code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import argparse import json import os import tensorstore as ts import torch from flax import serialization from flax.traverse_util import flatten_dict, unflatten_dict from tensorflow.io import gfile from transformers.modeling_utils import dtype_byte_size from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import ( rename_keys, ) from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME from transformers.utils.hub import convert_file_size_to_int def _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case ) -> Tuple: if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3: # expert layer _UpperCAmelCase = flax_key_tuple[:-1] + ("""weight""",) _UpperCAmelCase = torch.permute(__snake_case , (0, 2, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(__snake_case ): # linear layer _UpperCAmelCase = flax_key_tuple[:-1] + ("""weight""",) _UpperCAmelCase = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: _UpperCAmelCase = flax_key_tuple[:-1] + ("""weight""",) return flax_key_tuple, flax_tensor def _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case , __snake_case ) -> List[str]: if "metadata" in layer: _UpperCAmelCase = layer.split("""metadata""" ) _UpperCAmelCase = """""".join(split_layer[0] )[:-1] _UpperCAmelCase = [tuple(("""metadata""" + split_layer[1]).split("""/""" ) )] elif "kvstore" in layer: _UpperCAmelCase = layer.split("""kvstore""" ) _UpperCAmelCase = """""".join(split_layer[0] )[:-1] _UpperCAmelCase = [tuple(("""kvstore""" + split_layer[1]).split("""/""" ) )] else: _UpperCAmelCase = layer.split("""/""" ) _UpperCAmelCase = """/""".join(split_layer[:-1] ) _UpperCAmelCase = (split_layer[-1],) if "kvstore/path" in layer: _UpperCAmelCase = f"""{switch_checkpoint_path}/{checkpoint_info[layer]}""" elif "kvstore/driver" in layer: _UpperCAmelCase = """file""" else: _UpperCAmelCase = checkpoint_info[layer] return curr_real_layer_name, split_layer, content def _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case ) -> Optional[Any]: _UpperCAmelCase = rename_keys(__snake_case ) _UpperCAmelCase = {} for k, v in current_block.items(): _UpperCAmelCase = v _UpperCAmelCase = new_current_block torch.save(__snake_case , __snake_case ) def _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case = WEIGHTS_NAME ) -> Any: _UpperCAmelCase = convert_file_size_to_int(__snake_case ) _UpperCAmelCase = [] _UpperCAmelCase = {} _UpperCAmelCase = 0 _UpperCAmelCase = 0 os.makedirs(__snake_case , exist_ok=__snake_case ) with gfile.GFile(switch_checkpoint_path + """/checkpoint""" , """rb""" ) as fp: _UpperCAmelCase = serialization.msgpack_restore(fp.read() )["""optimizer"""]["""target"""] _UpperCAmelCase = flatten_dict(__snake_case , sep="""/""" ) _UpperCAmelCase = {} for layer in checkpoint_info.keys(): _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = get_key_and_tensorstore_dict( __snake_case , __snake_case , __snake_case ) if curr_real_layer_name in all_layers: _UpperCAmelCase = content else: _UpperCAmelCase = {split_layer[-1]: content} for key in all_layers.keys(): # open tensorstore file _UpperCAmelCase = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result() _UpperCAmelCase = torch.tensor(__snake_case ) _UpperCAmelCase = raw_weights.numel() * dtype_byte_size(raw_weights.dtype ) # use the renaming pattern from the small conversion scripts _UpperCAmelCase , _UpperCAmelCase = rename_base_flax_keys(tuple(key.split("""/""" ) ) , __snake_case ) _UpperCAmelCase = """/""".join(__snake_case ) # If this weight is going to tip up over the maximal size, we split. if current_block_size + weight_size > max_shard_size: _UpperCAmelCase = os.path.join( __snake_case , weights_name.replace(""".bin""" , f"""-{len(__snake_case )+1:05d}-of-???.bin""" ) ) rename_and_save_block(__snake_case , __snake_case ) sharded_state_dicts.append(current_block.keys() ) del current_block _UpperCAmelCase = {} _UpperCAmelCase = 0 _UpperCAmelCase = raw_weights.to(getattr(__snake_case , __snake_case ) ) current_block_size += weight_size total_size += weight_size # Add the last block _UpperCAmelCase = os.path.join(__snake_case , weights_name.replace(""".bin""" , f"""-{len(__snake_case )+1:05d}-of-???.bin""" ) ) rename_and_save_block(__snake_case , __snake_case ) sharded_state_dicts.append(current_block.keys() ) # If we only have one shard, we return it if len(__snake_case ) == 1: return {weights_name: sharded_state_dicts[0]}, None # Otherwise, let's build the index _UpperCAmelCase = {} _UpperCAmelCase = {} for idx, shard in enumerate(__snake_case ): _UpperCAmelCase = weights_name.replace( """.bin""" , f"""-{idx+1:05d}-of-{len(__snake_case ):05d}.bin""" ) # len(sharded_state_dicts):05d} _UpperCAmelCase = os.path.join(__snake_case , weights_name.replace(""".bin""" , f"""-{idx+1:05d}-of-???.bin""" ) ) os.rename(__snake_case , os.path.join(__snake_case , __snake_case ) ) _UpperCAmelCase = shard for key in shard: _UpperCAmelCase = shard_file # Add the metadata _UpperCAmelCase = {"""total_size""": total_size} _UpperCAmelCase = {"""metadata""": metadata, """weight_map""": weight_map} with open(os.path.join(__snake_case , __snake_case ) , """w""" , encoding="""utf-8""" ) as f: _UpperCAmelCase = json.dumps(__snake_case , indent=2 , sort_keys=__snake_case ) + """\n""" f.write(__snake_case ) return metadata, index if __name__ == "__main__": __a: Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--switch_t5x_checkpoint_path''', default='''/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600''', type=str, required=False, help='''Path to a directory containing a folder per layer. Follows the original Google format.''', ) parser.add_argument('''--max_shard_size''', default='''10GB''', required=False, help='''Max shard size''') parser.add_argument('''--dtype''', default='''bfloat16''', type=str, required=False, help='''dtype of the saved model''') parser.add_argument( '''--pytorch_dump_folder_path''', default='''/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted''', type=str, required=False, help='''Path to the output pytorch model.''', ) __a: int = parser.parse_args() shard_on_the_fly( args.switch_tax_checkpoint_path, args.pytorch_dump_folder_path, args.max_shard_size, args.dtype, ) def _SCREAMING_SNAKE_CASE ( ) -> Optional[int]: from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer _UpperCAmelCase = SwitchTransformersConfig.from_pretrained("""google/switch-base-8""" ) config.save_pretrained("""/home/arthur_huggingface_co/transformers/switch_converted""" ) _UpperCAmelCase = SwitchTransformersForConditionalGeneration.from_pretrained( """/home/arthur_huggingface_co/transformers/switch_converted""" , device_map="""auto""" ) _UpperCAmelCase = TaTokenizer.from_pretrained("""t5-small""" ) _UpperCAmelCase = """A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.""" _UpperCAmelCase = tokenizer(__snake_case , return_tensors="""pt""" ).input_ids _UpperCAmelCase = model.generate(__snake_case , decoder_start_token_id=0 ) print(tokenizer.decode(out[0] ) )
108
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' @slow def lowerCamelCase ( self : List[str] ) -> int: """simple docstring""" _UpperCAmelCase = XLMRobertaModel.from_pretrained("""xlm-roberta-base""" ) _UpperCAmelCase = torch.tensor([[0, 581, 1_0269, 83, 9_9942, 136, 6_0742, 23, 70, 8_0583, 1_8276, 2]] ) # The dog is cute and lives in the garden house _UpperCAmelCase = torch.Size((1, 12, 768) ) # batch_size, sequence_length, embedding_vector_dim _UpperCAmelCase = torch.tensor( [[-0.0101, 0.1218, -0.0803, 0.0801, 0.1327, 0.0776, -0.1215, 0.2383, 0.3338, 0.3106, 0.0300, 0.0252]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): _UpperCAmelCase = model(lowerCamelCase )["""last_hidden_state"""].detach() self.assertEqual(output.shape , lowerCamelCase ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , lowerCamelCase , atol=1E-3 ) ) @slow def lowerCamelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = XLMRobertaModel.from_pretrained("""xlm-roberta-large""" ) _UpperCAmelCase = torch.tensor([[0, 581, 1_0269, 83, 9_9942, 136, 6_0742, 23, 70, 8_0583, 1_8276, 2]] ) # The dog is cute and lives in the garden house _UpperCAmelCase = torch.Size((1, 12, 1024) ) # batch_size, sequence_length, embedding_vector_dim _UpperCAmelCase = torch.tensor( [[-0.0699, -0.0318, 0.0705, -0.1241, 0.0999, -0.0520, 0.1004, -0.1838, -0.4704, 0.1437, 0.0821, 0.0126]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): _UpperCAmelCase = model(lowerCamelCase )["""last_hidden_state"""].detach() self.assertEqual(output.shape , lowerCamelCase ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , lowerCamelCase , atol=1E-3 ) )
108
1
"""simple docstring""" import gc import unittest import numpy as np import torch import torch.nn.functional as F from transformers import ( ClapTextConfig, ClapTextModelWithProjection, RobertaTokenizer, SpeechTaHifiGan, SpeechTaHifiGanConfig, ) from diffusers import ( AudioLDMPipeline, AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_AUDIO_BATCH_PARAMS, TEXT_TO_AUDIO_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class SCREAMING_SNAKE_CASE__ ( _a , unittest.TestCase ): _a = AudioLDMPipeline _a = TEXT_TO_AUDIO_PARAMS _a = TEXT_TO_AUDIO_BATCH_PARAMS _a = frozenset( [ 'num_inference_steps', 'num_waveforms_per_prompt', 'generator', 'latents', 'output_type', 'return_dict', 'callback', 'callback_steps', ] ) def __lowercase ( self : Optional[int] ): torch.manual_seed(0 ) lowerCAmelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=(32, 64) , class_embed_type="""simple_projection""" , projection_class_embeddings_input_dim=32 , class_embeddings_concat=lowerCAmelCase , ) lowerCAmelCase = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=lowerCAmelCase , set_alpha_to_one=lowerCAmelCase , ) torch.manual_seed(0 ) lowerCAmelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=1 , out_channels=1 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) lowerCAmelCase = ClapTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , projection_dim=32 , ) lowerCAmelCase = ClapTextModelWithProjection(lowerCAmelCase ) lowerCAmelCase = RobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-random-roberta""" , model_max_length=77 ) lowerCAmelCase = SpeechTaHifiGanConfig( model_in_dim=8 , sampling_rate=1_6000 , upsample_initial_channel=16 , upsample_rates=[2, 2] , upsample_kernel_sizes=[4, 4] , resblock_kernel_sizes=[3, 7] , resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5]] , normalize_before=lowerCAmelCase , ) lowerCAmelCase = SpeechTaHifiGan(lowerCAmelCase ) lowerCAmelCase = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """vocoder""": vocoder, } return components def __lowercase ( self : Optional[int] , lowerCAmelCase : Tuple , lowerCAmelCase : Union[str, Any]=0 ): if str(lowerCAmelCase ).startswith("""mps""" ): lowerCAmelCase = torch.manual_seed(lowerCAmelCase ) else: lowerCAmelCase = torch.Generator(device=lowerCAmelCase ).manual_seed(lowerCAmelCase ) lowerCAmelCase = { """prompt""": """A hammer hitting a wooden surface""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, } return inputs def __lowercase ( self : Optional[int] ): lowerCAmelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator lowerCAmelCase = self.get_dummy_components() lowerCAmelCase = AudioLDMPipeline(**lowerCAmelCase ) lowerCAmelCase = audioldm_pipe.to(lowerCAmelCase ) audioldm_pipe.set_progress_bar_config(disable=lowerCAmelCase ) lowerCAmelCase = self.get_dummy_inputs(lowerCAmelCase ) lowerCAmelCase = audioldm_pipe(**lowerCAmelCase ) lowerCAmelCase = output.audios[0] assert audio.ndim == 1 assert len(lowerCAmelCase ) == 256 lowerCAmelCase = audio[:10] lowerCAmelCase = np.array( [-0.0050, 0.0050, -0.0060, 0.0033, -0.0026, 0.0033, -0.0027, 0.0033, -0.0028, 0.0033] ) assert np.abs(audio_slice - expected_slice ).max() < 1e-2 def __lowercase ( self : Tuple ): lowerCAmelCase = self.get_dummy_components() lowerCAmelCase = AudioLDMPipeline(**lowerCAmelCase ) lowerCAmelCase = audioldm_pipe.to(lowerCAmelCase ) lowerCAmelCase = audioldm_pipe.to(lowerCAmelCase ) audioldm_pipe.set_progress_bar_config(disable=lowerCAmelCase ) lowerCAmelCase = self.get_dummy_inputs(lowerCAmelCase ) lowerCAmelCase = 3 * [inputs["""prompt"""]] # forward lowerCAmelCase = audioldm_pipe(**lowerCAmelCase ) lowerCAmelCase = output.audios[0] lowerCAmelCase = self.get_dummy_inputs(lowerCAmelCase ) lowerCAmelCase = 3 * [inputs.pop("""prompt""" )] lowerCAmelCase = audioldm_pipe.tokenizer( lowerCAmelCase , padding="""max_length""" , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=lowerCAmelCase , return_tensors="""pt""" , ) lowerCAmelCase = text_inputs["""input_ids"""].to(lowerCAmelCase ) lowerCAmelCase = audioldm_pipe.text_encoder( lowerCAmelCase , ) lowerCAmelCase = prompt_embeds.text_embeds # additional L_2 normalization over each hidden-state lowerCAmelCase = F.normalize(lowerCAmelCase , dim=-1 ) lowerCAmelCase = prompt_embeds # forward lowerCAmelCase = audioldm_pipe(**lowerCAmelCase ) lowerCAmelCase = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1e-2 def __lowercase ( self : List[Any] ): lowerCAmelCase = self.get_dummy_components() lowerCAmelCase = AudioLDMPipeline(**lowerCAmelCase ) lowerCAmelCase = audioldm_pipe.to(lowerCAmelCase ) lowerCAmelCase = audioldm_pipe.to(lowerCAmelCase ) audioldm_pipe.set_progress_bar_config(disable=lowerCAmelCase ) lowerCAmelCase = self.get_dummy_inputs(lowerCAmelCase ) lowerCAmelCase = 3 * ["""this is a negative prompt"""] lowerCAmelCase = negative_prompt lowerCAmelCase = 3 * [inputs["""prompt"""]] # forward lowerCAmelCase = audioldm_pipe(**lowerCAmelCase ) lowerCAmelCase = output.audios[0] lowerCAmelCase = self.get_dummy_inputs(lowerCAmelCase ) lowerCAmelCase = 3 * [inputs.pop("""prompt""" )] lowerCAmelCase = [] for p in [prompt, negative_prompt]: lowerCAmelCase = audioldm_pipe.tokenizer( lowerCAmelCase , padding="""max_length""" , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=lowerCAmelCase , return_tensors="""pt""" , ) lowerCAmelCase = text_inputs["""input_ids"""].to(lowerCAmelCase ) lowerCAmelCase = audioldm_pipe.text_encoder( lowerCAmelCase , ) lowerCAmelCase = text_embeds.text_embeds # additional L_2 normalization over each hidden-state lowerCAmelCase = F.normalize(lowerCAmelCase , dim=-1 ) embeds.append(lowerCAmelCase ) lowerCAmelCase , lowerCAmelCase = embeds # forward lowerCAmelCase = audioldm_pipe(**lowerCAmelCase ) lowerCAmelCase = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1e-2 def __lowercase ( self : str ): lowerCAmelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator lowerCAmelCase = self.get_dummy_components() lowerCAmelCase = PNDMScheduler(skip_prk_steps=lowerCAmelCase ) lowerCAmelCase = AudioLDMPipeline(**lowerCAmelCase ) lowerCAmelCase = audioldm_pipe.to(lowerCAmelCase ) audioldm_pipe.set_progress_bar_config(disable=lowerCAmelCase ) lowerCAmelCase = self.get_dummy_inputs(lowerCAmelCase ) lowerCAmelCase = """egg cracking""" lowerCAmelCase = audioldm_pipe(**lowerCAmelCase , negative_prompt=lowerCAmelCase ) lowerCAmelCase = output.audios[0] assert audio.ndim == 1 assert len(lowerCAmelCase ) == 256 lowerCAmelCase = audio[:10] lowerCAmelCase = np.array( [-0.0051, 0.0050, -0.0060, 0.0034, -0.0026, 0.0033, -0.0027, 0.0033, -0.0028, 0.0032] ) assert np.abs(audio_slice - expected_slice ).max() < 1e-2 def __lowercase ( self : int ): lowerCAmelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator lowerCAmelCase = self.get_dummy_components() lowerCAmelCase = PNDMScheduler(skip_prk_steps=lowerCAmelCase ) lowerCAmelCase = AudioLDMPipeline(**lowerCAmelCase ) lowerCAmelCase = audioldm_pipe.to(lowerCAmelCase ) audioldm_pipe.set_progress_bar_config(disable=lowerCAmelCase ) lowerCAmelCase = """A hammer hitting a wooden surface""" # test num_waveforms_per_prompt=1 (default) lowerCAmelCase = audioldm_pipe(lowerCAmelCase , num_inference_steps=2 ).audios assert audios.shape == (1, 256) # test num_waveforms_per_prompt=1 (default) for batch of prompts lowerCAmelCase = 2 lowerCAmelCase = audioldm_pipe([prompt] * batch_size , num_inference_steps=2 ).audios assert audios.shape == (batch_size, 256) # test num_waveforms_per_prompt for single prompt lowerCAmelCase = 2 lowerCAmelCase = audioldm_pipe(lowerCAmelCase , num_inference_steps=2 , num_waveforms_per_prompt=lowerCAmelCase ).audios assert audios.shape == (num_waveforms_per_prompt, 256) # test num_waveforms_per_prompt for batch of prompts lowerCAmelCase = 2 lowerCAmelCase = audioldm_pipe( [prompt] * batch_size , num_inference_steps=2 , num_waveforms_per_prompt=lowerCAmelCase ).audios assert audios.shape == (batch_size * num_waveforms_per_prompt, 256) def __lowercase ( self : Optional[Any] ): lowerCAmelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator lowerCAmelCase = self.get_dummy_components() lowerCAmelCase = AudioLDMPipeline(**lowerCAmelCase ) lowerCAmelCase = audioldm_pipe.to(lowerCAmelCase ) audioldm_pipe.set_progress_bar_config(disable=lowerCAmelCase ) lowerCAmelCase = audioldm_pipe.vocoder.config.sampling_rate lowerCAmelCase = self.get_dummy_inputs(lowerCAmelCase ) lowerCAmelCase = audioldm_pipe(audio_length_in_s=0.016 , **lowerCAmelCase ) lowerCAmelCase = output.audios[0] assert audio.ndim == 1 assert len(lowerCAmelCase ) / vocoder_sampling_rate == 0.016 lowerCAmelCase = audioldm_pipe(audio_length_in_s=0.032 , **lowerCAmelCase ) lowerCAmelCase = output.audios[0] assert audio.ndim == 1 assert len(lowerCAmelCase ) / vocoder_sampling_rate == 0.032 def __lowercase ( self : Any ): lowerCAmelCase = self.get_dummy_components() lowerCAmelCase = AudioLDMPipeline(**lowerCAmelCase ) lowerCAmelCase = audioldm_pipe.to(lowerCAmelCase ) audioldm_pipe.set_progress_bar_config(disable=lowerCAmelCase ) lowerCAmelCase = ["""hey"""] lowerCAmelCase = audioldm_pipe(lowerCAmelCase , num_inference_steps=1 ) lowerCAmelCase = output.audios.shape assert audio_shape == (1, 256) lowerCAmelCase = audioldm_pipe.vocoder.config config.model_in_dim *= 2 lowerCAmelCase = SpeechTaHifiGan(lowerCAmelCase ).to(lowerCAmelCase ) lowerCAmelCase = audioldm_pipe(lowerCAmelCase , num_inference_steps=1 ) lowerCAmelCase = output.audios.shape # waveform shape is unchanged, we just have 2x the number of mel channels in the spectrogram assert audio_shape == (1, 256) def __lowercase ( self : List[str] ): self._test_attention_slicing_forward_pass(test_mean_pixel_difference=lowerCAmelCase ) def __lowercase ( self : Union[str, Any] ): self._test_inference_batch_single_identical(test_mean_pixel_difference=lowerCAmelCase ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def __lowercase ( self : Any ): self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=lowerCAmelCase ) @slow class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def __lowercase ( self : List[Any] ): super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowercase ( self : Tuple , lowerCAmelCase : Any , lowerCAmelCase : Optional[Any]="cpu" , lowerCAmelCase : List[str]=torch.floataa , lowerCAmelCase : List[str]=0 ): lowerCAmelCase = torch.Generator(device=lowerCAmelCase ).manual_seed(lowerCAmelCase ) lowerCAmelCase = np.random.RandomState(lowerCAmelCase ).standard_normal((1, 8, 128, 16) ) lowerCAmelCase = torch.from_numpy(lowerCAmelCase ).to(device=lowerCAmelCase , dtype=lowerCAmelCase ) lowerCAmelCase = { """prompt""": """A hammer hitting a wooden surface""", """latents""": latents, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 2.5, } return inputs def __lowercase ( self : Optional[int] ): lowerCAmelCase = AudioLDMPipeline.from_pretrained("""cvssp/audioldm""" ) lowerCAmelCase = audioldm_pipe.to(lowerCAmelCase ) audioldm_pipe.set_progress_bar_config(disable=lowerCAmelCase ) lowerCAmelCase = self.get_inputs(lowerCAmelCase ) lowerCAmelCase = 25 lowerCAmelCase = audioldm_pipe(**lowerCAmelCase ).audios[0] assert audio.ndim == 1 assert len(lowerCAmelCase ) == 8_1920 lowerCAmelCase = audio[7_7230:7_7240] lowerCAmelCase = np.array( [-0.4884, -0.4607, 0.0023, 0.5007, 0.5896, 0.5151, 0.3813, -0.0208, -0.3687, -0.4315] ) lowerCAmelCase = np.abs(expected_slice - audio_slice ).max() assert max_diff < 1e-2 def __lowercase ( self : Union[str, Any] ): lowerCAmelCase = AudioLDMPipeline.from_pretrained("""cvssp/audioldm""" ) lowerCAmelCase = LMSDiscreteScheduler.from_config(audioldm_pipe.scheduler.config ) lowerCAmelCase = audioldm_pipe.to(lowerCAmelCase ) audioldm_pipe.set_progress_bar_config(disable=lowerCAmelCase ) lowerCAmelCase = self.get_inputs(lowerCAmelCase ) lowerCAmelCase = audioldm_pipe(**lowerCAmelCase ).audios[0] assert audio.ndim == 1 assert len(lowerCAmelCase ) == 8_1920 lowerCAmelCase = audio[2_7780:2_7790] lowerCAmelCase = np.array([-0.2131, -0.0873, -0.0124, -0.0189, 0.0569, 0.1373, 0.1883, 0.2886, 0.3297, 0.2212] ) lowerCAmelCase = np.abs(expected_slice - audio_slice ).max() assert max_diff < 3e-2
529
"""simple docstring""" import argparse import collections import os import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_table.py a = 'src/transformers' a = 'docs/source/en' a = '.' def lowercase (snake_case__ : int , snake_case__ : Optional[int] , snake_case__ : Tuple ) -> Any: '''simple docstring''' with open(snake_case__ , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: lowerCAmelCase = f.readlines() # Find the start prompt. lowerCAmelCase = 0 while not lines[start_index].startswith(snake_case__ ): start_index += 1 start_index += 1 lowerCAmelCase = start_index while not lines[end_index].startswith(snake_case__ ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # Add here suffixes that are used to identify models, separated by | a = 'Model|Encoder|Decoder|ForConditionalGeneration' # Regexes that match TF/Flax/PT model names. a = re.compile(R'TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') a = re.compile(R'Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. a = re.compile(R'(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # This is to make sure the transformers module imported is the one in the repo. a = direct_transformers_import(TRANSFORMERS_PATH) def lowercase (snake_case__ : int ) -> Any: '''simple docstring''' lowerCAmelCase = re.finditer(""".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)""" , snake_case__ ) return [m.group(0 ) for m in matches] def lowercase (snake_case__ : str , snake_case__ : Tuple ) -> int: '''simple docstring''' lowerCAmelCase = 2 if text == """✅""" or text == """❌""" else len(snake_case__ ) lowerCAmelCase = (width - text_length) // 2 lowerCAmelCase = width - text_length - left_indent return " " * left_indent + text + " " * right_indent def lowercase () -> str: '''simple docstring''' lowerCAmelCase = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES lowerCAmelCase = { name: config_maping_names[code] for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if code in config_maping_names } lowerCAmelCase = {name: config.replace("""Config""" , """""" ) for name, config in model_name_to_config.items()} # Dictionaries flagging if each model prefix has a slow/fast tokenizer, backend in PT/TF/Flax. lowerCAmelCase = collections.defaultdict(snake_case__ ) lowerCAmelCase = collections.defaultdict(snake_case__ ) lowerCAmelCase = collections.defaultdict(snake_case__ ) lowerCAmelCase = collections.defaultdict(snake_case__ ) lowerCAmelCase = collections.defaultdict(snake_case__ ) # Let's lookup through all transformers object (once). for attr_name in dir(snake_case__ ): lowerCAmelCase = None if attr_name.endswith("""Tokenizer""" ): lowerCAmelCase = slow_tokenizers lowerCAmelCase = attr_name[:-9] elif attr_name.endswith("""TokenizerFast""" ): lowerCAmelCase = fast_tokenizers lowerCAmelCase = attr_name[:-13] elif _re_tf_models.match(snake_case__ ) is not None: lowerCAmelCase = tf_models lowerCAmelCase = _re_tf_models.match(snake_case__ ).groups()[0] elif _re_flax_models.match(snake_case__ ) is not None: lowerCAmelCase = flax_models lowerCAmelCase = _re_flax_models.match(snake_case__ ).groups()[0] elif _re_pt_models.match(snake_case__ ) is not None: lowerCAmelCase = pt_models lowerCAmelCase = _re_pt_models.match(snake_case__ ).groups()[0] if lookup_dict is not None: while len(snake_case__ ) > 0: if attr_name in model_name_to_prefix.values(): lowerCAmelCase = True break # Try again after removing the last word in the name lowerCAmelCase = """""".join(camel_case_split(snake_case__ )[:-1] ) # Let's build that table! lowerCAmelCase = list(model_name_to_config.keys() ) model_names.sort(key=str.lower ) lowerCAmelCase = ["""Model""", """Tokenizer slow""", """Tokenizer fast""", """PyTorch support""", """TensorFlow support""", """Flax Support"""] # We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side). lowerCAmelCase = [len(snake_case__ ) + 2 for c in columns] lowerCAmelCase = max([len(snake_case__ ) for name in model_names] ) + 2 # Build the table per se lowerCAmelCase = """|""" + """|""".join([_center_text(snake_case__ , snake_case__ ) for c, w in zip(snake_case__ , snake_case__ )] ) + """|\n""" # Use ":-----:" format to center-aligned table cell texts table += "|" + "|".join([""":""" + """-""" * (w - 2) + """:""" for w in widths] ) + "|\n" lowerCAmelCase = {True: """✅""", False: """❌"""} for name in model_names: lowerCAmelCase = model_name_to_prefix[name] lowerCAmelCase = [ name, check[slow_tokenizers[prefix]], check[fast_tokenizers[prefix]], check[pt_models[prefix]], check[tf_models[prefix]], check[flax_models[prefix]], ] table += "|" + "|".join([_center_text(snake_case__ , snake_case__ ) for l, w in zip(snake_case__ , snake_case__ )] ) + "|\n" return table def lowercase (snake_case__ : Dict=False ) -> Any: '''simple docstring''' lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = _find_text_in_file( filename=os.path.join(snake_case__ , """index.md""" ) , start_prompt="""<!--This table is updated automatically from the auto modules""" , end_prompt="""<!-- End table-->""" , ) lowerCAmelCase = get_model_table_from_auto_modules() if current_table != new_table: if overwrite: with open(os.path.join(snake_case__ , """index.md""" ) , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(lines[:start_index] + [new_table] + lines[end_index:] ) else: raise ValueError( """The model table in the `index.md` has not been updated. Run `make fix-copies` to fix this.""" ) if __name__ == "__main__": a = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') a = parser.parse_args() check_model_table(args.fix_and_overwrite)
529
1
import re import string import numpy as np import datasets SCREAMING_SNAKE_CASE__ = ''' Returns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list. ''' SCREAMING_SNAKE_CASE__ = ''' Args: predictions: List of predicted texts. references: List of reference texts. regexes_to_ignore: List, defaults to None. Regex expressions of characters to ignore when calculating the exact matches. Note: these regexes are removed from the input data before the changes based on the options below (e.g. ignore_case, ignore_punctuation, ignore_numbers) are applied. ignore_case: Boolean, defaults to False. If true, turns everything to lowercase so that capitalization differences are ignored. ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before comparing predictions and references. ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before comparing predictions and references. Returns: exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive. Examples: >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["the cat", "theater", "YELLING", "agent007"] >>> preds = ["cat?", "theater", "yelling", "agent"] >>> results = exact_match.compute(references=refs, predictions=preds) >>> print(round(results["exact_match"], 1)) 25.0 >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["the cat", "theater", "YELLING", "agent007"] >>> preds = ["cat?", "theater", "yelling", "agent"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell"], ignore_case=True, ignore_punctuation=True) >>> print(round(results["exact_match"], 1)) 50.0 >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["the cat", "theater", "YELLING", "agent007"] >>> preds = ["cat?", "theater", "yelling", "agent"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True) >>> print(round(results["exact_match"], 1)) 75.0 >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["the cat", "theater", "YELLING", "agent007"] >>> preds = ["cat?", "theater", "yelling", "agent"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True) >>> print(round(results["exact_match"], 1)) 100.0 >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["The cat sat on the mat.", "Theaters are great.", "It\'s like comparing oranges and apples."] >>> preds = ["The cat sat on the mat?", "Theaters are great.", "It\'s like comparing apples and oranges."] >>> results = exact_match.compute(references=refs, predictions=preds) >>> print(round(results["exact_match"], 1)) 33.3 ''' SCREAMING_SNAKE_CASE__ = ''' ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _UpperCamelCase( datasets.Metric ): def __lowerCAmelCase ( self : Dict ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , reference_urls=[] , ) def __lowerCAmelCase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : str=None , SCREAMING_SNAKE_CASE__ : List[Any]=False , SCREAMING_SNAKE_CASE__ : Optional[int]=False , SCREAMING_SNAKE_CASE__ : List[str]=False , ): '''simple docstring''' if regexes_to_ignore is not None: for s in regexes_to_ignore: __a : Optional[int] = np.array([re.sub(SCREAMING_SNAKE_CASE__ , '' , SCREAMING_SNAKE_CASE__ ) for x in predictions] ) __a : Any = np.array([re.sub(SCREAMING_SNAKE_CASE__ , '' , SCREAMING_SNAKE_CASE__ ) for x in references] ) else: __a : List[Any] = np.asarray(SCREAMING_SNAKE_CASE__ ) __a : int = np.asarray(SCREAMING_SNAKE_CASE__ ) if ignore_case: __a : Optional[int] = np.char.lower(SCREAMING_SNAKE_CASE__ ) __a : str = np.char.lower(SCREAMING_SNAKE_CASE__ ) if ignore_punctuation: __a : Tuple = string.punctuation.maketrans('' , '' , string.punctuation ) __a : Optional[Any] = np.char.translate(SCREAMING_SNAKE_CASE__ , table=SCREAMING_SNAKE_CASE__ ) __a : Any = np.char.translate(SCREAMING_SNAKE_CASE__ , table=SCREAMING_SNAKE_CASE__ ) if ignore_numbers: __a : Tuple = string.digits.maketrans('' , '' , string.digits ) __a : str = np.char.translate(SCREAMING_SNAKE_CASE__ , table=SCREAMING_SNAKE_CASE__ ) __a : Tuple = np.char.translate(SCREAMING_SNAKE_CASE__ , table=SCREAMING_SNAKE_CASE__ ) __a : Optional[int] = predictions == references return {"exact_match": np.mean(SCREAMING_SNAKE_CASE__ ) * 1_0_0}
47
'''simple docstring''' import warnings from ...utils import logging from .image_processing_imagegpt import ImageGPTImageProcessor snake_case_ : List[str] = logging.get_logger(__name__) class lowercase__ ( snake_case_ ): '''simple docstring''' def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ): '''simple docstring''' warnings.warn( '''The class ImageGPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use ImageGPTImageProcessor instead.''' , lowerCamelCase__ , ) super().__init__(*lowerCamelCase__ , **lowerCamelCase__ )
212
0
"""simple docstring""" import math import sys def UpperCamelCase ( SCREAMING_SNAKE_CASE_ ) ->str: _lowerCamelCase : Optional[int] = '''''' try: with open(SCREAMING_SNAKE_CASE_ , '''rb''' ) as binary_file: _lowerCamelCase : Any = binary_file.read() for dat in data: _lowerCamelCase : List[str] = F'''{dat:08b}''' result += curr_byte return result except OSError: print('''File not accessible''' ) sys.exit() def UpperCamelCase ( SCREAMING_SNAKE_CASE_ ) ->str: _lowerCamelCase : Any = {'''0''': '''0''', '''1''': '''1'''} _lowerCamelCase, _lowerCamelCase : str = '''''', '''''' _lowerCamelCase : Dict = len(SCREAMING_SNAKE_CASE_ ) for i in range(len(SCREAMING_SNAKE_CASE_ ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue _lowerCamelCase : Union[str, Any] = lexicon[curr_string] result += last_match_id _lowerCamelCase : Any = last_match_id + '''0''' if math.loga(SCREAMING_SNAKE_CASE_ ).is_integer(): _lowerCamelCase : Tuple = {} for curr_key in list(SCREAMING_SNAKE_CASE_ ): _lowerCamelCase : List[str] = lexicon.pop(SCREAMING_SNAKE_CASE_ ) _lowerCamelCase : str = new_lex _lowerCamelCase : Dict = last_match_id + '''1''' index += 1 _lowerCamelCase : List[str] = '''''' return result def UpperCamelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ->None: _lowerCamelCase : Optional[Any] = 8 try: with open(SCREAMING_SNAKE_CASE_ , '''wb''' ) as opened_file: _lowerCamelCase : str = [ to_write[i : i + byte_length] for i in range(0 , len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append('''10000000''' ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array[:-1]: opened_file.write(int(SCREAMING_SNAKE_CASE_ , 2 ).to_bytes(1 , byteorder='''big''' ) ) except OSError: print('''File not accessible''' ) sys.exit() def UpperCamelCase ( SCREAMING_SNAKE_CASE_ ) ->str: _lowerCamelCase : str = 0 for letter in data_bits: if letter == "1": break counter += 1 _lowerCamelCase : Optional[int] = data_bits[counter:] _lowerCamelCase : int = data_bits[counter + 1 :] return data_bits def UpperCamelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ->None: _lowerCamelCase : int = read_file_binary(SCREAMING_SNAKE_CASE_ ) _lowerCamelCase : int = remove_prefix(SCREAMING_SNAKE_CASE_ ) _lowerCamelCase : Optional[Any] = decompress_data(SCREAMING_SNAKE_CASE_ ) write_file_binary(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
558
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
558
1
from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging A_ : Union[str, Any] = logging.get_logger(__name__) class _a (_SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCAmelCase__: Any = ['''pixel_values'''] def __init__( self , A__ = True , A__ = 32 , A__=PILImageResampling.BILINEAR , A__ = True , **A__ , ): A__ : Union[str, Any] = do_resize A__ : Tuple = do_rescale A__ : Tuple = size_divisor A__ : Any = resample super().__init__(**_lowercase ) def __A ( self , A__ , A__ , A__ , A__ = None , **A__ ): A__ , A__ : List[str] = get_image_size(_lowercase ) # Rounds the height and width down to the closest multiple of size_divisor A__ : Dict = height // size_divisor * size_divisor A__ : Union[str, Any] = width // size_divisor * size_divisor A__ : Any = resize(_lowercase , (new_h, new_w) , resample=_lowercase , data_format=_lowercase , **_lowercase ) return image def __A ( self , A__ , A__ , A__ = None , **A__ ): return rescale(image=_lowercase , scale=_lowercase , data_format=_lowercase , **_lowercase ) def __A ( self , A__ , A__ = None , A__ = None , A__=None , A__ = None , A__ = None , A__ = ChannelDimension.FIRST , **A__ , ): A__ : Tuple = do_resize if do_resize is not None else self.do_resize A__ : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale A__ : Tuple = size_divisor if size_divisor is not None else self.size_divisor A__ : Union[str, Any] = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError("""size_divisor is required for resizing""" ) A__ : Optional[int] = make_list_of_images(_lowercase ) if not valid_images(_lowercase ): raise ValueError("""Invalid image(s)""" ) # All transformations expect numpy arrays. A__ : List[Any] = [to_numpy_array(_lowercase ) for img in images] if do_resize: A__ : str = [self.resize(_lowercase , size_divisor=_lowercase , resample=_lowercase ) for image in images] if do_rescale: A__ : List[str] = [self.rescale(_lowercase , scale=1 / 255 ) for image in images] A__ : Optional[int] = [to_channel_dimension_format(_lowercase , _lowercase ) for image in images] A__ : Optional[Any] = {"""pixel_values""": images} return BatchFeature(data=_lowercase , tensor_type=_lowercase )
456
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _lowercase = {"""configuration_vit_mae""": ["""VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ViTMAEConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ """VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST""", """ViTMAEForPreTraining""", """ViTMAELayer""", """ViTMAEModel""", """ViTMAEPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ """TFViTMAEForPreTraining""", """TFViTMAEModel""", """TFViTMAEPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys _lowercase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
5
0
import unittest import numpy as np import requests from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: __snake_case = False if is_vision_available(): from PIL import Image from transformers import PixaStructImageProcessor class UpperCAmelCase ( unittest.TestCase ): def __init__( self : Optional[int] , __magic_name__ : Union[str, Any] , __magic_name__ : str=7 , __magic_name__ : List[str]=3 , __magic_name__ : List[str]=1_8 , __magic_name__ : List[Any]=3_0 , __magic_name__ : Optional[int]=4_0_0 , __magic_name__ : List[Any]=None , __magic_name__ : Optional[Any]=True , __magic_name__ : List[Any]=True , __magic_name__ : List[Any]=None , ): """simple docstring""" UpperCamelCase = size if size is not None else {"""height""": 2_0, """width""": 2_0} UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = num_channels UpperCamelCase = image_size UpperCamelCase = min_resolution UpperCamelCase = max_resolution UpperCamelCase = size UpperCamelCase = do_normalize UpperCamelCase = do_convert_rgb UpperCamelCase = [5_1_2, 1_0_2_4, 2_0_4_8, 4_0_9_6] UpperCamelCase = patch_size if patch_size is not None else {"""height""": 1_6, """width""": 1_6} def lowerCamelCase_ ( self : Tuple ): """simple docstring""" return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb} def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" UpperCamelCase = """https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg""" UpperCamelCase = Image.open(requests.get(__magic_name__ , stream=__magic_name__ ).raw ).convert("""RGB""" ) return raw_image @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason="""`Pix2StructImageProcessor` requires `torch>=1.11.0`.""" , ) @require_torch @require_vision class UpperCAmelCase ( __snake_case , unittest.TestCase ): lowercase = PixaStructImageProcessor if is_vision_available() else None def lowerCamelCase_ ( self : Any ): """simple docstring""" UpperCamelCase = PixaStructImageProcessingTester(self ) @property def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def lowerCamelCase_ ( self : List[str] ): """simple docstring""" UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__magic_name__ , """do_normalize""" ) ) self.assertTrue(hasattr(__magic_name__ , """do_convert_rgb""" ) ) def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" UpperCamelCase = self.image_processor_tester.prepare_dummy_image() UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) UpperCamelCase = 2_0_4_8 UpperCamelCase = image_processor(__magic_name__ , return_tensors="""pt""" , max_patches=__magic_name__ ) self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.0_606 ) , atol=1e-3 , rtol=1e-3 ) ) def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__magic_name__ ) for image in image_inputs: self.assertIsInstance(__magic_name__ , Image.Image ) # Test not batched input UpperCamelCase = ( (self.image_processor_tester.patch_size["""height"""] * self.image_processor_tester.patch_size["""width"""]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input UpperCamelCase = image_processor( image_inputs[0] , return_tensors="""pt""" , max_patches=__magic_name__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched UpperCamelCase = image_processor( __magic_name__ , return_tensors="""pt""" , max_patches=__magic_name__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__magic_name__ ) for image in image_inputs: self.assertIsInstance(__magic_name__ , Image.Image ) # Test not batched input UpperCamelCase = ( (self.image_processor_tester.patch_size["""height"""] * self.image_processor_tester.patch_size["""width"""]) * self.image_processor_tester.num_channels ) + 2 UpperCamelCase = True for max_patch in self.image_processor_tester.max_patches: # Test not batched input with self.assertRaises(__magic_name__ ): UpperCamelCase = image_processor( image_inputs[0] , return_tensors="""pt""" , max_patches=__magic_name__ ).flattened_patches UpperCamelCase = """Hello""" UpperCamelCase = image_processor( image_inputs[0] , return_tensors="""pt""" , max_patches=__magic_name__ , header_text=__magic_name__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched UpperCamelCase = image_processor( __magic_name__ , return_tensors="""pt""" , max_patches=__magic_name__ , header_text=__magic_name__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__magic_name__ , numpify=__magic_name__ ) for image in image_inputs: self.assertIsInstance(__magic_name__ , np.ndarray ) UpperCamelCase = ( (self.image_processor_tester.patch_size["""height"""] * self.image_processor_tester.patch_size["""width"""]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input UpperCamelCase = image_processor( image_inputs[0] , return_tensors="""pt""" , max_patches=__magic_name__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched UpperCamelCase = image_processor( __magic_name__ , return_tensors="""pt""" , max_patches=__magic_name__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def lowerCamelCase_ ( self : Any ): """simple docstring""" UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__magic_name__ , torchify=__magic_name__ ) for image in image_inputs: self.assertIsInstance(__magic_name__ , torch.Tensor ) # Test not batched input UpperCamelCase = ( (self.image_processor_tester.patch_size["""height"""] * self.image_processor_tester.patch_size["""width"""]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input UpperCamelCase = image_processor( image_inputs[0] , return_tensors="""pt""" , max_patches=__magic_name__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched UpperCamelCase = image_processor( __magic_name__ , return_tensors="""pt""" , max_patches=__magic_name__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason="""`Pix2StructImageProcessor` requires `torch>=1.11.0`.""" , ) @require_torch @require_vision class UpperCAmelCase ( __snake_case , unittest.TestCase ): lowercase = PixaStructImageProcessor if is_vision_available() else None def lowerCamelCase_ ( self : str ): """simple docstring""" UpperCamelCase = PixaStructImageProcessingTester(self , num_channels=4 ) UpperCamelCase = 3 @property def lowerCamelCase_ ( self : str ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__magic_name__ , """do_normalize""" ) ) self.assertTrue(hasattr(__magic_name__ , """do_convert_rgb""" ) ) def lowerCamelCase_ ( self : Dict ): """simple docstring""" UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__magic_name__ ) for image in image_inputs: self.assertIsInstance(__magic_name__ , Image.Image ) # Test not batched input UpperCamelCase = ( (self.image_processor_tester.patch_size["""height"""] * self.image_processor_tester.patch_size["""width"""]) * (self.image_processor_tester.num_channels - 1) ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input UpperCamelCase = image_processor( image_inputs[0] , return_tensors="""pt""" , max_patches=__magic_name__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched UpperCamelCase = image_processor( __magic_name__ , return_tensors="""pt""" , max_patches=__magic_name__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
711
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import OwlViTImageProcessor, OwlViTProcessor @require_vision class UpperCAmelCase ( unittest.TestCase ): def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" UpperCamelCase = tempfile.mkdtemp() # fmt: off UpperCamelCase = ["""""", """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""] # fmt: on UpperCamelCase = dict(zip(__magic_name__ , range(len(__magic_name__ ) ) ) ) UpperCamelCase = ["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>""", """"""] UpperCamelCase = {"""unk_token""": """<unk>"""} UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__magic_name__ ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(__magic_name__ ) ) UpperCamelCase = { """do_resize""": True, """size""": 2_0, """do_center_crop""": True, """crop_size""": 1_8, """do_normalize""": True, """image_mean""": [0.48_145_466, 0.4_578_275, 0.40_821_073], """image_std""": [0.26_862_954, 0.26_130_258, 0.27_577_711], } UpperCamelCase = os.path.join(self.tmpdirname , __magic_name__ ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(__magic_name__ , __magic_name__ ) def lowerCamelCase_ ( self : str , **__magic_name__ : Tuple ): """simple docstring""" return CLIPTokenizer.from_pretrained(self.tmpdirname , pad_token="""!""" , **__magic_name__ ) def lowerCamelCase_ ( self : Optional[int] , **__magic_name__ : str ): """simple docstring""" return CLIPTokenizerFast.from_pretrained(self.tmpdirname , pad_token="""!""" , **__magic_name__ ) def lowerCamelCase_ ( self : Optional[int] , **__magic_name__ : Optional[Any] ): """simple docstring""" return OwlViTImageProcessor.from_pretrained(self.tmpdirname , **__magic_name__ ) def lowerCamelCase_ ( self : int ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def lowerCamelCase_ ( self : Dict ): """simple docstring""" UpperCamelCase = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )] UpperCamelCase = [Image.fromarray(np.moveaxis(__magic_name__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowerCamelCase_ ( self : Dict ): """simple docstring""" UpperCamelCase = self.get_tokenizer() UpperCamelCase = self.get_rust_tokenizer() UpperCamelCase = self.get_image_processor() UpperCamelCase = OwlViTProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ ) processor_slow.save_pretrained(self.tmpdirname ) UpperCamelCase = OwlViTProcessor.from_pretrained(self.tmpdirname , use_fast=__magic_name__ ) UpperCamelCase = OwlViTProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ ) processor_fast.save_pretrained(self.tmpdirname ) UpperCamelCase = OwlViTProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , __magic_name__ ) self.assertIsInstance(processor_fast.tokenizer , __magic_name__ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , __magic_name__ ) self.assertIsInstance(processor_fast.image_processor , __magic_name__ ) def lowerCamelCase_ ( self : int ): """simple docstring""" UpperCamelCase = OwlViTProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) UpperCamelCase = self.get_image_processor(do_normalize=__magic_name__ ) UpperCamelCase = OwlViTProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=__magic_name__ ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __magic_name__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __magic_name__ ) def lowerCamelCase_ ( self : Dict ): """simple docstring""" UpperCamelCase = self.get_image_processor() UpperCamelCase = self.get_tokenizer() UpperCamelCase = OwlViTProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ ) UpperCamelCase = self.prepare_image_inputs() UpperCamelCase = image_processor(__magic_name__ , return_tensors="""np""" ) UpperCamelCase = processor(images=__magic_name__ , return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def lowerCamelCase_ ( self : Any ): """simple docstring""" UpperCamelCase = self.get_image_processor() UpperCamelCase = self.get_tokenizer() UpperCamelCase = OwlViTProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ ) UpperCamelCase = """lower newer""" UpperCamelCase = processor(text=__magic_name__ , return_tensors="""np""" ) UpperCamelCase = tokenizer(__magic_name__ , return_tensors="""np""" ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key][0].tolist() , encoded_processor[key][0].tolist() ) def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" UpperCamelCase = self.get_image_processor() UpperCamelCase = self.get_tokenizer() UpperCamelCase = OwlViTProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ ) UpperCamelCase = """lower newer""" UpperCamelCase = self.prepare_image_inputs() UpperCamelCase = processor(text=__magic_name__ , images=__magic_name__ ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(__magic_name__ ): processor() def lowerCamelCase_ ( self : int ): """simple docstring""" UpperCamelCase = """google/owlvit-base-patch32""" UpperCamelCase = OwlViTProcessor.from_pretrained(__magic_name__ ) UpperCamelCase = ["""cat""", """nasa badge"""] UpperCamelCase = processor(text=__magic_name__ ) UpperCamelCase = 1_6 self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask"""] ) self.assertEqual(inputs["""input_ids"""].shape , (2, seq_length) ) # test if it raises when no input is passed with pytest.raises(__magic_name__ ): processor() def lowerCamelCase_ ( self : Dict ): """simple docstring""" UpperCamelCase = """google/owlvit-base-patch32""" UpperCamelCase = OwlViTProcessor.from_pretrained(__magic_name__ ) UpperCamelCase = [["""cat""", """nasa badge"""], ["""person"""]] UpperCamelCase = processor(text=__magic_name__ ) UpperCamelCase = 1_6 UpperCamelCase = len(__magic_name__ ) UpperCamelCase = max([len(__magic_name__ ) for texts in input_texts] ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask"""] ) self.assertEqual(inputs["""input_ids"""].shape , (batch_size * num_max_text_queries, seq_length) ) # test if it raises when no input is passed with pytest.raises(__magic_name__ ): processor() def lowerCamelCase_ ( self : List[str] ): """simple docstring""" UpperCamelCase = """google/owlvit-base-patch32""" UpperCamelCase = OwlViTProcessor.from_pretrained(__magic_name__ ) UpperCamelCase = ["""cat""", """nasa badge"""] UpperCamelCase = processor(text=__magic_name__ ) UpperCamelCase = 1_6 UpperCamelCase = inputs["""input_ids"""] UpperCamelCase = [ [4_9_4_0_6, 2_3_6_8, 4_9_4_0_7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4_9_4_0_6, 6_8_4_1, 1_1_3_0_1, 4_9_4_0_7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask"""] ) self.assertEqual(inputs["""input_ids"""].shape , (2, seq_length) ) self.assertListEqual(list(input_ids[0] ) , predicted_ids[0] ) self.assertListEqual(list(input_ids[1] ) , predicted_ids[1] ) def lowerCamelCase_ ( self : str ): """simple docstring""" UpperCamelCase = self.get_image_processor() UpperCamelCase = self.get_tokenizer() UpperCamelCase = OwlViTProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ ) UpperCamelCase = self.prepare_image_inputs() UpperCamelCase = self.prepare_image_inputs() UpperCamelCase = processor(images=__magic_name__ , query_images=__magic_name__ ) self.assertListEqual(list(inputs.keys() ) , ["""query_pixel_values""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(__magic_name__ ): processor() def lowerCamelCase_ ( self : Dict ): """simple docstring""" UpperCamelCase = self.get_image_processor() UpperCamelCase = self.get_tokenizer() UpperCamelCase = OwlViTProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ ) UpperCamelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCamelCase = processor.batch_decode(__magic_name__ ) UpperCamelCase = tokenizer.batch_decode(__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ )
181
0
import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin __a = """ Hugging Face was founded in 2016 by French entrepreneurs Clément Delangue, Julien Chaumond, and Thomas Wolf originally as a company that developed a chatbot app targeted at teenagers.[2] After open-sourcing the model behind the chatbot, the company pivoted to focus on being a platform for machine learning. In March 2021, Hugging Face raised $40 million in a Series B funding round.[3] On April 28, 2021, the company launched the BigScience Research Workshop in collaboration with several other research groups to release an open large language model.[4] In 2022, the workshop concluded with the announcement of BLOOM, a multilingual large language model with 176 billion parameters.[5] """ class __a( unittest.TestCase , _a ): """simple docstring""" def a__ ( self ) -> str: UpperCAmelCase_ : str = load_tool('''text-question-answering''' ) self.tool.setup() UpperCAmelCase_ : Tuple = load_tool('''text-question-answering''' ,remote=__lowerCAmelCase ) def a__ ( self ) -> Optional[int]: UpperCAmelCase_ : Any = self.tool(__lowerCAmelCase ,'''What did Hugging Face do in April 2021?''' ) self.assertEqual(__lowerCAmelCase ,'''launched the BigScience Research Workshop''' ) def a__ ( self ) -> Optional[Any]: UpperCAmelCase_ : str = self.remote_tool(__lowerCAmelCase ,'''What did Hugging Face do in April 2021?''' ) self.assertEqual(__lowerCAmelCase ,'''launched the BigScience Research Workshop''' ) def a__ ( self ) -> Union[str, Any]: UpperCAmelCase_ : Tuple = self.tool(text=__lowerCAmelCase ,question='''What did Hugging Face do in April 2021?''' ) self.assertEqual(__lowerCAmelCase ,'''launched the BigScience Research Workshop''' ) def a__ ( self ) -> Any: UpperCAmelCase_ : Union[str, Any] = self.remote_tool(text=__lowerCAmelCase ,question='''What did Hugging Face do in April 2021?''' ) self.assertEqual(__lowerCAmelCase ,'''launched the BigScience Research Workshop''' )
30
"""simple docstring""" import os import unittest from transformers.models.transfo_xl.tokenization_transfo_xl import VOCAB_FILES_NAMES, TransfoXLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class _A ( lowerCAmelCase , unittest.TestCase ): snake_case__ : str = TransfoXLTokenizer snake_case__ : Union[str, Any] = False snake_case__ : Union[str, Any] = False def A__ ( self ): """simple docstring""" super().setUp() lowercase = [ """<unk>""", """[CLS]""", """[SEP]""", """want""", """unwanted""", """wa""", """un""", """running""", """,""", """low""", """l""", ] lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def A__ ( self , **__lowerCAmelCase ): """simple docstring""" lowercase = True return TransfoXLTokenizer.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase = """<unk> UNwanted , running""" lowercase = """<unk> unwanted, running""" return input_text, output_text def A__ ( self ): """simple docstring""" lowercase = TransfoXLTokenizer(vocab_file=self.vocab_file , lower_case=__lowerCAmelCase ) lowercase = tokenizer.tokenize("""<unk> UNwanted , running""" ) self.assertListEqual(__lowerCAmelCase , ["""<unk>""", """unwanted""", """,""", """running"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) , [0, 4, 8, 7] ) def A__ ( self ): """simple docstring""" lowercase = TransfoXLTokenizer(lower_case=__lowerCAmelCase ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo ! how \n Are yoU ? """ ) , ["""hello""", """!""", """how""", """are""", """you""", """?"""] ) def A__ ( self ): """simple docstring""" lowercase = TransfoXLTokenizer(lower_case=__lowerCAmelCase ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo ! how \n Are yoU ? """ ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def A__ ( self ): """simple docstring""" lowercase = TransfoXLTokenizer(lower_case=__lowerCAmelCase ) lowercase = """Hello (bracket) and side-scrolled [and] Henry's $5,000 with 3.34 m. What's up!?""" lowercase = [ """Hello""", """(""", """bracket""", """)""", """and""", """side""", """@-@""", """scrolled""", """[""", """and""", """]""", """Henry""", """'s""", """$""", """5""", """@,@""", """000""", """with""", """3""", """@.@""", """34""", """m""", """.""", """What""", """'s""", """up""", """!""", """?""", ] self.assertListEqual(tokenizer.tokenize(__lowerCAmelCase ) , __lowerCAmelCase ) self.assertEqual(tokenizer.convert_tokens_to_string(__lowerCAmelCase ) , __lowerCAmelCase ) def A__ ( self ): """simple docstring""" lowercase = self.get_tokenizer() lowercase = len(__lowerCAmelCase ) tokenizer.add_tokens(["""new1""", """new2"""] ) tokenizer.move_added_token("""new1""" , 1 ) # Check that moved token is not copied (duplicate) self.assertEqual(len(__lowerCAmelCase ) , original_len + 2 ) # Check that token is moved to specified id self.assertEqual(tokenizer.encode("""new1""" ) , [1] ) self.assertEqual(tokenizer.decode([1] ) , """new1""" )
359
0
"""simple docstring""" # This is the module that test_patching.py uses to test patch_submodule() import os # noqa: this is just for tests import os as renamed_os # noqa: this is just for tests from os import path # noqa: this is just for tests from os import path as renamed_path # noqa: this is just for tests from os.path import join # noqa: this is just for tests from os.path import join as renamed_join # noqa: this is just for tests A: int = open # noqa: we just need to have a builtin inside this module to test it properly
359
"""simple docstring""" import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ) -> List[Any]: '''simple docstring''' for model_result in results.values(): for batch_size, sequence_length in zip(model_result["""bs"""] , model_result["""ss"""] ): UpperCAmelCase : List[str] = model_result["""result"""][batch_size][sequence_length] self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: '''simple docstring''' UpperCAmelCase : Union[str, Any] = """sshleifer/tiny-gpt2""" UpperCAmelCase : Any = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_SCREAMING_SNAKE_CASE , inference=_SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_SCREAMING_SNAKE_CASE , ) UpperCAmelCase : Tuple = PyTorchBenchmark(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Tuple = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' UpperCAmelCase : Any = """sgugger/tiny-distilbert-classification""" UpperCAmelCase : Any = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_SCREAMING_SNAKE_CASE , inference=_SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_SCREAMING_SNAKE_CASE , only_pretrain_model=_SCREAMING_SNAKE_CASE , ) UpperCAmelCase : List[str] = PyTorchBenchmark(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def SCREAMING_SNAKE_CASE ( self ) -> List[Any]: '''simple docstring''' UpperCAmelCase : Any = """sshleifer/tiny-gpt2""" UpperCAmelCase : Optional[Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_SCREAMING_SNAKE_CASE , inference=_SCREAMING_SNAKE_CASE , torchscript=_SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_SCREAMING_SNAKE_CASE , ) UpperCAmelCase : Dict = PyTorchBenchmark(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : List[str] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(torch_device == """cpu""" , """Cant do half precision""" ) def SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' UpperCAmelCase : List[str] = """sshleifer/tiny-gpt2""" UpperCAmelCase : Optional[int] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_SCREAMING_SNAKE_CASE , inference=_SCREAMING_SNAKE_CASE , fpaa=_SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_SCREAMING_SNAKE_CASE , ) UpperCAmelCase : Any = PyTorchBenchmark(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : int = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : List[str] = """sshleifer/tiny-gpt2""" UpperCAmelCase : str = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) # set architectures equal to `None` UpperCAmelCase : str = None UpperCAmelCase : Tuple = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_SCREAMING_SNAKE_CASE , inference=_SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_SCREAMING_SNAKE_CASE , ) UpperCAmelCase : Any = PyTorchBenchmark(_SCREAMING_SNAKE_CASE , configs=[config] ) UpperCAmelCase : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def SCREAMING_SNAKE_CASE ( self ) -> Tuple: '''simple docstring''' UpperCAmelCase : Tuple = """sshleifer/tiny-gpt2""" UpperCAmelCase : Union[str, Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_SCREAMING_SNAKE_CASE , inference=_SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_SCREAMING_SNAKE_CASE , ) UpperCAmelCase : Dict = PyTorchBenchmark(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Union[str, Any] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) @unittest.skipIf(torch_device == """cpu""" , """Can't do half precision""" ) def SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' UpperCAmelCase : Optional[int] = """sshleifer/tiny-gpt2""" UpperCAmelCase : int = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_SCREAMING_SNAKE_CASE , inference=_SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , fpaa=_SCREAMING_SNAKE_CASE , multi_process=_SCREAMING_SNAKE_CASE , ) UpperCAmelCase : str = PyTorchBenchmark(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Optional[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' UpperCAmelCase : Union[str, Any] = """sshleifer/tiny-gpt2""" UpperCAmelCase : str = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Dict = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_SCREAMING_SNAKE_CASE , inference=_SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_SCREAMING_SNAKE_CASE , ) UpperCAmelCase : Union[str, Any] = PyTorchBenchmark(_SCREAMING_SNAKE_CASE , configs=[config] ) UpperCAmelCase : int = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' UpperCAmelCase : Union[str, Any] = """sshleifer/tinier_bart""" UpperCAmelCase : Tuple = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : int = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_SCREAMING_SNAKE_CASE , inference=_SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_SCREAMING_SNAKE_CASE , ) UpperCAmelCase : str = PyTorchBenchmark(_SCREAMING_SNAKE_CASE , configs=[config] ) UpperCAmelCase : str = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase : Any = """sshleifer/tiny-gpt2""" UpperCAmelCase : List[str] = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : List[str] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_SCREAMING_SNAKE_CASE , inference=_SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_SCREAMING_SNAKE_CASE , ) UpperCAmelCase : Any = PyTorchBenchmark(_SCREAMING_SNAKE_CASE , configs=[config] ) UpperCAmelCase : Optional[int] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase : List[Any] = """sshleifer/tinier_bart""" UpperCAmelCase : Optional[Any] = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Any = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_SCREAMING_SNAKE_CASE , inference=_SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_SCREAMING_SNAKE_CASE , ) UpperCAmelCase : int = PyTorchBenchmark(_SCREAMING_SNAKE_CASE , configs=[config] ) UpperCAmelCase : str = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase : str = """sshleifer/tiny-gpt2""" with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase : Any = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_SCREAMING_SNAKE_CASE , inference=_SCREAMING_SNAKE_CASE , save_to_csv=_SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(_SCREAMING_SNAKE_CASE , """inf_time.csv""" ) , train_memory_csv_file=os.path.join(_SCREAMING_SNAKE_CASE , """train_mem.csv""" ) , inference_memory_csv_file=os.path.join(_SCREAMING_SNAKE_CASE , """inf_mem.csv""" ) , train_time_csv_file=os.path.join(_SCREAMING_SNAKE_CASE , """train_time.csv""" ) , env_info_csv_file=os.path.join(_SCREAMING_SNAKE_CASE , """env.csv""" ) , multi_process=_SCREAMING_SNAKE_CASE , ) UpperCAmelCase : Union[str, Any] = PyTorchBenchmark(_SCREAMING_SNAKE_CASE ) benchmark.run() self.assertTrue(Path(os.path.join(_SCREAMING_SNAKE_CASE , """inf_time.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(_SCREAMING_SNAKE_CASE , """train_time.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(_SCREAMING_SNAKE_CASE , """inf_mem.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(_SCREAMING_SNAKE_CASE , """train_mem.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(_SCREAMING_SNAKE_CASE , """env.csv""" ) ).exists() ) def SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase : Tuple = """sshleifer/tiny-gpt2""" def _check_summary_is_not_empty(_SCREAMING_SNAKE_CASE ): self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , """sequential""" ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , """cumulative""" ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , """current""" ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , """total""" ) ) with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase : List[str] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_SCREAMING_SNAKE_CASE , inference=_SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(_SCREAMING_SNAKE_CASE , """log.txt""" ) , log_print=_SCREAMING_SNAKE_CASE , trace_memory_line_by_line=_SCREAMING_SNAKE_CASE , multi_process=_SCREAMING_SNAKE_CASE , ) UpperCAmelCase : Any = PyTorchBenchmark(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : List[Any] = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) _check_summary_is_not_empty(result.train_summary ) self.assertTrue(Path(os.path.join(_SCREAMING_SNAKE_CASE , """log.txt""" ) ).exists() )
359
1
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionAttendAndExcitePipeline, UNetaDConditionModel, ) from diffusers.utils import load_numpy, skip_mps, slow from diffusers.utils.testing_utils import require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin snake_case_ : Tuple = False @skip_mps class A_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): '''simple docstring''' _lowerCAmelCase = StableDiffusionAttendAndExcitePipeline _lowerCAmelCase = False _lowerCAmelCase = TEXT_TO_IMAGE_PARAMS _lowerCAmelCase = TEXT_TO_IMAGE_BATCH_PARAMS.union({"""token_indices"""} ) _lowerCAmelCase = TEXT_TO_IMAGE_IMAGE_PARAMS _lowerCAmelCase = TEXT_TO_IMAGE_IMAGE_PARAMS @classmethod def a ( cls ): super().setUpClass() torch.use_deterministic_algorithms(A_ ) @classmethod def a ( cls ): super().tearDownClass() torch.use_deterministic_algorithms(A_ ) def a ( self ): torch.manual_seed(0 ) _UpperCamelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=A_ , ) _UpperCamelCase = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=A_ , set_alpha_to_one=A_ , ) torch.manual_seed(0 ) _UpperCamelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , sample_size=1_28 , ) torch.manual_seed(0 ) _UpperCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="gelu" , projection_dim=5_12 , ) _UpperCamelCase = CLIPTextModel(A_ ) _UpperCamelCase = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) _UpperCamelCase = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def a ( self , A_ , A_=0 ): if str(A_ ).startswith("mps" ): _UpperCamelCase = torch.manual_seed(A_ ) else: _UpperCamelCase = torch.Generator(device=A_ ).manual_seed(A_ ) _UpperCamelCase = _UpperCamelCase = { "prompt": "a cat and a frog", "token_indices": [2, 5], "generator": generator, "num_inference_steps": 1, "guidance_scale": 6.0, "output_type": "numpy", "max_iter_to_alter": 2, "thresholds": {0: 0.7}, } return inputs def a ( self ): _UpperCamelCase = "cpu" _UpperCamelCase = self.get_dummy_components() _UpperCamelCase = self.pipeline_class(**A_ ) pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) _UpperCamelCase = self.get_dummy_inputs(A_ ) _UpperCamelCase = pipe(**A_ ).images _UpperCamelCase = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 64, 64, 3) ) _UpperCamelCase = np.array( [0.6390_5364, 0.6289_7307, 0.4859_9017, 0.513_3624, 0.555_0048, 0.4576_9516, 0.5032_6973, 0.502_3139, 0.4538_4496] ) _UpperCamelCase = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(A_ , 1e-3 ) def a ( self ): super().test_cpu_offload_forward_pass(expected_max_diff=5e-4 ) def a ( self ): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def a ( self ): self._test_inference_batch_single_identical(batch_size=2 , expected_max_diff=7e-4 ) def a ( self ): super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def a ( self ): super().test_pt_np_pil_outputs_equivalent(expected_max_diff=5e-4 ) def a ( self ): super().test_save_load_local(expected_max_difference=5e-4 ) def a ( self ): super().test_save_load_optional_components(expected_max_difference=4e-4 ) @require_torch_gpu @slow class A_ ( unittest.TestCase ): '''simple docstring''' @classmethod def a ( cls ): super().setUpClass() torch.use_deterministic_algorithms(A_ ) @classmethod def a ( cls ): super().tearDownClass() torch.use_deterministic_algorithms(A_ ) def a ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def a ( self ): _UpperCamelCase = torch.manual_seed(51 ) _UpperCamelCase = StableDiffusionAttendAndExcitePipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , safety_checker=A_ , torch_dtype=torch.floataa ) pipe.to("cuda" ) _UpperCamelCase = "a painting of an elephant with glasses" _UpperCamelCase = [5, 7] _UpperCamelCase = pipe( prompt=A_ , token_indices=A_ , guidance_scale=7.5 , generator=A_ , num_inference_steps=5 , max_iter_to_alter=5 , output_type="numpy" , ).images[0] _UpperCamelCase = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/attend-and-excite/elephant_glasses.npy" ) assert np.abs((expected_image - image).max() ) < 5e-1
138
'''simple docstring''' from __future__ import annotations snake_case_ : str = '''#''' class A_ : '''simple docstring''' def __init__( self ): _UpperCamelCase = {} def a ( self , A_ ): _UpperCamelCase = self._trie for char in text: if char not in trie: _UpperCamelCase = {} _UpperCamelCase = trie[char] _UpperCamelCase = True def a ( self , A_ ): _UpperCamelCase = self._trie for char in prefix: if char in trie: _UpperCamelCase = trie[char] else: return [] return self._elements(A_ ) def a ( self , A_ ): _UpperCamelCase = [] for c, v in d.items(): _UpperCamelCase = [" "] if c == END else [(c + s) for s in self._elements(A_ )] result.extend(A_ ) return tuple(A_ ) snake_case_ : Optional[int] = Trie() snake_case_ : List[str] = ('''depart''', '''detergent''', '''daring''', '''dog''', '''deer''', '''deal''') for word in words: trie.insert_word(word) def lowercase__( _UpperCamelCase : str )-> tuple: """simple docstring""" _UpperCamelCase = trie.find_word(_UpperCamelCase ) return tuple(string + word for word in suffixes ) def lowercase__( )-> None: """simple docstring""" print(autocomplete_using_trie("de" ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
138
1
from __future__ import annotations def _lowerCamelCase ( snake_case ): _lowerCAmelCase = 0.00 _lowerCAmelCase = 0 for resistor in resistors: if resistor <= 0: _lowerCAmelCase = F'Resistor at index {index} has a negative or zero value!' raise ValueError(snake_case ) first_sum += 1 / float(snake_case ) index += 1 return 1 / first_sum def _lowerCamelCase ( snake_case ): _lowerCAmelCase = 0.00 _lowerCAmelCase = 0 for resistor in resistors: sum_r += resistor if resistor < 0: _lowerCAmelCase = F'Resistor at index {index} has a negative value!' raise ValueError(snake_case ) index += 1 return sum_r if __name__ == "__main__": import doctest doctest.testmod()
708
from __future__ import annotations def _lowerCamelCase ( snake_case ): _lowerCAmelCase = len(snake_case ) # We need to create solution object to save path. _lowerCAmelCase = [[0 for _ in range(snake_case )] for _ in range(snake_case )] _lowerCAmelCase = run_maze(snake_case , 0 , 0 , snake_case ) if solved: print('\n'.join(str(snake_case ) for row in solutions ) ) else: print('No solution exists!' ) return solved def _lowerCamelCase ( snake_case , snake_case , snake_case , snake_case ): _lowerCAmelCase = len(snake_case ) # Final check point. if i == j == (size - 1): _lowerCAmelCase = 1 return True _lowerCAmelCase = (not i < 0) and (not j < 0) # Check lower bounds _lowerCAmelCase = (i < size) and (j < size) # Check upper bounds if lower_flag and upper_flag: # check for already visited and block points. _lowerCAmelCase = (not solutions[i][j]) and (not maze[i][j]) if block_flag: # check visited _lowerCAmelCase = 1 # check for directions if ( run_maze(snake_case , i + 1 , snake_case , snake_case ) or run_maze(snake_case , snake_case , j + 1 , snake_case ) or run_maze(snake_case , i - 1 , snake_case , snake_case ) or run_maze(snake_case , snake_case , j - 1 , snake_case ) ): return True _lowerCAmelCase = 0 return False return False if __name__ == "__main__": import doctest doctest.testmod()
225
0
'''simple docstring''' def _UpperCAmelCase ( __A : int ): assert isinstance(lowercase_ , lowercase_ ), f'The input value of [n={number}] is not an integer' if number == 1: return 2 elif number < 1: a_ : int = f'The input value of [n={number}] has to be > 0' raise ValueError(lowercase_ ) else: a_ : List[str] = sylvester(number - 1 ) a_ : Optional[Any] = num - 1 a_ : Optional[Any] = num return lower * upper + 1 if __name__ == "__main__": print(F"""The 8th number in Sylvester's sequence: {sylvester(8)}""")
466
"""simple docstring""" def lowerCAmelCase_( lowercase_ : str , lowercase_ : str ) -> float: def get_matched_characters(lowercase_ : str , lowercase_ : str ) -> str: _lowerCamelCase = [] _lowerCamelCase = min(len(_stra ) , len(_stra ) ) // 2 for i, l in enumerate(_stra ): _lowerCamelCase = int(max(0 , i - limit ) ) _lowerCamelCase = int(min(i + limit + 1 , len(_stra ) ) ) if l in _stra[left:right]: matched.append(lowercase_ ) _lowerCamelCase = F"""{_stra[0:_stra.index(lowercase_ )]} {_stra[_stra.index(lowercase_ ) + 1:]}""" return "".join(lowercase_ ) # matching characters _lowerCamelCase = get_matched_characters(lowercase_ , lowercase_ ) _lowerCamelCase = get_matched_characters(lowercase_ , lowercase_ ) _lowerCamelCase = len(lowercase_ ) # transposition _lowerCamelCase = ( len([(ca, ca) for ca, ca in zip(lowercase_ , lowercase_ ) if ca != ca] ) // 2 ) if not match_count: _lowerCamelCase = 0.0 else: _lowerCamelCase = ( 1 / 3 * ( match_count / len(lowercase_ ) + match_count / len(lowercase_ ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters _lowerCamelCase = 0 for ca, ca in zip(stra[:4] , stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler('''hello''', '''world'''))
661
0
"""simple docstring""" import math from typing import Any, Callable, List, Optional, Tuple, Union import numpy as np import torch from ...models import TaFilmDecoder from ...schedulers import DDPMScheduler from ...utils import is_onnx_available, logging, randn_tensor if is_onnx_available(): from ..onnx_utils import OnnxRuntimeModel from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline from .continous_encoder import SpectrogramContEncoder from .notes_encoder import SpectrogramNotesEncoder UpperCAmelCase =logging.get_logger(__name__) # pylint: disable=invalid-name UpperCAmelCase =256 class lowerCamelCase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowerCamelCase = ['''melgan'''] def __init__( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,) -> None: super().__init__() # From MELGAN A = math.log(1E-5 ) # Matches MelGAN training. A = 4.0 # Largest value for most examples A = 1_2_8 self.register_modules( notes_encoder=lowerCamelCase_ ,continuous_encoder=lowerCamelCase_ ,decoder=lowerCamelCase_ ,scheduler=lowerCamelCase_ ,melgan=lowerCamelCase_ ,) def UpperCamelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_=(-1.0, 1.0) ,lowerCamelCase_=False ) -> str: A , A = output_range if clip: A = torch.clip(lowerCamelCase_ ,self.min_value ,self.max_value ) # Scale to [0, 1]. A = (features - self.min_value) / (self.max_value - self.min_value) # Scale to [min_out, max_out]. return zero_one * (max_out - min_out) + min_out def UpperCamelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_=(-1.0, 1.0) ,lowerCamelCase_=False ) -> Optional[Any]: A , A = input_range A = torch.clip(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) if clip else outputs # Scale to [0, 1]. A = (outputs - min_out) / (max_out - min_out) # Scale to [self.min_value, self.max_value]. return zero_one * (self.max_value - self.min_value) + self.min_value def UpperCamelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) -> Dict: A = input_tokens > 0 A , A = self.notes_encoder( encoder_input_tokens=lowerCamelCase_ ,encoder_inputs_mask=lowerCamelCase_ ) A , A = self.continuous_encoder( encoder_inputs=lowerCamelCase_ ,encoder_inputs_mask=lowerCamelCase_ ) return [(tokens_encoded, tokens_mask), (continuous_encoded, continuous_mask)] def UpperCamelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) -> List[str]: A = noise_time if not torch.is_tensor(lowerCamelCase_ ): A = torch.tensor([timesteps] ,dtype=torch.long ,device=input_tokens.device ) elif torch.is_tensor(lowerCamelCase_ ) and len(timesteps.shape ) == 0: A = timesteps[None].to(input_tokens.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML A = timesteps * torch.ones(input_tokens.shape[0] ,dtype=timesteps.dtype ,device=timesteps.device ) A = self.decoder( encodings_and_masks=lowerCamelCase_ ,decoder_input_tokens=lowerCamelCase_ ,decoder_noise_time=lowerCamelCase_ ) return logits @torch.no_grad() def __call__( self ,lowerCamelCase_ ,lowerCamelCase_ = None ,lowerCamelCase_ = 1_0_0 ,lowerCamelCase_ = True ,lowerCamelCase_ = "numpy" ,lowerCamelCase_ = None ,lowerCamelCase_ = 1 ,) -> Union[AudioPipelineOutput, Tuple]: if (callback_steps is None) or ( callback_steps is not None and (not isinstance(lowerCamelCase_ ,lowerCamelCase_ ) or callback_steps <= 0) ): raise ValueError( f'`callback_steps` has to be a positive integer but is {callback_steps} of type' f' {type(lowerCamelCase_ )}.' ) A = np.zeros([1, TARGET_FEATURE_LENGTH, self.n_dims] ,dtype=np.floataa ) A = np.zeros([1, 0, self.n_dims] ,np.floataa ) A = torch.ones((1, TARGET_FEATURE_LENGTH) ,dtype=lowerCamelCase_ ,device=self.device ) for i, encoder_input_tokens in enumerate(lowerCamelCase_ ): if i == 0: A = torch.from_numpy(pred_mel[:1].copy() ).to( device=self.device ,dtype=self.decoder.dtype ) # The first chunk has no previous context. A = torch.zeros((1, TARGET_FEATURE_LENGTH) ,dtype=lowerCamelCase_ ,device=self.device ) else: # The full song pipeline does not feed in a context feature, so the mask # will be all 0s after the feature converter. Because we know we're # feeding in a full context chunk from the previous prediction, set it # to all 1s. A = ones A = self.scale_features( lowerCamelCase_ ,output_range=[-1.0, 1.0] ,clip=lowerCamelCase_ ) A = self.encode( input_tokens=torch.IntTensor([encoder_input_tokens] ).to(device=self.device ) ,continuous_inputs=lowerCamelCase_ ,continuous_mask=lowerCamelCase_ ,) # Sample encoder_continuous_inputs shaped gaussian noise to begin loop A = randn_tensor( shape=encoder_continuous_inputs.shape ,generator=lowerCamelCase_ ,device=self.device ,dtype=self.decoder.dtype ,) # set step values self.scheduler.set_timesteps(lowerCamelCase_ ) # Denoising diffusion loop for j, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): A = self.decode( encodings_and_masks=lowerCamelCase_ ,input_tokens=lowerCamelCase_ ,noise_time=t / self.scheduler.config.num_train_timesteps ,) # Compute previous output: x_t -> x_t-1 A = self.scheduler.step(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,generator=lowerCamelCase_ ).prev_sample A = self.scale_to_features(lowerCamelCase_ ,input_range=[-1.0, 1.0] ) A = mel[:1] A = mel.cpu().float().numpy() A = np.concatenate([full_pred_mel, pred_mel[:1]] ,axis=1 ) # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(lowerCamelCase_ ,lowerCamelCase_ ) logger.info("""Generated segment""" ,lowerCamelCase_ ) if output_type == "numpy" and not is_onnx_available(): raise ValueError( """Cannot return output in 'np' format if ONNX is not available. Make sure to have ONNX installed or set 'output_type' to 'mel'.""" ) elif output_type == "numpy" and self.melgan is None: raise ValueError( """Cannot return output in 'np' format if melgan component is not defined. Make sure to define `self.melgan` or set 'output_type' to 'mel'.""" ) if output_type == "numpy": A = self.melgan(input_features=full_pred_mel.astype(np.floataa ) ) else: A = full_pred_mel if not return_dict: return (output,) return AudioPipelineOutput(audios=lowerCamelCase_ )
709
"""simple docstring""" import numpy as np from PIL import Image def _A ( _a : np.ndarray , _a : int , _a : int ): """simple docstring""" A = np.array(_a ) if arr.shape[0] != arr.shape[1]: raise ValueError("""The input array is not a square matrix""" ) A = 0 A = 0 A = 0 A = 0 # compute the shape of the output matrix A = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape maxpool_shape A = np.zeros((maxpool_shape, maxpool_shape) ) while i < arr.shape[0]: if i + size > arr.shape[0]: # if the end of the matrix is reached, break break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the maximum of the pooling matrix A = np.max(arr[i : i + size, j : j + size] ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 A = 0 A = 0 return updated_arr def _A ( _a : np.ndarray , _a : int , _a : int ): """simple docstring""" A = np.array(_a ) if arr.shape[0] != arr.shape[1]: raise ValueError("""The input array is not a square matrix""" ) A = 0 A = 0 A = 0 A = 0 # compute the shape of the output matrix A = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape avgpool_shape A = np.zeros((avgpool_shape, avgpool_shape) ) while i < arr.shape[0]: # if the end of the matrix is reached, break if i + size > arr.shape[0]: break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the average of the pooling matrix A = int(np.average(arr[i : i + size, j : j + size] ) ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 A = 0 A = 0 return updated_arr # Main Function if __name__ == "__main__": from doctest import testmod testmod(name="avgpooling", verbose=True) # Loading the image UpperCAmelCase =Image.open("path_to_image") # Converting the image to numpy array and maxpooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show() # Converting the image to numpy array and averagepooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
255
0
import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class __UpperCamelCase : """simple docstring""" def __init__( self : List[Any] , _A : Optional[Any] , _A : Optional[int]=2 , _A : Tuple=32 , _A : int=16 , _A : List[Any]=3 , _A : int=True , _A : Any=True , _A : int=32 , _A : Any=4 , _A : Union[str, Any]=[0, 1, 2, 3] , _A : Optional[Any]=4 , _A : Dict=37 , _A : Any="gelu" , _A : Optional[Any]=0.1 , _A : Tuple=0.1 , _A : Union[str, Any]=0.02 , _A : Optional[Any]=3 , _A : List[str]=[1, 384, 24, 24] , _A : Union[str, Any]=True , _A : Optional[int]=None , ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = parent __SCREAMING_SNAKE_CASE : List[str] = batch_size __SCREAMING_SNAKE_CASE : int = image_size __SCREAMING_SNAKE_CASE : Dict = patch_size __SCREAMING_SNAKE_CASE : str = num_channels __SCREAMING_SNAKE_CASE : str = is_training __SCREAMING_SNAKE_CASE : str = use_labels __SCREAMING_SNAKE_CASE : str = hidden_size __SCREAMING_SNAKE_CASE : Optional[int] = num_hidden_layers __SCREAMING_SNAKE_CASE : Optional[Any] = backbone_out_indices __SCREAMING_SNAKE_CASE : Optional[Any] = num_attention_heads __SCREAMING_SNAKE_CASE : Dict = intermediate_size __SCREAMING_SNAKE_CASE : List[str] = hidden_act __SCREAMING_SNAKE_CASE : List[str] = hidden_dropout_prob __SCREAMING_SNAKE_CASE : Union[str, Any] = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE : Optional[Any] = initializer_range __SCREAMING_SNAKE_CASE : List[str] = num_labels __SCREAMING_SNAKE_CASE : Dict = backbone_featmap_shape __SCREAMING_SNAKE_CASE : List[str] = scope __SCREAMING_SNAKE_CASE : Dict = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) __SCREAMING_SNAKE_CASE : List[Any] = (image_size // patch_size) ** 2 __SCREAMING_SNAKE_CASE : int = num_patches + 1 def UpperCAmelCase__ ( self : int ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __SCREAMING_SNAKE_CASE : str = None if self.use_labels: __SCREAMING_SNAKE_CASE : Dict = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __SCREAMING_SNAKE_CASE : str = self.get_config() return config, pixel_values, labels def UpperCAmelCase__ ( self : str ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = { '''global_padding''': '''same''', '''layer_type''': '''bottleneck''', '''depths''': [3, 4, 9], '''out_features''': ['''stage1''', '''stage2''', '''stage3'''], '''embedding_dynamic_padding''': True, '''hidden_sizes''': [96, 192, 384, 768], '''num_groups''': 2, } return DPTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=A__ , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=A__ , backbone_featmap_shape=self.backbone_featmap_shape , ) def UpperCAmelCase__ ( self : List[str] , _A : Optional[int] , _A : Union[str, Any] , _A : List[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = DPTModel(config=A__ ) model.to(A__ ) model.eval() __SCREAMING_SNAKE_CASE : List[Any] = model(A__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase__ ( self : Optional[Any] , _A : int , _A : List[Any] , _A : int ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = self.num_labels __SCREAMING_SNAKE_CASE : Tuple = DPTForDepthEstimation(A__ ) model.to(A__ ) model.eval() __SCREAMING_SNAKE_CASE : Union[str, Any] = model(A__ ) self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size) ) def UpperCAmelCase__ ( self : List[Any] , _A : str , _A : Union[str, Any] , _A : Optional[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = self.num_labels __SCREAMING_SNAKE_CASE : Optional[Any] = DPTForSemanticSegmentation(A__ ) model.to(A__ ) model.eval() __SCREAMING_SNAKE_CASE : Tuple = model(A__ , labels=A__ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def UpperCAmelCase__ ( self : Optional[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = self.prepare_config_and_inputs() __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Optional[int] = config_and_inputs __SCREAMING_SNAKE_CASE : List[Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __UpperCamelCase ( _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): """simple docstring""" lowerCAmelCase_ = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () lowerCAmelCase_ = ( { '''depth-estimation''': DPTForDepthEstimation, '''feature-extraction''': DPTModel, '''image-segmentation''': DPTForSemanticSegmentation, } if is_torch_available() else {} ) lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False def UpperCAmelCase__ ( self : Any ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = DPTModelTester(self ) __SCREAMING_SNAKE_CASE : Union[str, Any] = ConfigTester(self , config_class=A__ , has_text_modality=A__ , hidden_size=37 ) def UpperCAmelCase__ ( self : Tuple ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='''DPT does not use inputs_embeds''' ) def UpperCAmelCase__ ( self : Dict ): """simple docstring""" pass def UpperCAmelCase__ ( self : List[str] ): """simple docstring""" __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE : str = model_class(A__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __SCREAMING_SNAKE_CASE : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(A__ , nn.Linear ) ) def UpperCAmelCase__ ( self : Optional[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE : int = model_class(A__ ) __SCREAMING_SNAKE_CASE : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __SCREAMING_SNAKE_CASE : Optional[Any] = [*signature.parameters.keys()] __SCREAMING_SNAKE_CASE : List[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , A__ ) def UpperCAmelCase__ ( self : List[str] ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A__ ) def UpperCAmelCase__ ( self : Optional[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*A__ ) def UpperCAmelCase__ ( self : List[str] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*A__ ) def UpperCAmelCase__ ( self : int ): """simple docstring""" for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs_for_common() __SCREAMING_SNAKE_CASE : Any = True if model_class in get_values(A__ ): continue __SCREAMING_SNAKE_CASE : Optional[int] = model_class(A__ ) model.to(A__ ) model.train() __SCREAMING_SNAKE_CASE : int = self._prepare_for_class(A__ , A__ , return_labels=A__ ) __SCREAMING_SNAKE_CASE : Optional[int] = model(**A__ ).loss loss.backward() def UpperCAmelCase__ ( self : int ): """simple docstring""" for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() __SCREAMING_SNAKE_CASE : Optional[Any] = False __SCREAMING_SNAKE_CASE : Optional[int] = True if model_class in get_values(A__ ) or not model_class.supports_gradient_checkpointing: continue __SCREAMING_SNAKE_CASE : Tuple = model_class(A__ ) model.to(A__ ) model.gradient_checkpointing_enable() model.train() __SCREAMING_SNAKE_CASE : List[Any] = self._prepare_for_class(A__ , A__ , return_labels=A__ ) __SCREAMING_SNAKE_CASE : List[str] = model(**A__ ).loss loss.backward() def UpperCAmelCase__ ( self : int ): """simple docstring""" __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __SCREAMING_SNAKE_CASE : Tuple = _config_zero_init(A__ ) for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE : int = model_class(config=A__ ) # Skip the check for the backbone __SCREAMING_SNAKE_CASE : str = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": __SCREAMING_SNAKE_CASE : List[str] = [F'''{name}.{key}''' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def UpperCAmelCase__ ( self : Any ): """simple docstring""" pass @slow def UpperCAmelCase__ ( self : str ): """simple docstring""" for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: __SCREAMING_SNAKE_CASE : int = DPTModel.from_pretrained(A__ ) self.assertIsNotNone(A__ ) def UpperCAmelCase__ ( self : Any ): """simple docstring""" __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() __SCREAMING_SNAKE_CASE : Any = '''add''' with self.assertRaises(A__ ): __SCREAMING_SNAKE_CASE : Optional[Any] = DPTForDepthEstimation(A__ ) def a__ ( ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision @slow class __UpperCamelCase ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self : Union[str, Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = DPTImageProcessor.from_pretrained('''Intel/dpt-hybrid-midas''' ) __SCREAMING_SNAKE_CASE : List[str] = DPTForDepthEstimation.from_pretrained('''Intel/dpt-hybrid-midas''' ).to(A__ ) __SCREAMING_SNAKE_CASE : int = prepare_img() __SCREAMING_SNAKE_CASE : List[Any] = image_processor(images=A__ , return_tensors='''pt''' ).to(A__ ) # forward pass with torch.no_grad(): __SCREAMING_SNAKE_CASE : List[Any] = model(**A__ ) __SCREAMING_SNAKE_CASE : List[Any] = outputs.predicted_depth # verify the predicted depth __SCREAMING_SNAKE_CASE : str = torch.Size((1, 384, 384) ) self.assertEqual(predicted_depth.shape , A__ ) __SCREAMING_SNAKE_CASE : Dict = torch.tensor( [[[5.64_37, 5.61_46, 5.65_11], [5.43_71, 5.56_49, 5.59_58], [5.52_15, 5.51_84, 5.52_93]]] ).to(A__ ) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 100 , A__ , atol=1e-4 ) )
74
'''simple docstring''' from ....utils import logging UpperCamelCase__ : List[Any] = logging.get_logger(__name__) class _a (_lowerCamelCase): """simple docstring""" def __init__( self , A__ , A__=None , A__=20_48 ) -> Tuple: _SCREAMING_SNAKE_CASE = config.__dict__ _SCREAMING_SNAKE_CASE = modal_hidden_size if num_labels: _SCREAMING_SNAKE_CASE = num_labels
591
0
import inspect import os import unittest import torch import accelerate from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_multi_gpu from accelerate.utils import patch_environment class __magic_name__ ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase ( self : Tuple ): """simple docstring""" _UpperCamelCase: str = inspect.getfile(accelerate.test_utils ) _UpperCamelCase: Any = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_script.py'''] ) _UpperCamelCase: int = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_distributed_data_loop.py'''] ) _UpperCamelCase: Tuple = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_ops.py'''] ) @require_multi_gpu def lowerCAmelCase ( self : List[str] ): """simple docstring""" print(f"""Found {torch.cuda.device_count()} devices.""" ) _UpperCamelCase: List[Any] = ['''torchrun''', f"""--nproc_per_node={torch.cuda.device_count()}""", self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_lowercase , env=os.environ.copy() ) @require_multi_gpu def lowerCAmelCase ( self : Optional[Any] ): """simple docstring""" print(f"""Found {torch.cuda.device_count()} devices.""" ) _UpperCamelCase: Dict = ['''torchrun''', f"""--nproc_per_node={torch.cuda.device_count()}""", self.operation_file_path] print(f"""Command: {cmd}""" ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_lowercase , env=os.environ.copy() ) @require_multi_gpu def lowerCAmelCase ( self : Optional[int] ): """simple docstring""" _UpperCamelCase: Union[str, Any] = ['''torchrun''', f"""--nproc_per_node={torch.cuda.device_count()}""", inspect.getfile(self.__class__ )] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_lowercase , env=os.environ.copy() ) @require_multi_gpu def lowerCAmelCase ( self : Optional[Any] ): """simple docstring""" print(f"""Found {torch.cuda.device_count()} devices, using 2 devices only""" ) _UpperCamelCase: List[str] = ['''torchrun''', f"""--nproc_per_node={torch.cuda.device_count()}""", self.data_loop_file_path] with patch_environment(omp_num_threads=1 , cuda_visible_devices='''0,1''' ): execute_subprocess_async(_lowercase , env=os.environ.copy() ) if __name__ == "__main__": UpperCAmelCase_ = Accelerator() UpperCAmelCase_ = (accelerator.state.process_index + 2, 1_0) UpperCAmelCase_ = torch.randint(0, 1_0, shape).to(accelerator.device) UpperCAmelCase_ = '''''' UpperCAmelCase_ = accelerator.pad_across_processes(tensor) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += f"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0): error_msg += "Padding was not done with the right value (0)." UpperCAmelCase_ = accelerator.pad_across_processes(tensor, pad_first=True) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += f"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." UpperCAmelCase_ = accelerator.state.num_processes - accelerator.state.process_index - 1 if not torch.equal(tensora[index:], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[:index] == 0): error_msg += "Padding was not done with the right value (0)." # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
264
import numpy as np from numpy import ndarray from scipy.optimize import Bounds, LinearConstraint, minimize def lowerCAmelCase_ ( lowercase: ndarray ) -> float: '''simple docstring''' return np.dot(lowercase , lowercase ) class __magic_name__ : """simple docstring""" def __init__( self : int , *, _lowercase : float = np.inf , _lowercase : str = "linear" , _lowercase : float = 0.0 , ): """simple docstring""" _UpperCamelCase: int = regularization _UpperCamelCase: Optional[int] = gamma if kernel == "linear": _UpperCamelCase: Optional[Any] = self.__linear elif kernel == "rbf": if self.gamma == 0: raise ValueError('''rbf kernel requires gamma''' ) if not isinstance(self.gamma , (float, int) ): raise ValueError('''gamma must be float or int''' ) if not self.gamma > 0: raise ValueError('''gamma must be > 0''' ) _UpperCamelCase: Optional[Any] = self.__rbf # in the future, there could be a default value like in sklearn # sklear: def_gamma = 1/(n_features * X.var()) (wiki) # previously it was 1/(n_features) else: _UpperCamelCase: Optional[int] = f"""Unknown kernel: {kernel}""" raise ValueError(_lowercase ) def lowerCAmelCase ( self : Union[str, Any] , _lowercase : ndarray , _lowercase : ndarray ): """simple docstring""" return np.dot(_lowercase , _lowercase ) def lowerCAmelCase ( self : str , _lowercase : ndarray , _lowercase : ndarray ): """simple docstring""" return np.exp(-(self.gamma * norm_squared(vectora - vectora )) ) def lowerCAmelCase ( self : str , _lowercase : list[ndarray] , _lowercase : ndarray ): """simple docstring""" _UpperCamelCase: List[str] = observations _UpperCamelCase: Optional[int] = classes # using Wolfe's Dual to calculate w. # Primal problem: minimize 1/2*norm_squared(w) # constraint: yn(w . xn + b) >= 1 # # With l a vector # Dual problem: maximize sum_n(ln) - # 1/2 * sum_n(sum_m(ln*lm*yn*ym*xn . xm)) # constraint: self.C >= ln >= 0 # and sum_n(ln*yn) = 0 # Then we get w using w = sum_n(ln*yn*xn) # At the end we can get b ~= mean(yn - w . xn) # # Since we use kernels, we only need l_star to calculate b # and to classify observations ((_UpperCamelCase) , ): Any = np.shape(_lowercase ) def to_minimize(_lowercase : ndarray ) -> float: _UpperCamelCase: Optional[int] = 0 ((_UpperCamelCase) , ): str = np.shape(_lowercase ) for i in range(_lowercase ): for j in range(_lowercase ): s += ( candidate[i] * candidate[j] * classes[i] * classes[j] * self.kernel(observations[i] , observations[j] ) ) return 1 / 2 * s - sum(_lowercase ) _UpperCamelCase: Optional[Any] = LinearConstraint(_lowercase , 0 , 0 ) _UpperCamelCase: Optional[int] = Bounds(0 , self.regularization ) _UpperCamelCase: Dict = minimize( _lowercase , np.ones(_lowercase ) , bounds=_lowercase , constraints=[ly_contraint] ).x _UpperCamelCase: Union[str, Any] = l_star # calculating mean offset of separation plane to points _UpperCamelCase: List[str] = 0 for i in range(_lowercase ): for j in range(_lowercase ): s += classes[i] - classes[i] * self.optimum[i] * self.kernel( observations[i] , observations[j] ) _UpperCamelCase: str = s / n def lowerCAmelCase ( self : Optional[Any] , _lowercase : ndarray ): """simple docstring""" _UpperCamelCase: Optional[int] = sum( self.optimum[n] * self.classes[n] * self.kernel(self.observations[n] , _lowercase ) for n in range(len(self.classes ) ) ) return 1 if s + self.offset >= 0 else -1 if __name__ == "__main__": import doctest doctest.testmod()
264
1
