code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
"""simple docstring""" import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, UNetaDConditionModel, VideoToVideoSDPipeline, ) from diffusers.utils import floats_tensor, is_xformers_available, skip_mps from diffusers.utils.testing_utils import enable_full_determinism, slow, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class lowerCAmelCase__ ( snake_case__ , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : str = VideoToVideoSDPipeline __UpperCAmelCase : Any = TEXT_GUIDED_IMAGE_VARIATION_PARAMS.union({"video"} ) - {'image', 'width', 'height'} __UpperCAmelCase : Tuple = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"video"} ) - {'image'} __UpperCAmelCase : int = PipelineTesterMixin.required_optional_params - {'latents'} __UpperCAmelCase : Any = False # No `output_type`. __UpperCAmelCase : str = frozenset( [ "num_inference_steps", "generator", "latents", "return_dict", "callback", "callback_steps", ] ) def snake_case ( self : Union[str, Any] ): torch.manual_seed(0 ) __lowercase : str = UNetaDConditionModel( block_out_channels=(3_2, 6_4, 6_4, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock3D", "CrossAttnDownBlock3D", "CrossAttnDownBlock3D", "DownBlock3D") , up_block_types=("UpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D") , cross_attention_dim=3_2 , attention_head_dim=4 , ) __lowercase : Union[str, Any] = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="scaled_linear" , clip_sample=_UpperCAmelCase , set_alpha_to_one=_UpperCAmelCase , ) torch.manual_seed(0 ) __lowercase : int = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , sample_size=1_2_8 , ) torch.manual_seed(0 ) __lowercase : Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act="gelu" , projection_dim=5_1_2 , ) __lowercase : int = CLIPTextModel(_UpperCAmelCase ) __lowercase : Union[str, Any] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) __lowercase : str = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, } return components def snake_case ( self : List[str] , lowercase__ : Optional[int] , lowercase__ : List[Any]=0 ): # 3 frames __lowercase : int = floats_tensor((1, 3, 3, 3_2, 3_2) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) if str(_UpperCAmelCase ).startswith("mps" ): __lowercase : List[str] = torch.manual_seed(_UpperCAmelCase ) else: __lowercase : Tuple = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) __lowercase : List[str] = { 'prompt': 'A painting of a squirrel eating a burger', 'video': video, 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'pt', } return inputs def snake_case ( self : List[Any] ): __lowercase : List[Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator __lowercase : Optional[Any] = self.get_dummy_components() __lowercase : Union[str, Any] = VideoToVideoSDPipeline(**_UpperCAmelCase ) __lowercase : int = sd_pipe.to(_UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __lowercase : Any = self.get_dummy_inputs(_UpperCAmelCase ) __lowercase : Optional[int] = 'np' __lowercase : Optional[int] = sd_pipe(**_UpperCAmelCase ).frames __lowercase : str = frames[0][-3:, -3:, -1] assert frames[0].shape == (3_2, 3_2, 3) __lowercase : int = np.array([1_0_6, 1_1_7, 1_1_3, 1_7_4, 1_3_7, 1_1_2, 1_4_8, 1_5_1, 1_3_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def snake_case ( self : Optional[int] ): self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=_UpperCAmelCase , expected_max_diff=5e-3 ) @unittest.skip(reason="Batching needs to be properly figured out first for this pipeline." ) def snake_case ( self : Any ): pass @unittest.skip(reason="Batching needs to be properly figured out first for this pipeline." ) def snake_case ( self : Dict ): pass @unittest.skip(reason="`num_images_per_prompt` argument is not supported for this pipeline." ) def snake_case ( self : List[Any] ): pass def snake_case ( self : Any ): return super().test_progress_bar() @slow @skip_mps class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" def snake_case ( self : Tuple ): __lowercase : Optional[Any] = VideoToVideoSDPipeline.from_pretrained("cerspense/zeroscope_v2_XL" , torch_dtype=torch.floataa ) pipe.enable_model_cpu_offload() # 10 frames __lowercase : List[Any] = torch.Generator(device="cpu" ).manual_seed(0 ) __lowercase : Tuple = torch.randn((1, 1_0, 3, 1_0_2_4, 5_7_6) , generator=_UpperCAmelCase ) __lowercase : Optional[int] = video.to("cuda" ) __lowercase : List[Any] = 'Spiderman is surfing' __lowercase : Any = pipe(_UpperCAmelCase , video=_UpperCAmelCase , generator=_UpperCAmelCase , num_inference_steps=3 , output_type="pt" ).frames __lowercase : Dict = np.array([-1.0_4_5_8_9_8_4, -1.1_2_7_9_2_9_7, -0.9_6_6_3_0_8_6, -0.9_1_5_0_3_9_0_6, -0.7_5_0_9_7_6_5_6] ) assert np.abs(video_frames.cpu().numpy()[0, 0, 0, 0, -5:] - expected_array ).sum() < 1e-2
575
from math import atan, cos, radians, sin, tan from .haversine_distance import haversine_distance a = 6_3_7_8_1_3_7.0 a = 6_3_5_6_7_5_2.3_1_4_2_4_5 a = 6_378_137 def UpperCamelCase_( __magic_name__ : float , __magic_name__ : float , __magic_name__ : float , __magic_name__ : float ): """simple docstring""" _lowerCAmelCase :List[Any] = (AXIS_A - AXIS_B) / AXIS_A # Parametric latitudes # https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude _lowerCAmelCase :Union[str, Any] = atan((1 - flattening) * tan(radians(__magic_name__ ) ) ) _lowerCAmelCase :List[str] = atan((1 - flattening) * tan(radians(__magic_name__ ) ) ) # Compute central angle between two points # using haversine theta. sigma = haversine_distance / equatorial radius _lowerCAmelCase :int = haversine_distance(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) / EQUATORIAL_RADIUS # Intermediate P and Q values _lowerCAmelCase :str = (b_lata + b_lata) / 2 _lowerCAmelCase :Tuple = (b_lata - b_lata) / 2 # Intermediate X value # X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2) _lowerCAmelCase :str = (sin(__magic_name__ ) ** 2) * (cos(__magic_name__ ) ** 2) _lowerCAmelCase :Optional[int] = cos(sigma / 2 ) ** 2 _lowerCAmelCase :List[Any] = (sigma - sin(__magic_name__ )) * (x_numerator / x_demonimator) # Intermediate Y value # Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2) _lowerCAmelCase :Dict = (cos(__magic_name__ ) ** 2) * (sin(__magic_name__ ) ** 2) _lowerCAmelCase :str = sin(sigma / 2 ) ** 2 _lowerCAmelCase :Union[str, Any] = (sigma + sin(__magic_name__ )) * (y_numerator / y_denominator) return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value))) if __name__ == "__main__": import doctest doctest.testmod()
687
0
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE = {"""vocab_file""": """spiece.model"""} __SCREAMING_SNAKE_CASE = { """vocab_file""": { """xlnet-base-cased""": """https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model""", """xlnet-large-cased""": """https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model""", } } __SCREAMING_SNAKE_CASE = { """xlnet-base-cased""": None, """xlnet-large-cased""": None, } # Segments (not really needed) __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = 2 __SCREAMING_SNAKE_CASE = 3 __SCREAMING_SNAKE_CASE = 4 class lowerCamelCase_ ( _A ): '''simple docstring''' a__ = VOCAB_FILES_NAMES a__ = PRETRAINED_VOCAB_FILES_MAP a__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ = "left" def __init__( self : List[str] , __lowerCamelCase : Any , __lowerCamelCase : str=False , __lowerCamelCase : Dict=True , __lowerCamelCase : List[str]=False , __lowerCamelCase : List[str]="<s>" , __lowerCamelCase : int="</s>" , __lowerCamelCase : str="<unk>" , __lowerCamelCase : int="<sep>" , __lowerCamelCase : Optional[Any]="<pad>" , __lowerCamelCase : Tuple="<cls>" , __lowerCamelCase : Optional[Any]="<mask>" , __lowerCamelCase : int=["<eop>", "<eod>"] , __lowerCamelCase : Optional[Dict[str, Any]] = None , **__lowerCamelCase : Optional[int] , ) -> None: # Mask token behave like a normal word, i.e. include the space before it A : str = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else mask_token A : Optional[int] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=__lowerCamelCase , remove_space=__lowerCamelCase , keep_accents=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , pad_token=__lowerCamelCase , cls_token=__lowerCamelCase , mask_token=__lowerCamelCase , additional_special_tokens=__lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **__lowerCamelCase , ) A : int = 3 A : Union[str, Any] = do_lower_case A : List[Any] = remove_space A : List[Any] = keep_accents A : str = vocab_file A : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__lowerCamelCase ) @property def SCREAMING_SNAKE_CASE__ ( self : str ) -> int: return len(self.sp_model ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> Dict: A : str = {self.convert_ids_to_tokens(__lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Tuple ) -> Optional[Any]: A : Optional[int] = self.