__ : Optional[int] = self.get_rust_tokenizer()
lowerCAmelCase__ : List[str] = "I was born in 92000, and this is falsé."
lowerCAmelCase__ : Dict = tokenizer.tokenize(a__ )
lowerCAmelCase__ : str = rust_tokenizer.tokenize(a__ )
self.assertListEqual(a__ , a__ )
lowerCAmelCase__ : List[Any] = tokenizer.encode(a__ , add_special_tokens=a__ )
lowerCAmelCase__ : Tuple = rust_tokenizer.encode(a__ , add_special_tokens=a__ )
self.assertListEqual(a__ , a__ )
lowerCAmelCase__ : Optional[int] = self.get_rust_tokenizer()
lowerCAmelCase__ : str = tokenizer.encode(a__ )
lowerCAmelCase__ : Optional[int] = rust_tokenizer.encode(a__ )
self.assertListEqual(a__ , a__ )
def _A ( self : Optional[int] ):
'''simple docstring'''
lowerCAmelCase__ : List[Any] = AlbertTokenizer(a__ , keep_accents=a__ )
lowerCAmelCase__ : Optional[Any] = tokenizer.tokenize("This is a test" )
self.assertListEqual(a__ , ["▁this", "▁is", "▁a", "▁test"] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(a__ ) , [48, 25, 21, 1289] )
lowerCAmelCase__ : Optional[int] = tokenizer.tokenize("I was born in 92000, and this is falsé." )
self.assertListEqual(
a__ , ["▁i", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "é", "."] )
lowerCAmelCase__ : Tuple = tokenizer.convert_tokens_to_ids(a__ )
self.assertListEqual(a__ , [31, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] )
lowerCAmelCase__ : Optional[int] = tokenizer.convert_ids_to_tokens(a__ )
self.assertListEqual(
a__ , ["▁i", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", "."] , )
def _A ( self : List[str] ):
'''simple docstring'''
lowerCAmelCase__ : Tuple = AlbertTokenizer(a__ )
lowerCAmelCase__ : List[str] = tokenizer.encode("sequence builders" )
lowerCAmelCase__ : Optional[int] = tokenizer.encode("multi-sequence build" )
lowerCAmelCase__ : Tuple = tokenizer.build_inputs_with_special_tokens(a__ )
lowerCAmelCase__ : Optional[Any] = tokenizer.build_inputs_with_special_tokens(a__ , a__ )
assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id]
assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [
tokenizer.sep_token_id
]
@slow
def _A ( self : List[str] ):
'''simple docstring'''
lowerCAmelCase__ : Any = {"attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "input_ids": [[2, 2_1970, 13, 5, 6092, 167, 28, 7103, 2153, 673, 8, 7028, 1_2051, 18, 17, 7103, 2153, 673, 8, 3515, 1_8684, 8, 4461, 6, 1927, 297, 8, 1_2060, 2607, 18, 13, 5, 4461, 15, 1_0538, 38, 8, 135, 15, 822, 58, 15, 993, 1_0363, 15, 1460, 8005, 4461, 15, 993, 255, 2328, 9, 9, 9, 6, 26, 1112, 816, 3260, 13, 5, 103, 2377, 6, 17, 1112, 816, 2782, 13, 5, 103, 1_0641, 6, 29, 84, 2512, 2430, 782, 1_8684, 2761, 19, 808, 2430, 2556, 17, 855, 1480, 9477, 4091, 128, 1_1712, 15, 7103, 2153, 673, 17, 2_4883, 9990, 9, 3], [2, 1_1502, 25, 1006, 20, 782, 8, 1_1809, 855, 1732, 1_9393, 1_8667, 37, 367, 2_1018, 69, 1854, 34, 1_1860, 1_9124, 27, 156, 225, 17, 193, 4141, 19, 65, 9124, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 14, 2231, 886, 2385, 1_7659, 84, 14, 1_6792, 1952, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "token_type_ids": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=a__ , model_name="albert-base-v2" , revision="6b6560eaf5ff2e250b00c50f380c5389a9c2d82e" , )
| 378
| 0
|
"""simple docstring"""
from scipy.stats import spearmanr
import datasets
lowercase_ = '\nThe Spearman rank-order correlation coefficient is a measure of the\nrelationship between two datasets. Like other correlation coefficients,\nthis one varies between -1 and +1 with 0 implying no correlation.\nPositive correlations imply that as data in dataset x increases, so\ndoes data in dataset y. Negative correlations imply that as x increases,\ny decreases. Correlations of -1 or +1 imply an exact monotonic relationship.\n\nUnlike the Pearson correlation, the Spearman correlation does not\nassume that both datasets are normally distributed.\n\nThe p-value roughly indicates the probability of an uncorrelated system\nproducing datasets that have a Spearman correlation at least as extreme\nas the one computed from these datasets. The p-values are not entirely\nreliable but are probably reasonable for datasets larger than 500 or so.\n'
lowercase_ = '\nArgs:\n predictions (`List[float]`): Predicted labels, as returned by a model.\n references (`List[float]`): Ground truth labels.\n return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns\n only the spearmanr score. Defaults to `False`.\nReturns:\n spearmanr (`float`): Spearman correlation coefficient.\n p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input.\nExamples:\n Example 1:\n >>> spearmanr_metric = datasets.load_metric("spearmanr")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4])\n >>> print(results)\n {\'spearmanr\': -0.7}\n\n Example 2:\n >>> spearmanr_metric = datasets.load_metric("spearmanr")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5],\n ... predictions=[10, 9, 2.5, 6, 4],\n ... return_pvalue=True)\n >>> print(results[\'spearmanr\'])\n -0.7\n >>> print(round(results[\'spearmanr_pvalue\'], 2))\n 0.19\n'
lowercase_ = R'\\n@book{kokoska2000crc,\n title={CRC standard probability and statistics tables and formulae},\n author={Kokoska, Stephen and Zwillinger, Daniel},\n year={2000},\n publisher={Crc Press}\n}\n@article{2020SciPy-NMeth,\n author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\n title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\n journal = {Nature Methods},\n year = {2020},\n volume = {17},\n pages = {261--272},\n adsurl = {https://rdcu.be/b08Wh},\n doi = {10.1038/s41592-019-0686-2},\n}\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class snake_case ( datasets.Metric ):
'''simple docstring'''
def _SCREAMING_SNAKE_CASE ( self : List[str] ):
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features(
{
'''predictions''': datasets.Value('''float''' ),
'''references''': datasets.Value('''float''' ),
} ), reference_urls=['''https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html'''], )
def _SCREAMING_SNAKE_CASE ( self : int, _lowerCamelCase : List[Any], _lowerCamelCase : str, _lowerCamelCase : Dict=False ):
'''simple docstring'''
__A = spearmanr(_lowerCamelCase, _lowerCamelCase )
if return_pvalue:
return {"spearmanr": results[0], "spearmanr_pvalue": results[1]}
else:
return {"spearmanr": results[0]}
| 721
|
"""simple docstring"""
import os
import unittest
from transformers import LxmertTokenizer, LxmertTokenizerFast
from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class snake_case ( _lowerCAmelCase , unittest.TestCase ):
'''simple docstring'''
A_ : str = LxmertTokenizer
A_ : Any = LxmertTokenizerFast
A_ : Optional[int] = True
A_ : int = True
def _SCREAMING_SNAKE_CASE ( self : Tuple ):
'''simple docstring'''
super().setUp()
__A = [
'''[UNK]''',
'''[CLS]''',
'''[SEP]''',
'''want''',
'''##want''',
'''##ed''',
'''wa''',
'''un''',
'''runn''',
'''##ing''',
''',''',
'''low''',
'''lowest''',
]
__A = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['''vocab_file'''] )
with open(self.vocab_file, '''w''', encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) )
def _SCREAMING_SNAKE_CASE ( self : List[str], _lowerCamelCase : Any ):
'''simple docstring'''
__A = '''UNwant\u00E9d,running'''
__A = '''unwanted, running'''
return input_text, output_text
def _SCREAMING_SNAKE_CASE ( self : str ):
'''simple docstring'''
__A = self.tokenizer_class(self.vocab_file )
__A = tokenizer.tokenize('''UNwant\u00E9d,running''' )
self.assertListEqual(_lowerCamelCase, ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCamelCase ), [7, 4, 5, 10, 8, 9] )
def _SCREAMING_SNAKE_CASE ( self : Dict ):
'''simple docstring'''
if not self.test_rust_tokenizer:
return
__A = self.get_tokenizer()
__A = self.get_rust_tokenizer()
__A = '''I was born in 92000, and this is falsé.'''
__A = tokenizer.tokenize(_lowerCamelCase )
__A = rust_tokenizer.tokenize(_lowerCamelCase )
self.assertListEqual(_lowerCamelCase, _lowerCamelCase )
__A = tokenizer.encode(_lowerCamelCase, add_special_tokens=_lowerCamelCase )
__A = rust_tokenizer.encode(_lowerCamelCase, add_special_tokens=_lowerCamelCase )
self.assertListEqual(_lowerCamelCase, _lowerCamelCase )
__A = self.get_rust_tokenizer()
__A = tokenizer.encode(_lowerCamelCase )
__A = rust_tokenizer.encode(_lowerCamelCase )
self.assertListEqual(_lowerCamelCase, _lowerCamelCase )
| 215
| 0
|
"""simple docstring"""
import math
import time
from typing import Dict, List, Optional
from torch.utils.data import Dataset
from transformers import SeqaSeqTrainer, is_torch_tpu_available
from transformers.trainer_utils import PredictionOutput, speed_metrics
if is_torch_tpu_available(check_device=False):
import torch_xla.core.xla_model as xm
import torch_xla.debug.metrics as met
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
def __init__( self : List[Any] , *__lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[Any]=None , __lowerCamelCase : int=None , **__lowerCamelCase : str ):
"""simple docstring"""
super().__init__(*__lowerCamelCase , **__lowerCamelCase )
_snake_case = eval_examples
_snake_case = post_process_function
def __UpperCAmelCase ( self : int , __lowerCamelCase : Optional[Dataset] = None , __lowerCamelCase : List[Any]=None , __lowerCamelCase : Optional[List[str]] = None , __lowerCamelCase : str = "eval" , **__lowerCamelCase : int , ):
"""simple docstring"""
_snake_case = gen_kwargs.copy()
_snake_case = (
gen_kwargs['''max_length'''] if gen_kwargs.get('''max_length''' ) is not None else self.args.generation_max_length
)
_snake_case = (
gen_kwargs['''num_beams'''] if gen_kwargs.get('''num_beams''' ) is not None else self.args.generation_num_beams
)
_snake_case = gen_kwargs
_snake_case = self.eval_dataset if eval_dataset is None else eval_dataset
_snake_case = self.get_eval_dataloader(__lowerCamelCase )
_snake_case = self.eval_examples if eval_examples is None else eval_examples
# Temporarily disable metric computation, we will do it in the loop here.
_snake_case = self.compute_metrics
_snake_case = None
_snake_case = time.time()
_snake_case = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
try:
_snake_case = eval_loop(
__lowerCamelCase , description='''Evaluation''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__lowerCamelCase , metric_key_prefix=__lowerCamelCase , )
finally:
_snake_case = compute_metrics
_snake_case = self.args.eval_batch_size * self.args.world_size
if f"""{metric_key_prefix}_jit_compilation_time""" in output.metrics:
start_time += output.metrics[f"""{metric_key_prefix}_jit_compilation_time"""]
output.metrics.update(
speed_metrics(
__lowerCamelCase , __lowerCamelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) )
if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save:
# Only the main node write the results by default
_snake_case = self.post_process_function(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
_snake_case = self.compute_metrics(__lowerCamelCase )
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys() ):
if not key.startswith(f"""{metric_key_prefix}_""" ):
_snake_case = metrics.pop(__lowerCamelCase )
metrics.update(output.metrics )
else:
_snake_case = output.metrics
if self.args.should_log:
# Only the main node log the results by default
self.log(__lowerCamelCase )
if self.args.tpu_metrics_debug or self.args.debug:
# tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.)
xm.master_print(met.metrics_report() )
_snake_case = self.callback_handler.on_evaluate(self.args , self.state , self.control , __lowerCamelCase )
return metrics
def __UpperCAmelCase ( self : Union[str, Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : Dict , __lowerCamelCase : Dict=None , __lowerCamelCase : str = "test" , **__lowerCamelCase : int ):
"""simple docstring"""
_snake_case = gen_kwargs.copy()
_snake_case = self.get_test_dataloader(__lowerCamelCase )
# Temporarily disable metric computation, we will do it in the loop here.
_snake_case = self.compute_metrics
_snake_case = None
_snake_case = time.time()
_snake_case = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
try:
_snake_case = eval_loop(
__lowerCamelCase , description='''Prediction''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__lowerCamelCase , metric_key_prefix=__lowerCamelCase , )
finally:
_snake_case = compute_metrics
_snake_case = self.args.eval_batch_size * self.args.world_size
if f"""{metric_key_prefix}_jit_compilation_time""" in output.metrics:
start_time += output.metrics[f"""{metric_key_prefix}_jit_compilation_time"""]
output.metrics.update(
speed_metrics(
__lowerCamelCase , __lowerCamelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) )
if self.post_process_function is None or self.compute_metrics is None:
return output
_snake_case = self.post_process_function(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , '''predict''' )
_snake_case = self.compute_metrics(__lowerCamelCase )
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys() ):
if not key.startswith(f"""{metric_key_prefix}_""" ):
_snake_case = metrics.pop(__lowerCamelCase )
metrics.update(output.metrics )
return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=__lowerCamelCase )
| 103
|
'''simple docstring'''
def lowercase__( _UpperCamelCase : int = 100 )-> int:
"""simple docstring"""
_UpperCamelCase = set()
_UpperCamelCase = 0
_UpperCamelCase = n + 1 # maximum limit
for a in range(2 , _UpperCamelCase ):
for b in range(2 , _UpperCamelCase ):
_UpperCamelCase = a**b # calculates the current power
collect_powers.add(_UpperCamelCase ) # adds the result to the set
return len(_UpperCamelCase )
if __name__ == "__main__":
print('''Number of terms ''', solution(int(str(input()).strip())))
| 138
| 0
|
"""simple docstring"""
from typing import List, Optional
from tokenizers import ByteLevelBPETokenizer
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_blenderbot_small import BlenderbotSmallTokenizer
_UpperCamelCase : Dict = logging.get_logger(__name__)
_UpperCamelCase : Union[str, Any] = {
'vocab_file': 'vocab.json',
'merges_file': 'merges.txt',
'tokenizer_config_file': 'tokenizer_config.json',
}
_UpperCamelCase : str = {
'vocab_file': {
'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json'
},
'merges_file': {
'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt'
},
'tokenizer_config_file': {
'facebook/blenderbot_small-90M': (
'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json'
)
},
}
_UpperCamelCase : int = {
'facebook/blenderbot_small-90M': 5_1_2,
}
class a ( a_ ):
UpperCAmelCase_ : Optional[Any] =VOCAB_FILES_NAMES
UpperCAmelCase_ : Dict =PRETRAINED_VOCAB_FILES_MAP
UpperCAmelCase_ : Union[str, Any] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCAmelCase_ : int =BlenderbotSmallTokenizer
def __init__( self , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase="<|endoftext|>" , _lowerCamelCase="<|endoftext|>" , _lowerCamelCase="<|endoftext|>" , _lowerCamelCase=False , _lowerCamelCase=True , **_lowerCamelCase , ):
super().__init__(
ByteLevelBPETokenizer(
vocab=_lowerCamelCase , merges=_lowerCamelCase , add_prefix_space=_lowerCamelCase , trim_offsets=_lowerCamelCase , ) , bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , unk_token=_lowerCamelCase , **_lowerCamelCase , )
lowercase = add_prefix_space
def UpperCamelCase_ ( self , _lowerCamelCase , _lowerCamelCase=None ):
lowercase = [self.bos_token_id] + token_ids_a + [self.eos_token_id]
if token_ids_a is None:
return output
return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id]
def UpperCamelCase_ ( self , _lowerCamelCase , _lowerCamelCase = None ):
lowercase = [self.sep_token_id]
lowercase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
| 134
|
"""simple docstring"""
import importlib
import json
import os
from collections import OrderedDict
from typing import Dict, Optional, Union
# Build the list of all feature extractors
from ...configuration_utils import PretrainedConfig
from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code
from ...feature_extraction_utils import FeatureExtractionMixin
from ...utils import CONFIG_NAME, FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging
from .auto_factory import _LazyAutoMapping
from .configuration_auto import (
CONFIG_MAPPING_NAMES,
AutoConfig,
model_type_to_module_name,
replace_list_option_in_docstrings,
)
_UpperCamelCase : str = logging.get_logger(__name__)
_UpperCamelCase : Dict = OrderedDict(
[
('audio-spectrogram-transformer', 'ASTFeatureExtractor'),
('beit', 'BeitFeatureExtractor'),
('chinese_clip', 'ChineseCLIPFeatureExtractor'),
('clap', 'ClapFeatureExtractor'),
('clip', 'CLIPFeatureExtractor'),
('clipseg', 'ViTFeatureExtractor'),
('conditional_detr', 'ConditionalDetrFeatureExtractor'),
('convnext', 'ConvNextFeatureExtractor'),
('cvt', 'ConvNextFeatureExtractor'),
('data2vec-audio', 'Wav2Vec2FeatureExtractor'),
('data2vec-vision', 'BeitFeatureExtractor'),
('deformable_detr', 'DeformableDetrFeatureExtractor'),
('deit', 'DeiTFeatureExtractor'),
('detr', 'DetrFeatureExtractor'),
('dinat', 'ViTFeatureExtractor'),
('donut-swin', 'DonutFeatureExtractor'),
('dpt', 'DPTFeatureExtractor'),
('encodec', 'EncodecFeatureExtractor'),
('flava', 'FlavaFeatureExtractor'),
('glpn', 'GLPNFeatureExtractor'),
('groupvit', 'CLIPFeatureExtractor'),
('hubert', 'Wav2Vec2FeatureExtractor'),
('imagegpt', 'ImageGPTFeatureExtractor'),
('layoutlmv2', 'LayoutLMv2FeatureExtractor'),
('layoutlmv3', 'LayoutLMv3FeatureExtractor'),
('levit', 'LevitFeatureExtractor'),
('maskformer', 'MaskFormerFeatureExtractor'),
('mctct', 'MCTCTFeatureExtractor'),
('mobilenet_v1', 'MobileNetV1FeatureExtractor'),
('mobilenet_v2', 'MobileNetV2FeatureExtractor'),
('mobilevit', 'MobileViTFeatureExtractor'),
('nat', 'ViTFeatureExtractor'),
('owlvit', 'OwlViTFeatureExtractor'),
('perceiver', 'PerceiverFeatureExtractor'),
('poolformer', 'PoolFormerFeatureExtractor'),
('regnet', 'ConvNextFeatureExtractor'),
('resnet', 'ConvNextFeatureExtractor'),
('segformer', 'SegformerFeatureExtractor'),
('sew', 'Wav2Vec2FeatureExtractor'),
('sew-d', 'Wav2Vec2FeatureExtractor'),
('speech_to_text', 'Speech2TextFeatureExtractor'),
('speecht5', 'SpeechT5FeatureExtractor'),
('swiftformer', 'ViTFeatureExtractor'),
('swin', 'ViTFeatureExtractor'),
('swinv2', 'ViTFeatureExtractor'),
('table-transformer', 'DetrFeatureExtractor'),
('timesformer', 'VideoMAEFeatureExtractor'),
('tvlt', 'TvltFeatureExtractor'),
('unispeech', 'Wav2Vec2FeatureExtractor'),
('unispeech-sat', 'Wav2Vec2FeatureExtractor'),
('van', 'ConvNextFeatureExtractor'),
('videomae', 'VideoMAEFeatureExtractor'),
('vilt', 'ViltFeatureExtractor'),
('vit', 'ViTFeatureExtractor'),
('vit_mae', 'ViTFeatureExtractor'),
('vit_msn', 'ViTFeatureExtractor'),
('wav2vec2', 'Wav2Vec2FeatureExtractor'),
('wav2vec2-conformer', 'Wav2Vec2FeatureExtractor'),
('wavlm', 'Wav2Vec2FeatureExtractor'),
('whisper', 'WhisperFeatureExtractor'),
('xclip', 'CLIPFeatureExtractor'),
('yolos', 'YolosFeatureExtractor'),
]
)
_UpperCamelCase : str = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FEATURE_EXTRACTOR_MAPPING_NAMES)
def _SCREAMING_SNAKE_CASE ( __snake_case : str ):
'''simple docstring'''
for module_name, extractors in FEATURE_EXTRACTOR_MAPPING_NAMES.items():
if class_name in extractors:
lowercase = model_type_to_module_name(__snake_case )
lowercase = importlib.import_module(f'.{module_name}' , 'transformers.models' )
try:
return getattr(__snake_case , __snake_case )
except AttributeError:
continue
for _, extractor in FEATURE_EXTRACTOR_MAPPING._extra_content.items():
if getattr(__snake_case , '__name__' , __snake_case ) == class_name:
return extractor
# We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main
# init and we return the proper dummy to get an appropriate error message.
lowercase = importlib.import_module('transformers' )
if hasattr(__snake_case , __snake_case ):
return getattr(__snake_case , __snake_case )
return None
def _SCREAMING_SNAKE_CASE ( __snake_case : Union[str, os.PathLike] , __snake_case : Optional[Union[str, os.PathLike]] = None , __snake_case : bool = False , __snake_case : bool = False , __snake_case : Optional[Dict[str, str]] = None , __snake_case : Optional[Union[bool, str]] = None , __snake_case : Optional[str] = None , __snake_case : bool = False , **__snake_case : int , ):
'''simple docstring'''
lowercase = get_file_from_repo(
__snake_case , __snake_case , cache_dir=__snake_case , force_download=__snake_case , resume_download=__snake_case , proxies=__snake_case , use_auth_token=__snake_case , revision=__snake_case , local_files_only=__snake_case , )
if resolved_config_file is None:
logger.info(
'Could not locate the feature extractor configuration file, will try to use the model config instead.' )
return {}
with open(__snake_case , encoding='utf-8' ) as reader:
return json.load(__snake_case )
class a :
def __init__( self ):
raise EnvironmentError(
'AutoFeatureExtractor is designed to be instantiated '
'using the `AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)` method.' )
@classmethod
@replace_list_option_in_docstrings(_lowerCamelCase )
def UpperCamelCase_ ( cls , _lowerCamelCase , **_lowerCamelCase ):
lowercase = kwargs.pop('config' , _lowerCamelCase )
lowercase = kwargs.pop('trust_remote_code' , _lowerCamelCase )
lowercase = True
lowercase , lowercase = FeatureExtractionMixin.get_feature_extractor_dict(_lowerCamelCase , **_lowerCamelCase )
lowercase = config_dict.get('feature_extractor_type' , _lowerCamelCase )
lowercase = None
if "AutoFeatureExtractor" in config_dict.get('auto_map' , {} ):
lowercase = config_dict['auto_map']['AutoFeatureExtractor']
# If we don't find the feature extractor class in the feature extractor config, let's try the model config.
if feature_extractor_class is None and feature_extractor_auto_map is None:
if not isinstance(_lowerCamelCase , _lowerCamelCase ):
lowercase = AutoConfig.from_pretrained(_lowerCamelCase , **_lowerCamelCase )
# It could be in `config.feature_extractor_type``
lowercase = getattr(_lowerCamelCase , 'feature_extractor_type' , _lowerCamelCase )
if hasattr(_lowerCamelCase , 'auto_map' ) and "AutoFeatureExtractor" in config.auto_map:
lowercase = config.auto_map['AutoFeatureExtractor']
if feature_extractor_class is not None:
lowercase = feature_extractor_class_from_name(_lowerCamelCase )
lowercase = feature_extractor_auto_map is not None
lowercase = feature_extractor_class is not None or type(_lowerCamelCase ) in FEATURE_EXTRACTOR_MAPPING
lowercase = resolve_trust_remote_code(
_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
if has_remote_code and trust_remote_code:
lowercase = get_class_from_dynamic_module(
_lowerCamelCase , _lowerCamelCase , **_lowerCamelCase )
lowercase = kwargs.pop('code_revision' , _lowerCamelCase )
if os.path.isdir(_lowerCamelCase ):
feature_extractor_class.register_for_auto_class()
return feature_extractor_class.from_dict(_lowerCamelCase , **_lowerCamelCase )
elif feature_extractor_class is not None:
return feature_extractor_class.from_dict(_lowerCamelCase , **_lowerCamelCase )
# Last try: we use the FEATURE_EXTRACTOR_MAPPING.
elif type(_lowerCamelCase ) in FEATURE_EXTRACTOR_MAPPING:
lowercase = FEATURE_EXTRACTOR_MAPPING[type(_lowerCamelCase )]
return feature_extractor_class.from_dict(_lowerCamelCase , **_lowerCamelCase )
raise ValueError(
F'Unrecognized feature extractor in {pretrained_model_name_or_path}. Should have a '
F'`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following '
F'`model_type` keys in its {CONFIG_NAME}: {", ".join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys() )}' )
@staticmethod
def UpperCamelCase_ ( _lowerCamelCase , _lowerCamelCase ):
FEATURE_EXTRACTOR_MAPPING.register(_lowerCamelCase , _lowerCamelCase )
| 134
| 1
|
import inspect
import tempfile
import unittest
from huggingface_hub import hf_hub_download
from transformers import is_torch_available
from transformers.testing_utils import is_flaky, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
_lowerCamelCase = 1e-4
if is_torch_available():
import torch
from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel
from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder
@require_torch
class a :
'''simple docstring'''
def __init__( self : Optional[Any] , __snake_case : int , __snake_case : List[str]=16 , __snake_case : Union[str, Any]=13 , __snake_case : int=7 , __snake_case : Any=14 , __snake_case : Optional[Any]=10 , __snake_case : Tuple=19 , __snake_case : str=5 , __snake_case : Optional[Any]=4 , __snake_case : str=True , __snake_case : Optional[Any]=16 , __snake_case : Dict=2 , __snake_case : Optional[Any]=4 , __snake_case : Dict=4 , __snake_case : Optional[Any]="gelu" , __snake_case : Optional[Any]=0.1 , __snake_case : Dict=0.1 , __snake_case : Optional[int]=[1, 2, 3, 4, 5] , __snake_case : Tuple=25 , __snake_case : Any=5 , ):
UpperCAmelCase_ = d_model
UpperCAmelCase_ = parent
UpperCAmelCase_ = batch_size
UpperCAmelCase_ = prediction_length
UpperCAmelCase_ = context_length
UpperCAmelCase_ = cardinality
UpperCAmelCase_ = num_time_features
UpperCAmelCase_ = lags_sequence
UpperCAmelCase_ = embedding_dimension
UpperCAmelCase_ = is_training
UpperCAmelCase_ = hidden_size
UpperCAmelCase_ = num_hidden_layers
UpperCAmelCase_ = num_attention_heads
UpperCAmelCase_ = intermediate_size
UpperCAmelCase_ = hidden_act
UpperCAmelCase_ = hidden_dropout_prob
UpperCAmelCase_ = attention_probs_dropout_prob
UpperCAmelCase_ = context_length
UpperCAmelCase_ = prediction_length + label_length
UpperCAmelCase_ = label_length
UpperCAmelCase_ = moving_average
UpperCAmelCase_ = autocorrelation_factor
def lowerCamelCase_ ( self : List[str] ):
return AutoformerConfig(
d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , )
def lowerCamelCase_ ( self : str , __snake_case : Tuple ):
UpperCAmelCase_ = config.context_length + max(config.lags_sequence )
UpperCAmelCase_ = ids_tensor([self.batch_size, 1] , config.cardinality[0] )
UpperCAmelCase_ = floats_tensor([self.batch_size, _past_length, config.num_time_features] )
UpperCAmelCase_ = floats_tensor([self.batch_size, _past_length] )
UpperCAmelCase_ = floats_tensor([self.batch_size, _past_length] ) > 0.5
# decoder inputs
UpperCAmelCase_ = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] )
UpperCAmelCase_ = floats_tensor([self.batch_size, config.prediction_length] )
UpperCAmelCase_ = {
'''past_values''': past_values,
'''static_categorical_features''': static_categorical_features,
'''past_time_features''': past_time_features,
'''past_observed_mask''': past_observed_mask,
'''future_time_features''': future_time_features,
'''future_values''': future_values,
}
return inputs_dict
def lowerCamelCase_ ( self : Dict ):
UpperCAmelCase_ = self.get_config()
UpperCAmelCase_ = self.prepare_autoformer_inputs_dict(__snake_case )
return config, inputs_dict
def lowerCamelCase_ ( self : Tuple ):
UpperCAmelCase_ , UpperCAmelCase_ = self.prepare_config_and_inputs()
return config, inputs_dict
def lowerCamelCase_ ( self : str , __snake_case : Dict , __snake_case : Tuple ):
UpperCAmelCase_ = AutoformerModel(config=__snake_case ).to(__snake_case ).eval()
UpperCAmelCase_ = model(**__snake_case )
UpperCAmelCase_ = outputs.encoder_last_hidden_state
UpperCAmelCase_ = outputs.last_hidden_state
with tempfile.TemporaryDirectory() as tmpdirname:
UpperCAmelCase_ = model.get_encoder()
encoder.save_pretrained(__snake_case )
UpperCAmelCase_ = AutoformerEncoder.from_pretrained(__snake_case ).to(__snake_case )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = model.create_network_inputs(**__snake_case )
UpperCAmelCase_ , UpperCAmelCase_ = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] )
UpperCAmelCase_ = torch.cat(
(transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , )
UpperCAmelCase_ = encoder(inputs_embeds=__snake_case )[0]
self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1E-3 )
UpperCAmelCase_ = (
torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 )
.unsqueeze(1 )
.repeat(1 , config.prediction_length , 1 )
)
UpperCAmelCase_ = torch.zeros(
[transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , )
UpperCAmelCase_ = torch.cat(
(
torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ),
feature[:, config.context_length - config.label_length :, ...],
) , dim=-1 , )
UpperCAmelCase_ = torch.cat(
(
torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ),
feature[:, config.context_length - config.label_length :, ...],
) , dim=-1 , )
with tempfile.TemporaryDirectory() as tmpdirname:
UpperCAmelCase_ = model.get_decoder()
decoder.save_pretrained(__snake_case )
UpperCAmelCase_ = AutoformerDecoder.from_pretrained(__snake_case ).to(__snake_case )
UpperCAmelCase_ = decoder(
trend=__snake_case , inputs_embeds=__snake_case , encoder_hidden_states=__snake_case , )[0]
self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1E-3 )
@require_torch
class a ( _A , _A , unittest.TestCase ):
'''simple docstring'''
lowerCAmelCase : List[str] = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else ()
lowerCAmelCase : int = (AutoformerForPrediction,) if is_torch_available() else ()
lowerCAmelCase : Optional[Any] = {'feature-extraction': AutoformerModel} if is_torch_available() else {}
lowerCAmelCase : Optional[Any] = False
lowerCAmelCase : Optional[Any] = False
lowerCAmelCase : Any = False
lowerCAmelCase : int = False
lowerCAmelCase : List[Any] = False
lowerCAmelCase : Any = False
def lowerCamelCase_ ( self : Optional[Any] ):
UpperCAmelCase_ = AutoformerModelTester(self )
UpperCAmelCase_ = ConfigTester(self , config_class=__snake_case , has_text_modality=__snake_case )
def lowerCamelCase_ ( self : Any ):
self.config_tester.run_common_tests()
def lowerCamelCase_ ( self : Dict ):
UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
UpperCAmelCase_ = model_class(__snake_case )
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(__snake_case )
UpperCAmelCase_ , UpperCAmelCase_ = model_class.from_pretrained(__snake_case , output_loading_info=__snake_case )
self.assertEqual(info['''missing_keys'''] , [] )
def lowerCamelCase_ ( self : List[str] ):
UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_encoder_decoder_model_standalone(*__snake_case )
@unittest.skip(reason='''Model has no tokens embeddings''' )
def lowerCamelCase_ ( self : str ):
pass
def lowerCamelCase_ ( self : int ):
UpperCAmelCase_ = inspect.signature(getattr(__snake_case , '''forward''' ) )
# The main input is the name of the argument after `self`
UpperCAmelCase_ = list(model_signature.parameters.keys() )[1]
self.assertEqual(AutoformerModel.main_input_name , __snake_case )
def lowerCamelCase_ ( self : Dict ):
UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase_ = model_class(__snake_case )
UpperCAmelCase_ = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCAmelCase_ = [*signature.parameters.keys()]
UpperCAmelCase_ = [
'''past_values''',
'''past_time_features''',
'''past_observed_mask''',
'''static_categorical_features''',
'''static_real_features''',
'''future_values''',
'''future_time_features''',
]
if model.__class__.__name__ in ["AutoformerForPrediction"]:
expected_arg_names.append('''future_observed_mask''' )
expected_arg_names.extend(
[
'''decoder_attention_mask''',
'''head_mask''',
'''decoder_head_mask''',
'''cross_attn_head_mask''',
'''encoder_outputs''',
'''past_key_values''',
'''output_hidden_states''',
'''output_attentions''',
'''use_cache''',
'''return_dict''',
] )
self.assertListEqual(arg_names[: len(__snake_case )] , __snake_case )
def lowerCamelCase_ ( self : str ):
UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase_ = True
UpperCAmelCase_ = getattr(self.model_tester , '''seq_length''' , __snake_case )
UpperCAmelCase_ = getattr(self.model_tester , '''decoder_seq_length''' , __snake_case )
UpperCAmelCase_ = getattr(self.model_tester , '''encoder_seq_length''' , __snake_case )
UpperCAmelCase_ = getattr(self.model_tester , '''d_model''' , __snake_case )
UpperCAmelCase_ = getattr(self.model_tester , '''num_attention_heads''' , __snake_case )
UpperCAmelCase_ = d_model // num_attention_heads
for model_class in self.all_model_classes:
UpperCAmelCase_ = True
UpperCAmelCase_ = False
UpperCAmelCase_ = True
UpperCAmelCase_ = model_class(__snake_case )
model.to(__snake_case )
model.eval()
with torch.no_grad():
UpperCAmelCase_ = model(**self._prepare_for_class(__snake_case , __snake_case ) )
UpperCAmelCase_ = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
self.assertEqual(len(__snake_case ) , self.model_tester.num_hidden_layers )
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
UpperCAmelCase_ = True
UpperCAmelCase_ = model_class(__snake_case )
model.to(__snake_case )
model.eval()
with torch.no_grad():
UpperCAmelCase_ = model(**self._prepare_for_class(__snake_case , __snake_case ) )
UpperCAmelCase_ = outputs.encoder_attentions
self.assertEqual(len(__snake_case ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , )
UpperCAmelCase_ = len(__snake_case )
UpperCAmelCase_ = 7
if "last_hidden_state" in outputs:
correct_outlen += 1
if "trend" in outputs:
correct_outlen += 1
if "past_key_values" in outputs:
correct_outlen += 1 # past_key_values have been returned
if "loss" in outputs:
correct_outlen += 1
if "params" in outputs:
correct_outlen += 1
self.assertEqual(__snake_case , __snake_case )
# decoder attentions
UpperCAmelCase_ = outputs.decoder_attentions
self.assertIsInstance(__snake_case , (list, tuple) )
self.assertEqual(len(__snake_case ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , )
# cross attentions
UpperCAmelCase_ = outputs.cross_attentions
self.assertIsInstance(__snake_case , (list, tuple) )
self.assertEqual(len(__snake_case ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , )
# Check attention is always last and order is fine
UpperCAmelCase_ = True
UpperCAmelCase_ = True
UpperCAmelCase_ = model_class(__snake_case )
model.to(__snake_case )
model.eval()
with torch.no_grad():
UpperCAmelCase_ = model(**self._prepare_for_class(__snake_case , __snake_case ) )
self.assertEqual(out_len + 2 , len(__snake_case ) )
UpperCAmelCase_ = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
self.assertEqual(len(__snake_case ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , )
@is_flaky()
def lowerCamelCase_ ( self : Any ):
super().test_retain_grad_hidden_states_attentions()
def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[Any]="train-batch.pt" ) -> List[str]:
UpperCAmelCase_ = hf_hub_download(repo_id='''hf-internal-testing/tourism-monthly-batch''' , filename=__UpperCamelCase , repo_type='''dataset''' )
UpperCAmelCase_ = torch.load(__UpperCamelCase , map_location=__UpperCamelCase )
return batch
@require_torch
@slow
class a ( unittest.TestCase ):
'''simple docstring'''
def lowerCamelCase_ ( self : Tuple ):
UpperCAmelCase_ = AutoformerModel.from_pretrained('''huggingface/autoformer-tourism-monthly''' ).to(__snake_case )
UpperCAmelCase_ = prepare_batch()
with torch.no_grad():
UpperCAmelCase_ = model(
past_values=batch['''past_values'''] , past_time_features=batch['''past_time_features'''] , past_observed_mask=batch['''past_observed_mask'''] , static_categorical_features=batch['''static_categorical_features'''] , future_values=batch['''future_values'''] , future_time_features=batch['''future_time_features'''] , )[0]
UpperCAmelCase_ = torch.Size(
(64, model.config.prediction_length + model.config.label_length, model.config.feature_size) )
self.assertEqual(output.shape , __snake_case )
UpperCAmelCase_ = torch.tensor(
[[0.3_593, -1.3_398, 0.6_330], [0.2_279, 1.5_396, -0.1_792], [0.0_450, 1.3_225, -0.2_335]] , device=__snake_case )
self.assertTrue(torch.allclose(output[0, :3, :3] , __snake_case , atol=__snake_case ) )
def lowerCamelCase_ ( self : Optional[Any] ):
UpperCAmelCase_ = AutoformerForPrediction.from_pretrained('''huggingface/autoformer-tourism-monthly''' ).to(__snake_case )
UpperCAmelCase_ = prepare_batch('''val-batch.pt''' )
with torch.no_grad():
UpperCAmelCase_ = model(
past_values=batch['''past_values'''] , past_time_features=batch['''past_time_features'''] , past_observed_mask=batch['''past_observed_mask'''] , static_categorical_features=batch['''static_categorical_features'''] , ).encoder_last_hidden_state
UpperCAmelCase_ = torch.Size((64, model.config.context_length, model.config.d_model) )
self.assertEqual(output.shape , __snake_case )
UpperCAmelCase_ = torch.tensor(
[[-0.0_734, -0.9_036, 0.8_358], [4.7_186, 2.4_113, 1.9_581], [1.7_953, 2.3_558, 1.2_970]] , device=__snake_case )
self.assertTrue(torch.allclose(output[0, :3, :3] , __snake_case , atol=__snake_case ) )
def lowerCamelCase_ ( self : str ):
UpperCAmelCase_ = AutoformerForPrediction.from_pretrained('''huggingface/autoformer-tourism-monthly''' ).to(__snake_case )
UpperCAmelCase_ = prepare_batch('''val-batch.pt''' )
with torch.no_grad():
UpperCAmelCase_ = model.generate(
static_categorical_features=batch['''static_categorical_features'''] , past_time_features=batch['''past_time_features'''] , past_values=batch['''past_values'''] , future_time_features=batch['''future_time_features'''] , past_observed_mask=batch['''past_observed_mask'''] , )
UpperCAmelCase_ = torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length) )
self.assertEqual(outputs.sequences.shape , __snake_case )
UpperCAmelCase_ = torch.tensor([3_130.6_763, 4_056.5_293, 7_053.0_786] , device=__snake_case )
UpperCAmelCase_ = outputs.sequences.mean(dim=1 )
self.assertTrue(torch.allclose(mean_prediction[0, -3:] , __snake_case , rtol=1E-1 ) )
| 144
|
from __future__ import annotations
import unittest
from transformers import BlenderbotSmallConfig, BlenderbotSmallTokenizer, is_tf_available
from transformers.testing_utils import require_tf, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel
@require_tf
class a :
'''simple docstring'''
lowerCAmelCase : Dict = BlenderbotSmallConfig
lowerCAmelCase : Optional[Any] = {}
lowerCAmelCase : str = 'gelu'
def __init__( self : int , __snake_case : Any , __snake_case : str=13 , __snake_case : int=7 , __snake_case : str=True , __snake_case : List[str]=False , __snake_case : Optional[Any]=99 , __snake_case : Optional[Any]=32 , __snake_case : str=2 , __snake_case : Optional[int]=4 , __snake_case : int=37 , __snake_case : Any=0.1 , __snake_case : List[str]=0.1 , __snake_case : Tuple=20 , __snake_case : Dict=2 , __snake_case : str=1 , __snake_case : Any=0 , ):
UpperCAmelCase_ = parent
UpperCAmelCase_ = batch_size
UpperCAmelCase_ = seq_length
UpperCAmelCase_ = is_training
UpperCAmelCase_ = use_labels
UpperCAmelCase_ = vocab_size
UpperCAmelCase_ = hidden_size
UpperCAmelCase_ = num_hidden_layers
UpperCAmelCase_ = num_attention_heads
UpperCAmelCase_ = intermediate_size
UpperCAmelCase_ = hidden_dropout_prob
UpperCAmelCase_ = attention_probs_dropout_prob
UpperCAmelCase_ = max_position_embeddings
UpperCAmelCase_ = eos_token_id
UpperCAmelCase_ = pad_token_id
UpperCAmelCase_ = bos_token_id
def lowerCamelCase_ ( self : Optional[Any] ):
UpperCAmelCase_ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size )
UpperCAmelCase_ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 )
UpperCAmelCase_ = tf.concat([input_ids, eos_tensor] , axis=1 )
UpperCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase_ = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , )
UpperCAmelCase_ = prepare_blenderbot_small_inputs_dict(__snake_case , __snake_case , __snake_case )
return config, inputs_dict
def lowerCamelCase_ ( self : str , __snake_case : Tuple , __snake_case : Any ):
UpperCAmelCase_ = TFBlenderbotSmallModel(config=__snake_case ).get_decoder()
UpperCAmelCase_ = inputs_dict['''input_ids''']
UpperCAmelCase_ = input_ids[:1, :]
UpperCAmelCase_ = inputs_dict['''attention_mask'''][:1, :]
UpperCAmelCase_ = inputs_dict['''head_mask''']
UpperCAmelCase_ = 1
# first forward pass
UpperCAmelCase_ = model(__snake_case , attention_mask=__snake_case , head_mask=__snake_case , use_cache=__snake_case )
UpperCAmelCase_ , UpperCAmelCase_ = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
UpperCAmelCase_ = ids_tensor((self.batch_size, 3) , config.vocab_size )
UpperCAmelCase_ = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta )
# append to next input_ids and
UpperCAmelCase_ = tf.concat([input_ids, next_tokens] , axis=-1 )
UpperCAmelCase_ = tf.concat([attention_mask, next_attn_mask] , axis=-1 )
UpperCAmelCase_ = model(__snake_case , attention_mask=__snake_case )[0]
UpperCAmelCase_ = model(__snake_case , attention_mask=__snake_case , past_key_values=__snake_case )[0]
self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] )
# select random slice
UpperCAmelCase_ = int(ids_tensor((1,) , output_from_past.shape[-1] ) )
UpperCAmelCase_ = output_from_no_past[:, -3:, random_slice_idx]
UpperCAmelCase_ = output_from_past[:, :, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(__snake_case , __snake_case , rtol=1E-3 )
def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Any , __UpperCamelCase : str , __UpperCamelCase : List[str] , __UpperCamelCase : Union[str, Any]=None , __UpperCamelCase : Optional[int]=None , __UpperCamelCase : Any=None , __UpperCamelCase : List[str]=None , __UpperCamelCase : List[Any]=None , ) -> str:
if attention_mask is None:
UpperCAmelCase_ = tf.cast(tf.math.not_equal(__UpperCamelCase , config.pad_token_id ) , tf.inta )
if decoder_attention_mask is None:
UpperCAmelCase_ = tf.concat(
[
tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ),
tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ),
] , axis=-1 , )
if head_mask is None:
UpperCAmelCase_ = tf.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
UpperCAmelCase_ = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
if cross_attn_head_mask is None:
UpperCAmelCase_ = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
@require_tf
class a ( _A , _A , unittest.TestCase ):
'''simple docstring'''
lowerCAmelCase : Optional[int] = (
(TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel) if is_tf_available() else ()
)
lowerCAmelCase : Optional[Any] = (TFBlenderbotSmallForConditionalGeneration,) if is_tf_available() else ()
lowerCAmelCase : Union[str, Any] = (
{
'conversational': TFBlenderbotSmallForConditionalGeneration,
'feature-extraction': TFBlenderbotSmallModel,
'summarization': TFBlenderbotSmallForConditionalGeneration,
'text2text-generation': TFBlenderbotSmallForConditionalGeneration,
'translation': TFBlenderbotSmallForConditionalGeneration,
}
if is_tf_available()
else {}
)
lowerCAmelCase : List[Any] = True
lowerCAmelCase : Tuple = False
lowerCAmelCase : List[Any] = False
def lowerCamelCase_ ( self : Optional[Any] ):
UpperCAmelCase_ = TFBlenderbotSmallModelTester(self )
UpperCAmelCase_ = ConfigTester(self , config_class=__snake_case )
def lowerCamelCase_ ( self : Any ):
self.config_tester.run_common_tests()
def lowerCamelCase_ ( self : int ):
UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*__snake_case )
@require_tokenizers
@require_tf
class a ( unittest.TestCase ):
'''simple docstring'''
lowerCAmelCase : int = [
'Social anxiety\nWow, I am never shy. Do you have anxiety?\nYes. I end up sweating and blushing and feel like '
' i\'m going to throw up.\nand why is that?'
]
lowerCAmelCase : Optional[Any] = 'facebook/blenderbot_small-90M'
@cached_property
def lowerCamelCase_ ( self : List[str] ):
# use "old" tokenizer here because of bug when downloading new tokenizer
return BlenderbotSmallTokenizer.from_pretrained('''facebook/blenderbot-90M''' )
@cached_property
def lowerCamelCase_ ( self : Dict ):
UpperCAmelCase_ = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name )
return model
@slow
def lowerCamelCase_ ( self : List[str] ):
UpperCAmelCase_ = self.tokenizer(self.src_text , return_tensors='''tf''' )
UpperCAmelCase_ = self.model.generate(
model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=__snake_case , )
UpperCAmelCase_ = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=__snake_case )[0]
assert generated_words in (
"i don't know. i just feel like i'm going to throw up. it's not fun.",
"i'm not sure. i just feel like i've been feeling like i have to be in a certain place",
"i'm not sure. i just feel like i've been in a bad situation.",
)
| 144
| 1
|
"""simple docstring"""
import tempfile
import unittest
from make_student import create_student_by_copying_alternating_layers
from transformers import AutoConfig
from transformers.file_utils import cached_property
from transformers.testing_utils import require_torch
__lowercase = """sshleifer/bart-tiny-random"""
__lowercase = """patrickvonplaten/t5-tiny-random"""
@require_torch
class _A ( unittest.TestCase ):
"""simple docstring"""
@cached_property
def __snake_case ( self : Dict):
return AutoConfig.from_pretrained(snake_case_)
def __snake_case ( self : List[str]):
a : List[Any] = create_student_by_copying_alternating_layers(snake_case_ , tempfile.mkdtemp() , e=1 , d=1)
self.assertEqual(student.config.num_hidden_layers , 1)
def __snake_case ( self : List[str]):
a : Optional[int] = create_student_by_copying_alternating_layers(snake_case_ , tempfile.mkdtemp() , e=1 , d=snake_case_)
def __snake_case ( self : Union[str, Any]):
a : Dict = create_student_by_copying_alternating_layers(snake_case_ , tempfile.mkdtemp() , e=1 , d=snake_case_)
self.assertEqual(student.config.encoder_layers , 1)
self.assertEqual(student.config.decoder_layers , self.teacher_config.encoder_layers)
def __snake_case ( self : List[str]):
a : List[str] = create_student_by_copying_alternating_layers(snake_case_ , tempfile.mkdtemp() , e=1 , d=1)
self.assertEqual(student.config.encoder_layers , 1)
self.assertEqual(student.config.decoder_layers , 1)
def __snake_case ( self : List[str]):
with self.assertRaises(snake_case_):
create_student_by_copying_alternating_layers(snake_case_ , tempfile.mkdtemp() , e=snake_case_ , d=snake_case_)
| 721
|
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__lowercase = logging.get_logger(__name__)
__lowercase = {
"""facebook/s2t-small-librispeech-asr""": (
"""https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/config.json"""
),
# See all Speech2Text models at https://huggingface.co/models?filter=speech_to_text
}
class _A ( _a ):
"""simple docstring"""
UpperCAmelCase : List[Any] = """speech_to_text"""
UpperCAmelCase : str = ["""past_key_values"""]
UpperCAmelCase : Any = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""}
def __init__( self : int , __UpperCAmelCase : List[Any]=10000 , __UpperCAmelCase : Any=12 , __UpperCAmelCase : Optional[Any]=2048 , __UpperCAmelCase : int=4 , __UpperCAmelCase : Dict=6 , __UpperCAmelCase : Optional[int]=2048 , __UpperCAmelCase : Dict=4 , __UpperCAmelCase : Any=0.0 , __UpperCAmelCase : List[Any]=0.0 , __UpperCAmelCase : Tuple=True , __UpperCAmelCase : List[Any]=True , __UpperCAmelCase : List[str]="relu" , __UpperCAmelCase : Union[str, Any]=256 , __UpperCAmelCase : Optional[Any]=0.1 , __UpperCAmelCase : List[str]=0.0 , __UpperCAmelCase : int=0.0 , __UpperCAmelCase : Union[str, Any]=0.02 , __UpperCAmelCase : Dict=2 , __UpperCAmelCase : Dict=True , __UpperCAmelCase : Optional[Any]=1 , __UpperCAmelCase : int=0 , __UpperCAmelCase : List[Any]=2 , __UpperCAmelCase : Optional[int]=6000 , __UpperCAmelCase : List[str]=1024 , __UpperCAmelCase : Optional[Any]=2 , __UpperCAmelCase : List[Any]=(5, 5) , __UpperCAmelCase : Union[str, Any]=1024 , __UpperCAmelCase : str=80 , __UpperCAmelCase : str=1 , **__UpperCAmelCase : str , ):
a : Optional[Any] = vocab_size
a : Any = d_model
a : List[Any] = encoder_ffn_dim
a : List[Any] = encoder_layers
a : List[str] = encoder_attention_heads
a : Union[str, Any] = decoder_ffn_dim
a : int = decoder_layers
a : Any = decoder_attention_heads
a : Tuple = dropout
a : Any = attention_dropout
a : str = activation_dropout
a : Union[str, Any] = activation_function
a : List[Any] = init_std
a : List[Any] = encoder_layerdrop
a : str = decoder_layerdrop
a : str = use_cache
a : List[str] = encoder_layers
a : Dict = scale_embedding # scale factor will be sqrt(d_model) if True
a : List[Any] = max_source_positions
a : Optional[Any] = max_target_positions
a : Tuple = num_conv_layers
a : Optional[Any] = list(__UpperCAmelCase)
a : int = conv_channels
a : Dict = input_feat_per_channel
a : str = input_channels
if len(self.conv_kernel_sizes) != self.num_conv_layers:
raise ValueError(
"Configuration for convolutional module is incorrect. "
"It is required that `len(config.conv_kernel_sizes)` == `config.num_conv_layers` "
f'''but is `len(config.conv_kernel_sizes) = {len(self.conv_kernel_sizes)}`, '''
f'''`config.num_conv_layers = {self.num_conv_layers}`.''')
super().__init__(
pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , is_encoder_decoder=__UpperCAmelCase , decoder_start_token_id=__UpperCAmelCase , **__UpperCAmelCase , )
| 135
| 0
|
import copy
import fnmatch
import json
import os
import pickle as pkl
import shutil
import sys
import tarfile
import tempfile
from collections import OrderedDict
from contextlib import contextmanager
from functools import partial
from hashlib import shaaaa
from io import BytesIO
from pathlib import Path
from urllib.parse import urlparse
from zipfile import ZipFile, is_zipfile
import cva
import numpy as np
import requests
import wget
from filelock import FileLock
from PIL import Image
from tqdm.auto import tqdm
from yaml import Loader, dump, load
try:
import torch
a_ = True
except ImportError:
a_ = False
try:
from torch.hub import _get_torch_home
a_ = _get_torch_home()
except ImportError:
a_ = os.path.expanduser(
os.getenv('TORCH_HOME', os.path.join(os.getenv('XDG_CACHE_HOME', '~/.cache'), 'torch'))
)
a_ = os.path.join(torch_cache_home, 'transformers')
a_ = 'https://cdn.huggingface.co'
a_ = 'https://s3.amazonaws.com/models.huggingface.co/bert'
a_ = '/'.join(str(Path(__file__).resolve()).split('/')[:-1])
a_ = os.path.join(PATH, 'config.yaml')
a_ = os.path.join(PATH, 'attributes.txt')
a_ = os.path.join(PATH, 'objects.txt')
a_ = os.getenv('PYTORCH_PRETRAINED_BERT_CACHE', default_cache_path)
a_ = os.getenv('PYTORCH_TRANSFORMERS_CACHE', PYTORCH_PRETRAINED_BERT_CACHE)
a_ = os.getenv('TRANSFORMERS_CACHE', PYTORCH_TRANSFORMERS_CACHE)
a_ = 'pytorch_model.bin'
a_ = 'config.yaml'
def __lowercase ( lowerCamelCase : str=OBJECTS , lowerCamelCase : List[str]=ATTRIBUTES ):
UpperCamelCase_ : str = []
with open(lowerCamelCase ) as f:
for object in f.readlines():
vg_classes.append(object.split(',' )[0].lower().strip() )
UpperCamelCase_ : Union[str, Any] = []
with open(lowerCamelCase ) as f:
for object in f.readlines():
vg_attrs.append(object.split(',' )[0].lower().strip() )
return vg_classes, vg_attrs
def __lowercase ( lowerCamelCase : List[str] ):
UpperCamelCase_ : str = OrderedDict()
with open(lowerCamelCase , 'rb' ) as f:
UpperCamelCase_ : Union[str, Any] = pkl.load(lowerCamelCase )['model']
for k in copy.deepcopy(list(ckp.keys() ) ):
UpperCamelCase_ : Tuple = ckp.pop(lowerCamelCase )
if isinstance(lowerCamelCase , np.ndarray ):
UpperCamelCase_ : int = torch.tensor(lowerCamelCase )
else:
assert isinstance(lowerCamelCase , torch.tensor ), type(lowerCamelCase )
UpperCamelCase_ : Any = v
return r
class _lowercase :
lowercase = {}
def __init__( self : int , snake_case : dict , snake_case : str = "root" , snake_case : str=0 ) -> Union[str, Any]:
"""simple docstring"""
UpperCamelCase_ : Tuple = name
UpperCamelCase_ : Optional[int] = level
UpperCamelCase_ : Any = {}
for k, v in dictionary.items():
if v is None:
raise ValueError()
UpperCamelCase_ : Union[str, Any] = copy.deepcopy(snake_case )
UpperCamelCase_ : str = copy.deepcopy(snake_case )
if isinstance(snake_case , snake_case ):
UpperCamelCase_ : List[str] = Config(snake_case , name=snake_case , level=level + 1 )
UpperCamelCase_ : Optional[Any] = v
setattr(self , snake_case , snake_case )
UpperCamelCase_ : Union[str, Any] = d
def __repr__( self : Dict ) -> Tuple:
"""simple docstring"""
return str(list((self._pointer.keys()) ) )
def __setattr__( self : Tuple , snake_case : List[str] , snake_case : int ) -> str:
"""simple docstring"""
UpperCamelCase_ : List[str] = val
UpperCamelCase_ : Optional[int] = val
UpperCamelCase_ : List[str] = key.split('.' )
UpperCamelCase_ : int = len(snake_case ) - 1
UpperCamelCase_ : Optional[Any] = self._pointer
if len(snake_case ) > 1:
for i, l in enumerate(snake_case ):
if hasattr(self , snake_case ) and isinstance(getattr(self , snake_case ) , snake_case ):
setattr(getattr(self , snake_case ) , '.'.join(levels[i:] ) , snake_case )
if l == last_level:
UpperCamelCase_ : Tuple = val
else:
UpperCamelCase_ : List[Any] = pointer[l]
def SCREAMING_SNAKE_CASE__ ( self : int ) -> Optional[int]:
"""simple docstring"""
return self._pointer
def SCREAMING_SNAKE_CASE__ ( self : str , snake_case : Any , snake_case : Tuple ) -> Any:
"""simple docstring"""
with open(f"{file_name}" , 'w' ) as stream:
dump(snake_case , snake_case )
def SCREAMING_SNAKE_CASE__ ( self : List[Any] , snake_case : Tuple , snake_case : Optional[Any] ) -> Optional[int]:
"""simple docstring"""
with open(f"{file_name}" , 'w' ) as stream:
json.dump(snake_case , snake_case )
@staticmethod
def SCREAMING_SNAKE_CASE__ ( snake_case : str ) -> Dict:
"""simple docstring"""
with open(snake_case ) as stream:
UpperCamelCase_ : str = load(snake_case , Loader=snake_case )
return data
def __str__( self : Tuple ) -> int:
"""simple docstring"""
UpperCamelCase_ : List[str] = ' '
if self._name != "root":
UpperCamelCase_ : int = f"{t * (self._level-1)}{self._name}:\n"
else:
UpperCamelCase_ : str = ''
UpperCamelCase_ : Tuple = self._level
for i, (k, v) in enumerate(self._pointer.items() ):
if isinstance(snake_case , snake_case ):
r += f"{t * (self._level)}{v}\n"
self._level += 1
else:
r += f"{t * (self._level)}{k}: {v} ({type(snake_case ).__name__})\n"
UpperCamelCase_ : Any = level
return r[:-1]
@classmethod
def SCREAMING_SNAKE_CASE__ ( cls : Tuple , snake_case : str , **snake_case : Any ) -> Dict:
"""simple docstring"""
UpperCamelCase_, UpperCamelCase_ : Optional[Any] = cls.get_config_dict(snake_case , **snake_case )
return cls(snake_case )
@classmethod
def SCREAMING_SNAKE_CASE__ ( cls : str , snake_case : str , **snake_case : str ) -> int:
"""simple docstring"""
UpperCamelCase_ : Dict = kwargs.pop('cache_dir' , snake_case )
UpperCamelCase_ : List[Any] = kwargs.pop('force_download' , snake_case )
UpperCamelCase_ : Any = kwargs.pop('resume_download' , snake_case )
UpperCamelCase_ : Tuple = kwargs.pop('proxies' , snake_case )
UpperCamelCase_ : Union[str, Any] = kwargs.pop('local_files_only' , snake_case )
if os.path.isdir(snake_case ):
UpperCamelCase_ : Dict = os.path.join(snake_case , snake_case )
elif os.path.isfile(snake_case ) or is_remote_url(snake_case ):
UpperCamelCase_ : List[Any] = pretrained_model_name_or_path
else:
UpperCamelCase_ : Optional[int] = hf_bucket_url(snake_case , filename=snake_case , use_cdn=snake_case )
try:
# Load from URL or cache if already cached
UpperCamelCase_ : Any = cached_path(
snake_case , cache_dir=snake_case , force_download=snake_case , proxies=snake_case , resume_download=snake_case , local_files_only=snake_case , )
# Load config dict
if resolved_config_file is None:
raise EnvironmentError
UpperCamelCase_ : Dict = Config.load_yaml(snake_case )
except EnvironmentError:
UpperCamelCase_ : List[Any] = 'Can\'t load config for'
raise EnvironmentError(snake_case )
if resolved_config_file == config_file:
print('loading configuration file from path' )
else:
print('loading configuration file cache' )
return Config.load_yaml(snake_case ), kwargs
def __lowercase ( lowerCamelCase : List[str] ):
UpperCamelCase_ : int = torch.load('dump.pt' , map_location=in_tensor.device )
UpperCamelCase_ : List[Any] = in_tensor.numpy()
UpperCamelCase_ : Dict = out_tensor.numpy()[0]
print(na.shape , na[0, 0, :5] )
print(na.shape , na[0, 0, :5] )
assert np.allclose(lowerCamelCase , lowerCamelCase , rtol=0.0_1 , atol=0.1 ), (
F"{sum([1 for x in np.isclose(lowerCamelCase , lowerCamelCase , rtol=0.0_1 , atol=0.1 ).flatten() if x is False] )/len(na.flatten() )*100:.4f} %"
" element-wise mismatch"
)
raise Exception('tensors are all good' )
# Hugging face functions below
def __lowercase ( lowerCamelCase : Optional[int] ):
UpperCamelCase_ : str = urlparse(lowerCamelCase )
return parsed.scheme in ("http", "https")
def __lowercase ( lowerCamelCase : str , lowerCamelCase : str , lowerCamelCase : Tuple=True ):
UpperCamelCase_ : Dict = CLOUDFRONT_DISTRIB_PREFIX if use_cdn else S3_BUCKET_PREFIX
UpperCamelCase_ : List[Any] = '/' not in model_id
if legacy_format:
return F"{endpoint}/{model_id}-{filename}"
else:
return F"{endpoint}/{model_id}/{filename}"
def __lowercase ( lowerCamelCase : str , lowerCamelCase : Optional[int] , lowerCamelCase : Optional[Any]=None , lowerCamelCase : int=0 , lowerCamelCase : Tuple=None , ):
UpperCamelCase_ : Union[str, Any] = 'python/{}'.format(sys.version.split()[0] )
if _torch_available:
ua += "; torch/{}".format(torch.__version__ )
if isinstance(lowerCamelCase , lowerCamelCase ):
ua += "; " + "; ".join('{}/{}'.format(lowerCamelCase , lowerCamelCase ) for k, v in user_agent.items() )
elif isinstance(lowerCamelCase , lowerCamelCase ):
ua += "; " + user_agent
UpperCamelCase_ : Union[str, Any] = {'user-agent': ua}
if resume_size > 0:
UpperCamelCase_ : Optional[int] = 'bytes=%d-' % (resume_size,)
UpperCamelCase_ : Any = requests.get(lowerCamelCase , stream=lowerCamelCase , proxies=lowerCamelCase , headers=lowerCamelCase )
if response.status_code == 416: # Range not satisfiable
return
UpperCamelCase_ : Dict = response.headers.get('Content-Length' )
UpperCamelCase_ : Dict = resume_size + int(lowerCamelCase ) if content_length is not None else None
UpperCamelCase_ : int = tqdm(
unit='B' , unit_scale=lowerCamelCase , total=lowerCamelCase , initial=lowerCamelCase , desc='Downloading' , )
for chunk in response.iter_content(chunk_size=1024 ):
if chunk: # filter out keep-alive new chunks
progress.update(len(lowerCamelCase ) )
temp_file.write(lowerCamelCase )
progress.close()
def __lowercase ( lowerCamelCase : Dict , lowerCamelCase : Tuple=None , lowerCamelCase : List[str]=False , lowerCamelCase : List[Any]=None , lowerCamelCase : int=10 , lowerCamelCase : List[Any]=False , lowerCamelCase : int=None , lowerCamelCase : Any=False , ):
if cache_dir is None:
UpperCamelCase_ : Union[str, Any] = TRANSFORMERS_CACHE
if isinstance(lowerCamelCase , lowerCamelCase ):
UpperCamelCase_ : List[Any] = str(lowerCamelCase )
os.makedirs(lowerCamelCase , exist_ok=lowerCamelCase )
UpperCamelCase_ : List[str] = None
if not local_files_only:
try:
UpperCamelCase_ : Optional[Any] = requests.head(lowerCamelCase , allow_redirects=lowerCamelCase , proxies=lowerCamelCase , timeout=lowerCamelCase )
if response.status_code == 200:
UpperCamelCase_ : str = response.headers.get('ETag' )
except (EnvironmentError, requests.exceptions.Timeout):
# etag is already None
pass
UpperCamelCase_ : Tuple = url_to_filename(lowerCamelCase , lowerCamelCase )
# get cache path to put the file
UpperCamelCase_ : int = os.path.join(lowerCamelCase , lowerCamelCase )
# etag is None = we don't have a connection, or url doesn't exist, or is otherwise inaccessible.
# try to get the last downloaded one
if etag is None:
if os.path.exists(lowerCamelCase ):
return cache_path
else:
UpperCamelCase_ : Any = [
file
for file in fnmatch.filter(os.listdir(lowerCamelCase ) , filename + '.*' )
if not file.endswith('.json' ) and not file.endswith('.lock' )
]
if len(lowerCamelCase ) > 0:
return os.path.join(lowerCamelCase , matching_files[-1] )
else:
# If files cannot be found and local_files_only=True,
# the models might've been found if local_files_only=False
# Notify the user about that
if local_files_only:
raise ValueError(
'Cannot find the requested files in the cached path and outgoing traffic has been'
' disabled. To enable model look-ups and downloads online, set \'local_files_only\''
' to False.' )
return None
# From now on, etag is not None.
if os.path.exists(lowerCamelCase ) and not force_download:
return cache_path
# Prevent parallel downloads of the same file with a lock.
UpperCamelCase_ : Optional[Any] = cache_path + '.lock'
with FileLock(lowerCamelCase ):
# If the download just completed while the lock was activated.
if os.path.exists(lowerCamelCase ) and not force_download:
# Even if returning early like here, the lock will be released.
return cache_path
if resume_download:
UpperCamelCase_ : int = cache_path + '.incomplete'
@contextmanager
def _resumable_file_manager():
with open(lowerCamelCase , 'a+b' ) as f:
yield f
UpperCamelCase_ : Union[str, Any] = _resumable_file_manager
if os.path.exists(lowerCamelCase ):
UpperCamelCase_ : List[Any] = os.stat(lowerCamelCase ).st_size
else:
UpperCamelCase_ : str = 0
else:
UpperCamelCase_ : Optional[int] = partial(tempfile.NamedTemporaryFile , dir=lowerCamelCase , delete=lowerCamelCase )
UpperCamelCase_ : int = 0
# Download to temporary file, then copy to cache dir once finished.
# Otherwise you get corrupt cache entries if the download gets interrupted.
with temp_file_manager() as temp_file:
print(
'%s not found in cache or force_download set to True, downloading to %s' , lowerCamelCase , temp_file.name , )
http_get(
lowerCamelCase , lowerCamelCase , proxies=lowerCamelCase , resume_size=lowerCamelCase , user_agent=lowerCamelCase , )
os.replace(temp_file.name , lowerCamelCase )
UpperCamelCase_ : Any = {'url': url, 'etag': etag}
UpperCamelCase_ : int = cache_path + '.json'
with open(lowerCamelCase , 'w' ) as meta_file:
json.dump(lowerCamelCase , lowerCamelCase )
return cache_path
def __lowercase ( lowerCamelCase : List[str] , lowerCamelCase : Optional[Any]=None ):
UpperCamelCase_ : Optional[Any] = url.encode('utf-8' )
UpperCamelCase_ : str = shaaaa(lowerCamelCase )
UpperCamelCase_ : Dict = url_hash.hexdigest()
if etag:
UpperCamelCase_ : Optional[Any] = etag.encode('utf-8' )
UpperCamelCase_ : Optional[int] = shaaaa(lowerCamelCase )
filename += "." + etag_hash.hexdigest()
if url.endswith('.h5' ):
filename += ".h5"
return filename
def __lowercase ( lowerCamelCase : Optional[Any] , lowerCamelCase : Dict=None , lowerCamelCase : Optional[Any]=False , lowerCamelCase : Any=None , lowerCamelCase : Optional[int]=False , lowerCamelCase : int=None , lowerCamelCase : Optional[int]=False , lowerCamelCase : Any=False , lowerCamelCase : Any=False , ):
if cache_dir is None:
UpperCamelCase_ : List[Any] = TRANSFORMERS_CACHE
if isinstance(lowerCamelCase , lowerCamelCase ):
UpperCamelCase_ : List[Any] = str(lowerCamelCase )
if isinstance(lowerCamelCase , lowerCamelCase ):
UpperCamelCase_ : Optional[int] = str(lowerCamelCase )
if is_remote_url(lowerCamelCase ):
# URL, so get it from the cache (downloading if necessary)
UpperCamelCase_ : Tuple = get_from_cache(
lowerCamelCase , cache_dir=lowerCamelCase , force_download=lowerCamelCase , proxies=lowerCamelCase , resume_download=lowerCamelCase , user_agent=lowerCamelCase , local_files_only=lowerCamelCase , )
elif os.path.exists(lowerCamelCase ):
# File, and it exists.
UpperCamelCase_ : List[str] = url_or_filename
elif urlparse(lowerCamelCase ).scheme == "":
# File, but it doesn't exist.
raise EnvironmentError('file {} not found'.format(lowerCamelCase ) )
else:
# Something unknown
raise ValueError('unable to parse {} as a URL or as a local path'.format(lowerCamelCase ) )
if extract_compressed_file:
if not is_zipfile(lowerCamelCase ) and not tarfile.is_tarfile(lowerCamelCase ):
return output_path
# Path where we extract compressed archives
# We avoid '.' in dir name and add "-extracted" at the end: "./model.zip" => "./model-zip-extracted/"
UpperCamelCase_, UpperCamelCase_ : str = os.path.split(lowerCamelCase )
UpperCamelCase_ : Union[str, Any] = output_file.replace('.' , '-' ) + '-extracted'
UpperCamelCase_ : List[Any] = os.path.join(lowerCamelCase , lowerCamelCase )
if os.path.isdir(lowerCamelCase ) and os.listdir(lowerCamelCase ) and not force_extract:
return output_path_extracted
# Prevent parallel extractions
UpperCamelCase_ : int = output_path + '.lock'
with FileLock(lowerCamelCase ):
shutil.rmtree(lowerCamelCase , ignore_errors=lowerCamelCase )
os.makedirs(lowerCamelCase )
if is_zipfile(lowerCamelCase ):
with ZipFile(lowerCamelCase , 'r' ) as zip_file:
zip_file.extractall(lowerCamelCase )
zip_file.close()
elif tarfile.is_tarfile(lowerCamelCase ):
UpperCamelCase_ : int = tarfile.open(lowerCamelCase )
tar_file.extractall(lowerCamelCase )
tar_file.close()
else:
raise EnvironmentError('Archive format of {} could not be identified'.format(lowerCamelCase ) )
return output_path_extracted
return output_path
def __lowercase ( lowerCamelCase : Tuple , lowerCamelCase : int="," ):
assert isinstance(lowerCamelCase , lowerCamelCase )
if os.path.isfile(lowerCamelCase ):
with open(lowerCamelCase ) as f:
UpperCamelCase_ : str = eval(f.read() )
else:
UpperCamelCase_ : int = requests.get(lowerCamelCase )
try:
UpperCamelCase_ : int = requests.json()
except Exception:
UpperCamelCase_ : int = req.content.decode()
assert data is not None, "could not connect"
try:
UpperCamelCase_ : List[str] = eval(lowerCamelCase )
except Exception:
UpperCamelCase_ : Tuple = data.split('\n' )
req.close()
return data
def __lowercase ( lowerCamelCase : List[str] ):
UpperCamelCase_ : int = requests.get(lowerCamelCase )
UpperCamelCase_ : Optional[int] = np.array(Image.open(BytesIO(response.content ) ) )
return img
def __lowercase ( lowerCamelCase : Union[str, Any] ):
UpperCamelCase_ : Any = url.split('/' )[-1]
if fn not in os.listdir(os.getcwd() ):
wget.download(lowerCamelCase )
with open(lowerCamelCase , 'rb' ) as stream:
UpperCamelCase_ : Optional[int] = pkl.load(lowerCamelCase )
UpperCamelCase_ : Optional[int] = weights.pop('model' )
UpperCamelCase_ : Optional[int] = {}
for k, v in model.items():
UpperCamelCase_ : Dict = torch.from_numpy(lowerCamelCase )
if "running_var" in k:
UpperCamelCase_ : Union[str, Any] = torch.tensor([0] )
UpperCamelCase_ : Tuple = k.replace('running_var' , 'num_batches_tracked' )
UpperCamelCase_ : Union[str, Any] = zero
return new
def __lowercase ( ):
print(F"{os.path.abspath(os.path.join(lowerCamelCase , os.pardir ) )}/demo.ipynb" )
def __lowercase ( lowerCamelCase : Any , lowerCamelCase : Optional[int]="RGB" ):
assert isinstance(lowerCamelCase , lowerCamelCase )
if os.path.isfile(lowerCamelCase ):
UpperCamelCase_ : List[Any] = cva.imread(lowerCamelCase )
else:
UpperCamelCase_ : Any = get_image_from_url(lowerCamelCase )
assert img is not None, F"could not connect to: {im}"
UpperCamelCase_ : Any = cva.cvtColor(lowerCamelCase , cva.COLOR_BGR2RGB )
if input_format == "RGB":
UpperCamelCase_ : Optional[Any] = img[:, :, ::-1]
return img
def __lowercase ( lowerCamelCase : Tuple , lowerCamelCase : int=1 ):
return (images[i : i + batch] for i in range(0 , len(lowerCamelCase ) , lowerCamelCase ))
| 417
|
from typing import List, Optional, Union
import numpy as np
import PIL.Image
from ...image_processing_utils import BaseImageProcessor, BatchFeature
from ...image_transforms import rescale, resize, to_channel_dimension_format
from ...image_utils import (
ChannelDimension,
PILImageResampling,
get_image_size,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, logging
a_ = logging.get_logger(__name__)
class _lowercase ( snake_case_ ):
lowercase = ['pixel_values']
def __init__( self : Optional[int] , snake_case : bool = True , snake_case : int = 3_2 , snake_case : List[str]=PILImageResampling.BILINEAR , snake_case : bool = True , **snake_case : Tuple , ) -> None:
"""simple docstring"""
UpperCamelCase_ : int = do_resize
UpperCamelCase_ : Union[str, Any] = do_rescale
UpperCamelCase_ : Any = size_divisor
UpperCamelCase_ : str = resample
super().__init__(**snake_case )
def SCREAMING_SNAKE_CASE__ ( self : Dict , snake_case : np.ndarray , snake_case : int , snake_case : Optional[Any] , snake_case : Optional[ChannelDimension] = None , **snake_case : str ) -> np.ndarray:
"""simple docstring"""
UpperCamelCase_, UpperCamelCase_ : Dict = get_image_size(snake_case )
# Rounds the height and width down to the closest multiple of size_divisor
UpperCamelCase_ : Optional[int] = height // size_divisor * size_divisor
UpperCamelCase_ : Union[str, Any] = width // size_divisor * size_divisor
UpperCamelCase_ : Any = resize(snake_case , (new_h, new_w) , resample=snake_case , data_format=snake_case , **snake_case )
return image
def SCREAMING_SNAKE_CASE__ ( self : Dict , snake_case : np.ndarray , snake_case : float , snake_case : Optional[ChannelDimension] = None , **snake_case : Optional[int] ) -> np.ndarray:
"""simple docstring"""
return rescale(image=snake_case , scale=snake_case , data_format=snake_case , **snake_case )
def SCREAMING_SNAKE_CASE__ ( self : Dict , snake_case : Union["PIL.Image.Image", TensorType, List["PIL.Image.Image"], List[TensorType]] , snake_case : Optional[bool] = None , snake_case : Optional[int] = None , snake_case : str=None , snake_case : Optional[bool] = None , snake_case : Optional[Union[TensorType, str]] = None , snake_case : ChannelDimension = ChannelDimension.FIRST , **snake_case : Tuple , ) -> BatchFeature:
"""simple docstring"""
UpperCamelCase_ : str = do_resize if do_resize is not None else self.do_resize
UpperCamelCase_ : Optional[Any] = do_rescale if do_rescale is not None else self.do_rescale
UpperCamelCase_ : str = size_divisor if size_divisor is not None else self.size_divisor
UpperCamelCase_ : int = resample if resample is not None else self.resample
if do_resize and size_divisor is None:
raise ValueError('size_divisor is required for resizing' )
UpperCamelCase_ : int = make_list_of_images(snake_case )
if not valid_images(snake_case ):
raise ValueError('Invalid image(s)' )