'''simple docstring''' import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} UpperCAmelCase = { """vocab_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } UpperCAmelCase = { """vocab_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } UpperCAmelCase = { """vocab_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json""" ), }, } UpperCAmelCase = { """facebook/dpr-ctx_encoder-single-nq-base""": 512, """facebook/dpr-ctx_encoder-multiset-base""": 512, } UpperCAmelCase = { """facebook/dpr-question_encoder-single-nq-base""": 512, """facebook/dpr-question_encoder-multiset-base""": 512, } UpperCAmelCase = { """facebook/dpr-reader-single-nq-base""": 512, """facebook/dpr-reader-multiset-base""": 512, } UpperCAmelCase = { """facebook/dpr-ctx_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-ctx_encoder-multiset-base""": {"""do_lower_case""": True}, } UpperCAmelCase = { """facebook/dpr-question_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-question_encoder-multiset-base""": {"""do_lower_case""": True}, } UpperCAmelCase = { """facebook/dpr-reader-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-reader-multiset-base""": {"""do_lower_case""": True}, } class lowerCAmelCase ( __snake_case ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class lowerCAmelCase ( __snake_case ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION UpperCAmelCase = collections.namedtuple( '''DPRSpanPrediction''', ['''span_score''', '''relevance_score''', '''doc_id''', '''start_index''', '''end_index''', '''text'''] ) UpperCAmelCase = collections.namedtuple('''DPRReaderOutput''', ['''start_logits''', '''end_logits''', '''relevance_logits''']) UpperCAmelCase = r""" Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`. It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers), using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)` with the format: ``` [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids> ``` Args: questions (`str` or `List[str]`): The questions to be encoded. You can specify one question for many passages. In this case, the question will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in `titles` or `texts`. titles (`str` or `List[str]`): The passages titles to be encoded. This can be a string or a list of strings if there are several passages. texts (`str` or `List[str]`): The passages texts to be encoded. This can be a string or a list of strings if there are several passages. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return Numpy `np.ndarray` objects. return_attention_mask (`bool`, *optional*): Whether or not to return the attention mask. If not set, will return the attention mask according to the specific tokenizer's default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) Returns: `Dict[str, List[List[int]]]`: A dictionary with the following keys: - `input_ids`: List of token ids to be fed to a model. - `attention_mask`: List of indices specifying which tokens should be attended to by the model. """ @add_start_docstrings(__snake_case ) class lowerCAmelCase : def __call__( self : Tuple , __lowercase : Optional[int] , __lowercase : int = None , __lowercase : Any = None , __lowercase : int = False , __lowercase : List[Any] = False , __lowercase : Any = None , __lowercase : str = None , __lowercase : Union[str, Any] = None , **__lowercase : int , ): """simple docstring""" if titles is None and texts is None: return super().__call__( A_ , padding=A_ , truncation=A_ , max_length=A_ , return_tensors=A_ , return_attention_mask=A_ , **A_ , ) elif titles is None or texts is None: __lowercase =titles if texts is None else texts return super().__call__( A_ , A_ , padding=A_ , truncation=A_ , max_length=A_ , return_tensors=A_ , return_attention_mask=A_ , **A_ , ) __lowercase =titles if not isinstance(A_ , A_ ) else [titles] __lowercase =texts if not isinstance(A_ , A_ ) else [texts] __lowercase =len(A_ ) __lowercase =questions if not isinstance(A_ , A_ ) else [questions] * n_passages if len(A_ ) != len(A_ ): raise ValueError( f'''There should be as many titles than texts but got {len(A_ )} titles and {len(A_ )} texts.''' ) __lowercase =super().__call__(A_ , A_ , padding=A_ , truncation=A_ )["input_ids"] __lowercase =super().__call__(A_ , add_special_tokens=A_ , padding=A_ , truncation=A_ )["input_ids"] __lowercase ={ "input_ids": [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(A_ , A_ ) ] } if return_attention_mask is not False: __lowercase =[] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) __lowercase =attention_mask return self.pad(A_ , padding=A_ , max_length=A_ , return_tensors=A_ ) def snake_case ( self : Any , __lowercase : List[str] , __lowercase : Optional[int] , __lowercase : Dict = 16 , __lowercase : Optional[int] = 64 , __lowercase : Union[str, Any] = 4 , ): """simple docstring""" __lowercase =reader_input["input_ids"] __lowercase =reader_output[:3] __lowercase =len(A_ ) __lowercase =sorted(range(A_ ) , reverse=A_ , key=relevance_logits.__getitem__ ) __lowercase =[] for doc_id in sorted_docs: __lowercase =list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence __lowercase =sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: __lowercase =sequence_ids.index(self.pad_token_id ) else: __lowercase =len(A_ ) __lowercase =self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=A_ , top_spans=A_ , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=A_ , start_index=A_ , end_index=A_ , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(A_ ) >= num_spans: break return nbest_spans_predictions[:num_spans] def snake_case ( self : str , __lowercase : Tuple , __lowercase : Dict , __lowercase : Any , __lowercase : Optional[int] , ): """simple docstring""" __lowercase =[] for start_index, start_score in enumerate(A_ ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) __lowercase =sorted(A_ , key=lambda __lowercase : x[1] , reverse=A_ ) __lowercase =[] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(f'''Wrong span indices: [{start_index}:{end_index}]''' ) __lowercase =end_index - start_index + 1 if length > max_answer_length: raise ValueError(f'''Span is too long: {length} > {max_answer_length}''' ) if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(A_ ) == top_spans: break return chosen_span_intervals @add_end_docstrings(__snake_case ) class lowerCAmelCase ( __snake_case , __snake_case ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = READER_PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = READER_PRETRAINED_INIT_CONFIGURATION lowerCAmelCase_ = ['input_ids', 'attention_mask']
119
import json import os import tempfile from transformers.testing_utils import check_json_file_has_correct_format class A__ : _UpperCAmelCase :Union[str, Any] = None def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : int = self.feature_extraction_class(**self.feat_extract_dict ) UpperCamelCase : Union[str, Any] = json.loads(feat_extract.to_json_string() ) for key, value in self.feat_extract_dict.items(): self.assertEqual(obj[key] , A_ ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : str = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase : List[Any] = os.path.join(A_ , "feat_extract.json" ) feat_extract_first.to_json_file(A_ ) UpperCamelCase : str = self.feature_extraction_class.from_json_file(A_ ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase : int = feat_extract_first.save_pretrained(A_ )[0] check_json_file_has_correct_format(A_ ) UpperCamelCase : Optional[Any] = self.feature_extraction_class.from_pretrained(A_ ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Any = self.feature_extraction_class() self.assertIsNotNone(A_ )
629
0
"""simple docstring""" import multiprocessing import os from typing import BinaryIO, Optional, Union import fsspec from .. import Dataset, Features, NamedSplit, config from ..formatting import query_table from ..packaged_modules.json.json import Json from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' def __init__( self :Dict , __magic_name__ :NestedDataStructureLike[PathLike] , __magic_name__ :Optional[NamedSplit] = None , __magic_name__ :Optional[Features] = None , __magic_name__ :str = None , __magic_name__ :bool = False , __magic_name__ :bool = False , __magic_name__ :Optional[str] = None , __magic_name__ :Optional[int] = None , **__magic_name__ :Optional[int] , ) -> Any: '''simple docstring''' super().__init__( __magic_name__ , split=__magic_name__ , features=__magic_name__ , cache_dir=__magic_name__ , keep_in_memory=__magic_name__ , streaming=__magic_name__ , num_proc=__magic_name__ , **__magic_name__ , ) a__ = field a__ = path_or_paths if isinstance(__magic_name__ , __magic_name__ ) else {self.split: path_or_paths} a__ = Json( cache_dir=__magic_name__ , data_files=__magic_name__ , features=__magic_name__ , field=__magic_name__ , **__magic_name__ , ) def _UpperCamelCase ( self :List[str] ) -> str: '''simple docstring''' if self.streaming: a__ = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: a__ = None a__ = None a__ = None a__ = None self.builder.download_and_prepare( download_config=__magic_name__ , download_mode=__magic_name__ , verification_mode=__magic_name__ , base_path=__magic_name__ , num_proc=self.num_proc , ) a__ = self.builder.as_dataset( split=self.split , verification_mode=__magic_name__ , in_memory=self.keep_in_memory ) return dataset class SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self :str , __magic_name__ :Dataset , __magic_name__ :Union[PathLike, BinaryIO] , __magic_name__ :Optional[int] = None , __magic_name__ :Optional[int] = None , **__magic_name__ :List[str] , ) -> Any: '''simple docstring''' if num_proc is not None and num_proc <= 0: raise ValueError(F"num_proc {num_proc} must be an integer > 0." ) a__ = dataset a__ = path_or_buf a__ = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE a__ = num_proc a__ = '''utf-8''' a__ = to_json_kwargs def _UpperCamelCase ( self :Any ) -> int: '''simple docstring''' a__ = self.to_json_kwargs.pop('''path_or_buf''' , __magic_name__ ) a__ = self.to_json_kwargs.pop('''orient''' , '''records''' ) a__ = self.to_json_kwargs.pop('''lines''' , True if orient == '''records''' else False ) a__ = self.to_json_kwargs.pop('''index''' , False if orient in ['''split''', '''table'''] else True ) a__ = self.to_json_kwargs.pop('''compression''' , __magic_name__ ) if compression not in [None, "infer", "gzip", "bz2", "xz"]: raise NotImplementedError(F"`datasets` currently does not support {compression} compression" ) if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with fsspec.open(self.path_or_buf , '''wb''' , compression=__magic_name__ ) as buffer: a__ = self._write(file_obj=__magic_name__ , orient=__magic_name__ , lines=__magic_name__ , index=__magic_name__ , **self.to_json_kwargs ) else: if compression: raise NotImplementedError( F"The compression parameter is not supported when writing to a buffer, but compression={compression}" ''' was passed. Please provide a local path instead.''' ) a__ = self._write( file_obj=self.path_or_buf , orient=__magic_name__ , lines=__magic_name__ , index=__magic_name__ , **self.to_json_kwargs ) return written def _UpperCamelCase ( self :Optional[Any] , __magic_name__ :Optional[int] ) -> Optional[int]: '''simple docstring''' a__ , a__ , a__ , a__ , a__ = args a__ = query_table( table=self.dataset.data , key=slice(__magic_name__ , offset + self.batch_size ) , indices=self.dataset._indices , ) a__ = batch.to_pandas().to_json( path_or_buf=__magic_name__ , orient=__magic_name__ , lines=__magic_name__ , index=__magic_name__ , **__magic_name__ ) if not json_str.endswith('''\n''' ): json_str += "\n" return json_str.encode(self.encoding ) def _UpperCamelCase ( self :Tuple , __magic_name__ :BinaryIO , __magic_name__ :str , __magic_name__ :Union[str, Any] , __magic_name__ :Tuple , **__magic_name__ :str , ) -> int: '''simple docstring''' a__ = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating json from Arrow format''' , ): a__ = self._batch_json((offset, orient, lines, index, to_json_kwargs) ) written += file_obj.write(__magic_name__ ) else: a__ , a__ = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for json_str in logging.tqdm( pool.imap( self._batch_json , [(offset, orient, lines, index, to_json_kwargs) for offset in range(0 , __magic_name__ , __magic_name__ )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating json from Arrow format''' , ): written += file_obj.write(__magic_name__ ) return written
717
"""simple docstring""" import os from collections import namedtuple import pytest from datasets import ClassLabel, Features, Sequence, Value from datasets.commands.test import TestCommand from datasets.info import DatasetInfo, DatasetInfosDict __lowerCAmelCase : Optional[int] = namedtuple( '''_TestCommandArgs''', [ '''dataset''', '''name''', '''cache_dir''', '''data_dir''', '''all_configs''', '''save_infos''', '''ignore_verifications''', '''force_redownload''', '''clear_cache''', ], defaults=[None, None, None, False, False, False, False, False], ) def __snake_case ( UpperCamelCase , UpperCamelCase ) -> List[str]: """simple docstring""" return (abs(source - target ) / target) < 0.01 @pytest.mark.integration def __snake_case ( UpperCamelCase ) -> Union[str, Any]: """simple docstring""" a__ = _TestCommandArgs(dataset=UpperCamelCase , all_configs=UpperCamelCase , save_infos=UpperCamelCase ) a__ = TestCommand(*UpperCamelCase ) test_command.run() a__ = os.path.join(UpperCamelCase , '''README.md''' ) assert os.path.exists(UpperCamelCase ) a__ = DatasetInfosDict.from_directory(UpperCamelCase ) a__ = DatasetInfosDict( { '''default''': DatasetInfo( features=Features( { '''tokens''': Sequence(Value('''string''' ) ), '''ner_tags''': Sequence( ClassLabel(names=['''O''', '''B-PER''', '''I-PER''', '''B-ORG''', '''I-ORG''', '''B-LOC''', '''I-LOC'''] ) ), '''langs''': Sequence(Value('''string''' ) ), '''spans''': Sequence(Value('''string''' ) ), } ) , splits=[ { '''name''': '''train''', '''num_bytes''': 2_351_563, '''num_examples''': 10_000, }, { '''name''': '''validation''', '''num_bytes''': 238_418, '''num_examples''': 1_000, }, ] , download_size=3_940_680 , dataset_size=2_589_981 , ) } ) assert dataset_infos.keys() == expected_dataset_infos.keys() for key in DatasetInfo._INCLUDED_INFO_IN_YAML: a__ , a__ = getattr(dataset_infos['''default'''] , UpperCamelCase ), getattr(expected_dataset_infos['''default'''] , UpperCamelCase ) if key == "num_bytes": assert is_apercent_close(UpperCamelCase , UpperCamelCase ) elif key == "splits": assert list(UpperCamelCase ) == list(UpperCamelCase ) for split in result: assert result[split].name == expected[split].name assert result[split].num_examples == expected[split].num_examples assert is_apercent_close(result[split].num_bytes , expected[split].num_bytes ) else: result == expected
158
0
import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer lowerCAmelCase = 'bart' lowerCAmelCase = True @st.cache(allow_output_mutation=SCREAMING_SNAKE_CASE ) def _a ( ): """simple docstring""" if LOAD_DENSE_INDEX: lowercase__ = AutoTokenizer.from_pretrained('''yjernite/retribert-base-uncased''' ) lowercase__ = AutoModel.from_pretrained('''yjernite/retribert-base-uncased''' ).to('''cuda:0''' ) lowercase__ = qar_model.eval() else: lowercase__ , lowercase__ = (None, None) if MODEL_TYPE == "bart": lowercase__ = AutoTokenizer.from_pretrained('''yjernite/bart_eli5''' ) lowercase__ = AutoModelForSeqaSeqLM.from_pretrained('''yjernite/bart_eli5''' ).to('''cuda:0''' ) lowercase__ = torch.load('''seq2seq_models/eli5_bart_model_blm_2.pth''' ) sas_model.load_state_dict(save_dict['''model'''] ) lowercase__ = sas_model.eval() else: lowercase__ , lowercase__ = make_qa_sas_model( model_name='''t5-small''' , from_file='''seq2seq_models/eli5_t5_model_1024_4.pth''' , device='''cuda:0''' ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=SCREAMING_SNAKE_CASE ) def _a ( ): """simple docstring""" if LOAD_DENSE_INDEX: lowercase__ = faiss.StandardGpuResources() lowercase__ = datasets.load_dataset(path='''wiki_snippets''' , name='''wiki40b_en_100_0''' )['''train'''] lowercase__ = np.memmap( '''wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat''' , dtype='''float32''' , mode='''r''' , shape=(wikiaab_passages.num_rows, 1_28) , ) lowercase__ = faiss.IndexFlatIP(1_28 ) lowercase__ = faiss.index_cpu_to_gpu(SCREAMING_SNAKE_CASE , 1 , SCREAMING_SNAKE_CASE ) wikiaab_gpu_index_flat.add(SCREAMING_SNAKE_CASE ) # TODO fix for larger GPU else: lowercase__ , lowercase__ = (None, None) lowercase__ = Elasticsearch([{'''host''': '''localhost''', '''port''': '''9200'''}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=SCREAMING_SNAKE_CASE ) def _a ( ): """simple docstring""" lowercase__ = datasets.load_dataset('''eli5''' , name='''LFQA_reddit''' ) lowercase__ = elia['''train_eli5'''] lowercase__ = np.memmap( '''eli5_questions_reps.dat''' , dtype='''float32''' , mode='''r''' , shape=(elia_train.num_rows, 1_28) ) lowercase__ = faiss.IndexFlatIP(1_28 ) eli5_train_q_index.add(SCREAMING_SNAKE_CASE ) return (elia_train, eli5_train_q_index) lowerCAmelCase, lowerCAmelCase, lowerCAmelCase = load_indexes() lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase = load_models() lowerCAmelCase, lowerCAmelCase = load_train_data() def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=10 ): """simple docstring""" lowercase__ = embed_questions_for_retrieval([question] , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowercase__ , lowercase__ = eli5_train_q_index.search(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowercase__ = [elia_train[int(SCREAMING_SNAKE_CASE )] for i in I[0]] return nn_examples def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE="wiki40b" , SCREAMING_SNAKE_CASE="dense" , SCREAMING_SNAKE_CASE=10 ): """simple docstring""" if source == "none": lowercase__ , lowercase__ = (''' <P> '''.join(['''''' for _ in range(11 )] ).strip(), []) else: if method == "dense": lowercase__ , lowercase__ = query_qa_dense_index( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else: lowercase__ , lowercase__ = query_es_index( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , index_name='''english_wiki40b_snippets_100w''' , n_results=SCREAMING_SNAKE_CASE , ) lowercase__ = [ (res['''article_title'''], res['''section_title'''].strip(), res['''score'''], res['''passage_text''']) for res in hit_lst ] lowercase__ = '''question: {} context: {}'''.format(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda SCREAMING_SNAKE_CASE : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda SCREAMING_SNAKE_CASE : None), } ) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=64 , SCREAMING_SNAKE_CASE=2_56 , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE=0.95 , SCREAMING_SNAKE_CASE=0.8 ): """simple docstring""" with torch.no_grad(): lowercase__ = qa_sas_generate( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , num_answers=1 , num_beams=SCREAMING_SNAKE_CASE , min_len=SCREAMING_SNAKE_CASE , max_len=SCREAMING_SNAKE_CASE , do_sample=SCREAMING_SNAKE_CASE , temp=SCREAMING_SNAKE_CASE , top_p=SCREAMING_SNAKE_CASE , top_k=SCREAMING_SNAKE_CASE , max_input_length=10_24 , device='''cuda:0''' , )[0] return (answer, support_list) st.title('Long Form Question Answering with ELI5') # Start sidebar lowerCAmelCase = '<img src=\'https://huggingface.co/front/assets/huggingface_logo.svg\'>' lowerCAmelCase = '\n<html>\n <head>\n <style>\n .img-container {\n padding-left: 90px;\n padding-right: 90px;\n padding-top: 50px;\n padding-bottom: 50px;\n background-color: #f0f3f9;\n }\n </style>\n </head>\n <body>\n <span class="img-container"> <!-- Inline parent element -->\n %s\n </span>\n </body>\n</html>\n' % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia lowerCAmelCase = '\nThis demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).\nFirst, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,\na pre-processed fixed snapshot of Wikipedia.\n' st.sidebar.markdown(description, unsafe_allow_html=True) lowerCAmelCase = [ 'Answer the question', 'View the retrieved document only', 'View the most similar ELI5 question and answer', 'Show me everything, please!', ] lowerCAmelCase = st.sidebar.checkbox('Demo options') if demo_options: lowerCAmelCase = st.sidebar.selectbox( '', action_list, index=3, ) lowerCAmelCase = action_list.index(action_st) lowerCAmelCase = st.sidebar.selectbox( '', ['Show full text of passages', 'Show passage section titles'], index=0, ) lowerCAmelCase = show_type == 'Show full text of passages' else: lowerCAmelCase = 3 lowerCAmelCase = True lowerCAmelCase = st.sidebar.checkbox('Retrieval options') if retrieval_options: lowerCAmelCase = '\n ### Information retriever options\n\n The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding\n trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.\n The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.\n ' st.sidebar.markdown(retriever_info) lowerCAmelCase = st.sidebar.selectbox('Which Wikipedia format should the model use?', ['wiki40b', 'none']) lowerCAmelCase = st.sidebar.selectbox('Which Wikipedia indexer should the model use?', ['dense', 'sparse', 'mixed']) else: lowerCAmelCase = 'wiki40b' lowerCAmelCase = 'dense' lowerCAmelCase = 'beam' lowerCAmelCase = 2 lowerCAmelCase = 64 lowerCAmelCase = 256 lowerCAmelCase = None lowerCAmelCase = None lowerCAmelCase = st.sidebar.checkbox('Generation options') if generate_options: lowerCAmelCase = '\n ### Answer generation options\n\n The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)\n weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with\n **beam** search, or **sample** from the decoder\'s output probabilities.\n ' st.sidebar.markdown(generate_info) lowerCAmelCase = st.sidebar.selectbox('Would you like to use beam search or sample an answer?', ['beam', 'sampled']) lowerCAmelCase = st.sidebar.slider( 'Minimum generation length', min_value=8, max_value=256, value=64, step=8, format=None, key=None ) lowerCAmelCase = st.sidebar.slider( 'Maximum generation length', min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": lowerCAmelCase = st.sidebar.slider('Beam size', min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: lowerCAmelCase = st.sidebar.slider( 'Nucleus sampling p', min_value=0.1, max_value=1.0, value=0.9_5, step=0.0_1, format=None, key=None ) lowerCAmelCase = st.sidebar.slider( 'Temperature', min_value=0.1, max_value=1.0, value=0.7, step=0.0_1, format=None, key=None ) lowerCAmelCase = None # start main text lowerCAmelCase = [ '<MY QUESTION>', 'How do people make chocolate?', 'Why do we get a fever when we are sick?', 'How can different animals perceive different colors?', 'What is natural language processing?', 'What\'s the best way to treat a sunburn?', 'What exactly are vitamins ?', 'How does nuclear energy provide electricity?', 'What\'s the difference between viruses and bacteria?', 'Why are flutes classified as woodwinds when most of them are made out of metal ?', 'Why do people like drinking coffee even though it tastes so bad?', 'What happens when wine ages? How does it make the wine taste better?', 'If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?', 'How can we set a date to the beginning or end of an artistic period? Doesn\'t the change happen gradually?', 'How does New Zealand have so many large bird predators?', ] lowerCAmelCase = st.selectbox( 'What would you like to ask? ---- select <MY QUESTION> to enter a new query', questions_list, index=1, ) if question_s == "<MY QUESTION>": lowerCAmelCase = st.text_input('Enter your question here:', '') else: lowerCAmelCase = question_s if st.button('Show me!'): if action in [0, 1, 3]: if index_type == "mixed": lowerCAmelCase, lowerCAmelCase = make_support(question, source=wiki_source, method='dense', n_results=10) lowerCAmelCase, lowerCAmelCase = make_support(question, source=wiki_source, method='sparse', n_results=10) lowerCAmelCase = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] lowerCAmelCase = support_list[:10] lowerCAmelCase = '<P> ' + ' <P> '.join([res[-1] for res in support_list]) else: lowerCAmelCase, lowerCAmelCase = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: lowerCAmelCase, lowerCAmelCase = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == 'sampled'), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown('### The model generated answer is:') st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown('--- \n ### The model is drawing information from the following Wikipedia passages:') for i, res in enumerate(support_list): lowerCAmelCase = 'https://en.wikipedia.org/wiki/{}'.format(res[0].replace(' ', '_')) lowerCAmelCase = res[1].strip() if sec_titles == "": lowerCAmelCase = '[{}]({})'.format(res[0], wiki_url) else: lowerCAmelCase = sec_titles.split(' & ') lowerCAmelCase = ' & '.join( ['[{}]({}#{})'.format(sec.strip(), wiki_url, sec.strip().replace(' ', '_')) for sec in sec_list] ) st.markdown( '{0:02d} - **Article**: {1:<18} <br> _Section_: {2}'.format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( '> <span style="font-family:arial; font-size:10pt;">' + res[-1] + '</span>', unsafe_allow_html=True ) if action in [2, 3]: lowerCAmelCase = find_nearest_training(question) lowerCAmelCase = nn_train_list[0] st.markdown( '--- \n ### The most similar question in the ELI5 training set was: \n\n {}'.format(train_exple['title']) ) lowerCAmelCase = [ '{}. {}'.format(i + 1, ' \n'.join([line.strip() for line in ans.split('\n') if line.strip() != ''])) for i, (ans, sc) in enumerate(zip(train_exple['answers']['text'], train_exple['answers']['score'])) if i == 0 or sc > 2 ] st.markdown('##### Its answers were: \n\n {}'.format('\n'.join(answers_st))) lowerCAmelCase = '\n---\n\n**Disclaimer**\n\n*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.\nEvaluating biases of such a model and ensuring factual generations are still very much open research problems.\nTherefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*\n' st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
43
'''simple docstring''' import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 __magic_name__ : Dict ={ 'return_dict': False, 'output_hidden_states': True, 'output_attentions': True, 'torchscript': True, 'torch_dtype': 'float16', 'use_bfloat16': True, 'tf_legacy_loss': True, 'pruned_heads': {'a': 1}, 'tie_word_embeddings': False, 'is_decoder': True, 'cross_attention_hidden_size': 1_28, 'add_cross_attention': True, 'tie_encoder_decoder': True, 'max_length': 50, 'min_length': 3, 'do_sample': True, 'early_stopping': True, 'num_beams': 3, 'num_beam_groups': 3, 'diversity_penalty': 0.5, 'temperature': 2.0, 'top_k': 10, 'top_p': 0.7, 'typical_p': 0.2, 'repetition_penalty': 0.8, 'length_penalty': 0.8, 'no_repeat_ngram_size': 5, 'encoder_no_repeat_ngram_size': 5, 'bad_words_ids': [1, 2, 3], 'num_return_sequences': 3, 'chunk_size_feed_forward': 5, 'output_scores': True, 'return_dict_in_generate': True, 'forced_bos_token_id': 2, 'forced_eos_token_id': 3, 'remove_invalid_values': True, 'architectures': ['BertModel'], 'finetuning_task': 'translation', 'id2label': {0: 'label'}, 'label2id': {'label': '0'}, 'tokenizer_class': 'BertTokenizerFast', 'prefix': 'prefix', 'bos_token_id': 6, 'pad_token_id': 7, 'eos_token_id': 8, 'sep_token_id': 9, 'decoder_start_token_id': 10, 'exponential_decay_length_penalty': (5, 1.0_1), 'suppress_tokens': [0, 1], 'begin_suppress_tokens': 2, 'task_specific_params': {'translation': 'some_params'}, 'problem_type': 'regression', } @is_staging_test class UpperCamelCase_ ( unittest.TestCase ): """simple docstring""" @classmethod def __A ( cls : Any ) -> Union[str, Any]: __magic_name__ = TOKEN HfFolder.save_token(_lowerCamelCase ) @classmethod def __A ( cls : Any ) -> Tuple: try: delete_repo(token=cls._token , repo_id="test-config" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-config-org" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="test-dynamic-config" ) except HTTPError: pass def __A ( self : Optional[Any] ) -> Dict: __magic_name__ = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub("test-config" , use_auth_token=self._token ) __magic_name__ = BertConfig.from_pretrained(f'{USER}/test-config' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_lowerCamelCase , getattr(_lowerCamelCase , _lowerCamelCase ) ) # Reset repo delete_repo(token=self._token , repo_id="test-config" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(_lowerCamelCase , repo_id="test-config" , push_to_hub=_lowerCamelCase , use_auth_token=self._token ) __magic_name__ = BertConfig.from_pretrained(f'{USER}/test-config' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_lowerCamelCase , getattr(_lowerCamelCase , _lowerCamelCase ) ) def __A ( self : str ) -> Optional[int]: __magic_name__ = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub("valid_org/test-config-org" , use_auth_token=self._token ) __magic_name__ = BertConfig.from_pretrained("valid_org/test-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_lowerCamelCase , getattr(_lowerCamelCase , _lowerCamelCase ) ) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-config-org" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( _lowerCamelCase , repo_id="valid_org/test-config-org" , push_to_hub=_lowerCamelCase , use_auth_token=self._token ) __magic_name__ = BertConfig.from_pretrained("valid_org/test-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_lowerCamelCase , getattr(_lowerCamelCase , _lowerCamelCase ) ) def __A ( self : Optional[int] ) -> Union[str, Any]: CustomConfig.register_for_auto_class() __magic_name__ = CustomConfig(attribute=42 ) config.push_to_hub("test-dynamic-config" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {"AutoConfig": "custom_configuration.CustomConfig"} ) __magic_name__ = AutoConfig.from_pretrained(f'{USER}/test-dynamic-config' , trust_remote_code=_lowerCamelCase ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , "CustomConfig" ) self.assertEqual(new_config.attribute , 42 ) class UpperCamelCase_ ( unittest.TestCase ): """simple docstring""" def __A ( self : Optional[int] ) -> Optional[Any]: __magic_name__ = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated __magic_name__ = c.n_embd + 1 # int __magic_name__ = c.resid_pdrop + 1.0 # float __magic_name__ = not c.scale_attn_weights # bool __magic_name__ = c.summary_type + "foo" # str c.update_from_string( f'n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}' ) self.assertEqual(_lowerCamelCase , c.n_embd , "mismatch for key: n_embd" ) self.assertEqual(_lowerCamelCase , c.resid_pdrop , "mismatch for key: resid_pdrop" ) self.assertEqual(_lowerCamelCase , c.scale_attn_weights , "mismatch for key: scale_attn_weights" ) self.assertEqual(_lowerCamelCase , c.summary_type , "mismatch for key: summary_type" ) def __A ( self : List[Any] ) -> Union[str, Any]: __magic_name__ = PretrainedConfig() __magic_name__ = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( _lowerCamelCase , ["is_encoder_decoder", "_name_or_path", "_commit_hash", "transformers_version"] ) __magic_name__ = [key for key, value in config_common_kwargs.items() if value == getattr(_lowerCamelCase , _lowerCamelCase )] if len(_lowerCamelCase ) > 0: raise ValueError( "The following keys are set with the default values in" " `test_configuration_common.config_common_kwargs` pick another value for them:" f' {", ".join(_lowerCamelCase )}.' ) def __A ( self : List[Any] ) -> List[Any]: with self.assertRaises(_lowerCamelCase ): # config is in subfolder, the following should not work without specifying the subfolder __magic_name__ = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert-subfolder" ) __magic_name__ = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert-subfolder" , subfolder="bert" ) self.assertIsNotNone(_lowerCamelCase ) def __A ( self : Tuple ) -> int: # A mock response for an HTTP head request to emulate server down __magic_name__ = mock.Mock() __magic_name__ = 5_00 __magic_name__ = {} __magic_name__ = HTTPError __magic_name__ = {} # Download this model to make sure it's in the cache. __magic_name__ = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("requests.Session.request" , return_value=_lowerCamelCase ) as mock_head: __magic_name__ = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert" ) # This check we did call the fake head request mock_head.assert_called() def __A ( self : Union[str, Any] ) -> Dict: # This test is for deprecated behavior and can be removed in v5 __magic_name__ = BertConfig.from_pretrained( "https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json" ) def __A ( self : Dict ) -> Optional[int]: __magic_name__ = AutoConfig.from_pretrained("bert-base-cased" ) __magic_name__ = ["config.4.0.0.json"] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(_lowerCamelCase ) __magic_name__ = 2 json.dump(configuration.to_dict() , open(os.path.join(_lowerCamelCase , "config.4.0.0.json" ) , "w" ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 __magic_name__ = AutoConfig.from_pretrained(_lowerCamelCase ) self.assertEqual(new_configuration.hidden_size , 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 __magic_name__ = ["config.42.0.0.json"] __magic_name__ = 7_68 configuration.save_pretrained(_lowerCamelCase ) shutil.move(os.path.join(_lowerCamelCase , "config.4.0.0.json" ) , os.path.join(_lowerCamelCase , "config.42.0.0.json" ) ) __magic_name__ = AutoConfig.from_pretrained(_lowerCamelCase ) self.assertEqual(new_configuration.hidden_size , 7_68 ) def __A ( self : Optional[int] ) -> str: # This repo has two configuration files, one for v4.0.0 and above with a different hidden size. __magic_name__ = "hf-internal-testing/test-two-configs" import transformers as new_transformers __magic_name__ = "v4.0.0" __magic_name__ , __magic_name__ = new_transformers.models.auto.AutoConfig.from_pretrained( _lowerCamelCase , return_unused_kwargs=_lowerCamelCase ) self.assertEqual(new_configuration.hidden_size , 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(_lowerCamelCase , {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers __magic_name__ = "v3.0.0" __magic_name__ = old_transformers.models.auto.AutoConfig.from_pretrained(_lowerCamelCase ) self.assertEqual(old_configuration.hidden_size , 7_68 )
664
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_imagegpt import ImageGPTImageProcessor __A : Any = logging.get_logger(__name__) class lowercase ( _lowerCamelCase ): '''simple docstring''' def __init__( self : Dict , *__lowerCamelCase : List[str] , **__lowerCamelCase : Any ) -> None: '''simple docstring''' warnings.warn( "The class ImageGPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use ImageGPTImageProcessor instead." , __lowerCamelCase , ) super().__init__(*__lowerCamelCase , **__lowerCamelCase )
187
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __A : Tuple = { """configuration_deberta""": ["""DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """DebertaConfig""", """DebertaOnnxConfig"""], """tokenization_deberta""": ["""DebertaTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : int = ["""DebertaTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : str = [ """DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""", """DebertaForMaskedLM""", """DebertaForQuestionAnswering""", """DebertaForSequenceClassification""", """DebertaForTokenClassification""", """DebertaModel""", """DebertaPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Union[str, Any] = [ """TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFDebertaForMaskedLM""", """TFDebertaForQuestionAnswering""", """TFDebertaForSequenceClassification""", """TFDebertaForTokenClassification""", """TFDebertaModel""", """TFDebertaPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_deberta import DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, DebertaConfig, DebertaOnnxConfig from .tokenization_deberta import DebertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_deberta_fast import DebertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deberta import ( DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, DebertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deberta import ( TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFDebertaForMaskedLM, TFDebertaForQuestionAnswering, TFDebertaForSequenceClassification, TFDebertaForTokenClassification, TFDebertaModel, TFDebertaPreTrainedModel, ) else: import sys __A : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
187
1
# Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib __UpperCAmelCase = get_logger() __UpperCAmelCase = None class lowerCAmelCase_ ( TensorFormatter[Mapping, "jax.Array", Mapping] ): def __init__( self, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=None, **SCREAMING_SNAKE_CASE_ ) -> List[Any]: super().__init__(features=SCREAMING_SNAKE_CASE_ ) import jax from jaxlib.xla_client import Device if isinstance(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): raise ValueError( F"""Expected {device} to be a `str` not {type(SCREAMING_SNAKE_CASE_ )}, as `jaxlib.xla_extension.Device` """ 'is not serializable neither with `pickle` nor with `dill`. Instead you can surround ' 'the device with `str()` to get its string identifier that will be internally mapped ' 'to the actual `jaxlib.xla_extension.Device`.' ) UpperCamelCase : Union[str, Any] = device if isinstance(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: UpperCamelCase : int = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( F"""Device with string identifier {self.device} not listed among the available """ F"""devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default """ F"""device: {str(jax.devices()[0] )}.""" ) UpperCamelCase : Dict = str(jax.devices()[0] ) UpperCamelCase : Dict = jnp_array_kwargs @staticmethod def snake_case_ ( ) -> Dict[str, "jaxlib.xla_extension.Device"]: import jax return {str(SCREAMING_SNAKE_CASE_ ): device for device in jax.devices()} def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: import jax import jax.numpy as jnp if isinstance(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) and column: if all( isinstance(SCREAMING_SNAKE_CASE_, jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(SCREAMING_SNAKE_CASE_, axis=0 ) return column def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> int: import jax import jax.numpy as jnp if isinstance(SCREAMING_SNAKE_CASE_, (str, bytes, type(SCREAMING_SNAKE_CASE_ )) ): return value elif isinstance(SCREAMING_SNAKE_CASE_, (np.character, np.ndarray) ) and np.issubdtype(value.dtype, np.character ): return value.tolist() UpperCamelCase : Optional[Any] = {} if isinstance(SCREAMING_SNAKE_CASE_, (np.number, np.ndarray) ) and np.issubdtype(value.dtype, np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: UpperCamelCase : List[Any] = {'dtype': jnp.intaa} else: UpperCamelCase : Optional[int] = {'dtype': jnp.intaa} elif isinstance(SCREAMING_SNAKE_CASE_, (np.number, np.ndarray) ) and np.issubdtype(value.dtype, np.floating ): UpperCamelCase : Union[str, Any] = {'dtype': jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(SCREAMING_SNAKE_CASE_, PIL.Image.Image ): UpperCamelCase : int = np.asarray(SCREAMING_SNAKE_CASE_ ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: UpperCamelCase : Dict = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(SCREAMING_SNAKE_CASE_, **{**default_dtype, **self.jnp_array_kwargs} ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> Dict: import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(SCREAMING_SNAKE_CASE_, torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(SCREAMING_SNAKE_CASE_, '__array__' ) and not isinstance(SCREAMING_SNAKE_CASE_, jax.Array ): UpperCamelCase : Any = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(SCREAMING_SNAKE_CASE_, np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(SCREAMING_SNAKE_CASE_ ) for substruct in data_struct] ) elif isinstance(SCREAMING_SNAKE_CASE_, (list, tuple) ): return self._consolidate([self.recursive_tensorize(SCREAMING_SNAKE_CASE_ ) for substruct in data_struct] ) return self._tensorize(SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> Any: return map_nested(self._recursive_tensorize, SCREAMING_SNAKE_CASE_, map_list=SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> Mapping: UpperCamelCase : List[Any] = self.numpy_arrow_extractor().extract_row(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : int = self.python_features_decoder.decode_row(SCREAMING_SNAKE_CASE_ ) return self.recursive_tensorize(SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> "jax.Array": UpperCamelCase : str = self.numpy_arrow_extractor().extract_column(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = self.python_features_decoder.decode_column(SCREAMING_SNAKE_CASE_, pa_table.column_names[0] ) UpperCamelCase : Tuple = self.recursive_tensorize(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = self._consolidate(SCREAMING_SNAKE_CASE_ ) return column def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> Mapping: UpperCamelCase : List[Any] = self.numpy_arrow_extractor().extract_batch(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = self.python_features_decoder.decode_batch(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[Any] = self.recursive_tensorize(SCREAMING_SNAKE_CASE_ ) for column_name in batch: UpperCamelCase : List[Any] = self._consolidate(batch[column_name] ) return batch
40
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { """sail/poolformer_s12""": """https://huggingface.co/sail/poolformer_s12/resolve/main/config.json""", # See all PoolFormer models at https://huggingface.co/models?filter=poolformer } class UpperCAmelCase__ ( snake_case__ ): snake_case_ = '''poolformer''' def __init__( self , A__=3 , A__=16 , A__=16 , A__=3 , A__=4.0 , A__=[2, 2, 6, 2] , A__=[64, 128, 320, 512] , A__=[7, 3, 3, 3] , A__=[4, 2, 2, 2] , A__=[2, 1, 1, 1] , A__=4 , A__=0.0 , A__="gelu" , A__=True , A__=1E-5 , A__=0.02 , **A__ , ): """simple docstring""" UpperCAmelCase_: Any = num_channels UpperCAmelCase_: Union[str, Any] = patch_size UpperCAmelCase_: str = stride UpperCAmelCase_: Tuple = padding UpperCAmelCase_: Dict = pool_size UpperCAmelCase_: Optional[int] = hidden_sizes UpperCAmelCase_: Dict = mlp_ratio UpperCAmelCase_: int = depths UpperCAmelCase_: Any = patch_sizes UpperCAmelCase_: str = strides UpperCAmelCase_: int = num_encoder_blocks UpperCAmelCase_: Optional[Any] = drop_path_rate UpperCAmelCase_: Optional[Any] = hidden_act UpperCAmelCase_: int = use_layer_scale UpperCAmelCase_: Union[str, Any] = layer_scale_init_value UpperCAmelCase_: int = initializer_range super().__init__(**A__ ) class UpperCAmelCase__ ( snake_case__ ): snake_case_ = version.parse('''1.11''' ) @property def snake_case_ ( self ): """simple docstring""" return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def snake_case_ ( self ): """simple docstring""" return 2E-3
137
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a : List[Any] = { '''configuration_time_series_transformer''': [ '''TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TimeSeriesTransformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Dict = [ '''TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TimeSeriesTransformerForPrediction''', '''TimeSeriesTransformerModel''', '''TimeSeriesTransformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys a : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
704
'''simple docstring''' def __UpperCAmelCase ( _UpperCAmelCase : int ) -> str: if number > 0: raise ValueError("input must be a negative integer" ) __snake_case = len(bin(_UpperCAmelCase )[3:] ) __snake_case = bin(abs(_UpperCAmelCase ) - (1 << binary_number_length) )[3:] __snake_case = ( ( "1" + "0" * (binary_number_length - len(_UpperCAmelCase )) + twos_complement_number ) if number < 0 else "0" ) return "0b" + twos_complement_number if __name__ == "__main__": import doctest doctest.testmod()
680
0
'''simple docstring''' import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def __lowercase (_lowercase, _lowercase=False ) -> Optional[int]: """simple docstring""" __lowerCamelCase : Dict = OmegaConf.load(_lowercase ) if display: print(yaml.dump(OmegaConf.to_container(_lowercase ) ) ) return config def __lowercase (_lowercase, _lowercase=None, _lowercase=None ) -> List[str]: """simple docstring""" if conf_path is None: __lowerCamelCase : Any = """./model_checkpoints/vqgan_only.yaml""" __lowerCamelCase : Dict = load_config(_lowercase, display=_lowercase ) __lowerCamelCase : str = VQModel(**config.model.params ) if ckpt_path is None: __lowerCamelCase : Tuple = """./model_checkpoints/vqgan_only.pt""" __lowerCamelCase : Dict = torch.load(_lowercase, map_location=_lowercase ) if ".ckpt" in ckpt_path: __lowerCamelCase : Optional[Any] = sd["""state_dict"""] model.load_state_dict(_lowercase, strict=_lowercase ) model.to(_lowercase ) del sd return model def __lowercase (_lowercase, _lowercase ) -> List[Any]: """simple docstring""" __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Any = model.encode(_lowercase ) print(f"VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}" ) __lowerCamelCase : List[Any] = model.decode(_lowercase ) return xrec def __lowercase (_lowercase, _lowercase=False ) -> Optional[int]: """simple docstring""" __lowerCamelCase , __lowerCamelCase : Optional[Any] = string.rsplit(""".""", 1 ) if reload: __lowerCamelCase : Dict = importlib.import_module(_lowercase ) importlib.reload(_lowercase ) return getattr(importlib.import_module(_lowercase, package=_lowercase ), cls ) def __lowercase (_lowercase ) -> int: """simple docstring""" if "target" not in config: raise KeyError("""Expected key `target` to instantiate.""" ) return get_obj_from_str(config["""target"""] )(**config.get("""params""", {} ) ) def __lowercase (_lowercase, _lowercase, _lowercase=True, _lowercase=True ) -> Optional[Any]: """simple docstring""" __lowerCamelCase : str = instantiate_from_config(_lowercase ) if sd is not None: model.load_state_dict(_lowercase ) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def __lowercase (_lowercase, _lowercase, _lowercase, _lowercase ) -> List[str]: """simple docstring""" # load the specified checkpoint if ckpt: __lowerCamelCase : int = torch.load(_lowercase, map_location="""cpu""" ) __lowerCamelCase : List[str] = pl_sd["""global_step"""] print(f"loaded model from global step {global_step}." ) else: __lowerCamelCase : Dict = {"""state_dict""": None} __lowerCamelCase : str = None __lowerCamelCase : int = load_model_from_config(config.model, pl_sd["""state_dict"""], gpu=_lowercase, eval_mode=_lowercase )["""model"""] return model, global_step
150
'''simple docstring''' from .data_collator import ( DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForSeqaSeq, DataCollatorForSOP, DataCollatorForTokenClassification, DataCollatorForWholeWordMask, DataCollatorWithPadding, DefaultDataCollator, default_data_collator, ) from .metrics import glue_compute_metrics, xnli_compute_metrics from .processors import ( DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor, SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels, squad_convert_examples_to_features, xnli_output_modes, xnli_processors, xnli_tasks_num_labels, )
150
1
import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class snake_case_ : '''simple docstring''' def __init__( self, A_, A_=13, A_=7, A_=True, A_=True, A_=True, A_=True, A_=True, A_=False, A_=False, A_=False, A_=2, A_=99, A_=0, A_=32, A_=5, A_=4, A_=0.1, A_=0.1, A_=512, A_=2, A_=0.02, A_=2, A_=4, A_="last", A_=True, A_=None, A_=0, ) -> Tuple: UpperCAmelCase__ =parent UpperCAmelCase__ =batch_size UpperCAmelCase__ =seq_length UpperCAmelCase__ =is_training UpperCAmelCase__ =use_input_lengths UpperCAmelCase__ =use_token_type_ids UpperCAmelCase__ =use_labels UpperCAmelCase__ =gelu_activation UpperCAmelCase__ =sinusoidal_embeddings UpperCAmelCase__ =causal UpperCAmelCase__ =asm UpperCAmelCase__ =n_langs UpperCAmelCase__ =vocab_size UpperCAmelCase__ =n_special UpperCAmelCase__ =hidden_size UpperCAmelCase__ =num_hidden_layers UpperCAmelCase__ =num_attention_heads UpperCAmelCase__ =hidden_dropout_prob UpperCAmelCase__ =attention_probs_dropout_prob UpperCAmelCase__ =max_position_embeddings UpperCAmelCase__ =type_sequence_label_size UpperCAmelCase__ =initializer_range UpperCAmelCase__ =num_labels UpperCAmelCase__ =num_choices UpperCAmelCase__ =summary_type UpperCAmelCase__ =use_proj UpperCAmelCase__ =scope UpperCAmelCase__ =bos_token_id def __UpperCAmelCase ( self ) -> List[str]: UpperCAmelCase__ =ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) UpperCAmelCase__ =random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase__ =None if self.use_input_lengths: UpperCAmelCase__ =( ids_tensor([self.batch_size], vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length UpperCAmelCase__ =None if self.use_token_type_ids: UpperCAmelCase__ =ids_tensor([self.batch_size, self.seq_length], self.n_langs ) UpperCAmelCase__ =None UpperCAmelCase__ =None UpperCAmelCase__ =None if self.use_labels: UpperCAmelCase__ =ids_tensor([self.batch_size], self.type_sequence_label_size ) UpperCAmelCase__ =ids_tensor([self.batch_size, self.seq_length], self.num_labels ) UpperCAmelCase__ =ids_tensor([self.batch_size], 2 ).float() UpperCAmelCase__ =ids_tensor([self.batch_size], self.num_choices ) UpperCAmelCase__ =self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def __UpperCAmelCase ( self ) -> Optional[Any]: return XLMConfig( vocab_size=self.vocab_size, n_special=self.n_special, emb_dim=self.hidden_size, n_layers=self.num_hidden_layers, n_heads=self.num_attention_heads, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, gelu_activation=self.gelu_activation, sinusoidal_embeddings=self.sinusoidal_embeddings, asm=self.asm, causal=self.causal, n_langs=self.n_langs, max_position_embeddings=self.max_position_embeddings, initializer_range=self.initializer_range, summary_type=self.summary_type, use_proj=self.use_proj, num_labels=self.num_labels, bos_token_id=self.bos_token_id, ) def __UpperCAmelCase ( self, A_, A_, A_, A_, A_, A_, A_, A_, A_, ) -> int: UpperCAmelCase__ =XLMModel(config=_lowercase ) model.to(_lowercase ) model.eval() UpperCAmelCase__ =model(_lowercase, lengths=_lowercase, langs=_lowercase ) UpperCAmelCase__ =model(_lowercase, langs=_lowercase ) UpperCAmelCase__ =model(_lowercase ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCAmelCase ( self, A_, A_, A_, A_, A_, A_, A_, A_, A_, ) -> List[Any]: UpperCAmelCase__ =XLMWithLMHeadModel(_lowercase ) model.to(_lowercase ) model.eval() UpperCAmelCase__ =model(_lowercase, token_type_ids=_lowercase, labels=_lowercase ) self.parent.assertEqual(result.loss.shape, () ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCAmelCase ( self, A_, A_, A_, A_, A_, A_, A_, A_, A_, ) -> Tuple: UpperCAmelCase__ =XLMForQuestionAnsweringSimple(_lowercase ) model.to(_lowercase ) model.eval() UpperCAmelCase__ =model(_lowercase ) UpperCAmelCase__ =model(_lowercase, start_positions=_lowercase, end_positions=_lowercase ) UpperCAmelCase__ =outputs self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length) ) def __UpperCAmelCase ( self, A_, A_, A_, A_, A_, A_, A_, A_, A_, ) -> int: UpperCAmelCase__ =XLMForQuestionAnswering(_lowercase ) model.to(_lowercase ) model.eval() UpperCAmelCase__ =model(_lowercase ) UpperCAmelCase__ =model( _lowercase, start_positions=_lowercase, end_positions=_lowercase, cls_index=_lowercase, is_impossible=_lowercase, p_mask=_lowercase, ) UpperCAmelCase__ =model( _lowercase, start_positions=_lowercase, end_positions=_lowercase, cls_index=_lowercase, is_impossible=_lowercase, ) (UpperCAmelCase__ ) =result_with_labels.to_tuple() UpperCAmelCase__ =model(_lowercase, start_positions=_lowercase, end_positions=_lowercase ) (UpperCAmelCase__ ) =result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape, () ) self.parent.assertEqual(result.start_top_log_probs.shape, (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape, (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape, (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape, (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape, (self.batch_size,) ) def __UpperCAmelCase ( self, A_, A_, A_, A_, A_, A_, A_, A_, A_, ) -> Optional[Any]: UpperCAmelCase__ =XLMForSequenceClassification(_lowercase ) model.to(_lowercase ) model.eval() UpperCAmelCase__ =model(_lowercase ) UpperCAmelCase__ =model(_lowercase, labels=_lowercase ) self.parent.assertEqual(result.loss.shape, () ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) def __UpperCAmelCase ( self, A_, A_, A_, A_, A_, A_, A_, A_, A_, ) -> Optional[Any]: UpperCAmelCase__ =self.num_labels UpperCAmelCase__ =XLMForTokenClassification(_lowercase ) model.to(_lowercase ) model.eval() UpperCAmelCase__ =model(_lowercase, attention_mask=_lowercase, labels=_lowercase ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels) ) def __UpperCAmelCase ( self, A_, A_, A_, A_, A_, A_, A_, A_, A_, ) -> Optional[Any]: UpperCAmelCase__ =self.num_choices UpperCAmelCase__ =XLMForMultipleChoice(config=_lowercase ) model.to(_lowercase ) model.eval() UpperCAmelCase__ =input_ids.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() UpperCAmelCase__ =token_type_ids.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() UpperCAmelCase__ =input_mask.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() UpperCAmelCase__ =model( _lowercase, attention_mask=_lowercase, token_type_ids=_lowercase, labels=_lowercase, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices) ) def __UpperCAmelCase ( self ) -> Any: UpperCAmelCase__ =self.prepare_config_and_inputs() ( UpperCAmelCase__ ) =config_and_inputs UpperCAmelCase__ ={'input_ids': input_ids, 'token_type_ids': token_type_ids, 'lengths': input_lengths} return config, inputs_dict @require_torch class snake_case_ ( UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, unittest.TestCase ): '''simple docstring''' __UpperCamelCase = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) __UpperCamelCase = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable __UpperCamelCase = ( { 'feature-extraction': XLMModel, 'fill-mask': XLMWithLMHeadModel, 'question-answering': XLMForQuestionAnsweringSimple, 'text-classification': XLMForSequenceClassification, 'text-generation': XLMWithLMHeadModel, 'token-classification': XLMForTokenClassification, 'zero-shot': XLMForSequenceClassification, } if is_torch_available() else {} ) def __UpperCAmelCase ( self, A_, A_, A_, A_, A_ ) -> Optional[Any]: if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("Fast" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def __UpperCAmelCase ( self, A_, A_, A_=False ) -> Optional[Any]: UpperCAmelCase__ =super()._prepare_for_class(_lowercase, _lowercase, return_labels=_lowercase ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": UpperCAmelCase__ =torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=_lowercase ) UpperCAmelCase__ =torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=_lowercase ) return inputs_dict def __UpperCAmelCase ( self ) -> str: UpperCAmelCase__ =XLMModelTester(self ) UpperCAmelCase__ =ConfigTester(self, config_class=_lowercase, emb_dim=37 ) def __UpperCAmelCase ( self ) -> str: self.config_tester.run_common_tests() def __UpperCAmelCase ( self ) -> Dict: UpperCAmelCase__ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*_lowercase ) def __UpperCAmelCase ( self ) -> Any: UpperCAmelCase__ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*_lowercase ) def __UpperCAmelCase ( self ) -> str: UpperCAmelCase__ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*_lowercase ) def __UpperCAmelCase ( self ) -> Tuple: UpperCAmelCase__ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*_lowercase ) def __UpperCAmelCase ( self ) -> List[str]: UpperCAmelCase__ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*_lowercase ) def __UpperCAmelCase ( self ) -> Dict: UpperCAmelCase__ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*_lowercase ) def __UpperCAmelCase ( self ) -> List[str]: UpperCAmelCase__ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*_lowercase ) def __UpperCAmelCase ( self, A_, A_, A_, A_, A_, A_=False, A_=1 ) -> int: self.assertIsInstance(_lowercase, _lowercase ) self.assertListEqual( [isinstance(_lowercase, _lowercase ) for iter_attentions in attentions], [True] * len(_lowercase ) ) self.assertEqual(len(_lowercase ), (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(_lowercase ): # adds PAD dummy token UpperCAmelCase__ =min_length + idx + 1 UpperCAmelCase__ =min_length + idx + 1 UpperCAmelCase__ =( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions], [expected_shape] * len(_lowercase ) ) def __UpperCAmelCase ( self, A_, A_, A_, A_, A_, A_=False, A_=1 ) -> Any: self.assertIsInstance(_lowercase, _lowercase ) self.assertListEqual( [isinstance(_lowercase, _lowercase ) for iter_hidden_states in hidden_states], [True] * len(_lowercase ), ) self.assertEqual(len(_lowercase ), (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(_lowercase ): # adds PAD dummy token UpperCAmelCase__ =min_length + idx + 1 UpperCAmelCase__ =(batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states], [expected_shape] * len(_lowercase ), ) pass @slow def __UpperCAmelCase ( self ) -> int: for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ =XLMModel.from_pretrained(_lowercase ) self.assertIsNotNone(_lowercase ) @require_torch class snake_case_ ( unittest.TestCase ): '''simple docstring''' @slow def __UpperCAmelCase ( self ) -> int: UpperCAmelCase__ =XLMWithLMHeadModel.from_pretrained("xlm-mlm-en-2048" ) model.to(_lowercase ) UpperCAmelCase__ =torch.tensor([[14, 447]], dtype=torch.long, device=_lowercase ) # the president UpperCAmelCase__ =[ 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference UpperCAmelCase__ =model.generate(_lowercase, do_sample=_lowercase ) self.assertListEqual(output_ids[0].cpu().numpy().tolist(), _lowercase )
707
from argparse import ArgumentParser, Namespace from ..utils import logging from . import BaseTransformersCLICommand def _UpperCAmelCase ( A ): '''simple docstring''' return ConvertCommand( args.model_type , args.tf_checkpoint , args.pytorch_dump_output , args.config , args.finetuning_task_name ) UpperCamelCase_ = '\ntransformers can only be used from the commandline to convert TensorFlow models in PyTorch, In that case, it requires\nTensorFlow to be installed. Please see https://www.tensorflow.org/install/ for installation instructions.\n' class snake_case_ ( a ): '''simple docstring''' @staticmethod def __UpperCAmelCase ( A_ ) -> Union[str, Any]: UpperCAmelCase__ =parser.add_parser( "convert", help="CLI tool to run convert model from original author checkpoints to Transformers PyTorch checkpoints.", ) train_parser.add_argument("--model_type", type=A_, required=A_, help="Model's type." ) train_parser.add_argument( "--tf_checkpoint", type=A_, required=A_, help="TensorFlow checkpoint path or folder." ) train_parser.add_argument( "--pytorch_dump_output", type=A_, required=A_, help="Path to the PyTorch saved model output." ) train_parser.add_argument("--config", type=A_, default="", help="Configuration file path or folder." ) train_parser.add_argument( "--finetuning_task_name", type=A_, default=A_, help="Optional fine-tuning task name if the TF model was a finetuned model.", ) train_parser.set_defaults(func=A_ ) def __init__( self, A_, A_, A_, A_, A_, *A_, ) -> List[str]: UpperCAmelCase__ =logging.get_logger("transformers-cli/converting" ) self._logger.info(f"""Loading model {model_type}""" ) UpperCAmelCase__ =model_type UpperCAmelCase__ =tf_checkpoint UpperCAmelCase__ =pytorch_dump_output UpperCAmelCase__ =config UpperCAmelCase__ =finetuning_task_name def __UpperCAmelCase ( self ) -> Tuple: if self._model_type == "albert": try: from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(A_ ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint, self._config, self._pytorch_dump_output ) elif self._model_type == "bert": try: from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(A_ ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint, self._config, self._pytorch_dump_output ) elif self._model_type == "funnel": try: from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(A_ ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint, self._config, self._pytorch_dump_output ) elif self._model_type == "t5": try: from ..models.ta.convert_ta_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch except ImportError: raise ImportError(A_ ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint, self._config, self._pytorch_dump_output ) elif self._model_type == "gpt": from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import ( convert_openai_checkpoint_to_pytorch, ) convert_openai_checkpoint_to_pytorch(self._tf_checkpoint, self._config, self._pytorch_dump_output ) elif self._model_type == "transfo_xl": try: from ..models.transfo_xl.convert_transfo_xl_original_tf_checkpoint_to_pytorch import ( convert_transfo_xl_checkpoint_to_pytorch, ) except ImportError: raise ImportError(A_ ) if "ckpt" in self._tf_checkpoint.lower(): UpperCAmelCase__ =self._tf_checkpoint UpperCAmelCase__ ="" else: UpperCAmelCase__ =self._tf_checkpoint UpperCAmelCase__ ="" convert_transfo_xl_checkpoint_to_pytorch( A_, self._config, self._pytorch_dump_output, A_ ) elif self._model_type == "gpt2": try: from ..models.gpta.convert_gpta_original_tf_checkpoint_to_pytorch import ( convert_gpta_checkpoint_to_pytorch, ) except ImportError: raise ImportError(A_ ) convert_gpta_checkpoint_to_pytorch(self._tf_checkpoint, self._config, self._pytorch_dump_output ) elif self._model_type == "xlnet": try: from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import ( convert_xlnet_checkpoint_to_pytorch, ) except ImportError: raise ImportError(A_ ) convert_xlnet_checkpoint_to_pytorch( self._tf_checkpoint, self._config, self._pytorch_dump_output, self._finetuning_task_name ) elif self._model_type == "xlm": from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import ( convert_xlm_checkpoint_to_pytorch, ) convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint, self._pytorch_dump_output ) elif self._model_type == "lxmert": from ..models.lxmert.convert_lxmert_original_tf_checkpoint_to_pytorch import ( convert_lxmert_checkpoint_to_pytorch, ) convert_lxmert_checkpoint_to_pytorch(self._tf_checkpoint, self._pytorch_dump_output ) elif self._model_type == "rembert": from ..models.rembert.convert_rembert_tf_checkpoint_to_pytorch import ( convert_rembert_tf_checkpoint_to_pytorch, ) convert_rembert_tf_checkpoint_to_pytorch(self._tf_checkpoint, self._config, self._pytorch_dump_output ) else: raise ValueError( "--model_type should be selected in the list [bert, gpt, gpt2, t5, transfo_xl, xlnet, xlm, lxmert]" )
510
0
import baseaa import io import json import os from copy import deepcopy from ..optimizer import AcceleratedOptimizer from ..scheduler import AcceleratedScheduler class lowerCAmelCase_ : def __init__( self ,snake_case__ ): if isinstance(snake_case__ ,snake_case__ ): # Don't modify user's data should they want to reuse it (e.g. in tests), because once we # modified it, it will not be accepted here again, since `auto` values would have been overridden SCREAMING_SNAKE_CASE_ : Any = deepcopy(snake_case__ ) elif os.path.exists(snake_case__ ): with io.open(snake_case__ ,'r' ,encoding='utf-8' ) as f: SCREAMING_SNAKE_CASE_ : Dict = json.load(snake_case__ ) else: try: SCREAMING_SNAKE_CASE_ : Dict = baseaa.urlsafe_baadecode(snake_case__ ).decode('utf-8' ) SCREAMING_SNAKE_CASE_ : Optional[Any] = json.loads(snake_case__ ) except (UnicodeDecodeError, AttributeError, ValueError): raise ValueError( F'Expected a string path to an existing deepspeed config, or a dictionary, or a base64 encoded string. Received: {config_file_or_dict}' ) SCREAMING_SNAKE_CASE_ : List[Any] = config self.set_stage_and_offload() def snake_case ( self ): # zero stage - this is done as early as possible, before model is created, to allow # ``is_deepspeed_zero3_enabled`` query and getting to the early deepspeed config object # during ``zero.Init()`` which needs to know the dtype, and some other hparams. SCREAMING_SNAKE_CASE_ : List[str] = self.get_value('zero_optimization.stage' ,-1 ) # offload SCREAMING_SNAKE_CASE_ : int = False if self.is_zeroa() or self.is_zeroa(): SCREAMING_SNAKE_CASE_ : Union[str, Any] = set(['cpu', 'nvme'] ) SCREAMING_SNAKE_CASE_ : List[Any] = set( [ self.get_value('zero_optimization.offload_optimizer.device' ), self.get_value('zero_optimization.offload_param.device' ), ] ) if len(offload_devices & offload_devices_valid ) > 0: SCREAMING_SNAKE_CASE_ : int = True def snake_case ( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ : int = self.config # find the config node of interest if it exists SCREAMING_SNAKE_CASE_ : Dict = ds_key_long.split('.' ) SCREAMING_SNAKE_CASE_ : Dict = nodes.pop() for node in nodes: SCREAMING_SNAKE_CASE_ : Optional[int] = config.get(snake_case__ ) if config is None: return None, ds_key return config, ds_key def snake_case ( self ,snake_case__ ,snake_case__=None ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[Any] = self.find_config_node(snake_case__ ) if config is None: return default return config.get(snake_case__ ,snake_case__ ) def snake_case ( self ,snake_case__ ,snake_case__=False ): SCREAMING_SNAKE_CASE_ : str = self.config # find the config node of interest if it exists SCREAMING_SNAKE_CASE_ : int = ds_key_long.split('.' ) for node in nodes: SCREAMING_SNAKE_CASE_ : Any = config SCREAMING_SNAKE_CASE_ : str = config.get(snake_case__ ) if config is None: if must_exist: raise ValueError(F'Can\'t find {ds_key_long} entry in the config: {self.config}' ) else: return # if found remove it if parent_config is not None: parent_config.pop(snake_case__ ) def snake_case ( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ : str = self.get_value(snake_case__ ) return False if value is None else bool(snake_case__ ) def snake_case ( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ : int = self.get_value(snake_case__ ) return False if value is None else not bool(snake_case__ ) def snake_case ( self ): return self._stage == 2 def snake_case ( self ): return self._stage == 3 def snake_case ( self ): return self._offload class lowerCAmelCase_ : def __init__( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Optional[int] = engine def snake_case ( self ,snake_case__ ,**snake_case__ ): # runs backpropagation and handles mixed precision self.engine.backward(snake_case__ ,**snake_case__ ) # Deepspeed's `engine.step` performs the following operations: # - gradient accumulation check # - gradient clipping # - optimizer step # - zero grad # - checking overflow # - lr_scheduler step (only if engine.lr_scheduler is not None) self.engine.step() # and this plugin overrides the above calls with no-ops when Accelerate runs under # Deepspeed, but allows normal functionality for non-Deepspeed cases thus enabling a simple # training loop that works transparently under many training regimes. class lowerCAmelCase_ ( lowerCamelCase_ ): def __init__( self ,snake_case__ ): super().__init__(snake_case__ ,device_placement=snake_case__ ,scaler=snake_case__ ) SCREAMING_SNAKE_CASE_ : Dict = hasattr(self.optimizer ,'overflow' ) def snake_case ( self ,snake_case__=None ): pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed def snake_case ( self ): pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed @property def snake_case ( self ): if self.__has_overflow__: return self.optimizer.overflow return False class lowerCAmelCase_ ( lowerCamelCase_ ): def __init__( self ,snake_case__ ,snake_case__ ): super().__init__(snake_case__ ,snake_case__ ) def snake_case ( self ): pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed class lowerCAmelCase_ : def __init__( self ,snake_case__ ,snake_case__=0.001 ,snake_case__=0 ,**snake_case__ ): SCREAMING_SNAKE_CASE_ : Tuple = params SCREAMING_SNAKE_CASE_ : Dict = lr SCREAMING_SNAKE_CASE_ : Union[str, Any] = weight_decay SCREAMING_SNAKE_CASE_ : Dict = kwargs class lowerCAmelCase_ : def __init__( self ,snake_case__ ,snake_case__=None ,snake_case__=0 ,**snake_case__ ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = optimizer SCREAMING_SNAKE_CASE_ : List[Any] = total_num_steps SCREAMING_SNAKE_CASE_ : Dict = warmup_num_steps SCREAMING_SNAKE_CASE_ : str = kwargs
105
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCamelCase__ : Optional[int] = { '''configuration_bloom''': ['''BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BloomConfig''', '''BloomOnnxConfig'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Tuple = ['''BloomTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Any = [ '''BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BloomForCausalLM''', '''BloomModel''', '''BloomPreTrainedModel''', '''BloomForSequenceClassification''', '''BloomForTokenClassification''', '''BloomForQuestionAnswering''', ] if TYPE_CHECKING: from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bloom_fast import BloomTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bloom import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) else: import sys UpperCamelCase__ : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
105
1
_lowercase = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] def __lowerCAmelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Optional[Any]: '''simple docstring''' lowerCamelCase__: int = [False] * len(_UpperCamelCase ) lowerCamelCase__: List[str] = [s] lowerCamelCase__: Dict = True while queue: lowerCamelCase__: Dict = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(_UpperCamelCase ) lowerCamelCase__: Optional[int] = True lowerCamelCase__: int = u return visited[t] def __lowerCAmelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase__: Any = [-1] * (len(_UpperCamelCase )) lowerCamelCase__: Any = 0 lowerCamelCase__: int = [] lowerCamelCase__: str = [i[:] for i in graph] # Record original cut, copy. while bfs(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): lowerCamelCase__: List[str] = float("""Inf""" ) lowerCamelCase__: List[str] = sink while s != source: # Find the minimum value in select path lowerCamelCase__: int = min(_UpperCamelCase , graph[parent[s]][s] ) lowerCamelCase__: Union[str, Any] = parent[s] max_flow += path_flow lowerCamelCase__: str = sink while v != source: lowerCamelCase__: Any = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow lowerCamelCase__: int = parent[v] for i in range(len(_UpperCamelCase ) ): for j in range(len(graph[0] ) ): if graph[i][j] == 0 and temp[i][j] > 0: res.append((i, j) ) return res if __name__ == "__main__": print(mincut(test_graph, source=0, sink=5))
242
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _lowercase = logging.get_logger(__name__) _lowercase = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} _lowercase = { 'tokenizer_file': { 'EleutherAI/gpt-neox-20b': 'https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json', }, } _lowercase = { 'gpt-neox-20b': 2_048, } class lowerCamelCase__ ( A__ ): __lowerCamelCase = VOCAB_FILES_NAMES __lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase = ["""input_ids""", """attention_mask"""] def __init__( self : int , __a : str=None , __a : Any=None , __a : Dict=None , __a : Tuple="<|endoftext|>" , __a : Tuple="<|endoftext|>" , __a : List[str]="<|endoftext|>" , __a : Any=False , **__a : Optional[Any] , ): '''simple docstring''' super().__init__( __a , __a , tokenizer_file=__a , unk_token=__a , bos_token=__a , eos_token=__a , add_prefix_space=__a , **__a , ) lowerCamelCase__: List[str] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , __a ) != add_prefix_space: lowerCamelCase__: Optional[Any] = getattr(__a , pre_tok_state.pop("""type""" ) ) lowerCamelCase__: str = add_prefix_space lowerCamelCase__: int = pre_tok_class(**__a ) lowerCamelCase__: Optional[Any] = add_prefix_space def lowerCamelCase_ ( self : str , __a : str , __a : Optional[str] = None ): '''simple docstring''' lowerCamelCase__: Optional[int] = self._tokenizer.model.save(__a , name=__a ) return tuple(__a ) def lowerCamelCase_ ( self : str , __a : "Conversation" ): '''simple docstring''' lowerCamelCase__: Dict = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(__a , add_special_tokens=__a ) + [self.eos_token_id] ) if len(__a ) > self.model_max_length: lowerCamelCase__: Any = input_ids[-self.model_max_length :] return input_ids
242
1
'''simple docstring''' import argparse from pathlib import Path from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration def __lowercase ( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase = None , __lowercase = None , __lowercase = None , ) -> List[Any]: '''simple docstring''' if config_name_or_path is None: _A = "facebook/rag-token-base" if model_type == "rag_token" else "facebook/rag-sequence-base" if generator_tokenizer_name_or_path is None: _A = generator_name_or_path if question_encoder_tokenizer_name_or_path is None: _A = question_encoder_name_or_path _A = RagTokenForGeneration if model_type == "rag_token" else RagSequenceForGeneration # Save model. _A = RagConfig.from_pretrained(__lowercase ) _A = AutoConfig.from_pretrained(__lowercase ) _A = AutoConfig.from_pretrained(__lowercase ) _A = gen_config _A = question_encoder_config _A = model_class.from_pretrained_question_encoder_generator( __lowercase , __lowercase , config=__lowercase ) rag_model.save_pretrained(__lowercase ) # Sanity check. model_class.from_pretrained(__lowercase ) # Save tokenizers. _A = AutoTokenizer.from_pretrained(__lowercase ) gen_tokenizer.save_pretrained(dest_dir / "generator_tokenizer/" ) _A = AutoTokenizer.from_pretrained(__lowercase ) question_encoder_tokenizer.save_pretrained(dest_dir / "question_encoder_tokenizer/" ) if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser() parser.add_argument( '''--model_type''', choices=['''rag_sequence''', '''rag_token'''], required=True, type=str, help='''RAG model type: rag_sequence, rag_token''', ) parser.add_argument('''--dest''', type=str, required=True, help='''Path to the output checkpoint directory.''') parser.add_argument('''--generator_name_or_path''', type=str, required=True, help='''Generator model identifier''') parser.add_argument( '''--question_encoder_name_or_path''', type=str, required=True, help='''Question encoder model identifier''' ) parser.add_argument( '''--generator_tokenizer_name_or_path''', type=str, help='''Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``''', ) parser.add_argument( '''--question_encoder_tokenizer_name_or_path''', type=str, help='''Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``''', ) parser.add_argument( '''--config_name_or_path''', type=str, help=( '''Identifier of the model config to use, if not provided, resolves to a base config for a given''' ''' ``model_type``''' ), ) lowerCamelCase_ = parser.parse_args() lowerCamelCase_ = Path(args.dest) dest_dir.mkdir(exist_ok=True) consolidate( args.model_type, args.generator_name_or_path, args.question_encoder_name_or_path, dest_dir, args.config_name_or_path, args.generator_tokenizer_name_or_path, args.question_encoder_tokenizer_name_or_path, )
330
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = '''▁''' lowerCamelCase_ = {'''vocab_file''': '''sentencepiece.bpe.model'''} lowerCamelCase_ = { '''vocab_file''': { '''facebook/nllb-200-distilled-600M''': ( '''https://huggingface.co/facebook/nllb-200-distilled-600M/blob/main/sentencepiece.bpe.model''' ), } } lowerCamelCase_ = { '''facebook/nllb-200-distilled-600M''': 10_24, } # fmt: off lowerCamelCase_ = ['''ace_Arab''', '''ace_Latn''', '''acm_Arab''', '''acq_Arab''', '''aeb_Arab''', '''afr_Latn''', '''ajp_Arab''', '''aka_Latn''', '''amh_Ethi''', '''apc_Arab''', '''arb_Arab''', '''ars_Arab''', '''ary_Arab''', '''arz_Arab''', '''asm_Beng''', '''ast_Latn''', '''awa_Deva''', '''ayr_Latn''', '''azb_Arab''', '''azj_Latn''', '''bak_Cyrl''', '''bam_Latn''', '''ban_Latn''', '''bel_Cyrl''', '''bem_Latn''', '''ben_Beng''', '''bho_Deva''', '''bjn_Arab''', '''bjn_Latn''', '''bod_Tibt''', '''bos_Latn''', '''bug_Latn''', '''bul_Cyrl''', '''cat_Latn''', '''ceb_Latn''', '''ces_Latn''', '''cjk_Latn''', '''ckb_Arab''', '''crh_Latn''', '''cym_Latn''', '''dan_Latn''', '''deu_Latn''', '''dik_Latn''', '''dyu_Latn''', '''dzo_Tibt''', '''ell_Grek''', '''eng_Latn''', '''epo_Latn''', '''est_Latn''', '''eus_Latn''', '''ewe_Latn''', '''fao_Latn''', '''pes_Arab''', '''fij_Latn''', '''fin_Latn''', '''fon_Latn''', '''fra_Latn''', '''fur_Latn''', '''fuv_Latn''', '''gla_Latn''', '''gle_Latn''', '''glg_Latn''', '''grn_Latn''', '''guj_Gujr''', '''hat_Latn''', '''hau_Latn''', '''heb_Hebr''', '''hin_Deva''', '''hne_Deva''', '''hrv_Latn''', '''hun_Latn''', '''hye_Armn''', '''ibo_Latn''', '''ilo_Latn''', '''ind_Latn''', '''isl_Latn''', '''ita_Latn''', '''jav_Latn''', '''jpn_Jpan''', '''kab_Latn''', '''kac_Latn''', '''kam_Latn''', '''kan_Knda''', '''kas_Arab''', '''kas_Deva''', '''kat_Geor''', '''knc_Arab''', '''knc_Latn''', '''kaz_Cyrl''', '''kbp_Latn''', '''kea_Latn''', '''khm_Khmr''', '''kik_Latn''', '''kin_Latn''', '''kir_Cyrl''', '''kmb_Latn''', '''kon_Latn''', '''kor_Hang''', '''kmr_Latn''', '''lao_Laoo''', '''lvs_Latn''', '''lij_Latn''', '''lim_Latn''', '''lin_Latn''', '''lit_Latn''', '''lmo_Latn''', '''ltg_Latn''', '''ltz_Latn''', '''lua_Latn''', '''lug_Latn''', '''luo_Latn''', '''lus_Latn''', '''mag_Deva''', '''mai_Deva''', '''mal_Mlym''', '''mar_Deva''', '''min_Latn''', '''mkd_Cyrl''', '''plt_Latn''', '''mlt_Latn''', '''mni_Beng''', '''khk_Cyrl''', '''mos_Latn''', '''mri_Latn''', '''zsm_Latn''', '''mya_Mymr''', '''nld_Latn''', '''nno_Latn''', '''nob_Latn''', '''npi_Deva''', '''nso_Latn''', '''nus_Latn''', '''nya_Latn''', '''oci_Latn''', '''gaz_Latn''', '''ory_Orya''', '''pag_Latn''', '''pan_Guru''', '''pap_Latn''', '''pol_Latn''', '''por_Latn''', '''prs_Arab''', '''pbt_Arab''', '''quy_Latn''', '''ron_Latn''', '''run_Latn''', '''rus_Cyrl''', '''sag_Latn''', '''san_Deva''', '''sat_Beng''', '''scn_Latn''', '''shn_Mymr''', '''sin_Sinh''', '''slk_Latn''', '''slv_Latn''', '''smo_Latn''', '''sna_Latn''', '''snd_Arab''', '''som_Latn''', '''sot_Latn''', '''spa_Latn''', '''als_Latn''', '''srd_Latn''', '''srp_Cyrl''', '''ssw_Latn''', '''sun_Latn''', '''swe_Latn''', '''swh_Latn''', '''szl_Latn''', '''tam_Taml''', '''tat_Cyrl''', '''tel_Telu''', '''tgk_Cyrl''', '''tgl_Latn''', '''tha_Thai''', '''tir_Ethi''', '''taq_Latn''', '''taq_Tfng''', '''tpi_Latn''', '''tsn_Latn''', '''tso_Latn''', '''tuk_Latn''', '''tum_Latn''', '''tur_Latn''', '''twi_Latn''', '''tzm_Tfng''', '''uig_Arab''', '''ukr_Cyrl''', '''umb_Latn''', '''urd_Arab''', '''uzn_Latn''', '''vec_Latn''', '''vie_Latn''', '''war_Latn''', '''wol_Latn''', '''xho_Latn''', '''ydd_Hebr''', '''yor_Latn''', '''yue_Hant''', '''zho_Hans''', '''zho_Hant''', '''zul_Latn'''] class _UpperCAmelCase ( snake_case_ ): """simple docstring""" snake_case = VOCAB_FILES_NAMES snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case = PRETRAINED_VOCAB_FILES_MAP snake_case = ['''input_ids''', '''attention_mask'''] snake_case = [] snake_case = [] def __init__( self : Optional[int] , __UpperCAmelCase : Tuple , __UpperCAmelCase : Optional[Any]="<s>" , __UpperCAmelCase : List[str]="</s>" , __UpperCAmelCase : Any="</s>" , __UpperCAmelCase : Optional[int]="<s>" , __UpperCAmelCase : List[str]="<unk>" , __UpperCAmelCase : int="<pad>" , __UpperCAmelCase : Optional[Any]="<mask>" , __UpperCAmelCase : str=None , __UpperCAmelCase : int=None , __UpperCAmelCase : str=None , __UpperCAmelCase : Optional[Dict[str, Any]] = None , __UpperCAmelCase : List[str]=None , __UpperCAmelCase : Dict=False , **__UpperCAmelCase : Tuple , ): '''simple docstring''' _A = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else mask_token _A = {} if sp_model_kwargs is None else sp_model_kwargs _A = legacy_behaviour super().__init__( bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , tokenizer_file=__UpperCAmelCase , src_lang=__UpperCAmelCase , tgt_lang=__UpperCAmelCase , additional_special_tokens=__UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , legacy_behaviour=__UpperCAmelCase , **__UpperCAmelCase , ) _A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__UpperCAmelCase ) ) _A = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | ---- | ---- | ---- | ---- | ---- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' # spm | '<unk>' | '<s>' | '</s>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' | '▁s' # Mimic fairseq token-to-id alignment for the first 4 token _A = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab _A = 1 _A = len(self.sp_model ) _A = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(__UpperCAmelCase ) } _A = {v: k for k, v in self.lang_code_to_id.items()} _A = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) _A = {v: k for k, v in self.fairseq_tokens_to_ids.items()} _A = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) _A = src_lang if src_lang is not None else "eng_Latn" _A = self.lang_code_to_id[self._src_lang] _A = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self : Optional[Any] ): '''simple docstring''' _A = self.__dict__.copy() _A = None _A = self.sp_model.serialized_model_proto() return state def __setstate__( self : List[Any] , __UpperCAmelCase : List[str] ): '''simple docstring''' _A = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): _A = {} _A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def lowerCAmelCase ( self : List[str] ): '''simple docstring''' return self._src_lang @src_lang.setter def lowerCAmelCase ( self : Union[str, Any] , __UpperCAmelCase : str ): '''simple docstring''' _A = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def lowerCAmelCase ( self : Tuple , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None , __UpperCAmelCase : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCAmelCase , token_ids_a=__UpperCAmelCase , already_has_special_tokens=__UpperCAmelCase ) _A = [1] * len(self.prefix_tokens ) _A = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(__UpperCAmelCase )) + suffix_ones return prefix_ones + ([0] * len(__UpperCAmelCase )) + ([0] * len(__UpperCAmelCase )) + suffix_ones def lowerCAmelCase ( self : Union[str, Any] , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def lowerCAmelCase ( self : Dict , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None ): '''simple docstring''' _A = [self.sep_token_id] _A = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCAmelCase ( self : str , __UpperCAmelCase : Dict , __UpperCAmelCase : str , __UpperCAmelCase : Optional[str] , __UpperCAmelCase : Optional[str] , **__UpperCAmelCase : List[str] ): '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model" ) _A = src_lang _A = self(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) _A = self.convert_tokens_to_ids(__UpperCAmelCase ) _A = tgt_lang_id return inputs def lowerCAmelCase ( self : Any ): '''simple docstring''' _A = {self.convert_ids_to_tokens(__UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCAmelCase ( self : str , __UpperCAmelCase : str ): '''simple docstring''' return self.sp_model.encode(__UpperCAmelCase , out_type=__UpperCAmelCase ) def lowerCAmelCase ( self : Tuple , __UpperCAmelCase : str ): '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] _A = self.sp_model.PieceToId(__UpperCAmelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : Dict ): '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : str ): '''simple docstring''' _A = "".join(__UpperCAmelCase ).replace(__UpperCAmelCase , " " ).strip() return out_string def lowerCAmelCase ( self : List[str] , __UpperCAmelCase : str , __UpperCAmelCase : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(__UpperCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _A = os.path.join( __UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(__UpperCAmelCase , "wb" ) as fi: _A = self.sp_model.serialized_model_proto() fi.write(__UpperCAmelCase ) return (out_vocab_file,) def lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : List[str] , __UpperCAmelCase : str = "eng_Latn" , __UpperCAmelCase : Optional[List[str]] = None , __UpperCAmelCase : str = "fra_Latn" , **__UpperCAmelCase : Any , ): '''simple docstring''' _A = src_lang _A = tgt_lang return super().prepare_seqaseq_batch(__UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ) def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def lowerCAmelCase ( self : int ): '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : Dict ): '''simple docstring''' _A = self.lang_code_to_id[src_lang] if self.legacy_behaviour: _A = [] _A = [self.eos_token_id, self.cur_lang_code] else: _A = [self.cur_lang_code] _A = [self.eos_token_id] def lowerCAmelCase ( self : int , __UpperCAmelCase : str ): '''simple docstring''' _A = self.lang_code_to_id[lang] if self.legacy_behaviour: _A = [] _A = [self.eos_token_id, self.cur_lang_code] else: _A = [self.cur_lang_code] _A = [self.eos_token_id]
330
1
'''simple docstring''' from __future__ import annotations SCREAMING_SNAKE_CASE_ = 8.9_8_8E9 # units = N * m^s * C^-2 def UpperCamelCase__ ( _lowercase : float , _lowercase : float , _lowercase : float , _lowercase : float ) -> dict[str, float]: __UpperCAmelCase: List[str] = abs(chargea * chargea ) if (force, chargea, chargea, distance).count(0 ) != 1: raise ValueError("""One and only one argument must be 0""" ) if distance < 0: raise ValueError("""Distance cannot be negative""" ) if force == 0: __UpperCAmelCase: Dict = COULOMBS_CONSTANT * charge_product / (distance**2) return {"force": force} elif chargea == 0: __UpperCAmelCase: Tuple = abs(_lowercase ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge1": chargea} elif chargea == 0: __UpperCAmelCase: Union[str, Any] = abs(_lowercase ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge2": chargea} elif distance == 0: __UpperCAmelCase: str = (COULOMBS_CONSTANT * charge_product / abs(_lowercase )) ** 0.5 return {"distance": distance} raise ValueError("""Exactly one argument must be 0""" ) if __name__ == "__main__": import doctest doctest.testmod()
466
'''simple docstring''' from ....utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) class a ( __lowerCAmelCase ): """simple docstring""" def __init__( self , snake_case_ , snake_case_=None , snake_case_=2048 ): '''simple docstring''' __UpperCAmelCase: List[str] = config.__dict__ __UpperCAmelCase: str = modal_hidden_size if num_labels: __UpperCAmelCase: int = num_labels
466
1
from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def UpperCAmelCase_ ( UpperCAmelCase__ ): def is_in_circle(UpperCAmelCase__ , UpperCAmelCase__ ) -> bool: lowercase_ = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle lowercase_ = mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(UpperCamelCase__ ) ) # The ratio of the area for circle to square is pi/4. lowercase_ = proportion * 4 print(F'''The estimated value of pi is {pi_estimate}''' ) print(F'''The numpy value of pi is {pi}''' ) print(F'''The total error is {abs(pi - pi_estimate )}''' ) def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = 0.0 , UpperCAmelCase__ = 1.0 , ): return mean( function_to_integrate(uniform(UpperCamelCase__ , UpperCamelCase__ ) ) for _ in range(UpperCamelCase__ ) ) * (max_value - min_value) def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ = 0.0 , UpperCAmelCase__ = 1.0 ): def identity_function(UpperCAmelCase__ ) -> float: return x lowercase_ = area_under_curve_estimator( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) lowercase_ = (max_value * max_value - min_value * min_value) / 2 print("""******************""" ) print(F'''Estimating area under y=x where x varies from {min_value} to {max_value}''' ) print(F'''Estimated value is {estimated_value}''' ) print(F'''Expected value is {expected_value}''' ) print(F'''Total error is {abs(estimated_value - expected_value )}''' ) print("""******************""" ) def UpperCAmelCase_ ( UpperCAmelCase__ ): def function_to_integrate(UpperCAmelCase__ ) -> float: return sqrt(4.0 - x * x ) lowercase_ = area_under_curve_estimator( UpperCamelCase__ , UpperCamelCase__ , 0.0 , 2.0 ) print("""******************""" ) print("""Estimating pi using area_under_curve_estimator""" ) print(F'''Estimated value is {estimated_value}''' ) print(F'''Expected value is {pi}''' ) print(F'''Total error is {abs(estimated_value - pi )}''' ) print("""******************""" ) if __name__ == "__main__": import doctest doctest.testmod()
412
import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class lowercase : def __init__( self , snake_case , snake_case=13 , snake_case=30 , snake_case=2 , snake_case=3 , snake_case=True , snake_case=True , snake_case=32 , snake_case=5 , snake_case=4 , snake_case=37 , snake_case="gelu" , snake_case=0.1 , snake_case=0.1 , snake_case=10 , snake_case=0.02 , snake_case=3 , snake_case=0.6 , snake_case=None , ): snake_case_ = parent snake_case_ = batch_size snake_case_ = image_size snake_case_ = patch_size snake_case_ = num_channels snake_case_ = is_training snake_case_ = use_labels snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = type_sequence_label_size snake_case_ = initializer_range snake_case_ = mask_ratio snake_case_ = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) snake_case_ = (image_size // patch_size) ** 2 snake_case_ = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def a ( self ): snake_case_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ = self.get_config() return config, pixel_values, labels def a ( self ): return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=snake_case , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def a ( self , snake_case , snake_case , snake_case ): snake_case_ = ViTMAEModel(config=snake_case ) model.to(snake_case ) model.eval() snake_case_ = model(snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a ( self , snake_case , snake_case , snake_case ): snake_case_ = ViTMAEForPreTraining(snake_case ) model.to(snake_case ) model.eval() snake_case_ = model(snake_case ) snake_case_ = (self.image_size // self.patch_size) ** 2 snake_case_ = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images snake_case_ = 1 snake_case_ = ViTMAEForPreTraining(snake_case ) model.to(snake_case ) model.eval() snake_case_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) snake_case_ = model(snake_case ) snake_case_ = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def a ( self ): snake_case_ = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ = config_and_inputs snake_case_ = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowercase ( lowercase_ , lowercase_ , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Dict = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () __SCREAMING_SNAKE_CASE : Union[str, Any] = {'''feature-extraction''': ViTMAEModel} if is_torch_available() else {} __SCREAMING_SNAKE_CASE : List[Any] = False __SCREAMING_SNAKE_CASE : Union[str, Any] = False __SCREAMING_SNAKE_CASE : List[Any] = False __SCREAMING_SNAKE_CASE : Union[str, Any] = False def a ( self ): snake_case_ = ViTMAEModelTester(self ) snake_case_ = ConfigTester(self , config_class=snake_case , has_text_modality=snake_case , hidden_size=37 ) def a ( self ): self.config_tester.run_common_tests() @unittest.skip(reason='ViTMAE does not use inputs_embeds' ) def a ( self ): pass def a ( self ): snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ = model_class(snake_case ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) snake_case_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(snake_case , nn.Linear ) ) def a ( self ): snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ = model_class(snake_case ) snake_case_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case_ = [*signature.parameters.keys()] snake_case_ = ['pixel_values'] self.assertListEqual(arg_names[:1] , snake_case ) def a ( self ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case ) def a ( self ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*snake_case ) def a ( self , snake_case , snake_case , snake_case ): # make masks reproducible np.random.seed(2 ) snake_case_ = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 ) snake_case_ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) snake_case_ = torch.from_numpy(snake_case ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument snake_case_ = pt_noise super().check_pt_tf_models(snake_case , snake_case , snake_case ) def a ( self ): snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ = model_class(snake_case ) model.to(snake_case ) model.eval() # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): snake_case_ = model(**self._prepare_for_class(snake_case , snake_case ) ) snake_case_ = outputs[0].cpu().numpy() snake_case_ = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(snake_case ) snake_case_ = model_class.from_pretrained(snake_case ) model.to(snake_case ) # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): snake_case_ = model(**self._prepare_for_class(snake_case , snake_case ) ) # Make sure we don't have nans snake_case_ = after_outputs[0].cpu().numpy() snake_case_ = 0 snake_case_ = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(snake_case , 1e-5 ) @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.' ) def a ( self ): pass @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.' ) def a ( self ): pass @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.' ) def a ( self ): pass @unittest.skip(reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load' ) def a ( self ): pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def a ( self ): pass @slow def a ( self ): for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ = ViTMAEModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) def __lowerCamelCase ( ): '''simple docstring''' snake_case_ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class lowercase ( unittest.TestCase ): @cached_property def a ( self ): return ViTImageProcessor.from_pretrained('facebook/vit-mae-base' ) if is_vision_available() else None @slow def a ( self ): # make random mask reproducible across the PT and TF model np.random.seed(2 ) snake_case_ = ViTMAEForPreTraining.from_pretrained('facebook/vit-mae-base' ).to(snake_case ) snake_case_ = self.default_image_processor snake_case_ = prepare_img() snake_case_ = image_processor(images=snake_case , return_tensors='pt' ).to(snake_case ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) snake_case_ = ViTMAEConfig() snake_case_ = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) snake_case_ = np.random.uniform(size=(1, num_patches) ) # forward pass with torch.no_grad(): snake_case_ = model(**snake_case , noise=torch.from_numpy(snake_case ).to(device=snake_case ) ) # verify the logits snake_case_ = torch.Size((1, 196, 768) ) self.assertEqual(outputs.logits.shape , snake_case ) snake_case_ = torch.tensor( [[-0.05_48, -1.70_23, -0.93_25], [0.37_21, -0.56_70, -0.22_33], [0.82_35, -1.38_78, -0.35_24]] ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , expected_slice.to(snake_case ) , atol=1e-4 ) )
362
0
def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase , __lowercase = [], [] while len(_SCREAMING_SNAKE_CASE ) > 1: __lowercase , __lowercase = min(_SCREAMING_SNAKE_CASE ), max(_SCREAMING_SNAKE_CASE ) start.append(_SCREAMING_SNAKE_CASE ) end.append(_SCREAMING_SNAKE_CASE ) collection.remove(_SCREAMING_SNAKE_CASE ) collection.remove(_SCREAMING_SNAKE_CASE ) end.reverse() return start + collection + end if __name__ == "__main__": snake_case__ : Union[str, Any] = input("""Enter numbers separated by a comma:\n""").strip() snake_case__ : Dict = [int(item) for item in user_input.split(""",""")] print(*merge_sort(unsorted), sep=""",""")
702