__dict__.copy() A : Dict = None return state def __setstate__( self : Any , __lowerCamelCase : Any ) -> Dict: A : Union[str, Any] = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): A : Optional[int] = {} A : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , __lowerCamelCase : int ) -> Any: if self.remove_space: A : Union[str, Any] = " ".join(inputs.strip().split() ) else: A : str = inputs A : Dict = outputs.replace("``" , "\"" ).replace("''" , "\"" ) if not self.keep_accents: A : Optional[int] = unicodedata.normalize("NFKD" , __lowerCamelCase ) A : Tuple = "".join([c for c in outputs if not unicodedata.combining(__lowerCamelCase )] ) if self.do_lower_case: A : Tuple = outputs.lower() return outputs def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , __lowerCamelCase : str ) -> List[str]: A : Dict = self.preprocess_text(__lowerCamelCase ) A : Tuple = self.sp_model.encode(__lowerCamelCase , out_type=__lowerCamelCase ) A : Any = [] for piece in pieces: if len(__lowerCamelCase ) > 1 and piece[-1] == str("," ) and piece[-2].isdigit(): A : Optional[Any] = self.sp_model.EncodeAsPieces(piece[:-1].replace(__lowerCamelCase , "" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: A : Optional[Any] = cur_pieces[1:] else: A : List[str] = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(__lowerCamelCase ) else: new_pieces.append(__lowerCamelCase ) return new_pieces def SCREAMING_SNAKE_CASE__ ( self : Any , __lowerCamelCase : Tuple ) -> Dict: return self.sp_model.PieceToId(__lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self : int , __lowerCamelCase : Optional[int] ) -> List[str]: return self.sp_model.IdToPiece(__lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , __lowerCamelCase : Tuple ) -> Tuple: A : Any = "".join(__lowerCamelCase ).replace(__lowerCamelCase , " " ).strip() return out_string def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , __lowerCamelCase : List[int] , __lowerCamelCase : bool = False , __lowerCamelCase : bool = None , __lowerCamelCase : bool = True , **__lowerCamelCase : Union[str, Any] , ) -> str: A : Any = kwargs.pop("use_source_tokenizer" , __lowerCamelCase ) A : Any = self.convert_ids_to_tokens(__lowerCamelCase , skip_special_tokens=__lowerCamelCase ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 A : Dict = [] A : Dict = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(__lowerCamelCase ) ) A : Optional[Any] = [] sub_texts.append(__lowerCamelCase ) else: current_sub_text.append(__lowerCamelCase ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(__lowerCamelCase ) ) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens A : Any = "".join(__lowerCamelCase ) A : Optional[int] = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: A : Dict = self.clean_up_tokenization(__lowerCamelCase ) return clean_text else: return text def SCREAMING_SNAKE_CASE__ ( self : Any , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ) -> List[int]: A : Dict = [self.sep_token_id] A : Dict = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def SCREAMING_SNAKE_CASE__ ( self : str , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None , __lowerCamelCase : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCamelCase , token_ids_a=__lowerCamelCase , already_has_special_tokens=__lowerCamelCase ) if token_ids_a is not None: return ([0] * len(__lowerCamelCase )) + [1] + ([0] * len(__lowerCamelCase )) + [1, 1] return ([0] * len(__lowerCamelCase )) + [1, 1] def SCREAMING_SNAKE_CASE__ ( self : List[Any] , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ) -> List[int]: A : Optional[Any] = [self.sep_token_id] A : Dict = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__lowerCamelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return A : str = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(__lowerCamelCase , "wb" ) as fi: A : Tuple = self.sp_model.serialized_model_proto() fi.write(__lowerCamelCase ) return (out_vocab_file,)
17
import time import warnings from abc import ABC from copy import deepcopy from typing import Optional import torch from ..utils import add_start_docstrings, logging __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) scores (`torch.FloatTensor` of shape `(batch_size, config.vocab_size)`): Prediction scores of a language modeling head. These can be scores for each vocabulary token before SoftMax or scores for each vocabulary token after SoftMax. kwargs (`Dict[str, Any]`, *optional*): Additional stopping criteria specific kwargs. Return: `bool`. `False` indicates we should continue, `True` indicates we should stop. """ class lowerCamelCase_ ( _A ): '''simple docstring''' @add_start_docstrings(__lowerCamelCase ) def __call__( self : Optional[int] , __lowerCamelCase : torch.LongTensor , __lowerCamelCase : torch.FloatTensor , **__lowerCamelCase : Optional[Any] ) -> bool: raise NotImplementedError("StoppingCriteria needs to be subclassed" ) class lowerCamelCase_ ( _A ): '''simple docstring''' def __init__( self : List[str] , __lowerCamelCase : int , __lowerCamelCase : Optional[int] = None ) -> List[Any]: A : str = max_length A : Optional[int] = max_position_embeddings @add_start_docstrings(__lowerCamelCase ) def __call__( self : List[str] , __lowerCamelCase : torch.LongTensor , __lowerCamelCase : torch.FloatTensor , **__lowerCamelCase : Any ) -> bool: A : List[Any] = input_ids.shape[-1] A : Any = cur_len >= self.max_length if self.max_position_embeddings is not None and not is_done and cur_len >= self.max_position_embeddings: logger.warning_once( "This is a friendly reminder - the current text generation call will exceed the model's predefined " F"""maximum length ({self.max_position_embeddings}). Depending on the model, you may observe """ "exceptions, performance degradation, or nothing at all." ) return is_done class lowerCamelCase_ ( _A ): '''simple docstring''' def __init__( self : Optional[Any] , __lowerCamelCase : int , __lowerCamelCase : int ) -> List[Any]: warnings.warn( "The class `MaxNewTokensCriteria` is deprecated. " F"""Please use `MaxLengthCriteria(max_length={start_length + max_new_tokens})` """ "with `max_length = start_length + max_new_tokens` instead." , __lowerCamelCase , ) A : str = start_length A : Optional[Any] = max_new_tokens A : Dict = start_length + max_new_tokens @add_start_docstrings(__lowerCamelCase ) def __call__( self : int , __lowerCamelCase : torch.LongTensor , __lowerCamelCase : torch.FloatTensor , **__lowerCamelCase : Tuple ) -> bool: return input_ids.shape[-1] >= self.max_length class lowerCamelCase_ ( _A ): '''simple docstring''' def __init__( self : Optional[int] , __lowerCamelCase : float , __lowerCamelCase : Optional[float] = None ) -> List[Any]: A : str = max_time A : Dict = time.time() if initial_timestamp is None else initial_timestamp @add_start_docstrings(__lowerCamelCase ) def __call__( self : Any , __lowerCamelCase : torch.LongTensor , __lowerCamelCase : torch.FloatTensor , **__lowerCamelCase : Tuple ) -> bool: return time.time() - self.initial_timestamp > self.max_time class lowerCamelCase_ ( _A ): '''simple docstring''' @add_start_docstrings(__lowerCamelCase ) def __call__( self : Union[str, Any] , __lowerCamelCase : torch.LongTensor , __lowerCamelCase : torch.FloatTensor , **__lowerCamelCase : int ) -> bool: return any(criteria(__lowerCamelCase , __lowerCamelCase ) for criteria in self ) @property def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> Optional[int]: for stopping_criterium in self: if isinstance(__lowerCamelCase , __lowerCamelCase ): return stopping_criterium.max_length elif isinstance(__lowerCamelCase , __lowerCamelCase ): return stopping_criterium.max_length return None def UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase ): A : Optional[int] = stopping_criteria.max_length A : Any = deepcopy(_lowerCamelCase ) if stopping_max_length is not None and stopping_max_length != max_length: warnings.warn("You set different `max_length` for stopping criteria and `max_length` parameter" , _lowerCamelCase ) elif stopping_max_length is None: new_stopping_criteria.append(MaxLengthCriteria(max_length=_lowerCamelCase ) ) return new_stopping_criteria
17
1
from math import factorial def _lowerCamelCase( lowercase__ , lowercase__ , lowercase__ ) -> float: '''simple docstring''' if successes > trials: raise ValueError('successes must be lower or equal to trials' ) if trials < 0 or successes < 0: raise ValueError('the function is defined for non-negative integers' ) if not isinstance(lowercase__ , lowercase__ ) or not isinstance(lowercase__ , lowercase__ ): raise ValueError('the function is defined for non-negative integers' ) if not 0 < prob < 1: raise ValueError('prob has to be in range of 1 - 0' ) __lowercase= (prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! __lowercase= float(factorial(lowercase__ ) ) coefficient /= factorial(lowercase__ ) * factorial(trials - successes ) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print('''Probability of 2 successes out of 4 trails''') print('''with probability of 0.75 is:''', end=''' ''') print(binomial_distribution(2, 4, 0.7_5))
230