# All transformations expect numpy arrays.
UpperCamelCase_ : Optional[int] = [to_numpy_array(snake_case ) for img in images]
if do_resize:
UpperCamelCase_ : List[str] = [self.resize(snake_case , size_divisor=snake_case , resample=snake_case ) for image in images]
if do_rescale:
UpperCamelCase_ : List[str] = [self.rescale(snake_case , scale=1 / 2_5_5 ) for image in images]
UpperCamelCase_ : Tuple = [to_channel_dimension_format(snake_case , snake_case ) for image in images]
UpperCamelCase_ : Dict = {'pixel_values': images}
return BatchFeature(data=snake_case , tensor_type=snake_case )
| 417
| 1
|
"""simple docstring"""
import random
import unittest
import torch
from diffusers import IFInpaintingPipeline
from diffusers.utils import floats_tensor
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import skip_mps, torch_device
from ..pipeline_params import (
TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_INPAINTING_PARAMS,
)
from ..test_pipelines_common import PipelineTesterMixin
from . import IFPipelineTesterMixin
@skip_mps
class __UpperCAmelCase ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ):
A__ : Any = IFInpaintingPipeline
A__ : Dict = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"width", "height"}
A__ : List[Any] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS
A__ : Dict = PipelineTesterMixin.required_optional_params - {"latents"}
def _a ( self ):
return self._get_dummy_components()
def _a ( self , _lowerCamelCase , _lowerCamelCase=0 ):
if str(_snake_case ).startswith("mps" ):
lowerCamelCase__ =torch.manual_seed(_snake_case )
else:
lowerCamelCase__ =torch.Generator(device=_snake_case ).manual_seed(_snake_case )
lowerCamelCase__ =floats_tensor((1, 3, 32, 32) , rng=random.Random(_snake_case ) ).to(_snake_case )
lowerCamelCase__ =floats_tensor((1, 3, 32, 32) , rng=random.Random(_snake_case ) ).to(_snake_case )
lowerCamelCase__ ={
"prompt": "A painting of a squirrel eating a burger",
"image": image,
"mask_image": mask_image,
"generator": generator,
"num_inference_steps": 2,
"output_type": "numpy",
}
return inputs
@unittest.skipIf(
torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , )
def _a ( self ):
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 )
def _a ( self ):
self._test_save_load_optional_components()
@unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA" )
def _a ( self ):
super().test_save_load_floataa(expected_max_diff=1E-1 )
def _a ( self ):
self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 )
def _a ( self ):
self._test_save_load_local()
def _a ( self ):
self._test_inference_batch_single_identical(
expected_max_diff=1E-2 , )
| 708
|
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
a =logging.get_logger(__name__)
a ={
'shi-labs/dinat-mini-in1k-224': 'https://huggingface.co/shi-labs/dinat-mini-in1k-224/resolve/main/config.json',
# See all Dinat models at https://huggingface.co/models?filter=dinat
}
class __UpperCAmelCase ( __lowerCAmelCase , __lowerCAmelCase ):
A__ : str = '''dinat'''
A__ : List[str] = {
'''num_attention_heads''': '''num_heads''',
'''num_hidden_layers''': '''num_layers''',
}
def __init__( self , _lowerCamelCase=4 , _lowerCamelCase=3 , _lowerCamelCase=64 , _lowerCamelCase=[3, 4, 6, 5] , _lowerCamelCase=[2, 4, 8, 16] , _lowerCamelCase=7 , _lowerCamelCase=[[1, 8, 1], [1, 4, 1, 4], [1, 2, 1, 2, 1, 2], [1, 1, 1, 1, 1]] , _lowerCamelCase=3.0 , _lowerCamelCase=True , _lowerCamelCase=0.0 , _lowerCamelCase=0.0 , _lowerCamelCase=0.1 , _lowerCamelCase="gelu" , _lowerCamelCase=0.0_2 , _lowerCamelCase=1E-5 , _lowerCamelCase=0.0 , _lowerCamelCase=None , _lowerCamelCase=None , **_lowerCamelCase , ):
super().__init__(**_lowerCamelCase )
lowerCamelCase__ =patch_size
lowerCamelCase__ =num_channels
lowerCamelCase__ =embed_dim
lowerCamelCase__ =depths
lowerCamelCase__ =len(_lowerCamelCase )
lowerCamelCase__ =num_heads
lowerCamelCase__ =kernel_size
lowerCamelCase__ =dilations
lowerCamelCase__ =mlp_ratio
lowerCamelCase__ =qkv_bias
lowerCamelCase__ =hidden_dropout_prob
lowerCamelCase__ =attention_probs_dropout_prob
lowerCamelCase__ =drop_path_rate
lowerCamelCase__ =hidden_act
lowerCamelCase__ =layer_norm_eps
lowerCamelCase__ =initializer_range
# we set the hidden_size attribute in order to make Dinat work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
lowerCamelCase__ =int(embed_dim * 2 ** (len(_lowerCamelCase ) - 1) )
lowerCamelCase__ =layer_scale_init_value
lowerCamelCase__ =["stem"] + [F'''stage{idx}''' for idx in range(1 , len(_lowerCamelCase ) + 1 )]
lowerCamelCase__ , lowerCamelCase__ =get_aligned_output_features_output_indices(
out_features=_lowerCamelCase , out_indices=_lowerCamelCase , stage_names=self.stage_names )
| 132
| 0
|
'''simple docstring'''
import json
import unittest
import numpy as np
from huggingface_hub import hf_hub_download
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from transformers import OneFormerImageProcessor
from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle
from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput
if is_vision_available():
from PIL import Image
def lowerCamelCase__ ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Tuple="shi-labs/oneformer_demo" ):
with open(hf_hub_download(__A , __A , repo_type='dataset' ) , 'r' ) as f:
UpperCAmelCase = json.load(__A )
UpperCAmelCase = {}
UpperCAmelCase = []
UpperCAmelCase = []
for key, info in class_info.items():
UpperCAmelCase = info['''name''']
class_names.append(info['name'] )
if info["isthing"]:
thing_ids.append(int(__A ) )
UpperCAmelCase = thing_ids
UpperCAmelCase = class_names
return metadata
class lowercase_ ( unittest.TestCase ):
'''simple docstring'''
def __init__( self , a_ , a_=7 , a_=3 , a_=3_0 , a_=4_0_0 , a_=None , a_=True , a_=True , a_=[0.5, 0.5, 0.5] , a_=[0.5, 0.5, 0.5] , a_=1_0 , a_=False , a_=2_5_5 , a_="shi-labs/oneformer_demo" , a_="ade20k_panoptic.json" , a_=1_0 , ) -> Dict:
"""simple docstring"""
UpperCAmelCase = parent
UpperCAmelCase = batch_size
UpperCAmelCase = num_channels
UpperCAmelCase = min_resolution
UpperCAmelCase = max_resolution
UpperCAmelCase = do_resize
UpperCAmelCase = {'''shortest_edge''': 3_2, '''longest_edge''': 1_3_3_3} if size is None else size
UpperCAmelCase = do_normalize
UpperCAmelCase = image_mean
UpperCAmelCase = image_std
UpperCAmelCase = class_info_file
UpperCAmelCase = prepare_metadata(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
UpperCAmelCase = num_text
UpperCAmelCase = repo_path
# for the post_process_functions
UpperCAmelCase = 2
UpperCAmelCase = 1_0
UpperCAmelCase = 1_0
UpperCAmelCase = 3
UpperCAmelCase = 4
UpperCAmelCase = num_labels
UpperCAmelCase = do_reduce_labels
UpperCAmelCase = ignore_index
def snake_case_ ( self ) -> int:
"""simple docstring"""
return {
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"num_labels": self.num_labels,
"do_reduce_labels": self.do_reduce_labels,
"ignore_index": self.ignore_index,
"class_info_file": self.class_info_file,
"metadata": self.metadata,
"num_text": self.num_text,
}
def snake_case_ ( self , a_ , a_=False ) -> Optional[Any]:
"""simple docstring"""
if not batched:
UpperCAmelCase = image_inputs[0]
if isinstance(__SCREAMING_SNAKE_CASE , Image.Image ):
UpperCAmelCase = image.size
else:
UpperCAmelCase = image.shape[1], image.shape[2]
if w < h:
UpperCAmelCase = int(self.size['shortest_edge'] * h / w )
UpperCAmelCase = self.size['''shortest_edge''']
elif w > h:
UpperCAmelCase = self.size['''shortest_edge''']
UpperCAmelCase = int(self.size['shortest_edge'] * w / h )
else:
UpperCAmelCase = self.size['''shortest_edge''']
UpperCAmelCase = self.size['''shortest_edge''']
else:
UpperCAmelCase = []
for image in image_inputs:
UpperCAmelCase = self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
UpperCAmelCase = max(__SCREAMING_SNAKE_CASE , key=lambda a_ : item[0] )[0]
UpperCAmelCase = max(__SCREAMING_SNAKE_CASE , key=lambda a_ : item[1] )[1]
return expected_height, expected_width
def snake_case_ ( self ) -> List[str]:
"""simple docstring"""
return OneFormerForUniversalSegmentationOutput(
# +1 for null class
class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1) ) , masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width) ) , )
@require_torch
@require_vision
class lowercase_ ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ):
'''simple docstring'''
__lowerCAmelCase : List[Any] = OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None
# only for test_image_processing_common.test_image_proc_to_json_string
__lowerCAmelCase : Union[str, Any] = image_processing_class
def snake_case_ ( self ) -> List[str]:
"""simple docstring"""
UpperCAmelCase = OneFormerImageProcessorTester(self )
@property
def snake_case_ ( self ) -> Any:
"""simple docstring"""
return self.image_processing_tester.prepare_image_processor_dict()
def snake_case_ ( self ) -> Dict:
"""simple docstring"""
UpperCAmelCase = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , 'image_mean' ) )
self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , 'image_std' ) )
self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , 'do_normalize' ) )
self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , 'do_resize' ) )
self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , 'size' ) )
self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , 'ignore_index' ) )
self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , 'class_info_file' ) )
self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , 'num_text' ) )
self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , 'repo_path' ) )
self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , 'metadata' ) )
self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , 'do_reduce_labels' ) )
def snake_case_ ( self ) -> str:
"""simple docstring"""
pass
def snake_case_ ( self ) -> Tuple:
"""simple docstring"""
# Initialize image_processor
UpperCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
UpperCAmelCase = prepare_image_inputs(self.image_processing_tester , equal_resolution=__SCREAMING_SNAKE_CASE )
for image in image_inputs:
self.assertIsInstance(__SCREAMING_SNAKE_CASE , Image.Image )
# Test not batched input
UpperCAmelCase = image_processor(image_inputs[0] , ['semantic'] , return_tensors='pt' ).pixel_values
UpperCAmelCase = self.image_processing_tester.get_expected_values(__SCREAMING_SNAKE_CASE )
self.assertEqual(
encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , )
# Test batched
UpperCAmelCase = self.image_processing_tester.get_expected_values(__SCREAMING_SNAKE_CASE , batched=__SCREAMING_SNAKE_CASE )
UpperCAmelCase = image_processor(
__SCREAMING_SNAKE_CASE , ['semantic'] * len(__SCREAMING_SNAKE_CASE ) , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processing_tester.batch_size,
self.image_processing_tester.num_channels,
expected_height,
expected_width,
) , )
def snake_case_ ( self ) -> str:
"""simple docstring"""
# Initialize image_processor
UpperCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
UpperCAmelCase = prepare_image_inputs(self.image_processing_tester , equal_resolution=__SCREAMING_SNAKE_CASE , numpify=__SCREAMING_SNAKE_CASE )
for image in image_inputs:
self.assertIsInstance(__SCREAMING_SNAKE_CASE , np.ndarray )
# Test not batched input
UpperCAmelCase = image_processor(image_inputs[0] , ['semantic'] , return_tensors='pt' ).pixel_values
UpperCAmelCase = self.image_processing_tester.get_expected_values(__SCREAMING_SNAKE_CASE )
self.assertEqual(
encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , )
# Test batched
UpperCAmelCase = self.image_processing_tester.get_expected_values(__SCREAMING_SNAKE_CASE , batched=__SCREAMING_SNAKE_CASE )
UpperCAmelCase = image_processor(
__SCREAMING_SNAKE_CASE , ['semantic'] * len(__SCREAMING_SNAKE_CASE ) , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processing_tester.batch_size,
self.image_processing_tester.num_channels,
expected_height,
expected_width,
) , )
def snake_case_ ( self ) -> int:
"""simple docstring"""
# Initialize image_processor
UpperCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
UpperCAmelCase = prepare_image_inputs(self.image_processing_tester , equal_resolution=__SCREAMING_SNAKE_CASE , torchify=__SCREAMING_SNAKE_CASE )
for image in image_inputs:
self.assertIsInstance(__SCREAMING_SNAKE_CASE , torch.Tensor )
# Test not batched input
UpperCAmelCase = image_processor(image_inputs[0] , ['semantic'] , return_tensors='pt' ).pixel_values
UpperCAmelCase = self.image_processing_tester.get_expected_values(__SCREAMING_SNAKE_CASE )
self.assertEqual(
encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , )
# Test batched
UpperCAmelCase = self.image_processing_tester.get_expected_values(__SCREAMING_SNAKE_CASE , batched=__SCREAMING_SNAKE_CASE )
UpperCAmelCase = image_processor(
__SCREAMING_SNAKE_CASE , ['semantic'] * len(__SCREAMING_SNAKE_CASE ) , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processing_tester.batch_size,
self.image_processing_tester.num_channels,
expected_height,
expected_width,
) , )
def snake_case_ ( self , a_=False , a_=False , a_="np" ) -> Any:
"""simple docstring"""
UpperCAmelCase = self.image_processing_class(**self.image_processor_dict )
# prepare image and target
UpperCAmelCase = self.image_processing_tester.num_labels
UpperCAmelCase = None
UpperCAmelCase = None
UpperCAmelCase = prepare_image_inputs(self.image_processing_tester , equal_resolution=__SCREAMING_SNAKE_CASE )
if with_segmentation_maps:
UpperCAmelCase = num_labels
if is_instance_map:
UpperCAmelCase = list(range(__SCREAMING_SNAKE_CASE ) ) * 2
UpperCAmelCase = dict(enumerate(__SCREAMING_SNAKE_CASE ) )
UpperCAmelCase = [
np.random.randint(0 , high * 2 , (img.size[1], img.size[0]) ).astype(np.uinta ) for img in image_inputs
]
if segmentation_type == "pil":
UpperCAmelCase = [Image.fromarray(__SCREAMING_SNAKE_CASE ) for annotation in annotations]
UpperCAmelCase = image_processor(
__SCREAMING_SNAKE_CASE , ['semantic'] * len(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE , return_tensors='pt' , instance_id_to_semantic_id=__SCREAMING_SNAKE_CASE , pad_and_return_pixel_mask=__SCREAMING_SNAKE_CASE , )
return inputs
def snake_case_ ( self ) -> Optional[Any]:
"""simple docstring"""
pass
def snake_case_ ( self ) -> List[str]:
"""simple docstring"""
def common(a_=False , a_=None ):
UpperCAmelCase = self.comm_get_image_processor_inputs(
with_segmentation_maps=__SCREAMING_SNAKE_CASE , is_instance_map=__SCREAMING_SNAKE_CASE , segmentation_type=__SCREAMING_SNAKE_CASE )
UpperCAmelCase = inputs['''mask_labels''']
UpperCAmelCase = inputs['''class_labels''']
UpperCAmelCase = inputs['''pixel_values''']
UpperCAmelCase = inputs['''text_inputs''']
# check the batch_size
for mask_label, class_label, text_input in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
self.assertEqual(mask_label.shape[0] , class_label.shape[0] )
# this ensure padding has happened
self.assertEqual(mask_label.shape[1:] , pixel_values.shape[2:] )
self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , self.image_processing_tester.num_text )
common()
common(is_instance_map=__SCREAMING_SNAKE_CASE )
common(is_instance_map=__SCREAMING_SNAKE_CASE , segmentation_type='pil' )
common(is_instance_map=__SCREAMING_SNAKE_CASE , segmentation_type='pil' )
def snake_case_ ( self ) -> str:
"""simple docstring"""
UpperCAmelCase = np.zeros((2_0, 5_0) )
UpperCAmelCase = 1
UpperCAmelCase = 1
UpperCAmelCase = 1
UpperCAmelCase = binary_mask_to_rle(__SCREAMING_SNAKE_CASE )
self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , 4 )
self.assertEqual(rle[0] , 2_1 )
self.assertEqual(rle[1] , 4_5 )
def snake_case_ ( self ) -> int:
"""simple docstring"""
UpperCAmelCase = self.image_processing_class(
num_labels=self.image_processing_tester.num_classes , max_seq_length=7_7 , task_seq_length=7_7 , class_info_file='ade20k_panoptic.json' , num_text=self.image_processing_tester.num_text , repo_path='shi-labs/oneformer_demo' , )
UpperCAmelCase = self.image_processing_tester.get_fake_oneformer_outputs()
UpperCAmelCase = fature_extractor.post_process_semantic_segmentation(__SCREAMING_SNAKE_CASE )
self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , self.image_processing_tester.batch_size )
self.assertEqual(
segmentation[0].shape , (
self.image_processing_tester.height,
self.image_processing_tester.width,
) , )
UpperCAmelCase = [(1, 4) for i in range(self.image_processing_tester.batch_size )]
UpperCAmelCase = fature_extractor.post_process_semantic_segmentation(__SCREAMING_SNAKE_CASE , target_sizes=__SCREAMING_SNAKE_CASE )
self.assertEqual(segmentation[0].shape , target_sizes[0] )
def snake_case_ ( self ) -> Dict:
"""simple docstring"""
UpperCAmelCase = self.image_processing_class(
num_labels=self.image_processing_tester.num_classes , max_seq_length=7_7 , task_seq_length=7_7 , class_info_file='ade20k_panoptic.json' , num_text=self.image_processing_tester.num_text , repo_path='shi-labs/oneformer_demo' , )
UpperCAmelCase = self.image_processing_tester.get_fake_oneformer_outputs()
UpperCAmelCase = image_processor.post_process_instance_segmentation(__SCREAMING_SNAKE_CASE , threshold=0 )
self.assertTrue(len(__SCREAMING_SNAKE_CASE ) == self.image_processing_tester.batch_size )
for el in segmentation:
self.assertTrue('segmentation' in el )
self.assertTrue('segments_info' in el )
self.assertEqual(type(el['segments_info'] ) , __SCREAMING_SNAKE_CASE )
self.assertEqual(
el['segmentation'].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
def snake_case_ ( self ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase = self.image_processing_class(
num_labels=self.image_processing_tester.num_classes , max_seq_length=7_7 , task_seq_length=7_7 , class_info_file='ade20k_panoptic.json' , num_text=self.image_processing_tester.num_text , repo_path='shi-labs/oneformer_demo' , )
UpperCAmelCase = self.image_processing_tester.get_fake_oneformer_outputs()
UpperCAmelCase = image_processor.post_process_panoptic_segmentation(__SCREAMING_SNAKE_CASE , threshold=0 )
self.assertTrue(len(__SCREAMING_SNAKE_CASE ) == self.image_processing_tester.batch_size )
for el in segmentation:
self.assertTrue('segmentation' in el )
self.assertTrue('segments_info' in el )
self.assertEqual(type(el['segments_info'] ) , __SCREAMING_SNAKE_CASE )
self.assertEqual(
el['segmentation'].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
| 447
|
'''simple docstring'''
import inspect
import os
import re
from transformers.configuration_utils import PretrainedConfig
from transformers.utils import direct_transformers_import
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_config_docstrings.py
__lowerCAmelCase = 'src/transformers'
# This is to make sure the transformers module imported is the one in the repo.
__lowerCAmelCase = direct_transformers_import(PATH_TO_TRANSFORMERS)
__lowerCAmelCase = transformers.models.auto.configuration_auto.CONFIG_MAPPING
__lowerCAmelCase = {
# used to compute the property `self.chunk_length`
'EncodecConfig': ['overlap'],
# used as `self.bert_model = BertModel(config, ...)`
'DPRConfig': True,
# not used in modeling files, but it's an important information
'FSMTConfig': ['langs'],
# used internally in the configuration class file
'GPTNeoConfig': ['attention_types'],
# used internally in the configuration class file
'EsmConfig': ['is_folding_model'],
# used during training (despite we don't have training script for these models yet)
'Mask2FormerConfig': ['ignore_value'],
# `ignore_value` used during training (despite we don't have training script for these models yet)
# `norm` used in conversion script (despite not using in the modeling file)
'OneFormerConfig': ['ignore_value', 'norm'],
# used during preprocessing and collation, see `collating_graphormer.py`
'GraphormerConfig': ['spatial_pos_max'],
# used internally in the configuration class file
'T5Config': ['feed_forward_proj'],
# used internally in the configuration class file
# `tokenizer_class` get default value `T5Tokenizer` intentionally
'MT5Config': ['feed_forward_proj', 'tokenizer_class'],
'UMT5Config': ['feed_forward_proj', 'tokenizer_class'],
# used internally in the configuration class file
'LongT5Config': ['feed_forward_proj'],
# used internally in the configuration class file
'SwitchTransformersConfig': ['feed_forward_proj'],
# having default values other than `1e-5` - we can't fix them without breaking
'BioGptConfig': ['layer_norm_eps'],
# having default values other than `1e-5` - we can't fix them without breaking
'GLPNConfig': ['layer_norm_eps'],
# having default values other than `1e-5` - we can't fix them without breaking
'SegformerConfig': ['layer_norm_eps'],
# having default values other than `1e-5` - we can't fix them without breaking
'CvtConfig': ['layer_norm_eps'],
# having default values other than `1e-5` - we can't fix them without breaking
'PerceiverConfig': ['layer_norm_eps'],
# used internally to calculate the feature size
'InformerConfig': ['num_static_real_features', 'num_time_features'],
# used internally to calculate the feature size
'TimeSeriesTransformerConfig': ['num_static_real_features', 'num_time_features'],
# used internally to calculate the feature size
'AutoformerConfig': ['num_static_real_features', 'num_time_features'],
# used internally to calculate `mlp_dim`
'SamVisionConfig': ['mlp_ratio'],
# For (head) training, but so far not implemented
'ClapAudioConfig': ['num_classes'],
# Not used, but providing useful information to users
'SpeechT5HifiGanConfig': ['sampling_rate'],
}
# TODO (ydshieh): Check the failing cases, try to fix them or move some cases to the above block once we are sure
SPECIAL_CASES_TO_ALLOW.update(
{
'CLIPSegConfig': True,
'DeformableDetrConfig': True,
'DetaConfig': True,
'DinatConfig': True,
'DonutSwinConfig': True,
'EfficientFormerConfig': True,
'FSMTConfig': True,
'JukeboxConfig': True,
'LayoutLMv2Config': True,
'MaskFormerSwinConfig': True,
'MT5Config': True,
'NatConfig': True,
'OneFormerConfig': True,
'PerceiverConfig': True,
'RagConfig': True,
'SpeechT5Config': True,
'SwinConfig': True,
'Swin2SRConfig': True,
'Swinv2Config': True,
'SwitchTransformersConfig': True,
'TableTransformerConfig': True,
'TapasConfig': True,
'TransfoXLConfig': True,
'UniSpeechConfig': True,
'UniSpeechSatConfig': True,
'WavLMConfig': True,
'WhisperConfig': True,
# TODO: @Arthur (for `alignment_head` and `alignment_layer`)
'JukeboxPriorConfig': True,
# TODO: @Younes (for `is_decoder`)
'Pix2StructTextConfig': True,
}
)
def _UpperCAmelCase ( __A : Optional[Any] , __A : List[str] , __A : List[str] , __A : Union[str, Any] ):
a_ : List[str] = False
for attribute in attributes:
for modeling_source in source_strings:
# check if we can find `config.xxx`, `getattr(config, "xxx", ...)` or `getattr(self.config, "xxx", ...)`
if (
f'config.{attribute}' in modeling_source
or f'getattr(config, "{attribute}"' in modeling_source
or f'getattr(self.config, "{attribute}"' in modeling_source
):
a_ : Tuple = True
# Deal with multi-line cases
elif (
re.search(
Rf'getattr[ \t\v\n\r\f]*\([ \t\v\n\r\f]*(self\.)?config,[ \t\v\n\r\f]*"{attribute}"' , __A , )
is not None
):
a_ : Union[str, Any] = True
# `SequenceSummary` is called with `SequenceSummary(config)`
elif attribute in [
"summary_type",
"summary_use_proj",
"summary_activation",
"summary_last_dropout",
"summary_proj_to_labels",
"summary_first_dropout",
]:
if "SequenceSummary" in modeling_source:
a_ : Any = True
if attribute_used:
break
if attribute_used:
break
# common and important attributes, even if they do not always appear in the modeling files
a_ : Tuple = [
'''bos_index''',
'''eos_index''',
'''pad_index''',
'''unk_index''',
'''mask_index''',
'''image_size''',
'''use_cache''',
'''out_features''',
'''out_indices''',
]
a_ : Tuple = ['''encoder_no_repeat_ngram_size''']
# Special cases to be allowed
a_ : Optional[int] = True
if not attribute_used:
a_ : Optional[Any] = False
for attribute in attributes:
# Allow if the default value in the configuration class is different from the one in `PretrainedConfig`
if attribute in ["is_encoder_decoder"] and default_value is True:
a_ : Dict = True
elif attribute in ["tie_word_embeddings"] and default_value is False:
a_ : List[str] = True
# Allow cases without checking the default value in the configuration class
elif attribute in attributes_to_allow + attributes_used_in_generation:
a_ : Optional[int] = True
elif attribute.endswith('''_token_id''' ):
a_ : Tuple = True
# configuration class specific cases
if not case_allowed:
a_ : Dict = SPECIAL_CASES_TO_ALLOW.get(config_class.__name__ , [] )
a_ : int = allowed_cases is True or attribute in allowed_cases
return attribute_used or case_allowed
def _UpperCAmelCase ( __A : Union[str, Any] ):
a_ : str = dict(inspect.signature(config_class.__init__ ).parameters )
a_ : List[str] = [x for x in list(signature.keys() ) if x not in ['''self''', '''kwargs''']]
a_ : Optional[Any] = [signature[param].default for param in parameter_names]
# If `attribute_map` exists, an attribute can have different names to be used in the modeling files, and as long
# as one variant is used, the test should pass
a_ : int = {}
if len(config_class.attribute_map ) > 0:
a_ : List[str] = {v: k for k, v in config_class.attribute_map.items()}
# Get the path to modeling source files
a_ : Tuple = inspect.getsourcefile(__A )
a_ : str = os.path.dirname(__A )
# Let's check against all frameworks: as long as one framework uses an attribute, we are good.
a_ : Tuple = [os.path.join(__A , __A ) for fn in os.listdir(__A ) if fn.startswith('''modeling_''' )]
# Get the source code strings
a_ : Dict = []
for path in modeling_paths:
if os.path.isfile(__A ):
with open(__A ) as fp:
modeling_sources.append(fp.read() )
a_ : List[Any] = []
for config_param, default_value in zip(__A , __A ):
# `attributes` here is all the variant names for `config_param`
a_ : int = [config_param]
# some configuration classes have non-empty `attribute_map`, and both names could be used in the
# corresponding modeling files. As long as one of them appears, it is fine.
if config_param in reversed_attribute_map:
attributes.append(reversed_attribute_map[config_param] )
if not check_attribute_being_used(__A , __A , __A , __A ):
unused_attributes.append(attributes[0] )
return sorted(__A )
def _UpperCAmelCase ( ):
a_ : Optional[int] = {}
for _config_class in list(CONFIG_MAPPING.values() ):
# Skip deprecated models
if "models.deprecated" in _config_class.__module__:
continue
# Some config classes are not in `CONFIG_MAPPING` (e.g. `CLIPVisionConfig`, `Blip2VisionConfig`, etc.)
a_ : int = [
cls
for name, cls in inspect.getmembers(
inspect.getmodule(_config_class ) , lambda __A : inspect.isclass(__A )
and issubclass(__A , __A )
and inspect.getmodule(__A ) == inspect.getmodule(_config_class ) , )
]
for config_class in config_classes_in_module:
a_ : int = check_config_attributes_being_used(__A )
if len(__A ) > 0:
a_ : Dict = unused_attributes
if len(__A ) > 0:
a_ : Dict = '''The following configuration classes contain unused attributes in the corresponding modeling files:\n'''
for name, attributes in configs_with_unused_attributes.items():
error += f'{name}: {attributes}\n'
raise ValueError(__A )
if __name__ == "__main__":
check_config_attributes()
| 466
| 0
|
# Lint as: python3
import sys
from collections.abc import Mapping
from typing import TYPE_CHECKING, Dict, Optional
import numpy as np
import pyarrow as pa
from .. import config
from ..utils.logging import get_logger
from ..utils.py_utils import map_nested
from .formatting import TensorFormatter
if TYPE_CHECKING:
import jax
import jaxlib
snake_case : List[Any] = get_logger()
snake_case : Optional[dict] = None
class snake_case_ (TensorFormatter[Mapping, '''jax.Array''', Mapping] ):
def __init__( self :Tuple ,__snake_case :List[str]=None ,__snake_case :Dict=None ,**__snake_case :Union[str, Any] ) -> Tuple:
super().__init__(features=__snake_case )
import jax
from jaxlib.xla_client import Device
if isinstance(__snake_case ,__snake_case ):
raise ValueError(
F'Expected {device} to be a `str` not {type(__snake_case )}, as `jaxlib.xla_extension.Device` '
'is not serializable neither with `pickle` nor with `dill`. Instead you can surround '
'the device with `str()` to get its string identifier that will be internally mapped '
'to the actual `jaxlib.xla_extension.Device`.' )
a__ = device if isinstance(__snake_case ,__snake_case ) else str(jax.devices()[0] )
# using global variable since `jaxlib.xla_extension.Device` is not serializable neither
# with `pickle` nor with `dill`, so we need to use a global variable instead
global DEVICE_MAPPING
if DEVICE_MAPPING is None:
a__ = self._map_devices_to_str()
if self.device not in list(DEVICE_MAPPING.keys() ):
logger.warning(
F'Device with string identifier {self.device} not listed among the available '
F'devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default '
F'device: {str(jax.devices()[0] )}.' )
a__ = str(jax.devices()[0] )
a__ = jnp_array_kwargs
@staticmethod
def lowerCamelCase__( ) -> Dict[str, "jaxlib.xla_extension.Device"]:
import jax
return {str(__snake_case ): device for device in jax.devices()}
def lowerCamelCase__( self :List[Any] ,__snake_case :List[str] ) -> List[Any]:
import jax
import jax.numpy as jnp
if isinstance(__snake_case ,__snake_case ) and column:
if all(
isinstance(__snake_case ,jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ):
return jnp.stack(__snake_case ,axis=0 )
return column
def lowerCamelCase__( self :str ,__snake_case :Any ) -> List[str]:
import jax
import jax.numpy as jnp
if isinstance(__snake_case ,(str, bytes, type(__snake_case )) ):
return value
elif isinstance(__snake_case ,(np.character, np.ndarray) ) and np.issubdtype(value.dtype ,np.character ):
return value.tolist()
a__ = {}
if isinstance(__snake_case ,(np.number, np.ndarray) ) and np.issubdtype(value.dtype ,np.integer ):
# the default int precision depends on the jax config
# see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision
if jax.config.jax_enable_xaa:
a__ = {'dtype': jnp.intaa}
else:
a__ = {'dtype': jnp.intaa}
elif isinstance(__snake_case ,(np.number, np.ndarray) ) and np.issubdtype(value.dtype ,np.floating ):
a__ = {'dtype': jnp.floataa}
elif config.PIL_AVAILABLE and "PIL" in sys.modules:
import PIL.Image
if isinstance(__snake_case ,PIL.Image.Image ):
a__ = np.asarray(__snake_case )
# using global variable since `jaxlib.xla_extension.Device` is not serializable neither
# with `pickle` nor with `dill`, so we need to use a global variable instead
global DEVICE_MAPPING
if DEVICE_MAPPING is None:
a__ = self._map_devices_to_str()
with jax.default_device(DEVICE_MAPPING[self.device] ):
# calling jnp.array on a np.ndarray does copy the data
# see https://github.com/google/jax/issues/4486
return jnp.array(__snake_case ,**{**default_dtype, **self.jnp_array_kwargs} )
def lowerCamelCase__( self :List[Any] ,__snake_case :Tuple ) -> Any:
import jax
# support for torch, tf, jax etc.
if config.TORCH_AVAILABLE and "torch" in sys.modules:
import torch
if isinstance(__snake_case ,torch.Tensor ):
return self._tensorize(data_struct.detach().cpu().numpy()[()] )
if hasattr(__snake_case ,'__array__' ) and not isinstance(__snake_case ,jax.Array ):
a__ = data_struct.__array__()
# support for nested types like struct of list of struct
if isinstance(__snake_case ,np.ndarray ):
if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects
return self._consolidate([self.recursive_tensorize(__snake_case ) for substruct in data_struct] )
elif isinstance(__snake_case ,(list, tuple) ):
return self._consolidate([self.recursive_tensorize(__snake_case ) for substruct in data_struct] )
return self._tensorize(__snake_case )
def lowerCamelCase__( self :Union[str, Any] ,__snake_case :dict ) -> List[Any]:
return map_nested(self._recursive_tensorize ,__snake_case ,map_list=__snake_case )
def lowerCamelCase__( self :Optional[int] ,__snake_case :pa.Table ) -> Mapping:
a__ = self.numpy_arrow_extractor().extract_row(__snake_case )
a__ = self.python_features_decoder.decode_row(__snake_case )
return self.recursive_tensorize(__snake_case )
def lowerCamelCase__( self :int ,__snake_case :pa.Table ) -> "jax.Array":
a__ = self.numpy_arrow_extractor().extract_column(__snake_case )
a__ = self.python_features_decoder.decode_column(__snake_case ,pa_table.column_names[0] )
a__ = self.recursive_tensorize(__snake_case )
a__ = self._consolidate(__snake_case )
return column
def lowerCamelCase__( self :Union[str, Any] ,__snake_case :pa.Table ) -> Mapping:
a__ = self.numpy_arrow_extractor().extract_batch(__snake_case )
a__ = self.python_features_decoder.decode_batch(__snake_case )
a__ = self.recursive_tensorize(__snake_case )
for column_name in batch:
a__ = self._consolidate(batch[column_name] )
return batch
| 657
|
import math
from typing import List, Optional, Tuple, Union
import numpy as np
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from .scheduling_utils import SchedulerMixin, SchedulerOutput
class snake_case_ (lowerCamelCase_ , lowerCamelCase_ ):
UpperCAmelCase__ : Optional[Any] = 1
@register_to_config
def __init__( self :Optional[int] ,__snake_case :int = 10_00 ,__snake_case :Optional[Union[np.ndarray, List[float]]] = None ) -> int:
# set `betas`, `alphas`, `timesteps`
self.set_timesteps(__snake_case )
# standard deviation of the initial noise distribution
a__ = 1.0
# For now we only support F-PNDM, i.e. the runge-kutta method
# For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf
# mainly at formula (9), (12), (13) and the Algorithm 2.
a__ = 4
# running values
a__ = []
def lowerCamelCase__( self :Union[str, Any] ,__snake_case :int ,__snake_case :Union[str, torch.device] = None ) -> Union[str, Any]:
a__ = num_inference_steps
a__ = torch.linspace(1 ,0 ,num_inference_steps + 1 )[:-1]
a__ = torch.cat([steps, torch.tensor([0.0] )] )
if self.config.trained_betas is not None:
a__ = torch.tensor(self.config.trained_betas ,dtype=torch.floataa )
else:
a__ = torch.sin(steps * math.pi / 2 ) ** 2
a__ = (1.0 - self.betas**2) ** 0.5
a__ = (torch.atana(self.betas ,self.alphas ) / math.pi * 2)[:-1]
a__ = timesteps.to(__snake_case )
a__ = []
def lowerCamelCase__( self :Any ,__snake_case :torch.FloatTensor ,__snake_case :int ,__snake_case :torch.FloatTensor ,__snake_case :bool = True ,) -> Union[SchedulerOutput, Tuple]:
if self.num_inference_steps is None:
raise ValueError(
'Number of inference steps is \'None\', you need to run \'set_timesteps\' after creating the scheduler' )
a__ = (self.timesteps == timestep).nonzero().item()
a__ = timestep_index + 1
a__ = sample * self.betas[timestep_index] + model_output * self.alphas[timestep_index]
self.ets.append(__snake_case )
if len(self.ets ) == 1:
a__ = self.ets[-1]
elif len(self.ets ) == 2:
a__ = (3 * self.ets[-1] - self.ets[-2]) / 2
elif len(self.ets ) == 3:
a__ = (23 * self.ets[-1] - 16 * self.ets[-2] + 5 * self.ets[-3]) / 12
else:
a__ = (1 / 24) * (55 * self.ets[-1] - 59 * self.ets[-2] + 37 * self.ets[-3] - 9 * self.ets[-4])
a__ = self._get_prev_sample(__snake_case ,__snake_case ,__snake_case ,__snake_case )
if not return_dict:
return (prev_sample,)
return SchedulerOutput(prev_sample=__snake_case )
def lowerCamelCase__( self :Union[str, Any] ,__snake_case :torch.FloatTensor ,*__snake_case :int ,**__snake_case :Optional[int] ) -> torch.FloatTensor:
return sample
def lowerCamelCase__( self :Optional[Any] ,__snake_case :List[Any] ,__snake_case :Optional[int] ,__snake_case :Dict ,__snake_case :Any ) -> Optional[Any]:
a__ = self.alphas[timestep_index]
a__ = self.betas[timestep_index]
a__ = self.alphas[prev_timestep_index]
a__ = self.betas[prev_timestep_index]
a__ = (sample - sigma * ets) / max(__snake_case ,1E-8 )
a__ = next_alpha * pred + ets * next_sigma
return prev_sample
def __len__( self :Any ) -> Union[str, Any]:
return self.config.num_train_timesteps
| 657
| 1
|
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import warnings
from typing import List
from unittest.mock import Mock
import torch
from torch.utils.data import DataLoader, IterableDataset, TensorDataset
from accelerate.accelerator import Accelerator
from accelerate.utils.dataclasses import DistributedType
class lowercase_ ( UpperCamelCase__):
"""simple docstring"""
def __init__( self , _UpperCAmelCase ):
"""simple docstring"""
a_ = data
def __iter__( self ):
"""simple docstring"""
for element in self.data:
yield element
def lowerCamelCase_ ( UpperCAmelCase__=True ):
"""simple docstring"""
a_ = Accelerator(even_batches=UpperCAmelCase__ )
assert accelerator.num_processes == 2, "this script expects that two GPUs are available"
return accelerator
def lowerCamelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = False ):
"""simple docstring"""
if iterable:
a_ = DummyIterableDataset(torch.as_tensor(range(UpperCAmelCase__ ) ) )
else:
a_ = TensorDataset(torch.as_tensor(range(UpperCAmelCase__ ) ) )
a_ = DataLoader(UpperCAmelCase__ , batch_size=UpperCAmelCase__ )
a_ = accelerator.prepare(UpperCAmelCase__ )
return dl
def lowerCamelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , ):
"""simple docstring"""
a_ = create_dataloader(accelerator=UpperCAmelCase__ , dataset_size=UpperCAmelCase__ , batch_size=UpperCAmelCase__ )
a_ = [len(batch[0] ) for batch in dl]
if accelerator.process_index == 0:
assert batch_sizes == process_0_expected_batch_sizes
elif accelerator.process_index == 1:
assert batch_sizes == process_1_expected_batch_sizes
def lowerCamelCase_ ( ):
"""simple docstring"""
a_ = create_accelerator()
# without padding, we would expect a different number of batches
verify_dataloader_batch_sizes(
UpperCAmelCase__ , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1, 1] , )
# without padding, we would expect the same number of batches, but different sizes
verify_dataloader_batch_sizes(
UpperCAmelCase__ , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 2] , )
def lowerCamelCase_ ( ):
"""simple docstring"""
a_ = create_accelerator(even_batches=UpperCAmelCase__ )
verify_dataloader_batch_sizes(
UpperCAmelCase__ , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1] , )
verify_dataloader_batch_sizes(
UpperCAmelCase__ , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 1] , )
def lowerCamelCase_ ( ):
"""simple docstring"""
a_ = create_accelerator(even_batches=UpperCAmelCase__ )
a_ = torch.nn.Linear(1 , 1 )
a_ = accelerator.prepare(UpperCAmelCase__ )
a_ = create_dataloader(UpperCAmelCase__ , dataset_size=3 , batch_size=1 )
a_ = []
with accelerator.join_uneven_inputs([ddp_model] ):
for batch_idx, batch in enumerate(UpperCAmelCase__ ):
a_ = ddp_model(batch[0].float() )
a_ = output.sum()
loss.backward()
batch_idxs.append(UpperCAmelCase__ )
accelerator.wait_for_everyone()
if accelerator.process_index == 0:
assert batch_idxs == [0, 1]
elif accelerator.process_index == 1:
assert batch_idxs == [0]
def lowerCamelCase_ ( UpperCAmelCase__ ):
"""simple docstring"""
with warnings.catch_warnings(record=UpperCAmelCase__ ) as w:
with accelerator.join_uneven_inputs([Mock()] ):
pass
assert issubclass(w[-1].category , UpperCAmelCase__ )
assert "only supported for multi-GPU" in str(w[-1].message )
def lowerCamelCase_ ( ):
"""simple docstring"""
a_ = True
a_ = False
a_ = create_accelerator(even_batches=UpperCAmelCase__ )
a_ = torch.nn.Linear(1 , 1 )
a_ = accelerator.prepare(UpperCAmelCase__ )
a_ = create_dataloader(UpperCAmelCase__ , dataset_size=3 , batch_size=1 )
a_ = create_dataloader(UpperCAmelCase__ , dataset_size=3 , batch_size=1 )
with accelerator.join_uneven_inputs([ddp_model] , even_batches=UpperCAmelCase__ ):
a_ = train_dl.batch_sampler.even_batches
a_ = valid_dl.batch_sampler.even_batches
assert train_dl_overridden_value == overridden_even_batches
assert valid_dl_overridden_value == overridden_even_batches
assert train_dl.batch_sampler.even_batches == default_even_batches
assert valid_dl.batch_sampler.even_batches == default_even_batches
def lowerCamelCase_ ( ):
"""simple docstring"""
a_ = True
a_ = False
a_ = create_accelerator(even_batches=UpperCAmelCase__ )
a_ = torch.nn.Linear(1 , 1 )
a_ = accelerator.prepare(UpperCAmelCase__ )
create_dataloader(UpperCAmelCase__ , dataset_size=3 , batch_size=1 , iterable=UpperCAmelCase__ )
a_ = create_dataloader(UpperCAmelCase__ , dataset_size=3 , batch_size=1 )
with warnings.catch_warnings():
warnings.filterwarnings("""ignore""" )
try:
with accelerator.join_uneven_inputs([ddp_model] , even_batches=UpperCAmelCase__ ):
a_ = batch_dl.batch_sampler.even_batches
except AttributeError:
# ensure attribute error is not raised when processing iterable dl
raise AssertionError
assert batch_dl_overridden_value == overridden_even_batches
assert batch_dl.batch_sampler.even_batches == default_even_batches
def lowerCamelCase_ ( ):
"""simple docstring"""
a_ = create_accelerator()
a_ = torch.nn.Linear(1 , 1 )
a_ = accelerator.prepare(UpperCAmelCase__ )
create_dataloader(UpperCAmelCase__ , dataset_size=3 , batch_size=1 , iterable=UpperCAmelCase__ )
with warnings.catch_warnings(record=UpperCAmelCase__ ) as w:
with accelerator.join_uneven_inputs([ddp_model] , even_batches=UpperCAmelCase__ ):
pass
assert issubclass(w[-1].category , UpperCAmelCase__ )
assert "only supported for map-style datasets" in str(w[-1].message )
def lowerCamelCase_ ( ):
"""simple docstring"""
a_ = create_accelerator()
accelerator.print("""Test that even_batches variable ensures uniform batches across processes""" )
test_default_ensures_even_batch_sizes()
accelerator.print("""Run tests with even_batches disabled""" )
test_can_disable_even_batches()
accelerator.print("""Test joining uneven inputs""" )
test_can_join_uneven_inputs()
accelerator.print("""Test overriding even_batches when joining uneven inputs""" )
test_join_can_override_even_batches()
accelerator.print("""Test overriding even_batches for mixed dataloader types""" )
test_join_can_override_for_mixed_type_dataloaders()
accelerator.print("""Test overriding even_batches raises a warning for iterable dataloaders""" )
test_join_raises_warning_for_iterable_when_overriding_even_batches()
accelerator.print("""Test join with non DDP distributed raises warning""" )
a_ = accelerator.state.distributed_type
a_ = DistributedType.FSDP
test_join_raises_warning_for_non_ddp_distributed(UpperCAmelCase__ )
a_ = original_state
if __name__ == "__main__":
main()
| 483
|
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import PoolFormerImageProcessor
class lowercase_ ( unittest.TestCase):
"""simple docstring"""
def __init__( self , _UpperCAmelCase , _UpperCAmelCase=7 , _UpperCAmelCase=3 , _UpperCAmelCase=30 , _UpperCAmelCase=400 , _UpperCAmelCase=True , _UpperCAmelCase=None , _UpperCAmelCase=0.9 , _UpperCAmelCase=None , _UpperCAmelCase=True , _UpperCAmelCase=[0.5, 0.5, 0.5] , _UpperCAmelCase=[0.5, 0.5, 0.5] , ):
"""simple docstring"""
a_ = size if size is not None else {"""shortest_edge""": 30}
a_ = crop_size if crop_size is not None else {"""height""": 30, """width""": 30}
a_ = parent
a_ = batch_size
a_ = num_channels
a_ = min_resolution
a_ = max_resolution
a_ = do_resize_and_center_crop
a_ = size
a_ = crop_pct
a_ = crop_size
a_ = do_normalize
a_ = image_mean
a_ = image_std
def lowercase__ ( self ):
"""simple docstring"""
return {
"size": self.size,
"do_resize_and_center_crop": self.do_resize_and_center_crop,
"crop_pct": self.crop_pct,
"crop_size": self.crop_size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
}
@require_torch
@require_vision
class lowercase_ ( UpperCamelCase__ ,unittest.TestCase):
"""simple docstring"""
snake_case_ = PoolFormerImageProcessor if is_vision_available() else None
def lowercase__ ( self ):
"""simple docstring"""
a_ = PoolFormerImageProcessingTester(self )
@property
def lowercase__ ( self ):
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def lowercase__ ( self ):
"""simple docstring"""
a_ = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(_UpperCAmelCase , """do_resize_and_center_crop""" ) )
self.assertTrue(hasattr(_UpperCAmelCase , """size""" ) )
self.assertTrue(hasattr(_UpperCAmelCase , """crop_pct""" ) )
self.assertTrue(hasattr(_UpperCAmelCase , """do_normalize""" ) )
self.assertTrue(hasattr(_UpperCAmelCase , """image_mean""" ) )
self.assertTrue(hasattr(_UpperCAmelCase , """image_std""" ) )
def lowercase__ ( self ):
"""simple docstring"""
a_ = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"""shortest_edge""": 30} )
self.assertEqual(image_processor.crop_size , {"""height""": 30, """width""": 30} )
a_ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 )
self.assertEqual(image_processor.size , {"""shortest_edge""": 42} )
self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} )
def lowercase__ ( self ):
"""simple docstring"""
pass
def lowercase__ ( self ):
"""simple docstring"""
a_ = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
a_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase )
for image in image_inputs:
self.assertIsInstance(_UpperCAmelCase , Image.Image )
# Test not batched input
a_ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
# Test batched
a_ = image_processing(_UpperCAmelCase , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
def lowercase__ ( self ):
"""simple docstring"""
a_ = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
a_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , numpify=_UpperCAmelCase )
for image in image_inputs:
self.assertIsInstance(_UpperCAmelCase , np.ndarray )
# Test not batched input
a_ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
# Test batched
a_ = image_processing(_UpperCAmelCase , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
def lowercase__ ( self ):
"""simple docstring"""
a_ = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
a_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , torchify=_UpperCAmelCase )
for image in image_inputs:
self.assertIsInstance(_UpperCAmelCase , torch.Tensor )
# Test not batched input
a_ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
# Test batched
a_ = image_processing(_UpperCAmelCase , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
| 483
| 1
|
from __future__ import annotations
from typing import TypedDict
class _a ( __a ):
__a : str
__a : int
def snake_case_ (_a : str ):
if not isinstance(_a , _a ):
raise TypeError('''The parameter s type must be str.''' )
return [s[i:] + s[:i] for i in range(len(_a ) )]
def snake_case_ (_a : str ):
if not isinstance(_a , _a ):
raise TypeError('''The parameter s type must be str.''' )
if not s:
raise ValueError('''The parameter s must not be empty.''' )
UpperCAmelCase = all_rotations(_a )
rotations.sort() # sort the list of rotations in alphabetically order
# make a string composed of the last char of each rotation
UpperCAmelCase = {
'''bwt_string''': ''''''.join([word[-1] for word in rotations] ),
'''idx_original_string''': rotations.index(_a ),
}
return response
def snake_case_ (_a : str , _a : int ):
if not isinstance(_a , _a ):
raise TypeError('''The parameter bwt_string type must be str.''' )
if not bwt_string:
raise ValueError('''The parameter bwt_string must not be empty.''' )
try:
UpperCAmelCase = int(_a )
except ValueError:
raise TypeError(
'''The parameter idx_original_string type must be int or passive'''
''' of cast to int.''' )
if idx_original_string < 0:
raise ValueError('''The parameter idx_original_string must not be lower than 0.''' )
if idx_original_string >= len(_a ):
raise ValueError(
'''The parameter idx_original_string must be lower than''' ''' len(bwt_string).''' )
UpperCAmelCase = [''''''] * len(_a )
for _ in range(len(_a ) ):
for i in range(len(_a ) ):
UpperCAmelCase = bwt_string[i] + ordered_rotations[i]
ordered_rotations.sort()
return ordered_rotations[idx_original_string]
if __name__ == "__main__":
A ='Provide a string that I will generate its BWT transform: '
A =input(entry_msg).strip()
A =bwt_transform(s)
print(
f"""Burrows Wheeler transform for string '{s}' results """
f"""in '{result["bwt_string"]}'"""
)
A =reverse_bwt(result['bwt_string'], result['idx_original_string'])
print(
f"""Reversing Burrows Wheeler transform for entry '{result["bwt_string"]}' """
f"""we get original string '{original_string}'"""
)
| 717
|
'''simple docstring'''
import unittest
import numpy as np
from transformers import RobertaPreLayerNormConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
if is_flax_available():
import jax.numpy as jnp
from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import (
FlaxRobertaPreLayerNormForCausalLM,
FlaxRobertaPreLayerNormForMaskedLM,
FlaxRobertaPreLayerNormForMultipleChoice,
FlaxRobertaPreLayerNormForQuestionAnswering,
FlaxRobertaPreLayerNormForSequenceClassification,
FlaxRobertaPreLayerNormForTokenClassification,
FlaxRobertaPreLayerNormModel,
)
class _a ( unittest.TestCase ):
def __init__( self : List[Any] , lowercase : Dict , lowercase : List[str]=13 , lowercase : str=7 , lowercase : List[str]=True , lowercase : List[str]=True , lowercase : Optional[Any]=True , lowercase : Optional[Any]=True , lowercase : Any=99 , lowercase : Any=32 , lowercase : Any=5 , lowercase : Tuple=4 , lowercase : List[Any]=37 , lowercase : List[Any]="gelu" , lowercase : int=0.1 , lowercase : Any=0.1 , lowercase : Optional[int]=512 , lowercase : List[str]=16 , lowercase : Union[str, Any]=2 , lowercase : int=0.02 , lowercase : int=4 , ):
'''simple docstring'''
UpperCAmelCase = parent
UpperCAmelCase = batch_size
UpperCAmelCase = seq_length
UpperCAmelCase = is_training
UpperCAmelCase = use_attention_mask
UpperCAmelCase = use_token_type_ids
UpperCAmelCase = use_labels
UpperCAmelCase = vocab_size
UpperCAmelCase = hidden_size
UpperCAmelCase = num_hidden_layers
UpperCAmelCase = num_attention_heads
UpperCAmelCase = intermediate_size
UpperCAmelCase = hidden_act
UpperCAmelCase = hidden_dropout_prob
UpperCAmelCase = attention_probs_dropout_prob
UpperCAmelCase = max_position_embeddings
UpperCAmelCase = type_vocab_size
UpperCAmelCase = type_sequence_label_size
UpperCAmelCase = initializer_range
UpperCAmelCase = num_choices
def A ( self : Any ):
'''simple docstring'''
UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase = None
if self.use_attention_mask:
UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] )
UpperCAmelCase = None
if self.use_token_type_ids:
UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
UpperCAmelCase = RobertaPreLayerNormConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase , initializer_range=self.initializer_range , )
return config, input_ids, token_type_ids, attention_mask
def A ( self : List[Any] ):
'''simple docstring'''
UpperCAmelCase = self.prepare_config_and_inputs()
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = config_and_inputs
UpperCAmelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask}
return config, inputs_dict
def A ( self : Optional[Any] ):
'''simple docstring'''
UpperCAmelCase = self.prepare_config_and_inputs()
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = config_and_inputs
UpperCAmelCase = True
UpperCAmelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
return (
config,
input_ids,
token_type_ids,
encoder_hidden_states,
encoder_attention_mask,
)
@require_flax
# Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40
class _a ( __a , unittest.TestCase ):
__a : Any = True
__a : str = (
(
FlaxRobertaPreLayerNormModel,
FlaxRobertaPreLayerNormForCausalLM,
FlaxRobertaPreLayerNormForMaskedLM,
FlaxRobertaPreLayerNormForSequenceClassification,
FlaxRobertaPreLayerNormForTokenClassification,
FlaxRobertaPreLayerNormForMultipleChoice,
FlaxRobertaPreLayerNormForQuestionAnswering,
)
if is_flax_available()
else ()
)
def A ( self : Any ):
'''simple docstring'''
UpperCAmelCase = FlaxRobertaPreLayerNormModelTester(self )
@slow
def A ( self : Optional[int] ):
'''simple docstring'''
for model_class_name in self.all_model_classes:
UpperCAmelCase = model_class_name.from_pretrained('''andreasmadsen/efficient_mlm_m0.40''' , from_pt=lowercase )
UpperCAmelCase = model(np.ones((1, 1) ) )
self.assertIsNotNone(lowercase )
@require_flax
class _a ( unittest.TestCase ):
@slow
def A ( self : Union[str, Any] ):
'''simple docstring'''
UpperCAmelCase = FlaxRobertaPreLayerNormForMaskedLM.from_pretrained('''andreasmadsen/efficient_mlm_m0.40''' , from_pt=lowercase )
UpperCAmelCase = np.array([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] , dtype=jnp.intaa )
UpperCAmelCase = model(lowercase )[0]
UpperCAmelCase = [1, 11, 50_265]
self.assertEqual(list(output.shape ) , lowercase )
# compare the actual values for a slice.
UpperCAmelCase = np.array(
[[[40.4880, 18.0199, -5.2367], [-1.8877, -4.0885, 10.7085], [-2.2613, -5.6110, 7.2665]]] , dtype=np.floataa )
self.assertTrue(np.allclose(output[:, :3, :3] , lowercase , atol=1E-4 ) )
@slow
def A ( self : Optional[Any] ):
'''simple docstring'''
UpperCAmelCase = FlaxRobertaPreLayerNormModel.from_pretrained('''andreasmadsen/efficient_mlm_m0.40''' , from_pt=lowercase )
UpperCAmelCase = np.array([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] , dtype=jnp.intaa )
UpperCAmelCase = model(lowercase )[0]
# compare the actual values for a slice.
UpperCAmelCase = np.array(
[[[0.0208, -0.0356, 0.0237], [-0.1569, -0.0411, -0.2626], [0.1879, 0.0125, -0.0089]]] , dtype=np.floataa )
self.assertTrue(np.allclose(output[:, :3, :3] , lowercase , atol=1E-4 ) )
| 358
| 0
|
"""simple docstring"""
from __future__ import annotations
def __A ( a_ :list) -> float:
if not nums:
raise ValueError('''List is empty''')
return sum(a_) / len(a_)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 52
|
"""simple docstring"""
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import rescale, resize, to_channel_dimension_format
from ...image_utils import (
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
__lowerCamelCase = logging.get_logger(__name__)
def a ( __snake_case : Any, __snake_case : Dict ):
'''simple docstring'''
UpperCAmelCase_ :Any = b.T
UpperCAmelCase_ :Tuple = np.sum(np.square(__snake_case ), axis=1 )
UpperCAmelCase_ :List[str] = np.sum(np.square(__snake_case ), axis=0 )
UpperCAmelCase_ :Optional[Any] = np.matmul(__snake_case, __snake_case )
UpperCAmelCase_ :str = aa[:, None] - 2 * ab + ba[None, :]
return d
def a ( __snake_case : Union[str, Any], __snake_case : Tuple ):
'''simple docstring'''
UpperCAmelCase_ :List[str] = x.reshape(-1, 3 )
UpperCAmelCase_ :List[str] = squared_euclidean_distance(__snake_case, __snake_case )
return np.argmin(__snake_case, axis=1 )
class _snake_case ( A__ ):
'''simple docstring'''
UpperCamelCase__ =["""pixel_values"""]
def __init__( self : Any , snake_case : Optional[Union[List[List[int]], np.ndarray]] = None , snake_case : bool = True , snake_case : Dict[str, int] = None , snake_case : PILImageResampling = PILImageResampling.BILINEAR , snake_case : bool = True , snake_case : bool = True , **snake_case : Optional[Any] , ):
super().__init__(**snake_case )
UpperCAmelCase_ :List[str] = size if size is not None else {'''height''': 256, '''width''': 256}
UpperCAmelCase_ :Any = get_size_dict(snake_case )
UpperCAmelCase_ :str = np.array(snake_case ) if clusters is not None else None
UpperCAmelCase_ :List[Any] = do_resize
UpperCAmelCase_ :Optional[int] = size
UpperCAmelCase_ :Union[str, Any] = resample
UpperCAmelCase_ :Dict = do_normalize
UpperCAmelCase_ :Optional[Any] = do_color_quantize
def snake_case_ ( self : Any , snake_case : np.ndarray , snake_case : Dict[str, int] , snake_case : PILImageResampling = PILImageResampling.BILINEAR , snake_case : Optional[Union[str, ChannelDimension]] = None , **snake_case : Dict , ):
UpperCAmelCase_ :Any = get_size_dict(snake_case )
if "height" not in size or "width" not in size:
raise ValueError(f'Size dictionary must contain both height and width keys. Got {size.keys()}' )
return resize(
snake_case , size=(size['''height'''], size['''width''']) , resample=snake_case , data_format=snake_case , **snake_case )
def snake_case_ ( self : Tuple , snake_case : np.ndarray , snake_case : Optional[Union[str, ChannelDimension]] = None , ):
UpperCAmelCase_ :Optional[int] = rescale(image=snake_case , scale=1 / 127.5 , data_format=snake_case )
UpperCAmelCase_ :str = image - 1
return image
def snake_case_ ( self : Any , snake_case : ImageInput , snake_case : bool = None , snake_case : Dict[str, int] = None , snake_case : PILImageResampling = None , snake_case : bool = None , snake_case : Optional[bool] = None , snake_case : Optional[Union[List[List[int]], np.ndarray]] = None , snake_case : Optional[Union[str, TensorType]] = None , snake_case : Optional[Union[str, ChannelDimension]] = ChannelDimension.FIRST , **snake_case : List[Any] , ):
UpperCAmelCase_ :Dict = do_resize if do_resize is not None else self.do_resize
UpperCAmelCase_ :List[Any] = size if size is not None else self.size
UpperCAmelCase_ :Optional[int] = get_size_dict(snake_case )
UpperCAmelCase_ :Optional[int] = resample if resample is not None else self.resample
UpperCAmelCase_ :str = do_normalize if do_normalize is not None else self.do_normalize
UpperCAmelCase_ :str = do_color_quantize if do_color_quantize is not None else self.do_color_quantize
UpperCAmelCase_ :Optional[int] = clusters if clusters is not None else self.clusters
UpperCAmelCase_ :Any = np.array(snake_case )
UpperCAmelCase_ :Tuple = make_list_of_images(snake_case )
if not valid_images(snake_case ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
if do_resize and size is None or resample is None:
raise ValueError('''Size and resample must be specified if do_resize is True.''' )
if do_color_quantize and clusters is None:
raise ValueError('''Clusters must be specified if do_color_quantize is True.''' )
# All transformations expect numpy arrays.
UpperCAmelCase_ :Optional[Any] = [to_numpy_array(snake_case ) for image in images]
if do_resize:
UpperCAmelCase_ :Optional[Any] = [self.resize(image=snake_case , size=snake_case , resample=snake_case ) for image in images]
if do_normalize:
UpperCAmelCase_ :Optional[Any] = [self.normalize(image=snake_case ) for image in images]
if do_color_quantize:
UpperCAmelCase_ :List[Any] = [to_channel_dimension_format(snake_case , ChannelDimension.LAST ) for image in images]
# color quantize from (batch_size, height, width, 3) to (batch_size, height, width)
UpperCAmelCase_ :str = np.array(snake_case )
UpperCAmelCase_ :Dict = color_quantize(snake_case , snake_case ).reshape(images.shape[:-1] )
# flatten to (batch_size, height*width)
UpperCAmelCase_ :Tuple = images.shape[0]
UpperCAmelCase_ :int = images.reshape(snake_case , -1 )
# We need to convert back to a list of images to keep consistent behaviour across processors.
UpperCAmelCase_ :int = list(snake_case )
else:
UpperCAmelCase_ :Any = [to_channel_dimension_format(snake_case , snake_case ) for image in images]
UpperCAmelCase_ :Optional[Any] = {'''input_ids''': images}
return BatchFeature(data=snake_case , tensor_type=snake_case )
| 608
| 0
|
'''simple docstring'''
lowerCAmelCase__ : Dict = "\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n"
lowerCAmelCase__ : Tuple = [{"type": "code", "content": INSTALL_CONTENT}]
lowerCAmelCase__ : Tuple = {
"{processor_class}": "FakeProcessorClass",
"{model_class}": "FakeModelClass",
"{object_class}": "FakeObjectClass",
}
| 712
|
'''simple docstring'''
from collections.abc import Iterator, MutableMapping
from dataclasses import dataclass
from typing import Generic, TypeVar
lowerCAmelCase__ : List[str] = TypeVar("KEY")
lowerCAmelCase__ : str = TypeVar("VAL")
@dataclass(frozen=snake_case__ ,slots=snake_case__ )
class SCREAMING_SNAKE_CASE__ ( Generic[KEY, VAL] ):
"""simple docstring"""
SCREAMING_SNAKE_CASE = 42
SCREAMING_SNAKE_CASE = 42
class SCREAMING_SNAKE_CASE__ ( _Item ):
"""simple docstring"""
def __init__( self : Tuple ):
"""simple docstring"""
super().__init__(UpperCAmelCase_ , UpperCAmelCase_ )
def __bool__( self : Dict ):
"""simple docstring"""
return False
lowerCAmelCase__ : str = _DeletedItem()
class SCREAMING_SNAKE_CASE__ ( MutableMapping[KEY, VAL] ):
"""simple docstring"""
def __init__( self : Optional[int] , UpperCAmelCase_ : int = 8 , UpperCAmelCase_ : float = 0.75 ):
"""simple docstring"""
__UpperCAmelCase : List[Any] = initial_block_size
__UpperCAmelCase : list[_Item | None] = [None] * initial_block_size
assert 0.0 < capacity_factor < 1.0
__UpperCAmelCase : int = capacity_factor
__UpperCAmelCase : int = 0
def lowerCamelCase_ ( self : str , UpperCAmelCase_ : KEY ):
"""simple docstring"""
return hash(UpperCAmelCase_ ) % len(self._buckets )
def lowerCamelCase_ ( self : Dict , UpperCAmelCase_ : int ):
"""simple docstring"""
return (ind + 1) % len(self._buckets )
def lowerCamelCase_ ( self : Optional[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : KEY , UpperCAmelCase_ : VAL ):
"""simple docstring"""
__UpperCAmelCase : Tuple = self._buckets[ind]
if not stored:
__UpperCAmelCase : str = _Item(UpperCAmelCase_ , UpperCAmelCase_ )
self._len += 1
return True
elif stored.key == key:
__UpperCAmelCase : List[Any] = _Item(UpperCAmelCase_ , UpperCAmelCase_ )
return True
else:
return False
def lowerCamelCase_ ( self : Optional[Any] ):
"""simple docstring"""
__UpperCAmelCase : List[Any] = len(self._buckets ) * self._capacity_factor
return len(self ) >= int(UpperCAmelCase_ )
def lowerCamelCase_ ( self : Dict ):
"""simple docstring"""
if len(self._buckets ) <= self._initial_block_size:
return False
__UpperCAmelCase : Dict = len(self._buckets ) * self._capacity_factor / 2
return len(self ) < limit
def lowerCamelCase_ ( self : int , UpperCAmelCase_ : int ):
"""simple docstring"""
__UpperCAmelCase : List[Any] = self._buckets
__UpperCAmelCase : str = [None] * new_size
__UpperCAmelCase : Any = 0
for item in old_buckets:
if item:
self._add_item(item.key , item.val )
def lowerCamelCase_ ( self : Optional[Any] ):
"""simple docstring"""
self._resize(len(self._buckets ) * 2 )
def lowerCamelCase_ ( self : int ):
"""simple docstring"""
self._resize(len(self._buckets ) // 2 )
def lowerCamelCase_ ( self : List[str] , UpperCAmelCase_ : KEY ):
"""simple docstring"""
__UpperCAmelCase : str = self._get_bucket_index(UpperCAmelCase_ )
for _ in range(len(self._buckets ) ):
yield ind
__UpperCAmelCase : Optional[Any] = self._get_next_ind(UpperCAmelCase_ )
def lowerCamelCase_ ( self : Union[str, Any] , UpperCAmelCase_ : KEY , UpperCAmelCase_ : VAL ):
"""simple docstring"""
for ind in self._iterate_buckets(UpperCAmelCase_ ):
if self._try_set(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ):
break
def __setitem__( self : Tuple , UpperCAmelCase_ : KEY , UpperCAmelCase_ : VAL ):
"""simple docstring"""
if self._is_full():
self._size_up()
self._add_item(UpperCAmelCase_ , UpperCAmelCase_ )
def __delitem__( self : Optional[int] , UpperCAmelCase_ : KEY ):
"""simple docstring"""
for ind in self._iterate_buckets(UpperCAmelCase_ ):
__UpperCAmelCase : Optional[int] = self._buckets[ind]
if item is None:
raise KeyError(UpperCAmelCase_ )
if item is _deleted:
continue
if item.key == key:
__UpperCAmelCase : Optional[Any] = _deleted
self._len -= 1
break
if self._is_sparse():
self._size_down()
def __getitem__( self : Any , UpperCAmelCase_ : KEY ):
"""simple docstring"""
for ind in self._iterate_buckets(UpperCAmelCase_ ):
__UpperCAmelCase : str = self._buckets[ind]
if item is None:
break
if item is _deleted:
continue
if item.key == key:
return item.val
raise KeyError(UpperCAmelCase_ )
def __len__( self : List[Any] ):
"""simple docstring"""
return self._len
def __iter__( self : Optional[int] ):
"""simple docstring"""
yield from (item.key for item in self._buckets if item)
def __repr__( self : List[str] ):
"""simple docstring"""
__UpperCAmelCase : Any = " ,".join(
f"{item.key}: {item.val}" for item in self._buckets if item )
return f"HashMap({val_string})"
| 329
| 0
|
from __future__ import annotations
import unittest
from transformers import is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
if is_tf_available():
import numpy as np
import tensorflow as tf
from transformers import TFXLMRobertaModel
@require_tf
@require_sentencepiece
@require_tokenizers
class __magic_name__ (unittest.TestCase ):
@slow
def __a ( self ) -> Tuple:
lowerCAmelCase_ = TFXLMRobertaModel.from_pretrained("jplu/tf-xlm-roberta-base" )
lowerCAmelCase_ = {
"input_ids": tf.convert_to_tensor([[0, 2646, 10269, 83, 99942, 2]] , dtype=tf.intaa ), # "My dog is cute"
"attention_mask": tf.convert_to_tensor([[1, 1, 1, 1, 1, 1]] , dtype=tf.intaa ),
}
lowerCAmelCase_ = model(_a )["last_hidden_state"]
lowerCAmelCase_ = tf.TensorShape((1, 6, 768) )
self.assertEqual(output.shape , _a )
# compare the actual values for a slice.
lowerCAmelCase_ = tf.convert_to_tensor(
[
[
[0.0_6_8_1_7_6_2, 0.1_0_8_9_4_4_5_1, 0.0_6_7_7_2_5_0_4],
[-0.0_6_4_2_3_6_6_8, 0.0_2_3_6_6_6_1_5, 0.0_4_3_2_9_3_4_4],
[-0.0_6_0_5_7_2_9_5, 0.0_9_9_7_4_1_3_5, -0.0_0_0_7_0_5_8_4],
]
] , dtype=tf.floataa , )
self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
| 122
|
from string import ascii_uppercase
lowerCamelCase__ = {char: i for i, char in enumerate(ascii_uppercase)}
lowerCamelCase__ = dict(enumerate(ascii_uppercase))
def A(__a: str , __a: str ):
lowerCAmelCase_ = len(__a )
lowerCAmelCase_ = 0
while True:
if x == i:
lowerCAmelCase_ = 0
if len(__a ) == len(__a ):
break
key += key[i]
i += 1
return key
def A(__a: str , __a: str ):
lowerCAmelCase_ = ""
lowerCAmelCase_ = 0
for letter in message:
if letter == " ":
cipher_text += " "
else:
lowerCAmelCase_ = (dicta[letter] - dicta[key_new[i]]) % 26
i += 1
cipher_text += dicta[x]
return cipher_text
def A(__a: str , __a: str ):
lowerCAmelCase_ = ""
lowerCAmelCase_ = 0
for letter in cipher_text:
if letter == " ":
or_txt += " "
else:
lowerCAmelCase_ = (dicta[letter] + dicta[key_new[i]] + 26) % 26
i += 1
or_txt += dicta[x]
return or_txt
def A():
lowerCAmelCase_ = "THE GERMAN ATTACK"
lowerCAmelCase_ = "SECRET"
lowerCAmelCase_ = generate_key(__a , __a )
lowerCAmelCase_ = cipher_text(__a , __a )
print(F"Encrypted Text = {s}" )
print(F"Original Text = {original_text(__a , __a )}" )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 122
| 1
|
"""simple docstring"""
import warnings
from ...utils import logging
from .image_processing_segformer import SegformerImageProcessor
__lowerCAmelCase : Dict = logging.get_logger(__name__)
class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ):
"""simple docstring"""
def __init__( self , *_lowercase , **_lowercase ) -> None:
'''simple docstring'''
warnings.warn(
"""The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers."""
""" Please use SegformerImageProcessor instead.""" , _lowercase , )
super().__init__(*_lowercase , **_lowercase )
| 21
|
"""simple docstring"""
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel
from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings
from diffusers.utils import load_numpy, slow, torch_device
from diffusers.utils.testing_utils import require_torch_gpu
__lowerCAmelCase : Optional[Any] = False
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def UpperCAmelCase__ ( self ) -> Any:
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def UpperCAmelCase__ ( self ) -> Any:
'''simple docstring'''
return 1_2
@property
def UpperCAmelCase__ ( self ) -> Dict:
'''simple docstring'''
return 1_2
@property
def UpperCAmelCase__ ( self ) -> List[Any]:
'''simple docstring'''
return 3_2
@property
def UpperCAmelCase__ ( self ) -> Optional[Any]:
'''simple docstring'''
torch.manual_seed(0 )
snake_case_ : List[Any] = VQModel(
block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=3 , num_vq_embeddings=self.num_embed , vq_embed_dim=3 , )
return model
@property
def UpperCAmelCase__ ( self ) -> List[Any]:
'''simple docstring'''
snake_case_ : int = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
return tokenizer
@property
def UpperCAmelCase__ ( self ) -> int:
'''simple docstring'''
torch.manual_seed(0 )
snake_case_ : Dict = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , )
return CLIPTextModel(_lowercase )
@property
def UpperCAmelCase__ ( self ) -> str:
'''simple docstring'''
torch.manual_seed(0 )
snake_case_ : Union[str, Any] = 1_2
snake_case_ : Tuple = 1_2
snake_case_ : Tuple = {
"""attention_bias""": True,
"""cross_attention_dim""": 3_2,
"""attention_head_dim""": height * width,
"""num_attention_heads""": 1,
"""num_vector_embeds""": self.num_embed,
"""num_embeds_ada_norm""": self.num_embeds_ada_norm,
"""norm_num_groups""": 3_2,
"""sample_size""": width,
"""activation_fn""": """geglu-approximate""",
}
snake_case_ : Optional[Any] = TransformeraDModel(**_lowercase )
return model
def UpperCAmelCase__ ( self ) -> Optional[int]:
'''simple docstring'''
snake_case_ : str = """cpu"""
snake_case_ : List[str] = self.dummy_vqvae
snake_case_ : Any = self.dummy_text_encoder
snake_case_ : Tuple = self.dummy_tokenizer
snake_case_ : int = self.dummy_transformer
snake_case_ : int = VQDiffusionScheduler(self.num_embed )
snake_case_ : Dict = LearnedClassifierFreeSamplingEmbeddings(learnable=_lowercase )
snake_case_ : Optional[Any] = VQDiffusionPipeline(
vqvae=_lowercase , text_encoder=_lowercase , tokenizer=_lowercase , transformer=_lowercase , scheduler=_lowercase , learned_classifier_free_sampling_embeddings=_lowercase , )
snake_case_ : int = pipe.to(_lowercase )
pipe.set_progress_bar_config(disable=_lowercase )
snake_case_ : List[Any] = """teddy bear playing in the pool"""
snake_case_ : Dict = torch.Generator(device=_lowercase ).manual_seed(0 )
snake_case_ : List[Any] = pipe([prompt] , generator=_lowercase , num_inference_steps=2 , output_type="""np""" )
snake_case_ : Optional[int] = output.images
snake_case_ : List[Any] = torch.Generator(device=_lowercase ).manual_seed(0 )
snake_case_ : Dict = pipe(
[prompt] , generator=_lowercase , output_type="""np""" , return_dict=_lowercase , num_inference_steps=2 )[0]
snake_case_ : List[Any] = image[0, -3:, -3:, -1]
snake_case_ : Any = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 2_4, 2_4, 3)
snake_case_ : Dict = np.array([0.6551, 0.6168, 0.5008, 0.5676, 0.5659, 0.4295, 0.6073, 0.5599, 0.4992] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
def UpperCAmelCase__ ( self ) -> str:
'''simple docstring'''
snake_case_ : int = """cpu"""
snake_case_ : List[Any] = self.dummy_vqvae
snake_case_ : Optional[int] = self.dummy_text_encoder
snake_case_ : List[Any] = self.dummy_tokenizer
snake_case_ : Union[str, Any] = self.dummy_transformer
snake_case_ : str = VQDiffusionScheduler(self.num_embed )
snake_case_ : List[Any] = LearnedClassifierFreeSamplingEmbeddings(
learnable=_lowercase , hidden_size=self.text_embedder_hidden_size , length=tokenizer.model_max_length )
snake_case_ : Union[str, Any] = VQDiffusionPipeline(
vqvae=_lowercase , text_encoder=_lowercase , tokenizer=_lowercase , transformer=_lowercase , scheduler=_lowercase , learned_classifier_free_sampling_embeddings=_lowercase , )
snake_case_ : Any = pipe.to(_lowercase )
pipe.set_progress_bar_config(disable=_lowercase )
snake_case_ : Tuple = """teddy bear playing in the pool"""
snake_case_ : str = torch.Generator(device=_lowercase ).manual_seed(0 )
snake_case_ : Tuple = pipe([prompt] , generator=_lowercase , num_inference_steps=2 , output_type="""np""" )
snake_case_ : Dict = output.images
snake_case_ : Union[str, Any] = torch.Generator(device=_lowercase ).manual_seed(0 )
snake_case_ : Any = pipe(
[prompt] , generator=_lowercase , output_type="""np""" , return_dict=_lowercase , num_inference_steps=2 )[0]
snake_case_ : Optional[Any] = image[0, -3:, -3:, -1]
snake_case_ : int = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 2_4, 2_4, 3)
snake_case_ : int = np.array([0.6693, 0.6075, 0.4959, 0.5701, 0.5583, 0.4333, 0.6171, 0.5684, 0.4988] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
@slow
@require_torch_gpu
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def UpperCAmelCase__ ( self ) -> List[Any]:
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCAmelCase__ ( self ) -> List[str]:
'''simple docstring'''
snake_case_ : List[Any] = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy""" )
snake_case_ : str = VQDiffusionPipeline.from_pretrained("""microsoft/vq-diffusion-ithq""" )
snake_case_ : Optional[Any] = pipeline.to(_lowercase )
pipeline.set_progress_bar_config(disable=_lowercase )
# requires GPU generator for gumbel softmax
# don't use GPU generator in tests though
snake_case_ : Any = torch.Generator(device=_lowercase ).manual_seed(0 )
snake_case_ : Optional[int] = pipeline(
"""teddy bear playing in the pool""" , num_images_per_prompt=1 , generator=_lowercase , output_type="""np""" , )
snake_case_ : Union[str, Any] = output.images[0]
assert image.shape == (2_5_6, 2_5_6, 3)
assert np.abs(expected_image - image ).max() < 2.0
| 21
| 1
|
'''simple docstring'''
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from argparse import ArgumentParser
from accelerate.commands.config import get_config_parser
from accelerate.commands.env import env_command_parser
from accelerate.commands.launch import launch_command_parser
from accelerate.commands.test import test_command_parser
from accelerate.commands.tpu import tpu_command_parser
def __UpperCAmelCase ( ) -> Dict:
"""simple docstring"""
__a = ArgumentParser('Accelerate CLI tool', usage='accelerate <command> [<args>]', allow_abbrev=SCREAMING_SNAKE_CASE__ )
__a = parser.add_subparsers(help='accelerate command helpers' )
# Register commands
get_config_parser(subparsers=SCREAMING_SNAKE_CASE__ )
env_command_parser(subparsers=SCREAMING_SNAKE_CASE__ )
launch_command_parser(subparsers=SCREAMING_SNAKE_CASE__ )
tpu_command_parser(subparsers=SCREAMING_SNAKE_CASE__ )
test_command_parser(subparsers=SCREAMING_SNAKE_CASE__ )
# Let's go
__a = parser.parse_args()
if not hasattr(SCREAMING_SNAKE_CASE__, 'func' ):
parser.print_help()
exit(1 )
# Run
args.func(SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
main()
| 448
|
'''simple docstring'''
__UpperCamelCase : List[Any] = """ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"""
def __UpperCAmelCase ( SCREAMING_SNAKE_CASE__: bytes ) -> bytes:
"""simple docstring"""
# Make sure the supplied data is a bytes-like object
if not isinstance(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ):
__a = f"""a bytes-like object is required, not '{data.__class__.__name__}'"""
raise TypeError(SCREAMING_SNAKE_CASE__ )
__a = ''.join(bin(SCREAMING_SNAKE_CASE__ )[2:].zfill(8 ) for byte in data )
__a = len(SCREAMING_SNAKE_CASE__ ) % 6 != 0
if padding_needed:
# The padding that will be added later
__a = b'=' * ((6 - len(SCREAMING_SNAKE_CASE__ ) % 6) // 2)
# Append binary_stream with arbitrary binary digits (0's by default) to make its
# length a multiple of 6.
binary_stream += "0" * (6 - len(SCREAMING_SNAKE_CASE__ ) % 6)
else:
__a = b''
# Encode every 6 binary digits to their corresponding Base64 character
return (
"".join(
B64_CHARSET[int(binary_stream[index : index + 6], 2 )]
for index in range(0, len(SCREAMING_SNAKE_CASE__ ), 6 ) ).encode()
+ padding
)
def __UpperCAmelCase ( SCREAMING_SNAKE_CASE__: str ) -> bytes:
"""simple docstring"""
# Make sure encoded_data is either a string or a bytes-like object
if not isinstance(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) and not isinstance(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ):
__a = (
'argument should be a bytes-like object or ASCII string, '
f"""not '{encoded_data.__class__.__name__}'"""
)
raise TypeError(SCREAMING_SNAKE_CASE__ )
# In case encoded_data is a bytes-like object, make sure it contains only
# ASCII characters so we convert it to a string object
if isinstance(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ):
try:
__a = encoded_data.decode('utf-8' )
except UnicodeDecodeError:
raise ValueError('base64 encoded data should only contain ASCII characters' )
__a = encoded_data.count('=' )
# Check if the encoded string contains non base64 characters
if padding:
assert all(
char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found."
else:
assert all(
char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found."