from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): for param, grad_param in zip(model_a.parameters() , model_b.parameters() ): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is False ), F"""Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})""" else: # Grads should be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is True ), F"""Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})""" def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=True ): model.train() __lowercase = model(_SCREAMING_SNAKE_CASE ) __lowercase = F.mse_loss(_SCREAMING_SNAKE_CASE , target.to(output.device ) ) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(_SCREAMING_SNAKE_CASE ) def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ): set_seed(4_2 ) __lowercase = RegressionModel() __lowercase = deepcopy(_SCREAMING_SNAKE_CASE ) __lowercase = RegressionDataset(length=8_0 ) __lowercase = DataLoader(_SCREAMING_SNAKE_CASE , batch_size=1_6 ) model.to(accelerator.device ) if sched: __lowercase = AdamW(params=model.parameters() , lr=1E-3 ) __lowercase = AdamW(params=ddp_model.parameters() , lr=1E-3 ) __lowercase = LambdaLR(_SCREAMING_SNAKE_CASE , lr_lambda=lambda _SCREAMING_SNAKE_CASE : epoch**0.6_5 ) __lowercase = LambdaLR(_SCREAMING_SNAKE_CASE , lr_lambda=lambda _SCREAMING_SNAKE_CASE : epoch**0.6_5 ) # Make a copy of `model` if sched: __lowercase , __lowercase , __lowercase , __lowercase = accelerator.prepare(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: __lowercase , __lowercase = accelerator.prepare(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def snake_case_ ( _SCREAMING_SNAKE_CASE ): # Test when on a single CPU or GPU that the context manager does nothing __lowercase , __lowercase , __lowercase = get_training_setup(_SCREAMING_SNAKE_CASE ) # Use a single batch __lowercase , __lowercase = next(iter(_SCREAMING_SNAKE_CASE ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model __lowercase , __lowercase = accelerator.gather((ddp_input, ddp_target) ) __lowercase , __lowercase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(_SCREAMING_SNAKE_CASE ): step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: # Sync grads step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue assert torch.allclose( param.grad , ddp_param.grad ), F"""Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) __lowercase = ddp_input[torch.randperm(len(_SCREAMING_SNAKE_CASE ) )] def snake_case_ ( _SCREAMING_SNAKE_CASE ): # Test on distributed setup that context manager behaves properly __lowercase , __lowercase , __lowercase = get_training_setup(_SCREAMING_SNAKE_CASE ) # Use a single batch __lowercase , __lowercase = next(iter(_SCREAMING_SNAKE_CASE ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model __lowercase , __lowercase = accelerator.gather((ddp_input, ddp_target) ) __lowercase , __lowercase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(_SCREAMING_SNAKE_CASE ): step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: # Sync grads step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), F"""Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})""" else: # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), F"""Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) __lowercase = ddp_input[torch.randperm(len(_SCREAMING_SNAKE_CASE ) )] def snake_case_ ( _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False ): __lowercase = Accelerator( split_batches=_SCREAMING_SNAKE_CASE , dispatch_batches=_SCREAMING_SNAKE_CASE , gradient_accumulation_steps=2 ) # Test that context manager behaves properly __lowercase , __lowercase , __lowercase = get_training_setup(_SCREAMING_SNAKE_CASE ) for iteration, batch in enumerate(_SCREAMING_SNAKE_CASE ): __lowercase , __lowercase = batch.values() # Gather the distributed inputs and targs for the base model __lowercase , __lowercase = accelerator.gather((ddp_input, ddp_target) ) __lowercase , __lowercase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Do "gradient accumulation" (noop) with accelerator.accumulate(_SCREAMING_SNAKE_CASE ): step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(_SCREAMING_SNAKE_CASE ) - 1): # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), F"""Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" else: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), F"""Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) __lowercase = ddp_input[torch.randperm(len(_SCREAMING_SNAKE_CASE ) )] GradientState._reset_state() def snake_case_ ( _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False ): __lowercase = Accelerator( split_batches=_SCREAMING_SNAKE_CASE , dispatch_batches=_SCREAMING_SNAKE_CASE , gradient_accumulation_steps=2 ) # Test that context manager behaves properly __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase = get_training_setup(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for iteration, batch in enumerate(_SCREAMING_SNAKE_CASE ): __lowercase , __lowercase = batch.values() # Gather the distributed inputs and targs for the base model __lowercase , __lowercase = accelerator.gather((ddp_input, ddp_target) ) __lowercase , __lowercase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(_SCREAMING_SNAKE_CASE )): if split_batches: sched.step() else: for _ in range(accelerator.num_processes ): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(_SCREAMING_SNAKE_CASE ): step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), F"""Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]['lr']}\nDDP opt: {ddp_opt.param_groups[0]['lr']}\n""" __lowercase = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(_SCREAMING_SNAKE_CASE )) if accelerator.num_processes > 1: check_model_parameters(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) GradientState._reset_state() def snake_case_ ( ): __lowercase = Accelerator() __lowercase = RegressionDataset(length=8_0 ) __lowercase = DataLoader(_SCREAMING_SNAKE_CASE , batch_size=1_6 ) __lowercase = RegressionDataset(length=9_6 ) __lowercase = DataLoader(_SCREAMING_SNAKE_CASE , batch_size=1_6 ) __lowercase , __lowercase = accelerator.prepare(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(_SCREAMING_SNAKE_CASE ): assert id(accelerator.gradient_state.active_dataloader ) == id(_SCREAMING_SNAKE_CASE ) if iteration < len(_SCREAMING_SNAKE_CASE ) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(_SCREAMING_SNAKE_CASE ): assert id(accelerator.gradient_state.active_dataloader ) == id(_SCREAMING_SNAKE_CASE ) if batch_num < len(_SCREAMING_SNAKE_CASE ) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def snake_case_ ( ): __lowercase = Accelerator() __lowercase = accelerator.state if state.local_process_index == 0: print("**Test `accumulate` gradient accumulation with dataloader break**" ) test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print("**Test NOOP `no_sync` context manager**" ) test_noop_sync(_SCREAMING_SNAKE_CASE ) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print("**Test Distributed `no_sync` context manager**" ) test_distributed_sync(_SCREAMING_SNAKE_CASE ) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation, " , F"""`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**""" , ) test_gradient_accumulation(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version("<" , "2.0" ) or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation with optimizer and scheduler, " , "`split_batches=False`, `dispatch_batches=False`**" , ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation with optimizer and scheduler, " , F"""`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**""" , ) test_gradient_accumulation_with_opt_and_scheduler(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def snake_case_ ( _SCREAMING_SNAKE_CASE ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
655
0
"""simple docstring""" from __future__ import annotations from bisect import bisect_left from functools import total_ordering from heapq import merge @total_ordering class __UpperCamelCase ( __lowerCamelCase ): def __lt__( self : List[Any] , UpperCAmelCase : Tuple ) -> Dict: return self[-1] < other[-1] def __eq__( self : Optional[Any] , UpperCAmelCase : List[Any] ) -> Dict: return self[-1] == other[-1] def UpperCAmelCase ( a__ ): '''simple docstring''' lowerCAmelCase :list[Stack] = [] # sort into stacks for element in collection: lowerCAmelCase :Dict = Stack([element] ) lowerCAmelCase :Union[str, Any] = bisect_left(lowerCamelCase_ , lowerCamelCase_ ) if i != len(lowerCamelCase_ ): stacks[i].append(lowerCamelCase_ ) else: stacks.append(lowerCamelCase_ ) # use a heap-based merge to merge stack efficiently lowerCAmelCase :List[str] = merge(*(reversed(lowerCamelCase_ ) for stack in stacks) ) return collection if __name__ == "__main__": __SCREAMING_SNAKE_CASE = input('Enter numbers separated by a comma:\n').strip() __SCREAMING_SNAKE_CASE = [int(item) for item in user_input.split(',')] print(patience_sort(unsorted))
553
import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel SCREAMING_SNAKE_CASE__ = logging.getLogger(__name__) def UpperCAmelCase__ ( lowerCamelCase_ : str , lowerCamelCase_ : int ): # save results if os.path.exists(lowerCamelCase_ ): if os.path.exists(os.path.join(lowerCamelCase_ , 'config.json' ) ) and os.path.isfile( os.path.join(lowerCamelCase_ , 'config.json' ) ): os.remove(os.path.join(lowerCamelCase_ , 'config.json' ) ) if os.path.exists(os.path.join(lowerCamelCase_ , 'pytorch_model.bin' ) ) and os.path.isfile( os.path.join(lowerCamelCase_ , 'pytorch_model.bin' ) ): os.remove(os.path.join(lowerCamelCase_ , 'pytorch_model.bin' ) ) else: os.makedirs(lowerCamelCase_ ) model.save_pretrained(lowerCamelCase_ ) def UpperCAmelCase__ ( lowerCamelCase_ : int , lowerCamelCase_ : Any=False ): __a : Dict = 2 if unlogit: __a : Optional[Any] = torch.pow(lowerCamelCase_ , lowerCamelCase_ ) __a : Any = p * torch.log(lowerCamelCase_ ) __a : Union[str, Any] = 0 return -plogp.sum(dim=-1 ) def UpperCAmelCase__ ( lowerCamelCase_ : Any ): logger.info('lv, h >\t' + '\t'.join(f'''{x + 1}''' for x in range(len(lowerCamelCase_ ) ) ) ) for row in range(len(lowerCamelCase_ ) ): if tensor.dtype != torch.long: logger.info(f'''layer {row + 1}:\t''' + '\t'.join(f'''{x:.5f}''' for x in tensor[row].cpu().data ) ) else: logger.info(f'''layer {row + 1}:\t''' + '\t'.join(f'''{x:d}''' for x in tensor[row].cpu().data ) ) def UpperCAmelCase__ ( lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Any , lowerCamelCase_ : int , lowerCamelCase_ : int=True , lowerCamelCase_ : Optional[Any]=True , lowerCamelCase_ : List[Any]=None , lowerCamelCase_ : List[Any]=False ): __a , __a : Optional[int] = model.config.num_hidden_layers, model.config.num_attention_heads __a : str = torch.zeros(lowerCamelCase_ , lowerCamelCase_ ).to(args.device ) __a : int = torch.zeros(lowerCamelCase_ , lowerCamelCase_ ).to(args.device ) if head_mask is None: __a : Union[str, Any] = torch.ones(lowerCamelCase_ , lowerCamelCase_ ).to(args.device ) head_mask.requires_grad_(requires_grad=lowerCamelCase_ ) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: __a : Any = None __a : Optional[int] = 0.0 __a : Optional[Any] = 0.0 for step, inputs in enumerate(tqdm(lowerCamelCase_ , desc='Iteration' , disable=args.local_rank not in [-1, 0] ) ): __a : Dict = tuple(t.to(args.device ) for t in inputs ) ((__a) , ) : Dict = inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) __a : List[Any] = model(lowerCamelCase_ , labels=lowerCamelCase_ , head_mask=lowerCamelCase_ ) # (loss), lm_logits, presents, (all hidden_states), (attentions) __a , __a , __a : int = ( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(lowerCamelCase_ ): __a : List[str] = entropy(attn.detach() , lowerCamelCase_ ) attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(lowerCamelCase_ ).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: __a : Optional[Any] = 2 __a : Union[str, Any] = torch.pow(torch.pow(lowerCamelCase_ , lowerCamelCase_ ).sum(-1 ) , 1 / exponent ) head_importance /= norm_by_layer.unsqueeze(-1 ) + 1e-20 if not args.dont_normalize_global_importance: __a : List[str] = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info('Attention entropies' ) print_ad_tensor(lowerCamelCase_ ) if compute_importance: logger.info('Head importance scores' ) print_ad_tensor(lowerCamelCase_ ) logger.info('Head ranked by importance scores' ) __a : Optional[Any] = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device ) __a : str = torch.arange( head_importance.numel() , device=args.device ) __a : Tuple = head_ranks.view_as(lowerCamelCase_ ) print_ad_tensor(lowerCamelCase_ ) return attn_entropy, head_importance, total_loss def UpperCAmelCase__ ( lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Tuple , lowerCamelCase_ : int ): __a , __a , __a : Optional[int] = compute_heads_importance(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , compute_entropy=lowerCamelCase_ ) __a : Tuple = 1 / loss # instead of downsteam score use the LM loss logger.info('Pruning: original score: %f, threshold: %f' , lowerCamelCase_ , original_score * args.masking_threshold ) __a : Tuple = torch.ones_like(lowerCamelCase_ ) __a : int = max(1 , int(new_head_mask.numel() * args.masking_amount ) ) __a : Tuple = original_score while current_score >= original_score * args.masking_threshold: __a : Optional[Any] = new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads __a : List[str] = float('Inf' ) __a : List[Any] = head_importance.view(-1 ).sort()[1] if len(lowerCamelCase_ ) <= num_to_mask: print('BREAK BY num_to_mask' ) break # mask heads __a : Any = current_heads_to_mask[:num_to_mask] logger.info('Heads to mask: %s' , str(current_heads_to_mask.tolist() ) ) __a : int = new_head_mask.view(-1 ) __a : Tuple = 0.0 __a : int = new_head_mask.view_as(lowerCamelCase_ ) __a : Optional[int] = new_head_mask.clone().detach() print_ad_tensor(lowerCamelCase_ ) # Compute metric and head importance again __a , __a , __a : int = compute_heads_importance( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , compute_entropy=lowerCamelCase_ , head_mask=lowerCamelCase_ ) __a : List[Any] = 1 / loss logger.info( 'Masking: current score: %f, remaining heads %d (%.1f percents)' , lowerCamelCase_ , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 1_0_0 , ) logger.info('Final head mask' ) print_ad_tensor(lowerCamelCase_ ) np.save(os.path.join(args.output_dir , 'head_mask.npy' ) , head_mask.detach().cpu().numpy() ) return head_mask def UpperCAmelCase__ ( lowerCamelCase_ : Dict , lowerCamelCase_ : Tuple , lowerCamelCase_ : Any , lowerCamelCase_ : Union[str, Any] ): __a : List[Any] = datetime.now() __a , __a , __a : List[str] = compute_heads_importance( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , compute_entropy=lowerCamelCase_ , compute_importance=lowerCamelCase_ , head_mask=lowerCamelCase_ ) __a : List[str] = 1 / loss __a : List[Any] = datetime.now() - before_time __a : List[str] = sum(p.numel() for p in model.parameters() ) __a : Dict = { layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(lowerCamelCase_ ) ) } for k, v in heads_to_prune.items(): if isinstance(lowerCamelCase_ , lowerCamelCase_ ): __a : Tuple = [ v, ] assert sum(len(lowerCamelCase_ ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item() model.prune_heads(lowerCamelCase_ ) __a : Optional[Any] = sum(p.numel() for p in model.parameters() ) __a : Tuple = datetime.now() __a , __a , __a : Tuple = compute_heads_importance( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , compute_entropy=lowerCamelCase_ , compute_importance=lowerCamelCase_ , head_mask=lowerCamelCase_ , actually_pruned=lowerCamelCase_ , ) __a : Optional[Any] = 1 / loss __a : List[Any] = datetime.now() - before_time logger.info( 'Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)' , lowerCamelCase_ , lowerCamelCase_ , pruned_num_params / original_num_params * 1_0_0 , ) logger.info('Pruning: score with masking: %f score with pruning: %f' , lowerCamelCase_ , lowerCamelCase_ ) logger.info('Pruning: speed ratio (original timing / new timing): %f percents' , original_time / new_time * 1_0_0 ) save_model(lowerCamelCase_ , args.output_dir ) def UpperCAmelCase__ ( ): __a : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--data_dir' , default=lowerCamelCase_ , type=lowerCamelCase_ , required=lowerCamelCase_ , help='The input data dir. Should contain the .tsv files (or other data files) for the task.' , ) parser.add_argument( '--model_name_or_path' , default=lowerCamelCase_ , type=lowerCamelCase_ , required=lowerCamelCase_ , help='Path to pretrained model or model identifier from huggingface.co/models' , ) parser.add_argument( '--output_dir' , default=lowerCamelCase_ , type=lowerCamelCase_ , required=lowerCamelCase_ , help='The output directory where the model predictions and checkpoints will be written.' , ) # Other parameters parser.add_argument( '--config_name' , default='' , type=lowerCamelCase_ , help='Pretrained config name or path if not the same as model_name_or_path' , ) parser.add_argument( '--tokenizer_name' , default='' , type=lowerCamelCase_ , help='Pretrained tokenizer name or path if not the same as model_name_or_path' , ) parser.add_argument( '--cache_dir' , default=lowerCamelCase_ , type=lowerCamelCase_ , help='Where do you want to store the pre-trained models downloaded from s3' , ) parser.add_argument( '--data_subset' , type=lowerCamelCase_ , default=-1 , help='If > 0: limit the data to a subset of data_subset instances.' ) parser.add_argument( '--overwrite_output_dir' , action='store_true' , help='Whether to overwrite data in output directory' ) parser.add_argument( '--overwrite_cache' , action='store_true' , help='Overwrite the cached training and evaluation sets' ) parser.add_argument( '--dont_normalize_importance_by_layer' , action='store_true' , help='Don\'t normalize importance score by layers' ) parser.add_argument( '--dont_normalize_global_importance' , action='store_true' , help='Don\'t normalize all importance scores between 0 and 1' , ) parser.add_argument( '--try_masking' , action='store_true' , help='Whether to try to mask head until a threshold of accuracy.' ) parser.add_argument( '--masking_threshold' , default=0.9 , type=lowerCamelCase_ , help='masking threshold in term of metrics (stop masking when metric < threshold * original metric value).' , ) parser.add_argument( '--masking_amount' , default=0.1 , type=lowerCamelCase_ , help='Amount to heads to masking at each masking step.' ) parser.add_argument('--metric_name' , default='acc' , type=lowerCamelCase_ , help='Metric to use for head masking.' ) parser.add_argument( '--max_seq_length' , default=1_2_8 , type=lowerCamelCase_ , help=( 'The maximum total input sequence length after WordPiece tokenization. \n' 'Sequences longer than this will be truncated, sequences shorter padded.' ) , ) parser.add_argument('--batch_size' , default=1 , type=lowerCamelCase_ , help='Batch size.' ) parser.add_argument('--seed' , type=lowerCamelCase_ , default=4_2 ) parser.add_argument('--local_rank' , type=lowerCamelCase_ , default=-1 , help='local_rank for distributed training on gpus' ) parser.add_argument('--no_cuda' , action='store_true' , help='Whether not to use CUDA when available' ) parser.add_argument('--server_ip' , type=lowerCamelCase_ , default='' , help='Can be used for distant debugging.' ) parser.add_argument('--server_port' , type=lowerCamelCase_ , default='' , help='Can be used for distant debugging.' ) __a : Optional[Any] = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('Waiting for debugger attach' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=lowerCamelCase_ ) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: __a : List[str] = torch.device('cuda' if torch.cuda.is_available() and not args.no_cuda else 'cpu' ) __a : Tuple = 0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank ) __a : Union[str, Any] = torch.device('cuda' , args.local_rank ) __a : Any = 1 torch.distributed.init_process_group(backend='nccl' ) # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN ) logger.info('device: {} n_gpu: {}, distributed: {}'.format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) ) __a : Optional[Any] = GPTaLMHeadModel.from_pretrained(args.model_name_or_path ) # Distributed and parallel training model.to(args.device ) if args.local_rank != -1: __a : List[Any] = nn.parallel.DistributedDataParallel( lowerCamelCase_ , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=lowerCamelCase_ ) elif args.n_gpu > 1: __a : Union[str, Any] = nn.DataParallel(lowerCamelCase_ ) # Print/save training arguments os.makedirs(args.output_dir , exist_ok=lowerCamelCase_ ) torch.save(lowerCamelCase_ , os.path.join(args.output_dir , 'run_args.bin' ) ) logger.info('Training/evaluation parameters %s' , lowerCamelCase_ ) # Prepare dataset __a : Tuple = np.concatenate( [ np.loadtxt(args.data_dir , dtype=np.intaa ), ] ) __a : str = (torch.from_numpy(lowerCamelCase_ ),) __a : List[str] = TensorDataset(*lowerCamelCase_ ) __a : Optional[Any] = RandomSampler(lowerCamelCase_ ) __a : Union[str, Any] = DataLoader(lowerCamelCase_ , sampler=lowerCamelCase_ , batch_size=args.batch_size ) # Compute head entropy and importance score compute_heads_importance(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: __a : Union[str, Any] = mask_heads(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) prune_heads(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) if __name__ == "__main__": main()
47
0
from collections import defaultdict from math import ceil, sqrt def SCREAMING_SNAKE_CASE ( _UpperCAmelCase = 100_0000 , _UpperCAmelCase = 10 ) -> int: lowerCamelCase__ : defaultdict = defaultdict(_UpperCAmelCase ) for outer_width in range(3 , (t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: lowerCamelCase__ : List[str] = max( ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 ) else: lowerCamelCase__ : int = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(_UpperCAmelCase , outer_width - 1 , 2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 10 ) if __name__ == "__main__": print(F"""{solution() = }""")
188
from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass _UpperCAmelCase : Union[str, Any] = (3, 9, -11, 0, 7, 5, 1, -1) _UpperCAmelCase : Union[str, Any] = (4, 6, 2, 0, 8, 10, 3, -2) @dataclass class lowerCAmelCase : UpperCAmelCase__ = 42 UpperCAmelCase__ = 42 class lowerCAmelCase : def __init__( self : Any , UpperCAmelCase : Iterable[int] ) -> None: lowerCamelCase__ : Node | None = None for i in sorted(UpperCAmelCase , reverse=UpperCAmelCase ): lowerCamelCase__ : Tuple = Node(UpperCAmelCase , self.head ) def __iter__( self : Optional[int] ) -> Iterator[int]: lowerCamelCase__ : str = self.head while node: yield node.data lowerCamelCase__ : List[str] = node.next_node def __len__( self : List[str] ) -> int: return sum(1 for _ in self ) def __str__( self : Any ) -> str: return " -> ".join([str(UpperCAmelCase ) for node in self] ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> SortedLinkedList: return SortedLinkedList(list(_UpperCAmelCase ) + list(_UpperCAmelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() _UpperCAmelCase : Optional[Any] = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
188
1
'''simple docstring''' import os from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE, hf_cache_home lowerCAmelCase_ : Tuple = HUGGINGFACE_HUB_CACHE lowerCAmelCase_ : Dict = '''config.json''' lowerCAmelCase_ : List[Any] = '''diffusion_pytorch_model.bin''' lowerCAmelCase_ : Optional[Any] = '''diffusion_flax_model.msgpack''' lowerCAmelCase_ : Tuple = '''model.onnx''' lowerCAmelCase_ : Tuple = '''diffusion_pytorch_model.safetensors''' lowerCAmelCase_ : Union[str, Any] = '''weights.pb''' lowerCAmelCase_ : str = '''https://huggingface.co''' lowerCAmelCase_ : Any = default_cache_path lowerCAmelCase_ : str = '''diffusers_modules''' lowerCAmelCase_ : Dict = os.getenv('''HF_MODULES_CACHE''', os.path.join(hf_cache_home, '''modules''')) lowerCAmelCase_ : Optional[int] = ['''fp16''', '''non-ema'''] lowerCAmelCase_ : Optional[int] = '''.self_attn'''
414
'''simple docstring''' import os import unittest from transformers import LxmertTokenizer, LxmertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowerCAmelCase ( __a , unittest.TestCase ): snake_case : Any = LxmertTokenizer snake_case : Tuple = LxmertTokenizerFast snake_case : List[str] = True snake_case : int = True def snake_case_ (self ): super().setUp() _UpperCAmelCase : Dict = [ """[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] _UpperCAmelCase : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def snake_case_ (self , lowerCAmelCase__ ): _UpperCAmelCase : Optional[int] = """UNwant\u00E9d,running""" _UpperCAmelCase : str = """unwanted, running""" return input_text, output_text def snake_case_ (self ): _UpperCAmelCase : Union[str, Any] = self.tokenizer_class(self.vocab_file ) _UpperCAmelCase : List[str] = tokenizer.tokenize("""UNwant\u00E9d,running""" ) self.assertListEqual(lowerCAmelCase__ , ["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) , [7, 4, 5, 1_0, 8, 9] ) def snake_case_ (self ): if not self.test_rust_tokenizer: return _UpperCAmelCase : Tuple = self.get_tokenizer() _UpperCAmelCase : Any = self.get_rust_tokenizer() _UpperCAmelCase : int = """I was born in 92000, and this is falsé.""" _UpperCAmelCase : Optional[Any] = tokenizer.tokenize(lowerCAmelCase__ ) _UpperCAmelCase : str = rust_tokenizer.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Tuple = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) _UpperCAmelCase : List[Any] = rust_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Dict = self.get_rust_tokenizer() _UpperCAmelCase : List[str] = tokenizer.encode(lowerCAmelCase__ ) _UpperCAmelCase : List[str] = rust_tokenizer.encode(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ )
414
1
import argparse import intel_extension_for_pytorch as ipex import torch from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline lowerCAmelCase__ = argparse.ArgumentParser('Stable Diffusion script with intel optimization', add_help=False) parser.add_argument('--dpm', action='store_true', help='Enable DPMSolver or not') parser.add_argument('--steps', default=None, type=int, help='Num inference steps') lowerCAmelCase__ = parser.parse_args() lowerCAmelCase__ = 'cpu' lowerCAmelCase__ = 'a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings' lowerCAmelCase__ = 'path-to-your-trained-model' lowerCAmelCase__ = StableDiffusionPipeline.from_pretrained(model_id) if args.dpm: lowerCAmelCase__ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) lowerCAmelCase__ = pipe.to(device) # to channels last lowerCAmelCase__ = pipe.unet.to(memory_format=torch.channels_last) lowerCAmelCase__ = pipe.vae.to(memory_format=torch.channels_last) lowerCAmelCase__ = pipe.text_encoder.to(memory_format=torch.channels_last) if pipe.requires_safety_checker: lowerCAmelCase__ = pipe.safety_checker.to(memory_format=torch.channels_last) # optimize with ipex lowerCAmelCase__ = torch.randn(2, 4, 64, 64) lowerCAmelCase__ = torch.rand(1) * 999 lowerCAmelCase__ = torch.randn(2, 77, 768) lowerCAmelCase__ = (sample, timestep, encoder_hidden_status) try: lowerCAmelCase__ = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example) except Exception: lowerCAmelCase__ = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True) lowerCAmelCase__ = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True) lowerCAmelCase__ = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True) if pipe.requires_safety_checker: lowerCAmelCase__ = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True) # compute lowerCAmelCase__ = 666 lowerCAmelCase__ = torch.Generator(device).manual_seed(seed) lowerCAmelCase__ = {'generator': generator} if args.steps is not None: lowerCAmelCase__ = args.steps with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa): lowerCAmelCase__ = pipe(prompt, **generate_kwargs).images[0] # save image image.save('generated.png')
714
import argparse import torch from transformers import BertForMaskedLM if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser( description=( 'Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned' ' Distillation' ) ) parser.add_argument('--model_type', default='bert', choices=['bert']) parser.add_argument('--model_name', default='bert-base-uncased', type=str) parser.add_argument('--dump_checkpoint', default='serialization_dir/tf_bert-base-uncased_0247911.pth', type=str) parser.add_argument('--vocab_transform', action='store_true') lowerCAmelCase__ = parser.parse_args() if args.model_type == "bert": lowerCAmelCase__ = BertForMaskedLM.from_pretrained(args.model_name) lowerCAmelCase__ = 'bert' else: raise ValueError('args.model_type should be "bert".') lowerCAmelCase__ = model.state_dict() lowerCAmelCase__ = {} for w in ["word_embeddings", "position_embeddings"]: lowerCAmelCase__ = state_dict[F"{prefix}.embeddings.{w}.weight"] for w in ["weight", "bias"]: lowerCAmelCase__ = state_dict[F"{prefix}.embeddings.LayerNorm.{w}"] lowerCAmelCase__ = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: for w in ["weight", "bias"]: lowerCAmelCase__ = state_dict[ F"{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}" ] lowerCAmelCase__ = state_dict[ F"{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}" ] lowerCAmelCase__ = state_dict[ F"{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}" ] lowerCAmelCase__ = state_dict[ F"{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}" ] lowerCAmelCase__ = state_dict[ F"{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}" ] lowerCAmelCase__ = state_dict[ F"{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}" ] lowerCAmelCase__ = state_dict[ F"{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}" ] lowerCAmelCase__ = state_dict[ F"{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}" ] std_idx += 1 lowerCAmelCase__ = state_dict['cls.predictions.decoder.weight'] lowerCAmelCase__ = state_dict['cls.predictions.bias'] if args.vocab_transform: for w in ["weight", "bias"]: lowerCAmelCase__ = state_dict[F"cls.predictions.transform.dense.{w}"] lowerCAmelCase__ = state_dict[F"cls.predictions.transform.LayerNorm.{w}"] print(F"N layers selected for distillation: {std_idx}") print(F"Number of params transferred for distillation: {len(compressed_sd.keys())}") print(F"Save transferred checkpoint to {args.dump_checkpoint}.") torch.save(compressed_sd, args.dump_checkpoint)
576
0
import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class a ( lowercase__ ): """simple docstring""" def __init__( self : Optional[Any] , __lowercase : Optional[int] , __lowercase : List[Any]=13 , __lowercase : List[str]=7 , __lowercase : Any=True , __lowercase : Tuple=True , __lowercase : List[Any]=False , __lowercase : Any=True , __lowercase : List[str]=99 , __lowercase : Any=32 , __lowercase : Optional[Any]=5 , __lowercase : Dict=4 , __lowercase : Optional[Any]=37 , __lowercase : int="gelu" , __lowercase : Optional[int]=0.1 , __lowercase : List[Any]=0.1 , __lowercase : Tuple=512 , __lowercase : str=16 , __lowercase : Dict=2 , __lowercase : Any=0.02 , __lowercase : Optional[Any]=3 , __lowercase : Any=4 , __lowercase : Optional[Any]=None , ) -> List[Any]: __UpperCAmelCase : str = parent __UpperCAmelCase : Optional[Any] = batch_size __UpperCAmelCase : Tuple = seq_length __UpperCAmelCase : Union[str, Any] = is_training __UpperCAmelCase : Any = use_input_mask __UpperCAmelCase : Optional[int] = use_token_type_ids __UpperCAmelCase : Optional[int] = use_labels __UpperCAmelCase : Optional[Any] = vocab_size __UpperCAmelCase : Dict = hidden_size __UpperCAmelCase : Optional[int] = num_hidden_layers __UpperCAmelCase : int = num_attention_heads __UpperCAmelCase : int = intermediate_size __UpperCAmelCase : Optional[int] = hidden_act __UpperCAmelCase : List[Any] = hidden_dropout_prob __UpperCAmelCase : List[str] = attention_probs_dropout_prob __UpperCAmelCase : List[str] = max_position_embeddings __UpperCAmelCase : List[str] = type_vocab_size __UpperCAmelCase : Tuple = type_sequence_label_size __UpperCAmelCase : int = initializer_range __UpperCAmelCase : Optional[int] = num_labels __UpperCAmelCase : Any = num_choices __UpperCAmelCase : Tuple = scope def UpperCAmelCase ( self : Any ) -> Union[str, Any]: __UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase : str = None if self.use_input_mask: __UpperCAmelCase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCAmelCase : Optional[Any] = None __UpperCAmelCase : str = None __UpperCAmelCase : Optional[Any] = None if self.use_labels: __UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices ) __UpperCAmelCase : Any = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase ( self : Any ) -> int: return DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def UpperCAmelCase ( self : Any , __lowercase : str , __lowercase : Union[str, Any] , __lowercase : Optional[Any] , __lowercase : Union[str, Any] , __lowercase : int , __lowercase : str ) -> str: __UpperCAmelCase : Any = DistilBertModel(config=__lowercase ) model.to(__lowercase ) model.eval() __UpperCAmelCase : Any = model(__lowercase , __lowercase ) __UpperCAmelCase : Union[str, Any] = model(__lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase ( self : Optional[int] , __lowercase : Optional[Any] , __lowercase : Optional[Any] , __lowercase : int , __lowercase : List[str] , __lowercase : Optional[Any] , __lowercase : Dict ) -> int: __UpperCAmelCase : Union[str, Any] = DistilBertForMaskedLM(config=__lowercase ) model.to(__lowercase ) model.eval() __UpperCAmelCase : Dict = model(__lowercase , attention_mask=__lowercase , labels=__lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase ( self : str , __lowercase : List[Any] , __lowercase : Optional[Any] , __lowercase : int , __lowercase : int , __lowercase : Tuple , __lowercase : List[str] ) -> Tuple: __UpperCAmelCase : Tuple = DistilBertForQuestionAnswering(config=__lowercase ) model.to(__lowercase ) model.eval() __UpperCAmelCase : List[Any] = model( __lowercase , attention_mask=__lowercase , start_positions=__lowercase , end_positions=__lowercase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase ( self : Tuple , __lowercase : Optional[Any] , __lowercase : List[Any] , __lowercase : Tuple , __lowercase : Union[str, Any] , __lowercase : Union[str, Any] , __lowercase : int ) -> str: __UpperCAmelCase : Any = self.num_labels __UpperCAmelCase : List[str] = DistilBertForSequenceClassification(__lowercase ) model.to(__lowercase ) model.eval() __UpperCAmelCase : Union[str, Any] = model(__lowercase , attention_mask=__lowercase , labels=__lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase ( self : Dict , __lowercase : Union[str, Any] , __lowercase : Union[str, Any] , __lowercase : Dict , __lowercase : str , __lowercase : Any , __lowercase : str ) -> int: __UpperCAmelCase : Optional[Any] = self.num_labels __UpperCAmelCase : Optional[int] = DistilBertForTokenClassification(config=__lowercase ) model.to(__lowercase ) model.eval() __UpperCAmelCase : Any = model(__lowercase , attention_mask=__lowercase , labels=__lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase ( self : str , __lowercase : Optional[int] , __lowercase : List[str] , __lowercase : Optional[int] , __lowercase : str , __lowercase : List[str] , __lowercase : int ) -> str: __UpperCAmelCase : Dict = self.num_choices __UpperCAmelCase : Dict = DistilBertForMultipleChoice(config=__lowercase ) model.to(__lowercase ) model.eval() __UpperCAmelCase : Optional[int] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCAmelCase : List[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCAmelCase : List[str] = model( __lowercase , attention_mask=__lowercase , labels=__lowercase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCAmelCase ( self : Tuple ) -> Union[str, Any]: __UpperCAmelCase : Any = self.prepare_config_and_inputs() ((__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase)) : int = config_and_inputs __UpperCAmelCase : str = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class a ( lowercase__ , lowercase__ , unittest.TestCase ): """simple docstring""" a : Optional[Any] = ( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) a : Union[str, Any] = ( { 'feature-extraction': DistilBertModel, 'fill-mask': DistilBertForMaskedLM, 'question-answering': DistilBertForQuestionAnswering, 'text-classification': DistilBertForSequenceClassification, 'token-classification': DistilBertForTokenClassification, 'zero-shot': DistilBertForSequenceClassification, } if is_torch_available() else {} ) a : Tuple = True a : Tuple = True a : Any = True a : Optional[Any] = True def UpperCAmelCase ( self : List[str] ) -> str: __UpperCAmelCase : Dict = DistilBertModelTester(self ) __UpperCAmelCase : Optional[int] = ConfigTester(self , config_class=__lowercase , dim=37 ) def UpperCAmelCase ( self : Any ) -> Optional[Any]: self.config_tester.run_common_tests() def UpperCAmelCase ( self : Any ) -> Any: __UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*__lowercase ) def UpperCAmelCase ( self : Dict ) -> Tuple: __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*__lowercase ) def UpperCAmelCase ( self : int ) -> Any: __UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*__lowercase ) def UpperCAmelCase ( self : Any ) -> List[Any]: __UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*__lowercase ) def UpperCAmelCase ( self : Tuple ) -> int: __UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*__lowercase ) def UpperCAmelCase ( self : Tuple ) -> Optional[int]: __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*__lowercase ) @slow def UpperCAmelCase ( self : List[Any] ) -> Dict: for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : List[Any] = DistilBertModel.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) @slow @require_torch_gpu def UpperCAmelCase ( self : List[Any] ) -> int: __UpperCAmelCase , __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return __UpperCAmelCase : List[str] = True __UpperCAmelCase : Dict = model_class(config=__lowercase ) __UpperCAmelCase : List[Any] = self._prepare_for_class(__lowercase , __lowercase ) __UpperCAmelCase : Dict = torch.jit.trace( __lowercase , (inputs_dict["""input_ids"""].to("""cpu""" ), inputs_dict["""attention_mask"""].to("""cpu""" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(__lowercase , os.path.join(__lowercase , """traced_model.pt""" ) ) __UpperCAmelCase : int = torch.jit.load(os.path.join(__lowercase , """traced_model.pt""" ) , map_location=__lowercase ) loaded(inputs_dict["""input_ids"""].to(__lowercase ) , inputs_dict["""attention_mask"""].to(__lowercase ) ) @require_torch class a ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase ( self : Any ) -> Union[str, Any]: __UpperCAmelCase : Tuple = DistilBertModel.from_pretrained("""distilbert-base-uncased""" ) __UpperCAmelCase : Optional[int] = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) __UpperCAmelCase : List[str] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __UpperCAmelCase : List[str] = model(__lowercase , attention_mask=__lowercase )[0] __UpperCAmelCase : Dict = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , __lowercase ) __UpperCAmelCase : Dict = torch.tensor( [[[-0.1_639, 0.3_299, 0.1_648], [-0.1_746, 0.3_289, 0.1_710], [-0.1_884, 0.3_357, 0.1_810]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __lowercase , atol=1e-4 ) )
63
import copy import fnmatch import json import os import pickle as pkl import shutil import sys import tarfile import tempfile from collections import OrderedDict from contextlib import contextmanager from functools import partial from hashlib import shaaaa from io import BytesIO from pathlib import Path from urllib.parse import urlparse from zipfile import ZipFile, is_zipfile import cva import numpy as np import requests import wget from filelock import FileLock from PIL import Image from tqdm.auto import tqdm from yaml import Loader, dump, load try: import torch a : List[Any] = True except ImportError: a : str = False try: from torch.hub import _get_torch_home a : List[Any] = _get_torch_home() except ImportError: a : int = os.path.expanduser( os.getenv("TORCH_HOME", os.path.join(os.getenv("XDG_CACHE_HOME", "~/.cache"), "torch")) ) a : Optional[Any] = os.path.join(torch_cache_home, "transformers") a : Optional[Any] = "https://cdn.huggingface.co" a : List[str] = "https://s3.amazonaws.com/models.huggingface.co/bert" a : Any = "/".join(str(Path(__file__).resolve()).split("/")[:-1]) a : Optional[int] = os.path.join(PATH, "config.yaml") a : Dict = os.path.join(PATH, "attributes.txt") a : Tuple = os.path.join(PATH, "objects.txt") a : Dict = os.getenv("PYTORCH_PRETRAINED_BERT_CACHE", default_cache_path) a : Dict = os.getenv("PYTORCH_TRANSFORMERS_CACHE", PYTORCH_PRETRAINED_BERT_CACHE) a : Optional[int] = os.getenv("TRANSFORMERS_CACHE", PYTORCH_TRANSFORMERS_CACHE) a : Any = "pytorch_model.bin" a : int = "config.yaml" def lowerCamelCase__ ( __lowerCamelCase : str=OBJECTS , __lowerCamelCase : Union[str, Any]=ATTRIBUTES ): __UpperCAmelCase : Union[str, Any] = [] with open(__lowerCamelCase ) as f: for object in f.readlines(): vg_classes.append(object.split(""",""" )[0].lower().strip() ) __UpperCAmelCase : Dict = [] with open(__lowerCamelCase ) as f: for object in f.readlines(): vg_attrs.append(object.split(""",""" )[0].lower().strip() ) return vg_classes, vg_attrs def lowerCamelCase__ ( __lowerCamelCase : Any ): __UpperCAmelCase : List[str] = OrderedDict() with open(__lowerCamelCase , """rb""" ) as f: __UpperCAmelCase : int = pkl.load(__lowerCamelCase )["""model"""] for k in copy.deepcopy(list(ckp.keys() ) ): __UpperCAmelCase : List[Any] = ckp.pop(__lowerCamelCase ) if isinstance(__lowerCamelCase , np.ndarray ): __UpperCAmelCase : Union[str, Any] = torch.tensor(__lowerCamelCase ) else: assert isinstance(__lowerCamelCase , torch.tensor ), type(__lowerCamelCase ) __UpperCAmelCase : List[str] = v return r class a : """simple docstring""" a : Dict = {} def __init__( self : Dict , __lowercase : dict , __lowercase : str = "root" , __lowercase : Any=0 ) -> Dict: __UpperCAmelCase : List[str] = name __UpperCAmelCase : str = level __UpperCAmelCase : int = {} for k, v in dictionary.items(): if v is None: raise ValueError() __UpperCAmelCase : List[str] = copy.deepcopy(__lowercase ) __UpperCAmelCase : Dict = copy.deepcopy(__lowercase ) if isinstance(__lowercase , __lowercase ): __UpperCAmelCase : Union[str, Any] = Config(__lowercase , name=__lowercase , level=level + 1 ) __UpperCAmelCase : Union[str, Any] = v setattr(self , __lowercase , __lowercase ) __UpperCAmelCase : Any = d def __repr__( self : Optional[Any] ) -> Optional[int]: return str(list((self._pointer.keys()) ) ) def __setattr__( self : List[str] , __lowercase : List[str] , __lowercase : Tuple ) -> int: __UpperCAmelCase : int = val __UpperCAmelCase : List[str] = val __UpperCAmelCase : Union[str, Any] = key.split(""".""" ) __UpperCAmelCase : List[Any] = len(__lowercase ) - 1 __UpperCAmelCase : List[Any] = self._pointer if len(__lowercase ) > 1: for i, l in enumerate(__lowercase ): if hasattr(self , __lowercase ) and isinstance(getattr(self , __lowercase ) , __lowercase ): setattr(getattr(self , __lowercase ) , """.""".join(levels[i:] ) , __lowercase ) if l == last_level: __UpperCAmelCase : Union[str, Any] = val else: __UpperCAmelCase : Union[str, Any] = pointer[l] def UpperCAmelCase ( self : Tuple ) -> Optional[int]: return self._pointer def UpperCAmelCase ( self : str , __lowercase : Optional[int] , __lowercase : Any ) -> Optional[int]: with open(f"""{file_name}""" , """w""" ) as stream: dump(__lowercase , __lowercase ) def UpperCAmelCase ( self : List[str] , __lowercase : Union[str, Any] , __lowercase : Union[str, Any] ) -> Any: with open(f"""{file_name}""" , """w""" ) as stream: json.dump(__lowercase , __lowercase ) @staticmethod def UpperCAmelCase ( __lowercase : List[Any] ) -> Optional[Any]: with open(__lowercase ) as stream: __UpperCAmelCase : Any = load(__lowercase , Loader=__lowercase ) return data def __str__( self : List[str] ) -> Tuple: __UpperCAmelCase : Any = """ """ if self._name != "root": __UpperCAmelCase : Optional[Any] = f"""{t * (self._level-1)}{self._name}:\n""" else: __UpperCAmelCase : List[Any] = """""" __UpperCAmelCase : Optional[Any] = self._level for i, (k, v) in enumerate(self._pointer.items() ): if isinstance(__lowercase , __lowercase ): r += f"""{t * (self._level)}{v}\n""" self._level += 1 else: r += f"""{t * (self._level)}{k}: {v} ({type(__lowercase ).__name__})\n""" __UpperCAmelCase : int = level return r[:-1] @classmethod def UpperCAmelCase ( cls : List[str] , __lowercase : str , **__lowercase : Any ) -> Any: __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = cls.get_config_dict(__lowercase , **__lowercase ) return cls(__lowercase ) @classmethod def UpperCAmelCase ( cls : Dict , __lowercase : str , **__lowercase : Union[str, Any] ) -> Optional[int]: __UpperCAmelCase : int = kwargs.pop("""cache_dir""" , __lowercase ) __UpperCAmelCase : int = kwargs.pop("""force_download""" , __lowercase ) __UpperCAmelCase : str = kwargs.pop("""resume_download""" , __lowercase ) __UpperCAmelCase : Dict = kwargs.pop("""proxies""" , __lowercase ) __UpperCAmelCase : Union[str, Any] = kwargs.pop("""local_files_only""" , __lowercase ) if os.path.isdir(__lowercase ): __UpperCAmelCase : List[Any] = os.path.join(__lowercase , __lowercase ) elif os.path.isfile(__lowercase ) or is_remote_url(__lowercase ): __UpperCAmelCase : Tuple = pretrained_model_name_or_path else: __UpperCAmelCase : Optional[int] = hf_bucket_url(__lowercase , filename=__lowercase , use_cdn=__lowercase ) try: # Load from URL or cache if already cached __UpperCAmelCase : Optional[int] = cached_path( __lowercase , cache_dir=__lowercase , force_download=__lowercase , proxies=__lowercase , resume_download=__lowercase , local_files_only=__lowercase , ) # Load config dict if resolved_config_file is None: raise EnvironmentError __UpperCAmelCase : Optional[int] = Config.load_yaml(__lowercase ) except EnvironmentError: __UpperCAmelCase : str = """Can't load config for""" raise EnvironmentError(__lowercase ) if resolved_config_file == config_file: print("""loading configuration file from path""" ) else: print("""loading configuration file cache""" ) return Config.load_yaml(__lowercase ), kwargs def lowerCamelCase__ ( __lowerCamelCase : Dict ): __UpperCAmelCase : Optional[int] = torch.load("""dump.pt""" , map_location=in_tensor.device ) __UpperCAmelCase : Tuple = in_tensor.numpy() __UpperCAmelCase : Optional[int] = out_tensor.numpy()[0] print(na.shape , na[0, 0, :5] ) print(na.shape , na[0, 0, :5] ) assert np.allclose(__lowerCamelCase , __lowerCamelCase , rtol=0.0_1 , atol=0.1 ), ( f"""{sum([1 for x in np.isclose(__lowerCamelCase , __lowerCamelCase , rtol=0.0_1 , atol=0.1 ).flatten() if x is False] )/len(na.flatten() )*100:.4f} %""" " element-wise mismatch" ) raise Exception("""tensors are all good""" ) # Hugging face functions below def lowerCamelCase__ ( __lowerCamelCase : Optional[int] ): __UpperCAmelCase : Tuple = urlparse(__lowerCamelCase ) return parsed.scheme in ("http", "https") def lowerCamelCase__ ( __lowerCamelCase : str , __lowerCamelCase : str , __lowerCamelCase : int=True ): __UpperCAmelCase : int = CLOUDFRONT_DISTRIB_PREFIX if use_cdn else S3_BUCKET_PREFIX __UpperCAmelCase : Optional[int] = """/""" not in model_id if legacy_format: return f"""{endpoint}/{model_id}-{filename}""" else: return f"""{endpoint}/{model_id}/{filename}""" def lowerCamelCase__ ( __lowerCamelCase : Optional[int] , __lowerCamelCase : List[Any] , __lowerCamelCase : Tuple=None , __lowerCamelCase : Optional[Any]=0 , __lowerCamelCase : Optional[int]=None , ): __UpperCAmelCase : Optional[int] = """python/{}""".format(sys.version.split()[0] ) if _torch_available: ua += "; torch/{}".format(torch.__version__ ) if isinstance(__lowerCamelCase , __lowerCamelCase ): ua += "; " + "; ".join("""{}/{}""".format(__lowerCamelCase , __lowerCamelCase ) for k, v in user_agent.items() ) elif isinstance(__lowerCamelCase , __lowerCamelCase ): ua += "; " + user_agent __UpperCAmelCase : List[str] = {"""user-agent""": ua} if resume_size > 0: __UpperCAmelCase : Union[str, Any] = """bytes=%d-""" % (resume_size,) __UpperCAmelCase : Union[str, Any] = requests.get(__lowerCamelCase , stream=__lowerCamelCase , proxies=__lowerCamelCase , headers=__lowerCamelCase ) if response.status_code == 416: # Range not satisfiable return __UpperCAmelCase : List[str] = response.headers.get("""Content-Length""" ) __UpperCAmelCase : str = resume_size + int(__lowerCamelCase ) if content_length is not None else None __UpperCAmelCase : List[Any] = tqdm( unit="""B""" , unit_scale=__lowerCamelCase , total=__lowerCamelCase , initial=__lowerCamelCase , desc="""Downloading""" , ) for chunk in response.iter_content(chunk_size=1024 ): if chunk: # filter out keep-alive new chunks progress.update(len(__lowerCamelCase ) ) temp_file.write(__lowerCamelCase ) progress.close() def lowerCamelCase__ ( __lowerCamelCase : List[Any] , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : Optional[int]=False , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : str=10 , __lowerCamelCase : Optional[int]=False , __lowerCamelCase : Dict=None , __lowerCamelCase : List[str]=False , ): if cache_dir is None: __UpperCAmelCase : Optional[Any] = TRANSFORMERS_CACHE if isinstance(__lowerCamelCase , __lowerCamelCase ): __UpperCAmelCase : List[str] = str(__lowerCamelCase ) os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) __UpperCAmelCase : List[Any] = None if not local_files_only: try: __UpperCAmelCase : Optional[Any] = requests.head(__lowerCamelCase , allow_redirects=__lowerCamelCase , proxies=__lowerCamelCase , timeout=__lowerCamelCase ) if response.status_code == 200: __UpperCAmelCase : Dict = response.headers.get("""ETag""" ) except (EnvironmentError, requests.exceptions.Timeout): # etag is already None pass __UpperCAmelCase : List[str] = url_to_filename(__lowerCamelCase , __lowerCamelCase ) # get cache path to put the file __UpperCAmelCase : Optional[int] = os.path.join(__lowerCamelCase , __lowerCamelCase ) # etag is None = we don't have a connection, or url doesn't exist, or is otherwise inaccessible. # try to get the last downloaded one if etag is None: if os.path.exists(__lowerCamelCase ): return cache_path else: __UpperCAmelCase : List[Any] = [ file for file in fnmatch.filter(os.listdir(__lowerCamelCase ) , filename + """.*""" ) if not file.endswith(""".json""" ) and not file.endswith(""".lock""" ) ] if len(__lowerCamelCase ) > 0: return os.path.join(__lowerCamelCase , matching_files[-1] ) else: # If files cannot be found and local_files_only=True, # the models might've been found if local_files_only=False # Notify the user about that if local_files_only: raise ValueError( """Cannot find the requested files in the cached path and outgoing traffic has been""" """ disabled. To enable model look-ups and downloads online, set 'local_files_only'""" """ to False.""" ) return None # From now on, etag is not None. if os.path.exists(__lowerCamelCase ) and not force_download: return cache_path # Prevent parallel downloads of the same file with a lock. __UpperCAmelCase : str = cache_path + """.lock""" with FileLock(__lowerCamelCase ): # If the download just completed while the lock was activated. if os.path.exists(__lowerCamelCase ) and not force_download: # Even if returning early like here, the lock will be released. return cache_path if resume_download: __UpperCAmelCase : int = cache_path + """.incomplete""" @contextmanager def _resumable_file_manager(): with open(__lowerCamelCase , """a+b""" ) as f: yield f __UpperCAmelCase : str = _resumable_file_manager if os.path.exists(__lowerCamelCase ): __UpperCAmelCase : List[Any] = os.stat(__lowerCamelCase ).st_size else: __UpperCAmelCase : List[Any] = 0 else: __UpperCAmelCase : str = partial(tempfile.NamedTemporaryFile , dir=__lowerCamelCase , delete=__lowerCamelCase ) __UpperCAmelCase : Optional[int] = 0 # Download to temporary file, then copy to cache dir once finished. # Otherwise you get corrupt cache entries if the download gets interrupted. with temp_file_manager() as temp_file: print( """%s not found in cache or force_download set to True, downloading to %s""" , __lowerCamelCase , temp_file.name , ) http_get( __lowerCamelCase , __lowerCamelCase , proxies=__lowerCamelCase , resume_size=__lowerCamelCase , user_agent=__lowerCamelCase , ) os.replace(temp_file.name , __lowerCamelCase ) __UpperCAmelCase : Any = {"""url""": url, """etag""": etag} __UpperCAmelCase : Union[str, Any] = cache_path + """.json""" with open(__lowerCamelCase , """w""" ) as meta_file: json.dump(__lowerCamelCase , __lowerCamelCase ) return cache_path def lowerCamelCase__ ( __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[Any]=None ): __UpperCAmelCase : Tuple = url.encode("""utf-8""" ) __UpperCAmelCase : Optional[Any] = shaaaa(__lowerCamelCase ) __UpperCAmelCase : Optional[int] = url_hash.hexdigest() if etag: __UpperCAmelCase : int = etag.encode("""utf-8""" ) __UpperCAmelCase : List[str] = shaaaa(__lowerCamelCase ) filename += "." + etag_hash.hexdigest() if url.endswith(""".h5""" ): filename += ".h5" return filename def lowerCamelCase__ ( __lowerCamelCase : Any , __lowerCamelCase : int=None , __lowerCamelCase : int=False , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : Tuple=False , __lowerCamelCase : str=None , __lowerCamelCase : List[Any]=False , __lowerCamelCase : Tuple=False , __lowerCamelCase : str=False , ): if cache_dir is None: __UpperCAmelCase : List[str] = TRANSFORMERS_CACHE if isinstance(__lowerCamelCase , __lowerCamelCase ): __UpperCAmelCase : Any = str(__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ): __UpperCAmelCase : Tuple = str(__lowerCamelCase ) if is_remote_url(__lowerCamelCase ): # URL, so get it from the cache (downloading if necessary) __UpperCAmelCase : Tuple = get_from_cache( __lowerCamelCase , cache_dir=__lowerCamelCase , force_download=__lowerCamelCase , proxies=__lowerCamelCase , resume_download=__lowerCamelCase , user_agent=__lowerCamelCase , local_files_only=__lowerCamelCase , ) elif os.path.exists(__lowerCamelCase ): # File, and it exists. __UpperCAmelCase : Tuple = url_or_filename elif urlparse(__lowerCamelCase ).scheme == "": # File, but it doesn't exist. raise EnvironmentError("""file {} not found""".format(__lowerCamelCase ) ) else: # Something unknown raise ValueError("""unable to parse {} as a URL or as a local path""".format(__lowerCamelCase ) ) if extract_compressed_file: if not is_zipfile(__lowerCamelCase ) and not tarfile.is_tarfile(__lowerCamelCase ): return output_path # Path where we extract compressed archives # We avoid '.' in dir name and add "-extracted" at the end: "./model.zip" => "./model-zip-extracted/" __UpperCAmelCase , __UpperCAmelCase : int = os.path.split(__lowerCamelCase ) __UpperCAmelCase : Any = output_file.replace(""".""" , """-""" ) + """-extracted""" __UpperCAmelCase : List[str] = os.path.join(__lowerCamelCase , __lowerCamelCase ) if os.path.isdir(__lowerCamelCase ) and os.listdir(__lowerCamelCase ) and not force_extract: return output_path_extracted # Prevent parallel extractions __UpperCAmelCase : str = output_path + """.lock""" with FileLock(__lowerCamelCase ): shutil.rmtree(__lowerCamelCase , ignore_errors=__lowerCamelCase ) os.makedirs(__lowerCamelCase ) if is_zipfile(__lowerCamelCase ): with ZipFile(__lowerCamelCase , """r""" ) as zip_file: zip_file.extractall(__lowerCamelCase ) zip_file.close() elif tarfile.is_tarfile(__lowerCamelCase ): __UpperCAmelCase : Any = tarfile.open(__lowerCamelCase ) tar_file.extractall(__lowerCamelCase ) tar_file.close() else: raise EnvironmentError("""Archive format of {} could not be identified""".format(__lowerCamelCase ) ) return output_path_extracted return output_path def lowerCamelCase__ ( __lowerCamelCase : List[Any] , __lowerCamelCase : int="," ): assert isinstance(__lowerCamelCase , __lowerCamelCase ) if os.path.isfile(__lowerCamelCase ): with open(__lowerCamelCase ) as f: __UpperCAmelCase : List[Any] = eval(f.read() ) else: __UpperCAmelCase : List[str] = requests.get(__lowerCamelCase ) try: __UpperCAmelCase : int = requests.json() except Exception: __UpperCAmelCase : List[Any] = req.content.decode() assert data is not None, "could not connect" try: __UpperCAmelCase : str = eval(__lowerCamelCase ) except Exception: __UpperCAmelCase : List[Any] = data.split("""\n""" ) req.close() return data def lowerCamelCase__ ( __lowerCamelCase : Any ): __UpperCAmelCase : Optional[int] = requests.get(__lowerCamelCase ) __UpperCAmelCase : List[Any] = np.array(Image.open(BytesIO(response.content ) ) ) return img def lowerCamelCase__ ( __lowerCamelCase : str ): __UpperCAmelCase : int = url.split("""/""" )[-1] if fn not in os.listdir(os.getcwd() ): wget.download(__lowerCamelCase ) with open(__lowerCamelCase , """rb""" ) as stream: __UpperCAmelCase : List[str] = pkl.load(__lowerCamelCase ) __UpperCAmelCase : Dict = weights.pop("""model""" ) __UpperCAmelCase : Union[str, Any] = {} for k, v in model.items(): __UpperCAmelCase : int = torch.from_numpy(__lowerCamelCase ) if "running_var" in k: __UpperCAmelCase : Optional[int] = torch.tensor([0] ) __UpperCAmelCase : Tuple = k.replace("""running_var""" , """num_batches_tracked""" ) __UpperCAmelCase : Any = zero return new def lowerCamelCase__ ( ): print(f"""{os.path.abspath(os.path.join(__lowerCamelCase , os.pardir ) )}/demo.ipynb""" ) def lowerCamelCase__ ( __lowerCamelCase : Any , __lowerCamelCase : List[Any]="RGB" ): assert isinstance(__lowerCamelCase , __lowerCamelCase ) if os.path.isfile(__lowerCamelCase ): __UpperCAmelCase : List[str] = cva.imread(__lowerCamelCase ) else: __UpperCAmelCase : int = get_image_from_url(__lowerCamelCase ) assert img is not None, f"""could not connect to: {im}""" __UpperCAmelCase : Any = cva.cvtColor(__lowerCamelCase , cva.COLOR_BGR2RGB ) if input_format == "RGB": __UpperCAmelCase : Optional[int] = img[:, :, ::-1] return img def lowerCamelCase__ ( __lowerCamelCase : Optional[int] , __lowerCamelCase : int=1 ): return (images[i : i + batch] for i in range(0 , len(__lowerCamelCase ) , __lowerCamelCase ))
63
1
import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse('''9.1.0'''): UpperCAmelCase = { """linear""": PIL.Image.Resampling.BILINEAR, """bilinear""": PIL.Image.Resampling.BILINEAR, """bicubic""": PIL.Image.Resampling.BICUBIC, """lanczos""": PIL.Image.Resampling.LANCZOS, """nearest""": PIL.Image.Resampling.NEAREST, } else: UpperCAmelCase = { """linear""": PIL.Image.LINEAR, """bilinear""": PIL.Image.BILINEAR, """bicubic""": PIL.Image.BICUBIC, """lanczos""": PIL.Image.LANCZOS, """nearest""": PIL.Image.NEAREST, } def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE ): lowercase = (images / 2 + 0.5).clamp(0 , 1 ) lowercase = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() lowercase = numpy_to_pil(UpperCamelCase__ ) return images def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE ): if images.ndim == 3: lowercase = images[None, ...] lowercase = (images * 255).round().astype('uint8' ) if images.shape[-1] == 1: # special case for grayscale (single channel) images lowercase = [Image.fromarray(image.squeeze() , mode='L' ) for image in images] else: lowercase = [Image.fromarray(UpperCamelCase__ ) for image in images] return pil_images
720
import argparse import glob import logging import os from argparse import Namespace from importlib import import_module import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch.nn import CrossEntropyLoss from torch.utils.data import DataLoader, TensorDataset from utils_ner import TokenClassificationTask UpperCAmelCase = logging.getLogger(__name__) class A_ ( __lowerCamelCase ): '''simple docstring''' _UpperCamelCase : int = """token-classification""" def __init__( self , snake_case ): if type(snake_case ) == dict: lowercase = Namespace(**snake_case ) lowercase = import_module('tasks' ) try: lowercase = getattr(snake_case , hparams.task_type ) lowercase = token_classification_task_clazz() except AttributeError: raise ValueError( F'''Task {hparams.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. ''' F'''Available tasks classes are: {TokenClassificationTask.__subclasses__()}''' ) lowercase = self.token_classification_task.get_labels(hparams.labels ) lowercase = CrossEntropyLoss().ignore_index super().__init__(snake_case , len(self.labels ) , self.mode ) def SCREAMING_SNAKE_CASE__ ( self , **snake_case ): return self.model(**snake_case ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case ): lowercase = {'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]} if self.config.model_type != "distilbert": lowercase = ( batch[2] if self.config.model_type in ['bert', 'xlnet'] else None ) # XLM and RoBERTa don"t use token_type_ids lowercase = self(**snake_case ) lowercase = outputs[0] # tensorboard_logs = {"loss": loss, "rate": self.lr_scheduler.get_last_lr()[-1]} return {"loss": loss} def SCREAMING_SNAKE_CASE__ ( self ): lowercase = self.hparams for mode in ["train", "dev", "test"]: lowercase = self._feature_file(snake_case ) if os.path.exists(snake_case ) and not args.overwrite_cache: logger.info('Loading features from cached file %s' , snake_case ) lowercase = torch.load(snake_case ) else: logger.info('Creating features from dataset file at %s' , args.data_dir ) lowercase = self.token_classification_task.read_examples_from_file(args.data_dir , snake_case ) lowercase = self.token_classification_task.convert_examples_to_features( snake_case , self.labels , args.max_seq_length , self.tokenizer , cls_token_at_end=bool(self.config.model_type in ['xlnet'] ) , cls_token=self.tokenizer.cls_token , cls_token_segment_id=2 if self.config.model_type in ['xlnet'] else 0 , sep_token=self.tokenizer.sep_token , sep_token_extra=snake_case , pad_on_left=bool(self.config.model_type in ['xlnet'] ) , pad_token=self.tokenizer.pad_token_id , pad_token_segment_id=self.tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info('Saving features into cached file %s' , snake_case ) torch.save(snake_case , snake_case ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case , snake_case = False ): lowercase = self._feature_file(snake_case ) logger.info('Loading features from cached file %s' , snake_case ) lowercase = torch.load(snake_case ) lowercase = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) lowercase = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) if features[0].token_type_ids is not None: lowercase = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) else: lowercase = torch.tensor([0 for f in features] , dtype=torch.long ) # HACK(we will not use this anymore soon) lowercase = torch.tensor([f.label_ids for f in features] , dtype=torch.long ) return DataLoader( TensorDataset(snake_case , snake_case , snake_case , snake_case ) , batch_size=snake_case ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case ): """Compute validation""" "" lowercase = {'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]} if self.config.model_type != "distilbert": lowercase = ( batch[2] if self.config.model_type in ['bert', 'xlnet'] else None ) # XLM and RoBERTa don"t use token_type_ids lowercase = self(**snake_case ) lowercase , lowercase = outputs[:2] lowercase = logits.detach().cpu().numpy() lowercase = inputs['labels'].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def SCREAMING_SNAKE_CASE__ ( self , snake_case ): lowercase = torch.stack([x['val_loss'] for x in outputs] ).mean() lowercase = np.concatenate([x['pred'] for x in outputs] , axis=0 ) lowercase = np.argmax(snake_case , axis=2 ) lowercase = np.concatenate([x['target'] for x in outputs] , axis=0 ) lowercase = dict(enumerate(self.labels ) ) lowercase = [[] for _ in range(out_label_ids.shape[0] )] lowercase = [[] for _ in range(out_label_ids.shape[0] )] for i in range(out_label_ids.shape[0] ): for j in range(out_label_ids.shape[1] ): if out_label_ids[i, j] != self.pad_token_label_id: out_label_list[i].append(label_map[out_label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) lowercase = { 'val_loss': val_loss_mean, 'accuracy_score': accuracy_score(snake_case , snake_case ), 'precision': precision_score(snake_case , snake_case ), 'recall': recall_score(snake_case , snake_case ), 'f1': fa_score(snake_case , snake_case ), } lowercase = dict(results.items() ) lowercase = results return ret, preds_list, out_label_list def SCREAMING_SNAKE_CASE__ ( self , snake_case ): # when stable lowercase , lowercase , lowercase = self._eval_end(snake_case ) lowercase = ret['log'] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def SCREAMING_SNAKE_CASE__ ( self , snake_case ): # updating to test_epoch_end instead of deprecated test_end lowercase , lowercase , lowercase = self._eval_end(snake_case ) # Converting to the dict required by pl # https://github.com/PyTorchLightning/pytorch-lightning/blob/master/\ # pytorch_lightning/trainer/logging.py#L139 lowercase = ret['log'] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def SCREAMING_SNAKE_CASE__ ( snake_case , snake_case ): # Add NER specific options BaseTransformer.add_model_specific_args(snake_case , snake_case ) parser.add_argument( '--task_type' , default='NER' , type=snake_case , help='Task type to fine tune in training (e.g. NER, POS, etc)' ) parser.add_argument( '--max_seq_length' , default=128 , type=snake_case , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--labels' , default='' , type=snake_case , help='Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.' , ) parser.add_argument( '--gpus' , default=0 , type=snake_case , help='The number of GPUs allocated for this, it is by default 0 meaning none' , ) parser.add_argument( '--overwrite_cache' , action='store_true' , help='Overwrite the cached training and evaluation sets' ) return parser if __name__ == "__main__": UpperCAmelCase = argparse.ArgumentParser() add_generic_args(parser, os.getcwd()) UpperCAmelCase = NERTransformer.add_model_specific_args(parser, os.getcwd()) UpperCAmelCase = parser.parse_args() UpperCAmelCase = NERTransformer(args) UpperCAmelCase = generic_train(model, args) if args.do_predict: # See https://github.com/huggingface/transformers/issues/3159 # pl use this default format to create a checkpoint: # https://github.com/PyTorchLightning/pytorch-lightning/blob/master\ # /pytorch_lightning/callbacks/model_checkpoint.py#L322 UpperCAmelCase = sorted(glob.glob(os.path.join(args.output_dir, '''checkpoint-epoch=*.ckpt'''), recursive=True)) UpperCAmelCase = model.load_from_checkpoint(checkpoints[-1]) trainer.test(model)
565
0
from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE : List[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Any = { 'bigcode/gpt_bigcode-santacoder': 'https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json', } class _lowerCamelCase( _snake_case ): lowercase_ : Dict = """gpt_bigcode""" lowercase_ : str = ["""past_key_values"""] lowercase_ : Tuple = { """hidden_size""": """n_embd""", """max_position_embeddings""": """n_positions""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self, lowerCamelCase=5_02_57, lowerCamelCase=10_24, lowerCamelCase=7_68, lowerCamelCase=12, lowerCamelCase=12, lowerCamelCase=None, lowerCamelCase="gelu_pytorch_tanh", lowerCamelCase=0.1, lowerCamelCase=0.1, lowerCamelCase=0.1, lowerCamelCase=1E-5, lowerCamelCase=0.0_2, lowerCamelCase=True, lowerCamelCase=True, lowerCamelCase=5_02_56, lowerCamelCase=5_02_56, lowerCamelCase=True, lowerCamelCase=True, lowerCamelCase=True, **lowerCamelCase, ) -> Optional[Any]: """simple docstring""" _lowercase : Optional[Any] = vocab_size _lowercase : Optional[Any] = n_positions _lowercase : List[Any] = n_embd _lowercase : Union[str, Any] = n_layer _lowercase : Union[str, Any] = n_head _lowercase : Optional[int] = n_inner _lowercase : Optional[Any] = activation_function _lowercase : Union[str, Any] = resid_pdrop _lowercase : Union[str, Any] = embd_pdrop _lowercase : List[Any] = attn_pdrop _lowercase : Optional[int] = layer_norm_epsilon _lowercase : Any = initializer_range _lowercase : str = scale_attn_weights _lowercase : Tuple = use_cache _lowercase : Optional[int] = attention_softmax_in_fpaa _lowercase : List[Any] = scale_attention_softmax_in_fpaa _lowercase : Any = multi_query _lowercase : Optional[int] = bos_token_id _lowercase : Optional[int] = eos_token_id super().__init__(bos_token_id=__snake_case, eos_token_id=__snake_case, **__snake_case)
89
'''simple docstring''' import argparse import datetime def snake_case_ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _SCREAMING_SNAKE_CASE : Optional[int] = { """0""": """Sunday""", """1""": """Monday""", """2""": """Tuesday""", """3""": """Wednesday""", """4""": """Thursday""", """5""": """Friday""", """6""": """Saturday""", } _SCREAMING_SNAKE_CASE : Optional[int] = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(SCREAMING_SNAKE_CASE__ ) < 11: raise ValueError("""Must be 10 characters long""" ) # Get month _SCREAMING_SNAKE_CASE : int = int(date_input[0] + date_input[1] ) # Validate if not 0 < m < 13: raise ValueError("""Month must be between 1 - 12""" ) _SCREAMING_SNAKE_CASE : str = date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError("""Date separator must be '-' or '/'""" ) # Get day _SCREAMING_SNAKE_CASE : int = int(date_input[3] + date_input[4] ) # Validate if not 0 < d < 32: raise ValueError("""Date must be between 1 - 31""" ) # Get second separator _SCREAMING_SNAKE_CASE : str = date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError("""Date separator must be '-' or '/'""" ) # Get year _SCREAMING_SNAKE_CASE : int = int(date_input[6] + date_input[7] + date_input[8] + date_input[9] ) # Arbitrary year range if not 45 < y < 8500: raise ValueError( """Year out of range. There has to be some sort of limit...right?""" ) # Get datetime obj for validation _SCREAMING_SNAKE_CASE : Optional[int] = datetime.date(int(SCREAMING_SNAKE_CASE__ ) , int(SCREAMING_SNAKE_CASE__ ) , int(SCREAMING_SNAKE_CASE__ ) ) # Start math if m <= 2: _SCREAMING_SNAKE_CASE : Union[str, Any] = y - 1 _SCREAMING_SNAKE_CASE : Optional[int] = m + 12 # maths var _SCREAMING_SNAKE_CASE : int = int(str(SCREAMING_SNAKE_CASE__ )[:2] ) _SCREAMING_SNAKE_CASE : int = int(str(SCREAMING_SNAKE_CASE__ )[2:] ) _SCREAMING_SNAKE_CASE : int = int(2.6 * m - 5.3_9 ) _SCREAMING_SNAKE_CASE : int = int(c / 4 ) _SCREAMING_SNAKE_CASE : int = int(k / 4 ) _SCREAMING_SNAKE_CASE : int = int(d + k ) _SCREAMING_SNAKE_CASE : int = int(t + u + v + x ) _SCREAMING_SNAKE_CASE : int = int(z - (2 * c) ) _SCREAMING_SNAKE_CASE : int = round(w % 7 ) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError("""The date was evaluated incorrectly. Contact developer.""" ) # Response _SCREAMING_SNAKE_CASE : str = f"""Your date {date_input}, is a {days[str(SCREAMING_SNAKE_CASE__ )]}!""" return response if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase_ : Tuple = argparse.ArgumentParser( description=( 'Find out what day of the week nearly any date is or was. Enter ' 'date as a string in the mm-dd-yyyy or mm/dd/yyyy format' ) ) parser.add_argument( 'date_input', type=str, help='Date as a string (mm-dd-yyyy or mm/dd/yyyy)' ) UpperCAmelCase_ : List[Any] = parser.parse_args() zeller(args.date_input)
533
0
'''simple docstring''' import os import torch from ..logging import get_logger from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME from .versions import is_torch_version if is_torch_version('''>=''', FSDP_PYTORCH_VERSION): import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType UpperCAmelCase = get_logger(__name__) def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=0 ): os.makedirs(__SCREAMING_SNAKE_CASE , exist_ok=__SCREAMING_SNAKE_CASE ) with FSDP.state_dict_type( __SCREAMING_SNAKE_CASE , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): lowercase = model.state_dict() if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: lowercase = F'''{MODEL_NAME}.bin''' if model_index == 0 else F'''{MODEL_NAME}_{model_index}.bin''' lowercase = os.path.join(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if accelerator.process_index == 0: logger.info(F'''Saving model to {output_model_file}''' ) torch.save(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) logger.info(F'''Model saved to {output_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: lowercase = ( F'''{MODEL_NAME}_rank{accelerator.process_index}.bin''' if model_index == 0 else F'''{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin''' ) lowercase = os.path.join(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) logger.info(F'''Saving model to {output_model_file}''' ) torch.save(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) logger.info(F'''Model saved to {output_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: lowercase = os.path.join(__SCREAMING_SNAKE_CASE , F'''{MODEL_NAME}_{model_index}''' ) os.makedirs(__SCREAMING_SNAKE_CASE , exist_ok=__SCREAMING_SNAKE_CASE ) logger.info(F'''Saving model to {ckpt_dir}''' ) lowercase = {'model': state_dict} dist_cp.save_state_dict( state_dict=__SCREAMING_SNAKE_CASE , storage_writer=dist_cp.FileSystemWriter(__SCREAMING_SNAKE_CASE ) , planner=DefaultSavePlanner() , ) logger.info(F'''Model saved to {ckpt_dir}''' ) def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=0 ): accelerator.wait_for_everyone() with FSDP.state_dict_type( __SCREAMING_SNAKE_CASE , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if type(__SCREAMING_SNAKE_CASE ) != FSDP and accelerator.process_index != 0: if not fsdp_plugin.sync_module_states: raise ValueError( 'Set the `sync_module_states` flag to `True` so that model states are synced across processes when ' 'initializing FSDP object' ) return lowercase = F'''{MODEL_NAME}.bin''' if model_index == 0 else F'''{MODEL_NAME}_{model_index}.bin''' lowercase = os.path.join(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) logger.info(F'''Loading model from {input_model_file}''' ) lowercase = torch.load(__SCREAMING_SNAKE_CASE ) logger.info(F'''Model loaded from {input_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: lowercase = ( F'''{MODEL_NAME}_rank{accelerator.process_index}.bin''' if model_index == 0 else F'''{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin''' ) lowercase = os.path.join(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) logger.info(F'''Loading model from {input_model_file}''' ) lowercase = torch.load(__SCREAMING_SNAKE_CASE ) logger.info(F'''Model loaded from {input_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: lowercase = ( os.path.join(__SCREAMING_SNAKE_CASE , F'''{MODEL_NAME}_{model_index}''' ) if F'''{MODEL_NAME}''' not in input_dir else input_dir ) logger.info(F'''Loading model from {ckpt_dir}''' ) lowercase = {'model': model.state_dict()} dist_cp.load_state_dict( state_dict=__SCREAMING_SNAKE_CASE , storage_reader=dist_cp.FileSystemReader(__SCREAMING_SNAKE_CASE ) , planner=DefaultLoadPlanner() , ) lowercase = state_dict['model'] logger.info(F'''Model loaded from {ckpt_dir}''' ) model.load_state_dict(__SCREAMING_SNAKE_CASE ) def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=0 ): os.makedirs(__SCREAMING_SNAKE_CASE , exist_ok=__SCREAMING_SNAKE_CASE ) with FSDP.state_dict_type( __SCREAMING_SNAKE_CASE , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): lowercase = FSDP.optim_state_dict(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if accelerator.process_index == 0: lowercase = ( F'''{OPTIMIZER_NAME}.bin''' if optimizer_index == 0 else F'''{OPTIMIZER_NAME}_{optimizer_index}.bin''' ) lowercase = os.path.join(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) logger.info(F'''Saving Optimizer state to {output_optimizer_file}''' ) torch.save(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) logger.info(F'''Optimizer state saved in {output_optimizer_file}''' ) else: lowercase = os.path.join(__SCREAMING_SNAKE_CASE , F'''{OPTIMIZER_NAME}_{optimizer_index}''' ) os.makedirs(__SCREAMING_SNAKE_CASE , exist_ok=__SCREAMING_SNAKE_CASE ) logger.info(F'''Saving Optimizer state to {ckpt_dir}''' ) dist_cp.save_state_dict( state_dict={'optimizer': optim_state} , storage_writer=dist_cp.FileSystemWriter(__SCREAMING_SNAKE_CASE ) , planner=DefaultSavePlanner() , ) logger.info(F'''Optimizer state saved in {ckpt_dir}''' ) def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=0 ): accelerator.wait_for_everyone() with FSDP.state_dict_type( __SCREAMING_SNAKE_CASE , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: lowercase = None # below check should work but currently it isn't working (mostly opytorch issue), # in the meantime disabling it at the cost of excess memory usage # if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: lowercase = ( F'''{OPTIMIZER_NAME}.bin''' if optimizer_index == 0 else F'''{OPTIMIZER_NAME}_{optimizer_index}.bin''' ) lowercase = os.path.join(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) logger.info(F'''Loading Optimizer state from {input_optimizer_file}''' ) lowercase = torch.load(__SCREAMING_SNAKE_CASE ) logger.info(F'''Optimizer state loaded from {input_optimizer_file}''' ) else: lowercase = ( os.path.join(__SCREAMING_SNAKE_CASE , F'''{OPTIMIZER_NAME}_{optimizer_index}''' ) if F'''{OPTIMIZER_NAME}''' not in input_dir else input_dir ) logger.info(F'''Loading Optimizer from {ckpt_dir}''' ) lowercase = load_sharded_optimizer_state_dict( model_state_dict=model.state_dict() , optimizer_key='optimizer' , storage_reader=dist_cp.FileSystemReader(__SCREAMING_SNAKE_CASE ) , ) lowercase = optim_state['optimizer'] logger.info(F'''Optimizer loaded from {ckpt_dir}''' ) lowercase = FSDP.optim_state_dict_to_load(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) optimizer.load_state_dict(__SCREAMING_SNAKE_CASE )
706
import os import re import warnings from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer if TYPE_CHECKING: from ...tokenization_utils_base import TextInput from ...utils import logging UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = {'''vocab_file''': '''spiece.model'''} UpperCAmelCase = { '''vocab_file''': { '''t5-small''': '''https://huggingface.co/t5-small/resolve/main/spiece.model''', '''t5-base''': '''https://huggingface.co/t5-base/resolve/main/spiece.model''', '''t5-large''': '''https://huggingface.co/t5-large/resolve/main/spiece.model''', '''t5-3b''': '''https://huggingface.co/t5-3b/resolve/main/spiece.model''', '''t5-11b''': '''https://huggingface.co/t5-11b/resolve/main/spiece.model''', } } # TODO(PVP) - this should be removed in Transformers v5 UpperCAmelCase = { '''t5-small''': 512, '''t5-base''': 512, '''t5-large''': 512, '''t5-3b''': 512, '''t5-11b''': 512, } UpperCAmelCase = '''▁''' class A_ ( __lowerCamelCase ): '''simple docstring''' _UpperCamelCase : List[Any] = VOCAB_FILES_NAMES _UpperCamelCase : int = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : List[str] = ["""input_ids""", """attention_mask"""] def __init__( self , snake_case , snake_case="</s>" , snake_case="<unk>" , snake_case="<pad>" , snake_case=100 , snake_case=None , snake_case = None , snake_case=True , **snake_case , ): # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: lowercase = [F'''<extra_id_{i}>''' for i in range(snake_case )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens lowercase = len(set(filter(lambda snake_case : bool('extra_id' in str(snake_case ) ) , snake_case ) ) ) if extra_tokens != extra_ids: raise ValueError( F'''Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are''' ' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids' ' tokens' ) if legacy: logger.warning_once( F'''You are using the legacy behaviour of the {self.__class__}. This means that tokens that come after special tokens will not be properly handled. We recommend you to''' ' read the related pull request available at https://github.com/huggingface/transformers/pull/24565' ) lowercase = legacy lowercase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=snake_case , unk_token=snake_case , pad_token=snake_case , extra_ids=snake_case , additional_special_tokens=snake_case , sp_model_kwargs=self.sp_model_kwargs , legacy=snake_case , **snake_case , ) lowercase = vocab_file lowercase = extra_ids lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(snake_case ) @staticmethod def SCREAMING_SNAKE_CASE__ ( snake_case , snake_case , snake_case ): if pretrained_model_name_or_path in TaTokenizer.max_model_input_sizes: lowercase = TaTokenizer.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( 'This tokenizer was incorrectly instantiated with a model max length of' F''' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this''' ' behavior is kept to avoid breaking backwards compatibility when padding/encoding with' ' `truncation is True`.\n- Be aware that you SHOULD NOT rely on' F''' {pretrained_model_name_or_path} automatically truncating your input to''' F''' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences''' F''' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with''' ' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please' ' instantiate this tokenizer with `model_max_length` set to your preferred value.' , snake_case , ) return max_model_length @property def SCREAMING_SNAKE_CASE__ ( self ): return self.sp_model.get_piece_size() + self._extra_ids def SCREAMING_SNAKE_CASE__ ( self ): lowercase = {self.convert_ids_to_tokens(snake_case ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case = None , snake_case = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case , token_ids_a=snake_case , already_has_special_tokens=snake_case ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(snake_case )) + [1] return ([0] * len(snake_case )) + [1] + ([0] * len(snake_case )) + [1] def SCREAMING_SNAKE_CASE__ ( self ): return list( set(filter(lambda snake_case : bool(re.search(r'<extra_id_\d+>' , snake_case ) ) is not None , self.additional_special_tokens ) ) ) def SCREAMING_SNAKE_CASE__ ( self ): return [self._convert_token_to_id(snake_case ) for token in self.get_sentinel_tokens()] def SCREAMING_SNAKE_CASE__ ( self , snake_case ): if len(snake_case ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( F'''This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated''' ' eos tokens being added.' ) return token_ids else: return token_ids + [self.eos_token_id] def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case = None ): lowercase = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case = None ): lowercase = self._add_eos_if_not_present(snake_case ) if token_ids_a is None: return token_ids_a else: lowercase = self._add_eos_if_not_present(snake_case ) return token_ids_a + token_ids_a def __getstate__( self ): lowercase = self.__dict__.copy() lowercase = None return state def __setstate__( self , snake_case ): lowercase = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): lowercase = {} lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , **snake_case ): # Replace the SPIECE_UNDERLINE with a space to make sure SPIECE_UNDERLINE is only used at # the beginning of the text if not self.legacy: lowercase = SPIECE_UNDERLINE + text.replace(snake_case , ' ' ) return super().tokenize(snake_case , **snake_case ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , **snake_case ): if not self.legacy: lowercase = text.startswith(snake_case ) if is_first: lowercase = text[1:] lowercase = self.sp_model.encode(snake_case , out_type=snake_case ) if not self.legacy and not is_first and not text.startswith(' ' ) and tokens[0].startswith(snake_case ): lowercase = ([tokens[0][1:]] if len(tokens[0] ) > 1 else []) + tokens[1:] return tokens def SCREAMING_SNAKE_CASE__ ( self , snake_case ): if token.startswith('<extra_id_' ): lowercase = re.match(r'<extra_id_(\d+)>' , snake_case ) lowercase = int(match.group(1 ) ) return self.vocab_size - num - 1 return self.sp_model.piece_to_id(snake_case ) def SCREAMING_SNAKE_CASE__ ( self , snake_case ): if index < self.sp_model.get_piece_size(): lowercase = self.sp_model.IdToPiece(snake_case ) else: lowercase = F'''<extra_id_{self.vocab_size - 1 - index}>''' return token def SCREAMING_SNAKE_CASE__ ( self , snake_case ): lowercase = [] lowercase = '' lowercase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(snake_case ) + token lowercase = True lowercase = [] else: current_sub_tokens.append(snake_case ) lowercase = False out_string += self.sp_model.decode(snake_case ) return out_string.strip() def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case = None ): if not os.path.isdir(snake_case ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return lowercase = os.path.join( snake_case , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , snake_case ) elif not os.path.isfile(self.vocab_file ): with open(snake_case , 'wb' ) as fi: lowercase = self.sp_model.serialized_model_proto() fi.write(snake_case ) return (out_vocab_file,)
565
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case_ : int = logging.get_logger(__name__) snake_case_ : Optional[int] = { '''MIT/ast-finetuned-audioset-10-10-0.4593''': ( '''https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json''' ), } class A_ ( lowerCAmelCase_ ): '''simple docstring''' _lowerCAmelCase = """audio-spectrogram-transformer""" def __init__( self , A_=7_68 , A_=12 , A_=12 , A_=30_72 , A_="gelu" , A_=0.0 , A_=0.0 , A_=0.02 , A_=1e-1_2 , A_=16 , A_=True , A_=10 , A_=10 , A_=10_24 , A_=1_28 , **A_ , ): super().__init__(**A_ ) _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = initializer_range _UpperCamelCase = layer_norm_eps _UpperCamelCase = patch_size _UpperCamelCase = qkv_bias _UpperCamelCase = frequency_stride _UpperCamelCase = time_stride _UpperCamelCase = max_length _UpperCamelCase = num_mel_bins
138
'''simple docstring''' import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def lowercase__( _UpperCamelCase : str , _UpperCamelCase : str , _UpperCamelCase : str , _UpperCamelCase : PreTrainedTokenizer , _UpperCamelCase : int , _UpperCamelCase : Optional[int] = None , )-> List[Any]: """simple docstring""" _UpperCamelCase = {} if train_file is not None: _UpperCamelCase = [train_file] if eval_file is not None: _UpperCamelCase = [eval_file] if test_file is not None: _UpperCamelCase = [test_file] _UpperCamelCase = datasets.load_dataset("csv" , data_files=_UpperCamelCase ) _UpperCamelCase = list(ds[list(files.keys() )[0]].features.keys() ) _UpperCamelCase = features_name.pop(_UpperCamelCase ) _UpperCamelCase = list(set(ds[list(files.keys() )[0]][label_name] ) ) _UpperCamelCase = {label: i for i, label in enumerate(_UpperCamelCase )} _UpperCamelCase = tokenizer.model_input_names _UpperCamelCase = {} if len(_UpperCamelCase ) == 1: for k in files.keys(): _UpperCamelCase = ds[k].map( lambda _UpperCamelCase : tokenizer.batch_encode_plus( example[features_name[0]] , truncation=_UpperCamelCase , max_length=_UpperCamelCase , padding="max_length" ) , batched=_UpperCamelCase , ) elif len(_UpperCamelCase ) == 2: for k in files.keys(): _UpperCamelCase = ds[k].map( lambda _UpperCamelCase : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]) , truncation=_UpperCamelCase , max_length=_UpperCamelCase , padding="max_length" , ) , batched=_UpperCamelCase , ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: _UpperCamelCase = {k: v for k, v in ex.items() if k in input_names} _UpperCamelCase = labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: _UpperCamelCase = {k: v for k, v in ex.items() if k in input_names} _UpperCamelCase = labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: _UpperCamelCase = {k: v for k, v in ex.items() if k in input_names} _UpperCamelCase = labelaid[ex[label_name]] yield (d, label) _UpperCamelCase = ( tf.data.Dataset.from_generator( _UpperCamelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: _UpperCamelCase = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) _UpperCamelCase = ( tf.data.Dataset.from_generator( _UpperCamelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: _UpperCamelCase = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) _UpperCamelCase = ( tf.data.Dataset.from_generator( _UpperCamelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: _UpperCamelCase = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid snake_case_ : Tuple = logging.getLogger(__name__) @dataclass class A_ : '''simple docstring''' _lowerCAmelCase = field(metadata={"""help""": """Which column contains the label"""} ) _lowerCAmelCase = field(default=lowerCAmelCase_ , metadata={"""help""": """The path of the training file"""} ) _lowerCAmelCase = field(default=lowerCAmelCase_ , metadata={"""help""": """The path of the development file"""} ) _lowerCAmelCase = field(default=lowerCAmelCase_ , metadata={"""help""": """The path of the test file"""} ) _lowerCAmelCase = field( default=128 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) _lowerCAmelCase = field( default=lowerCAmelCase_ , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) @dataclass class A_ : '''simple docstring''' _lowerCAmelCase = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) _lowerCAmelCase = field( default=lowerCAmelCase_ , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) _lowerCAmelCase = field( default=lowerCAmelCase_ , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) _lowerCAmelCase = field(default=lowerCAmelCase_ , metadata={"""help""": """Set this flag to use fast tokenization."""} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. _lowerCAmelCase = field( default=lowerCAmelCase_ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) def lowercase__( )-> List[Any]: """simple docstring""" _UpperCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. Use" " --overwrite_output_dir to overcome." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO , ) logger.info( f"n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, " f"16-bits training: {training_args.fpaa}" ) logger.info(f"Training/evaluation parameters {training_args}" ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCamelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = get_tfds( train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=_UpperCamelCase , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , ) _UpperCamelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(_UpperCamelCase ) , labelaid=_UpperCamelCase , idalabel={id: label for label, id in labelaid.items()} , finetuning_task="text-classification" , cache_dir=model_args.cache_dir , ) with training_args.strategy.scope(): _UpperCamelCase = TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_pt=bool(".bin" in model_args.model_name_or_path ) , config=_UpperCamelCase , cache_dir=model_args.cache_dir , ) def compute_metrics(_UpperCamelCase : EvalPrediction ) -> Dict: _UpperCamelCase = np.argmax(p.predictions , axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer _UpperCamelCase = TFTrainer( model=_UpperCamelCase , args=_UpperCamelCase , train_dataset=_UpperCamelCase , eval_dataset=_UpperCamelCase , compute_metrics=_UpperCamelCase , ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation _UpperCamelCase = {} if training_args.do_eval: logger.info("*** Evaluate ***" ) _UpperCamelCase = trainer.evaluate() _UpperCamelCase = os.path.join(training_args.output_dir , "eval_results.txt" ) with open(_UpperCamelCase , "w" ) as writer: logger.info("***** Eval results *****" ) for key, value in result.items(): logger.info(f" {key} = {value}" ) writer.write(f"{key} = {value}\n" ) results.update(_UpperCamelCase ) return results if __name__ == "__main__": main()
138
1
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class lowerCamelCase_ ( lowerCamelCase ): a__ = (UniPCMultistepScheduler,) a__ = (('''num_inference_steps''', 25),) def A ( self , **__lowerCAmelCase ): """simple docstring""" __magic_name__ :Union[str, Any] = { '''num_train_timesteps''': 1_0_0_0, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''solver_order''': 2, '''solver_type''': '''bh2''', } config.update(**__lowerCAmelCase ) return config def A ( self , __lowerCAmelCase=0 , **__lowerCAmelCase ): """simple docstring""" __magic_name__ :Dict = dict(self.forward_default_kwargs ) __magic_name__ :Optional[int] = kwargs.pop('''num_inference_steps''' , __lowerCAmelCase ) __magic_name__ :Optional[Any] = self.dummy_sample __magic_name__ :Any = 0.1 * sample __magic_name__ :List[str] = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: __magic_name__ :Optional[Any] = self.get_scheduler_config(**__lowerCAmelCase ) __magic_name__ :Tuple = scheduler_class(**__lowerCAmelCase ) scheduler.set_timesteps(__lowerCAmelCase ) # copy over dummy past residuals __magic_name__ :str = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__lowerCAmelCase ) __magic_name__ :Optional[Any] = scheduler_class.from_pretrained(__lowerCAmelCase ) new_scheduler.set_timesteps(__lowerCAmelCase ) # copy over dummy past residuals __magic_name__ :Any = dummy_past_residuals[: new_scheduler.config.solver_order] __magic_name__ , __magic_name__ :Any = sample, sample for t in range(__lowerCAmelCase , time_step + scheduler.config.solver_order + 1 ): __magic_name__ :str = scheduler.step(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ).prev_sample __magic_name__ :Union[str, Any] = new_scheduler.step(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def A ( self , __lowerCAmelCase=0 , **__lowerCAmelCase ): """simple docstring""" __magic_name__ :Dict = dict(self.forward_default_kwargs ) __magic_name__ :List[Any] = kwargs.pop('''num_inference_steps''' , __lowerCAmelCase ) __magic_name__ :Tuple = self.dummy_sample __magic_name__ :Optional[int] = 0.1 * sample __magic_name__ :List[str] = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: __magic_name__ :List[str] = self.get_scheduler_config() __magic_name__ :Optional[int] = scheduler_class(**__lowerCAmelCase ) scheduler.set_timesteps(__lowerCAmelCase ) # copy over dummy past residuals (must be after setting timesteps) __magic_name__ :Union[str, Any] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__lowerCAmelCase ) __magic_name__ :Tuple = scheduler_class.from_pretrained(__lowerCAmelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(__lowerCAmelCase ) # copy over dummy past residual (must be after setting timesteps) __magic_name__ :int = dummy_past_residuals[: new_scheduler.config.solver_order] __magic_name__ :Optional[Any] = scheduler.step(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ).prev_sample __magic_name__ :str = new_scheduler.step(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def A ( self , __lowerCAmelCase=None , **__lowerCAmelCase ): """simple docstring""" if scheduler is None: __magic_name__ :Tuple = self.scheduler_classes[0] __magic_name__ :int = self.get_scheduler_config(**__lowerCAmelCase ) __magic_name__ :Union[str, Any] = scheduler_class(**__lowerCAmelCase ) __magic_name__ :int = self.scheduler_classes[0] __magic_name__ :Dict = self.get_scheduler_config(**__lowerCAmelCase ) __magic_name__ :Union[str, Any] = scheduler_class(**__lowerCAmelCase ) __magic_name__ :int = 1_0 __magic_name__ :Optional[Any] = self.dummy_model() __magic_name__ :Tuple = self.dummy_sample_deter scheduler.set_timesteps(__lowerCAmelCase ) for i, t in enumerate(scheduler.timesteps ): __magic_name__ :int = model(__lowerCAmelCase , __lowerCAmelCase ) __magic_name__ :List[Any] = scheduler.step(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ).prev_sample return sample def A ( self ): """simple docstring""" __magic_name__ :List[str] = dict(self.forward_default_kwargs ) __magic_name__ :Optional[Any] = kwargs.pop('''num_inference_steps''' , __lowerCAmelCase ) for scheduler_class in self.scheduler_classes: __magic_name__ :Optional[int] = self.get_scheduler_config() __magic_name__ :Dict = scheduler_class(**__lowerCAmelCase ) __magic_name__ :Union[str, Any] = self.dummy_sample __magic_name__ :Tuple = 0.1 * sample if num_inference_steps is not None and hasattr(__lowerCAmelCase , '''set_timesteps''' ): scheduler.set_timesteps(__lowerCAmelCase ) elif num_inference_steps is not None and not hasattr(__lowerCAmelCase , '''set_timesteps''' ): __magic_name__ :Tuple = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) __magic_name__ :List[Any] = [residual + 0.2, residual + 0.15, residual + 0.10] __magic_name__ :Tuple = dummy_past_residuals[: scheduler.config.solver_order] __magic_name__ :str = scheduler.timesteps[5] __magic_name__ :Dict = scheduler.timesteps[6] __magic_name__ :List[Any] = scheduler.step(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ).prev_sample __magic_name__ :str = scheduler.step(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def A ( self ): """simple docstring""" # make sure that iterating over schedulers with same config names gives same results # for defaults __magic_name__ :List[Any] = UniPCMultistepScheduler(**self.get_scheduler_config() ) __magic_name__ :str = self.full_loop(scheduler=__lowerCAmelCase ) __magic_name__ :Any = torch.mean(torch.abs(__lowerCAmelCase ) ) assert abs(result_mean.item() - 0.2464 ) < 1E-3 __magic_name__ :Dict = DPMSolverSinglestepScheduler.from_config(scheduler.config ) __magic_name__ :str = DEISMultistepScheduler.from_config(scheduler.config ) __magic_name__ :int = DPMSolverMultistepScheduler.from_config(scheduler.config ) __magic_name__ :Optional[int] = UniPCMultistepScheduler.from_config(scheduler.config ) __magic_name__ :str = self.full_loop(scheduler=__lowerCAmelCase ) __magic_name__ :Any = torch.mean(torch.abs(__lowerCAmelCase ) ) assert abs(result_mean.item() - 0.2464 ) < 1E-3 def A ( self ): """simple docstring""" for timesteps in [2_5, 5_0, 1_0_0, 9_9_9, 1_0_0_0]: self.check_over_configs(num_train_timesteps=__lowerCAmelCase ) def A ( self ): """simple docstring""" self.check_over_configs(thresholding=__lowerCAmelCase ) for order in [1, 2, 3]: for solver_type in ["bh1", "bh2"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=__lowerCAmelCase , prediction_type=__lowerCAmelCase , sample_max_value=__lowerCAmelCase , solver_order=__lowerCAmelCase , solver_type=__lowerCAmelCase , ) def A ( self ): """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__lowerCAmelCase ) def A ( self ): """simple docstring""" for solver_type in ["bh1", "bh2"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=__lowerCAmelCase , solver_type=__lowerCAmelCase , prediction_type=__lowerCAmelCase , ) __magic_name__ :List[Any] = self.full_loop( solver_order=__lowerCAmelCase , solver_type=__lowerCAmelCase , prediction_type=__lowerCAmelCase , ) assert not torch.isnan(__lowerCAmelCase ).any(), "Samples have nan numbers" def A ( self ): """simple docstring""" self.check_over_configs(lower_order_final=__lowerCAmelCase ) self.check_over_configs(lower_order_final=__lowerCAmelCase ) def A ( self ): """simple docstring""" for num_inference_steps in [1, 2, 3, 5, 1_0, 5_0, 1_0_0, 9_9_9, 1_0_0_0]: self.check_over_forward(num_inference_steps=__lowerCAmelCase , time_step=0 ) def A ( self ): """simple docstring""" __magic_name__ :Union[str, Any] = self.full_loop() __magic_name__ :Any = torch.mean(torch.abs(__lowerCAmelCase ) ) assert abs(result_mean.item() - 0.2464 ) < 1E-3 def A ( self ): """simple docstring""" __magic_name__ :Union[str, Any] = self.full_loop(prediction_type='''v_prediction''' ) __magic_name__ :Dict = torch.mean(torch.abs(__lowerCAmelCase ) ) assert abs(result_mean.item() - 0.1014 ) < 1E-3 def A ( self ): """simple docstring""" __magic_name__ :Optional[int] = self.scheduler_classes[0] __magic_name__ :int = self.get_scheduler_config(thresholding=__lowerCAmelCase , dynamic_thresholding_ratio=0 ) __magic_name__ :List[str] = scheduler_class(**__lowerCAmelCase ) __magic_name__ :Any = 1_0 __magic_name__ :Tuple = self.dummy_model() __magic_name__ :Optional[Any] = self.dummy_sample_deter.half() scheduler.set_timesteps(__lowerCAmelCase ) for i, t in enumerate(scheduler.timesteps ): __magic_name__ :Union[str, Any] = model(__lowerCAmelCase , __lowerCAmelCase ) __magic_name__ :Tuple = scheduler.step(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ).prev_sample assert sample.dtype == torch.floataa def A ( self , **__lowerCAmelCase ): """simple docstring""" for scheduler_class in self.scheduler_classes: __magic_name__ :int = self.get_scheduler_config(**__lowerCAmelCase ) __magic_name__ :str = scheduler_class(**__lowerCAmelCase ) scheduler.set_timesteps(scheduler.config.num_train_timesteps ) assert len(scheduler.timesteps.unique() ) == scheduler.num_inference_steps
180
from __future__ import annotations from math import pi, sqrt def __lowercase ( snake_case, snake_case ): """simple docstring""" if inductance <= 0: raise ValueError('''Inductance cannot be 0 or negative''' ) elif capacitance <= 0: raise ValueError('''Capacitance cannot be 0 or negative''' ) else: return ( "Resonant frequency", float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ), ) if __name__ == "__main__": import doctest doctest.testmod()
180