import gc import unittest from parameterized import parameterized from diffusers import FlaxUNetaDConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class A ( unittest.TestCase ): def _A (self , lowerCAmelCase , lowerCAmelCase ): return f'gaussian_noise_s={seed}_shape={"_".join([str(lowerCAmelCase ) for s in shape] )}.npy' def _A (self ): # clean up the VRAM after each test super().tearDown() gc.collect() def _A (self , lowerCAmelCase=0 , lowerCAmelCase=(4, 4, 6_4, 6_4) , lowerCAmelCase=False ): __lowercase= jnp.bfloataa if fpaa else jnp.floataa __lowercase= jnp.array(load_hf_numpy(self.get_file_format(lowerCAmelCase , lowerCAmelCase ) ) , dtype=lowerCAmelCase ) return image def _A (self , lowerCAmelCase=False , lowerCAmelCase="CompVis/stable-diffusion-v1-4" ): __lowercase= jnp.bfloataa if fpaa else jnp.floataa __lowercase= 'bf16' if fpaa else None __lowercase, __lowercase= FlaxUNetaDConditionModel.from_pretrained( lowerCAmelCase , subfolder='unet' , dtype=lowerCAmelCase , revision=lowerCAmelCase ) return model, params def _A (self , lowerCAmelCase=0 , lowerCAmelCase=(4, 7_7, 7_6_8) , lowerCAmelCase=False ): __lowercase= jnp.bfloataa if fpaa else jnp.floataa __lowercase= jnp.array(load_hf_numpy(self.get_file_format(lowerCAmelCase , lowerCAmelCase ) ) , dtype=lowerCAmelCase ) return hidden_states @parameterized.expand( [ # fmt: off [8_3, 4, [-0.23_23, -0.13_04, 0.08_13, -0.30_93, -0.09_19, -0.15_71, -0.11_25, -0.58_06]], [1_7, 0.55, [-0.08_31, -0.24_43, 0.09_01, -0.09_19, 0.33_96, 0.01_03, -0.37_43, 0.07_01]], [8, 0.89, [-0.48_63, 0.08_59, 0.08_75, -0.16_58, 0.91_99, -0.01_14, 0.48_39, 0.46_39]], [3, 1_0_0_0, [-0.56_49, 0.24_02, -0.55_18, 0.12_48, 1.13_28, -0.24_43, -0.03_25, -1.00_78]], # fmt: on ] ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): __lowercase, __lowercase= self.get_unet_model(model_id='CompVis/stable-diffusion-v1-4' , fpaa=lowerCAmelCase ) __lowercase= self.get_latents(lowerCAmelCase , fpaa=lowerCAmelCase ) __lowercase= self.get_encoder_hidden_states(lowerCAmelCase , fpaa=lowerCAmelCase ) __lowercase= model.apply( {'params': params} , lowerCAmelCase , jnp.array(lowerCAmelCase , dtype=jnp.intaa ) , encoder_hidden_states=lowerCAmelCase , ).sample assert sample.shape == latents.shape __lowercase= jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) __lowercase= jnp.array(lowerCAmelCase , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(lowerCAmelCase , lowerCAmelCase , atol=1E-2 ) @parameterized.expand( [ # fmt: off [8_3, 4, [0.15_14, 0.08_07, 0.16_24, 0.10_16, -0.18_96, 0.02_63, 0.06_77, 0.23_10]], [1_7, 0.55, [0.11_64, -0.02_16, 0.01_70, 0.15_89, -0.31_20, 0.10_05, -0.05_81, -0.14_58]], [8, 0.89, [-0.17_58, -0.01_69, 0.10_04, -0.14_11, 0.13_12, 0.11_03, -0.19_96, 0.21_39]], [3, 1_0_0_0, [0.12_14, 0.03_52, -0.07_31, -0.15_62, -0.09_94, -0.09_06, -0.23_40, -0.05_39]], # fmt: on ] ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): __lowercase, __lowercase= self.get_unet_model(model_id='stabilityai/stable-diffusion-2' , fpaa=lowerCAmelCase ) __lowercase= self.get_latents(lowerCAmelCase , shape=(4, 4, 9_6, 9_6) , fpaa=lowerCAmelCase ) __lowercase= self.get_encoder_hidden_states(lowerCAmelCase , shape=(4, 7_7, 1_0_2_4) , fpaa=lowerCAmelCase ) __lowercase= model.apply( {'params': params} , lowerCAmelCase , jnp.array(lowerCAmelCase , dtype=jnp.intaa ) , encoder_hidden_states=lowerCAmelCase , ).sample assert sample.shape == latents.shape __lowercase= jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) __lowercase= jnp.array(lowerCAmelCase , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(lowerCAmelCase , lowerCAmelCase , atol=1E-2 )
230
1
'''simple docstring''' def UpperCamelCase_( __magic_name__ : Optional[int] , __magic_name__ : List[Any] , __magic_name__ : Optional[Any] ): """simple docstring""" _lowerCAmelCase :str = len(_lowerCAmelCase ) _lowerCAmelCase :Any = [[0] * n for i in range(_lowerCAmelCase )] for i in range(_lowerCAmelCase ): _lowerCAmelCase :str = y_points[i] for i in range(2 , _lowerCAmelCase ): for j in range(_lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase :Any = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
701
from ...processing_utils import ProcessorMixin class UpperCAmelCase_ (snake_case__ ): """simple docstring""" lowerCamelCase : Optional[int] = 'WhisperFeatureExtractor' lowerCamelCase : List[Any] = 'WhisperTokenizer' def __init__( self: Union[str, Any] , _UpperCAmelCase: Any , _UpperCAmelCase: Optional[int] ): super().__init__(_UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :int = self.feature_extractor _lowerCAmelCase :List[Any] = False def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] , _UpperCAmelCase: Optional[int]=None , _UpperCAmelCase: Tuple=None , _UpperCAmelCase: Any=True ): return self.tokenizer.get_decoder_prompt_ids(task=_UpperCAmelCase , language=_UpperCAmelCase , no_timestamps=_UpperCAmelCase ) def __call__( self: List[Any] , *_UpperCAmelCase: List[Any] , **_UpperCAmelCase: int ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*_UpperCAmelCase , **_UpperCAmelCase ) _lowerCAmelCase :int = kwargs.pop('audio' , _UpperCAmelCase ) _lowerCAmelCase :Optional[int] = kwargs.pop('sampling_rate' , _UpperCAmelCase ) _lowerCAmelCase :Any = kwargs.pop('text' , _UpperCAmelCase ) if len(_UpperCAmelCase ) > 0: _lowerCAmelCase :Union[str, Any] = args[0] _lowerCAmelCase :str = args[1:] if audio is None and text is None: raise ValueError('You need to specify either an `audio` or `text` input to process.' ) if audio is not None: _lowerCAmelCase :int = self.feature_extractor(_UpperCAmelCase , *_UpperCAmelCase , sampling_rate=_UpperCAmelCase , **_UpperCAmelCase ) if text is not None: _lowerCAmelCase :str = self.tokenizer(_UpperCAmelCase , **_UpperCAmelCase ) if text is None: return inputs elif audio is None: return encodings else: _lowerCAmelCase :List[str] = encodings['input_ids'] return inputs def SCREAMING_SNAKE_CASE__ ( self: int , *_UpperCAmelCase: int , **_UpperCAmelCase: Dict ): return self.tokenizer.batch_decode(*_UpperCAmelCase , **_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Any , *_UpperCAmelCase: Optional[int] , **_UpperCAmelCase: Optional[int] ): return self.tokenizer.decode(*_UpperCAmelCase , **_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Dict , _UpperCAmelCase: str , _UpperCAmelCase: Optional[Any]="np" ): return self.tokenizer.get_prompt_ids(_UpperCAmelCase , return_tensors=_UpperCAmelCase )
382
0
from __future__ import annotations import math import random from typing import Any class UpperCAmelCase_ : def __init__( self ): UpperCAmelCase__ : list[Any] = [] UpperCAmelCase__ : int = 0 UpperCAmelCase__ : int = 0 def __UpperCAmelCase ( self ): return self.head == self.tail def __UpperCAmelCase ( self , _lowerCAmelCase ): self.data.append(_lowerCAmelCase ) UpperCAmelCase__ : Dict = self.tail + 1 def __UpperCAmelCase ( self ): UpperCAmelCase__ : Optional[int] = self.data[self.head] UpperCAmelCase__ : Optional[Any] = self.head + 1 return ret def __UpperCAmelCase ( self ): return self.tail - self.head def __UpperCAmelCase ( self ): print(self.data ) print("""**************""" ) print(self.data[self.head : self.tail] ) class UpperCAmelCase_ : def __init__( self , _lowerCAmelCase ): UpperCAmelCase__ : List[Any] = data UpperCAmelCase__ : MyNode | None = None UpperCAmelCase__ : MyNode | None = None UpperCAmelCase__ : int = 1 def __UpperCAmelCase ( self ): return self.data def __UpperCAmelCase ( self ): return self.left def __UpperCAmelCase ( self ): return self.right def __UpperCAmelCase ( self ): return self.height def __UpperCAmelCase ( self , _lowerCAmelCase ): UpperCAmelCase__ : Any = data def __UpperCAmelCase ( self , _lowerCAmelCase ): UpperCAmelCase__ : List[str] = node def __UpperCAmelCase ( self , _lowerCAmelCase ): UpperCAmelCase__ : List[Any] = node def __UpperCAmelCase ( self , _lowerCAmelCase ): UpperCAmelCase__ : Tuple = height def _lowerCamelCase ( __lowerCamelCase ) -> int: '''simple docstring''' if node is None: return 0 return node.get_height() def _lowerCamelCase ( __lowerCamelCase , __lowerCamelCase ) -> int: '''simple docstring''' if a > b: return a return b def _lowerCamelCase ( __lowerCamelCase ) -> MyNode: '''simple docstring''' print("""left rotation node:""" , node.get_data() ) UpperCAmelCase__ : Optional[Any] = node.get_left() assert ret is not None node.set_left(ret.get_right() ) ret.set_right(_lowerCamelCase ) UpperCAmelCase__ : str = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(_lowerCamelCase ) UpperCAmelCase__ : List[Any] = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(_lowerCamelCase ) return ret def _lowerCamelCase ( __lowerCamelCase ) -> MyNode: '''simple docstring''' print("""right rotation node:""" , node.get_data() ) UpperCAmelCase__ : Optional[Any] = node.get_right() assert ret is not None node.set_right(ret.get_left() ) ret.set_left(_lowerCamelCase ) UpperCAmelCase__ : Tuple = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(_lowerCamelCase ) UpperCAmelCase__ : Any = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(_lowerCamelCase ) return ret def _lowerCamelCase ( __lowerCamelCase ) -> MyNode: '''simple docstring''' UpperCAmelCase__ : str = node.get_left() assert left_child is not None