# Check the padding
assert len(SCREAMING_SNAKE_CASE__ ) % 4 == 0 and padding < 3, "Incorrect padding"
if padding:
# Remove padding if there is one
__a = encoded_data[:-padding]
__a = ''.join(
bin(B64_CHARSET.index(SCREAMING_SNAKE_CASE__ ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2]
else:
__a = ''.join(
bin(B64_CHARSET.index(SCREAMING_SNAKE_CASE__ ) )[2:].zfill(6 ) for char in encoded_data )
__a = [
int(binary_stream[index : index + 8], 2 )
for index in range(0, len(SCREAMING_SNAKE_CASE__ ), 8 )
]
return bytes(SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 448
| 1
|
from __future__ import annotations
from decimal import Decimal
from math import * # noqa: F403
from sympy import diff
def _UpperCAmelCase (UpperCamelCase_ : str , UpperCamelCase_ : float | Decimal , UpperCamelCase_ : float = 10**-10 ):
'''simple docstring'''
_lowerCAmelCase : Tuple = a
while True:
_lowerCAmelCase : Any = Decimal(UpperCamelCase_ ) - (
Decimal(eval(UpperCamelCase_ ) ) / Decimal(eval(str(diff(UpperCamelCase_ ) ) ) ) # noqa: S307
)
# This number dictates the accuracy of the answer
if abs(eval(UpperCamelCase_ ) ) < precision: # noqa: S307
return float(UpperCamelCase_ )
# Let's Execute
if __name__ == "__main__":
# Find root of trigonometric function
# Find value of pi
print(F'''The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}''')
# Find root of polynomial
print(F'''The root of x**2 - 5*x + 2 = 0 is {newton_raphson('x**2 - 5*x + 2', 0.4)}''')
# Find Square Root of 5
print(F'''The root of log(x) - 1 = 0 is {newton_raphson('log(x) - 1', 2)}''')
# Exponential Roots
print(F'''The root of exp(x) - 1 = 0 is {newton_raphson('exp(x) - 1', 0)}''')
| 701
|
def _UpperCAmelCase (UpperCamelCase_ : int ):
'''simple docstring'''
_lowerCAmelCase : int = n ** (1 / 3)
return (val * val * val) == n
if __name__ == "__main__":
print(perfect_cube(2_7))
print(perfect_cube(4))
| 196
| 0
|
import argparse
import shutil
from pathlib import Path
from tqdm import tqdm
from transformers import AutoTokenizer
def UpperCamelCase__ ( _A: Optional[int] , _A: List[str] , _A: Optional[int] , _A: Optional[Any]=1024 ):
'''simple docstring'''
__lowerCamelCase = [], []
__lowerCamelCase = list(zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) )
__lowerCamelCase = sorted_examples[0]
def is_too_big(_A: List[str] ):
return tok(SCREAMING_SNAKE_CASE__ , return_tensors="""pt""" ).input_ids.shape[1] > max_tokens
for src, tgt in tqdm(sorted_examples[1:] ):
__lowerCamelCase = new_src + ' ' + src
__lowerCamelCase = new_tgt + ' ' + tgt
if is_too_big(SCREAMING_SNAKE_CASE__ ) or is_too_big(SCREAMING_SNAKE_CASE__ ): # cant fit, finalize example
finished_src.append(SCREAMING_SNAKE_CASE__ )
finished_tgt.append(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = src, tgt
else: # can fit, keep adding
__lowerCamelCase = cand_src, cand_tgt
# cleanup
if new_src:
assert new_tgt
finished_src.append(SCREAMING_SNAKE_CASE__ )
finished_tgt.append(SCREAMING_SNAKE_CASE__ )
return finished_src, finished_tgt
def UpperCamelCase__ ( _A: Optional[int] , _A: Union[str, Any] , _A: Optional[Any] , _A: Optional[Any] ):
'''simple docstring'''
__lowerCamelCase = Path(SCREAMING_SNAKE_CASE__ )
save_path.mkdir(exist_ok=SCREAMING_SNAKE_CASE__ )
for split in ["train"]:
__lowerCamelCase = data_dir / f'''{split}.source''', data_dir / f'''{split}.target'''
__lowerCamelCase = [x.rstrip() for x in Path(SCREAMING_SNAKE_CASE__ ).open().readlines()]
__lowerCamelCase = [x.rstrip() for x in Path(SCREAMING_SNAKE_CASE__ ).open().readlines()]
__lowerCamelCase = pack_examples(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
print(f'''packed {split} split from {len(SCREAMING_SNAKE_CASE__ )} examples -> {len(SCREAMING_SNAKE_CASE__ )}.''' )
Path(save_path / f'''{split}.source''' ).open("""w""" ).write("""\n""".join(SCREAMING_SNAKE_CASE__ ) )
Path(save_path / f'''{split}.target''' ).open("""w""" ).write("""\n""".join(SCREAMING_SNAKE_CASE__ ) )
for split in ["val", "test"]:
__lowerCamelCase = data_dir / f'''{split}.source''', data_dir / f'''{split}.target'''
shutil.copyfile(SCREAMING_SNAKE_CASE__ , save_path / f'''{split}.source''' )
shutil.copyfile(SCREAMING_SNAKE_CASE__ , save_path / f'''{split}.target''' )
def UpperCamelCase__ ( ):
'''simple docstring'''
__lowerCamelCase = argparse.ArgumentParser()
parser.add_argument("""--tok_name""" , type=SCREAMING_SNAKE_CASE__ , help="""like facebook/bart-large-cnn,t5-base, etc.""" )
parser.add_argument("""--max_seq_len""" , type=SCREAMING_SNAKE_CASE__ , default=128 )
parser.add_argument("""--data_dir""" , type=SCREAMING_SNAKE_CASE__ )
parser.add_argument("""--save_path""" , type=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = parser.parse_args()
__lowerCamelCase = AutoTokenizer.from_pretrained(args.tok_name )
return pack_data_dir(SCREAMING_SNAKE_CASE__ , Path(args.data_dir ) , args.max_seq_len , args.save_path )
if __name__ == "__main__":
packer_cli()
| 479
|
'''simple docstring'''
import numpy as np
import torch
from imwatermark import WatermarkEncoder
# Copied from https://github.com/Stability-AI/generative-models/blob/613af104c6b85184091d42d374fef420eddb356d/scripts/demo/streamlit_helpers.py#L66
SCREAMING_SNAKE_CASE_ = 0B10_11_00_11_11_10_11_00_10_01_00_00_01_11_10_11_10_11_00_01_10_01_11_10
# bin(x)[2:] gives bits of x as str, use int to convert them to 0/1
SCREAMING_SNAKE_CASE_ = [int(bit) for bit in bin(WATERMARK_MESSAGE)[2:]]
class lowerCAmelCase :
"""simple docstring"""
def __init__( self ) -> Optional[int]:
__a : Tuple = WATERMARK_BITS
__a : Union[str, Any] = WatermarkEncoder()
self.encoder.set_watermark('bits' , self.watermark )
def __magic_name__ ( self , _A ) -> List[str]:
# can't encode images that are smaller than 256
if images.shape[-1] < 256:
return images
__a : List[str] = (255 * (images / 2 + 0.5)).cpu().permute(0 , 2 , 3 , 1 ).float().numpy()
__a : Any = [self.encoder.encode(_A , 'dwtDct' ) for image in images]
__a : List[Any] = torch.from_numpy(np.array(_A ) ).permute(0 , 3 , 1 , 2 )
__a : Any = torch.clamp(2 * (images / 255 - 0.5) , min=-1.0 , max=1.0 )
return images
| 597
| 0
|
def __UpperCamelCase ( A ):
UpperCamelCase__ = 0
for ch in input_str:
UpperCamelCase__ = ord(A )
UpperCamelCase__ = pow(2 , A )
# If we already turned on bit for current character's unicode
if bitmap >> ch_unicode & 1 == 1:
return False
bitmap |= ch_bit_index_on
return True
if __name__ == "__main__":
import doctest
doctest.testmod()
| 469
|
import os
from typing import Optional
import fsspec
from fsspec.archive import AbstractArchiveFileSystem
from fsspec.utils import DEFAULT_BLOCK_SIZE
class _A ( __UpperCamelCase ):
SCREAMING_SNAKE_CASE_ : List[str] =""
SCREAMING_SNAKE_CASE_ : str =(
None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz
)
SCREAMING_SNAKE_CASE_ : str =None # compression type in fsspec. ex: "gzip"
SCREAMING_SNAKE_CASE_ : str =None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz
def __init__(self , SCREAMING_SNAKE_CASE_ = "" , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ ) -> List[str]:
'''simple docstring'''
super().__init__(self , **SCREAMING_SNAKE_CASE_ )
# always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode
UpperCamelCase__ = fsspec.open(
SCREAMING_SNAKE_CASE_ , mode='''rb''' , protocol=SCREAMING_SNAKE_CASE_ , compression=self.compression , client_kwargs={
'''requote_redirect_url''': False, # see https://github.com/huggingface/datasets/pull/5459
'''trust_env''': True, # Enable reading proxy env variables.
**(target_options or {}).pop('''client_kwargs''' , {} ), # To avoid issues if it was already passed.
} , **(target_options or {}) , )
UpperCamelCase__ = os.path.basename(self.file.path.split('''::''' )[0] )
UpperCamelCase__ = (
self.compressed_name[: self.compressed_name.rindex('''.''' )]
if '''.''' in self.compressed_name
else self.compressed_name
)
UpperCamelCase__ = None
@classmethod
def _a (cls , SCREAMING_SNAKE_CASE_ ) -> Optional[Any]:
'''simple docstring'''
return super()._strip_protocol(SCREAMING_SNAKE_CASE_ ).lstrip('''/''' )
def _a (self ) -> Union[str, Any]:
'''simple docstring'''
if self.dir_cache is None:
UpperCamelCase__ = {**self.file.fs.info(self.file.path ), '''name''': self.uncompressed_name}
UpperCamelCase__ = {f['''name''']: f}
def _a (self , SCREAMING_SNAKE_CASE_ ) -> List[Any]:
'''simple docstring'''
return self.file.open().read()
def _a (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = "rb" , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ , ) -> List[Any]:
'''simple docstring'''
UpperCamelCase__ = self._strip_protocol(SCREAMING_SNAKE_CASE_ )
if mode != "rb":
raise ValueError(F"Tried to read with mode {mode} on file {self.file.path} opened with mode 'rb'" )
return self.file.open()
class _A ( __UpperCamelCase ):
SCREAMING_SNAKE_CASE_ : Tuple ="bz2"
SCREAMING_SNAKE_CASE_ : List[str] ="bz2"
SCREAMING_SNAKE_CASE_ : List[Any] =".bz2"
class _A ( __UpperCamelCase ):
SCREAMING_SNAKE_CASE_ : Tuple ="gzip"
SCREAMING_SNAKE_CASE_ : Dict ="gzip"
SCREAMING_SNAKE_CASE_ : List[Any] =".gz"
class _A ( __UpperCamelCase ):
SCREAMING_SNAKE_CASE_ : List[Any] ="lz4"
SCREAMING_SNAKE_CASE_ : str ="lz4"
SCREAMING_SNAKE_CASE_ : Any =".lz4"
class _A ( __UpperCamelCase ):
SCREAMING_SNAKE_CASE_ : Dict ="xz"
SCREAMING_SNAKE_CASE_ : List[str] ="xz"
SCREAMING_SNAKE_CASE_ : Optional[int] =".xz"
class _A ( __UpperCamelCase ):
SCREAMING_SNAKE_CASE_ : Optional[Any] ="zstd"
SCREAMING_SNAKE_CASE_ : Optional[int] ="zstd"
SCREAMING_SNAKE_CASE_ : Optional[int] =".zst"
def __init__(self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = "rb" , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = DEFAULT_BLOCK_SIZE , **SCREAMING_SNAKE_CASE_ , ) -> List[Any]:
'''simple docstring'''
super().__init__(
fo=SCREAMING_SNAKE_CASE_ , mode=SCREAMING_SNAKE_CASE_ , target_protocol=SCREAMING_SNAKE_CASE_ , target_options=SCREAMING_SNAKE_CASE_ , block_size=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , )
# We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2:
#
# File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open
# out.close = close
# AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only
#
# see https://github.com/intake/filesystem_spec/issues/725
UpperCamelCase__ = self.file.__enter__
class _A :
def __init__(self , SCREAMING_SNAKE_CASE_ ) -> int:
'''simple docstring'''
UpperCamelCase__ = file_
def __enter__(self ) -> Union[str, Any]:
'''simple docstring'''
self._file.__enter__()
return self
def __exit__(self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> List[Any]:
'''simple docstring'''
self._file.__exit__(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
def __iter__(self ) -> Dict:
'''simple docstring'''
return iter(self._file )
def _a (self ) -> Dict:
'''simple docstring'''
return next(self._file )
def __getattr__(self , SCREAMING_SNAKE_CASE_ ) -> str:
'''simple docstring'''
return getattr(self._file , SCREAMING_SNAKE_CASE_ )
def fixed_enter(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ):
return WrappedFile(_enter(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) )
UpperCamelCase__ = fixed_enter
| 469
| 1
|
'''simple docstring'''
import unittest
from transformers import is_vision_available
from transformers.pipelines import pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
else:
class A :
@staticmethod
def __lowerCAmelCase ( *lowerCAmelCase_ : str , **lowerCAmelCase_ : Any ) -> Union[str, Any]:
"""simple docstring"""
pass
@is_pipeline_test
@require_vision
class A ( unittest.TestCase ):
@require_torch
def __lowerCAmelCase ( self : str ) -> Dict:
"""simple docstring"""
_a = pipeline(
model='''hf-internal-testing/tiny-random-clip-zero-shot-image-classification''' , )
_a = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
_a = image_classifier(lowerCAmelCase_ , candidate_labels=['''a''', '''b''', '''c'''] )
# The floating scores are so close, we enter floating error approximation and the order is not guaranteed across
# python and torch versions.
self.assertIn(
nested_simplify(lowerCAmelCase_ ) , [
[{'''score''': 0.3_3_3, '''label''': '''a'''}, {'''score''': 0.3_3_3, '''label''': '''b'''}, {'''score''': 0.3_3_3, '''label''': '''c'''}],
[{'''score''': 0.3_3_3, '''label''': '''a'''}, {'''score''': 0.3_3_3, '''label''': '''c'''}, {'''score''': 0.3_3_3, '''label''': '''b'''}],
] , )
_a = image_classifier([image] * 5 , candidate_labels=['''A''', '''B''', '''C'''] , batch_size=2 )
self.assertEqual(
nested_simplify(lowerCAmelCase_ ) , [
[
{'''score''': 0.3_3_3, '''label''': ANY(lowerCAmelCase_ )},
{'''score''': 0.3_3_3, '''label''': ANY(lowerCAmelCase_ )},
{'''score''': 0.3_3_3, '''label''': ANY(lowerCAmelCase_ )},
],
[
{'''score''': 0.3_3_3, '''label''': ANY(lowerCAmelCase_ )},
{'''score''': 0.3_3_3, '''label''': ANY(lowerCAmelCase_ )},
{'''score''': 0.3_3_3, '''label''': ANY(lowerCAmelCase_ )},
],
[
{'''score''': 0.3_3_3, '''label''': ANY(lowerCAmelCase_ )},
{'''score''': 0.3_3_3, '''label''': ANY(lowerCAmelCase_ )},
{'''score''': 0.3_3_3, '''label''': ANY(lowerCAmelCase_ )},
],
[
{'''score''': 0.3_3_3, '''label''': ANY(lowerCAmelCase_ )},
{'''score''': 0.3_3_3, '''label''': ANY(lowerCAmelCase_ )},
{'''score''': 0.3_3_3, '''label''': ANY(lowerCAmelCase_ )},
],
[
{'''score''': 0.3_3_3, '''label''': ANY(lowerCAmelCase_ )},
{'''score''': 0.3_3_3, '''label''': ANY(lowerCAmelCase_ )},
{'''score''': 0.3_3_3, '''label''': ANY(lowerCAmelCase_ )},
],
] , )
@require_tf
def __lowerCAmelCase ( self : Any ) -> Tuple:
"""simple docstring"""
_a = pipeline(
model='''hf-internal-testing/tiny-random-clip-zero-shot-image-classification''' , framework='''tf''' )
_a = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
_a = image_classifier(lowerCAmelCase_ , candidate_labels=['''a''', '''b''', '''c'''] )
self.assertEqual(
nested_simplify(lowerCAmelCase_ ) , [{'''score''': 0.3_3_3, '''label''': '''a'''}, {'''score''': 0.3_3_3, '''label''': '''b'''}, {'''score''': 0.3_3_3, '''label''': '''c'''}] , )
_a = image_classifier([image] * 5 , candidate_labels=['''A''', '''B''', '''C'''] , batch_size=2 )
self.assertEqual(
nested_simplify(lowerCAmelCase_ ) , [
[
{'''score''': 0.3_3_3, '''label''': ANY(lowerCAmelCase_ )},
{'''score''': 0.3_3_3, '''label''': ANY(lowerCAmelCase_ )},
{'''score''': 0.3_3_3, '''label''': ANY(lowerCAmelCase_ )},
],
[
{'''score''': 0.3_3_3, '''label''': ANY(lowerCAmelCase_ )},
{'''score''': 0.3_3_3, '''label''': ANY(lowerCAmelCase_ )},
{'''score''': 0.3_3_3, '''label''': ANY(lowerCAmelCase_ )},
],
[
{'''score''': 0.3_3_3, '''label''': ANY(lowerCAmelCase_ )},
{'''score''': 0.3_3_3, '''label''': ANY(lowerCAmelCase_ )},
{'''score''': 0.3_3_3, '''label''': ANY(lowerCAmelCase_ )},
],
[
{'''score''': 0.3_3_3, '''label''': ANY(lowerCAmelCase_ )},
{'''score''': 0.3_3_3, '''label''': ANY(lowerCAmelCase_ )},
{'''score''': 0.3_3_3, '''label''': ANY(lowerCAmelCase_ )},
],
[
{'''score''': 0.3_3_3, '''label''': ANY(lowerCAmelCase_ )},
{'''score''': 0.3_3_3, '''label''': ANY(lowerCAmelCase_ )},
{'''score''': 0.3_3_3, '''label''': ANY(lowerCAmelCase_ )},
],
] , )
@slow
@require_torch
def __lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]:
"""simple docstring"""
_a = pipeline(
task='''zero-shot-image-classification''' , model='''openai/clip-vit-base-patch32''' , )
# This is an image of 2 cats with remotes and no planes
_a = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
_a = image_classifier(lowerCAmelCase_ , candidate_labels=['''cat''', '''plane''', '''remote'''] )
self.assertEqual(
nested_simplify(lowerCAmelCase_ ) , [
{'''score''': 0.5_1_1, '''label''': '''remote'''},
{'''score''': 0.4_8_5, '''label''': '''cat'''},
{'''score''': 0.0_0_4, '''label''': '''plane'''},
] , )
_a = image_classifier([image] * 5 , candidate_labels=['''cat''', '''plane''', '''remote'''] , batch_size=2 )
self.assertEqual(
nested_simplify(lowerCAmelCase_ ) , [
[
{'''score''': 0.5_1_1, '''label''': '''remote'''},
{'''score''': 0.4_8_5, '''label''': '''cat'''},
{'''score''': 0.0_0_4, '''label''': '''plane'''},
],
]
* 5 , )
@slow
@require_tf
def __lowerCAmelCase ( self : str ) -> Dict:
"""simple docstring"""
_a = pipeline(
task='''zero-shot-image-classification''' , model='''openai/clip-vit-base-patch32''' , framework='''tf''' )
# This is an image of 2 cats with remotes and no planes
_a = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
_a = image_classifier(lowerCAmelCase_ , candidate_labels=['''cat''', '''plane''', '''remote'''] )
self.assertEqual(
nested_simplify(lowerCAmelCase_ ) , [
{'''score''': 0.5_1_1, '''label''': '''remote'''},
{'''score''': 0.4_8_5, '''label''': '''cat'''},
{'''score''': 0.0_0_4, '''label''': '''plane'''},
] , )
_a = image_classifier([image] * 5 , candidate_labels=['''cat''', '''plane''', '''remote'''] , batch_size=2 )
self.assertEqual(
nested_simplify(lowerCAmelCase_ ) , [
[
{'''score''': 0.5_1_1, '''label''': '''remote'''},
{'''score''': 0.4_8_5, '''label''': '''cat'''},
{'''score''': 0.0_0_4, '''label''': '''plane'''},
],
]
* 5 , )
| 22
|
import logging
import os
from typing import List, TextIO, Union
from conllu import parse_incr
from utils_ner import InputExample, Split, TokenClassificationTask
lowercase : Tuple = logging.getLogger(__name__)
class lowerCamelCase__ ( __lowercase):
'''simple docstring'''
def __init__( self :Dict , a :Union[str, Any]=-1 ) -> List[str]:
# in NER datasets, the last column is usually reserved for NER label
__UpperCamelCase : str = label_idx
def _lowerCamelCase ( self :str , a :Tuple , a :Union[Split, str] ) -> List[InputExample]:
if isinstance(a , a ):
__UpperCamelCase : Dict = mode.value
__UpperCamelCase : Union[str, Any] = os.path.join(a , f'{mode}.txt' )
__UpperCamelCase : Any = 1
__UpperCamelCase : List[str] = []
with open(a , encoding="utf-8" ) as f:
__UpperCamelCase : Tuple = []
__UpperCamelCase : Dict = []
for line in f:
if line.startswith("-DOCSTART-" ) or line == "" or line == "\n":
if words:
examples.append(InputExample(guid=f'{mode}-{guid_index}' , words=a , labels=a ) )
guid_index += 1
__UpperCamelCase : Dict = []
__UpperCamelCase : List[str] = []
else:
__UpperCamelCase : Union[str, Any] = line.split(" " )
words.append(splits[0] )
if len(a ) > 1:
labels.append(splits[self.label_idx].replace("\n" , "" ) )
else:
# Examples could have no label for mode = "test"
labels.append("O" )
if words:
examples.append(InputExample(guid=f'{mode}-{guid_index}' , words=a , labels=a ) )
return examples
def _lowerCamelCase ( self :int , a :TextIO , a :TextIO , a :List ) -> Optional[Any]:
__UpperCamelCase : Tuple = 0
for line in test_input_reader:
if line.startswith("-DOCSTART-" ) or line == "" or line == "\n":
writer.write(a )
if not preds_list[example_id]:
example_id += 1
elif preds_list[example_id]:
__UpperCamelCase : Union[str, Any] = line.split()[0] + " " + preds_list[example_id].pop(0 ) + "\n"
writer.write(a )
else:
logger.warning("Maximum sequence length exceeded: No prediction for '%s'." , line.split()[0] )
def _lowerCamelCase ( self :Tuple , a :str ) -> List[str]:
if path:
with open(a , "r" ) as f:
__UpperCamelCase : List[str] = f.read().splitlines()
if "O" not in labels:
__UpperCamelCase : Any = ["O"] + labels
return labels
else:
return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"]
class lowerCamelCase__ ( __lowercase):
'''simple docstring'''
def __init__( self :List[str] ) -> int:
# in CONLL2003 dataset chunk column is second-to-last
super().__init__(label_idx=-2 )
def _lowerCamelCase ( self :List[str] , a :str ) -> List[str]:
if path:
with open(a , "r" ) as f:
__UpperCamelCase : Optional[Any] = f.read().splitlines()
if "O" not in labels:
__UpperCamelCase : int = ["O"] + labels
return labels
else:
return [
"O",
"B-ADVP",
"B-INTJ",
"B-LST",
"B-PRT",
"B-NP",
"B-SBAR",
"B-VP",
"B-ADJP",
"B-CONJP",
"B-PP",
"I-ADVP",
"I-INTJ",
"I-LST",
"I-PRT",
"I-NP",
"I-SBAR",
"I-VP",
"I-ADJP",
"I-CONJP",
"I-PP",
]
class lowerCamelCase__ ( __lowercase):
'''simple docstring'''
def _lowerCamelCase ( self :List[str] , a :Union[str, Any] , a :Union[Split, str] ) -> List[InputExample]:
if isinstance(a , a ):
__UpperCamelCase : Optional[Any] = mode.value
__UpperCamelCase : List[str] = os.path.join(a , f'{mode}.txt' )
__UpperCamelCase : Dict = 1
__UpperCamelCase : List[str] = []
with open(a , encoding="utf-8" ) as f:
for sentence in parse_incr(a ):
__UpperCamelCase : Optional[int] = []
__UpperCamelCase : int = []
for token in sentence:
words.append(token["form"] )
labels.append(token["upos"] )
assert len(a ) == len(a )
if words:
examples.append(InputExample(guid=f'{mode}-{guid_index}' , words=a , labels=a ) )
guid_index += 1
return examples
def _lowerCamelCase ( self :List[Any] , a :TextIO , a :TextIO , a :List ) -> str:
__UpperCamelCase : List[Any] = 0
for sentence in parse_incr(a ):
__UpperCamelCase : Tuple = preds_list[example_id]
__UpperCamelCase : Dict = ""
for token in sentence:
out += f'{token["form"]} ({token["upos"]}|{s_p.pop(0 )}) '
out += "\n"
writer.write(a )
example_id += 1
def _lowerCamelCase ( self :List[str] , a :str ) -> List[str]:
if path:
with open(a , "r" ) as f:
return f.read().splitlines()
else:
return [
"ADJ",
"ADP",
"ADV",
"AUX",
"CCONJ",
"DET",
"INTJ",
"NOUN",
"NUM",
"PART",
"PRON",
"PROPN",
"PUNCT",
"SCONJ",
"SYM",
"VERB",
"X",
]
| 557
| 0
|
import collections
import gzip
import os
import urllib
import numpy
from tensorflow.python.framework import dtypes, random_seed
from tensorflow.python.platform import gfile
from tensorflow.python.util.deprecation import deprecated
lowerCAmelCase_ : List[Any] = collections.namedtuple("_Datasets", ["train", "validation", "test"])
# CVDF mirror of http://yann.lecun.com/exdb/mnist/
lowerCAmelCase_ : Dict = "https://storage.googleapis.com/cvdf-datasets/mnist/"
def _lowerCamelCase (__lowerCamelCase : str ) -> List[str]:
a__ = numpy.dtype(numpy.uintaa ).newbyteorder(">" )
return numpy.frombuffer(bytestream.read(4 ) , dtype=__lowerCamelCase )[0]
@deprecated(__lowerCamelCase , "Please use tf.data to implement this functionality." )
def _lowerCamelCase (__lowerCamelCase : List[str] ) -> List[str]:
print("Extracting" , f.name )
with gzip.GzipFile(fileobj=__lowerCamelCase ) as bytestream:
a__ = _readaa(__lowerCamelCase )
if magic != 2051:
raise ValueError(
"Invalid magic number %d in MNIST image file: %s" % (magic, f.name) )
a__ = _readaa(__lowerCamelCase )
a__ = _readaa(__lowerCamelCase )
a__ = _readaa(__lowerCamelCase )
a__ = bytestream.read(rows * cols * num_images )
a__ = numpy.frombuffer(__lowerCamelCase , dtype=numpy.uinta )
a__ = data.reshape(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , 1 )
return data
@deprecated(__lowerCamelCase , "Please use tf.one_hot on tensors." )
def _lowerCamelCase (__lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[int] ) -> Dict:
a__ = labels_dense.shape[0]
a__ = numpy.arange(__lowerCamelCase ) * num_classes
a__ = numpy.zeros((num_labels, num_classes) )
a__ = 1
return labels_one_hot
@deprecated(__lowerCamelCase , "Please use tf.data to implement this functionality." )
def _lowerCamelCase (__lowerCamelCase : List[str] , __lowerCamelCase : Tuple=False , __lowerCamelCase : Dict=10 ) -> Any:
print("Extracting" , f.name )
with gzip.GzipFile(fileobj=__lowerCamelCase ) as bytestream:
a__ = _readaa(__lowerCamelCase )
if magic != 2049:
raise ValueError(
"Invalid magic number %d in MNIST label file: %s" % (magic, f.name) )
a__ = _readaa(__lowerCamelCase )
a__ = bytestream.read(__lowerCamelCase )
a__ = numpy.frombuffer(__lowerCamelCase , dtype=numpy.uinta )
if one_hot:
return _dense_to_one_hot(__lowerCamelCase , __lowerCamelCase )
return labels
class UpperCamelCase__ :
@deprecated(
lowerCamelCase , "Please use alternatives such as official/mnist/_DataSet.py"
" from tensorflow/models." , )
def __init__( self : List[str] , lowerCamelCase : Union[str, Any] , lowerCamelCase : Any , lowerCamelCase : str=False , lowerCamelCase : Tuple=False , lowerCamelCase : Optional[int]=dtypes.floataa , lowerCamelCase : List[str]=True , lowerCamelCase : Dict=None , ):
'''simple docstring'''
a__ , a__ = random_seed.get_seed(lowerCamelCase )
# If op level seed is not set, use whatever graph level seed is returned
numpy.random.seed(seeda if seed is None else seeda )
a__ = dtypes.as_dtype(lowerCamelCase ).base_dtype
if dtype not in (dtypes.uinta, dtypes.floataa):
raise TypeError("Invalid image dtype %r, expected uint8 or float32" % dtype )
if fake_data:
a__ = 1_0_0_0_0
a__ = one_hot
else:
assert (
images.shape[0] == labels.shape[0]
), F'''images.shape: {images.shape} labels.shape: {labels.shape}'''
a__ = images.shape[0]
# Convert shape from [num examples, rows, columns, depth]
# to [num examples, rows*columns] (assuming depth == 1)
if reshape:
assert images.shape[3] == 1
a__ = images.reshape(
images.shape[0] , images.shape[1] * images.shape[2] )
if dtype == dtypes.floataa:
# Convert from [0, 255] -> [0.0, 1.0].
a__ = images.astype(numpy.floataa )
a__ = numpy.multiply(lowerCamelCase , 1.0 / 255.0 )
a__ = images
a__ = labels
a__ = 0
a__ = 0
@property
def __a ( self : Tuple ):
'''simple docstring'''
return self._images
@property
def __a ( self : Tuple ):
'''simple docstring'''
return self._labels
@property
def __a ( self : Any ):
'''simple docstring'''
return self._num_examples
@property
def __a ( self : Any ):
'''simple docstring'''
return self._epochs_completed
def __a ( self : List[str] , lowerCamelCase : str , lowerCamelCase : Any=False , lowerCamelCase : List[Any]=True ):
'''simple docstring'''
if fake_data:
a__ = [1] * 7_8_4
a__ = [1] + [0] * 9 if self.one_hot else 0
return (
[fake_image for _ in range(lowerCamelCase )],
[fake_label for _ in range(lowerCamelCase )],
)
a__ = self._index_in_epoch
# Shuffle for the first epoch
if self._epochs_completed == 0 and start == 0 and shuffle:
a__ = numpy.arange(self._num_examples )
numpy.random.shuffle(lowerCamelCase )
a__ = self.images[perma]
a__ = self.labels[perma]
# Go to the next epoch
if start + batch_size > self._num_examples:
# Finished epoch
self._epochs_completed += 1
# Get the rest examples in this epoch
a__ = self._num_examples - start
a__ = self._images[start : self._num_examples]
a__ = self._labels[start : self._num_examples]
# Shuffle the data
if shuffle:
a__ = numpy.arange(self._num_examples )
numpy.random.shuffle(lowerCamelCase )
a__ = self.images[perm]
a__ = self.labels[perm]
# Start next epoch
a__ = 0
a__ = batch_size - rest_num_examples
a__ = self._index_in_epoch
a__ = self._images[start:end]
a__ = self._labels[start:end]
return (
numpy.concatenate((images_rest_part, images_new_part) , axis=0 ),
numpy.concatenate((labels_rest_part, labels_new_part) , axis=0 ),
)
else:
self._index_in_epoch += batch_size
a__ = self._index_in_epoch
return self._images[start:end], self._labels[start:end]
@deprecated(__lowerCamelCase , "Please write your own downloading logic." )
def _lowerCamelCase (__lowerCamelCase : Optional[int] , __lowerCamelCase : int , __lowerCamelCase : List[Any] ) -> Tuple:
if not gfile.Exists(__lowerCamelCase ):
gfile.MakeDirs(__lowerCamelCase )
a__ = os.path.join(__lowerCamelCase , __lowerCamelCase )
if not gfile.Exists(__lowerCamelCase ):
urllib.request.urlretrieve(__lowerCamelCase , __lowerCamelCase ) # noqa: S310
with gfile.GFile(__lowerCamelCase ) as f:
a__ = f.size()
print("Successfully downloaded" , __lowerCamelCase , __lowerCamelCase , "bytes." )
return filepath
@deprecated(
__lowerCamelCase , "Please use alternatives such as:" " tensorflow_datasets.load('mnist')" )
def _lowerCamelCase (__lowerCamelCase : List[Any] , __lowerCamelCase : Optional[Any]=False , __lowerCamelCase : Dict=False , __lowerCamelCase : Union[str, Any]=dtypes.floataa , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : int=5000 , __lowerCamelCase : List[str]=None , __lowerCamelCase : Any=DEFAULT_SOURCE_URL , ) -> int:
if fake_data:
def fake():
return _DataSet(
[] , [] , fake_data=__lowerCamelCase , one_hot=__lowerCamelCase , dtype=__lowerCamelCase , seed=__lowerCamelCase )
a__ = fake()
a__ = fake()
a__ = fake()
return _Datasets(train=__lowerCamelCase , validation=__lowerCamelCase , test=__lowerCamelCase )
if not source_url: # empty string check
a__ = DEFAULT_SOURCE_URL
a__ = "train-images-idx3-ubyte.gz"
a__ = "train-labels-idx1-ubyte.gz"
a__ = "t10k-images-idx3-ubyte.gz"
a__ = "t10k-labels-idx1-ubyte.gz"
a__ = _maybe_download(
__lowerCamelCase , __lowerCamelCase , source_url + train_images_file )
with gfile.Open(__lowerCamelCase , "rb" ) as f:
a__ = _extract_images(__lowerCamelCase )
a__ = _maybe_download(
__lowerCamelCase , __lowerCamelCase , source_url + train_labels_file )
with gfile.Open(__lowerCamelCase , "rb" ) as f:
a__ = _extract_labels(__lowerCamelCase , one_hot=__lowerCamelCase )
a__ = _maybe_download(
__lowerCamelCase , __lowerCamelCase , source_url + test_images_file )
with gfile.Open(__lowerCamelCase , "rb" ) as f:
a__ = _extract_images(__lowerCamelCase )
a__ = _maybe_download(
__lowerCamelCase , __lowerCamelCase , source_url + test_labels_file )
with gfile.Open(__lowerCamelCase , "rb" ) as f:
a__ = _extract_labels(__lowerCamelCase , one_hot=__lowerCamelCase )
if not 0 <= validation_size <= len(__lowerCamelCase ):
a__ = (
"Validation size should be between 0 and "
f'''{len(__lowerCamelCase )}. Received: {validation_size}.'''
)
raise ValueError(__lowerCamelCase )
a__ = train_images[:validation_size]
a__ = train_labels[:validation_size]
a__ = train_images[validation_size:]
a__ = train_labels[validation_size:]
a__ = {"dtype": dtype, "reshape": reshape, "seed": seed}
a__ = _DataSet(__lowerCamelCase , __lowerCamelCase , **__lowerCamelCase )
a__ = _DataSet(__lowerCamelCase , __lowerCamelCase , **__lowerCamelCase )
a__ = _DataSet(__lowerCamelCase , __lowerCamelCase , **__lowerCamelCase )
return _Datasets(train=__lowerCamelCase , validation=__lowerCamelCase , test=__lowerCamelCase )
| 706
|
'''simple docstring'''
import argparse
import gdown
import numpy as np
import torch
from huggingface_hub import hf_hub_download
from transformers import (
CLIPTokenizer,
CLIPTokenizerFast,
VideoMAEImageProcessor,
XCLIPConfig,
XCLIPModel,
XCLIPProcessor,
XCLIPTextConfig,
XCLIPVisionConfig,
)
def _lowerCamelCase (__lowerCamelCase : Tuple , __lowerCamelCase : Dict ) -> Tuple:
a__ = XCLIPTextConfig()
# derive patch size from model name
a__ = model_name.find("patch" )
a__ = int(model_name[start_idx + len("patch" ) : start_idx + len("patch" ) + 2] )
a__ = XCLIPVisionConfig(patch_size=__lowerCamelCase , num_frames=__lowerCamelCase )
if "large" in model_name:
a__ = 768
a__ = 3072
a__ = 12
a__ = 1024
a__ = 4096
a__ = 16
a__ = 24
a__ = 768
a__ = 3072
if model_name == "xclip-large-patch14-16-frames":
a__ = 336
a__ = XCLIPConfig.from_text_vision_configs(__lowerCamelCase , __lowerCamelCase )
if "large" in model_name:
a__ = 768
return config
def _lowerCamelCase (__lowerCamelCase : Optional[int] ) -> List[str]:
# text encoder
if name == "token_embedding.weight":
a__ = name.replace("token_embedding.weight" , "text_model.embeddings.token_embedding.weight" )
if name == "positional_embedding":
a__ = name.replace("positional_embedding" , "text_model.embeddings.position_embedding.weight" )
if "ln_1" in name:
a__ = name.replace("ln_1" , "layer_norm1" )
if "ln_2" in name:
a__ = name.replace("ln_2" , "layer_norm2" )
if "c_fc" in name:
a__ = name.replace("c_fc" , "fc1" )
if "c_proj" in name:
a__ = name.replace("c_proj" , "fc2" )
if name.startswith("transformer.resblocks" ):
a__ = name.replace("transformer.resblocks" , "text_model.encoder.layers" )
if "attn.out_proj" in name and "message" not in name:
a__ = name.replace("attn.out_proj" , "self_attn.out_proj" )
if "ln_final" in name:
a__ = name.replace("ln_final" , "text_model.final_layer_norm" )
# visual encoder
if name == "visual.class_embedding":
a__ = name.replace("visual.class_embedding" , "vision_model.embeddings.class_embedding" )
if name == "visual.positional_embedding":
a__ = name.replace("visual.positional_embedding" , "vision_model.embeddings.position_embedding.weight" )
if name.startswith("visual.transformer.resblocks" ):
a__ = name.replace("visual.transformer.resblocks" , "vision_model.encoder.layers" )
if "visual.conv1" in name:
a__ = name.replace("visual.conv1" , "vision_model.embeddings.patch_embedding" )
if "visual.ln_pre" in name:
a__ = name.replace("visual.ln_pre" , "vision_model.pre_layernorm" )
if "visual.ln_post" in name:
a__ = name.replace("visual.ln_post" , "vision_model.post_layernorm" )
if "visual.proj" in name:
a__ = name.replace("visual.proj" , "visual_projection.weight" )
if "text_projection" in name:
a__ = name.replace("text_projection" , "text_projection.weight" )
# things on top
if "prompts_visual_proj" in name:
a__ = name.replace("prompts_visual_proj" , "prompts_visual_projection" )
if "prompts_visual_ln" in name:
a__ = name.replace("prompts_visual_ln" , "prompts_visual_layernorm" )
# mit
if name == "mit.positional_embedding":
a__ = name.replace("positional" , "position" )
if name.startswith("mit.resblocks" ):
a__ = name.replace("mit.resblocks" , "mit.encoder.layers" )
# prompts generator
if name.startswith("prompts_generator.norm" ):
a__ = name.replace("prompts_generator.norm" , "prompts_generator.layernorm" )
return name
def _lowerCamelCase (__lowerCamelCase : Any , __lowerCamelCase : str ) -> Optional[Any]:
for key in orig_state_dict.copy().keys():
a__ = orig_state_dict.pop(__lowerCamelCase )
if "attn.in_proj" in key:
a__ = key.split("." )
if key.startswith("visual" ):
a__ = key_split[3]
a__ = config.vision_config.hidden_size
if "message_attn" in key:
if "weight" in key:
a__ = val[
:dim, :
]
a__ = val[
dim : dim * 2, :
]
a__ = val[
-dim:, :
]
else:
a__ = val[
:dim
]
a__ = val[
dim : dim * 2
]
a__ = val[
-dim:
]
else:
if "weight" in key:
a__ = val[
:dim, :
]
a__ = val[
dim : dim * 2, :
]
a__ = val[
-dim:, :
]
else:
a__ = val[:dim]
a__ = val[
dim : dim * 2
]
a__ = val[-dim:]
elif key.startswith("mit" ):
a__ = key_split[2]
a__ = config.vision_config.mit_hidden_size
if "weight" in key:
a__ = val[:dim, :]
a__ = val[dim : dim * 2, :]
a__ = val[-dim:, :]
else:
a__ = val[:dim]
a__ = val[dim : dim * 2]
a__ = val[-dim:]
else:
a__ = key_split[2]
a__ = config.text_config.hidden_size
if "weight" in key:
a__ = val[:dim, :]
a__ = val[
dim : dim * 2, :
]
a__ = val[-dim:, :]
else:
a__ = val[:dim]
a__ = val[
dim : dim * 2
]
a__ = val[-dim:]
else:
a__ = rename_key(__lowerCamelCase )
if new_key_name in ["visual_projection.weight", "text_projection.weight"]:
a__ = val.T
a__ = val
return orig_state_dict
def _lowerCamelCase (__lowerCamelCase : List[Any] ) -> List[str]:
if num_frames == 8:
a__ = "eating_spaghetti_8_frames.npy"
elif num_frames == 16:
a__ = "eating_spaghetti.npy"
elif num_frames == 32:
a__ = "eating_spaghetti_32_frames.npy"
a__ = hf_hub_download(
repo_id="hf-internal-testing/spaghetti-video" , filename=__lowerCamelCase , repo_type="dataset" , )
a__ = np.load(__lowerCamelCase )
return list(__lowerCamelCase )
def _lowerCamelCase (__lowerCamelCase : Tuple , __lowerCamelCase : Any=None , __lowerCamelCase : Optional[Any]=False ) -> Optional[Any]:
a__ = {
# fully supervised kinetics-400 checkpoints
"xclip-base-patch32": "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_8.pth",
"xclip-base-patch32-16-frames": (
"https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_16.pth"
),
"xclip-base-patch16": "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_8.pth",
"xclip-base-patch16-16-frames": (
"https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_16.pth"
),
"xclip-large-patch14": "https://drive.google.com/u/0/uc?id=1NUOImq0o5DlQTST17iIP3vG7DgmHQuCx&export=download&confirm=t&uuid=b26caedc-88e2-473e-830a-9d158b653cdb",
"xclip-large-patch14-16-frames": "https://drive.google.com/u/0/uc?id=1FOYgnJc097OJ4lGwtRCCydQyVPJEOH7d&export=download&confirm=t&uuid=538fa810-e671-4050-b385-9a623f89804f",
# fully supervised kinetics-600 checkpoints
"xclip-base-patch16-kinetics-600": (
"https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_8.pth"
),
"xclip-base-patch16-kinetics-600-16-frames": (
"https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_16.pth"
),
"xclip-large-patch14-kinetics-600": "https://drive.google.com/u/0/uc?id=1FV8C1INuM91sLAN4ImjzePLIlpMSihwV&export=download&confirm=t&uuid=141d4977-4a65-44ae-864f-4b0c19f838be",
# few shot
"xclip-base-patch16-hmdb-2-shot": (
"https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_2.pth"
),
"xclip-base-patch16-hmdb-4-shot": (
"https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_4.pth"
),
"xclip-base-patch16-hmdb-8-shot": (
"https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_8.pth"
),
"xclip-base-patch16-hmdb-16-shot": (
"https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_16.pth"
),
"xclip-base-patch16-ucf-2-shot": (
"https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_2.pth"
),
"xclip-base-patch16-ucf-4-shot": (
"https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_4.pth"
),
"xclip-base-patch16-ucf-8-shot": (
"https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_8.pth"
),
"xclip-base-patch16-ucf-16-shot": (
"https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_16.pth"
),
# zero shot
"xclip-base-patch16-zero-shot": "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/zero.pth",
}
a__ = model_to_url[model_name]
a__ = 8
if "16-frames" in model_name:
a__ = 16
elif "shot" in model_name:
a__ = 32
a__ = get_xclip_config(__lowerCamelCase , __lowerCamelCase )
a__ = XCLIPModel(__lowerCamelCase )
model.eval()
if "drive" in checkpoint_url:
a__ = "pytorch_model.bin"
gdown.cached_download(__lowerCamelCase , __lowerCamelCase , quiet=__lowerCamelCase )
a__ = torch.load(__lowerCamelCase , map_location="cpu" )["model"]
else:
a__ = torch.hub.load_state_dict_from_url(__lowerCamelCase )["model"]
a__ = convert_state_dict(__lowerCamelCase , __lowerCamelCase )
a__ = XCLIPModel(__lowerCamelCase )
a__ , a__ = model.load_state_dict(__lowerCamelCase , strict=__lowerCamelCase )
assert missing_keys == ["text_model.embeddings.position_ids", "vision_model.embeddings.position_ids"]
model.eval()
a__ = 336 if model_name == "xclip-large-patch14-16-frames" else 224
a__ = VideoMAEImageProcessor(size=__lowerCamelCase )
a__ = CLIPTokenizer.from_pretrained("openai/clip-vit-base-patch32" )
a__ = CLIPTokenizerFast.from_pretrained("openai/clip-vit-base-patch32" )
a__ = XCLIPProcessor(image_processor=__lowerCamelCase , tokenizer=__lowerCamelCase )
a__ = prepare_video(__lowerCamelCase )
a__ = processor(
text=["playing sports", "eating spaghetti", "go shopping"] , videos=__lowerCamelCase , return_tensors="pt" , padding=__lowerCamelCase )
print("Shape of pixel values:" , inputs.pixel_values.shape )
with torch.no_grad():
a__ = model(**__lowerCamelCase )
# Verify outputs
a__ = outputs.logits_per_video
a__ = logits_per_video.softmax(dim=1 )
print("Probs:" , __lowerCamelCase )
# kinetics-400
if model_name == "xclip-base-patch32":
a__ = torch.tensor([[0.0_019, 0.9_951, 0.0_030]] )
elif model_name == "xclip-base-patch32-16-frames":
a__ = torch.tensor([[7.0999e-04, 9.9883e-01, 4.5580e-04]] )
elif model_name == "xclip-base-patch16":
a__ = torch.tensor([[0.0_083, 0.9_681, 0.0_236]] )
elif model_name == "xclip-base-patch16-16-frames":
a__ = torch.tensor([[7.6937e-04, 9.9728e-01, 1.9473e-03]] )
elif model_name == "xclip-large-patch14":
a__ = torch.tensor([[0.0_062, 0.9_864, 0.0_075]] )
elif model_name == "xclip-large-patch14-16-frames":
a__ = torch.tensor([[3.3877e-04, 9.9937e-01, 2.8888e-04]] )
# kinetics-600
elif model_name == "xclip-base-patch16-kinetics-600":
a__ = torch.tensor([[0.0_555, 0.8_914, 0.0_531]] )
elif model_name == "xclip-base-patch16-kinetics-600-16-frames":
a__ = torch.tensor([[3.8554e-04, 9.9929e-01, 3.2754e-04]] )
elif model_name == "xclip-large-patch14-kinetics-600":
a__ = torch.tensor([[0.0_036, 0.9_920, 0.0_045]] )
# few shot
elif model_name == "xclip-base-patch16-hmdb-2-shot":
a__ = torch.tensor([[7.1890e-06, 9.9994e-01, 5.6559e-05]] )
elif model_name == "xclip-base-patch16-hmdb-4-shot":
a__ = torch.tensor([[1.0320e-05, 9.9993e-01, 6.2435e-05]] )
elif model_name == "xclip-base-patch16-hmdb-8-shot":
a__ = torch.tensor([[4.1377e-06, 9.9990e-01, 9.8386e-05]] )
elif model_name == "xclip-base-patch16-hmdb-16-shot":
a__ = torch.tensor([[4.1347e-05, 9.9962e-01, 3.3411e-04]] )
elif model_name == "xclip-base-patch16-ucf-2-shot":
a__ = torch.tensor([[8.5857e-05, 9.9928e-01, 6.3291e-04]] )
elif model_name == "xclip-base-patch16-ucf-4-shot":
a__ = torch.tensor([[8.5857e-05, 9.9928e-01, 6.3291e-04]] )
elif model_name == "xclip-base-patch16-ucf-8-shot":
a__ = torch.tensor([[0.0_027, 0.9_904, 0.0_070]] )
elif model_name == "xclip-base-patch16-ucf-16-shot":
a__ = torch.tensor([[9.8219e-04, 9.9593e-01, 3.0863e-03]] )
# zero shot
elif model_name == "xclip-base-patch16-zero-shot":
a__ = torch.tensor([[3.5082e-04, 9.9785e-01, 1.7966e-03]] )
else:
raise ValueError(f'''Model name {model_name} not supported''' )
assert torch.allclose(__lowerCamelCase , __lowerCamelCase , atol=1e-3 )
print("Looks ok!" )
if pytorch_dump_folder_path is not None:
print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' )
model.save_pretrained(__lowerCamelCase )
if push_to_hub:
print("Pushing model, processor and slow tokenizer files to the hub..." )
model.push_to_hub(__lowerCamelCase , organization="nielsr" )
processor.push_to_hub(__lowerCamelCase , organization="nielsr" )
slow_tokenizer.push_to_hub(__lowerCamelCase , organization="nielsr" )
if __name__ == "__main__":
lowerCAmelCase_ : Any = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--model_name",
default="xclip-base-patch32",
type=str,
help="Name of the model.",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
parser.add_argument(
"--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub."
)
lowerCAmelCase_ : Dict = parser.parse_args()
convert_xclip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 289
| 0
|
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_torch_available,
is_vision_available,
)
__lowerCAmelCase = {
'configuration_convnext': ['CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConvNextConfig', 'ConvNextOnnxConfig']
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCAmelCase = ['ConvNextFeatureExtractor']
__lowerCAmelCase = ['ConvNextImageProcessor']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCAmelCase = [
'CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST',
'ConvNextForImageClassification',
'ConvNextModel',
'ConvNextPreTrainedModel',
'ConvNextBackbone',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCAmelCase = [
'TFConvNextForImageClassification',
'TFConvNextModel',
'TFConvNextPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_convnext import ConvNextFeatureExtractor
from .image_processing_convnext import ConvNextImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_convnext import (
CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST,
ConvNextBackbone,
ConvNextForImageClassification,
ConvNextModel,
ConvNextPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel
else:
import sys
__lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure)
| 585
|
"""simple docstring"""
import os
import shutil
from pathlib import Path
from typing import Optional, Union
import numpy as np
from huggingface_hub import hf_hub_download
from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging
if is_onnx_available():
import onnxruntime as ort
a = logging.get_logger(__name__)
a = {
'''tensor(bool)''': np.bool_,
'''tensor(int8)''': np.inta,
'''tensor(uint8)''': np.uinta,
'''tensor(int16)''': np.intaa,
'''tensor(uint16)''': np.uintaa,
'''tensor(int32)''': np.intaa,
'''tensor(uint32)''': np.uintaa,
'''tensor(int64)''': np.intaa,
'''tensor(uint64)''': np.uintaa,
'''tensor(float16)''': np.floataa,
'''tensor(float)''': np.floataa,
'''tensor(double)''': np.floataa,
}
class lowercase_ :
'''simple docstring'''
def __init__( self : Optional[Any] , _UpperCAmelCase : Dict=None , **_UpperCAmelCase : Optional[Any] ):
logger.info('`diffusers.OnnxRuntimeModel` is experimental and might change in the future.' )
_A = model
_A = kwargs.get('model_save_dir' , _UpperCAmelCase )
_A = kwargs.get('latest_model_name' , _UpperCAmelCase )
def __call__( self : Dict , **_UpperCAmelCase : List[Any] ):
_A = {k: np.array(_UpperCAmelCase ) for k, v in kwargs.items()}
return self.model.run(_UpperCAmelCase , _UpperCAmelCase )
@staticmethod
def lowerCAmelCase_ ( _UpperCAmelCase : Union[str, Path] , _UpperCAmelCase : List[str]=None , _UpperCAmelCase : List[Any]=None ):
if provider is None:
logger.info('No onnxruntime provider specified, using CPUExecutionProvider' )
_A = 'CPUExecutionProvider'
return ort.InferenceSession(_UpperCAmelCase , providers=[provider] , sess_options=_UpperCAmelCase )
def lowerCAmelCase_ ( self : int , _UpperCAmelCase : Union[str, Path] , _UpperCAmelCase : Optional[str] = None , **_UpperCAmelCase : List[Any] ):
_A = file_name if file_name is not None else ONNX_WEIGHTS_NAME
_A = self.model_save_dir.joinpath(self.latest_model_name )
_A = Path(_UpperCAmelCase ).joinpath(_UpperCAmelCase )
try:
shutil.copyfile(_UpperCAmelCase , _UpperCAmelCase )
except shutil.SameFileError:
pass
# copy external weights (for models >2GB)
_A = self.model_save_dir.joinpath(_UpperCAmelCase )
if src_path.exists():
_A = Path(_UpperCAmelCase ).joinpath(_UpperCAmelCase )
try:
shutil.copyfile(_UpperCAmelCase , _UpperCAmelCase )
except shutil.SameFileError:
pass
def lowerCAmelCase_ ( self : List[Any] , _UpperCAmelCase : Union[str, os.PathLike] , **_UpperCAmelCase : List[str] , ):
if os.path.isfile(_UpperCAmelCase ):
logger.error(F'''Provided path ({save_directory}) should be a directory, not a file''' )
return
os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase )
# saving model weights/files
self._save_pretrained(_UpperCAmelCase , **_UpperCAmelCase )
@classmethod
def lowerCAmelCase_ ( cls : Tuple , _UpperCAmelCase : Union[str, Path] , _UpperCAmelCase : Optional[Union[bool, str, None]] = None , _UpperCAmelCase : Optional[Union[str, None]] = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : Optional["ort.SessionOptions"] = None , **_UpperCAmelCase : Union[str, Any] , ):
_A = file_name if file_name is not None else ONNX_WEIGHTS_NAME
# load model from local directory
if os.path.isdir(_UpperCAmelCase ):
_A = OnnxRuntimeModel.load_model(
os.path.join(_UpperCAmelCase , _UpperCAmelCase ) , provider=_UpperCAmelCase , sess_options=_UpperCAmelCase )
_A = Path(_UpperCAmelCase )
# load model from hub
else:
# download model
_A = hf_hub_download(
repo_id=_UpperCAmelCase , filename=_UpperCAmelCase , use_auth_token=_UpperCAmelCase , revision=_UpperCAmelCase , cache_dir=_UpperCAmelCase , force_download=_UpperCAmelCase , )
_A = Path(_UpperCAmelCase ).parent
_A = Path(_UpperCAmelCase ).name
_A = OnnxRuntimeModel.load_model(_UpperCAmelCase , provider=_UpperCAmelCase , sess_options=_UpperCAmelCase )
return cls(model=_UpperCAmelCase , **_UpperCAmelCase )
@classmethod
def lowerCAmelCase_ ( cls : List[Any] , _UpperCAmelCase : Union[str, Path] , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : Optional[str] = None , **_UpperCAmelCase : Tuple , ):
_A = None
if len(str(_UpperCAmelCase ).split('@' ) ) == 2:
_A , _A = model_id.split('@' )
return cls._from_pretrained(
model_id=_UpperCAmelCase , revision=_UpperCAmelCase , cache_dir=_UpperCAmelCase , force_download=_UpperCAmelCase , use_auth_token=_UpperCAmelCase , **_UpperCAmelCase , )
| 7
| 0
|
import dataclasses
import json
import sys
import types
from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, ArgumentTypeError
from copy import copy
from enum import Enum
from inspect import isclass
from pathlib import Path
from typing import Any, Callable, Dict, Iterable, List, Literal, NewType, Optional, Tuple, Union, get_type_hints
import yaml
__lowercase : Dict =NewType("""DataClass""", Any)
__lowercase : Any =NewType("""DataClassType""", Any)
def a__ ( lowercase__ : Dict ):
'''simple docstring'''
if isinstance(lowercase__ , lowercase__ ):
return v
if v.lower() in ("yes", "true", "t", "y", "1"):
return True
elif v.lower() in ("no", "false", "f", "n", "0"):
return False
else:
raise ArgumentTypeError(
F'Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive).' )
def a__ ( lowercase__ : Dict ):
'''simple docstring'''
UpperCAmelCase_ ={str(lowercase__ ): choice for choice in choices}
return lambda lowercase__ : str_to_choice.get(lowercase__ , lowercase__ )
def a__ ( *,
lowercase__ : Tuple = None , lowercase__ : Optional[int] = None , lowercase__ : Optional[Any] = dataclasses.MISSING , lowercase__ : Optional[int] = dataclasses.MISSING , lowercase__ : Tuple = None , **lowercase__ : str , ):
'''simple docstring'''
if metadata is None:
# Important, don't use as default param in function signature because dict is mutable and shared across function calls
UpperCAmelCase_ ={}
if aliases is not None:
UpperCAmelCase_ =aliases
if help is not None:
UpperCAmelCase_ =help
return dataclasses.field(metadata=lowercase__ , default=lowercase__ , default_factory=lowercase__ , **lowercase__ )
class A ( __lowercase ):
_snake_case =42
def __init__( self: int , _lowerCAmelCase: Union[DataClassType, Iterable[DataClassType]] , **_lowerCAmelCase: List[str] ) -> Optional[Any]:
'''simple docstring'''
if "formatter_class" not in kwargs:
UpperCAmelCase_ =ArgumentDefaultsHelpFormatter
super().__init__(**_lowerCAmelCase )
if dataclasses.is_dataclass(_lowerCAmelCase ):
UpperCAmelCase_ =[dataclass_types]
UpperCAmelCase_ =list(_lowerCAmelCase )
for dtype in self.dataclass_types:
self._add_dataclass_arguments(_lowerCAmelCase )
@staticmethod
def lowerCAmelCase__ ( _lowerCAmelCase: ArgumentParser , _lowerCAmelCase: dataclasses.Field ) -> Tuple:
'''simple docstring'''
UpperCAmelCase_ =F'--{field.name}'
UpperCAmelCase_ =field.metadata.copy()
# field.metadata is not used at all by Data Classes,
# it is provided as a third-party extension mechanism.
if isinstance(field.type , _lowerCAmelCase ):
raise RuntimeError(
"Unresolved type detected, which should have been done with the help of "
"`typing.get_type_hints` method by default" )
UpperCAmelCase_ =kwargs.pop("aliases" , [] )
if isinstance(_lowerCAmelCase , _lowerCAmelCase ):
UpperCAmelCase_ =[aliases]
UpperCAmelCase_ =getattr(field.type , "__origin__" , field.type )
if origin_type is Union or (hasattr(_lowerCAmelCase , "UnionType" ) and isinstance(_lowerCAmelCase , types.UnionType )):
if str not in field.type.__args__ and (
len(field.type.__args__ ) != 2 or type(_lowerCAmelCase ) not in field.type.__args__
):
raise ValueError(
"Only `Union[X, NoneType]` (i.e., `Optional[X]`) is allowed for `Union` because"
" the argument parser only supports one type per argument."
F' Problem encountered in field \'{field.name}\'.' )
if type(_lowerCAmelCase ) not in field.type.__args__:
# filter `str` in Union
UpperCAmelCase_ =field.type.__args__[0] if field.type.__args__[1] == str else field.type.__args__[1]
UpperCAmelCase_ =getattr(field.type , "__origin__" , field.type )
elif bool not in field.type.__args__:
# filter `NoneType` in Union (except for `Union[bool, NoneType]`)
UpperCAmelCase_ =(
field.type.__args__[0] if isinstance(_lowerCAmelCase , field.type.__args__[1] ) else field.type.__args__[1]
)
UpperCAmelCase_ =getattr(field.type , "__origin__" , field.type )
# A variable to store kwargs for a boolean field, if needed
# so that we can init a `no_*` complement argument (see below)
UpperCAmelCase_ ={}
if origin_type is Literal or (isinstance(field.type , _lowerCAmelCase ) and issubclass(field.type , _lowerCAmelCase )):
if origin_type is Literal:
UpperCAmelCase_ =field.type.__args__
else:
UpperCAmelCase_ =[x.value for x in field.type]
UpperCAmelCase_ =make_choice_type_function(kwargs["choices"] )
if field.default is not dataclasses.MISSING:
UpperCAmelCase_ =field.default
else:
UpperCAmelCase_ =True
elif field.type is bool or field.type == Optional[bool]:
# Copy the currect kwargs to use to instantiate a `no_*` complement argument below.
# We do not initialize it here because the `no_*` alternative must be instantiated after the real argument
UpperCAmelCase_ =copy(_lowerCAmelCase )
# Hack because type=bool in argparse does not behave as we want.
UpperCAmelCase_ =string_to_bool
if field.type is bool or (field.default is not None and field.default is not dataclasses.MISSING):
# Default value is False if we have no default when of type bool.
UpperCAmelCase_ =False if field.default is dataclasses.MISSING else field.default
# This is the value that will get picked if we don't include --field_name in any way
UpperCAmelCase_ =default
# This tells argparse we accept 0 or 1 value after --field_name
UpperCAmelCase_ ="?"
# This is the value that will get picked if we do --field_name (without value)
UpperCAmelCase_ =True
elif isclass(_lowerCAmelCase ) and issubclass(_lowerCAmelCase , _lowerCAmelCase ):
UpperCAmelCase_ =field.type.__args__[0]
UpperCAmelCase_ ="+"
if field.default_factory is not dataclasses.MISSING:
UpperCAmelCase_ =field.default_factory()
elif field.default is dataclasses.MISSING:
UpperCAmelCase_ =True
else:
UpperCAmelCase_ =field.type
if field.default is not dataclasses.MISSING:
UpperCAmelCase_ =field.default
elif field.default_factory is not dataclasses.MISSING:
UpperCAmelCase_ =field.default_factory()
else:
UpperCAmelCase_ =True
parser.add_argument(_lowerCAmelCase , *_lowerCAmelCase , **_lowerCAmelCase )
# Add a complement `no_*` argument for a boolean field AFTER the initial field has already been added.
# Order is important for arguments with the same destination!
# We use a copy of earlier kwargs because the original kwargs have changed a lot before reaching down
# here and we do not need those changes/additional keys.
if field.default is True and (field.type is bool or field.type == Optional[bool]):
UpperCAmelCase_ =False
parser.add_argument(F'--no_{field.name}' , action="store_false" , dest=field.name , **_lowerCAmelCase )
def lowerCAmelCase__ ( self: str , _lowerCAmelCase: DataClassType ) -> Dict:
'''simple docstring'''
if hasattr(_lowerCAmelCase , "_argument_group_name" ):
UpperCAmelCase_ =self.add_argument_group(dtype._argument_group_name )
else:
UpperCAmelCase_ =self
try:
UpperCAmelCase_ =get_type_hints(_lowerCAmelCase )
except NameError:
raise RuntimeError(
F'Type resolution failed for {dtype}. Try declaring the class in global scope or '
"removing line of `from __future__ import annotations` which opts in Postponed "
"Evaluation of Annotations (PEP 563)" )
except TypeError as ex:
# Remove this block when we drop Python 3.9 support
if sys.version_info[:2] < (3, 10) and "unsupported operand type(s) for |" in str(_lowerCAmelCase ):
UpperCAmelCase_ =".".join(map(_lowerCAmelCase , sys.version_info[:3] ) )
raise RuntimeError(
F'Type resolution failed for {dtype} on Python {python_version}. Try removing '
"line of `from __future__ import annotations` which opts in union types as "
"`X | Y` (PEP 604) via Postponed Evaluation of Annotations (PEP 563). To "
"support Python versions that lower than 3.10, you need to use "
"`typing.Union[X, Y]` instead of `X | Y` and `typing.Optional[X]` instead of "
"`X | None`." ) from ex
raise
for field in dataclasses.fields(_lowerCAmelCase ):
if not field.init:
continue
UpperCAmelCase_ =type_hints[field.name]
self._parse_dataclass_field(_lowerCAmelCase , _lowerCAmelCase )
def lowerCAmelCase__ ( self: Dict , _lowerCAmelCase: List[Any]=None , _lowerCAmelCase: List[str]=False , _lowerCAmelCase: Any=True , _lowerCAmelCase: List[str]=None , _lowerCAmelCase: Optional[int]=None , ) -> Tuple[DataClass, ...]:
'''simple docstring'''
if args_file_flag or args_filename or (look_for_args_file and len(sys.argv )):
UpperCAmelCase_ =[]
if args_filename:
args_files.append(Path(_lowerCAmelCase ) )
elif look_for_args_file and len(sys.argv ):
args_files.append(Path(sys.argv[0] ).with_suffix(".args" ) )
# args files specified via command line flag should overwrite default args files so we add them last
if args_file_flag:
# Create special parser just to extract the args_file_flag values
UpperCAmelCase_ =ArgumentParser()
args_file_parser.add_argument(_lowerCAmelCase , type=_lowerCAmelCase , action="append" )
# Use only remaining args for further parsing (remove the args_file_flag)
UpperCAmelCase_ , UpperCAmelCase_ =args_file_parser.parse_known_args(args=_lowerCAmelCase )
UpperCAmelCase_ =vars(_lowerCAmelCase ).get(args_file_flag.lstrip("-" ) , _lowerCAmelCase )
if cmd_args_file_paths:
args_files.extend([Path(_lowerCAmelCase ) for p in cmd_args_file_paths] )
UpperCAmelCase_ =[]
for args_file in args_files:
if args_file.exists():
file_args += args_file.read_text().split()
# in case of duplicate arguments the last one has precedence
# args specified via the command line should overwrite args from files, so we add them last
UpperCAmelCase_ =file_args + args if args is not None else file_args + sys.argv[1:]
UpperCAmelCase_ , UpperCAmelCase_ =self.parse_known_args(args=_lowerCAmelCase )
UpperCAmelCase_ =[]
for dtype in self.dataclass_types:
UpperCAmelCase_ ={f.name for f in dataclasses.fields(_lowerCAmelCase ) if f.init}
UpperCAmelCase_ ={k: v for k, v in vars(_lowerCAmelCase ).items() if k in keys}
for k in keys:
delattr(_lowerCAmelCase , _lowerCAmelCase )
UpperCAmelCase_ =dtype(**_lowerCAmelCase )
outputs.append(_lowerCAmelCase )
if len(namespace.__dict__ ) > 0:
# additional namespace.
outputs.append(_lowerCAmelCase )
if return_remaining_strings:
return (*outputs, remaining_args)
else:
if remaining_args:
raise ValueError(F'Some specified arguments are not used by the HfArgumentParser: {remaining_args}' )
return (*outputs,)
def lowerCAmelCase__ ( self: Optional[int] , _lowerCAmelCase: Dict[str, Any] , _lowerCAmelCase: bool = False ) -> Tuple[DataClass, ...]:
'''simple docstring'''
UpperCAmelCase_ =set(args.keys() )
UpperCAmelCase_ =[]
for dtype in self.dataclass_types:
UpperCAmelCase_ ={f.name for f in dataclasses.fields(_lowerCAmelCase ) if f.init}
UpperCAmelCase_ ={k: v for k, v in args.items() if k in keys}
unused_keys.difference_update(inputs.keys() )
UpperCAmelCase_ =dtype(**_lowerCAmelCase )
outputs.append(_lowerCAmelCase )
if not allow_extra_keys and unused_keys:
raise ValueError(F'Some keys are not used by the HfArgumentParser: {sorted(_lowerCAmelCase )}' )
return tuple(_lowerCAmelCase )
def lowerCAmelCase__ ( self: str , _lowerCAmelCase: str , _lowerCAmelCase: bool = False ) -> Tuple[DataClass, ...]:
'''simple docstring'''
with open(Path(_lowerCAmelCase ) , encoding="utf-8" ) as open_json_file:
UpperCAmelCase_ =json.loads(open_json_file.read() )
UpperCAmelCase_ =self.parse_dict(_lowerCAmelCase , allow_extra_keys=_lowerCAmelCase )
return tuple(_lowerCAmelCase )
def lowerCAmelCase__ ( self: List[Any] , _lowerCAmelCase: str , _lowerCAmelCase: bool = False ) -> Tuple[DataClass, ...]:
'''simple docstring'''
UpperCAmelCase_ =self.parse_dict(yaml.safe_load(Path(_lowerCAmelCase ).read_text() ) , allow_extra_keys=_lowerCAmelCase )
return tuple(_lowerCAmelCase )
| 701
|
import torch
from diffusers import DDIMParallelScheduler
from .test_schedulers import SchedulerCommonTest
class A ( __lowercase ):
_snake_case =(DDIMParallelScheduler,)
_snake_case =(('''eta''', 0.0), ('''num_inference_steps''', 50))
def lowerCAmelCase__ ( self: str , **_lowerCAmelCase: str ) -> str:
'''simple docstring'''
UpperCAmelCase_ ={
"num_train_timesteps": 1000,
"beta_start": 0.00_01,
"beta_end": 0.02,
"beta_schedule": "linear",
"clip_sample": True,
}
config.update(**_lowerCAmelCase )
return config
def lowerCAmelCase__ ( self: int , **_lowerCAmelCase: Tuple ) -> str:
'''simple docstring'''
UpperCAmelCase_ =self.scheduler_classes[0]
UpperCAmelCase_ =self.get_scheduler_config(**_lowerCAmelCase )
UpperCAmelCase_ =scheduler_class(**_lowerCAmelCase )
UpperCAmelCase_ , UpperCAmelCase_ =10, 0.0
UpperCAmelCase_ =self.dummy_model()
UpperCAmelCase_ =self.dummy_sample_deter
scheduler.set_timesteps(_lowerCAmelCase )
for t in scheduler.timesteps:
UpperCAmelCase_ =model(_lowerCAmelCase , _lowerCAmelCase )
UpperCAmelCase_ =scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ).prev_sample
return sample
def lowerCAmelCase__ ( self: Optional[int] ) -> Optional[int]:
'''simple docstring'''
for timesteps in [100, 500, 1000]:
self.check_over_configs(num_train_timesteps=_lowerCAmelCase )
def lowerCAmelCase__ ( self: int ) -> List[str]:
'''simple docstring'''
for steps_offset in [0, 1]:
self.check_over_configs(steps_offset=_lowerCAmelCase )
UpperCAmelCase_ =self.scheduler_classes[0]
UpperCAmelCase_ =self.get_scheduler_config(steps_offset=1 )
UpperCAmelCase_ =scheduler_class(**_lowerCAmelCase )
scheduler.set_timesteps(5 )
assert torch.equal(scheduler.timesteps , torch.LongTensor([801, 601, 401, 201, 1] ) )
def lowerCAmelCase__ ( self: int ) -> Dict:
'''simple docstring'''
for beta_start, beta_end in zip([0.00_01, 0.0_01, 0.01, 0.1] , [0.0_02, 0.02, 0.2, 2] ):
self.check_over_configs(beta_start=_lowerCAmelCase , beta_end=_lowerCAmelCase )
def lowerCAmelCase__ ( self: int ) -> Any:
'''simple docstring'''
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=_lowerCAmelCase )
def lowerCAmelCase__ ( self: Union[str, Any] ) -> Optional[Any]:
'''simple docstring'''
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=_lowerCAmelCase )
def lowerCAmelCase__ ( self: Optional[int] ) -> Tuple:
'''simple docstring'''
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=_lowerCAmelCase )
def lowerCAmelCase__ ( self: Union[str, Any] ) -> List[Any]:
'''simple docstring'''
for timestep_spacing in ["trailing", "leading"]:
self.check_over_configs(timestep_spacing=_lowerCAmelCase )
def lowerCAmelCase__ ( self: Union[str, Any] ) -> Any:
'''simple docstring'''
for rescale_betas_zero_snr in [True, False]:
self.check_over_configs(rescale_betas_zero_snr=_lowerCAmelCase )
def lowerCAmelCase__ ( self: Union[str, Any] ) -> Optional[Any]:
'''simple docstring'''
self.check_over_configs(thresholding=_lowerCAmelCase )
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(
thresholding=_lowerCAmelCase , prediction_type=_lowerCAmelCase , sample_max_value=_lowerCAmelCase , )
def lowerCAmelCase__ ( self: Union[str, Any] ) -> List[str]:
'''simple docstring'''
for t in [1, 10, 49]:
self.check_over_forward(time_step=_lowerCAmelCase )
def lowerCAmelCase__ ( self: Any ) -> List[str]:
'''simple docstring'''
for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 500] ):
self.check_over_forward(time_step=_lowerCAmelCase , num_inference_steps=_lowerCAmelCase )
def lowerCAmelCase__ ( self: int ) -> Tuple:
'''simple docstring'''
for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0] ):
self.check_over_forward(time_step=_lowerCAmelCase , eta=_lowerCAmelCase )
def lowerCAmelCase__ ( self: Optional[Any] ) -> Optional[Any]:
'''simple docstring'''
UpperCAmelCase_ =self.scheduler_classes[0]
UpperCAmelCase_ =self.get_scheduler_config()
UpperCAmelCase_ =scheduler_class(**_lowerCAmelCase )
assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(420 , 400 ) - 0.1_47_71 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(980 , 960 ) - 0.3_24_60 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(487 , 486 ) - 0.0_09_79 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(999 , 998 ) - 0.02 ) ) < 1e-5
def lowerCAmelCase__ ( self: int ) -> Optional[Any]:
'''simple docstring'''
UpperCAmelCase_ =self.scheduler_classes[0]
UpperCAmelCase_ =self.get_scheduler_config()
UpperCAmelCase_ =scheduler_class(**_lowerCAmelCase )
UpperCAmelCase_ , UpperCAmelCase_ =10, 0.0
scheduler.set_timesteps(_lowerCAmelCase )
UpperCAmelCase_ =self.dummy_model()
UpperCAmelCase_ =self.dummy_sample_deter
UpperCAmelCase_ =self.dummy_sample_deter + 0.1
UpperCAmelCase_ =self.dummy_sample_deter - 0.1
UpperCAmelCase_ =samplea.shape[0]
UpperCAmelCase_ =torch.stack([samplea, samplea, samplea] , dim=0 )
UpperCAmelCase_ =torch.arange(_lowerCAmelCase )[0:3, None].repeat(1 , _lowerCAmelCase )
UpperCAmelCase_ =model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) )
UpperCAmelCase_ =scheduler.batch_step_no_noise(_lowerCAmelCase , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) , _lowerCAmelCase )
UpperCAmelCase_ =torch.sum(torch.abs(_lowerCAmelCase ) )
UpperCAmelCase_ =torch.mean(torch.abs(_lowerCAmelCase ) )
assert abs(result_sum.item() - 11_47.79_04 ) < 1e-2
assert abs(result_mean.item() - 0.49_82 ) < 1e-3
def lowerCAmelCase__ ( self: Optional[int] ) -> Optional[Any]:
'''simple docstring'''
UpperCAmelCase_ =self.full_loop()
UpperCAmelCase_ =torch.sum(torch.abs(_lowerCAmelCase ) )
UpperCAmelCase_ =torch.mean(torch.abs(_lowerCAmelCase ) )
assert abs(result_sum.item() - 1_72.00_67 ) < 1e-2
assert abs(result_mean.item() - 0.22_39_67 ) < 1e-3
def lowerCAmelCase__ ( self: int ) -> Union[str, Any]:
'''simple docstring'''
UpperCAmelCase_ =self.full_loop(prediction_type="v_prediction" )
UpperCAmelCase_ =torch.sum(torch.abs(_lowerCAmelCase ) )
UpperCAmelCase_ =torch.mean(torch.abs(_lowerCAmelCase ) )
assert abs(result_sum.item() - 52.53_02 ) < 1e-2
assert abs(result_mean.item() - 0.06_84 ) < 1e-3
def lowerCAmelCase__ ( self: Optional[Any] ) -> Tuple:
'''simple docstring'''
UpperCAmelCase_ =self.full_loop(set_alpha_to_one=_lowerCAmelCase , beta_start=0.01 )
UpperCAmelCase_ =torch.sum(torch.abs(_lowerCAmelCase ) )
UpperCAmelCase_ =torch.mean(torch.abs(_lowerCAmelCase ) )
assert abs(result_sum.item() - 1_49.82_95 ) < 1e-2
assert abs(result_mean.item() - 0.19_51 ) < 1e-3
def lowerCAmelCase__ ( self: Optional[Any] ) -> str:
'''simple docstring'''
UpperCAmelCase_ =self.full_loop(set_alpha_to_one=_lowerCAmelCase , beta_start=0.01 )
UpperCAmelCase_ =torch.sum(torch.abs(_lowerCAmelCase ) )
UpperCAmelCase_ =torch.mean(torch.abs(_lowerCAmelCase ) )
assert abs(result_sum.item() - 1_49.07_84 ) < 1e-2
assert abs(result_mean.item() - 0.19_41 ) < 1e-3
| 550
| 0
|
import numpy as np
import torch
from torch.nn import CrossEntropyLoss
from transformers import AutoModelForCausalLM, AutoTokenizer
import datasets
from datasets import logging
SCREAMING_SNAKE_CASE :Optional[int] = '''\
'''
SCREAMING_SNAKE_CASE :Optional[Any] = '''
Perplexity (PPL) is one of the most common metrics for evaluating language models.