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __snake_case : Union[str, Any] = { 'configuration_resnet': ['RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ResNetConfig', 'ResNetOnnxConfig'] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : int = [ 'RESNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'ResNetForImageClassification', 'ResNetModel', 'ResNetPreTrainedModel', 'ResNetBackbone', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : int = [ 'TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFResNetForImageClassification', 'TFResNetModel', 'TFResNetPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : int = [ 'FlaxResNetForImageClassification', 'FlaxResNetModel', 'FlaxResNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig, ResNetOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_resnet import ( RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, ResNetBackbone, ResNetForImageClassification, ResNetModel, ResNetPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_resnet import ( TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFResNetForImageClassification, TFResNetModel, TFResNetPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_resnet import FlaxResNetForImageClassification, FlaxResNetModel, FlaxResNetPreTrainedModel else: import sys __snake_case : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure)
215
'''simple docstring''' from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import ( BaseOutput, OptionalDependencyNotAvailable, is_flax_available, is_k_diffusion_available, is_k_diffusion_version, is_onnx_available, is_torch_available, is_transformers_available, is_transformers_version, ) @dataclass class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = 42 __snake_case = 42 try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_cycle_diffusion import CycleDiffusionPipeline from .pipeline_stable_diffusion import StableDiffusionPipeline from .pipeline_stable_diffusion_attend_and_excite import StableDiffusionAttendAndExcitePipeline from .pipeline_stable_diffusion_imgaimg import StableDiffusionImgaImgPipeline from .pipeline_stable_diffusion_inpaint import StableDiffusionInpaintPipeline from .pipeline_stable_diffusion_inpaint_legacy import StableDiffusionInpaintPipelineLegacy from .pipeline_stable_diffusion_instruct_pixapix import StableDiffusionInstructPixaPixPipeline from .pipeline_stable_diffusion_latent_upscale import StableDiffusionLatentUpscalePipeline from .pipeline_stable_diffusion_ldmad import StableDiffusionLDMaDPipeline from .pipeline_stable_diffusion_model_editing import StableDiffusionModelEditingPipeline from .pipeline_stable_diffusion_panorama import StableDiffusionPanoramaPipeline from .pipeline_stable_diffusion_paradigms import StableDiffusionParadigmsPipeline from .pipeline_stable_diffusion_sag import StableDiffusionSAGPipeline from .pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from .pipeline_stable_unclip import StableUnCLIPPipeline from .pipeline_stable_unclip_imgaimg import StableUnCLIPImgaImgPipeline from .safety_checker import StableDiffusionSafetyChecker from .stable_unclip_image_normalizer import StableUnCLIPImageNormalizer try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import StableDiffusionImageVariationPipeline else: from .pipeline_stable_diffusion_image_variation import StableDiffusionImageVariationPipeline try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.26.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionPixaPixZeroPipeline, ) else: from .pipeline_stable_diffusion_depthaimg import StableDiffusionDepthaImgPipeline from .pipeline_stable_diffusion_diffedit import StableDiffusionDiffEditPipeline from .pipeline_stable_diffusion_pixapix_zero import StableDiffusionPixaPixZeroPipeline try: if not ( is_torch_available() and is_transformers_available() and is_k_diffusion_available() and is_k_diffusion_version('>=', '0.0.12') ): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipeline_stable_diffusion_k_diffusion import StableDiffusionKDiffusionPipeline try: if not (is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_onnx_objects import * # noqa F403 else: from .pipeline_onnx_stable_diffusion import OnnxStableDiffusionPipeline, StableDiffusionOnnxPipeline from .pipeline_onnx_stable_diffusion_imgaimg import OnnxStableDiffusionImgaImgPipeline from .pipeline_onnx_stable_diffusion_inpaint import OnnxStableDiffusionInpaintPipeline from .pipeline_onnx_stable_diffusion_inpaint_legacy import OnnxStableDiffusionInpaintPipelineLegacy from .pipeline_onnx_stable_diffusion_upscale import OnnxStableDiffusionUpscalePipeline if is_transformers_available() and is_flax_available(): import flax @flax.struct.dataclass class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = 42 __snake_case = 42 from ...schedulers.scheduling_pndm_flax import PNDMSchedulerState from .pipeline_flax_stable_diffusion import FlaxStableDiffusionPipeline from .pipeline_flax_stable_diffusion_imgaimg import FlaxStableDiffusionImgaImgPipeline from .pipeline_flax_stable_diffusion_inpaint import FlaxStableDiffusionInpaintPipeline from .safety_checker_flax import FlaxStableDiffusionSafetyChecker
215
1
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_lxmert import LxmertTokenizer _UpperCamelCase : str = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} _UpperCamelCase : Any = { 'vocab_file': { 'unc-nlp/lxmert-base-uncased': 'https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt', }, 'tokenizer_file': { 'unc-nlp/lxmert-base-uncased': ( 'https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json' ), }, } _UpperCamelCase : Optional[Any] = { 'unc-nlp/lxmert-base-uncased': 512, } _UpperCamelCase : str = { 'unc-nlp/lxmert-base-uncased': {'do_lower_case': True}, } class snake_case__ ( UpperCamelCase): a_ = VOCAB_FILES_NAMES a_ = PRETRAINED_VOCAB_FILES_MAP a_ = PRETRAINED_INIT_CONFIGURATION a_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ = LxmertTokenizer def __init__( self : Union[str, Any] , _A : str=None , _A : Dict=None , _A : Tuple=True , _A : Union[str, Any]="[UNK]" , _A : Union[str, Any]="[SEP]" , _A : Optional[Any]="[PAD]" , _A : List[str]="[CLS]" , _A : int="[MASK]" , _A : Optional[int]=True , _A : List[Any]=None , **_A : str , ) -> List[str]: super().__init__( _A , tokenizer_file=_A , do_lower_case=_A , unk_token=_A , sep_token=_A , pad_token=_A , cls_token=_A , mask_token=_A , tokenize_chinese_chars=_A , strip_accents=_A , **_A , ) UpperCAmelCase_ : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , _A ) != do_lower_case or normalizer_state.get('''strip_accents''' , _A ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , _A ) != tokenize_chinese_chars ): UpperCAmelCase_ : Dict = getattr(_A , normalizer_state.pop('''type''' ) ) UpperCAmelCase_ : int = do_lower_case UpperCAmelCase_ : Optional[int] = strip_accents UpperCAmelCase_ : int = tokenize_chinese_chars UpperCAmelCase_ : str = normalizer_class(**_A ) UpperCAmelCase_ : Tuple = do_lower_case def A ( self : Optional[int] , _A : Optional[int] , _A : Dict=None ) -> Optional[int]: UpperCAmelCase_ : int = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def A ( self : Dict , _A : List[int] , _A : Optional[List[int]] = None ) -> List[int]: UpperCAmelCase_ : Any = [self.sep_token_id] UpperCAmelCase_ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A ( self : List[Any] , _A : str , _A : Optional[str] = None ) -> Tuple[str]: UpperCAmelCase_ : Union[str, Any] = self._tokenizer.model.save(_A , name=_A ) return tuple(_A )
216
'''simple docstring''' class snake_case__ : def __init__( self : Dict , _A : int ) -> Tuple: UpperCAmelCase_ : List[str] = n UpperCAmelCase_ : Optional[Any] = [None] * self.n UpperCAmelCase_ : List[str] = 0 # index of the first element UpperCAmelCase_ : Union[str, Any] = 0 UpperCAmelCase_ : List[Any] = 0 def __len__( self : Optional[int] ) -> int: return self.size def A ( self : List[Any] ) -> bool: return self.size == 0 def A ( self : str ) -> Dict: return False if self.is_empty() else self.array[self.front] def A ( self : Any , _A : int ) -> List[str]: if self.size >= self.n: raise Exception('''QUEUE IS FULL''' ) UpperCAmelCase_ : Dict = data UpperCAmelCase_ : List[str] = (self.rear + 1) % self.n self.size += 1 return self def A ( self : Optional[int] ) -> str: if self.size == 0: raise Exception('''UNDERFLOW''' ) UpperCAmelCase_ : Dict = self.array[self.front] UpperCAmelCase_ : str = None UpperCAmelCase_ : Dict = (self.front + 1) % self.n self.size -= 1 return temp
216
1
from __future__ import annotations from collections.abc import Callable from typing import Generic, TypeVar lowerCAmelCase : List[str] = TypeVar('''T''') lowerCAmelCase : int = TypeVar('''U''') class SCREAMING_SNAKE_CASE__ ( Generic[T, U] ): '''simple docstring''' def __init__( self : str , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Dict ) -> List[Any]: snake_case__ = key snake_case__ = val snake_case__ = None snake_case__ = None def __repr__( self : Optional[int] ) -> str: return ( f'''Node: key: {self.key}, val: {self.val}, ''' f'''has next: {bool(self.next )}, has prev: {bool(self.prev )}''' ) class SCREAMING_SNAKE_CASE__ ( Generic[T, U] ): '''simple docstring''' def __init__( self : List[Any] ) -> None: snake_case__ = DoubleLinkedListNode(a__ , a__ ) snake_case__ = DoubleLinkedListNode(a__ , a__ ) snake_case__ , snake_case__ = self.rear, self.head def __repr__( self : Tuple ) -> str: snake_case__ = ["""DoubleLinkedList"""] snake_case__ = self.head while node.next is not None: rep.append(str(a__ ) ) snake_case__ = node.next rep.append(str(self.rear ) ) return ",\n ".join(a__ ) def UpperCAmelCase_ ( self : str , lowerCAmelCase__ : str ) -> None: snake_case__ = self.rear.prev # All nodes other than self.head are guaranteed to have non-None previous assert previous is not None snake_case__ = node snake_case__ = previous snake_case__ = node snake_case__ = self.rear def UpperCAmelCase_ ( self : Dict , lowerCAmelCase__ : Any ) -> DoubleLinkedListNode[T, U] | None: if node.prev is None or node.next is None: return None snake_case__ = node.next snake_case__ = node.prev snake_case__ = None snake_case__ = None return node class SCREAMING_SNAKE_CASE__ ( Generic[T, U] ): '''simple docstring''' UpperCamelCase__ : dict[Callable[[T], U], LRUCache[T, U]] = {} def __init__( self : Tuple , lowerCAmelCase__ : Optional[Any] ) -> str: snake_case__ = DoubleLinkedList() snake_case__ = capacity snake_case__ = 0 snake_case__ = 0 snake_case__ = 0 snake_case__ = {} def __repr__( self : List[Any] ) -> str: return ( f'''CacheInfo(hits={self.hits}, misses={self.miss}, ''' f'''capacity={self.capacity}, current size={self.num_keys})''' ) def __contains__( self : Any , lowerCAmelCase__ : int ) -> bool: return key in self.cache def UpperCAmelCase_ ( self : List[Any] , lowerCAmelCase__ : Union[str, Any] ) -> U | None: # Note: pythonic interface would throw KeyError rather than return None if key in self.cache: self.hits += 1 snake_case__ = self.cache[key] snake_case__ = self.list.remove(self.cache[key] ) assert node == value_node # node is guaranteed not None because it is in self.cache assert node is not None self.list.add(a__ ) return node.val self.miss += 1 return None def UpperCAmelCase_ ( self : Tuple , lowerCAmelCase__ : Dict , lowerCAmelCase__ : int ) -> None: if key not in self.cache: if self.num_keys >= self.capacity: # delete first node (oldest) when over capacity snake_case__ = self.list.head.next # guaranteed to have a non-None first node when num_keys > 0 # explain to type checker via assertions assert first_node is not None assert first_node.key is not None assert ( self.list.remove(a__ ) is not None ) # node guaranteed to be in list assert node.key is not None del self.cache[first_node.key] self.num_keys -= 1 snake_case__ = DoubleLinkedListNode(a__ , a__ ) self.list.add(self.cache[key] ) self.num_keys += 1 else: # bump node to the end of the list, update value snake_case__ = self.list.remove(self.cache[key] ) assert node is not None # node guaranteed to be in list snake_case__ = value self.list.add(a__ ) @classmethod def UpperCAmelCase_ ( cls : Union[str, Any] , lowerCAmelCase__ : int = 128 ) -> Callable[[Callable[[T], U]], Callable[..., U]]: def cache_decorator_inner(lowerCAmelCase__ : Any ) -> Callable[..., U]: def cache_decorator_wrapper(*lowerCAmelCase__ : Dict ) -> U: if func not in cls.decorator_function_to_instance_map: snake_case__ = LRUCache(a__ ) snake_case__ = cls.decorator_function_to_instance_map[func].get(args[0] ) if result is None: snake_case__ = func(*a__ ) cls.decorator_function_to_instance_map[func].put(args[0] , a__ ) return result def cache_info() -> LRUCache[T, U]: return cls.decorator_function_to_instance_map[func] setattr(a__ , """cache_info""" , a__ ) # noqa: B010 return cache_decorator_wrapper return cache_decorator_inner if __name__ == "__main__": import doctest doctest.testmod()
214
import gc import unittest from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline from transformers.pipelines import PipelineException from transformers.testing_utils import ( is_pipeline_test, is_torch_available, nested_simplify, require_tf, require_torch, require_torch_gpu, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class __lowercase ( unittest.TestCase ): __magic_name__ : int = MODEL_FOR_MASKED_LM_MAPPING __magic_name__ : Dict = TF_MODEL_FOR_MASKED_LM_MAPPING def lowerCAmelCase_ ( self ) -> Dict: '''simple docstring''' super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() if is_torch_available(): import torch torch.cuda.empty_cache() @require_tf def lowerCAmelCase_ ( self ) -> str: '''simple docstring''' A_ = pipeline(task='''fill-mask''' , model='''sshleifer/tiny-distilroberta-base''' , top_k=2 , framework='''tf''' ) A_ = unmasker('''My name is <mask>''' ) self.assertEqual( nested_simplify(a__ , decimals=6 ) , [ {'''sequence''': '''My name is grouped''', '''score''': 2.1E-05, '''token''': 3_8_0_1_5, '''token_str''': ''' grouped'''}, {'''sequence''': '''My name is accuser''', '''score''': 2.1E-05, '''token''': 2_5_5_0_6, '''token_str''': ''' accuser'''}, ] , ) A_ = unmasker('''The largest city in France is <mask>''' ) self.assertEqual( nested_simplify(a__ , decimals=6 ) , [ { '''sequence''': '''The largest city in France is grouped''', '''score''': 2.1E-05, '''token''': 3_8_0_1_5, '''token_str''': ''' grouped''', }, { '''sequence''': '''The largest city in France is accuser''', '''score''': 2.1E-05, '''token''': 2_5_5_0_6, '''token_str''': ''' accuser''', }, ] , ) A_ = unmasker('''My name is <mask>''' , targets=[''' Patrick''', ''' Clara''', ''' Teven'''] , top_k=3 ) self.assertEqual( nested_simplify(a__ , decimals=6 ) , [ {'''sequence''': '''My name is Clara''', '''score''': 2E-05, '''token''': 1_3_6_0_6, '''token_str''': ''' Clara'''}, {'''sequence''': '''My name is Patrick''', '''score''': 2E-05, '''token''': 3_4_9_9, '''token_str''': ''' Patrick'''}, {'''sequence''': '''My name is Te''', '''score''': 1.9E-05, '''token''': 2_9_4_1, '''token_str''': ''' Te'''}, ] , ) @require_torch def lowerCAmelCase_ ( self ) -> Optional[Any]: '''simple docstring''' A_ = pipeline(task='''fill-mask''' , model='''sshleifer/tiny-distilroberta-base''' , top_k=2 , framework='''pt''' ) A_ = unmasker('''My name is <mask>''' ) self.assertEqual( nested_simplify(a__ , decimals=6 ) , [ {'''sequence''': '''My name is Maul''', '''score''': 2.2E-05, '''token''': 3_5_6_7_6, '''token_str''': ''' Maul'''}, {'''sequence''': '''My name isELS''', '''score''': 2.2E-05, '''token''': 1_6_4_1_6, '''token_str''': '''ELS'''}, ] , ) A_ = unmasker('''The largest city in France is <mask>''' ) self.assertEqual( nested_simplify(a__ , decimals=6 ) , [ { '''sequence''': '''The largest city in France is Maul''', '''score''': 2.2E-05, '''token''': 3_5_6_7_6, '''token_str''': ''' Maul''', }, {'''sequence''': '''The largest city in France isELS''', '''score''': 2.2E-05, '''token''': 1_6_4_1_6, '''token_str''': '''ELS'''}, ] , ) A_ = unmasker('''My name is <mask>''' , targets=[''' Patrick''', ''' Clara''', ''' Teven'''] , top_k=3 ) self.assertEqual( nested_simplify(a__ , decimals=6 ) , [ {'''sequence''': '''My name is Patrick''', '''score''': 2.1E-05, '''token''': 3_4_9_9, '''token_str''': ''' Patrick'''}, {'''sequence''': '''My name is Te''', '''score''': 2E-05, '''token''': 2_9_4_1, '''token_str''': ''' Te'''}, {'''sequence''': '''My name is Clara''', '''score''': 2E-05, '''token''': 1_3_6_0_6, '''token_str''': ''' Clara'''}, ] , ) A_ = unmasker('''My name is <mask> <mask>''' , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=6 ) , [ [ { '''score''': 2.2E-05, '''token''': 3_5_6_7_6, '''token_str''': ''' Maul''', '''sequence''': '''<s>My name is Maul<mask></s>''', }, {'''score''': 2.2E-05, '''token''': 1_6_4_1_6, '''token_str''': '''ELS''', '''sequence''': '''<s>My name isELS<mask></s>'''}, ], [ { '''score''': 2.2E-05, '''token''': 3_5_6_7_6, '''token_str''': ''' Maul''', '''sequence''': '''<s>My name is<mask> Maul</s>''', }, {'''score''': 2.2E-05, '''token''': 1_6_4_1_6, '''token_str''': '''ELS''', '''sequence''': '''<s>My name is<mask>ELS</s>'''}, ], ] , ) @require_torch_gpu def lowerCAmelCase_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = pipeline('''fill-mask''' , model='''hf-internal-testing/tiny-random-distilbert''' , device=0 , framework='''pt''' ) # convert model to fp16 pipe.model.half() A_ = pipe('''Paris is the [MASK] of France.''' ) # We actually don't care about the result, we just want to make sure # it works, meaning the float16 tensor got casted back to float32 # for postprocessing. self.assertIsInstance(a__ , a__ ) @slow @require_torch def lowerCAmelCase_ ( self ) -> str: '''simple docstring''' A_ = pipeline(task='''fill-mask''' , model='''distilroberta-base''' , top_k=2 , framework='''pt''' ) self.run_large_test(a__ ) @slow @require_tf def lowerCAmelCase_ ( self ) -> List[Any]: '''simple docstring''' A_ = pipeline(task='''fill-mask''' , model='''distilroberta-base''' , top_k=2 , framework='''tf''' ) self.run_large_test(a__ ) def lowerCAmelCase_ ( self , a__ ) -> Tuple: '''simple docstring''' A_ = unmasker('''My name is <mask>''' ) self.assertEqual( nested_simplify(a__ ) , [ {'''sequence''': '''My name is John''', '''score''': 0.0_08, '''token''': 6_1_0, '''token_str''': ''' John'''}, {'''sequence''': '''My name is Chris''', '''score''': 0.0_07, '''token''': 1_5_7_3, '''token_str''': ''' Chris'''}, ] , ) A_ = unmasker('''The largest city in France is <mask>''' ) self.assertEqual( nested_simplify(a__ ) , [ { '''sequence''': '''The largest city in France is Paris''', '''score''': 0.2_51, '''token''': 2_2_0_1, '''token_str''': ''' Paris''', }, { '''sequence''': '''The largest city in France is Lyon''', '''score''': 0.2_14, '''token''': 1_2_7_9_0, '''token_str''': ''' Lyon''', }, ] , ) A_ = unmasker('''My name is <mask>''' , targets=[''' Patrick''', ''' Clara''', ''' Teven'''] , top_k=3 ) self.assertEqual( nested_simplify(a__ ) , [ {'''sequence''': '''My name is Patrick''', '''score''': 0.0_05, '''token''': 3_4_9_9, '''token_str''': ''' Patrick'''}, {'''sequence''': '''My name is Clara''', '''score''': 0.0_00, '''token''': 1_3_6_0_6, '''token_str''': ''' Clara'''}, {'''sequence''': '''My name is Te''', '''score''': 0.0_00, '''token''': 2_9_4_1, '''token_str''': ''' Te'''}, ] , ) @require_torch def lowerCAmelCase_ ( self ) -> List[Any]: '''simple docstring''' A_ = pipeline(task='''fill-mask''' , model='''sshleifer/tiny-distilroberta-base''' , framework='''pt''' ) A_ = None A_ = None self.run_pipeline_test(a__ , [] ) @require_tf def lowerCAmelCase_ ( self ) -> List[str]: '''simple docstring''' A_ = pipeline(task='''fill-mask''' , model='''sshleifer/tiny-distilroberta-base''' , framework='''tf''' ) A_ = None A_ = None self.run_pipeline_test(a__ , [] ) def lowerCAmelCase_ ( self , a__ , a__ , a__ ) -> Any: '''simple docstring''' if tokenizer is None or tokenizer.mask_token_id is None: self.skipTest('''The provided tokenizer has no mask token, (probably reformer or wav2vec2)''' ) A_ = FillMaskPipeline(model=a__ , tokenizer=a__ ) A_ = [ F"This is another {tokenizer.mask_token} test", ] return fill_masker, examples def lowerCAmelCase_ ( self , a__ , a__ ) -> Any: '''simple docstring''' A_ = fill_masker.tokenizer A_ = fill_masker.model A_ = fill_masker( F"This is a {tokenizer.mask_token}" , ) self.assertEqual( a__ , [ {'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )}, {'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )}, {'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )}, {'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )}, {'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )}, ] , ) A_ = fill_masker([F"This is a {tokenizer.mask_token}"] ) self.assertEqual( a__ , [ {'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )}, {'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )}, {'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )}, {'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )}, {'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )}, ] , ) A_ = fill_masker([F"This is a {tokenizer.mask_token}", F"Another {tokenizer.mask_token} great test."] ) self.assertEqual( a__ , [ [ {'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )}, {'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )}, {'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )}, {'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )}, {'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )}, ], [ {'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )}, {'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )}, {'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )}, {'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )}, {'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )}, ], ] , ) with self.assertRaises(a__ ): fill_masker([None] ) # No mask_token is not supported with self.assertRaises(a__ ): fill_masker('''This is''' ) self.run_test_top_k(a__ , a__ ) self.run_test_targets(a__ , a__ ) self.run_test_top_k_targets(a__ , a__ ) self.fill_mask_with_duplicate_targets_and_top_k(a__ , a__ ) self.fill_mask_with_multiple_masks(a__ , a__ ) def lowerCAmelCase_ ( self , a__ , a__ ) -> List[Any]: '''simple docstring''' A_ = tokenizer.get_vocab() A_ = sorted(vocab.keys() )[:2] # Pipeline argument A_ = FillMaskPipeline(model=a__ , tokenizer=a__ , targets=a__ ) A_ = fill_masker(F"This is a {tokenizer.mask_token}" ) self.assertEqual( a__ , [ {'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )}, {'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )}, ] , ) A_ = {vocab[el] for el in targets} self.assertEqual({el['''token'''] for el in outputs} , a__ ) A_ = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el['''token_str'''] for el in outputs} , set(a__ ) ) # Call argument A_ = FillMaskPipeline(model=a__ , tokenizer=a__ ) A_ = fill_masker(F"This is a {tokenizer.mask_token}" , targets=a__ ) self.assertEqual( a__ , [ {'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )}, {'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )}, ] , ) A_ = {vocab[el] for el in targets} self.assertEqual({el['''token'''] for el in outputs} , a__ ) A_ = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el['''token_str'''] for el in outputs} , set(a__ ) ) # Score equivalence A_ = fill_masker(F"This is a {tokenizer.mask_token}" , targets=a__ ) A_ = [top_mask['''token_str'''] for top_mask in outputs] A_ = [top_mask['''score'''] for top_mask in outputs] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(a__ ) == set(a__ ): A_ = fill_masker(F"This is a {tokenizer.mask_token}" , targets=a__ ) A_ = [top_mask['''score'''] for top_mask in unmasked_targets] self.assertEqual(nested_simplify(a__ ) , nested_simplify(a__ ) ) # Raises with invalid with self.assertRaises(a__ ): A_ = fill_masker(F"This is a {tokenizer.mask_token}" , targets=[] ) # For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised if "" not in tokenizer.get_vocab(): with self.assertRaises(a__ ): A_ = fill_masker(F"This is a {tokenizer.mask_token}" , targets=[''''''] ) with self.assertRaises(a__ ): A_ = fill_masker(F"This is a {tokenizer.mask_token}" , targets='''''' ) def lowerCAmelCase_ ( self , a__ , a__ ) -> int: '''simple docstring''' A_ = FillMaskPipeline(model=a__ , tokenizer=a__ , top_k=2 ) A_ = fill_masker(F"This is a {tokenizer.mask_token}" ) self.assertEqual( a__ , [ {'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )}, {'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )}, ] , ) A_ = FillMaskPipeline(model=a__ , tokenizer=a__ ) A_ = fill_masker(F"This is a {tokenizer.mask_token}" , top_k=2 ) self.assertEqual( a__ , [ {'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )}, {'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )}, ] , ) self.assertEqual(nested_simplify(a__ ) , nested_simplify(a__ ) ) def lowerCAmelCase_ ( self , a__ , a__ ) -> str: '''simple docstring''' A_ = tokenizer.get_vocab() A_ = FillMaskPipeline(model=a__ , tokenizer=a__ ) # top_k=2, ntargets=3 A_ = sorted(vocab.keys() )[:3] A_ = fill_masker(F"This is a {tokenizer.mask_token}" , top_k=2 , targets=a__ ) # If we use the most probably targets, and filter differently, we should still # have the same results A_ = [el['''token_str'''] for el in sorted(a__ , key=lambda a__ : x["score"] , reverse=a__ )] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(a__ ).issubset(a__ ): A_ = fill_masker(F"This is a {tokenizer.mask_token}" , top_k=3 , targets=a__ ) # They should yield exactly the same result self.assertEqual(nested_simplify(a__ ) , nested_simplify(a__ ) ) def lowerCAmelCase_ ( self , a__ , a__ ) -> Union[str, Any]: '''simple docstring''' A_ = FillMaskPipeline(model=a__ , tokenizer=a__ ) A_ = tokenizer.get_vocab() # String duplicates + id duplicates A_ = sorted(vocab.keys() )[:3] A_ = [targets[0], targets[1], targets[0], targets[2], targets[1]] A_ = fill_masker(F"My name is {tokenizer.mask_token}" , targets=a__ , top_k=1_0 ) # The target list contains duplicates, so we can't output more # than them self.assertEqual(len(a__ ) , 3 ) def lowerCAmelCase_ ( self , a__ , a__ ) -> List[Any]: '''simple docstring''' A_ = FillMaskPipeline(model=a__ , tokenizer=a__ ) A_ = fill_masker( F"This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}" , top_k=2 ) self.assertEqual( a__ , [ [ {'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )}, {'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )}, ], [ {'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )}, {'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )}, ], [ {'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )}, {'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )}, ], ] , )
141
0
import unittest import torch from torch import nn from diffusers.models.activations import get_activation class __a ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: '''simple docstring''' lowercase__: int = get_activation('swish' ) self.assertIsInstance(lowerCAmelCase__ , nn.SiLU ) self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: '''simple docstring''' lowercase__: int = get_activation('silu' ) self.assertIsInstance(lowerCAmelCase__ , nn.SiLU ) self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: '''simple docstring''' lowercase__: int = get_activation('mish' ) self.assertIsInstance(lowerCAmelCase__ , nn.Mish ) self.assertEqual(act(torch.tensor(-200 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: '''simple docstring''' lowercase__: List[str] = get_activation('gelu' ) self.assertIsInstance(lowerCAmelCase__ , nn.GELU ) self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 )
335
import unittest import numpy as np import torch from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __a ( __UpperCamelCase , unittest.TestCase ): __lowercase : int = DDIMPipeline __lowercase : Dict = UNCONDITIONAL_IMAGE_GENERATION_PARAMS __lowercase : List[str] = PipelineTesterMixin.required_optional_params - { 'num_images_per_prompt', 'latents', 'callback', 'callback_steps', } __lowercase : Optional[int] = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS __lowercase : Any = False def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: '''simple docstring''' torch.manual_seed(0 ) lowercase__: Dict = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) lowercase__: int = DDIMScheduler() lowercase__: List[Any] = {'unet': unet, 'scheduler': scheduler} return components def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__=0 ) -> List[str]: '''simple docstring''' if str(lowerCAmelCase__ ).startswith('mps' ): lowercase__: Any = torch.manual_seed(lowerCAmelCase__ ) else: lowercase__: Any = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ ) lowercase__: Any = { 'batch_size': 1, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: '''simple docstring''' lowercase__: int = 'cpu' lowercase__: List[str] = self.get_dummy_components() lowercase__: Union[str, Any] = self.pipeline_class(**lowerCAmelCase__ ) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) lowercase__: List[str] = self.get_dummy_inputs(lowerCAmelCase__ ) lowercase__: str = pipe(**lowerCAmelCase__ ).images lowercase__: List[str] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 32, 32, 3) ) lowercase__: Optional[Any] = np.array( [1.000E00, 5.717E-01, 4.717E-01, 1.000E00, 0.000E00, 1.000E00, 3.000E-04, 0.000E00, 9.000E-04] ) lowercase__: int = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(lowerCAmelCase__ , 1E-3 ) def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: '''simple docstring''' super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: '''simple docstring''' super().test_save_load_local(expected_max_difference=3E-3 ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: '''simple docstring''' super().test_save_load_optional_components(expected_max_difference=3E-3 ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class __a ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self ) -> Any: '''simple docstring''' lowercase__: Tuple = 'google/ddpm-cifar10-32' lowercase__: Union[str, Any] = UNetaDModel.from_pretrained(lowerCAmelCase__ ) lowercase__: Optional[Any] = DDIMScheduler() lowercase__: List[str] = DDIMPipeline(unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ ) ddim.to(lowerCAmelCase__ ) ddim.set_progress_bar_config(disable=lowerCAmelCase__ ) lowercase__: Optional[Any] = torch.manual_seed(0 ) lowercase__: str = ddim(generator=lowerCAmelCase__ , eta=0.0 , output_type='numpy' ).images lowercase__: Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowercase__: Optional[Any] = np.array([0.1_7_2_3, 0.1_6_1_7, 0.1_6_0_0, 0.1_6_2_6, 0.1_4_9_7, 0.1_5_1_3, 0.1_5_0_5, 0.1_4_4_2, 0.1_4_5_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: '''simple docstring''' lowercase__: Tuple = 'google/ddpm-ema-bedroom-256' lowercase__: int = UNetaDModel.from_pretrained(lowerCAmelCase__ ) lowercase__: Tuple = DDIMScheduler.from_pretrained(lowerCAmelCase__ ) lowercase__: Any = DDIMPipeline(unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ ) ddpm.to(lowerCAmelCase__ ) ddpm.set_progress_bar_config(disable=lowerCAmelCase__ ) lowercase__: Optional[int] = torch.manual_seed(0 ) lowercase__: Tuple = ddpm(generator=lowerCAmelCase__ , output_type='numpy' ).images lowercase__: str = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) lowercase__: List[str] = np.array([0.0_0_6_0, 0.0_2_0_1, 0.0_3_4_4, 0.0_0_2_4, 0.0_0_1_8, 0.0_0_0_2, 0.0_0_2_2, 0.0_0_0_0, 0.0_0_6_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
335
1
import math from typing import Callable, List, Optional, Union import numpy as np import PIL import torch from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from diffusers.schedulers import DDIMScheduler, DDPMScheduler, LMSDiscreteScheduler, PNDMScheduler def A__ ( __A : int , __A : Any , __A : str=[] ) ->Dict: __A =size[0] - overlap_pixels * 2 __A =size[1] - overlap_pixels * 2 for letter in ["l", "r"]: if letter in remove_borders: size_x += overlap_pixels for letter in ["t", "b"]: if letter in remove_borders: size_y += overlap_pixels __A =np.ones((size_y, size_x) , dtype=np.uinta ) * 2_55 __A =np.pad(__A , mode='''linear_ramp''' , pad_width=__A , end_values=0 ) if "l" in remove_borders: __A =mask[:, overlap_pixels : mask.shape[1]] if "r" in remove_borders: __A =mask[:, 0 : mask.shape[1] - overlap_pixels] if "t" in remove_borders: __A =mask[overlap_pixels : mask.shape[0], :] if "b" in remove_borders: __A =mask[0 : mask.shape[0] - overlap_pixels, :] return mask def A__ ( __A : str , __A : List[str] , __A : int ) ->str: return max(__A , min(__A , __A ) ) def A__ ( __A : [int] , __A : [int] , __A : [int] ) ->Union[str, Any]: return ( clamp(rect[0] , min[0] , max[0] ), clamp(rect[1] , min[1] , max[1] ), clamp(rect[2] , min[0] , max[0] ), clamp(rect[3] , min[1] , max[1] ), ) def A__ ( __A : [int] , __A : int , __A : [int] ) ->Tuple: __A =list(__A ) rect[0] -= overlap rect[1] -= overlap rect[2] += overlap rect[3] += overlap __A =clamp_rect(__A , [0, 0] , [image_size[0], image_size[1]] ) return rect def A__ ( __A : Union[str, Any] , __A : List[Any] , __A : List[Any] , __A : int ) ->Any: __A =Image.new('''RGB''' , (tile.size[0] + original_slice, tile.size[1]) ) result.paste( original_image.resize((tile.size[0], tile.size[1]) , Image.BICUBIC ).crop( (slice_x, 0, slice_x + original_slice, tile.size[1]) ) , (0, 0) , ) result.paste(__A , (original_slice, 0) ) return result def A__ ( __A : Any , __A : int ) ->List[Any]: __A =(original_image_slice * 4, 0, tile.size[0], tile.size[1]) __A =tile.crop(__A ) return tile def A__ ( __A : int , __A : int ) ->List[str]: __A =n % d return n - divisor class lowerCAmelCase__ ( __magic_name__ ): '''simple docstring''' def __init__( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = 3_5_0 , ): '''simple docstring''' super().__init__( vae=lowercase__ , text_encoder=lowercase__ , tokenizer=lowercase__ , unet=lowercase__ , low_res_scheduler=lowercase__ , scheduler=lowercase__ , max_noise_level=lowercase__ , ) def __UpperCamelCase ( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , **lowercase__ ): '''simple docstring''' torch.manual_seed(0 ) __A =( min(image.size[0] - (tile_size + original_image_slice) , x * tile_size ), min(image.size[1] - (tile_size + original_image_slice) , y * tile_size ), min(image.size[0] , (x + 1) * tile_size ), min(image.size[1] , (y + 1) * tile_size ), ) __A =add_overlap_rect(lowercase__ , lowercase__ , image.size ) __A =image.crop(lowercase__ ) __A =((crop_rect[0] + ((crop_rect[2] - crop_rect[0]) / 2)) / image.size[0]) * tile.size[0] __A =translated_slice_x - (original_image_slice / 2) __A =max(0 , lowercase__ ) __A =squeeze_tile(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) __A =to_input.size __A =to_input.resize((tile_size, tile_size) , Image.BICUBIC ) __A =super(lowercase__ , self ).__call__(image=lowercase__ , **lowercase__ ).images[0] __A =upscaled_tile.resize((orig_input_size[0] * 4, orig_input_size[1] * 4) , Image.BICUBIC ) __A =unsqueeze_tile(lowercase__ , lowercase__ ) __A =upscaled_tile.resize((tile.size[0] * 4, tile.size[1] * 4) , Image.BICUBIC ) __A =[] if x == 0: remove_borders.append('''l''' ) elif crop_rect[2] == image.size[0]: remove_borders.append('''r''' ) if y == 0: remove_borders.append('''t''' ) elif crop_rect[3] == image.size[1]: remove_borders.append('''b''' ) __A =Image.fromarray( make_transparency_mask( (upscaled_tile.size[0], upscaled_tile.size[1]) , tile_border * 4 , remove_borders=lowercase__ ) , mode='''L''' , ) final_image.paste( lowercase__ , (crop_rect_with_overlap[0] * 4, crop_rect_with_overlap[1] * 4) , lowercase__ ) @torch.no_grad() def __call__( self , lowercase__ , lowercase__ , lowercase__ = 7_5 , lowercase__ = 9.0 , lowercase__ = 5_0 , lowercase__ = None , lowercase__ = 1 , lowercase__ = 0.0 , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = 1 , lowercase__ = 1_2_8 , lowercase__ = 3_2 , lowercase__ = 3_2 , ): '''simple docstring''' __A =Image.new('''RGB''' , (image.size[0] * 4, image.size[1] * 4) ) __A =math.ceil(image.size[0] / tile_size ) __A =math.ceil(image.size[1] / tile_size ) __A =tcx * tcy __A =0 for y in range(lowercase__ ): for x in range(lowercase__ ): self._process_tile( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , prompt=lowercase__ , num_inference_steps=lowercase__ , guidance_scale=lowercase__ , noise_level=lowercase__ , negative_prompt=lowercase__ , num_images_per_prompt=lowercase__ , eta=lowercase__ , generator=lowercase__ , latents=lowercase__ , ) current_count += 1 if callback is not None: callback({'''progress''': current_count / total_tile_count, '''image''': final_image} ) return final_image def A__ ( ) ->int: # Run a demo __A ='''stabilityai/stable-diffusion-x4-upscaler''' __A =StableDiffusionTiledUpscalePipeline.from_pretrained(__A , revision='''fp16''' , torch_dtype=torch.floataa ) __A =pipe.to('''cuda''' ) __A =Image.open('''../../docs/source/imgs/diffusers_library.jpg''' ) def callback(__A : List[Any] ): print(F'''progress: {obj['progress']:.4f}''' ) obj["image"].save('''diffusers_library_progress.jpg''' ) __A =pipe(image=__A , prompt='''Black font, white background, vector''' , noise_level=40 , callback=__A ) final_image.save('''diffusers_library.jpg''' ) if __name__ == "__main__": main()
184
def A__ ( __A : str , __A : str ) ->str: if not (isinstance(__A , __A ) and isinstance(__A , __A )): raise ValueError('''longest_common_substring() takes two strings for inputs''' ) __A =len(__A ) __A =len(__A ) __A =[[0] * (texta_length + 1) for _ in range(texta_length + 1 )] __A =0 __A =0 for i in range(1 , texta_length + 1 ): for j in range(1 , texta_length + 1 ): if texta[i - 1] == texta[j - 1]: __A =1 + dp[i - 1][j - 1] if dp[i][j] > ans_length: __A =i __A =dp[i][j] return texta[ans_index - ans_length : ans_index] if __name__ == "__main__": import doctest doctest.testmod()
184
1
def A ( __UpperCamelCase , __UpperCamelCase ) -> int: return int((input_a, input_a).count(1 ) != 0 ) def A ( ) -> None: assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
52
import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowerCAmelCase ( UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" A__ : int = LongformerTokenizer A__ : Optional[int] = True A__ : Any = LongformerTokenizerFast A__ : Dict = True def _a ( self : int ): """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt A__ = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] A__ = dict(zip(_snake_case , range(len(_snake_case ) ) ) ) A__ = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] A__ = {'unk_token': '<unk>'} A__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) A__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(_snake_case ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(_snake_case ) ) def _a ( self : int , **_snake_case : Union[str, Any] ): """simple docstring""" kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **_snake_case ) def _a ( self : Optional[int] , **_snake_case : List[Any] ): """simple docstring""" kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **_snake_case ) def _a ( self : Any , _snake_case : Optional[Any] ): """simple docstring""" A__ = 'lower newer' A__ = 'lower newer' return input_text, output_text def _a ( self : Any ): """simple docstring""" A__ = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) A__ = 'lower newer' A__ = ['l', 'o', 'w', 'er', '\u0120', 'n', 'e', 'w', 'er'] A__ = tokenizer.tokenize(_snake_case ) # , add_prefix_space=True) self.assertListEqual(_snake_case , _snake_case ) A__ = tokens + [tokenizer.unk_token] A__ = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(_snake_case ) , _snake_case ) def _a ( self : List[str] ): """simple docstring""" A__ = self.get_tokenizer() self.assertListEqual(tokenizer.encode('Hello world!' , add_special_tokens=_snake_case ) , [0, 3_14_14, 2_32, 3_28, 2] ) self.assertListEqual( tokenizer.encode('Hello world! cécé herlolip 418' , add_special_tokens=_snake_case ) , [0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2] , ) @slow def _a ( self : List[Any] ): """simple docstring""" A__ = self.tokenizer_class.from_pretrained('allenai/longformer-base-4096' ) A__ = tokenizer.encode('sequence builders' , add_special_tokens=_snake_case ) A__ = tokenizer.encode('multi-sequence build' , add_special_tokens=_snake_case ) A__ = tokenizer.encode( 'sequence builders' , add_special_tokens=_snake_case , add_prefix_space=_snake_case ) A__ = tokenizer.encode( 'sequence builders' , 'multi-sequence build' , add_special_tokens=_snake_case , add_prefix_space=_snake_case ) A__ = tokenizer.build_inputs_with_special_tokens(_snake_case ) A__ = tokenizer.build_inputs_with_special_tokens(_snake_case , _snake_case ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def _a ( self : List[str] ): """simple docstring""" A__ = self.get_tokenizer() A__ = 'Encode this sequence.' A__ = tokenizer.byte_encoder[' '.encode('utf-8' )[0]] # Testing encoder arguments A__ = tokenizer.encode(_snake_case , add_special_tokens=_snake_case , add_prefix_space=_snake_case ) A__ = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(_snake_case , _snake_case ) A__ = tokenizer.encode(_snake_case , add_special_tokens=_snake_case , add_prefix_space=_snake_case ) A__ = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(_snake_case , _snake_case ) tokenizer.add_special_tokens({'bos_token': '<s>'} ) A__ = tokenizer.encode(_snake_case , add_special_tokens=_snake_case ) A__ = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(_snake_case , _snake_case ) # Testing spaces after special tokens A__ = '<mask>' tokenizer.add_special_tokens( {'mask_token': AddedToken(_snake_case , lstrip=_snake_case , rstrip=_snake_case )} ) # mask token has a left space A__ = tokenizer.convert_tokens_to_ids(_snake_case ) A__ = 'Encode <mask> sequence' A__ = 'Encode <mask>sequence' A__ = tokenizer.encode(_snake_case ) A__ = encoded.index(_snake_case ) A__ = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(_snake_case , _snake_case ) A__ = tokenizer.encode(_snake_case ) A__ = encoded.index(_snake_case ) A__ = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(_snake_case , _snake_case ) def _a ( self : Dict ): """simple docstring""" pass def _a ( self : Union[str, Any] ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): A__ = self.rust_tokenizer_class.from_pretrained(_snake_case , **_snake_case ) A__ = self.tokenizer_class.from_pretrained(_snake_case , **_snake_case ) A__ = 'A, <mask> AllenNLP sentence.' A__ = tokenizer_r.encode_plus(_snake_case , add_special_tokens=_snake_case , return_token_type_ids=_snake_case ) A__ = tokenizer_p.encode_plus(_snake_case , add_special_tokens=_snake_case , return_token_type_ids=_snake_case ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['token_type_ids'] ) , sum(tokens_p['token_type_ids'] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ) , sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ) , ) A__ = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] ) A__ = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['input_ids'] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual(tokens_r['input_ids'] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual( _snake_case , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) self.assertSequenceEqual( _snake_case , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) def _a ( self : List[Any] ): """simple docstring""" for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): A__ = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=_snake_case , add_prefix_space=_snake_case , trim_offsets=_snake_case ) A__ = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) A__ = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['add_prefix_space'] , _snake_case ) self.assertEqual(post_processor_state['add_prefix_space'] , _snake_case ) self.assertEqual(post_processor_state['trim_offsets'] , _snake_case ) def _a ( self : Optional[Any] ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): A__ = 'hello' # `hello` is a token in the vocabulary of `pretrained_name` A__ = F'''{text_of_1_token} {text_of_1_token}''' A__ = self.rust_tokenizer_class.from_pretrained( _snake_case , use_fast=_snake_case , add_prefix_space=_snake_case , trim_offsets=_snake_case ) A__ = tokenizer_r(_snake_case , return_offsets_mapping=_snake_case , add_special_tokens=_snake_case ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_snake_case )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_snake_case ) + 1, len(_snake_case ) + 1 + len(_snake_case )) , ) A__ = self.rust_tokenizer_class.from_pretrained( _snake_case , use_fast=_snake_case , add_prefix_space=_snake_case , trim_offsets=_snake_case ) A__ = tokenizer_r(_snake_case , return_offsets_mapping=_snake_case , add_special_tokens=_snake_case ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_snake_case )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_snake_case ) + 1, len(_snake_case ) + 1 + len(_snake_case )) , ) A__ = self.rust_tokenizer_class.from_pretrained( _snake_case , use_fast=_snake_case , add_prefix_space=_snake_case , trim_offsets=_snake_case ) A__ = tokenizer_r(_snake_case , return_offsets_mapping=_snake_case , add_special_tokens=_snake_case ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_snake_case )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_snake_case ), len(_snake_case ) + 1 + len(_snake_case )) , ) A__ = self.rust_tokenizer_class.from_pretrained( _snake_case , use_fast=_snake_case , add_prefix_space=_snake_case , trim_offsets=_snake_case ) A__ = tokenizer_r(_snake_case , return_offsets_mapping=_snake_case , add_special_tokens=_snake_case ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_snake_case )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_snake_case ), len(_snake_case ) + 1 + len(_snake_case )) , ) A__ = F''' {text}''' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) A__ = self.rust_tokenizer_class.from_pretrained( _snake_case , use_fast=_snake_case , add_prefix_space=_snake_case , trim_offsets=_snake_case ) A__ = tokenizer_r(_snake_case , return_offsets_mapping=_snake_case , add_special_tokens=_snake_case ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(_snake_case )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(_snake_case ) + 1, 1 + len(_snake_case ) + 1 + len(_snake_case )) , ) A__ = self.rust_tokenizer_class.from_pretrained( _snake_case , use_fast=_snake_case , add_prefix_space=_snake_case , trim_offsets=_snake_case ) A__ = tokenizer_r(_snake_case , return_offsets_mapping=_snake_case , add_special_tokens=_snake_case ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(_snake_case )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(_snake_case ), 1 + len(_snake_case ) + 1 + len(_snake_case )) , ) A__ = self.rust_tokenizer_class.from_pretrained( _snake_case , use_fast=_snake_case , add_prefix_space=_snake_case , trim_offsets=_snake_case ) A__ = tokenizer_r(_snake_case , return_offsets_mapping=_snake_case , add_special_tokens=_snake_case ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(_snake_case )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(_snake_case ), 1 + len(_snake_case ) + 1 + len(_snake_case )) , )
52
1
"""simple docstring""" import argparse import json import os import fairseq import torch from torch import nn from transformers import ( SpeechaTextaConfig, SpeechaTextaForCausalLM, SpeechaTextaTokenizer, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() snake_case_ : List[str] = logging.get_logger(__name__) snake_case_ : Tuple = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", } snake_case_ : Any = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", ] def lowercase_ ( _lowercase : Dict , _lowercase : Union[str, Any] , _lowercase : List[Any] , _lowercase : Optional[int] , _lowercase : Tuple ): '''simple docstring''' for attribute in key.split("." ): UpperCAmelCase : List[Any] = getattr(_lowercase , _lowercase ) if weight_type is not None: UpperCAmelCase : Optional[int] = getattr(_lowercase , _lowercase ).shape else: UpperCAmelCase : List[Any] = hf_pointer.shape assert hf_shape == value.shape, ( F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": UpperCAmelCase : Tuple = value elif weight_type == "weight_g": UpperCAmelCase : Optional[Any] = value elif weight_type == "weight_v": UpperCAmelCase : int = value elif weight_type == "bias": UpperCAmelCase : str = value else: UpperCAmelCase : Any = value logger.info(F"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def lowercase_ ( _lowercase : List[str] , _lowercase : Optional[Any] ): '''simple docstring''' UpperCAmelCase : Any = [] UpperCAmelCase : Dict = fairseq_model.state_dict() UpperCAmelCase : int = hf_model.feature_extractor # if encoder has different dim to decoder -> use proj_weight UpperCAmelCase : Optional[Any] = None for name, value in fairseq_dict.items(): UpperCAmelCase : str = False if "conv_layers" in name: load_conv_layer( _lowercase , _lowercase , _lowercase , _lowercase , hf_model.config.feat_extract_norm == "group" , ) UpperCAmelCase : Optional[int] = True elif name.split("." )[0] == "proj": UpperCAmelCase : List[Any] = fairseq_model.proj UpperCAmelCase : Dict = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: UpperCAmelCase : str = True if "*" in mapped_key: UpperCAmelCase : Optional[int] = name.split(_lowercase )[0].split("." )[-2] UpperCAmelCase : str = mapped_key.replace("*" , _lowercase ) if "weight_g" in name: UpperCAmelCase : Any = "weight_g" elif "weight_v" in name: UpperCAmelCase : int = "weight_v" elif "bias" in name: UpperCAmelCase : Optional[int] = "bias" elif "weight" in name: UpperCAmelCase : Dict = "weight" else: UpperCAmelCase : Optional[Any] = None set_recursively(_lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) continue if not is_used: unused_weights.append(_lowercase ) logger.warning(F"""Unused weights: {unused_weights}""" ) return proj_weight def lowercase_ ( _lowercase : Dict , _lowercase : str , _lowercase : int , _lowercase : str , _lowercase : Tuple ): '''simple docstring''' UpperCAmelCase : str = full_name.split("conv_layers." )[-1] UpperCAmelCase : Optional[int] = name.split("." ) UpperCAmelCase : Optional[Any] = int(items[0] ) UpperCAmelCase : Dict = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) UpperCAmelCase : Optional[Any] = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) UpperCAmelCase : List[str] = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) UpperCAmelCase : str = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) UpperCAmelCase : str = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(_lowercase ) def lowercase_ ( _lowercase : Optional[Any] ): '''simple docstring''' UpperCAmelCase , UpperCAmelCase : Dict = emb.weight.shape UpperCAmelCase : Union[str, Any] = nn.Linear(_lowercase , _lowercase , bias=_lowercase ) UpperCAmelCase : Any = emb.weight.data return lin_layer def lowercase_ ( _lowercase : Tuple ): '''simple docstring''' with open(_lowercase , "r" , encoding="utf-8" ) as f: UpperCAmelCase : Optional[int] = f.readlines() UpperCAmelCase : Dict = [line.split(" " )[0] for line in lines] UpperCAmelCase : Tuple = len(_lowercase ) UpperCAmelCase : Tuple = { "<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3, } vocab_dict.update(dict(zip(_lowercase , range(4 , num_words + 4 ) ) ) ) return vocab_dict @torch.no_grad() def lowercase_ ( _lowercase : Optional[Any] , _lowercase : List[Any] , _lowercase : Optional[Any] , _lowercase : str , _lowercase : int , _lowercase : Any , _lowercase : Optional[Any] , ): '''simple docstring''' UpperCAmelCase : Dict = WavaVecaConfig.from_pretrained(_lowercase ) UpperCAmelCase : List[str] = SpeechaTextaConfig.from_pretrained( _lowercase , vocab_size=_lowercase , decoder_layers=_lowercase , do_stable_layer_norm=_lowercase ) UpperCAmelCase : Tuple = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=_lowercase , return_attention_mask=_lowercase , ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Tuple = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) UpperCAmelCase : Dict = model[0].eval() # set weights for wav2vec2 encoder UpperCAmelCase : Optional[int] = WavaVecaModel(_lowercase ) UpperCAmelCase : Optional[int] = recursively_load_weights_wavaveca(model.encoder , _lowercase ) UpperCAmelCase : List[str] = SpeechaTextaForCausalLM(_lowercase ) UpperCAmelCase , UpperCAmelCase : Union[str, Any] = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=_lowercase ) # set output linear layer unexpected_keys.remove("embed_out" ) UpperCAmelCase : Any = nn.Parameter(model.decoder.embed_out.detach() ) # layer norm is init to identity matrix so leaving it is fine logger.warning(F"""The following keys are missing when loading the decoder weights: {missing_keys}""" ) logger.warning(F"""The following keys are unexpected when loading the decoder weights: {unexpected_keys}""" ) UpperCAmelCase : Dict = SpeechEncoderDecoderModel(encoder=_lowercase , decoder=_lowercase ) UpperCAmelCase : List[str] = False # add projection layer UpperCAmelCase : List[str] = nn.Parameter(projection_layer.weight ) UpperCAmelCase : Any = nn.Parameter(projection_layer.bias ) UpperCAmelCase : str = create_vocab_dict(_lowercase ) with open(os.path.join(_lowercase , "vocab.json" ) , "w" ) as fp: json.dump(_lowercase , _lowercase ) UpperCAmelCase : List[Any] = SpeechaTextaTokenizer(os.path.join(_lowercase , "vocab.json" ) ) tokenizer.save_pretrained(_lowercase ) UpperCAmelCase : Union[str, Any] = hf_wavavec.config.to_dict() UpperCAmelCase : List[Any] = tokenizer.pad_token_id UpperCAmelCase : Optional[int] = tokenizer.bos_token_id UpperCAmelCase : Optional[int] = tokenizer.eos_token_id UpperCAmelCase : Any = "speech_to_text_2" UpperCAmelCase : Optional[int] = "wav2vec2" UpperCAmelCase : Any = SpeechEncoderDecoderConfig.from_dict(_lowercase ) hf_wavavec.save_pretrained(_lowercase ) feature_extractor.save_pretrained(_lowercase ) if __name__ == "__main__": snake_case_ : Any = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument( """--encoder_config_path""", default="""facebook/wav2vec2-large-lv60""", type=str, help="""Path to hf encoder wav2vec2 checkpoint config""", ) parser.add_argument( """--decoder_config_path""", default="""facebook/s2t-small-mustc-en-fr-st""", type=str, help="""Path to hf decoder s2t checkpoint config""", ) parser.add_argument("""--vocab_size""", default=1_0_2_2_4, type=int, help="""Vocab size of decoder""") parser.add_argument("""--num_decoder_layers""", default=7, type=int, help="""Number of decoder layers""") snake_case_ : int = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, vocab_size=args.vocab_size, num_decoder_layers=args.num_decoder_layers, )
595
import torch from diffusers import DiffusionPipeline class _A ( __UpperCamelCase ): def __init__(self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: '''simple docstring''' super().__init__() self.register_modules(unet=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ ) def __call__(self ) -> List[Any]: '''simple docstring''' UpperCamelCase__ = torch.randn( (1, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , ) UpperCamelCase__ = 1 UpperCamelCase__ = self.unet(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).sample UpperCamelCase__ = self.scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).prev_sample UpperCamelCase__ = scheduler_output - scheduler_output + torch.ones_like(SCREAMING_SNAKE_CASE_ ) return result
415
0
"""simple docstring""" import datasets from .evaluate import evaluate lowerCamelCase__ : List[Any] = "\\n@inproceedings{Rajpurkar2016SQuAD10,\n title={SQuAD: 100, 000+ Questions for Machine Comprehension of Text},\n author={Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang},\n booktitle={EMNLP},\n year={2016}\n}\n" lowerCamelCase__ : int = "\nThis metric wrap the official scoring script for version 1 of the Stanford Question Answering Dataset (SQuAD).\n\nStanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by\ncrowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span,\nfrom the corresponding reading passage, or the question might be unanswerable.\n" lowerCamelCase__ : Tuple = "\nComputes SQuAD scores (F1 and EM).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - 'id': id of the question-answer pair as given in the references (see below)\n - 'prediction_text': the text of the answer\n references: List of question-answers dictionaries with the following key-values:\n - 'id': id of the question-answer pair (see above),\n - 'answers': a Dict in the SQuAD dataset format\n {\n 'text': list of possible texts for the answer, as a list of strings\n 'answer_start': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n 'exact_match': Exact match (the normalized answer exactly match the gold answer)\n 'f1': The F-score of predicted tokens versus the gold answer\nExamples:\n\n >>> predictions = [{'prediction_text': '1976', 'id': '56e10a3be3433e1400422b22'}]\n >>> references = [{'answers': {'answer_start': [97], 'text': ['1976']}, 'id': '56e10a3be3433e1400422b22'}]\n >>> squad_metric = datasets.load_metric(\"squad\")\n >>> results = squad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'exact_match': 100.0, 'f1': 100.0}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase__( datasets.Metric ): '''simple docstring''' def __lowerCAmelCase ( self :str ) -> Dict: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': {'''id''': datasets.Value('''string''' ), '''prediction_text''': datasets.Value('''string''' )}, '''references''': { '''id''': datasets.Value('''string''' ), '''answers''': datasets.features.Sequence( { '''text''': datasets.Value('''string''' ), '''answer_start''': datasets.Value('''int32''' ), } ), }, } ) , codebase_urls=['''https://rajpurkar.github.io/SQuAD-explorer/'''] , reference_urls=['''https://rajpurkar.github.io/SQuAD-explorer/'''] , ) def __lowerCAmelCase ( self :List[str] , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :List[Any] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = {prediction['''id''']: prediction['''prediction_text'''] for prediction in predictions} SCREAMING_SNAKE_CASE : str = [ { '''paragraphs''': [ { '''qas''': [ { '''answers''': [{'''text''': answer_text} for answer_text in ref['''answers''']['''text''']], '''id''': ref['''id'''], } for ref in references ] } ] } ] SCREAMING_SNAKE_CASE : List[Any] = evaluate(dataset=lowerCamelCase_ , predictions=lowerCamelCase_ ) return score
719
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase__ : Tuple = { "configuration_mctct": ["MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MCTCTConfig"], "feature_extraction_mctct": ["MCTCTFeatureExtractor"], "processing_mctct": ["MCTCTProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Union[str, Any] = [ "MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST", "MCTCTForCTC", "MCTCTModel", "MCTCTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys lowerCamelCase__ : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
18
0
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SegformerConfig, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() A : List[Any] = logging.get_logger(__name__) def UpperCamelCase ( __magic_name__ : Union[str, Any] , __magic_name__ : Any=False ) -> Tuple: """simple docstring""" lowercase__ = OrderedDict() for key, value in state_dict.items(): if encoder_only and not key.startswith("""head""" ): lowercase__ = """segformer.encoder.""" + key if key.startswith("""backbone""" ): lowercase__ = key.replace("""backbone""" , """segformer.encoder""" ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 lowercase__ = key[key.find("""patch_embed""" ) + len("""patch_embed""" )] lowercase__ = key.replace(f'''patch_embed{idx}''' , f'''patch_embeddings.{int(__magic_name__ )-1}''' ) if "norm" in key: lowercase__ = key.replace("""norm""" , """layer_norm""" ) if "segformer.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 lowercase__ = key[key.find("""segformer.encoder.layer_norm""" ) + len("""segformer.encoder.layer_norm""" )] lowercase__ = key.replace(f'''layer_norm{idx}''' , f'''layer_norm.{int(__magic_name__ )-1}''' ) if "layer_norm1" in key: lowercase__ = key.replace("""layer_norm1""" , """layer_norm_1""" ) if "layer_norm2" in key: lowercase__ = key.replace("""layer_norm2""" , """layer_norm_2""" ) if "block" in key: # replace for example block1 by block.0 lowercase__ = key[key.find("""block""" ) + len("""block""" )] lowercase__ = key.replace(f'''block{idx}''' , f'''block.{int(__magic_name__ )-1}''' ) if "attn.q" in key: lowercase__ = key.replace("""attn.q""" , """attention.self.query""" ) if "attn.proj" in key: lowercase__ = key.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in key: lowercase__ = key.replace("""attn""" , """attention.self""" ) if "fc1" in key: lowercase__ = key.replace("""fc1""" , """dense1""" ) if "fc2" in key: lowercase__ = key.replace("""fc2""" , """dense2""" ) if "linear_pred" in key: lowercase__ = key.replace("""linear_pred""" , """classifier""" ) if "linear_fuse" in key: lowercase__ = key.replace("""linear_fuse.conv""" , """linear_fuse""" ) lowercase__ = key.replace("""linear_fuse.bn""" , """batch_norm""" ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 lowercase__ = key[key.find("""linear_c""" ) + len("""linear_c""" )] lowercase__ = key.replace(f'''linear_c{idx}''' , f'''linear_c.{int(__magic_name__ )-1}''' ) if key.startswith("""head""" ): lowercase__ = key.replace("""head""" , """classifier""" ) lowercase__ = value return new_state_dict def UpperCamelCase ( __magic_name__ : Any , __magic_name__ : Union[str, Any] ) -> int: """simple docstring""" for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) lowercase__ = state_dict.pop(f'''segformer.encoder.block.{i}.{j}.attention.self.kv.weight''' ) lowercase__ = state_dict.pop(f'''segformer.encoder.block.{i}.{j}.attention.self.kv.bias''' ) # next, add keys and values (in that order) to the state dict lowercase__ = kv_weight[ : config.hidden_sizes[i], : ] lowercase__ = kv_bias[: config.hidden_sizes[i]] lowercase__ = kv_weight[ config.hidden_sizes[i] :, : ] lowercase__ = kv_bias[ config.hidden_sizes[i] : ] def UpperCamelCase ( ) -> List[str]: """simple docstring""" lowercase__ = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowercase__ = Image.open(requests.get(__magic_name__ , stream=__magic_name__ ).raw ) return image @torch.no_grad() def UpperCamelCase ( __magic_name__ : List[Any] , __magic_name__ : Dict , __magic_name__ : Union[str, Any] ) -> Optional[Any]: """simple docstring""" lowercase__ = SegformerConfig() lowercase__ = False # set attributes based on model_name lowercase__ = """huggingface/label-files""" if "segformer" in model_name: lowercase__ = model_name[len("""segformer.""" ) : len("""segformer.""" ) + 2] if "ade" in model_name: lowercase__ = 150 lowercase__ = """ade20k-id2label.json""" lowercase__ = (1, 150, 128, 128) elif "city" in model_name: lowercase__ = 19 lowercase__ = """cityscapes-id2label.json""" lowercase__ = (1, 19, 128, 128) else: raise ValueError(f'''Model {model_name} not supported''' ) elif "mit" in model_name: lowercase__ = True lowercase__ = model_name[4:6] lowercase__ = 1000 lowercase__ = """imagenet-1k-id2label.json""" lowercase__ = (1, 1000) else: raise ValueError(f'''Model {model_name} not supported''' ) # set config attributes lowercase__ = json.load(open(hf_hub_download(__magic_name__ , __magic_name__ , repo_type="""dataset""" ) , """r""" ) ) lowercase__ = {int(__magic_name__ ): v for k, v in idalabel.items()} lowercase__ = idalabel lowercase__ = {v: k for k, v in idalabel.items()} if size == "b0": pass elif size == "b1": lowercase__ = [64, 128, 320, 512] lowercase__ = 256 elif size == "b2": lowercase__ = [64, 128, 320, 512] lowercase__ = 768 lowercase__ = [3, 4, 6, 3] elif size == "b3": lowercase__ = [64, 128, 320, 512] lowercase__ = 768 lowercase__ = [3, 4, 18, 3] elif size == "b4": lowercase__ = [64, 128, 320, 512] lowercase__ = 768 lowercase__ = [3, 8, 27, 3] elif size == "b5": lowercase__ = [64, 128, 320, 512] lowercase__ = 768 lowercase__ = [3, 6, 40, 3] else: raise ValueError(f'''Size {size} not supported''' ) # load image processor (only resize + normalize) lowercase__ = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=__magic_name__ , align=__magic_name__ , do_random_crop=__magic_name__ ) # prepare image lowercase__ = prepare_img() lowercase__ = image_processor(images=__magic_name__ , return_tensors="""pt""" ).pixel_values logger.info(f'''Converting model {model_name}...''' ) # load original state dict if encoder_only: lowercase__ = torch.load(__magic_name__ , map_location=torch.device("""cpu""" ) ) else: lowercase__ = torch.load(__magic_name__ , map_location=torch.device("""cpu""" ) )["""state_dict"""] # rename keys lowercase__ = rename_keys(__magic_name__ , encoder_only=__magic_name__ ) if not encoder_only: del state_dict["decode_head.conv_seg.weight"] del state_dict["decode_head.conv_seg.bias"] # key and value matrices need special treatment read_in_k_v(__magic_name__ , __magic_name__ ) # create HuggingFace model and load state dict if encoder_only: lowercase__ = False lowercase__ = SegformerForImageClassification(__magic_name__ ) else: lowercase__ = SegformerForSemanticSegmentation(__magic_name__ ) model.load_state_dict(__magic_name__ ) model.eval() # forward pass lowercase__ = model(__magic_name__ ) lowercase__ = outputs.logits # set expected_slice based on model name # ADE20k checkpoints if model_name == "segformer.b0.512x512.ade.160k": lowercase__ = torch.tensor( [ [[-4.6_3_1_0, -5.5_2_3_2, -6.2_3_5_6], [-5.1_9_2_1, -6.1_4_4_4, -6.5_9_9_6], [-5.4_4_2_4, -6.2_7_9_0, -6.7_5_7_4]], [[-1_2.1_3_9_1, -1_3.3_1_2_2, -1_3.9_5_5_4], [-1_2.8_7_3_2, -1_3.9_3_5_2, -1_4.3_5_6_3], [-1_2.9_4_3_8, -1_3.8_2_2_6, -1_4.2_5_1_3]], [[-1_2.5_1_3_4, -1_3.4_6_8_6, -1_4.4_9_1_5], [-1_2.8_6_6_9, -1_4.4_3_4_3, -1_4.7_7_5_8], [-1_3.2_5_2_3, -1_4.5_8_1_9, -1_5.0_6_9_4]], ] ) elif model_name == "segformer.b1.512x512.ade.160k": lowercase__ = torch.tensor( [ [[-7.5_8_2_0, -8.7_2_3_1, -8.3_2_1_5], [-8.0_6_0_0, -1_0.3_5_2_9, -1_0.0_3_0_4], [-7.5_2_0_8, -9.4_1_0_3, -9.6_2_3_9]], [[-1_2.6_9_1_8, -1_3.8_9_9_4, -1_3.7_1_3_7], [-1_3.3_1_9_6, -1_5.7_5_2_3, -1_5.4_7_8_9], [-1_2.9_3_4_3, -1_4.8_7_5_7, -1_4.9_6_8_9]], [[-1_1.1_9_1_1, -1_1.9_4_2_1, -1_1.3_2_4_3], [-1_1.3_3_4_2, -1_3.6_8_3_9, -1_3.3_5_8_1], [-1_0.3_9_0_9, -1_2.1_8_3_2, -1_2.4_8_5_8]], ] ) elif model_name == "segformer.b2.512x512.ade.160k": lowercase__ = torch.tensor( [ [[-1_1.8_1_7_3, -1_4.3_8_5_0, -1_6.3_1_2_8], [-1_4.5_6_4_8, -1_6.5_8_0_4, -1_8.6_5_6_8], [-1_4.7_2_2_3, -1_5.7_3_8_7, -1_8.4_2_1_8]], [[-1_5.7_2_9_0, -1_7.9_1_7_1, -1_9.4_4_2_3], [-1_8.3_1_0_5, -1_9.9_4_4_8, -2_1.4_6_6_1], [-1_7.9_2_9_6, -1_8.6_4_9_7, -2_0.7_9_1_0]], [[-1_5.0_7_8_3, -1_7.0_3_3_6, -1_8.2_7_8_9], [-1_6.8_7_7_1, -1_8.6_8_7_0, -2_0.1_6_1_2], [-1_6.2_4_5_4, -1_7.1_4_2_6, -1_9.5_0_5_5]], ] ) elif model_name == "segformer.b3.512x512.ade.160k": lowercase__ = torch.tensor( [ [[-9.0_8_7_8, -1_0.2_0_8_1, -1_0.1_8_9_1], [-9.3_1_4_4, -1_0.7_9_4_1, -1_0.9_8_4_3], [-9.2_2_9_4, -1_0.3_8_5_5, -1_0.5_7_0_4]], [[-1_2.2_3_1_6, -1_3.9_0_6_8, -1_3.6_1_0_2], [-1_2.9_1_6_1, -1_4.3_7_0_2, -1_4.3_2_3_5], [-1_2.5_2_3_3, -1_3.7_1_7_4, -1_3.7_9_3_2]], [[-1_4.6_2_7_5, -1_5.2_4_9_0, -1_4.9_7_2_7], [-1_4.3_4_0_0, -1_5.9_6_8_7, -1_6.2_8_2_7], [-1_4.1_4_8_4, -1_5.4_0_3_3, -1_5.8_9_3_7]], ] ) elif model_name == "segformer.b4.512x512.ade.160k": lowercase__ = torch.tensor( [ [[-1_2.3_1_4_4, -1_3.2_4_4_7, -1_4.0_8_0_2], [-1_3.3_6_1_4, -1_4.5_8_1_6, -1_5.6_1_1_7], [-1_3.3_3_4_0, -1_4.4_4_3_3, -1_6.2_2_1_9]], [[-1_9.2_7_8_1, -2_0.4_1_2_8, -2_0.7_5_0_6], [-2_0.6_1_5_3, -2_1.6_5_6_6, -2_2.0_9_9_8], [-1_9.9_8_0_0, -2_1.0_4_3_0, -2_2.1_4_9_4]], [[-1_8.8_7_3_9, -1_9.7_8_0_4, -2_1.1_8_3_4], [-2_0.1_2_3_3, -2_1.6_7_6_5, -2_3.2_9_4_4], [-2_0.0_3_1_5, -2_1.2_6_4_1, -2_3.6_9_4_4]], ] ) elif model_name == "segformer.b5.640x640.ade.160k": lowercase__ = torch.tensor( [ [[-9.5_5_2_4, -1_2.0_8_3_5, -1_1.7_3_4_8], [-1_0.5_2_2_9, -1_3.6_4_4_6, -1_4.5_6_6_2], [-9.5_8_4_2, -1_2.8_8_5_1, -1_3.9_4_1_4]], [[-1_5.3_4_3_2, -1_7.5_3_2_3, -1_7.0_8_1_8], [-1_6.3_3_3_0, -1_8.9_2_5_5, -1_9.2_1_0_1], [-1_5.1_3_4_0, -1_7.7_8_4_8, -1_8.3_9_7_1]], [[-1_2.6_0_7_2, -1_4.9_4_8_6, -1_4.6_6_3_1], [-1_3.7_6_2_9, -1_7.0_9_0_7, -1_7.7_7_4_5], [-1_2.7_8_9_9, -1_6.1_6_9_5, -1_7.1_6_7_1]], ] ) # Cityscapes checkpoints elif model_name == "segformer.b0.1024x1024.city.160k": lowercase__ = torch.tensor( [ [[-1_1.9_2_9_5, -1_3.4_0_5_7, -1_4.8_1_0_6], [-1_3.3_4_3_1, -1_4.8_1_7_9, -1_5.3_7_8_1], [-1_4.2_8_3_6, -1_5.5_9_4_2, -1_6.1_5_8_8]], [[-1_1.4_9_0_6, -1_2.8_0_6_7, -1_3.6_5_6_4], [-1_3.1_1_8_9, -1_4.0_5_0_0, -1_4.1_5_4_3], [-1_3.8_7_4_8, -1_4.5_1_3_6, -1_4.8_7_8_9]], [[0.5_3_7_4, 0.1_0_6_7, -0.4_7_4_2], [0.1_1_4_1, -0.2_2_5_5, -0.7_0_9_9], [-0.3_0_0_0, -0.5_9_2_4, -1.3_1_0_5]], ] ) elif model_name == "segformer.b0.512x1024.city.160k": lowercase__ = torch.tensor( [ [[-7.8_2_1_7, -9.8_7_6_7, -1_0.1_7_1_7], [-9.4_4_3_8, -1_0.9_0_5_8, -1_1.4_0_4_7], [-9.7_9_3_9, -1_2.3_4_9_5, -1_2.1_0_7_9]], [[-7.1_5_1_4, -9.5_3_3_6, -1_0.0_8_6_0], [-9.7_7_7_6, -1_1.6_8_2_2, -1_1.8_4_3_9], [-1_0.1_4_1_1, -1_2.7_6_5_5, -1_2.8_9_7_2]], [[0.3_0_2_1, 0.0_8_0_5, -0.2_3_1_0], [-0.0_3_2_8, -0.1_6_0_5, -0.2_7_1_4], [-0.1_4_0_8, -0.5_4_7_7, -0.6_9_7_6]], ] ) elif model_name == "segformer.b0.640x1280.city.160k": lowercase__ = torch.tensor( [ [ [-1.1_3_7_2E0_1, -1.2_7_8_7E0_1, -1.3_4_7_7E0_1], [-1.2_5_3_6E0_1, -1.4_1_9_4E0_1, -1.4_4_0_9E0_1], [-1.3_2_1_7E0_1, -1.4_8_8_8E0_1, -1.5_3_2_7E0_1], ], [ [-1.4_7_9_1E0_1, -1.7_1_2_2E0_1, -1.8_2_7_7E0_1], [-1.7_1_6_3E0_1, -1.9_1_9_2E0_1, -1.9_5_3_3E0_1], [-1.7_8_9_7E0_1, -1.9_9_9_1E0_1, -2.0_3_1_5E0_1], ], [ [7.6_7_2_3E-0_1, 4.1_9_2_1E-0_1, -7.7_8_7_8E-0_2], [4.7_7_7_2E-0_1, 9.5_5_5_7E-0_3, -2.8_0_8_2E-0_1], [3.6_0_3_2E-0_1, -2.4_8_2_6E-0_1, -5.1_1_6_8E-0_1], ], ] ) elif model_name == "segformer.b0.768x768.city.160k": lowercase__ = torch.tensor( [ [[-9.4_9_5_9, -1_1.3_0_8_7, -1_1.7_4_7_9], [-1_1.0_0_2_5, -1_2.6_5_4_0, -1_2.3_3_1_9], [-1_1.4_0_6_4, -1_3.0_4_8_7, -1_2.9_9_0_5]], [[-9.8_9_0_5, -1_1.3_0_8_4, -1_2.0_8_5_4], [-1_1.1_7_2_6, -1_2.7_6_9_8, -1_2.9_5_8_3], [-1_1.5_9_8_5, -1_3.3_2_7_8, -1_4.1_7_7_4]], [[0.2_2_1_3, 0.0_1_9_2, -0.2_4_6_6], [-0.1_7_3_1, -0.4_2_1_3, -0.4_8_7_4], [-0.3_1_2_6, -0.6_5_4_1, -1.1_3_8_9]], ] ) elif model_name == "segformer.b1.1024x1024.city.160k": lowercase__ = torch.tensor( [ [[-1_3.5_7_4_8, -1_3.9_1_1_1, -1_2.6_5_0_0], [-1_4.3_5_0_0, -1_5.3_6_8_3, -1_4.2_3_2_8], [-1_4.7_5_3_2, -1_6.0_4_2_4, -1_5.6_0_8_7]], [[-1_7.1_6_5_1, -1_5.8_7_2_5, -1_2.9_6_5_3], [-1_7.2_5_8_0, -1_7.3_7_1_8, -1_4.8_2_2_3], [-1_6.6_0_5_8, -1_6.8_7_8_3, -1_6.7_4_5_2]], [[-3.6_4_5_6, -3.0_2_0_9, -1.4_2_0_3], [-3.0_7_9_7, -3.1_9_5_9, -2.0_0_0_0], [-1.8_7_5_7, -1.9_2_1_7, -1.6_9_9_7]], ] ) elif model_name == "segformer.b2.1024x1024.city.160k": lowercase__ = torch.tensor( [ [[-1_6.0_9_7_6, -1_6.4_8_5_6, -1_7.3_9_6_2], [-1_6.6_2_3_4, -1_9.0_3_4_2, -1_9.7_6_8_5], [-1_6.0_9_0_0, -1_8.0_6_6_1, -1_9.1_1_8_0]], [[-1_8.4_7_5_0, -1_8.8_4_8_8, -1_9.5_0_7_4], [-1_9.4_0_3_0, -2_2.1_5_7_0, -2_2.5_9_7_7], [-1_9.1_1_9_1, -2_0.8_4_8_6, -2_2.3_7_8_3]], [[-4.5_1_7_8, -5.5_0_3_7, -6.5_1_0_9], [-5.0_8_8_4, -7.2_1_7_4, -8.0_3_3_4], [-4.4_1_5_6, -5.8_1_1_7, -7.2_9_7_0]], ] ) elif model_name == "segformer.b3.1024x1024.city.160k": lowercase__ = torch.tensor( [ [[-1_4.2_0_8_1, -1_4.4_7_3_2, -1_4.1_9_7_7], [-1_4.5_8_6_7, -1_6.4_4_2_3, -1_6.6_3_5_6], [-1_3.4_4_4_1, -1_4.9_6_8_5, -1_6.8_6_9_6]], [[-1_4.4_5_7_6, -1_4.7_0_7_3, -1_5.0_4_5_1], [-1_5.0_8_1_6, -1_7.6_2_3_7, -1_7.9_8_7_3], [-1_4.4_2_1_3, -1_6.0_1_9_9, -1_8.5_9_9_2]], [[-4.7_3_4_9, -4.9_5_8_8, -5.0_9_6_6], [-4.3_2_1_0, -6.9_3_2_5, -7.2_5_9_1], [-3.4_3_1_2, -4.7_4_8_4, -7.1_9_1_7]], ] ) elif model_name == "segformer.b4.1024x1024.city.160k": lowercase__ = torch.tensor( [ [[-1_1.7_7_3_7, -1_1.9_5_2_6, -1_1.3_2_7_3], [-1_3.6_6_9_2, -1_4.4_5_7_4, -1_3.8_8_7_8], [-1_3.8_9_3_7, -1_4.6_9_2_4, -1_5.9_3_4_5]], [[-1_4.6_7_0_6, -1_4.5_3_3_0, -1_4.1_3_0_6], [-1_6.1_5_0_2, -1_6.8_1_8_0, -1_6.4_2_6_9], [-1_6.8_3_3_8, -1_7.8_9_3_9, -2_0.1_7_4_6]], [[1.0_4_9_1, 0.8_2_8_9, 1.0_3_1_0], [1.1_0_4_4, 0.5_2_1_9, 0.8_0_5_5], [1.0_8_9_9, 0.6_9_2_6, 0.5_5_9_0]], ] ) elif model_name == "segformer.b5.1024x1024.city.160k": lowercase__ = torch.tensor( [ [[-1_2.5_6_4_1, -1_3.4_7_7_7, -1_3.0_6_8_4], [-1_3.9_5_8_7, -1_5.8_9_8_3, -1_6.6_5_5_7], [-1_3.3_1_0_9, -1_5.7_3_5_0, -1_6.3_1_4_1]], [[-1_4.7_0_7_4, -1_5.4_3_5_2, -1_4.5_9_4_4], [-1_6.6_3_5_3, -1_8.1_6_6_3, -1_8.6_1_2_0], [-1_5.1_7_0_2, -1_8.0_3_2_9, -1_8.1_5_4_7]], [[-1.7_9_9_0, -2.0_9_5_1, -1.7_7_8_4], [-2.6_3_9_7, -3.8_2_4_5, -3.9_6_8_6], [-1.5_2_6_4, -2.8_1_2_6, -2.9_3_1_6]], ] ) else: lowercase__ = logits.argmax(-1 ).item() print("""Predicted class:""" , model.config.idalabel[predicted_class_idx] ) # verify logits if not encoder_only: assert logits.shape == expected_shape assert torch.allclose(logits[0, :3, :3, :3] , __magic_name__ , atol=1E-2 ) # finally, save model and image processor logger.info(f'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(__magic_name__ ).mkdir(exist_ok=__magic_name__ ) model.save_pretrained(__magic_name__ ) image_processor.save_pretrained(__magic_name__ ) if __name__ == "__main__": A : List[str] = argparse.ArgumentParser() parser.add_argument( '--model_name', default='segformer.b0.512x512.ade.160k', type=str, help='Name of the model you\'d like to convert.', ) parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original PyTorch checkpoint (.pth file).' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) A : int = parser.parse_args() convert_segformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
15
"""simple docstring""" import torch from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel class snake_case__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE__ = '''M-CLIP''' def __init__( self : Dict , lowercase : Any=10_24 , lowercase : Optional[Any]=7_68 , **lowercase : Dict ): '''simple docstring''' UpperCAmelCase : Any = transformerDimSize UpperCAmelCase : Optional[int] = imageDimSize super().__init__(**lowercase ) class snake_case__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE__ = MCLIPConfig def __init__( self : Optional[Any] , lowercase : List[Any] , *lowercase : Tuple , **lowercase : List[str] ): '''simple docstring''' super().__init__(lowercase , *lowercase , **lowercase ) UpperCAmelCase : Union[str, Any] = XLMRobertaModel(lowercase ) UpperCAmelCase : List[Any] = torch.nn.Linear( in_features=config.transformerDimensions , out_features=config.numDims ) def __lowerCAmelCase ( self : Dict , lowercase : List[Any] , lowercase : Dict ): '''simple docstring''' UpperCAmelCase : Tuple = self.transformer(input_ids=lowercase , attention_mask=lowercase )[0] UpperCAmelCase : Dict = (embs * attention_mask.unsqueeze(2 )).sum(dim=1 ) / attention_mask.sum(dim=1 )[:, None] return self.LinearTransformation(lowercase ), embs
595
0
'''simple docstring''' import unittest from transformers import load_tool from transformers.utils import is_torch_available if is_torch_available(): import torch from transformers.testing_utils import require_torch from .test_tools_common import ToolTesterMixin @require_torch class UpperCAmelCase_ (unittest.TestCase , _UpperCamelCase ): """simple docstring""" def SCREAMING_SNAKE_CASE__ ( self: str ): _lowerCAmelCase :Union[str, Any] = load_tool('text-to-speech' ) self.tool.setup() def SCREAMING_SNAKE_CASE__ ( self: Dict ): # SpeechT5 isn't deterministic torch.manual_seed(0 ) _lowerCAmelCase :List[str] = self.tool('hey' ) _lowerCAmelCase :Optional[int] = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_0_0_5_9_6_6_6_6_8_8_3_2_1_1_5_8_2_9, -0.0_0_0_3_6_5_7_6_4_0_1_9_0_7_9_5_0_6_4, -0.0_0_0_1_3_4_3_9_5_0_2_7_9_9_8_8_3_4_8_5] ) , ) ) def SCREAMING_SNAKE_CASE__ ( self: Dict ): # SpeechT5 isn't deterministic torch.manual_seed(0 ) _lowerCAmelCase :List[str] = self.tool('hey' ) _lowerCAmelCase :Any = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_0_0_5_9_6_6_6_6_8_8_3_2_1_1_5_8_2_9, -0.0_0_0_3_6_5_7_6_4_0_1_9_0_7_9_5_0_6_4, -0.0_0_0_1_3_4_3_9_5_0_2_7_9_9_8_8_3_4_8_5] ) , ) )
713
import copy from typing import Dict, List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING a = { """facebook/mask2former-swin-small-coco-instance""": ( """https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json""" ) # See all Mask2Former models at https://huggingface.co/models?filter=mask2former } a = logging.get_logger(__name__) class UpperCAmelCase_ (snake_case__ ): """simple docstring""" lowerCamelCase : Tuple = 'mask2former' lowerCamelCase : Union[str, Any] = ['swin'] lowerCamelCase : Union[str, Any] = {'hidden_size': 'hidden_dim'} def __init__( self: Dict , _UpperCAmelCase: Optional[Dict] = None , _UpperCAmelCase: int = 256 , _UpperCAmelCase: int = 256 , _UpperCAmelCase: int = 256 , _UpperCAmelCase: int = 1024 , _UpperCAmelCase: str = "relu" , _UpperCAmelCase: int = 6 , _UpperCAmelCase: int = 10 , _UpperCAmelCase: int = 8 , _UpperCAmelCase: float = 0.0 , _UpperCAmelCase: int = 2048 , _UpperCAmelCase: bool = False , _UpperCAmelCase: bool = False , _UpperCAmelCase: int = 4 , _UpperCAmelCase: int = 255 , _UpperCAmelCase: int = 100 , _UpperCAmelCase: float = 0.1 , _UpperCAmelCase: float = 2.0 , _UpperCAmelCase: float = 5.0 , _UpperCAmelCase: float = 5.0 , _UpperCAmelCase: int = 1_2544 , _UpperCAmelCase: float = 3.0 , _UpperCAmelCase: float = 0.7_5 , _UpperCAmelCase: float = 0.0_2 , _UpperCAmelCase: float = 1.0 , _UpperCAmelCase: bool = True , _UpperCAmelCase: List[int] = [4, 8, 16, 32] , _UpperCAmelCase: bool = None , **_UpperCAmelCase: Optional[int] , ): if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `Swin` backbone.' ) _lowerCAmelCase :List[str] = CONFIG_MAPPING['swin']( image_size=224 , in_channels=3 , patch_size=4 , embed_dim=96 , depths=[2, 2, 18, 2] , num_heads=[3, 6, 12, 24] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=_UpperCAmelCase , out_features=['stage1', 'stage2', 'stage3', 'stage4'] , ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ): _lowerCAmelCase :int = backbone_config.pop('model_type' ) _lowerCAmelCase :int = CONFIG_MAPPING[backbone_model_type] _lowerCAmelCase :Union[str, Any] = config_class.from_dict(_UpperCAmelCase ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f"""Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. """ f"""Supported model types: {",".join(self.backbones_supported )}""" ) _lowerCAmelCase :List[Any] = backbone_config _lowerCAmelCase :Any = feature_size _lowerCAmelCase :int = mask_feature_size _lowerCAmelCase :Union[str, Any] = hidden_dim _lowerCAmelCase :Optional[int] = encoder_feedforward_dim _lowerCAmelCase :Tuple = activation_function _lowerCAmelCase :Optional[Any] = encoder_layers _lowerCAmelCase :int = decoder_layers _lowerCAmelCase :Tuple = num_attention_heads _lowerCAmelCase :Tuple = dropout _lowerCAmelCase :Optional[Any] = dim_feedforward _lowerCAmelCase :Tuple = pre_norm _lowerCAmelCase :List[str] = enforce_input_projection _lowerCAmelCase :Union[str, Any] = common_stride _lowerCAmelCase :Optional[int] = ignore_value _lowerCAmelCase :Any = num_queries _lowerCAmelCase :Any = no_object_weight _lowerCAmelCase :List[str] = class_weight _lowerCAmelCase :str = mask_weight _lowerCAmelCase :Dict = dice_weight _lowerCAmelCase :int = train_num_points _lowerCAmelCase :str = oversample_ratio _lowerCAmelCase :Dict = importance_sample_ratio _lowerCAmelCase :List[str] = init_std _lowerCAmelCase :List[Any] = init_xavier_std _lowerCAmelCase :int = use_auxiliary_loss _lowerCAmelCase :Tuple = feature_strides _lowerCAmelCase :Tuple = output_auxiliary_logits _lowerCAmelCase :Dict = decoder_layers super().__init__(**_UpperCAmelCase ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls: Any , _UpperCAmelCase: PretrainedConfig , **_UpperCAmelCase: str ): return cls( backbone_config=_UpperCAmelCase , **_UpperCAmelCase , ) def SCREAMING_SNAKE_CASE__ ( self: Dict ): _lowerCAmelCase :Optional[int] = copy.deepcopy(self.__dict__ ) _lowerCAmelCase :List[Any] = self.backbone_config.to_dict() _lowerCAmelCase :Tuple = self.__class__.model_type return output
382
0
import math def lowerCamelCase_ ( lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : List[str] ) -> List[Any]: '''simple docstring''' if 0 not in (x, y): # We use the relation x^y = y*log10(x), where 10 is the base. return y * math.logaa(lowerCAmelCase__ ) else: if x == 0: # 0 raised to any number is 0 return 0 elif y == 0: return 1 # any number raised to 0 is 1 raise AssertionError('This should never happen' ) if __name__ == "__main__": # Main function # Read two numbers from input and typecast them to int using map function. # Here x is the base and y is the power. __snake_case :Optional[int] ='Enter the base and the power separated by a comma: ' __snake_case , __snake_case :str =map(int, input(prompt).split(',')) __snake_case , __snake_case :Optional[int] =map(int, input(prompt).split(',')) # We find the log of each number, using the function res(), which takes two # arguments. __snake_case :int =res(xa, ya) __snake_case :Any =res(xa, ya) # We check for the largest number if resa > resa: print('Largest number is', xa, '^', ya) elif resa > resa: print('Largest number is', xa, '^', ya) else: print('Both are equal')
106
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation def lowerCamelCase__ ( _lowerCamelCase ) ->List[Any]: _UpperCAmelCase =384 if "tiny" in model_name: _UpperCAmelCase =[3, 3, 9, 3] _UpperCAmelCase =[96, 192, 384, 768] if "small" in model_name: _UpperCAmelCase =[3, 3, 27, 3] _UpperCAmelCase =[96, 192, 384, 768] if "base" in model_name: _UpperCAmelCase =[3, 3, 27, 3] _UpperCAmelCase =[128, 256, 512, 1024] _UpperCAmelCase =512 if "large" in model_name: _UpperCAmelCase =[3, 3, 27, 3] _UpperCAmelCase =[192, 384, 768, 1536] _UpperCAmelCase =768 if "xlarge" in model_name: _UpperCAmelCase =[3, 3, 27, 3] _UpperCAmelCase =[256, 512, 1024, 2048] _UpperCAmelCase =1024 # set label information _UpperCAmelCase =150 _UpperCAmelCase ="huggingface/label-files" _UpperCAmelCase ="ade20k-id2label.json" _UpperCAmelCase =json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type="dataset" ) , "r" ) ) _UpperCAmelCase ={int(_lowerCamelCase ): v for k, v in idalabel.items()} _UpperCAmelCase ={v: k for k, v in idalabel.items()} _UpperCAmelCase =ConvNextConfig( depths=_lowerCamelCase , hidden_sizes=_lowerCamelCase , out_features=["stage1", "stage2", "stage3", "stage4"] ) _UpperCAmelCase =UperNetConfig( backbone_config=_lowerCamelCase , auxiliary_in_channels=_lowerCamelCase , num_labels=_lowerCamelCase , idalabel=_lowerCamelCase , labelaid=_lowerCamelCase , ) return config def lowerCamelCase__ ( _lowerCamelCase ) ->Union[str, Any]: _UpperCAmelCase =[] # fmt: off # stem rename_keys.append(("backbone.downsample_layers.0.0.weight", "backbone.embeddings.patch_embeddings.weight") ) rename_keys.append(("backbone.downsample_layers.0.0.bias", "backbone.embeddings.patch_embeddings.bias") ) rename_keys.append(("backbone.downsample_layers.0.1.weight", "backbone.embeddings.layernorm.weight") ) rename_keys.append(("backbone.downsample_layers.0.1.bias", "backbone.embeddings.layernorm.bias") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F"backbone.stages.{i}.{j}.gamma", F"backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter") ) rename_keys.append((F"backbone.stages.{i}.{j}.depthwise_conv.weight", F"backbone.encoder.stages.{i}.layers.{j}.dwconv.weight") ) rename_keys.append((F"backbone.stages.{i}.{j}.depthwise_conv.bias", F"backbone.encoder.stages.{i}.layers.{j}.dwconv.bias") ) rename_keys.append((F"backbone.stages.{i}.{j}.norm.weight", F"backbone.encoder.stages.{i}.layers.{j}.layernorm.weight") ) rename_keys.append((F"backbone.stages.{i}.{j}.norm.bias", F"backbone.encoder.stages.{i}.layers.{j}.layernorm.bias") ) rename_keys.append((F"backbone.stages.{i}.{j}.pointwise_conv1.weight", F"backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight") ) rename_keys.append((F"backbone.stages.{i}.{j}.pointwise_conv1.bias", F"backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias") ) rename_keys.append((F"backbone.stages.{i}.{j}.pointwise_conv2.weight", F"backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight") ) rename_keys.append((F"backbone.stages.{i}.{j}.pointwise_conv2.bias", F"backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias") ) if i > 0: rename_keys.append((F"backbone.downsample_layers.{i}.0.weight", F"backbone.encoder.stages.{i}.downsampling_layer.0.weight") ) rename_keys.append((F"backbone.downsample_layers.{i}.0.bias", F"backbone.encoder.stages.{i}.downsampling_layer.0.bias") ) rename_keys.append((F"backbone.downsample_layers.{i}.1.weight", F"backbone.encoder.stages.{i}.downsampling_layer.1.weight") ) rename_keys.append((F"backbone.downsample_layers.{i}.1.bias", F"backbone.encoder.stages.{i}.downsampling_layer.1.bias") ) rename_keys.append((F"backbone.norm{i}.weight", F"backbone.hidden_states_norms.stage{i+1}.weight") ) rename_keys.append((F"backbone.norm{i}.bias", F"backbone.hidden_states_norms.stage{i+1}.bias") ) # decode head rename_keys.extend( [ ("decode_head.conv_seg.weight", "decode_head.classifier.weight"), ("decode_head.conv_seg.bias", "decode_head.classifier.bias"), ("auxiliary_head.conv_seg.weight", "auxiliary_head.classifier.weight"), ("auxiliary_head.conv_seg.bias", "auxiliary_head.classifier.bias"), ] ) # fmt: on return rename_keys def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->str: _UpperCAmelCase =dct.pop(_lowerCamelCase ) _UpperCAmelCase =val def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->Union[str, Any]: _UpperCAmelCase ={ "upernet-convnext-tiny": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth", "upernet-convnext-small": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth", "upernet-convnext-base": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth", "upernet-convnext-large": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth", "upernet-convnext-xlarge": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth", } _UpperCAmelCase =model_name_to_url[model_name] _UpperCAmelCase =torch.hub.load_state_dict_from_url(_lowerCamelCase , map_location="cpu" )["state_dict"] _UpperCAmelCase =get_upernet_config(_lowerCamelCase ) _UpperCAmelCase =UperNetForSemanticSegmentation(_lowerCamelCase ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): _UpperCAmelCase =state_dict.pop(_lowerCamelCase ) if "bn" in key: _UpperCAmelCase =key.replace("bn" , "batch_norm" ) _UpperCAmelCase =val # rename keys _UpperCAmelCase =create_rename_keys(_lowerCamelCase ) for src, dest in rename_keys: rename_key(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) model.load_state_dict(_lowerCamelCase ) # verify on image _UpperCAmelCase ="https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg" _UpperCAmelCase =Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ).convert("RGB" ) _UpperCAmelCase =SegformerImageProcessor() _UpperCAmelCase =processor(_lowerCamelCase , return_tensors="pt" ).pixel_values with torch.no_grad(): _UpperCAmelCase =model(_lowerCamelCase ) if model_name == "upernet-convnext-tiny": _UpperCAmelCase =torch.tensor( [[-8.8_110, -8.8_110, -8.6_521], [-8.8_110, -8.8_110, -8.6_521], [-8.7_746, -8.7_746, -8.6_130]] ) elif model_name == "upernet-convnext-small": _UpperCAmelCase =torch.tensor( [[-8.8_236, -8.8_236, -8.6_771], [-8.8_236, -8.8_236, -8.6_771], [-8.7_638, -8.7_638, -8.6_240]] ) elif model_name == "upernet-convnext-base": _UpperCAmelCase =torch.tensor( [[-8.8_558, -8.8_558, -8.6_905], [-8.8_558, -8.8_558, -8.6_905], [-8.7_669, -8.7_669, -8.6_021]] ) elif model_name == "upernet-convnext-large": _UpperCAmelCase =torch.tensor( [[-8.6_660, -8.6_660, -8.6_210], [-8.6_660, -8.6_660, -8.6_210], [-8.6_310, -8.6_310, -8.5_964]] ) elif model_name == "upernet-convnext-xlarge": _UpperCAmelCase =torch.tensor( [[-8.4_980, -8.4_980, -8.3_977], [-8.4_980, -8.4_980, -8.3_977], [-8.4_379, -8.4_379, -8.3_412]] ) print("Logits:" , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , _lowerCamelCase , atol=1e-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(F"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_lowerCamelCase ) print(F"Saving processor to {pytorch_dump_folder_path}" ) processor.save_pretrained(_lowerCamelCase ) if push_to_hub: print(F"Pushing model and processor for {model_name} to hub" ) model.push_to_hub(F"openmmlab/{model_name}" ) processor.push_to_hub(F"openmmlab/{model_name}" ) if __name__ == "__main__": snake_case__ : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='upernet-convnext-tiny', type=str, choices=[F"""upernet-convnext-{size}""" for size in ['tiny', 'small', 'base', 'large', 'xlarge']], help='Name of the ConvNext UperNet model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) snake_case__ : Optional[int] = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
408
0
'''simple docstring''' import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing the experiment tracking capability, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _lowerCamelCase = 16 _lowerCamelCase = 32 def __UpperCAmelCase( lowercase_ , lowercase_ = 16 ): _lowerCamelCase : Tuple = AutoTokenizer.from_pretrained('''bert-base-cased''' ) _lowerCamelCase : Tuple = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(lowercase_ ): # max_length=None => use the model max length (it's actually the default) _lowerCamelCase : Any = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=lowercase_ , max_length=lowercase_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _lowerCamelCase : Any = datasets.map( lowercase_ , batched=lowercase_ , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _lowerCamelCase : Optional[Any] = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(lowercase_ ): # On TPU it's best to pad everything to the same length or training will be very slow. _lowerCamelCase : str = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _lowerCamelCase : Dict = 16 elif accelerator.mixed_precision != "no": _lowerCamelCase : int = 8 else: _lowerCamelCase : int = None return tokenizer.pad( lowercase_ , padding='''longest''' , max_length=lowercase_ , pad_to_multiple_of=lowercase_ , return_tensors='''pt''' , ) # Instantiate dataloaders. _lowerCamelCase : Union[str, Any] = DataLoader( tokenized_datasets['''train'''] , shuffle=lowercase_ , collate_fn=lowercase_ , batch_size=lowercase_ ) _lowerCamelCase : Tuple = DataLoader( tokenized_datasets['''validation'''] , shuffle=lowercase_ , collate_fn=lowercase_ , batch_size=lowercase_ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders _lowerCamelCase = mocked_dataloaders # noqa: F811 def __UpperCAmelCase( lowercase_ , lowercase_ ): # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , lowercase_ ) == "1": _lowerCamelCase : List[Any] = 2 # Initialize Accelerator # New Code # # We pass in "all" to `log_with` to grab all available trackers in the environment # Note: If using a custom `Tracker` class, should be passed in here such as: # >>> log_with = ["all", MyCustomTrackerClassInstance()] if args.with_tracking: _lowerCamelCase : Tuple = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with='''all''' , project_dir=args.project_dir ) else: _lowerCamelCase : Any = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _lowerCamelCase : str = config['''lr'''] _lowerCamelCase : Optional[Any] = int(config['''num_epochs'''] ) _lowerCamelCase : Optional[int] = int(config['''seed'''] ) _lowerCamelCase : str = int(config['''batch_size'''] ) set_seed(lowercase_ ) _lowerCamelCase : List[str] = get_dataloaders(lowercase_ , lowercase_ ) _lowerCamelCase : Dict = evaluate.load('''glue''' , '''mrpc''' ) # If the batch size is too big we use gradient accumulation _lowerCamelCase : List[str] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: _lowerCamelCase : str = batch_size // MAX_GPU_BATCH_SIZE _lowerCamelCase : Optional[Any] = MAX_GPU_BATCH_SIZE # Instantiate the model (we build the model here so that the seed also control new weights initialization) _lowerCamelCase : int = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=lowercase_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _lowerCamelCase : List[Any] = model.to(accelerator.device ) # Instantiate optimizer _lowerCamelCase : List[str] = AdamW(params=model.parameters() , lr=lowercase_ ) # Instantiate scheduler _lowerCamelCase : List[Any] = get_linear_schedule_with_warmup( optimizer=lowercase_ , num_warmup_steps=1_00 , num_training_steps=(len(lowercase_ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _lowerCamelCase : Tuple = accelerator.prepare( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) # New Code # # We need to initialize the trackers we use. Overall configurations can also be stored if args.with_tracking: _lowerCamelCase : Optional[int] = os.path.split(lowercase_ )[-1].split('''.''' )[0] accelerator.init_trackers(lowercase_ , lowercase_ ) # Now we train the model for epoch in range(lowercase_ ): model.train() # New Code # # For our tracking example, we will log the total loss of each epoch if args.with_tracking: _lowerCamelCase : str = 0 for step, batch in enumerate(lowercase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) _lowerCamelCase : List[str] = model(**lowercase_ ) _lowerCamelCase : Optional[Any] = outputs.loss # New Code # if args.with_tracking: total_loss += loss.detach().float() _lowerCamelCase : int = loss / gradient_accumulation_steps accelerator.backward(lowercase_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowercase_ ): # We could avoid this line since we set the accelerator with `device_placement=True` (the default). batch.to(accelerator.device ) with torch.no_grad(): _lowerCamelCase : Dict = model(**lowercase_ ) _lowerCamelCase : Dict = outputs.logits.argmax(dim=-1 ) _lowerCamelCase : int = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=lowercase_ , references=lowercase_ , ) _lowerCamelCase : Union[str, Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}:""" , lowercase_ ) # New Code # # To actually log, we call `Accelerator.log` # The values passed can be of `str`, `int`, `float` or `dict` of `str` to `float`/`int` if args.with_tracking: accelerator.log( { '''accuracy''': eval_metric['''accuracy'''], '''f1''': eval_metric['''f1'''], '''train_loss''': total_loss.item() / len(lowercase_ ), '''epoch''': epoch, } , step=lowercase_ , ) # New Code # # When a run is finished, you should call `accelerator.end_training()` # to close all of the open trackers if args.with_tracking: accelerator.end_training() def __UpperCAmelCase( ): _lowerCamelCase : str = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=lowercase_ , default=lowercase_ , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) parser.add_argument( '''--with_tracking''' , action='''store_true''' , help='''Whether to load in all available experiment trackers from the environment and use them for logging.''' , ) parser.add_argument( '''--project_dir''' , type=lowercase_ , default='''logs''' , help='''Location on where to store experiment tracking logs` and relevent project information''' , ) _lowerCamelCase : str = parser.parse_args() _lowerCamelCase : str = {'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(lowercase_ , lowercase_ ) if __name__ == "__main__": main()
700