node.set_left(left_rotation(_lowerCamelCase ) ) return right_rotation(_lowerCamelCase ) def _lowerCamelCase ( __lowerCamelCase ) -> MyNode: '''simple docstring''' UpperCAmelCase__ : Optional[int] = node.get_right() assert right_child is not None node.set_right(right_rotation(_lowerCamelCase ) ) return left_rotation(_lowerCamelCase ) def _lowerCamelCase ( __lowerCamelCase , __lowerCamelCase ) -> MyNode | None: '''simple docstring''' if node is None: return MyNode(_lowerCamelCase ) if data < node.get_data(): node.set_left(insert_node(node.get_left() , _lowerCamelCase ) ) if ( get_height(node.get_left() ) - get_height(node.get_right() ) == 2 ): # an unbalance detected UpperCAmelCase__ : Union[str, Any] = node.get_left() assert left_child is not None if ( data < left_child.get_data() ): # new node is the left child of the left child UpperCAmelCase__ : Any = right_rotation(_lowerCamelCase ) else: UpperCAmelCase__ : Tuple = lr_rotation(_lowerCamelCase ) else: node.set_right(insert_node(node.get_right() , _lowerCamelCase ) ) if get_height(node.get_right() ) - get_height(node.get_left() ) == 2: UpperCAmelCase__ : Optional[int] = node.get_right() assert right_child is not None if data < right_child.get_data(): UpperCAmelCase__ : Optional[int] = rl_rotation(_lowerCamelCase ) else: UpperCAmelCase__ : Tuple = left_rotation(_lowerCamelCase ) UpperCAmelCase__ : Optional[Any] = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(_lowerCamelCase ) return node def _lowerCamelCase ( __lowerCamelCase ) -> Any: '''simple docstring''' while True: UpperCAmelCase__ : Dict = root.get_right() if right_child is None: break UpperCAmelCase__ : List[Any] = right_child return root.get_data() def _lowerCamelCase ( __lowerCamelCase ) -> Any: '''simple docstring''' while True: UpperCAmelCase__ : Optional[Any] = root.get_left() if left_child is None: break UpperCAmelCase__ : int = left_child return root.get_data() def _lowerCamelCase ( __lowerCamelCase , __lowerCamelCase ) -> MyNode | None: '''simple docstring''' UpperCAmelCase__ : int = root.get_left() UpperCAmelCase__ : int = root.get_right() if root.get_data() == data: if left_child is not None and right_child is not None: UpperCAmelCase__ : Tuple = get_left_most(_lowerCamelCase ) root.set_data(_lowerCamelCase ) root.set_right(del_node(_lowerCamelCase , _lowerCamelCase ) ) elif left_child is not None: UpperCAmelCase__ : Optional[int] = left_child elif right_child is not None: UpperCAmelCase__ : str = right_child else: return None elif root.get_data() > data: if left_child is None: print("""No such data""" ) return root else: root.set_left(del_node(_lowerCamelCase , _lowerCamelCase ) ) else: # root.get_data() < data if right_child is None: return root else: root.set_right(del_node(_lowerCamelCase , _lowerCamelCase ) ) if get_height(_lowerCamelCase ) - get_height(_lowerCamelCase ) == 2: assert right_child is not None if get_height(right_child.get_right() ) > get_height(right_child.get_left() ): UpperCAmelCase__ : Optional[Any] = left_rotation(_lowerCamelCase ) else: UpperCAmelCase__ : str = rl_rotation(_lowerCamelCase ) elif get_height(_lowerCamelCase ) - get_height(_lowerCamelCase ) == -2: assert left_child is not None if get_height(left_child.get_left() ) > get_height(left_child.get_right() ): UpperCAmelCase__ : List[Any] = right_rotation(_lowerCamelCase ) else: UpperCAmelCase__ : List[str] = lr_rotation(_lowerCamelCase ) UpperCAmelCase__ : List[Any] = my_max(get_height(root.get_right() ) , get_height(root.get_left() ) ) + 1 root.set_height(_lowerCamelCase ) return root class UpperCAmelCase_ : def __init__( self ): UpperCAmelCase__ : MyNode | None = None def __UpperCAmelCase ( self ): return get_height(self.root ) def __UpperCAmelCase ( self , _lowerCAmelCase ): print("""insert:""" + str(_lowerCAmelCase ) ) UpperCAmelCase__ : Optional[Any] = insert_node(self.root , _lowerCAmelCase ) def __UpperCAmelCase ( self , _lowerCAmelCase ): print("""delete:""" + str(_lowerCAmelCase ) ) if self.root is None: print("""Tree is empty!""" ) return UpperCAmelCase__ : str = del_node(self.root , _lowerCAmelCase ) def __str__( self , ): # a level traversale, gives a more intuitive look on the tree UpperCAmelCase__ : List[Any] = """""" UpperCAmelCase__ : int = MyQueue() q.push(self.root ) UpperCAmelCase__ : int = self.get_height() if layer == 0: return output UpperCAmelCase__ : Any = 0 while not q.is_empty(): UpperCAmelCase__ : Optional[int] = q.pop() UpperCAmelCase__ : Optional[int] = """ """ * int(math.pow(2 , layer - 1 ) ) output += space if node is None: output += "*" q.push(_lowerCAmelCase ) q.push(_lowerCAmelCase ) else: output += str(node.get_data() ) q.push(node.get_left() ) q.push(node.get_right() ) output += space UpperCAmelCase__ : Tuple = cnt + 1 for i in range(100 ): if cnt == math.pow(2 , _lowerCAmelCase ) - 1: UpperCAmelCase__ : Tuple = layer - 1 if layer == 0: output += "\n*************************************" return output output += "\n" break output += "\n*************************************" return output def _lowerCamelCase ( ) -> None: '''simple docstring''' import doctest doctest.testmod() if __name__ == "__main__": _test() SCREAMING_SNAKE_CASE__ : Optional[int] = AVLtree() SCREAMING_SNAKE_CASE__ : Optional[int] = list(range(10)) random.shuffle(lst) for i in lst: t.insert(i) print(str(t)) random.shuffle(lst) for i in lst: t.del_node(i) print(str(t))
79
'''simple docstring''' def _a ( _lowerCamelCase = 100 ) -> int: """simple docstring""" __snake_case : Any = n * (n + 1) * (2 * n + 1) / 6 __snake_case : List[Any] = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(f"""{solution() = }""")
26
0
from __future__ import annotations from typing import Any class __SCREAMING_SNAKE_CASE : def __init__( self, _a = 6 ) -> None: __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None self.create_linked_list(_a ) def __lowerCAmelCase ( self, _a ) -> None: __SCREAMING_SNAKE_CASE = Node() __SCREAMING_SNAKE_CASE = current_node __SCREAMING_SNAKE_CASE = current_node __SCREAMING_SNAKE_CASE = current_node for _ in range(1, _a ): __SCREAMING_SNAKE_CASE = Node() __SCREAMING_SNAKE_CASE = current_node __SCREAMING_SNAKE_CASE = previous_node __SCREAMING_SNAKE_CASE = current_node __SCREAMING_SNAKE_CASE = self.front __SCREAMING_SNAKE_CASE = previous_node def __lowerCAmelCase ( self ) -> bool: return ( self.front == self.rear and self.front is not None and self.front.data is None ) def __lowerCAmelCase ( self ) -> Any | None: self.check_can_perform_operation() return self.front.data if self.front else None def __lowerCAmelCase ( self, _a ) -> None: if self.rear is None: return self.check_is_full() if not self.is_empty(): __SCREAMING_SNAKE_CASE = self.rear.next if self.rear: __SCREAMING_SNAKE_CASE = data def __lowerCAmelCase ( self ) -> Any: self.check_can_perform_operation() if self.rear is None or self.front is None: return None if self.front == self.rear: __SCREAMING_SNAKE_CASE = self.front.data __SCREAMING_SNAKE_CASE = None return data __SCREAMING_SNAKE_CASE = self.front __SCREAMING_SNAKE_CASE = old_front.next __SCREAMING_SNAKE_CASE = old_front.data __SCREAMING_SNAKE_CASE = None return data def __lowerCAmelCase ( self ) -> None: if self.is_empty(): raise Exception("Empty Queue" ) def __lowerCAmelCase ( self ) -> None: if self.rear and self.rear.next == self.front: raise Exception("Full Queue" ) class __SCREAMING_SNAKE_CASE : def __init__( self ) -> None: __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None if __name__ == "__main__": import doctest doctest.testmod()
214
import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class __SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE__ =(DDIMParallelScheduler,) SCREAMING_SNAKE_CASE__ =(("""eta""", 0.0), ("""num_inference_steps""", 50)) def __lowerCAmelCase ( self, **_a ) -> Dict: __SCREAMING_SNAKE_CASE = { "num_train_timesteps": 10_00, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", "clip_sample": True, } config.update(**_a ) return config def __lowerCAmelCase ( self, **_a ) -> Optional[Any]: __SCREAMING_SNAKE_CASE = self.scheduler_classes[0] __SCREAMING_SNAKE_CASE = self.get_scheduler_config(**_a ) __SCREAMING_SNAKE_CASE = scheduler_class(**_a ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 10, 0.0 __SCREAMING_SNAKE_CASE = self.dummy_model() __SCREAMING_SNAKE_CASE = self.dummy_sample_deter scheduler.set_timesteps(_a ) for t in scheduler.timesteps: __SCREAMING_SNAKE_CASE = model(_a, _a ) __SCREAMING_SNAKE_CASE = scheduler.step(_a, _a, _a, _a ).prev_sample return sample def __lowerCAmelCase ( self ) -> List[Any]: for timesteps in [1_00, 5_00, 10_00]: self.check_over_configs(num_train_timesteps=_a ) def __lowerCAmelCase ( self ) -> Union[str, Any]: for steps_offset in [0, 1]: self.check_over_configs(steps_offset=_a ) __SCREAMING_SNAKE_CASE = self.scheduler_classes[0] __SCREAMING_SNAKE_CASE = self.get_scheduler_config(steps_offset=1 ) __SCREAMING_SNAKE_CASE = scheduler_class(**_a ) scheduler.set_timesteps(5 ) assert torch.equal(scheduler.timesteps, torch.LongTensor([8_01, 6_01, 4_01, 2_01, 1] ) ) def __lowerCAmelCase ( self ) -> List[str]: for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1], [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=_a, beta_end=_a ) def __lowerCAmelCase ( self ) -> List[Any]: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_a ) def __lowerCAmelCase ( self ) -> Union[str, Any]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_a ) def __lowerCAmelCase ( self ) -> List[Any]: for clip_sample in [True, False]: self.check_over_configs(clip_sample=_a ) def __lowerCAmelCase ( self ) -> List[Any]: for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=_a ) def __lowerCAmelCase ( self ) -> Optional[Any]: for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=_a ) def __lowerCAmelCase ( self ) -> List[str]: self.check_over_configs(thresholding=_a ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=_a, prediction_type=_a, sample_max_value=_a, ) def __lowerCAmelCase ( self ) -> Dict: for t in [1, 10, 49]: self.check_over_forward(time_step=_a ) def __lowerCAmelCase ( self ) -> Dict: for t, num_inference_steps in zip([1, 10, 50], [10, 50, 5_00] ): self.check_over_forward(time_step=_a, num_inference_steps=_a ) def __lowerCAmelCase ( self ) -> Any: for t, eta in zip([1, 10, 49], [0.0, 0.5, 1.0] ): self.check_over_forward(time_step=_a, eta=_a ) def __lowerCAmelCase ( self ) -> List[Any]: __SCREAMING_SNAKE_CASE = self.scheduler_classes[0] __SCREAMING_SNAKE_CASE = self.get_scheduler_config() __SCREAMING_SNAKE_CASE = scheduler_class(**_a ) assert torch.sum(torch.abs(scheduler._get_variance(0, 0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_20, 4_00 ) - 0.1_4771 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_80, 9_60 ) - 0.3_2460 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(0, 0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_87, 4_86 ) - 0.0_0979 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_99, 9_98 ) - 0.02 ) ) < 1E-5 def __lowerCAmelCase ( self ) -> List[str]: __SCREAMING_SNAKE_CASE = self.scheduler_classes[0] __SCREAMING_SNAKE_CASE = self.get_scheduler_config() __SCREAMING_SNAKE_CASE = scheduler_class(**_a ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 10, 0.0 scheduler.set_timesteps(_a ) __SCREAMING_SNAKE_CASE = self.dummy_model() __SCREAMING_SNAKE_CASE = self.dummy_sample_deter __SCREAMING_SNAKE_CASE = self.dummy_sample_deter + 0.1 __SCREAMING_SNAKE_CASE = self.dummy_sample_deter - 0.1 __SCREAMING_SNAKE_CASE = samplea.shape[0] __SCREAMING_SNAKE_CASE = torch.stack([samplea, samplea, samplea], dim=0 ) __SCREAMING_SNAKE_CASE = torch.arange(_a )[0:3, None].repeat(1, _a ) __SCREAMING_SNAKE_CASE = model(samples.flatten(0, 1 ), timesteps.flatten(0, 1 ) ) __SCREAMING_SNAKE_CASE = scheduler.batch_step_no_noise(_a, timesteps.flatten(0, 1 ), samples.flatten(0, 1 ), _a ) __SCREAMING_SNAKE_CASE = torch.sum(torch.abs(_a ) ) __SCREAMING_SNAKE_CASE = torch.mean(torch.abs(_a ) ) assert abs(result_sum.item() - 1147.7904 ) < 1E-2 assert abs(result_mean.item() - 0.4982 ) < 1E-3 def __lowerCAmelCase ( self ) -> int: __SCREAMING_SNAKE_CASE = self.full_loop() __SCREAMING_SNAKE_CASE = torch.sum(torch.abs(_a ) ) __SCREAMING_SNAKE_CASE = torch.mean(torch.abs(_a ) ) assert abs(result_sum.item() - 172.0067 ) < 1E-2 assert abs(result_mean.item() - 0.22_3967 ) < 1E-3 def __lowerCAmelCase ( self ) -> Optional[int]: __SCREAMING_SNAKE_CASE = self.full_loop(prediction_type="v_prediction" ) __SCREAMING_SNAKE_CASE = torch.sum(torch.abs(_a ) ) __SCREAMING_SNAKE_CASE = torch.mean(torch.abs(_a ) ) assert abs(result_sum.item() - 52.5302 ) < 1E-2 assert abs(result_mean.item() - 0.0684 ) < 1E-3 def __lowerCAmelCase ( self ) -> List[Any]: # We specify different beta, so that the first alpha is 0.99 __SCREAMING_SNAKE_CASE = self.full_loop(set_alpha_to_one=_a, beta_start=0.01 ) __SCREAMING_SNAKE_CASE = torch.sum(torch.abs(_a ) ) __SCREAMING_SNAKE_CASE = torch.mean(torch.abs(_a ) ) assert abs(result_sum.item() - 149.8295 ) < 1E-2 assert abs(result_mean.item() - 0.1951 ) < 1E-3 def __lowerCAmelCase ( self ) -> Optional[int]: # We specify different beta, so that the first alpha is 0.99 __SCREAMING_SNAKE_CASE = self.full_loop(set_alpha_to_one=_a, beta_start=0.01 ) __SCREAMING_SNAKE_CASE = torch.sum(torch.abs(_a ) ) __SCREAMING_SNAKE_CASE = torch.mean(torch.abs(_a ) ) assert abs(result_sum.item() - 149.0784 ) < 1E-2 assert abs(result_mean.item() - 0.1941 ) < 1E-3
214
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging A = logging.get_logger(__name__) A = { """uw-madison/mra-base-512-4""": """https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json""", } class a__ ( __magic_name__ ): lowercase_ = "mra" def __init__( self : Any , UpperCamelCase_ : List[Any]=50265 , UpperCamelCase_ : List[Any]=768 , UpperCamelCase_ : Dict=12 , UpperCamelCase_ : int=12 , UpperCamelCase_ : str=3072 , UpperCamelCase_ : Optional[int]="gelu" , UpperCamelCase_ : Union[str, Any]=0.1 , UpperCamelCase_ : List[Any]=0.1 , UpperCamelCase_ : Dict=512 , UpperCamelCase_ : Optional[int]=1 , UpperCamelCase_ : Optional[Any]=0.02 , UpperCamelCase_ : List[str]=1e-5 , UpperCamelCase_ : str="absolute" , UpperCamelCase_ : Tuple=4 , UpperCamelCase_ : Any="full" , UpperCamelCase_ : List[Any]=0 , UpperCamelCase_ : List[Any]=0 , UpperCamelCase_ : Tuple=1 , UpperCamelCase_ : Dict=0 , UpperCamelCase_ : int=2 , **UpperCamelCase_ : Optional[Any] , ): """simple docstring""" super().__init__(pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , **UpperCamelCase_) __UpperCAmelCase : str = vocab_size __UpperCAmelCase : int = max_position_embeddings __UpperCAmelCase : Dict = hidden_size __UpperCAmelCase : List[str] = num_hidden_layers __UpperCAmelCase : Any = num_attention_heads __UpperCAmelCase : int = intermediate_size __UpperCAmelCase : Tuple = hidden_act __UpperCAmelCase : Optional[Any] = hidden_dropout_prob __UpperCAmelCase : int = attention_probs_dropout_prob __UpperCAmelCase : Union[str, Any] = initializer_range __UpperCAmelCase : List[Any] = type_vocab_size __UpperCAmelCase : Dict = layer_norm_eps __UpperCAmelCase : Optional[Any] = position_embedding_type __UpperCAmelCase : Any = block_per_row __UpperCAmelCase : Optional[int] = approx_mode __UpperCAmelCase : int = initial_prior_first_n_blocks __UpperCAmelCase : Tuple = initial_prior_diagonal_n_blocks
77
"""simple docstring""" import argparse from transformers import ( TapasConfig, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasTokenizer, load_tf_weights_in_tapas, ) from transformers.utils import logging logging.set_verbosity_info() def __snake_case ( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Any ) -> Any: '''simple docstring''' _UpperCAmelCase : Any = TapasConfig.from_json_file(SCREAMING_SNAKE_CASE__ ) # set absolute/relative position embeddings parameter _UpperCAmelCase : Optional[Any] = reset_position_index_per_cell # set remaining parameters of TapasConfig as well as the model based on the task if task == "SQA": _UpperCAmelCase : Optional[int] = TapasForQuestionAnswering(config=SCREAMING_SNAKE_CASE__ ) elif task == "WTQ": # run_task_main.py hparams _UpperCAmelCase : List[str] = 4 _UpperCAmelCase : int = True # hparam_utils.py hparams _UpperCAmelCase : Optional[int] = 0.664_694 _UpperCAmelCase : Any = 0.207_951 _UpperCAmelCase : Any = 0.121_194 _UpperCAmelCase : List[Any] = True _UpperCAmelCase : Dict = True _UpperCAmelCase : Tuple = False _UpperCAmelCase : List[Any] = 0.0_352_513 _UpperCAmelCase : Union[str, Any] = TapasForQuestionAnswering(config=SCREAMING_SNAKE_CASE__ ) elif task == "WIKISQL_SUPERVISED": # run_task_main.py hparams _UpperCAmelCase : List[str] = 4 _UpperCAmelCase : Optional[int] = False # hparam_utils.py hparams _UpperCAmelCase : List[Any] = 36.4_519 _UpperCAmelCase : Union[str, Any] = 0.903_421 _UpperCAmelCase : List[Any] = 222.088 _UpperCAmelCase : Optional[Any] = True _UpperCAmelCase : str = True _UpperCAmelCase : Union[str, Any] = True _UpperCAmelCase : str = 0.763_141 _UpperCAmelCase : Optional[Any] = TapasForQuestionAnswering(config=SCREAMING_SNAKE_CASE__ ) elif task == "TABFACT": _UpperCAmelCase : int = TapasForSequenceClassification(config=SCREAMING_SNAKE_CASE__ ) elif task == "MLM": _UpperCAmelCase : List[str] = TapasForMaskedLM(config=SCREAMING_SNAKE_CASE__ ) elif task == "INTERMEDIATE_PRETRAINING": _UpperCAmelCase : Optional[Any] = TapasModel(config=SCREAMING_SNAKE_CASE__ ) else: raise ValueError(f'Task {task} not supported.' ) print(f'Building PyTorch model from configuration: {config}' ) # Load weights from tf checkpoint load_tf_weights_in_tapas(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Save pytorch-model (weights and configuration) print(f'Save PyTorch model to {pytorch_dump_path}' ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) # Save tokenizer files print(f'Save tokenizer files to {pytorch_dump_path}' ) _UpperCAmelCase : Optional[int] = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + "vocab.txt" , model_max_length=512 ) tokenizer.save_pretrained(SCREAMING_SNAKE_CASE__ ) print("Used relative position embeddings:" , model.config.reset_position_index_per_cell ) if __name__ == "__main__": _lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--task", default="SQA", type=str, help="Model task for which to convert a checkpoint. Defaults to SQA." ) parser.add_argument( "--reset_position_index_per_cell", default=False, action="store_true", help="Whether to use relative position embeddings or not. Defaults to True.", ) parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--tapas_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained TAPAS model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) _lowerCAmelCase : Tuple = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.task, args.reset_position_index_per_cell, args.tf_checkpoint_path, args.tapas_config_file, args.pytorch_dump_path, )