It is defined as the exponentiated average negative log-likelihood of a sequence.
For more information, see https://huggingface.co/docs/transformers/perplexity
'''
SCREAMING_SNAKE_CASE :str = '''
Args:
model_id (str): model used for calculating Perplexity
NOTE: Perplexity can only be calculated for causal language models.
This includes models such as gpt2, causal variations of bert,
causal versions of t5, and more (the full list can be found
in the AutoModelForCausalLM documentation here:
https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM )
input_texts (list of str): input text, each separate text snippet
is one list entry.
batch_size (int): the batch size to run texts through the model. Defaults to 16.
add_start_token (bool): whether to add the start token to the texts,
so the perplexity can include the probability of the first word. Defaults to True.
device (str): device to run on, defaults to \'cuda\' when available
Returns:
perplexity: dictionary containing the perplexity scores for the texts
in the input list, as well as the mean perplexity. If one of the input texts is
longer than the max input length of the model, then it is truncated to the
max length for the perplexity computation.
Examples:
Example 1:
>>> perplexity = datasets.load_metric("perplexity")
>>> input_texts = ["lorem ipsum", "Happy Birthday!", "Bienvenue"]
>>> results = perplexity.compute(model_id=\'gpt2\',
... add_start_token=False,
... input_texts=input_texts) # doctest:+ELLIPSIS
>>> print(list(results.keys()))
[\'perplexities\', \'mean_perplexity\']
>>> print(round(results["mean_perplexity"], 2))
78.22
>>> print(round(results["perplexities"][0], 2))
11.11
Example 2:
>>> perplexity = datasets.load_metric("perplexity")
>>> input_texts = datasets.load_dataset("wikitext",
... "wikitext-2-raw-v1",
... split="test")["text"][:50] # doctest:+ELLIPSIS
[...]
>>> input_texts = [s for s in input_texts if s!=\'\']
>>> results = perplexity.compute(model_id=\'gpt2\',
... input_texts=input_texts) # doctest:+ELLIPSIS
>>> print(list(results.keys()))
[\'perplexities\', \'mean_perplexity\']
>>> print(round(results["mean_perplexity"], 2))
60.35
>>> print(round(results["perplexities"][0], 2))
81.12
'''
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __lowerCAmelCase ( datasets.Metric ):
"""simple docstring"""
def lowerCAmelCase__ ( self : Tuple ) -> Any:
"""simple docstring"""
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"input_texts": datasets.Value("string" ),
} ) , reference_urls=["https://huggingface.co/docs/transformers/perplexity"] , )
def lowerCAmelCase__ ( self : str , _lowerCAmelCase : str , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[str] = 1_6 , _lowerCAmelCase : int = True , _lowerCAmelCase : List[str]=None ) -> Union[str, Any]:
"""simple docstring"""
if device is not None:
assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu."
if device == "gpu":
snake_case_ = "cuda"
else:
snake_case_ = "cuda" if torch.cuda.is_available() else "cpu"
snake_case_ = AutoModelForCausalLM.from_pretrained(A_ )
snake_case_ = model.to(A_ )
snake_case_ = AutoTokenizer.from_pretrained(A_ )
# if batch_size > 1 (which generally leads to padding being required), and
# if there is not an already assigned pad_token, assign an existing
# special token to also be the padding token
if tokenizer.pad_token is None and batch_size > 1:
snake_case_ = list(tokenizer.special_tokens_map_extended.values() )
# check that the model already has at least one special token defined
assert (
len(A_ ) > 0
), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1."
# assign one of the special tokens to also be the pad token
tokenizer.add_special_tokens({"pad_token": existing_special_tokens[0]} )
if add_start_token:
# leave room for <BOS> token to be added:
assert (
tokenizer.bos_token is not None
), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False"
snake_case_ = model.config.max_length - 1
else:
snake_case_ = model.config.max_length
snake_case_ = tokenizer(
A_ , add_special_tokens=A_ , padding=A_ , truncation=A_ , max_length=A_ , return_tensors="pt" , return_attention_mask=A_ , ).to(A_ )
snake_case_ = encodings["input_ids"]
snake_case_ = encodings["attention_mask"]
# check that each input is long enough:
if add_start_token:
assert torch.all(torch.ge(attn_masks.sum(1 ) , 1 ) ), "Each input text must be at least one token long."
else:
assert torch.all(
torch.ge(attn_masks.sum(1 ) , 2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings."
snake_case_ = []
snake_case_ = CrossEntropyLoss(reduction="none" )
for start_index in logging.tqdm(range(0 , len(A_ ) , A_ ) ):
snake_case_ = min(start_index + batch_size , len(A_ ) )
snake_case_ = encoded_texts[start_index:end_index]
snake_case_ = attn_masks[start_index:end_index]
if add_start_token:
snake_case_ = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(A_ )
snake_case_ = torch.cat([bos_tokens_tensor, encoded_batch] , dim=1 )
snake_case_ = torch.cat(
[torch.ones(bos_tokens_tensor.size() , dtype=torch.intaa ).to(A_ ), attn_mask] , dim=1 )
snake_case_ = encoded_batch
with torch.no_grad():
snake_case_ = model(A_ , attention_mask=A_ ).logits
snake_case_ = out_logits[..., :-1, :].contiguous()
snake_case_ = labels[..., 1:].contiguous()
snake_case_ = attn_mask[..., 1:].contiguous()
snake_case_ = torch.expa(
(loss_fct(shift_logits.transpose(1 , 2 ) , A_ ) * shift_attention_mask_batch).sum(1 )
/ shift_attention_mask_batch.sum(1 ) )
ppls += perplexity_batch.tolist()
return {"perplexities": ppls, "mean_perplexity": np.mean(A_ )}
| 283
|
'''simple docstring'''
import itertools
from dataclasses import dataclass
from typing import Optional
import pandas as pd
import pyarrow as pa
import datasets
from datasets.table import table_cast
@dataclass
class A_ ( datasets.BuilderConfig ):
'''simple docstring'''
_lowerCAmelCase = None
class A_ ( datasets.ArrowBasedBuilder ):
'''simple docstring'''
_lowerCAmelCase = PandasConfig
def a ( self ):
return datasets.DatasetInfo(features=self.config.features )
def a ( self , A_ ):
if not self.config.data_files:
raise ValueError(F"At least one data file must be specified, but got data_files={self.config.data_files}" )
_UpperCamelCase = dl_manager.download_and_extract(self.config.data_files )
if isinstance(A_ , (str, list, tuple) ):
_UpperCamelCase = data_files
if isinstance(A_ , A_ ):
_UpperCamelCase = [files]
# Use `dl_manager.iter_files` to skip hidden files in an extracted archive
_UpperCamelCase = [dl_manager.iter_files(A_ ) for file in files]
return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files} )]
_UpperCamelCase = []
for split_name, files in data_files.items():
if isinstance(A_ , A_ ):
_UpperCamelCase = [files]
# Use `dl_manager.iter_files` to skip hidden files in an extracted archive
_UpperCamelCase = [dl_manager.iter_files(A_ ) for file in files]
splits.append(datasets.SplitGenerator(name=A_ , gen_kwargs={"files": files} ) )
return splits
def a ( self , A_ ):
if self.config.features is not None:
# more expensive cast to support nested features with keys in a different order
# allows str <-> int/float or str to Audio for example
_UpperCamelCase = table_cast(A_ , self.config.features.arrow_schema )
return pa_table
def a ( self , A_ ):
for i, file in enumerate(itertools.chain.from_iterable(A_ ) ):
with open(A_ , "rb" ) as f:
_UpperCamelCase = pa.Table.from_pandas(pd.read_pickle(A_ ) )
yield i, self._cast_table(A_ )
| 138
| 0
|
import argparse
import datetime
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> str:
snake_case__ = {
'''0''': '''Sunday''',
'''1''': '''Monday''',
'''2''': '''Tuesday''',
'''3''': '''Wednesday''',
'''4''': '''Thursday''',
'''5''': '''Friday''',
'''6''': '''Saturday''',
}
snake_case__ = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0}
# Validate
if not 0 < len(__lowerCAmelCase ) < 11:
raise ValueError('''Must be 10 characters long''' )
# Get month
snake_case__ = int(date_input[0] + date_input[1] )
# Validate
if not 0 < m < 13:
raise ValueError('''Month must be between 1 - 12''' )
snake_case__ = date_input[2]
# Validate
if sep_a not in ["-", "/"]:
raise ValueError('''Date separator must be \'-\' or \'/\'''' )
# Get day
snake_case__ = int(date_input[3] + date_input[4] )
# Validate
if not 0 < d < 32:
raise ValueError('''Date must be between 1 - 31''' )
# Get second separator
snake_case__ = date_input[5]
# Validate
if sep_a not in ["-", "/"]:
raise ValueError('''Date separator must be \'-\' or \'/\'''' )
# Get year
snake_case__ = int(date_input[6] + date_input[7] + date_input[8] + date_input[9] )
# Arbitrary year range
if not 45 < y < 8500:
raise ValueError(
'''Year out of range. There has to be some sort of limit...right?''' )
# Get datetime obj for validation
snake_case__ = datetime.date(int(__lowerCAmelCase ) , int(__lowerCAmelCase ) , int(__lowerCAmelCase ) )
# Start math
if m <= 2:
snake_case__ = y - 1
snake_case__ = m + 12
# maths var
snake_case__ = int(str(__lowerCAmelCase )[:2] )
snake_case__ = int(str(__lowerCAmelCase )[2:] )
snake_case__ = int(2.6 * m - 5.39 )
snake_case__ = int(c / 4 )
snake_case__ = int(k / 4 )
snake_case__ = int(d + k )
snake_case__ = int(t + u + v + x )
snake_case__ = int(z - (2 * c) )
snake_case__ = round(w % 7 )
# End math
# Validate math
if f != convert_datetime_days[dt_ck.weekday()]:
raise AssertionError('''The date was evaluated incorrectly. Contact developer.''' )
# Response
snake_case__ = F"""Your date {date_input}, is a {days[str(__lowerCAmelCase )]}!"""
return response
if __name__ == "__main__":
import doctest
doctest.testmod()
lowerCamelCase__ : Union[str, Any] = argparse.ArgumentParser(
description=(
"""Find out what day of the week nearly any date is or was. Enter """
"""date as a string in the mm-dd-yyyy or mm/dd/yyyy format"""
)
)
parser.add_argument(
"""date_input""", type=str, help="""Date as a string (mm-dd-yyyy or mm/dd/yyyy)"""
)
lowerCamelCase__ : Union[str, Any] = parser.parse_args()
zeller(args.date_input)
| 720
|
import pickle
import shutil
import tempfile
import unittest
from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
lowerCamelCase__ : List[Any] = get_tests_dir("""fixtures/test_sentencepiece.model""")
@require_sentencepiece
@require_tokenizers
class __magic_name__ (snake_case_ ,unittest.TestCase ):
'''simple docstring'''
__lowercase : int = XGLMTokenizer
__lowercase : List[Any] = XGLMTokenizerFast
__lowercase : List[str] = True
__lowercase : int = True
def SCREAMING_SNAKE_CASE__ ( self:int ):
super().setUp()
# We have a SentencePiece fixture for testing
snake_case__ = XGLMTokenizer(_a , keep_accents=_a )
tokenizer.save_pretrained(self.tmpdirname )
def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ):
snake_case__ = '''<pad>'''
snake_case__ = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(_a ) , _a )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(_a ) , _a )
def SCREAMING_SNAKE_CASE__ ( self:List[str] ):
snake_case__ = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '''<s>''' )
self.assertEqual(vocab_keys[1] , '''<pad>''' )
self.assertEqual(len(_a ) , 10_08 )
def SCREAMING_SNAKE_CASE__ ( self:List[str] ):
self.assertEqual(self.get_tokenizer().vocab_size , 10_08 )
def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ):
snake_case__ = XGLMTokenizer(_a , keep_accents=_a )
snake_case__ = tokenizer.tokenize('''This is a test''' )
self.assertListEqual(_a , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(_a ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , )
snake_case__ = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' )
self.assertListEqual(
_a , [
SPIECE_UNDERLINE + '''I''',
SPIECE_UNDERLINE + '''was''',
SPIECE_UNDERLINE + '''b''',
'''or''',
'''n''',
SPIECE_UNDERLINE + '''in''',
SPIECE_UNDERLINE + '''''',
'''9''',
'''2''',
'''0''',
'''0''',
'''0''',
''',''',
SPIECE_UNDERLINE + '''and''',
SPIECE_UNDERLINE + '''this''',
SPIECE_UNDERLINE + '''is''',
SPIECE_UNDERLINE + '''f''',
'''al''',
'''s''',
'''é''',
'''.''',
] , )
snake_case__ = tokenizer.convert_tokens_to_ids(_a )
self.assertListEqual(
_a , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4]
] , )
snake_case__ = tokenizer.convert_ids_to_tokens(_a )
self.assertListEqual(
_a , [
SPIECE_UNDERLINE + '''I''',
SPIECE_UNDERLINE + '''was''',
SPIECE_UNDERLINE + '''b''',
'''or''',
'''n''',
SPIECE_UNDERLINE + '''in''',
SPIECE_UNDERLINE + '''''',
'''<unk>''',
'''2''',
'''0''',
'''0''',
'''0''',
''',''',
SPIECE_UNDERLINE + '''and''',
SPIECE_UNDERLINE + '''this''',
SPIECE_UNDERLINE + '''is''',
SPIECE_UNDERLINE + '''f''',
'''al''',
'''s''',
'''<unk>''',
'''.''',
] , )
@cached_property
def SCREAMING_SNAKE_CASE__ ( self:List[Any] ):
return XGLMTokenizer.from_pretrained('''facebook/xglm-564M''' )
def SCREAMING_SNAKE_CASE__ ( self:List[str] ):
with tempfile.NamedTemporaryFile() as f:
shutil.copyfile(_a , f.name )
snake_case__ = XGLMTokenizer(f.name , keep_accents=_a )
snake_case__ = pickle.dumps(_a )
pickle.loads(_a )
def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ):
if not self.test_rust_tokenizer:
return
snake_case__ = self.get_tokenizer()
snake_case__ = self.get_rust_tokenizer()
snake_case__ = '''I was born in 92000, and this is falsé.'''
snake_case__ = tokenizer.tokenize(_a )
snake_case__ = rust_tokenizer.tokenize(_a )
self.assertListEqual(_a , _a )
snake_case__ = tokenizer.encode(_a , add_special_tokens=_a )
snake_case__ = rust_tokenizer.encode(_a , add_special_tokens=_a )
self.assertListEqual(_a , _a )
snake_case__ = self.get_rust_tokenizer()
snake_case__ = tokenizer.encode(_a )
snake_case__ = rust_tokenizer.encode(_a )
self.assertListEqual(_a , _a )
@slow
def SCREAMING_SNAKE_CASE__ ( self:List[str] ):
snake_case__ = '''Hello World!'''
snake_case__ = [2, 3_12_27, 44_47, 35]
self.assertListEqual(_a , self.big_tokenizer.encode(_a ) )
@slow
def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ):
snake_case__ = (
'''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will'''
''' add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth'''
)
# fmt: off
snake_case__ = [2, 10_18, 67, 11, 19_88, 26_17, 56_31, 2_78, 11, 34_07, 48, 7_16_30, 2_80_85, 4, 32_34, 1_57, 13, 6, 5, 6, 4, 35_26, 7_68, 15, 6_59, 57, 2_98, 39_83, 8_64, 1_29, 21, 6, 5, 1_36_75, 3_77, 6_52, 75_80, 1_03_41, 1_55, 28_17, 4_22, 16_66, 7, 16_74, 53, 1_13, 20_22_77, 1_78_92, 33, 60, 87, 4, 32_34, 1_57, 61, 26_67, 5_23_76, 19, 88, 23, 7_35]
# fmt: on
self.assertListEqual(_a , self.big_tokenizer.encode(_a ) )
@slow
def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ):
# fmt: off
snake_case__ = {
'''input_ids''': [[2, 10_88_25, 11_63, 15, 8_80_10, 4_73, 1_58_98, 1_57, 1_36_72, 18_57, 3_12, 8, 23_80_21, 11_63, 53, 1_36_72, 18_57, 3_12, 8, 5_32_83, 18_23_96, 8, 1_85_66, 16, 3_67_33, 41_01, 8, 2_30, 24_40_17, 12_25_53, 7, 15, 13_25_97, 4, 2_93, 1_25_11, 76_10, 4, 34_14, 13_25_97, 9, 4, 3_23_61, 3_62, 4, 7_34, 2_85_12, 3_25_69, 18, 4, 3_23_61, 2_60_96, 1_49_82, 73, 1_87_15, 2_14_33, 23_52_61, 15, 4_92, 1_24_27, 16, 53, 1_87_15, 2_14_33, 6_54_54, 15, 2_36_59, 5_63, 16, 2_78, 5_97, 28_43, 5_95, 79_31, 18_23_96, 6_41_86, 22, 8_86, 5_95, 13_29_81, 53, 2_55_40, 34_49, 4_39_82, 3_99_01, 59_51, 8_78, 3_30, 4, 2_76_94, 8_02_69, 3_12, 53, 65_17, 1_17_80, 6_11, 2_04_08, 5], [2, 6, 13_25_97, 67, 4_28_97, 33, 5_92, 8, 16_37_29, 2_55_40, 3_61, 13_69_97, 10_95_14, 17_32_30, 7, 5_01, 60, 10_29_13, 1_96, 56_31, 2_35, 6_32_43, 4_73, 6, 23_17_57, 74, 52_77, 79_05, 53, 30_95, 3_73_17, 22, 4_54, 18_38_74, 5], [2, 2_68, 3_12_98, 4_65_30, 6, 13_29_35, 4_38_31, 7, 5_97, 32, 24, 36_88, 98_65, 5]],
'''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]
} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=_a , model_name='''facebook/xglm-564M''' , padding=_a , )
| 208
| 0
|
from __future__ import annotations
import inspect
import unittest
import numpy as np
from transformers import ResNetConfig
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import cached_property, is_tf_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFResNetForImageClassification, TFResNetModel
from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class lowerCamelCase :
def __init__( self , lowercase__ , lowercase__=3 , lowercase__=3_2 , lowercase__=3 , lowercase__=1_0 , lowercase__=[1_0, 2_0, 3_0, 4_0] , lowercase__=[1, 1, 2, 1] , lowercase__=True , lowercase__=True , lowercase__="relu" , lowercase__=3 , lowercase__=None , ):
__UpperCAmelCase : Dict = parent
__UpperCAmelCase : Optional[int] = batch_size
__UpperCAmelCase : Any = image_size
__UpperCAmelCase : Tuple = num_channels
__UpperCAmelCase : Optional[Any] = embeddings_size
__UpperCAmelCase : int = hidden_sizes
__UpperCAmelCase : str = depths
__UpperCAmelCase : Any = is_training
__UpperCAmelCase : Optional[Any] = use_labels
__UpperCAmelCase : Tuple = hidden_act
__UpperCAmelCase : List[Any] = num_labels
__UpperCAmelCase : Any = scope
__UpperCAmelCase : List[Any] = len(lowercase__)
def A( self):
__UpperCAmelCase : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
__UpperCAmelCase : List[Any] = None
if self.use_labels:
__UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size] , self.num_labels)
__UpperCAmelCase : Optional[Any] = self.get_config()
return config, pixel_values, labels
def A( self):
return ResNetConfig(
num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , )
def A( self , lowercase__ , lowercase__ , lowercase__):
__UpperCAmelCase : Dict = TFResNetModel(config=lowercase__)
__UpperCAmelCase : Dict = model(lowercase__)
# expected last hidden states: B, C, H // 32, W // 32
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , )
def A( self , lowercase__ , lowercase__ , lowercase__):
__UpperCAmelCase : Any = self.num_labels
__UpperCAmelCase : Any = TFResNetForImageClassification(lowercase__)
__UpperCAmelCase : List[Any] = model(lowercase__ , labels=lowercase__)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels))
def A( self):
__UpperCAmelCase : List[Any] = self.prepare_config_and_inputs()
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Tuple = config_and_inputs
__UpperCAmelCase : Optional[Any] = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_tf
class lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ):
_lowerCAmelCase : Optional[Any] = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else ()
_lowerCAmelCase : List[Any] = (
{'''feature-extraction''': TFResNetModel, '''image-classification''': TFResNetForImageClassification}
if is_tf_available()
else {}
)
_lowerCAmelCase : List[str] = False
_lowerCAmelCase : Any = False
_lowerCAmelCase : Tuple = False
_lowerCAmelCase : str = False
_lowerCAmelCase : Any = False
def A( self):
__UpperCAmelCase : int = TFResNetModelTester(self)
__UpperCAmelCase : int = ConfigTester(self , config_class=lowercase__ , has_text_modality=lowercase__)
def A( self):
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def A( self):
return
@unittest.skip(reason='''ResNet does not use inputs_embeds''')
def A( self):
pass
@unittest.skip(reason='''ResNet does not support input and output embeddings''')
def A( self):
pass
def A( self):
__UpperCAmelCase , __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__UpperCAmelCase : List[str] = model_class(lowercase__)
__UpperCAmelCase : Any = inspect.signature(model.call)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__UpperCAmelCase : Optional[Any] = [*signature.parameters.keys()]
__UpperCAmelCase : Optional[Any] = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , lowercase__)
def A( self):
__UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowercase__)
def A( self):
def check_hidden_states_output(lowercase__ , lowercase__ , lowercase__):
__UpperCAmelCase : str = model_class(lowercase__)
__UpperCAmelCase : Optional[Any] = model(**self._prepare_for_class(lowercase__ , lowercase__))
__UpperCAmelCase : str = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
__UpperCAmelCase : Tuple = self.model_tester.num_stages
self.assertEqual(len(lowercase__) , expected_num_stages + 1)
# ResNet's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:]) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
__UpperCAmelCase , __UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase : Any = ['''basic''', '''bottleneck''']
for model_class in self.all_model_classes:
for layer_type in layers_type:
__UpperCAmelCase : str = layer_type
__UpperCAmelCase : Any = True
check_hidden_states_output(lowercase__ , lowercase__ , lowercase__)
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__UpperCAmelCase : str = True
check_hidden_states_output(lowercase__ , lowercase__ , lowercase__)
def A( self):
__UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*lowercase__)
@slow
def A( self):
for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__UpperCAmelCase : Optional[int] = TFResNetModel.from_pretrained(lowercase__)
self.assertIsNotNone(lowercase__)
def __SCREAMING_SNAKE_CASE ( ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Any = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_tf
@require_vision
class lowerCamelCase ( unittest.TestCase ):
@cached_property
def A( self):
return (
AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0])
if is_vision_available()
else None
)
@slow
def A( self):
__UpperCAmelCase : Optional[int] = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0])
__UpperCAmelCase : Tuple = self.default_image_processor
__UpperCAmelCase : Any = prepare_img()
__UpperCAmelCase : Optional[Any] = image_processor(images=lowercase__ , return_tensors='''tf''')
# forward pass
__UpperCAmelCase : int = model(**lowercase__)
# verify the logits
__UpperCAmelCase : Dict = tf.TensorShape((1, 1_0_0_0))
self.assertEqual(outputs.logits.shape , lowercase__)
__UpperCAmelCase : List[str] = tf.constant([-1_1.1_0_6_9, -9.7_8_7_7, -8.3_7_7_7])
self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , lowercase__ , atol=1e-4))
| 462
|
import inspect
import os
import sys
import unittest
import accelerate
from accelerate.test_utils import execute_subprocess_async, require_tpu
class lowerCamelCase ( unittest.TestCase ):
def A( self):
__UpperCAmelCase : List[Any] = inspect.getfile(accelerate.test_utils)
__UpperCAmelCase : Dict = os.path.sep.join(mod_file.split(os.path.sep)[:-1] + ['''scripts''', '''test_script.py'''])
__UpperCAmelCase : Union[str, Any] = os.path.sep.join(inspect.getfile(self.__class__).split(os.path.sep)[:-1])
@require_tpu
def A( self):
__UpperCAmelCase : Dict = F"\n {self.test_dir}/xla_spawn.py\n --num_cores 8\n {self.test_file_path}\n ".split()
__UpperCAmelCase : Union[str, Any] = [sys.executable] + distributed_args
execute_subprocess_async(lowercase__ , env=os.environ.copy())
| 462
| 1
|
import argparse
import json
import os
import numpy as np
import PIL
import requests
import tensorflow.keras.applications.efficientnet as efficientnet
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from tensorflow.keras.preprocessing import image
from transformers import (
EfficientNetConfig,
EfficientNetForImageClassification,
EfficientNetImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
lowerCamelCase__ = logging.get_logger(__name__)
lowerCamelCase__ = {
"""b0""": efficientnet.EfficientNetBa,
"""b1""": efficientnet.EfficientNetBa,
"""b2""": efficientnet.EfficientNetBa,
"""b3""": efficientnet.EfficientNetBa,
"""b4""": efficientnet.EfficientNetBa,
"""b5""": efficientnet.EfficientNetBa,
"""b6""": efficientnet.EfficientNetBa,
"""b7""": efficientnet.EfficientNetBa,
}
lowerCamelCase__ = {
"""b0""": {
"""hidden_dim""": 1280,
"""width_coef""": 1.0,
"""depth_coef""": 1.0,
"""image_size""": 224,
"""dropout_rate""": 0.2,
"""dw_padding""": [],
},
"""b1""": {
"""hidden_dim""": 1280,
"""width_coef""": 1.0,
"""depth_coef""": 1.1,
"""image_size""": 240,
"""dropout_rate""": 0.2,
"""dw_padding""": [16],
},
"""b2""": {
"""hidden_dim""": 1408,
"""width_coef""": 1.1,
"""depth_coef""": 1.2,
"""image_size""": 260,
"""dropout_rate""": 0.3,
"""dw_padding""": [5, 8, 16],
},
"""b3""": {
"""hidden_dim""": 1536,
"""width_coef""": 1.2,
"""depth_coef""": 1.4,
"""image_size""": 300,
"""dropout_rate""": 0.3,
"""dw_padding""": [5, 18],
},
"""b4""": {
"""hidden_dim""": 1792,
"""width_coef""": 1.4,
"""depth_coef""": 1.8,
"""image_size""": 380,
"""dropout_rate""": 0.4,
"""dw_padding""": [6],
},
"""b5""": {
"""hidden_dim""": 2048,
"""width_coef""": 1.6,
"""depth_coef""": 2.2,
"""image_size""": 456,
"""dropout_rate""": 0.4,
"""dw_padding""": [13, 27],
},
"""b6""": {
"""hidden_dim""": 2304,
"""width_coef""": 1.8,
"""depth_coef""": 2.6,
"""image_size""": 528,
"""dropout_rate""": 0.5,
"""dw_padding""": [31],
},
"""b7""": {
"""hidden_dim""": 2560,
"""width_coef""": 2.0,
"""depth_coef""": 3.1,
"""image_size""": 600,
"""dropout_rate""": 0.5,
"""dw_padding""": [18],
},
}
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> List[Any]:
lowerCAmelCase__ : int = EfficientNetConfig()
lowerCAmelCase__ : Union[str, Any] = CONFIG_MAP[model_name]['hidden_dim']
lowerCAmelCase__ : List[str] = CONFIG_MAP[model_name]['width_coef']
lowerCAmelCase__ : Union[str, Any] = CONFIG_MAP[model_name]['depth_coef']
lowerCAmelCase__ : Tuple = CONFIG_MAP[model_name]['image_size']
lowerCAmelCase__ : str = CONFIG_MAP[model_name]['dropout_rate']
lowerCAmelCase__ : Any = CONFIG_MAP[model_name]['dw_padding']
lowerCAmelCase__ : int = 'huggingface/label-files'
lowerCAmelCase__ : List[str] = 'imagenet-1k-id2label.json'
lowerCAmelCase__ : Tuple = 1_000
lowerCAmelCase__ : List[str] = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , repo_type='dataset' ) , 'r' ) )
lowerCAmelCase__ : Union[str, Any] = {int(SCREAMING_SNAKE_CASE_ ): v for k, v in idalabel.items()}
lowerCAmelCase__ : Union[str, Any] = idalabel
lowerCAmelCase__ : int = {v: k for k, v in idalabel.items()}
return config
def lowerCAmelCase__ ( ) -> Any:
lowerCAmelCase__ : Any = 'http://images.cocodataset.org/val2017/000000039769.jpg'
lowerCAmelCase__ : Union[str, Any] = Image.open(requests.get(SCREAMING_SNAKE_CASE_ , stream=SCREAMING_SNAKE_CASE_ ).raw )
return im
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> Optional[int]:
lowerCAmelCase__ : Any = CONFIG_MAP[model_name]['image_size']
lowerCAmelCase__ : List[str] = EfficientNetImageProcessor(
size={'height': size, 'width': size} , image_mean=[0.485, 0.456, 0.406] , image_std=[0.47853944, 0.4732864, 0.47434163] , do_center_crop=SCREAMING_SNAKE_CASE_ , )
return preprocessor
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> List[str]:
lowerCAmelCase__ : Tuple = [v.split('_' )[0].split('block' )[1] for v in original_param_names if v.startswith('block' )]
lowerCAmelCase__ : int = sorted(set(SCREAMING_SNAKE_CASE_ ) )
lowerCAmelCase__ : Dict = len(SCREAMING_SNAKE_CASE_ )
lowerCAmelCase__ : str = {b: str(SCREAMING_SNAKE_CASE_ ) for b, i in zip(SCREAMING_SNAKE_CASE_ , range(SCREAMING_SNAKE_CASE_ ) )}
lowerCAmelCase__ : int = []
rename_keys.append(('stem_conv/kernel:0', 'embeddings.convolution.weight') )
rename_keys.append(('stem_bn/gamma:0', 'embeddings.batchnorm.weight') )
rename_keys.append(('stem_bn/beta:0', 'embeddings.batchnorm.bias') )
rename_keys.append(('stem_bn/moving_mean:0', 'embeddings.batchnorm.running_mean') )
rename_keys.append(('stem_bn/moving_variance:0', 'embeddings.batchnorm.running_var') )
for b in block_names:
lowerCAmelCase__ : List[str] = block_name_mapping[b]
rename_keys.append((F'''block{b}_expand_conv/kernel:0''', F'''encoder.blocks.{hf_b}.expansion.expand_conv.weight''') )
rename_keys.append((F'''block{b}_expand_bn/gamma:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.weight''') )
rename_keys.append((F'''block{b}_expand_bn/beta:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.bias''') )
rename_keys.append(
(F'''block{b}_expand_bn/moving_mean:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.running_mean''') )
rename_keys.append(
(F'''block{b}_expand_bn/moving_variance:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.running_var''') )
rename_keys.append(
(F'''block{b}_dwconv/depthwise_kernel:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight''') )
rename_keys.append((F'''block{b}_bn/gamma:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight''') )
rename_keys.append((F'''block{b}_bn/beta:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias''') )
rename_keys.append(
(F'''block{b}_bn/moving_mean:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean''') )
rename_keys.append(
(F'''block{b}_bn/moving_variance:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var''') )
rename_keys.append((F'''block{b}_se_reduce/kernel:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.reduce.weight''') )
rename_keys.append((F'''block{b}_se_reduce/bias:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.reduce.bias''') )
rename_keys.append((F'''block{b}_se_expand/kernel:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.expand.weight''') )
rename_keys.append((F'''block{b}_se_expand/bias:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.expand.bias''') )
rename_keys.append(
(F'''block{b}_project_conv/kernel:0''', F'''encoder.blocks.{hf_b}.projection.project_conv.weight''') )
rename_keys.append((F'''block{b}_project_bn/gamma:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.weight''') )
rename_keys.append((F'''block{b}_project_bn/beta:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.bias''') )
rename_keys.append(
(F'''block{b}_project_bn/moving_mean:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.running_mean''') )
rename_keys.append(
(F'''block{b}_project_bn/moving_variance:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.running_var''') )
rename_keys.append(('top_conv/kernel:0', 'encoder.top_conv.weight') )
rename_keys.append(('top_bn/gamma:0', 'encoder.top_bn.weight') )
rename_keys.append(('top_bn/beta:0', 'encoder.top_bn.bias') )
rename_keys.append(('top_bn/moving_mean:0', 'encoder.top_bn.running_mean') )
rename_keys.append(('top_bn/moving_variance:0', 'encoder.top_bn.running_var') )
lowerCAmelCase__ : Any = {}
for item in rename_keys:
if item[0] in original_param_names:
lowerCAmelCase__ : Tuple = 'efficientnet.' + item[1]
lowerCAmelCase__ : Tuple = 'classifier.weight'
lowerCAmelCase__ : Union[str, Any] = 'classifier.bias'
return key_mapping
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Dict:
for key, value in tf_params.items():
if "normalization" in key:
continue
lowerCAmelCase__ : str = key_mapping[key]
if "_conv" in key and "kernel" in key:
lowerCAmelCase__ : int = torch.from_numpy(SCREAMING_SNAKE_CASE_ ).permute(3 , 2 , 0 , 1 )
elif "depthwise_kernel" in key:
lowerCAmelCase__ : List[str] = torch.from_numpy(SCREAMING_SNAKE_CASE_ ).permute(2 , 3 , 0 , 1 )
elif "kernel" in key:
lowerCAmelCase__ : Any = torch.from_numpy(np.transpose(SCREAMING_SNAKE_CASE_ ) )
else:
lowerCAmelCase__ : Optional[Any] = torch.from_numpy(SCREAMING_SNAKE_CASE_ )
# Replace HF parameters with original TF model parameters
assert hf_params[hf_key].shape == new_hf_value.shape
hf_params[hf_key].copy_(SCREAMING_SNAKE_CASE_ )
@torch.no_grad()
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]:
lowerCAmelCase__ : List[Any] = model_classes[model_name](
include_top=SCREAMING_SNAKE_CASE_ , weights='imagenet' , input_tensor=SCREAMING_SNAKE_CASE_ , input_shape=SCREAMING_SNAKE_CASE_ , pooling=SCREAMING_SNAKE_CASE_ , classes=1_000 , classifier_activation='softmax' , )
lowerCAmelCase__ : Union[str, Any] = original_model.trainable_variables
lowerCAmelCase__ : Dict = original_model.non_trainable_variables
lowerCAmelCase__ : str = {param.name: param.numpy() for param in tf_params}
for param in tf_non_train_params:
lowerCAmelCase__ : List[str] = param.numpy()
lowerCAmelCase__ : Optional[Any] = list(tf_params.keys() )
# Load HuggingFace model
lowerCAmelCase__ : str = get_efficientnet_config(SCREAMING_SNAKE_CASE_ )
lowerCAmelCase__ : Dict = EfficientNetForImageClassification(SCREAMING_SNAKE_CASE_ ).eval()
lowerCAmelCase__ : Any = hf_model.state_dict()
# Create src-to-dst parameter name mapping dictionary
print('Converting parameters...' )
lowerCAmelCase__ : Optional[Any] = rename_keys(SCREAMING_SNAKE_CASE_ )
replace_params(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
# Initialize preprocessor and preprocess input image
lowerCAmelCase__ : Any = convert_image_processor(SCREAMING_SNAKE_CASE_ )
lowerCAmelCase__ : int = preprocessor(images=prepare_img() , return_tensors='pt' )
# HF model inference
hf_model.eval()
with torch.no_grad():
lowerCAmelCase__ : List[Any] = hf_model(**SCREAMING_SNAKE_CASE_ )
lowerCAmelCase__ : Optional[Any] = outputs.logits.detach().numpy()
# Original model inference
lowerCAmelCase__ : Optional[Any] = False
lowerCAmelCase__ : Union[str, Any] = CONFIG_MAP[model_name]['image_size']
lowerCAmelCase__ : Optional[int] = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST )
lowerCAmelCase__ : List[str] = image.img_to_array(SCREAMING_SNAKE_CASE_ )
lowerCAmelCase__ : Tuple = np.expand_dims(SCREAMING_SNAKE_CASE_ , axis=0 )
lowerCAmelCase__ : Union[str, Any] = original_model.predict(SCREAMING_SNAKE_CASE_ )
# Check whether original and HF model outputs match -> np.allclose
assert np.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1e-3 ), "The predicted logits are not the same."
print('Model outputs match!' )
if save_model:
# Create folder to save model
if not os.path.isdir(SCREAMING_SNAKE_CASE_ ):
os.mkdir(SCREAMING_SNAKE_CASE_ )
# Save converted model and image processor
hf_model.save_pretrained(SCREAMING_SNAKE_CASE_ )
preprocessor.save_pretrained(SCREAMING_SNAKE_CASE_ )
if push_to_hub:
# Push model and image processor to hub
print(F'''Pushing converted {model_name} to the hub...''' )
lowerCAmelCase__ : List[str] = F'''efficientnet-{model_name}'''
preprocessor.push_to_hub(SCREAMING_SNAKE_CASE_ )
hf_model.push_to_hub(SCREAMING_SNAKE_CASE_ )
if __name__ == "__main__":
lowerCamelCase__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--model_name""",
default="""b0""",
type=str,
help="""Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""",
default="""hf_model""",
type=str,
help="""Path to the output PyTorch model directory.""",
)
parser.add_argument("""--save_model""", action="""store_true""", help="""Save model to local""")
parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Push model and image processor to the hub""")
lowerCamelCase__ = parser.parse_args()
convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
| 703
|
import numpy
class A__ :
def __init__( self : Tuple , a : numpy.ndarray , a : numpy.ndarray ):
'''simple docstring'''
lowerCAmelCase__ : int = input_array
# Random initial weights are assigned where first argument is the
# number of nodes in previous layer and second argument is the
# number of nodes in the next layer.
# Random initial weights are assigned.
# self.input_array.shape[1] is used to represent number of nodes in input layer.
# First hidden layer consists of 4 nodes.
lowerCAmelCase__ : Dict = numpy.random.rand(
self.input_array.shape[1] , 4 )
# Random initial values for the first hidden layer.
# First hidden layer has 4 nodes.
# Second hidden layer has 3 nodes.
lowerCAmelCase__ : List[str] = numpy.random.rand(
4 , 3 )
# Random initial values for the second hidden layer.
# Second hidden layer has 3 nodes.
# Output layer has 1 node.
lowerCAmelCase__ : List[Any] = numpy.random.rand(3 , 1 )
# Real output values provided.
lowerCAmelCase__ : str = output_array
# Predicted output values by the neural network.
# Predicted_output array initially consists of zeroes.
lowerCAmelCase__ : List[Any] = numpy.zeros(output_array.shape )
def _lowerCamelCase ( self : List[Any] ):
'''simple docstring'''
lowerCAmelCase__ : str = sigmoid(
numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights ) )
# layer_between_first_hidden_layer_and_second_hidden_layer is the layer
# connecting the first hidden set of nodes with the second hidden set of nodes.
lowerCAmelCase__ : Tuple = sigmoid(
numpy.dot(
self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) )
# layer_between_second_hidden_layer_and_output is the layer connecting
# second hidden layer with the output node.
lowerCAmelCase__ : Any = sigmoid(
numpy.dot(
self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) )
return self.layer_between_second_hidden_layer_and_output
def _lowerCamelCase ( self : Union[str, Any] ):
'''simple docstring'''
lowerCAmelCase__ : List[str] = numpy.dot(
self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2
* (self.output_array - self.predicted_output)
* sigmoid_derivative(self.predicted_output ) , )
lowerCAmelCase__ : Optional[Any] = numpy.dot(
self.layer_between_input_and_first_hidden_layer.T , numpy.dot(
2
* (self.output_array - self.predicted_output)
* sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , )
* sigmoid_derivative(
self.layer_between_first_hidden_layer_and_second_hidden_layer ) , )
lowerCAmelCase__ : int = numpy.dot(
self.input_array.T , numpy.dot(
numpy.dot(
2
* (self.output_array - self.predicted_output)
* sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , )
* sigmoid_derivative(
self.layer_between_first_hidden_layer_and_second_hidden_layer ) , self.first_hidden_layer_and_second_hidden_layer_weights.T , )
* sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) , )
self.input_layer_and_first_hidden_layer_weights += (
updated_input_layer_and_first_hidden_layer_weights
)
self.first_hidden_layer_and_second_hidden_layer_weights += (
updated_first_hidden_layer_and_second_hidden_layer_weights
)
self.second_hidden_layer_and_output_layer_weights += (
updated_second_hidden_layer_and_output_layer_weights
)
def _lowerCamelCase ( self : Optional[int] , a : numpy.ndarray , a : int , a : bool ):
'''simple docstring'''
for iteration in range(1 , iterations + 1 ):
lowerCAmelCase__ : Any = self.feedforward()
self.back_propagation()
if give_loss:
lowerCAmelCase__ : Tuple = numpy.mean(numpy.square(output - self.feedforward() ) )
print(f'''Iteration {iteration} Loss: {loss}''' )
def _lowerCamelCase ( self : Optional[Any] , a : numpy.ndarray ):
'''simple docstring'''
lowerCAmelCase__ : Dict = input_arr
lowerCAmelCase__ : Any = sigmoid(
numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights ) )
lowerCAmelCase__ : int = sigmoid(
numpy.dot(
self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) )
lowerCAmelCase__ : List[Any] = sigmoid(
numpy.dot(
self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) )
return int(self.layer_between_second_hidden_layer_and_output > 0.6 )
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> numpy.ndarray:
return 1 / (1 + numpy.exp(-value ))
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> numpy.ndarray:
return (value) * (1 - (value))
def lowerCAmelCase__ ( ) -> int:
lowerCAmelCase__ : Any = numpy.array(
(
[0, 0, 0],
[0, 0, 1],
[0, 1, 0],
[0, 1, 1],
[1, 0, 0],
[1, 0, 1],
[1, 1, 0],
[1, 1, 1],
) , dtype=numpy.floataa , )
# True output values for the given input values.
lowerCAmelCase__ : int = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa )
# Calling neural network class.
lowerCAmelCase__ : List[str] = TwoHiddenLayerNeuralNetwork(
input_array=SCREAMING_SNAKE_CASE_ , output_array=SCREAMING_SNAKE_CASE_ )
# Calling training function.
# Set give_loss to True if you want to see loss in every iteration.
neural_network.train(output=SCREAMING_SNAKE_CASE_ , iterations=10 , give_loss=SCREAMING_SNAKE_CASE_ )
return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa ) )
if __name__ == "__main__":
example()
| 69
| 0
|
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
SCREAMING_SNAKE_CASE = {'processing_layoutxlm': ['LayoutXLMProcessor']}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE = ['LayoutXLMTokenizer']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE = ['LayoutXLMTokenizerFast']
if TYPE_CHECKING:
from .processing_layoutxlm import LayoutXLMProcessor
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_layoutxlm import LayoutXLMTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast
else:
import sys
SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 94
|
import warnings
from ...utils import logging
from .image_processing_imagegpt import ImageGPTImageProcessor
SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
class lowerCamelCase ( lowercase__ ):
'''simple docstring'''
def __init__( self , *lowerCAmelCase , **lowerCAmelCase ):
warnings.warn(
"The class ImageGPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers."
" Please use ImageGPTImageProcessor instead." , lowerCAmelCase , )
super().__init__(*lowerCAmelCase , **lowerCAmelCase )
| 579
| 0
|
'''simple docstring'''
from math import loga
def a__ ( lowerCAmelCase__ ) -> int:
if a < 0:
raise ValueError('''Input value must be a positive integer''' )
elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
raise TypeError('''Input value must be a \'int\' type''' )
return 0 if (a == 0) else int(loga(a & -a ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 701
|
'''simple docstring'''
from timeit import timeit
def a__ ( lowerCAmelCase__ ) -> int:
if number < 0:
raise ValueError('''the value of input must not be negative''' )
UpperCAmelCase__ : Tuple = 0
while number:
number &= number - 1
result += 1
return result
def a__ ( lowerCAmelCase__ ) -> int:
if number < 0:
raise ValueError('''the value of input must not be negative''' )
UpperCAmelCase__ : Optional[Any] = 0
while number:
if number % 2 == 1:
result += 1
number >>= 1
return result
def a__ ( ) -> None:
def do_benchmark(lowerCAmelCase__ ) -> None:
UpperCAmelCase__ : Optional[Any] = '''import __main__ as z'''
print(F"""Benchmark when {number = }:""" )
print(F"""{get_set_bits_count_using_modulo_operator(lowerCAmelCase__ ) = }""" )
UpperCAmelCase__ : Optional[int] = timeit('''z.get_set_bits_count_using_modulo_operator(25)''' , setup=lowerCAmelCase__ )
print(F"""timeit() runs in {timing} seconds""" )
print(F"""{get_set_bits_count_using_brian_kernighans_algorithm(lowerCAmelCase__ ) = }""" )
UpperCAmelCase__ : Optional[int] = timeit(
'''z.get_set_bits_count_using_brian_kernighans_algorithm(25)''' , setup=lowerCAmelCase__ , )
print(F"""timeit() runs in {timing} seconds""" )
for number in (25, 37, 58, 0):
do_benchmark(lowerCAmelCase__ )
print()
if __name__ == "__main__":
import doctest
doctest.testmod()
benchmark()
| 312
| 0
|
import json
import pathlib
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import ConditionalDetrImageProcessor
class a ( unittest.TestCase ):
def __init__( self : int , snake_case__ : Any , snake_case__ : Dict=7 , snake_case__ : Tuple=3 , snake_case__ : Union[str, Any]=30 , snake_case__ : Any=400 , snake_case__ : Dict=True , snake_case__ : List[Any]=None , snake_case__ : Any=True , snake_case__ : Optional[int]=[0.5, 0.5, 0.5] , snake_case__ : Optional[int]=[0.5, 0.5, 0.5] , snake_case__ : Optional[int]=True , snake_case__ : int=1 / 255 , snake_case__ : str=True , ):
"""simple docstring"""
__lowerCAmelCase = size if size is not None else {"shortest_edge": 18, "longest_edge": 1_333}
__lowerCAmelCase = parent
__lowerCAmelCase = batch_size
__lowerCAmelCase = num_channels
__lowerCAmelCase = min_resolution
__lowerCAmelCase = max_resolution
__lowerCAmelCase = do_resize
__lowerCAmelCase = size
__lowerCAmelCase = do_normalize
__lowerCAmelCase = image_mean
__lowerCAmelCase = image_std
__lowerCAmelCase = do_rescale
__lowerCAmelCase = rescale_factor
__lowerCAmelCase = do_pad
def UpperCAmelCase__ ( self : List[Any] ):
"""simple docstring"""
return {
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_rescale": self.do_rescale,
"rescale_factor": self.rescale_factor,
"do_pad": self.do_pad,
}
def UpperCAmelCase__ ( self : Optional[int] , snake_case__ : Optional[Any] , snake_case__ : Tuple=False ):
"""simple docstring"""
if not batched:
__lowerCAmelCase = image_inputs[0]
if isinstance(snake_case__ , Image.Image ):
__lowerCAmelCase , __lowerCAmelCase = image.size
else:
__lowerCAmelCase , __lowerCAmelCase = image.shape[1], image.shape[2]
if w < h:
__lowerCAmelCase = int(self.size["shortest_edge"] * h / w )
__lowerCAmelCase = self.size["shortest_edge"]
elif w > h:
__lowerCAmelCase = self.size["shortest_edge"]
__lowerCAmelCase = int(self.size["shortest_edge"] * w / h )
else:
__lowerCAmelCase = self.size["shortest_edge"]
__lowerCAmelCase = self.size["shortest_edge"]
else:
__lowerCAmelCase = []
for image in image_inputs:
__lowerCAmelCase , __lowerCAmelCase = self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
__lowerCAmelCase = max(snake_case__ , key=lambda snake_case__ : item[0] )[0]
__lowerCAmelCase = max(snake_case__ , key=lambda snake_case__ : item[1] )[1]
return expected_height, expected_width
@require_torch
@require_vision
class a ( __UpperCAmelCase , unittest.TestCase ):
lowercase_ : List[str] = ConditionalDetrImageProcessor if is_vision_available() else None
def UpperCAmelCase__ ( self : Optional[Any] ):
"""simple docstring"""
__lowerCAmelCase = ConditionalDetrImageProcessingTester(self )
@property
def UpperCAmelCase__ ( self : List[Any] ):
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def UpperCAmelCase__ ( self : Optional[int] ):
"""simple docstring"""
__lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(snake_case__ , "image_mean" ) )
self.assertTrue(hasattr(snake_case__ , "image_std" ) )
self.assertTrue(hasattr(snake_case__ , "do_normalize" ) )
self.assertTrue(hasattr(snake_case__ , "do_resize" ) )
self.assertTrue(hasattr(snake_case__ , "size" ) )
def UpperCAmelCase__ ( self : int ):
"""simple docstring"""
__lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"shortest_edge": 18, "longest_edge": 1_333} )
self.assertEqual(image_processor.do_pad , snake_case__ )
__lowerCAmelCase = self.image_processing_class.from_dict(
self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=snake_case__ )
self.assertEqual(image_processor.size , {"shortest_edge": 42, "longest_edge": 84} )
self.assertEqual(image_processor.do_pad , snake_case__ )
def UpperCAmelCase__ ( self : Tuple ):
"""simple docstring"""
pass
def UpperCAmelCase__ ( self : int ):
"""simple docstring"""
__lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
__lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ )
for image in image_inputs:
self.assertIsInstance(snake_case__ , Image.Image )
# Test not batched input
__lowerCAmelCase = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
__lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(snake_case__ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
__lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(snake_case__ , batched=snake_case__ )
__lowerCAmelCase = image_processing(snake_case__ , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def UpperCAmelCase__ ( self : List[Any] ):
"""simple docstring"""
__lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
__lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ , numpify=snake_case__ )
for image in image_inputs:
self.assertIsInstance(snake_case__ , np.ndarray )
# Test not batched input
__lowerCAmelCase = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
__lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(snake_case__ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
__lowerCAmelCase = image_processing(snake_case__ , return_tensors="pt" ).pixel_values
__lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(snake_case__ , batched=snake_case__ )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def UpperCAmelCase__ ( self : int ):
"""simple docstring"""
__lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
__lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ , torchify=snake_case__ )
for image in image_inputs:
self.assertIsInstance(snake_case__ , torch.Tensor )
# Test not batched input
__lowerCAmelCase = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
__lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(snake_case__ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
__lowerCAmelCase = image_processing(snake_case__ , return_tensors="pt" ).pixel_values
__lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(snake_case__ , batched=snake_case__ )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
@slow
def UpperCAmelCase__ ( self : Optional[Any] ):
"""simple docstring"""
__lowerCAmelCase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r" ) as f:
__lowerCAmelCase = json.loads(f.read() )
__lowerCAmelCase = {"image_id": 39_769, "annotations": target}
# encode them
__lowerCAmelCase = ConditionalDetrImageProcessor.from_pretrained("microsoft/conditional-detr-resnet-50" )
__lowerCAmelCase = image_processing(images=snake_case__ , annotations=snake_case__ , return_tensors="pt" )
# verify pixel values
__lowerCAmelCase = torch.Size([1, 3, 800, 1_066] )
self.assertEqual(encoding["pixel_values"].shape , snake_case__ )
__lowerCAmelCase = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] )
self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , snake_case__ , atol=1E-4 ) )
# verify area
__lowerCAmelCase = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] )
self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , snake_case__ ) )
# verify boxes
__lowerCAmelCase = torch.Size([6, 4] )
self.assertEqual(encoding["labels"][0]["boxes"].shape , snake_case__ )
__lowerCAmelCase = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] )
self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , snake_case__ , atol=1E-3 ) )
# verify image_id
__lowerCAmelCase = torch.tensor([39_769] )
self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , snake_case__ ) )
# verify is_crowd
__lowerCAmelCase = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , snake_case__ ) )
# verify class_labels
__lowerCAmelCase = torch.tensor([75, 75, 63, 65, 17, 17] )
self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , snake_case__ ) )
# verify orig_size
__lowerCAmelCase = torch.tensor([480, 640] )
self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , snake_case__ ) )
# verify size
__lowerCAmelCase = torch.tensor([800, 1_066] )
self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , snake_case__ ) )
@slow
def UpperCAmelCase__ ( self : Tuple ):
"""simple docstring"""
__lowerCAmelCase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r" ) as f:
__lowerCAmelCase = json.loads(f.read() )
__lowerCAmelCase = {"file_name": "000000039769.png", "image_id": 39_769, "segments_info": target}
__lowerCAmelCase = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" )
# encode them
__lowerCAmelCase = ConditionalDetrImageProcessor(format="coco_panoptic" )
__lowerCAmelCase = image_processing(images=snake_case__ , annotations=snake_case__ , masks_path=snake_case__ , return_tensors="pt" )
# verify pixel values
__lowerCAmelCase = torch.Size([1, 3, 800, 1_066] )
self.assertEqual(encoding["pixel_values"].shape , snake_case__ )
__lowerCAmelCase = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] )
self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , snake_case__ , atol=1E-4 ) )
# verify area
__lowerCAmelCase = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] )
self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , snake_case__ ) )
# verify boxes
__lowerCAmelCase = torch.Size([6, 4] )
self.assertEqual(encoding["labels"][0]["boxes"].shape , snake_case__ )
__lowerCAmelCase = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] )
self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , snake_case__ , atol=1E-3 ) )
# verify image_id
__lowerCAmelCase = torch.tensor([39_769] )
self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , snake_case__ ) )
# verify is_crowd
__lowerCAmelCase = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , snake_case__ ) )
# verify class_labels
__lowerCAmelCase = torch.tensor([17, 17, 63, 75, 75, 93] )
self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , snake_case__ ) )
# verify masks
__lowerCAmelCase = 822_873
self.assertEqual(encoding["labels"][0]["masks"].sum().item() , snake_case__ )
# verify orig_size
__lowerCAmelCase = torch.tensor([480, 640] )
self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , snake_case__ ) )
# verify size
__lowerCAmelCase = torch.tensor([800, 1_066] )
self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , snake_case__ ) )
| 611
|
from sklearn.metrics import recall_score
import datasets
UpperCamelCase_ = "\nRecall is the fraction of the positive examples that were correctly labeled by the model as positive. It can be computed with the equation:\nRecall = TP / (TP + FN)\nWhere TP is the true positives and FN is the false negatives.\n"
UpperCamelCase_ = "\nArgs:\n- **predictions** (`list` of `int`): The predicted labels.\n- **references** (`list` of `int`): The ground truth labels.\n- **labels** (`list` of `int`): The set of labels to include when `average` is not set to `binary`, and their order when average is `None`. Labels present in the data can be excluded in this input, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in y_true and y_pred are used in sorted order. Defaults to None.\n- **pos_label** (`int`): The class label to use as the 'positive class' when calculating the recall. Defaults to `1`.\n- **average** (`string`): This parameter is required for multiclass/multilabel targets. If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`.\n - `'binary'`: Only report results for the class specified by `pos_label`. This is applicable only if the target labels and predictions are binary.\n - `'micro'`: Calculate metrics globally by counting the total true positives, false negatives, and false positives.\n - `'macro'`: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - `'weighted'`: Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. Note that it can result in an F-score that is not between precision and recall.\n - `'samples'`: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n- **sample_weight** (`list` of `float`): Sample weights Defaults to `None`.\n- **zero_division** (): Sets the value to return when there is a zero division. Defaults to .\n - `'warn'`: If there is a zero division, the return value is `0`, but warnings are also raised.\n - `0`: If there is a zero division, the return value is `0`.\n - `1`: If there is a zero division, the return value is `1`.\n\nReturns:\n- **recall** (`float`, or `array` of `float`): Either the general recall score, or the recall scores for individual classes, depending on the values input to `labels` and `average`. Minimum possible value is 0. Maximum possible value is 1. A higher recall means that more of the positive examples have been labeled correctly. Therefore, a higher recall is generally considered better.\n\nExamples:\n\n Example 1-A simple example with some errors\n >>> recall_metric = datasets.load_metric('recall')\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1])\n >>> print(results)\n {'recall': 0.6666666666666666}\n\n Example 2-The same example as Example 1, but with `pos_label=0` instead of the default `pos_label=1`.\n >>> recall_metric = datasets.load_metric('recall')\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], pos_label=0)\n >>> print(results)\n {'recall': 0.5}\n\n Example 3-The same example as Example 1, but with `sample_weight` included.\n >>> recall_metric = datasets.load_metric('recall')\n >>> sample_weight = [0.9, 0.2, 0.9, 0.3, 0.8]\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], sample_weight=sample_weight)\n >>> print(results)\n {'recall': 0.55}\n\n Example 4-A multiclass example, using different averages.\n >>> recall_metric = datasets.load_metric('recall')\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = recall_metric.compute(predictions=predictions, references=references, average='macro')\n >>> print(results)\n {'recall': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average='micro')\n >>> print(results)\n {'recall': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average='weighted')\n >>> print(results)\n {'recall': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {'recall': array([1., 0., 0.])}\n"
UpperCamelCase_ = "\n@article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011}\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class a ( datasets.Metric ):
def UpperCAmelCase__ ( self : Dict ):
"""simple docstring"""
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"predictions": datasets.Sequence(datasets.Value("int32" ) ),
"references": datasets.Sequence(datasets.Value("int32" ) ),
}
if self.config_name == "multilabel"
else {
"predictions": datasets.Value("int32" ),
"references": datasets.Value("int32" ),
} ) , reference_urls=["https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html"] , )
def UpperCAmelCase__ ( self : Dict , snake_case__ : List[str] , snake_case__ : List[Any] , snake_case__ : Union[str, Any]=None , snake_case__ : int=1 , snake_case__ : List[str]="binary" , snake_case__ : Tuple=None , snake_case__ : Dict="warn" , ):
"""simple docstring"""
__lowerCAmelCase = recall_score(
snake_case__ , snake_case__ , labels=snake_case__ , pos_label=snake_case__ , average=snake_case__ , sample_weight=snake_case__ , zero_division=snake_case__ , )
return {"recall": float(snake_case__ ) if score.size == 1 else score}
| 611
| 1
|
'''simple docstring'''
from typing import Dict, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import flip_channel_order, resize, to_channel_dimension_format, to_pil_image
from ...image_utils import (
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends
if is_vision_available():
import PIL
# soft dependency
if is_pytesseract_available():
import pytesseract
__snake_case =logging.get_logger(__name__)
def a_ ( lowerCamelCase : Optional[int] , lowerCamelCase : Optional[int] , lowerCamelCase : List[str] ):
return [
int(1000 * (box[0] / width) ),
int(1000 * (box[1] / height) ),
int(1000 * (box[2] / width) ),
int(1000 * (box[3] / height) ),
]
def a_ ( lowerCamelCase : np.ndarray , lowerCamelCase : Optional[str] , lowerCamelCase : Optional[str] = None ):
lowerCAmelCase = tesseract_config if tesseract_config is not None else ''
# apply OCR
lowerCAmelCase = to_pil_image(lowerCamelCase )
lowerCAmelCase , lowerCAmelCase = pil_image.size
lowerCAmelCase = pytesseract.image_to_data(lowerCamelCase , lang=lowerCamelCase , output_type='dict' , config=lowerCamelCase )
lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = data['text'], data['left'], data['top'], data['width'], data['height']
# filter empty words and corresponding coordinates
lowerCAmelCase = [idx for idx, word in enumerate(lowerCamelCase ) if not word.strip()]
lowerCAmelCase = [word for idx, word in enumerate(lowerCamelCase ) if idx not in irrelevant_indices]
lowerCAmelCase = [coord for idx, coord in enumerate(lowerCamelCase ) if idx not in irrelevant_indices]
lowerCAmelCase = [coord for idx, coord in enumerate(lowerCamelCase ) if idx not in irrelevant_indices]
lowerCAmelCase = [coord for idx, coord in enumerate(lowerCamelCase ) if idx not in irrelevant_indices]
lowerCAmelCase = [coord for idx, coord in enumerate(lowerCamelCase ) if idx not in irrelevant_indices]
# turn coordinates into (left, top, left+width, top+height) format
lowerCAmelCase = []
for x, y, w, h in zip(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ):
lowerCAmelCase = [x, y, x + w, y + h]
actual_boxes.append(lowerCamelCase )
# finally, normalize the bounding boxes
lowerCAmelCase = []
for box in actual_boxes:
normalized_boxes.append(normalize_box(lowerCamelCase , lowerCamelCase , lowerCamelCase ) )
assert len(lowerCamelCase ) == len(lowerCamelCase ), "Not as many words as there are bounding boxes"
return words, normalized_boxes
class UpperCAmelCase_ ( __lowercase ):
lowerCamelCase : Dict = ['''pixel_values''']
def __init__( self : Any , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : Dict[str, int] = None , UpperCAmelCase__ : PILImageResampling = PILImageResampling.BILINEAR , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : Optional[str] = None , UpperCAmelCase__ : Optional[str] = "" , **UpperCAmelCase__ : Any , ) -> None:
super().__init__(**UpperCAmelCase__ )
lowerCAmelCase = size if size is not None else {'height': 2_2_4, 'width': 2_2_4}
lowerCAmelCase = get_size_dict(UpperCAmelCase__ )
lowerCAmelCase = do_resize
lowerCAmelCase = size
lowerCAmelCase = resample
lowerCAmelCase = apply_ocr
lowerCAmelCase = ocr_lang
lowerCAmelCase = tesseract_config
def __UpperCAmelCase ( self : str , UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : Dict[str, int] , UpperCAmelCase__ : PILImageResampling = PILImageResampling.BILINEAR , UpperCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase__ : List[str] , ) -> np.ndarray:
lowerCAmelCase = get_size_dict(UpperCAmelCase__ )
if "height" not in size or "width" not in size:
raise ValueError(F'''The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}''' )
lowerCAmelCase = (size['height'], size['width'])
return resize(UpperCAmelCase__ , size=UpperCAmelCase__ , resample=UpperCAmelCase__ , data_format=UpperCAmelCase__ , **UpperCAmelCase__ )
def __UpperCAmelCase ( self : Any , UpperCAmelCase__ : ImageInput , UpperCAmelCase__ : bool = None , UpperCAmelCase__ : Dict[str, int] = None , UpperCAmelCase__ : PILImageResampling = None , UpperCAmelCase__ : bool = None , UpperCAmelCase__ : Optional[str] = None , UpperCAmelCase__ : Optional[str] = None , UpperCAmelCase__ : Optional[Union[str, TensorType]] = None , UpperCAmelCase__ : ChannelDimension = ChannelDimension.FIRST , **UpperCAmelCase__ : Optional[int] , ) -> PIL.Image.Image:
lowerCAmelCase = do_resize if do_resize is not None else self.do_resize
lowerCAmelCase = size if size is not None else self.size
lowerCAmelCase = get_size_dict(UpperCAmelCase__ )
lowerCAmelCase = resample if resample is not None else self.resample
lowerCAmelCase = apply_ocr if apply_ocr is not None else self.apply_ocr
lowerCAmelCase = ocr_lang if ocr_lang is not None else self.ocr_lang
lowerCAmelCase = tesseract_config if tesseract_config is not None else self.tesseract_config
lowerCAmelCase = make_list_of_images(UpperCAmelCase__ )
if not valid_images(UpperCAmelCase__ ):
raise ValueError(
'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '
'torch.Tensor, tf.Tensor or jax.ndarray.' )
if do_resize and size is None:
raise ValueError('Size must be specified if do_resize is True.' )
# All transformations expect numpy arrays.
lowerCAmelCase = [to_numpy_array(UpperCAmelCase__ ) for image in images]
if apply_ocr:
requires_backends(self , 'pytesseract' )
lowerCAmelCase = []
lowerCAmelCase = []
for image in images:
lowerCAmelCase , lowerCAmelCase = apply_tesseract(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ )
words_batch.append(UpperCAmelCase__ )
boxes_batch.append(UpperCAmelCase__ )
if do_resize:
lowerCAmelCase = [self.resize(image=UpperCAmelCase__ , size=UpperCAmelCase__ , resample=UpperCAmelCase__ ) for image in images]
# flip color channels from RGB to BGR (as Detectron2 requires this)
lowerCAmelCase = [flip_channel_order(UpperCAmelCase__ ) for image in images]
lowerCAmelCase = [to_channel_dimension_format(UpperCAmelCase__ , UpperCAmelCase__ ) for image in images]
lowerCAmelCase = BatchFeature(data={'pixel_values': images} , tensor_type=UpperCAmelCase__ )
if apply_ocr:
lowerCAmelCase = words_batch
lowerCAmelCase = boxes_batch
return data
| 513
|
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
__snake_case ={
"""configuration_chinese_clip""": [
"""CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""ChineseCLIPConfig""",
"""ChineseCLIPOnnxConfig""",
"""ChineseCLIPTextConfig""",
"""ChineseCLIPVisionConfig""",
],
"""processing_chinese_clip""": ["""ChineseCLIPProcessor"""],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case =["""ChineseCLIPFeatureExtractor"""]
__snake_case =["""ChineseCLIPImageProcessor"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case =[
"""CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""ChineseCLIPModel""",
"""ChineseCLIPPreTrainedModel""",
"""ChineseCLIPTextModel""",
"""ChineseCLIPVisionModel""",
]
if TYPE_CHECKING:
from .configuration_chinese_clip import (
CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP,
ChineseCLIPConfig,
ChineseCLIPOnnxConfig,
ChineseCLIPTextConfig,
ChineseCLIPVisionConfig,
)
from .processing_chinese_clip import ChineseCLIPProcessor
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_chinese_clip import ChineseCLIPFeatureExtractor, ChineseCLIPImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_chinese_clip import (
CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
ChineseCLIPModel,
ChineseCLIPPreTrainedModel,
ChineseCLIPTextModel,
ChineseCLIPVisionModel,
)
else:
import sys
__snake_case =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 513
| 1
|
import qiskit
def UpperCAmelCase_ ( __UpperCAmelCase : int , __UpperCAmelCase : int ) -> qiskit.result.counts.Counts:
SCREAMING_SNAKE_CASE_ = qiskit.Aer.get_backend('aer_simulator' )
# Create a Quantum Circuit acting on the q register
SCREAMING_SNAKE_CASE_ = qiskit.QuantumCircuit(__UpperCAmelCase , __UpperCAmelCase )
# Map the quantum measurement to the classical bits
circuit.measure([0] , [0] )
# Execute the circuit on the simulator
SCREAMING_SNAKE_CASE_ = qiskit.execute(__UpperCAmelCase , __UpperCAmelCase , shots=10_00 )
# Return the histogram data of the results of the experiment.
return job.result().get_counts(__UpperCAmelCase )
if __name__ == "__main__":
print(f'''Total count for various states are: {single_qubit_measure(1, 1)}''')
| 31
|
import requests
from bsa import BeautifulSoup
def lowerCAmelCase( __lowerCamelCase = "AAPL" ):
__a = f'''https://in.finance.yahoo.com/quote/{symbol}?s={symbol}'''
__a = BeautifulSoup(requests.get(__lowerCamelCase ).text , 'html.parser' )
__a = 'My(6px) Pos(r) smartphone_Mt(6px)'
return soup.find('div' , class_=class_ ).find('span' ).text
if __name__ == "__main__":
for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split():
print(F'''Current {symbol:<4} stock price is {stock_price(symbol):>8}''')
| 559
| 0
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
_a : Union[str, Any]= {
"configuration_roberta": ["ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP", "RobertaConfig", "RobertaOnnxConfig"],
"tokenization_roberta": ["RobertaTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_a : int= ["RobertaTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_a : Dict= [
"ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST",
"RobertaForCausalLM",
"RobertaForMaskedLM",
"RobertaForMultipleChoice",
"RobertaForQuestionAnswering",
"RobertaForSequenceClassification",
"RobertaForTokenClassification",
"RobertaModel",
"RobertaPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_a : str= [
"TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFRobertaForCausalLM",
"TFRobertaForMaskedLM",
"TFRobertaForMultipleChoice",
"TFRobertaForQuestionAnswering",
"TFRobertaForSequenceClassification",
"TFRobertaForTokenClassification",
"TFRobertaMainLayer",
"TFRobertaModel",
"TFRobertaPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_a : List[str]= [
"FlaxRobertaForCausalLM",
"FlaxRobertaForMaskedLM",
"FlaxRobertaForMultipleChoice",
"FlaxRobertaForQuestionAnswering",
"FlaxRobertaForSequenceClassification",
"FlaxRobertaForTokenClassification",
"FlaxRobertaModel",
"FlaxRobertaPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig
from .tokenization_roberta import RobertaTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_roberta_fast import RobertaTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_roberta import (
ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
RobertaForCausalLM,
RobertaForMaskedLM,
RobertaForMultipleChoice,
RobertaForQuestionAnswering,
RobertaForSequenceClassification,
RobertaForTokenClassification,
RobertaModel,
RobertaPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_roberta import (
TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
TFRobertaForCausalLM,
TFRobertaForMaskedLM,
TFRobertaForMultipleChoice,
TFRobertaForQuestionAnswering,
TFRobertaForSequenceClassification,
TFRobertaForTokenClassification,
TFRobertaMainLayer,
TFRobertaModel,
TFRobertaPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_roberta import (
FlaxRobertaForCausalLM,
FlaxRobertaForMaskedLM,
FlaxRobertaForMultipleChoice,
FlaxRobertaForQuestionAnswering,
FlaxRobertaForSequenceClassification,
FlaxRobertaForTokenClassification,
FlaxRobertaModel,
FlaxRobertaPreTrainedModel,
)
else:
import sys
_a : int= _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 192
|
"""simple docstring"""
def __UpperCAmelCase ( UpperCAmelCase_ : list[int] , UpperCAmelCase_ : str ) -> list[int]:
'''simple docstring'''
__snake_case : Union[str, Any] = int(UpperCAmelCase_ )
# Initialize Result
__snake_case : int = []
# Traverse through all denomination
for denomination in reversed(UpperCAmelCase_ ):
# Find denominations
while int(UpperCAmelCase_ ) >= int(UpperCAmelCase_ ):
total_value -= int(UpperCAmelCase_ )
answer.append(UpperCAmelCase_ ) # Append the "answers" array
return answer
# Driver Code
if __name__ == "__main__":
_a : Optional[int]= []
_a : Optional[int]= "0"
if (
input("Do you want to enter your denominations ? (yY/n): ").strip().lower()
== "y"
):
_a : int= int(input("Enter the number of denominations you want to add: ").strip())
for i in range(0, n):
denominations.append(int(input(f'''Denomination {i}: ''').strip()))
_a : Optional[int]= input("Enter the change you want to make in Indian Currency: ").strip()
else:
# All denominations of Indian Currency if user does not enter
_a : Tuple= [1, 2, 5, 10, 20, 50, 100, 500, 2_000]
_a : List[str]= input("Enter the change you want to make: ").strip()
if int(value) == 0 or int(value) < 0:
print("The total value cannot be zero or negative.")
else:
print(f'''Following is minimal change for {value}: ''')
_a : List[Any]= find_minimum_change(denominations, value)
# Print result
for i in range(len(answer)):
print(answer[i], end=" ")
| 192
| 1
|
'''simple docstring'''
import argparse
from typing import List
import evaluate
import numpy as np
import torch
from datasets import DatasetDict, load_dataset
# New Code #
# We'll be using StratifiedKFold for this example
from sklearn.model_selection import StratifiedKFold
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
########################################################################
# This is a fully working simple example to use Accelerate,
# specifically showcasing how to perform Cross Validation,
# and builds off the `nlp_example.py` script.
#
# This example trains a Bert base model on GLUE MRPC
# in any of the following settings (with the same script):
# - single CPU or single GPU
# - multi GPUS (using PyTorch distributed mode)
# - (multi) TPUs
# - fp16 (mixed-precision) or fp32 (normal precision)
#
# To help focus on the differences in the code, building `DataLoaders`
# was refactored into its own function.
# New additions from the base script can be found quickly by
# looking for the # New Code # tags
#
# To run it in each of these various modes, follow the instructions
# in the readme for examples:
# https://github.com/huggingface/accelerate/tree/main/examples
#
########################################################################
a__ : Dict = 16
a__ : int = 32
def __snake_case ( SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : int = 16 ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase = AutoTokenizer.from_pretrained('''bert-base-cased''' )
UpperCAmelCase = DatasetDict(
{
'''train''': dataset['''train'''].select(SCREAMING_SNAKE_CASE_ ),
'''validation''': dataset['''train'''].select(SCREAMING_SNAKE_CASE_ ),
'''test''': dataset['''validation'''],
} )
def tokenize_function(SCREAMING_SNAKE_CASE_ : int ):
# max_length=None => use the model max length (it's actually the default)
UpperCAmelCase = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
# starting with the main process first:
with accelerator.main_process_first():
UpperCAmelCase = datasets.map(
SCREAMING_SNAKE_CASE_ , batched=SCREAMING_SNAKE_CASE_ , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
UpperCAmelCase = tokenized_datasets.rename_column('''label''' , '''labels''' )
def collate_fn(SCREAMING_SNAKE_CASE_ : Tuple ):
# On TPU it's best to pad everything to the same length or training will be very slow.
UpperCAmelCase = 128 if accelerator.distributed_type == DistributedType.TPU else None
# When using mixed precision we want round multiples of 8/16
if accelerator.mixed_precision == "fp8":
UpperCAmelCase = 16
elif accelerator.mixed_precision != "no":
UpperCAmelCase = 8
else:
UpperCAmelCase = None
return tokenizer.pad(
SCREAMING_SNAKE_CASE_ , padding='''longest''' , max_length=SCREAMING_SNAKE_CASE_ , pad_to_multiple_of=SCREAMING_SNAKE_CASE_ , return_tensors='''pt''' , )
# Instantiate dataloaders.
UpperCAmelCase = DataLoader(
tokenized_datasets['''train'''] , shuffle=SCREAMING_SNAKE_CASE_ , collate_fn=SCREAMING_SNAKE_CASE_ , batch_size=SCREAMING_SNAKE_CASE_ )
UpperCAmelCase = DataLoader(
tokenized_datasets['''validation'''] , shuffle=SCREAMING_SNAKE_CASE_ , collate_fn=SCREAMING_SNAKE_CASE_ , batch_size=SCREAMING_SNAKE_CASE_ )
UpperCAmelCase = DataLoader(
tokenized_datasets['''test'''] , shuffle=SCREAMING_SNAKE_CASE_ , collate_fn=SCREAMING_SNAKE_CASE_ , batch_size=SCREAMING_SNAKE_CASE_ )
return train_dataloader, eval_dataloader, test_dataloader
def __snake_case ( SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Any:
"""simple docstring"""
UpperCAmelCase = []
# Download the dataset
UpperCAmelCase = load_dataset('''glue''' , '''mrpc''' )
# Create our splits
UpperCAmelCase = StratifiedKFold(n_splits=int(args.num_folds ) )
# Initialize accelerator
UpperCAmelCase = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision )
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
UpperCAmelCase = config['''lr''']
UpperCAmelCase = int(config['''num_epochs'''] )
UpperCAmelCase = int(config['''seed'''] )
UpperCAmelCase = int(config['''batch_size'''] )
UpperCAmelCase = evaluate.load('''glue''' , '''mrpc''' )
# If the batch size is too big we use gradient accumulation
UpperCAmelCase = 1
if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU:
UpperCAmelCase = batch_size // MAX_GPU_BATCH_SIZE
UpperCAmelCase = MAX_GPU_BATCH_SIZE
set_seed(SCREAMING_SNAKE_CASE_ )
# New Code #
# Create our folds:
UpperCAmelCase = kfold.split(np.zeros(datasets['''train'''].num_rows ) , datasets['''train''']['''label'''] )
UpperCAmelCase = []
# Iterate over them
for i, (train_idxs, valid_idxs) in enumerate(SCREAMING_SNAKE_CASE_ ):
UpperCAmelCase, UpperCAmelCase, UpperCAmelCase = get_fold_dataloaders(
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
UpperCAmelCase = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=SCREAMING_SNAKE_CASE_ )
# We could avoid this line since the accelerator is set with `device_placement=True` (default value).
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
UpperCAmelCase = model.to(accelerator.device )
# Instantiate optimizer
UpperCAmelCase = AdamW(params=model.parameters() , lr=SCREAMING_SNAKE_CASE_ )
# Instantiate scheduler
UpperCAmelCase = get_linear_schedule_with_warmup(
optimizer=SCREAMING_SNAKE_CASE_ , num_warmup_steps=100 , num_training_steps=(len(SCREAMING_SNAKE_CASE_ ) * num_epochs) // gradient_accumulation_steps , )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
UpperCAmelCase, UpperCAmelCase, UpperCAmelCase, UpperCAmelCase, UpperCAmelCase = accelerator.prepare(
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
# Now we train the model
for epoch in range(SCREAMING_SNAKE_CASE_ ):
model.train()
for step, batch in enumerate(SCREAMING_SNAKE_CASE_ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
UpperCAmelCase = model(**SCREAMING_SNAKE_CASE_ )
UpperCAmelCase = outputs.loss
UpperCAmelCase = loss / gradient_accumulation_steps
accelerator.backward(SCREAMING_SNAKE_CASE_ )
if step % gradient_accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
model.eval()
for step, batch in enumerate(SCREAMING_SNAKE_CASE_ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
UpperCAmelCase = model(**SCREAMING_SNAKE_CASE_ )
UpperCAmelCase = outputs.logits.argmax(dim=-1 )
UpperCAmelCase, UpperCAmelCase = accelerator.gather_for_metrics((predictions, batch['''labels''']) )
metric.add_batch(
predictions=SCREAMING_SNAKE_CASE_ , references=SCREAMING_SNAKE_CASE_ , )
UpperCAmelCase = metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(f"epoch {epoch}:" , SCREAMING_SNAKE_CASE_ )
# New Code #
# We also run predictions on the test set at the very end
UpperCAmelCase = []
for step, batch in enumerate(SCREAMING_SNAKE_CASE_ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
UpperCAmelCase = model(**SCREAMING_SNAKE_CASE_ )
UpperCAmelCase = outputs.logits
UpperCAmelCase, UpperCAmelCase = accelerator.gather_for_metrics((predictions, batch['''labels''']) )
fold_predictions.append(predictions.cpu() )
if i == 0:
# We need all of the test predictions
test_references.append(references.cpu() )
# Use accelerator.print to print only on the main process.
test_predictions.append(torch.cat(SCREAMING_SNAKE_CASE_ , dim=0 ) )
# We now need to release all our memory and get rid of the current model, optimizer, etc
accelerator.free_memory()
# New Code #
# Finally we check the accuracy of our folded results:
UpperCAmelCase = torch.cat(SCREAMING_SNAKE_CASE_ , dim=0 )
UpperCAmelCase = torch.stack(SCREAMING_SNAKE_CASE_ , dim=0 ).sum(dim=0 ).div(int(args.num_folds ) ).argmax(dim=-1 )
UpperCAmelCase = metric.compute(predictions=SCREAMING_SNAKE_CASE_ , references=SCREAMING_SNAKE_CASE_ )
accelerator.print('''Average test metrics from all folds:''' , SCREAMING_SNAKE_CASE_ )
def __snake_case ( ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase = argparse.ArgumentParser(description='''Simple example of training script.''' )
parser.add_argument(
'''--mixed_precision''' , type=SCREAMING_SNAKE_CASE_ , default=SCREAMING_SNAKE_CASE_ , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose'''
'''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.'''