import inspect import unittest import warnings from math import ceil, floor from transformers import LevitConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_MAPPING, LevitForImageClassification, LevitForImageClassificationWithTeacher, LevitModel, ) from transformers.models.levit.modeling_levit import LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class __A ( lowerCamelCase__ ): """simple docstring""" def __snake_case ( self): """simple docstring""" _lowerCamelCase : Optional[Any] = self.config_class(**self.inputs_dict) self.parent.assertTrue(hasattr(a__ , '''hidden_sizes''')) self.parent.assertTrue(hasattr(a__ , '''num_attention_heads''')) class __A : """simple docstring""" def __init__( self , a__ , a__=13 , a__=64 , a__=3 , a__=3 , a__=2 , a__=1 , a__=16 , a__=[128, 256, 384] , a__=[4, 6, 8] , a__=[2, 3, 4] , a__=[16, 16, 16] , a__=0 , a__=[2, 2, 2] , a__=[2, 2, 2] , a__=0.02 , a__=True , a__=True , a__=2 , ): """simple docstring""" _lowerCamelCase : Optional[Any] = parent _lowerCamelCase : Union[str, Any] = batch_size _lowerCamelCase : Dict = image_size _lowerCamelCase : Dict = num_channels _lowerCamelCase : Any = kernel_size _lowerCamelCase : int = stride _lowerCamelCase : Dict = padding _lowerCamelCase : Union[str, Any] = hidden_sizes _lowerCamelCase : Optional[Any] = num_attention_heads _lowerCamelCase : Any = depths _lowerCamelCase : List[Any] = key_dim _lowerCamelCase : Optional[Any] = drop_path_rate _lowerCamelCase : Union[str, Any] = patch_size _lowerCamelCase : int = attention_ratio _lowerCamelCase : Any = mlp_ratio _lowerCamelCase : List[str] = initializer_range _lowerCamelCase : Dict = [ ['''Subsample''', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['''Subsample''', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] _lowerCamelCase : str = is_training _lowerCamelCase : Tuple = use_labels _lowerCamelCase : List[Any] = num_labels _lowerCamelCase : Union[str, Any] = initializer_range def __snake_case ( self): """simple docstring""" _lowerCamelCase : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) _lowerCamelCase : str = None if self.use_labels: _lowerCamelCase : List[str] = ids_tensor([self.batch_size] , self.num_labels) _lowerCamelCase : List[Any] = self.get_config() return config, pixel_values, labels def __snake_case ( self): """simple docstring""" return LevitConfig( image_size=self.image_size , num_channels=self.num_channels , kernel_size=self.kernel_size , stride=self.stride , padding=self.padding , patch_size=self.patch_size , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , depths=self.depths , key_dim=self.key_dim , drop_path_rate=self.drop_path_rate , mlp_ratio=self.mlp_ratio , attention_ratio=self.attention_ratio , initializer_range=self.initializer_range , down_ops=self.down_ops , ) def __snake_case ( self , a__ , a__ , a__): """simple docstring""" _lowerCamelCase : Optional[Any] = LevitModel(config=a__) model.to(a__) model.eval() _lowerCamelCase : List[str] = model(a__) _lowerCamelCase : List[str] = (self.image_size, self.image_size) _lowerCamelCase, _lowerCamelCase : Optional[int] = image_size[0], image_size[1] for _ in range(4): _lowerCamelCase : int = floor(((height + 2 * self.padding - self.kernel_size) / self.stride) + 1) _lowerCamelCase : Dict = floor(((width + 2 * self.padding - self.kernel_size) / self.stride) + 1) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, ceil(height / 4) * ceil(width / 4), self.hidden_sizes[-1]) , ) def __snake_case ( self , a__ , a__ , a__): """simple docstring""" _lowerCamelCase : Optional[int] = self.num_labels _lowerCamelCase : Dict = LevitForImageClassification(a__) model.to(a__) model.eval() _lowerCamelCase : List[Any] = model(a__ , labels=a__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def __snake_case ( self): """simple docstring""" _lowerCamelCase : int = self.prepare_config_and_inputs() _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Union[str, Any] = config_and_inputs _lowerCamelCase : List[str] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __A ( lowerCamelCase__ ,lowerCamelCase__ ,unittest.TestCase ): """simple docstring""" UpperCAmelCase__ = ( (LevitModel, LevitForImageClassification, LevitForImageClassificationWithTeacher) if is_torch_available() else () ) UpperCAmelCase__ = ( { """feature-extraction""": LevitModel, """image-classification""": (LevitForImageClassification, LevitForImageClassificationWithTeacher), } if is_torch_available() else {} ) UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False def __snake_case ( self): """simple docstring""" _lowerCamelCase : Union[str, Any] = LevitModelTester(self) _lowerCamelCase : Tuple = ConfigTester(self , config_class=a__ , has_text_modality=a__ , hidden_size=37) def __snake_case ( self): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __snake_case ( self): """simple docstring""" return @unittest.skip(reason='''Levit does not use inputs_embeds''') def __snake_case ( self): """simple docstring""" pass @unittest.skip(reason='''Levit does not support input and output embeddings''') def __snake_case ( self): """simple docstring""" pass @unittest.skip(reason='''Levit does not output attentions''') def __snake_case ( self): """simple docstring""" pass def __snake_case ( self): """simple docstring""" _lowerCamelCase, _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : Any = model_class(a__) _lowerCamelCase : str = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCamelCase : Dict = [*signature.parameters.keys()] _lowerCamelCase : List[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , a__) def __snake_case ( self): """simple docstring""" def check_hidden_states_output(a__ , a__ , a__): _lowerCamelCase : List[Any] = model_class(a__) model.to(a__) model.eval() with torch.no_grad(): _lowerCamelCase : Any = model(**self._prepare_for_class(a__ , a__)) _lowerCamelCase : int = outputs.hidden_states _lowerCamelCase : List[str] = len(self.model_tester.depths) + 1 self.assertEqual(len(a__) , a__) _lowerCamelCase : Tuple = (self.model_tester.image_size, self.model_tester.image_size) _lowerCamelCase, _lowerCamelCase : Tuple = image_size[0], image_size[1] for _ in range(4): _lowerCamelCase : Optional[Any] = floor( ( (height + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1) _lowerCamelCase : List[Any] = floor( ( (width + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-2:]) , [ height * width, self.model_tester.hidden_sizes[0], ] , ) _lowerCamelCase, _lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : List[Any] = True check_hidden_states_output(a__ , a__ , a__) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCamelCase : List[str] = True check_hidden_states_output(a__ , a__ , a__) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''') def __snake_case ( self): """simple docstring""" pass def __snake_case ( self , a__ , a__ , a__=False): """simple docstring""" _lowerCamelCase : Dict = super()._prepare_for_class(a__ , a__ , return_labels=a__) if return_labels: if model_class.__name__ == "LevitForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def __snake_case ( self): """simple docstring""" _lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a__) def __snake_case ( self): """simple docstring""" _lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*a__) def __snake_case ( self): """simple docstring""" if not self.model_tester.is_training: return _lowerCamelCase, _lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() _lowerCamelCase : Optional[Any] = True for model_class in self.all_model_classes: # LevitForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(a__) or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue _lowerCamelCase : Optional[Any] = model_class(a__) model.to(a__) model.train() _lowerCamelCase : Any = self._prepare_for_class(a__ , a__ , return_labels=a__) _lowerCamelCase : Tuple = model(**a__).loss loss.backward() def __snake_case ( self): """simple docstring""" _lowerCamelCase, _lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return _lowerCamelCase : Union[str, Any] = False _lowerCamelCase : List[str] = True for model_class in self.all_model_classes: if model_class in get_values(a__) or not model_class.supports_gradient_checkpointing: continue # LevitForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "LevitForImageClassificationWithTeacher": continue _lowerCamelCase : List[Any] = model_class(a__) model.gradient_checkpointing_enable() model.to(a__) model.train() _lowerCamelCase : int = self._prepare_for_class(a__ , a__ , return_labels=a__) _lowerCamelCase : Any = model(**a__).loss loss.backward() def __snake_case ( self): """simple docstring""" _lowerCamelCase, _lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() _lowerCamelCase : Dict = [ {'''title''': '''multi_label_classification''', '''num_labels''': 2, '''dtype''': torch.float}, {'''title''': '''single_label_classification''', '''num_labels''': 1, '''dtype''': torch.long}, {'''title''': '''regression''', '''num_labels''': 1, '''dtype''': torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(a__), ] or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=F"""Testing {model_class} with {problem_type['title']}"""): _lowerCamelCase : Tuple = problem_type['''title'''] _lowerCamelCase : Tuple = problem_type['''num_labels'''] _lowerCamelCase : int = model_class(a__) model.to(a__) model.train() _lowerCamelCase : int = self._prepare_for_class(a__ , a__ , return_labels=a__) if problem_type["num_labels"] > 1: _lowerCamelCase : int = inputs['''labels'''].unsqueeze(1).repeat(1 , problem_type['''num_labels''']) _lowerCamelCase : Tuple = inputs['''labels'''].to(problem_type['''dtype''']) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=a__) as warning_list: _lowerCamelCase : Any = model(**a__).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message): raise ValueError( F"""Something is going wrong in the regression problem: intercepted {w.message}""") loss.backward() @slow def __snake_case ( self): """simple docstring""" for model_name in LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase : int = LevitModel.from_pretrained(a__) self.assertIsNotNone(a__) def __UpperCAmelCase( ): _lowerCamelCase : int = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class __A ( unittest.TestCase ): """simple docstring""" @cached_property def __snake_case ( self): """simple docstring""" return LevitImageProcessor.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0]) @slow def __snake_case ( self): """simple docstring""" _lowerCamelCase : Any = LevitForImageClassificationWithTeacher.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0]).to( a__) _lowerCamelCase : int = self.default_image_processor _lowerCamelCase : int = prepare_img() _lowerCamelCase : str = image_processor(images=a__ , return_tensors='''pt''').to(a__) # forward pass with torch.no_grad(): _lowerCamelCase : int = model(**a__) # verify the logits _lowerCamelCase : List[str] = torch.Size((1, 1000)) self.assertEqual(outputs.logits.shape , a__) _lowerCamelCase : Optional[Any] = torch.tensor([1.0448, -0.3745, -1.8317]).to(a__) self.assertTrue(torch.allclose(outputs.logits[0, :3] , a__ , atol=1e-4))
613
0
from collections import Counter from timeit import timeit def _lowercase( __a : str = "" , ): return sum(c % 2 for c in Counter(input_str.replace(' ' , '' ).lower() ).values() ) < 2 def _lowercase( __a : str = "" ): if len(__a ) == 0: return True a__ =input_str.replace(' ' , '' ).lower() # character_freq_dict: Stores the frequency of every character in the input string a__ ={} for character in lower_case_input_str: a__ =character_freq_dict.get(__a , 0 ) + 1 a__ =0 for character_count in character_freq_dict.values(): if character_count % 2: odd_char += 1 if odd_char > 1: return False return True def _lowercase( __a : str = "" ): print('\nFor string = ' , __a , ':' ) print( '> can_string_be_rearranged_as_palindrome_counter()' , '\tans =' , can_string_be_rearranged_as_palindrome_counter(__a ) , '\ttime =' , timeit( 'z.can_string_be_rearranged_as_palindrome_counter(z.check_str)' , setup='import __main__ as z' , ) , 'seconds' , ) print( '> can_string_be_rearranged_as_palindrome()' , '\tans =' , can_string_be_rearranged_as_palindrome(__a ) , '\ttime =' , timeit( 'z.can_string_be_rearranged_as_palindrome(z.check_str)' , setup='import __main__ as z' , ) , 'seconds' , ) if __name__ == "__main__": _lowerCAmelCase: Any = input( 'Enter string to determine if it can be rearranged as a palindrome or not: ' ).strip() benchmark(check_str) _lowerCAmelCase: Optional[Any] = can_string_be_rearranged_as_palindrome_counter(check_str) print(F"""{check_str} can {'' if status else 'not '}be rearranged as a palindrome""")
20
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase: List[str] = logging.get_logger(__name__) _lowerCAmelCase: Tuple = torch.device('cpu') def _lowercase( ): a__ ='http://images.cocodataset.org/val2017/000000039769.jpg' a__ =Image.open(requests.get(__a , stream=__a ).raw ) return im def _lowercase( __a : Optional[Any] ): if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.1703e00, 2.1107e00, -2.0811e00, 8.8685e-01, 2.4360e-01] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.9636e-01, 2.3478e-01, -1.6963e00, -1.7381e00, -8.6337e-01] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.2768e-01, -4.7429e-01, -1.0897e00, -1.0248e00, 3.5523e-02] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.5330e-01, 2.4211e-01, -6.0185e-01, -8.2789e-01, -6.0446e-02] ) def _lowercase( __a : int , __a : int , __a : Optional[Any] ): a__ =dct.pop(__a ) a__ =val def _lowercase( __a : Optional[Any] ): a__ =[] for k in state_dict.keys(): a__ =k if ".pwconv" in k: a__ =k_new.replace('.pwconv' , '.point_wise_conv' ) if ".dwconv" in k: a__ =k_new.replace('.dwconv' , '.depth_wise_conv' ) if ".Proj." in k: a__ =k_new.replace('.Proj.' , '.proj.' ) if "patch_embed" in k_new: a__ =k_new.replace('patch_embed' , 'swiftformer.patch_embed.patch_embedding' ) if "network" in k_new: a__ =k_new.split('.' ) if ls[2].isdigit(): a__ ='swiftformer.encoder.network.' + ls[1] + '.blocks.' + ls[2] + '.' + '.'.join(ls[3:] ) else: a__ =k_new.replace('network' , 'swiftformer.encoder.network' ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def _lowercase( __a : Union[str, Any] , __a : int , __a : str ): a__ =SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size a__ =1000 a__ ='huggingface/label-files' a__ ='imagenet-1k-id2label.json' a__ =json.load(open(hf_hub_download(__a , __a , repo_type='dataset' ) , 'r' ) ) a__ ={int(__a ): v for k, v in idalabel.items()} a__ =idalabel a__ ={v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": a__ =[3, 3, 6, 4] a__ =[48, 56, 112, 220] elif swiftformer_name == "swiftformer_s": a__ =[3, 3, 9, 6] a__ =[48, 64, 168, 224] elif swiftformer_name == "swiftformer_l1": a__ =[4, 3, 10, 5] a__ =[48, 96, 192, 384] elif swiftformer_name == "swiftformer_l3": a__ =[4, 4, 12, 6] a__ =[64, 128, 320, 512] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith('https' ): a__ =torch.hub.load_state_dict_from_url(__a , map_location='cpu' , check_hash=__a ) else: a__ =torch.load(__a , map_location='cpu' ) a__ =checkpoint a__ =create_rename_keys(__a ) for rename_key_src, rename_key_dest in rename_keys: rename_key(__a , __a , __a ) # load HuggingFace model a__ =SwiftFormerForImageClassification(__a ).eval() hf_model.load_state_dict(__a ) # prepare test inputs a__ =prepare_img() a__ =ViTImageProcessor.from_pretrained('preprocessor_config' ) a__ =processor(images=__a , return_tensors='pt' ) # compare outputs from both models a__ =get_expected_output(__a ) a__ =hf_model(inputs['pixel_values'] ).logits assert hf_logits.shape == torch.Size([1, 1000] ) assert torch.allclose(hf_logits[0, 0:5] , __a , atol=1e-3 ) Path(__a ).mkdir(exist_ok=__a ) print(f"""Saving model {swiftformer_name} to {pytorch_dump_folder_path}""" ) hf_model.save_pretrained(__a ) if __name__ == "__main__": _lowerCAmelCase: Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--swiftformer_name', default='swiftformer_xs', choices=['swiftformer_xs', 'swiftformer_s', 'swiftformer_l1', 'swiftformer_l3'], type=str, help='Name of the SwiftFormer model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default='./converted_outputs/', type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument('--original_ckpt', default=None, type=str, help='Path to the original model checkpoint.') _lowerCAmelCase: Optional[int] = parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
20
1
"""simple docstring""" from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import torch from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available @dataclass class __UpperCamelCase ( _UpperCAmelCase ): _UpperCAmelCase = 42 try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_text_to_video_synth import TextToVideoSDPipeline from .pipeline_text_to_video_synth_imgaimg import VideoToVideoSDPipeline # noqa: F401 from .pipeline_text_to_video_zero import TextToVideoZeroPipeline
718
"""simple docstring""" import argparse import struct import unittest class __UpperCamelCase : def __init__( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[int] = data # Initialize hash values _lowerCAmelCase : Any = [ 0x6A09_E667, 0xBB67_AE85, 0x3C6E_F372, 0xA54F_F53A, 0x510E_527F, 0x9B05_688C, 0x1F83_D9AB, 0x5BE0_CD19, ] # Initialize round constants _lowerCAmelCase : str = [ 0x428A_2F98, 0x7137_4491, 0xB5C0_FBCF, 0xE9B5_DBA5, 0x3956_C25B, 0x59F1_11F1, 0x923F_82A4, 0xAB1C_5ED5, 0xD807_AA98, 0x1283_5B01, 0x2431_85BE, 0x550C_7DC3, 0x72BE_5D74, 0x80DE_B1FE, 0x9BDC_06A7, 0xC19B_F174, 0xE49B_69C1, 0xEFBE_4786, 0x0FC1_9DC6, 0x240C_A1CC, 0x2DE9_2C6F, 0x4A74_84AA, 0x5CB0_A9DC, 0x76F9_88DA, 0x983E_5152, 0xA831_C66D, 0xB003_27C8, 0xBF59_7FC7, 0xC6E0_0BF3, 0xD5A7_9147, 0x06CA_6351, 0x1429_2967, 0x27B7_0A85, 0x2E1B_2138, 0x4D2C_6DFC, 0x5338_0D13, 0x650A_7354, 0x766A_0ABB, 0x81C2_C92E, 0x9272_2C85, 0xA2BF_E8A1, 0xA81A_664B, 0xC24B_8B70, 0xC76C_51A3, 0xD192_E819, 0xD699_0624, 0xF40E_3585, 0x106A_A070, 0x19A4_C116, 0x1E37_6C08, 0x2748_774C, 0x34B0_BCB5, 0x391C_0CB3, 0x4ED8_AA4A, 0x5B9C_CA4F, 0x682E_6FF3, 0x748F_82EE, 0x78A5_636F, 0x84C8_7814, 0x8CC7_0208, 0x90BE_FFFA, 0xA450_6CEB, 0xBEF9_A3F7, 0xC671_78F2, ] _lowerCAmelCase : Any = self.preprocessing(self.data ) self.final_hash() @staticmethod def __lowerCamelCase ( _A ): '''simple docstring''' _lowerCAmelCase : int = b'\x80' + (b'\x00' * (63 - (len(_A ) + 8) % 64)) _lowerCAmelCase : Any = struct.pack('>Q' ,(len(_A ) * 8) ) return data + padding + big_endian_integer def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = [ self.preprocessed_data[x : x + 64] for x in range(0 ,len(self.preprocessed_data ) ,64 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers _lowerCAmelCase : int = list(struct.unpack('>16L' ,_A ) ) # add 48 0-ed integers words += [0] * 48 _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : Tuple = self.hashes for index in range(0 ,64 ): if index > 15: # modify the zero-ed indexes at the end of the array _lowerCAmelCase : List[str] = ( self.ror(words[index - 15] ,7 ) ^ self.ror(words[index - 15] ,18 ) ^ (words[index - 15] >> 3) ) _lowerCAmelCase : Tuple = ( self.ror(words[index - 2] ,17 ) ^ self.ror(words[index - 2] ,19 ) ^ (words[index - 2] >> 10) ) _lowerCAmelCase : str = ( words[index - 16] + sa + words[index - 7] + sa ) % 0x1_0000_0000 # Compression _lowerCAmelCase : Optional[Any] = self.ror(_A ,6 ) ^ self.ror(_A ,11 ) ^ self.ror(_A ,25 ) _lowerCAmelCase : int = (e & f) ^ ((~e & 0xFFFF_FFFF) & g) _lowerCAmelCase : int = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0x1_0000_0000 _lowerCAmelCase : Union[str, Any] = self.ror(_A ,2 ) ^ self.ror(_A ,13 ) ^ self.ror(_A ,22 ) _lowerCAmelCase : Any = (a & b) ^ (a & c) ^ (b & c) _lowerCAmelCase : Any = (sa + maj) % 0x1_0000_0000 _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : Tuple = ( g, f, e, ((d + tempa) % 0x1_0000_0000), c, b, a, ((tempa + tempa) % 0x1_0000_0000), ) _lowerCAmelCase : Any = [a, b, c, d, e, f, g, h] # Modify final values _lowerCAmelCase : int = [ ((element + mutated_hash_values[index]) % 0x1_0000_0000) for index, element in enumerate(self.hashes ) ] _lowerCAmelCase : List[str] = ''.join([hex(_A )[2:].zfill(8 ) for value in self.hashes] ) def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' return 0xFFFF_FFFF & (value << (32 - rotations)) | (value >> rotations) class __UpperCamelCase ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' import hashlib _lowerCAmelCase : Any = bytes('Test String' ,'utf-8' ) self.assertEqual(SHAaaa(_A ).hash ,hashlib.shaaaa(_A ).hexdigest() ) def lowerCamelCase__ ( ): '''simple docstring''' import doctest doctest.testmod() _lowerCAmelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument( '-s' , '--string' , dest='input_string' , default='Hello World!! Welcome to Cryptography' , help='Hash the string' , ) parser.add_argument( '-f' , '--file' , dest='input_file' , help='Hash contents of a file' ) _lowerCAmelCase : Tuple = parser.parse_args() _lowerCAmelCase : List[str] = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , 'rb' ) as f: _lowerCAmelCase : int = f.read() else: _lowerCAmelCase : int = bytes(_lowerCamelCase , 'utf-8' ) print(SHAaaa(_lowerCamelCase ).hash ) if __name__ == "__main__": main()
16
0
"""simple docstring""" import unittest from transformers import ( MODEL_FOR_OBJECT_DETECTION_MAPPING, AutoFeatureExtractor, AutoModelForObjectDetection, ObjectDetectionPipeline, is_vision_available, pipeline, ) from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_pytesseract, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __snake_case : @staticmethod def __a ( *A_: str , **A_: int ): pass @is_pipeline_test @require_vision @require_timm @require_torch class __snake_case (unittest.TestCase ): __a = MODEL_FOR_OBJECT_DETECTION_MAPPING def __a ( self: Tuple , A_: List[Any] , A_: Any , A_: str ): __lowerCamelCase = ObjectDetectionPipeline(model=lowercase_ , image_processor=lowercase_ ) return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"] def __a ( self: str , A_: Optional[Any] , A_: Optional[int] ): __lowerCamelCase = object_detector("""./tests/fixtures/tests_samples/COCO/000000039769.png""" , threshold=0.0 ) self.assertGreater(len(lowercase_ ) , 0 ) for detected_object in outputs: self.assertEqual( lowercase_ , { """score""": ANY(lowercase_ ), """label""": ANY(lowercase_ ), """box""": {"""xmin""": ANY(lowercase_ ), """ymin""": ANY(lowercase_ ), """xmax""": ANY(lowercase_ ), """ymax""": ANY(lowercase_ )}, } , ) import datasets __lowerCamelCase = datasets.load_dataset("""hf-internal-testing/fixtures_image_utils""" , """image""" , split="""test""" ) __lowerCamelCase = [ Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ), """http://images.cocodataset.org/val2017/000000039769.jpg""", # RGBA dataset[0]["""file"""], # LA dataset[1]["""file"""], # L dataset[2]["""file"""], ] __lowerCamelCase = object_detector(lowercase_ , threshold=0.0 ) self.assertEqual(len(lowercase_ ) , len(lowercase_ ) ) for outputs in batch_outputs: self.assertGreater(len(lowercase_ ) , 0 ) for detected_object in outputs: self.assertEqual( lowercase_ , { """score""": ANY(lowercase_ ), """label""": ANY(lowercase_ ), """box""": {"""xmin""": ANY(lowercase_ ), """ymin""": ANY(lowercase_ ), """xmax""": ANY(lowercase_ ), """ymax""": ANY(lowercase_ )}, } , ) @require_tf @unittest.skip("""Object detection not implemented in TF""" ) def __a ( self: List[str] ): pass @require_torch def __a ( self: Tuple ): __lowerCamelCase = """hf-internal-testing/tiny-detr-mobilenetsv3""" __lowerCamelCase = AutoModelForObjectDetection.from_pretrained(lowercase_ ) __lowerCamelCase = AutoFeatureExtractor.from_pretrained(lowercase_ ) __lowerCamelCase = ObjectDetectionPipeline(model=lowercase_ , feature_extractor=lowercase_ ) __lowerCamelCase = object_detector("""http://images.cocodataset.org/val2017/000000039769.jpg""" , threshold=0.0 ) self.assertEqual( nested_simplify(lowercase_ , decimals=4 ) , [ {"""score""": 0.3_376, """label""": """LABEL_0""", """box""": {"""xmin""": 1_59, """ymin""": 1_20, """xmax""": 4_80, """ymax""": 3_59}}, {"""score""": 0.3_376, """label""": """LABEL_0""", """box""": {"""xmin""": 1_59, """ymin""": 1_20, """xmax""": 4_80, """ymax""": 3_59}}, ] , ) __lowerCamelCase = object_detector( [ """http://images.cocodataset.org/val2017/000000039769.jpg""", """http://images.cocodataset.org/val2017/000000039769.jpg""", ] , threshold=0.0 , ) self.assertEqual( nested_simplify(lowercase_ , decimals=4 ) , [ [ {"""score""": 0.3_376, """label""": """LABEL_0""", """box""": {"""xmin""": 1_59, """ymin""": 1_20, """xmax""": 4_80, """ymax""": 3_59}}, {"""score""": 0.3_376, """label""": """LABEL_0""", """box""": {"""xmin""": 1_59, """ymin""": 1_20, """xmax""": 4_80, """ymax""": 3_59}}, ], [ {"""score""": 0.3_376, """label""": """LABEL_0""", """box""": {"""xmin""": 1_59, """ymin""": 1_20, """xmax""": 4_80, """ymax""": 3_59}}, {"""score""": 0.3_376, """label""": """LABEL_0""", """box""": {"""xmin""": 1_59, """ymin""": 1_20, """xmax""": 4_80, """ymax""": 3_59}}, ], ] , ) @require_torch @slow def __a ( self: Dict ): __lowerCamelCase = """facebook/detr-resnet-50""" __lowerCamelCase = AutoModelForObjectDetection.from_pretrained(lowercase_ ) __lowerCamelCase = AutoFeatureExtractor.from_pretrained(lowercase_ ) __lowerCamelCase = ObjectDetectionPipeline(model=lowercase_ , feature_extractor=lowercase_ ) __lowerCamelCase = object_detector("""http://images.cocodataset.org/val2017/000000039769.jpg""" ) self.assertEqual( nested_simplify(lowercase_ , decimals=4 ) , [ {"""score""": 0.9_982, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 1_75, """ymax""": 1_17}}, {"""score""": 0.9_960, """label""": """remote""", """box""": {"""xmin""": 3_33, """ymin""": 72, """xmax""": 3_68, """ymax""": 1_87}}, {"""score""": 0.9_955, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 6_39, """ymax""": 4_73}}, {"""score""": 0.9_988, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 3_14, """ymax""": 4_70}}, {"""score""": 0.9_987, """label""": """cat""", """box""": {"""xmin""": 3_45, """ymin""": 23, """xmax""": 6_40, """ymax""": 3_68}}, ] , ) __lowerCamelCase = object_detector( [ """http://images.cocodataset.org/val2017/000000039769.jpg""", """http://images.cocodataset.org/val2017/000000039769.jpg""", ] ) self.assertEqual( nested_simplify(lowercase_ , decimals=4 ) , [ [ {"""score""": 0.9_982, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 1_75, """ymax""": 1_17}}, {"""score""": 0.9_960, """label""": """remote""", """box""": {"""xmin""": 3_33, """ymin""": 72, """xmax""": 3_68, """ymax""": 1_87}}, {"""score""": 0.9_955, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 6_39, """ymax""": 4_73}}, {"""score""": 0.9_988, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 3_14, """ymax""": 4_70}}, {"""score""": 0.9_987, """label""": """cat""", """box""": {"""xmin""": 3_45, """ymin""": 23, """xmax""": 6_40, """ymax""": 3_68}}, ], [ {"""score""": 0.9_982, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 1_75, """ymax""": 1_17}}, {"""score""": 0.9_960, """label""": """remote""", """box""": {"""xmin""": 3_33, """ymin""": 72, """xmax""": 3_68, """ymax""": 1_87}}, {"""score""": 0.9_955, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 6_39, """ymax""": 4_73}}, {"""score""": 0.9_988, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 3_14, """ymax""": 4_70}}, {"""score""": 0.9_987, """label""": """cat""", """box""": {"""xmin""": 3_45, """ymin""": 23, """xmax""": 6_40, """ymax""": 3_68}}, ], ] , ) @require_torch @slow def __a ( self: Dict ): __lowerCamelCase = """facebook/detr-resnet-50""" __lowerCamelCase = pipeline("""object-detection""" , model=lowercase_ ) __lowerCamelCase = object_detector("""http://images.cocodataset.org/val2017/000000039769.jpg""" ) self.assertEqual( nested_simplify(lowercase_ , decimals=4 ) , [ {"""score""": 0.9_982, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 1_75, """ymax""": 1_17}}, {"""score""": 0.9_960, """label""": """remote""", """box""": {"""xmin""": 3_33, """ymin""": 72, """xmax""": 3_68, """ymax""": 1_87}}, {"""score""": 0.9_955, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 6_39, """ymax""": 4_73}}, {"""score""": 0.9_988, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 3_14, """ymax""": 4_70}}, {"""score""": 0.9_987, """label""": """cat""", """box""": {"""xmin""": 3_45, """ymin""": 23, """xmax""": 6_40, """ymax""": 3_68}}, ] , ) __lowerCamelCase = object_detector( [ """http://images.cocodataset.org/val2017/000000039769.jpg""", """http://images.cocodataset.org/val2017/000000039769.jpg""", ] ) self.assertEqual( nested_simplify(lowercase_ , decimals=4 ) , [ [ {"""score""": 0.9_982, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 1_75, """ymax""": 1_17}}, {"""score""": 0.9_960, """label""": """remote""", """box""": {"""xmin""": 3_33, """ymin""": 72, """xmax""": 3_68, """ymax""": 1_87}}, {"""score""": 0.9_955, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 6_39, """ymax""": 4_73}}, {"""score""": 0.9_988, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 3_14, """ymax""": 4_70}}, {"""score""": 0.9_987, """label""": """cat""", """box""": {"""xmin""": 3_45, """ymin""": 23, """xmax""": 6_40, """ymax""": 3_68}}, ], [ {"""score""": 0.9_982, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 1_75, """ymax""": 1_17}}, {"""score""": 0.9_960, """label""": """remote""", """box""": {"""xmin""": 3_33, """ymin""": 72, """xmax""": 3_68, """ymax""": 1_87}}, {"""score""": 0.9_955, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 6_39, """ymax""": 4_73}}, {"""score""": 0.9_988, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 3_14, """ymax""": 4_70}}, {"""score""": 0.9_987, """label""": """cat""", """box""": {"""xmin""": 3_45, """ymin""": 23, """xmax""": 6_40, """ymax""": 3_68}}, ], ] , ) @require_torch @slow def __a ( self: Optional[int] ): __lowerCamelCase = 0.9_985 __lowerCamelCase = """facebook/detr-resnet-50""" __lowerCamelCase = pipeline("""object-detection""" , model=lowercase_ ) __lowerCamelCase = object_detector("""http://images.cocodataset.org/val2017/000000039769.jpg""" , threshold=lowercase_ ) self.assertEqual( nested_simplify(lowercase_ , decimals=4 ) , [ {"""score""": 0.9_988, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 3_14, """ymax""": 4_70}}, {"""score""": 0.9_987, """label""": """cat""", """box""": {"""xmin""": 3_45, """ymin""": 23, """xmax""": 6_40, """ymax""": 3_68}}, ] , ) @require_torch @require_pytesseract @slow def __a ( self: Optional[Any] ): __lowerCamelCase = """Narsil/layoutlmv3-finetuned-funsd""" __lowerCamelCase = 0.9_993 __lowerCamelCase = pipeline("""object-detection""" , model=lowercase_ , threshold=lowercase_ ) __lowerCamelCase = object_detector( """https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png""" ) self.assertEqual( nested_simplify(lowercase_ , decimals=4 ) , [ {"""score""": 0.9_993, """label""": """I-ANSWER""", """box""": {"""xmin""": 2_94, """ymin""": 2_54, """xmax""": 3_43, """ymax""": 2_64}}, {"""score""": 0.9_993, """label""": """I-ANSWER""", """box""": {"""xmin""": 2_94, """ymin""": 2_54, """xmax""": 3_43, """ymax""": 2_64}}, ] , )
281
import argparse import copy def lowerCamelCase ( a_ ) -> Optional[int]: lowerCAmelCase_ = {} with open(a_ ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: lowerCAmelCase_ = [] _list.append([line.split()[1], line.split()[2]] ) lowerCAmelCase_ = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: lowerCAmelCase_ = [] _list.append([line.split()[0], line.split()[2]] ) lowerCAmelCase_ = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def lowerCamelCase ( a_ , a_ ) -> Dict: with open(a_ ) as f: lowerCAmelCase_ = f.read(1 ) lowerCAmelCase_ = start_node lowerCAmelCase_ = [] lowerCAmelCase_ = start_node lowerCAmelCase_ = 0 while visiting not in first_solution: lowerCAmelCase_ = 10_000 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(a_ ) and k[0] not in first_solution: lowerCAmelCase_ = k[1] lowerCAmelCase_ = k[0] first_solution.append(a_ ) lowerCAmelCase_ = distance_of_first_solution + int(a_ ) lowerCAmelCase_ = best_node first_solution.append(a_ ) lowerCAmelCase_ = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 lowerCAmelCase_ = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 10_000 ) return first_solution, distance_of_first_solution def lowerCamelCase ( a_ , a_ ) -> str: lowerCAmelCase_ = [] for n in solution[1:-1]: lowerCAmelCase_ = solution.index(a_ ) for kn in solution[1:-1]: lowerCAmelCase_ = solution.index(a_ ) if n == kn: continue lowerCAmelCase_ = copy.deepcopy(a_ ) lowerCAmelCase_ = kn lowerCAmelCase_ = n lowerCAmelCase_ = 0 for k in _tmp[:-1]: lowerCAmelCase_ = _tmp[_tmp.index(a_ ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: lowerCAmelCase_ = distance + int(i[1] ) _tmp.append(a_ ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) lowerCAmelCase_ = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda a_ : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def lowerCamelCase ( a_ , a_ , a_ , a_ , a_ ) -> Optional[int]: lowerCAmelCase_ = 1 lowerCAmelCase_ = first_solution lowerCAmelCase_ = [] lowerCAmelCase_ = distance_of_first_solution lowerCAmelCase_ = solution while count <= iters: lowerCAmelCase_ = find_neighborhood(a_ , a_ ) lowerCAmelCase_ = 0 lowerCAmelCase_ = neighborhood[index_of_best_solution] lowerCAmelCase_ = len(a_ ) - 1 lowerCAmelCase_ = False while not found: lowerCAmelCase_ = 0 while i < len(a_ ): if best_solution[i] != solution[i]: lowerCAmelCase_ = best_solution[i] lowerCAmelCase_ = solution[i] break lowerCAmelCase_ = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) lowerCAmelCase_ = True lowerCAmelCase_ = best_solution[:-1] lowerCAmelCase_ = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: lowerCAmelCase_ = cost lowerCAmelCase_ = solution else: lowerCAmelCase_ = index_of_best_solution + 1 lowerCAmelCase_ = neighborhood[index_of_best_solution] if len(a_ ) >= size: tabu_list.pop(0 ) lowerCAmelCase_ = count + 1 return best_solution_ever, best_cost def lowerCamelCase ( a_=None ) -> Optional[int]: lowerCAmelCase_ = generate_neighbours(args.File ) lowerCAmelCase_ , lowerCAmelCase_ = generate_first_solution( args.File , a_ ) lowerCAmelCase_ , lowerCAmelCase_ = tabu_search( a_ , a_ , a_ , args.Iterations , args.Size , ) print(F'''Best solution: {best_sol}, with total distance: {best_cost}.''' ) if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser(description="""Tabu Search""") parser.add_argument( """-f""", """--File""", type=str, help="""Path to the file containing the data""", required=True, ) parser.add_argument( """-i""", """--Iterations""", type=int, help="""How many iterations the algorithm should perform""", required=True, ) parser.add_argument( """-s""", """--Size""", type=int, help="""Size of the tabu list""", required=True ) # Pass the arguments to main method main(parser.parse_args())
318
0
"""simple docstring""" def lowerCAmelCase__ ( _UpperCamelCase : Tuple ) -> List[str]: """simple docstring""" snake_case = [] snake_case = set({'(', '[', '{'} ) snake_case = set({')', ']', '}'} ) snake_case = {'{': '}', '[': ']', '(': ')'} for i in range(len(_UpperCamelCase ) ): if s[i] in open_brackets: stack.append(s[i] ) elif s[i] in closed_brackets and ( len(_UpperCamelCase ) == 0 or (len(_UpperCamelCase ) > 0 and open_to_closed[stack.pop()] != s[i]) ): return False return len(_UpperCamelCase ) == 0 def lowerCAmelCase__ ( ) -> str: """simple docstring""" snake_case = input('Enter sequence of brackets: ' ) if is_balanced(_UpperCamelCase ): print(_UpperCamelCase , 'is balanced' ) else: print(_UpperCamelCase , 'is not balanced' ) if __name__ == "__main__": main()
104
"""simple docstring""" import os import string import sys SCREAMING_SNAKE_CASE__ = 1 << 8 SCREAMING_SNAKE_CASE__ = { "tab": ord("\t"), "newline": ord("\r"), "esc": 27, "up": 65 + ARROW_KEY_FLAG, "down": 66 + ARROW_KEY_FLAG, "right": 67 + ARROW_KEY_FLAG, "left": 68 + ARROW_KEY_FLAG, "mod_int": 91, "undefined": sys.maxsize, "interrupt": 3, "insert": 50, "delete": 51, "pg_up": 53, "pg_down": 54, } SCREAMING_SNAKE_CASE__ = KEYMAP["up"] SCREAMING_SNAKE_CASE__ = KEYMAP["left"] if sys.platform == "win32": SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = { b"\xe0H": KEYMAP["up"] - ARROW_KEY_FLAG, b"\x00H": KEYMAP["up"] - ARROW_KEY_FLAG, b"\xe0P": KEYMAP["down"] - ARROW_KEY_FLAG, b"\x00P": KEYMAP["down"] - ARROW_KEY_FLAG, b"\xe0M": KEYMAP["right"] - ARROW_KEY_FLAG, b"\x00M": KEYMAP["right"] - ARROW_KEY_FLAG, b"\xe0K": KEYMAP["left"] - ARROW_KEY_FLAG, b"\x00K": KEYMAP["left"] - ARROW_KEY_FLAG, } for i in range(10): SCREAMING_SNAKE_CASE__ = ord(str(i)) def lowerCAmelCase__ ( ) -> List[Any]: """simple docstring""" if os.name == "nt": import msvcrt snake_case = 'mbcs' # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(_UpperCamelCase ) == 0: # Read the keystroke snake_case = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): snake_case = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: snake_case = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP['mod_int'] ) ) WIN_CH_BUFFER.append(_UpperCamelCase ) if ord(_UpperCamelCase ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(1_2_6 ) ) snake_case = chr(KEYMAP['esc'] ) except KeyError: snake_case = cha[1] else: snake_case = ch.decode(_UpperCamelCase ) else: snake_case = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty snake_case = sys.stdin.fileno() snake_case = termios.tcgetattr(_UpperCamelCase ) try: tty.setraw(_UpperCamelCase ) snake_case = sys.stdin.read(1 ) finally: termios.tcsetattr(_UpperCamelCase , termios.TCSADRAIN , _UpperCamelCase ) return ch def lowerCAmelCase__ ( ) -> Union[str, Any]: """simple docstring""" snake_case = get_raw_chars() if ord(_UpperCamelCase ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(_UpperCamelCase ) == KEYMAP["esc"]: snake_case = get_raw_chars() if ord(_UpperCamelCase ) == KEYMAP["mod_int"]: snake_case = get_raw_chars() if ord(_UpperCamelCase ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(_UpperCamelCase ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(_UpperCamelCase ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
104
1
'''simple docstring''' import copy import random from transformers import CLIPTokenizer class A ( SCREAMING_SNAKE_CASE__ ): def __init__( self : Any , *__magic_name__ : Optional[int] , **__magic_name__ : Union[str, Any] ): """simple docstring""" super().__init__(*__magic_name__ , **__magic_name__ ) lowerCAmelCase__ = {} def __SCREAMING_SNAKE_CASE ( self : int , __magic_name__ : Dict , *__magic_name__ : List[str] , **__magic_name__ : Optional[Any] ): """simple docstring""" lowerCAmelCase__ = super().add_tokens(__magic_name__ , *__magic_name__ , **__magic_name__ ) if num_added_tokens == 0: raise ValueError( f"""The tokenizer already contains the token {placeholder_token}. Please pass a different""" " `placeholder_token` that is not already in the tokenizer." ) def __SCREAMING_SNAKE_CASE ( self : List[Any] , __magic_name__ : Any , *__magic_name__ : Optional[Any] , __magic_name__ : Optional[int]=1 , **__magic_name__ : Optional[int] ): """simple docstring""" lowerCAmelCase__ = [] if num_vec_per_token == 1: self.try_adding_tokens(__magic_name__ , *__magic_name__ , **__magic_name__ ) output.append(__magic_name__ ) else: lowerCAmelCase__ = [] for i in range(__magic_name__ ): lowerCAmelCase__ = placeholder_token + f"""_{i}""" self.try_adding_tokens(__magic_name__ , *__magic_name__ , **__magic_name__ ) output.append(__magic_name__ ) # handle cases where there is a new placeholder token that contains the current placeholder token but is larger for token in self.token_map: if token in placeholder_token: raise ValueError( f"""The tokenizer already has placeholder token {token} that can get confused with""" f""" {placeholder_token}keep placeholder tokens independent""" ) lowerCAmelCase__ = output def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[int]=False , __magic_name__ : List[str]=1.0 ): """simple docstring""" if isinstance(__magic_name__ , __magic_name__ ): lowerCAmelCase__ = [] for i in range(len(__magic_name__ ) ): output.append(self.replace_placeholder_tokens_in_text(text[i] , vector_shuffle=__magic_name__ ) ) return output for placeholder_token in self.token_map: if placeholder_token in text: lowerCAmelCase__ = self.token_map[placeholder_token] lowerCAmelCase__ = tokens[: 1 + int(len(__magic_name__ ) * prop_tokens_to_load )] if vector_shuffle: lowerCAmelCase__ = copy.copy(__magic_name__ ) random.shuffle(__magic_name__ ) lowerCAmelCase__ = text.replace(__magic_name__ , " ".join(__magic_name__ ) ) return text def __call__( self : List[Any] , __magic_name__ : Union[str, Any] , *__magic_name__ : int , __magic_name__ : Union[str, Any]=False , __magic_name__ : Union[str, Any]=1.0 , **__magic_name__ : List[str] ): """simple docstring""" return super().__call__( self.replace_placeholder_tokens_in_text( __magic_name__ , vector_shuffle=__magic_name__ , prop_tokens_to_load=__magic_name__ ) , *__magic_name__ , **__magic_name__ , ) def __SCREAMING_SNAKE_CASE ( self : int , __magic_name__ : Union[str, Any] , *__magic_name__ : Union[str, Any] , __magic_name__ : Union[str, Any]=False , __magic_name__ : Union[str, Any]=1.0 , **__magic_name__ : Any ): """simple docstring""" return super().encode( self.replace_placeholder_tokens_in_text( __magic_name__ , vector_shuffle=__magic_name__ , prop_tokens_to_load=__magic_name__ ) , *__magic_name__ , **__magic_name__ , )
48
def SCREAMING_SNAKE_CASE__ ( lowercase ) -> list[list]: snake_case : List[str] = current_set.copy() for row_index, row in enumerate(lowercase ): snake_case : List[Any] = row[0] for column_index, column in enumerate(lowercase ): if magnitude == 0: snake_case : Tuple = column continue snake_case : Dict = column / magnitude # Subtract to cancel term snake_case : Union[str, Any] = current_set[0] snake_case : int = [first_row] snake_case : Dict = current_set[1::] for row in current_set: snake_case : List[Any] = [] # If first term is 0, it is already in form we want, so we preserve it if row[0] == 0: final_set.append(lowercase ) continue for column_index in range(len(lowercase ) ): temp_row.append(first_row[column_index] - row[column_index] ) final_set.append(lowercase ) # Create next recursion iteration set if len(final_set[0] ) != 3: snake_case : Optional[Any] = final_set[0] snake_case : List[str] = [] snake_case : Dict = [] for row in final_set[1::]: current_first_column.append(row[0] ) next_iteration.append(row[1::] ) snake_case : Dict = simplify(lowercase ) for i in range(len(lowercase ) ): resultant[i].insert(0 ,current_first_column[i] ) resultant.insert(0 ,lowercase ) snake_case : List[str] = resultant return final_set def SCREAMING_SNAKE_CASE__ ( lowercase ) -> list: if len(lowercase ) == 0: raise IndexError("""solve_simultaneous() requires n lists of length n+1""" ) snake_case : List[Any] = len(lowercase ) + 1 if any(len(lowercase ) != _length for item in equations ): raise IndexError("""solve_simultaneous() requires n lists of length n+1""" ) for row in equations: if any(not isinstance(lowercase ,(int, float) ) for column in row ): raise ValueError("""solve_simultaneous() requires lists of integers""" ) if len(lowercase ) == 1: return [equations[0][-1] / equations[0][0]] snake_case : List[Any] = equations.copy() if any(0 in row for row in data_set ): snake_case : Union[str, Any] = data_set.copy() snake_case : str = [] for row_index, row in enumerate(lowercase ): if 0 not in row: snake_case : Optional[Any] = data_set.pop(lowercase ) break if not full_row: raise ValueError("""solve_simultaneous() requires at least 1 full equation""" ) data_set.insert(0 ,lowercase ) snake_case : Dict = data_set.copy() snake_case : List[str] = simplify(lowercase ) snake_case : str = simplified[::-1] snake_case : list = [] for row in simplified: snake_case : List[Any] = row[-1] if not solutions: if row[-2] == 0: solutions.append(0 ) continue solutions.append(current_solution / row[-2] ) continue snake_case : List[str] = row.copy()[: len(lowercase ) - 1 :] while temp_row[0] == 0: temp_row.pop(0 ) if len(lowercase ) == 0: solutions.append(0 ) continue snake_case : List[str] = temp_row[1::] snake_case : str = temp_row[::-1] for column_index, column in enumerate(lowercase ): current_solution -= column * solutions[column_index] solutions.append(lowercase ) snake_case : List[Any] = [] for item in solutions: final.append(float(round(lowercase ,5 ) ) ) return final[::-1] if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase : Union[str, Any] = [ [2, 1, 1, 1, 1, 4], [1, 2, 1, 1, 1, 5], [1, 1, 2, 1, 1, 6], [1, 1, 1, 2, 1, 7], [1, 1, 1, 1, 2, 8], ] print(solve_simultaneous(eq)) print(solve_simultaneous([[4, 2]]))
587
0
"""simple docstring""" import flax.linen as nn import jax import jax.numpy as jnp class lowercase( nn.Module ): '''simple docstring''' lowercase__ = 42 lowercase__ = jnp.floataa def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' _snake_case : Optional[Any] = nn.Conv( self.out_channels, kernel_size=(3, 3), strides=(1, 1), padding=((1, 1), (1, 1)), dtype=self.dtype, ) def __call__( self: List[Any], a_: Optional[int] ): '''simple docstring''' _snake_case , _snake_case , _snake_case , _snake_case : Union[str, Any] = hidden_states.shape _snake_case : int = jax.image.resize( a_, shape=(batch, height * 2, width * 2, channels), method="""nearest""", ) _snake_case : str = self.conv(a_ ) return hidden_states class lowercase( nn.Module ): '''simple docstring''' lowercase__ = 42 lowercase__ = jnp.floataa def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' _snake_case : Optional[int] = nn.Conv( self.out_channels, kernel_size=(3, 3), strides=(2, 2), padding=((1, 1), (1, 1)), dtype=self.dtype, ) def __call__( self: str, a_: Any ): '''simple docstring''' _snake_case : int = self.conv(a_ ) return hidden_states class lowercase( nn.Module ): '''simple docstring''' lowercase__ = 42 lowercase__ = None lowercase__ = 0.0 lowercase__ = None lowercase__ = jnp.floataa def UpperCamelCase_ ( self: str ): '''simple docstring''' _snake_case : Optional[Any] = self.in_channels if self.out_channels is None else self.out_channels _snake_case : Dict = nn.GroupNorm(num_groups=32, epsilon=1E-5 ) _snake_case : Optional[Any] = nn.Conv( a_, kernel_size=(3, 3), strides=(1, 1), padding=((1, 1), (1, 1)), dtype=self.dtype, ) _snake_case : Dict = nn.Dense(a_, dtype=self.dtype ) _snake_case : str = nn.GroupNorm(num_groups=32, epsilon=1E-5 ) _snake_case : Union[str, Any] = nn.Dropout(self.dropout_prob ) _snake_case : Optional[Any] = nn.Conv( a_, kernel_size=(3, 3), strides=(1, 1), padding=((1, 1), (1, 1)), dtype=self.dtype, ) _snake_case : Optional[Any] = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut _snake_case : int = None if use_nin_shortcut: _snake_case : Union[str, Any] = nn.Conv( a_, kernel_size=(1, 1), strides=(1, 1), padding="""VALID""", dtype=self.dtype, ) def __call__( self: List[Any], a_: Optional[int], a_: List[str], a_: str=True ): '''simple docstring''' _snake_case : int = hidden_states _snake_case : Union[str, Any] = self.norma(a_ ) _snake_case : int = nn.swish(a_ ) _snake_case : str = self.conva(a_ ) _snake_case : Any = self.time_emb_proj(nn.swish(a_ ) ) _snake_case : Any = jnp.expand_dims(jnp.expand_dims(a_, 1 ), 1 ) _snake_case : Tuple = hidden_states + temb _snake_case : Optional[Any] = self.norma(a_ ) _snake_case : str = nn.swish(a_ ) _snake_case : int = self.dropout(a_, a_ ) _snake_case : Dict = self.conva(a_ ) if self.conv_shortcut is not None: _snake_case : Dict = self.conv_shortcut(a_ ) return hidden_states + residual
28
"""simple docstring""" from abc import ABC, abstractmethod from argparse import ArgumentParser class lowercase( __a ): '''simple docstring''' @staticmethod @abstractmethod def UpperCamelCase_ ( a_: ArgumentParser ): '''simple docstring''' raise NotImplementedError() @abstractmethod def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' raise NotImplementedError()
28
1
'''simple docstring''' import time import warnings from abc import ABC from copy import deepcopy from typing import Optional import torch from ..utils import add_start_docstrings, logging A_ : Optional[int] =logging.get_logger(__name__) A_ : List[Any] =R''' Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) scores (`torch.FloatTensor` of shape `(batch_size, config.vocab_size)`): Prediction scores of a language modeling head. These can be scores for each vocabulary token before SoftMax or scores for each vocabulary token after SoftMax. kwargs (`Dict[str, Any]`, *optional*): Additional stopping criteria specific kwargs. Return: `bool`. `False` indicates we should continue, `True` indicates we should stop. ''' class __UpperCAmelCase ( __a ): @add_start_docstrings(_lowerCamelCase ) def __call__( self , _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ): raise NotImplementedError('''StoppingCriteria needs to be subclassed''' ) class __UpperCAmelCase ( __a ): def __init__( self , _lowerCamelCase , _lowerCamelCase = None ): lowerCAmelCase_ = max_length lowerCAmelCase_ = max_position_embeddings @add_start_docstrings(_lowerCamelCase ) def __call__( self , _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ): lowerCAmelCase_ = input_ids.shape[-1] lowerCAmelCase_ = cur_len >= self.max_length if self.max_position_embeddings is not None and not is_done and cur_len >= self.max_position_embeddings: logger.warning_once( '''This is a friendly reminder - the current text generation call will exceed the model\'s predefined ''' F'''maximum length ({self.max_position_embeddings}). Depending on the model, you may observe ''' '''exceptions, performance degradation, or nothing at all.''' ) return is_done class __UpperCAmelCase ( __a ): def __init__( self , _lowerCamelCase , _lowerCamelCase ): warnings.warn( '''The class `MaxNewTokensCriteria` is deprecated. ''' F'''Please use `MaxLengthCriteria(max_length={start_length + max_new_tokens})` ''' '''with `max_length = start_length + max_new_tokens` instead.''' , _lowerCamelCase , ) lowerCAmelCase_ = start_length lowerCAmelCase_ = max_new_tokens lowerCAmelCase_ = start_length + max_new_tokens @add_start_docstrings(_lowerCamelCase ) def __call__( self , _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ): return input_ids.shape[-1] >= self.max_length class __UpperCAmelCase ( __a ): def __init__( self , _lowerCamelCase , _lowerCamelCase = None ): lowerCAmelCase_ = max_time lowerCAmelCase_ = time.time() if initial_timestamp is None else initial_timestamp @add_start_docstrings(_lowerCamelCase ) def __call__( self , _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ): return time.time() - self.initial_timestamp > self.max_time class __UpperCAmelCase ( __a ): @add_start_docstrings(_lowerCamelCase ) def __call__( self , _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ): return any(criteria(_lowerCamelCase , _lowerCamelCase ) for criteria in self ) @property def UpperCAmelCase_ ( self ): for stopping_criterium in self: if isinstance(_lowerCamelCase , _lowerCamelCase ): return stopping_criterium.max_length elif isinstance(_lowerCamelCase , _lowerCamelCase ): return stopping_criterium.max_length return None def snake_case_ ( __snake_case : StoppingCriteriaList , __snake_case : int) -> StoppingCriteriaList: lowerCAmelCase_ = stopping_criteria.max_length lowerCAmelCase_ = deepcopy(__snake_case) if stopping_max_length is not None and stopping_max_length != max_length: warnings.warn('''You set different `max_length` for stopping criteria and `max_length` parameter''' , __snake_case) elif stopping_max_length is None: new_stopping_criteria.append(MaxLengthCriteria(max_length=__snake_case)) return new_stopping_criteria
274
'''simple docstring''' import gc import threading import time import psutil import torch class __UpperCAmelCase : def __init__( self ): lowerCAmelCase_ = psutil.Process() lowerCAmelCase_ = False def UpperCAmelCase_ ( self ): lowerCAmelCase_ = -1 while True: lowerCAmelCase_ = max(self.process.memory_info().rss , self.cpu_memory_peak ) # can't sleep or will not catch the peak right (this comment is here on purpose) if not self.peak_monitoring: break def UpperCAmelCase_ ( self ): lowerCAmelCase_ = True lowerCAmelCase_ = threading.Thread(target=self.peak_monitor ) lowerCAmelCase_ = True self.thread.start() def UpperCAmelCase_ ( self ): lowerCAmelCase_ = False self.thread.join() return self.cpu_memory_peak A_ : List[str] =PeakCPUMemory() def snake_case_ ( ) -> Tuple: # Time lowerCAmelCase_ = {'''time''': time.time()} gc.collect() torch.cuda.empty_cache() # CPU mem lowerCAmelCase_ = psutil.Process().memory_info().rss cpu_peak_tracker.start() # GPU mem for i in range(torch.cuda.device_count()): lowerCAmelCase_ = torch.cuda.memory_allocated(__snake_case) torch.cuda.reset_peak_memory_stats() return measures def snake_case_ ( __snake_case : Any) -> List[str]: # Time lowerCAmelCase_ = {'''time''': time.time() - start_measures['''time''']} gc.collect() torch.cuda.empty_cache() # CPU mem lowerCAmelCase_ = (psutil.Process().memory_info().rss - start_measures['''cpu''']) / 2**20 lowerCAmelCase_ = (cpu_peak_tracker.stop() - start_measures['''cpu''']) / 2**20 # GPU mem for i in range(torch.cuda.device_count()): lowerCAmelCase_ = (torch.cuda.memory_allocated(__snake_case) - start_measures[str(__snake_case)]) / 2**20 lowerCAmelCase_ = (torch.cuda.max_memory_allocated(__snake_case) - start_measures[str(__snake_case)]) / 2**20 return measures def snake_case_ ( __snake_case : Dict , __snake_case : Optional[int]) -> Dict: print(F'''{description}:''') print(F'''- Time: {measures['time']:.2f}s''') for i in range(torch.cuda.device_count()): print(F'''- GPU {i} allocated: {measures[str(__snake_case)]:.2f}MiB''') lowerCAmelCase_ = measures[F'''{i}-peak'''] print(F'''- GPU {i} peak: {peak:.2f}MiB''') print(F'''- CPU RAM allocated: {measures['cpu']:.2f}MiB''') print(F'''- CPU RAM peak: {measures['cpu-peak']:.2f}MiB''')
274
1
"""simple docstring""" from __future__ import annotations import math def UpperCAmelCase ( snake_case : int ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_lowerCamelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def UpperCAmelCase ( snake_case : int ): _lowerCAmelCase:Optional[int] = str(_lowerCamelCase ) _lowerCAmelCase:str = [n] for i in range(1 , len(_lowerCamelCase ) ): list_nums.append(int(str_num[i:] ) ) list_nums.append(int(str_num[:-i] ) ) return list_nums def UpperCAmelCase ( snake_case : int ): if len(str(_lowerCamelCase ) ) > 3: if not is_prime(int(str(_lowerCamelCase )[-3:] ) ) or not is_prime(int(str(_lowerCamelCase )[:3] ) ): return False return True def UpperCAmelCase ( snake_case : int = 11 ): _lowerCAmelCase:Optional[int] = [] _lowerCAmelCase:Tuple = 13 while len(_lowerCamelCase ) != count: if validate(_lowerCamelCase ): _lowerCAmelCase:Dict = list_truncated_nums(_lowerCamelCase ) if all(is_prime(_lowerCamelCase ) for i in list_nums ): list_truncated_primes.append(_lowerCamelCase ) num += 2 return list_truncated_primes def UpperCAmelCase ( ): return sum(compute_truncated_primes(11 ) ) if __name__ == "__main__": print(F"{sum(compute_truncated_primes(1_1)) = }")
700
"""simple docstring""" from typing import List, Union import numpy as np from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_DEPTH_ESTIMATION_MAPPING UpperCamelCase__ = logging.get_logger(__name__) @add_end_docstrings(UpperCamelCase_ ) class a__ ( UpperCamelCase_ ): def __init__( self : int ,*a__ : Optional[Any] ,**a__ : Union[str, Any]) -> Tuple: """simple docstring""" super().__init__(*a__ ,**a__) requires_backends(self ,'''vision''') self.check_model_type(a__) def __call__( self : str ,a__ : Union[str, List[str], "Image.Image", List["Image.Image"]] ,**a__ : List[str]) -> Optional[int]: """simple docstring""" return super().__call__(a__ ,**a__) def __UpperCamelCase ( self : Union[str, Any] ,**a__ : List[Any]) -> Any: """simple docstring""" return {}, {}, {} def __UpperCamelCase ( self : Tuple ,a__ : Optional[int]) -> Optional[Any]: """simple docstring""" _lowerCAmelCase:List[str] = load_image(a__) _lowerCAmelCase:int = image.size _lowerCAmelCase:int = self.image_processor(images=a__ ,return_tensors=self.framework) return model_inputs def __UpperCamelCase ( self : Dict ,a__ : List[str]) -> Union[str, Any]: """simple docstring""" _lowerCAmelCase:Any = self.model(**a__) return model_outputs def __UpperCamelCase ( self : List[Any] ,a__ : Dict) -> Any: """simple docstring""" _lowerCAmelCase:Optional[int] = model_outputs.predicted_depth _lowerCAmelCase:Union[str, Any] = torch.nn.functional.interpolate( predicted_depth.unsqueeze(1) ,size=self.image_size[::-1] ,mode='''bicubic''' ,align_corners=a__) _lowerCAmelCase:List[str] = prediction.squeeze().cpu().numpy() _lowerCAmelCase:Any = (output * 255 / np.max(a__)).astype('''uint8''') _lowerCAmelCase:Dict = Image.fromarray(a__) _lowerCAmelCase:Tuple = {} _lowerCAmelCase:Optional[int] = predicted_depth _lowerCAmelCase:str = depth return output_dict
439
0
import json import logging import os import sys from pathlib import Path import finetune_rag from transformers.file_utils import is_apex_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, require_ray, require_torch_gpu, require_torch_multi_gpu, ) logging.basicConfig(level=logging.DEBUG) A_ : Tuple = logging.getLogger() A_ : Any = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class _lowerCAmelCase( UpperCAmelCase_ ): """simple docstring""" def _a ( self , _lowerCamelCase ): os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) UpperCamelCase_: Tuple = {'source': 'What is love ?', 'target': 'life'} UpperCamelCase_: Any = {'train': 1_2, 'val': 2, 'test': 2} for split in ["train", "test", "val"]: for field in ["source", "target"]: UpperCamelCase_: List[Any] = '\n'.join([contents[field]] * n_lines[split] ) with open(os.path.join(_lowerCamelCase , f'''{split}.{field}''' ) , 'w' ) as f: f.write(_lowerCamelCase ) def _a ( self , _lowerCamelCase , _lowerCamelCase = "pytorch" ): UpperCamelCase_: int = self.get_auto_remove_tmp_dir() UpperCamelCase_: Union[str, Any] = os.path.join(_lowerCamelCase , 'output' ) UpperCamelCase_: Union[str, Any] = os.path.join(_lowerCamelCase , 'data' ) self._create_dummy_data(data_dir=_lowerCamelCase ) UpperCamelCase_: Optional[Any] = f''' --data_dir {data_dir} \ --output_dir {output_dir} \ --model_name_or_path facebook/rag-sequence-base \ --model_type rag_sequence \ --do_train \ --do_predict \ --n_val -1 \ --val_check_interval 1.0 \ --train_batch_size 2 \ --eval_batch_size 1 \ --max_source_length 25 \ --max_target_length 25 \ --val_max_target_length 25 \ --test_max_target_length 25 \ --label_smoothing 0.1 \ --dropout 0.1 \ --attention_dropout 0.1 \ --weight_decay 0.001 \ --adam_epsilon 1e-08 \ --max_grad_norm 0.1 \ --lr_scheduler polynomial \ --learning_rate 3e-04 \ --num_train_epochs 1 \ --warmup_steps 4 \ --gradient_accumulation_steps 1 \ --distributed-port 8787 \ --use_dummy_dataset 1 \ --distributed_retriever {distributed_retriever} \ '''.split() if gpus > 0: testargs.append(f'''--gpus={gpus}''' ) if is_apex_available(): testargs.append('--fp16' ) else: testargs.append('--gpus=0' ) testargs.append('--distributed_backend=ddp_cpu' ) testargs.append('--num_processes=2' ) UpperCamelCase_: str = [sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs execute_subprocess_async(_lowerCamelCase , env=self.get_env() ) UpperCamelCase_: Optional[Any] = os.path.join(_lowerCamelCase , 'metrics.json' ) with open(_lowerCamelCase ) as f: UpperCamelCase_: Union[str, Any] = json.load(_lowerCamelCase ) return result @require_torch_gpu def _a ( self ): UpperCamelCase_: Any = self._run_finetune(gpus=1 ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 ) @require_torch_multi_gpu def _a ( self ): UpperCamelCase_: Optional[int] = self._run_finetune(gpus=2 ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 ) @require_torch_gpu @require_ray def _a ( self ): UpperCamelCase_: Dict = self._run_finetune(gpus=1 , distributed_retriever='ray' ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 ) @require_torch_multi_gpu @require_ray def _a ( self ): UpperCamelCase_: Optional[Any] = self._run_finetune(gpus=1 , distributed_retriever='ray' ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 )
57
import re import string import numpy as np import datasets __UpperCamelCase = '\nReturns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list.\n' __UpperCamelCase = '\nArgs:\n predictions: List of predicted texts.\n references: List of reference texts.\n regexes_to_ignore: List, defaults to None. Regex expressions of characters to\n ignore when calculating the exact matches. Note: these regexes are removed\n from the input data before the changes based on the options below (e.g. ignore_case,\n ignore_punctuation, ignore_numbers) are applied.\n ignore_case: Boolean, defaults to False. If true, turns everything\n to lowercase so that capitalization differences are ignored.\n ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\n ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\nReturns:\n exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive.\nExamples:\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results["exact_match"], 1))\n 25.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results["exact_match"], 1))\n 50.0\n\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results["exact_match"], 1))\n 75.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True)\n >>> print(round(results["exact_match"], 1))\n 100.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["The cat sat on the mat.", "Theaters are great.", "It\'s like comparing oranges and apples."]\n >>> preds = ["The cat sat on the mat?", "Theaters are great.", "It\'s like comparing apples and oranges."]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results["exact_match"], 1))\n 33.3\n\n' __UpperCamelCase = '\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCamelCase__ ( datasets.Metric ): """simple docstring""" def snake_case__ ( self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , reference_urls=[] , ) def snake_case__ ( self , snake_case , snake_case , snake_case=None , snake_case=False , snake_case=False , snake_case=False , ): '''simple docstring''' if regexes_to_ignore is not None: for s in regexes_to_ignore: UpperCamelCase__ = np.array([re.sub(snake_case , "" , snake_case ) for x in predictions] ) UpperCamelCase__ = np.array([re.sub(snake_case , "" , snake_case ) for x in references] ) else: UpperCamelCase__ = np.asarray(snake_case ) UpperCamelCase__ = np.asarray(snake_case ) if ignore_case: UpperCamelCase__ = np.char.lower(snake_case ) UpperCamelCase__ = np.char.lower(snake_case ) if ignore_punctuation: UpperCamelCase__ = string.punctuation.maketrans("" , "" , string.punctuation ) UpperCamelCase__ = np.char.translate(snake_case , table=snake_case ) UpperCamelCase__ = np.char.translate(snake_case , table=snake_case ) if ignore_numbers: UpperCamelCase__ = string.digits.maketrans("" , "" , string.digits ) UpperCamelCase__ = np.char.translate(snake_case , table=snake_case ) UpperCamelCase__ = np.char.translate(snake_case , table=snake_case ) UpperCamelCase__ = predictions == references return {"exact_match": np.mean(snake_case ) * 100}
551
0
"""simple docstring""" def _lowerCamelCase ( lowerCamelCase__ : int , lowerCamelCase__ : int ): return int((input_a, input_a).count(0 ) != 0 ) def _lowerCamelCase ( ): assert nand_gate(0 , 0 ) == 1 assert nand_gate(0 , 1 ) == 1 assert nand_gate(1 , 0 ) == 1 assert nand_gate(1 , 1 ) == 0 if __name__ == "__main__": print(nand_gate(0, 0)) print(nand_gate(0, 1)) print(nand_gate(1, 0)) print(nand_gate(1, 1))
128
"""simple docstring""" from scipy.stats import spearmanr import datasets __snake_case = '\nThe Spearman rank-order correlation coefficient is a measure of the\nrelationship between two datasets. Like other correlation coefficients,\nthis one varies between -1 and +1 with 0 implying no correlation.\nPositive correlations imply that as data in dataset x increases, so\ndoes data in dataset y. Negative correlations imply that as x increases,\ny decreases. Correlations of -1 or +1 imply an exact monotonic relationship.\n\nUnlike the Pearson correlation, the Spearman correlation does not\nassume that both datasets are normally distributed.\n\nThe p-value roughly indicates the probability of an uncorrelated system\nproducing datasets that have a Spearman correlation at least as extreme\nas the one computed from these datasets. The p-values are not entirely\nreliable but are probably reasonable for datasets larger than 500 or so.\n' __snake_case = '\nArgs:\n predictions (`List[float]`): Predicted labels, as returned by a model.\n references (`List[float]`): Ground truth labels.\n return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns\n only the spearmanr score. Defaults to `False`.\nReturns:\n spearmanr (`float`): Spearman correlation coefficient.\n p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input.\nExamples:\n Example 1:\n >>> spearmanr_metric = datasets.load_metric("spearmanr")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4])\n >>> print(results)\n {\'spearmanr\': -0.7}\n\n Example 2:\n >>> spearmanr_metric = datasets.load_metric("spearmanr")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5],\n ... predictions=[10, 9, 2.5, 6, 4],\n ... return_pvalue=True)\n >>> print(results[\'spearmanr\'])\n -0.7\n >>> print(round(results[\'spearmanr_pvalue\'], 2))\n 0.19\n' __snake_case = R'\\n@book{kokoska2000crc,\n title={CRC standard probability and statistics tables and formulae},\n author={Kokoska, Stephen and Zwillinger, Daniel},\n year={2000},\n publisher={Crc Press}\n}\n@article{2020SciPy-NMeth,\n author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\n title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\n journal = {Nature Methods},\n year = {2020},\n volume = {17},\n pages = {261--272},\n adsurl = {https://rdcu.be/b08Wh},\n doi = {10.1038/s41592-019-0686-2},\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _SCREAMING_SNAKE_CASE ( datasets.Metric ): """simple docstring""" def UpperCAmelCase__( self ) -> int: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""float""" ), """references""": datasets.Value("""float""" ), } ) , reference_urls=["""https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html"""] , ) def UpperCAmelCase__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=False ) -> Optional[int]: lowercase__ : List[Any] = spearmanr(lowerCamelCase__ , lowerCamelCase__ ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
128
1
import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class UpperCAmelCase_ ( unittest.TestCase ): def __UpperCAmelCase ( self ): UpperCAmelCase__ : Dict = 10 def __UpperCAmelCase ( self ): UpperCAmelCase__ : str = [1, 2, 3, 4] UpperCAmelCase__ : Optional[Any] = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(_snake_case , self.block_size , 0 ) , _snake_case ) def __UpperCAmelCase ( self ): UpperCAmelCase__ : Optional[Any] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] UpperCAmelCase__ : Any = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(_snake_case , self.block_size , 0 ) , _snake_case ) def __UpperCAmelCase ( self ): UpperCAmelCase__ : Any = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] UpperCAmelCase__ : List[str] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(_snake_case , self.block_size , 0 ) , _snake_case ) def __UpperCAmelCase ( self ): UpperCAmelCase__ : str = '''It was the year of Our Lord one thousand seven hundred and seventy-five.\n\nSpiritual revelations were conceded to England at that favoured period, as at this.''' UpperCAmelCase__ : List[str] = process_story(_snake_case ) self.assertEqual(_snake_case , [] ) def __UpperCAmelCase ( self ): UpperCAmelCase__ : Dict = '''''' UpperCAmelCase__ : List[str] = process_story(_snake_case ) self.assertEqual(_snake_case , [] ) self.assertEqual(_snake_case , [] ) def __UpperCAmelCase ( self ): UpperCAmelCase__ : List[Any] = ( '''It was the year of Our Lord one thousand seven hundred and ''' '''seventy-five\n\nSpiritual revelations were conceded to England ''' '''at that favoured period, as at this.\n@highlight\n\nIt was the best of times''' ) UpperCAmelCase__ : Tuple = process_story(_snake_case ) UpperCAmelCase__ : str = [ '''It was the year of Our Lord one thousand seven hundred and seventy-five.''', '''Spiritual revelations were conceded to England at that favoured period, as at this.''', ] self.assertEqual(_snake_case , _snake_case ) UpperCAmelCase__ : Any = ['''It was the best of times.'''] self.assertEqual(_snake_case , _snake_case ) def __UpperCAmelCase ( self ): UpperCAmelCase__ : Union[str, Any] = torch.tensor([1, 2, 3, 4] ) UpperCAmelCase__ : int = torch.tensor([1, 1, 1, 1] ) np.testing.assert_array_equal(build_mask(_snake_case , 0 ).numpy() , expected.numpy() ) def __UpperCAmelCase ( self ): UpperCAmelCase__ : Tuple = torch.tensor([1, 2, 3, 4, 23, 23, 23] ) UpperCAmelCase__ : Optional[Any] = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(_snake_case , 23 ).numpy() , expected.numpy() ) def __UpperCAmelCase ( self ): UpperCAmelCase__ : int = torch.tensor([8, 2, 3, 4, 1, 1, 1] ) UpperCAmelCase__ : str = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(_snake_case , 1 ).numpy() , expected.numpy() ) def __UpperCAmelCase ( self ): UpperCAmelCase__ : List[str] = 101 UpperCAmelCase__ : Optional[Any] = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 101, 5, 6], [1, 101, 3, 4, 101, 6]] ) UpperCAmelCase__ : Optional[Any] = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] ) UpperCAmelCase__ : List[Any] = compute_token_type_ids(_snake_case , _snake_case ) np.testing.assert_array_equal(_snake_case , _snake_case )
79
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available A : Union[str, Any] = { """configuration_m2m_100""": ["""M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP""", """M2M100Config""", """M2M100OnnxConfig"""], """tokenization_m2m_100""": ["""M2M100Tokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Optional[Any] = [ """M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST""", """M2M100ForConditionalGeneration""", """M2M100Model""", """M2M100PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig from .tokenization_mam_aaa import MaMaaaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mam_aaa import ( M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST, MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaPreTrainedModel, ) else: import sys A : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
349
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCAmelCase_ : int = { "configuration_vision_encoder_decoder": ["VisionEncoderDecoderConfig", "VisionEncoderDecoderOnnxConfig"] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Union[str, Any] = ["VisionEncoderDecoderModel"] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Union[str, Any] = ["TFVisionEncoderDecoderModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : str = ["FlaxVisionEncoderDecoderModel"] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys UpperCAmelCase_ : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
424
'''simple docstring''' import math import random from typing import Any from .hill_climbing import SearchProblem def UpperCAmelCase_ ( A , A = True , A = math.inf , A = -math.inf , A = math.inf , A = -math.inf , A = False , A = 1_0_0 , A = 0.01 , A = 1 , ): '''simple docstring''' _a : int = False _a : Optional[Any] = search_prob _a : List[Any] = start_temperate _a : Any = [] _a : List[Any] = 0 _a : Union[str, Any] = None while not search_end: _a : Optional[Any] = current_state.score() if best_state is None or current_score > best_state.score(): _a : Optional[Any] = current_state scores.append(A ) iterations += 1 _a : List[Any] = None _a : Union[str, Any] = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to _a : Optional[Any] = random.randint(0 , len(A ) - 1 ) # picking a random neighbor _a : Optional[int] = neighbors.pop(A ) _a : Optional[Any] = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: _a : Any = change * -1 # in case we are finding minimum if change > 0: # improves the solution _a : Tuple = picked_neighbor else: _a : Dict = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability _a : List[str] = picked_neighbor _a : Optional[int] = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor _a : str = True else: _a : int = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(A ) , A ) plt.xlabel('Iterations' ) plt.ylabel('Function values' ) plt.show() return best_state if __name__ == "__main__": def UpperCAmelCase_ ( A , A ): '''simple docstring''' return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) UpperCAmelCase_ : Union[str, Any] = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) UpperCAmelCase_ : str = simulated_annealing( prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( "The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 " f'''and 50 > y > - 5 found via hill climbing: {local_min.score()}''' ) # starting the problem with initial coordinates (12, 47) UpperCAmelCase_ : Union[str, Any] = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) UpperCAmelCase_ : Union[str, Any] = simulated_annealing( prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( "The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 " f'''and 50 > y > - 5 found via hill climbing: {local_min.score()}''' ) def UpperCAmelCase_ ( A , A ): '''simple docstring''' return (3 * x**2) - (6 * y) UpperCAmelCase_ : List[str] = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) UpperCAmelCase_ : Any = simulated_annealing(prob, find_max=False, visualization=True) print( "The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: " f'''{local_min.score()}''' ) UpperCAmelCase_ : List[Any] = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) UpperCAmelCase_ : Dict = simulated_annealing(prob, find_max=True, visualization=True) print( "The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: " f'''{local_min.score()}''' )
424
1
"""simple docstring""" import unittest from transformers import GPTNeoXJapaneseConfig, is_torch_available from transformers.models.gpt_neox_japanese.tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseModel class SCREAMING_SNAKE_CASE__ : def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=13 , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=99 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=5 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=512 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=None , ) -> int: '''simple docstring''' UpperCAmelCase : Union[str, Any] = parent UpperCAmelCase : Optional[int] = batch_size UpperCAmelCase : str = seq_length UpperCAmelCase : List[Any] = is_training UpperCAmelCase : Tuple = use_input_mask UpperCAmelCase : List[str] = use_token_type_ids UpperCAmelCase : Tuple = use_labels UpperCAmelCase : str = vocab_size UpperCAmelCase : str = hidden_size UpperCAmelCase : Any = num_hidden_layers UpperCAmelCase : Tuple = num_attention_heads UpperCAmelCase : List[str] = intermediate_multiple_size UpperCAmelCase : List[Any] = hidden_act UpperCAmelCase : Union[str, Any] = hidden_dropout UpperCAmelCase : List[Any] = attention_dropout UpperCAmelCase : Dict = weight_tying UpperCAmelCase : Union[str, Any] = max_position_embeddings UpperCAmelCase : str = type_vocab_size UpperCAmelCase : Any = type_sequence_label_size UpperCAmelCase : Union[str, Any] = initializer_range UpperCAmelCase : Optional[Any] = num_labels UpperCAmelCase : Optional[Any] = num_choices UpperCAmelCase : int = scope def SCREAMING_SNAKE_CASE ( self ) -> Any: '''simple docstring''' UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : Optional[Any] = None if self.use_input_mask: UpperCAmelCase : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase : List[str] = None if self.use_labels: UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase : Union[str, Any] = self.get_config() return config, input_ids, input_mask, token_labels def SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' return GPTNeoXJapaneseConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_multiple_size=self.intermediate_multiple_size , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , weight_tying=self.weight_tying , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Any = self.prepare_config_and_inputs() UpperCAmelCase : Optional[int] = True return config, input_ids, input_mask, token_labels def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple: '''simple docstring''' UpperCAmelCase : Optional[int] = GPTNeoXJapaneseModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() UpperCAmelCase : Union[str, Any] = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE ) UpperCAmelCase : int = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]: '''simple docstring''' UpperCAmelCase : Union[str, Any] = True UpperCAmelCase : Tuple = GPTNeoXJapaneseModel(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() UpperCAmelCase : Tuple = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase : Optional[int] = GPTNeoXJapaneseForCausalLM(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() UpperCAmelCase : Optional[int] = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase : Any = True UpperCAmelCase : Any = GPTNeoXJapaneseForCausalLM(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() # first forward pass UpperCAmelCase : Any = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , use_cache=_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Dict = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids UpperCAmelCase : Tuple = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCAmelCase : List[str] = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and UpperCAmelCase : Optional[Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCAmelCase : Any = torch.cat([input_mask, next_mask] , dim=-1 ) UpperCAmelCase : Optional[int] = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , output_hidden_states=_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Optional[Any] = output_from_no_past["""hidden_states"""][0] UpperCAmelCase : int = model( _SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , past_key_values=_SCREAMING_SNAKE_CASE , output_hidden_states=_SCREAMING_SNAKE_CASE , )["""hidden_states"""][0] # select random slice UpperCAmelCase : int = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCAmelCase : Optional[Any] = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCAmelCase : Any = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1E-3 ) ) def SCREAMING_SNAKE_CASE ( self ) -> Any: '''simple docstring''' UpperCAmelCase : Any = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Any = config_and_inputs UpperCAmelCase : Any = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): __lowerCAmelCase : Any = (GPTNeoXJapaneseModel, GPTNeoXJapaneseForCausalLM) if is_torch_available() else () __lowerCAmelCase : Dict = (GPTNeoXJapaneseForCausalLM,) if is_torch_available() else () __lowerCAmelCase : str = ( {'feature-extraction': GPTNeoXJapaneseModel, 'text-generation': GPTNeoXJapaneseForCausalLM} if is_torch_available() else {} ) __lowerCAmelCase : List[str] = False __lowerCAmelCase : Tuple = False __lowerCAmelCase : Union[str, Any] = False __lowerCAmelCase : Optional[int] = False def SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' UpperCAmelCase : List[Any] = GPTNeoXJapaneseModelTester(self ) UpperCAmelCase : Any = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , hidden_size=37 ) def SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self ) -> Tuple: '''simple docstring''' UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_decoder() UpperCAmelCase : Union[str, Any] = None self.model_tester.create_and_check_model_as_decoder(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self ) -> List[Any]: '''simple docstring''' UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: '''simple docstring''' UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*_SCREAMING_SNAKE_CASE ) @slow def SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' UpperCAmelCase : Dict = """abeja/gpt-neox-japanese-2.7b""" UpperCAmelCase : int = ["""データサイエンティストとは、""", """100年後に必要とされる会社は、""", """フルリモートの環境で働くために必要なことは、""", """国境の長いトンネルを抜けると""", """美味しい日本食といえば、"""] UpperCAmelCase : Union[str, Any] = [ """データサイエンティストとは、データを分析し、ビジネスに役立つ知見を導き出す専門家のことです。""", """100年後に必要とされる会社は、「人」が中心の会社です。""", """フルリモートの環境で働くために必要なことは、「自分の時間をコントロールする」ことです。""", """国境の長いトンネルを抜けると、そこは雪国だった。""", """美味しい日本食といえば、やっぱりお寿司ですよね。""", ] UpperCAmelCase : str = GPTNeoXJapaneseTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : List[Any] = GPTNeoXJapaneseForCausalLM.from_pretrained(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : List[str] = [] for prompt in prompts: UpperCAmelCase : List[str] = tokenizer(_SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).input_ids UpperCAmelCase : str = model.generate(_SCREAMING_SNAKE_CASE , max_length=50 ) UpperCAmelCase : Optional[Any] = tokenizer.batch_decode(_SCREAMING_SNAKE_CASE , skip_special_tokens=_SCREAMING_SNAKE_CASE ) predicted_outputs += generated_string self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
160
"""simple docstring""" import os from tempfile import TemporaryDirectory from unittest import TestCase import pytest from absl.testing import parameterized from datasets import config from datasets.arrow_reader import HF_GCP_BASE_URL from datasets.builder import DatasetBuilder from datasets.dataset_dict import IterableDatasetDict from datasets.iterable_dataset import IterableDataset from datasets.load import dataset_module_factory, import_main_class from datasets.utils.file_utils import cached_path A: Optional[int] = [ {"dataset": "wikipedia", "config_name": "20220301.de"}, {"dataset": "wikipedia", "config_name": "20220301.en"}, {"dataset": "wikipedia", "config_name": "20220301.fr"}, {"dataset": "wikipedia", "config_name": "20220301.frr"}, {"dataset": "wikipedia", "config_name": "20220301.it"}, {"dataset": "wikipedia", "config_name": "20220301.simple"}, {"dataset": "snli", "config_name": "plain_text"}, {"dataset": "eli5", "config_name": "LFQA_reddit"}, {"dataset": "wiki40b", "config_name": "en"}, {"dataset": "wiki_dpr", "config_name": "psgs_w100.nq.compressed"}, {"dataset": "wiki_dpr", "config_name": "psgs_w100.nq.no_index"}, {"dataset": "wiki_dpr", "config_name": "psgs_w100.multiset.no_index"}, {"dataset": "natural_questions", "config_name": "default"}, ] def _snake_case ( UpperCamelCase : List[str]=True ): if with_config: return [ { "testcase_name": d["dataset"] + "/" + d["config_name"], "dataset": d["dataset"], "config_name": d["config_name"], } for d in DATASETS_ON_HF_GCP ] else: return [ {"testcase_name": dataset, "dataset": dataset} for dataset in {d["dataset"] for d in DATASETS_ON_HF_GCP} ] @parameterized.named_parameters(list_datasets_on_hf_gcp_parameters(with_config=UpperCAmelCase__ ) ) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): __lowerCAmelCase : Optional[int] = None __lowerCAmelCase : Tuple = None def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[Any]: '''simple docstring''' with TemporaryDirectory() as tmp_dir: UpperCAmelCase : str = dataset_module_factory(_SCREAMING_SNAKE_CASE , cache_dir=_SCREAMING_SNAKE_CASE ) UpperCAmelCase : List[Any] = import_main_class(dataset_module.module_path , dataset=_SCREAMING_SNAKE_CASE ) UpperCAmelCase : DatasetBuilder = builder_cls( cache_dir=_SCREAMING_SNAKE_CASE , config_name=_SCREAMING_SNAKE_CASE , hash=dataset_module.hash , ) UpperCAmelCase : Optional[int] = """/""".join( [ HF_GCP_BASE_URL, builder_instance._relative_data_dir(with_hash=_SCREAMING_SNAKE_CASE ).replace(os.sep , """/""" ), config.DATASET_INFO_FILENAME, ] ) UpperCAmelCase : Tuple = cached_path(_SCREAMING_SNAKE_CASE , cache_dir=_SCREAMING_SNAKE_CASE ) self.assertTrue(os.path.exists(_SCREAMING_SNAKE_CASE ) ) @pytest.mark.integration def _snake_case ( UpperCamelCase : int ): UpperCAmelCase : str = tmp_path_factory.mktemp("""test_hf_gcp""" ) / """test_wikipedia_simple""" UpperCAmelCase : Optional[int] = dataset_module_factory("""wikipedia""" , cache_dir=UpperCamelCase ) UpperCAmelCase : List[Any] = import_main_class(dataset_module.module_path ) UpperCAmelCase : DatasetBuilder = builder_cls( cache_dir=UpperCamelCase , config_name="""20220301.frr""" , hash=dataset_module.hash , ) # use the HF cloud storage, not the original download_and_prepare that uses apache-beam UpperCAmelCase : List[str] = None builder_instance.download_and_prepare() UpperCAmelCase : List[Any] = builder_instance.as_dataset() assert ds @pytest.mark.integration def _snake_case ( UpperCamelCase : str ): UpperCAmelCase : List[str] = dataset_module_factory("""wikipedia""" , cache_dir=UpperCamelCase ) UpperCAmelCase : Optional[Any] = import_main_class(dataset_module.module_path , dataset=UpperCamelCase ) UpperCAmelCase : DatasetBuilder = builder_cls( cache_dir=UpperCamelCase , config_name="""20220301.frr""" , hash=dataset_module.hash , ) UpperCAmelCase : Any = builder_instance.as_streaming_dataset() assert ds assert isinstance(UpperCamelCase , UpperCamelCase ) assert "train" in ds assert isinstance(ds["""train"""] , UpperCamelCase ) assert next(iter(ds["""train"""] ) )
160
1
"""simple docstring""" def _UpperCamelCase ( UpperCamelCase = 10**9 ) -> int: """simple docstring""" __UpperCAmelCase : Optional[Any] = 1 __UpperCAmelCase : str = 2 __UpperCAmelCase : str = 0 __UpperCAmelCase : Union[str, Any] = 0 __UpperCAmelCase : List[Any] = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value __UpperCAmelCase : str = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(f'''{solution() = }''')
487
"""simple docstring""" from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def _UpperCamelCase ( UpperCamelCase , UpperCamelCase , UpperCamelCase = 1 / sqrt(2 ) ) -> IIRFilter: """simple docstring""" __UpperCAmelCase : List[str] = tau * frequency / samplerate __UpperCAmelCase : Optional[int] = sin(UpperCamelCase ) __UpperCAmelCase : Any = cos(UpperCamelCase ) __UpperCAmelCase : Tuple = _sin / (2 * q_factor) __UpperCAmelCase : Optional[Any] = (1 - _cos) / 2 __UpperCAmelCase : Any = 1 - _cos __UpperCAmelCase : List[str] = 1 + alpha __UpperCAmelCase : List[Any] = -2 * _cos __UpperCAmelCase : Dict = 1 - alpha __UpperCAmelCase : str = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _UpperCamelCase ( UpperCamelCase , UpperCamelCase , UpperCamelCase = 1 / sqrt(2 ) ) -> IIRFilter: """simple docstring""" __UpperCAmelCase : int = tau * frequency / samplerate __UpperCAmelCase : Optional[Any] = sin(UpperCamelCase ) __UpperCAmelCase : Dict = cos(UpperCamelCase ) __UpperCAmelCase : Tuple = _sin / (2 * q_factor) __UpperCAmelCase : Dict = (1 + _cos) / 2 __UpperCAmelCase : Tuple = -1 - _cos __UpperCAmelCase : Any = 1 + alpha __UpperCAmelCase : int = -2 * _cos __UpperCAmelCase : int = 1 - alpha __UpperCAmelCase : Union[str, Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _UpperCamelCase ( UpperCamelCase , UpperCamelCase , UpperCamelCase = 1 / sqrt(2 ) ) -> IIRFilter: """simple docstring""" __UpperCAmelCase : Tuple = tau * frequency / samplerate __UpperCAmelCase : Tuple = sin(UpperCamelCase ) __UpperCAmelCase : List[str] = cos(UpperCamelCase ) __UpperCAmelCase : List[Any] = _sin / (2 * q_factor) __UpperCAmelCase : Any = _sin / 2 __UpperCAmelCase : Optional[int] = 0 __UpperCAmelCase : int = -ba __UpperCAmelCase : Dict = 1 + alpha __UpperCAmelCase : List[str] = -2 * _cos __UpperCAmelCase : int = 1 - alpha __UpperCAmelCase : int = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _UpperCamelCase ( UpperCamelCase , UpperCamelCase , UpperCamelCase = 1 / sqrt(2 ) ) -> IIRFilter: """simple docstring""" __UpperCAmelCase : str = tau * frequency / samplerate __UpperCAmelCase : List[Any] = sin(UpperCamelCase ) __UpperCAmelCase : Any = cos(UpperCamelCase ) __UpperCAmelCase : List[str] = _sin / (2 * q_factor) __UpperCAmelCase : Optional[Any] = 1 - alpha __UpperCAmelCase : Tuple = -2 * _cos __UpperCAmelCase : List[Any] = 1 + alpha __UpperCAmelCase : str = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] ) return filt def _UpperCamelCase ( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = 1 / sqrt(2 ) , ) -> IIRFilter: """simple docstring""" __UpperCAmelCase : Dict = tau * frequency / samplerate __UpperCAmelCase : Optional[int] = sin(UpperCamelCase ) __UpperCAmelCase : Optional[Any] = cos(UpperCamelCase ) __UpperCAmelCase : List[Any] = _sin / (2 * q_factor) __UpperCAmelCase : List[Any] = 10 ** (gain_db / 40) __UpperCAmelCase : List[str] = 1 + alpha * big_a __UpperCAmelCase : Optional[Any] = -2 * _cos __UpperCAmelCase : int = 1 - alpha * big_a __UpperCAmelCase : Optional[int] = 1 + alpha / big_a __UpperCAmelCase : Union[str, Any] = -2 * _cos __UpperCAmelCase : Dict = 1 - alpha / big_a __UpperCAmelCase : Dict = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _UpperCamelCase ( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = 1 / sqrt(2 ) , ) -> IIRFilter: """simple docstring""" __UpperCAmelCase : str = tau * frequency / samplerate __UpperCAmelCase : int = sin(UpperCamelCase ) __UpperCAmelCase : Optional[Any] = cos(UpperCamelCase ) __UpperCAmelCase : str = _sin / (2 * q_factor) __UpperCAmelCase : str = 10 ** (gain_db / 40) __UpperCAmelCase : Union[str, Any] = (big_a + 1) - (big_a - 1) * _cos __UpperCAmelCase : Optional[int] = (big_a + 1) + (big_a - 1) * _cos __UpperCAmelCase : List[str] = (big_a - 1) - (big_a + 1) * _cos __UpperCAmelCase : List[Any] = (big_a - 1) + (big_a + 1) * _cos __UpperCAmelCase : Optional[Any] = 2 * sqrt(UpperCamelCase ) * alpha __UpperCAmelCase : Tuple = big_a * (pmc + aaa) __UpperCAmelCase : Union[str, Any] = 2 * big_a * mpc __UpperCAmelCase : Optional[int] = big_a * (pmc - aaa) __UpperCAmelCase : Any = ppmc + aaa __UpperCAmelCase : Dict = -2 * pmpc __UpperCAmelCase : Any = ppmc - aaa __UpperCAmelCase : str = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _UpperCamelCase ( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = 1 / sqrt(2 ) , ) -> IIRFilter: """simple docstring""" __UpperCAmelCase : Dict = tau * frequency / samplerate __UpperCAmelCase : Optional[int] = sin(UpperCamelCase ) __UpperCAmelCase : Dict = cos(UpperCamelCase ) __UpperCAmelCase : str = _sin / (2 * q_factor) __UpperCAmelCase : int = 10 ** (gain_db / 40) __UpperCAmelCase : Optional[Any] = (big_a + 1) - (big_a - 1) * _cos __UpperCAmelCase : Optional[int] = (big_a + 1) + (big_a - 1) * _cos __UpperCAmelCase : Union[str, Any] = (big_a - 1) - (big_a + 1) * _cos __UpperCAmelCase : Tuple = (big_a - 1) + (big_a + 1) * _cos __UpperCAmelCase : Optional[Any] = 2 * sqrt(UpperCamelCase ) * alpha __UpperCAmelCase : Tuple = big_a * (ppmc + aaa) __UpperCAmelCase : Any = -2 * big_a * pmpc __UpperCAmelCase : int = big_a * (ppmc - aaa) __UpperCAmelCase : int = pmc + aaa __UpperCAmelCase : Tuple = 2 * mpc __UpperCAmelCase : Union[str, Any] = pmc - aaa __UpperCAmelCase : Any = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt
487
1
_lowercase = ''' # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git ''' _lowercase = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] _lowercase = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
659
import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py _lowercase = '''src/diffusers''' _lowercase = '''.''' # This is to make sure the diffusers module imported is the one in the repo. _lowercase = importlib.util.spec_from_file_location( '''diffusers''', os.path.join(DIFFUSERS_PATH, '''__init__.py'''), submodule_search_locations=[DIFFUSERS_PATH], ) _lowercase = spec.loader.load_module() def UpperCamelCase ( snake_case__ , snake_case__): return line.startswith(snake_case__) or len(snake_case__) <= 1 or re.search(R"^\s*\)(\s*->.*:|:)\s*$" , snake_case__) is not None def UpperCamelCase ( snake_case__): lowerCAmelCase_ : Tuple = object_name.split(".") lowerCAmelCase_ : Union[str, Any] = 0 # First let's find the module where our object lives. lowerCAmelCase_ : Union[str, Any] = parts[i] while i < len(snake_case__) and not os.path.isfile(os.path.join(snake_case__ , F'''{module}.py''')): i += 1 if i < len(snake_case__): lowerCAmelCase_ : Dict = os.path.join(snake_case__ , parts[i]) if i >= len(snake_case__): raise ValueError(F'''`object_name` should begin with the name of a module of diffusers but got {object_name}.''') with open(os.path.join(snake_case__ , F'''{module}.py''') , "r" , encoding="utf-8" , newline="\n") as f: lowerCAmelCase_ : Optional[Any] = f.readlines() # Now let's find the class / func in the code! lowerCAmelCase_ : Union[str, Any] = "" lowerCAmelCase_ : int = 0 for name in parts[i + 1 :]: while ( line_index < len(snake_case__) and re.search(RF'''^{indent}(class|def)\s+{name}(\(|\:)''' , lines[line_index]) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(snake_case__): raise ValueError(F''' {object_name} does not match any function or class in {module}.''') # We found the beginning of the class / func, now let's find the end (when the indent diminishes). lowerCAmelCase_ : Union[str, Any] = line_index while line_index < len(snake_case__) and _should_continue(lines[line_index] , snake_case__): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1]) <= 1: line_index -= 1 lowerCAmelCase_ : List[str] = lines[start_index:line_index] return "".join(snake_case__) _lowercase = re.compile(r'''^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)''') _lowercase = re.compile(r'''^\s*(\S+)->(\S+)(\s+.*|$)''') _lowercase = re.compile(r'''<FILL\s+[^>]*>''') def UpperCamelCase ( snake_case__): lowerCAmelCase_ : Any = code.split("\n") lowerCAmelCase_ : Any = 0 while idx < len(snake_case__) and len(lines[idx]) == 0: idx += 1 if idx < len(snake_case__): return re.search(R"^(\s*)\S" , lines[idx]).groups()[0] return "" def UpperCamelCase ( snake_case__): lowerCAmelCase_ : Dict = len(get_indent(snake_case__)) > 0 if has_indent: lowerCAmelCase_ : Dict = F'''class Bla:\n{code}''' lowerCAmelCase_ : Optional[int] = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_19 , preview=snake_case__) lowerCAmelCase_ : Optional[Any] = black.format_str(snake_case__ , mode=snake_case__) lowerCAmelCase_ , lowerCAmelCase_ : List[Any] = style_docstrings_in_code(snake_case__) return result[len("class Bla:\n") :] if has_indent else result def UpperCamelCase ( snake_case__ , snake_case__=False): with open(snake_case__ , "r" , encoding="utf-8" , newline="\n") as f: lowerCAmelCase_ : Tuple = f.readlines() lowerCAmelCase_ : Tuple = [] lowerCAmelCase_ : Union[str, Any] = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(snake_case__): lowerCAmelCase_ : Optional[int] = _re_copy_warning.search(lines[line_index]) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : str = search.groups() lowerCAmelCase_ : int = find_code_in_diffusers(snake_case__) lowerCAmelCase_ : Dict = get_indent(snake_case__) lowerCAmelCase_ : Union[str, Any] = line_index + 1 if indent == theoretical_indent else line_index + 2 lowerCAmelCase_ : str = theoretical_indent lowerCAmelCase_ : Union[str, Any] = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. lowerCAmelCase_ : Optional[int] = True while line_index < len(snake_case__) and should_continue: line_index += 1 if line_index >= len(snake_case__): break lowerCAmelCase_ : Dict = lines[line_index] lowerCAmelCase_ : List[str] = _should_continue(snake_case__ , snake_case__) and re.search(F'''^{indent}# End copy''' , snake_case__) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1]) <= 1: line_index -= 1 lowerCAmelCase_ : Dict = lines[start_index:line_index] lowerCAmelCase_ : Optional[int] = "".join(snake_case__) # Remove any nested `Copied from` comments to avoid circular copies lowerCAmelCase_ : List[Any] = [line for line in theoretical_code.split("\n") if _re_copy_warning.search(snake_case__) is None] lowerCAmelCase_ : Optional[Any] = "\n".join(snake_case__) # Before comparing, use the `replace_pattern` on the original code. if len(snake_case__) > 0: lowerCAmelCase_ : List[str] = replace_pattern.replace("with" , "").split(",") lowerCAmelCase_ : Tuple = [_re_replace_pattern.search(snake_case__) for p in patterns] for pattern in patterns: if pattern is None: continue lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : List[str] = pattern.groups() lowerCAmelCase_ : int = re.sub(snake_case__ , snake_case__ , snake_case__) if option.strip() == "all-casing": lowerCAmelCase_ : List[str] = re.sub(obja.lower() , obja.lower() , snake_case__) lowerCAmelCase_ : int = re.sub(obja.upper() , obja.upper() , snake_case__) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line lowerCAmelCase_ : List[Any] = blackify(lines[start_index - 1] + theoretical_code) lowerCAmelCase_ : Union[str, Any] = theoretical_code[len(lines[start_index - 1]) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index]) if overwrite: lowerCAmelCase_ : List[Any] = lines[:start_index] + [theoretical_code] + lines[line_index:] lowerCAmelCase_ : Union[str, Any] = start_index + 1 if overwrite and len(snake_case__) > 0: # Warn the user a file has been modified. print(F'''Detected changes, rewriting {filename}.''') with open(snake_case__ , "w" , encoding="utf-8" , newline="\n") as f: f.writelines(snake_case__) return diffs def UpperCamelCase ( snake_case__ = False): lowerCAmelCase_ : Tuple = glob.glob(os.path.join(snake_case__ , "**/*.py") , recursive=snake_case__) lowerCAmelCase_ : int = [] for filename in all_files: lowerCAmelCase_ : Union[str, Any] = is_copy_consistent(snake_case__ , snake_case__) diffs += [F'''- {filename}: copy does not match {d[0]} at line {d[1]}''' for d in new_diffs] if not overwrite and len(snake_case__) > 0: lowerCAmelCase_ : Optional[Any] = "\n".join(snake_case__) raise Exception( "Found the following copy inconsistencies:\n" + diff + "\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them.") if __name__ == "__main__": _lowercase = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') _lowercase = parser.parse_args() check_copies(args.fix_and_overwrite)
659
1
import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = [ ["attention", "attn"], ["encoder_attention", "encoder_attn"], ["q_lin", "q_proj"], ["k_lin", "k_proj"], ["v_lin", "v_proj"], ["out_lin", "out_proj"], ["norm_embeddings", "layernorm_embedding"], ["position_embeddings", "embed_positions"], ["embeddings", "embed_tokens"], ["ffn.lin", "fc"], ] def _UpperCamelCase (a__ :str ): """simple docstring""" if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: UpperCamelCase__ = k.replace(a__ , a__ ) if k.startswith("""encoder""" ): UpperCamelCase__ = k.replace(""".attn""" , """.self_attn""" ) UpperCamelCase__ = k.replace("""norm1""" , """self_attn_layer_norm""" ) UpperCamelCase__ = k.replace("""norm2""" , """final_layer_norm""" ) elif k.startswith("""decoder""" ): UpperCamelCase__ = k.replace("""norm1""" , """self_attn_layer_norm""" ) UpperCamelCase__ = k.replace("""norm2""" , """encoder_attn_layer_norm""" ) UpperCamelCase__ = k.replace("""norm3""" , """final_layer_norm""" ) return k def _UpperCamelCase (a__ :Any ): """simple docstring""" UpperCamelCase__ = [ """model.encoder.layernorm_embedding.weight""", """model.encoder.layernorm_embedding.bias""", """model.decoder.layernorm_embedding.weight""", """model.decoder.layernorm_embedding.bias""", ] for k in keys: UpperCamelCase__ = sd.pop(a__ ) UpperCamelCase__ = k.replace("""layernorm_embedding""" , """layer_norm""" ) assert new_k not in sd UpperCamelCase__ = v UpperCamelCase__ = ["START"] @torch.no_grad() def _UpperCamelCase (a__ :List[Any] , a__ :Dict , a__ :str ): """simple docstring""" UpperCamelCase__ = torch.load(a__ , map_location="""cpu""" ) UpperCamelCase__ = model["""model"""] UpperCamelCase__ = BlenderbotConfig.from_json_file(a__ ) UpperCamelCase__ = BlenderbotForConditionalGeneration(a__ ) UpperCamelCase__ = m.model.state_dict().keys() UpperCamelCase__ = [] UpperCamelCase__ = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue UpperCamelCase__ = rename_state_dict_key(a__ ) if new_k not in valid_keys: failures.append([k, new_k] ) else: UpperCamelCase__ = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(a__ ) m.model.load_state_dict(a__ , strict=a__ ) m.half() m.save_pretrained(a__ ) if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument("--src_path", type=str, help="like blenderbot-model.bin") parser.add_argument("--save_dir", default="hf_blenderbot", type=str, help="Where to save converted model.") parser.add_argument( "--hf_config_json", default="blenderbot-3b-config.json", type=str, help="Path to config to use" ) UpperCamelCase__ = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
719
import inspect import unittest class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def _lowerCamelCase ( self ): try: import diffusers # noqa: F401 except ImportError: assert False def _lowerCamelCase ( self ): import diffusers from diffusers.dependency_versions_table import deps UpperCamelCase__ = inspect.getmembers(__lowerCAmelCase , inspect.isclass ) for cls_name, cls_module in all_classes: if "dummy_" in cls_module.__module__: for backend in cls_module._backends: if backend == "k_diffusion": UpperCamelCase__ = """k-diffusion""" elif backend == "invisible_watermark": UpperCamelCase__ = """invisible-watermark""" assert backend in deps, f"""{backend} is not in the deps table!"""