289
0
"""simple docstring""" from __future__ import annotations def lowercase ( _snake_case : int , _snake_case : int ) ->list[list[int]]: """simple docstring""" __snake_case : list[list[int]] = [] create_all_state(1 , _snake_case , _snake_case , [] , _snake_case ) return result def lowercase ( _snake_case : int , _snake_case : int , _snake_case : int , _snake_case : list[int] , _snake_case : list[list[int]] , ) ->None: """simple docstring""" if level == 0: total_list.append(current_list[:] ) return for i in range(_snake_case , total_number - level + 2 ): current_list.append(_snake_case ) create_all_state(i + 1 , _snake_case , level - 1 , _snake_case , _snake_case ) current_list.pop() def lowercase ( _snake_case : list[list[int]] ) ->None: """simple docstring""" for i in total_list: print(*_snake_case ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : int = 4 SCREAMING_SNAKE_CASE : int = 2 SCREAMING_SNAKE_CASE : Optional[Any] = generate_all_combinations(n, k) print_all_state(total_list)
721
"""simple docstring""" from __future__ import annotations from statistics import mean def lowercase ( _snake_case : list[int] , _snake_case : list[int] , _snake_case : int ) ->list[int]: """simple docstring""" __snake_case : List[Any] = [0] * no_of_processes __snake_case : str = [0] * no_of_processes # Initialize remaining_time to waiting_time. for i in range(_snake_case ): __snake_case : Optional[Any] = burst_time[i] __snake_case : list[int] = [] __snake_case : Optional[Any] = 0 __snake_case : Dict = 0 # When processes are not completed, # A process whose arrival time has passed \ # and has remaining execution time is put into the ready_process. # The shortest process in the ready_process, target_process is executed. while completed != no_of_processes: __snake_case : Optional[Any] = [] __snake_case : List[str] = -1 for i in range(_snake_case ): if (arrival_time[i] <= total_time) and (remaining_time[i] > 0): ready_process.append(_snake_case ) if len(_snake_case ) > 0: __snake_case : Union[str, Any] = ready_process[0] for i in ready_process: if remaining_time[i] < remaining_time[target_process]: __snake_case : int = i total_time += burst_time[target_process] completed += 1 __snake_case : Optional[Any] = 0 __snake_case : Optional[int] = ( total_time - arrival_time[target_process] - burst_time[target_process] ) else: total_time += 1 return waiting_time def lowercase ( _snake_case : list[int] , _snake_case : int , _snake_case : list[int] ) ->list[int]: """simple docstring""" __snake_case : Optional[int] = [0] * no_of_processes for i in range(_snake_case ): __snake_case : List[Any] = burst_time[i] + waiting_time[i] return turn_around_time if __name__ == "__main__": print("""[TEST CASE 01]""") SCREAMING_SNAKE_CASE : Dict = 4 SCREAMING_SNAKE_CASE : List[Any] = [2, 5, 3, 7] SCREAMING_SNAKE_CASE : Optional[Any] = [0, 0, 0, 0] SCREAMING_SNAKE_CASE : str = calculate_waitingtime(arrival_time, burst_time, no_of_processes) SCREAMING_SNAKE_CASE : Any = calculate_turnaroundtime( burst_time, no_of_processes, waiting_time ) # Printing the Result print("""PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time""") for i, process_id in enumerate(list(range(1, 5))): print( F'{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t' F'{waiting_time[i]}\t\t\t\t{turn_around_time[i]}' ) print(F'\nAverage waiting time = {mean(waiting_time):.5f}') print(F'Average turnaround time = {mean(turn_around_time):.5f}')
229
0
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase =logging.get_logger(__name__) def a ( _UpperCAmelCase , _UpperCAmelCase=False , _UpperCAmelCase=False ) -> Dict: """simple docstring""" a_ = 'backbone.' if is_semantic else '' a_ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'''{prefix}blocks.{i}.norm1.weight''', F'''beit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''{prefix}blocks.{i}.norm1.bias''', F'''beit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append( (F'''{prefix}blocks.{i}.attn.proj.weight''', F'''beit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append( (F'''{prefix}blocks.{i}.attn.proj.bias''', F'''beit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((F'''{prefix}blocks.{i}.norm2.weight''', F'''beit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''{prefix}blocks.{i}.norm2.bias''', F'''beit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((F'''{prefix}blocks.{i}.mlp.fc1.weight''', F'''beit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((F'''{prefix}blocks.{i}.mlp.fc1.bias''', F'''beit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((F'''{prefix}blocks.{i}.mlp.fc2.weight''', F'''beit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''{prefix}blocks.{i}.mlp.fc2.bias''', F'''beit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ (F'''{prefix}cls_token''', 'beit.embeddings.cls_token'), (F'''{prefix}patch_embed.proj.weight''', 'beit.embeddings.patch_embeddings.projection.weight'), (F'''{prefix}patch_embed.proj.bias''', 'beit.embeddings.patch_embeddings.projection.bias'), (F'''{prefix}pos_embed''', 'beit.embeddings.position_embeddings'), ] ) if has_lm_head: # mask token + layernorm rename_keys.extend( [ ('mask_token', 'beit.embeddings.mask_token'), ('norm.weight', 'layernorm.weight'), ('norm.bias', 'layernorm.bias'), ] ) else: # layernorm + classification head rename_keys.extend( [ ('fc_norm.weight', 'beit.pooler.layernorm.weight'), ('fc_norm.bias', 'beit.pooler.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) return rename_keys def a ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False , _UpperCAmelCase=False ) -> Optional[int]: """simple docstring""" for i in range(config.num_hidden_layers ): a_ = 'backbone.' if is_semantic else '' # queries, keys and values a_ = state_dict.pop(F'''{prefix}blocks.{i}.attn.qkv.weight''' ) a_ = state_dict.pop(F'''{prefix}blocks.{i}.attn.q_bias''' ) a_ = state_dict.pop(F'''{prefix}blocks.{i}.attn.v_bias''' ) a_ = in_proj_weight[ : config.hidden_size, : ] a_ = q_bias a_ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] a_ = in_proj_weight[ -config.hidden_size :, : ] a_ = v_bias # gamma_1 and gamma_2 # we call them lambda because otherwise they are renamed when using .from_pretrained a_ = state_dict.pop(F'''{prefix}blocks.{i}.gamma_1''' ) a_ = state_dict.pop(F'''{prefix}blocks.{i}.gamma_2''' ) a_ = gamma_a a_ = gamma_a def a ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Tuple: """simple docstring""" a_ = dct.pop(_UpperCAmelCase ) a_ = val def a ( ) -> str: """simple docstring""" a_ = 'http://images.cocodataset.org/val2017/000000039769.jpg' a_ = Image.open(requests.get(_UpperCAmelCase , stream=_UpperCAmelCase ).raw ) return im @torch.no_grad() def a ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False ) -> Optional[Any]: """simple docstring""" a_ = False if 'rvlcdip' in checkpoint_url else True a_ = BeitConfig(use_absolute_position_embeddings=_UpperCAmelCase , use_mask_token=_UpperCAmelCase ) # size of the architecture if "large" in checkpoint_url or "dit-l" in checkpoint_url: a_ = 1_0_2_4 a_ = 4_0_9_6 a_ = 2_4 a_ = 1_6 # labels if "rvlcdip" in checkpoint_url: a_ = 1_6 a_ = 'huggingface/label-files' a_ = 'rvlcdip-id2label.json' a_ = json.load(open(hf_hub_download(_UpperCAmelCase , _UpperCAmelCase , repo_type='dataset' ) , 'r' ) ) a_ = {int(_UpperCAmelCase ): v for k, v in idalabel.items()} a_ = idalabel a_ = {v: k for k, v in idalabel.items()} # load state_dict of original model, remove and rename some keys a_ = torch.hub.load_state_dict_from_url(_UpperCAmelCase , map_location='cpu' )['model'] a_ = create_rename_keys(_UpperCAmelCase , has_lm_head=_UpperCAmelCase ) for src, dest in rename_keys: rename_key(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) read_in_q_k_v(_UpperCAmelCase , _UpperCAmelCase , has_lm_head=_UpperCAmelCase ) # load HuggingFace model a_ = BeitForMaskedImageModeling(_UpperCAmelCase ) if has_lm_head else BeitForImageClassification(_UpperCAmelCase ) model.eval() model.load_state_dict(_UpperCAmelCase ) # Check outputs on an image a_ = BeitImageProcessor( size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=_UpperCAmelCase ) a_ = prepare_img() a_ = image_processor(images=_UpperCAmelCase , return_tensors='pt' ) a_ = encoding['pixel_values'] a_ = model(_UpperCAmelCase ) a_ = outputs.logits # verify logits a_ = [1, 1_6] if 'rvlcdip' in checkpoint_url else [1, 1_9_6, 8_1_9_2] assert logits.shape == torch.Size(_UpperCAmelCase ), "Shape of logits not as expected" Path(_UpperCAmelCase ).mkdir(exist_ok=_UpperCAmelCase ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(_UpperCAmelCase ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(_UpperCAmelCase ) if push_to_hub: if has_lm_head: a_ = 'dit-base' if 'base' in checkpoint_url else 'dit-large' else: a_ = 'dit-base-finetuned-rvlcdip' if 'dit-b' in checkpoint_url else 'dit-large-finetuned-rvlcdip' image_processor.push_to_hub( repo_path_or_name=Path(_UpperCAmelCase , _UpperCAmelCase ) , organization='nielsr' , commit_message='Add image processor' , use_temp_dir=_UpperCAmelCase , ) model.push_to_hub( repo_path_or_name=Path(_UpperCAmelCase , _UpperCAmelCase ) , organization='nielsr' , commit_message='Add model' , use_temp_dir=_UpperCAmelCase , ) if __name__ == "__main__": __lowerCAmelCase =argparse.ArgumentParser() parser.add_argument( "--checkpoint_url", default="https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth", type=str, help="URL to the original PyTorch checkpoint (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) parser.add_argument( "--push_to_hub", action="store_true", ) __lowerCAmelCase =parser.parse_args() convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