'''and an Nvidia Ampere GPU.''' , )
parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' )
# New Code #
parser.add_argument('''--num_folds''' , type=SCREAMING_SNAKE_CASE_ , default=3 , help='''The number of splits to perform across the dataset''' )
UpperCAmelCase = parser.parse_args()
UpperCAmelCase = {'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16}
training_function(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
if __name__ == "__main__":
main()
| 51
|
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available
lowerCAmelCase_ = {}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ = ['''GPTSw3Tokenizer''']
if TYPE_CHECKING:
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_gpt_swa import GPTSwaTokenizer
else:
import sys
lowerCAmelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 531
| 0
|
def __UpperCamelCase ( _UpperCAmelCase, _UpperCAmelCase ):
if discount_rate < 0:
raise ValueError("Discount rate cannot be negative" )
if not cash_flows:
raise ValueError("Cash flows list cannot be empty" )
__UpperCAmelCase : Optional[int] = sum(
cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(_UpperCAmelCase ) )
return round(_UpperCAmelCase, ndigits=2 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 707
|
'''simple docstring'''
import gc
import unittest
from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline
from diffusers.utils import is_flax_available, load_image, slow
from diffusers.utils.testing_utils import require_flax
if is_flax_available():
import jax
import jax.numpy as jnp
from flax.jax_utils import replicate
from flax.training.common_utils import shard
@slow
@require_flax
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
"""simple docstring"""
def lowerCamelCase_ ( self : List[str] ):
"""simple docstring"""
# clean up the VRAM after each test
super().tearDown()
gc.collect()
def lowerCamelCase_ ( self : Any ):
"""simple docstring"""
__UpperCAmelCase , __UpperCAmelCase : Optional[Any] = FlaxControlNetModel.from_pretrained(
"lllyasviel/sd-controlnet-canny" , from_pt=UpperCAmelCase_ , dtype=jnp.bfloataa )
__UpperCAmelCase , __UpperCAmelCase : List[Any] = FlaxStableDiffusionControlNetPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5" , controlnet=UpperCAmelCase_ , from_pt=UpperCAmelCase_ , dtype=jnp.bfloataa )
__UpperCAmelCase : Any = controlnet_params
__UpperCAmelCase : Tuple = "bird"
__UpperCAmelCase : Optional[Any] = jax.device_count()
__UpperCAmelCase : Tuple = pipe.prepare_text_inputs([prompts] * num_samples )
__UpperCAmelCase : Union[str, Any] = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png" )
__UpperCAmelCase : str = pipe.prepare_image_inputs([canny_image] * num_samples )
__UpperCAmelCase : List[str] = jax.random.PRNGKey(0 )
__UpperCAmelCase : Optional[int] = jax.random.split(UpperCAmelCase_ , jax.device_count() )
__UpperCAmelCase : Tuple = replicate(UpperCAmelCase_ )
__UpperCAmelCase : List[Any] = shard(UpperCAmelCase_ )
__UpperCAmelCase : List[str] = shard(UpperCAmelCase_ )
__UpperCAmelCase : Optional[int] = pipe(
prompt_ids=UpperCAmelCase_ , image=UpperCAmelCase_ , params=UpperCAmelCase_ , prng_seed=UpperCAmelCase_ , num_inference_steps=50 , jit=UpperCAmelCase_ , ).images
assert images.shape == (jax.device_count(), 1, 768, 512, 3)
__UpperCAmelCase : List[Any] = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] )
__UpperCAmelCase : List[Any] = images[0, 253:256, 253:256, -1]
__UpperCAmelCase : int = jnp.asarray(jax.device_get(image_slice.flatten() ) )
__UpperCAmelCase : int = jnp.array(
[0.167969, 0.116699, 0.081543, 0.154297, 0.132812, 0.108887, 0.169922, 0.169922, 0.205078] )
print(f"output_slice: {output_slice}" )
assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
def lowerCamelCase_ ( self : Tuple ):
"""simple docstring"""
__UpperCAmelCase , __UpperCAmelCase : Tuple = FlaxControlNetModel.from_pretrained(
"lllyasviel/sd-controlnet-openpose" , from_pt=UpperCAmelCase_ , dtype=jnp.bfloataa )
__UpperCAmelCase , __UpperCAmelCase : Tuple = FlaxStableDiffusionControlNetPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5" , controlnet=UpperCAmelCase_ , from_pt=UpperCAmelCase_ , dtype=jnp.bfloataa )
__UpperCAmelCase : Optional[int] = controlnet_params
__UpperCAmelCase : int = "Chef in the kitchen"
__UpperCAmelCase : Optional[int] = jax.device_count()
__UpperCAmelCase : int = pipe.prepare_text_inputs([prompts] * num_samples )
__UpperCAmelCase : Optional[int] = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png" )
__UpperCAmelCase : Optional[int] = pipe.prepare_image_inputs([pose_image] * num_samples )
__UpperCAmelCase : Optional[int] = jax.random.PRNGKey(0 )
__UpperCAmelCase : int = jax.random.split(UpperCAmelCase_ , jax.device_count() )
__UpperCAmelCase : Optional[Any] = replicate(UpperCAmelCase_ )
__UpperCAmelCase : Dict = shard(UpperCAmelCase_ )
__UpperCAmelCase : Any = shard(UpperCAmelCase_ )
__UpperCAmelCase : Optional[int] = pipe(
prompt_ids=UpperCAmelCase_ , image=UpperCAmelCase_ , params=UpperCAmelCase_ , prng_seed=UpperCAmelCase_ , num_inference_steps=50 , jit=UpperCAmelCase_ , ).images
assert images.shape == (jax.device_count(), 1, 768, 512, 3)
__UpperCAmelCase : Optional[Any] = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] )
__UpperCAmelCase : Tuple = images[0, 253:256, 253:256, -1]
__UpperCAmelCase : Any = jnp.asarray(jax.device_get(image_slice.flatten() ) )
__UpperCAmelCase : int = jnp.array(
[[0.271484, 0.261719, 0.275391, 0.277344, 0.279297, 0.291016, 0.294922, 0.302734, 0.302734]] )
print(f"output_slice: {output_slice}" )
assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
| 329
| 0
|
import argparse
import struct
import unittest
class SCREAMING_SNAKE_CASE__ :
def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : bytes ) -> None:
a_ : Tuple = data
# Initialize hash values
a_ : int = [
0X6a09_e667,
0Xbb67_ae85,
0X3c6e_f372,
0Xa54f_f53a,
0X510e_527f,
0X9b05_688c,
0X1f83_d9ab,
0X5be0_cd19,
]
# Initialize round constants
a_ : Tuple = [
0X428a_2f98,
0X7137_4491,
0Xb5c0_fbcf,
0Xe9b5_dba5,
0X3956_c25b,
0X59f1_11f1,
0X923f_82a4,
0Xab1c_5ed5,
0Xd807_aa98,
0X1283_5b01,
0X2431_85be,
0X550c_7dc3,
0X72be_5d74,
0X80de_b1fe,
0X9bdc_06a7,
0Xc19b_f174,
0Xe49b_69c1,
0Xefbe_4786,
0X0fc1_9dc6,
0X240c_a1cc,
0X2de9_2c6f,
0X4a74_84aa,
0X5cb0_a9dc,
0X76f9_88da,
0X983e_5152,
0Xa831_c66d,
0Xb003_27c8,
0Xbf59_7fc7,
0Xc6e0_0bf3,
0Xd5a7_9147,
0X06ca_6351,
0X1429_2967,
0X27b7_0a85,
0X2e1b_2138,
0X4d2c_6dfc,
0X5338_0d13,
0X650a_7354,
0X766a_0abb,
0X81c2_c92e,
0X9272_2c85,
0Xa2bf_e8a1,
0Xa81a_664b,
0Xc24b_8b70,
0Xc76c_51a3,
0Xd192_e819,
0Xd699_0624,
0Xf40e_3585,
0X106a_a070,
0X19a4_c116,
0X1e37_6c08,
0X2748_774c,
0X34b0_bcb5,
0X391c_0cb3,
0X4ed8_aa4a,
0X5b9c_ca4f,
0X682e_6ff3,
0X748f_82ee,
0X78a5_636f,
0X84c8_7814,
0X8cc7_0208,
0X90be_fffa,
0Xa450_6ceb,
0Xbef9_a3f7,
0Xc671_78f2,
]
a_ : List[Any] = self.preprocessing(self.data )
self.final_hash()
@staticmethod
def SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE__ : bytes ) -> bytes:
a_ : List[Any] = B"\x80" + (B"\x00" * (6_3 - (len(lowerCAmelCase__ ) + 8) % 6_4))
a_ : List[Any] = struct.pack('>Q' , (len(lowerCAmelCase__ ) * 8) )
return data + padding + big_endian_integer
def SCREAMING_SNAKE_CASE ( self : int ) -> None:
a_ : Dict = [
self.preprocessed_data[x : x + 6_4]
for x in range(0 , len(self.preprocessed_data ) , 6_4 )
]
for block in self.blocks:
# Convert the given block into a list of 4 byte integers
a_ : Optional[int] = list(struct.unpack('>16L' , lowerCAmelCase__ ) )
# add 48 0-ed integers
words += [0] * 4_8
a_ : Any = self.hashes
for index in range(0 , 6_4 ):
if index > 1_5:
# modify the zero-ed indexes at the end of the array
a_ : Any = (
self.ror(words[index - 1_5] , 7 )
^ self.ror(words[index - 1_5] , 1_8 )
^ (words[index - 1_5] >> 3)
)
a_ : Optional[int] = (
self.ror(words[index - 2] , 1_7 )
^ self.ror(words[index - 2] , 1_9 )
^ (words[index - 2] >> 1_0)
)
a_ : Dict = (
words[index - 1_6] + sa + words[index - 7] + sa
) % 0X1_0000_0000
# Compression
a_ : Union[str, Any] = self.ror(lowerCAmelCase__ , 6 ) ^ self.ror(lowerCAmelCase__ , 1_1 ) ^ self.ror(lowerCAmelCase__ , 2_5 )
a_ : List[Any] = (e & f) ^ ((~e & 0Xffff_ffff) & g)
a_ : Optional[Any] = (
h + sa + ch + self.round_constants[index] + words[index]
) % 0X1_0000_0000
a_ : Tuple = self.ror(lowerCAmelCase__ , 2 ) ^ self.ror(lowerCAmelCase__ , 1_3 ) ^ self.ror(lowerCAmelCase__ , 2_2 )
a_ : Dict = (a & b) ^ (a & c) ^ (b & c)
a_ : Optional[int] = (sa + maj) % 0X1_0000_0000
a_ : Any = (
g,
f,
e,
((d + tempa) % 0X1_0000_0000),
c,
b,
a,
((tempa + tempa) % 0X1_0000_0000),
)
a_ : List[str] = [a, b, c, d, e, f, g, h]
# Modify final values
a_ : Union[str, Any] = [
((element + mutated_hash_values[index]) % 0X1_0000_0000)
for index, element in enumerate(self.hashes )
]
a_ : List[Any] = "".join([hex(lowerCAmelCase__ )[2:].zfill(8 ) for value in self.hashes] )
def SCREAMING_SNAKE_CASE ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ) -> int:
return 0Xffff_ffff & (value << (3_2 - rotations)) | (value >> rotations)
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
def SCREAMING_SNAKE_CASE ( self : int ) -> None:
import hashlib
a_ : Optional[int] = bytes('Test String' , 'utf-8' )
self.assertEqual(SHAaaa(lowerCAmelCase__ ).hash , hashlib.shaaaa(lowerCAmelCase__ ).hexdigest() )
def SCREAMING_SNAKE_CASE_ ( ) -> Dict:
"""simple docstring"""
import doctest
doctest.testmod()
a_ : str = argparse.ArgumentParser()
parser.add_argument(
'-s' , '--string' , dest='input_string' , default='Hello World!! Welcome to Cryptography' , help='Hash the string' , )
parser.add_argument(
'-f' , '--file' , dest='input_file' , help='Hash contents of a file' )
a_ : Dict = parser.parse_args()
a_ : Any = args.input_string
# hash input should be a bytestring
if args.input_file:
with open(args.input_file , 'rb' ) as f:
a_ : Dict = f.read()
else:
a_ : Optional[int] = bytes(snake_case__ , 'utf-8' )
print(SHAaaa(snake_case__ ).hash )
if __name__ == "__main__":
main()
| 570
|
import os
_lowercase = {'''I''': 1, '''V''': 5, '''X''': 10, '''L''': 50, '''C''': 100, '''D''': 500, '''M''': 1000}
def UpperCamelCase ( snake_case__):
lowerCAmelCase_ : List[str] = 0
lowerCAmelCase_ : Any = 0
while index < len(snake_case__) - 1:
lowerCAmelCase_ : Optional[Any] = SYMBOLS[numerals[index]]
lowerCAmelCase_ : int = SYMBOLS[numerals[index + 1]]
if current_value < next_value:
total_value -= current_value
else:
total_value += current_value
index += 1
total_value += SYMBOLS[numerals[index]]
return total_value
def UpperCamelCase ( snake_case__):
lowerCAmelCase_ : Optional[int] = ""
lowerCAmelCase_ : Tuple = num // 10_00
numerals += m_count * "M"
num %= 10_00
lowerCAmelCase_ : int = num // 1_00
if c_count == 9:
numerals += "CM"
c_count -= 9
elif c_count == 4:
numerals += "CD"
c_count -= 4
if c_count >= 5:
numerals += "D"
c_count -= 5
numerals += c_count * "C"
num %= 1_00
lowerCAmelCase_ : int = num // 10
if x_count == 9:
numerals += "XC"
x_count -= 9
elif x_count == 4:
numerals += "XL"
x_count -= 4
if x_count >= 5:
numerals += "L"
x_count -= 5
numerals += x_count * "X"
num %= 10
if num == 9:
numerals += "IX"
num -= 9
elif num == 4:
numerals += "IV"
num -= 4
if num >= 5:
numerals += "V"
num -= 5
numerals += num * "I"
return numerals
def UpperCamelCase ( snake_case__ = "/p089_roman.txt"):
lowerCAmelCase_ : int = 0
with open(os.path.dirname(snake_case__) + roman_numerals_filename) as filea:
lowerCAmelCase_ : List[Any] = filea.readlines()
for line in lines:
lowerCAmelCase_ : Any = line.strip()
lowerCAmelCase_ : Tuple = parse_roman_numerals(snake_case__)
lowerCAmelCase_ : List[Any] = generate_roman_numerals(snake_case__)
savings += len(snake_case__) - len(snake_case__)
return savings
if __name__ == "__main__":
print(f"{solution() = }")
| 659
| 0
|
"""simple docstring"""
import mpmath # for roots of unity
import numpy as np
class __lowercase :
def __init__( self : List[Any] ,A : Dict=None ,A : Optional[int]=None ):
'''simple docstring'''
UpperCAmelCase__ : Any = list(poly_a or [0] )[:]
UpperCAmelCase__ : Dict = list(poly_b or [0] )[:]
# Remove leading zero coefficients
while self.polyA[-1] == 0:
self.polyA.pop()
UpperCAmelCase__ : int = len(self.polyA )
while self.polyB[-1] == 0:
self.polyB.pop()
UpperCAmelCase__ : List[str] = len(self.polyB )
# Add 0 to make lengths equal a power of 2
UpperCAmelCase__ : Tuple = int(
2 ** np.ceil(np.loga(len(self.polyA ) + len(self.polyB ) - 1 ) ) )
while len(self.polyA ) < self.c_max_length:
self.polyA.append(0 )
while len(self.polyB ) < self.c_max_length:
self.polyB.append(0 )
# A complex root used for the fourier transform
UpperCAmelCase__ : Optional[int] = complex(mpmath.root(x=1 ,n=self.c_max_length ,k=1 ) )
# The product
UpperCAmelCase__ : str = self.__multiply()
def __lowercase ( self : Optional[Any] ,A : Union[str, Any] ):
'''simple docstring'''
UpperCAmelCase__ : Tuple = [[x] for x in self.polyA] if which == '''A''' else [[x] for x in self.polyB]
# Corner case
if len(A ) <= 1:
return dft[0]
#
UpperCAmelCase__ : List[Any] = self.c_max_length // 2
while next_ncol > 0:
UpperCAmelCase__ : str = [[] for i in range(A )]
UpperCAmelCase__ : List[str] = self.root**next_ncol
# First half of next step
UpperCAmelCase__ : Union[str, Any] = 1
for j in range(self.c_max_length // (next_ncol * 2) ):
for i in range(A ):
new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j] )
current_root *= root
# Second half of next step
UpperCAmelCase__ : Any = 1
for j in range(self.c_max_length // (next_ncol * 2) ):
for i in range(A ):
new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j] )
current_root *= root
# Update
UpperCAmelCase__ : Tuple = new_dft
UpperCAmelCase__ : List[Any] = next_ncol // 2
return dft[0]
def __lowercase ( self : int ):
'''simple docstring'''
UpperCAmelCase__ : List[Any] = self.__dft("""A""" )
UpperCAmelCase__ : Union[str, Any] = self.__dft("""B""" )
UpperCAmelCase__ : Any = [[dft_a[i] * dft_b[i] for i in range(self.c_max_length )]]
del dft_a
del dft_b
# Corner Case
if len(inverce_c[0] ) <= 1:
return inverce_c[0]
# Inverse DFT
UpperCAmelCase__ : Tuple = 2
while next_ncol <= self.c_max_length:
UpperCAmelCase__ : Tuple = [[] for i in range(A )]
UpperCAmelCase__ : Tuple = self.root ** (next_ncol // 2)
UpperCAmelCase__ : Optional[int] = 1
# First half of next step
for j in range(self.c_max_length // next_ncol ):
for i in range(next_ncol // 2 ):
# Even positions
new_inverse_c[i].append(
(
inverce_c[i][j]
+ inverce_c[i][j + self.c_max_length // next_ncol]
)
/ 2 )
# Odd positions
new_inverse_c[i + next_ncol // 2].append(
(
inverce_c[i][j]
- inverce_c[i][j + self.c_max_length // next_ncol]
)
/ (2 * current_root) )
current_root *= root
# Update
UpperCAmelCase__ : List[Any] = new_inverse_c
next_ncol *= 2
# Unpack
UpperCAmelCase__ : List[str] = [round(x[0].real ,8 ) + round(x[0].imag ,8 ) * 1J for x in inverce_c]
# Remove leading 0's
while inverce_c[-1] == 0:
inverce_c.pop()
return inverce_c
def __str__( self : Dict ):
'''simple docstring'''
UpperCAmelCase__ : Optional[Any] = '''A = ''' + ''' + '''.join(
f"{coef}*x^{i}" for coef, i in enumerate(self.polyA[: self.len_A] ) )
UpperCAmelCase__ : List[str] = '''B = ''' + ''' + '''.join(
f"{coef}*x^{i}" for coef, i in enumerate(self.polyB[: self.len_B] ) )
UpperCAmelCase__ : Optional[Any] = '''A*B = ''' + ''' + '''.join(
f"{coef}*x^{i}" for coef, i in enumerate(self.product ) )
return f"{a}\n{b}\n{c}"
# Unit tests
if __name__ == "__main__":
import doctest
doctest.testmod()
| 708
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
__UpperCAmelCase = {
'configuration_roberta': ['ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RobertaConfig', 'RobertaOnnxConfig'],
'tokenization_roberta': ['RobertaTokenizer'],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCAmelCase = ['RobertaTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCAmelCase = [
'ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST',
'RobertaForCausalLM',
'RobertaForMaskedLM',
'RobertaForMultipleChoice',
'RobertaForQuestionAnswering',
'RobertaForSequenceClassification',
'RobertaForTokenClassification',
'RobertaModel',
'RobertaPreTrainedModel',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCAmelCase = [
'TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFRobertaForCausalLM',
'TFRobertaForMaskedLM',
'TFRobertaForMultipleChoice',
'TFRobertaForQuestionAnswering',
'TFRobertaForSequenceClassification',
'TFRobertaForTokenClassification',
'TFRobertaMainLayer',
'TFRobertaModel',
'TFRobertaPreTrainedModel',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCAmelCase = [
'FlaxRobertaForCausalLM',
'FlaxRobertaForMaskedLM',
'FlaxRobertaForMultipleChoice',
'FlaxRobertaForQuestionAnswering',
'FlaxRobertaForSequenceClassification',
'FlaxRobertaForTokenClassification',
'FlaxRobertaModel',
'FlaxRobertaPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig
from .tokenization_roberta import RobertaTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_roberta_fast import RobertaTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_roberta import (
ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
RobertaForCausalLM,
RobertaForMaskedLM,
RobertaForMultipleChoice,
RobertaForQuestionAnswering,
RobertaForSequenceClassification,
RobertaForTokenClassification,
RobertaModel,
RobertaPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_roberta import (
TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
TFRobertaForCausalLM,
TFRobertaForMaskedLM,
TFRobertaForMultipleChoice,
TFRobertaForQuestionAnswering,
TFRobertaForSequenceClassification,
TFRobertaForTokenClassification,
TFRobertaMainLayer,
TFRobertaModel,
TFRobertaPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_roberta import (
FlaxRobertaForCausalLM,
FlaxRobertaForMaskedLM,
FlaxRobertaForMultipleChoice,
FlaxRobertaForQuestionAnswering,
FlaxRobertaForSequenceClassification,
FlaxRobertaForTokenClassification,
FlaxRobertaModel,
FlaxRobertaPreTrainedModel,
)
else:
import sys
__UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 194
| 0
|
"""simple docstring"""
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
EulerAncestralDiscreteScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
StableDiffusionPanoramaPipeline,
UNetaDConditionModel,
)
from diffusers.utils import slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
@skip_mps
class UpperCamelCase_ (__A , __A , unittest.TestCase ):
__magic_name__ = StableDiffusionPanoramaPipeline
__magic_name__ = TEXT_TO_IMAGE_PARAMS
__magic_name__ = TEXT_TO_IMAGE_BATCH_PARAMS
__magic_name__ = TEXT_TO_IMAGE_IMAGE_PARAMS
__magic_name__ = TEXT_TO_IMAGE_IMAGE_PARAMS
def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Tuple:
torch.manual_seed(0 )
UpperCAmelCase_ : Any = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , )
UpperCAmelCase_ : Tuple = DDIMScheduler()
torch.manual_seed(0 )
UpperCAmelCase_ : Any = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , )
torch.manual_seed(0 )
UpperCAmelCase_ : List[Any] = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , )
UpperCAmelCase_ : Any = CLIPTextModel(lowerCAmelCase_ )
UpperCAmelCase_ : int = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" )
UpperCAmelCase_ : Union[str, Any] = {
"unet": unet,
"scheduler": scheduler,
"vae": vae,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"safety_checker": None,
"feature_extractor": None,
}
return components
def _SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[int]=0 ) -> List[Any]:
UpperCAmelCase_ : Dict = torch.manual_seed(lowerCAmelCase_ )
UpperCAmelCase_ : Tuple = {
"prompt": "a photo of the dolomites",
"generator": generator,
# Setting height and width to None to prevent OOMs on CPU.
"height": None,
"width": None,
"num_inference_steps": 1,
"guidance_scale": 6.0,
"output_type": "numpy",
}
return inputs
def _SCREAMING_SNAKE_CASE ( self : int ) -> int:
UpperCAmelCase_ : Optional[int] = "cpu" # ensure determinism for the device-dependent torch.Generator
UpperCAmelCase_ : str = self.get_dummy_components()
UpperCAmelCase_ : int = StableDiffusionPanoramaPipeline(**lowerCAmelCase_ )
UpperCAmelCase_ : Optional[Any] = sd_pipe.to(lowerCAmelCase_ )
sd_pipe.set_progress_bar_config(disable=lowerCAmelCase_ )
UpperCAmelCase_ : Optional[int] = self.get_dummy_inputs(lowerCAmelCase_ )
UpperCAmelCase_ : Optional[int] = sd_pipe(**lowerCAmelCase_ ).images
UpperCAmelCase_ : Union[str, Any] = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
UpperCAmelCase_ : List[Any] = np.array([0.6_1_8_6, 0.5_3_7_4, 0.4_9_1_5, 0.4_1_3_5, 0.4_1_1_4, 0.4_5_6_3, 0.5_1_2_8, 0.4_9_7_7, 0.4_7_5_7] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Dict:
super().test_inference_batch_consistent(batch_sizes=[1, 2] )
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple:
super().test_inference_batch_single_identical(batch_size=2 , expected_max_diff=3.25e-3 )
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int:
UpperCAmelCase_ : str = "cpu" # ensure determinism for the device-dependent torch.Generator
UpperCAmelCase_ : List[Any] = self.get_dummy_components()
UpperCAmelCase_ : Optional[int] = StableDiffusionPanoramaPipeline(**lowerCAmelCase_ )
UpperCAmelCase_ : str = sd_pipe.to(lowerCAmelCase_ )
sd_pipe.set_progress_bar_config(disable=lowerCAmelCase_ )
UpperCAmelCase_ : Any = self.get_dummy_inputs(lowerCAmelCase_ )
UpperCAmelCase_ : Any = "french fries"
UpperCAmelCase_ : Optional[Any] = sd_pipe(**lowerCAmelCase_ , negative_prompt=lowerCAmelCase_ )
UpperCAmelCase_ : List[Any] = output.images
UpperCAmelCase_ : str = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
UpperCAmelCase_ : Dict = np.array([0.6_1_8_7, 0.5_3_7_5, 0.4_9_1_5, 0.4_1_3_6, 0.4_1_1_4, 0.4_5_6_3, 0.5_1_2_8, 0.4_9_7_6, 0.4_7_5_7] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[int]:
UpperCAmelCase_ : List[str] = "cpu" # ensure determinism for the device-dependent torch.Generator
UpperCAmelCase_ : List[str] = self.get_dummy_components()
UpperCAmelCase_ : Optional[int] = StableDiffusionPanoramaPipeline(**lowerCAmelCase_ )
UpperCAmelCase_ : List[str] = sd_pipe.to(lowerCAmelCase_ )
sd_pipe.set_progress_bar_config(disable=lowerCAmelCase_ )
UpperCAmelCase_ : Dict = self.get_dummy_inputs(lowerCAmelCase_ )
UpperCAmelCase_ : Any = sd_pipe(**lowerCAmelCase_ , view_batch_size=2 )
UpperCAmelCase_ : int = output.images
UpperCAmelCase_ : List[Any] = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
UpperCAmelCase_ : str = np.array([0.6_1_8_7, 0.5_3_7_5, 0.4_9_1_5, 0.4_1_3_6, 0.4_1_1_4, 0.4_5_6_3, 0.5_1_2_8, 0.4_9_7_6, 0.4_7_5_7] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[Any]:
UpperCAmelCase_ : str = "cpu" # ensure determinism for the device-dependent torch.Generator
UpperCAmelCase_ : Tuple = self.get_dummy_components()
UpperCAmelCase_ : Dict = EulerAncestralDiscreteScheduler(
beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="scaled_linear" )
UpperCAmelCase_ : str = StableDiffusionPanoramaPipeline(**lowerCAmelCase_ )
UpperCAmelCase_ : Tuple = sd_pipe.to(lowerCAmelCase_ )
sd_pipe.set_progress_bar_config(disable=lowerCAmelCase_ )
UpperCAmelCase_ : int = self.get_dummy_inputs(lowerCAmelCase_ )
UpperCAmelCase_ : List[Any] = sd_pipe(**lowerCAmelCase_ ).images
UpperCAmelCase_ : int = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
UpperCAmelCase_ : str = np.array([0.4_0_2_4, 0.6_5_1_0, 0.4_9_0_1, 0.5_3_7_8, 0.5_8_1_3, 0.5_6_2_2, 0.4_7_9_5, 0.4_4_6_7, 0.4_9_5_2] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Any:
UpperCAmelCase_ : List[Any] = "cpu" # ensure determinism for the device-dependent torch.Generator
UpperCAmelCase_ : Optional[int] = self.get_dummy_components()
UpperCAmelCase_ : List[Any] = PNDMScheduler(
beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="scaled_linear" , skip_prk_steps=lowerCAmelCase_ )
UpperCAmelCase_ : int = StableDiffusionPanoramaPipeline(**lowerCAmelCase_ )
UpperCAmelCase_ : Any = sd_pipe.to(lowerCAmelCase_ )
sd_pipe.set_progress_bar_config(disable=lowerCAmelCase_ )
UpperCAmelCase_ : List[str] = self.get_dummy_inputs(lowerCAmelCase_ )
UpperCAmelCase_ : Dict = sd_pipe(**lowerCAmelCase_ ).images
UpperCAmelCase_ : Optional[Any] = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
UpperCAmelCase_ : Dict = np.array([0.6_3_9_1, 0.6_2_9_1, 0.4_8_6_1, 0.5_1_3_4, 0.5_5_5_2, 0.4_5_7_8, 0.5_0_3_2, 0.5_0_2_3, 0.4_5_3_9] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
@slow
@require_torch_gpu
class UpperCamelCase_ (unittest.TestCase ):
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int:
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase_ : str=0 ) -> Dict:
UpperCAmelCase_ : Dict = torch.manual_seed(lowerCAmelCase_ )
UpperCAmelCase_ : Dict = {
"prompt": "a photo of the dolomites",
"generator": generator,
"num_inference_steps": 3,
"guidance_scale": 7.5,
"output_type": "numpy",
}
return inputs
def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[Any]:
UpperCAmelCase_ : Tuple = "stabilityai/stable-diffusion-2-base"
UpperCAmelCase_ : str = DDIMScheduler.from_pretrained(lowerCAmelCase_ , subfolder="scheduler" )
UpperCAmelCase_ : Tuple = StableDiffusionPanoramaPipeline.from_pretrained(lowerCAmelCase_ , scheduler=lowerCAmelCase_ , safety_checker=lowerCAmelCase_ )
pipe.to(lowerCAmelCase_ )
pipe.set_progress_bar_config(disable=lowerCAmelCase_ )
pipe.enable_attention_slicing()
UpperCAmelCase_ : List[str] = self.get_inputs()
UpperCAmelCase_ : Optional[Any] = pipe(**lowerCAmelCase_ ).images
UpperCAmelCase_ : Union[str, Any] = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 512, 2_048, 3)
UpperCAmelCase_ : Dict = np.array(
[
0.3_6_9_6_8_3_9_2,
0.2_7_0_2_5_3_7_2,
0.3_2_4_4_6_7_6_6,
0.2_8_3_7_9_3_8_7,
0.3_6_3_6_3_2_7_4,
0.3_0_7_3_3_3_4_7,
0.2_7_1_0_0_0_2_7,
0.2_7_0_5_4_1_2_5,
0.2_5_5_3_6_0_9_6,
] )
assert np.abs(expected_slice - image_slice ).max() < 1e-2
def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Union[str, Any]:
UpperCAmelCase_ : List[Any] = StableDiffusionPanoramaPipeline.from_pretrained(
"stabilityai/stable-diffusion-2-base" , safety_checker=lowerCAmelCase_ )
UpperCAmelCase_ : Optional[Any] = LMSDiscreteScheduler.from_config(pipe.scheduler.config )
pipe.to(lowerCAmelCase_ )
pipe.set_progress_bar_config(disable=lowerCAmelCase_ )
pipe.enable_attention_slicing()
UpperCAmelCase_ : List[str] = self.get_inputs()
UpperCAmelCase_ : Union[str, Any] = pipe(**lowerCAmelCase_ ).images
UpperCAmelCase_ : Optional[Any] = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 512, 2_048, 3)
UpperCAmelCase_ : Any = np.array(
[
[
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
]
] )
assert np.abs(expected_slice - image_slice ).max() < 1e-3
def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> int:
UpperCAmelCase_ : Any = 0
def callback_fn(lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : torch.FloatTensor ) -> None:
UpperCAmelCase_ : Tuple = True
nonlocal number_of_steps
number_of_steps += 1
if step == 1:
UpperCAmelCase_ : Tuple = latents.detach().cpu().numpy()
assert latents.shape == (1, 4, 64, 256)
UpperCAmelCase_ : str = latents[0, -3:, -3:, -1]
UpperCAmelCase_ : str = np.array(
[
0.1_8_6_8_1_8_6_9,
0.3_3_9_0_7_8_1_6,
0.5_3_6_1_2_7_6,
0.1_4_4_3_2_8_6_5,
-0.0_2_8_5_6_6_1_1,
-0.7_3_9_4_1_1_2_3,
0.2_3_3_9_7_9_8_7,
0.4_7_3_2_2_6_8_2,
-0.3_7_8_2_3_1_6_4,
] )
assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2
elif step == 2:
UpperCAmelCase_ : List[str] = latents.detach().cpu().numpy()
assert latents.shape == (1, 4, 64, 256)
UpperCAmelCase_ : List[Any] = latents[0, -3:, -3:, -1]
UpperCAmelCase_ : Union[str, Any] = np.array(
[
0.1_8_5_3_9_6_4_5,
0.3_3_9_8_7_2_4_8,
0.5_3_7_8_5_5_9,
0.1_4_4_3_7_1_4_2,
-0.0_2_4_5_5_2_6_1,
-0.7_3_3_8_3_1_7,
0.2_3_9_9_0_7_5_5,
0.4_7_3_5_6_2_7_2,
-0.3_7_8_6_5_0_5,
] )
assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2
UpperCAmelCase_ : Tuple = False
UpperCAmelCase_ : List[str] = "stabilityai/stable-diffusion-2-base"
UpperCAmelCase_ : Optional[int] = DDIMScheduler.from_pretrained(lowerCAmelCase_ , subfolder="scheduler" )
UpperCAmelCase_ : Any = StableDiffusionPanoramaPipeline.from_pretrained(lowerCAmelCase_ , scheduler=lowerCAmelCase_ , safety_checker=lowerCAmelCase_ )
UpperCAmelCase_ : Optional[int] = pipe.to(lowerCAmelCase_ )
pipe.set_progress_bar_config(disable=lowerCAmelCase_ )
pipe.enable_attention_slicing()
UpperCAmelCase_ : List[Any] = self.get_inputs()
pipe(**lowerCAmelCase_ , callback=lowerCAmelCase_ , callback_steps=1 )
assert callback_fn.has_been_called
assert number_of_steps == 3
def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Tuple:
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
UpperCAmelCase_ : Optional[Any] = "stabilityai/stable-diffusion-2-base"
UpperCAmelCase_ : Dict = DDIMScheduler.from_pretrained(lowerCAmelCase_ , subfolder="scheduler" )
UpperCAmelCase_ : List[Any] = StableDiffusionPanoramaPipeline.from_pretrained(lowerCAmelCase_ , scheduler=lowerCAmelCase_ , safety_checker=lowerCAmelCase_ )
UpperCAmelCase_ : List[Any] = pipe.to(lowerCAmelCase_ )
pipe.set_progress_bar_config(disable=lowerCAmelCase_ )
pipe.enable_attention_slicing(1 )
pipe.enable_sequential_cpu_offload()
UpperCAmelCase_ : Optional[Any] = self.get_inputs()
UpperCAmelCase_ : str = pipe(**lowerCAmelCase_ )
UpperCAmelCase_ : str = torch.cuda.max_memory_allocated()
# make sure that less than 5.2 GB is allocated
assert mem_bytes < 5.5 * 10**9
| 95
|
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
_a : Optional[int] = logging.get_logger(__name__)
_a : int = {
'google/bigbird-roberta-base': 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/config.json',
'google/bigbird-roberta-large': 'https://huggingface.co/google/bigbird-roberta-large/resolve/main/config.json',
'google/bigbird-base-trivia-itc': 'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/config.json',
# See all BigBird models at https://huggingface.co/models?filter=big_bird
}
class __A ( SCREAMING_SNAKE_CASE_ ):
_UpperCamelCase : Any = "big_bird"
def __init__( self , a__=50358 , a__=768 , a__=12 , a__=12 , a__=3072 , a__="gelu_new" , a__=0.1 , a__=0.1 , a__=4096 , a__=2 , a__=0.0_2 , a__=1e-12 , a__=True , a__=0 , a__=1 , a__=2 , a__=66 , a__="block_sparse" , a__=True , a__=False , a__=64 , a__=3 , a__=None , **a__ , ):
super().__init__(
pad_token_id=a__ , bos_token_id=a__ , eos_token_id=a__ , sep_token_id=a__ , **a__ , )
_lowerCAmelCase : List[str] = vocab_size
_lowerCAmelCase : List[str] = max_position_embeddings
_lowerCAmelCase : Optional[int] = hidden_size
_lowerCAmelCase : Dict = num_hidden_layers
_lowerCAmelCase : str = num_attention_heads
_lowerCAmelCase : Any = intermediate_size
_lowerCAmelCase : Any = hidden_act
_lowerCAmelCase : str = hidden_dropout_prob
_lowerCAmelCase : int = attention_probs_dropout_prob
_lowerCAmelCase : str = initializer_range
_lowerCAmelCase : Optional[int] = type_vocab_size
_lowerCAmelCase : Optional[Any] = layer_norm_eps
_lowerCAmelCase : Optional[int] = use_cache
_lowerCAmelCase : List[Any] = rescale_embeddings
_lowerCAmelCase : Any = attention_type
_lowerCAmelCase : List[Any] = use_bias
_lowerCAmelCase : Dict = block_size
_lowerCAmelCase : Dict = num_random_blocks
_lowerCAmelCase : str = classifier_dropout
class __A ( SCREAMING_SNAKE_CASE_ ):
@property
def __A ( self ):
if self.task == "multiple-choice":
_lowerCAmelCase : Any = {0: """batch""", 1: """choice""", 2: """sequence"""}
else:
_lowerCAmelCase : List[Any] = {0: """batch""", 1: """sequence"""}
return OrderedDict(
[
("""input_ids""", dynamic_axis),
("""attention_mask""", dynamic_axis),
] )
| 213
| 0
|
'''simple docstring'''
import torch
from transformers import CamembertForMaskedLM, CamembertTokenizer
def _lowerCamelCase (__lowerCamelCase : Dict , __lowerCamelCase : Dict , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Tuple=5 ) -> Optional[Any]:
assert masked_input.count("<mask>" ) == 1
a__ = torch.tensor(tokenizer.encode(lowercase__ , add_special_tokens=lowercase__ ) ).unsqueeze(0 ) # Batch size 1
a__ = model(lowercase__ )[0] # The last hidden-state is the first element of the output tuple
a__ = (input_ids.squeeze() == tokenizer.mask_token_id).nonzero().item()
a__ = logits[0, masked_index, :]
a__ = logits.softmax(dim=0 )
a__ , a__ = prob.topk(k=lowercase__ , dim=0 )
a__ = " ".join(
[tokenizer.convert_ids_to_tokens(indices[i].item() ) for i in range(len(lowercase__ ) )] )
a__ = tokenizer.mask_token
a__ = []
for index, predicted_token_bpe in enumerate(topk_predicted_token_bpe.split(" " ) ):
a__ = predicted_token_bpe.replace("\u2581" , " " )
if " {0}".format(lowercase__ ) in masked_input:
topk_filled_outputs.append(
(
masked_input.replace(" {0}".format(lowercase__ ) , lowercase__ ),
values[index].item(),
predicted_token,
) )
else:
topk_filled_outputs.append(
(
masked_input.replace(lowercase__ , lowercase__ ),
values[index].item(),
predicted_token,
) )
return topk_filled_outputs
lowerCAmelCase_ : List[Any] = CamembertTokenizer.from_pretrained("camembert-base")
lowerCAmelCase_ : List[str] = CamembertForMaskedLM.from_pretrained("camembert-base")
model.eval()
lowerCAmelCase_ : str = "Le camembert est <mask> :)"
print(fill_mask(masked_input, model, tokenizer, topk=3))
| 702
|
'''simple docstring'''
class UpperCamelCase__ :
def __init__( self : str , lowerCamelCase : int , lowerCamelCase : List[str]=None , lowerCamelCase : int=None ):
'''simple docstring'''
a__ = data
a__ = previous
a__ = next_node
def __str__( self : List[Any] ):
'''simple docstring'''
return F'''{self.data}'''
def __a ( self : List[Any] ):
'''simple docstring'''
return self.data
def __a ( self : Tuple ):
'''simple docstring'''
return self.next
def __a ( self : Union[str, Any] ):
'''simple docstring'''
return self.previous
class UpperCamelCase__ :
def __init__( self : int , lowerCamelCase : Tuple ):
'''simple docstring'''
a__ = head
def __iter__( self : Any ):
'''simple docstring'''
return self
def __a ( self : List[Any] ):
'''simple docstring'''
if not self.current:
raise StopIteration
else:
a__ = self.current.get_data()
a__ = self.current.get_next()
return value
class UpperCamelCase__ :
def __init__( self : Tuple ):
'''simple docstring'''
a__ = None # First node in list
a__ = None # Last node in list
def __str__( self : Any ):
'''simple docstring'''
a__ = self.head
a__ = []
while current is not None:
nodes.append(current.get_data() )
a__ = current.get_next()
return " ".join(str(lowerCamelCase ) for node in nodes )
def __contains__( self : Optional[int] , lowerCamelCase : int ):
'''simple docstring'''
a__ = self.head
while current:
if current.get_data() == value:
return True
a__ = current.get_next()
return False
def __iter__( self : int ):
'''simple docstring'''
return LinkedListIterator(self.head )
def __a ( self : str ):
'''simple docstring'''
if self.head:
return self.head.get_data()
return None
def __a ( self : Union[str, Any] ):
'''simple docstring'''
if self.tail:
return self.tail.get_data()
return None
def __a ( self : List[Any] , lowerCamelCase : Node ):
'''simple docstring'''
if self.head is None:
a__ = node
a__ = node
else:
self.insert_before_node(self.head , lowerCamelCase )
def __a ( self : List[str] , lowerCamelCase : Node ):
'''simple docstring'''
if self.head is None:
self.set_head(lowerCamelCase )
else:
self.insert_after_node(self.tail , lowerCamelCase )
def __a ( self : List[str] , lowerCamelCase : int ):
'''simple docstring'''
a__ = Node(lowerCamelCase )
if self.head is None:
self.set_head(lowerCamelCase )
else:
self.set_tail(lowerCamelCase )
def __a ( self : Any , lowerCamelCase : Node , lowerCamelCase : Node ):
'''simple docstring'''
a__ = node
a__ = node.previous
if node.get_previous() is None:
a__ = node_to_insert
else:
a__ = node_to_insert
a__ = node_to_insert
def __a ( self : Tuple , lowerCamelCase : Node , lowerCamelCase : Node ):
'''simple docstring'''
a__ = node
a__ = node.next
if node.get_next() is None:
a__ = node_to_insert
else:
a__ = node_to_insert
a__ = node_to_insert
def __a ( self : Union[str, Any] , lowerCamelCase : int , lowerCamelCase : int ):
'''simple docstring'''
a__ = 1
a__ = Node(lowerCamelCase )
a__ = self.head
while node:
if current_position == position:
self.insert_before_node(lowerCamelCase , lowerCamelCase )
return
current_position += 1
a__ = node.next
self.insert_after_node(self.tail , lowerCamelCase )
def __a ( self : List[Any] , lowerCamelCase : int ):
'''simple docstring'''
a__ = self.head
while node:
if node.get_data() == item:
return node
a__ = node.get_next()
raise Exception("Node not found" )
def __a ( self : List[Any] , lowerCamelCase : List[str] ):
'''simple docstring'''
if (node := self.get_node(lowerCamelCase )) is not None:
if node == self.head:
a__ = self.head.get_next()
if node == self.tail:
a__ = self.tail.get_previous()
self.remove_node_pointers(lowerCamelCase )
@staticmethod
def __a ( lowerCamelCase : Node ):
'''simple docstring'''
if node.get_next():
a__ = node.previous
if node.get_previous():
a__ = node.next
a__ = None
a__ = None
def __a ( self : List[str] ):
'''simple docstring'''
return self.head is None
def _lowerCamelCase () -> None:
pass
if __name__ == "__main__":
import doctest
doctest.testmod()
| 289
| 0
|
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
__A = logging.get_logger(__name__)
__A = {
"google/mobilenet_v2_1.4_224": "https://huggingface.co/google/mobilenet_v2_1.4_224/resolve/main/config.json",
"google/mobilenet_v2_1.0_224": "https://huggingface.co/google/mobilenet_v2_1.0_224/resolve/main/config.json",
"google/mobilenet_v2_0.75_160": "https://huggingface.co/google/mobilenet_v2_0.75_160/resolve/main/config.json",
"google/mobilenet_v2_0.35_96": "https://huggingface.co/google/mobilenet_v2_0.35_96/resolve/main/config.json",
# See all MobileNetV2 models at https://huggingface.co/models?filter=mobilenet_v2
}
class lowerCamelCase__ ( lowerCamelCase_ ):
a__ : Union[str, Any] = """mobilenet_v2"""
def __init__( self , SCREAMING_SNAKE_CASE=3 , SCREAMING_SNAKE_CASE=224 , SCREAMING_SNAKE_CASE=1.0 , SCREAMING_SNAKE_CASE=8 , SCREAMING_SNAKE_CASE=8 , SCREAMING_SNAKE_CASE=6 , SCREAMING_SNAKE_CASE=32 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE="relu6" , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=0.8 , SCREAMING_SNAKE_CASE=0.02 , SCREAMING_SNAKE_CASE=0.0_01 , SCREAMING_SNAKE_CASE=255 , **SCREAMING_SNAKE_CASE , ):
"""simple docstring"""
super().__init__(**SCREAMING_SNAKE_CASE )
if depth_multiplier <= 0:
raise ValueError("depth_multiplier must be greater than zero." )
snake_case : List[str] = num_channels
snake_case : Optional[int] = image_size
snake_case : Dict = depth_multiplier
snake_case : Union[str, Any] = depth_divisible_by
snake_case : Any = min_depth
snake_case : List[Any] = expand_ratio
snake_case : Dict = output_stride
snake_case : Union[str, Any] = first_layer_is_expansion
snake_case : Tuple = finegrained_output
snake_case : Any = hidden_act
snake_case : int = tf_padding
snake_case : str = classifier_dropout_prob
snake_case : Any = initializer_range
snake_case : Union[str, Any] = layer_norm_eps
snake_case : Any = semantic_loss_ignore_index
class lowerCamelCase__ ( lowerCamelCase_ ):
a__ : List[str] = version.parse("""1.11""" )
@property
def lowerCamelCase_ ( self ):
"""simple docstring"""
return OrderedDict([("pixel_values", {0: "batch"})] )
@property
def lowerCamelCase_ ( self ):
"""simple docstring"""
if self.task == "image-classification":
return OrderedDict([("logits", {0: "batch"})] )
else:
return OrderedDict([("last_hidden_state", {0: "batch"}), ("pooler_output", {0: "batch"})] )
@property
def lowerCamelCase_ ( self ):
"""simple docstring"""
return 1E-4
| 134
|
"""simple docstring"""
from itertools import count
def UpperCamelCase__ ( lowercase__ : int = 50 ):
snake_case : List[str] = [1] * min_block_length
for n in count(lowercase__ ):
fill_count_functions.append(1 )
for block_length in range(lowercase__ , n + 1 ):
for block_start in range(n - block_length ):
fill_count_functions[n] += fill_count_functions[
n - block_start - block_length - 1
]
fill_count_functions[n] += 1
if fill_count_functions[n] > 100_0000:
break
return n
if __name__ == "__main__":
print(f'{solution() = }')
| 134
| 1
|
from dataclasses import dataclass
from typing import List, Optional, Union
import numpy as np
import torch
from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available
@dataclass
class __lowercase ( A ):
'''simple docstring'''
_A : Union[List[np.ndarray], torch.FloatTensor]
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import * # noqa F403
else:
from .pipeline_text_to_video_synth import TextToVideoSDPipeline
from .pipeline_text_to_video_synth_imgaimg import VideoToVideoSDPipeline # noqa: F401
from .pipeline_text_to_video_zero import TextToVideoZeroPipeline
| 591
|
from __future__ import annotations
def lowerCamelCase_ ( UpperCamelCase__ : list[float], UpperCamelCase__ : int ):
'''simple docstring'''
print(F"""Vertex\tShortest Distance from vertex {src}""" )
for i, d in enumerate(UpperCamelCase__ ):
print(F"""{i}\t\t{d}""" )
def lowerCamelCase_ ( UpperCamelCase__ : list[dict[str, int]], UpperCamelCase__ : list[float], UpperCamelCase__ : int ):
'''simple docstring'''
for j in range(UpperCamelCase__ ):
UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = (graph[j][k] for k in ['''src''', '''dst''', '''weight'''])
if distance[u] != float('''inf''' ) and distance[u] + w < distance[v]:
return True
return False
def lowerCamelCase_ ( UpperCamelCase__ : list[dict[str, int]], UpperCamelCase__ : int, UpperCamelCase__ : int, UpperCamelCase__ : int ):
'''simple docstring'''
UpperCamelCase__ = [float('''inf''' )] * vertex_count
UpperCamelCase__ = 0.0
for _ in range(vertex_count - 1 ):
for j in range(UpperCamelCase__ ):
UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = (graph[j][k] for k in ['''src''', '''dst''', '''weight'''])
if distance[u] != float('''inf''' ) and distance[u] + w < distance[v]:
UpperCamelCase__ = distance[u] + w
UpperCamelCase__ = check_negative_cycle(UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ )
if negative_cycle_exists:
raise Exception('''Negative cycle found''' )
return distance
if __name__ == "__main__":
import doctest
doctest.testmod()
lowercase = int(input("""Enter number of vertices: """).strip())
lowercase = int(input("""Enter number of edges: """).strip())
lowercase = [{} for _ in range(E)]
for i in range(E):
print("""Edge """, i + 1)
lowercase , lowercase , lowercase = (
int(x)
for x in input("""Enter source, destination, weight: """).strip().split(""" """)
)
lowercase = {"""src""": src, """dst""": dest, """weight""": weight}
lowercase = int(input("""\nEnter shortest path source:""").strip())
lowercase = bellman_ford(graph, V, E, source)
print_distance(shortest_distance, 0)
| 591
| 1
|
import random
import unittest
from torch.utils.data import BatchSampler, DataLoader, IterableDataset
from accelerate import Accelerator
from accelerate.data_loader import (
BatchSamplerShard,
DataLoaderDispatcher,
DataLoaderShard,
IterableDatasetShard,
SkipBatchSampler,
SkipDataLoader,
skip_first_batches,
)
class _UpperCamelCase ( a__ ):
'''simple docstring'''
def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE_ : str=0.01 , SCREAMING_SNAKE_CASE_ : Any=1_0_0_0 ):
_a = p_stop
_a = max_length
def __iter__( self : List[Any] ):
_a = 0
_a = False
while not stop and count < self.max_length:
yield count
count += 1
_a = random.random() < self.p_stop
class _UpperCamelCase ( unittest.TestCase ):
'''simple docstring'''
def _UpperCAmelCase ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[int]=False , SCREAMING_SNAKE_CASE_ : Optional[int]=True ):
_a = [
BatchSamplerShard(lowerCamelCase_ , 2 , lowerCamelCase_ , split_batches=lowerCamelCase_ , even_batches=lowerCamelCase_ )
for i in range(2 )
]
_a = [list(lowerCamelCase_ ) for batch_sampler_shard in batch_sampler_shards]
if not split_batches:
self.assertListEqual([len(lowerCamelCase_ ) for shard in batch_sampler_shards] , [len(lowerCamelCase_ ) for e in expected] )
self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ )
def _UpperCAmelCase ( self : List[Any] ):
# Check the shards when the dataset is a round multiple of total batch size.
_a = BatchSampler(range(2_4 ) , batch_size=3 , drop_last=lowerCamelCase_ )
_a = [
[[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 2_0]],
[[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7], [2_1, 2_2, 2_3]],
]
self.check_batch_sampler_shards(lowerCamelCase_ , lowerCamelCase_ )
_a = BatchSampler(range(2_4 ) , batch_size=3 , drop_last=lowerCamelCase_ )
# Expected shouldn't change
self.check_batch_sampler_shards(lowerCamelCase_ , lowerCamelCase_ )
# Check the shards when the dataset is a round multiple of batch size but not total batch size.
_a = BatchSampler(range(2_1 ) , batch_size=3 , drop_last=lowerCamelCase_ )
_a = [
[[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 2_0]],
[[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7], [0, 1, 2]],
]
self.check_batch_sampler_shards(lowerCamelCase_ , lowerCamelCase_ )
_a = BatchSampler(range(2_1 ) , batch_size=3 , drop_last=lowerCamelCase_ )
_a = [
[[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4]],
[[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]],
]
self.check_batch_sampler_shards(lowerCamelCase_ , lowerCamelCase_ )
# Check the shards when the dataset is not a round multiple of batch size but has a multiple of
# num_processes batch.
_a = BatchSampler(range(2_2 ) , batch_size=3 , drop_last=lowerCamelCase_ )
_a = [
[[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 2_0]],
[[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7], [2_1, 0, 1]],
]
self.check_batch_sampler_shards(lowerCamelCase_ , lowerCamelCase_ )
_a = BatchSampler(range(2_2 ) , batch_size=3 , drop_last=lowerCamelCase_ )
_a = [
[[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4]],
[[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]],
]
self.check_batch_sampler_shards(lowerCamelCase_ , lowerCamelCase_ )
# Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of
# num_processes batch.
_a = BatchSampler(range(2_0 ) , batch_size=3 , drop_last=lowerCamelCase_ )
_a = [
[[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 0]],
[[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7], [1, 2, 3]],
]
self.check_batch_sampler_shards(lowerCamelCase_ , lowerCamelCase_ )
_a = BatchSampler(range(2_0 ) , batch_size=3 , drop_last=lowerCamelCase_ )
_a = [
[[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4]],
[[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]],
]
self.check_batch_sampler_shards(lowerCamelCase_ , lowerCamelCase_ )
# Check the shards when the dataset is very small.
_a = BatchSampler(range(2 ) , batch_size=3 , drop_last=lowerCamelCase_ )
_a = [[[0, 1, 0]], [[1, 0, 1]]]
self.check_batch_sampler_shards(lowerCamelCase_ , lowerCamelCase_ )
_a = BatchSampler(range(2 ) , batch_size=3 , drop_last=lowerCamelCase_ )
_a = [[], []]
self.check_batch_sampler_shards(lowerCamelCase_ , lowerCamelCase_ )
def _UpperCAmelCase ( self : Union[str, Any] ):
# Check the shards when the dataset is a round multiple of batch size.
_a = BatchSampler(range(2_4 ) , batch_size=4 , drop_last=lowerCamelCase_ )
_a = [
[[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7], [2_0, 2_1]],
[[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9], [2_2, 2_3]],
]
self.check_batch_sampler_shards(lowerCamelCase_ , lowerCamelCase_ , split_batches=lowerCamelCase_ )
_a = BatchSampler(range(2_4 ) , batch_size=4 , drop_last=lowerCamelCase_ )
# Expected shouldn't change
self.check_batch_sampler_shards(lowerCamelCase_ , lowerCamelCase_ , split_batches=lowerCamelCase_ )
# Check the shards when the dataset is not a round multiple of batch size.
_a = BatchSampler(range(2_2 ) , batch_size=4 , drop_last=lowerCamelCase_ )
_a = [
[[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7], [2_0, 2_1]],
[[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9], [0, 1]],
]
self.check_batch_sampler_shards(lowerCamelCase_ , lowerCamelCase_ , split_batches=lowerCamelCase_ )
_a = BatchSampler(range(2_2 ) , batch_size=4 , drop_last=lowerCamelCase_ )
_a = [
[[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7]],
[[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9]],
]
self.check_batch_sampler_shards(lowerCamelCase_ , lowerCamelCase_ , split_batches=lowerCamelCase_ )
# Check the shards when the dataset is not a round multiple of batch size or num_processes.
_a = BatchSampler(range(2_1 ) , batch_size=4 , drop_last=lowerCamelCase_ )
_a = [
[[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7], [2_0, 0]],
[[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9], [1, 2]],
]
self.check_batch_sampler_shards(lowerCamelCase_ , lowerCamelCase_ , split_batches=lowerCamelCase_ )
_a = BatchSampler(range(2_1 ) , batch_size=4 , drop_last=lowerCamelCase_ )
_a = [
[[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7]],
[[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9]],
]
self.check_batch_sampler_shards(lowerCamelCase_ , lowerCamelCase_ , split_batches=lowerCamelCase_ )
# Check the shards when the dataset is very small.
_a = BatchSampler(range(2 ) , batch_size=4 , drop_last=lowerCamelCase_ )
_a = [[[0, 1]], [[0, 1]]]
self.check_batch_sampler_shards(lowerCamelCase_ , lowerCamelCase_ , split_batches=lowerCamelCase_ )
_a = BatchSampler(range(2 ) , batch_size=4 , drop_last=lowerCamelCase_ )
_a = [[], []]
self.check_batch_sampler_shards(lowerCamelCase_ , lowerCamelCase_ , split_batches=lowerCamelCase_ )
def _UpperCAmelCase ( self : List[str] ):
# Check the shards when the dataset is a round multiple of total batch size.
_a = BatchSampler(range(2_4 ) , batch_size=3 , drop_last=lowerCamelCase_ )
_a = [
[[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 2_0]],
[[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7], [2_1, 2_2, 2_3]],
]
self.check_batch_sampler_shards(lowerCamelCase_ , lowerCamelCase_ , even_batches=lowerCamelCase_ )
_a = BatchSampler(range(2_4 ) , batch_size=3 , drop_last=lowerCamelCase_ )
# Expected shouldn't change
self.check_batch_sampler_shards(lowerCamelCase_ , lowerCamelCase_ , even_batches=lowerCamelCase_ )
# Check the shards when the dataset is a round multiple of batch size but not total batch size.
_a = BatchSampler(range(2_1 ) , batch_size=3 , drop_last=lowerCamelCase_ )
_a = [
[[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 2_0]],
[[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]],
]
self.check_batch_sampler_shards(lowerCamelCase_ , lowerCamelCase_ , even_batches=lowerCamelCase_ )
_a = BatchSampler(range(2_1 ) , batch_size=3 , drop_last=lowerCamelCase_ )
_a = [
[[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4]],
[[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]],
]
self.check_batch_sampler_shards(lowerCamelCase_ , lowerCamelCase_ , even_batches=lowerCamelCase_ )
# Check the shards when the dataset is not a round multiple of batch size but has a multiple of
# num_processes batch.
_a = BatchSampler(range(2_2 ) , batch_size=3 , drop_last=lowerCamelCase_ )
_a = [
[[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 2_0]],
[[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7], [2_1]],
]
self.check_batch_sampler_shards(lowerCamelCase_ , lowerCamelCase_ , even_batches=lowerCamelCase_ )
_a = BatchSampler(range(2_2 ) , batch_size=3 , drop_last=lowerCamelCase_ )
_a = [
[[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4]],
[[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]],
]
self.check_batch_sampler_shards(lowerCamelCase_ , lowerCamelCase_ , even_batches=lowerCamelCase_ )
# Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of
# num_processes batch.
_a = BatchSampler(range(2_0 ) , batch_size=3 , drop_last=lowerCamelCase_ )
_a = [
[[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9]],
[[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]],
]
self.check_batch_sampler_shards(lowerCamelCase_ , lowerCamelCase_ , even_batches=lowerCamelCase_ )
_a = BatchSampler(range(2_0 ) , batch_size=3 , drop_last=lowerCamelCase_ )
_a = [
[[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4]],
[[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]],
]
self.check_batch_sampler_shards(lowerCamelCase_ , lowerCamelCase_ , even_batches=lowerCamelCase_ )
# Check the shards when the dataset is very small.
_a = BatchSampler(range(2 ) , batch_size=3 , drop_last=lowerCamelCase_ )
_a = [[[0, 1]], []]
self.check_batch_sampler_shards(lowerCamelCase_ , lowerCamelCase_ , even_batches=lowerCamelCase_ )
_a = BatchSampler(range(2 ) , batch_size=3 , drop_last=lowerCamelCase_ )
_a = [[], []]
self.check_batch_sampler_shards(lowerCamelCase_ , lowerCamelCase_ , even_batches=lowerCamelCase_ )
def _UpperCAmelCase ( self : Union[str, Any] ):
# Check the shards when the dataset is a round multiple of batch size.
_a = BatchSampler(range(2_4 ) , batch_size=4 , drop_last=lowerCamelCase_ )
_a = [
[[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7], [2_0, 2_1]],
[[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9], [2_2, 2_3]],
]
self.check_batch_sampler_shards(lowerCamelCase_ , lowerCamelCase_ , split_batches=lowerCamelCase_ , even_batches=lowerCamelCase_ )
_a = BatchSampler(range(2_4 ) , batch_size=4 , drop_last=lowerCamelCase_ )
# Expected shouldn't change
self.check_batch_sampler_shards(lowerCamelCase_ , lowerCamelCase_ , split_batches=lowerCamelCase_ , even_batches=lowerCamelCase_ )
# Check the shards when the dataset is not a round multiple of batch size.
_a = BatchSampler(range(2_2 ) , batch_size=4 , drop_last=lowerCamelCase_ )
_a = [
[[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7], [2_0, 2_1]],
[[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9]],
]
self.check_batch_sampler_shards(lowerCamelCase_ , lowerCamelCase_ , split_batches=lowerCamelCase_ , even_batches=lowerCamelCase_ )
_a = BatchSampler(range(2_2 ) , batch_size=4 , drop_last=lowerCamelCase_ )
_a = [
[[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7]],
[[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9]],
]
self.check_batch_sampler_shards(lowerCamelCase_ , lowerCamelCase_ , split_batches=lowerCamelCase_ , even_batches=lowerCamelCase_ )
# Check the shards when the dataset is not a round multiple of batch size or num_processes.
_a = BatchSampler(range(2_1 ) , batch_size=4 , drop_last=lowerCamelCase_ )
_a = [
[[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7], [2_0]],
[[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9]],
]
self.check_batch_sampler_shards(lowerCamelCase_ , lowerCamelCase_ , split_batches=lowerCamelCase_ , even_batches=lowerCamelCase_ )
_a = BatchSampler(range(2_1 ) , batch_size=4 , drop_last=lowerCamelCase_ )
_a = [
[[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7]],
[[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9]],
]
self.check_batch_sampler_shards(lowerCamelCase_ , lowerCamelCase_ , split_batches=lowerCamelCase_ , even_batches=lowerCamelCase_ )
# Check the shards when the dataset is very small.
_a = BatchSampler(range(2 ) , batch_size=4 , drop_last=lowerCamelCase_ )
_a = [[[0, 1]], []]
self.check_batch_sampler_shards(lowerCamelCase_ , lowerCamelCase_ , split_batches=lowerCamelCase_ , even_batches=lowerCamelCase_ )
_a = BatchSampler(range(2 ) , batch_size=4 , drop_last=lowerCamelCase_ )
_a = [[], []]
self.check_batch_sampler_shards(lowerCamelCase_ , lowerCamelCase_ , split_batches=lowerCamelCase_ , even_batches=lowerCamelCase_ )
def _UpperCAmelCase ( self : Any ):
_a = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 1_0, 1_1], [1_2, 1_3]]
_a = [BatchSamplerShard(lowerCamelCase_ , 2 , lowerCamelCase_ , even_batches=lowerCamelCase_ ) for i in range(2 )]
self.assertEqual(len(batch_sampler_shards[0] ) , 3 )
self.assertEqual(len(batch_sampler_shards[1] ) , 2 )
self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [1_2, 1_3]] )
self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 1_0, 1_1]] )
def _UpperCAmelCase ( self : Dict , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Any=False , SCREAMING_SNAKE_CASE_ : Union[str, Any]=2 , SCREAMING_SNAKE_CASE_ : Tuple=False ):
random.seed(lowerCamelCase_ )
_a = list(lowerCamelCase_ )
_a = [
IterableDatasetShard(
lowerCamelCase_ , batch_size=lowerCamelCase_ , drop_last=lowerCamelCase_ , num_processes=lowerCamelCase_ , process_index=lowerCamelCase_ , split_batches=lowerCamelCase_ , )
for i in range(lowerCamelCase_ )
]
_a = []
for iterable_dataset_shard in iterable_dataset_shards:
# Since our random iterable dataset will be... random... we need to use a seed to get reproducible results.
random.seed(lowerCamelCase_ )
iterable_dataset_lists.append(list(lowerCamelCase_ ) )
_a = batch_size // num_processes if split_batches else batch_size
# All iterable dataset shard should have the same length, a round multiple of shard_batch_size
_a = iterable_dataset_lists[0]
for l in iterable_dataset_lists[1:]:
self.assertEqual(len(lowerCamelCase_ ) , len(lowerCamelCase_ ) )
self.assertTrue(len(lowerCamelCase_ ) % shard_batch_size == 0 )
_a = []
for idx in range(0 , len(lowerCamelCase_ ) , lowerCamelCase_ ):
for l in iterable_dataset_lists:
observed += l[idx : idx + shard_batch_size]
if not drop_last:
while len(lowerCamelCase_ ) < len(lowerCamelCase_ ):
reference += reference
self.assertListEqual(lowerCamelCase_ , reference[: len(lowerCamelCase_ )] )
def _UpperCAmelCase ( self : str ):
_a = 4_2
_a = RandomIterableDataset()
self.check_iterable_dataset_shards(lowerCamelCase_ , lowerCamelCase_ , batch_size=4 , drop_last=lowerCamelCase_ , split_batches=lowerCamelCase_ )
self.check_iterable_dataset_shards(lowerCamelCase_ , lowerCamelCase_ , batch_size=4 , drop_last=lowerCamelCase_ , split_batches=lowerCamelCase_ )
self.check_iterable_dataset_shards(lowerCamelCase_ , lowerCamelCase_ , batch_size=4 , drop_last=lowerCamelCase_ , split_batches=lowerCamelCase_ )
self.check_iterable_dataset_shards(lowerCamelCase_ , lowerCamelCase_ , batch_size=4 , drop_last=lowerCamelCase_ , split_batches=lowerCamelCase_ )
# Edge case with a very small dataset
_a = RandomIterableDataset(max_length=2 )
self.check_iterable_dataset_shards(lowerCamelCase_ , lowerCamelCase_ , batch_size=4 , drop_last=lowerCamelCase_ , split_batches=lowerCamelCase_ )
self.check_iterable_dataset_shards(lowerCamelCase_ , lowerCamelCase_ , batch_size=4 , drop_last=lowerCamelCase_ , split_batches=lowerCamelCase_ )
self.check_iterable_dataset_shards(lowerCamelCase_ , lowerCamelCase_ , batch_size=4 , drop_last=lowerCamelCase_ , split_batches=lowerCamelCase_ )
self.check_iterable_dataset_shards(lowerCamelCase_ , lowerCamelCase_ , batch_size=4 , drop_last=lowerCamelCase_ , split_batches=lowerCamelCase_ )
def _UpperCAmelCase ( self : int ):
_a = BatchSampler(range(1_6 ) , batch_size=4 , drop_last=lowerCamelCase_ )
_a = SkipBatchSampler(lowerCamelCase_ , 2 )
self.assertListEqual(list(lowerCamelCase_ ) , [[8, 9, 1_0, 1_1], [1_2, 1_3, 1_4, 1_5]] )
def _UpperCAmelCase ( self : Union[str, Any] ):
_a = SkipDataLoader(list(range(1_6 ) ) , batch_size=4 , skip_batches=2 )
self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 1_0, 1_1], [1_2, 1_3, 1_4, 1_5]] )
def _UpperCAmelCase ( self : Dict ):
_a = DataLoader(list(range(1_6 ) ) , batch_size=4 )
_a = skip_first_batches(lowerCamelCase_ , num_batches=2 )
self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 1_0, 1_1], [1_2, 1_3, 1_4, 1_5]] )
def _UpperCAmelCase ( self : Optional[int] ):
_a = DataLoaderShard(list(range(1_6 ) ) , batch_size=4 )
for idx, _ in enumerate(lowerCamelCase_ ):
self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
# Test it also works on the second iteration
for idx, _ in enumerate(lowerCamelCase_ ):
self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
def _UpperCAmelCase ( self : int ):
Accelerator()
_a = DataLoaderDispatcher(range(1_6 ) , batch_size=4 )
for idx, _ in enumerate(lowerCamelCase_ ):
self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
# Test it also works on the second iteration
for idx, _ in enumerate(lowerCamelCase_ ):
self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
| 562
|
'''simple docstring'''
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer
from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNetaDConditionModel
from diffusers.pipelines.alt_diffusion.modeling_roberta_series import (
RobertaSeriesConfig,
RobertaSeriesModelWithTransformation,
)
from diffusers.utils import slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class a__ ( a__ , a__ , a__ , unittest.TestCase ):
'''simple docstring'''
lowercase__ : Optional[Any] = AltDiffusionPipeline
lowercase__ : Dict = TEXT_TO_IMAGE_PARAMS
lowercase__ : str = TEXT_TO_IMAGE_BATCH_PARAMS
lowercase__ : Any = TEXT_TO_IMAGE_IMAGE_PARAMS
lowercase__ : List[str] = TEXT_TO_IMAGE_IMAGE_PARAMS
def __SCREAMING_SNAKE_CASE ( self ) -> str:
torch.manual_seed(0 )
lowerCAmelCase__ = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , )
lowerCAmelCase__ = DDIMScheduler(
beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=lowerCamelCase_ , set_alpha_to_one=lowerCamelCase_ , )
torch.manual_seed(0 )
lowerCAmelCase__ = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , )
# TODO: address the non-deterministic text encoder (fails for save-load tests)
# torch.manual_seed(0)
# text_encoder_config = RobertaSeriesConfig(
# hidden_size=32,
# project_dim=32,
# intermediate_size=37,
# layer_norm_eps=1e-05,
# num_attention_heads=4,
# num_hidden_layers=5,
# vocab_size=5002,
# )
# text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config)
torch.manual_seed(0 )
lowerCAmelCase__ = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=50_02 , )
lowerCAmelCase__ = CLIPTextModel(lowerCamelCase_ )
lowerCAmelCase__ = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' )
lowerCAmelCase__ = 77
lowerCAmelCase__ = {
'''unet''': unet,
'''scheduler''': scheduler,
'''vae''': vae,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
'''safety_checker''': None,
'''feature_extractor''': None,
}
return components
def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_=0 ) -> List[str]:
if str(lowerCamelCase_ ).startswith('''mps''' ):
lowerCAmelCase__ = torch.manual_seed(lowerCamelCase_ )
else:
lowerCAmelCase__ = torch.Generator(device=lowerCamelCase_ ).manual_seed(lowerCamelCase_ )
lowerCAmelCase__ = {
'''prompt''': '''A painting of a squirrel eating a burger''',
'''generator''': generator,
'''num_inference_steps''': 2,
'''guidance_scale''': 6.0,
'''output_type''': '''numpy''',
}
return inputs
def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]:
super().test_attention_slicing_forward_pass(expected_max_diff=3e-3 )
def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]:
super().test_inference_batch_single_identical(expected_max_diff=3e-3 )
def __SCREAMING_SNAKE_CASE ( self ) -> List[str]:
lowerCAmelCase__ = '''cpu''' # ensure determinism for the device-dependent torch.Generator
lowerCAmelCase__ = self.get_dummy_components()
torch.manual_seed(0 )
lowerCAmelCase__ = RobertaSeriesConfig(
hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=50_02 , )
# TODO: remove after fixing the non-deterministic text encoder
lowerCAmelCase__ = RobertaSeriesModelWithTransformation(lowerCamelCase_ )
lowerCAmelCase__ = text_encoder
lowerCAmelCase__ = AltDiffusionPipeline(**lowerCamelCase_ )
lowerCAmelCase__ = alt_pipe.to(lowerCamelCase_ )
alt_pipe.set_progress_bar_config(disable=lowerCamelCase_ )
lowerCAmelCase__ = self.get_dummy_inputs(lowerCamelCase_ )
lowerCAmelCase__ = '''A photo of an astronaut'''
lowerCAmelCase__ = alt_pipe(**lowerCamelCase_ )
lowerCAmelCase__ = output.images
lowerCAmelCase__ = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
lowerCAmelCase__ = np.array(
[0.5_748_162, 0.60_447_145, 0.48_821_217, 0.50_100_636, 0.5_431_185, 0.45_763_683, 0.49_657_696, 0.48_132_733, 0.47_573_093] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]:
lowerCAmelCase__ = '''cpu''' # ensure determinism for the device-dependent torch.Generator
lowerCAmelCase__ = self.get_dummy_components()
lowerCAmelCase__ = PNDMScheduler(skip_prk_steps=lowerCamelCase_ )
torch.manual_seed(0 )
lowerCAmelCase__ = RobertaSeriesConfig(
hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=50_02 , )
# TODO: remove after fixing the non-deterministic text encoder
lowerCAmelCase__ = RobertaSeriesModelWithTransformation(lowerCamelCase_ )
lowerCAmelCase__ = text_encoder
lowerCAmelCase__ = AltDiffusionPipeline(**lowerCamelCase_ )
lowerCAmelCase__ = alt_pipe.to(lowerCamelCase_ )
alt_pipe.set_progress_bar_config(disable=lowerCamelCase_ )
lowerCAmelCase__ = self.get_dummy_inputs(lowerCamelCase_ )
lowerCAmelCase__ = alt_pipe(**lowerCamelCase_ )
lowerCAmelCase__ = output.images
lowerCAmelCase__ = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
lowerCAmelCase__ = np.array(
[0.51_605_093, 0.5_707_241, 0.47_365_507, 0.50_578_886, 0.5_633_877, 0.4_642_503, 0.5_182_081, 0.48_763_484, 0.49_084_237] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
@slow
@require_torch_gpu
class a__ ( unittest.TestCase ):
'''simple docstring'''
def __SCREAMING_SNAKE_CASE ( self ) -> Tuple:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]:
# make sure here that pndm scheduler skips prk
lowerCAmelCase__ = AltDiffusionPipeline.from_pretrained('''BAAI/AltDiffusion''' , safety_checker=lowerCamelCase_ )
lowerCAmelCase__ = alt_pipe.to(lowerCamelCase_ )
alt_pipe.set_progress_bar_config(disable=lowerCamelCase_ )
lowerCAmelCase__ = '''A painting of a squirrel eating a burger'''
lowerCAmelCase__ = torch.manual_seed(0 )
lowerCAmelCase__ = alt_pipe([prompt] , generator=lowerCamelCase_ , guidance_scale=6.0 , num_inference_steps=20 , output_type='''np''' )
lowerCAmelCase__ = output.images
lowerCAmelCase__ = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_12, 5_12, 3)
lowerCAmelCase__ = np.array([0.1_010, 0.0_800, 0.0_794, 0.0_885, 0.0_843, 0.0_762, 0.0_769, 0.0_729, 0.0_586] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def __SCREAMING_SNAKE_CASE ( self ) -> Any:
lowerCAmelCase__ = DDIMScheduler.from_pretrained('''BAAI/AltDiffusion''' , subfolder='''scheduler''' )
lowerCAmelCase__ = AltDiffusionPipeline.from_pretrained('''BAAI/AltDiffusion''' , scheduler=lowerCamelCase_ , safety_checker=lowerCamelCase_ )
lowerCAmelCase__ = alt_pipe.to(lowerCamelCase_ )
alt_pipe.set_progress_bar_config(disable=lowerCamelCase_ )
lowerCAmelCase__ = '''A painting of a squirrel eating a burger'''
lowerCAmelCase__ = torch.manual_seed(0 )
lowerCAmelCase__ = alt_pipe([prompt] , generator=lowerCamelCase_ , num_inference_steps=2 , output_type='''numpy''' )
lowerCAmelCase__ = output.images
lowerCAmelCase__ = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_12, 5_12, 3)
lowerCAmelCase__ = np.array([0.4_019, 0.4_052, 0.3_810, 0.4_119, 0.3_916, 0.3_982, 0.4_651, 0.4_195, 0.5_323] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
| 90
| 0
|
from __future__ import annotations
from collections.abc import Iterator
class _a :
"""simple docstring"""
def __init__( self : List[Any] , a : int ) ->None:
SCREAMING_SNAKE_CASE__ : Optional[int] = value
SCREAMING_SNAKE_CASE__ : Node | None = None
SCREAMING_SNAKE_CASE__ : Node | None = None
class _a :
"""simple docstring"""
def __init__( self : Tuple , a : Node ) ->None:
SCREAMING_SNAKE_CASE__ : int = tree
def A_ ( self : str , a : Node | None ) ->int:
if node is None:
return 0
return node.value + (
self.depth_first_search(node.left ) + self.depth_first_search(node.right )
)
def __iter__( self : Optional[Any] ) ->Iterator[int]:
yield self.depth_first_search(self.tree )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 714
|
import logging
import os
from dataclasses import dataclass, field
from typing import Dict, Optional
import datasets
import numpy as np
import tensorflow as tf
from transformers import (
AutoConfig,
AutoTokenizer,
EvalPrediction,
HfArgumentParser,
PreTrainedTokenizer,
TFAutoModelForSequenceClassification,
TFTrainer,
TFTrainingArguments,
)
from transformers.utils import logging as hf_logging
hf_logging.set_verbosity_info()
hf_logging.enable_default_handler()
hf_logging.enable_explicit_format()
def UpperCAmelCase ( _lowerCamelCase : str , _lowerCamelCase : str , _lowerCamelCase : str , _lowerCamelCase : PreTrainedTokenizer , _lowerCamelCase : int , _lowerCamelCase : Optional[int] = None , ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : str = {}
if train_file is not None:
SCREAMING_SNAKE_CASE__ : Optional[Any] = [train_file]
if eval_file is not None:
SCREAMING_SNAKE_CASE__ : int = [eval_file]
if test_file is not None:
SCREAMING_SNAKE_CASE__ : int = [test_file]
SCREAMING_SNAKE_CASE__ : Optional[int] = datasets.load_dataset("csv" , data_files=_lowerCamelCase )
SCREAMING_SNAKE_CASE__ : List[str] = list(ds[list(files.keys() )[0]].features.keys() )
SCREAMING_SNAKE_CASE__ : int = features_name.pop(_lowerCamelCase )
SCREAMING_SNAKE_CASE__ : Optional[Any] = list(set(ds[list(files.keys() )[0]][label_name] ) )
SCREAMING_SNAKE_CASE__ : List[str] = {label: i for i, label in enumerate(_lowerCamelCase )}
SCREAMING_SNAKE_CASE__ : Optional[int] = tokenizer.model_input_names
SCREAMING_SNAKE_CASE__ : Any = {}
if len(_lowerCamelCase ) == 1:
for k in files.keys():
SCREAMING_SNAKE_CASE__ : List[Any] = ds[k].map(
lambda _lowerCamelCase : tokenizer.batch_encode_plus(
example[features_name[0]] , truncation=_lowerCamelCase , max_length=_lowerCamelCase , padding="max_length" ) , batched=_lowerCamelCase , )
elif len(_lowerCamelCase ) == 2:
for k in files.keys():
SCREAMING_SNAKE_CASE__ : Any = ds[k].map(
lambda _lowerCamelCase : tokenizer.batch_encode_plus(
(example[features_name[0]], example[features_name[1]]) , truncation=_lowerCamelCase , max_length=_lowerCamelCase , padding="max_length" , ) , batched=_lowerCamelCase , )
def gen_train():
for ex in transformed_ds[datasets.Split.TRAIN]:
SCREAMING_SNAKE_CASE__ : Tuple = {k: v for k, v in ex.items() if k in input_names}
SCREAMING_SNAKE_CASE__ : List[Any] = labelaid[ex[label_name]]
yield (d, label)
def gen_val():
for ex in transformed_ds[datasets.Split.VALIDATION]:
SCREAMING_SNAKE_CASE__ : int = {k: v for k, v in ex.items() if k in input_names}
SCREAMING_SNAKE_CASE__ : Optional[int] = labelaid[ex[label_name]]
yield (d, label)
def gen_test():
for ex in transformed_ds[datasets.Split.TEST]:
SCREAMING_SNAKE_CASE__ : int = {k: v for k, v in ex.items() if k in input_names}
SCREAMING_SNAKE_CASE__ : Optional[Any] = labelaid[ex[label_name]]
yield (d, label)
SCREAMING_SNAKE_CASE__ : Tuple = (
tf.data.Dataset.from_generator(
_lowerCamelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , )
if datasets.Split.TRAIN in transformed_ds
else None
)
if train_ds is not None:
SCREAMING_SNAKE_CASE__ : Any = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) )
SCREAMING_SNAKE_CASE__ : Optional[Any] = (
tf.data.Dataset.from_generator(
_lowerCamelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , )
if datasets.Split.VALIDATION in transformed_ds
else None
)
if val_ds is not None:
SCREAMING_SNAKE_CASE__ : Union[str, Any] = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) )
SCREAMING_SNAKE_CASE__ : Dict = (
tf.data.Dataset.from_generator(
_lowerCamelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , )
if datasets.Split.TEST in transformed_ds
else None
)
if test_ds is not None:
SCREAMING_SNAKE_CASE__ : Dict = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) )
return train_ds, val_ds, test_ds, labelaid
__lowercase :List[Any] = logging.getLogger(__name__)
@dataclass
class _a :
"""simple docstring"""
snake_case_ = field(metadata={"help": "Which column contains the label"} )
snake_case_ = field(default=lowercase__ , metadata={"help": "The path of the training file"} )
snake_case_ = field(default=lowercase__ , metadata={"help": "The path of the development file"} )
snake_case_ = field(default=lowercase__ , metadata={"help": "The path of the test file"} )
snake_case_ = field(
default=1_28 , metadata={
"help": (
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
} , )
snake_case_ = field(
default=lowercase__ , metadata={"help": "Overwrite the cached training and evaluation sets"} )
@dataclass
class _a :
"""simple docstring"""
snake_case_ = field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} )
snake_case_ = field(
default=lowercase__ , metadata={"help": "Pretrained config name or path if not the same as model_name"} )
snake_case_ = field(
default=lowercase__ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} )
snake_case_ = field(default=lowercase__ , metadata={"help": "Set this flag to use fast tokenization."} )