548
0
import math import random def snake_case (__lowercase , __lowercase = False ) -> float: '''simple docstring''' if deriv: return value * (1 - value) return 1 / (1 + math.exp(-value )) # Initial Value __SCREAMING_SNAKE_CASE : int = 0.02 def snake_case (__lowercase , __lowercase ) -> float: '''simple docstring''' _snake_case : List[Any] = float(2 * (random.randint(1 , 100 )) - 1 ) for _ in range(__lowercase ): # Forward propagation _snake_case : int = sigmoid_function(INITIAL_VALUE * weight ) # How much did we miss? _snake_case : int = (expected / 100) - layer_a # Error delta _snake_case : str = layer_1_error * sigmoid_function(__lowercase , __lowercase ) # Update weight weight += INITIAL_VALUE * layer_1_delta return layer_a * 100 if __name__ == "__main__": import doctest doctest.testmod() __SCREAMING_SNAKE_CASE : Union[str, Any] = int(input('Expected value: ')) __SCREAMING_SNAKE_CASE : Optional[Any] = int(input('Number of propagations: ')) print(forward_propagation(expected, number_propagations))
670
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowercase_ ( __snake_case ): _lowerCamelCase = ['image_processor', 'tokenizer'] _lowerCamelCase = 'CLIPImageProcessor' _lowerCamelCase = ('XLMRobertaTokenizer', 'XLMRobertaTokenizerFast') def __init__( self , lowercase_=None , lowercase_=None , **lowercase_ ): _snake_case : Optional[Any] = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , lowercase_ , ) _snake_case : Dict = kwargs.pop("feature_extractor" ) _snake_case : Any = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(lowercase_ , lowercase_ ) def __call__( self , lowercase_=None , lowercase_=None , lowercase_=None , **lowercase_ ): if text is None and images is None: raise ValueError("You have to specify either text or images. Both cannot be none." ) if text is not None: _snake_case : str = self.tokenizer(lowercase_ , return_tensors=lowercase_ , **lowercase_ ) if images is not None: _snake_case : List[str] = self.image_processor(lowercase_ , return_tensors=lowercase_ , **lowercase_ ) if text is not None and images is not None: _snake_case : Tuple = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowercase_ ) , tensor_type=lowercase_ ) def UpperCamelCase ( self , *lowercase_ , **lowercase_ ): return self.tokenizer.batch_decode(*lowercase_ , **lowercase_ ) def UpperCamelCase ( self , *lowercase_ , **lowercase_ ): return self.tokenizer.decode(*lowercase_ , **lowercase_ ) @property def UpperCamelCase ( self ): _snake_case : Any = self.tokenizer.model_input_names _snake_case : int = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
670
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { """facebook/deit-base-distilled-patch16-224""": ( """https://huggingface.co/facebook/deit-base-patch16-224/resolve/main/config.json""" ), # See all DeiT models at https://huggingface.co/models?filter=deit } class SCREAMING_SNAKE_CASE (UpperCAmelCase ): _UpperCamelCase : Any = 'deit' def __init__( self : Any , a : Union[str, Any]=768 , a : Optional[Any]=12 , a : Union[str, Any]=12 , a : Optional[int]=3_072 , a : Optional[int]="gelu" , a : Optional[Any]=0.0 , a : List[Any]=0.0 , a : int=0.02 , a : List[str]=1E-1_2 , a : Optional[int]=224 , a : Tuple=16 , a : List[Any]=3 , a : List[str]=True , a : Any=16 , **a : Union[str, Any] , )-> int: """simple docstring""" super().__init__(**a ) lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = image_size lowercase__ = patch_size lowercase__ = num_channels lowercase__ = qkv_bias lowercase__ = encoder_stride class SCREAMING_SNAKE_CASE (UpperCAmelCase ): _UpperCamelCase : List[Any] = version.parse('1.11' ) @property def SCREAMING_SNAKE_CASE_ ( self : int )-> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def SCREAMING_SNAKE_CASE_ ( self : Any )-> float: """simple docstring""" return 1E-4
711
from PIL import Image def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Image: def brightness(_SCREAMING_SNAKE_CASE ) -> float: return 128 + level + (c - 128) if not -2_5_5.0 <= level <= 2_5_5.0: raise ValueError('level must be between -255.0 (black) and 255.0 (white)' ) return img.point(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": # Load image with Image.open("""image_data/lena.jpg""") as img: # Change brightness to 100 lowercase_ = change_brightness(img, 100) brigt_img.save("""image_data/lena_brightness.png""", format="""png""")
45
0
'''simple docstring''' from __future__ import annotations from collections.abc import Callable from typing import Generic, TypeVar _SCREAMING_SNAKE_CASE = TypeVar("T") _SCREAMING_SNAKE_CASE = TypeVar("U") class __UpperCAmelCase ( Generic[T, U] ): '''simple docstring''' def __init__( self : Optional[Any] , _lowercase : List[str] , _lowercase : Any) -> str: A_ = key A_ = val A_ = None A_ = None def __repr__( self : List[Any]) -> str: return ( F'Node: key: {self.key}, val: {self.val}, ' F'has next: {bool(self.next)}, has prev: {bool(self.prev)}' ) class __UpperCAmelCase ( Generic[T, U] ): '''simple docstring''' def __init__( self : Any) -> None: A_ = DoubleLinkedListNode(A_ , A_) A_ = DoubleLinkedListNode(A_ , A_) A_ , A_ = self.rear, self.head def __repr__( self : Union[str, Any]) -> str: A_ = ['DoubleLinkedList'] A_ = self.head while node.next is not None: rep.append(str(A_)) A_ = node.next rep.append(str(self.rear)) return ",\n ".join(A_) def __snake_case ( self : Optional[Any] , _lowercase : int) -> None: A_ = self.rear.prev # All nodes other than self.head are guaranteed to have non-None previous assert previous is not None A_ = node A_ = previous A_ = node A_ = self.rear def __snake_case ( self : Any , _lowercase : Union[str, Any]) -> DoubleLinkedListNode[T, U] | None: if node.prev is None or node.next is None: return None A_ = node.next A_ = node.prev A_ = None A_ = None return node class __UpperCAmelCase ( Generic[T, U] ): '''simple docstring''' _UpperCamelCase = {} def __init__( self : Optional[Any] , _lowercase : Dict) -> Tuple: A_ = DoubleLinkedList() A_ = capacity A_ = 0 A_ = 0 A_ = 0 A_ = {} def __repr__( self : Tuple) -> str: return ( F'CacheInfo(hits={self.hits}, misses={self.miss}, ' F'capacity={self.capacity}, current size={self.num_keys})' ) def __contains__( self : Optional[Any] , _lowercase : Optional[Any]) -> bool: return key in self.cache def __snake_case ( self : str , _lowercase : List[Any]) -> U | None: # Note: pythonic interface would throw KeyError rather than return None if key in self.cache: self.hits += 1 A_ = self.cache[key] A_ = self.list.remove(self.cache[key]) assert node == value_node # node is guaranteed not None because it is in self.cache assert node is not None self.list.add(A_) return node.val self.miss += 1 return None def __snake_case ( self : List[Any] , _lowercase : Optional[Any] , _lowercase : str) -> None: if key not in self.cache: if self.num_keys >= self.capacity: # delete first node (oldest) when over capacity A_ = self.list.head.next # guaranteed to have a non-None first node when num_keys > 0 # explain to type checker via assertions assert first_node is not None assert first_node.key is not None assert ( self.list.remove(A_) is not None ) # node guaranteed to be in list assert node.key is not None del self.cache[first_node.key] self.num_keys -= 1 A_ = DoubleLinkedListNode(A_ , A_) self.list.add(self.cache[key]) self.num_keys += 1 else: # bump node to the end of the list, update value A_ = self.list.remove(self.cache[key]) assert node is not None # node guaranteed to be in list A_ = value self.list.add(A_) @classmethod def __snake_case ( cls : List[Any] , _lowercase : Dict = 128) -> Callable[[Callable[[T], U]], Callable[..., U]]: def cache_decorator_inner(_lowercase : Any) -> Callable[..., U]: def cache_decorator_wrapper(*_lowercase : str) -> U: if func not in cls.decorator_function_to_instance_map: A_ = LRUCache(A_) A_ = cls.decorator_function_to_instance_map[func].get(args[0]) if result is None: A_ = func(*A_) cls.decorator_function_to_instance_map[func].put(args[0] , A_) return result def cache_info() -> LRUCache[T, U]: return cls.decorator_function_to_instance_map[func] setattr(A_ , 'cache_info' , A_) # noqa: B010 return cache_decorator_wrapper return cache_decorator_inner if __name__ == "__main__": import doctest doctest.testmod()
366
import argparse import shutil from pathlib import Path from tqdm import tqdm from transformers import AutoTokenizer def _UpperCAmelCase ( A , A , A , A=1024 ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ =[], [] UpperCAmelCase__ =list(zip(A , A ) ) UpperCAmelCase__ , UpperCAmelCase__ =sorted_examples[0] def is_too_big(A ): return tok(A , return_tensors="pt" ).input_ids.shape[1] > max_tokens for src, tgt in tqdm(sorted_examples[1:] ): UpperCAmelCase__ =new_src + " " + src UpperCAmelCase__ =new_tgt + " " + tgt if is_too_big(A ) or is_too_big(A ): # cant fit, finalize example finished_src.append(A ) finished_tgt.append(A ) UpperCAmelCase__ , UpperCAmelCase__ =src, tgt else: # can fit, keep adding UpperCAmelCase__ , UpperCAmelCase__ =cand_src, cand_tgt # cleanup if new_src: assert new_tgt finished_src.append(A ) finished_tgt.append(A ) return finished_src, finished_tgt def _UpperCAmelCase ( A , A , A , A ): '''simple docstring''' UpperCAmelCase__ =Path(A ) save_path.mkdir(exist_ok=A ) for split in ["train"]: UpperCAmelCase__ , UpperCAmelCase__ =data_dir / F"""{split}.source""", data_dir / F"""{split}.target""" UpperCAmelCase__ =[x.rstrip() for x in Path(A ).open().readlines()] UpperCAmelCase__ =[x.rstrip() for x in Path(A ).open().readlines()] UpperCAmelCase__ , UpperCAmelCase__ =pack_examples(A , A , A , A ) print(F"""packed {split} split from {len(A )} examples -> {len(A )}.""" ) Path(save_path / F"""{split}.source""" ).open("w" ).write("\n".join(A ) ) Path(save_path / F"""{split}.target""" ).open("w" ).write("\n".join(A ) ) for split in ["val", "test"]: UpperCAmelCase__ , UpperCAmelCase__ =data_dir / F"""{split}.source""", data_dir / F"""{split}.target""" shutil.copyfile(A , save_path / F"""{split}.source""" ) shutil.copyfile(A , save_path / F"""{split}.target""" ) def _UpperCAmelCase ( ): '''simple docstring''' UpperCAmelCase__ =argparse.ArgumentParser() parser.add_argument("--tok_name" , type=A , help="like facebook/bart-large-cnn,t5-base, etc." ) parser.add_argument("--max_seq_len" , type=A , default=128 ) parser.add_argument("--data_dir" , type=A ) parser.add_argument("--save_path" , type=A ) UpperCAmelCase__ =parser.parse_args() UpperCAmelCase__ =AutoTokenizer.from_pretrained(args.tok_name ) return pack_data_dir(A , Path(args.data_dir ) , args.max_seq_len , args.save_path ) if __name__ == "__main__": packer_cli()
625
0
"""simple docstring""" import logging import random import ray from transformers import RagConfig, RagRetriever, RagTokenizer from transformers.models.rag.retrieval_rag import CustomHFIndex lowerCamelCase_ = logging.getLogger(__name__) class UpperCamelCase_ : def __init__( self : List[Any] ) -> Dict: UpperCAmelCase_ : int = False def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Any , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Union[str, Any] ) -> Tuple: if not self.initialized: UpperCAmelCase_ : Tuple = RagRetriever( _lowerCAmelCase , question_encoder_tokenizer=_lowerCAmelCase , generator_tokenizer=_lowerCAmelCase , index=_lowerCAmelCase , init_retrieval=_lowerCAmelCase , ) UpperCAmelCase_ : Optional[int] = True def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict: self.retriever.index.init_index() def _SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Dict ) -> int: UpperCAmelCase_ , UpperCAmelCase_ : int = self.retriever._main_retrieve(_lowerCAmelCase , _lowerCAmelCase ) return doc_ids, retrieved_doc_embeds class UpperCamelCase_ (__A ): def __init__( self : Dict , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[int]=None ) -> List[str]: if index is not None and index.is_initialized() and len(_lowerCAmelCase ) > 0: raise ValueError( "When using Ray for distributed fine-tuning, " "you'll need to provide the paths instead, " "as the dataset and the index are loaded " "separately. More info in examples/rag/use_own_knowledge_dataset.py " ) super().__init__( _lowerCAmelCase , question_encoder_tokenizer=_lowerCAmelCase , generator_tokenizer=_lowerCAmelCase , index=_lowerCAmelCase , init_retrieval=_lowerCAmelCase , ) UpperCAmelCase_ : Any = retrieval_workers if len(self.retrieval_workers ) > 0: ray.get( [ worker.create_rag_retriever.remote(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) for worker in self.retrieval_workers ] ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[Any]: logger.info("initializing retrieval" ) if len(self.retrieval_workers ) > 0: ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers] ) else: # Non-distributed training. Load index into this same process. self.index.init_index() def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[int] ) -> Union[str, Any]: if len(self.retrieval_workers ) > 0: # Select a random retrieval actor. UpperCAmelCase_ : Dict = self.retrieval_workers[random.randint(0 , len(self.retrieval_workers ) - 1 )] UpperCAmelCase_ , UpperCAmelCase_ : Dict = ray.get(random_worker.retrieve.remote(_lowerCAmelCase , _lowerCAmelCase ) ) else: UpperCAmelCase_ , UpperCAmelCase_ : List[str] = self._main_retrieve(_lowerCAmelCase , _lowerCAmelCase ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(_lowerCAmelCase ) @classmethod def _SCREAMING_SNAKE_CASE ( cls : str , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[str]=None , **lowerCAmelCase_ : Union[str, Any] ) -> List[str]: return super(_lowerCAmelCase , cls ).get_tokenizers(_lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ) @classmethod def _SCREAMING_SNAKE_CASE ( cls : List[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[str]=None , **lowerCAmelCase_ : Union[str, Any] ) -> Optional[int]: UpperCAmelCase_ : Tuple = kwargs.pop("config" , _lowerCAmelCase ) or RagConfig.from_pretrained(_lowerCAmelCase , **_lowerCAmelCase ) UpperCAmelCase_ : Optional[Any] = RagTokenizer.from_pretrained(_lowerCAmelCase , config=_lowerCAmelCase ) UpperCAmelCase_ : List[Any] = rag_tokenizer.question_encoder UpperCAmelCase_ : List[Any] = rag_tokenizer.generator if indexed_dataset is not None: UpperCAmelCase_ : List[str] = "custom" UpperCAmelCase_ : Union[str, Any] = CustomHFIndex(config.retrieval_vector_size , _lowerCAmelCase ) else: UpperCAmelCase_ : Dict = cls._build_index(_lowerCAmelCase ) return cls( _lowerCAmelCase , question_encoder_tokenizer=_lowerCAmelCase , generator_tokenizer=_lowerCAmelCase , retrieval_workers=_lowerCAmelCase , index=_lowerCAmelCase , )
709
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) lowerCamelCase_ = { '''configuration_clip''': [ '''CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CLIPConfig''', '''CLIPOnnxConfig''', '''CLIPTextConfig''', '''CLIPVisionConfig''', ], '''processing_clip''': ['''CLIPProcessor'''], '''tokenization_clip''': ['''CLIPTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = ['''CLIPTokenizerFast'''] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = ['''CLIPFeatureExtractor'''] lowerCamelCase_ = ['''CLIPImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ '''CLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CLIPModel''', '''CLIPPreTrainedModel''', '''CLIPTextModel''', '''CLIPTextModelWithProjection''', '''CLIPVisionModel''', '''CLIPVisionModelWithProjection''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ '''TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFCLIPModel''', '''TFCLIPPreTrainedModel''', '''TFCLIPTextModel''', '''TFCLIPVisionModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ '''FlaxCLIPModel''', '''FlaxCLIPPreTrainedModel''', '''FlaxCLIPTextModel''', '''FlaxCLIPTextPreTrainedModel''', '''FlaxCLIPVisionModel''', '''FlaxCLIPVisionPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys lowerCamelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
463
0
from collections.abc import Callable def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowercase = a lowercase = b if function(__SCREAMING_SNAKE_CASE ) == 0: # one of the a or b is a root for the function return a elif function(__SCREAMING_SNAKE_CASE ) == 0: return b elif ( function(__SCREAMING_SNAKE_CASE ) * function(__SCREAMING_SNAKE_CASE ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError('could not find root in given interval.' ) else: lowercase = start + (end - start) / 2.0 while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7 if function(__SCREAMING_SNAKE_CASE ) == 0: return mid elif function(__SCREAMING_SNAKE_CASE ) * function(__SCREAMING_SNAKE_CASE ) < 0: lowercase = mid else: lowercase = mid lowercase = start + (end - start) / 2.0 return mid def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE ): return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 1000)) import doctest doctest.testmod()
84
"""simple docstring""" import math from collections.abc import Callable def UpperCAmelCase ( snake_case : Callable[[float], float] , snake_case : float , snake_case : float ): _lowerCAmelCase:float = xa _lowerCAmelCase:float = xa while True: if x_n == x_na or function(snake_case ) == function(snake_case ): raise ZeroDivisionError('''float division by zero, could not find root''' ) _lowerCAmelCase:float = x_na - ( function(snake_case ) / ((function(snake_case ) - function(snake_case )) / (x_na - x_n)) ) if abs(x_na - x_na ) < 10**-5: return x_na _lowerCAmelCase:Optional[int] = x_na _lowerCAmelCase:Dict = x_na def UpperCAmelCase ( snake_case : float ): return math.pow(snake_case , 3 ) - (2 * x) - 5 if __name__ == "__main__": print(intersection(f, 3, 3.5))
227
0
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation def __snake_case ( _UpperCAmelCase ): __a = 384 if "tiny" in model_name: __a = [3, 3, 9, 3] __a = [96, 192, 384, 768] if "small" in model_name: __a = [3, 3, 27, 3] __a = [96, 192, 384, 768] if "base" in model_name: __a = [3, 3, 27, 3] __a = [128, 256, 512, 1024] __a = 512 if "large" in model_name: __a = [3, 3, 27, 3] __a = [192, 384, 768, 1536] __a = 768 if "xlarge" in model_name: __a = [3, 3, 27, 3] __a = [256, 512, 1024, 2048] __a = 1024 # set label information __a = 150 __a = '''huggingface/label-files''' __a = '''ade20k-id2label.json''' __a = json.load(open(hf_hub_download(snake_case__ , snake_case__ , repo_type='''dataset''' ) , '''r''' ) ) __a = {int(snake_case__ ): v for k, v in idalabel.items()} __a = {v: k for k, v in idalabel.items()} __a = ConvNextConfig( depths=snake_case__ , hidden_sizes=snake_case__ , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] ) __a = UperNetConfig( backbone_config=snake_case__ , auxiliary_in_channels=snake_case__ , num_labels=snake_case__ , idalabel=snake_case__ , labelaid=snake_case__ , ) return config def __snake_case ( _UpperCAmelCase ): __a = [] # fmt: off # stem rename_keys.append(('''backbone.downsample_layers.0.0.weight''', '''backbone.embeddings.patch_embeddings.weight''') ) rename_keys.append(('''backbone.downsample_layers.0.0.bias''', '''backbone.embeddings.patch_embeddings.bias''') ) rename_keys.append(('''backbone.downsample_layers.0.1.weight''', '''backbone.embeddings.layernorm.weight''') ) rename_keys.append(('''backbone.downsample_layers.0.1.bias''', '''backbone.embeddings.layernorm.bias''') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'backbone.stages.{i}.{j}.gamma', f'backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter') ) rename_keys.append((f'backbone.stages.{i}.{j}.depthwise_conv.weight', f'backbone.encoder.stages.{i}.layers.{j}.dwconv.weight') ) rename_keys.append((f'backbone.stages.{i}.{j}.depthwise_conv.bias', f'backbone.encoder.stages.{i}.layers.{j}.dwconv.bias') ) rename_keys.append((f'backbone.stages.{i}.{j}.norm.weight', f'backbone.encoder.stages.{i}.layers.{j}.layernorm.weight') ) rename_keys.append((f'backbone.stages.{i}.{j}.norm.bias', f'backbone.encoder.stages.{i}.layers.{j}.layernorm.bias') ) rename_keys.append((f'backbone.stages.{i}.{j}.pointwise_conv1.weight', f'backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight') ) rename_keys.append((f'backbone.stages.{i}.{j}.pointwise_conv1.bias', f'backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias') ) rename_keys.append((f'backbone.stages.{i}.{j}.pointwise_conv2.weight', f'backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight') ) rename_keys.append((f'backbone.stages.{i}.{j}.pointwise_conv2.bias', f'backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias') ) if i > 0: rename_keys.append((f'backbone.downsample_layers.{i}.0.weight', f'backbone.encoder.stages.{i}.downsampling_layer.0.weight') ) rename_keys.append((f'backbone.downsample_layers.{i}.0.bias', f'backbone.encoder.stages.{i}.downsampling_layer.0.bias') ) rename_keys.append((f'backbone.downsample_layers.{i}.1.weight', f'backbone.encoder.stages.{i}.downsampling_layer.1.weight') ) rename_keys.append((f'backbone.downsample_layers.{i}.1.bias', f'backbone.encoder.stages.{i}.downsampling_layer.1.bias') ) rename_keys.append((f'backbone.norm{i}.weight', f'backbone.hidden_states_norms.stage{i+1}.weight') ) rename_keys.append((f'backbone.norm{i}.bias', f'backbone.hidden_states_norms.stage{i+1}.bias') ) # decode head rename_keys.extend( [ ('''decode_head.conv_seg.weight''', '''decode_head.classifier.weight'''), ('''decode_head.conv_seg.bias''', '''decode_head.classifier.bias'''), ('''auxiliary_head.conv_seg.weight''', '''auxiliary_head.classifier.weight'''), ('''auxiliary_head.conv_seg.bias''', '''auxiliary_head.classifier.bias'''), ] ) # fmt: on return rename_keys def __snake_case ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __a = dct.pop(snake_case__ ) __a = val def __snake_case ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __a = { '''upernet-convnext-tiny''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth''', '''upernet-convnext-small''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth''', '''upernet-convnext-base''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth''', '''upernet-convnext-large''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth''', '''upernet-convnext-xlarge''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth''', } __a = model_name_to_url[model_name] __a = torch.hub.load_state_dict_from_url(snake_case__ , map_location='''cpu''' )['''state_dict'''] __a = get_upernet_config(snake_case__ ) __a = UperNetForSemanticSegmentation(snake_case__ ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): __a = state_dict.pop(snake_case__ ) if "bn" in key: __a = key.replace('''bn''' , '''batch_norm''' ) __a = val # rename keys __a = create_rename_keys(snake_case__ ) for src, dest in rename_keys: rename_key(snake_case__ , snake_case__ , snake_case__ ) model.load_state_dict(snake_case__ ) # verify on image __a = '''https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg''' __a = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ).convert('''RGB''' ) __a = SegformerImageProcessor() __a = processor(snake_case__ , return_tensors='''pt''' ).pixel_values with torch.no_grad(): __a = model(snake_case__ ) if model_name == "upernet-convnext-tiny": __a = torch.tensor( [[-8.81_10, -8.81_10, -8.65_21], [-8.81_10, -8.81_10, -8.65_21], [-8.77_46, -8.77_46, -8.61_30]] ) elif model_name == "upernet-convnext-small": __a = torch.tensor( [[-8.82_36, -8.82_36, -8.67_71], [-8.82_36, -8.82_36, -8.67_71], [-8.76_38, -8.76_38, -8.62_40]] ) elif model_name == "upernet-convnext-base": __a = torch.tensor( [[-8.85_58, -8.85_58, -8.69_05], [-8.85_58, -8.85_58, -8.69_05], [-8.76_69, -8.76_69, -8.60_21]] ) elif model_name == "upernet-convnext-large": __a = torch.tensor( [[-8.66_60, -8.66_60, -8.62_10], [-8.66_60, -8.66_60, -8.62_10], [-8.63_10, -8.63_10, -8.59_64]] ) elif model_name == "upernet-convnext-xlarge": __a = torch.tensor( [[-8.49_80, -8.49_80, -8.39_77], [-8.49_80, -8.49_80, -8.39_77], [-8.43_79, -8.43_79, -8.34_12]] ) print('''Logits:''' , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , snake_case__ , atol=1E-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(snake_case__ ) print(f'Saving processor to {pytorch_dump_folder_path}' ) processor.save_pretrained(snake_case__ ) if push_to_hub: print(f'Pushing model and processor for {model_name} to hub' ) model.push_to_hub(f'openmmlab/{model_name}' ) processor.push_to_hub(f'openmmlab/{model_name}' ) if __name__ == "__main__": __snake_case :Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''upernet-convnext-tiny''', type=str, choices=[f'upernet-convnext-{size}' for size in ['''tiny''', '''small''', '''base''', '''large''', '''xlarge''']], help='''Name of the ConvNext UperNet model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) __snake_case :Union[str, Any] = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
700
def __snake_case ( _UpperCAmelCase ): __a = '''''' for ch in key: if ch == " " or ch not in key_no_dups and ch.isalpha(): key_no_dups += ch return key_no_dups def __snake_case ( _UpperCAmelCase ): __a = [chr(i + 65 ) for i in range(26 )] # Remove duplicate characters from key __a = remove_duplicates(key.upper() ) __a = len(_UpperCAmelCase ) # First fill cipher with key characters __a = {alphabet[i]: char for i, char in enumerate(_UpperCAmelCase )} # Then map remaining characters in alphabet to # the alphabet from the beginning for i in range(len(_UpperCAmelCase ) , 26 ): __a = alphabet[i - offset] # Ensure we are not mapping letters to letters previously mapped while char in key: offset -= 1 __a = alphabet[i - offset] __a = char return cipher_alphabet def __snake_case ( _UpperCAmelCase , _UpperCAmelCase ): return "".join(cipher_map.get(_UpperCAmelCase , _UpperCAmelCase ) for ch in message.upper() ) def __snake_case ( _UpperCAmelCase , _UpperCAmelCase ): __a = {v: k for k, v in cipher_map.items()} return "".join(rev_cipher_map.get(_UpperCAmelCase , _UpperCAmelCase ) for ch in message.upper() ) def __snake_case ( ): __a = input('''Enter message to encode or decode: ''' ).strip() __a = input('''Enter keyword: ''' ).strip() __a = input('''Encipher or decipher? E/D:''' ).strip()[0].lower() try: __a = {'''e''': encipher, '''d''': decipher}[option] except KeyError: raise KeyError('''invalid input option''' ) __a = create_cipher_map(_UpperCAmelCase ) print(func(_UpperCAmelCase , _UpperCAmelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
60
0
'''simple docstring''' import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore lowerCAmelCase__ = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" lowerCAmelCase__ = [file for file in filepaths if file != file.lower()] if upper_files: print(f'''{len(upper_files)} files contain uppercase characters:''') print('\n'.join(upper_files) + '\n') lowerCAmelCase__ = [file for file in filepaths if ' ' in file] if space_files: print(f'''{len(space_files)} files contain space characters:''') print('\n'.join(space_files) + '\n') lowerCAmelCase__ = [file for file in filepaths if '-' in file] if hyphen_files: print(f'''{len(hyphen_files)} files contain hyphen characters:''') print('\n'.join(hyphen_files) + '\n') lowerCAmelCase__ = [file for file in filepaths if os.sep not in file] if nodir_files: print(f'''{len(nodir_files)} files are not in a directory:''') print('\n'.join(nodir_files) + '\n') lowerCAmelCase__ = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
596
'''simple docstring''' from typing import Any, Callable, Dict, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker lowerCAmelCase__ = 'CompVis/stable-diffusion-v1-1' lowerCAmelCase__ = 'CompVis/stable-diffusion-v1-2' lowerCAmelCase__ = 'CompVis/stable-diffusion-v1-3' lowerCAmelCase__ = 'CompVis/stable-diffusion-v1-4' class __lowercase (__lowerCamelCase ): def __init__( self : Optional[Any] , UpperCAmelCase_ : AutoencoderKL , UpperCAmelCase_ : CLIPTextModel , UpperCAmelCase_ : CLIPTokenizer , UpperCAmelCase_ : UNetaDConditionModel , UpperCAmelCase_ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , UpperCAmelCase_ : StableDiffusionSafetyChecker , UpperCAmelCase_ : CLIPImageProcessor , UpperCAmelCase_ : bool = True , ): super()._init_() UpperCamelCase__ : int = StableDiffusionPipeline.from_pretrained(UpperCAmelCase_) UpperCamelCase__ : Dict = StableDiffusionPipeline.from_pretrained(UpperCAmelCase_) UpperCamelCase__ : str = StableDiffusionPipeline.from_pretrained(UpperCAmelCase_) UpperCamelCase__ : List[Any] = StableDiffusionPipeline( vae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , unet=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , safety_checker=UpperCAmelCase_ , feature_extractor=UpperCAmelCase_ , requires_safety_checker=UpperCAmelCase_ , ) self.register_modules(pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea) @property def __UpperCamelCase ( self : Optional[Any]): return {k: getattr(self , UpperCAmelCase_) for k in self.config.keys() if not k.startswith('_')} def __UpperCamelCase ( self : int , UpperCAmelCase_ : Optional[Union[str, int]] = "auto"): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory UpperCamelCase__ : List[str] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(UpperCAmelCase_) def __UpperCamelCase ( self : Any): self.enable_attention_slicing(UpperCAmelCase_) @torch.no_grad() def __UpperCamelCase ( self : str , UpperCAmelCase_ : Union[str, List[str]] , UpperCAmelCase_ : int = 512 , UpperCAmelCase_ : int = 512 , UpperCAmelCase_ : int = 50 , UpperCAmelCase_ : float = 7.5 , UpperCAmelCase_ : Optional[Union[str, List[str]]] = None , UpperCAmelCase_ : Optional[int] = 1 , UpperCAmelCase_ : float = 0.0 , UpperCAmelCase_ : Optional[torch.Generator] = None , UpperCAmelCase_ : Optional[torch.FloatTensor] = None , UpperCAmelCase_ : Optional[str] = "pil" , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , UpperCAmelCase_ : int = 1 , **UpperCAmelCase_ : Optional[int] , ): return self.pipea( prompt=UpperCAmelCase_ , height=UpperCAmelCase_ , width=UpperCAmelCase_ , num_inference_steps=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , negative_prompt=UpperCAmelCase_ , num_images_per_prompt=UpperCAmelCase_ , eta=UpperCAmelCase_ , generator=UpperCAmelCase_ , latents=UpperCAmelCase_ , output_type=UpperCAmelCase_ , return_dict=UpperCAmelCase_ , callback=UpperCAmelCase_ , callback_steps=UpperCAmelCase_ , **UpperCAmelCase_ , ) @torch.no_grad() def __UpperCamelCase ( self : Optional[Any] , UpperCAmelCase_ : Union[str, List[str]] , UpperCAmelCase_ : int = 512 , UpperCAmelCase_ : int = 512 , UpperCAmelCase_ : int = 50 , UpperCAmelCase_ : float = 7.5 , UpperCAmelCase_ : Optional[Union[str, List[str]]] = None , UpperCAmelCase_ : Optional[int] = 1 , UpperCAmelCase_ : float = 0.0 , UpperCAmelCase_ : Optional[torch.Generator] = None , UpperCAmelCase_ : Optional[torch.FloatTensor] = None , UpperCAmelCase_ : Optional[str] = "pil" , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , UpperCAmelCase_ : int = 1 , **UpperCAmelCase_ : Tuple , ): return self.pipea( prompt=UpperCAmelCase_ , height=UpperCAmelCase_ , width=UpperCAmelCase_ , num_inference_steps=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , negative_prompt=UpperCAmelCase_ , num_images_per_prompt=UpperCAmelCase_ , eta=UpperCAmelCase_ , generator=UpperCAmelCase_ , latents=UpperCAmelCase_ , output_type=UpperCAmelCase_ , return_dict=UpperCAmelCase_ , callback=UpperCAmelCase_ , callback_steps=UpperCAmelCase_ , **UpperCAmelCase_ , ) @torch.no_grad() def __UpperCamelCase ( self : Dict , UpperCAmelCase_ : Union[str, List[str]] , UpperCAmelCase_ : int = 512 , UpperCAmelCase_ : int = 512 , UpperCAmelCase_ : int = 50 , UpperCAmelCase_ : float = 7.5 , UpperCAmelCase_ : Optional[Union[str, List[str]]] = None , UpperCAmelCase_ : Optional[int] = 1 , UpperCAmelCase_ : float = 0.0 , UpperCAmelCase_ : Optional[torch.Generator] = None , UpperCAmelCase_ : Optional[torch.FloatTensor] = None , UpperCAmelCase_ : Optional[str] = "pil" , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , UpperCAmelCase_ : int = 1 , **UpperCAmelCase_ : str , ): return self.pipea( prompt=UpperCAmelCase_ , height=UpperCAmelCase_ , width=UpperCAmelCase_ , num_inference_steps=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , negative_prompt=UpperCAmelCase_ , num_images_per_prompt=UpperCAmelCase_ , eta=UpperCAmelCase_ , generator=UpperCAmelCase_ , latents=UpperCAmelCase_ , output_type=UpperCAmelCase_ , return_dict=UpperCAmelCase_ , callback=UpperCAmelCase_ , callback_steps=UpperCAmelCase_ , **UpperCAmelCase_ , ) @torch.no_grad() def __UpperCamelCase ( self : Optional[Any] , UpperCAmelCase_ : Union[str, List[str]] , UpperCAmelCase_ : int = 512 , UpperCAmelCase_ : int = 512 , UpperCAmelCase_ : int = 50 , UpperCAmelCase_ : float = 7.5 , UpperCAmelCase_ : Optional[Union[str, List[str]]] = None , UpperCAmelCase_ : Optional[int] = 1 , UpperCAmelCase_ : float = 0.0 , UpperCAmelCase_ : Optional[torch.Generator] = None , UpperCAmelCase_ : Optional[torch.FloatTensor] = None , UpperCAmelCase_ : Optional[str] = "pil" , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , UpperCAmelCase_ : int = 1 , **UpperCAmelCase_ : Dict , ): return self.pipea( prompt=UpperCAmelCase_ , height=UpperCAmelCase_ , width=UpperCAmelCase_ , num_inference_steps=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , negative_prompt=UpperCAmelCase_ , num_images_per_prompt=UpperCAmelCase_ , eta=UpperCAmelCase_ , generator=UpperCAmelCase_ , latents=UpperCAmelCase_ , output_type=UpperCAmelCase_ , return_dict=UpperCAmelCase_ , callback=UpperCAmelCase_ , callback_steps=UpperCAmelCase_ , **UpperCAmelCase_ , ) @torch.no_grad() def __UpperCamelCase ( self : int , UpperCAmelCase_ : Union[str, List[str]] , UpperCAmelCase_ : int = 512 , UpperCAmelCase_ : int = 512 , UpperCAmelCase_ : int = 50 , UpperCAmelCase_ : float = 7.5 , UpperCAmelCase_ : Optional[Union[str, List[str]]] = None , UpperCAmelCase_ : Optional[int] = 1 , UpperCAmelCase_ : float = 0.0 , UpperCAmelCase_ : Optional[torch.Generator] = None , UpperCAmelCase_ : Optional[torch.FloatTensor] = None , UpperCAmelCase_ : Optional[str] = "pil" , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , UpperCAmelCase_ : int = 1 , **UpperCAmelCase_ : Tuple , ): UpperCamelCase__ : Tuple = 'cuda' if torch.cuda.is_available() else 'cpu' self.to(UpperCAmelCase_) # Checks if the height and width are divisible by 8 or not if height % 8 != 0 or width % 8 != 0: raise ValueError(F'`height` and `width` must be divisible by 8 but are {height} and {width}.') # Get first result from Stable Diffusion Checkpoint v1.1 UpperCamelCase__ : Dict = self.textaimg_sda_a( prompt=UpperCAmelCase_ , height=UpperCAmelCase_ , width=UpperCAmelCase_ , num_inference_steps=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , negative_prompt=UpperCAmelCase_ , num_images_per_prompt=UpperCAmelCase_ , eta=UpperCAmelCase_ , generator=UpperCAmelCase_ , latents=UpperCAmelCase_ , output_type=UpperCAmelCase_ , return_dict=UpperCAmelCase_ , callback=UpperCAmelCase_ , callback_steps=UpperCAmelCase_ , **UpperCAmelCase_ , ) # Get first result from Stable Diffusion Checkpoint v1.2 UpperCamelCase__ : Optional[Any] = self.textaimg_sda_a( prompt=UpperCAmelCase_ , height=UpperCAmelCase_ , width=UpperCAmelCase_ , num_inference_steps=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , negative_prompt=UpperCAmelCase_ , num_images_per_prompt=UpperCAmelCase_ , eta=UpperCAmelCase_ , generator=UpperCAmelCase_ , latents=UpperCAmelCase_ , output_type=UpperCAmelCase_ , return_dict=UpperCAmelCase_ , callback=UpperCAmelCase_ , callback_steps=UpperCAmelCase_ , **UpperCAmelCase_ , ) # Get first result from Stable Diffusion Checkpoint v1.3 UpperCamelCase__ : Optional[Any] = self.textaimg_sda_a( prompt=UpperCAmelCase_ , height=UpperCAmelCase_ , width=UpperCAmelCase_ , num_inference_steps=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , negative_prompt=UpperCAmelCase_ , num_images_per_prompt=UpperCAmelCase_ , eta=UpperCAmelCase_ , generator=UpperCAmelCase_ , latents=UpperCAmelCase_ , output_type=UpperCAmelCase_ , return_dict=UpperCAmelCase_ , callback=UpperCAmelCase_ , callback_steps=UpperCAmelCase_ , **UpperCAmelCase_ , ) # Get first result from Stable Diffusion Checkpoint v1.4 UpperCamelCase__ : List[str] = self.textaimg_sda_a( prompt=UpperCAmelCase_ , height=UpperCAmelCase_ , width=UpperCAmelCase_ , num_inference_steps=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , negative_prompt=UpperCAmelCase_ , num_images_per_prompt=UpperCAmelCase_ , eta=UpperCAmelCase_ , generator=UpperCAmelCase_ , latents=UpperCAmelCase_ , output_type=UpperCAmelCase_ , return_dict=UpperCAmelCase_ , callback=UpperCAmelCase_ , callback_steps=UpperCAmelCase_ , **UpperCAmelCase_ , ) # Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]])
596
1
import importlib.util import json import os import warnings from dataclasses import dataclass, field import torch from ..training_args import TrainingArguments from ..utils import cached_property, is_sagemaker_dp_enabled, logging lowerCAmelCase_ = logging.get_logger(__name__) def lowerCAmelCase( ): '''simple docstring''' lowerCamelCase__ = os.getenv("SM_HP_MP_PARAMETERS" , "{}" ) try: # Parse it and check the field "partitions" is included, it is required for model parallel. lowerCamelCase__ = json.loads(a__ ) if "partitions" not in smp_options: return False except json.JSONDecodeError: return False # Get the sagemaker specific framework parameters from mpi_options variable. lowerCamelCase__ = os.getenv("SM_FRAMEWORK_PARAMS" , "{}" ) try: # Parse it and check the field "sagemaker_distributed_dataparallel_enabled". lowerCamelCase__ = json.loads(a__ ) if not mpi_options.get("sagemaker_mpi_enabled" , a__ ): return False except json.JSONDecodeError: return False # Lastly, check if the `smdistributed` module is present. return importlib.util.find_spec("smdistributed" ) is not None if is_sagemaker_model_parallel_available(): import smdistributed.modelparallel.torch as smp smp.init() @dataclass class snake_case_ ( A__ ): """simple docstring""" __lowerCAmelCase : str =field( default='''''' , metadata={'''help''': '''Used by the SageMaker launcher to send mp-specific args. Ignored in SageMakerTrainer'''} , ) def __UpperCAmelCase ( self): super().__post_init__() warnings.warn( "`SageMakerTrainingArguments` is deprecated and will be removed in v5 of Transformers. You can use " "`TrainingArguments` instead." , UpperCamelCase , ) @cached_property def __UpperCAmelCase ( self): logger.info("PyTorch: setting up devices") if torch.distributed.is_available() and torch.distributed.is_initialized() and self.local_rank == -1: logger.warning( "torch.distributed process group is initialized, but local_rank == -1. " "In order to use Torch DDP, launch your script with `python -m torch.distributed.launch") if self.no_cuda: lowerCamelCase__ = torch.device("cpu") lowerCamelCase__ = 0 elif is_sagemaker_model_parallel_available(): lowerCamelCase__ = smp.local_rank() lowerCamelCase__ = torch.device("cuda" , UpperCamelCase) lowerCamelCase__ = 1 elif is_sagemaker_dp_enabled(): import smdistributed.dataparallel.torch.torch_smddp # noqa: F401 torch.distributed.init_process_group(backend="smddp" , timeout=self.ddp_timeout_delta) lowerCamelCase__ = int(os.getenv("SMDATAPARALLEL_LOCAL_RANK")) lowerCamelCase__ = torch.device("cuda" , self.local_rank) lowerCamelCase__ = 1 elif self.local_rank == -1: # if n_gpu is > 1 we'll use nn.DataParallel. # If you only want to use a specific subset of GPUs use `CUDA_VISIBLE_DEVICES=0` # Explicitly set CUDA to the first (index 0) CUDA device, otherwise `set_device` will # trigger an error that a device index is missing. Index 0 takes into account the # GPUs available in the environment, so `CUDA_VISIBLE_DEVICES=1,2` with `cuda:0` # will use the first GPU in that env, i.e. GPU#1 lowerCamelCase__ = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # Sometimes the line in the postinit has not been run before we end up here, so just checking we're not at # the default value. lowerCamelCase__ = torch.cuda.device_count() else: # Here, we'll use torch.distributed. # Initializes the distributed backend which will take care of synchronizing nodes/GPUs if not torch.distributed.is_initialized(): torch.distributed.init_process_group(backend="nccl" , timeout=self.ddp_timeout_delta) lowerCamelCase__ = torch.device("cuda" , self.local_rank) lowerCamelCase__ = 1 if device.type == "cuda": torch.cuda.set_device(UpperCamelCase) return device @property def __UpperCAmelCase ( self): if is_sagemaker_model_parallel_available(): return smp.dp_size() return super().world_size @property def __UpperCAmelCase ( self): return not is_sagemaker_model_parallel_available() @property def __UpperCAmelCase ( self): return False
708
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available lowerCAmelCase_ = {"configuration_speech_encoder_decoder": ["SpeechEncoderDecoderConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ["SpeechEncoderDecoderModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ["FlaxSpeechEncoderDecoderModel"] if TYPE_CHECKING: from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
426
0
'''simple docstring''' import argparse import collections import numpy as np import torch from flax import traverse_util from tax import checkpoints from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def a_ ( _UpperCAmelCase : Optional[int] ,_UpperCAmelCase : Any ,_UpperCAmelCase : List[Any] ) -> Tuple: return params[f'''{prefix}/{prefix}/relpos_bias/rel_embedding'''][:, i, :] def a_ ( _UpperCAmelCase : Optional[int] ,_UpperCAmelCase : List[Any] ,_UpperCAmelCase : int ,_UpperCAmelCase : List[Any]="attention" ) -> Union[str, Any]: __snake_case : str = np.ascontiguousarray(params[f'''{prefix}/{prefix}/{layer_name}/key/kernel'''][:, i, :, :] ) __snake_case : str = k_tmp.reshape(k_tmp.shape[0] ,k_tmp.shape[1] * k_tmp.shape[2] ) __snake_case : List[Any] = np.ascontiguousarray(params[f'''{prefix}/{prefix}/{layer_name}/out/kernel'''][:, i, :, :] ) __snake_case : List[str] = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1] ,o_tmp.shape[2] ) __snake_case : Any = np.ascontiguousarray(params[f'''{prefix}/{prefix}/{layer_name}/query/kernel'''][:, i, :, :] ) __snake_case : Tuple = q_tmp.reshape(q_tmp.shape[0] ,q_tmp.shape[1] * q_tmp.shape[2] ) __snake_case : Tuple = np.ascontiguousarray(params[f'''{prefix}/{prefix}/{layer_name}/value/kernel'''][:, i, :, :] ) __snake_case : Dict = v_tmp.reshape(v_tmp.shape[0] ,v_tmp.shape[1] * v_tmp.shape[2] ) return k, o, q, v def a_ ( _UpperCAmelCase : str ,_UpperCAmelCase : List[str] ,_UpperCAmelCase : Union[str, Any] ,_UpperCAmelCase : Dict=False ) -> List[str]: if split_mlp_wi: __snake_case : Any = params[f'''{prefix}/{prefix}/mlp/wi_0/kernel'''][:, i, :] __snake_case : Optional[Any] = params[f'''{prefix}/{prefix}/mlp/wi_1/kernel'''][:, i, :] __snake_case : Any = (wi_a, wi_a) else: __snake_case : Dict = params[f'''{prefix}/{prefix}/mlp/wi/kernel'''][:, i, :] __snake_case : Optional[Any] = params[f'''{prefix}/{prefix}/mlp/wo/kernel'''][:, i, :] return wi, wo def a_ ( _UpperCAmelCase : Optional[Any] ,_UpperCAmelCase : Union[str, Any] ,_UpperCAmelCase : List[str] ,_UpperCAmelCase : List[str] ) -> List[str]: return params[f'''{prefix}/{prefix}/{layer_name}/scale'''][:, i] def a_ ( _UpperCAmelCase : dict ,*, _UpperCAmelCase : int ,_UpperCAmelCase : bool ,_UpperCAmelCase : bool = False ) -> Dict: __snake_case : int = traverse_util.flatten_dict(variables['target'] ) __snake_case : Dict = {'/'.join(_UpperCAmelCase ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi __snake_case : str = 'encoder/encoder/mlp/wi_0/kernel' in old print('Split MLP:' ,_UpperCAmelCase ) __snake_case : Any = collections.OrderedDict() # Shared embeddings. __snake_case : Dict = old['token_embedder/embedding'] # Encoder. for i in range(_UpperCAmelCase ): # Block i, layer 0 (Self Attention). __snake_case : Union[str, Any] = tax_layer_norm_lookup(_UpperCAmelCase ,_UpperCAmelCase ,'encoder' ,'pre_attention_layer_norm' ) __snake_case , __snake_case , __snake_case , __snake_case : Tuple = tax_attention_lookup(_UpperCAmelCase ,_UpperCAmelCase ,'encoder' ,'attention' ) __snake_case : Optional[int] = layer_norm __snake_case : Union[str, Any] = k.T __snake_case : Union[str, Any] = o.T __snake_case : List[str] = q.T __snake_case : Optional[Any] = v.T # Block i, layer 1 (MLP). __snake_case : Any = tax_layer_norm_lookup(_UpperCAmelCase ,_UpperCAmelCase ,'encoder' ,'pre_mlp_layer_norm' ) __snake_case , __snake_case : int = tax_mlp_lookup(_UpperCAmelCase ,_UpperCAmelCase ,'encoder' ,_UpperCAmelCase ) __snake_case : int = layer_norm if split_mlp_wi: __snake_case : Any = wi[0].T __snake_case : Union[str, Any] = wi[1].T else: __snake_case : Tuple = wi.T __snake_case : Tuple = wo.T if scalable_attention: # convert the rel_embedding of each layer __snake_case : List[Any] = tax_relpos_bias_lookup( _UpperCAmelCase ,_UpperCAmelCase ,'encoder' ).T __snake_case : int = old['encoder/encoder_norm/scale'] if not scalable_attention: __snake_case : List[str] = tax_relpos_bias_lookup( _UpperCAmelCase ,0 ,'encoder' ).T __snake_case : List[Any] = tax_relpos_bias_lookup( _UpperCAmelCase ,0 ,'decoder' ).T if not is_encoder_only: # Decoder. for i in range(_UpperCAmelCase ): # Block i, layer 0 (Self Attention). __snake_case : List[str] = tax_layer_norm_lookup(_UpperCAmelCase ,_UpperCAmelCase ,'decoder' ,'pre_self_attention_layer_norm' ) __snake_case , __snake_case , __snake_case , __snake_case : List[str] = tax_attention_lookup(_UpperCAmelCase ,_UpperCAmelCase ,'decoder' ,'self_attention' ) __snake_case : Tuple = layer_norm __snake_case : Union[str, Any] = k.T __snake_case : List[str] = o.T __snake_case : List[str] = q.T __snake_case : int = v.T # Block i, layer 1 (Cross Attention). __snake_case : Any = tax_layer_norm_lookup(_UpperCAmelCase ,_UpperCAmelCase ,'decoder' ,'pre_cross_attention_layer_norm' ) __snake_case , __snake_case , __snake_case , __snake_case : int = tax_attention_lookup(_UpperCAmelCase ,_UpperCAmelCase ,'decoder' ,'encoder_decoder_attention' ) __snake_case : Optional[int] = layer_norm __snake_case : Any = k.T __snake_case : Optional[Any] = o.T __snake_case : List[Any] = q.T __snake_case : Optional[int] = v.T # Block i, layer 2 (MLP). __snake_case : Any = tax_layer_norm_lookup(_UpperCAmelCase ,_UpperCAmelCase ,'decoder' ,'pre_mlp_layer_norm' ) __snake_case , __snake_case : List[str] = tax_mlp_lookup(_UpperCAmelCase ,_UpperCAmelCase ,'decoder' ,_UpperCAmelCase ) __snake_case : Tuple = layer_norm if split_mlp_wi: __snake_case : Optional[int] = wi[0].T __snake_case : Union[str, Any] = wi[1].T else: __snake_case : int = wi.T __snake_case : int = wo.T if scalable_attention: # convert the rel_embedding of each layer __snake_case : Union[str, Any] = tax_relpos_bias_lookup(_UpperCAmelCase ,_UpperCAmelCase ,'decoder' ).T __snake_case : Union[str, Any] = old['decoder/decoder_norm/scale'] # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: __snake_case : int = old['decoder/logits_dense/kernel'].T return new def a_ ( _UpperCAmelCase : Optional[Any] ,_UpperCAmelCase : bool ) -> List[str]: __snake_case : Dict = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: __snake_case : Any = state_dict['shared.weight'] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: __snake_case : Optional[int] = state_dict['shared.weight'] if "lm_head.weight" not in state_dict: # For old 1.0 models. print('Using shared word embeddings as lm_head.' ) __snake_case : List[str] = state_dict['shared.weight'] return state_dict def a_ ( _UpperCAmelCase : Union[str, Any] ,_UpperCAmelCase : str ,_UpperCAmelCase : int ,_UpperCAmelCase : List[str] ,_UpperCAmelCase : Union[str, Any] ) -> Tuple: __snake_case : Any = checkpoints.load_tax_checkpoint(_UpperCAmelCase ) __snake_case : Union[str, Any] = convert_tax_to_pytorch( _UpperCAmelCase ,num_layers=config.num_layers ,is_encoder_only=_UpperCAmelCase ,scalable_attention=_UpperCAmelCase ) __snake_case : Any = make_state_dict(_UpperCAmelCase ,_UpperCAmelCase ) model.load_state_dict(_UpperCAmelCase ,strict=_UpperCAmelCase ) def a_ ( _UpperCAmelCase : Optional[Any] ,_UpperCAmelCase : int ,_UpperCAmelCase : Optional[Any] ,_UpperCAmelCase : bool = False ,_UpperCAmelCase : bool = False ,) -> Tuple: __snake_case : List[Any] = MTaConfig.from_json_file(_UpperCAmelCase ) print(f'''Building PyTorch model from configuration: {config}''' ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: __snake_case : Optional[Any] = UMTaEncoderModel(_UpperCAmelCase ) else: __snake_case : str = UMTaForConditionalGeneration(_UpperCAmelCase ) # Load weights from tf checkpoint load_tax_weights_in_ta(_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ) # Save pytorch-model print(f'''Save PyTorch model to {pytorch_dump_path}''' ) model.save_pretrained(_UpperCAmelCase ) # Verify that we can load the checkpoint. model.from_pretrained(_UpperCAmelCase ) print('Done' ) if __name__ == "__main__": A__ : List[str] = argparse.ArgumentParser(description='''Converts a native T5X checkpoint into a PyTorch checkpoint.''') # Required parameters parser.add_argument( '''--t5x_checkpoint_path''', default=None, type=str, required=True, help='''Path to the T5X checkpoint.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--is_encoder_only''', action='''store_true''', help='''Check if the model is encoder-decoder model''', default=False ) parser.add_argument( '''--scalable_attention''', action='''store_true''', help='''Whether the model uses scaled attention (umt5 model)''', default=False, ) A__ : List[Any] = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only, args.scalable_attention, )
286
'''simple docstring''' import qiskit def a_ ( _UpperCAmelCase : int = 2 ) -> qiskit.result.counts.Counts: __snake_case : Union[str, Any] = qubits # Using Aer's simulator __snake_case : List[Any] = qiskit.Aer.get_backend('aer_simulator' ) # Creating a Quantum Circuit acting on the q register __snake_case : Dict = qiskit.QuantumCircuit(_UpperCAmelCase ,_UpperCAmelCase ) # Adding a H gate on qubit 0 (now q0 in superposition) circuit.h(0 ) for i in range(1 ,_UpperCAmelCase ): # Adding CX (CNOT) gate circuit.cx(i - 1 ,_UpperCAmelCase ) # Mapping the quantum measurement to the classical bits circuit.measure(list(range(_UpperCAmelCase ) ) ,list(range(_UpperCAmelCase ) ) ) # Now measuring any one qubit would affect other qubits to collapse # their super position and have same state as the measured one. # Executing the circuit on the simulator __snake_case : Optional[Any] = qiskit.execute(_UpperCAmelCase ,_UpperCAmelCase ,shots=10_00 ) return job.result().get_counts(_UpperCAmelCase ) if __name__ == "__main__": print(F"""Total count for various states are: {quantum_entanglement(3)}""")
286
1
import argparse import os import re import packaging.version lowercase_ : Optional[int] = '''examples/''' lowercase_ : List[Any] = { '''examples''': (re.compile(r'''^check_min_version\("[^"]+"\)\s*$''', re.MULTILINE), '''check_min_version("VERSION")\n'''), '''init''': (re.compile(r'''^__version__\s+=\s+"([^"]+)"\s*$''', re.MULTILINE), '''__version__ = "VERSION"\n'''), '''setup''': (re.compile(r'''^(\s*)version\s*=\s*"[^"]+",''', re.MULTILINE), r'''\1version="VERSION",'''), '''doc''': (re.compile(r'''^(\s*)release\s*=\s*"[^"]+"$''', re.MULTILINE), '''release = "VERSION"\n'''), } lowercase_ : int = { '''init''': '''src/diffusers/__init__.py''', '''setup''': '''setup.py''', } lowercase_ : int = '''README.md''' def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): with open(__lowerCAmelCase , 'r' , encoding='utf-8' , newline='\n' ) as f: _snake_case : Optional[int] = f.read() _snake_case : Dict = REPLACE_PATTERNS[pattern] _snake_case : Tuple = replace.replace('VERSION' , __lowerCAmelCase ) _snake_case : str = re_pattern.sub(__lowerCAmelCase , __lowerCAmelCase ) with open(__lowerCAmelCase , 'w' , encoding='utf-8' , newline='\n' ) as f: f.write(__lowerCAmelCase ) def A__( __lowerCAmelCase ): for folder, directories, fnames in os.walk(__lowerCAmelCase ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('research_projects' ) if "legacy" in directories: directories.remove('legacy' ) for fname in fnames: if fname.endswith('.py' ): update_version_in_file(os.path.join(__lowerCAmelCase , __lowerCAmelCase ) , __lowerCAmelCase , pattern='examples' ) def A__( __lowerCAmelCase , __lowerCAmelCase=False ): for pattern, fname in REPLACE_FILES.items(): update_version_in_file(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if not patch: update_version_in_examples(__lowerCAmelCase ) def A__( ): _snake_case : List[Any] = '🤗 Transformers currently provides the following architectures' _snake_case : List[Any] = '1. Want to contribute a new model?' with open(__lowerCAmelCase , 'r' , encoding='utf-8' , newline='\n' ) as f: _snake_case : str = f.readlines() # Find the start of the list. _snake_case : int = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 _snake_case : Tuple = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('1.' ): _snake_case : Tuple = lines[index].replace( 'https://huggingface.co/docs/diffusers/main/model_doc' , 'https://huggingface.co/docs/diffusers/model_doc' , ) index += 1 with open(__lowerCAmelCase , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(__lowerCAmelCase ) def A__( ): with open(REPLACE_FILES['init'] , 'r' ) as f: _snake_case : Optional[int] = f.read() _snake_case : Tuple = REPLACE_PATTERNS['init'][0].search(__lowerCAmelCase ).groups()[0] return packaging.version.parse(__lowerCAmelCase ) def A__( __lowerCAmelCase=False ): _snake_case : Optional[Any] = get_version() if patch and default_version.is_devrelease: raise ValueError('Can\'t create a patch version from the dev branch, checkout a released version!' ) if default_version.is_devrelease: _snake_case : int = default_version.base_version elif patch: _snake_case : Optional[Any] = F'''{default_version.major}.{default_version.minor}.{default_version.micro + 1}''' else: _snake_case : Any = F'''{default_version.major}.{default_version.minor + 1}.0''' # Now let's ask nicely if that's the right one. _snake_case : List[Any] = input(F'''Which version are you releasing? [{default_version}]''' ) if len(__lowerCAmelCase ) == 0: _snake_case : Tuple = default_version print(F'''Updating version to {version}.''' ) global_version_update(__lowerCAmelCase , patch=__lowerCAmelCase ) def A__( ): _snake_case : Tuple = get_version() _snake_case : List[Any] = F'''{current_version.major}.{current_version.minor + 1}.0.dev0''' _snake_case : List[Any] = current_version.base_version # Check with the user we got that right. _snake_case : Union[str, Any] = input(F'''Which version are we developing now? [{dev_version}]''' ) if len(__lowerCAmelCase ) == 0: _snake_case : Dict = dev_version print(F'''Updating version to {version}.''' ) global_version_update(__lowerCAmelCase ) # print("Cleaning main README, don't forget to run `make fix-copies`.") # clean_main_ref_in_model_list() if __name__ == "__main__": lowercase_ : Optional[int] = argparse.ArgumentParser() parser.add_argument('''--post_release''', action='''store_true''', help='''Whether this is pre or post release.''') parser.add_argument('''--patch''', action='''store_true''', help='''Whether or not this is a patch release.''') lowercase_ : int = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('''Nothing to do after a patch :-)''') else: post_release_work()
713
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowercase_ : Any = { '''configuration_canine''': ['''CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CanineConfig'''], '''tokenization_canine''': ['''CanineTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : Optional[Any] = [ '''CANINE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CanineForMultipleChoice''', '''CanineForQuestionAnswering''', '''CanineForSequenceClassification''', '''CanineForTokenClassification''', '''CanineLayer''', '''CanineModel''', '''CaninePreTrainedModel''', '''load_tf_weights_in_canine''', ] if TYPE_CHECKING: from .configuration_canine import CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP, CanineConfig from .tokenization_canine import CanineTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_canine import ( CANINE_PRETRAINED_MODEL_ARCHIVE_LIST, CanineForMultipleChoice, CanineForQuestionAnswering, CanineForSequenceClassification, CanineForTokenClassification, CanineLayer, CanineModel, CaninePreTrainedModel, load_tf_weights_in_canine, ) else: import sys lowercase_ : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
652
0
import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class _UpperCamelCase (tf.keras.layers.Layer ): def __init__( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = None , __UpperCamelCase = None )-> Optional[int]: super().__init__() __lowerCAmelCase = pad_token_id __lowerCAmelCase = max_length __lowerCAmelCase = vocab __lowerCAmelCase = merges __lowerCAmelCase = BytePairTokenizer(__UpperCamelCase , __UpperCamelCase , sequence_length=__UpperCamelCase ) @classmethod def __UpperCAmelCase ( cls , __UpperCamelCase , *__UpperCamelCase , **__UpperCamelCase )-> str: __lowerCAmelCase = [" ".join(__UpperCamelCase ) for m in tokenizer.bpe_ranks.keys()] __lowerCAmelCase = tokenizer.get_vocab() return cls(__UpperCamelCase , __UpperCamelCase , *__UpperCamelCase , **__UpperCamelCase ) @classmethod def __UpperCAmelCase ( cls , __UpperCamelCase , *__UpperCamelCase , **__UpperCamelCase )-> Any: __lowerCAmelCase = GPTaTokenizer.from_pretrained(__UpperCamelCase , *__UpperCamelCase , **__UpperCamelCase ) return cls.from_tokenizer(__UpperCamelCase , *__UpperCamelCase , **__UpperCamelCase ) @classmethod def __UpperCAmelCase ( cls , __UpperCamelCase )-> Optional[Any]: return cls(**__UpperCamelCase ) def __UpperCAmelCase ( self )-> Optional[int]: return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def __UpperCAmelCase ( self , __UpperCamelCase , __UpperCamelCase = None )-> Optional[int]: __lowerCAmelCase = self.tf_tokenizer(__UpperCamelCase ) __lowerCAmelCase = tf.ones_like(__UpperCamelCase ) if self.pad_token_id is not None: # pad the tokens up to max length __lowerCAmelCase = max_length if max_length is not None else self.max_length if max_length is not None: __lowerCAmelCase , __lowerCAmelCase = pad_model_inputs( __UpperCamelCase , max_seq_length=__UpperCamelCase , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
367
from math import pow, sqrt def __lowerCAmelCase ( *__snake_case ): __lowerCAmelCase = len(__snake_case ) > 0 and all(value > 0.0 for value in values ) return result def __lowerCAmelCase ( __snake_case , __snake_case ): return ( round(sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(__snake_case , __snake_case ) else ValueError("Input Error: Molar mass values must greater than 0." ) ) def __lowerCAmelCase ( __snake_case , __snake_case , __snake_case ): return ( round(effusion_rate * sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(__snake_case , __snake_case , __snake_case ) else ValueError( "Input Error: Molar mass and effusion rate values must greater than 0." ) ) def __lowerCAmelCase ( __snake_case , __snake_case , __snake_case ): return ( round(effusion_rate / sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(__snake_case , __snake_case , __snake_case ) else ValueError( "Input Error: Molar mass and effusion rate values must greater than 0." ) ) def __lowerCAmelCase ( __snake_case , __snake_case , __snake_case ): return ( round(molar_mass / pow(effusion_rate_a / effusion_rate_a , 2 ) , 6 ) if validate(__snake_case , __snake_case , __snake_case ) else ValueError( "Input Error: Molar mass and effusion rate values must greater than 0." ) ) def __lowerCAmelCase ( __snake_case , __snake_case , __snake_case ): return ( round(pow(effusion_rate_a / effusion_rate_a , 2 ) / molar_mass , 6 ) if validate(__snake_case , __snake_case , __snake_case ) else ValueError( "Input Error: Molar mass and effusion rate values must greater than 0." ) )
367
1
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConformerConfig, WavaVecaConformerForCTC, WavaVecaConformerForPreTraining, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) _snake_case = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.linear_k""": """encoder.layers.*.self_attn.linear_k""", """self_attn.linear_v""": """encoder.layers.*.self_attn.linear_v""", """self_attn.linear_q""": """encoder.layers.*.self_attn.linear_q""", """self_attn.pos_bias_u""": """encoder.layers.*.self_attn.pos_bias_u""", """self_attn.pos_bias_v""": """encoder.layers.*.self_attn.pos_bias_v""", """self_attn.linear_out""": """encoder.layers.*.self_attn.linear_out""", """self_attn.linear_pos""": """encoder.layers.*.self_attn.linear_pos""", """self_attn.rotary_emb""": """encoder.embed_positions""", """self_attn_layer_norm""": """encoder.layers.*.self_attn_layer_norm""", """conv_module.pointwise_conv1""": """encoder.layers.*.conv_module.pointwise_conv1""", """conv_module.pointwise_conv2""": """encoder.layers.*.conv_module.pointwise_conv2""", """conv_module.depthwise_conv""": """encoder.layers.*.conv_module.depthwise_conv""", """conv_module.batch_norm""": """encoder.layers.*.conv_module.batch_norm""", """conv_module.layer_norm""": """encoder.layers.*.conv_module.layer_norm""", """ffn1.w_1""": """encoder.layers.*.ffn1.intermediate_dense""", """ffn1.w_2""": """encoder.layers.*.ffn1.output_dense""", """ffn1.layer_norm""": """encoder.layers.*.ffn1_layer_norm""", """ffn2.w_1""": """encoder.layers.*.ffn2.intermediate_dense""", """ffn2.w_2""": """encoder.layers.*.ffn2.output_dense""", """ffn2.layer_norm""": """encoder.layers.*.ffn2_layer_norm""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", } _snake_case = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", ] def _A ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ): for attribute in key.split("." ): lowercase__ = getattr(__magic_name__ , __magic_name__ ) if weight_type is not None: lowercase__ = getattr(__magic_name__ , __magic_name__ ).shape else: lowercase__ = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": lowercase__ = value elif weight_type == "weight_g": lowercase__ = value elif weight_type == "weight_v": lowercase__ = value elif weight_type == "bias": lowercase__ = value elif weight_type == "running_mean": lowercase__ = value elif weight_type == "running_var": lowercase__ = value elif weight_type == "num_batches_tracked": lowercase__ = value elif weight_type == "inv_freq": lowercase__ = value else: lowercase__ = value logger.info(f'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def _A ( __magic_name__ , __magic_name__ , __magic_name__ ): lowercase__ = [] lowercase__ = fairseq_model.state_dict() lowercase__ = hf_model.wavaveca_conformer.feature_extractor for name, value in fairseq_dict.items(): lowercase__ = False if "conv_layers" in name: load_conv_layer( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , hf_model.config.feat_extract_norm == "group" , ) lowercase__ = True else: for key, mapped_key in MAPPING.items(): lowercase__ = "wav2vec2_conformer." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: lowercase__ = True if "*" in mapped_key: lowercase__ = name.split(__magic_name__ )[0].split("." )[-2] lowercase__ = mapped_key.replace("*" , __magic_name__ ) if "pos_bias_u" in name: lowercase__ = None elif "pos_bias_v" in name: lowercase__ = None elif "weight_g" in name: lowercase__ = "weight_g" elif "weight_v" in name: lowercase__ = "weight_v" elif "bias" in name: lowercase__ = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj lowercase__ = "weight" elif "running_mean" in name: lowercase__ = "running_mean" elif "inv_freq" in name: lowercase__ = "inv_freq" elif "running_var" in name: lowercase__ = "running_var" elif "num_batches_tracked" in name: lowercase__ = "num_batches_tracked" else: lowercase__ = None set_recursively(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) continue if not is_used: unused_weights.append(__magic_name__ ) logger.warning(f'''Unused weights: {unused_weights}''' ) def _A ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ): lowercase__ = full_name.split("conv_layers." )[-1] lowercase__ = name.split("." ) lowercase__ = int(items[0] ) lowercase__ = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) lowercase__ = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) lowercase__ = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''' ) lowercase__ = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''' ) lowercase__ = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(__magic_name__ ) @torch.no_grad() def _A ( __magic_name__ , __magic_name__ , __magic_name__=None , __magic_name__=None , __magic_name__=True ): if config_path is not None: lowercase__ = WavaVecaConformerConfig.from_pretrained(__magic_name__ , hidden_act="swish" ) else: lowercase__ = WavaVecaConformerConfig() if "rope" in checkpoint_path: lowercase__ = "rotary" if is_finetuned: if dict_path: lowercase__ = Dictionary.load(__magic_name__ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq lowercase__ = target_dict.pad_index lowercase__ = target_dict.bos_index lowercase__ = target_dict.eos_index lowercase__ = len(target_dict.symbols ) lowercase__ = os.path.join(__magic_name__ , "vocab.json" ) if not os.path.isdir(__magic_name__ ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(__magic_name__ ) ) return os.makedirs(__magic_name__ , exist_ok=__magic_name__ ) lowercase__ = target_dict.indices # fairseq has the <pad> and <s> switched lowercase__ = 0 lowercase__ = 1 with open(__magic_name__ , "w" , encoding="utf-8" ) as vocab_handle: json.dump(__magic_name__ , __magic_name__ ) lowercase__ = WavaVecaCTCTokenizer( __magic_name__ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=__magic_name__ , ) lowercase__ = True if config.feat_extract_norm == "layer" else False lowercase__ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=__magic_name__ , return_attention_mask=__magic_name__ , ) lowercase__ = WavaVecaProcessor(feature_extractor=__magic_name__ , tokenizer=__magic_name__ ) processor.save_pretrained(__magic_name__ ) lowercase__ = WavaVecaConformerForCTC(__magic_name__ ) else: lowercase__ = WavaVecaConformerForPreTraining(__magic_name__ ) if is_finetuned: lowercase__ , lowercase__ , lowercase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) else: lowercase__ = argparse.Namespace(task="audio_pretraining" ) lowercase__ = fairseq.tasks.setup_task(__magic_name__ ) lowercase__ , lowercase__ , lowercase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=__magic_name__ ) lowercase__ = model[0].eval() recursively_load_weights(__magic_name__ , __magic_name__ , not is_finetuned ) hf_wavavec.save_pretrained(__magic_name__ ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) _snake_case = parser.parse_args() convert_wavaveca_conformer_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
714
_snake_case = {0: [2, 3], 1: [0], 2: [1], 3: [4], 4: []} _snake_case = {0: [1, 2, 3], 1: [2], 2: [0], 3: [4], 4: [5], 5: [3]} def _A ( __magic_name__ , __magic_name__ , __magic_name__ ): lowercase__ = True lowercase__ = [] for neighbour in graph[vert]: if not visited[neighbour]: order += topology_sort(__magic_name__ , __magic_name__ , __magic_name__ ) order.append(__magic_name__ ) return order def _A ( __magic_name__ , __magic_name__ , __magic_name__ ): lowercase__ = True lowercase__ = [vert] for neighbour in reversed_graph[vert]: if not visited[neighbour]: component += find_components(__magic_name__ , __magic_name__ , __magic_name__ ) return component def _A ( __magic_name__ ): lowercase__ = len(__magic_name__ ) * [False] lowercase__ = {vert: [] for vert in range(len(__magic_name__ ) )} for vert, neighbours in graph.items(): for neighbour in neighbours: reversed_graph[neighbour].append(__magic_name__ ) lowercase__ = [] for i, was_visited in enumerate(__magic_name__ ): if not was_visited: order += topology_sort(__magic_name__ , __magic_name__ , __magic_name__ ) lowercase__ = [] lowercase__ = len(__magic_name__ ) * [False] for i in range(len(__magic_name__ ) ): lowercase__ = order[len(__magic_name__ ) - i - 1] if not visited[vert]: lowercase__ = find_components(__magic_name__ , __magic_name__ , __magic_name__ ) components_list.append(__magic_name__ ) return components_list
611
0
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input SCREAMING_SNAKE_CASE_: int ='Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine' def lowerCAmelCase_ ( ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = _ask_options( "In which compute environment are you running?" , ["This machine", "AWS (Amazon SageMaker)"] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: UpperCAmelCase_ = get_sagemaker_input() else: UpperCAmelCase_ = get_cluster_input() return config def lowerCAmelCase_ ( snake_case_ : Union[str, Any]=None ) -> Optional[int]: '''simple docstring''' if subparsers is not None: UpperCAmelCase_ = subparsers.add_parser("config" , description=snake_case_ ) else: UpperCAmelCase_ = argparse.ArgumentParser("Accelerate config command" , description=snake_case_ ) parser.add_argument( "--config_file" , default=snake_case_ , help=( "The path to use to store the config file. Will default to a file named default_config.yaml in the cache " "location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have " "such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed " "with 'huggingface'." ) , ) if subparsers is not None: parser.set_defaults(func=snake_case_ ) return parser def lowerCAmelCase_ ( snake_case_ : Optional[int] ) -> Dict: '''simple docstring''' UpperCAmelCase_ = get_user_input() if args.config_file is not None: UpperCAmelCase_ = args.config_file else: if not os.path.isdir(snake_case_ ): os.makedirs(snake_case_ ) UpperCAmelCase_ = default_yaml_config_file if config_file.endswith(".json" ): config.to_json_file(snake_case_ ) else: config.to_yaml_file(snake_case_ ) print(f"""accelerate configuration saved at {config_file}""" ) def lowerCAmelCase_ ( ) -> Any: '''simple docstring''' UpperCAmelCase_ = config_command_parser() UpperCAmelCase_ = parser.parse_args() config_command(snake_case_ ) if __name__ == "__main__": main()
78
import unittest from transformers import SqueezeBertConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, ) class lowerCamelCase ( __lowerCamelCase ): def __init__( self :int , lowercase :Optional[Any] , lowercase :Optional[int]=1_3 , lowercase :Any=7 , lowercase :Tuple=True , lowercase :Optional[int]=True , lowercase :Any=False , lowercase :Any=True , lowercase :Dict=9_9 , lowercase :Dict=3_2 , lowercase :Any=5 , lowercase :Optional[Any]=4 , lowercase :List[str]=6_4 , lowercase :Optional[int]="gelu" , lowercase :int=0.1 , lowercase :str=0.1 , lowercase :List[str]=5_1_2 , lowercase :int=1_6 , lowercase :Any=2 , lowercase :Union[str, Any]=0.02 , lowercase :Optional[int]=3 , lowercase :Optional[Any]=4 , lowercase :Tuple=None , lowercase :int=2 , lowercase :Tuple=2 , lowercase :List[Any]=2 , lowercase :Optional[int]=2 , lowercase :Tuple=4 , lowercase :int=1 , ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = seq_length SCREAMING_SNAKE_CASE = is_training SCREAMING_SNAKE_CASE = use_input_mask SCREAMING_SNAKE_CASE = use_token_type_ids SCREAMING_SNAKE_CASE = use_labels SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = type_vocab_size SCREAMING_SNAKE_CASE = type_sequence_label_size SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = num_labels SCREAMING_SNAKE_CASE = num_choices SCREAMING_SNAKE_CASE = scope SCREAMING_SNAKE_CASE = q_groups SCREAMING_SNAKE_CASE = k_groups SCREAMING_SNAKE_CASE = v_groups SCREAMING_SNAKE_CASE = post_attention_groups SCREAMING_SNAKE_CASE = intermediate_groups SCREAMING_SNAKE_CASE = output_groups def snake_case__ ( self :str ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE = None if self.use_input_mask: SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None if self.use_labels: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case__ ( self :str ) -> Dict: """simple docstring""" return SqueezeBertConfig( embedding_size=self.hidden_size , vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , attention_probs_dropout_prob=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , q_groups=self.q_groups , k_groups=self.k_groups , v_groups=self.v_groups , post_attention_groups=self.post_attention_groups , intermediate_groups=self.intermediate_groups , output_groups=self.output_groups , ) def snake_case__ ( self :Optional[Any] , lowercase :Optional[Any] , lowercase :int , lowercase :Any , lowercase :List[str] , lowercase :Optional[Any] , lowercase :List[str] ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE = SqueezeBertModel(config=lowercase ) model.to(lowercase ) model.eval() SCREAMING_SNAKE_CASE = model(lowercase , lowercase ) SCREAMING_SNAKE_CASE = model(lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case__ ( self :Dict , lowercase :Dict , lowercase :List[Any] , lowercase :str , lowercase :Union[str, Any] , lowercase :Dict , lowercase :List[Any] ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE = SqueezeBertForMaskedLM(config=lowercase ) model.to(lowercase ) model.eval() SCREAMING_SNAKE_CASE = model(lowercase , attention_mask=lowercase , labels=lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case__ ( self :List[str] , lowercase :Optional[Any] , lowercase :Optional[int] , lowercase :str , lowercase :int , lowercase :Optional[Any] , lowercase :int ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE = SqueezeBertForQuestionAnswering(config=lowercase ) model.to(lowercase ) model.eval() SCREAMING_SNAKE_CASE = model( lowercase , attention_mask=lowercase , start_positions=lowercase , end_positions=lowercase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def snake_case__ ( self :Any , lowercase :Optional[Any] , lowercase :List[str] , lowercase :int , lowercase :Any , lowercase :Optional[int] , lowercase :List[str] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE = self.num_labels SCREAMING_SNAKE_CASE = SqueezeBertForSequenceClassification(lowercase ) model.to(lowercase ) model.eval() SCREAMING_SNAKE_CASE = model(lowercase , attention_mask=lowercase , labels=lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case__ ( self :str , lowercase :List[Any] , lowercase :List[str] , lowercase :Optional[int] , lowercase :Tuple , lowercase :Tuple , lowercase :str ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE = self.num_labels SCREAMING_SNAKE_CASE = SqueezeBertForTokenClassification(config=lowercase ) model.to(lowercase ) model.eval() SCREAMING_SNAKE_CASE = model(lowercase , attention_mask=lowercase , labels=lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def snake_case__ ( self :int , lowercase :List[str] , lowercase :List[Any] , lowercase :Tuple , lowercase :str , lowercase :Optional[Any] , lowercase :Optional[int] ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE = self.num_choices SCREAMING_SNAKE_CASE = SqueezeBertForMultipleChoice(config=lowercase ) model.to(lowercase ) model.eval() SCREAMING_SNAKE_CASE = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE = model( lowercase , attention_mask=lowercase , labels=lowercase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def snake_case__ ( self :List[str] ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) = config_and_inputs SCREAMING_SNAKE_CASE = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class lowerCamelCase ( __lowerCamelCase , __lowerCamelCase , unittest.TestCase ): UpperCamelCase_ : int = ( ( SqueezeBertModel, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, ) if is_torch_available() else None ) UpperCamelCase_ : int = ( { 'feature-extraction': SqueezeBertModel, 'fill-mask': SqueezeBertForMaskedLM, 'question-answering': SqueezeBertForQuestionAnswering, 'text-classification': SqueezeBertForSequenceClassification, 'token-classification': SqueezeBertForTokenClassification, 'zero-shot': SqueezeBertForSequenceClassification, } if is_torch_available() else {} ) UpperCamelCase_ : Tuple = False UpperCamelCase_ : int = True UpperCamelCase_ : List[Any] = False def snake_case__ ( self :Tuple ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE = SqueezeBertModelTester(self ) SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=lowercase , dim=3_7 ) def snake_case__ ( self :Optional[Any] ) -> Optional[int]: """simple docstring""" self.config_tester.run_common_tests() def snake_case__ ( self :Union[str, Any] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_model(*lowercase ) def snake_case__ ( self :Any ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_masked_lm(*lowercase ) def snake_case__ ( self :List[str] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_question_answering(*lowercase ) def snake_case__ ( self :Any ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_sequence_classification(*lowercase ) def snake_case__ ( self :Union[str, Any] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_token_classification(*lowercase ) def snake_case__ ( self :Union[str, Any] ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_multiple_choice(*lowercase ) @slow def snake_case__ ( self :Dict ) -> str: """simple docstring""" for model_name in SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE = SqueezeBertModel.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) @require_sentencepiece @require_tokenizers @require_torch class lowerCamelCase ( unittest.TestCase ): @slow def snake_case__ ( self :Any ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE = SqueezeBertForSequenceClassification.from_pretrained('''squeezebert/squeezebert-mnli''' ) SCREAMING_SNAKE_CASE = torch.tensor([[1, 2_9_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 1_3, 1_5_8_8, 2]] ) SCREAMING_SNAKE_CASE = model(lowercase )[0] SCREAMING_SNAKE_CASE = torch.Size((1, 3) ) self.assertEqual(output.shape , lowercase ) SCREAMING_SNAKE_CASE = torch.tensor([[0.64_01, -0.03_49, -0.60_41]] ) self.assertTrue(torch.allclose(lowercase , lowercase , atol=1e-4 ) )
201
0
import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class __lowercase ( a__ ): _lowerCAmelCase = (UnCLIPScheduler,) def __magic_name__ ( self : Tuple , **lowercase__ : Optional[Any] ): a_ = { '''num_train_timesteps''': 1_0_0_0, '''variance_type''': '''fixed_small_log''', '''clip_sample''': True, '''clip_sample_range''': 1.0, '''prediction_type''': '''epsilon''', } config.update(**lowercase__ ) return config def __magic_name__ ( self : int ): for timesteps in [1, 5, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=lowercase__ ) def __magic_name__ ( self : Union[str, Any] ): for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=lowercase__ ) def __magic_name__ ( self : Optional[Any] ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=lowercase__ ) def __magic_name__ ( self : int ): for clip_sample_range in [1, 5, 1_0, 2_0]: self.check_over_configs(clip_sample_range=lowercase__ ) def __magic_name__ ( self : str ): for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=lowercase__ ) def __magic_name__ ( self : Dict ): for time_step in [0, 5_0_0, 9_9_9]: for prev_timestep in [None, 5, 1_0_0, 2_5_0, 5_0_0, 7_5_0]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=lowercase__ , prev_timestep=lowercase__ ) def __magic_name__ ( self : Union[str, Any] ): a_ = self.scheduler_classes[0] a_ = self.get_scheduler_config(variance_type='''fixed_small_log''' ) a_ = scheduler_class(**lowercase__ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.00_00e-10 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_8_7 ) - 0.054_9625 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_9_9 ) - 0.999_4987 ) ) < 1e-5 def __magic_name__ ( self : List[str] ): a_ = self.scheduler_classes[0] a_ = self.get_scheduler_config(variance_type='''learned_range''' ) a_ = scheduler_class(**lowercase__ ) a_ = 0.5 assert scheduler._get_variance(1 , predicted_variance=lowercase__ ) - -10.171_2790 < 1e-5 assert scheduler._get_variance(4_8_7 , predicted_variance=lowercase__ ) - -5.799_8052 < 1e-5 assert scheduler._get_variance(9_9_9 , predicted_variance=lowercase__ ) - -0.001_0011 < 1e-5 def __magic_name__ ( self : List[Any] ): a_ = self.scheduler_classes[0] a_ = self.get_scheduler_config() a_ = scheduler_class(**lowercase__ ) a_ = scheduler.timesteps a_ = self.dummy_model() a_ = self.dummy_sample_deter a_ = torch.manual_seed(0 ) for i, t in enumerate(lowercase__ ): # 1. predict noise residual a_ = model(lowercase__ , lowercase__ ) # 2. predict previous mean of sample x_t-1 a_ = scheduler.step(lowercase__ , lowercase__ , lowercase__ , generator=lowercase__ ).prev_sample a_ = pred_prev_sample a_ = torch.sum(torch.abs(lowercase__ ) ) a_ = torch.mean(torch.abs(lowercase__ ) ) assert abs(result_sum.item() - 252.268_2495 ) < 1e-2 assert abs(result_mean.item() - 0.328_4743 ) < 1e-3 def __magic_name__ ( self : str ): a_ = self.scheduler_classes[0] a_ = self.get_scheduler_config() a_ = scheduler_class(**lowercase__ ) scheduler.set_timesteps(2_5 ) a_ = scheduler.timesteps a_ = self.dummy_model() a_ = self.dummy_sample_deter a_ = torch.manual_seed(0 ) for i, t in enumerate(lowercase__ ): # 1. predict noise residual a_ = model(lowercase__ , lowercase__ ) if i + 1 == timesteps.shape[0]: a_ = None else: a_ = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 a_ = scheduler.step( lowercase__ , lowercase__ , lowercase__ , prev_timestep=lowercase__ , generator=lowercase__ ).prev_sample a_ = pred_prev_sample a_ = torch.sum(torch.abs(lowercase__ ) ) a_ = torch.mean(torch.abs(lowercase__ ) ) assert abs(result_sum.item() - 258.204_4983 ) < 1e-2 assert abs(result_mean.item() - 0.336_2038 ) < 1e-3 def __magic_name__ ( self : Tuple ): pass def __magic_name__ ( self : Any ): pass
143