697
'''simple docstring''' import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin __lowerCAmelCase ="\nHugging Face was founded in 2016 by French entrepreneurs Clément Delangue, Julien Chaumond, and Thomas Wolf originally as a company that developed a chatbot app targeted at teenagers.[2] After open-sourcing the model behind the chatbot, the company pivoted to focus on being a platform for machine learning.\n\nIn March 2021, Hugging Face raised $40 million in a Series B funding round.[3]\n\nOn April 28, 2021, the company launched the BigScience Research Workshop in collaboration with several other research groups to release an open large language model.[4] In 2022, the workshop concluded with the announcement of BLOOM, a multilingual large language model with 176 billion parameters.[5]\n" class _snake_case ( unittest.TestCase , snake_case ): """simple docstring""" def __SCREAMING_SNAKE_CASE ( self ) -> int: a_ = load_tool('text-question-answering' ) self.tool.setup() a_ = load_tool('text-question-answering' , remote=UpperCAmelCase__ ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: a_ = self.tool(UpperCAmelCase__ , 'What did Hugging Face do in April 2021?' ) self.assertEqual(UpperCAmelCase__ , 'launched the BigScience Research Workshop' ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: a_ = self.remote_tool(UpperCAmelCase__ , 'What did Hugging Face do in April 2021?' ) self.assertEqual(UpperCAmelCase__ , 'launched the BigScience Research Workshop' ) def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: a_ = self.tool(text=UpperCAmelCase__ , question='What did Hugging Face do in April 2021?' ) self.assertEqual(UpperCAmelCase__ , 'launched the BigScience Research Workshop' ) def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: a_ = self.remote_tool(text=UpperCAmelCase__ , question='What did Hugging Face do in April 2021?' ) self.assertEqual(UpperCAmelCase__ , 'launched the BigScience Research Workshop' )
697
1
"""simple docstring""" def UpperCAmelCase ( ): """simple docstring""" return 1 def UpperCAmelCase ( UpperCamelCase__ ): """simple docstring""" return 0 if x < 0 else two_pence(x - 2 ) + one_pence() def UpperCAmelCase ( UpperCamelCase__ ): """simple docstring""" return 0 if x < 0 else five_pence(x - 5 ) + two_pence(UpperCamelCase__ ) def UpperCAmelCase ( UpperCamelCase__ ): """simple docstring""" return 0 if x < 0 else ten_pence(x - 10 ) + five_pence(UpperCamelCase__ ) def UpperCAmelCase ( UpperCamelCase__ ): """simple docstring""" return 0 if x < 0 else twenty_pence(x - 20 ) + ten_pence(UpperCamelCase__ ) def UpperCAmelCase ( UpperCamelCase__ ): """simple docstring""" return 0 if x < 0 else fifty_pence(x - 50 ) + twenty_pence(UpperCamelCase__ ) def UpperCAmelCase ( UpperCamelCase__ ): """simple docstring""" return 0 if x < 0 else one_pound(x - 100 ) + fifty_pence(UpperCamelCase__ ) def UpperCAmelCase ( UpperCamelCase__ ): """simple docstring""" return 0 if x < 0 else two_pound(x - 200 ) + one_pound(UpperCamelCase__ ) def UpperCAmelCase ( UpperCamelCase__ = 200 ): """simple docstring""" return two_pound(UpperCamelCase__ ) if __name__ == "__main__": print(solution(int(input().strip())))
714
"""simple docstring""" import os from typing import List, Optional, Union from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import AddedToken from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = {"vocab_file": "vocab.txt"} __lowerCamelCase = { "vocab_file": { "facebook/esm2_t6_8M_UR50D": "https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt", "facebook/esm2_t12_35M_UR50D": "https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt", }, } __lowerCamelCase = { "facebook/esm2_t6_8M_UR50D": 10_24, "facebook/esm2_t12_35M_UR50D": 10_24, } def UpperCAmelCase ( UpperCamelCase__ ): """simple docstring""" with open(UpperCamelCase__ , 'r' ) as f: A__ = f.read().splitlines() return [l.strip() for l in lines] class UpperCamelCase__( __A ): lowerCAmelCase__ : Any = VOCAB_FILES_NAMES lowerCAmelCase__ : List[str] = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ : Dict = ['input_ids', 'attention_mask'] def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase="<unk>" ,__UpperCAmelCase="<cls>" ,__UpperCAmelCase="<pad>" ,__UpperCAmelCase="<mask>" ,__UpperCAmelCase="<eos>" ,**__UpperCAmelCase ,) -> Optional[int]: super().__init__(**__UpperCAmelCase ) A__ = load_vocab_file(__UpperCAmelCase ) A__ = dict(enumerate(self.all_tokens ) ) A__ = {tok: ind for ind, tok in enumerate(self.all_tokens )} A__ = unk_token A__ = cls_token A__ = pad_token A__ = mask_token A__ = eos_token A__ = self.all_tokens self._create_trie(self.unique_no_split_tokens ) def snake_case__ ( self ,__UpperCAmelCase ) -> str: return self._id_to_token.get(__UpperCAmelCase ,self.unk_token ) def snake_case__ ( self ,__UpperCAmelCase ) -> int: return self._token_to_id.get(__UpperCAmelCase ,self._token_to_id.get(self.unk_token ) ) def snake_case__ ( self ,__UpperCAmelCase ,**__UpperCAmelCase ) -> Optional[int]: return text.split() def snake_case__ ( self ,__UpperCAmelCase=False ) -> int: return len(self._id_to_token ) def snake_case__ ( self ) -> List[str]: return {token: i for i, token in enumerate(self.all_tokens )} def snake_case__ ( self ,__UpperCAmelCase ) -> int: return self._token_to_id.get(__UpperCAmelCase ,self._token_to_id.get(self.unk_token ) ) def snake_case__ ( self ,__UpperCAmelCase ) -> str: return self._id_to_token.get(__UpperCAmelCase ,self.unk_token ) def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase = None ) -> List[int]: A__ = [self.cls_token_id] A__ = [self.eos_token_id] # No sep token in ESM vocabulary if token_ids_a is None: if self.eos_token_id is None: return cls + token_ids_a else: return cls + token_ids_a + sep elif self.eos_token_id is None: raise ValueError('Cannot tokenize multiple sequences when EOS token is not set!' ) return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase = None ,__UpperCAmelCase = False ) -> List[int]: if already_has_special_tokens: if token_ids_a is not None: raise ValueError( 'You should not supply a second sequence if the provided sequence of ' 'ids is already formatted with special tokens for the model.' ) return [1 if token in self.all_special_ids else 0 for token in token_ids_a] A__ = [1] + ([0] * len(__UpperCAmelCase )) + [1] if token_ids_a is not None: mask += [0] * len(__UpperCAmelCase ) + [1] return mask def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase ) -> List[str]: A__ = os.path.join(__UpperCAmelCase ,(filename_prefix + '-' if filename_prefix else '') + 'vocab.txt' ) with open(__UpperCAmelCase ,'w' ) as f: f.write('\n'.join(self.all_tokens ) ) return (vocab_file,) @property def snake_case__ ( self ) -> int: return self.get_vocab_size(with_added_tokens=__UpperCAmelCase ) def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase = False ) -> int: return super()._add_tokens(__UpperCAmelCase ,special_tokens=__UpperCAmelCase )
536
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_speech_available, is_torch_available a__ = { '''configuration_audio_spectrogram_transformer''': [ '''AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ASTConfig''', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ '''AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ASTForAudioClassification''', '''ASTModel''', '''ASTPreTrainedModel''', ] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = ['''ASTFeatureExtractor'''] if TYPE_CHECKING: from .configuration_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ASTConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ASTForAudioClassification, ASTModel, ASTPreTrainedModel, ) try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_audio_spectrogram_transformer import ASTFeatureExtractor else: import sys a__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