# If you want to tweak more attributes on your tokenizer, you should do it in a distinct script,
# or just modify its tokenizer_config.json.
snake_case_ = field(
default=lowercase__ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , )
def UpperCAmelCase ( ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : Union[str, Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) )
SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : List[Any] = parser.parse_args_into_dataclasses()
if (
os.path.exists(training_args.output_dir )
and os.listdir(training_args.output_dir )
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use"""
" --overwrite_output_dir to overcome." )
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO , )
logger.info(
f"""n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, """
f"""16-bits training: {training_args.fpaa}""" )
logger.info(f"""Training/evaluation parameters {training_args}""" )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
SCREAMING_SNAKE_CASE__ : Any = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , )
SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : Union[str, Any] = get_tfds(
train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=_lowerCamelCase , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , )
SCREAMING_SNAKE_CASE__ : str = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(_lowerCamelCase ) , labelaid=_lowerCamelCase , idalabel={id: label for label, id in labelaid.items()} , finetuning_task="text-classification" , cache_dir=model_args.cache_dir , )
with training_args.strategy.scope():
SCREAMING_SNAKE_CASE__ : Optional[Any] = TFAutoModelForSequenceClassification.from_pretrained(
model_args.model_name_or_path , from_pt=bool(".bin" in model_args.model_name_or_path ) , config=_lowerCamelCase , cache_dir=model_args.cache_dir , )
def compute_metrics(_lowerCamelCase : EvalPrediction ) -> Dict:
SCREAMING_SNAKE_CASE__ : Dict = np.argmax(p.predictions , axis=1 )
return {"acc": (preds == p.label_ids).mean()}
# Initialize our Trainer
SCREAMING_SNAKE_CASE__ : str = TFTrainer(
model=_lowerCamelCase , args=_lowerCamelCase , train_dataset=_lowerCamelCase , eval_dataset=_lowerCamelCase , compute_metrics=_lowerCamelCase , )
# Training
if training_args.do_train:
trainer.train()
trainer.save_model()
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
SCREAMING_SNAKE_CASE__ : Dict = {}
if training_args.do_eval:
logger.info("*** Evaluate ***" )
SCREAMING_SNAKE_CASE__ : str = trainer.evaluate()
SCREAMING_SNAKE_CASE__ : Union[str, Any] = os.path.join(training_args.output_dir , "eval_results.txt" )
with open(_lowerCamelCase , "w" ) as writer:
logger.info("***** Eval results *****" )
for key, value in result.items():
logger.info(f""" {key} = {value}""" )
writer.write(f"""{key} = {value}\n""" )
results.update(_lowerCamelCase )
return results
if __name__ == "__main__":
main()
| 26
| 0
|
"""simple docstring"""
import time
from contextlib import contextmanager
from pathlib import Path
import pytest
import requests
from huggingface_hub.hf_api import HfApi, HfFolder
__UpperCAmelCase ="""__DUMMY_TRANSFORMERS_USER__"""
__UpperCAmelCase ="""Dummy User"""
__UpperCAmelCase ="""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"""
__UpperCAmelCase ="""https://hub-ci.huggingface.co"""
__UpperCAmelCase =CI_HUB_ENDPOINT + """/datasets/{repo_id}/resolve/{revision}/{path}"""
__UpperCAmelCase =CI_HUB_ENDPOINT + """/{repo_id}/resolve/{revision}/{filename}"""
__UpperCAmelCase =Path("""~/.huggingface/hub_ci_token""").expanduser()
@pytest.fixture
def __a ( A ) -> Any:
'''simple docstring'''
monkeypatch.setattr(
"huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE" , A )
@pytest.fixture
def __a ( A ) -> List[Any]:
'''simple docstring'''
monkeypatch.setattr("datasets.config.HF_ENDPOINT" , A )
monkeypatch.setattr("datasets.config.HUB_DATASETS_URL" , A )
@pytest.fixture
def __a ( A ) -> Any:
'''simple docstring'''
monkeypatch.setattr("huggingface_hub.hf_api.HfFolder.path_token" , A )
@pytest.fixture
def __a ( A , A ) -> List[str]:
'''simple docstring'''
HfFolder.save_token(A )
yield
HfFolder.delete_token()
@pytest.fixture(scope="session" )
def __a ( ) -> Dict:
'''simple docstring'''
return HfApi(endpoint=A )
@pytest.fixture(scope="session" )
def __a ( A ) -> int:
'''simple docstring'''
A__ = HfFolder.get_token()
HfFolder.save_token(A )
yield CI_HUB_USER_TOKEN
if previous_token is not None:
HfFolder.save_token(A )
@pytest.fixture
def __a ( A ) -> int:
'''simple docstring'''
def _cleanup_repo(A ):
hf_api.delete_repo(A , token=A , repo_type="dataset" )
return _cleanup_repo
@pytest.fixture
def __a ( A ) -> Optional[Any]:
'''simple docstring'''
@contextmanager
def _temporary_repo(A ):
try:
yield repo_id
finally:
cleanup_repo(A )
return _temporary_repo
@pytest.fixture(scope="session" )
def __a ( A , A , A ) -> Any:
'''simple docstring'''
A__ = f"""repo_txt_data-{int(time.time() * 1_0E3 )}"""
A__ = f"""{CI_HUB_USER}/{repo_name}"""
hf_api.create_repo(A , token=A , repo_type="dataset" , private=A )
hf_api.upload_file(
token=A , path_or_fileobj=str(A ) , path_in_repo="data/text_data.txt" , repo_id=A , repo_type="dataset" , )
yield repo_id
try:
hf_api.delete_repo(A , token=A , repo_type="dataset" )
except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error
pass
@pytest.fixture()
def __a ( A , A , A ) -> Dict:
'''simple docstring'''
return hf_private_dataset_repo_txt_data_
@pytest.fixture(scope="session" )
def __a ( A , A , A ) -> Dict:
'''simple docstring'''
A__ = f"""repo_zipped_txt_data-{int(time.time() * 1_0E3 )}"""
A__ = f"""{CI_HUB_USER}/{repo_name}"""
hf_api.create_repo(A , token=A , repo_type="dataset" , private=A )
hf_api.upload_file(
token=A , path_or_fileobj=str(A ) , path_in_repo="data.zip" , repo_id=A , repo_type="dataset" , )
yield repo_id
try:
hf_api.delete_repo(A , token=A , repo_type="dataset" )
except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error
pass
@pytest.fixture()
def __a ( A , A , A ) -> List[str]:
'''simple docstring'''
return hf_private_dataset_repo_zipped_txt_data_
@pytest.fixture(scope="session" )
def __a ( A , A , A ) -> str:
'''simple docstring'''
A__ = f"""repo_zipped_img_data-{int(time.time() * 1_0E3 )}"""
A__ = f"""{CI_HUB_USER}/{repo_name}"""
hf_api.create_repo(A , token=A , repo_type="dataset" , private=A )
hf_api.upload_file(
token=A , path_or_fileobj=str(A ) , path_in_repo="data.zip" , repo_id=A , repo_type="dataset" , )
yield repo_id
try:
hf_api.delete_repo(A , token=A , repo_type="dataset" )
except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error
pass
@pytest.fixture()
def __a ( A , A , A ) -> Any:
'''simple docstring'''
return hf_private_dataset_repo_zipped_img_data_
| 337
|
"""simple docstring"""
import unittest
import numpy as np
import torch
from diffusers import VersatileDiffusionImageVariationPipeline
from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device
__UpperCAmelCase =False
class lowerCAmelCase__ ( unittest.TestCase ):
pass
@slow
@require_torch_gpu
class lowerCAmelCase__ ( unittest.TestCase ):
def lowercase_ ( self ):
'''simple docstring'''
A__ = VersatileDiffusionImageVariationPipeline.from_pretrained("shi-labs/versatile-diffusion" )
pipe.to(UpperCamelCase__ )
pipe.set_progress_bar_config(disable=UpperCamelCase__ )
A__ = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg" )
A__ = torch.manual_seed(0 )
A__ = pipe(
image=UpperCamelCase__ , generator=UpperCamelCase__ , guidance_scale=7.5 , num_inference_steps=50 , output_type="numpy" , ).images
A__ = image[0, 2_53:2_56, 2_53:2_56, -1]
assert image.shape == (1, 5_12, 5_12, 3)
A__ = np.array([0.0441, 0.0469, 0.0507, 0.0575, 0.0632, 0.0650, 0.0865, 0.0909, 0.0945] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
| 337
| 1
|
from ..utils import DummyObject, requires_backends
class _lowerCAmelCase ( metaclass=_lowercase ):
A__ = ['torch', 'torchsde']
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ):
requires_backends(self , ['''torch''', '''torchsde'''] )
@classmethod
def __magic_name__( cls , *__UpperCAmelCase , **__UpperCAmelCase ):
requires_backends(cls , ['''torch''', '''torchsde'''] )
@classmethod
def __magic_name__( cls , *__UpperCAmelCase , **__UpperCAmelCase ):
requires_backends(cls , ['''torch''', '''torchsde'''] )
| 470
|
def __lowerCAmelCase ( UpperCamelCase ) -> bool:
if not isinstance(UpperCamelCase , UpperCamelCase ):
raise ValueError('''Input series is not valid, valid series - [2, 4, 6]''' )
if len(UpperCamelCase ) == 0:
raise ValueError('''Input list must be a non empty list''' )
if len(UpperCamelCase ) == 1:
return True
lowerCAmelCase__ : Tuple = series[1] - series[0]
for index in range(len(UpperCamelCase ) - 1 ):
if series[index + 1] - series[index] != common_diff:
return False
return True
def __lowerCAmelCase ( UpperCamelCase ) -> float:
if not isinstance(UpperCamelCase , UpperCamelCase ):
raise ValueError('''Input series is not valid, valid series - [2, 4, 6]''' )
if len(UpperCamelCase ) == 0:
raise ValueError('''Input list must be a non empty list''' )
lowerCAmelCase__ : int = 0
for val in series:
answer += val
return answer / len(UpperCamelCase )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 470
| 1
|
'''simple docstring'''
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ = 1000 ) -> int:
'''simple docstring'''
return sum(e for e in range(3 , SCREAMING_SNAKE_CASE__ ) if e % 3 == 0 or e % 5 == 0 )
if __name__ == "__main__":
print(f"{solution() = }")
| 638
|
'''simple docstring'''
from __future__ import annotations
from PIL import Image
# Define glider example
lowercase__ = [
[0, 1, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0, 0],
[1, 1, 1, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
]
# Define blinker example
lowercase__ = [[0, 1, 0], [0, 1, 0], [0, 1, 0]]
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ ) -> list[list[int]]:
'''simple docstring'''
snake_case : Optional[Any] = []
for i in range(len(SCREAMING_SNAKE_CASE__ ) ):
snake_case : str = []
for j in range(len(cells[i] ) ):
# Get the number of live neighbours
snake_case : Any = 0
if i > 0 and j > 0:
neighbour_count += cells[i - 1][j - 1]
if i > 0:
neighbour_count += cells[i - 1][j]
if i > 0 and j < len(cells[i] ) - 1:
neighbour_count += cells[i - 1][j + 1]
if j > 0:
neighbour_count += cells[i][j - 1]
if j < len(cells[i] ) - 1:
neighbour_count += cells[i][j + 1]
if i < len(SCREAMING_SNAKE_CASE__ ) - 1 and j > 0:
neighbour_count += cells[i + 1][j - 1]
if i < len(SCREAMING_SNAKE_CASE__ ) - 1:
neighbour_count += cells[i + 1][j]
if i < len(SCREAMING_SNAKE_CASE__ ) - 1 and j < len(cells[i] ) - 1:
neighbour_count += cells[i + 1][j + 1]
# Rules of the game of life (excerpt from Wikipedia):
# 1. Any live cell with two or three live neighbours survives.
# 2. Any dead cell with three live neighbours becomes a live cell.
# 3. All other live cells die in the next generation.
# Similarly, all other dead cells stay dead.
snake_case : List[Any] = cells[i][j] == 1
if (
(alive and 2 <= neighbour_count <= 3)
or not alive
and neighbour_count == 3
):
next_generation_row.append(1 )
else:
next_generation_row.append(0 )
next_generation.append(SCREAMING_SNAKE_CASE__ )
return next_generation
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> list[Image.Image]:
'''simple docstring'''
snake_case : Tuple = []
for _ in range(SCREAMING_SNAKE_CASE__ ):
# Create output image
snake_case : List[Any] = Image.new('''RGB''' , (len(cells[0] ), len(SCREAMING_SNAKE_CASE__ )) )
snake_case : Optional[Any] = img.load()
# Save cells to image
for x in range(len(SCREAMING_SNAKE_CASE__ ) ):
for y in range(len(cells[0] ) ):
snake_case : str = 255 - cells[y][x] * 255
snake_case : List[str] = (colour, colour, colour)
# Save image
images.append(SCREAMING_SNAKE_CASE__ )
snake_case : Dict = new_generation(SCREAMING_SNAKE_CASE__ )
return images
if __name__ == "__main__":
lowercase__ = generate_images(GLIDER, 1_6)
images[0].save("out.gif", save_all=True, append_images=images[1:])
| 638
| 1
|
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
_lowerCamelCase : Union[str, Any] = {
'''configuration_convbert''': ['''CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ConvBertConfig''', '''ConvBertOnnxConfig'''],
'''tokenization_convbert''': ['''ConvBertTokenizer'''],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase : List[Any] = ['''ConvBertTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase : str = [
'''CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''ConvBertForMaskedLM''',
'''ConvBertForMultipleChoice''',
'''ConvBertForQuestionAnswering''',
'''ConvBertForSequenceClassification''',
'''ConvBertForTokenClassification''',
'''ConvBertLayer''',
'''ConvBertModel''',
'''ConvBertPreTrainedModel''',
'''load_tf_weights_in_convbert''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase : List[Any] = [
'''TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFConvBertForMaskedLM''',
'''TFConvBertForMultipleChoice''',
'''TFConvBertForQuestionAnswering''',
'''TFConvBertForSequenceClassification''',
'''TFConvBertForTokenClassification''',
'''TFConvBertLayer''',
'''TFConvBertModel''',
'''TFConvBertPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig
from .tokenization_convbert import ConvBertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_convbert_fast import ConvBertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_convbert import (
CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
ConvBertForMaskedLM,
ConvBertForMultipleChoice,
ConvBertForQuestionAnswering,
ConvBertForSequenceClassification,
ConvBertForTokenClassification,
ConvBertLayer,
ConvBertModel,
ConvBertPreTrainedModel,
load_tf_weights_in_convbert,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_convbert import (
TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFConvBertForMaskedLM,
TFConvBertForMultipleChoice,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertLayer,
TFConvBertModel,
TFConvBertPreTrainedModel,
)
else:
import sys
_lowerCamelCase : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 516
|
from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError
import requests
def A__ ( __A : str = "isbn/0140328726" ) ->dict:
__A =olid.strip().strip('''/''' ) # Remove leading/trailing whitespace & slashes
if new_olid.count('''/''' ) != 1:
__A =F'''{olid} is not a valid Open Library olid'''
raise ValueError(__A )
return requests.get(F'''https://openlibrary.org/{new_olid}.json''' ).json()
def A__ ( __A : dict ) ->dict:
__A ={
'''title''': '''Title''',
'''publish_date''': '''Publish date''',
'''authors''': '''Authors''',
'''number_of_pages''': '''Number of pages:''',
'''first_sentence''': '''First sentence''',
'''isbn_10''': '''ISBN (10)''',
'''isbn_13''': '''ISBN (13)''',
}
__A ={better_key: ol_book_data[key] for key, better_key in desired_keys.items()}
__A =[
get_openlibrary_data(author['''key'''] )['''name'''] for author in data['''Authors''']
]
__A =data['''First sentence''']['''value''']
for key, value in data.items():
if isinstance(__A , __A ):
__A =''', '''.join(__A )
return data
if __name__ == "__main__":
import doctest
doctest.testmod()
while True:
_lowerCamelCase : Union[str, Any] = input('''\nEnter the ISBN code to search (or \'quit\' to stop): ''').strip()
if isbn.lower() in ("", "q", "quit", "exit", "stop"):
break
if len(isbn) not in (10, 13) or not isbn.isdigit():
print(F"""Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.""")
continue
print(F"""\nSearching Open Library for ISBN: {isbn}...\n""")
try:
_lowerCamelCase : Tuple = summarize_book(get_openlibrary_data(F"""isbn/{isbn}"""))
print('''\n'''.join(F"""{key}: {value}""" for key, value in book_summary.items()))
except JSONDecodeError: # Workaround for requests.exceptions.RequestException:
print(F"""Sorry, there are no results for ISBN: {isbn}.""")
| 516
| 1
|
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer
from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline
from diffusers.pipelines.shap_e import ShapERenderer
from diffusers.utils import load_numpy, slow
from diffusers.utils.testing_utils import require_torch_gpu, torch_device
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
class __A ( UpperCamelCase__ , unittest.TestCase ):
UpperCamelCase = ShapEPipeline
UpperCamelCase = ["""prompt"""]
UpperCamelCase = ["""prompt"""]
UpperCamelCase = [
"""num_images_per_prompt""",
"""num_inference_steps""",
"""generator""",
"""latents""",
"""guidance_scale""",
"""frame_size""",
"""output_type""",
"""return_dict""",
]
UpperCamelCase = False
@property
def A__ ( self :Dict ):
'''simple docstring'''
return 32
@property
def A__ ( self :Optional[Any] ):
'''simple docstring'''
return 32
@property
def A__ ( self :Any ):
'''simple docstring'''
return self.time_input_dim * 4
@property
def A__ ( self :Optional[int] ):
'''simple docstring'''
return 8
@property
def A__ ( self :Any ):
'''simple docstring'''
__magic_name__ : Any =CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
return tokenizer
@property
def A__ ( self :List[Any] ):
'''simple docstring'''
torch.manual_seed(0 )
__magic_name__ : Any =CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , )
return CLIPTextModelWithProjection(__snake_case )
@property
def A__ ( self :List[Any] ):
'''simple docstring'''
torch.manual_seed(0 )
__magic_name__ : Union[str, Any] ={
"""num_attention_heads""": 2,
"""attention_head_dim""": 16,
"""embedding_dim""": self.time_input_dim,
"""num_embeddings""": 32,
"""embedding_proj_dim""": self.text_embedder_hidden_size,
"""time_embed_dim""": self.time_embed_dim,
"""num_layers""": 1,
"""clip_embed_dim""": self.time_input_dim * 2,
"""additional_embeddings""": 0,
"""time_embed_act_fn""": """gelu""",
"""norm_in_type""": """layer""",
"""encoder_hid_proj_type""": None,
"""added_emb_type""": None,
}
__magic_name__ : Optional[Any] =PriorTransformer(**__snake_case )
return model
@property
def A__ ( self :int ):
'''simple docstring'''
torch.manual_seed(0 )
__magic_name__ : Optional[int] ={
"""param_shapes""": (
(self.renderer_dim, 93),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
),
"""d_latent""": self.time_input_dim,
"""d_hidden""": self.renderer_dim,
"""n_output""": 12,
"""background""": (
0.1,
0.1,
0.1,
),
}
__magic_name__ : Any =ShapERenderer(**__snake_case )
return model
def A__ ( self :Dict ):
'''simple docstring'''
__magic_name__ : List[str] =self.dummy_prior
__magic_name__ : str =self.dummy_text_encoder
__magic_name__ : Dict =self.dummy_tokenizer
__magic_name__ : Union[str, Any] =self.dummy_renderer
__magic_name__ : List[str] =HeunDiscreteScheduler(
beta_schedule="""exp""" , num_train_timesteps=10_24 , prediction_type="""sample""" , use_karras_sigmas=__snake_case , clip_sample=__snake_case , clip_sample_range=1.0 , )
__magic_name__ : Union[str, Any] ={
"""prior""": prior,
"""text_encoder""": text_encoder,
"""tokenizer""": tokenizer,
"""renderer""": renderer,
"""scheduler""": scheduler,
}
return components
def A__ ( self :Any , __snake_case :Optional[Any] , __snake_case :Optional[int]=0 ):
'''simple docstring'''
if str(__snake_case ).startswith("""mps""" ):
__magic_name__ : Union[str, Any] =torch.manual_seed(__snake_case )
else:
__magic_name__ : List[Any] =torch.Generator(device=__snake_case ).manual_seed(__snake_case )
__magic_name__ : str ={
"""prompt""": """horse""",
"""generator""": generator,
"""num_inference_steps""": 1,
"""frame_size""": 32,
"""output_type""": """np""",
}
return inputs
def A__ ( self :List[Any] ):
'''simple docstring'''
__magic_name__ : str ="""cpu"""
__magic_name__ : str =self.get_dummy_components()
__magic_name__ : Optional[int] =self.pipeline_class(**__snake_case )
__magic_name__ : Dict =pipe.to(__snake_case )
pipe.set_progress_bar_config(disable=__snake_case )
__magic_name__ : str =pipe(**self.get_dummy_inputs(__snake_case ) )
__magic_name__ : Dict =output.images[0]
__magic_name__ : str =image[0, -3:, -3:, -1]
assert image.shape == (20, 32, 32, 3)
__magic_name__ : Union[str, Any] =np.array(
[
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def A__ ( self :Optional[int] ):
'''simple docstring'''
self._test_inference_batch_consistent(batch_sizes=[1, 2] )
def A__ ( self :List[str] ):
'''simple docstring'''
__magic_name__ : Optional[int] =torch_device == """cpu"""
__magic_name__ : Optional[int] =True
self._test_inference_batch_single_identical(
batch_size=2 , test_max_difference=__snake_case , relax_max_difference=__snake_case , )
def A__ ( self :List[str] ):
'''simple docstring'''
__magic_name__ : int =self.get_dummy_components()
__magic_name__ : List[Any] =self.pipeline_class(**__snake_case )
__magic_name__ : int =pipe.to(__snake_case )
pipe.set_progress_bar_config(disable=__snake_case )
__magic_name__ : List[Any] =1
__magic_name__ : Optional[int] =2
__magic_name__ : Any =self.get_dummy_inputs(__snake_case )
for key in inputs.keys():
if key in self.batch_params:
__magic_name__ : List[str] =batch_size * [inputs[key]]
__magic_name__ : List[str] =pipe(**__snake_case , num_images_per_prompt=__snake_case )[0]
assert images.shape[0] == batch_size * num_images_per_prompt
@slow
@require_torch_gpu
class __A ( unittest.TestCase ):
def A__ ( self :str ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def A__ ( self :Optional[Any] ):
'''simple docstring'''
__magic_name__ : Any =load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/shap_e/test_shap_e_np_out.npy""" )
__magic_name__ : List[Any] =ShapEPipeline.from_pretrained("""openai/shap-e""" )
__magic_name__ : str =pipe.to(__snake_case )
pipe.set_progress_bar_config(disable=__snake_case )
__magic_name__ : int =torch.Generator(device=__snake_case ).manual_seed(0 )
__magic_name__ : List[Any] =pipe(
"""a shark""" , generator=__snake_case , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type="""np""" , ).images[0]
assert images.shape == (20, 64, 64, 3)
assert_mean_pixel_difference(__snake_case , __snake_case )
| 21
|
import math
import tensorflow as tf
from packaging import version
def lowerCAmelCase_ ( lowerCamelCase ):
__magic_name__ : str =tf.convert_to_tensor(lowerCamelCase )
__magic_name__ : List[str] =0.5 * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0 ) , x.dtype ) ))
return x * cdf
def lowerCAmelCase_ ( lowerCamelCase ):
__magic_name__ : str =tf.convert_to_tensor(lowerCamelCase )
__magic_name__ : Optional[Any] =tf.cast(math.pi , x.dtype )
__magic_name__ : int =tf.cast(0.0_4_4_7_1_5 , x.dtype )
__magic_name__ : Tuple =0.5 * (1.0 + tf.tanh(tf.sqrt(2.0 / pi ) * (x + coeff * tf.pow(lowerCamelCase , 3 )) ))
return x * cdf
def lowerCAmelCase_ ( lowerCamelCase ):
__magic_name__ : Any =tf.convert_to_tensor(lowerCamelCase )
return x * tf.tanh(tf.math.softplus(lowerCamelCase ) )
def lowerCAmelCase_ ( lowerCamelCase ):
__magic_name__ : Optional[Any] =tf.convert_to_tensor(lowerCamelCase )
__magic_name__ : Union[str, Any] =tf.cast(0.0_4_4_7_1_5 , x.dtype )
__magic_name__ : Tuple =tf.cast(0.7_9_7_8_8_4_5_6_0_8 , x.dtype )
return 0.5 * x * (1.0 + tf.tanh(x * coeffa * (1.0 + coeffa * x * x) ))
def lowerCAmelCase_ ( lowerCamelCase ):
__magic_name__ : List[str] =tf.convert_to_tensor(lowerCamelCase )
__magic_name__ : Dict =tf.cast(1.7_0_2 , x.dtype )
return x * tf.math.sigmoid(coeff * x )
def lowerCAmelCase_ ( lowerCamelCase ):
return tf.clip_by_value(_gelu(lowerCamelCase ) , -10 , 10 )
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase=-1 ):
__magic_name__ , __magic_name__ : List[Any] =tf.split(lowerCamelCase , 2 , axis=lowerCamelCase )
return a * tf.math.sigmoid(lowerCamelCase )
if version.parse(tf.version.VERSION) >= version.parse("2.4"):
def lowerCAmelCase_ ( lowerCamelCase ):
return tf.keras.activations.gelu(lowerCamelCase , approximate=lowerCamelCase )
UpperCAmelCase_ : List[str] = tf.keras.activations.gelu
UpperCAmelCase_ : Dict = approximate_gelu_wrap
else:
UpperCAmelCase_ : Dict = _gelu
UpperCAmelCase_ : str = _gelu_new
UpperCAmelCase_ : Any = {
"gelu": gelu,
"gelu_10": gelu_aa,
"gelu_fast": gelu_fast,
"gelu_new": gelu_new,
"glu": glu,
"mish": mish,
"quick_gelu": quick_gelu,
"relu": tf.keras.activations.relu,
"sigmoid": tf.keras.activations.sigmoid,
"silu": tf.keras.activations.swish,
"swish": tf.keras.activations.swish,
"tanh": tf.keras.activations.tanh,
}
def lowerCAmelCase_ ( lowerCamelCase ):
if activation_string in ACTaFN:
return ACTaFN[activation_string]
else:
raise KeyError(F"function {activation_string} not found in ACT2FN mapping {list(ACTaFN.keys() )}" )
| 21
| 1
|
import gc
import random
import unittest
import numpy as np
import torch
from transformers import XLMRobertaTokenizer
from diffusers import (
AltDiffusionImgaImgPipeline,
AutoencoderKL,
PNDMScheduler,
UNetaDConditionModel,
)
from diffusers.image_processor import VaeImageProcessor
from diffusers.pipelines.alt_diffusion.modeling_roberta_series import (
RobertaSeriesConfig,
RobertaSeriesModelWithTransformation,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
enable_full_determinism()
class __A (unittest.TestCase):
'''simple docstring'''
def lowerCAmelCase ( self : Dict ) ->Optional[int]:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def lowerCAmelCase ( self : int ) ->Dict:
"""simple docstring"""
snake_case_ = 1
snake_case_ = 3
snake_case_ = (32, 32)
snake_case_ = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(_UpperCAmelCase )
return image
@property
def lowerCAmelCase ( self : Dict ) ->Dict:
"""simple docstring"""
torch.manual_seed(0 )
snake_case_ = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , )
return model
@property
def lowerCAmelCase ( self : Any ) ->str:
"""simple docstring"""
torch.manual_seed(0 )
snake_case_ = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , )
return model
@property
def lowerCAmelCase ( self : Optional[int] ) ->Tuple:
"""simple docstring"""
torch.manual_seed(0 )
snake_case_ = RobertaSeriesConfig(
hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_006 , )
return RobertaSeriesModelWithTransformation(_UpperCAmelCase )
@property
def lowerCAmelCase ( self : str ) ->str:
"""simple docstring"""
def extract(*UpperCAmelCase_ : str , **UpperCAmelCase_ : Optional[Any] ):
class __A :
'''simple docstring'''
def __init__( self : Optional[Any] ) ->str:
"""simple docstring"""
snake_case_ = torch.ones([0] )
def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : Optional[int] ) ->List[Any]:
"""simple docstring"""
self.pixel_values.to(_UpperCAmelCase )
return self
return Out()
return extract
def lowerCAmelCase ( self : Optional[Any] ) ->List[Any]:
"""simple docstring"""
snake_case_ = """cpu""" # ensure determinism for the device-dependent torch.Generator
snake_case_ = self.dummy_cond_unet
snake_case_ = PNDMScheduler(skip_prk_steps=_UpperCAmelCase )
snake_case_ = self.dummy_vae
snake_case_ = self.dummy_text_encoder
snake_case_ = XLMRobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-xlm-roberta""" )
snake_case_ = 77
snake_case_ = self.dummy_image.to(_UpperCAmelCase )
snake_case_ = init_image / 2 + 0.5
# make sure here that pndm scheduler skips prk
snake_case_ = AltDiffusionImgaImgPipeline(
unet=_UpperCAmelCase , scheduler=_UpperCAmelCase , vae=_UpperCAmelCase , text_encoder=_UpperCAmelCase , tokenizer=_UpperCAmelCase , safety_checker=_UpperCAmelCase , feature_extractor=self.dummy_extractor , )
snake_case_ = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=_UpperCAmelCase )
snake_case_ = alt_pipe.to(_UpperCAmelCase )
alt_pipe.set_progress_bar_config(disable=_UpperCAmelCase )
snake_case_ = """A painting of a squirrel eating a burger"""
snake_case_ = torch.Generator(device=_UpperCAmelCase ).manual_seed(0 )
snake_case_ = alt_pipe(
[prompt] , generator=_UpperCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , image=_UpperCAmelCase , )
snake_case_ = output.images
snake_case_ = torch.Generator(device=_UpperCAmelCase ).manual_seed(0 )
snake_case_ = alt_pipe(
[prompt] , generator=_UpperCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , image=_UpperCAmelCase , return_dict=_UpperCAmelCase , )[0]
snake_case_ = image[0, -3:, -3:, -1]
snake_case_ = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
snake_case_ = np.array([0.4_427, 0.3_731, 0.4_249, 0.4_941, 0.4_546, 0.4_148, 0.4_193, 0.4_666, 0.4_499] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5E-3
@unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" )
def lowerCAmelCase ( self : List[str] ) ->str:
"""simple docstring"""
snake_case_ = self.dummy_cond_unet
snake_case_ = PNDMScheduler(skip_prk_steps=_UpperCAmelCase )
snake_case_ = self.dummy_vae
snake_case_ = self.dummy_text_encoder
snake_case_ = XLMRobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-xlm-roberta""" )
snake_case_ = 77
snake_case_ = self.dummy_image.to(_UpperCAmelCase )
# put models in fp16
snake_case_ = unet.half()
snake_case_ = vae.half()
snake_case_ = bert.half()
# make sure here that pndm scheduler skips prk
snake_case_ = AltDiffusionImgaImgPipeline(
unet=_UpperCAmelCase , scheduler=_UpperCAmelCase , vae=_UpperCAmelCase , text_encoder=_UpperCAmelCase , tokenizer=_UpperCAmelCase , safety_checker=_UpperCAmelCase , feature_extractor=self.dummy_extractor , )
snake_case_ = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=_UpperCAmelCase )
snake_case_ = alt_pipe.to(_UpperCAmelCase )
alt_pipe.set_progress_bar_config(disable=_UpperCAmelCase )
snake_case_ = """A painting of a squirrel eating a burger"""
snake_case_ = torch.manual_seed(0 )
snake_case_ = alt_pipe(
[prompt] , generator=_UpperCAmelCase , num_inference_steps=2 , output_type="""np""" , image=_UpperCAmelCase , ).images
assert image.shape == (1, 32, 32, 3)
@unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" )
def lowerCAmelCase ( self : Union[str, Any] ) ->List[str]:
"""simple docstring"""
snake_case_ = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/img2img/sketch-mountains-input.jpg""" )
# resize to resolution that is divisible by 8 but not 16 or 32
snake_case_ = init_image.resize((760, 504) )
snake_case_ = """BAAI/AltDiffusion"""
snake_case_ = AltDiffusionImgaImgPipeline.from_pretrained(
_UpperCAmelCase , safety_checker=_UpperCAmelCase , )
pipe.to(_UpperCAmelCase )
pipe.set_progress_bar_config(disable=_UpperCAmelCase )
pipe.enable_attention_slicing()
snake_case_ = """A fantasy landscape, trending on artstation"""
snake_case_ = torch.manual_seed(0 )
snake_case_ = pipe(
prompt=_UpperCAmelCase , image=_UpperCAmelCase , strength=0.75 , guidance_scale=7.5 , generator=_UpperCAmelCase , output_type="""np""" , )
snake_case_ = output.images[0]
snake_case_ = image[255:258, 383:386, -1]
assert image.shape == (504, 760, 3)
snake_case_ = np.array([0.9_358, 0.9_397, 0.9_599, 0.9_901, 1.0_000, 1.0_000, 0.9_882, 1.0_000, 1.0_000] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
@slow
@require_torch_gpu
class __A (unittest.TestCase):
'''simple docstring'''
def lowerCAmelCase ( self : Tuple ) ->List[str]:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowerCAmelCase ( self : Optional[int] ) ->Optional[int]:
"""simple docstring"""
snake_case_ = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/img2img/sketch-mountains-input.jpg""" )
snake_case_ = init_image.resize((768, 512) )
snake_case_ = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy""" )
snake_case_ = """BAAI/AltDiffusion"""
snake_case_ = AltDiffusionImgaImgPipeline.from_pretrained(
_UpperCAmelCase , safety_checker=_UpperCAmelCase , )
pipe.to(_UpperCAmelCase )
pipe.set_progress_bar_config(disable=_UpperCAmelCase )
pipe.enable_attention_slicing()
snake_case_ = """A fantasy landscape, trending on artstation"""
snake_case_ = torch.manual_seed(0 )
snake_case_ = pipe(
prompt=_UpperCAmelCase , image=_UpperCAmelCase , strength=0.75 , guidance_scale=7.5 , generator=_UpperCAmelCase , output_type="""np""" , )
snake_case_ = output.images[0]
assert image.shape == (512, 768, 3)
# img2img is flaky across GPUs even in fp32, so using MAE here
assert np.abs(expected_image - image ).max() < 1E-2
| 713
|
"""simple docstring"""
import unittest
from transformers import LiltConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
LiltForQuestionAnswering,
LiltForSequenceClassification,
LiltForTokenClassification,
LiltModel,
)
from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST
class __A :
'''simple docstring'''
def __init__( self : Optional[int] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[Any]=13 , UpperCAmelCase_ : Optional[int]=7 , UpperCAmelCase_ : List[str]=True , UpperCAmelCase_ : int=True , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : List[str]=99 , UpperCAmelCase_ : Dict=24 , UpperCAmelCase_ : List[str]=2 , UpperCAmelCase_ : Optional[Any]=6 , UpperCAmelCase_ : int=37 , UpperCAmelCase_ : Optional[Any]="gelu" , UpperCAmelCase_ : Optional[Any]=0.1 , UpperCAmelCase_ : List[Any]=0.1 , UpperCAmelCase_ : Any=512 , UpperCAmelCase_ : str=16 , UpperCAmelCase_ : List[str]=2 , UpperCAmelCase_ : Optional[int]=0.02 , UpperCAmelCase_ : Tuple=3 , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : Any=1_000 , ) ->Tuple:
"""simple docstring"""
snake_case_ = parent
snake_case_ = batch_size
snake_case_ = seq_length
snake_case_ = is_training
snake_case_ = use_input_mask
snake_case_ = use_token_type_ids
snake_case_ = use_labels
snake_case_ = vocab_size
snake_case_ = hidden_size
snake_case_ = num_hidden_layers
snake_case_ = num_attention_heads
snake_case_ = intermediate_size
snake_case_ = hidden_act
snake_case_ = hidden_dropout_prob
snake_case_ = attention_probs_dropout_prob
snake_case_ = max_position_embeddings
snake_case_ = type_vocab_size
snake_case_ = type_sequence_label_size
snake_case_ = initializer_range
snake_case_ = num_labels
snake_case_ = scope
snake_case_ = range_bbox
def lowerCAmelCase ( self : Tuple ) ->int:
"""simple docstring"""
snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
snake_case_ = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox )
# Ensure that bbox is legal
for i in range(bbox.shape[0] ):
for j in range(bbox.shape[1] ):
if bbox[i, j, 3] < bbox[i, j, 1]:
snake_case_ = bbox[i, j, 3]
snake_case_ = bbox[i, j, 1]
snake_case_ = t
if bbox[i, j, 2] < bbox[i, j, 0]:
snake_case_ = bbox[i, j, 2]
snake_case_ = bbox[i, j, 0]
snake_case_ = t
snake_case_ = None
if self.use_input_mask:
snake_case_ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
snake_case_ = None
if self.use_token_type_ids:
snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
snake_case_ = None
snake_case_ = None
if self.use_labels:
snake_case_ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
snake_case_ = self.get_config()
return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels
def lowerCAmelCase ( self : int ) ->Optional[int]:
"""simple docstring"""
return LiltConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , )
def lowerCAmelCase ( self : Any , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[int] , ) ->str:
"""simple docstring"""
snake_case_ = LiltModel(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(UpperCAmelCase_ , bbox=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ )
snake_case_ = model(UpperCAmelCase_ , bbox=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ )
snake_case_ = model(UpperCAmelCase_ , bbox=UpperCAmelCase_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def lowerCAmelCase ( self : int , UpperCAmelCase_ : str , UpperCAmelCase_ : Any , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : str , UpperCAmelCase_ : List[Any] , ) ->Dict:
"""simple docstring"""
snake_case_ = self.num_labels
snake_case_ = LiltForTokenClassification(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(
UpperCAmelCase_ , bbox=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def lowerCAmelCase ( self : Any , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str] , ) ->Dict:
"""simple docstring"""
snake_case_ = LiltForQuestionAnswering(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(
UpperCAmelCase_ , bbox=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , start_positions=UpperCAmelCase_ , end_positions=UpperCAmelCase_ , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def lowerCAmelCase ( self : int ) ->Optional[int]:
"""simple docstring"""
snake_case_ = self.prepare_config_and_inputs()
(
(
snake_case_
) , (
snake_case_
) , (
snake_case_
) , (
snake_case_
) , (
snake_case_
) , (
snake_case_
) , (
snake_case_
) ,
) = config_and_inputs
snake_case_ = {
"""input_ids""": input_ids,
"""bbox""": bbox,
"""token_type_ids""": token_type_ids,
"""attention_mask""": input_mask,
}
return config, inputs_dict
@require_torch
class __A (snake_case__ , snake_case__ , snake_case__ , unittest.TestCase):
'''simple docstring'''
__lowercase: Optional[int] = (
(
LiltModel,
LiltForSequenceClassification,
LiltForTokenClassification,
LiltForQuestionAnswering,
)
if is_torch_available()
else ()
)
__lowercase: Optional[Any] = (
{
"""feature-extraction""": LiltModel,
"""question-answering""": LiltForQuestionAnswering,
"""text-classification""": LiltForSequenceClassification,
"""token-classification""": LiltForTokenClassification,
"""zero-shot""": LiltForSequenceClassification,
}
if is_torch_available()
else {}
)
__lowercase: Union[str, Any] = False
__lowercase: List[str] = False
def lowerCAmelCase ( self : str , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int] ) ->Optional[int]:
"""simple docstring"""
return True
def lowerCAmelCase ( self : Dict ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ = LiltModelTester(self )
snake_case_ = ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=37 )
def lowerCAmelCase ( self : str ) ->List[Any]:
"""simple docstring"""
self.config_tester.run_common_tests()
def lowerCAmelCase ( self : List[str] ) ->int:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase_ )
def lowerCAmelCase ( self : Union[str, Any] ) ->List[str]:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
snake_case_ = type
self.model_tester.create_and_check_model(*UpperCAmelCase_ )
def lowerCAmelCase ( self : List[Any] ) ->Dict:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[Any] ) ->Dict:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase_ )
@slow
def lowerCAmelCase ( self : Union[str, Any] ) ->Optional[int]:
"""simple docstring"""
for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
snake_case_ = LiltModel.from_pretrained(UpperCAmelCase_ )
self.assertIsNotNone(UpperCAmelCase_ )
@require_torch
@slow
class __A (unittest.TestCase):
'''simple docstring'''
def lowerCAmelCase ( self : Optional[int] ) ->Dict:
"""simple docstring"""
snake_case_ = LiltModel.from_pretrained("""SCUT-DLVCLab/lilt-roberta-en-base""" ).to(UpperCAmelCase_ )
snake_case_ = torch.tensor([[1, 2]] , device=UpperCAmelCase_ )
snake_case_ = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=UpperCAmelCase_ )
# forward pass
with torch.no_grad():
snake_case_ = model(input_ids=UpperCAmelCase_ , bbox=UpperCAmelCase_ )
snake_case_ = torch.Size([1, 2, 768] )
snake_case_ = torch.tensor(
[[-0.0_653, 0.0_950, -0.0_061], [-0.0_545, 0.0_926, -0.0_324]] , device=UpperCAmelCase_ , )
self.assertTrue(outputs.last_hidden_state.shape , UpperCAmelCase_ )
self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , UpperCAmelCase_ , atol=1E-3 ) )
| 2
| 0
|
import inspect
import unittest
from transformers import MobileNetVaConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MobileNetVaForImageClassification, MobileNetVaModel
from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import MobileNetVaImageProcessor
class lowerCAmelCase_ ( _a ):
def snake_case_ ( self ) -> Dict:
UpperCamelCase : Optional[Any] = self.config_class(**self.inputs_dict )
self.parent.assertTrue(hasattr(SCREAMING_SNAKE_CASE_, 'tf_padding' ) )
self.parent.assertTrue(hasattr(SCREAMING_SNAKE_CASE_, 'depth_multiplier' ) )
class lowerCAmelCase_ :
def __init__( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=13, SCREAMING_SNAKE_CASE_=3, SCREAMING_SNAKE_CASE_=32, SCREAMING_SNAKE_CASE_=0.25, SCREAMING_SNAKE_CASE_=8, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=1024, SCREAMING_SNAKE_CASE_=32, SCREAMING_SNAKE_CASE_="relu6", SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=0.02, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=10, SCREAMING_SNAKE_CASE_=None, ) -> Union[str, Any]:
UpperCamelCase : List[Any] = parent
UpperCamelCase : int = batch_size
UpperCamelCase : Tuple = num_channels
UpperCamelCase : Dict = image_size
UpperCamelCase : Tuple = depth_multiplier
UpperCamelCase : str = min_depth
UpperCamelCase : Tuple = tf_padding
UpperCamelCase : Optional[int] = int(last_hidden_size * depth_multiplier )
UpperCamelCase : str = output_stride
UpperCamelCase : str = hidden_act
UpperCamelCase : str = classifier_dropout_prob
UpperCamelCase : Dict = use_labels
UpperCamelCase : int = is_training
UpperCamelCase : Tuple = num_labels
UpperCamelCase : Dict = initializer_range
UpperCamelCase : Tuple = scope
def snake_case_ ( self ) -> Optional[int]:
UpperCamelCase : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCamelCase : Dict = None
UpperCamelCase : List[str] = None
if self.use_labels:
UpperCamelCase : Any = ids_tensor([self.batch_size], self.num_labels )
UpperCamelCase : Tuple = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels )
UpperCamelCase : Optional[Any] = self.get_config()
return config, pixel_values, labels, pixel_labels
def snake_case_ ( self ) -> List[str]:
return MobileNetVaConfig(
num_channels=self.num_channels, image_size=self.image_size, depth_multiplier=self.depth_multiplier, min_depth=self.min_depth, tf_padding=self.tf_padding, hidden_act=self.hidden_act, classifier_dropout_prob=self.classifier_dropout_prob, initializer_range=self.initializer_range, )
def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> List[Any]:
UpperCamelCase : int = MobileNetVaModel(config=SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
UpperCamelCase : Union[str, Any] = model(SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(
result.last_hidden_state.shape, (
self.batch_size,
self.last_hidden_size,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
), )
def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Optional[int]:
UpperCamelCase : Optional[int] = self.num_labels
UpperCamelCase : Union[str, Any] = MobileNetVaForImageClassification(SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
UpperCamelCase : Optional[int] = model(SCREAMING_SNAKE_CASE_, labels=SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) )
def snake_case_ ( self ) -> Optional[int]:
UpperCamelCase : List[Any] = self.prepare_config_and_inputs()
UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase : Dict = config_and_inputs
UpperCamelCase : List[Any] = {'pixel_values': pixel_values}
return config, inputs_dict
@require_torch
class lowerCAmelCase_ ( _a , _a , unittest.TestCase ):
UpperCAmelCase__ : int = (MobileNetVaModel, MobileNetVaForImageClassification) if is_torch_available() else ()
UpperCAmelCase__ : Dict = (
{"feature-extraction": MobileNetVaModel, "image-classification": MobileNetVaForImageClassification}
if is_torch_available()
else {}
)
UpperCAmelCase__ : Optional[Any] = False
UpperCAmelCase__ : Optional[int] = False
UpperCAmelCase__ : Union[str, Any] = False
UpperCAmelCase__ : Union[str, Any] = False
def snake_case_ ( self ) -> str:
UpperCamelCase : Optional[Any] = MobileNetVaModelTester(self )
UpperCamelCase : List[Any] = MobileNetVaConfigTester(self, config_class=SCREAMING_SNAKE_CASE_, has_text_modality=SCREAMING_SNAKE_CASE_ )
def snake_case_ ( self ) -> List[Any]:
self.config_tester.run_common_tests()
@unittest.skip(reason='MobileNetV1 does not use inputs_embeds' )
def snake_case_ ( self ) -> Dict:
pass
@unittest.skip(reason='MobileNetV1 does not support input and output embeddings' )
def snake_case_ ( self ) -> Optional[Any]:
pass
@unittest.skip(reason='MobileNetV1 does not output attentions' )
def snake_case_ ( self ) -> str:
pass
def snake_case_ ( self ) -> Any:
UpperCamelCase , UpperCamelCase : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCamelCase : Dict = model_class(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[int] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCamelCase : Optional[Any] = [*signature.parameters.keys()]
UpperCamelCase : Dict = ['pixel_values']
self.assertListEqual(arg_names[:1], SCREAMING_SNAKE_CASE_ )
def snake_case_ ( self ) -> List[Any]:
UpperCamelCase : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ )
def snake_case_ ( self ) -> int:
def check_hidden_states_output(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : Optional[Any] = model_class(SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
with torch.no_grad():
UpperCamelCase : int = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) )
UpperCamelCase : List[Any] = outputs.hidden_states
UpperCamelCase : int = 26
self.assertEqual(len(SCREAMING_SNAKE_CASE_ ), SCREAMING_SNAKE_CASE_ )
UpperCamelCase , UpperCamelCase : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCamelCase : Dict = True
check_hidden_states_output(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
UpperCamelCase : List[str] = True
check_hidden_states_output(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ )
def snake_case_ ( self ) -> Dict:
UpperCamelCase : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE_ )
@slow
def snake_case_ ( self ) -> Union[str, Any]:
for model_name in MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCamelCase : Optional[Any] = MobileNetVaModel.from_pretrained(SCREAMING_SNAKE_CASE_ )
self.assertIsNotNone(SCREAMING_SNAKE_CASE_ )
def UpperCamelCase ( ) -> Union[str, Any]:
UpperCamelCase : Dict = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
return image
@require_torch
@require_vision
class lowerCAmelCase_ ( unittest.TestCase ):
@cached_property
def snake_case_ ( self ) -> Optional[int]:
return (
MobileNetVaImageProcessor.from_pretrained('google/mobilenet_v1_1.0_224' ) if is_vision_available() else None
)
@slow
def snake_case_ ( self ) -> int:
UpperCamelCase : Optional[Any] = MobileNetVaForImageClassification.from_pretrained('google/mobilenet_v1_1.0_224' ).to(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Tuple = self.default_image_processor
UpperCamelCase : int = prepare_img()
UpperCamelCase : Optional[int] = image_processor(images=SCREAMING_SNAKE_CASE_, return_tensors='pt' ).to(SCREAMING_SNAKE_CASE_ )
# forward pass
with torch.no_grad():
UpperCamelCase : List[str] = model(**SCREAMING_SNAKE_CASE_ )
# verify the logits
UpperCamelCase : Optional[int] = torch.Size((1, 1001) )
self.assertEqual(outputs.logits.shape, SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[str] = torch.tensor([-4.17_39, -1.12_33, 3.12_05] ).to(SCREAMING_SNAKE_CASE_ )
self.assertTrue(torch.allclose(outputs.logits[0, :3], SCREAMING_SNAKE_CASE_, atol=1e-4 ) )
| 40
|
"""simple docstring"""
import os
import pickle
import unittest
from transformers import AutoTokenizer
from transformers.models.bert.tokenization_bert import BertTokenizer
from transformers.models.bert_japanese.tokenization_bert_japanese import (
VOCAB_FILES_NAMES,
BertJapaneseTokenizer,
CharacterTokenizer,
JumanppTokenizer,
MecabTokenizer,
SudachiTokenizer,
WordpieceTokenizer,
)
from transformers.testing_utils import custom_tokenizers, require_jumanpp, require_sudachi
from ...test_tokenization_common import TokenizerTesterMixin
@custom_tokenizers
class SCREAMING_SNAKE_CASE__ ( _a , unittest.TestCase ):
_a = BertJapaneseTokenizer
_a = False
_a = True
def __lowercase ( self : Any ):
super().setUp()
lowerCAmelCase = [
"""[UNK]""",
"""[CLS]""",
"""[SEP]""",
"""こんにちは""",
"""こん""",
"""にちは""",
"""ばんは""",
"""##こん""",
"""##にちは""",
"""##ばんは""",
"""世界""",
"""##世界""",
"""、""",
"""##、""",
"""。""",
"""##。""",
]
lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer:
vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) )
def __lowercase ( self : int , lowerCAmelCase : List[Any] ):
lowerCAmelCase = """こんにちは、世界。 \nこんばんは、世界。"""
lowerCAmelCase = """こんにちは 、 世界 。 こんばんは 、 世界 。"""
return input_text, output_text
def __lowercase ( self : Optional[Any] , lowerCAmelCase : List[Any] ):
lowerCAmelCase , lowerCAmelCase = self.get_input_output_texts(lowerCAmelCase )
lowerCAmelCase = tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase )
lowerCAmelCase = tokenizer.decode(lowerCAmelCase , clean_up_tokenization_spaces=lowerCAmelCase )
return text, ids
def __lowercase ( self : List[str] ):
pass # TODO add if relevant
def __lowercase ( self : Optional[Any] ):
pass # TODO add if relevant
def __lowercase ( self : Any ):
pass # TODO add if relevant
def __lowercase ( self : List[Any] ):
lowerCAmelCase = self.tokenizer_class(self.vocab_file )
lowerCAmelCase = tokenizer.tokenize("""こんにちは、世界。\nこんばんは、世界。""" )
self.assertListEqual(lowerCAmelCase , ["""こんにちは""", """、""", """世界""", """。""", """こん""", """##ばんは""", """、""", """世界""", """。"""] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] )
def __lowercase ( self : int ):
lowerCAmelCase = self.tokenizer_class(self.vocab_file , word_tokenizer_type="""mecab""" )
self.assertIsNotNone(lowerCAmelCase )
lowerCAmelCase = """こんにちは、世界。\nこんばんは、世界。"""
lowerCAmelCase = tokenizer.tokenize(lowerCAmelCase )
self.assertListEqual(lowerCAmelCase , ["""こんにちは""", """、""", """世界""", """。""", """こん""", """##ばんは""", """、""", """世界""", """。"""] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] )
lowerCAmelCase = os.path.join(self.tmpdirname , """tokenizer.bin""" )
with open(lowerCAmelCase , """wb""" ) as handle:
pickle.dump(lowerCAmelCase , lowerCAmelCase )
with open(lowerCAmelCase , """rb""" ) as handle:
lowerCAmelCase = pickle.load(lowerCAmelCase )
lowerCAmelCase = tokenizer_new.tokenize(lowerCAmelCase )
self.assertListEqual(lowerCAmelCase , lowerCAmelCase )
def __lowercase ( self : str ):
lowerCAmelCase = MecabTokenizer(mecab_dic="""ipadic""" )
self.assertListEqual(
tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップルストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] , )
def __lowercase ( self : int ):
try:
lowerCAmelCase = MecabTokenizer(mecab_dic="""unidic_lite""" )
except ModuleNotFoundError:
return
self.assertListEqual(
tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップル""", """ストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] , )
def __lowercase ( self : Optional[int] ):
try:
lowerCAmelCase = MecabTokenizer(mecab_dic="""unidic""" )
except ModuleNotFoundError:
return
self.assertListEqual(
tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップル""", """ストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] , )
def __lowercase ( self : Any ):
lowerCAmelCase = MecabTokenizer(do_lower_case=lowerCAmelCase , mecab_dic="""ipadic""" )
self.assertListEqual(
tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップルストア""", """で""", """iphone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] , )
def __lowercase ( self : Optional[int] ):
try:
lowerCAmelCase = MecabTokenizer(
do_lower_case=lowerCAmelCase , normalize_text=lowerCAmelCase , mecab_option="""-d /usr/local/lib/mecab/dic/jumandic""" )
except RuntimeError:
# if dict doesn't exist in the system, previous code raises this error.
return
self.assertListEqual(
tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップルストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れた""", """\u3000""", """。"""] , )
def __lowercase ( self : int ):
lowerCAmelCase = MecabTokenizer(normalize_text=lowerCAmelCase , mecab_dic="""ipadic""" )
self.assertListEqual(
tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップルストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """ """, """。"""] , )
@require_sudachi
def __lowercase ( self : List[Any] ):
lowerCAmelCase = self.tokenizer_class(self.vocab_file , word_tokenizer_type="""sudachi""" )
self.assertIsNotNone(lowerCAmelCase )
lowerCAmelCase = """こんにちは、世界。\nこんばんは、世界。"""
lowerCAmelCase = tokenizer.tokenize(lowerCAmelCase )
self.assertListEqual(lowerCAmelCase , ["""こんにちは""", """、""", """世界""", """。""", """こん""", """##ばんは""", """、""", """世界""", """。"""] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] )
lowerCAmelCase = os.path.join(self.tmpdirname , """tokenizer.bin""" )
with open(lowerCAmelCase , """wb""" ) as handle:
pickle.dump(lowerCAmelCase , lowerCAmelCase )
with open(lowerCAmelCase , """rb""" ) as handle:
lowerCAmelCase = pickle.load(lowerCAmelCase )
lowerCAmelCase = tokenizer_new.tokenize(lowerCAmelCase )
self.assertListEqual(lowerCAmelCase , lowerCAmelCase )
@require_sudachi
def __lowercase ( self : str ):
lowerCAmelCase = SudachiTokenizer(sudachi_dict_type="""core""" )
self.assertListEqual(
tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , [""" """, """\t""", """アップル""", """ストア""", """で""", """iPhone""", """8""", """ """, """が""", """ """, """ """, """\n """, """発売""", """さ""", """れ""", """た""", """ """, """。""", """ """, """ """] , )
@require_sudachi
def __lowercase ( self : str ):
lowerCAmelCase = SudachiTokenizer(sudachi_dict_type="""core""" , sudachi_split_mode="""A""" )
self.assertListEqual(tokenizer.tokenize("""外国人参政権""" ) , ["""外国""", """人""", """参政""", """権"""] )
@require_sudachi
def __lowercase ( self : Dict ):
lowerCAmelCase = SudachiTokenizer(sudachi_dict_type="""core""" , sudachi_split_mode="""B""" )
self.assertListEqual(tokenizer.tokenize("""外国人参政権""" ) , ["""外国人""", """参政権"""] )
@require_sudachi
def __lowercase ( self : int ):
lowerCAmelCase = SudachiTokenizer(sudachi_dict_type="""core""" , sudachi_split_mode="""C""" )
self.assertListEqual(tokenizer.tokenize("""外国人参政権""" ) , ["""外国人参政権"""] )
@require_sudachi
def __lowercase ( self : str ):
lowerCAmelCase = SudachiTokenizer(do_lower_case=lowerCAmelCase , sudachi_dict_type="""core""" )
self.assertListEqual(
tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , [""" """, """\t""", """アップル""", """ストア""", """で""", """iphone""", """8""", """ """, """が""", """ """, """ """, """\n """, """発売""", """さ""", """れ""", """た""", """ """, """。""", """ """, """ """] , )
@require_sudachi
def __lowercase ( self : Tuple ):
lowerCAmelCase = SudachiTokenizer(normalize_text=lowerCAmelCase , sudachi_dict_type="""core""" )
self.assertListEqual(
tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , [""" """, """\t""", """アップル""", """ストア""", """で""", """iPhone""", """8""", """ """, """が""", """ """, """ """, """\n """, """発売""", """さ""", """れ""", """た""", """\u3000""", """。""", """ """, """ """] , )
@require_sudachi
def __lowercase ( self : List[Any] ):
lowerCAmelCase = SudachiTokenizer(trim_whitespace=lowerCAmelCase , sudachi_dict_type="""core""" )
self.assertListEqual(
tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップル""", """ストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] , )
@require_jumanpp
def __lowercase ( self : List[Any] ):
lowerCAmelCase = self.tokenizer_class(self.vocab_file , word_tokenizer_type="""jumanpp""" )
self.assertIsNotNone(lowerCAmelCase )
lowerCAmelCase = """こんにちは、世界。\nこんばんは、世界。"""
lowerCAmelCase = tokenizer.tokenize(lowerCAmelCase )
self.assertListEqual(lowerCAmelCase , ["""こんにちは""", """、""", """世界""", """。""", """こん""", """##ばんは""", """、""", """世界""", """。"""] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] )
lowerCAmelCase = os.path.join(self.tmpdirname , """tokenizer.bin""" )
with open(lowerCAmelCase , """wb""" ) as handle:
pickle.dump(lowerCAmelCase , lowerCAmelCase )
with open(lowerCAmelCase , """rb""" ) as handle:
lowerCAmelCase = pickle.load(lowerCAmelCase )
lowerCAmelCase = tokenizer_new.tokenize(lowerCAmelCase )
self.assertListEqual(lowerCAmelCase , lowerCAmelCase )
@require_jumanpp
def __lowercase ( self : Optional[Any] ):
lowerCAmelCase = JumanppTokenizer()
self.assertListEqual(
tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップル""", """ストア""", """で""", """iPhone""", """8""", """\u3000""", """が""", """\u3000""", """\u3000""", """\u3000""", """発売""", """さ""", """れた""", """\u3000""", """。"""] , )
@require_jumanpp
def __lowercase ( self : Optional[Any] ):
lowerCAmelCase = JumanppTokenizer(do_lower_case=lowerCAmelCase )
self.assertListEqual(
tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップル""", """ストア""", """で""", """iphone""", """8""", """\u3000""", """が""", """\u3000""", """\u3000""", """\u3000""", """発売""", """さ""", """れた""", """\u3000""", """。"""] , )
@require_jumanpp
def __lowercase ( self : int ):
lowerCAmelCase = JumanppTokenizer(normalize_text=lowerCAmelCase )
self.assertListEqual(
tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""ア""", """ッ""", """フ""", """゚""", """ル""", """ストア""", """で""", """iPhone""", """8""", """\u3000""", """が""", """\u3000""", """\u3000""", """\u3000""", """発売""", """さ""", """れた""", """\u3000""", """。"""] , )
@require_jumanpp
def __lowercase ( self : Any ):
lowerCAmelCase = JumanppTokenizer(trim_whitespace=lowerCAmelCase )
self.assertListEqual(
tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップル""", """ストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れた""", """。"""] , )
@require_jumanpp
def __lowercase ( self : Tuple ):
lowerCAmelCase = JumanppTokenizer()
self.assertListEqual(
tokenizer.tokenize("""ありがとうございますm(_ _)m見つけるのが大変です。""" ) , ["""ありがとう""", """ございます""", """m(_ _)m""", """見つける""", """の""", """が""", """大変です""", """。"""] , )
def __lowercase ( self : str ):
lowerCAmelCase = ["""[UNK]""", """[CLS]""", """[SEP]""", """こんにちは""", """こん""", """にちは""", """ばんは""", """##こん""", """##にちは""", """##ばんは"""]
lowerCAmelCase = {}
for i, token in enumerate(lowerCAmelCase ):
lowerCAmelCase = i
lowerCAmelCase = WordpieceTokenizer(vocab=lowerCAmelCase , unk_token="""[UNK]""" )
self.assertListEqual(tokenizer.tokenize("""""" ) , [] )
self.assertListEqual(tokenizer.tokenize("""こんにちは""" ) , ["""こんにちは"""] )
self.assertListEqual(tokenizer.tokenize("""こんばんは""" ) , ["""こん""", """##ばんは"""] )
self.assertListEqual(tokenizer.tokenize("""こんばんは こんばんにちは こんにちは""" ) , ["""こん""", """##ばんは""", """[UNK]""", """こんにちは"""] )
def __lowercase ( self : Dict ):
lowerCAmelCase = BertJapaneseTokenizer.from_pretrained("""nlp-waseda/roberta-base-japanese-with-auto-jumanpp""" )
lowerCAmelCase = tokenizer.subword_tokenizer
lowerCAmelCase = subword_tokenizer.tokenize("""国境 の 長い トンネル を 抜ける と 雪国 であった 。""" )
self.assertListEqual(lowerCAmelCase , ["""▁国境""", """▁の""", """▁長い""", """▁トンネル""", """▁を""", """▁抜ける""", """▁と""", """▁雪""", """国""", """▁であった""", """▁。"""] )
lowerCAmelCase = subword_tokenizer.tokenize("""こんばんは こんばん にち は こんにちは""" )
self.assertListEqual(lowerCAmelCase , ["""▁こん""", """ばん""", """は""", """▁こん""", """ばん""", """▁に""", """ち""", """▁は""", """▁こんにちは"""] )
def __lowercase ( self : str ):
lowerCAmelCase = self.tokenizer_class.from_pretrained("""cl-tohoku/bert-base-japanese""" )
lowerCAmelCase = tokenizer.encode("""ありがとう。""" , add_special_tokens=lowerCAmelCase )
lowerCAmelCase = tokenizer.encode("""どういたしまして。""" , add_special_tokens=lowerCAmelCase )
lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase )
lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase , lowerCAmelCase )
# 2 is for "[CLS]", 3 is for "[SEP]"
assert encoded_sentence == [2] + text + [3]
assert encoded_pair == [2] + text + [3] + text_a + [3]
@custom_tokenizers
class SCREAMING_SNAKE_CASE__ ( _a , unittest.TestCase ):
_a = BertJapaneseTokenizer
_a = False
def __lowercase ( self : Union[str, Any] ):
super().setUp()
lowerCAmelCase = ["""[UNK]""", """[CLS]""", """[SEP]""", """こ""", """ん""", """に""", """ち""", """は""", """ば""", """世""", """界""", """、""", """。"""]
lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer:
vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) )
def __lowercase ( self : Optional[int] , **lowerCAmelCase : Optional[Any] ):
return BertJapaneseTokenizer.from_pretrained(self.tmpdirname , subword_tokenizer_type="""character""" , **lowerCAmelCase )
def __lowercase ( self : List[str] , lowerCAmelCase : Union[str, Any] ):
lowerCAmelCase = """こんにちは、世界。 \nこんばんは、世界。"""
lowerCAmelCase = """こ ん に ち は 、 世 界 。 こ ん ば ん は 、 世 界 。"""
return input_text, output_text
def __lowercase ( self : List[Any] ):
pass # TODO add if relevant
def __lowercase ( self : Optional[Any] ):
pass # TODO add if relevant
def __lowercase ( self : int ):
pass # TODO add if relevant
def __lowercase ( self : Union[str, Any] ):
lowerCAmelCase = self.tokenizer_class(self.vocab_file , subword_tokenizer_type="""character""" )
lowerCAmelCase = tokenizer.tokenize("""こんにちは、世界。 \nこんばんは、世界。""" )
self.assertListEqual(
lowerCAmelCase , ["""こ""", """ん""", """に""", """ち""", """は""", """、""", """世""", """界""", """。""", """こ""", """ん""", """ば""", """ん""", """は""", """、""", """世""", """界""", """。"""] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(lowerCAmelCase ) , [3, 4, 5, 6, 7, 11, 9, 10, 12, 3, 4, 8, 4, 7, 11, 9, 10, 12] )
def __lowercase ( self : Any ):
lowerCAmelCase = ["""[UNK]""", """[CLS]""", """[SEP]""", """こ""", """ん""", """に""", """ち""", """は""", """ば""", """世""", """界""", """、""", """。"""]
lowerCAmelCase = {}
for i, token in enumerate(lowerCAmelCase ):
lowerCAmelCase = i
lowerCAmelCase = CharacterTokenizer(vocab=lowerCAmelCase , unk_token="""[UNK]""" )
self.assertListEqual(tokenizer.tokenize("""""" ) , [] )
self.assertListEqual(tokenizer.tokenize("""こんにちは""" ) , ["""こ""", """ん""", """に""", """ち""", """は"""] )
self.assertListEqual(tokenizer.tokenize("""こんにちほ""" ) , ["""こ""", """ん""", """に""", """ち""", """[UNK]"""] )
def __lowercase ( self : Tuple ):
lowerCAmelCase = self.tokenizer_class.from_pretrained("""cl-tohoku/bert-base-japanese-char""" )
lowerCAmelCase = tokenizer.encode("""ありがとう。""" , add_special_tokens=lowerCAmelCase )
lowerCAmelCase = tokenizer.encode("""どういたしまして。""" , add_special_tokens=lowerCAmelCase )
lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase )
lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase , lowerCAmelCase )
# 2 is for "[CLS]", 3 is for "[SEP]"
assert encoded_sentence == [2] + text + [3]
assert encoded_pair == [2] + text + [3] + text_a + [3]
@custom_tokenizers
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
def __lowercase ( self : Optional[int] ):
lowerCAmelCase = """cl-tohoku/bert-base-japanese"""
lowerCAmelCase = AutoTokenizer.from_pretrained(lowerCAmelCase )
self.assertIsInstance(lowerCAmelCase , lowerCAmelCase )
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
def __lowercase ( self : List[str] ):
lowerCAmelCase = """cl-tohoku/bert-base-japanese"""
with self.assertLogs("""transformers""" , level="""WARNING""" ) as cm:
BertTokenizer.from_pretrained(lowerCAmelCase )
self.assertTrue(
cm.records[0].message.startswith(
"""The tokenizer class you load from this checkpoint is not the same type as the class this function"""
""" is called from.""" ) )
lowerCAmelCase = """bert-base-cased"""
with self.assertLogs("""transformers""" , level="""WARNING""" ) as cm:
BertJapaneseTokenizer.from_pretrained(lowerCAmelCase )
self.assertTrue(
cm.records[0].message.startswith(
"""The tokenizer class you load from this checkpoint is not the same type as the class this function"""
""" is called from.""" ) )
| 169
| 0
|
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
A_ = {"configuration_xglm": ["XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "XGLMConfig"]}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ = ["XGLMTokenizer"]
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ = ["XGLMTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ = [
"XGLM_PRETRAINED_MODEL_ARCHIVE_LIST",
"XGLMForCausalLM",
"XGLMModel",
"XGLMPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ = [
"FlaxXGLMForCausalLM",
"FlaxXGLMModel",
"FlaxXGLMPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ = [
"TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFXGLMForCausalLM",
"TFXGLMModel",
"TFXGLMPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xglm import XGLMTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xglm_fast import XGLMTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_xglm import (
TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXGLMForCausalLM,
TFXGLMModel,
TFXGLMPreTrainedModel,
)
else:
import sys
A_ = _LazyModule(__name__, globals()["__file__"], _import_structure)
| 703
|
from __future__ import annotations
import unittest
from transformers import LEDConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFLEDForConditionalGeneration, TFLEDModel
@require_tf
class __lowercase :
lowercase = LEDConfig
lowercase = {}
lowercase = 'gelu'
def __init__( self : List[str] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Dict=13 , __lowerCamelCase : Optional[Any]=7 , __lowerCamelCase : Any=True , __lowerCamelCase : List[str]=False , __lowerCamelCase : Any=99 , __lowerCamelCase : Any=32 , __lowerCamelCase : str=2 , __lowerCamelCase : Optional[Any]=4 , __lowerCamelCase : Union[str, Any]=37 , __lowerCamelCase : str=0.1 , __lowerCamelCase : Any=0.1 , __lowerCamelCase : Optional[int]=20 , __lowerCamelCase : Optional[Any]=2 , __lowerCamelCase : Any=1 , __lowerCamelCase : Optional[int]=0 , __lowerCamelCase : Any=4 , ) -> str:
'''simple docstring'''
lowercase = parent
lowercase = batch_size
lowercase = seq_length
lowercase = is_training
lowercase = use_labels
lowercase = vocab_size
lowercase = hidden_size
lowercase = num_hidden_layers
lowercase = num_attention_heads
lowercase = intermediate_size
lowercase = hidden_dropout_prob
lowercase = attention_probs_dropout_prob
lowercase = max_position_embeddings
lowercase = eos_token_id
lowercase = pad_token_id
lowercase = bos_token_id
lowercase = attention_window
# `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size
# [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention
# returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1]
# because its local attention only attends to `self.attention_window` and one before and one after
lowercase = self.attention_window + 2
# because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for
# the `test_attention_outputs` and `test_hidden_states_output` tests
lowercase = (
self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window
)
def __a ( self : Optional[int] ) -> Tuple:
'''simple docstring'''
lowercase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size )
lowercase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 )
lowercase = tf.concat([input_ids, eos_tensor] , axis=1 )
lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowercase = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , )
lowercase = prepare_led_inputs_dict(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
lowercase = tf.concat(
[tf.zeros_like(__lowerCamelCase )[:, :-1], tf.ones_like(__lowerCamelCase )[:, -1:]] , axis=-1 , )
lowercase = global_attention_mask
return config, inputs_dict
def __a ( self : Optional[int] , __lowerCamelCase : Dict , __lowerCamelCase : Dict ) -> Optional[Any]:
'''simple docstring'''
lowercase = TFLEDModel(config=__lowerCamelCase ).get_decoder()
lowercase = inputs_dict['''input_ids''']
lowercase = input_ids[:1, :]
lowercase = inputs_dict['''attention_mask'''][:1, :]
lowercase = 1
# first forward pass
lowercase = model(__lowerCamelCase , attention_mask=__lowerCamelCase , use_cache=__lowerCamelCase )
lowercase ,lowercase = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
lowercase = ids_tensor((self.batch_size, 3) , config.vocab_size )
lowercase = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta )
# append to next input_ids and
lowercase = tf.concat([input_ids, next_tokens] , axis=-1 )
lowercase = tf.concat([attention_mask, next_attn_mask] , axis=-1 )
lowercase = model(__lowerCamelCase , attention_mask=__lowerCamelCase )[0]
lowercase = model(__lowerCamelCase , attention_mask=__lowerCamelCase , past_key_values=__lowerCamelCase )[0]
self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] )
# select random slice
lowercase = int(ids_tensor((1,) , output_from_past.shape[-1] ) )
lowercase = output_from_no_past[:, -3:, random_slice_idx]
lowercase = output_from_past[:, :, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(__lowerCamelCase , __lowerCamelCase , rtol=1E-3 )
def __UpperCAmelCase ( UpperCAmelCase, UpperCAmelCase, UpperCAmelCase, UpperCAmelCase=None, UpperCAmelCase=None, UpperCAmelCase=None, UpperCAmelCase=None, )-> str:
"""simple docstring"""
if attention_mask is None:
lowercase = tf.cast(tf.math.not_equal(UpperCAmelCase, config.pad_token_id ), tf.inta )
if decoder_attention_mask is None:
lowercase = tf.concat(
[
tf.ones(decoder_input_ids[:, :1].shape, dtype=tf.inta ),
tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:], config.pad_token_id ), tf.inta ),
], axis=-1, )
if head_mask is None:
lowercase = tf.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
lowercase = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"attention_mask": attention_mask,
"decoder_input_ids": decoder_input_ids,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
}
@require_tf
class __lowercase ( _A , _A , unittest.TestCase ):
lowercase = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else ()
lowercase = (TFLEDForConditionalGeneration,) if is_tf_available() else ()
lowercase = (
{
'conversational': TFLEDForConditionalGeneration,
'feature-extraction': TFLEDModel,
'summarization': TFLEDForConditionalGeneration,
'text2text-generation': TFLEDForConditionalGeneration,
'translation': TFLEDForConditionalGeneration,
}
if is_tf_available()
else {}
)
lowercase = True
lowercase = False
lowercase = False
lowercase = False
def __a ( self : Dict ) -> int:
'''simple docstring'''
lowercase = TFLEDModelTester(self )
lowercase = ConfigTester(self , config_class=__lowerCamelCase )
def __a ( self : Optional[Any] ) -> int:
'''simple docstring'''
self.config_tester.run_common_tests()
def __a ( self : List[str] ) -> Any:
'''simple docstring'''
lowercase = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*__lowerCamelCase )
def __a ( self : List[Any] ) -> Tuple:
'''simple docstring'''
lowercase ,lowercase = self.model_tester.prepare_config_and_inputs_for_common()
lowercase = tf.zeros_like(inputs_dict['''attention_mask'''] )
lowercase = 2
lowercase = tf.where(
tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict['''global_attention_mask'''] , )
lowercase = True
lowercase = self.model_tester.seq_length
lowercase = self.model_tester.encoder_seq_length
def check_decoder_attentions_output(__lowerCamelCase : int ):
lowercase = outputs.decoder_attentions
self.assertEqual(len(__lowerCamelCase ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , )
def check_encoder_attentions_output(__lowerCamelCase : Optional[Any] ):
lowercase = [t.numpy() for t in outputs.encoder_attentions]
lowercase = [t.numpy() for t in outputs.encoder_global_attentions]
self.assertEqual(len(__lowerCamelCase ) , self.model_tester.num_hidden_layers )
self.assertEqual(len(__lowerCamelCase ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , )
self.assertListEqual(
list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , )
for model_class in self.all_model_classes:
lowercase = True
lowercase = False
lowercase = False
lowercase = model_class(__lowerCamelCase )
lowercase = model(self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) )
lowercase = len(__lowerCamelCase )
self.assertEqual(config.output_hidden_states , __lowerCamelCase )
check_encoder_attentions_output(__lowerCamelCase )
if self.is_encoder_decoder:
lowercase = model_class(__lowerCamelCase )
lowercase = model(self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) )
self.assertEqual(config.output_hidden_states , __lowerCamelCase )
check_decoder_attentions_output(__lowerCamelCase )
# Check that output attentions can also be changed via the config
del inputs_dict["output_attentions"]
lowercase = True
lowercase = model_class(__lowerCamelCase )
lowercase = model(self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) )
self.assertEqual(config.output_hidden_states , __lowerCamelCase )
check_encoder_attentions_output(__lowerCamelCase )
# Check attention is always last and order is fine
lowercase = True
lowercase = True
lowercase = model_class(__lowerCamelCase )
lowercase = model(self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) )
self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(__lowerCamelCase ) )
self.assertEqual(model.config.output_hidden_states , __lowerCamelCase )
check_encoder_attentions_output(__lowerCamelCase )
@unittest.skip('''LED keeps using potentially symbolic tensors in conditionals and breaks tracing.''' )
def __a ( self : Dict ) -> str:
'''simple docstring'''
pass
def __a ( self : List[Any] ) -> Optional[int]:
'''simple docstring'''
pass
def __UpperCAmelCase ( UpperCAmelCase )-> Optional[Any]:
"""simple docstring"""
return tf.constant(UpperCAmelCase, dtype=tf.intaa )
A_ = 1e-4
@slow
@require_tf
class __lowercase ( unittest.TestCase ):
def __a ( self : List[Any] ) -> str:
'''simple docstring'''
lowercase = TFLEDForConditionalGeneration.from_pretrained('''allenai/led-base-16384''' ).led
# change to intended input here
lowercase = _long_tensor([5_12 * [0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69]] )
lowercase = _long_tensor([1_28 * [0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69]] )
lowercase = prepare_led_inputs_dict(model.config , __lowerCamelCase , __lowerCamelCase )
lowercase = model(**__lowerCamelCase )[0]
lowercase = (1, 10_24, 7_68)
self.assertEqual(output.shape , __lowerCamelCase )
# change to expected output here
lowercase = tf.convert_to_tensor(
[[2.3050, 2.8279, 0.6531], [-1.8457, -0.1455, -3.5661], [-1.0186, 0.4586, -2.2043]] , )
tf.debugging.assert_near(output[:, :3, :3] , __lowerCamelCase , atol=1E-3 )
def __a ( self : str ) -> Optional[Any]:
'''simple docstring'''
lowercase = TFLEDForConditionalGeneration.from_pretrained('''allenai/led-base-16384''' )
# change to intended input here
lowercase = _long_tensor([5_12 * [0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69]] )
lowercase = _long_tensor([1_28 * [0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69]] )
lowercase = prepare_led_inputs_dict(model.config , __lowerCamelCase , __lowerCamelCase )
lowercase = model(**__lowerCamelCase )[0]
lowercase = (1, 10_24, model.config.vocab_size)
self.assertEqual(output.shape , __lowerCamelCase )
# change to expected output here
lowercase = tf.convert_to_tensor(
[[33.6507, 6.4572, 16.8089], [5.8739, -2.4238, 11.2902], [-3.2139, -4.3149, 4.2783]] , )
tf.debugging.assert_near(output[:, :3, :3] , __lowerCamelCase , atol=1E-3 , rtol=1E-3 )
| 479
| 0
|
'''simple docstring'''
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import Features, Sequence, Value
from .base import TaskTemplate
@dataclass(frozen=__UpperCamelCase )
class _A ( __UpperCamelCase ):
lowercase__: int = field(default='''question-answering-extractive''' , metadata={'''include_in_asdict_even_if_is_default''': True} )
lowercase__: Dict = Features({'''question''': Value('''string''' ), '''context''': Value('''string''' )} )
lowercase__: List[str] = Features(
{
'''answers''': Sequence(
{
'''text''': Value('''string''' ),
'''answer_start''': Value('''int32''' ),
} )
} )
lowercase__: Optional[int] = '''question'''
lowercase__: List[str] = '''context'''
lowercase__: List[str] = '''answers'''
@property
def lowercase__ ( self : int ) -> Dict[str, str]:
"""simple docstring"""
return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
| 26
|
import json
import os
import unittest
from transformers import BatchEncoding, MvpTokenizer, MvpTokenizerFast
from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers, require_torch
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin, filter_roberta_detectors
@require_tokenizers
class UpperCamelCase_ ( __UpperCamelCase , unittest.TestCase ):
'''simple docstring'''
UpperCamelCase_ = MvpTokenizer
UpperCamelCase_ = MvpTokenizerFast
UpperCamelCase_ = True
UpperCamelCase_ = filter_roberta_detectors
def lowerCAmelCase__ ( self) -> Optional[int]:
super().setUp()
UpperCamelCase__ : Dict = [
'l',
'o',
'w',
'e',
'r',
's',
't',
'i',
'd',
'n',
'\u0120',
'\u0120l',
'\u0120n',
'\u0120lo',
'\u0120low',
'er',
'\u0120lowest',
'\u0120newer',
'\u0120wider',
'<unk>',
]
UpperCamelCase__ : int = dict(zip(UpperCamelCase , range(len(UpperCamelCase))))
UpperCamelCase__ : List[str] = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', '']
UpperCamelCase__ : Union[str, Any] = {'unk_token': '<unk>'}
UpperCamelCase__ : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'])
UpperCamelCase__ : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'])
with open(self.vocab_file , 'w' , encoding='utf-8') as fp:
fp.write(json.dumps(UpperCamelCase) + '\n')
with open(self.merges_file , 'w' , encoding='utf-8') as fp:
fp.write('\n'.join(UpperCamelCase))
def lowerCAmelCase__ ( self , **UpperCamelCase) -> int:
kwargs.update(self.special_tokens_map)
return self.tokenizer_class.from_pretrained(self.tmpdirname , **UpperCamelCase)
def lowerCAmelCase__ ( self , **UpperCamelCase) -> Optional[Any]:
kwargs.update(self.special_tokens_map)
return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **UpperCamelCase)
def lowerCAmelCase__ ( self , UpperCamelCase) -> str:
return "lower newer", "lower newer"
@cached_property
def lowerCAmelCase__ ( self) -> Dict:
return MvpTokenizer.from_pretrained('RUCAIBox/mvp')
@cached_property
def lowerCAmelCase__ ( self) -> Union[str, Any]:
return MvpTokenizerFast.from_pretrained('RUCAIBox/mvp')
@require_torch
def lowerCAmelCase__ ( self) -> Optional[Any]:
UpperCamelCase__ : Union[str, Any] = ['A long paragraph for summarization.', 'Another paragraph for summarization.']