import math import os import unittest from transformers import MegatronBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, ) class __lowercase : def __init__( self : int , lowercase__ : Optional[Any] , lowercase__ : Union[str, Any]=1_3 , lowercase__ : int=7 , lowercase__ : Dict=True , lowercase__ : List[Any]=True , lowercase__ : int=True , lowercase__ : Optional[Any]=True , lowercase__ : Union[str, Any]=9_9 , lowercase__ : Any=6_4 , lowercase__ : int=3_2 , lowercase__ : str=5 , lowercase__ : List[str]=4 , lowercase__ : str=3_7 , lowercase__ : Tuple="gelu" , lowercase__ : Any=0.1 , lowercase__ : Any=0.1 , lowercase__ : Dict=5_1_2 , lowercase__ : List[Any]=1_6 , lowercase__ : List[str]=2 , lowercase__ : Dict=0.02 , lowercase__ : List[Any]=3 , lowercase__ : List[Any]=4 , lowercase__ : Optional[int]=None , ): a_ = parent a_ = batch_size a_ = seq_length a_ = is_training a_ = use_input_mask a_ = use_token_type_ids a_ = use_labels a_ = vocab_size a_ = hidden_size a_ = embedding_size a_ = num_hidden_layers a_ = num_attention_heads a_ = intermediate_size a_ = hidden_act a_ = hidden_dropout_prob a_ = attention_probs_dropout_prob a_ = max_position_embeddings a_ = type_vocab_size a_ = type_sequence_label_size a_ = initializer_range a_ = num_labels a_ = num_choices a_ = scope def __magic_name__ ( self : List[Any] ): a_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a_ = None if self.use_input_mask: a_ = random_attention_mask([self.batch_size, self.seq_length] ) a_ = None if self.use_token_type_ids: a_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) a_ = None a_ = None a_ = None if self.use_labels: a_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) a_ = ids_tensor([self.batch_size] , self.num_choices ) a_ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __magic_name__ ( self : Optional[Any] ): return MegatronBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase__ , initializer_range=self.initializer_range , ) def __magic_name__ ( self : List[str] , lowercase__ : List[Any] , lowercase__ : Dict , lowercase__ : Union[str, Any] , lowercase__ : Optional[int] , lowercase__ : Union[str, Any] , lowercase__ : Any , lowercase__ : str ): a_ = MegatronBertModel(config=lowercase__ ) model.to(lowercase__ ) model.eval() a_ = model(lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__ ) a_ = model(lowercase__ , token_type_ids=lowercase__ ) a_ = model(lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __magic_name__ ( self : Dict , lowercase__ : Union[str, Any] , lowercase__ : Union[str, Any] , lowercase__ : Dict , lowercase__ : Any , lowercase__ : Optional[int] , lowercase__ : Dict , lowercase__ : int ): a_ = MegatronBertForMaskedLM(config=lowercase__ ) model.to(lowercase__ ) model.eval() a_ = model(lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__ , labels=lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __magic_name__ ( self : Union[str, Any] , lowercase__ : Dict , lowercase__ : Dict , lowercase__ : Tuple , lowercase__ : Dict , lowercase__ : Dict , lowercase__ : Any , lowercase__ : List[str] ): a_ = MegatronBertForCausalLM(config=lowercase__ ) model.to(lowercase__ ) model.eval() a_ = model(lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__ , labels=lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __magic_name__ ( self : Union[str, Any] , lowercase__ : str , lowercase__ : int , lowercase__ : str , lowercase__ : int , lowercase__ : Optional[Any] , lowercase__ : Optional[Any] , lowercase__ : List[str] ): a_ = MegatronBertForNextSentencePrediction(config=lowercase__ ) model.to(lowercase__ ) model.eval() a_ = model( lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__ , labels=lowercase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def __magic_name__ ( self : Tuple , lowercase__ : str , lowercase__ : List[str] , lowercase__ : Tuple , lowercase__ : int , lowercase__ : Any , lowercase__ : Optional[int] , lowercase__ : int ): a_ = MegatronBertForPreTraining(config=lowercase__ ) model.to(lowercase__ ) model.eval() a_ = model( lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__ , labels=lowercase__ , next_sentence_label=lowercase__ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def __magic_name__ ( self : int , lowercase__ : Any , lowercase__ : Optional[int] , lowercase__ : int , lowercase__ : Tuple , lowercase__ : Tuple , lowercase__ : int , lowercase__ : List[Any] ): a_ = MegatronBertForQuestionAnswering(config=lowercase__ ) model.to(lowercase__ ) model.eval() a_ = model( lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__ , start_positions=lowercase__ , end_positions=lowercase__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __magic_name__ ( self : str , lowercase__ : Dict , lowercase__ : List[Any] , lowercase__ : int , lowercase__ : str , lowercase__ : Tuple , lowercase__ : str , lowercase__ : List[str] ): a_ = self.num_labels a_ = MegatronBertForSequenceClassification(lowercase__ ) model.to(lowercase__ ) model.eval() a_ = model(lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__ , labels=lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __magic_name__ ( self : List[str] , lowercase__ : Dict , lowercase__ : List[Any] , lowercase__ : Optional[int] , lowercase__ : int , lowercase__ : Union[str, Any] , lowercase__ : Optional[Any] , lowercase__ : Union[str, Any] ): a_ = self.num_labels a_ = MegatronBertForTokenClassification(config=lowercase__ ) model.to(lowercase__ ) model.eval() a_ = model(lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__ , labels=lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __magic_name__ ( self : str , lowercase__ : Tuple , lowercase__ : Any , lowercase__ : List[Any] , lowercase__ : Any , lowercase__ : List[Any] , lowercase__ : List[Any] , lowercase__ : Union[str, Any] ): a_ = self.num_choices a_ = MegatronBertForMultipleChoice(config=lowercase__ ) model.to(lowercase__ ) model.eval() a_ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() a_ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() a_ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() a_ = model( lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__ , labels=lowercase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __magic_name__ ( self : List[Any] ): a_ = self.prepare_config_and_inputs() ( ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ) = config_and_inputs a_ = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __lowercase ( a__ , a__ , unittest.TestCase ): _lowerCAmelCase = ( ( MegatronBertModel, MegatronBertForMaskedLM, MegatronBertForCausalLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, ) if is_torch_available() else () ) _lowerCAmelCase = ( { "feature-extraction": MegatronBertModel, "fill-mask": MegatronBertForMaskedLM, "question-answering": MegatronBertForQuestionAnswering, "text-classification": MegatronBertForSequenceClassification, "text-generation": MegatronBertForCausalLM, "token-classification": MegatronBertForTokenClassification, "zero-shot": MegatronBertForSequenceClassification, } if is_torch_available() else {} ) _lowerCAmelCase = True # test_resize_embeddings = False _lowerCAmelCase = False def __magic_name__ ( self : List[Any] , lowercase__ : Optional[int] , lowercase__ : Tuple , lowercase__ : Any=False ): a_ = super()._prepare_for_class(lowercase__ , lowercase__ , return_labels=lowercase__ ) if return_labels: if model_class in get_values(lowercase__ ): a_ = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=lowercase__ ) a_ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowercase__ ) return inputs_dict def __magic_name__ ( self : Any ): a_ = MegatronBertModelTester(self ) a_ = ConfigTester(self , config_class=lowercase__ , hidden_size=3_7 ) def __magic_name__ ( self : Optional[Any] ): self.config_tester.run_common_tests() def __magic_name__ ( self : Dict ): a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_model(*lowercase__ ) def __magic_name__ ( self : List[str] ): a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_masked_lm(*lowercase__ ) def __magic_name__ ( self : Optional[int] ): a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*lowercase__ ) def __magic_name__ ( self : Union[str, Any] ): a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*lowercase__ ) def __magic_name__ ( self : Optional[int] ): a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_pretraining(*lowercase__ ) def __magic_name__ ( self : Union[str, Any] ): a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_question_answering(*lowercase__ ) def __magic_name__ ( self : Tuple ): a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*lowercase__ ) def __magic_name__ ( self : int ): a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_token_classification(*lowercase__ ) def UpperCAmelCase__ ( _A ): """simple docstring""" return torch.tensor( _A , dtype=torch.long , device=_A , ) UpperCamelCase__ = 1E-4 @require_torch @require_sentencepiece @require_tokenizers class __lowercase ( unittest.TestCase ): @slow @unittest.skip('''Model is not available.''' ) def __magic_name__ ( self : Union[str, Any] ): a_ = '''nvidia/megatron-bert-uncased-345m''' if "MYDIR" in os.environ: a_ = os.path.join(os.environ['''MYDIR'''] , lowercase__ ) a_ = MegatronBertModel.from_pretrained(lowercase__ ) model.to(lowercase__ ) model.half() a_ = _long_tensor([[1_0_1, 7_1_1_0, 1_0_0_5, 1_0_5_6, 2_0_2_3, 1_1_3_3_3, 1_7_4_1_3, 1_0_2_9, 1_0_2]] ) with torch.no_grad(): a_ = model(lowercase__ )[0] a_ = torch.Size((1, 9, 1_0_2_4) ) self.assertEqual(output.shape , lowercase__ ) a_ = [-0.6040, -0.2517, -0.1025, 0.3420, -0.6758, -0.0017, -0.1089, -0.1990, 0.5728] for ii in range(3 ): for jj in range(3 ): a_ = output[0, ii, jj] a_ = expected[3 * ii + jj] a_ = '''ii={} jj={} a={} b={}'''.format(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) self.assertTrue(math.isclose(lowercase__ , lowercase__ , rel_tol=lowercase__ , abs_tol=lowercase__ ) , msg=lowercase__ )
143
1
import argparse import os from io import BytesIO from pathlib import Path import requests from clip_retrieval.clip_client import ClipClient from PIL import Image from tqdm import tqdm def _lowerCamelCase( __snake_case , __snake_case , __snake_case ) -> Tuple: __snake_case = 1.5 __snake_case = int(factor * num_class_images ) __snake_case = ClipClient( url="https://knn.laion.ai/knn-service" , indice_name="laion_400m" , num_images=__snake_case , aesthetic_weight=0.1 ) os.makedirs(f"""{class_data_dir}/images""" , exist_ok=__snake_case ) if len(list(Path(f"""{class_data_dir}/images""" ).iterdir() ) ) >= num_class_images: return while True: __snake_case = client.query(text=__snake_case ) if len(__snake_case ) >= factor * num_class_images or num_images > 1e4: break else: __snake_case = int(factor * num_images ) __snake_case = ClipClient( url="https://knn.laion.ai/knn-service" , indice_name="laion_400m" , num_images=__snake_case , aesthetic_weight=0.1 , ) __snake_case = 0 __snake_case = 0 __snake_case = tqdm(desc="downloading real regularization images" , total=__snake_case ) with open(f"""{class_data_dir}/caption.txt""" , "w" ) as fa, open(f"""{class_data_dir}/urls.txt""" , "w" ) as fa, open( f"""{class_data_dir}/images.txt""" , "w" ) as fa: while total < num_class_images: __snake_case = class_images[count] count += 1 try: __snake_case = requests.get(images["url"] ) if img.status_code == 200: __snake_case = Image.open(BytesIO(img.content ) ) with open(f"""{class_data_dir}/images/{total}.jpg""" , "wb" ) as f: f.write(img.content ) fa.write(images["caption"] + "\n" ) fa.write(images["url"] + "\n" ) fa.write(f"""{class_data_dir}/images/{total}.jpg""" + "\n" ) total += 1 pbar.update(1 ) else: continue except Exception: continue return def _lowerCamelCase( ) -> Tuple: __snake_case = argparse.ArgumentParser("" , add_help=__snake_case ) parser.add_argument("--class_prompt" , help="text prompt to retrieve images" , required=__snake_case , type=__snake_case ) parser.add_argument("--class_data_dir" , help="path to save images" , required=__snake_case , type=__snake_case ) parser.add_argument("--num_class_images" , help="number of images to download" , default=200 , type=__snake_case ) return parser.parse_args() if __name__ == "__main__": lowerCamelCase__ = parse_args() retrieve(args.class_prompt, args.class_data_dir, args.num_class_images)
524
def _lowerCamelCase( __snake_case ) -> float: if edge <= 0 or not isinstance(__snake_case , __snake_case ): raise ValueError("Length must be a positive." ) return 3 * ((25 + 10 * (5 ** (1 / 2))) ** (1 / 2)) * (edge**2) def _lowerCamelCase( __snake_case ) -> float: if edge <= 0 or not isinstance(__snake_case , __snake_case ): raise ValueError("Length must be a positive." ) return ((15 + (7 * (5 ** (1 / 2)))) / 4) * (edge**3) if __name__ == "__main__": import doctest doctest.testmod()
524
1
from diffusers.utils.testing_utils import require_onnxruntime @require_onnxruntime class lowerCAmelCase_ : """simple docstring""" pass
567
def _a ( __lowercase ) -> str: """simple docstring""" __UpperCamelCase = int(__lowercase ) if decimal in (0, 1): # Exit cases for the recursion return str(__lowercase ) __UpperCamelCase , __UpperCamelCase = divmod(__lowercase , 2 ) return binary_recursive(__lowercase ) + str(__lowercase ) def _a ( __lowercase ) -> str: """simple docstring""" __UpperCamelCase = str(__lowercase ).strip() if not number: raise ValueError('No input value was provided' ) __UpperCamelCase = '-' if number.startswith('-' ) else '' __UpperCamelCase = number.lstrip('-' ) if not number.isnumeric(): raise ValueError('Input value is not an integer' ) return F"""{negative}0b{binary_recursive(int(__lowercase ) )}""" if __name__ == "__main__": from doctest import testmod testmod()
567
1
'''simple docstring''' def A_( A : int): if not isinstance(A , A): UpperCamelCase = f'''Input value of [number={number}] must be an integer''' raise TypeError(A) if number < 0: return False UpperCamelCase = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
3
import os from tempfile import TemporaryDirectory from unittest import TestCase import pytest from absl.testing import parameterized from datasets import config from datasets.arrow_reader import HF_GCP_BASE_URL from datasets.builder import DatasetBuilder from datasets.dataset_dict import IterableDatasetDict from datasets.iterable_dataset import IterableDataset from datasets.load import dataset_module_factory, import_main_class from datasets.utils.file_utils import cached_path a_ : str = [ {'dataset': 'wikipedia', 'config_name': '20220301.de'}, {'dataset': 'wikipedia', 'config_name': '20220301.en'}, {'dataset': 'wikipedia', 'config_name': '20220301.fr'}, {'dataset': 'wikipedia', 'config_name': '20220301.frr'}, {'dataset': 'wikipedia', 'config_name': '20220301.it'}, {'dataset': 'wikipedia', 'config_name': '20220301.simple'}, {'dataset': 'snli', 'config_name': 'plain_text'}, {'dataset': 'eli5', 'config_name': 'LFQA_reddit'}, {'dataset': 'wiki40b', 'config_name': 'en'}, {'dataset': 'wiki_dpr', 'config_name': 'psgs_w100.nq.compressed'}, {'dataset': 'wiki_dpr', 'config_name': 'psgs_w100.nq.no_index'}, {'dataset': 'wiki_dpr', 'config_name': 'psgs_w100.multiset.no_index'}, {'dataset': 'natural_questions', 'config_name': 'default'}, ] def lowerCamelCase__ (_UpperCAmelCase=True): if with_config: return [ { "testcase_name": d["dataset"] + "/" + d["config_name"], "dataset": d["dataset"], "config_name": d["config_name"], } for d in DATASETS_ON_HF_GCP ] else: return [ {"testcase_name": dataset, "dataset": dataset} for dataset in {d["dataset"] for d in DATASETS_ON_HF_GCP} ] @parameterized.named_parameters(list_datasets_on_hf_gcp_parameters(with_config=A__ ) ) class _snake_case ( A__ ): _lowercase : Optional[Any] = None _lowercase : Optional[Any] = None def SCREAMING_SNAKE_CASE__ ( self , a , a) -> Optional[Any]: with TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE = dataset_module_factory(a , cache_dir=a) SCREAMING_SNAKE_CASE = import_main_class(dataset_module.module_path , dataset=a) SCREAMING_SNAKE_CASE = builder_cls( cache_dir=a , config_name=a , hash=dataset_module.hash , ) SCREAMING_SNAKE_CASE = '/'.join( [ HF_GCP_BASE_URL, builder_instance._relative_data_dir(with_hash=a).replace(os.sep , '/'), config.DATASET_INFO_FILENAME, ]) SCREAMING_SNAKE_CASE = cached_path(a , cache_dir=a) self.assertTrue(os.path.exists(a)) @pytest.mark.integration def lowerCamelCase__ (_UpperCAmelCase): SCREAMING_SNAKE_CASE = tmp_path_factory.mktemp('test_hf_gcp') / 'test_wikipedia_simple' SCREAMING_SNAKE_CASE = dataset_module_factory('wikipedia' , cache_dir=_UpperCAmelCase) SCREAMING_SNAKE_CASE = import_main_class(dataset_module.module_path) SCREAMING_SNAKE_CASE = builder_cls( cache_dir=_UpperCAmelCase , config_name='20220301.frr' , hash=dataset_module.hash , ) # use the HF cloud storage, not the original download_and_prepare that uses apache-beam SCREAMING_SNAKE_CASE = None builder_instance.download_and_prepare() SCREAMING_SNAKE_CASE = builder_instance.as_dataset() assert ds @pytest.mark.integration def lowerCamelCase__ (_UpperCAmelCase): SCREAMING_SNAKE_CASE = dataset_module_factory('wikipedia' , cache_dir=_UpperCAmelCase) SCREAMING_SNAKE_CASE = import_main_class(dataset_module.module_path , dataset=_UpperCAmelCase) SCREAMING_SNAKE_CASE = builder_cls( cache_dir=_UpperCAmelCase , config_name='20220301.frr' , hash=dataset_module.hash , ) SCREAMING_SNAKE_CASE = builder_instance.as_streaming_dataset() assert ds assert isinstance(_UpperCAmelCase , _UpperCAmelCase) assert "train" in ds assert isinstance(ds['train'] , _UpperCAmelCase) assert next(iter(ds['train']))
73
0
import bza import gzip import lzma import os import shutil import struct import tarfile import warnings import zipfile from abc import ABC, abstractmethod from pathlib import Path from typing import Dict, List, Optional, Type, Union from .. import config from .filelock import FileLock from .logging import get_logger __UpperCamelCase : List[str] = get_logger(__name__) class __UpperCamelCase : def __init__( self : List[str] , _lowerCAmelCase : Optional[str] = None ) -> Tuple: """simple docstring""" __lowercase = ( os.path.join(_lowerCAmelCase , config.EXTRACTED_DATASETS_DIR ) if cache_dir else config.EXTRACTED_DATASETS_PATH ) __lowercase = Extractor def _a ( self : str , _lowerCAmelCase : str ) -> str: """simple docstring""" from .file_utils import hash_url_to_filename # Path where we extract compressed archives # We extract in the cache dir, and get the extracted path name by hashing the original path" __lowercase = os.path.abspath(_lowerCAmelCase ) return os.path.join(self.extract_dir , hash_url_to_filename(_lowerCAmelCase ) ) def _a ( self : Optional[Any] , _lowerCAmelCase : str , _lowerCAmelCase : bool ) -> bool: """simple docstring""" return force_extract or ( not os.path.isfile(_lowerCAmelCase ) and not (os.path.isdir(_lowerCAmelCase ) and os.listdir(_lowerCAmelCase )) ) def _a ( self : List[Any] , _lowerCAmelCase : str , _lowerCAmelCase : bool = False ) -> str: """simple docstring""" __lowercase = self.extractor.infer_extractor_format(_lowerCAmelCase ) if not extractor_format: return input_path __lowercase = self._get_output_path(_lowerCAmelCase ) if self._do_extract(_lowerCAmelCase , _lowerCAmelCase ): self.extractor.extract(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return output_path class __UpperCamelCase ( _lowerCAmelCase ): @classmethod @abstractmethod def _a ( cls : List[str] , _lowerCAmelCase : Union[Path, str] , **_lowerCAmelCase : str ) -> bool: """simple docstring""" ... @staticmethod @abstractmethod def _a ( _lowerCAmelCase : Union[Path, str] , _lowerCAmelCase : Union[Path, str] ) -> None: """simple docstring""" ... class __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase ): __snake_case :List[bytes] = [] @staticmethod def _a ( _lowerCAmelCase : Union[Path, str] , _lowerCAmelCase : int ) -> List[Any]: """simple docstring""" with open(_lowerCAmelCase , """rb""" ) as f: return f.read(_lowerCAmelCase ) @classmethod def _a ( cls : Any , _lowerCAmelCase : Union[Path, str] , _lowerCAmelCase : bytes = b"" ) -> bool: """simple docstring""" if not magic_number: __lowercase = max(len(_lowerCAmelCase ) for cls_magic_number in cls.magic_numbers ) try: __lowercase = cls.read_magic_number(_lowerCAmelCase , _lowerCAmelCase ) except OSError: return False return any(magic_number.startswith(_lowerCAmelCase ) for cls_magic_number in cls.magic_numbers ) class __UpperCamelCase ( _lowerCAmelCase ): @classmethod def _a ( cls : Dict , _lowerCAmelCase : Union[Path, str] , **_lowerCAmelCase : str ) -> bool: """simple docstring""" return tarfile.is_tarfile(_lowerCAmelCase ) @staticmethod def _a ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[Any] ) -> List[str]: """simple docstring""" def resolved(_lowerCAmelCase : str ) -> str: return os.path.realpath(os.path.abspath(_lowerCAmelCase ) ) def badpath(_lowerCAmelCase : str , _lowerCAmelCase : str ) -> bool: # joinpath will ignore base if path is absolute return not resolved(os.path.join(_lowerCAmelCase , _lowerCAmelCase ) ).startswith(_lowerCAmelCase ) def badlink(_lowerCAmelCase : Any , _lowerCAmelCase : str ) -> bool: # Links are interpreted relative to the directory containing the link __lowercase = resolved(os.path.join(_lowerCAmelCase , os.path.dirname(info.name ) ) ) return badpath(info.linkname , base=_lowerCAmelCase ) __lowercase = resolved(_lowerCAmelCase ) for finfo in members: if badpath(finfo.name , _lowerCAmelCase ): logger.error(F'Extraction of {finfo.name} is blocked (illegal path)' ) elif finfo.issym() and badlink(_lowerCAmelCase , _lowerCAmelCase ): logger.error(F'Extraction of {finfo.name} is blocked: Symlink to {finfo.linkname}' ) elif finfo.islnk() and badlink(_lowerCAmelCase , _lowerCAmelCase ): logger.error(F'Extraction of {finfo.name} is blocked: Hard link to {finfo.linkname}' ) else: yield finfo @staticmethod def _a ( _lowerCAmelCase : Union[Path, str] , _lowerCAmelCase : Union[Path, str] ) -> None: """simple docstring""" os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase ) __lowercase = tarfile.open(_lowerCAmelCase ) tar_file.extractall(_lowerCAmelCase , members=TarExtractor.safemembers(_lowerCAmelCase , _lowerCAmelCase ) ) tar_file.close() class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :List[Any] = [B'\x1F\x8B'] @staticmethod def _a ( _lowerCAmelCase : Union[Path, str] , _lowerCAmelCase : Union[Path, str] ) -> None: """simple docstring""" with gzip.open(_lowerCAmelCase , """rb""" ) as gzip_file: with open(_lowerCAmelCase , """wb""" ) as extracted_file: shutil.copyfileobj(_lowerCAmelCase , _lowerCAmelCase ) class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :Dict = [ B'PK\x03\x04', B'PK\x05\x06', # empty archive B'PK\x07\x08', # spanned archive ] @classmethod def _a ( cls : Optional[Any] , _lowerCAmelCase : Union[Path, str] , _lowerCAmelCase : bytes = b"" ) -> bool: """simple docstring""" if super().is_extractable(_lowerCAmelCase , magic_number=_lowerCAmelCase ): return True try: # Alternative version of zipfile.is_zipfile that has less false positives, but misses executable zip archives. # From: https://github.com/python/cpython/pull/5053 from zipfile import ( _CD_SIGNATURE, _ECD_DISK_NUMBER, _ECD_DISK_START, _ECD_ENTRIES_TOTAL, _ECD_OFFSET, _ECD_SIZE, _EndRecData, sizeCentralDir, stringCentralDir, structCentralDir, ) with open(_lowerCAmelCase , """rb""" ) as fp: __lowercase = _EndRecData(_lowerCAmelCase ) if endrec: if endrec[_ECD_ENTRIES_TOTAL] == 0 and endrec[_ECD_SIZE] == 0 and endrec[_ECD_OFFSET] == 0: return True # Empty zipfiles are still zipfiles elif endrec[_ECD_DISK_NUMBER] == endrec[_ECD_DISK_START]: fp.seek(endrec[_ECD_OFFSET] ) # Central directory is on the same disk if fp.tell() == endrec[_ECD_OFFSET] and endrec[_ECD_SIZE] >= sizeCentralDir: __lowercase = fp.read(_lowerCAmelCase ) # CD is where we expect it to be if len(_lowerCAmelCase ) == sizeCentralDir: __lowercase = struct.unpack(_lowerCAmelCase , _lowerCAmelCase ) # CD is the right size if centdir[_CD_SIGNATURE] == stringCentralDir: return True # First central directory entry has correct magic number return False except Exception: # catch all errors in case future python versions change the zipfile internals return False @staticmethod def _a ( _lowerCAmelCase : Union[Path, str] , _lowerCAmelCase : Union[Path, str] ) -> None: """simple docstring""" os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase ) with zipfile.ZipFile(_lowerCAmelCase , """r""" ) as zip_file: zip_file.extractall(_lowerCAmelCase ) zip_file.close() class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :Tuple = [B'\xFD\x37\x7A\x58\x5A\x00'] @staticmethod def _a ( _lowerCAmelCase : Union[Path, str] , _lowerCAmelCase : Union[Path, str] ) -> None: """simple docstring""" with lzma.open(_lowerCAmelCase ) as compressed_file: with open(_lowerCAmelCase , """wb""" ) as extracted_file: shutil.copyfileobj(_lowerCAmelCase , _lowerCAmelCase ) class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :Union[str, Any] = [B'Rar!\x1a\x07\x00', B'Rar!\x1a\x07\x01\x00'] # RAR_ID # RAR5_ID @staticmethod def _a ( _lowerCAmelCase : Union[Path, str] , _lowerCAmelCase : Union[Path, str] ) -> None: """simple docstring""" if not config.RARFILE_AVAILABLE: raise ImportError("""Please pip install rarfile""" ) import rarfile os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase ) __lowercase = rarfile.RarFile(_lowerCAmelCase ) rf.extractall(_lowerCAmelCase ) rf.close() class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :Dict = [B'\x28\xb5\x2F\xFD'] @staticmethod def _a ( _lowerCAmelCase : Union[Path, str] , _lowerCAmelCase : Union[Path, str] ) -> None: """simple docstring""" if not config.ZSTANDARD_AVAILABLE: raise ImportError("""Please pip install zstandard""" ) import zstandard as zstd __lowercase = zstd.ZstdDecompressor() with open(_lowerCAmelCase , """rb""" ) as ifh, open(_lowerCAmelCase , """wb""" ) as ofh: dctx.copy_stream(_lowerCAmelCase , _lowerCAmelCase ) class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :List[Any] = [B'\x42\x5A\x68'] @staticmethod def _a ( _lowerCAmelCase : Union[Path, str] , _lowerCAmelCase : Union[Path, str] ) -> None: """simple docstring""" with bza.open(_lowerCAmelCase , """rb""" ) as compressed_file: with open(_lowerCAmelCase , """wb""" ) as extracted_file: shutil.copyfileobj(_lowerCAmelCase , _lowerCAmelCase ) class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :Any = [B'\x37\x7A\xBC\xAF\x27\x1C'] @staticmethod def _a ( _lowerCAmelCase : Union[Path, str] , _lowerCAmelCase : Union[Path, str] ) -> None: """simple docstring""" if not config.PY7ZR_AVAILABLE: raise ImportError("""Please pip install py7zr""" ) import pyazr os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase ) with pyazr.SevenZipFile(_lowerCAmelCase , """r""" ) as archive: archive.extractall(_lowerCAmelCase ) class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :Tuple = [B'\x04\x22\x4D\x18'] @staticmethod def _a ( _lowerCAmelCase : Union[Path, str] , _lowerCAmelCase : Union[Path, str] ) -> None: """simple docstring""" if not config.LZ4_AVAILABLE: raise ImportError("""Please pip install lz4""" ) import lza.frame with lza.frame.open(_lowerCAmelCase , """rb""" ) as compressed_file: with open(_lowerCAmelCase , """wb""" ) as extracted_file: shutil.copyfileobj(_lowerCAmelCase , _lowerCAmelCase ) class __UpperCamelCase : # Put zip file to the last, b/c it is possible wrongly detected as zip (I guess it means: as tar or gzip) __snake_case :Dict[str, Type[BaseExtractor]] = { "tar": TarExtractor, "gzip": GzipExtractor, "zip": ZipExtractor, "xz": XzExtractor, "rar": RarExtractor, "zstd": ZstdExtractor, "bz2": BzipaExtractor, "7z": SevenZipExtractor, # <Added version="2.4.0"/> "lz4": LzaExtractor, # <Added version="2.4.0"/> } @classmethod def _a ( cls : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" return max( len(_lowerCAmelCase ) for extractor in cls.extractors.values() if issubclass(_lowerCAmelCase , _lowerCAmelCase ) for extractor_magic_number in extractor.magic_numbers ) @staticmethod def _a ( _lowerCAmelCase : Union[Path, str] , _lowerCAmelCase : int ) -> Dict: """simple docstring""" try: return MagicNumberBaseExtractor.read_magic_number(_lowerCAmelCase , magic_number_length=_lowerCAmelCase ) except OSError: return b"" @classmethod def _a ( cls : str , _lowerCAmelCase : Union[Path, str] , _lowerCAmelCase : bool = False ) -> bool: """simple docstring""" warnings.warn( """Method 'is_extractable' was deprecated in version 2.4.0 and will be removed in 3.0.0. """ """Use 'infer_extractor_format' instead.""" , category=_lowerCAmelCase , ) __lowercase = cls.infer_extractor_format(_lowerCAmelCase ) if extractor_format: return True if not return_extractor else (True, cls.extractors[extractor_format]) return False if not return_extractor else (False, None) @classmethod def _a ( cls : Optional[int] , _lowerCAmelCase : Union[Path, str] ) -> str: # <Added version="2.4.0"/> """simple docstring""" __lowercase = cls._get_magic_number_max_length() __lowercase = cls._read_magic_number(_lowerCAmelCase , _lowerCAmelCase ) for extractor_format, extractor in cls.extractors.items(): if extractor.is_extractable(_lowerCAmelCase , magic_number=_lowerCAmelCase ): return extractor_format @classmethod def _a ( cls : List[str] , _lowerCAmelCase : Union[Path, str] , _lowerCAmelCase : Union[Path, str] , _lowerCAmelCase : Optional[str] = None , _lowerCAmelCase : Optional[BaseExtractor] = "deprecated" , ) -> None: """simple docstring""" os.makedirs(os.path.dirname(_lowerCAmelCase ) , exist_ok=_lowerCAmelCase ) # Prevent parallel extractions __lowercase = str(Path(_lowerCAmelCase ).with_suffix(""".lock""" ) ) with FileLock(_lowerCAmelCase ): shutil.rmtree(_lowerCAmelCase , ignore_errors=_lowerCAmelCase ) if extractor_format or extractor != "deprecated": if extractor != "deprecated" or not isinstance(_lowerCAmelCase , _lowerCAmelCase ): # passed as positional arg warnings.warn( """Parameter 'extractor' was deprecated in version 2.4.0 and will be removed in 3.0.0. """ """Use 'extractor_format' instead.""" , category=_lowerCAmelCase , ) __lowercase = extractor if extractor != """deprecated""" else extractor_format else: __lowercase = cls.extractors[extractor_format] return extractor.extract(_lowerCAmelCase , _lowerCAmelCase ) else: warnings.warn( """Parameter 'extractor_format' was made required in version 2.4.0 and not passing it will raise an """ """exception in 3.0.0.""" , category=_lowerCAmelCase , ) for extractor in cls.extractors.values(): if extractor.is_extractable(_lowerCAmelCase ): return extractor.extract(_lowerCAmelCase , _lowerCAmelCase )
53
import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): __snake_case :Any = IFInpaintingPipeline __snake_case :str = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'width', 'height'} __snake_case :Optional[int] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS __snake_case :str = PipelineTesterMixin.required_optional_params - {'latents'} def _a ( self : Union[str, Any] ) -> Tuple: """simple docstring""" return self._get_dummy_components() def _a ( self : Optional[int] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Dict=0 ) -> Any: """simple docstring""" if str(_lowerCAmelCase ).startswith("""mps""" ): __lowercase = torch.manual_seed(_lowerCAmelCase ) else: __lowercase = torch.Generator(device=_lowerCAmelCase ).manual_seed(_lowerCAmelCase ) __lowercase = floats_tensor((1, 3, 32, 32) , rng=random.Random(_lowerCAmelCase ) ).to(_lowerCAmelCase ) __lowercase = floats_tensor((1, 3, 32, 32) , rng=random.Random(_lowerCAmelCase ) ).to(_lowerCAmelCase ) __lowercase = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """mask_image""": mask_image, """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def _a ( self : Tuple ) -> Dict: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def _a ( self : Union[str, Any] ) -> Dict: """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" ) def _a ( self : List[str] ) -> Tuple: """simple docstring""" super().test_save_load_floataa(expected_max_diff=1e-1 ) def _a ( self : Tuple ) -> Optional[Any]: """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def _a ( self : str ) -> Optional[int]: """simple docstring""" self._test_save_load_local() def _a ( self : List[str] ) -> List[Any]: """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
53
1
"""simple docstring""" import inspect from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch import torch.utils.checkpoint from ...models import UNetaDModel, VQModel from ...schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from ...utils import PIL_INTERPOLATION, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput def lowerCamelCase (a_ :Optional[Any]) -> Optional[Any]: lowercase :Union[str, Any] = image.size lowercase :Dict = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 lowercase :str = image.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos''']) lowercase :List[str] = np.array(a_).astype(np.floataa) / 255.0 lowercase :str = image[None].transpose(0 , 3 , 1 , 2) lowercase :Dict = torch.from_numpy(a_) return 2.0 * image - 1.0 class __magic_name__ ( __UpperCAmelCase ): def __init__( self : Dict , snake_case__ : Optional[Any] , snake_case__ : Any , snake_case__ : Optional[int] , ): '''simple docstring''' super().__init__() self.register_modules(vqvae=_SCREAMING_SNAKE_CASE , unet=_SCREAMING_SNAKE_CASE , scheduler=_SCREAMING_SNAKE_CASE ) @torch.no_grad() def __call__( self : List[Any] , snake_case__ : Dict = None , snake_case__ : List[Any] = 1 , snake_case__ : Optional[int] = 1_0_0 , snake_case__ : int = 0.0 , snake_case__ : List[str] = None , snake_case__ : str = "pil" , snake_case__ : Optional[int] = True , ): '''simple docstring''' if isinstance(_SCREAMING_SNAKE_CASE , PIL.Image.Image ): lowercase :int = 1 elif isinstance(_SCREAMING_SNAKE_CASE , torch.Tensor ): lowercase :Dict = image.shape[0] else: raise ValueError(f"""`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(_SCREAMING_SNAKE_CASE )}""" ) if isinstance(_SCREAMING_SNAKE_CASE , PIL.Image.Image ): lowercase :Optional[int] = preprocess(_SCREAMING_SNAKE_CASE ) lowercase :str = image.shape[-2:] # in_channels should be 6: 3 for latents, 3 for low resolution image lowercase :Any = (batch_size, self.unet.config.in_channels // 2, height, width) lowercase :Any = next(self.unet.parameters() ).dtype lowercase :Tuple = randn_tensor(_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , device=self.device , dtype=_SCREAMING_SNAKE_CASE ) lowercase :str = image.to(device=self.device , dtype=_SCREAMING_SNAKE_CASE ) # set timesteps and move to the correct device self.scheduler.set_timesteps(_SCREAMING_SNAKE_CASE , device=self.device ) lowercase :Union[str, Any] = self.scheduler.timesteps # scale the initial noise by the standard deviation required by the scheduler lowercase :int = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature. # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] lowercase :Any = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) lowercase :Optional[Any] = {} if accepts_eta: lowercase :int = eta for t in self.progress_bar(_SCREAMING_SNAKE_CASE ): # concat latents and low resolution image in the channel dimension. lowercase :Union[str, Any] = torch.cat([latents, image] , dim=1 ) lowercase :List[Any] = self.scheduler.scale_model_input(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # predict the noise residual lowercase :int = self.unet(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).sample # compute the previous noisy sample x_t -> x_t-1 lowercase :str = self.scheduler.step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ).prev_sample # decode the image latents with the VQVAE lowercase :str = self.vqvae.decode(_SCREAMING_SNAKE_CASE ).sample lowercase :Tuple = torch.clamp(_SCREAMING_SNAKE_CASE , -1.0 , 1.0 ) lowercase :Optional[Any] = image / 2 + 0.5 lowercase :Tuple = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowercase :Dict = self.numpy_to_pil(_SCREAMING_SNAKE_CASE ) if not return_dict: return (image,) return ImagePipelineOutput(images=_SCREAMING_SNAKE_CASE )
677
from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class _lowerCamelCase ( UpperCamelCase , UpperCamelCase ): """simple docstring""" @register_to_config def __init__( self , _SCREAMING_SNAKE_CASE = 768 , )->Union[str, Any]: '''simple docstring''' super().__init__() A_ : Union[str, Any] = nn.Parameter(torch.zeros(1 , _SCREAMING_SNAKE_CASE ) ) A_ : Any = nn.Parameter(torch.ones(1 , _SCREAMING_SNAKE_CASE ) ) def _snake_case ( self , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , )->Tuple: '''simple docstring''' A_ : Optional[Any] = nn.Parameter(self.mean.to(_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE ) ) A_ : str = nn.Parameter(self.std.to(_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE ) ) return self def _snake_case ( self , _SCREAMING_SNAKE_CASE )->Optional[int]: '''simple docstring''' A_ : Tuple = (embeds - self.mean) * 1.0 / self.std return embeds def _snake_case ( self , _SCREAMING_SNAKE_CASE )->List[str]: '''simple docstring''' A_ : List[str] = (embeds * self.std) + self.mean return embeds
590
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING import torch from ..models.auto import AutoModelForVisualQuestionAnswering, AutoProcessor from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class lowercase ( _lowercase ): """simple docstring""" a__ = "dandelin/vilt-b32-finetuned-vqa" a__ = ( "This is a tool that answers a question about an image. It takes an input named `image` which should be the " "image containing the information, as well as a `question` which should be the question in English. It " "returns a text that is the answer to the question." ) a__ = "image_qa" a__ = AutoProcessor a__ = AutoModelForVisualQuestionAnswering a__ = ["image", "text"] a__ = ["text"] def __init__( self , *__snake_case , **__snake_case): requires_backends(self , ['vision']) super().__init__(*__snake_case , **__snake_case) def A__ ( self , __snake_case , __snake_case): return self.pre_processor(__snake_case , __snake_case , return_tensors='pt') def A__ ( self , __snake_case): with torch.no_grad(): return self.model(**__snake_case).logits def A__ ( self , __snake_case): _UpperCamelCase : Tuple = outputs.argmax(-1).item() return self.model.config.idalabel[idx]
648
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/config.json""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/config.json""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/config.json""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/config.json""", """bert-base-multilingual-uncased""": """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json""", """bert-base-multilingual-cased""": """https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json""", """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/config.json""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/config.json""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-base-cased-finetuned-mrpc""": """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json""", """bert-base-german-dbmdz-cased""": """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json""", """bert-base-german-dbmdz-uncased""": """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json""", """cl-tohoku/bert-base-japanese""": """https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json""", """cl-tohoku/bert-base-japanese-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json""" ), """wietsedv/bert-base-dutch-cased""": """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json""", # See all BERT models at https://huggingface.co/models?filter=bert } class lowercase ( _lowercase ): """simple docstring""" a__ = "bert" def __init__( self , __snake_case=3_05_22 , __snake_case=7_68 , __snake_case=12 , __snake_case=12 , __snake_case=30_72 , __snake_case="gelu" , __snake_case=0.1 , __snake_case=0.1 , __snake_case=5_12 , __snake_case=2 , __snake_case=0.0_2 , __snake_case=1e-12 , __snake_case=0 , __snake_case="absolute" , __snake_case=True , __snake_case=None , **__snake_case , ): super().__init__(pad_token_id=__snake_case , **__snake_case) _UpperCamelCase : int = vocab_size _UpperCamelCase : Optional[Any] = hidden_size _UpperCamelCase : Optional[Any] = num_hidden_layers _UpperCamelCase : List[str] = num_attention_heads _UpperCamelCase : int = hidden_act _UpperCamelCase : Optional[Any] = intermediate_size _UpperCamelCase : Union[str, Any] = hidden_dropout_prob _UpperCamelCase : Tuple = attention_probs_dropout_prob _UpperCamelCase : Optional[int] = max_position_embeddings _UpperCamelCase : str = type_vocab_size _UpperCamelCase : Optional[Any] = initializer_range _UpperCamelCase : List[str] = layer_norm_eps _UpperCamelCase : Any = position_embedding_type _UpperCamelCase : Any = use_cache _UpperCamelCase : Any = classifier_dropout class lowercase ( _lowercase ): """simple docstring""" @property def A__ ( self): if self.task == "multiple-choice": _UpperCamelCase : Union[str, Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _UpperCamelCase : Optional[Any] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ])
648
1
'''simple docstring''' from pathlib import Path import json import tempfile from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES A : Union[str, Any] = 'tiny-wmt19-en-ru' # Build # borrowed from a test A : str = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'w</w>', 'r</w>', 't</w>', 'lo', 'low', 'er</w>', 'low</w>', 'lowest</w>', 'newer</w>', 'wider</w>', '<unk>', ] A : List[Any] = dict(zip(vocab, range(len(vocab)))) A : List[Any] = ['l o 123', 'lo w 1456', 'e r</w> 1789', ''] with tempfile.TemporaryDirectory() as tmpdirname: A : int = Path(tmpdirname) A : Tuple = build_dir / VOCAB_FILES_NAMES['src_vocab_file'] A : List[str] = build_dir / VOCAB_FILES_NAMES['tgt_vocab_file'] A : str = build_dir / VOCAB_FILES_NAMES['merges_file'] with open(src_vocab_file, """w""") as fp: fp.write(json.dumps(vocab_tokens)) with open(tgt_vocab_file, """w""") as fp: fp.write(json.dumps(vocab_tokens)) with open(merges_file, """w""") as fp: fp.write("""\n""".join(merges)) A : Dict = FSMTTokenizer( langs=["""en""", """ru"""], src_vocab_size=len(vocab), tgt_vocab_size=len(vocab), src_vocab_file=src_vocab_file, tgt_vocab_file=tgt_vocab_file, merges_file=merges_file, ) A : Dict = FSMTConfig( langs=["""ru""", """en"""], src_vocab_size=1_000, tgt_vocab_size=1_000, d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) A : Any = FSMTForConditionalGeneration(config) print(f"num of params {tiny_model.num_parameters()}") # Test A : Union[str, Any] = tokenizer(["""Making tiny model"""], return_tensors="""pt""") A : Any = tiny_model(**batch) print("""test output:""", len(outputs.logits[0])) # Save tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(f"Generated {mname_tiny}") # Upload # transformers-cli upload tiny-wmt19-en-ru
349
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_squeezebert import SqueezeBertTokenizer snake_case_ : Tuple = logging.get_logger(__name__) snake_case_ : str = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} snake_case_ : List[Any] = { 'vocab_file': { 'squeezebert/squeezebert-uncased': ( 'https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt' ), 'squeezebert/squeezebert-mnli': 'https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt', 'squeezebert/squeezebert-mnli-headless': ( 'https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'squeezebert/squeezebert-uncased': ( 'https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json' ), 'squeezebert/squeezebert-mnli': ( 'https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json' ), 'squeezebert/squeezebert-mnli-headless': ( 'https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json' ), }, } snake_case_ : Optional[int] = { 'squeezebert/squeezebert-uncased': 512, 'squeezebert/squeezebert-mnli': 512, 'squeezebert/squeezebert-mnli-headless': 512, } snake_case_ : Tuple = { 'squeezebert/squeezebert-uncased': {'do_lower_case': True}, 'squeezebert/squeezebert-mnli': {'do_lower_case': True}, 'squeezebert/squeezebert-mnli-headless': {'do_lower_case': True}, } class lowercase__ ( snake_case_ ): '''simple docstring''' _snake_case = VOCAB_FILES_NAMES _snake_case = PRETRAINED_VOCAB_FILES_MAP _snake_case = PRETRAINED_INIT_CONFIGURATION _snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case = SqueezeBertTokenizer def __init__( self , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=True , lowerCamelCase__="[UNK]" , lowerCamelCase__="[SEP]" , lowerCamelCase__="[PAD]" , lowerCamelCase__="[CLS]" , lowerCamelCase__="[MASK]" , lowerCamelCase__=True , lowerCamelCase__=None , **lowerCamelCase__ , ): '''simple docstring''' super().__init__( lowerCamelCase__ , tokenizer_file=lowerCamelCase__ , do_lower_case=lowerCamelCase__ , unk_token=lowerCamelCase__ , sep_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , cls_token=lowerCamelCase__ , mask_token=lowerCamelCase__ , tokenize_chinese_chars=lowerCamelCase__ , strip_accents=lowerCamelCase__ , **lowerCamelCase__ , ) UpperCamelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , lowerCamelCase__ ) != do_lower_case or normalizer_state.get('''strip_accents''' , lowerCamelCase__ ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , lowerCamelCase__ ) != tokenize_chinese_chars ): UpperCamelCase = getattr(lowerCamelCase__ , normalizer_state.pop('''type''' ) ) UpperCamelCase = do_lower_case UpperCamelCase = strip_accents UpperCamelCase = tokenize_chinese_chars UpperCamelCase = normalizer_class(**lowerCamelCase__ ) UpperCamelCase = do_lower_case def UpperCAmelCase ( self , lowerCamelCase__ , lowerCamelCase__=None ): '''simple docstring''' UpperCamelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCAmelCase ( self , lowerCamelCase__ , lowerCamelCase__ = None ): '''simple docstring''' UpperCamelCase = [self.sep_token_id] UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase ( self , lowerCamelCase__ , lowerCamelCase__ = None ): '''simple docstring''' UpperCamelCase = self._tokenizer.model.save(lowerCamelCase__ , name=lowerCamelCase__ ) return tuple(lowerCamelCase__ )
212
0
'''simple docstring''' import argparse import os import gluonnlp as nlp import mxnet as mx import numpy as np import torch from gluonnlp.base import get_home_dir from gluonnlp.model.bert import BERTEncoder from gluonnlp.model.utils import _load_vocab from gluonnlp.vocab import Vocab from packaging import version from torch import nn from transformers import BertConfig, BertForMaskedLM, BertModel, RobertaTokenizer from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging if version.parse(nlp.__version__) != version.parse("0.8.3"): raise Exception("requires gluonnlp == 0.8.3") if version.parse(mx.__version__) != version.parse("1.5.0"): raise Exception("requires mxnet == 1.5.0") logging.set_verbosity_info() UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = "The Nymphenburg Palace is a beautiful palace in Munich!" def lowerCAmelCase__ ( a_ : str , a_ : str ) -> Union[str, Any]: UpperCAmelCase__ : List[Any] = { '''attention_cell''': '''multi_head''', '''num_layers''': 4, '''units''': 1_0_2_4, '''hidden_size''': 7_6_8, '''max_length''': 5_1_2, '''num_heads''': 8, '''scaled''': True, '''dropout''': 0.1, '''use_residual''': True, '''embed_size''': 1_0_2_4, '''embed_dropout''': 0.1, '''word_embed''': None, '''layer_norm_eps''': 1E-5, '''token_type_vocab_size''': 2, } UpperCAmelCase__ : Optional[Any] = bort_4_8_768_1024_hparams # Let's construct the original Bort model here # Taken from official BERT implementation, see: # https://github.com/alexa/bort/blob/master/bort/bort.py UpperCAmelCase__ : Optional[Any] = BERTEncoder( attention_cell=predefined_args['''attention_cell'''] , num_layers=predefined_args['''num_layers'''] , units=predefined_args['''units'''] , hidden_size=predefined_args['''hidden_size'''] , max_length=predefined_args['''max_length'''] , num_heads=predefined_args['''num_heads'''] , scaled=predefined_args['''scaled'''] , dropout=predefined_args['''dropout'''] , output_attention=a_ , output_all_encodings=a_ , use_residual=predefined_args['''use_residual'''] , activation=predefined_args.get('''activation''' , '''gelu''' ) , layer_norm_eps=predefined_args.get('''layer_norm_eps''' , a_ ) , ) # Vocab information needs to be fetched first # It's the same as RoBERTa, so RobertaTokenizer can be used later UpperCAmelCase__ : Dict = '''openwebtext_ccnews_stories_books_cased''' # Specify download folder to Gluonnlp's vocab UpperCAmelCase__ : Optional[Any] = os.path.join(get_home_dir() , '''models''' ) UpperCAmelCase__ : List[str] = _load_vocab(a_ , a_ , a_ , cls=a_ ) UpperCAmelCase__ : Optional[Any] = nlp.model.BERTModel( a_ , len(a_ ) , units=predefined_args['''units'''] , embed_size=predefined_args['''embed_size'''] , embed_dropout=predefined_args['''embed_dropout'''] , word_embed=predefined_args['''word_embed'''] , use_pooler=a_ , use_token_type_embed=a_ , token_type_vocab_size=predefined_args['''token_type_vocab_size'''] , use_classifier=a_ , use_decoder=a_ , ) original_bort.load_parameters(a_ , cast_dtype=a_ , ignore_extra=a_ ) UpperCAmelCase__ : Tuple = original_bort._collect_params_with_prefix() # Build our config 🤗 UpperCAmelCase__ : Optional[int] = { '''architectures''': ['''BertForMaskedLM'''], '''attention_probs_dropout_prob''': predefined_args['''dropout'''], '''hidden_act''': '''gelu''', '''hidden_dropout_prob''': predefined_args['''dropout'''], '''hidden_size''': predefined_args['''embed_size'''], '''initializer_range''': 0.02, '''intermediate_size''': predefined_args['''hidden_size'''], '''layer_norm_eps''': predefined_args['''layer_norm_eps'''], '''max_position_embeddings''': predefined_args['''max_length'''], '''model_type''': '''bort''', '''num_attention_heads''': predefined_args['''num_heads'''], '''num_hidden_layers''': predefined_args['''num_layers'''], '''pad_token_id''': 1, # 2 = BERT, 1 = RoBERTa '''type_vocab_size''': 1, # 2 = BERT, 1 = RoBERTa '''vocab_size''': len(a_ ), } UpperCAmelCase__ : Union[str, Any] = BertConfig.from_dict(a_ ) UpperCAmelCase__ : Optional[int] = BertForMaskedLM(a_ ) hf_bort_model.eval() # Parameter mapping table (Gluonnlp to Transformers) # * denotes layer index # # | Gluon Parameter | Transformers Parameter # | -------------------------------------------------------------- | ---------------------- # | `encoder.layer_norm.beta` | `bert.embeddings.LayerNorm.bias` # | `encoder.layer_norm.gamma` | `bert.embeddings.LayerNorm.weight` # | `encoder.position_weight` | `bert.embeddings.position_embeddings.weight` # | `word_embed.0.weight` | `bert.embeddings.word_embeddings.weight` # | `encoder.transformer_cells.*.attention_cell.proj_key.bias` | `bert.encoder.layer.*.attention.self.key.bias` # | `encoder.transformer_cells.*.attention_cell.proj_key.weight` | `bert.encoder.layer.*.attention.self.key.weight` # | `encoder.transformer_cells.*.attention_cell.proj_query.bias` | `bert.encoder.layer.*.attention.self.query.bias` # | `encoder.transformer_cells.*.attention_cell.proj_query.weight` | `bert.encoder.layer.*.attention.self.query.weight` # | `encoder.transformer_cells.*.attention_cell.proj_value.bias` | `bert.encoder.layer.*.attention.self.value.bias` # | `encoder.transformer_cells.*.attention_cell.proj_value.weight` | `bert.encoder.layer.*.attention.self.value.weight` # | `encoder.transformer_cells.*.ffn.ffn_2.bias` | `bert.encoder.layer.*.attention.output.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_2.weight` | `bert.encoder.layer.*.attention.output.dense.weight` # | `encoder.transformer_cells.*.layer_norm.beta` | `bert.encoder.layer.*.attention.output.LayerNorm.bias` # | `encoder.transformer_cells.*.layer_norm.gamma` | `bert.encoder.layer.*.attention.output.LayerNorm.weight` # | `encoder.transformer_cells.*.ffn.ffn_1.bias` | `bert.encoder.layer.*.intermediate.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_1.weight` | `bert.encoder.layer.*.intermediate.dense.weight` # | `encoder.transformer_cells.*.ffn.layer_norm.beta` | `bert.encoder.layer.*.output.LayerNorm.bias` # | `encoder.transformer_cells.*.ffn.layer_norm.gamma` | `bert.encoder.layer.*.output.LayerNorm.weight` # | `encoder.transformer_cells.*.proj.bias` | `bert.encoder.layer.*.output.dense.bias` # | `encoder.transformer_cells.*.proj.weight` | `bert.encoder.layer.*.output.dense.weight` # Helper function to convert MXNET Arrays to PyTorch def to_torch(a_ : int ) -> nn.Parameter: return nn.Parameter(torch.FloatTensor(mx_array.data().asnumpy() ) ) # Check param shapes and map new HF param back def check_and_map_params(a_ : List[Any] , a_ : Union[str, Any] ): UpperCAmelCase__ : Optional[int] = hf_param.shape UpperCAmelCase__ : Union[str, Any] = to_torch(params[gluon_param] ) UpperCAmelCase__ : int = gluon_param.shape assert ( shape_hf == shape_gluon ), f"""The gluon parameter {gluon_param} has shape {shape_gluon}, but expects shape {shape_hf} for Transformers""" return gluon_param UpperCAmelCase__ : str = check_and_map_params( hf_bort_model.bert.embeddings.word_embeddings.weight , '''word_embed.0.weight''' ) UpperCAmelCase__ : Optional[Any] = check_and_map_params( hf_bort_model.bert.embeddings.position_embeddings.weight , '''encoder.position_weight''' ) UpperCAmelCase__ : Union[str, Any] = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.bias , '''encoder.layer_norm.beta''' ) UpperCAmelCase__ : Tuple = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.weight , '''encoder.layer_norm.gamma''' ) # Inspired by RoBERTa conversion script, we just zero them out (Bort does not use them) UpperCAmelCase__ : Any = torch.zeros_like( hf_bort_model.bert.embeddings.token_type_embeddings.weight.data ) for i in range(hf_bort_config.num_hidden_layers ): UpperCAmelCase__ : BertLayer = hf_bort_model.bert.encoder.layer[i] # self attention UpperCAmelCase__ : BertSelfAttention = layer.attention.self UpperCAmelCase__ : List[str] = check_and_map_params( self_attn.key.bias.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_key.bias""" ) UpperCAmelCase__ : Union[str, Any] = check_and_map_params( self_attn.key.weight.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_key.weight""" ) UpperCAmelCase__ : Dict = check_and_map_params( self_attn.query.bias.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_query.bias""" ) UpperCAmelCase__ : str = check_and_map_params( self_attn.query.weight.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_query.weight""" ) UpperCAmelCase__ : int = check_and_map_params( self_attn.value.bias.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_value.bias""" ) UpperCAmelCase__ : Optional[int] = check_and_map_params( self_attn.value.weight.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_value.weight""" ) # self attention output UpperCAmelCase__ : BertSelfOutput = layer.attention.output UpperCAmelCase__ : Optional[Any] = check_and_map_params( self_output.dense.bias , f"""encoder.transformer_cells.{i}.proj.bias""" ) UpperCAmelCase__ : List[Any] = check_and_map_params( self_output.dense.weight , f"""encoder.transformer_cells.{i}.proj.weight""" ) UpperCAmelCase__ : int = check_and_map_params( self_output.LayerNorm.bias , f"""encoder.transformer_cells.{i}.layer_norm.beta""" ) UpperCAmelCase__ : Any = check_and_map_params( self_output.LayerNorm.weight , f"""encoder.transformer_cells.{i}.layer_norm.gamma""" ) # intermediate UpperCAmelCase__ : BertIntermediate = layer.intermediate UpperCAmelCase__ : Union[str, Any] = check_and_map_params( intermediate.dense.bias , f"""encoder.transformer_cells.{i}.ffn.ffn_1.bias""" ) UpperCAmelCase__ : Dict = check_and_map_params( intermediate.dense.weight , f"""encoder.transformer_cells.{i}.ffn.ffn_1.weight""" ) # output UpperCAmelCase__ : BertOutput = layer.output UpperCAmelCase__ : Optional[Any] = check_and_map_params( bert_output.dense.bias , f"""encoder.transformer_cells.{i}.ffn.ffn_2.bias""" ) UpperCAmelCase__ : Optional[int] = check_and_map_params( bert_output.dense.weight , f"""encoder.transformer_cells.{i}.ffn.ffn_2.weight""" ) UpperCAmelCase__ : Dict = check_and_map_params( bert_output.LayerNorm.bias , f"""encoder.transformer_cells.{i}.ffn.layer_norm.beta""" ) UpperCAmelCase__ : Dict = check_and_map_params( bert_output.LayerNorm.weight , f"""encoder.transformer_cells.{i}.ffn.layer_norm.gamma""" ) # Save space and energy 🎄 hf_bort_model.half() # Compare output of both models UpperCAmelCase__ : List[Any] = RobertaTokenizer.from_pretrained('''roberta-base''' ) UpperCAmelCase__ : List[str] = tokenizer.encode_plus(a_ )['''input_ids'''] # Get gluon output UpperCAmelCase__ : Dict = mx.nd.array([input_ids] ) UpperCAmelCase__ : Any = original_bort(inputs=a_ , token_types=[] ) # Get Transformer output (save and reload model again) hf_bort_model.save_pretrained(a_ ) UpperCAmelCase__ : List[Any] = BertModel.from_pretrained(a_ ) hf_bort_model.eval() UpperCAmelCase__ : List[str] = tokenizer.encode_plus(a_ , return_tensors='''pt''' ) UpperCAmelCase__ : str = hf_bort_model(**a_ )[0] UpperCAmelCase__ : Tuple = output_gluon[0].asnumpy() UpperCAmelCase__ : Dict = output_hf[0].detach().numpy() UpperCAmelCase__ : Union[str, Any] = np.max(np.abs(hf_layer - gluon_layer ) ).item() UpperCAmelCase__ : Optional[int] = np.allclose(a_ , a_ , atol=1E-3 ) if success: print('''✔️ Both model do output the same tensors''' ) else: print('''❌ Both model do **NOT** output the same tensors''' ) print('''Absolute difference is:''' , a_ ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--bort_checkpoint_path", default=None, type=str, required=True, help="Path the official Bort params file." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) UpperCamelCase_ = parser.parse_args() convert_bort_checkpoint_to_pytorch(args.bort_checkpoint_path, args.pytorch_dump_folder_path)
599
'''simple docstring''' from urllib.parse import quote import pytest from datasets.utils.hub import hf_hub_url @pytest.mark.parametrize('''repo_id''' , ['''canonical_dataset_name''', '''org-name/dataset-name'''] ) @pytest.mark.parametrize('''path''' , ['''filename.csv''', '''filename with blanks.csv'''] ) @pytest.mark.parametrize('''revision''' , [None, '''v2'''] ) def lowerCAmelCase__ ( a_ : Tuple , a_ : Dict , a_ : Tuple ) -> List[str]: UpperCAmelCase__ : Union[str, Any] = hf_hub_url(repo_id=a_ , path=a_ , revision=a_ ) assert url == f"""https://huggingface.co/datasets/{repo_id}/resolve/{revision or "main"}/{quote(a_ )}"""
599
1
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ : Any = logging.get_logger(__name__) lowercase_ : Optional[int] = { 'RUCAIBox/mvp': 'https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json', } class _lowerCamelCase ( UpperCamelCase_ ): __a = "mvp" __a = ["past_key_values"] __a = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self , lowerCAmelCase=50267 , lowerCAmelCase=1024 , lowerCAmelCase=12 , lowerCAmelCase=4096 , lowerCAmelCase=16 , lowerCAmelCase=12 , lowerCAmelCase=4096 , lowerCAmelCase=16 , lowerCAmelCase=0.0 , lowerCAmelCase=0.0 , lowerCAmelCase="gelu" , lowerCAmelCase=1024 , lowerCAmelCase=0.1 , lowerCAmelCase=0.0 , lowerCAmelCase=0.0 , lowerCAmelCase=0.02 , lowerCAmelCase=0.0 , lowerCAmelCase=False , lowerCAmelCase=True , lowerCAmelCase=1 , lowerCAmelCase=0 , lowerCAmelCase=2 , lowerCAmelCase=True , lowerCAmelCase=2 , lowerCAmelCase=2 , lowerCAmelCase=False , lowerCAmelCase=100 , lowerCAmelCase=800 , **lowerCAmelCase , ) -> Dict: SCREAMING_SNAKE_CASE__: List[Any]= vocab_size SCREAMING_SNAKE_CASE__: Optional[int]= max_position_embeddings SCREAMING_SNAKE_CASE__: int= d_model SCREAMING_SNAKE_CASE__: Optional[Any]= encoder_ffn_dim SCREAMING_SNAKE_CASE__: Dict= encoder_layers SCREAMING_SNAKE_CASE__: Optional[Any]= encoder_attention_heads SCREAMING_SNAKE_CASE__: List[str]= decoder_ffn_dim SCREAMING_SNAKE_CASE__: Union[str, Any]= decoder_layers SCREAMING_SNAKE_CASE__: Dict= decoder_attention_heads SCREAMING_SNAKE_CASE__: Any= dropout SCREAMING_SNAKE_CASE__: str= attention_dropout SCREAMING_SNAKE_CASE__: List[Any]= activation_dropout SCREAMING_SNAKE_CASE__: Optional[int]= activation_function SCREAMING_SNAKE_CASE__: Optional[int]= init_std SCREAMING_SNAKE_CASE__: List[str]= encoder_layerdrop SCREAMING_SNAKE_CASE__: Union[str, Any]= decoder_layerdrop SCREAMING_SNAKE_CASE__: List[Any]= classifier_dropout SCREAMING_SNAKE_CASE__: List[Any]= use_cache SCREAMING_SNAKE_CASE__: Dict= encoder_layers SCREAMING_SNAKE_CASE__: List[Any]= scale_embedding # scale factor will be sqrt(d_model) if True SCREAMING_SNAKE_CASE__: int= use_prompt SCREAMING_SNAKE_CASE__: List[Any]= prompt_length SCREAMING_SNAKE_CASE__: str= prompt_mid_dim super().__init__( pad_token_id=lowerCAmelCase , bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , is_encoder_decoder=lowerCAmelCase , decoder_start_token_id=lowerCAmelCase , forced_eos_token_id=lowerCAmelCase , **lowerCAmelCase , ) if self.forced_bos_token_id is None and kwargs.get('''force_bos_token_to_be_generated''' , lowerCAmelCase ): SCREAMING_SNAKE_CASE__: Union[str, Any]= self.bos_token_id warnings.warn( f'Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. ' '''The config can simply be saved and uploaded again to be fixed.''' )
64
__SCREAMING_SNAKE_CASE : Union[str, Any] = { 'a': 'AAAAA', 'b': 'AAAAB', 'c': 'AAABA', 'd': 'AAABB', 'e': 'AABAA', 'f': 'AABAB', 'g': 'AABBA', 'h': 'AABBB', 'i': 'ABAAA', 'j': 'BBBAA', 'k': 'ABAAB', 'l': 'ABABA', 'm': 'ABABB', 'n': 'ABBAA', 'o': 'ABBAB', 'p': 'ABBBA', 'q': 'ABBBB', 'r': 'BAAAA', 's': 'BAAAB', 't': 'BAABA', 'u': 'BAABB', 'v': 'BBBAB', 'w': 'BABAA', 'x': 'BABAB', 'y': 'BABBA', 'z': 'BABBB', ' ': ' ', } __SCREAMING_SNAKE_CASE : int = {value: key for key, value in encode_dict.items()} def snake_case (__lowercase ) -> str: '''simple docstring''' _snake_case : Any = "" for letter in word.lower(): if letter.isalpha() or letter == " ": encoded += encode_dict[letter] else: raise Exception("encode() accepts only letters of the alphabet and spaces" ) return encoded def snake_case (__lowercase ) -> str: '''simple docstring''' if set(__lowercase ) - {"A", "B", " "} != set(): raise Exception("decode() accepts only 'A', 'B' and spaces" ) _snake_case : str = "" for word in coded.split(): while len(__lowercase ) != 0: decoded += decode_dict[word[:5]] _snake_case : int = word[5:] decoded += " " return decoded.strip() if __name__ == "__main__": from doctest import testmod testmod()
670
0
'''simple docstring''' import unittest import numpy as np from transformers import RobertaPreLayerNormConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, ) class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self , lowercase__ , lowercase__=13 , lowercase__=7 , lowercase__=True , lowercase__=True , lowercase__=True , lowercase__=True , lowercase__=99 , lowercase__=32 , lowercase__=5 , lowercase__=4 , lowercase__=37 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=512 , lowercase__=16 , lowercase__=2 , lowercase__=0.0_2 , lowercase__=4 , ) -> Tuple: SCREAMING_SNAKE_CASE : Optional[int] = parent SCREAMING_SNAKE_CASE : Optional[int] = batch_size SCREAMING_SNAKE_CASE : Union[str, Any] = seq_length SCREAMING_SNAKE_CASE : int = is_training SCREAMING_SNAKE_CASE : Optional[Any] = use_attention_mask SCREAMING_SNAKE_CASE : str = use_token_type_ids SCREAMING_SNAKE_CASE : int = use_labels SCREAMING_SNAKE_CASE : List[str] = vocab_size SCREAMING_SNAKE_CASE : List[Any] = hidden_size SCREAMING_SNAKE_CASE : Dict = num_hidden_layers SCREAMING_SNAKE_CASE : List[Any] = num_attention_heads SCREAMING_SNAKE_CASE : Optional[Any] = intermediate_size SCREAMING_SNAKE_CASE : Optional[int] = hidden_act SCREAMING_SNAKE_CASE : int = hidden_dropout_prob SCREAMING_SNAKE_CASE : Union[str, Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Union[str, Any] = max_position_embeddings SCREAMING_SNAKE_CASE : Optional[Any] = type_vocab_size SCREAMING_SNAKE_CASE : Optional[Any] = type_sequence_label_size SCREAMING_SNAKE_CASE : List[Any] = initializer_range SCREAMING_SNAKE_CASE : str = num_choices def _UpperCamelCase ( self ) -> Tuple: SCREAMING_SNAKE_CASE : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE : Tuple = None if self.use_attention_mask: SCREAMING_SNAKE_CASE : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE : List[Any] = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE : Union[str, Any] = RobertaPreLayerNormConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCamelCase__ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def _UpperCamelCase ( self ) -> Tuple: SCREAMING_SNAKE_CASE : Any = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE : Tuple = config_and_inputs SCREAMING_SNAKE_CASE : List[str] = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict def _UpperCamelCase ( self ) -> List[Any]: SCREAMING_SNAKE_CASE : List[Any] = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE : Union[str, Any] = config_and_inputs SCREAMING_SNAKE_CASE : int = True SCREAMING_SNAKE_CASE : List[Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) SCREAMING_SNAKE_CASE : Any = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax # Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40 class UpperCAmelCase ( __lowerCAmelCase , unittest.TestCase ): '''simple docstring''' snake_case__ : List[Any] = True snake_case__ : Optional[Any] = ( ( FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, ) if is_flax_available() else () ) def _UpperCamelCase ( self ) -> Any: SCREAMING_SNAKE_CASE : Any = FlaxRobertaPreLayerNormModelTester(self ) @slow def _UpperCamelCase ( self ) -> List[str]: for model_class_name in self.all_model_classes: SCREAMING_SNAKE_CASE : Optional[int] = model_class_name.from_pretrained('andreasmadsen/efficient_mlm_m0.40' , from_pt=lowerCamelCase__ ) SCREAMING_SNAKE_CASE : Dict = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowerCamelCase__ ) @require_flax class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE : Union[str, Any] = FlaxRobertaPreLayerNormForMaskedLM.from_pretrained('andreasmadsen/efficient_mlm_m0.40' , from_pt=lowerCamelCase__ ) SCREAMING_SNAKE_CASE : Optional[Any] = np.array([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] , dtype=jnp.intaa ) SCREAMING_SNAKE_CASE : List[str] = model(lowerCamelCase__ )[0] SCREAMING_SNAKE_CASE : int = [1, 11, 50_265] self.assertEqual(list(output.shape ) , lowerCamelCase__ ) # compare the actual values for a slice. SCREAMING_SNAKE_CASE : Union[str, Any] = np.array( [[[4_0.4_8_8_0, 1_8.0_1_9_9, -5.2_3_6_7], [-1.8_8_7_7, -4.0_8_8_5, 1_0.7_0_8_5], [-2.2_6_1_3, -5.6_1_1_0, 7.2_6_6_5]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , lowerCamelCase__ , atol=1E-4 ) ) @slow def _UpperCamelCase ( self ) -> List[str]: SCREAMING_SNAKE_CASE : Union[str, Any] = FlaxRobertaPreLayerNormModel.from_pretrained('andreasmadsen/efficient_mlm_m0.40' , from_pt=lowerCamelCase__ ) SCREAMING_SNAKE_CASE : Dict = np.array([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] , dtype=jnp.intaa ) SCREAMING_SNAKE_CASE : str = model(lowerCamelCase__ )[0] # compare the actual values for a slice. SCREAMING_SNAKE_CASE : Dict = np.array( [[[0.0_2_0_8, -0.0_3_5_6, 0.0_2_3_7], [-0.1_5_6_9, -0.0_4_1_1, -0.2_6_2_6], [0.1_8_7_9, 0.0_1_2_5, -0.0_0_8_9]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , lowerCamelCase__ , atol=1E-4 ) )
718
'''simple docstring''' import argparse from typing import List import evaluate import numpy as np import torch from datasets import DatasetDict, load_dataset # New Code # # We'll be using StratifiedKFold for this example from sklearn.model_selection import StratifiedKFold from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to perform Cross Validation, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _lowerCAmelCase :Tuple = 16 _lowerCAmelCase :List[Any] = 32 def __lowerCAmelCase ( a_ , a_ , a_ , a_ , a_ = 16 ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = AutoTokenizer.from_pretrained('bert-base-cased' ) SCREAMING_SNAKE_CASE : Union[str, Any] = DatasetDict( { 'train': dataset['train'].select(a_ ), 'validation': dataset['train'].select(a_ ), 'test': dataset['validation'], } ) def tokenize_function(a_ ): # max_length=None => use the model max length (it's actually the default) SCREAMING_SNAKE_CASE : Any = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=a_ , max_length=a_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): SCREAMING_SNAKE_CASE : Union[str, Any] = datasets.map( a_ , batched=a_ , remove_columns=['idx', 'sentence1', 'sentence2'] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library SCREAMING_SNAKE_CASE : Dict = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(a_ ): # On TPU it's best to pad everything to the same length or training will be very slow. SCREAMING_SNAKE_CASE : Optional[Any] = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": SCREAMING_SNAKE_CASE : Any = 16 elif accelerator.mixed_precision != "no": SCREAMING_SNAKE_CASE : Any = 8 else: SCREAMING_SNAKE_CASE : List[Any] = None return tokenizer.pad( a_ , padding='longest' , max_length=a_ , pad_to_multiple_of=a_ , return_tensors='pt' , ) # Instantiate dataloaders. SCREAMING_SNAKE_CASE : List[Any] = DataLoader( tokenized_datasets['train'] , shuffle=a_ , collate_fn=a_ , batch_size=a_ ) SCREAMING_SNAKE_CASE : int = DataLoader( tokenized_datasets['validation'] , shuffle=a_ , collate_fn=a_ , batch_size=a_ ) SCREAMING_SNAKE_CASE : Any = DataLoader( tokenized_datasets['test'] , shuffle=a_ , collate_fn=a_ , batch_size=a_ ) return train_dataloader, eval_dataloader, test_dataloader def __lowerCAmelCase ( a_ , a_ ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = [] # Download the dataset SCREAMING_SNAKE_CASE : Any = load_dataset('glue' , 'mrpc' ) # Create our splits SCREAMING_SNAKE_CASE : Dict = StratifiedKFold(n_splits=int(args.num_folds ) ) # Initialize accelerator SCREAMING_SNAKE_CASE : Tuple = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs SCREAMING_SNAKE_CASE : Dict = config['lr'] SCREAMING_SNAKE_CASE : Tuple = int(config['num_epochs'] ) SCREAMING_SNAKE_CASE : Any = int(config['seed'] ) SCREAMING_SNAKE_CASE : Any = int(config['batch_size'] ) SCREAMING_SNAKE_CASE : Optional[int] = evaluate.load('glue' , 'mrpc' ) # If the batch size is too big we use gradient accumulation SCREAMING_SNAKE_CASE : Dict = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: SCREAMING_SNAKE_CASE : int = batch_size // MAX_GPU_BATCH_SIZE SCREAMING_SNAKE_CASE : Union[str, Any] = MAX_GPU_BATCH_SIZE set_seed(a_ ) # New Code # # Create our folds: SCREAMING_SNAKE_CASE : int = kfold.split(np.zeros(datasets['train'].num_rows ) , datasets['train']['label'] ) SCREAMING_SNAKE_CASE : List[str] = [] # Iterate over them for i, (train_idxs, valid_idxs) in enumerate(a_ ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = get_fold_dataloaders( a_ , a_ , a_ , a_ , ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) SCREAMING_SNAKE_CASE : str = AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=a_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). SCREAMING_SNAKE_CASE : Dict = model.to(accelerator.device ) # Instantiate optimizer SCREAMING_SNAKE_CASE : int = AdamW(params=model.parameters() , lr=a_ ) # Instantiate scheduler SCREAMING_SNAKE_CASE : int = get_linear_schedule_with_warmup( optimizer=a_ , num_warmup_steps=100 , num_training_steps=(len(a_ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = accelerator.prepare( a_ , a_ , a_ , a_ , a_ ) # Now we train the model for epoch in range(a_ ): model.train() for step, batch in enumerate(a_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) SCREAMING_SNAKE_CASE : Dict = model(**a_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = outputs.loss SCREAMING_SNAKE_CASE : List[Any] = loss / gradient_accumulation_steps accelerator.backward(a_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(a_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): SCREAMING_SNAKE_CASE : Union[str, Any] = model(**a_ ) SCREAMING_SNAKE_CASE : Any = outputs.logits.argmax(dim=-1 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = accelerator.gather_for_metrics((predictions, batch['labels']) ) metric.add_batch( predictions=a_ , references=a_ , ) SCREAMING_SNAKE_CASE : int = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , a_ ) # New Code # # We also run predictions on the test set at the very end SCREAMING_SNAKE_CASE : Any = [] for step, batch in enumerate(a_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): SCREAMING_SNAKE_CASE : Optional[int] = model(**a_ ) SCREAMING_SNAKE_CASE : Optional[int] = outputs.logits SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = accelerator.gather_for_metrics((predictions, batch['labels']) ) fold_predictions.append(predictions.cpu() ) if i == 0: # We need all of the test predictions test_references.append(references.cpu() ) # Use accelerator.print to print only on the main process. test_predictions.append(torch.cat(a_ , dim=0 ) ) # We now need to release all our memory and get rid of the current model, optimizer, etc accelerator.free_memory() # New Code # # Finally we check the accuracy of our folded results: SCREAMING_SNAKE_CASE : int = torch.cat(a_ , dim=0 ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.stack(a_ , dim=0 ).sum(dim=0 ).div(int(args.num_folds ) ).argmax(dim=-1 ) SCREAMING_SNAKE_CASE : Optional[Any] = metric.compute(predictions=a_ , references=a_ ) accelerator.print('Average test metrics from all folds:' , a_ ) def __lowerCAmelCase ( ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE : int = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision' , type=a_ , default=a_ , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) # New Code # parser.add_argument('--num_folds' , type=a_ , default=3 , help='The number of splits to perform across the dataset' ) SCREAMING_SNAKE_CASE : Any = parser.parse_args() SCREAMING_SNAKE_CASE : Dict = {'lr': 2e-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16} training_function(a_ , a_ ) if __name__ == "__main__": main()
179
0
'''simple docstring''' from maths.prime_check import is_prime def lowerCAmelCase_ ( __A : int ): '''simple docstring''' if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): snake_case: Any = f"""Input value of [number={number}] must be an integer""" raise TypeError(_SCREAMING_SNAKE_CASE ) if is_prime(_SCREAMING_SNAKE_CASE ) and is_prime(number + 2 ): return number + 2 else: return -1 if __name__ == "__main__": import doctest doctest.testmod()
329
'''simple docstring''' def a__ ( _SCREAMING_SNAKE_CASE : list[int] , _SCREAMING_SNAKE_CASE : list[int] ) -> tuple[float, float]: """simple docstring""" if not len(_SCREAMING_SNAKE_CASE ) == len(_SCREAMING_SNAKE_CASE ) == 3: raise ValueError("Please enter a valid equation." ) if equationa[0] == equationa[1] == equationa[0] == equationa[1] == 0: raise ValueError("Both a & b of two equations can't be zero." ) # Extract the coefficients UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[str] = equationa UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = equationa # Calculate the determinants of the matrices UpperCAmelCase_ : Optional[int] = aa * ba - aa * ba UpperCAmelCase_ : Optional[int] = ca * ba - ca * ba UpperCAmelCase_ : Any = aa * ca - aa * ca # Check if the system of linear equations has a solution (using Cramer's rule) if determinant == 0: if determinant_x == determinant_y == 0: raise ValueError("Infinite solutions. (Consistent system)" ) else: raise ValueError("No solution. (Inconsistent system)" ) else: if determinant_x == determinant_y == 0: # Trivial solution (Inconsistent system) return (0.0, 0.0) else: UpperCAmelCase_ : Optional[int] = determinant_x / determinant UpperCAmelCase_ : List[Any] = determinant_y / determinant # Non-Trivial Solution (Consistent system) return (x, y)
71
0
"""simple docstring""" import json import os from pathlib import Path import pytest from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.utils.file_utils import hash_url_to_filename a_ = "http://www.mocksite.com/file1.txt" a_ = "\"text\": [\"foo\", \"foo\"]" a_ = "6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8" class snake_case : __UpperCamelCase = 200 __UpperCamelCase = {'Content-Length': '100'} __UpperCamelCase = {} def a_ ( self : Dict , **a__ : Tuple ) -> List[str]: '''simple docstring''' return [bytes(a__ , "utf-8" )] def a__ ( *__lowercase , **__lowercase ) -> Any: return MockResponse() @pytest.mark.parametrize("urls_type" , [str, list, dict] ) def a__ ( __lowercase , __lowercase , __lowercase ) -> Tuple: import requests monkeypatch.setattr(__lowercase , "request" , __lowercase ) _A = URL if issubclass(__lowercase , __lowercase ): _A = url elif issubclass(__lowercase , __lowercase ): _A = [url] elif issubclass(__lowercase , __lowercase ): _A = {"train": url} _A = "dummy" _A = "downloads" _A = tmp_path _A = DownloadConfig( cache_dir=os.path.join(__lowercase , __lowercase ) , use_etag=__lowercase , ) _A = DownloadManager(dataset_name=__lowercase , download_config=__lowercase ) _A = dl_manager.download(__lowercase ) _A = urls for downloaded_paths in [downloaded_paths]: if isinstance(__lowercase , __lowercase ): _A = [downloaded_paths] _A = [urls] elif isinstance(__lowercase , __lowercase ): assert "train" in downloaded_paths.keys() _A = downloaded_paths.values() _A = urls.values() assert downloaded_paths for downloaded_path, input_url in zip(__lowercase , __lowercase ): assert downloaded_path == dl_manager.downloaded_paths[input_url] _A = Path(__lowercase ) _A = downloaded_path.parts assert parts[-1] == HASH assert parts[-2] == cache_subdir assert downloaded_path.exists() _A = downloaded_path.read_text() assert content == CONTENT _A = downloaded_path.with_suffix(".json" ) assert metadata_downloaded_path.exists() _A = json.loads(metadata_downloaded_path.read_text() ) assert metadata_content == {"url": URL, "etag": None} @pytest.mark.parametrize("paths_type" , [str, list, dict] ) def a__ ( __lowercase , __lowercase , __lowercase ) -> Optional[int]: _A = str(__lowercase ) if issubclass(__lowercase , __lowercase ): _A = filename elif issubclass(__lowercase , __lowercase ): _A = [filename] elif issubclass(__lowercase , __lowercase ): _A = {"train": filename} _A = "dummy" _A = xz_file.parent _A = "extracted" _A = DownloadConfig( cache_dir=__lowercase , use_etag=__lowercase , ) _A = DownloadManager(dataset_name=__lowercase , download_config=__lowercase ) _A = dl_manager.extract(__lowercase ) _A = paths for extracted_paths in [extracted_paths]: if isinstance(__lowercase , __lowercase ): _A = [extracted_paths] _A = [paths] elif isinstance(__lowercase , __lowercase ): assert "train" in extracted_paths.keys() _A = extracted_paths.values() _A = paths.values() assert extracted_paths for extracted_path, input_path in zip(__lowercase , __lowercase ): assert extracted_path == dl_manager.extracted_paths[input_path] _A = Path(__lowercase ) _A = extracted_path.parts assert parts[-1] == hash_url_to_filename(__lowercase , etag=__lowercase ) assert parts[-2] == extracted_subdir assert extracted_path.exists() _A = extracted_path.read_text() _A = text_file.read_text() assert extracted_file_content == expected_file_content def a__ ( __lowercase , __lowercase ) -> Optional[Any]: assert path.endswith(".jsonl" ) for num_items, line in enumerate(__lowercase , start=1 ): _A = json.loads(line.decode("utf-8" ) ) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize("archive_jsonl" , ["tar_jsonl_path", "zip_jsonl_path"] ) def a__ ( __lowercase , __lowercase ) -> List[Any]: _A = request.getfixturevalue(__lowercase ) _A = DownloadManager() for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(__lowercase ) , start=1 ): _test_jsonl(__lowercase , __lowercase ) assert num_jsonl == 2 @pytest.mark.parametrize("archive_nested_jsonl" , ["tar_nested_jsonl_path", "zip_nested_jsonl_path"] ) def a__ ( __lowercase , __lowercase ) -> List[Any]: _A = request.getfixturevalue(__lowercase ) _A = DownloadManager() for num_tar, (path, file) in enumerate(dl_manager.iter_archive(__lowercase ) , start=1 ): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(__lowercase ) , start=1 ): _test_jsonl(__lowercase , __lowercase ) assert num_tar == 1 assert num_jsonl == 2 def a__ ( __lowercase ) -> Dict: _A = DownloadManager() for num_file, file in enumerate(dl_manager.iter_files(__lowercase ) , start=1 ): assert os.path.basename(__lowercase ) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2
621
"""simple docstring""" import numpy as np def a__ ( __lowercase , __lowercase ) -> np.ndarray: return np.where(vector > 0 , __lowercase , (alpha * (np.exp(__lowercase ) - 1)) ) if __name__ == "__main__": import doctest doctest.testmod()
621
1