UpperCamelCase__ : List[str] = [0, 2_50, 2_51, 1_78_18, 13, 3_91_86, 19_38, 4, 2]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
UpperCamelCase__ : Dict = tokenizer(UpperCamelCase , max_length=len(UpperCamelCase) , padding=UpperCamelCase , return_tensors='pt')
self.assertIsInstance(UpperCamelCase , UpperCamelCase)
self.assertEqual((2, 9) , batch.input_ids.shape)
self.assertEqual((2, 9) , batch.attention_mask.shape)
UpperCamelCase__ : Tuple = batch.input_ids.tolist()[0]
self.assertListEqual(UpperCamelCase , UpperCamelCase)
# Test that special tokens are reset
@require_torch
def lowerCAmelCase__ ( self) -> Any:
UpperCamelCase__ : List[Any] = ['A long paragraph for summarization.', 'Another paragraph for summarization.']
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
UpperCamelCase__ : int = tokenizer(UpperCamelCase , padding=UpperCamelCase , return_tensors='pt')
# check if input_ids are returned and no labels
self.assertIn('input_ids' , UpperCamelCase)
self.assertIn('attention_mask' , UpperCamelCase)
self.assertNotIn('labels' , UpperCamelCase)
self.assertNotIn('decoder_attention_mask' , UpperCamelCase)
@require_torch
def lowerCAmelCase__ ( self) -> List[str]:
UpperCamelCase__ : List[Any] = [
'Summary of the text.',
'Another summary.',
]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
UpperCamelCase__ : Any = tokenizer(text_target=UpperCamelCase , max_length=32 , padding='max_length' , return_tensors='pt')
self.assertEqual(32 , targets['input_ids'].shape[1])
@require_torch
def lowerCAmelCase__ ( self) -> int:
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
UpperCamelCase__ : Optional[Any] = tokenizer(
['I am a small frog' * 10_24, 'I am a small frog'] , padding=UpperCamelCase , truncation=UpperCamelCase , return_tensors='pt')
self.assertIsInstance(UpperCamelCase , UpperCamelCase)
self.assertEqual(batch.input_ids.shape , (2, 10_24))
@require_torch
def lowerCAmelCase__ ( self) -> Union[str, Any]:
UpperCamelCase__ : Dict = ['A long paragraph for summarization.']
UpperCamelCase__ : Union[str, Any] = [
'Summary of the text.',
]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
UpperCamelCase__ : List[Any] = tokenizer(UpperCamelCase , text_target=UpperCamelCase , return_tensors='pt')
UpperCamelCase__ : List[str] = inputs['input_ids']
UpperCamelCase__ : int = inputs['labels']
self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item())
self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item())
self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item())
self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item())
def lowerCAmelCase__ ( self) -> List[Any]:
pass
def lowerCAmelCase__ ( self) -> List[str]:
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})"""):
UpperCamelCase__ : List[str] = self.rust_tokenizer_class.from_pretrained(UpperCamelCase , **UpperCamelCase)
UpperCamelCase__ : Tuple = self.tokenizer_class.from_pretrained(UpperCamelCase , **UpperCamelCase)
UpperCamelCase__ : Tuple = 'A, <mask> AllenNLP sentence.'
UpperCamelCase__ : Optional[Any] = tokenizer_r.encode_plus(UpperCamelCase , add_special_tokens=UpperCamelCase , return_token_type_ids=UpperCamelCase)
UpperCamelCase__ : Union[str, Any] = tokenizer_p.encode_plus(UpperCamelCase , add_special_tokens=UpperCamelCase , return_token_type_ids=UpperCamelCase)
# token_type_ids should put 0 everywhere
self.assertEqual(sum(tokens_r['token_type_ids']) , sum(tokens_p['token_type_ids']))
# attention_mask should put 1 everywhere, so sum over length should be 1
self.assertEqual(
sum(tokens_r['attention_mask']) / len(tokens_r['attention_mask']) , sum(tokens_p['attention_mask']) / len(tokens_p['attention_mask']) , )
UpperCamelCase__ : Any = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'])
UpperCamelCase__ : Dict = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'])
# Rust correctly handles the space before the mask while python doesnt
self.assertSequenceEqual(tokens_p['input_ids'] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2])
self.assertSequenceEqual(tokens_r['input_ids'] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2])
self.assertSequenceEqual(
UpperCamelCase , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'])
self.assertSequenceEqual(
UpperCamelCase , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'])
| 410
| 0
|
from random import randint
from tempfile import TemporaryFile
import numpy as np
def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
lowercase = 0
if start < end:
lowercase = randint(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
lowercase = a[end]
lowercase = a[pivot]
lowercase = temp
lowercase , lowercase = _in_place_partition(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
count += _in_place_quick_sort(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , p - 1 )
count += _in_place_quick_sort(__SCREAMING_SNAKE_CASE , p + 1 , __SCREAMING_SNAKE_CASE )
return count
def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
lowercase = 0
lowercase = randint(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
lowercase = a[end]
lowercase = a[pivot]
lowercase = temp
lowercase = start - 1
for index in range(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
count += 1
if a[index] < a[end]: # check if current val is less than pivot value
lowercase = new_pivot_index + 1
lowercase = a[new_pivot_index]
lowercase = a[index]
lowercase = temp
lowercase = a[new_pivot_index + 1]
lowercase = a[end]
lowercase = temp
return new_pivot_index + 1, count
UpperCAmelCase = TemporaryFile()
UpperCAmelCase = 100 # 1000 elements are to be sorted
UpperCAmelCase , UpperCAmelCase = 0, 1 # mean and standard deviation
UpperCAmelCase = np.random.normal(mu, sigma, p)
np.save(outfile, X)
print('''The array is''')
print(X)
outfile.seek(0) # using the same array
UpperCAmelCase = np.load(outfile)
UpperCAmelCase = len(M) - 1
UpperCAmelCase = _in_place_quick_sort(M, 0, r)
print(
'''No of Comparisons for 100 elements selected from a standard normal distribution'''
'''is :'''
)
print(z)
| 565
|
import os
import re
import shutil
from argparse import ArgumentParser, Namespace
from datasets.commands import BaseDatasetsCLICommand
from datasets.utils.logging import get_logger
UpperCAmelCase = '''<<<<<<< This should probably be modified because it mentions: '''
UpperCAmelCase = '''=======
>>>>>>>
'''
UpperCAmelCase = [
'''TextEncoderConfig''',
'''ByteTextEncoder''',
'''SubwordTextEncoder''',
'''encoder_config''',
'''maybe_build_from_corpus''',
'''manual_dir''',
]
UpperCAmelCase = [
# (pattern, replacement)
# Order is important here for some replacements
(R'''tfds\.core''', R'''datasets'''),
(R'''tf\.io\.gfile\.GFile''', R'''open'''),
(R'''tf\.([\w\d]+)''', R'''datasets.Value(\'\1\')'''),
(R'''tfds\.features\.Text\(\)''', R'''datasets.Value(\'string\')'''),
(R'''tfds\.features\.Text\(''', R'''datasets.Value(\'string\'),'''),
(R'''features\s*=\s*tfds.features.FeaturesDict\(''', R'''features=datasets.Features('''),
(R'''tfds\.features\.FeaturesDict\(''', R'''dict('''),
(R'''The TensorFlow Datasets Authors''', R'''The TensorFlow Datasets Authors and the HuggingFace Datasets Authors'''),
(R'''tfds\.''', R'''datasets.'''),
(R'''dl_manager\.manual_dir''', R'''self.config.data_dir'''),
(R'''self\.builder_config''', R'''self.config'''),
]
def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE ):
return ConvertCommand(args.tfds_path , args.datasets_directory )
class A_ ( __lowerCamelCase ):
'''simple docstring'''
@staticmethod
def SCREAMING_SNAKE_CASE__ ( snake_case ):
lowercase = parser.add_parser(
'convert' , help='Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset.' , )
train_parser.add_argument(
'--tfds_path' , type=snake_case , required=snake_case , help='Path to a TensorFlow Datasets folder to convert or a single tfds file to convert.' , )
train_parser.add_argument(
'--datasets_directory' , type=snake_case , required=snake_case , help='Path to the HuggingFace Datasets folder.' )
train_parser.set_defaults(func=snake_case )
def __init__( self , snake_case , snake_case , *snake_case ):
lowercase = get_logger('datasets-cli/converting' )
lowercase = tfds_path
lowercase = datasets_directory
def SCREAMING_SNAKE_CASE__ ( self ):
if os.path.isdir(self._tfds_path ):
lowercase = os.path.abspath(self._tfds_path )
elif os.path.isfile(self._tfds_path ):
lowercase = os.path.dirname(self._tfds_path )
else:
raise ValueError('--tfds_path is neither a directory nor a file. Please check path.' )
lowercase = os.path.abspath(self._datasets_directory )
self._logger.info(F'''Converting datasets from {abs_tfds_path} to {abs_datasets_path}''' )
lowercase = []
lowercase = []
lowercase = {}
if os.path.isdir(self._tfds_path ):
lowercase = os.listdir(snake_case )
else:
lowercase = [os.path.basename(self._tfds_path )]
for f_name in file_names:
self._logger.info(F'''Looking at file {f_name}''' )
lowercase = os.path.join(snake_case , snake_case )
lowercase = os.path.join(snake_case , snake_case )
if not os.path.isfile(snake_case ) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name:
self._logger.info('Skipping file' )
continue
with open(snake_case , encoding='utf-8' ) as f:
lowercase = f.readlines()
lowercase = []
lowercase = False
lowercase = False
lowercase = []
for line in lines:
lowercase = line
# Convert imports
if "import tensorflow.compat.v2 as tf" in out_line:
continue
elif "@tfds.core" in out_line:
continue
elif "builder=self" in out_line:
continue
elif "import tensorflow_datasets.public_api as tfds" in out_line:
lowercase = 'import datasets\n'
elif "import tensorflow" in out_line:
# order is important here
lowercase = ''
continue
elif "from absl import logging" in out_line:
lowercase = 'from datasets import logging\n'
elif "getLogger" in out_line:
lowercase = out_line.replace('getLogger' , 'get_logger' )
elif any(expression in out_line for expression in TO_HIGHLIGHT ):
lowercase = True
lowercase = list(filter(lambda snake_case : e in out_line , snake_case ) )
out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(snake_case ) + '\n' )
out_lines.append(snake_case )
out_lines.append(snake_case )
continue
else:
for pattern, replacement in TO_CONVERT:
lowercase = re.sub(snake_case , snake_case , snake_case )
# Take care of saving utilities (to later move them together with main script)
if "tensorflow_datasets" in out_line:
lowercase = re.match(r'from\stensorflow_datasets.*import\s([^\.\r\n]+)' , snake_case )
tfds_imports.extend(imp.strip() for imp in match.group(1 ).split(',' ) )
lowercase = 'from . import ' + match.group(1 )
# Check we have not forget anything
if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line:
raise ValueError(F'''Error converting {out_line.strip()}''' )
if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line:
lowercase = True
out_lines.append(snake_case )
if is_builder or "wmt" in f_name:
# We create a new directory for each dataset
lowercase = f_name.replace('.py' , '' )
lowercase = os.path.join(snake_case , snake_case )
lowercase = os.path.join(snake_case , snake_case )
os.makedirs(snake_case , exist_ok=snake_case )
self._logger.info(F'''Adding directory {output_dir}''' )
imports_to_builder_map.update({imp: output_dir for imp in tfds_imports} )
else:
# Utilities will be moved at the end
utils_files.append(snake_case )
if needs_manual_update:
with_manual_update.append(snake_case )
with open(snake_case , 'w' , encoding='utf-8' ) as f:
f.writelines(snake_case )
self._logger.info(F'''Converted in {output_file}''' )
for utils_file in utils_files:
try:
lowercase = os.path.basename(snake_case )
lowercase = imports_to_builder_map[f_name.replace('.py' , '' )]
self._logger.info(F'''Moving {dest_folder} to {utils_file}''' )
shutil.copy(snake_case , snake_case )
except KeyError:
self._logger.error(F'''Cannot find destination folder for {utils_file}. Please copy manually.''' )
if with_manual_update:
for file_path in with_manual_update:
self._logger.warning(
F'''You need to manually update file {file_path} to remove configurations using \'TextEncoderConfig\'.''' )
| 565
| 1
|
"""simple docstring"""
import os
def lowercase ( ) -> int:
with open(os.path.dirname(SCREAMING_SNAKE_CASE__ ) + '''/p022_names.txt''' ) as file:
__magic_name__ = str(file.readlines()[0] )
__magic_name__ = names.replace('''\"''' , '''''' ).split(''',''' )
names.sort()
__magic_name__ = 0
__magic_name__ = 0
for i, name in enumerate(SCREAMING_SNAKE_CASE__ ):
for letter in name:
name_score += ord(SCREAMING_SNAKE_CASE__ ) - 64
total_score += (i + 1) * name_score
__magic_name__ = 0
return total_score
if __name__ == "__main__":
print(solution())
| 490
|
"""simple docstring"""
import subprocess
import sys
from transformers import BertConfig, BertModel, BertTokenizer, pipeline
from transformers.testing_utils import TestCasePlus, require_torch
class __lowercase ( _UpperCAmelCase):
"""simple docstring"""
@require_torch
def __UpperCamelCase (self ):
# this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before
# `transformers` is loaded, and it's too late for inside pytest - so we are changing it
# while running an external program
# python one-liner segments
# this must be loaded before socket.socket is monkey-patched
snake_case_ : int = """
from transformers import BertConfig, BertModel, BertTokenizer, pipeline
"""
snake_case_ : Any = """
mname = \"hf-internal-testing/tiny-random-bert\"
BertConfig.from_pretrained(mname)
BertModel.from_pretrained(mname)
BertTokenizer.from_pretrained(mname)
pipe = pipeline(task=\"fill-mask\", model=mname)
print(\"success\")
"""
snake_case_ : Dict = """
import socket
def offline_socket(*args, **kwargs): raise RuntimeError(\"Offline mode is enabled, we shouldn't access internet\")
socket.socket = offline_socket
"""
# Force fetching the files so that we can use the cache
snake_case_ : Tuple = """hf-internal-testing/tiny-random-bert"""
BertConfig.from_pretrained(lowercase__ )
BertModel.from_pretrained(lowercase__ )
BertTokenizer.from_pretrained(lowercase__ )
pipeline(task="""fill-mask""" , model=lowercase__ )
# baseline - just load from_pretrained with normal network
snake_case_ : Optional[Any] = [sys.executable, """-c""", """\n""".join([load, run, mock] )]
# should succeed
snake_case_ : Tuple = self.get_env()
# should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files
snake_case_ : str = """1"""
snake_case_ : List[Any] = subprocess.run(lowercase__ , env=lowercase__ , check=lowercase__ , capture_output=lowercase__ )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn("""success""" , result.stdout.decode() )
@require_torch
def __UpperCamelCase (self ):
# python one-liner segments
# this must be loaded before socket.socket is monkey-patched
snake_case_ : List[str] = """
from transformers import BertConfig, BertModel, BertTokenizer, pipeline
"""
snake_case_ : int = """
mname = \"hf-internal-testing/tiny-random-bert\"
BertConfig.from_pretrained(mname)
BertModel.from_pretrained(mname)
BertTokenizer.from_pretrained(mname)
pipe = pipeline(task=\"fill-mask\", model=mname)
print(\"success\")
"""
snake_case_ : Optional[int] = """
import socket
def offline_socket(*args, **kwargs): raise socket.error(\"Faking flaky internet\")
socket.socket = offline_socket
"""
# Force fetching the files so that we can use the cache
snake_case_ : Optional[int] = """hf-internal-testing/tiny-random-bert"""
BertConfig.from_pretrained(lowercase__ )
BertModel.from_pretrained(lowercase__ )
BertTokenizer.from_pretrained(lowercase__ )
pipeline(task="""fill-mask""" , model=lowercase__ )
# baseline - just load from_pretrained with normal network
snake_case_ : int = [sys.executable, """-c""", """\n""".join([load, run, mock] )]
# should succeed
snake_case_ : List[Any] = self.get_env()
snake_case_ : Dict = subprocess.run(lowercase__ , env=lowercase__ , check=lowercase__ , capture_output=lowercase__ )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn("""success""" , result.stdout.decode() )
@require_torch
def __UpperCamelCase (self ):
# this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before
# `transformers` is loaded, and it's too late for inside pytest - so we are changing it
# while running an external program
# python one-liner segments
# this must be loaded before socket.socket is monkey-patched
snake_case_ : Optional[int] = """
from transformers import BertConfig, BertModel, BertTokenizer
"""
snake_case_ : Dict = """
mname = \"hf-internal-testing/tiny-random-bert-sharded\"
BertConfig.from_pretrained(mname)
BertModel.from_pretrained(mname)
print(\"success\")
"""
snake_case_ : int = """
import socket
def offline_socket(*args, **kwargs): raise ValueError(\"Offline mode is enabled\")
socket.socket = offline_socket
"""
# baseline - just load from_pretrained with normal network
snake_case_ : List[Any] = [sys.executable, """-c""", """\n""".join([load, run] )]
# should succeed
snake_case_ : List[str] = self.get_env()
snake_case_ : str = subprocess.run(lowercase__ , env=lowercase__ , check=lowercase__ , capture_output=lowercase__ )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn("""success""" , result.stdout.decode() )
# next emulate no network
snake_case_ : Any = [sys.executable, """-c""", """\n""".join([load, mock, run] )]
# Doesn't fail anymore since the model is in the cache due to other tests, so commenting this.
# env["TRANSFORMERS_OFFLINE"] = "0"
# result = subprocess.run(cmd, env=env, check=False, capture_output=True)
# self.assertEqual(result.returncode, 1, result.stderr)
# should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files
snake_case_ : Optional[Any] = """1"""
snake_case_ : int = subprocess.run(lowercase__ , env=lowercase__ , check=lowercase__ , capture_output=lowercase__ )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn("""success""" , result.stdout.decode() )
@require_torch
def __UpperCamelCase (self ):
snake_case_ : str = """
from transformers import pipeline
"""
snake_case_ : Dict = """
mname = \"hf-internal-testing/tiny-random-bert\"
pipe = pipeline(model=mname)
"""
snake_case_ : Dict = """
import socket
def offline_socket(*args, **kwargs): raise socket.error(\"Offline mode is enabled\")
socket.socket = offline_socket
"""
snake_case_ : List[str] = self.get_env()
snake_case_ : Dict = """1"""
snake_case_ : int = [sys.executable, """-c""", """\n""".join([load, mock, run] )]
snake_case_ : Optional[int] = subprocess.run(lowercase__ , env=lowercase__ , check=lowercase__ , capture_output=lowercase__ )
self.assertEqual(result.returncode , 1 , result.stderr )
self.assertIn(
"""You cannot infer task automatically within `pipeline` when using offline mode""" , result.stderr.decode().replace("""\n""" , """""" ) , )
@require_torch
def __UpperCamelCase (self ):
snake_case_ : int = """
from transformers import AutoModel
"""
snake_case_ : Optional[int] = """
mname = \"hf-internal-testing/test_dynamic_model\"
AutoModel.from_pretrained(mname, trust_remote_code=True)
print(\"success\")
"""
# baseline - just load from_pretrained with normal network
snake_case_ : Dict = [sys.executable, """-c""", """\n""".join([load, run] )]
# should succeed
snake_case_ : Optional[Any] = self.get_env()
snake_case_ : List[str] = subprocess.run(lowercase__ , env=lowercase__ , check=lowercase__ , capture_output=lowercase__ )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn("""success""" , result.stdout.decode() )
# should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files
snake_case_ : Any = """1"""
snake_case_ : Dict = subprocess.run(lowercase__ , env=lowercase__ , check=lowercase__ , capture_output=lowercase__ )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn("""success""" , result.stdout.decode() )
| 480
| 0
|
'''simple docstring'''
def a ( lowerCamelCase__ ):
'''simple docstring'''
if not isinstance(lowerCamelCase__ , lowerCamelCase__ ):
raise TypeError("""Input value must be an 'int' type""" )
A_ : str = 0
while number:
position += 1
number >>= 1
return position
if __name__ == "__main__":
import doctest
doctest.testmod()
| 686
|
'''simple docstring'''
import multiprocessing
import os
from typing import BinaryIO, Optional, Union
import fsspec
from .. import Dataset, Features, NamedSplit, config
from ..formatting import query_table
from ..packaged_modules.json.json import Json
from ..utils import logging
from ..utils.typing import NestedDataStructureLike, PathLike
from .abc import AbstractDatasetReader
class _lowerCAmelCase ( __UpperCAmelCase ):
def __init__(self , lowercase , lowercase = None , lowercase = None , lowercase = None , lowercase = False , lowercase = False , lowercase = None , lowercase = None , **lowercase , ):
super().__init__(
lowercase , split=lowercase , features=lowercase , cache_dir=lowercase , keep_in_memory=lowercase , streaming=lowercase , num_proc=lowercase , **lowercase , )
A_ : Optional[int] = field
A_ : Dict = path_or_paths if isinstance(lowercase , lowercase ) else {self.split: path_or_paths}
A_ : Optional[Any] = Json(
cache_dir=lowercase , data_files=lowercase , features=lowercase , field=lowercase , **lowercase , )
def _a (self ):
# Build iterable dataset
if self.streaming:
A_ : Optional[int] = self.builder.as_streaming_dataset(split=self.split )
# Build regular (map-style) dataset
else:
A_ : int = None
A_ : Union[str, Any] = None
A_ : int = None
A_ : List[str] = None
self.builder.download_and_prepare(
download_config=lowercase , download_mode=lowercase , verification_mode=lowercase , base_path=lowercase , num_proc=self.num_proc , )
A_ : str = self.builder.as_dataset(
split=self.split , verification_mode=lowercase , in_memory=self.keep_in_memory )
return dataset
class _lowerCAmelCase :
def __init__(self , lowercase , lowercase , lowercase = None , lowercase = None , **lowercase , ):
if num_proc is not None and num_proc <= 0:
raise ValueError(F'num_proc {num_proc} must be an integer > 0.' )
A_ : Any = dataset
A_ : List[str] = path_or_buf
A_ : List[str] = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE
A_ : Optional[Any] = num_proc
A_ : List[Any] = """utf-8"""
A_ : int = to_json_kwargs
def _a (self ):
A_ : Tuple = self.to_json_kwargs.pop("""path_or_buf""" , lowercase )
A_ : Tuple = self.to_json_kwargs.pop("""orient""" , """records""" )
A_ : Union[str, Any] = self.to_json_kwargs.pop("""lines""" , True if orient == """records""" else False )
A_ : Union[str, Any] = self.to_json_kwargs.pop("""index""" , False if orient in ["""split""", """table"""] else True )
A_ : Dict = self.to_json_kwargs.pop("""compression""" , lowercase )
if compression not in [None, "infer", "gzip", "bz2", "xz"]:
raise NotImplementedError(F'`datasets` currently does not support {compression} compression' )
if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ):
with fsspec.open(self.path_or_buf , """wb""" , compression=lowercase ) as buffer:
A_ : Tuple = self._write(file_obj=lowercase , orient=lowercase , lines=lowercase , index=lowercase , **self.to_json_kwargs )
else:
if compression:
raise NotImplementedError(
F'The compression parameter is not supported when writing to a buffer, but compression={compression}'
""" was passed. Please provide a local path instead.""" )
A_ : Union[str, Any] = self._write(
file_obj=self.path_or_buf , orient=lowercase , lines=lowercase , index=lowercase , **self.to_json_kwargs )
return written
def _a (self , lowercase ):
A_, A_, A_, A_, A_ : List[str] = args
A_ : List[str] = query_table(
table=self.dataset.data , key=slice(lowercase , offset + self.batch_size ) , indices=self.dataset._indices , )
A_ : Any = batch.to_pandas().to_json(
path_or_buf=lowercase , orient=lowercase , lines=lowercase , index=lowercase , **lowercase )
if not json_str.endswith("""\n""" ):
json_str += "\n"
return json_str.encode(self.encoding )
def _a (self , lowercase , lowercase , lowercase , lowercase , **lowercase , ):
A_ : Dict = 0
if self.num_proc is None or self.num_proc == 1:
for offset in logging.tqdm(
range(0 , len(self.dataset ) , self.batch_size ) , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating json from Arrow format""" , ):
A_ : Optional[int] = self._batch_json((offset, orient, lines, index, to_json_kwargs) )
written += file_obj.write(lowercase )
else:
A_, A_ : Tuple = len(self.dataset ), self.batch_size
with multiprocessing.Pool(self.num_proc ) as pool:
for json_str in logging.tqdm(
pool.imap(
self._batch_json , [(offset, orient, lines, index, to_json_kwargs) for offset in range(0 , lowercase , lowercase )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating json from Arrow format""" , ):
written += file_obj.write(lowercase )
return written
| 686
| 1
|
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
_lowercase = {
"""configuration_electra""": ["""ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ElectraConfig""", """ElectraOnnxConfig"""],
"""tokenization_electra""": ["""ElectraTokenizer"""],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase = ["""ElectraTokenizerFast"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase = [
"""ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""ElectraForCausalLM""",
"""ElectraForMaskedLM""",
"""ElectraForMultipleChoice""",
"""ElectraForPreTraining""",
"""ElectraForQuestionAnswering""",
"""ElectraForSequenceClassification""",
"""ElectraForTokenClassification""",
"""ElectraModel""",
"""ElectraPreTrainedModel""",
"""load_tf_weights_in_electra""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase = [
"""TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFElectraForMaskedLM""",
"""TFElectraForMultipleChoice""",
"""TFElectraForPreTraining""",
"""TFElectraForQuestionAnswering""",
"""TFElectraForSequenceClassification""",
"""TFElectraForTokenClassification""",
"""TFElectraModel""",
"""TFElectraPreTrainedModel""",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase = [
"""FlaxElectraForCausalLM""",
"""FlaxElectraForMaskedLM""",
"""FlaxElectraForMultipleChoice""",
"""FlaxElectraForPreTraining""",
"""FlaxElectraForQuestionAnswering""",
"""FlaxElectraForSequenceClassification""",
"""FlaxElectraForTokenClassification""",
"""FlaxElectraModel""",
"""FlaxElectraPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig
from .tokenization_electra import ElectraTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_electra_fast import ElectraTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_electra import (
ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST,
ElectraForCausalLM,
ElectraForMaskedLM,
ElectraForMultipleChoice,
ElectraForPreTraining,
ElectraForQuestionAnswering,
ElectraForSequenceClassification,
ElectraForTokenClassification,
ElectraModel,
ElectraPreTrainedModel,
load_tf_weights_in_electra,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_electra import (
TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST,
TFElectraForMaskedLM,
TFElectraForMultipleChoice,
TFElectraForPreTraining,
TFElectraForQuestionAnswering,
TFElectraForSequenceClassification,
TFElectraForTokenClassification,
TFElectraModel,
TFElectraPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_electra import (
FlaxElectraForCausalLM,
FlaxElectraForMaskedLM,
FlaxElectraForMultipleChoice,
FlaxElectraForPreTraining,
FlaxElectraForQuestionAnswering,
FlaxElectraForSequenceClassification,
FlaxElectraForTokenClassification,
FlaxElectraModel,
FlaxElectraPreTrainedModel,
)
else:
import sys
_lowercase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 443
|
'''simple docstring'''
from ..utils import DummyObject, requires_backends
class lowerCamelCase_ ( metaclass=__a ):
lowerCAmelCase__ = ['torch', 'torchsde']
def __init__( self : Tuple , *_A : Any , **_A : Optional[Any] ):
'''simple docstring'''
requires_backends(self , ['''torch''', '''torchsde'''] )
@classmethod
def lowercase_ ( cls : List[Any] , *_A : Tuple , **_A : Tuple ):
'''simple docstring'''
requires_backends(cls , ['''torch''', '''torchsde'''] )
@classmethod
def lowercase_ ( cls : List[str] , *_A : Optional[int] , **_A : Any ):
'''simple docstring'''
requires_backends(cls , ['''torch''', '''torchsde'''] )
| 75
| 0
|
import argparse
from pathlib import Path
from typing import Dict, OrderedDict, Tuple
import torch
from audiocraft.models import MusicGen
from transformers import (
AutoFeatureExtractor,
AutoTokenizer,
EncodecModel,
MusicgenDecoderConfig,
MusicgenForConditionalGeneration,
MusicgenProcessor,
TaEncoderModel,
)
from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM
from transformers.utils import logging
logging.set_verbosity_info()
__lowerCamelCase : int = logging.get_logger(__name__)
__lowerCamelCase : Dict = ["""model.decoder.embed_positions.weights"""]
def A_ ( _lowerCAmelCase ) -> int:
if "emb" in name:
UpperCamelCase : Union[str, Any] = name.replace("emb" , "model.decoder.embed_tokens" )
if "transformer" in name:
UpperCamelCase : str = name.replace("transformer" , "model.decoder" )
if "cross_attention" in name:
UpperCamelCase : List[str] = name.replace("cross_attention" , "encoder_attn" )
if "linear1" in name:
UpperCamelCase : Tuple = name.replace("linear1" , "fc1" )
if "linear2" in name:
UpperCamelCase : int = name.replace("linear2" , "fc2" )
if "norm1" in name:
UpperCamelCase : Tuple = name.replace("norm1" , "self_attn_layer_norm" )
if "norm_cross" in name:
UpperCamelCase : List[str] = name.replace("norm_cross" , "encoder_attn_layer_norm" )
if "norm2" in name:
UpperCamelCase : Dict = name.replace("norm2" , "final_layer_norm" )
if "out_norm" in name:
UpperCamelCase : Union[str, Any] = name.replace("out_norm" , "model.decoder.layer_norm" )
if "linears" in name:
UpperCamelCase : int = name.replace("linears" , "lm_heads" )
if "condition_provider.conditioners.description.output_proj" in name:
UpperCamelCase : int = name.replace("condition_provider.conditioners.description.output_proj" , "enc_to_dec_proj" )
return name
def A_ ( _lowerCAmelCase , _lowerCAmelCase ) -> Tuple[Dict, Dict]:
UpperCamelCase : Dict = list(state_dict.keys() )
UpperCamelCase : Dict = {}
for key in keys:
UpperCamelCase : List[str] = state_dict.pop(__UpperCamelCase )
UpperCamelCase : Optional[int] = rename_keys(__UpperCamelCase )
if "in_proj_weight" in key:
# split fused qkv proj
UpperCamelCase : str = val[:hidden_size, :]
UpperCamelCase : List[str] = val[hidden_size : 2 * hidden_size, :]
UpperCamelCase : List[str] = val[-hidden_size:, :]
elif "enc_to_dec_proj" in key:
UpperCamelCase : List[str] = val
else:
UpperCamelCase : Optional[int] = val
return state_dict, enc_dec_proj_state_dict
def A_ ( _lowerCAmelCase ) -> MusicgenDecoderConfig:
if checkpoint == "small":
# default config values
UpperCamelCase : Dict = 1024
UpperCamelCase : str = 24
UpperCamelCase : Optional[int] = 16
elif checkpoint == "medium":
UpperCamelCase : Tuple = 1536
UpperCamelCase : str = 48
UpperCamelCase : List[Any] = 24
elif checkpoint == "large":
UpperCamelCase : List[str] = 2048
UpperCamelCase : Dict = 48
UpperCamelCase : Any = 32
else:
raise ValueError(F"""Checkpoint should be one of `[\'small\', \'medium\', \'large\']`, got {checkpoint}.""" )
UpperCamelCase : int = MusicgenDecoderConfig(
hidden_size=__UpperCamelCase , ffn_dim=hidden_size * 4 , num_hidden_layers=__UpperCamelCase , num_attention_heads=__UpperCamelCase , )
return config
@torch.no_grad()
def A_ ( _lowerCAmelCase , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase="cpu" ) -> Tuple:
UpperCamelCase : Union[str, Any] = MusicGen.get_pretrained(__UpperCamelCase , device=__UpperCamelCase )
UpperCamelCase : int = decoder_config_from_checkpoint(__UpperCamelCase )
UpperCamelCase : Any = fairseq_model.lm.state_dict()
UpperCamelCase , UpperCamelCase : Union[str, Any] = rename_state_dict(
__UpperCamelCase , hidden_size=decoder_config.hidden_size )
UpperCamelCase : List[Any] = TaEncoderModel.from_pretrained("t5-base" )
UpperCamelCase : Optional[int] = EncodecModel.from_pretrained("facebook/encodec_32khz" )
UpperCamelCase : str = MusicgenForCausalLM(__UpperCamelCase ).eval()
# load all decoder weights - expect that we'll be missing embeddings and enc-dec projection
UpperCamelCase , UpperCamelCase : int = decoder.load_state_dict(__UpperCamelCase , strict=__UpperCamelCase )
for key in missing_keys.copy():
if key.startswith(("text_encoder", "audio_encoder") ) or key in EXPECTED_MISSING_KEYS:
missing_keys.remove(__UpperCamelCase )
if len(__UpperCamelCase ) > 0:
raise ValueError(F"""Missing key(s) in state_dict: {missing_keys}""" )
if len(__UpperCamelCase ) > 0:
raise ValueError(F"""Unexpected key(s) in state_dict: {unexpected_keys}""" )
# init the composite model
UpperCamelCase : Union[str, Any] = MusicgenForConditionalGeneration(text_encoder=__UpperCamelCase , audio_encoder=__UpperCamelCase , decoder=__UpperCamelCase )
# load the pre-trained enc-dec projection (from the decoder state dict)
model.enc_to_dec_proj.load_state_dict(__UpperCamelCase )
# check we can do a forward pass
UpperCamelCase : str = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 )
UpperCamelCase : Optional[int] = input_ids.reshape(2 * 4 , -1 )
with torch.no_grad():
UpperCamelCase : str = model(input_ids=__UpperCamelCase , decoder_input_ids=__UpperCamelCase ).logits
if logits.shape != (8, 1, 2048):
raise ValueError("Incorrect shape for logits" )
# now construct the processor
UpperCamelCase : Dict = AutoTokenizer.from_pretrained("t5-base" )
UpperCamelCase : Optional[Any] = AutoFeatureExtractor.from_pretrained("facebook/encodec_32khz" , padding_side="left" )
UpperCamelCase : int = MusicgenProcessor(feature_extractor=__UpperCamelCase , tokenizer=__UpperCamelCase )
# set the appropriate bos/pad token ids
UpperCamelCase : Dict = 2048
UpperCamelCase : int = 2048
# set other default generation config params
UpperCamelCase : Optional[Any] = int(30 * audio_encoder.config.frame_rate )
UpperCamelCase : Optional[int] = True
UpperCamelCase : List[Any] = 3.0
if pytorch_dump_folder is not None:
Path(__UpperCamelCase ).mkdir(exist_ok=__UpperCamelCase )
logger.info(F"""Saving model {checkpoint} to {pytorch_dump_folder}""" )
model.save_pretrained(__UpperCamelCase )
processor.save_pretrained(__UpperCamelCase )
if repo_id:
logger.info(F"""Pushing model {checkpoint} to {repo_id}""" )
model.push_to_hub(__UpperCamelCase )
processor.push_to_hub(__UpperCamelCase )
if __name__ == "__main__":
__lowerCamelCase : Any = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--checkpoint""",
default="""small""",
type=str,
help="""Checkpoint size of the MusicGen model you\'d like to convert. Can be one of: `[\'small\', \'medium\', \'large\']`.""",
)
parser.add_argument(
"""--pytorch_dump_folder""",
required=True,
default=None,
type=str,
help="""Path to the output PyTorch model directory.""",
)
parser.add_argument(
"""--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub."""
)
parser.add_argument(
"""--device""", default="""cpu""", type=str, help="""Torch device to run the conversion, either cpu or cuda."""
)
__lowerCamelCase : Any = parser.parse_args()
convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
| 707
|
from __future__ import annotations
import os
import tempfile
import unittest
from transformers import ConvBertConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFConvBertForMaskedLM,
TFConvBertForMultipleChoice,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertModel,
)
class A__ :
def __init__( self , A_ , A_=13 , A_=7 , A_=True , A_=True , A_=True , A_=True , A_=99 , A_=32 , A_=2 , A_=4 , A_=37 , A_="gelu" , A_=0.1 , A_=0.1 , A_=512 , A_=16 , A_=2 , A_=0.02 , A_=3 , A_=4 , A_=None , ):
'''simple docstring'''
UpperCamelCase : Dict = parent
UpperCamelCase : str = 13
UpperCamelCase : int = 7
UpperCamelCase : str = True
UpperCamelCase : Dict = True
UpperCamelCase : str = True
UpperCamelCase : Tuple = True
UpperCamelCase : List[str] = 99
UpperCamelCase : Optional[Any] = 384
UpperCamelCase : Tuple = 2
UpperCamelCase : Union[str, Any] = 4
UpperCamelCase : Dict = 37
UpperCamelCase : Any = "gelu"
UpperCamelCase : List[Any] = 0.1
UpperCamelCase : int = 0.1
UpperCamelCase : Tuple = 512
UpperCamelCase : List[Any] = 16
UpperCamelCase : int = 2
UpperCamelCase : Dict = 0.02
UpperCamelCase : Optional[Any] = 3
UpperCamelCase : List[Any] = 4
UpperCamelCase : Dict = 128
UpperCamelCase : Optional[Any] = 2
UpperCamelCase : Optional[int] = 9
UpperCamelCase : Optional[int] = 1
UpperCamelCase : Union[str, Any] = None
def __UpperCamelCase( self ):
'''simple docstring'''
UpperCamelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCamelCase : str = None
if self.use_input_mask:
UpperCamelCase : List[Any] = random_attention_mask([self.batch_size, self.seq_length] )
UpperCamelCase : Tuple = None
if self.use_token_type_ids:
UpperCamelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
UpperCamelCase : Optional[int] = None
UpperCamelCase : Optional[int] = None
UpperCamelCase : List[Any] = None
if self.use_labels:
UpperCamelCase : int = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCamelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
UpperCamelCase : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices )
UpperCamelCase : Any = ConvBertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=A_ , )
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def __UpperCamelCase( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ):
'''simple docstring'''
UpperCamelCase : str = TFConvBertModel(config=A_ )
UpperCamelCase : Optional[Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
UpperCamelCase : Optional[int] = [input_ids, input_mask]
UpperCamelCase : Any = model(A_ )
UpperCamelCase : int = model(A_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __UpperCamelCase( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ):
'''simple docstring'''
UpperCamelCase : Tuple = TFConvBertForMaskedLM(config=A_ )
UpperCamelCase : int = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
}
UpperCamelCase : Dict = model(A_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __UpperCamelCase( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ):
'''simple docstring'''
UpperCamelCase : Dict = self.num_labels
UpperCamelCase : int = TFConvBertForSequenceClassification(config=A_ )
UpperCamelCase : List[Any] = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
}
UpperCamelCase : Optional[Any] = model(A_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __UpperCamelCase( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ):
'''simple docstring'''
UpperCamelCase : List[str] = self.num_choices
UpperCamelCase : str = TFConvBertForMultipleChoice(config=A_ )
UpperCamelCase : List[Any] = tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) )
UpperCamelCase : Dict = tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) )
UpperCamelCase : Any = tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) )
UpperCamelCase : List[str] = {
"input_ids": multiple_choice_inputs_ids,
"attention_mask": multiple_choice_input_mask,
"token_type_ids": multiple_choice_token_type_ids,
}
UpperCamelCase : Optional[Any] = model(A_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def __UpperCamelCase( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ):
'''simple docstring'''
UpperCamelCase : Dict = self.num_labels
UpperCamelCase : str = TFConvBertForTokenClassification(config=A_ )
UpperCamelCase : List[Any] = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
}
UpperCamelCase : str = model(A_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def __UpperCamelCase( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ):
'''simple docstring'''
UpperCamelCase : List[str] = TFConvBertForQuestionAnswering(config=A_ )
UpperCamelCase : Union[str, Any] = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
}
UpperCamelCase : Union[str, Any] = model(A_ )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def __UpperCamelCase( self ):
'''simple docstring'''
UpperCamelCase : Optional[int] = self.prepare_config_and_inputs()
(
(
UpperCamelCase
) , (
UpperCamelCase
) , (
UpperCamelCase
) , (
UpperCamelCase
) , (
UpperCamelCase
) , (
UpperCamelCase
) , (
UpperCamelCase
) ,
) : Optional[Any] = config_and_inputs
UpperCamelCase : int = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_tf
class A__ ( __snake_case , __snake_case , unittest.TestCase ):
_UpperCAmelCase :Dict = (
(
TFConvBertModel,
TFConvBertForMaskedLM,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertForMultipleChoice,
)
if is_tf_available()
else ()
)
_UpperCAmelCase :Optional[Any] = (
{
'feature-extraction': TFConvBertModel,
'fill-mask': TFConvBertForMaskedLM,
'question-answering': TFConvBertForQuestionAnswering,
'text-classification': TFConvBertForSequenceClassification,
'token-classification': TFConvBertForTokenClassification,
'zero-shot': TFConvBertForSequenceClassification,
}
if is_tf_available()
else {}
)
_UpperCAmelCase :Any = False
_UpperCAmelCase :int = False
_UpperCAmelCase :str = False
def __UpperCamelCase( self ):
'''simple docstring'''
UpperCamelCase : Dict = TFConvBertModelTester(self )
UpperCamelCase : Dict = ConfigTester(self , config_class=A_ , hidden_size=37 )
def __UpperCamelCase( self ):
'''simple docstring'''
self.config_tester.run_common_tests()
def __UpperCamelCase( self ):
'''simple docstring'''
UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*A_ )
def __UpperCamelCase( self ):
'''simple docstring'''
UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*A_ )
def __UpperCamelCase( self ):
'''simple docstring'''
UpperCamelCase : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*A_ )
def __UpperCamelCase( self ):
'''simple docstring'''
UpperCamelCase : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*A_ )
def __UpperCamelCase( self ):
'''simple docstring'''
UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*A_ )
def __UpperCamelCase( self ):
'''simple docstring'''
UpperCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*A_ )
@slow
def __UpperCamelCase( self ):
'''simple docstring'''
UpperCamelCase , UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common()
UpperCamelCase : Optional[Any] = True
UpperCamelCase : Any = True
if hasattr(A_ , "use_cache" ):
UpperCamelCase : List[str] = True
UpperCamelCase : List[Any] = getattr(self.model_tester , "encoder_seq_length" , self.model_tester.seq_length )
UpperCamelCase : Any = getattr(self.model_tester , "key_length" , A_ )
for model_class in self.all_model_classes:
UpperCamelCase : List[Any] = self._prepare_for_class(A_ , A_ )
UpperCamelCase : Dict = model_class(A_ )
UpperCamelCase : Optional[int] = len(model(A_ ) )
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(A_ , saved_model=A_ )
UpperCamelCase : Union[str, Any] = os.path.join(A_ , "saved_model" , "1" )
UpperCamelCase : Dict = tf.keras.models.load_model(A_ )
UpperCamelCase : str = model(A_ )
if self.is_encoder_decoder:
UpperCamelCase : Union[str, Any] = outputs["encoder_hidden_states"]
UpperCamelCase : Any = outputs["encoder_attentions"]
else:
UpperCamelCase : Any = outputs["hidden_states"]
UpperCamelCase : List[str] = outputs["attentions"]
self.assertEqual(len(A_ ) , A_ )
UpperCamelCase : int = getattr(
self.model_tester , "expected_num_hidden_layers" , self.model_tester.num_hidden_layers + 1 )
self.assertEqual(len(A_ ) , A_ )
self.assertListEqual(
list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , )
self.assertEqual(len(A_ ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , )
@slow
def __UpperCamelCase( self ):
'''simple docstring'''
UpperCamelCase : Union[str, Any] = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" )
self.assertIsNotNone(A_ )
def __UpperCamelCase( self ):
'''simple docstring'''
UpperCamelCase , UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
UpperCamelCase : Dict = True
UpperCamelCase : int = getattr(self.model_tester , "decoder_seq_length" , self.model_tester.seq_length )
UpperCamelCase : Optional[int] = getattr(self.model_tester , "encoder_seq_length" , self.model_tester.seq_length )
UpperCamelCase : Optional[int] = getattr(self.model_tester , "key_length" , A_ )
UpperCamelCase : Optional[Any] = getattr(self.model_tester , "key_length" , A_ )
def check_decoder_attentions_output(A_ ):
UpperCamelCase : Optional[Any] = len(A_ )
self.assertEqual(out_len % 2 , 0 )
UpperCamelCase : Any = outputs.decoder_attentions
self.assertEqual(len(A_ ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , )
def check_encoder_attentions_output(A_ ):
UpperCamelCase : Dict = [
t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions)
]
self.assertEqual(len(A_ ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , )
for model_class in self.all_model_classes:
UpperCamelCase : Union[str, Any] = True
UpperCamelCase : List[Any] = False
UpperCamelCase : Dict = model_class(A_ )
UpperCamelCase : Dict = model(self._prepare_for_class(A_ , A_ ) )
UpperCamelCase : List[str] = len(A_ )
self.assertEqual(config.output_hidden_states , A_ )
check_encoder_attentions_output(A_ )
if self.is_encoder_decoder:
UpperCamelCase : int = model_class(A_ )
UpperCamelCase : Tuple = model(self._prepare_for_class(A_ , A_ ) )
self.assertEqual(config.output_hidden_states , A_ )
check_decoder_attentions_output(A_ )
# Check that output attentions can also be changed via the config
del inputs_dict["output_attentions"]
UpperCamelCase : Tuple = True
UpperCamelCase : int = model_class(A_ )
UpperCamelCase : Dict = model(self._prepare_for_class(A_ , A_ ) )
self.assertEqual(config.output_hidden_states , A_ )
check_encoder_attentions_output(A_ )
# Check attention is always last and order is fine
UpperCamelCase : Optional[int] = True
UpperCamelCase : List[str] = True
UpperCamelCase : Optional[int] = model_class(A_ )
UpperCamelCase : Optional[Any] = model(self._prepare_for_class(A_ , A_ ) )
self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(A_ ) )
self.assertEqual(model.config.output_hidden_states , A_ )
check_encoder_attentions_output(A_ )
@require_tf
class A__ ( unittest.TestCase ):
@slow
def __UpperCamelCase( self ):
'''simple docstring'''
UpperCamelCase : str = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" )
UpperCamelCase : str = tf.constant([[0, 1, 2, 3, 4, 5]] )
UpperCamelCase : List[str] = model(A_ )[0]
UpperCamelCase : int = [1, 6, 768]
self.assertEqual(output.shape , A_ )
UpperCamelCase : List[str] = tf.constant(
[
[
[-0.03_47_54_93, -0.4_68_60_34, -0.30_63_88_32],
[0.22_63_72_48, -0.26_98_86_46, -0.7_42_34_24],
[0.10_32_48_68, -0.45_01_35_08, -0.58_28_07_84],
]
] )
tf.debugging.assert_near(output[:, :3, :3] , A_ , atol=1e-4 )
| 38
| 0
|
from typing import Dict, List
from nltk.translate import gleu_score
import datasets
from datasets import MetricInfo
snake_case = "\\n@misc{wu2016googles,\n title={Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},\n author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey\n and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin\n Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto\n Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and\n Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes\n and Jeffrey Dean},\n year={2016},\n eprint={1609.08144},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n"
snake_case = "\\nThe BLEU score has some undesirable properties when used for single\nsentences, as it was designed to be a corpus measure. We therefore\nuse a slightly different score for our RL experiments which we call\nthe 'GLEU score'. For the GLEU score, we record all sub-sequences of\n1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then\ncompute a recall, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the target (ground truth) sequence,\nand a precision, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the generated output sequence. Then\nGLEU score is simply the minimum of recall and precision. This GLEU\nscore's range is always between 0 (no matches) and 1 (all match) and\nit is symmetrical when switching output and target. According to\nour experiments, GLEU score correlates quite well with the BLEU\nmetric on a corpus level but does not have its drawbacks for our per\nsentence reward objective.\n"
snake_case = "\\nComputes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.\nInstead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching\ntokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.\n\nArgs:\n predictions (list of str): list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references (list of list of str): list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.\n max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.\n\nReturns:\n 'google_bleu': google_bleu score\n\nExamples:\n Example 1:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.44\n\n Example 2:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.61\n\n Example 3:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.53\n\n Example 4:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.4\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION )
class __A ( datasets.Metric ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE__ ( self ):
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"predictions": datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ),
"references": datasets.Sequence(
datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ) , id="references" ),
} ) , )
def SCREAMING_SNAKE_CASE__ ( self , _snake_case , _snake_case , _snake_case = 1 , _snake_case = 4 , ):
return {
"google_bleu": gleu_score.corpus_gleu(
list_of_references=_snake_case , hypotheses=_snake_case , min_len=_snake_case , max_len=_snake_case )
}
| 424
|
class __A :
'''simple docstring'''
def __init__( self ):
_lowerCAmelCase : Dict = ""
_lowerCAmelCase : Optional[Any] = ""
_lowerCAmelCase : List[Any] = []
def SCREAMING_SNAKE_CASE__ ( self , _snake_case , _snake_case ):
if m == -1:
return n + 1
elif n == -1:
return m + 1
elif self.dp[m][n] > -1:
return self.dp[m][n]
else:
if self.worda[m] == self.worda[n]:
_lowerCAmelCase : Optional[Any] = self.__min_dist_top_down_dp(m - 1 , n - 1 )
else:
_lowerCAmelCase : Optional[int] = self.__min_dist_top_down_dp(_snake_case , n - 1 )
_lowerCAmelCase : List[str] = self.__min_dist_top_down_dp(m - 1 , _snake_case )
_lowerCAmelCase : str = self.__min_dist_top_down_dp(m - 1 , n - 1 )
_lowerCAmelCase : Optional[int] = 1 + min(_snake_case , _snake_case , _snake_case )
return self.dp[m][n]
def SCREAMING_SNAKE_CASE__ ( self , _snake_case , _snake_case ):
_lowerCAmelCase : Union[str, Any] = worda
_lowerCAmelCase : int = worda
_lowerCAmelCase : Tuple = [[-1 for _ in range(len(_snake_case ) )] for _ in range(len(_snake_case ) )]
return self.__min_dist_top_down_dp(len(_snake_case ) - 1 , len(_snake_case ) - 1 )
def SCREAMING_SNAKE_CASE__ ( self , _snake_case , _snake_case ):
_lowerCAmelCase : str = worda
_lowerCAmelCase : Union[str, Any] = worda
_lowerCAmelCase : str = len(_snake_case )
_lowerCAmelCase : List[Any] = len(_snake_case )
_lowerCAmelCase : str = [[0 for _ in range(n + 1 )] for _ in range(m + 1 )]
for i in range(m + 1 ):
for j in range(n + 1 ):
if i == 0: # first string is empty
_lowerCAmelCase : int = j
elif j == 0: # second string is empty
_lowerCAmelCase : Optional[Any] = i
elif worda[i - 1] == worda[j - 1]: # last characters are equal
_lowerCAmelCase : Union[str, Any] = self.dp[i - 1][j - 1]
else:
_lowerCAmelCase : Tuple = self.dp[i][j - 1]
_lowerCAmelCase : Dict = self.dp[i - 1][j]
_lowerCAmelCase : List[Any] = self.dp[i - 1][j - 1]
_lowerCAmelCase : Tuple = 1 + min(_snake_case , _snake_case , _snake_case )
return self.dp[m][n]
if __name__ == "__main__":
snake_case = EditDistance()
print("****************** Testing Edit Distance DP Algorithm ******************")
print()
snake_case = input("Enter the first string: ").strip()
snake_case = input("Enter the second string: ").strip()
print()
print(F'''The minimum edit distance is: {solver.min_dist_top_down(Sa, Sa)}''')
print(F'''The minimum edit distance is: {solver.min_dist_bottom_up(Sa, Sa)}''')
print()
print("*************** End of Testing Edit Distance DP Algorithm ***************")
| 424
| 1
|
import argparse
import json
import os
import re
import shutil
import torch
from transformers import BioGptConfig, BioGptForCausalLM
from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES
from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE
from transformers.utils import WEIGHTS_NAME, logging
logging.set_verbosity_warning()
SCREAMING_SNAKE_CASE = 2
class A_ :
'''simple docstring'''
def __init__( self , *, # begin keyword-only arguments
_A="<s>" , _A="<pad>" , _A="</s>" , _A="<unk>" , _A=None , ) -> str:
"""simple docstring"""
_UpperCAmelCase : Optional[Any] = bos, unk, pad, eos
_UpperCAmelCase : Optional[int] = []
_UpperCAmelCase : List[str] = []
_UpperCAmelCase : Dict = {}
_UpperCAmelCase : Optional[Any] = self.add_symbol(_A)
_UpperCAmelCase : Union[str, Any] = self.add_symbol(_A)
_UpperCAmelCase : Optional[int] = self.add_symbol(_A)
_UpperCAmelCase : Tuple = self.add_symbol(_A)
if extra_special_symbols:
for s in extra_special_symbols:
self.add_symbol(_A)
_UpperCAmelCase : Any = len(self.symbols)
def __eq__( self , _A) -> Union[str, Any]:
"""simple docstring"""
return self.indices == other.indices
def __getitem__( self , _A) -> List[Any]:
"""simple docstring"""
if idx < len(self.symbols):
return self.symbols[idx]
return self.unk_word
def __len__( self) -> Optional[int]:
"""simple docstring"""
return len(self.symbols)
def __contains__( self , _A) -> Dict:
"""simple docstring"""
return sym in self.indices
@classmethod
def snake_case__ ( cls , _A) -> str:
"""simple docstring"""
_UpperCAmelCase : Tuple = cls()
d.add_from_file(_A)
return d
def snake_case__ ( self , _A , _A=1 , _A=False) -> Tuple:
"""simple docstring"""
if word in self.indices and not overwrite:
_UpperCAmelCase : Union[str, Any] = self.indices[word]
_UpperCAmelCase : str = self.count[idx] + n
return idx
else:
_UpperCAmelCase : Dict = len(self.symbols)
_UpperCAmelCase : Tuple = idx
self.symbols.append(_A)
self.count.append(_A)
return idx
def snake_case__ ( self , _A) -> Tuple:
"""simple docstring"""
return 0
def snake_case__ ( self , _A) -> Optional[int]:
"""simple docstring"""
if isinstance(_A , _A):
try:
with open(_A , '''r''' , encoding='''utf-8''') as fd:
self.add_from_file(_A)
except FileNotFoundError as fnfe:
raise fnfe
except UnicodeError:
raise Exception('''Incorrect encoding detected in {}, please rebuild the dataset'''.format(_A))
return
_UpperCAmelCase : List[str] = f.readlines()
_UpperCAmelCase : Tuple = self._load_meta(_A)
for line in lines[indices_start_line:]:
try:
_UpperCAmelCase : Union[str, Any] = line.rstrip().rsplit(''' ''' , 1)
if field == "#fairseq:overwrite":
_UpperCAmelCase : Optional[int] = True
_UpperCAmelCase : Tuple = line.rsplit(''' ''' , 1)
else:
_UpperCAmelCase : Union[str, Any] = False
_UpperCAmelCase : Dict = int(_A)
_UpperCAmelCase : int = line
if word in self and not overwrite:
raise RuntimeError(
'''Duplicate word found when loading Dictionary: \'{}\'. '''
'''Duplicate words can overwrite earlier ones by adding the '''
'''#fairseq:overwrite flag at the end of the corresponding row '''
'''in the dictionary file. If using the Camembert model, please '''
'''download an updated copy of the model file.'''.format(_A))
self.add_symbol(_A , n=_A , overwrite=_A)
except ValueError:
raise ValueError('''Incorrect dictionary format, expected \'<token> <cnt> [flags]\'''')
def _lowerCamelCase ( __A : Union[str, Any] ) -> Dict:
# (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up,
# e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7}
_UpperCAmelCase : List[Any] = dict((re.sub(r'''@@$''' , '''''' , __A ), v) if k.endswith('''@@''' ) else (re.sub(r'''$''' , '''</w>''' , __A ), v) for k, v in d.items() )
_UpperCAmelCase : Tuple = '''<s> <pad> </s> <unk>'''.split()
# restore the special tokens
for k in keep_keys:
del da[f'''{k}</w>''']
_UpperCAmelCase : List[Any] = d[k] # restore
return da
def _lowerCamelCase ( __A : List[Any] , __A : Tuple ) -> Tuple:
# prep
if not os.path.exists(__A ):
raise ValueError(f'''path {biogpt_checkpoint_path} does not exist!''' )
os.makedirs(__A , exist_ok=__A )
print(f'''Writing results to {pytorch_dump_folder_path}''' )
# handle various types of models
_UpperCAmelCase : str = os.path.join(__A , '''checkpoint.pt''' )
if not os.path.isfile(__A ):
raise ValueError(f'''path to the file {checkpoint_file} does not exist!''' )
_UpperCAmelCase : Tuple = torch.load(__A , map_location='''cpu''' )
_UpperCAmelCase : List[Any] = chkpt['''cfg''']['''model''']
# dicts
_UpperCAmelCase : Optional[int] = os.path.join(__A , '''dict.txt''' )
if not os.path.isfile(__A ):
raise ValueError(f'''path to the file {dict_file} does not exist!''' )
_UpperCAmelCase : List[str] = Dictionary.load(__A )
_UpperCAmelCase : Tuple = rewrite_dict_keys(src_dict.indices )
_UpperCAmelCase : List[Any] = len(__A )
_UpperCAmelCase : Union[str, Any] = os.path.join(__A , VOCAB_FILES_NAMES['''vocab_file'''] )
print(f'''Generating {src_vocab_file} of {src_vocab_size} records''' )
with open(__A , '''w''' , encoding='''utf-8''' ) as f:
f.write(json.dumps(__A , ensure_ascii=__A , indent=__A ) )
# merges_file (bpecodes)
_UpperCAmelCase : List[Any] = os.path.join(__A , '''bpecodes''' )
if not os.path.isfile(__A ):
raise ValueError(f'''path to the file {bpecodes_file} does not exist!''' )
_UpperCAmelCase : Optional[Any] = os.path.join(__A , VOCAB_FILES_NAMES['''merges_file'''] )
shutil.copyfile(__A , __A )
# model config
_UpperCAmelCase : Dict = os.path.join(__A , '''config.json''' )
_UpperCAmelCase : Tuple = {
'''activation_dropout''': args['''activation_dropout'''],
'''architectures''': ['''BioGptForCausalLM'''],
'''attention_probs_dropout_prob''': args['''attention_dropout'''],
'''bos_token_id''': 0,
'''eos_token_id''': 2,
'''hidden_act''': args['''activation_fn'''],
'''hidden_dropout_prob''': args['''dropout'''],
'''hidden_size''': args['''decoder_embed_dim'''],
'''initializer_range''': 0.02,
'''intermediate_size''': args['''decoder_ffn_embed_dim'''],
'''layer_norm_eps''': 1e-12,
'''layerdrop''': args['''decoder_layerdrop'''],
'''max_position_embeddings''': args['''max_target_positions'''],
'''model_type''': '''biogpt''',
'''num_attention_heads''': args['''decoder_attention_heads'''],
'''num_hidden_layers''': args['''decoder_layers'''],
'''pad_token_id''': 1,
'''scale_embedding''': not args['''no_scale_embedding'''],
'''tie_word_embeddings''': args['''share_decoder_input_output_embed'''],
'''vocab_size''': src_vocab_size,
}
# good hparam defaults to start with
print(f'''Generating {biogpt_model_config_file}''' )
with open(__A , '''w''' , encoding='''utf-8''' ) as f:
f.write(json.dumps(__A , ensure_ascii=__A , indent=__A ) )
# tokenizer config
_UpperCAmelCase : List[str] = os.path.join(__A , __A )
_UpperCAmelCase : int = {
'''bos_token''': '''<s>''',
'''eos_token''': '''</s>''',
'''model_max_length''': 1_024,
'''pad_token''': '''<pad>''',
'''special_tokens_map_file''': None,
'''tokenizer_class''': '''BioGptTokenizer''',
'''unk_token''': '''<unk>''',
}
print(f'''Generating {biogpt_tokenizer_config_file}''' )
with open(__A , '''w''' , encoding='''utf-8''' ) as f:
f.write(json.dumps(__A , ensure_ascii=__A , indent=__A ) )
# model
_UpperCAmelCase : int = chkpt['''model''']
# remove unneeded keys
_UpperCAmelCase : Tuple = [
'''decoder.version''',
]
for k in ignore_keys:
model_state_dict.pop(__A , __A )
_UpperCAmelCase : Union[str, Any] = list(model_state_dict.keys() )
for layer_name in layer_names:
if layer_name.endswith('''output_projection.weight''' ):
_UpperCAmelCase : List[str] = model_state_dict.pop(__A )
else:
_UpperCAmelCase : int = model_state_dict.pop(__A )
_UpperCAmelCase : Optional[int] = BioGptConfig.from_pretrained(__A )
_UpperCAmelCase : List[str] = BioGptForCausalLM(__A )
# check that it loads ok
model_new.load_state_dict(__A )
# save
_UpperCAmelCase : Union[str, Any] = os.path.join(__A , __A )
print(f'''Generating {pytorch_weights_dump_path}''' )
torch.save(__A , __A )
print('''Conversion is done!''' )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--biogpt_checkpoint_path',
default=None,
type=str,
required=True,
help=(
'Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,'
' bpecodes, etc.'
),
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
SCREAMING_SNAKE_CASE = parser.parse_args()
convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
| 715
|
from __future__ import annotations
def _lowerCamelCase ( __A : int ) -> list[int]:
_UpperCAmelCase : List[str] = [True] * limit
_UpperCAmelCase : Optional[int] = False
_UpperCAmelCase : Dict = False
_UpperCAmelCase : List[str] = True
for i in range(3 , int(limit**0.5 + 1 ) , 2 ):
_UpperCAmelCase : List[str] = i * 2
while index < limit:
_UpperCAmelCase : Union[str, Any] = False
_UpperCAmelCase : int = index + i
_UpperCAmelCase : Optional[int] = [2]
for i in range(3 , __A , 2 ):
if is_prime[i]:
primes.append(__A )
return primes
def _lowerCamelCase ( __A : int = 1_000_000 ) -> int:
_UpperCAmelCase : Any = prime_sieve(__A )
_UpperCAmelCase : Optional[Any] = 0
_UpperCAmelCase : Tuple = 0
for i in range(len(__A ) ):
for j in range(i + length , len(__A ) ):
_UpperCAmelCase : List[Any] = sum(primes[i:j] )
if sol >= ceiling:
break
if sol in primes:
_UpperCAmelCase : List[str] = j - i
_UpperCAmelCase : Optional[Any] = sol
return largest
if __name__ == "__main__":
print(F'{solution() = }')
| 186
| 0
|
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
UpperCamelCase_ = {
"""configuration_biogpt""": ["""BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BioGptConfig"""],
"""tokenization_biogpt""": ["""BioGptTokenizer"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase_ = [
"""BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""BioGptForCausalLM""",
"""BioGptForTokenClassification""",
"""BioGptForSequenceClassification""",
"""BioGptModel""",
"""BioGptPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig
from .tokenization_biogpt import BioGptTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_biogpt import (
BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST,
BioGptForCausalLM,
BioGptForSequenceClassification,
BioGptForTokenClassification,
BioGptModel,
BioGptPreTrainedModel,
)
else:
import sys
UpperCamelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 92
|
"""simple docstring"""
import argparse
from transformers import (
TapasConfig,
TapasForMaskedLM,
TapasForQuestionAnswering,
TapasForSequenceClassification,
TapasModel,
TapasTokenizer,
load_tf_weights_in_tapas,
)
from transformers.utils import logging
logging.set_verbosity_info()
def _snake_case ( lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Dict , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : List[Any] , lowerCamelCase__ : List[str] ) -> Tuple:
# Initialise PyTorch model.
# If you want to convert a checkpoint that uses absolute position embeddings, make sure to set reset_position_index_per_cell of
# TapasConfig to False.
# initialize configuration from json file
lowerCamelCase_ : Optional[Any] =TapasConfig.from_json_file(lowerCamelCase__ )
# set absolute/relative position embeddings parameter
lowerCamelCase_ : Optional[int] =reset_position_index_per_cell
# set remaining parameters of TapasConfig as well as the model based on the task
if task == "SQA":
lowerCamelCase_ : Any =TapasForQuestionAnswering(config=lowerCamelCase__ )
elif task == "WTQ":
# run_task_main.py hparams
lowerCamelCase_ : Optional[Any] =4
lowerCamelCase_ : Optional[int] =True
# hparam_utils.py hparams
lowerCamelCase_ : Dict =0.66_4694
lowerCamelCase_ : List[Any] =0.20_7951
lowerCamelCase_ : int =0.12_1194
lowerCamelCase_ : Union[str, Any] =True
lowerCamelCase_ : List[Any] =True
lowerCamelCase_ : str =False
lowerCamelCase_ : int =0.035_2513
lowerCamelCase_ : str =TapasForQuestionAnswering(config=lowerCamelCase__ )
elif task == "WIKISQL_SUPERVISED":
# run_task_main.py hparams
lowerCamelCase_ : List[Any] =4
lowerCamelCase_ : int =False
# hparam_utils.py hparams
lowerCamelCase_ : Tuple =36.4519
lowerCamelCase_ : List[str] =0.90_3421
lowerCamelCase_ : Optional[int] =222.088
lowerCamelCase_ : int =True
lowerCamelCase_ : Any =True
lowerCamelCase_ : List[str] =True
lowerCamelCase_ : Any =0.76_3141
lowerCamelCase_ : Dict =TapasForQuestionAnswering(config=lowerCamelCase__ )
elif task == "TABFACT":
lowerCamelCase_ : Dict =TapasForSequenceClassification(config=lowerCamelCase__ )
elif task == "MLM":
lowerCamelCase_ : Optional[Any] =TapasForMaskedLM(config=lowerCamelCase__ )
elif task == "INTERMEDIATE_PRETRAINING":
lowerCamelCase_ : str =TapasModel(config=lowerCamelCase__ )
else:
raise ValueError(F"""Task {task} not supported.""" )
print(F"""Building PyTorch model from configuration: {config}""" )
# Load weights from tf checkpoint
load_tf_weights_in_tapas(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
# Save pytorch-model (weights and configuration)
print(F"""Save PyTorch model to {pytorch_dump_path}""" )
model.save_pretrained(lowerCamelCase__ )
# Save tokenizer files
print(F"""Save tokenizer files to {pytorch_dump_path}""" )
lowerCamelCase_ : List[Any] =TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + "vocab.txt" , model_max_length=512 )
tokenizer.save_pretrained(lowerCamelCase__ )
print("Used relative position embeddings:" , model.config.reset_position_index_per_cell )
if __name__ == "__main__":
A__ : List[str] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--task', default='SQA', type=str, help='Model task for which to convert a checkpoint. Defaults to SQA.'
)
parser.add_argument(
'--reset_position_index_per_cell',
default=False,
action='store_true',
help='Whether to use relative position embeddings or not. Defaults to True.',
)
parser.add_argument(
'--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.'
)
parser.add_argument(
'--tapas_config_file',
default=None,
type=str,
required=True,
help=(
'The config json file corresponding to the pre-trained TAPAS model. \n'
'This specifies the model architecture.'