import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotConfig, is_flax_available from transformers.testing_utils import jax_device, require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html lowerCAmelCase_ = '''platform''' import jax import jax.numpy as jnp from transformers import BlenderbotTokenizer from transformers.models.blenderbot.modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, shift_tokens_right, ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None , ): if attention_mask is None: snake_case_ = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: snake_case_ = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: snake_case_ = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: snake_case_ = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: snake_case_ = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class snake_case_ : '''simple docstring''' def __init__( self : Tuple , _UpperCamelCase : str , _UpperCamelCase : Tuple=1_3 , _UpperCamelCase : Union[str, Any]=7 , _UpperCamelCase : Optional[int]=True , _UpperCamelCase : Tuple=False , _UpperCamelCase : str=9_9 , _UpperCamelCase : List[str]=1_6 , _UpperCamelCase : Any=2 , _UpperCamelCase : List[str]=4 , _UpperCamelCase : Union[str, Any]=4 , _UpperCamelCase : Tuple="gelu" , _UpperCamelCase : List[str]=0.1 , _UpperCamelCase : int=0.1 , _UpperCamelCase : Union[str, Any]=3_2 , _UpperCamelCase : int=2 , _UpperCamelCase : Optional[int]=1 , _UpperCamelCase : Any=0 , _UpperCamelCase : Union[str, Any]=0.02 , ) ->Union[str, Any]: snake_case_ = parent snake_case_ = batch_size snake_case_ = seq_length snake_case_ = is_training snake_case_ = use_labels snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = max_position_embeddings snake_case_ = eos_token_id snake_case_ = pad_token_id snake_case_ = bos_token_id snake_case_ = initializer_range def snake_case__( self : Union[str, Any] ) ->Optional[int]: snake_case_ = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) snake_case_ = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) snake_case_ = shift_tokens_right(_UpperCamelCase , 1 , 2 ) snake_case_ = BlenderbotConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=_UpperCamelCase , ) snake_case_ = prepare_blenderbot_inputs_dict(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) return config, inputs_dict def snake_case__( self : List[Any] ) ->int: snake_case_, snake_case_ = self.prepare_config_and_inputs() return config, inputs_dict def snake_case__( self : List[Any] , _UpperCamelCase : Optional[int] , _UpperCamelCase : List[Any] , _UpperCamelCase : Optional[Any] ) ->Optional[int]: snake_case_ = 2_0 snake_case_ = model_class_name(_UpperCamelCase ) snake_case_ = model.encode(inputs_dict['''input_ids'''] ) snake_case_, snake_case_ = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) snake_case_ = model.init_cache(decoder_input_ids.shape[0] , _UpperCamelCase , _UpperCamelCase ) snake_case_ = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='''i4''' ) snake_case_ = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) snake_case_ = model.decode( decoder_input_ids[:, :-1] , _UpperCamelCase , decoder_attention_mask=_UpperCamelCase , past_key_values=_UpperCamelCase , decoder_position_ids=_UpperCamelCase , ) snake_case_ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' ) snake_case_ = model.decode( decoder_input_ids[:, -1:] , _UpperCamelCase , decoder_attention_mask=_UpperCamelCase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=_UpperCamelCase , ) snake_case_ = model.decode(_UpperCamelCase , _UpperCamelCase ) snake_case_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f'''Max diff is {diff}''' ) def snake_case__( self : Any , _UpperCamelCase : str , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Optional[Any] ) ->Tuple: snake_case_ = 2_0 snake_case_ = model_class_name(_UpperCamelCase ) snake_case_ = model.encode(inputs_dict['''input_ids'''] ) snake_case_, snake_case_ = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) snake_case_ = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) snake_case_ = model.init_cache(decoder_input_ids.shape[0] , _UpperCamelCase , _UpperCamelCase ) snake_case_ = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) snake_case_ = model.decode( decoder_input_ids[:, :-1] , _UpperCamelCase , decoder_attention_mask=_UpperCamelCase , past_key_values=_UpperCamelCase , decoder_position_ids=_UpperCamelCase , ) snake_case_ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' ) snake_case_ = model.decode( decoder_input_ids[:, -1:] , _UpperCamelCase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=_UpperCamelCase , decoder_position_ids=_UpperCamelCase , ) snake_case_ = model.decode(_UpperCamelCase , _UpperCamelCase , decoder_attention_mask=_UpperCamelCase ) snake_case_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f'''Max diff is {diff}''' ) @require_flax class snake_case_ ( unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = 99 def snake_case__( self : Tuple ) ->Any: snake_case_ = np.array( [ [7_1, 8_2, 1_8, 3_3, 4_6, 9_1, 2], [6_8, 3_4, 2_6, 5_8, 3_0, 8_2, 2], [5, 9_7, 1_7, 3_9, 9_4, 4_0, 2], [7_6, 8_3, 9_4, 2_5, 7_0, 7_8, 2], [8_7, 5_9, 4_1, 3_5, 4_8, 6_6, 2], [5_5, 1_3, 1_6, 5_8, 5, 2, 1], # note padding [6_4, 2_7, 3_1, 5_1, 1_2, 7_5, 2], [5_2, 6_4, 8_6, 1_7, 8_3, 3_9, 2], [4_8, 6_1, 9, 2_4, 7_1, 8_2, 2], [2_6, 1, 6_0, 4_8, 2_2, 1_3, 2], [2_1, 5, 6_2, 2_8, 1_4, 7_6, 2], [4_5, 9_8, 3_7, 8_6, 5_9, 4_8, 2], [7_0, 7_0, 5_0, 9, 2_8, 0, 2], ] , dtype=np.intaa , ) snake_case_ = input_ids.shape[0] snake_case_ = BlenderbotConfig( vocab_size=self.vocab_size , d_model=2_4 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=3_2 , decoder_ffn_dim=3_2 , max_position_embeddings=4_8 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def snake_case__( self : Any ) ->Tuple: snake_case_, snake_case_, snake_case_ = self._get_config_and_data() snake_case_ = FlaxBlenderbotForConditionalGeneration(_UpperCamelCase ) snake_case_ = lm_model(input_ids=_UpperCamelCase ) snake_case_ = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs['''logits'''].shape , _UpperCamelCase ) def snake_case__( self : Optional[Any] ) ->Optional[Any]: snake_case_ = BlenderbotConfig( vocab_size=self.vocab_size , d_model=1_4 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=4_8 , ) snake_case_ = FlaxBlenderbotForConditionalGeneration(_UpperCamelCase ) snake_case_ = np.array([[7_1, 8_2, 1_8, 3_3, 4_6, 9_1, 2], [6_8, 3_4, 2_6, 5_8, 3_0, 2, 1]] , dtype=np.intaa ) snake_case_ = np.array([[8_2, 7_1, 8_2, 1_8, 2], [5_8, 6_8, 2, 1, 1]] , dtype=np.intaa ) snake_case_ = lm_model(input_ids=_UpperCamelCase , decoder_input_ids=_UpperCamelCase ) snake_case_ = (*summary.shape, config.vocab_size) self.assertEqual(outputs['''logits'''].shape , _UpperCamelCase ) def snake_case__( self : Tuple ) ->List[str]: snake_case_ = np.array([[7_1, 8_2, 1_8, 3_3, 2, 1, 1], [6_8, 3_4, 2_6, 5_8, 3_0, 8_2, 2]] , dtype=np.intaa ) snake_case_ = shift_tokens_right(_UpperCamelCase , 1 , 2 ) snake_case_ = np.equal(_UpperCamelCase , 1 ).astype(np.floataa ).sum() snake_case_ = np.equal(_UpperCamelCase , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(_UpperCamelCase , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class snake_case_ ( __A , unittest.TestCase , __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = True SCREAMING_SNAKE_CASE : Optional[Any] = ( ( FlaxBlenderbotModel, FlaxBlenderbotForConditionalGeneration, ) if is_flax_available() else () ) SCREAMING_SNAKE_CASE : List[str] = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else () def snake_case__( self : List[str] ) ->Dict: snake_case_ = FlaxBlenderbotModelTester(self ) def snake_case__( self : int ) ->Any: snake_case_, snake_case_ = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) def snake_case__( self : List[str] ) ->List[Any]: snake_case_, snake_case_ = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) def snake_case__( self : List[Any] ) ->Optional[int]: snake_case_, snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): snake_case_ = self._prepare_for_class(_UpperCamelCase , _UpperCamelCase ) snake_case_ = model_class(_UpperCamelCase ) @jax.jit def encode_jitted(_UpperCamelCase : str , _UpperCamelCase : Union[str, Any]=None , **_UpperCamelCase : List[str] ): return model.encode(input_ids=_UpperCamelCase , attention_mask=_UpperCamelCase ) with self.subTest('''JIT Enabled''' ): snake_case_ = encode_jitted(**_UpperCamelCase ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): snake_case_ = encode_jitted(**_UpperCamelCase ).to_tuple() self.assertEqual(len(_UpperCamelCase ) , len(_UpperCamelCase ) ) for jitted_output, output in zip(_UpperCamelCase , _UpperCamelCase ): self.assertEqual(jitted_output.shape , output.shape ) def snake_case__( self : List[str] ) ->Any: snake_case_, snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): snake_case_ = model_class(_UpperCamelCase ) snake_case_ = model.encode(inputs_dict['''input_ids'''] , inputs_dict['''attention_mask'''] ) snake_case_ = { '''decoder_input_ids''': inputs_dict['''decoder_input_ids'''], '''decoder_attention_mask''': inputs_dict['''decoder_attention_mask'''], '''encoder_outputs''': encoder_outputs, } @jax.jit def decode_jitted(_UpperCamelCase : List[str] , _UpperCamelCase : Any , _UpperCamelCase : List[Any] ): return model.decode( decoder_input_ids=_UpperCamelCase , decoder_attention_mask=_UpperCamelCase , encoder_outputs=_UpperCamelCase , ) with self.subTest('''JIT Enabled''' ): snake_case_ = decode_jitted(**_UpperCamelCase ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): snake_case_ = decode_jitted(**_UpperCamelCase ).to_tuple() self.assertEqual(len(_UpperCamelCase ) , len(_UpperCamelCase ) ) for jitted_output, output in zip(_UpperCamelCase , _UpperCamelCase ): self.assertEqual(jitted_output.shape , output.shape ) @slow def snake_case__( self : Dict ) ->Optional[Any]: for model_class_name in self.all_model_classes: snake_case_ = model_class_name.from_pretrained('''facebook/blenderbot-400M-distill''' ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids snake_case_ = np.ones((1, 1) ) * model.config.eos_token_id snake_case_ = model(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) @unittest.skipUnless(jax_device != '''cpu''' , '''3B test too slow on CPU.''' ) @slow def snake_case__( self : Optional[Any] ) ->int: snake_case_ = {'''num_beams''': 1, '''early_stopping''': True, '''min_length''': 1_5, '''max_length''': 2_5} snake_case_ = {'''skip_special_tokens''': True, '''clean_up_tokenization_spaces''': True} snake_case_ = FlaxBlenderbotForConditionalGeneration.from_pretrained('''facebook/blenderbot-3B''' , from_pt=_UpperCamelCase ) snake_case_ = BlenderbotTokenizer.from_pretrained('''facebook/blenderbot-3B''' ) snake_case_ = ['''Sam'''] snake_case_ = tokenizer(_UpperCamelCase , return_tensors='''jax''' ) snake_case_ = model.generate(**_UpperCamelCase , **_UpperCamelCase ) snake_case_ = '''Sam is a great name. It means "sun" in Gaelic.''' snake_case_ = tokenizer.batch_decode(_UpperCamelCase , **_UpperCamelCase ) assert generated_txt[0].strip() == tgt_text
39
from bisect import bisect from itertools import accumulate def _a ( __UpperCamelCase : int ,__UpperCamelCase : Union[str, Any] ,__UpperCamelCase : Tuple ,__UpperCamelCase : List[Any] ): lowerCAmelCase__ : int = sorted(zip(__UpperCamelCase ,__UpperCamelCase ) ,key=lambda __UpperCamelCase : x[0] / x[1] ,reverse=__UpperCamelCase ) lowerCAmelCase__ , lowerCAmelCase__ : Dict = [i[0] for i in r], [i[1] for i in r] lowerCAmelCase__ : Tuple = list(accumulate(__UpperCamelCase ) ) lowerCAmelCase__ : List[Any] = bisect(__UpperCamelCase ,__UpperCamelCase ) return ( 0 if k == 0 else sum(vl[:k] ) + (w - acc[k - 1]) * (vl[k]) / (wt[k]) if k != n else sum(vl[:k] ) ) if __name__ == "__main__": import doctest doctest.testmod()
233
0
from __future__ import annotations from random import random from typing import Generic, TypeVar a__ = TypeVar('KT') a__ = TypeVar('VT') class _UpperCamelCase( Generic[KT, VT] ): def __init__( self : str , _lowerCamelCase : KT | str = "root" , _lowerCamelCase : VT | None = None ): _UpperCAmelCase : int = key _UpperCAmelCase : str = value _UpperCAmelCase : list[Node[KT, VT]] = [] def __repr__( self : List[str] ): return f"""Node({self.key}: {self.value})""" @property def a__ ( self : str ): return len(self.forward ) class _UpperCamelCase( Generic[KT, VT] ): def __init__( self : List[Any] , _lowerCamelCase : float = 0.5 , _lowerCamelCase : int = 16 ): _UpperCAmelCase : Node[KT, VT] = Node[KT, VT]() _UpperCAmelCase : Union[str, Any] = 0 _UpperCAmelCase : List[str] = p _UpperCAmelCase : Any = max_level def __str__( self : Any ): _UpperCAmelCase : Dict = list(self ) if len(_lowerCamelCase ) == 0: return f"""SkipList(level={self.level})""" _UpperCAmelCase : Tuple = max((len(str(_lowerCamelCase ) ) for item in items) , default=4 ) _UpperCAmelCase : int = max(_lowerCamelCase , 4 ) + 4 _UpperCAmelCase : int = self.head _UpperCAmelCase : List[Any] = [] _UpperCAmelCase : List[str] = node.forward.copy() lines.append(f"""[{node.key}]""".ljust(_lowerCamelCase , "-" ) + "* " * len(_lowerCamelCase ) ) lines.append(" " * label_size + "| " * len(_lowerCamelCase ) ) while len(node.forward ) != 0: _UpperCAmelCase : List[str] = node.forward[0] lines.append( f"""[{node.key}]""".ljust(_lowerCamelCase , "-" ) + " ".join(str(n.key ) if n.key == node.key else "|" for n in forwards ) ) lines.append(" " * label_size + "| " * len(_lowerCamelCase ) ) _UpperCAmelCase : Optional[Any] = node.forward lines.append("None".ljust(_lowerCamelCase ) + "* " * len(_lowerCamelCase ) ) return f"""SkipList(level={self.level})\n""" + "\n".join(_lowerCamelCase ) def __iter__( self : Any ): _UpperCAmelCase : List[Any] = self.head while len(node.forward ) != 0: yield node.forward[0].key _UpperCAmelCase : Optional[Any] = node.forward[0] def a__ ( self : Dict ): _UpperCAmelCase : List[Any] = 1 while random() < self.p and level < self.max_level: level += 1 return level def a__ ( self : Optional[int] , _lowerCamelCase : Dict ): _UpperCAmelCase : Dict = [] _UpperCAmelCase : Optional[Any] = self.head for i in reversed(range(self.level ) ): # i < node.level - When node level is lesser than `i` decrement `i`. # node.forward[i].key < key - Jumping to node with key value higher # or equal to searched key would result # in skipping searched key. while i < node.level and node.forward[i].key < key: _UpperCAmelCase : Union[str, Any] = node.forward[i] # Each leftmost node (relative to searched node) will potentially have to # be updated. update_vector.append(_lowerCamelCase ) update_vector.reverse() # Note that we were inserting values in reverse order. # len(node.forward) != 0 - If current node doesn't contain any further # references then searched key is not present. # node.forward[0].key == key - Next node key should be equal to search key # if key is present. if len(node.forward ) != 0 and node.forward[0].key == key: return node.forward[0], update_vector else: return None, update_vector def a__ ( self : Any , _lowerCamelCase : KT ): _UpperCAmelCase : Dict = self._locate_node(_lowerCamelCase ) if node is not None: for i, update_node in enumerate(_lowerCamelCase ): # Remove or replace all references to removed node. if update_node.level > i and update_node.forward[i].key == key: if node.level > i: _UpperCAmelCase : List[str] = node.forward[i] else: _UpperCAmelCase : str = update_node.forward[:i] def a__ ( self : List[str] , _lowerCamelCase : KT , _lowerCamelCase : VT ): _UpperCAmelCase : str = self._locate_node(_lowerCamelCase ) if node is not None: _UpperCAmelCase : Optional[Any] = value else: _UpperCAmelCase : Optional[int] = self.random_level() if level > self.level: # After level increase we have to add additional nodes to head. for _ in range(self.level - 1 , _lowerCamelCase ): update_vector.append(self.head ) _UpperCAmelCase : Dict = level _UpperCAmelCase : Tuple = Node(_lowerCamelCase , _lowerCamelCase ) for i, update_node in enumerate(update_vector[:level] ): # Change references to pass through new node. if update_node.level > i: new_node.forward.append(update_node.forward[i] ) if update_node.level < i + 1: update_node.forward.append(_lowerCamelCase ) else: _UpperCAmelCase : int = new_node def a__ ( self : Optional[Any] , _lowerCamelCase : VT ): _UpperCAmelCase : Optional[int] = self._locate_node(_lowerCamelCase ) if node is not None: return node.value return None def lowerCAmelCase_ ( ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Union[str, Any] = SkipList() skip_list.insert("Key1" , 3 ) skip_list.insert("Key2" , 1_2 ) skip_list.insert("Key3" , 4_1 ) skip_list.insert("Key4" , -1_9 ) _UpperCAmelCase : str = skip_list.head _UpperCAmelCase : Any = {} while node.level != 0: _UpperCAmelCase : int = node.forward[0] _UpperCAmelCase : Optional[Any] = node.value assert len(_SCREAMING_SNAKE_CASE ) == 4 assert all_values["Key1"] == 3 assert all_values["Key2"] == 1_2 assert all_values["Key3"] == 4_1 assert all_values["Key4"] == -1_9 def lowerCAmelCase_ ( ) -> int: """simple docstring""" _UpperCAmelCase : Dict = SkipList() skip_list.insert("Key1" , 1_0 ) skip_list.insert("Key1" , 1_2 ) skip_list.insert("Key5" , 7 ) skip_list.insert("Key7" , 1_0 ) skip_list.insert("Key10" , 5 ) skip_list.insert("Key7" , 7 ) skip_list.insert("Key5" , 5 ) skip_list.insert("Key10" , 1_0 ) _UpperCAmelCase : Optional[int] = skip_list.head _UpperCAmelCase : str = {} while node.level != 0: _UpperCAmelCase : Union[str, Any] = node.forward[0] _UpperCAmelCase : str = node.value if len(_SCREAMING_SNAKE_CASE ) != 4: print() assert len(_SCREAMING_SNAKE_CASE ) == 4 assert all_values["Key1"] == 1_2 assert all_values["Key7"] == 7 assert all_values["Key5"] == 5 assert all_values["Key10"] == 1_0 def lowerCAmelCase_ ( ) -> str: """simple docstring""" _UpperCAmelCase : Any = SkipList() assert skip_list.find("Some key" ) is None def lowerCAmelCase_ ( ) -> List[str]: """simple docstring""" _UpperCAmelCase : Any = SkipList() skip_list.insert("Key2" , 2_0 ) assert skip_list.find("Key2" ) == 2_0 skip_list.insert("Some Key" , 1_0 ) skip_list.insert("Key2" , 8 ) skip_list.insert("V" , 1_3 ) assert skip_list.find("Y" ) is None assert skip_list.find("Key2" ) == 8 assert skip_list.find("Some Key" ) == 1_0 assert skip_list.find("V" ) == 1_3 def lowerCAmelCase_ ( ) -> Dict: """simple docstring""" _UpperCAmelCase : Any = SkipList() skip_list.delete("Some key" ) assert len(skip_list.head.forward ) == 0 def lowerCAmelCase_ ( ) -> str: """simple docstring""" _UpperCAmelCase : str = SkipList() skip_list.insert("Key1" , 1_2 ) skip_list.insert("V" , 1_3 ) skip_list.insert("X" , 1_4 ) skip_list.insert("Key2" , 1_5 ) skip_list.delete("V" ) skip_list.delete("Key2" ) assert skip_list.find("V" ) is None assert skip_list.find("Key2" ) is None def lowerCAmelCase_ ( ) -> Any: """simple docstring""" _UpperCAmelCase : Dict = SkipList() skip_list.insert("Key1" , 1_2 ) skip_list.insert("V" , 1_3 ) skip_list.insert("X" , 1_4 ) skip_list.insert("Key2" , 1_5 ) skip_list.delete("V" ) assert skip_list.find("V" ) is None assert skip_list.find("X" ) == 1_4 assert skip_list.find("Key1" ) == 1_2 assert skip_list.find("Key2" ) == 1_5 skip_list.delete("X" ) assert skip_list.find("V" ) is None assert skip_list.find("X" ) is None assert skip_list.find("Key1" ) == 1_2 assert skip_list.find("Key2" ) == 1_5 skip_list.delete("Key1" ) assert skip_list.find("V" ) is None assert skip_list.find("X" ) is None assert skip_list.find("Key1" ) is None assert skip_list.find("Key2" ) == 1_5 skip_list.delete("Key2" ) assert skip_list.find("V" ) is None assert skip_list.find("X" ) is None assert skip_list.find("Key1" ) is None assert skip_list.find("Key2" ) is None def lowerCAmelCase_ ( ) -> List[str]: """simple docstring""" _UpperCAmelCase : Dict = SkipList() skip_list.insert("Key1" , 1_2 ) skip_list.insert("V" , 1_3 ) skip_list.insert("X" , 1_4_2 ) skip_list.insert("Key2" , 1_5 ) skip_list.delete("X" ) def traverse_keys(_SCREAMING_SNAKE_CASE ): yield node.key for forward_node in node.forward: yield from traverse_keys(_SCREAMING_SNAKE_CASE ) assert len(set(traverse_keys(skip_list.head ) ) ) == 4 def lowerCAmelCase_ ( ) -> List[str]: """simple docstring""" def is_sorted(_SCREAMING_SNAKE_CASE ): return all(next_item >= item for item, next_item in zip(_SCREAMING_SNAKE_CASE , lst[1:] ) ) _UpperCAmelCase : int = SkipList() for i in range(1_0 ): skip_list.insert(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) assert is_sorted(list(_SCREAMING_SNAKE_CASE ) ) skip_list.delete(5 ) skip_list.delete(8 ) skip_list.delete(2 ) assert is_sorted(list(_SCREAMING_SNAKE_CASE ) ) skip_list.insert(-1_2 , -1_2 ) skip_list.insert(7_7 , 7_7 ) assert is_sorted(list(_SCREAMING_SNAKE_CASE ) ) def lowerCAmelCase_ ( ) -> Tuple: """simple docstring""" for _ in range(1_0_0 ): # Repeat test 100 times due to the probabilistic nature of skip list # random values == random bugs test_insert() test_insert_overrides_existing_value() test_searching_empty_list_returns_none() test_search() test_deleting_item_from_empty_list_do_nothing() test_deleted_items_are_not_founded_by_find_method() test_delete_removes_only_given_key() test_delete_doesnt_leave_dead_nodes() test_iter_always_yields_sorted_values() def lowerCAmelCase_ ( ) -> Any: """simple docstring""" _UpperCAmelCase : int = SkipList() skip_list.insert(2 , "2" ) skip_list.insert(4 , "4" ) skip_list.insert(6 , "4" ) skip_list.insert(4 , "5" ) skip_list.insert(8 , "4" ) skip_list.insert(9 , "4" ) skip_list.delete(4 ) print(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod() main()
719
from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar __lowerCamelCase = TypeVar('KEY') __lowerCamelCase = TypeVar('VAL') @dataclass(frozen=SCREAMING_SNAKE_CASE , slots=SCREAMING_SNAKE_CASE ) class _UpperCamelCase( Generic[KEY, VAL] ): __A: KEY __A: VAL class _UpperCamelCase( _Item ): def __init__( self : Optional[Any] ): super().__init__(_lowerCamelCase , _lowerCamelCase ) def __bool__( self : Optional[int] ): return False __lowerCamelCase = _DeletedItem() class _UpperCamelCase( MutableMapping[KEY, VAL] ): def __init__( self : Optional[Any] , _lowerCamelCase : int = 8 , _lowerCamelCase : float = 0.75 ): _UpperCAmelCase : List[str] = initial_block_size _UpperCAmelCase : list[_Item | None] = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 _UpperCAmelCase : Optional[Any] = capacity_factor _UpperCAmelCase : List[Any] = 0 def a__ ( self : List[Any] , _lowerCamelCase : KEY ): return hash(_lowerCamelCase ) % len(self._buckets ) def a__ ( self : List[str] , _lowerCamelCase : int ): return (ind + 1) % len(self._buckets ) def a__ ( self : Any , _lowerCamelCase : int , _lowerCamelCase : KEY , _lowerCamelCase : VAL ): _UpperCAmelCase : Optional[Any] = self._buckets[ind] if not stored: _UpperCAmelCase : Union[str, Any] = _Item(_lowerCamelCase , _lowerCamelCase ) self._len += 1 return True elif stored.key == key: _UpperCAmelCase : List[Any] = _Item(_lowerCamelCase , _lowerCamelCase ) return True else: return False def a__ ( self : Any ): _UpperCAmelCase : Dict = len(self._buckets ) * self._capacity_factor return len(self ) >= int(_lowerCamelCase ) def a__ ( self : Any ): if len(self._buckets ) <= self._initial_block_size: return False _UpperCAmelCase : Tuple = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def a__ ( self : Union[str, Any] , _lowerCamelCase : int ): _UpperCAmelCase : Dict = self._buckets _UpperCAmelCase : Union[str, Any] = [None] * new_size _UpperCAmelCase : Union[str, Any] = 0 for item in old_buckets: if item: self._add_item(item.key , item.val ) def a__ ( self : Any ): self._resize(len(self._buckets ) * 2 ) def a__ ( self : int ): self._resize(len(self._buckets ) // 2 ) def a__ ( self : Any , _lowerCamelCase : KEY ): _UpperCAmelCase : Any = self._get_bucket_index(_lowerCamelCase ) for _ in range(len(self._buckets ) ): yield ind _UpperCAmelCase : Union[str, Any] = self._get_next_ind(_lowerCamelCase ) def a__ ( self : Union[str, Any] , _lowerCamelCase : KEY , _lowerCamelCase : VAL ): for ind in self._iterate_buckets(_lowerCamelCase ): if self._try_set(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): break def __setitem__( self : Optional[int] , _lowerCamelCase : KEY , _lowerCamelCase : VAL ): if self._is_full(): self._size_up() self._add_item(_lowerCamelCase , _lowerCamelCase ) def __delitem__( self : int , _lowerCamelCase : KEY ): for ind in self._iterate_buckets(_lowerCamelCase ): _UpperCAmelCase : List[str] = self._buckets[ind] if item is None: raise KeyError(_lowerCamelCase ) if item is _deleted: continue if item.key == key: _UpperCAmelCase : Union[str, Any] = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self : str , _lowerCamelCase : KEY ): for ind in self._iterate_buckets(_lowerCamelCase ): _UpperCAmelCase : Any = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(_lowerCamelCase ) def __len__( self : List[str] ): return self._len def __iter__( self : List[str] ): yield from (item.key for item in self._buckets if item) def __repr__( self : Tuple ): _UpperCAmelCase : Optional[int] = " ,".join( f"""{item.key}: {item.val}""" for item in self._buckets if item ) return f"""HashMap({val_string})"""
328
0
import numpy as np from transformers import Pipeline def _SCREAMING_SNAKE_CASE ( lowercase : List[Any] ): '''simple docstring''' lowerCamelCase_ = np.max(lowercase , axis=-1 , keepdims=lowercase ) lowerCamelCase_ = np.exp(outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=lowercase ) class A( UpperCamelCase ): '''simple docstring''' def a__ ( self : Tuple , **A_ : str ) -> str: """simple docstring""" lowerCamelCase_ = {} if "second_text" in kwargs: lowerCamelCase_ = kwargs['second_text'] return preprocess_kwargs, {}, {} def a__ ( self : Union[str, Any] , A_ : List[str] , A_ : int=None ) -> str: """simple docstring""" return self.tokenizer(A_ , text_pair=A_ , return_tensors=self.framework ) def a__ ( self : List[str] , A_ : int ) -> Optional[Any]: """simple docstring""" return self.model(**A_ ) def a__ ( self : Optional[Any] , A_ : Tuple ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = model_outputs.logits[0].numpy() lowerCamelCase_ = softmax(A_ ) lowerCamelCase_ = np.argmax(A_ ) lowerCamelCase_ = self.model.config.idalabel[best_class] lowerCamelCase_ = probabilities[best_class].item() lowerCamelCase_ = logits.tolist() return {"label": label, "score": score, "logits": logits}
70
"""simple docstring""" import argparse from collections import OrderedDict from pathlib import Path import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision.transforms import functional as F from transformers import DetrImageProcessor, TableTransformerConfig, TableTransformerForObjectDetection from transformers.utils import logging logging.set_verbosity_info() a :Any = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) a :str = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f'transformer.encoder.layers.{i}.self_attn.out_proj.weight', f'encoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (f'transformer.encoder.layers.{i}.self_attn.out_proj.bias', f'encoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear1.weight', f'encoder.layers.{i}.fc1.weight')) rename_keys.append((f'transformer.encoder.layers.{i}.linear1.bias', f'encoder.layers.{i}.fc1.bias')) rename_keys.append((f'transformer.encoder.layers.{i}.linear2.weight', f'encoder.layers.{i}.fc2.weight')) rename_keys.append((f'transformer.encoder.layers.{i}.linear2.bias', f'encoder.layers.{i}.fc2.bias')) rename_keys.append( (f'transformer.encoder.layers.{i}.norm1.weight', f'encoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.norm1.bias', f'encoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append((f'transformer.encoder.layers.{i}.norm2.weight', f'encoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((f'transformer.encoder.layers.{i}.norm2.bias', f'encoder.layers.{i}.final_layer_norm.bias')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (f'transformer.decoder.layers.{i}.self_attn.out_proj.weight', f'decoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.self_attn.out_proj.bias', f'decoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append( ( f'transformer.decoder.layers.{i}.multihead_attn.out_proj.weight', f'decoder.layers.{i}.encoder_attn.out_proj.weight', ) ) rename_keys.append( ( f'transformer.decoder.layers.{i}.multihead_attn.out_proj.bias', f'decoder.layers.{i}.encoder_attn.out_proj.bias', ) ) rename_keys.append((f'transformer.decoder.layers.{i}.linear1.weight', f'decoder.layers.{i}.fc1.weight')) rename_keys.append((f'transformer.decoder.layers.{i}.linear1.bias', f'decoder.layers.{i}.fc1.bias')) rename_keys.append((f'transformer.decoder.layers.{i}.linear2.weight', f'decoder.layers.{i}.fc2.weight')) rename_keys.append((f'transformer.decoder.layers.{i}.linear2.bias', f'decoder.layers.{i}.fc2.bias')) rename_keys.append( (f'transformer.decoder.layers.{i}.norm1.weight', f'decoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm1.bias', f'decoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append( (f'transformer.decoder.layers.{i}.norm2.weight', f'decoder.layers.{i}.encoder_attn_layer_norm.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.norm2.bias', f'decoder.layers.{i}.encoder_attn_layer_norm.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm3.weight', f'decoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((f'transformer.decoder.layers.{i}.norm3.bias', f'decoder.layers.{i}.final_layer_norm.bias')) # convolutional projection + query embeddings + layernorm of encoder + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ("input_proj.weight", "input_projection.weight"), ("input_proj.bias", "input_projection.bias"), ("query_embed.weight", "query_position_embeddings.weight"), ("transformer.encoder.norm.weight", "encoder.layernorm.weight"), ("transformer.encoder.norm.bias", "encoder.layernorm.bias"), ("transformer.decoder.norm.weight", "decoder.layernorm.weight"), ("transformer.decoder.norm.bias", "decoder.layernorm.bias"), ("class_embed.weight", "class_labels_classifier.weight"), ("class_embed.bias", "class_labels_classifier.bias"), ("bbox_embed.layers.0.weight", "bbox_predictor.layers.0.weight"), ("bbox_embed.layers.0.bias", "bbox_predictor.layers.0.bias"), ("bbox_embed.layers.1.weight", "bbox_predictor.layers.1.weight"), ("bbox_embed.layers.1.bias", "bbox_predictor.layers.1.bias"), ("bbox_embed.layers.2.weight", "bbox_predictor.layers.2.weight"), ("bbox_embed.layers.2.bias", "bbox_predictor.layers.2.bias"), ] ) def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> str: SCREAMING_SNAKE_CASE__ : Tuple = state_dict.pop(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = val def _lowercase ( __lowerCAmelCase ) -> Tuple: SCREAMING_SNAKE_CASE__ : str = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: SCREAMING_SNAKE_CASE__ : List[Any] = key.replace("""backbone.0.body""" , """backbone.conv_encoder.model""" ) SCREAMING_SNAKE_CASE__ : Dict = value else: SCREAMING_SNAKE_CASE__ : Tuple = value return new_state_dict def _lowercase ( __lowerCAmelCase ) -> int: SCREAMING_SNAKE_CASE__ : str = """""" # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) SCREAMING_SNAKE_CASE__ : Any = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' ) SCREAMING_SNAKE_CASE__ : int = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE__ : int = in_proj_weight[:256, :] SCREAMING_SNAKE_CASE__ : Any = in_proj_bias[:256] SCREAMING_SNAKE_CASE__ : Dict = in_proj_weight[256:512, :] SCREAMING_SNAKE_CASE__ : List[str] = in_proj_bias[256:512] SCREAMING_SNAKE_CASE__ : int = in_proj_weight[-256:, :] SCREAMING_SNAKE_CASE__ : List[Any] = in_proj_bias[-256:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention SCREAMING_SNAKE_CASE__ : List[str] = state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight''' ) SCREAMING_SNAKE_CASE__ : Tuple = state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE__ : Any = in_proj_weight[:256, :] SCREAMING_SNAKE_CASE__ : List[str] = in_proj_bias[:256] SCREAMING_SNAKE_CASE__ : Optional[Any] = in_proj_weight[256:512, :] SCREAMING_SNAKE_CASE__ : Tuple = in_proj_bias[256:512] SCREAMING_SNAKE_CASE__ : Optional[int] = in_proj_weight[-256:, :] SCREAMING_SNAKE_CASE__ : Dict = in_proj_bias[-256:] # read in weights + bias of input projection layer of cross-attention SCREAMING_SNAKE_CASE__ : Optional[Any] = state_dict.pop( F'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight''' ) SCREAMING_SNAKE_CASE__ : List[Any] = state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) of cross-attention to the state dict SCREAMING_SNAKE_CASE__ : int = in_proj_weight_cross_attn[:256, :] SCREAMING_SNAKE_CASE__ : List[str] = in_proj_bias_cross_attn[:256] SCREAMING_SNAKE_CASE__ : Optional[Any] = in_proj_weight_cross_attn[256:512, :] SCREAMING_SNAKE_CASE__ : Optional[int] = in_proj_bias_cross_attn[256:512] SCREAMING_SNAKE_CASE__ : int = in_proj_weight_cross_attn[-256:, :] SCREAMING_SNAKE_CASE__ : Dict = in_proj_bias_cross_attn[-256:] def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> Optional[int]: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[int] = image.size SCREAMING_SNAKE_CASE__ : Optional[Any] = max(__lowerCAmelCase , __lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Dict = 800 if """detection""" in checkpoint_url else 1000 SCREAMING_SNAKE_CASE__ : List[str] = target_max_size / current_max_size SCREAMING_SNAKE_CASE__ : str = image.resize((int(round(scale * width ) ), int(round(scale * height ) )) ) return resized_image def _lowercase ( __lowerCAmelCase ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ : Optional[int] = F.to_tensor(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : List[str] = F.normalize(__lowerCAmelCase , mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ) return image @torch.no_grad() def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Optional[Any]: logger.info("""Converting model...""" ) # load original state dict SCREAMING_SNAKE_CASE__ : str = torch.hub.load_state_dict_from_url(__lowerCAmelCase , map_location="""cpu""" ) # rename keys for src, dest in rename_keys: rename_key(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[int] = rename_backbone_keys(__lowerCAmelCase ) # query, key and value matrices need special treatment read_in_q_k_v(__lowerCAmelCase ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them SCREAMING_SNAKE_CASE__ : Optional[int] = """model.""" for key in state_dict.copy().keys(): if not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ): SCREAMING_SNAKE_CASE__ : Optional[int] = state_dict.pop(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : List[str] = val # create HuggingFace model and load state dict SCREAMING_SNAKE_CASE__ : Tuple = TableTransformerConfig( backbone="""resnet18""" , mask_loss_coefficient=1 , dice_loss_coefficient=1 , ce_loss_coefficient=1 , bbox_loss_coefficient=5 , giou_loss_coefficient=2 , eos_coefficient=0.4 , class_cost=1 , bbox_cost=5 , giou_cost=2 , ) if "detection" in checkpoint_url: SCREAMING_SNAKE_CASE__ : Optional[int] = 15 SCREAMING_SNAKE_CASE__ : Any = 2 SCREAMING_SNAKE_CASE__ : str = {0: """table""", 1: """table rotated"""} SCREAMING_SNAKE_CASE__ : Union[str, Any] = idalabel SCREAMING_SNAKE_CASE__ : List[str] = {v: k for k, v in idalabel.items()} else: SCREAMING_SNAKE_CASE__ : Tuple = 125 SCREAMING_SNAKE_CASE__ : str = 6 SCREAMING_SNAKE_CASE__ : List[Any] = { 0: """table""", 1: """table column""", 2: """table row""", 3: """table column header""", 4: """table projected row header""", 5: """table spanning cell""", } SCREAMING_SNAKE_CASE__ : Any = idalabel SCREAMING_SNAKE_CASE__ : Dict = {v: k for k, v in idalabel.items()} SCREAMING_SNAKE_CASE__ : Dict = DetrImageProcessor( format="""coco_detection""" , max_size=800 if """detection""" in checkpoint_url else 1000 ) SCREAMING_SNAKE_CASE__ : Tuple = TableTransformerForObjectDetection(__lowerCAmelCase ) model.load_state_dict(__lowerCAmelCase ) model.eval() # verify our conversion SCREAMING_SNAKE_CASE__ : Dict = """example_pdf.png""" if """detection""" in checkpoint_url else """example_table.png""" SCREAMING_SNAKE_CASE__ : Tuple = hf_hub_download(repo_id="""nielsr/example-pdf""" , repo_type="""dataset""" , filename=__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Any = Image.open(__lowerCAmelCase ).convert("""RGB""" ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = normalize(resize(__lowerCAmelCase , __lowerCAmelCase ) ).unsqueeze(0 ) SCREAMING_SNAKE_CASE__ : Dict = model(__lowerCAmelCase ) if "detection" in checkpoint_url: SCREAMING_SNAKE_CASE__ : List[Any] = (1, 15, 3) SCREAMING_SNAKE_CASE__ : str = torch.tensor( [[-6.7_897, -16.9_985, 6.7_937], [-8.0_186, -22.2_192, 6.9_677], [-7.3_117, -21.0_708, 7.4_055]] ) SCREAMING_SNAKE_CASE__ : str = torch.tensor([[0.4_867, 0.1_767, 0.6_732], [0.6_718, 0.4_479, 0.3_830], [0.4_716, 0.1_760, 0.6_364]] ) else: SCREAMING_SNAKE_CASE__ : Dict = (1, 125, 7) SCREAMING_SNAKE_CASE__ : Any = torch.tensor( [[-18.1_430, -8.3_214, 4.8_274], [-18.4_685, -7.1_361, -4.2_667], [-26.3_693, -9.3_429, -4.9_962]] ) SCREAMING_SNAKE_CASE__ : Optional[Any] = torch.tensor([[0.4_983, 0.5_595, 0.9_440], [0.4_916, 0.6_315, 0.5_954], [0.6_108, 0.8_637, 0.1_135]] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, :3, :3] , __lowerCAmelCase , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , __lowerCAmelCase , atol=1E-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(__lowerCAmelCase ).mkdir(exist_ok=__lowerCAmelCase ) model.save_pretrained(__lowerCAmelCase ) image_processor.save_pretrained(__lowerCAmelCase ) if push_to_hub: # Push model to HF hub logger.info("""Pushing model to the hub...""" ) SCREAMING_SNAKE_CASE__ : List[Any] = ( """microsoft/table-transformer-detection""" if """detection""" in checkpoint_url else """microsoft/table-transformer-structure-recognition""" ) model.push_to_hub(__lowerCAmelCase ) image_processor.push_to_hub(__lowerCAmelCase ) if __name__ == "__main__": a :Any = argparse.ArgumentParser() parser.add_argument( "--checkpoint_url", default="https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth", type=str, choices=[ "https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth", "https://pubtables1m.blob.core.windows.net/model/pubtables1m_structure_detr_r18.pth", ], help="URL of the Table Transformer checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) a :int = parser.parse_args() convert_table_transformer_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
680
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __lowercase = { """configuration_poolformer""": [ """POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """PoolFormerConfig""", """PoolFormerOnnxConfig""", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = ["""PoolFormerFeatureExtractor"""] __lowercase = ["""PoolFormerImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = [ """POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """PoolFormerForImageClassification""", """PoolFormerModel""", """PoolFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys __lowercase = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
706
def _lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' if p < 2: raise ValueError('''p should not be less than 2!''' ) elif p == 2: return True A_ = 4 A_ = (1 << p) - 1 for _ in range(p - 2 ): A_ = ((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(11))
563
0
import argparse import json from collections import OrderedDict from functools import partial from pathlib import Path import timm import torch from huggingface_hub import hf_hub_download from transformers import LevitConfig, LevitForImageClassificationWithTeacher, LevitImageProcessor from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase = logging.get_logger() def _lowerCAmelCase ( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase = True ): '''simple docstring''' print(f"""Converting {name}...""" ) with torch.no_grad(): if hidden_sizes == 1_2_8: if name[-1] == "S": A_ : List[Any] = timm.create_model("""levit_128s""" ,pretrained=__snake_case ) else: A_ : Union[str, Any] = timm.create_model("""levit_128""" ,pretrained=__snake_case ) if hidden_sizes == 1_9_2: A_ : Union[str, Any] = timm.create_model("""levit_192""" ,pretrained=__snake_case ) if hidden_sizes == 2_5_6: A_ : Union[str, Any] = timm.create_model("""levit_256""" ,pretrained=__snake_case ) if hidden_sizes == 3_8_4: A_ : Optional[int] = timm.create_model("""levit_384""" ,pretrained=__snake_case ) from_model.eval() A_ : Union[str, Any] = LevitForImageClassificationWithTeacher(__snake_case ).eval() A_ : Union[str, Any] = OrderedDict() A_ : Union[str, Any] = from_model.state_dict() A_ : List[str] = list(from_model.state_dict().keys() ) A_ : Union[str, Any] = list(our_model.state_dict().keys() ) print(len(__snake_case ) ,len(__snake_case ) ) for i in range(len(__snake_case ) ): A_ : int = weights[og_keys[i]] our_model.load_state_dict(__snake_case ) A_ : Optional[Any] = torch.randn((2, 3, 2_2_4, 2_2_4) ) A_ : int = from_model(__snake_case ) A_ : List[str] = our_model(__snake_case ).logits assert torch.allclose(__snake_case ,__snake_case ), "The model logits don't match the original one." A_ : Optional[Any] = name print(__snake_case ) if push_to_hub: our_model.save_pretrained(save_directory / checkpoint_name ) A_ : Tuple = LevitImageProcessor() image_processor.save_pretrained(save_directory / checkpoint_name ) print(f"""Pushed {checkpoint_name}""" ) def _lowerCAmelCase ( _lowerCAmelCase ,_lowerCAmelCase = None ,_lowerCAmelCase = True ): '''simple docstring''' A_ : Optional[Any] = """imagenet-1k-id2label.json""" A_ : Union[str, Any] = 1_0_0_0 A_ : int = (1, num_labels) A_ : int = """huggingface/label-files""" A_ : List[Any] = num_labels A_ : Dict = json.load(open(hf_hub_download(__snake_case ,__snake_case ,repo_type="""dataset""" ) ,"""r""" ) ) A_ : List[Any] = {int(__snake_case ): v for k, v in idalabel.items()} A_ : Tuple = idalabel A_ : List[str] = {v: k for k, v in idalabel.items()} A_ : int = partial(__snake_case ,num_labels=__snake_case ,idalabel=__snake_case ,labelaid=__snake_case ) A_ : List[Any] = { """levit-128S""": 1_2_8, """levit-128""": 1_2_8, """levit-192""": 1_9_2, """levit-256""": 2_5_6, """levit-384""": 3_8_4, } A_ : str = { """levit-128S""": ImageNetPreTrainedConfig( hidden_sizes=[1_2_8, 2_5_6, 3_8_4] ,num_attention_heads=[4, 6, 8] ,depths=[2, 3, 4] ,key_dim=[1_6, 1_6, 1_6] ,drop_path_rate=0 ,), """levit-128""": ImageNetPreTrainedConfig( hidden_sizes=[1_2_8, 2_5_6, 3_8_4] ,num_attention_heads=[4, 8, 1_2] ,depths=[4, 4, 4] ,key_dim=[1_6, 1_6, 1_6] ,drop_path_rate=0 ,), """levit-192""": ImageNetPreTrainedConfig( hidden_sizes=[1_9_2, 2_8_8, 3_8_4] ,num_attention_heads=[3, 5, 6] ,depths=[4, 4, 4] ,key_dim=[3_2, 3_2, 3_2] ,drop_path_rate=0 ,), """levit-256""": ImageNetPreTrainedConfig( hidden_sizes=[2_5_6, 3_8_4, 5_1_2] ,num_attention_heads=[4, 6, 8] ,depths=[4, 4, 4] ,key_dim=[3_2, 3_2, 3_2] ,drop_path_rate=0 ,), """levit-384""": ImageNetPreTrainedConfig( hidden_sizes=[3_8_4, 5_1_2, 7_6_8] ,num_attention_heads=[6, 9, 1_2] ,depths=[4, 4, 4] ,key_dim=[3_2, 3_2, 3_2] ,drop_path_rate=0.1 ,), } if model_name: convert_weight_and_push( names_to_hidden_sizes[model_name] ,__snake_case ,names_to_config[model_name] ,__snake_case ,__snake_case ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(names_to_hidden_sizes[model_name] ,__snake_case ,__snake_case ,__snake_case ,__snake_case ) return config, expected_shape if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default=None, type=str, help="""The name of the model you wish to convert, it must be one of the supported Levit* architecture,""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""levit-dump-folder/""", type=Path, required=False, help="""Path to the output PyTorch model directory.""", ) parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Push model and image processor to the hub""") parser.add_argument( """--no-push_to_hub""", dest="""push_to_hub""", action="""store_false""", help="""Do not push model and image processor to the hub""", ) _lowerCAmelCase = parser.parse_args() _lowerCAmelCase = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
569
"""simple docstring""" import shutil import tempfile import unittest from unittest.mock import patch from transformers import ( DefaultFlowCallback, IntervalStrategy, PrinterCallback, ProgressCallback, Trainer, TrainerCallback, TrainingArguments, is_torch_available, ) from transformers.testing_utils import require_torch if is_torch_available(): from transformers.trainer import DEFAULT_CALLBACKS from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel class UpperCamelCase__ ( a_): """simple docstring""" def __init__( self : Union[str, Any] ): '''simple docstring''' __magic_name__ = [] def a__ ( self : Tuple , UpperCamelCase_ : Dict , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : int , **UpperCamelCase_ : int ): '''simple docstring''' self.events.append('on_init_end' ) def a__ ( self : Any , UpperCamelCase_ : int , UpperCamelCase_ : str , UpperCamelCase_ : List[str] , **UpperCamelCase_ : str ): '''simple docstring''' self.events.append('on_train_begin' ) def a__ ( self : str , UpperCamelCase_ : Tuple , UpperCamelCase_ : List[str] , UpperCamelCase_ : Optional[int] , **UpperCamelCase_ : Dict ): '''simple docstring''' self.events.append('on_train_end' ) def a__ ( self : List[str] , UpperCamelCase_ : Tuple , UpperCamelCase_ : int , UpperCamelCase_ : Tuple , **UpperCamelCase_ : Optional[Any] ): '''simple docstring''' self.events.append('on_epoch_begin' ) def a__ ( self : Optional[int] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : int , UpperCamelCase_ : Tuple , **UpperCamelCase_ : List[Any] ): '''simple docstring''' self.events.append('on_epoch_end' ) def a__ ( self : Union[str, Any] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Any , UpperCamelCase_ : Union[str, Any] , **UpperCamelCase_ : Optional[Any] ): '''simple docstring''' self.events.append('on_step_begin' ) def a__ ( self : List[str] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : int , UpperCamelCase_ : Any , **UpperCamelCase_ : List[Any] ): '''simple docstring''' self.events.append('on_step_end' ) def a__ ( self : List[Any] , UpperCamelCase_ : List[str] , UpperCamelCase_ : int , UpperCamelCase_ : Tuple , **UpperCamelCase_ : Dict ): '''simple docstring''' self.events.append('on_evaluate' ) def a__ ( self : str , UpperCamelCase_ : Any , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Dict , **UpperCamelCase_ : Any ): '''simple docstring''' self.events.append('on_predict' ) def a__ ( self : Any , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : str , **UpperCamelCase_ : Optional[int] ): '''simple docstring''' self.events.append('on_save' ) def a__ ( self : Optional[Any] , UpperCamelCase_ : int , UpperCamelCase_ : str , UpperCamelCase_ : Union[str, Any] , **UpperCamelCase_ : Optional[int] ): '''simple docstring''' self.events.append('on_log' ) def a__ ( self : List[Any] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : str , **UpperCamelCase_ : List[Any] ): '''simple docstring''' self.events.append('on_prediction_step' ) @require_torch class UpperCamelCase__ ( unittest.TestCase): """simple docstring""" def a__ ( self : Optional[Any] ): '''simple docstring''' __magic_name__ = tempfile.mkdtemp() def a__ ( self : List[Any] ): '''simple docstring''' shutil.rmtree(self.output_dir ) def a__ ( self : List[str] , UpperCamelCase_ : Optional[int]=0 , UpperCamelCase_ : List[Any]=0 , UpperCamelCase_ : Optional[int]=6_4 , UpperCamelCase_ : Optional[int]=6_4 , UpperCamelCase_ : List[Any]=None , UpperCamelCase_ : Optional[Any]=False , **UpperCamelCase_ : str ): '''simple docstring''' __magic_name__ = RegressionDataset(length=UpperCamelCase_ ) __magic_name__ = RegressionDataset(length=UpperCamelCase_ ) __magic_name__ = RegressionModelConfig(a=UpperCamelCase_ , b=UpperCamelCase_ ) __magic_name__ = RegressionPreTrainedModel(UpperCamelCase_ ) __magic_name__ = TrainingArguments(self.output_dir , disable_tqdm=UpperCamelCase_ , report_to=[] , **UpperCamelCase_ ) return Trainer( UpperCamelCase_ , UpperCamelCase_ , train_dataset=UpperCamelCase_ , eval_dataset=UpperCamelCase_ , callbacks=UpperCamelCase_ , ) def a__ ( self : Optional[int] , UpperCamelCase_ : str , UpperCamelCase_ : Dict ): '''simple docstring''' self.assertEqual(len(UpperCamelCase_ ) , len(UpperCamelCase_ ) ) # Order doesn't matter __magic_name__ = sorted(UpperCamelCase_ , key=lambda UpperCamelCase_ : cb.__name__ if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else cb.__class__.__name__ ) __magic_name__ = sorted(UpperCamelCase_ , key=lambda UpperCamelCase_ : cb.__name__ if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else cb.__class__.__name__ ) for cba, cba in zip(UpperCamelCase_ , UpperCamelCase_ ): if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and isinstance(UpperCamelCase_ , UpperCamelCase_ ): self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) elif isinstance(UpperCamelCase_ , UpperCamelCase_ ) and not isinstance(UpperCamelCase_ , UpperCamelCase_ ): self.assertEqual(UpperCamelCase_ , cba.__class__ ) elif not isinstance(UpperCamelCase_ , UpperCamelCase_ ) and isinstance(UpperCamelCase_ , UpperCamelCase_ ): self.assertEqual(cba.__class__ , UpperCamelCase_ ) else: self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) def a__ ( self : Union[str, Any] , UpperCamelCase_ : Any ): '''simple docstring''' __magic_name__ = ['on_init_end', 'on_train_begin'] __magic_name__ = 0 __magic_name__ = len(trainer.get_eval_dataloader() ) __magic_name__ = ['on_prediction_step'] * len(trainer.get_eval_dataloader() ) + ['on_log', 'on_evaluate'] for _ in range(trainer.state.num_train_epochs ): expected_events.append('on_epoch_begin' ) for _ in range(UpperCamelCase_ ): step += 1 expected_events += ["on_step_begin", "on_step_end"] if step % trainer.args.logging_steps == 0: expected_events.append('on_log' ) if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0: expected_events += evaluation_events.copy() if step % trainer.args.save_steps == 0: expected_events.append('on_save' ) expected_events.append('on_epoch_end' ) if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH: expected_events += evaluation_events.copy() expected_events += ["on_log", "on_train_end"] return expected_events def a__ ( self : List[Any] ): '''simple docstring''' __magic_name__ = self.get_trainer() __magic_name__ = DEFAULT_CALLBACKS.copy() + [ProgressCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCamelCase_ ) # Callbacks passed at init are added to the default callbacks __magic_name__ = self.get_trainer(callbacks=[MyTestTrainerCallback] ) expected_callbacks.append(UpperCamelCase_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCamelCase_ ) # TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback __magic_name__ = self.get_trainer(disable_tqdm=UpperCamelCase_ ) __magic_name__ = DEFAULT_CALLBACKS.copy() + [PrinterCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCamelCase_ ) def a__ ( self : List[str] ): '''simple docstring''' __magic_name__ = DEFAULT_CALLBACKS.copy() + [ProgressCallback] __magic_name__ = self.get_trainer() # We can add, pop, or remove by class name trainer.remove_callback(UpperCamelCase_ ) expected_callbacks.remove(UpperCamelCase_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCamelCase_ ) __magic_name__ = self.get_trainer() __magic_name__ = trainer.pop_callback(UpperCamelCase_ ) self.assertEqual(cb.__class__ , UpperCamelCase_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCamelCase_ ) trainer.add_callback(UpperCamelCase_ ) expected_callbacks.insert(0 , UpperCamelCase_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCamelCase_ ) # We can also add, pop, or remove by instance __magic_name__ = self.get_trainer() __magic_name__ = trainer.callback_handler.callbacks[0] trainer.remove_callback(UpperCamelCase_ ) expected_callbacks.remove(UpperCamelCase_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCamelCase_ ) __magic_name__ = self.get_trainer() __magic_name__ = trainer.callback_handler.callbacks[0] __magic_name__ = trainer.pop_callback(UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCamelCase_ ) trainer.add_callback(UpperCamelCase_ ) expected_callbacks.insert(0 , UpperCamelCase_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCamelCase_ ) def a__ ( self : Any ): '''simple docstring''' import warnings # XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested warnings.simplefilter(action='ignore' , category=UpperCamelCase_ ) __magic_name__ = self.get_trainer(callbacks=[MyTestTrainerCallback] ) trainer.train() __magic_name__ = trainer.callback_handler.callbacks[-2].events self.assertEqual(UpperCamelCase_ , self.get_expected_events(UpperCamelCase_ ) ) # Independent log/save/eval __magic_name__ = self.get_trainer(callbacks=[MyTestTrainerCallback] , logging_steps=5 ) trainer.train() __magic_name__ = trainer.callback_handler.callbacks[-2].events self.assertEqual(UpperCamelCase_ , self.get_expected_events(UpperCamelCase_ ) ) __magic_name__ = self.get_trainer(callbacks=[MyTestTrainerCallback] , save_steps=5 ) trainer.train() __magic_name__ = trainer.callback_handler.callbacks[-2].events self.assertEqual(UpperCamelCase_ , self.get_expected_events(UpperCamelCase_ ) ) __magic_name__ = self.get_trainer(callbacks=[MyTestTrainerCallback] , eval_steps=5 , evaluation_strategy='steps' ) trainer.train() __magic_name__ = trainer.callback_handler.callbacks[-2].events self.assertEqual(UpperCamelCase_ , self.get_expected_events(UpperCamelCase_ ) ) __magic_name__ = self.get_trainer(callbacks=[MyTestTrainerCallback] , evaluation_strategy='epoch' ) trainer.train() __magic_name__ = trainer.callback_handler.callbacks[-2].events self.assertEqual(UpperCamelCase_ , self.get_expected_events(UpperCamelCase_ ) ) # A bit of everything __magic_name__ = self.get_trainer( callbacks=[MyTestTrainerCallback] , logging_steps=3 , save_steps=1_0 , eval_steps=5 , evaluation_strategy='steps' , ) trainer.train() __magic_name__ = trainer.callback_handler.callbacks[-2].events self.assertEqual(UpperCamelCase_ , self.get_expected_events(UpperCamelCase_ ) ) # warning should be emitted for duplicated callbacks with patch('transformers.trainer_callback.logger.warning' ) as warn_mock: __magic_name__ = self.get_trainer( callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] , ) assert str(UpperCamelCase_ ) in warn_mock.call_args[0][0]
545
0
from __future__ import annotations import unittest from transformers import DistilBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.distilbert.modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertModel, ) class SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Any , UpperCAmelCase_ : str , ): SCREAMING_SNAKE_CASE : Tuple = parent SCREAMING_SNAKE_CASE : str = 13 SCREAMING_SNAKE_CASE : Any = 7 SCREAMING_SNAKE_CASE : List[str] = True SCREAMING_SNAKE_CASE : Optional[Any] = True SCREAMING_SNAKE_CASE : Any = False SCREAMING_SNAKE_CASE : Any = True SCREAMING_SNAKE_CASE : Any = 99 SCREAMING_SNAKE_CASE : Any = 32 SCREAMING_SNAKE_CASE : Any = 2 SCREAMING_SNAKE_CASE : List[Any] = 4 SCREAMING_SNAKE_CASE : Union[str, Any] = 37 SCREAMING_SNAKE_CASE : Dict = "gelu" SCREAMING_SNAKE_CASE : List[Any] = 0.1 SCREAMING_SNAKE_CASE : int = 0.1 SCREAMING_SNAKE_CASE : Optional[int] = 512 SCREAMING_SNAKE_CASE : str = 16 SCREAMING_SNAKE_CASE : Dict = 2 SCREAMING_SNAKE_CASE : Optional[int] = 0.02 SCREAMING_SNAKE_CASE : List[Any] = 3 SCREAMING_SNAKE_CASE : Union[str, Any] = 4 SCREAMING_SNAKE_CASE : Optional[int] = None def _A ( self : Any ): SCREAMING_SNAKE_CASE : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE : Any = None if self.use_input_mask: SCREAMING_SNAKE_CASE : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE : List[str] = None SCREAMING_SNAKE_CASE : List[Any] = None SCREAMING_SNAKE_CASE : Dict = None if self.use_labels: SCREAMING_SNAKE_CASE : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE : Union[str, Any] = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _A ( self : Any , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Any , UpperCAmelCase_ : Optional[int] ): SCREAMING_SNAKE_CASE : List[Any] = TFDistilBertModel(config=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : List[Any] = {"input_ids": input_ids, "attention_mask": input_mask} SCREAMING_SNAKE_CASE : Tuple = model(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : List[Any] = [input_ids, input_mask] SCREAMING_SNAKE_CASE : Tuple = model(lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _A ( self : str , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : Tuple ): SCREAMING_SNAKE_CASE : List[Any] = TFDistilBertForMaskedLM(config=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : List[str] = {"input_ids": input_ids, "attention_mask": input_mask} SCREAMING_SNAKE_CASE : Union[str, Any] = model(lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _A ( self : Tuple , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Union[str, Any] ): SCREAMING_SNAKE_CASE : Any = TFDistilBertForQuestionAnswering(config=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : int = { "input_ids": input_ids, "attention_mask": input_mask, } SCREAMING_SNAKE_CASE : Tuple = model(lowerCAmelCase__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _A ( self : int , UpperCAmelCase_ : int , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Tuple ): SCREAMING_SNAKE_CASE : Dict = self.num_labels SCREAMING_SNAKE_CASE : Optional[int] = TFDistilBertForSequenceClassification(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : List[Any] = {"input_ids": input_ids, "attention_mask": input_mask} SCREAMING_SNAKE_CASE : Any = model(lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _A ( self : str , UpperCAmelCase_ : int , UpperCAmelCase_ : str , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict ): SCREAMING_SNAKE_CASE : Dict = self.num_choices SCREAMING_SNAKE_CASE : Union[str, Any] = TFDistilBertForMultipleChoice(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = tf.tile(tf.expand_dims(lowerCAmelCase__ , 1 ) , (1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE : List[str] = tf.tile(tf.expand_dims(lowerCAmelCase__ , 1 ) , (1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE : List[Any] = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, } SCREAMING_SNAKE_CASE : List[str] = model(lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _A ( self : str , UpperCAmelCase_ : int , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : str , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any] ): SCREAMING_SNAKE_CASE : Dict = self.num_labels SCREAMING_SNAKE_CASE : Tuple = TFDistilBertForTokenClassification(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Tuple = {"input_ids": input_ids, "attention_mask": input_mask} SCREAMING_SNAKE_CASE : Optional[int] = model(lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _A ( self : Optional[Any] ): SCREAMING_SNAKE_CASE : List[Any] = self.prepare_config_and_inputs() (SCREAMING_SNAKE_CASE) : Union[str, Any] = config_and_inputs SCREAMING_SNAKE_CASE : List[str] = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class SCREAMING_SNAKE_CASE ( a__ , a__ , unittest.TestCase ): '''simple docstring''' UpperCamelCase_ : Optional[Any] = ( ( TFDistilBertModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertForMultipleChoice, ) if is_tf_available() else None ) UpperCamelCase_ : Any = ( { """feature-extraction""": TFDistilBertModel, """fill-mask""": TFDistilBertForMaskedLM, """question-answering""": TFDistilBertForQuestionAnswering, """text-classification""": TFDistilBertForSequenceClassification, """token-classification""": TFDistilBertForTokenClassification, """zero-shot""": TFDistilBertForSequenceClassification, } if is_tf_available() else {} ) UpperCamelCase_ : List[str] = False UpperCamelCase_ : Optional[int] = False def _A ( self : Tuple ): SCREAMING_SNAKE_CASE : Optional[Any] = TFDistilBertModelTester(self ) SCREAMING_SNAKE_CASE : List[str] = ConfigTester(self , config_class=lowerCAmelCase__ , dim=37 ) def _A ( self : List[str] ): self.config_tester.run_common_tests() def _A ( self : Optional[Any] ): SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*lowerCAmelCase__ ) def _A ( self : Dict ): SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*lowerCAmelCase__ ) def _A ( self : Tuple ): SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*lowerCAmelCase__ ) def _A ( self : List[Any] ): SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*lowerCAmelCase__ ) def _A ( self : Any ): SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*lowerCAmelCase__ ) def _A ( self : Optional[Any] ): SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*lowerCAmelCase__ ) @slow def _A ( self : str ): for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ): SCREAMING_SNAKE_CASE : Tuple = TFDistilBertModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) @require_tf class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @slow def _A ( self : Any ): SCREAMING_SNAKE_CASE : List[Any] = TFDistilBertModel.from_pretrained("distilbert-base-uncased" ) SCREAMING_SNAKE_CASE : Dict = tf.constant([[0, 1, 2, 3, 4, 5]] ) SCREAMING_SNAKE_CASE : int = model(lowerCAmelCase__ )[0] SCREAMING_SNAKE_CASE : int = [1, 6, 768] self.assertEqual(output.shape , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : List[Any] = tf.constant( [ [ [0.19_261_885, -0.13_732_955, 0.4_119_799], [0.22_150_156, -0.07_422_661, 0.39_037_204], [0.22_756_018, -0.0_896_414, 0.3_701_467], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , lowerCAmelCase__ , atol=1E-4 )
709
from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
488
0
from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class _snake_case ( A_ ): lowerCamelCase__: torch.FloatTensor class _snake_case ( A_ , A_ ): @register_to_config def __init__( self: Any , __lowerCamelCase: int = 32 , __lowerCamelCase: int = 64 , __lowerCamelCase: int = 20 , __lowerCamelCase: int = 7_68 , __lowerCamelCase: Optional[int]=77 , __lowerCamelCase: Optional[Any]=4 , __lowerCamelCase: float = 0.0 , __lowerCamelCase: str = "silu" , __lowerCamelCase: Optional[str] = None , __lowerCamelCase: Optional[str] = None , __lowerCamelCase: Optional[str] = "linear" , __lowerCamelCase: Optional[str] = "prd" , __lowerCamelCase: Optional[int] = None , __lowerCamelCase: Optional[int] = None , __lowerCamelCase: Optional[int] = None , ) -> Optional[int]: super().__init__() __UpperCAmelCase : int = num_attention_heads __UpperCAmelCase : int = attention_head_dim __UpperCAmelCase : str = num_attention_heads * attention_head_dim __UpperCAmelCase : Optional[Any] = additional_embeddings __UpperCAmelCase : Optional[int] = time_embed_dim or inner_dim __UpperCAmelCase : List[str] = embedding_proj_dim or embedding_dim __UpperCAmelCase : List[Any] = clip_embed_dim or embedding_dim __UpperCAmelCase : str = Timesteps(_snake_case , _snake_case , 0 ) __UpperCAmelCase : List[str] = TimestepEmbedding(_snake_case , _snake_case , out_dim=_snake_case , act_fn=_snake_case ) __UpperCAmelCase : Optional[int] = nn.Linear(_snake_case , _snake_case ) if embedding_proj_norm_type is None: __UpperCAmelCase : List[Any] = None elif embedding_proj_norm_type == "layer": __UpperCAmelCase : Optional[Any] = nn.LayerNorm(_snake_case ) else: raise ValueError(f'''unsupported embedding_proj_norm_type: {embedding_proj_norm_type}''' ) __UpperCAmelCase : Optional[int] = nn.Linear(_snake_case , _snake_case ) if encoder_hid_proj_type is None: __UpperCAmelCase : int = None elif encoder_hid_proj_type == "linear": __UpperCAmelCase : Optional[int] = nn.Linear(_snake_case , _snake_case ) else: raise ValueError(f'''unsupported encoder_hid_proj_type: {encoder_hid_proj_type}''' ) __UpperCAmelCase : str = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , _snake_case ) ) if added_emb_type == "prd": __UpperCAmelCase : Optional[int] = nn.Parameter(torch.zeros(1 , 1 , _snake_case ) ) elif added_emb_type is None: __UpperCAmelCase : Dict = None else: raise ValueError( f'''`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `\'prd\'` or `None`.''' ) __UpperCAmelCase : List[Any] = nn.ModuleList( [ BasicTransformerBlock( _snake_case , _snake_case , _snake_case , dropout=_snake_case , activation_fn="gelu" , attention_bias=_snake_case , ) for d in range(_snake_case ) ] ) if norm_in_type == "layer": __UpperCAmelCase : List[str] = nn.LayerNorm(_snake_case ) elif norm_in_type is None: __UpperCAmelCase : Optional[Any] = None else: raise ValueError(f'''Unsupported norm_in_type: {norm_in_type}.''' ) __UpperCAmelCase : List[Any] = nn.LayerNorm(_snake_case ) __UpperCAmelCase : Optional[Any] = nn.Linear(_snake_case , _snake_case ) __UpperCAmelCase : Tuple = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -1_00_00.0 ) causal_attention_mask.triu_(1 ) __UpperCAmelCase : List[Any] = causal_attention_mask[None, ...] self.register_buffer("causal_attention_mask" , _snake_case , persistent=_snake_case ) __UpperCAmelCase : Any = nn.Parameter(torch.zeros(1 , _snake_case ) ) __UpperCAmelCase : Union[str, Any] = nn.Parameter(torch.zeros(1 , _snake_case ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def _lowerCamelCase ( self: Optional[int] ) -> Dict[str, AttentionProcessor]: __UpperCAmelCase : Optional[int] = {} def fn_recursive_add_processors(__lowerCamelCase: str , __lowerCamelCase: torch.nn.Module , __lowerCamelCase: Dict[str, AttentionProcessor] ): if hasattr(_snake_case , "set_processor" ): __UpperCAmelCase : Any = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f'''{name}.{sub_name}''' , _snake_case , _snake_case ) return processors for name, module in self.named_children(): fn_recursive_add_processors(_snake_case , _snake_case , _snake_case ) return processors def _lowerCamelCase ( self: Tuple , __lowerCamelCase: Union[AttentionProcessor, Dict[str, AttentionProcessor]] ) -> int: __UpperCAmelCase : Union[str, Any] = len(self.attn_processors.keys() ) if isinstance(_snake_case , _snake_case ) and len(_snake_case ) != count: raise ValueError( f'''A dict of processors was passed, but the number of processors {len(_snake_case )} does not match the''' f''' number of attention layers: {count}. Please make sure to pass {count} processor classes.''' ) def fn_recursive_attn_processor(__lowerCamelCase: str , __lowerCamelCase: torch.nn.Module , __lowerCamelCase: List[Any] ): if hasattr(_snake_case , "set_processor" ): if not isinstance(_snake_case , _snake_case ): module.set_processor(_snake_case ) else: module.set_processor(processor.pop(f'''{name}.processor''' ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f'''{name}.{sub_name}''' , _snake_case , _snake_case ) for name, module in self.named_children(): fn_recursive_attn_processor(_snake_case , _snake_case , _snake_case ) def _lowerCamelCase ( self: Optional[Any] ) -> Dict: self.set_attn_processor(AttnProcessor() ) def _lowerCamelCase ( self: Union[str, Any] , __lowerCamelCase: List[str] , __lowerCamelCase: Union[torch.Tensor, float, int] , __lowerCamelCase: torch.FloatTensor , __lowerCamelCase: Optional[torch.FloatTensor] = None , __lowerCamelCase: Optional[torch.BoolTensor] = None , __lowerCamelCase: bool = True , ) -> int: __UpperCAmelCase : Tuple = hidden_states.shape[0] __UpperCAmelCase : str = timestep if not torch.is_tensor(_snake_case ): __UpperCAmelCase : List[str] = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device ) elif torch.is_tensor(_snake_case ) and len(timesteps.shape ) == 0: __UpperCAmelCase : int = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML __UpperCAmelCase : Dict = timesteps * torch.ones(_snake_case , dtype=timesteps.dtype , device=timesteps.device ) __UpperCAmelCase : Dict = self.time_proj(_snake_case ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. __UpperCAmelCase : List[Any] = timesteps_projected.to(dtype=self.dtype ) __UpperCAmelCase : int = self.time_embedding(_snake_case ) if self.embedding_proj_norm is not None: __UpperCAmelCase : Tuple = self.embedding_proj_norm(_snake_case ) __UpperCAmelCase : Optional[Any] = self.embedding_proj(_snake_case ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: __UpperCAmelCase : Tuple = self.encoder_hidden_states_proj(_snake_case ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError("`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set" ) __UpperCAmelCase : List[Any] = self.proj_in(_snake_case ) __UpperCAmelCase : Any = self.positional_embedding.to(hidden_states.dtype ) __UpperCAmelCase : Optional[Any] = [] __UpperCAmelCase : int = 0 if encoder_hidden_states is not None: additional_embeds.append(_snake_case ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: __UpperCAmelCase : str = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: __UpperCAmelCase : Union[str, Any] = hidden_states[:, None, :] __UpperCAmelCase : Tuple = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: __UpperCAmelCase : str = self.prd_embedding.to(hidden_states.dtype ).expand(_snake_case , -1 , -1 ) additional_embeds.append(_snake_case ) __UpperCAmelCase : int = torch.cat( _snake_case , dim=1 , ) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens __UpperCAmelCase : Dict = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: __UpperCAmelCase : List[str] = F.pad( _snake_case , ( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) , value=0.0 , ) __UpperCAmelCase : str = hidden_states + positional_embeddings if attention_mask is not None: __UpperCAmelCase : Optional[Any] = (1 - attention_mask.to(hidden_states.dtype )) * -1_00_00.0 __UpperCAmelCase : Optional[int] = F.pad(_snake_case , (0, self.additional_embeddings) , value=0.0 ) __UpperCAmelCase : Optional[Any] = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) __UpperCAmelCase : List[str] = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 ) if self.norm_in is not None: __UpperCAmelCase : Tuple = self.norm_in(_snake_case ) for block in self.transformer_blocks: __UpperCAmelCase : Optional[Any] = block(_snake_case , attention_mask=_snake_case ) __UpperCAmelCase : Dict = self.norm_out(_snake_case ) if self.prd_embedding is not None: __UpperCAmelCase : str = hidden_states[:, -1] else: __UpperCAmelCase : Optional[int] = hidden_states[:, additional_embeddings_len:] __UpperCAmelCase : List[str] = self.proj_to_clip_embeddings(_snake_case ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=_snake_case ) def _lowerCamelCase ( self: List[str] , __lowerCamelCase: Tuple ) -> Optional[int]: __UpperCAmelCase : Tuple = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
382
"""simple docstring""" from collections import OrderedDict from typing import List, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { 'google/efficientnet-b7': 'https://huggingface.co/google/efficientnet-b7/resolve/main/config.json', } class __A ( A_ ): '''simple docstring''' lowerCAmelCase : Dict = "efficientnet" def __init__( self : Optional[Any] ,_snake_case : int = 3 ,_snake_case : int = 600 ,_snake_case : float = 2.0 ,_snake_case : float = 3.1 ,_snake_case : int = 8 ,_snake_case : List[int] = [3, 3, 5, 3, 5, 5, 3] ,_snake_case : List[int] = [32, 16, 24, 40, 80, 112, 192] ,_snake_case : List[int] = [16, 24, 40, 80, 112, 192, 320] ,_snake_case : List[int] = [] ,_snake_case : List[int] = [1, 2, 2, 2, 1, 2, 1] ,_snake_case : List[int] = [1, 2, 2, 3, 3, 4, 1] ,_snake_case : List[int] = [1, 6, 6, 6, 6, 6, 6] ,_snake_case : float = 0.25 ,_snake_case : str = "swish" ,_snake_case : int = 2_560 ,_snake_case : str = "mean" ,_snake_case : float = 0.02 ,_snake_case : float = 0.001 ,_snake_case : float = 0.99 ,_snake_case : float = 0.5 ,_snake_case : float = 0.2 ,**_snake_case : List[str] ,) -> Optional[Any]: """simple docstring""" super().__init__(**_snake_case ) lowercase__ : Optional[Any] = num_channels lowercase__ : Any = image_size lowercase__ : Optional[Any] = width_coefficient lowercase__ : Dict = depth_coefficient lowercase__ : Optional[int] = depth_divisor lowercase__ : Optional[int] = kernel_sizes lowercase__ : str = in_channels lowercase__ : Any = out_channels lowercase__ : Union[str, Any] = depthwise_padding lowercase__ : str = strides lowercase__ : List[str] = num_block_repeats lowercase__ : List[str] = expand_ratios lowercase__ : List[str] = squeeze_expansion_ratio lowercase__ : Optional[Any] = hidden_act lowercase__ : Any = hidden_dim lowercase__ : Optional[int] = pooling_type lowercase__ : List[str] = initializer_range lowercase__ : List[Any] = batch_norm_eps lowercase__ : List[Any] = batch_norm_momentum lowercase__ : Tuple = dropout_rate lowercase__ : Tuple = drop_connect_rate lowercase__ : Union[str, Any] = sum(_snake_case ) * 4 class __A ( A_ ): '''simple docstring''' lowerCAmelCase : List[str] = version.parse("1.11" ) @property def UpperCAmelCase ( self : str ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def UpperCAmelCase ( self : Optional[int] ) -> float: """simple docstring""" return 1e-5
560
0
'''simple docstring''' import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def UpperCAmelCase_ (): """simple docstring""" raise RuntimeError('CUDA out of memory.' ) class UpperCAmelCase__ ( nn.Module ): """simple docstring""" def __init__( self : Tuple ): '''simple docstring''' super().__init__() _a : Optional[Any] = nn.Linear(3 ,4 ) _a : str = nn.BatchNormad(4 ) _a : int = nn.Linear(4 ,5 ) def __lowercase ( self : Union[str, Any] ,_a : str ): '''simple docstring''' return self.lineara(self.batchnorm(self.lineara(_a ) ) ) class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self : List[Any] ): '''simple docstring''' _a : Dict = [] @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(_a : int ): nonlocal batch_sizes batch_sizes.append(_a ) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(_a ,[128, 64, 32, 16, 8] ) def __lowercase ( self : Optional[Any] ): '''simple docstring''' _a : Dict = [] @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(_a : str ,_a : Any ): nonlocal batch_sizes batch_sizes.append(_a ) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga _a : Optional[int] = mock_training_loop_function('hello' ) self.assertListEqual(_a ,[128, 64, 32, 16, 8] ) self.assertListEqual([bs, arga] ,[8, 'hello'] ) def __lowercase ( self : str ): '''simple docstring''' @find_executable_batch_size(starting_batch_size=0 ) def mock_training_loop_function(_a : Dict ): pass with self.assertRaises(_a ) as cm: mock_training_loop_function() self.assertIn('No executable batch size found, reached zero.' ,cm.exception.args[0] ) def __lowercase ( self : Optional[int] ): '''simple docstring''' @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(_a : Optional[int] ): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(_a ) as cm: mock_training_loop_function() self.assertIn('No executable batch size found, reached zero.' ,cm.exception.args[0] ) def __lowercase ( self : str ): '''simple docstring''' @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(_a : List[str] ,_a : Dict ,_a : Union[str, Any] ): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(_a ) as cm: mock_training_loop_function(128 ,'hello' ,'world' ) self.assertIn('Batch size was passed into `f`' ,cm.exception.args[0] ) self.assertIn('`f(arg1=\'hello\', arg2=\'world\')' ,cm.exception.args[0] ) def __lowercase ( self : Tuple ): '''simple docstring''' @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(_a : Any ): raise ValueError('Oops, we had an error!' ) with self.assertRaises(_a ) as cm: mock_training_loop_function() self.assertIn('Oops, we had an error!' ,cm.exception.args[0] ) @require_cuda def __lowercase ( self : str ): '''simple docstring''' _a : Tuple = torch.cuda.memory_allocated() _a : Optional[int] = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() ,_a ) _a : int = release_memory(_a ) self.assertEqual(torch.cuda.memory_allocated() ,_a )
720
'''simple docstring''' import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase__ : """simple docstring""" def __init__( self : Optional[Any] ,_a : Union[str, Any] ,_a : Union[str, Any]=13 ,_a : Any=32 ,_a : Optional[Any]=2 ,_a : Any=3 ,_a : str=16 ,_a : Tuple=[1, 2, 1] ,_a : Tuple=[2, 2, 4] ,_a : Any=2 ,_a : Optional[int]=2.0 ,_a : List[Any]=True ,_a : str=0.0 ,_a : Tuple=0.0 ,_a : Optional[Any]=0.1 ,_a : Dict="gelu" ,_a : Union[str, Any]=False ,_a : Any=True ,_a : Any=0.02 ,_a : List[Any]=1E-5 ,_a : Any=True ,_a : List[str]=None ,_a : str=True ,_a : Optional[int]=10 ,_a : List[str]=8 ,): '''simple docstring''' _a : Dict = parent _a : str = batch_size _a : Optional[int] = image_size _a : str = patch_size _a : Optional[int] = num_channels _a : List[Any] = embed_dim _a : Optional[Any] = depths _a : Optional[int] = num_heads _a : str = window_size _a : Any = mlp_ratio _a : Optional[Any] = qkv_bias _a : Optional[Any] = hidden_dropout_prob _a : Union[str, Any] = attention_probs_dropout_prob _a : Union[str, Any] = drop_path_rate _a : Union[str, Any] = hidden_act _a : Union[str, Any] = use_absolute_embeddings _a : str = patch_norm _a : Tuple = layer_norm_eps _a : List[Any] = initializer_range _a : Optional[int] = is_training _a : str = scope _a : List[str] = use_labels _a : int = type_sequence_label_size _a : List[str] = encoder_stride def __lowercase ( self : List[str] ): '''simple docstring''' _a : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _a : List[Any] = None if self.use_labels: _a : Dict = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) _a : Optional[Any] = self.get_config() return config, pixel_values, labels def __lowercase ( self : str ): '''simple docstring''' return SwinvaConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,embed_dim=self.embed_dim ,depths=self.depths ,num_heads=self.num_heads ,window_size=self.window_size ,mlp_ratio=self.mlp_ratio ,qkv_bias=self.qkv_bias ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,drop_path_rate=self.drop_path_rate ,hidden_act=self.hidden_act ,use_absolute_embeddings=self.use_absolute_embeddings ,path_norm=self.patch_norm ,layer_norm_eps=self.layer_norm_eps ,initializer_range=self.initializer_range ,encoder_stride=self.encoder_stride ,) def __lowercase ( self : str ,_a : Tuple ,_a : Tuple ,_a : Any ): '''simple docstring''' _a : List[Any] = SwinvaModel(config=_a ) model.to(_a ) model.eval() _a : Optional[Any] = model(_a ) _a : Any = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) _a : Any = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, expected_seq_len, expected_dim) ) def __lowercase ( self : Union[str, Any] ,_a : List[str] ,_a : Tuple ,_a : List[Any] ): '''simple docstring''' _a : int = SwinvaForMaskedImageModeling(config=_a ) model.to(_a ) model.eval() _a : List[str] = model(_a ) self.parent.assertEqual( result.logits.shape ,(self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images _a : List[Any] = 1 _a : str = SwinvaForMaskedImageModeling(_a ) model.to(_a ) model.eval() _a : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _a : Optional[Any] = model(_a ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, 1, self.image_size, self.image_size) ) def __lowercase ( self : Any ,_a : List[Any] ,_a : Optional[int] ,_a : List[Any] ): '''simple docstring''' _a : Optional[Any] = self.type_sequence_label_size _a : str = SwinvaForImageClassification(_a ) model.to(_a ) model.eval() _a : List[str] = model(_a ,labels=_a ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def __lowercase ( self : Tuple ): '''simple docstring''' _a : Any = self.prepare_config_and_inputs() _a, _a, _a : int = config_and_inputs _a : str = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase__ ( lowercase__ , lowercase__ , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Optional[Any] = ( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) __UpperCAmelCase : Any = ( {'''feature-extraction''': SwinvaModel, '''image-classification''': SwinvaForImageClassification} if is_torch_available() else {} ) __UpperCAmelCase : Dict = False __UpperCAmelCase : Any = False __UpperCAmelCase : List[Any] = False __UpperCAmelCase : Any = False def __lowercase ( self : int ): '''simple docstring''' _a : Optional[int] = SwinvaModelTester(self ) _a : Any = ConfigTester(self ,config_class=_a ,embed_dim=37 ) def __lowercase ( self : str ): '''simple docstring''' self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __lowercase ( self : Dict ): '''simple docstring''' _a : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) @unittest.skip(reason='Got `CUDA error: misaligned address` with PyTorch 2.0.0.' ) def __lowercase ( self : int ): '''simple docstring''' pass @unittest.skip(reason='Swinv2 does not use inputs_embeds' ) def __lowercase ( self : Tuple ): '''simple docstring''' pass def __lowercase ( self : Tuple ): '''simple docstring''' _a, _a : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : str = model_class(_a ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) _a : Dict = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_a ,nn.Linear ) ) def __lowercase ( self : Optional[int] ): '''simple docstring''' _a, _a : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : str = model_class(_a ) _a : Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a : Tuple = [*signature.parameters.keys()] _a : List[str] = ['pixel_values'] self.assertListEqual(arg_names[:1] ,_a ) def __lowercase ( self : List[str] ): '''simple docstring''' _a, _a : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() _a : int = True for model_class in self.all_model_classes: _a : Optional[Any] = True _a : List[str] = False _a : Tuple = True _a : Dict = model_class(_a ) model.to(_a ) model.eval() with torch.no_grad(): _a : Tuple = model(**self._prepare_for_class(_a ,_a ) ) _a : Any = outputs.attentions _a : Optional[int] = len(self.model_tester.depths ) self.assertEqual(len(_a ) ,_a ) # check that output_attentions also work using config del inputs_dict["output_attentions"] _a : Optional[int] = True _a : Dict = config.window_size**2 _a : Optional[int] = model_class(_a ) model.to(_a ) model.eval() with torch.no_grad(): _a : Union[str, Any] = model(**self._prepare_for_class(_a ,_a ) ) _a : Union[str, Any] = outputs.attentions self.assertEqual(len(_a ) ,_a ) self.assertListEqual( list(attentions[0].shape[-3:] ) ,[self.model_tester.num_heads[0], window_size_squared, window_size_squared] ,) _a : str = len(_a ) # Check attention is always last and order is fine _a : int = True _a : int = True _a : Union[str, Any] = model_class(_a ) model.to(_a ) model.eval() with torch.no_grad(): _a : Optional[int] = model(**self._prepare_for_class(_a ,_a ) ) if hasattr(self.model_tester ,'num_hidden_states_types' ): _a : Any = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states _a : Optional[Any] = 2 self.assertEqual(out_len + added_hidden_states ,len(_a ) ) _a : str = outputs.attentions self.assertEqual(len(_a ) ,_a ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) ,[self.model_tester.num_heads[0], window_size_squared, window_size_squared] ,) def __lowercase ( self : Optional[int] ,_a : str ,_a : Union[str, Any] ,_a : Any ,_a : Union[str, Any] ): '''simple docstring''' _a : int = model_class(_a ) model.to(_a ) model.eval() with torch.no_grad(): _a : Optional[int] = model(**self._prepare_for_class(_a ,_a ) ) _a : Any = outputs.hidden_states _a : str = getattr( self.model_tester ,'expected_num_hidden_layers' ,len(self.model_tester.depths ) + 1 ) self.assertEqual(len(_a ) ,_a ) # Swinv2 has a different seq_length _a : List[str] = ( config.patch_size if isinstance(config.patch_size ,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _a : Union[str, Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[num_patches, self.model_tester.embed_dim] ,) _a : Optional[int] = outputs.reshaped_hidden_states self.assertEqual(len(_a ) ,_a ) _a, _a, _a, _a : Optional[int] = reshaped_hidden_states[0].shape _a : str = ( reshaped_hidden_states[0].view(_a ,_a ,height * width ).permute(0 ,2 ,1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) ,[num_patches, self.model_tester.embed_dim] ,) def __lowercase ( self : Dict ): '''simple docstring''' _a, _a : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() _a : Any = ( self.model_tester.image_size if isinstance(self.model_tester.image_size ,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: _a : List[Any] = True self.check_hidden_states_output(_a ,_a ,_a ,_a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _a : Any = True self.check_hidden_states_output(_a ,_a ,_a ,_a ) def __lowercase ( self : Dict ): '''simple docstring''' _a, _a : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() _a : List[Any] = 3 _a : int = ( self.model_tester.image_size if isinstance(self.model_tester.image_size ,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) _a : Union[str, Any] = ( config.patch_size if isinstance(config.patch_size ,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _a : str = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) _a : Optional[int] = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: _a : int = True self.check_hidden_states_output(_a ,_a ,_a ,(padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _a : Optional[Any] = True self.check_hidden_states_output(_a ,_a ,_a ,(padded_height, padded_width) ) def __lowercase ( self : str ): '''simple docstring''' _a : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_a ) def __lowercase ( self : Union[str, Any] ): '''simple docstring''' _a : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_a ) @slow def __lowercase ( self : Optional[Any] ): '''simple docstring''' for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a : str = SwinvaModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def __lowercase ( self : List[str] ): '''simple docstring''' _a, _a : Any = self.model_tester.prepare_config_and_inputs_for_common() _a : int = _config_zero_init(_a ) for model_class in self.all_model_classes: _a : int = model_class(config=_a ) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() ,[0.0, 1.0] ,msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" ,) @require_vision @require_torch class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @cached_property def __lowercase ( self : Tuple ): '''simple docstring''' return ( AutoImageProcessor.from_pretrained('microsoft/swinv2-tiny-patch4-window8-256' ) if is_vision_available() else None ) @slow def __lowercase ( self : int ): '''simple docstring''' _a : Optional[Any] = SwinvaForImageClassification.from_pretrained('microsoft/swinv2-tiny-patch4-window8-256' ).to( _a ) _a : Union[str, Any] = self.default_image_processor _a : List[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) _a : Dict = image_processor(images=_a ,return_tensors='pt' ).to(_a ) # forward pass with torch.no_grad(): _a : Dict = model(**_a ) # verify the logits _a : Union[str, Any] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape ,_a ) _a : int = torch.tensor([-0.3947, -0.4306, 0.0026] ).to(_a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,_a ,atol=1E-4 ) )
319
0