),
)
parser.add_argument(
'--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
A__ : Dict = parser.parse_args()
convert_tf_checkpoint_to_pytorch(
args.task,
args.reset_position_index_per_cell,
args.tf_checkpoint_path,
args.tapas_config_file,
args.pytorch_dump_path,
)
| 153
| 0
|
"""simple docstring"""
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import CLIPTokenizer, CLIPTokenizerFast
from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES
from transformers.testing_utils import require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import OwlViTImageProcessor, OwlViTProcessor
@require_vision
class lowerCamelCase__ ( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase__ ( self ) -> Optional[Any]:
A = tempfile.mkdtemp()
# fmt: off
A = ["""""", """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""]
# fmt: on
A = dict(zip(lowerCamelCase_ ,range(len(lowerCamelCase_ ) ) ) )
A = ["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>""", """"""]
A = {"""unk_token""": """<unk>"""}
A = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""vocab_file"""] )
A = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""merges_file"""] )
with open(self.vocab_file ,"""w""" ,encoding="""utf-8""" ) as fp:
fp.write(json.dumps(lowerCamelCase_ ) + """\n""" )
with open(self.merges_file ,"""w""" ,encoding="""utf-8""" ) as fp:
fp.write("""\n""".join(lowerCamelCase_ ) )
A = {
"""do_resize""": True,
"""size""": 2_0,
"""do_center_crop""": True,
"""crop_size""": 1_8,
"""do_normalize""": True,
"""image_mean""": [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73],
"""image_std""": [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11],
}
A = os.path.join(self.tmpdirname ,lowerCamelCase_ )
with open(self.image_processor_file ,"""w""" ,encoding="""utf-8""" ) as fp:
json.dump(lowerCamelCase_ ,lowerCamelCase_ )
def UpperCamelCase__ ( self ,**lowerCamelCase_ ) -> List[str]:
return CLIPTokenizer.from_pretrained(self.tmpdirname ,pad_token="""!""" ,**lowerCamelCase_ )
def UpperCamelCase__ ( self ,**lowerCamelCase_ ) -> Optional[Any]:
return CLIPTokenizerFast.from_pretrained(self.tmpdirname ,pad_token="""!""" ,**lowerCamelCase_ )
def UpperCamelCase__ ( self ,**lowerCamelCase_ ) -> str:
return OwlViTImageProcessor.from_pretrained(self.tmpdirname ,**lowerCamelCase_ )
def UpperCamelCase__ ( self ) -> Union[str, Any]:
shutil.rmtree(self.tmpdirname )
def UpperCamelCase__ ( self ) -> List[str]:
A = [np.random.randint(2_5_5 ,size=(3, 3_0, 4_0_0) ,dtype=np.uinta )]
A = [Image.fromarray(np.moveaxis(lowerCamelCase_ ,0 ,-1 ) ) for x in image_inputs]
return image_inputs
def UpperCamelCase__ ( self ) -> Optional[Any]:
A = self.get_tokenizer()
A = self.get_rust_tokenizer()
A = self.get_image_processor()
A = OwlViTProcessor(tokenizer=lowerCamelCase_ ,image_processor=lowerCamelCase_ )
processor_slow.save_pretrained(self.tmpdirname )
A = OwlViTProcessor.from_pretrained(self.tmpdirname ,use_fast=lowerCamelCase_ )
A = OwlViTProcessor(tokenizer=lowerCamelCase_ ,image_processor=lowerCamelCase_ )
processor_fast.save_pretrained(self.tmpdirname )
A = OwlViTProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor_slow.tokenizer.get_vocab() ,tokenizer_slow.get_vocab() )
self.assertEqual(processor_fast.tokenizer.get_vocab() ,tokenizer_fast.get_vocab() )
self.assertEqual(tokenizer_slow.get_vocab() ,tokenizer_fast.get_vocab() )
self.assertIsInstance(processor_slow.tokenizer ,lowerCamelCase_ )
self.assertIsInstance(processor_fast.tokenizer ,lowerCamelCase_ )
self.assertEqual(processor_slow.image_processor.to_json_string() ,image_processor.to_json_string() )
self.assertEqual(processor_fast.image_processor.to_json_string() ,image_processor.to_json_string() )
self.assertIsInstance(processor_slow.image_processor ,lowerCamelCase_ )
self.assertIsInstance(processor_fast.image_processor ,lowerCamelCase_ )
def UpperCamelCase__ ( self ) -> Dict:
A = OwlViTProcessor(tokenizer=self.get_tokenizer() ,image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
A = self.get_tokenizer(bos_token="""(BOS)""" ,eos_token="""(EOS)""" )
A = self.get_image_processor(do_normalize=lowerCamelCase_ )
A = OwlViTProcessor.from_pretrained(
self.tmpdirname ,bos_token="""(BOS)""" ,eos_token="""(EOS)""" ,do_normalize=lowerCamelCase_ )
self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer ,lowerCamelCase_ )
self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor ,lowerCamelCase_ )
def UpperCamelCase__ ( self ) -> List[str]:
A = self.get_image_processor()
A = self.get_tokenizer()
A = OwlViTProcessor(tokenizer=lowerCamelCase_ ,image_processor=lowerCamelCase_ )
A = self.prepare_image_inputs()
A = image_processor(lowerCamelCase_ ,return_tensors="""np""" )
A = processor(images=lowerCamelCase_ ,return_tensors="""np""" )
for key in input_image_proc.keys():
self.assertAlmostEqual(input_image_proc[key].sum() ,input_processor[key].sum() ,delta=1E-2 )
def UpperCamelCase__ ( self ) -> Tuple:
A = self.get_image_processor()
A = self.get_tokenizer()
A = OwlViTProcessor(tokenizer=lowerCamelCase_ ,image_processor=lowerCamelCase_ )
A = """lower newer"""
A = processor(text=lowerCamelCase_ ,return_tensors="""np""" )
A = tokenizer(lowerCamelCase_ ,return_tensors="""np""" )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key][0].tolist() ,encoded_processor[key][0].tolist() )
def UpperCamelCase__ ( self ) -> Optional[int]:
A = self.get_image_processor()
A = self.get_tokenizer()
A = OwlViTProcessor(tokenizer=lowerCamelCase_ ,image_processor=lowerCamelCase_ )
A = """lower newer"""
A = self.prepare_image_inputs()
A = processor(text=lowerCamelCase_ ,images=lowerCamelCase_ )
self.assertListEqual(list(inputs.keys() ) ,["""input_ids""", """attention_mask""", """pixel_values"""] )
# test if it raises when no input is passed
with pytest.raises(lowerCamelCase_ ):
processor()
def UpperCamelCase__ ( self ) -> List[Any]:
A = """google/owlvit-base-patch32"""
A = OwlViTProcessor.from_pretrained(lowerCamelCase_ )
A = ["""cat""", """nasa badge"""]
A = processor(text=lowerCamelCase_ )
A = 1_6
self.assertListEqual(list(inputs.keys() ) ,["""input_ids""", """attention_mask"""] )
self.assertEqual(inputs["""input_ids"""].shape ,(2, seq_length) )
# test if it raises when no input is passed
with pytest.raises(lowerCamelCase_ ):
processor()
def UpperCamelCase__ ( self ) -> Tuple:
A = """google/owlvit-base-patch32"""
A = OwlViTProcessor.from_pretrained(lowerCamelCase_ )
A = [["""cat""", """nasa badge"""], ["""person"""]]
A = processor(text=lowerCamelCase_ )
A = 1_6
A = len(lowerCamelCase_ )
A = max([len(lowerCamelCase_ ) for texts in input_texts] )
self.assertListEqual(list(inputs.keys() ) ,["""input_ids""", """attention_mask"""] )
self.assertEqual(inputs["""input_ids"""].shape ,(batch_size * num_max_text_queries, seq_length) )
# test if it raises when no input is passed
with pytest.raises(lowerCamelCase_ ):
processor()
def UpperCamelCase__ ( self ) -> Union[str, Any]:
A = """google/owlvit-base-patch32"""
A = OwlViTProcessor.from_pretrained(lowerCamelCase_ )
A = ["""cat""", """nasa badge"""]
A = processor(text=lowerCamelCase_ )
A = 1_6
A = inputs["""input_ids"""]
A = [
[4_9_4_0_6, 2_3_6_8, 4_9_4_0_7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[4_9_4_0_6, 6_8_4_1, 1_1_3_0_1, 4_9_4_0_7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
]
self.assertListEqual(list(inputs.keys() ) ,["""input_ids""", """attention_mask"""] )
self.assertEqual(inputs["""input_ids"""].shape ,(2, seq_length) )
self.assertListEqual(list(input_ids[0] ) ,predicted_ids[0] )
self.assertListEqual(list(input_ids[1] ) ,predicted_ids[1] )
def UpperCamelCase__ ( self ) -> Dict:
A = self.get_image_processor()
A = self.get_tokenizer()
A = OwlViTProcessor(tokenizer=lowerCamelCase_ ,image_processor=lowerCamelCase_ )
A = self.prepare_image_inputs()
A = self.prepare_image_inputs()
A = processor(images=lowerCamelCase_ ,query_images=lowerCamelCase_ )
self.assertListEqual(list(inputs.keys() ) ,["""query_pixel_values""", """pixel_values"""] )
# test if it raises when no input is passed
with pytest.raises(lowerCamelCase_ ):
processor()
def UpperCamelCase__ ( self ) -> str:
A = self.get_image_processor()
A = self.get_tokenizer()
A = OwlViTProcessor(tokenizer=lowerCamelCase_ ,image_processor=lowerCamelCase_ )
A = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
A = processor.batch_decode(lowerCamelCase_ )
A = tokenizer.batch_decode(lowerCamelCase_ )
self.assertListEqual(lowerCamelCase_ ,lowerCamelCase_ )
| 721
|
"""simple docstring"""
def _A ( _a : int , _a : int ):
"""simple docstring"""
while a != 0:
A , A = b % a, a
return b
def _A ( _a : int , _a : int ):
"""simple docstring"""
if gcd(_a , _a ) != 1:
A = f'mod inverse of {a!r} and {m!r} does not exist'
raise ValueError(_a )
A , A , A = 1, 0, a
A , A , A = 0, 1, m
while va != 0:
A = ua // va
A , A , A , A , A , A = (ua - q * va), (ua - q * va), (ua - q * va), va, va, va
return ua % m
| 255
| 0
|
'''simple docstring'''
from __future__ import annotations
import matplotlib.pyplot as plt # type: ignore
import numpy
# initial triangle of Koch snowflake
lowercase : Union[str, Any] = numpy.array([0, 0])
lowercase : Optional[Any] = numpy.array([0.5, 0.8_6_6_0_2_5_4])
lowercase : Optional[int] = numpy.array([1, 0])
lowercase : int = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1]
def __a ( A__ , A__ ) -> int:
lowerCAmelCase = initial_vectors
for _ in range(UpperCAmelCase__ ):
lowerCAmelCase = iteration_step(UpperCAmelCase__ )
return vectors
def __a ( A__ ) -> Optional[Any]:
lowerCAmelCase = []
for i, start_vector in enumerate(vectors[:-1] ):
lowerCAmelCase = vectors[i + 1]
new_vectors.append(UpperCAmelCase__ )
lowerCAmelCase = end_vector - start_vector
new_vectors.append(start_vector + difference_vector / 3 )
new_vectors.append(
start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 60 ) )
new_vectors.append(start_vector + difference_vector * 2 / 3 )
new_vectors.append(vectors[-1] )
return new_vectors
def __a ( A__ , A__ ) -> List[Any]:
lowerCAmelCase = numpy.radians(UpperCAmelCase__ )
lowerCAmelCase = numpy.cos(UpperCAmelCase__ ), numpy.sin(UpperCAmelCase__ )
lowerCAmelCase = numpy.array(((c, -s), (s, c)) )
return numpy.dot(UpperCAmelCase__ , UpperCAmelCase__ )
def __a ( A__ ) -> Dict:
lowerCAmelCase = plt.gca()
axes.set_aspect("equal" )
# matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all
# y-coordinates as inputs, which are constructed from the vector-list using
# zip()
lowerCAmelCase = zip(*UpperCAmelCase__ )
plt.plot(UpperCAmelCase__ , UpperCAmelCase__ )
plt.show()
if __name__ == "__main__":
import doctest
doctest.testmod()
lowercase : List[Any] = iterate(INITIAL_VECTORS, 5)
plot(processed_vectors)
| 649
|
'''simple docstring'''
import torch
from diffusers import UnCLIPScheduler
from .test_schedulers import SchedulerCommonTest
class __snake_case ( a__):
_lowerCAmelCase = (UnCLIPScheduler,)
def UpperCAmelCase_ ( self, **A ):
"""simple docstring"""
lowerCamelCase : Tuple = {
'num_train_timesteps': 1000,
'variance_type': 'fixed_small_log',
'clip_sample': True,
'clip_sample_range': 1.0,
'prediction_type': 'epsilon',
}
config.update(**A )
return config
def UpperCAmelCase_ ( self ):
"""simple docstring"""
for timesteps in [1, 5, 100, 1000]:
self.check_over_configs(num_train_timesteps=A )
def UpperCAmelCase_ ( self ):
"""simple docstring"""
for variance in ["fixed_small_log", "learned_range"]:
self.check_over_configs(variance_type=A )
def UpperCAmelCase_ ( self ):
"""simple docstring"""
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=A )
def UpperCAmelCase_ ( self ):
"""simple docstring"""
for clip_sample_range in [1, 5, 10, 20]:
self.check_over_configs(clip_sample_range=A )
def UpperCAmelCase_ ( self ):
"""simple docstring"""
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(prediction_type=A )
def UpperCAmelCase_ ( self ):
"""simple docstring"""
for time_step in [0, 500, 999]:
for prev_timestep in [None, 5, 100, 250, 500, 750]:
if prev_timestep is not None and prev_timestep >= time_step:
continue
self.check_over_forward(time_step=A, prev_timestep=A )
def UpperCAmelCase_ ( self ):
"""simple docstring"""
lowerCamelCase : List[str] = self.scheduler_classes[0]
lowerCamelCase : Tuple = self.get_scheduler_config(variance_type='fixed_small_log' )
lowerCamelCase : Dict = scheduler_class(**A )
assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.00_00e-10 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.054_9625 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.999_4987 ) ) < 1e-5
def UpperCAmelCase_ ( self ):
"""simple docstring"""
lowerCamelCase : Optional[int] = self.scheduler_classes[0]
lowerCamelCase : Optional[Any] = self.get_scheduler_config(variance_type='learned_range' )
lowerCamelCase : Optional[Any] = scheduler_class(**A )
lowerCamelCase : List[Any] = 0.5
assert scheduler._get_variance(1, predicted_variance=A ) - -10.171_2790 < 1e-5
assert scheduler._get_variance(487, predicted_variance=A ) - -5.799_8052 < 1e-5
assert scheduler._get_variance(999, predicted_variance=A ) - -0.001_0011 < 1e-5
def UpperCAmelCase_ ( self ):
"""simple docstring"""
lowerCamelCase : Optional[int] = self.scheduler_classes[0]
lowerCamelCase : Dict = self.get_scheduler_config()
lowerCamelCase : Optional[Any] = scheduler_class(**A )
lowerCamelCase : Optional[int] = scheduler.timesteps
lowerCamelCase : Optional[Any] = self.dummy_model()
lowerCamelCase : int = self.dummy_sample_deter
lowerCamelCase : str = torch.manual_seed(0 )
for i, t in enumerate(A ):
# 1. predict noise residual
lowerCamelCase : List[Any] = model(A, A )
# 2. predict previous mean of sample x_t-1
lowerCamelCase : int = scheduler.step(A, A, A, generator=A ).prev_sample
lowerCamelCase : List[Any] = pred_prev_sample
lowerCamelCase : Tuple = torch.sum(torch.abs(A ) )
lowerCamelCase : List[str] = torch.mean(torch.abs(A ) )
assert abs(result_sum.item() - 252.268_2495 ) < 1e-2
assert abs(result_mean.item() - 0.328_4743 ) < 1e-3
def UpperCAmelCase_ ( self ):
"""simple docstring"""
lowerCamelCase : Optional[int] = self.scheduler_classes[0]
lowerCamelCase : Union[str, Any] = self.get_scheduler_config()
lowerCamelCase : Optional[int] = scheduler_class(**A )
scheduler.set_timesteps(25 )
lowerCamelCase : str = scheduler.timesteps
lowerCamelCase : Optional[int] = self.dummy_model()
lowerCamelCase : Tuple = self.dummy_sample_deter
lowerCamelCase : int = torch.manual_seed(0 )
for i, t in enumerate(A ):
# 1. predict noise residual
lowerCamelCase : Union[str, Any] = model(A, A )
if i + 1 == timesteps.shape[0]:
lowerCamelCase : Dict = None
else:
lowerCamelCase : Optional[int] = timesteps[i + 1]
# 2. predict previous mean of sample x_t-1
lowerCamelCase : Optional[int] = scheduler.step(
A, A, A, prev_timestep=A, generator=A ).prev_sample
lowerCamelCase : str = pred_prev_sample
lowerCamelCase : Any = torch.sum(torch.abs(A ) )
lowerCamelCase : Union[str, Any] = torch.mean(torch.abs(A ) )
assert abs(result_sum.item() - 258.204_4983 ) < 1e-2
assert abs(result_mean.item() - 0.336_2038 ) < 1e-3
def UpperCAmelCase_ ( self ):
"""simple docstring"""
pass
def UpperCAmelCase_ ( self ):
"""simple docstring"""
pass
| 320
| 0
|
import math
def _UpperCAmelCase (UpperCamelCase_ : int ):
'''simple docstring'''
_lowerCAmelCase : int = []
_lowerCAmelCase : List[Any] = 2
_lowerCAmelCase : Union[str, Any] = int(math.sqrt(UpperCamelCase_ ) ) # Size of every segment
_lowerCAmelCase : int = [True] * (end + 1)
_lowerCAmelCase : Optional[int] = []
while start <= end:
if temp[start] is True:
in_prime.append(UpperCamelCase_ )
for i in range(start * start , end + 1 , UpperCamelCase_ ):
_lowerCAmelCase : Optional[Any] = False
start += 1
prime += in_prime
_lowerCAmelCase : str = end + 1
_lowerCAmelCase : Union[str, Any] = min(2 * end , UpperCamelCase_ )
while low <= n:
_lowerCAmelCase : Optional[Any] = [True] * (high - low + 1)
for each in in_prime:
_lowerCAmelCase : str = math.floor(low / each ) * each
if t < low:
t += each
for j in range(UpperCamelCase_ , high + 1 , UpperCamelCase_ ):
_lowerCAmelCase : Union[str, Any] = False
for j in range(len(UpperCamelCase_ ) ):
if temp[j] is True:
prime.append(j + low )
_lowerCAmelCase : int = high + 1
_lowerCAmelCase : Union[str, Any] = min(high + end , UpperCamelCase_ )
return prime
print(sieve(1_0**6))
| 196
|
import sys
_lowerCamelCase : Optional[Any] = (
"73167176531330624919225119674426574742355349194934"
"96983520312774506326239578318016984801869478851843"
"85861560789112949495459501737958331952853208805511"
"12540698747158523863050715693290963295227443043557"
"66896648950445244523161731856403098711121722383113"
"62229893423380308135336276614282806444486645238749"
"30358907296290491560440772390713810515859307960866"
"70172427121883998797908792274921901699720888093776"
"65727333001053367881220235421809751254540594752243"
"52584907711670556013604839586446706324415722155397"
"53697817977846174064955149290862569321978468622482"
"83972241375657056057490261407972968652414535100474"
"82166370484403199890008895243450658541227588666881"
"16427171479924442928230863465674813919123162824586"
"17866458359124566529476545682848912883142607690042"
"24219022671055626321111109370544217506941658960408"
"07198403850962455444362981230987879927244284909188"
"84580156166097919133875499200524063689912560717606"
"05886116467109405077541002256983155200055935729725"
"71636269561882670428252483600823257530420752963450"
)
def _UpperCAmelCase (UpperCamelCase_ : str = N ):
'''simple docstring'''
_lowerCAmelCase : List[str] = -sys.maxsize - 1
for i in range(len(UpperCamelCase_ ) - 12 ):
_lowerCAmelCase : List[str] = 1
for j in range(13 ):
product *= int(n[i + j] )
if product > largest_product:
_lowerCAmelCase : Any = product
return largest_product
if __name__ == "__main__":
print(F'''{solution() = }''')
| 196
| 1
|
"""simple docstring"""
import json
import os
import shutil
import sys
import tempfile
import unittest
import unittest.mock as mock
from pathlib import Path
from huggingface_hub import HfFolder, delete_repo
from requests.exceptions import HTTPError
from transformers import AutoConfig, BertConfig, GPTaConfig
from transformers.configuration_utils import PretrainedConfig
from transformers.testing_utils import TOKEN, USER, is_staging_test
sys.path.append(str(Path(__file__).parent.parent / 'utils'))
from test_module.custom_configuration import CustomConfig # noqa E402
SCREAMING_SNAKE_CASE_ = {
'return_dict': False,
'output_hidden_states': True,
'output_attentions': True,
'torchscript': True,
'torch_dtype': 'float16',
'use_bfloat16': True,
'tf_legacy_loss': True,
'pruned_heads': {'a': 1},
'tie_word_embeddings': False,
'is_decoder': True,
'cross_attention_hidden_size': 128,
'add_cross_attention': True,
'tie_encoder_decoder': True,
'max_length': 50,
'min_length': 3,
'do_sample': True,
'early_stopping': True,
'num_beams': 3,
'num_beam_groups': 3,
'diversity_penalty': 0.5,
'temperature': 2.0,
'top_k': 10,
'top_p': 0.7,
'typical_p': 0.2,
'repetition_penalty': 0.8,
'length_penalty': 0.8,
'no_repeat_ngram_size': 5,
'encoder_no_repeat_ngram_size': 5,
'bad_words_ids': [1, 2, 3],
'num_return_sequences': 3,
'chunk_size_feed_forward': 5,
'output_scores': True,
'return_dict_in_generate': True,
'forced_bos_token_id': 2,
'forced_eos_token_id': 3,
'remove_invalid_values': True,
'architectures': ['BertModel'],
'finetuning_task': 'translation',
'id2label': {0: 'label'},
'label2id': {'label': '0'},
'tokenizer_class': 'BertTokenizerFast',
'prefix': 'prefix',
'bos_token_id': 6,
'pad_token_id': 7,
'eos_token_id': 8,
'sep_token_id': 9,
'decoder_start_token_id': 10,
'exponential_decay_length_penalty': (5, 1.01),
'suppress_tokens': [0, 1],
'begin_suppress_tokens': 2,
'task_specific_params': {'translation': 'some_params'},
'problem_type': 'regression',
}
@is_staging_test
class snake_case_ ( unittest.TestCase ):
"""simple docstring"""
@classmethod
def UpperCAmelCase__ ( cls) -> Dict:
UpperCamelCase = TOKEN
HfFolder.save_token(lowerCamelCase_)
@classmethod
def UpperCAmelCase__ ( cls) -> Union[str, Any]:
try:
delete_repo(token=cls._token , repo_id='''test-config''')
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id='''valid_org/test-config-org''')
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id='''test-dynamic-config''')
except HTTPError:
pass
def UpperCAmelCase__ ( self) -> int:
UpperCamelCase = BertConfig(
vocab_size=9_9 , hidden_size=3_2 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=3_7)
config.push_to_hub('''test-config''' , use_auth_token=self._token)
UpperCamelCase = BertConfig.from_pretrained(F'{USER}/test-config')
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(lowerCamelCase_ , getattr(lowerCamelCase_ , lowerCamelCase_))
# Reset repo
delete_repo(token=self._token , repo_id='''test-config''')
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(lowerCamelCase_ , repo_id='''test-config''' , push_to_hub=lowerCamelCase_ , use_auth_token=self._token)
UpperCamelCase = BertConfig.from_pretrained(F'{USER}/test-config')
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(lowerCamelCase_ , getattr(lowerCamelCase_ , lowerCamelCase_))
def UpperCAmelCase__ ( self) -> List[str]:
UpperCamelCase = BertConfig(
vocab_size=9_9 , hidden_size=3_2 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=3_7)
config.push_to_hub('''valid_org/test-config-org''' , use_auth_token=self._token)
UpperCamelCase = BertConfig.from_pretrained('''valid_org/test-config-org''')
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(lowerCamelCase_ , getattr(lowerCamelCase_ , lowerCamelCase_))
# Reset repo
delete_repo(token=self._token , repo_id='''valid_org/test-config-org''')
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(
lowerCamelCase_ , repo_id='''valid_org/test-config-org''' , push_to_hub=lowerCamelCase_ , use_auth_token=self._token)
UpperCamelCase = BertConfig.from_pretrained('''valid_org/test-config-org''')
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(lowerCamelCase_ , getattr(lowerCamelCase_ , lowerCamelCase_))
def UpperCAmelCase__ ( self) -> Tuple:
CustomConfig.register_for_auto_class()
UpperCamelCase = CustomConfig(attribute=4_2)
config.push_to_hub('''test-dynamic-config''' , use_auth_token=self._token)
# This has added the proper auto_map field to the config
self.assertDictEqual(config.auto_map , {'''AutoConfig''': '''custom_configuration.CustomConfig'''})
UpperCamelCase = AutoConfig.from_pretrained(F'{USER}/test-dynamic-config' , trust_remote_code=lowerCamelCase_)
# Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module
self.assertEqual(new_config.__class__.__name__ , '''CustomConfig''')
self.assertEqual(new_config.attribute , 4_2)
class snake_case_ ( unittest.TestCase ):
"""simple docstring"""
def UpperCAmelCase__ ( self) -> Dict:
UpperCamelCase = GPTaConfig()
# attempt to modify each of int/float/bool/str config records and verify they were updated
UpperCamelCase = c.n_embd + 1 # int
UpperCamelCase = c.resid_pdrop + 1.0 # float
UpperCamelCase = not c.scale_attn_weights # bool
UpperCamelCase = c.summary_type + '''foo''' # str
c.update_from_string(
F'n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}')
self.assertEqual(lowerCamelCase_ , c.n_embd , '''mismatch for key: n_embd''')
self.assertEqual(lowerCamelCase_ , c.resid_pdrop , '''mismatch for key: resid_pdrop''')
self.assertEqual(lowerCamelCase_ , c.scale_attn_weights , '''mismatch for key: scale_attn_weights''')
self.assertEqual(lowerCamelCase_ , c.summary_type , '''mismatch for key: summary_type''')
def UpperCAmelCase__ ( self) -> str:
UpperCamelCase = PretrainedConfig()
UpperCamelCase = [key for key in base_config.__dict__ if key not in config_common_kwargs]
# If this part of the test fails, you have arguments to addin config_common_kwargs above.
self.assertListEqual(
lowerCamelCase_ , ['''is_encoder_decoder''', '''_name_or_path''', '''_commit_hash''', '''transformers_version'''])
UpperCamelCase = [key for key, value in config_common_kwargs.items() if value == getattr(lowerCamelCase_ , lowerCamelCase_)]
if len(lowerCamelCase_) > 0:
raise ValueError(
'''The following keys are set with the default values in'''
''' `test_configuration_common.config_common_kwargs` pick another value for them:'''
F' {", ".join(lowerCamelCase_)}.')
def UpperCAmelCase__ ( self) -> str:
with self.assertRaises(lowerCamelCase_):
# config is in subfolder, the following should not work without specifying the subfolder
UpperCamelCase = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert-subfolder''')
UpperCamelCase = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert-subfolder''' , subfolder='''bert''')
self.assertIsNotNone(lowerCamelCase_)
def UpperCAmelCase__ ( self) -> Union[str, Any]:
# A mock response for an HTTP head request to emulate server down
UpperCamelCase = mock.Mock()
UpperCamelCase = 5_0_0
UpperCamelCase = {}
UpperCamelCase = HTTPError
UpperCamelCase = {}
# Download this model to make sure it's in the cache.
UpperCamelCase = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert''')
# Under the mock environment we get a 500 error when trying to reach the model.
with mock.patch('''requests.Session.request''' , return_value=lowerCamelCase_) as mock_head:
UpperCamelCase = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert''')
# This check we did call the fake head request
mock_head.assert_called()
def UpperCAmelCase__ ( self) -> Optional[int]:
# This test is for deprecated behavior and can be removed in v5
UpperCamelCase = BertConfig.from_pretrained(
'''https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json''')
def UpperCAmelCase__ ( self) -> Union[str, Any]:
UpperCamelCase = AutoConfig.from_pretrained('''bert-base-cased''')
UpperCamelCase = ['''config.4.0.0.json''']
with tempfile.TemporaryDirectory() as tmp_dir:
configuration.save_pretrained(lowerCamelCase_)
UpperCamelCase = 2
json.dump(configuration.to_dict() , open(os.path.join(lowerCamelCase_ , '''config.4.0.0.json''') , '''w'''))
# This should pick the new configuration file as the version of Transformers is > 4.0.0
UpperCamelCase = AutoConfig.from_pretrained(lowerCamelCase_)
self.assertEqual(new_configuration.hidden_size , 2)
# Will need to be adjusted if we reach v42 and this test is still here.
# Should pick the old configuration file as the version of Transformers is < 4.42.0
UpperCamelCase = ['''config.42.0.0.json''']
UpperCamelCase = 7_6_8
configuration.save_pretrained(lowerCamelCase_)
shutil.move(os.path.join(lowerCamelCase_ , '''config.4.0.0.json''') , os.path.join(lowerCamelCase_ , '''config.42.0.0.json'''))
UpperCamelCase = AutoConfig.from_pretrained(lowerCamelCase_)
self.assertEqual(new_configuration.hidden_size , 7_6_8)
def UpperCAmelCase__ ( self) -> Optional[Any]:
# This repo has two configuration files, one for v4.0.0 and above with a different hidden size.
UpperCamelCase = '''hf-internal-testing/test-two-configs'''
import transformers as new_transformers
UpperCamelCase = '''v4.0.0'''
UpperCamelCase , UpperCamelCase = new_transformers.models.auto.AutoConfig.from_pretrained(
lowerCamelCase_ , return_unused_kwargs=lowerCamelCase_)
self.assertEqual(new_configuration.hidden_size , 2)
# This checks `_configuration_file` ia not kept in the kwargs by mistake.
self.assertDictEqual(lowerCamelCase_ , {})
# Testing an older version by monkey-patching the version in the module it's used.
import transformers as old_transformers
UpperCamelCase = '''v3.0.0'''
UpperCamelCase = old_transformers.models.auto.AutoConfig.from_pretrained(lowerCamelCase_)
self.assertEqual(old_configuration.hidden_size , 7_6_8)
| 34
|
'''simple docstring'''
import math
lowerCamelCase :int = 1_0
lowerCamelCase :List[Any] = 7
lowerCamelCase :Union[str, Any] = BALLS_PER_COLOUR * NUM_COLOURS
def a ( lowerCamelCase__ = 20 ):
'''simple docstring'''
A_ : Dict = math.comb(lowerCamelCase__ , lowerCamelCase__ )
A_ : Optional[Any] = math.comb(NUM_BALLS - BALLS_PER_COLOUR , lowerCamelCase__ )
A_ : List[str] = NUM_COLOURS * (1 - missing_colour / total)
return f'{result:.9f}'
if __name__ == "__main__":
print(solution(2_0))
| 667
| 0
|
'''simple docstring'''
__SCREAMING_SNAKE_CASE : List[str] = [
'VerificationMode',
'Version',
'disable_progress_bar',
'enable_progress_bar',
'is_progress_bar_enabled',
'experimental',
]
from .info_utils import VerificationMode
from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled
from .version import Version
from .experimental import experimental
| 708
|
'''simple docstring'''
import unittest
from .lib import (
Matrix,
Vector,
axpy,
square_zero_matrix,
unit_basis_vector,
zero_vector,
)
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
def __lowerCamelCase ( self ):
'''simple docstring'''
__a : Dict = Vector([1, 2, 3] )
self.assertEqual(x.component(0 ) , 1 )
self.assertEqual(x.component(2 ) , 3 )
__a : Optional[int] = Vector()
def __lowerCamelCase ( self ):
'''simple docstring'''
__a : Any = Vector([0, 0, 0, 0, 0, 1] )
self.assertEqual(str(__UpperCamelCase ) , """(0,0,0,0,0,1)""" )
def __lowerCamelCase ( self ):
'''simple docstring'''
__a : Tuple = Vector([1, 2, 3, 4] )
self.assertEqual(len(__UpperCamelCase ) , 4 )
def __lowerCamelCase ( self ):
'''simple docstring'''
__a : Optional[Any] = Vector([1, 2] )
__a : List[str] = Vector([1, 2, 3, 4, 5] )
__a : Optional[int] = Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0] )
__a : Dict = Vector([1, -1, 1, -1, 2, -3, 4, -5] )
self.assertAlmostEqual(x.euclidean_length() , 2.2_3_6 , 3 )
self.assertAlmostEqual(y.euclidean_length() , 7.4_1_6 , 3 )
self.assertEqual(z.euclidean_length() , 0 )
self.assertAlmostEqual(w.euclidean_length() , 7.6_1_6 , 3 )
def __lowerCamelCase ( self ):
'''simple docstring'''
__a : Dict = Vector([1, 2, 3] )
__a : Union[str, Any] = Vector([1, 1, 1] )
self.assertEqual((x + y).component(0 ) , 2 )
self.assertEqual((x + y).component(1 ) , 3 )
self.assertEqual((x + y).component(2 ) , 4 )
def __lowerCamelCase ( self ):
'''simple docstring'''
__a : List[str] = Vector([1, 2, 3] )
__a : Any = Vector([1, 1, 1] )
self.assertEqual((x - y).component(0 ) , 0 )
self.assertEqual((x - y).component(1 ) , 1 )
self.assertEqual((x - y).component(2 ) , 2 )
def __lowerCamelCase ( self ):
'''simple docstring'''
__a : Tuple = Vector([1, 2, 3] )
__a : Optional[Any] = Vector([2, -1, 4] ) # for test of dot product
__a : Union[str, Any] = Vector([1, -2, -1] )
self.assertEqual(str(x * 3.0 ) , """(3.0,6.0,9.0)""" )
self.assertEqual((a * b) , 0 )
def __lowerCamelCase ( self ):
'''simple docstring'''
self.assertEqual(str(zero_vector(10 ) ).count("""0""" ) , 10 )
def __lowerCamelCase ( self ):
'''simple docstring'''
self.assertEqual(str(unit_basis_vector(3 , 1 ) ) , """(0,1,0)""" )
def __lowerCamelCase ( self ):
'''simple docstring'''
__a : Dict = Vector([1, 2, 3] )
__a : Optional[int] = Vector([1, 0, 1] )
self.assertEqual(str(axpy(2 , __UpperCamelCase , __UpperCamelCase ) ) , """(3,4,7)""" )
def __lowerCamelCase ( self ):
'''simple docstring'''
__a : int = Vector([1, 0, 0, 0, 0, 0] )
__a : Any = x.copy()
self.assertEqual(str(__UpperCamelCase ) , str(__UpperCamelCase ) )
def __lowerCamelCase ( self ):
'''simple docstring'''
__a : Union[str, Any] = Vector([1, 0, 0] )
x.change_component(0 , 0 )
x.change_component(1 , 1 )
self.assertEqual(str(__UpperCamelCase ) , """(0,1,0)""" )
def __lowerCamelCase ( self ):
'''simple docstring'''
__a : Dict = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
self.assertEqual("""|1,2,3|\n|2,4,5|\n|6,7,8|\n""" , str(__UpperCamelCase ) )
def __lowerCamelCase ( self ):
'''simple docstring'''
__a : List[Any] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
__a : List[Any] = [[-3, -14, -10], [-5, -10, -5], [-2, -1, 0]]
for x in range(a.height() ):
for y in range(a.width() ):
self.assertEqual(minors[x][y] , a.minor(__UpperCamelCase , __UpperCamelCase ) )
def __lowerCamelCase ( self ):
'''simple docstring'''
__a : List[Any] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
__a : Any = [[-3, 14, -10], [5, -10, 5], [-2, 1, 0]]
for x in range(a.height() ):
for y in range(a.width() ):
self.assertEqual(cofactors[x][y] , a.cofactor(__UpperCamelCase , __UpperCamelCase ) )
def __lowerCamelCase ( self ):
'''simple docstring'''
__a : List[Any] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
self.assertEqual(-5 , a.determinant() )
def __lowerCamelCase ( self ):
'''simple docstring'''
__a : Any = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3 )
__a : List[Any] = Vector([1, 2, 3] )
self.assertEqual("""(14,32,50)""" , str(a * x ) )
self.assertEqual("""|2,4,6|\n|8,10,12|\n|14,16,18|\n""" , str(a * 2 ) )
def __lowerCamelCase ( self ):
'''simple docstring'''
__a : List[str] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
a.change_component(0 , 2 , 5 )
self.assertEqual("""|1,2,5|\n|2,4,5|\n|6,7,8|\n""" , str(__UpperCamelCase ) )
def __lowerCamelCase ( self ):
'''simple docstring'''
__a : Tuple = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
self.assertEqual(7 , a.component(2 , 1 ) , 0.0_1 )
def __lowerCamelCase ( self ):
'''simple docstring'''
__a : Dict = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
__a : Union[str, Any] = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 )
self.assertEqual("""|2,4,10|\n|4,8,10|\n|12,14,18|\n""" , str(a + b ) )
def __lowerCamelCase ( self ):
'''simple docstring'''
__a : List[Any] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
__a : List[str] = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 )
self.assertEqual("""|0,0,-4|\n|0,0,0|\n|0,0,-2|\n""" , str(a - b ) )
def __lowerCamelCase ( self ):
'''simple docstring'''
self.assertEqual(
"""|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n""" , str(square_zero_matrix(5 ) ) , )
if __name__ == "__main__":
unittest.main()
| 697
| 0
|
def __snake_case ( _UpperCamelCase = 1_00 ) -> List[Any]:
_a = n * (n + 1) * (2 * n + 1) / 6
_a = (n * (n + 1) / 2) ** 2
return int(square_of_sum - sum_of_squares )
if __name__ == "__main__":
print(F'''{solution() = }''')
| 487
|
from graphs.minimum_spanning_tree_kruskal import kruskal
def lowerCamelCase_ ( ):
'''simple docstring'''
UpperCamelCase__ = 9
UpperCamelCase__ = [
[0, 1, 4],
[0, 7, 8],
[1, 2, 8],
[7, 8, 7],
[7, 6, 1],
[2, 8, 2],
[8, 6, 6],
[2, 3, 7],
[2, 5, 4],
[6, 5, 2],
[3, 5, 14],
[3, 4, 9],
[5, 4, 10],
[1, 7, 11],
]
UpperCamelCase__ = kruskal(UpperCamelCase__, UpperCamelCase__ )
UpperCamelCase__ = [
[7, 6, 1],
[2, 8, 2],
[6, 5, 2],
[0, 1, 4],
[2, 5, 4],
[2, 3, 7],
[0, 7, 8],
[3, 4, 9],
]
assert sorted(UpperCamelCase__ ) == sorted(UpperCamelCase__ )
| 240
| 0
|
import argparse
import os
import re
import packaging.version
__A = "examples/"
__A = {
"examples": (re.compile(R"^check_min_version\(\"[^\"]+\"\)\s*$", re.MULTILINE), "check_min_version(\"VERSION\")\n"),
"init": (re.compile(R"^__version__\s+=\s+\"([^\"]+)\"\s*$", re.MULTILINE), "__version__ = \"VERSION\"\n"),
"setup": (re.compile(R"^(\s*)version\s*=\s*\"[^\"]+\",", re.MULTILINE), R"\1version=\"VERSION\","),
"doc": (re.compile(R"^(\s*)release\s*=\s*\"[^\"]+\"$", re.MULTILINE), "release = \"VERSION\"\n"),
}
__A = {
"init": "src/transformers/__init__.py",
"setup": "setup.py",
}
__A = "README.md"
def lowerCamelCase_ ( UpperCamelCase__ : List[str] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Optional[int] ) -> Optional[Any]:
"""simple docstring"""
with open(UpperCamelCase__ , 'r' , encoding='utf-8' , newline='\n' ) as f:
__lowerCamelCase = f.read()
__lowerCamelCase , __lowerCamelCase = REPLACE_PATTERNS[pattern]
__lowerCamelCase = replace.replace('VERSION' , UpperCamelCase__ )
__lowerCamelCase = re_pattern.sub(UpperCamelCase__ , UpperCamelCase__ )
with open(UpperCamelCase__ , 'w' , encoding='utf-8' , newline='\n' ) as f:
f.write(UpperCamelCase__ )
def lowerCamelCase_ ( UpperCamelCase__ : Tuple ) -> Any:
"""simple docstring"""
for folder, directories, fnames in os.walk(UpperCamelCase__ ):
# Removing some of the folders with non-actively maintained examples from the walk
if "research_projects" in directories:
directories.remove('research_projects' )
if "legacy" in directories:
directories.remove('legacy' )
for fname in fnames:
if fname.endswith('.py' ):
update_version_in_file(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , UpperCamelCase__ , pattern='examples' )
def lowerCamelCase_ ( UpperCamelCase__ : Tuple , UpperCamelCase__ : Dict=False ) -> Tuple:
"""simple docstring"""
for pattern, fname in REPLACE_FILES.items():
update_version_in_file(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
if not patch:
update_version_in_examples(UpperCamelCase__ )
def lowerCamelCase_ ( ) -> Optional[Any]:
"""simple docstring"""
__lowerCamelCase = '🤗 Transformers currently provides the following architectures'
__lowerCamelCase = '1. Want to contribute a new model?'
with open(UpperCamelCase__ , 'r' , encoding='utf-8' , newline='\n' ) as f:
__lowerCamelCase = f.readlines()
# Find the start of the list.
__lowerCamelCase = 0
while not lines[start_index].startswith(_start_prompt ):
start_index += 1
start_index += 1
__lowerCamelCase = start_index
# Update the lines in the model list.
while not lines[index].startswith(_end_prompt ):
if lines[index].startswith('1.' ):
__lowerCamelCase = lines[index].replace(
'https://huggingface.co/docs/transformers/main/model_doc' , 'https://huggingface.co/docs/transformers/model_doc' , )
index += 1
with open(UpperCamelCase__ , 'w' , encoding='utf-8' , newline='\n' ) as f:
f.writelines(UpperCamelCase__ )
def lowerCamelCase_ ( ) -> Tuple:
"""simple docstring"""
with open(REPLACE_FILES['init'] , 'r' ) as f:
__lowerCamelCase = f.read()
__lowerCamelCase = REPLACE_PATTERNS['init'][0].search(UpperCamelCase__ ).groups()[0]
return packaging.version.parse(UpperCamelCase__ )
def lowerCamelCase_ ( UpperCamelCase__ : Optional[int]=False ) -> str:
"""simple docstring"""
__lowerCamelCase = get_version()
if patch and default_version.is_devrelease:
raise ValueError('Can\'t create a patch version from the dev branch, checkout a released version!' )
if default_version.is_devrelease:
__lowerCamelCase = default_version.base_version
elif patch:
__lowerCamelCase = F"""{default_version.major}.{default_version.minor}.{default_version.micro + 1}"""
else:
__lowerCamelCase = F"""{default_version.major}.{default_version.minor + 1}.0"""
# Now let's ask nicely if that's the right one.
__lowerCamelCase = input(F"""Which version are you releasing? [{default_version}]""" )
if len(UpperCamelCase__ ) == 0:
__lowerCamelCase = default_version
print(F"""Updating version to {version}.""" )
global_version_update(UpperCamelCase__ , patch=UpperCamelCase__ )
if not patch:
print('Cleaning main README, don\'t forget to run `make fix-copies`.' )
clean_main_ref_in_model_list()
def lowerCamelCase_ ( ) -> Optional[int]:
"""simple docstring"""
__lowerCamelCase = get_version()
__lowerCamelCase = F"""{current_version.major}.{current_version.minor + 1}.0.dev0"""
__lowerCamelCase = current_version.base_version
# Check with the user we got that right.
__lowerCamelCase = input(F"""Which version are we developing now? [{dev_version}]""" )
if len(UpperCamelCase__ ) == 0:
__lowerCamelCase = dev_version
print(F"""Updating version to {version}.""" )
global_version_update(UpperCamelCase__ )
print('Cleaning main README, don\'t forget to run `make fix-copies`.' )
clean_main_ref_in_model_list()
if __name__ == "__main__":
__A = argparse.ArgumentParser()
parser.add_argument("--post_release", action="store_true", help="Whether this is pre or post release.")
parser.add_argument("--patch", action="store_true", help="Whether or not this is a patch release.")
__A = parser.parse_args()
if not args.post_release:
pre_release_work(patch=args.patch)
elif args.patch:
print("Nothing to do after a patch :-)")
else:
post_release_work()
| 718
|
import argparse
import json
from typing import List
from ltp import LTP
from transformers import BertTokenizer
def lowerCamelCase_ ( UpperCamelCase__ : Optional[Any] ) -> Optional[Any]:
"""simple docstring"""
if (
(cp >= 0x4_e00 and cp <= 0x9_fff)
or (cp >= 0x3_400 and cp <= 0x4_dbf) #
or (cp >= 0x20_000 and cp <= 0x2a_6df) #
or (cp >= 0x2a_700 and cp <= 0x2b_73f) #
or (cp >= 0x2b_740 and cp <= 0x2b_81f) #
or (cp >= 0x2b_820 and cp <= 0x2c_eaf) #
or (cp >= 0xf_900 and cp <= 0xf_aff)
or (cp >= 0x2f_800 and cp <= 0x2f_a1f) #
): #
return True
return False
def lowerCamelCase_ ( UpperCamelCase__ : str ) -> Dict:
"""simple docstring"""
for char in word:
__lowerCamelCase = ord(UpperCamelCase__ )
if not _is_chinese_char(UpperCamelCase__ ):
return 0
return 1
def lowerCamelCase_ ( UpperCamelCase__ : List[str] ) -> Optional[Any]:
"""simple docstring"""
__lowerCamelCase = set()
for token in tokens:
__lowerCamelCase = len(UpperCamelCase__ ) > 1 and is_chinese(UpperCamelCase__ )
if chinese_word:
word_set.add(UpperCamelCase__ )
__lowerCamelCase = list(UpperCamelCase__ )
return word_list
def lowerCamelCase_ ( UpperCamelCase__ : List[str] , UpperCamelCase__ : set() ) -> int:
"""simple docstring"""
if not chinese_word_set:
return bert_tokens
__lowerCamelCase = max([len(UpperCamelCase__ ) for w in chinese_word_set] )
__lowerCamelCase = bert_tokens
__lowerCamelCase , __lowerCamelCase = 0, len(UpperCamelCase__ )
while start < end:
__lowerCamelCase = True
if is_chinese(bert_word[start] ):
__lowerCamelCase = min(end - start , UpperCamelCase__ )
for i in range(UpperCamelCase__ , 1 , -1 ):
__lowerCamelCase = ''.join(bert_word[start : start + i] )
if whole_word in chinese_word_set:
for j in range(start + 1 , start + i ):
__lowerCamelCase = '##' + bert_word[j]
__lowerCamelCase = start + i
__lowerCamelCase = False
break
if single_word:
start += 1
return bert_word
def lowerCamelCase_ ( UpperCamelCase__ : List[str] , UpperCamelCase__ : LTP , UpperCamelCase__ : BertTokenizer ) -> List[str]:
"""simple docstring"""
__lowerCamelCase = []
for i in range(0 , len(UpperCamelCase__ ) , 100 ):
__lowerCamelCase = ltp_tokenizer.seg(lines[i : i + 100] )[0]
__lowerCamelCase = [get_chinese_word(UpperCamelCase__ ) for r in res]
ltp_res.extend(UpperCamelCase__ )
assert len(UpperCamelCase__ ) == len(UpperCamelCase__ )
__lowerCamelCase = []
for i in range(0 , len(UpperCamelCase__ ) , 100 ):
__lowerCamelCase = bert_tokenizer(lines[i : i + 100] , add_special_tokens=UpperCamelCase__ , truncation=UpperCamelCase__ , max_length=512 )
bert_res.extend(res['input_ids'] )
assert len(UpperCamelCase__ ) == len(UpperCamelCase__ )
__lowerCamelCase = []
for input_ids, chinese_word in zip(UpperCamelCase__ , UpperCamelCase__ ):
__lowerCamelCase = []
for id in input_ids:
__lowerCamelCase = bert_tokenizer._convert_id_to_token(UpperCamelCase__ )
input_tokens.append(UpperCamelCase__ )
__lowerCamelCase = add_sub_symbol(UpperCamelCase__ , UpperCamelCase__ )
__lowerCamelCase = []
# We only save pos of chinese subwords start with ##, which mean is part of a whole word.
for i, token in enumerate(UpperCamelCase__ ):
if token[:2] == "##":
__lowerCamelCase = token[2:]
# save chinese tokens' pos
if len(UpperCamelCase__ ) == 1 and _is_chinese_char(ord(UpperCamelCase__ ) ):
ref_id.append(UpperCamelCase__ )
ref_ids.append(UpperCamelCase__ )
assert len(UpperCamelCase__ ) == len(UpperCamelCase__ )
return ref_ids
def lowerCamelCase_ ( UpperCamelCase__ : Optional[int] ) -> int:
"""simple docstring"""
with open(args.file_name , 'r' , encoding='utf-8' ) as f:
__lowerCamelCase = f.readlines()
__lowerCamelCase = [line.strip() for line in data if len(UpperCamelCase__ ) > 0 and not line.isspace()] # avoid delimiter like '\u2029'
__lowerCamelCase = LTP(args.ltp ) # faster in GPU device
__lowerCamelCase = BertTokenizer.from_pretrained(args.bert )
__lowerCamelCase = prepare_ref(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
with open(args.save_path , 'w' , encoding='utf-8' ) as f:
__lowerCamelCase = [json.dumps(UpperCamelCase__ ) + '\n' for ref in ref_ids]
f.writelines(UpperCamelCase__ )
if __name__ == "__main__":
__A = argparse.ArgumentParser(description="prepare_chinese_ref")
parser.add_argument(
"--file_name",
type=str,
default="./resources/chinese-demo.txt",
help="file need process, same as training data in lm",
)
parser.add_argument(
"--ltp", type=str, default="./resources/ltp", help="resources for LTP tokenizer, usually a path"
)
parser.add_argument("--bert", type=str, default="./resources/robert", help="resources for Bert tokenizer")
parser.add_argument("--save_path", type=str, default="./resources/ref.txt", help="path to save res")
__A = parser.parse_args()
main(args)
| 167
| 0
|
'''simple docstring'''
import cmath
import math
def SCREAMING_SNAKE_CASE ( lowercase_ : float , lowercase_ : float , lowercase_ : float , lowercase_ : float ):
lowercase = math.radians(lowercase_ )
lowercase = math.radians(lowercase_ )
# Convert voltage and current to rectangular form
lowercase = cmath.rect(lowercase_ , lowercase_ )
lowercase = cmath.rect(lowercase_ , lowercase_ )
# Calculate apparent power
return voltage_rect * current_rect
if __name__ == "__main__":
import doctest
doctest.testmod()
| 588
|
'''simple docstring'''
import unittest
from transformers import is_tf_available
from transformers.testing_utils import require_tf
if is_tf_available():
import tensorflow as tf
from tensorflow.python.eager import context
from tensorflow.python.framework import ops
from transformers import GradientAccumulator, create_optimizer
@require_tf
class __UpperCamelCase (unittest.TestCase ):
def _a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Dict:
'''simple docstring'''
self.assertEqual(len(_lowerCAmelCase ) , len(_lowerCAmelCase ) )
for a, b in zip(_lowerCAmelCase , _lowerCAmelCase ):
self.assertAlmostEqual(_lowerCAmelCase , _lowerCAmelCase , delta=_lowerCAmelCase )
def _a ( self ) -> Optional[int]:
'''simple docstring'''
lowercase = GradientAccumulator()
accumulator([tf.constant([1.0, 2.0] )] )
accumulator([tf.constant([-2.0, 1.0] )] )
accumulator([tf.constant([-1.0, 2.0] )] )
with self.assertRaises(_lowerCAmelCase ):
accumulator([tf.constant([1.0, 1.0] ), tf.constant([2.0, 2.0] )] )
self.assertEqual(accumulator.step , 3 )
self.assertEqual(len(accumulator.gradients ) , 1 )
self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [-2.0, 5.0] , tol=1E-2 )
accumulator.reset()
self.assertEqual(accumulator.step , 0 )
self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [0.0, 0.0] , tol=1E-2 )
def _a ( self ) -> int:
'''simple docstring'''
lowercase = None
ops.enable_eager_execution_internal()
lowercase = tf.config.list_physical_devices("""CPU""" )
if len(_lowerCAmelCase ) == 1:
tf.config.set_logical_device_configuration(
physical_devices[0] , [tf.config.LogicalDeviceConfiguration(), tf.config.LogicalDeviceConfiguration()] )
lowercase = tf.config.list_logical_devices(device_type="""CPU""" )
lowercase = tf.distribute.MirroredStrategy(devices=devices[:2] )
with strategy.scope():
lowercase = GradientAccumulator()
lowercase = tf.Variable([4.0, 3.0] )
lowercase , lowercase = create_optimizer(5E-5 , 10 , 5 )
lowercase = tf.Variable([0.0, 0.0] , trainable=_lowerCAmelCase )
def accumulate_on_replica(_lowerCAmelCase ):
accumulator([gradient] )
def apply_on_replica():
optimizer.apply_gradients(list(zip(accumulator.gradients , [variable] ) ) )
@tf.function
def accumulate(_lowerCAmelCase , _lowerCAmelCase ):
with strategy.scope():
lowercase = strategy.experimental_local_results(_lowerCAmelCase )
local_variables[0].assign(_lowerCAmelCase )
local_variables[1].assign(_lowerCAmelCase )
strategy.run(_lowerCAmelCase , args=(gradient_placeholder,) )
@tf.function
def apply_grad():
with strategy.scope():
strategy.run(_lowerCAmelCase )
def _check_local_values(_lowerCAmelCase , _lowerCAmelCase ):
lowercase = strategy.experimental_local_results(accumulator._gradients[0] )
self.assertListAlmostEqual(values[0].value() , _lowerCAmelCase , tol=1E-2 )
self.assertListAlmostEqual(values[1].value() , _lowerCAmelCase , tol=1E-2 )
accumulate([1.0, 2.0] , [-1.0, 1.0] )
accumulate([3.0, -1.0] , [-1.0, -1.0] )
accumulate([-2.0, 2.0] , [3.0, -2.0] )
self.assertEqual(accumulator.step , 3 )
_check_local_values([2.0, 3.0] , [1.0, -2.0] )
apply_grad()
self.assertListAlmostEqual(variable.value() , [4.0, 3.0] , tol=1E-2 )
accumulator.reset()
self.assertEqual(accumulator.step , 0 )
_check_local_values([0.0, 0.0] , [0.0, 0.0] )
| 588
| 1
|
import argparse
from pathlib import Path
import torch
from transformers import OPTConfig, OPTModel
from transformers.utils import logging
logging.set_verbosity_info()
__lowerCamelCase = logging.get_logger(__name__)
def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE ) -> str:
"""simple docstring"""
_UpperCAmelCase = torch.load(_lowerCAmelCase , map_location="cpu" )
if "model" in sd.keys():
_UpperCAmelCase = torch.load(_lowerCAmelCase , map_location="cpu" )["model"]
# pop unnecessary weights
_UpperCAmelCase = [
"decoder.version",
"decoder.output_projection.weight",
]
for key in keys_to_delete:
if key in sd:
sd.pop(_lowerCAmelCase )
_UpperCAmelCase = {
"decoder.project_in_dim.weight": "decoder.project_in.weight",
"decoder.project_out_dim.weight": "decoder.project_out.weight",
"decoder.layer_norm.weight": "decoder.final_layer_norm.weight",
"decoder.layer_norm.bias": "decoder.final_layer_norm.bias",
}
for old_key, new_key in keys_to_rename.items():
if old_key in sd:
_UpperCAmelCase = sd.pop(_lowerCAmelCase )
_UpperCAmelCase = list(sd.keys() )
for key in keys:
if ".qkv_proj." in key:
_UpperCAmelCase = sd[key]
# We split QKV in separate Q,K,V
_UpperCAmelCase = key.replace(".qkv_proj." , ".q_proj." )
_UpperCAmelCase = key.replace(".qkv_proj." , ".k_proj." )
_UpperCAmelCase = key.replace(".qkv_proj." , ".v_proj." )
_UpperCAmelCase = value.shape[0]
assert depth % 3 == 0
# `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming:
# https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97
_UpperCAmelCase = torch.split(_lowerCAmelCase , depth // 3 , dim=0 )
_UpperCAmelCase = q
_UpperCAmelCase = k
_UpperCAmelCase = v
del sd[key]
return sd
@torch.no_grad()
def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase = load_checkpoint(_lowerCAmelCase )
if config is not None:
_UpperCAmelCase = OPTConfig.from_pretrained(_lowerCAmelCase )
else:
_UpperCAmelCase = OPTConfig()
_UpperCAmelCase = OPTModel(_lowerCAmelCase ).half().eval()
model.load_state_dict(_lowerCAmelCase )
# Check results
Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase )
model.save_pretrained(_lowerCAmelCase )
if __name__ == "__main__":
__lowerCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--fairseq_path',
type=str,
help=(
'path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:'
' https://huggingface.co/models?other=opt_metasq'
),
)
parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
parser.add_argument('--hf_config', default=None, type=str, help='Define HF config.')
__lowerCamelCase = parser.parse_args()
convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
| 711
|
import logging
import os
import random
import sys
from dataclasses import dataclass, field
from typing import Optional
import datasets
import numpy as np
import pandas as pd
from datasets import load_dataset
import transformers
from transformers import (
AutoConfig,
BartForSequenceClassification,
DataCollatorWithPadding,
EvalPrediction,
HfArgumentParser,
TapexTokenizer,
Trainer,
TrainingArguments,
default_data_collator,
set_seed,
)
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import check_min_version
from transformers.utils.versions import require_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version('4.17.0.dev0')
require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/text-classification/requirements.txt')
__lowerCamelCase = logging.getLogger(__name__)
@dataclass
class _UpperCamelCase:
__A: Optional[str] = field(
default="""tab_fact""" , metadata={"""help""": """The name of the dataset to use (via the datasets library)."""} )
__A: Optional[str] = field(
default="""tab_fact""" , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} , )
__A: int = field(
default=10_24 , metadata={
"""help""": (
"""The maximum total input sequence length after tokenization. Sequences longer """
"""than this will be truncated, sequences shorter will be padded."""
)
} , )
__A: bool = field(
default=SCREAMING_SNAKE_CASE , metadata={"""help""": """Overwrite the cached preprocessed datasets or not."""} )
__A: bool = field(
default=SCREAMING_SNAKE_CASE , metadata={
"""help""": (
"""Whether to pad all samples to `max_seq_length`. """
"""If False, will pad the samples dynamically when batching to the maximum length in the batch."""
)
} , )
__A: Optional[int] = field(
default=SCREAMING_SNAKE_CASE , metadata={
"""help""": (
"""For debugging purposes or quicker training, truncate the number of training examples to this """
"""value if set."""
)
} , )
__A: Optional[int] = field(
default=SCREAMING_SNAKE_CASE , metadata={
"""help""": (
"""For debugging purposes or quicker training, truncate the number of evaluation examples to this """
"""value if set."""
)
} , )
__A: Optional[int] = field(
default=SCREAMING_SNAKE_CASE , metadata={
"""help""": (
"""For debugging purposes or quicker training, truncate the number of prediction examples to this """
"""value if set."""
)
} , )
__A: Optional[str] = field(
default=SCREAMING_SNAKE_CASE , metadata={"""help""": """A csv or a json file containing the training data."""} )
__A: Optional[str] = field(
default=SCREAMING_SNAKE_CASE , metadata={"""help""": """A csv or a json file containing the validation data."""} )
__A: Optional[str] = field(default=SCREAMING_SNAKE_CASE , metadata={"""help""": """A csv or a json file containing the test data."""} )
def a__ ( self : List[str] ):
if self.dataset_name is not None:
pass
elif self.train_file is None or self.validation_file is None:
raise ValueError("Need either a GLUE task, a training/validation file or a dataset name." )
else:
_UpperCAmelCase : Union[str, Any] = self.train_file.split("." )[-1]
assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file."
_UpperCAmelCase : Optional[Any] = self.validation_file.split("." )[-1]
assert (
validation_extension == train_extension
), "`validation_file` should have the same extension (csv or json) as `train_file`."
@dataclass
class _UpperCamelCase:
__A: str = field(
default=SCREAMING_SNAKE_CASE , metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} )
__A: Optional[str] = field(
default=SCREAMING_SNAKE_CASE , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} )
__A: Optional[str] = field(
default=SCREAMING_SNAKE_CASE , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} )
__A: Optional[str] = field(
default=SCREAMING_SNAKE_CASE , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , )
__A: bool = field(
default=SCREAMING_SNAKE_CASE , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , )
__A: str = field(
default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , )
__A: bool = field(
default=SCREAMING_SNAKE_CASE , metadata={
"""help""": (
"""Will use the token generated when running `huggingface-cli login` (necessary to use this script """
"""with private models)."""
)
} , )
def lowerCAmelCase_ ( ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase : str = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : Optional[Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : Any = parser.parse_args_into_dataclasses()
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , )
_UpperCAmelCase : List[Any] = training_args.get_process_log_level()
logger.setLevel(_SCREAMING_SNAKE_CASE )
datasets.utils.logging.set_verbosity(_SCREAMING_SNAKE_CASE )
transformers.utils.logging.set_verbosity(_SCREAMING_SNAKE_CASE )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"""
+ F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" )
logger.info(F"""Training/evaluation parameters {training_args}""" )
# Detecting last checkpoint.
_UpperCAmelCase : List[str] = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
_UpperCAmelCase : Any = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
F"""Output directory ({training_args.output_dir}) already exists and is not empty. """
"Use --overwrite_output_dir to overcome." )
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch." )
# Set seed before initializing model.
set_seed(training_args.seed )
# Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below)
# or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub).
#
# For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table.
#
# If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this
# single column. You can easily tweak this behavior (see below)
#
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
if data_args.dataset_name is not None:
# Downloading and loading a dataset from the hub.
_UpperCAmelCase : List[Any] = load_dataset(
data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir )
else:
# Loading a dataset from your local files.
# CSV/JSON training and evaluation files are needed.
_UpperCAmelCase : Any = {"train": data_args.train_file, "validation": data_args.validation_file}
# Get the test dataset: you can provide your own CSV/JSON test file (see below)
# when you use `do_predict` without specifying a GLUE benchmark task.
if training_args.do_predict:
if data_args.test_file is not None:
_UpperCAmelCase : Optional[int] = data_args.train_file.split("." )[-1]
_UpperCAmelCase : Optional[Any] = data_args.test_file.split("." )[-1]
assert (
test_extension == train_extension
), "`test_file` should have the same extension (csv or json) as `train_file`."
_UpperCAmelCase : Tuple = data_args.test_file
else:
raise ValueError("Need either a GLUE task or a test file for `do_predict`." )
for key in data_files.keys():
logger.info(F"""load a local file for {key}: {data_files[key]}""" )
if data_args.train_file.endswith(".csv" ):
# Loading a dataset from local csv files
_UpperCAmelCase : Tuple = load_dataset("csv" , data_files=_SCREAMING_SNAKE_CASE , cache_dir=model_args.cache_dir )
else:
# Loading a dataset from local json files
_UpperCAmelCase : List[str] = load_dataset("json" , data_files=_SCREAMING_SNAKE_CASE , cache_dir=model_args.cache_dir )
# See more about loading any type of standard or custom dataset at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# Labels
_UpperCAmelCase : Tuple = raw_datasets["train"].features["label"].names
_UpperCAmelCase : Union[str, Any] = len(_SCREAMING_SNAKE_CASE )
# Load pretrained model and tokenizer
#
# In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
_UpperCAmelCase : Union[str, Any] = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_SCREAMING_SNAKE_CASE , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
# load tapex tokenizer
_UpperCAmelCase : List[Any] = TapexTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=_SCREAMING_SNAKE_CASE , )
_UpperCAmelCase : List[Any] = BartForSequenceClassification.from_pretrained(
model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=_SCREAMING_SNAKE_CASE , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
# Padding strategy
if data_args.pad_to_max_length:
_UpperCAmelCase : Optional[int] = "max_length"
else:
# We will pad later, dynamically at batch creation, to the max sequence length in each batch
_UpperCAmelCase : Union[str, Any] = False
# Some models have set the order of the labels to use, so let's make sure we do use it.
_UpperCAmelCase : Tuple = {"Refused": 0, "Entailed": 1}
_UpperCAmelCase : Union[str, Any] = {0: "Refused", 1: "Entailed"}
if data_args.max_seq_length > tokenizer.model_max_length:
logger.warning(
F"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the"""
F"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" )
_UpperCAmelCase : Dict = min(data_args.max_seq_length , tokenizer.model_max_length )
def preprocess_tabfact_function(_SCREAMING_SNAKE_CASE ):
# Tokenize the texts
def _convert_table_text_to_pandas(_SCREAMING_SNAKE_CASE ):
_UpperCAmelCase : Union[str, Any] = [_table_row.split("#" ) for _table_row in _table_text.strip("\n" ).split("\n" )]
_UpperCAmelCase : Dict = pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] )
return _table_pd
_UpperCAmelCase : List[str] = examples["statement"]
_UpperCAmelCase : int = list(map(_convert_table_text_to_pandas , examples["table_text"] ) )
_UpperCAmelCase : Dict = tokenizer(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE , truncation=_SCREAMING_SNAKE_CASE )
_UpperCAmelCase : List[str] = examples["label"]
return result
with training_args.main_process_first(desc="dataset map pre-processing" ):
_UpperCAmelCase : Any = raw_datasets.map(
_SCREAMING_SNAKE_CASE , batched=_SCREAMING_SNAKE_CASE , load_from_cache_file=not data_args.overwrite_cache , desc="Running tokenizer on dataset" , )
if training_args.do_train:
if "train" not in raw_datasets:
raise ValueError("--do_train requires a train dataset" )
_UpperCAmelCase : Tuple = raw_datasets["train"]
if data_args.max_train_samples is not None:
_UpperCAmelCase : Any = train_dataset.select(range(data_args.max_train_samples ) )
if training_args.do_eval:
if "validation" not in raw_datasets and "validation_matched" not in raw_datasets:
raise ValueError("--do_eval requires a validation dataset" )
_UpperCAmelCase : Tuple = raw_datasets["validation"]
if data_args.max_eval_samples is not None:
_UpperCAmelCase : Optional[int] = eval_dataset.select(range(data_args.max_eval_samples ) )
if training_args.do_predict or data_args.test_file is not None:
if "test" not in raw_datasets and "test_matched" not in raw_datasets:
raise ValueError("--do_predict requires a test dataset" )
_UpperCAmelCase : List[str] = raw_datasets["test"]
if data_args.max_predict_samples is not None:
_UpperCAmelCase : str = predict_dataset.select(range(data_args.max_predict_samples ) )
# Log a few random samples from the training set:
if training_args.do_train:
for index in random.sample(range(len(_SCREAMING_SNAKE_CASE ) ) , 3 ):
logger.info(F"""Sample {index} of the training set: {train_dataset[index]}.""" )
# You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a
# predictions and label_ids field) and has to return a dictionary string to float.
def compute_metrics(_SCREAMING_SNAKE_CASE ):
_UpperCAmelCase : Dict = p.predictions[0] if isinstance(p.predictions , _SCREAMING_SNAKE_CASE ) else p.predictions
_UpperCAmelCase : Tuple = np.argmax(_SCREAMING_SNAKE_CASE , axis=1 )
return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()}
# Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding.
if data_args.pad_to_max_length:
_UpperCAmelCase : List[str] = default_data_collator
elif training_args.fpaa:
_UpperCAmelCase : Dict = DataCollatorWithPadding(_SCREAMING_SNAKE_CASE , pad_to_multiple_of=8 )
else:
_UpperCAmelCase : List[Any] = None
# Initialize our Trainer
_UpperCAmelCase : Union[str, Any] = Trainer(
model=_SCREAMING_SNAKE_CASE , args=_SCREAMING_SNAKE_CASE , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE , data_collator=_SCREAMING_SNAKE_CASE , )
# Training
if training_args.do_train:
_UpperCAmelCase : Optional[Any] = None
if training_args.resume_from_checkpoint is not None:
_UpperCAmelCase : str = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
_UpperCAmelCase : int = last_checkpoint
_UpperCAmelCase : List[Any] = trainer.train(resume_from_checkpoint=_SCREAMING_SNAKE_CASE )
_UpperCAmelCase : Union[str, Any] = train_result.metrics
_UpperCAmelCase : List[Any] = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(_SCREAMING_SNAKE_CASE )
)
_UpperCAmelCase : Tuple = min(_SCREAMING_SNAKE_CASE , len(_SCREAMING_SNAKE_CASE ) )
trainer.save_model() # Saves the tokenizer too for easy upload
trainer.log_metrics("train" , _SCREAMING_SNAKE_CASE )
trainer.save_metrics("train" , _SCREAMING_SNAKE_CASE )
trainer.save_state()
# Evaluation
if training_args.do_eval:
logger.info("*** Evaluate ***" )
_UpperCAmelCase : List[str] = trainer.evaluate(eval_dataset=_SCREAMING_SNAKE_CASE )
_UpperCAmelCase : Dict = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase : Any = min(_SCREAMING_SNAKE_CASE , len(_SCREAMING_SNAKE_CASE ) )
trainer.log_metrics("eval" , _SCREAMING_SNAKE_CASE )
trainer.save_metrics("eval" , _SCREAMING_SNAKE_CASE )
if training_args.do_predict:
logger.info("*** Predict ***" )
# Removing the `label` columns because it contains -1 and Trainer won't like that.
_UpperCAmelCase : int = predict_dataset.remove_columns("label" )
_UpperCAmelCase : Union[str, Any] = trainer.predict(_SCREAMING_SNAKE_CASE , metric_key_prefix="predict" ).predictions
_UpperCAmelCase : List[str] = np.argmax(_SCREAMING_SNAKE_CASE , axis=1 )
_UpperCAmelCase : Union[str, Any] = os.path.join(training_args.output_dir , "predict_results_tabfact.txt" )
if trainer.is_world_process_zero():
with open(_SCREAMING_SNAKE_CASE , "w" ) as writer:
logger.info("***** Predict Results *****" )
writer.write("index\tprediction\n" )
for index, item in enumerate(_SCREAMING_SNAKE_CASE ):
_UpperCAmelCase : Union[str, Any] = label_list[item]
writer.write(F"""{index}\t{item}\n""" )
_UpperCAmelCase : Tuple = {"finetuned_from": model_args.model_name_or_path, "tasks": "text-classification"}
if training_args.push_to_hub:
trainer.push_to_hub(**_SCREAMING_SNAKE_CASE )
else:
trainer.create_model_card(**_SCREAMING_SNAKE_CASE )
def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE ) -> Dict:
"""simple docstring"""
main()
if __name__ == "__main__":
main()
| 328
| 0
|
def __a ( lowerCAmelCase_ : str ) -> Dict:
'''simple docstring'''
if not nums: # Makes sure that the list is not empty
raise ValueError("""List is empty""" )
UpperCAmelCase_= sum(lowerCamelCase_ ) / len(lowerCamelCase_ ) # Calculate the average
return sum(abs(x - average ) for x in nums ) / len(lowerCamelCase_ )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 593
|
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
A : Optional[Any] = {
"""configuration_megatron_bert""": ["""MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MegatronBertConfig"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A : Any = [
"""MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""MegatronBertForCausalLM""",
"""MegatronBertForMaskedLM""",
"""MegatronBertForMultipleChoice""",
"""MegatronBertForNextSentencePrediction""",
"""MegatronBertForPreTraining""",
"""MegatronBertForQuestionAnswering""",
"""MegatronBertForSequenceClassification""",
"""MegatronBertForTokenClassification""",
"""MegatronBertModel""",
"""MegatronBertPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_megatron_bert import (
MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
MegatronBertForCausalLM,
MegatronBertForMaskedLM,
MegatronBertForMultipleChoice,
MegatronBertForNextSentencePrediction,
MegatronBertForPreTraining,
MegatronBertForQuestionAnswering,
MegatronBertForSequenceClassification,
MegatronBertForTokenClassification,
MegatronBertModel,
MegatronBertPreTrainedModel,
)
else:
import sys
A : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 349
| 0
|
'''simple docstring'''
import os
import tempfile
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch
if is_torch_available():
import torch
from torch import nn
from transformers import (
Adafactor,
AdamW,
get_constant_schedule,
get_constant_schedule_with_warmup,
get_cosine_schedule_with_warmup,
get_cosine_with_hard_restarts_schedule_with_warmup,
get_inverse_sqrt_schedule,
get_linear_schedule_with_warmup,
get_polynomial_decay_schedule_with_warmup,
)
def _UpperCAmelCase ( a : Tuple , a : Union[str, Any]=1_0 ) -> List[str]:
"""simple docstring"""
lowercase_ : int = []
for _ in range(a ):
lrs.append(scheduler.get_lr()[0] )
scheduler.step()
return lrs
def _UpperCAmelCase ( a : List[Any] , a : Union[str, Any]=1_0 ) -> Optional[int]:
"""simple docstring"""
lowercase_ : Optional[Any] = []
for step in range(a ):
lrs.append(scheduler.get_lr()[0] )
scheduler.step()
if step == num_steps // 2:
with tempfile.TemporaryDirectory() as tmpdirname:
lowercase_ : Dict = os.path.join(a , 'schedule.bin' )
torch.save(scheduler.state_dict() , a )
lowercase_ : Tuple = torch.load(a )
scheduler.load_state_dict(a )
return lrs
@require_torch
class __magic_name__ ( unittest.TestCase ):
"""simple docstring"""
def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase ) -> Optional[Any]:
self.assertEqual(len(_lowercase ) , len(_lowercase ) )
for a, b in zip(_lowercase , _lowercase ):
self.assertAlmostEqual(_lowercase , _lowercase , delta=_lowercase )
def lowerCamelCase__ ( self ) -> int:
lowercase_ : int = torch.tensor([0.1, -0.2, -0.1] , requires_grad=_lowercase )
lowercase_ : List[Any] = torch.tensor([0.4, 0.2, -0.5] )
lowercase_ : List[Any] = nn.MSELoss()
# No warmup, constant schedule, no gradient clipping
lowercase_ : int = AdamW(params=[w] , lr=2E-1 , weight_decay=0.0 )
for _ in range(100 ):
lowercase_ : Optional[Any] = criterion(_lowercase , _lowercase )
loss.backward()
optimizer.step()
w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves.
w.grad.zero_()
self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 )
def lowerCamelCase__ ( self ) -> Dict:
lowercase_ : List[Any] = torch.tensor([0.1, -0.2, -0.1] , requires_grad=_lowercase )
lowercase_ : Optional[Any] = torch.tensor([0.4, 0.2, -0.5] )
lowercase_ : Dict = nn.MSELoss()
# No warmup, constant schedule, no gradient clipping
lowercase_ : Optional[Any] = Adafactor(
params=[w] , lr=1E-2 , eps=(1E-3_0, 1E-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=_lowercase , weight_decay=0.0 , relative_step=_lowercase , scale_parameter=_lowercase , warmup_init=_lowercase , )
for _ in range(1000 ):
lowercase_ : str = criterion(_lowercase , _lowercase )
loss.backward()
optimizer.step()
w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves.
w.grad.zero_()
self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 )
@require_torch
class __magic_name__ ( unittest.TestCase ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Optional[int] = nn.Linear(5_0, 5_0 ) if is_torch_available() else None
SCREAMING_SNAKE_CASE_ : Optional[Any] = AdamW(m.parameters(), lr=10.0 ) if is_torch_available() else None
SCREAMING_SNAKE_CASE_ : Optional[Any] = 1_0
def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase=None ) -> Union[str, Any]:
self.assertEqual(len(_lowercase ) , len(_lowercase ) )
for a, b in zip(_lowercase , _lowercase ):
self.assertAlmostEqual(_lowercase , _lowercase , delta=_lowercase , msg=_lowercase )
def lowerCamelCase__ ( self ) -> int:
lowercase_ : int = {'num_warmup_steps': 2, 'num_training_steps': 10}
# schedulers doct format
# function: (sched_args_dict, expected_learning_rates)
lowercase_ : Dict = {
get_constant_schedule: ({}, [10.0] * self.num_steps),
get_constant_schedule_with_warmup: (
{'num_warmup_steps': 4},
[0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0],
),
get_linear_schedule_with_warmup: (
{**common_kwargs},
[0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25],
),
get_cosine_schedule_with_warmup: (
{**common_kwargs},
[0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38],
),
get_cosine_with_hard_restarts_schedule_with_warmup: (
{**common_kwargs, 'num_cycles': 2},
[0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46],
),
get_polynomial_decay_schedule_with_warmup: (
{**common_kwargs, 'power': 2.0, 'lr_end': 1E-7},
[0.0, 5.0, 10.0, 7.6_56, 5.6_25, 3.9_06, 2.5, 1.4_06, 0.6_25, 0.1_56],
),
get_inverse_sqrt_schedule: (
{'num_warmup_steps': 2},
[0.0, 5.0, 10.0, 8.1_65, 7.0_71, 6.3_25, 5.7_74, 5.3_45, 5.0, 4.7_14],
),
}
for scheduler_func, data in scheds.items():
lowercase_ : Union[str, Any] = data
lowercase_ : Tuple = scheduler_func(self.optimizer , **_lowercase )
self.assertEqual(len([scheduler.get_lr()[0]] ) , 1 )
lowercase_ : Union[str, Any] = unwrap_schedule(_lowercase , self.num_steps )
self.assertListAlmostEqual(
_lowercase , _lowercase , tol=1E-2 , msg=f"failed for {scheduler_func} in normal scheduler" , )
lowercase_ : int = scheduler_func(self.optimizer , **_lowercase )
if scheduler_func.__name__ != "get_constant_schedule":
LambdaScheduleWrapper.wrap_scheduler(_lowercase ) # wrap to test picklability of the schedule
lowercase_ : List[Any] = unwrap_and_save_reload_schedule(_lowercase , self.num_steps )
self.assertListEqual(_lowercase , _lowercase , msg=f"failed for {scheduler_func} in save and reload" )
class __magic_name__ :
"""simple docstring"""
def __init__( self , _lowercase ) -> int:
lowercase_ : Dict = fn
def __call__( self , *_lowercase , **_lowercase ) -> List[str]:
return self.fn(*_lowercase , **_lowercase )
@classmethod
def lowerCamelCase__ ( self , _lowercase ) -> Union[str, Any]:
lowercase_ : Union[str, Any] = list(map(self , scheduler.lr_lambdas ) )
| 718
|
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
A: Dict = logging.get_logger(__name__)
A: Optional[Any] = {
"google/vit-base-patch16-224": "https://huggingface.co/vit-base-patch16-224/resolve/main/config.json",
# See all ViT models at https://huggingface.co/models?filter=vit
}
class __magic_name__ ( UpperCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Optional[Any] = 'vit'
def __init__( self , _lowercase=768 , _lowercase=12 , _lowercase=12 , _lowercase=3072 , _lowercase="gelu" , _lowercase=0.0 , _lowercase=0.0 , _lowercase=0.02 , _lowercase=1E-1_2 , _lowercase=224 , _lowercase=16 , _lowercase=3 , _lowercase=True , _lowercase=16 , **_lowercase , ) -> List[str]:
super().__init__(**_lowercase )
lowercase_ : Optional[int] = hidden_size
lowercase_ : str = num_hidden_layers
lowercase_ : str = num_attention_heads
lowercase_ : int = intermediate_size
lowercase_ : List[Any] = hidden_act
lowercase_ : Any = hidden_dropout_prob
lowercase_ : List[str] = attention_probs_dropout_prob
lowercase_ : str = initializer_range
lowercase_ : List[str] = layer_norm_eps
lowercase_ : Any = image_size
lowercase_ : Tuple = patch_size
lowercase_ : Optional[Any] = num_channels
lowercase_ : str = qkv_bias
lowercase_ : List[str] = encoder_stride
class __magic_name__ ( UpperCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Any = version.parse('1.11' )
@property
def lowerCamelCase__ ( self ) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}),
] )
@property
def lowerCamelCase__ ( self ) -> float:
return 1E-4
| 7
| 0
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.