14
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING UpperCAmelCase_ = logging.get_logger(__name__) @add_end_docstrings(_A) class lowerCamelCase__ ( _A): """simple docstring""" def __init__( self : Optional[int] , *__lowerCAmelCase : List[Any] , **__lowerCAmelCase : List[str] ) -> List[str]: super().__init__(*__lowerCAmelCase , **__lowerCAmelCase ) requires_backends(self , '''vision''' ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == '''tf''' else MODEL_FOR_VISION_2_SEQ_MAPPING ) def snake_case_ ( self : Any , __lowerCAmelCase : Dict=None , __lowerCAmelCase : List[str]=None , __lowerCAmelCase : Optional[Any]=None ) -> int: _A = {} _A = {} if prompt is not None: _A = prompt if generate_kwargs is not None: _A = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: _A = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( '''\'max_new_tokens\' is defined twice, once in \'generate_kwargs\' and once as a direct parameter,''' ''' please use only one''' ) _A = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self : List[str] , __lowerCAmelCase : Union[str, List[str], "Image.Image", List["Image.Image"]] , **__lowerCAmelCase : Union[str, Any] ) -> Union[str, Any]: return super().__call__(__lowerCAmelCase , **__lowerCAmelCase ) def snake_case_ ( self : List[Any] , __lowerCAmelCase : str , __lowerCAmelCase : Union[str, Any]=None ) -> int: _A = load_image(__lowerCAmelCase ) if prompt is not None: if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise ValueError( f'''Received an invalid text input, got - {type(__lowerCAmelCase )} - but expected a single string. ''' '''Note also that one single text can be provided for conditional image to text generation.''' ) _A = self.model.config.model_type if model_type == "git": _A = self.image_processor(images=__lowerCAmelCase , return_tensors=self.framework ) _A = self.tokenizer(text=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ).input_ids _A = [self.tokenizer.cls_token_id] + input_ids _A = torch.tensor(__lowerCAmelCase ).unsqueeze(0 ) model_inputs.update({'''input_ids''': input_ids} ) elif model_type == "pix2struct": _A = self.image_processor(images=__lowerCAmelCase , header_text=__lowerCAmelCase , return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation _A = self.image_processor(images=__lowerCAmelCase , return_tensors=self.framework ) _A = self.tokenizer(__lowerCAmelCase , return_tensors=self.framework ) model_inputs.update(__lowerCAmelCase ) else: raise ValueError(f'''Model type {model_type} does not support conditional text generation''' ) else: _A = self.image_processor(images=__lowerCAmelCase , return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: _A = None return model_inputs def snake_case_ ( self : Optional[int] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Dict=None ) -> str: # Git model sets `model_inputs["input_ids"] = None` in `preprocess` (when `prompt=None`). In batch model, the # pipeline will group them into a list of `None`, which fail `_forward`. Avoid this by checking it first. if ( "input_ids" in model_inputs and isinstance(model_inputs['''input_ids'''] , __lowerCAmelCase ) and all(x is None for x in model_inputs['''input_ids'''] ) ): _A = None if generate_kwargs is None: _A = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. _A = model_inputs.pop(self.model.main_input_name ) _A = self.model.generate(__lowerCAmelCase , **__lowerCAmelCase , **__lowerCAmelCase ) return model_outputs def snake_case_ ( self : Dict , __lowerCAmelCase : Any ) -> Union[str, Any]: _A = [] for output_ids in model_outputs: _A = { '''generated_text''': self.tokenizer.decode( __lowerCAmelCase , skip_special_tokens=__lowerCAmelCase , ) } records.append(__lowerCAmelCase ) return records
2
0
def lowerCAmelCase ( lowerCAmelCase_ )-> int: lowerCAmelCase_ : List[str] = 0 while num > 0: digit_sum += num % 10 num //= 10 return digit_sum def lowerCAmelCase ( lowerCAmelCase_ = 100 )-> int: lowerCAmelCase_ : int = 1 lowerCAmelCase_ : Optional[Any] = 2 for i in range(2 , max_n + 1 ): lowerCAmelCase_ : List[str] = pre_numerator lowerCAmelCase_ : List[str] = 2 * i // 3 if i % 3 == 0 else 1 lowerCAmelCase_ : Any = cur_numerator lowerCAmelCase_ : List[str] = e_cont * pre_numerator + temp return sum_digits(lowerCAmelCase_ ) if __name__ == "__main__": print(f"""{solution() = }""")
706
from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCAmelCase : Optional[int] =logging.get_logger(__name__) _UpperCAmelCase : Union[str, Any] ={ """abeja/gpt-neox-japanese-2.7b""": """https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/config.json""", } class snake_case__( UpperCAmelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = """gpt_neox_japanese""" def __init__( self , __lowercase=3_2_0_0_0 , __lowercase=2_5_6_0 , __lowercase=3_2 , __lowercase=3_2 , __lowercase=4 , __lowercase="gelu" , __lowercase=1.00 , __lowercase=1_0_0_0_0 , __lowercase=2_0_4_8 , __lowercase=0.02 , __lowercase=1e-5 , __lowercase=True , __lowercase=3_1_9_9_6 , __lowercase=3_1_9_9_9 , __lowercase=0.1 , __lowercase=0.0 , **__lowercase , ) -> str: super().__init__(bos_token_id=__lowercase , eos_token_id=__lowercase , **__lowercase ) lowerCAmelCase_ : Optional[Any] = vocab_size lowerCAmelCase_ : Tuple = max_position_embeddings lowerCAmelCase_ : Optional[Any] = hidden_size lowerCAmelCase_ : Optional[Any] = num_hidden_layers lowerCAmelCase_ : str = num_attention_heads lowerCAmelCase_ : str = intermediate_multiple_size lowerCAmelCase_ : str = hidden_act lowerCAmelCase_ : Dict = rotary_pct lowerCAmelCase_ : Union[str, Any] = rotary_emb_base lowerCAmelCase_ : int = initializer_range lowerCAmelCase_ : Any = layer_norm_eps lowerCAmelCase_ : Optional[Any] = use_cache lowerCAmelCase_ : Tuple = attention_dropout lowerCAmelCase_ : Dict = hidden_dropout
619
0
from __future__ import annotations from cmath import sqrt def snake_case( __magic_name__ , __magic_name__ , __magic_name__ ) -> tuple[complex, complex]: '''simple docstring''' if a == 0: raise ValueError('''Coefficient \'a\' must not be zero.''' ) lowercase : int = b * b - 4 * a * c lowercase : Any = (-b + sqrt(__magic_name__ )) / (2 * a) lowercase : Union[str, Any] = (-b - sqrt(__magic_name__ )) / (2 * a) return ( root_a.real if not root_a.imag else root_a, root_a.real if not root_a.imag else root_a, ) def snake_case( ) -> int: '''simple docstring''' lowercase , lowercase : Tuple = quadratic_roots(a=5 , b=6 , c=1 ) print(F"""The solutions are: {solutiona} and {solutiona}""" ) if __name__ == "__main__": main()
217
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase_ = { 'configuration_roberta': ['ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RobertaConfig', 'RobertaOnnxConfig'], 'tokenization_roberta': ['RobertaTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['RobertaTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'RobertaForCausalLM', 'RobertaForMaskedLM', 'RobertaForMultipleChoice', 'RobertaForQuestionAnswering', 'RobertaForSequenceClassification', 'RobertaForTokenClassification', 'RobertaModel', 'RobertaPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFRobertaForCausalLM', 'TFRobertaForMaskedLM', 'TFRobertaForMultipleChoice', 'TFRobertaForQuestionAnswering', 'TFRobertaForSequenceClassification', 'TFRobertaForTokenClassification', 'TFRobertaMainLayer', 'TFRobertaModel', 'TFRobertaPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'FlaxRobertaForCausalLM', 'FlaxRobertaForMaskedLM', 'FlaxRobertaForMultipleChoice', 'FlaxRobertaForQuestionAnswering', 'FlaxRobertaForSequenceClassification', 'FlaxRobertaForTokenClassification', 'FlaxRobertaModel', 'FlaxRobertaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig from .tokenization_roberta import RobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roberta_fast import RobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta import ( ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaForCausalLM, RobertaForMaskedLM, RobertaForMultipleChoice, RobertaForQuestionAnswering, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaModel, RobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta import ( TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForMultipleChoice, TFRobertaForQuestionAnswering, TFRobertaForSequenceClassification, TFRobertaForTokenClassification, TFRobertaMainLayer, TFRobertaModel, TFRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, FlaxRobertaPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
217
1
import json import os import re import unittest from transformers import CodeGenTokenizer, CodeGenTokenizerFast from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _lowerCAmelCase ( UpperCamelCase_ , unittest.TestCase ): """simple docstring""" lowerCAmelCase = CodeGenTokenizer lowerCAmelCase = CodeGenTokenizerFast lowerCAmelCase = True lowerCAmelCase = {'add_prefix_space': True} lowerCAmelCase = False def __A ( self : Tuple ) -> str: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowerCAmelCase = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", "<|endoftext|>", ] lowerCAmelCase = dict(zip(SCREAMING_SNAKE_CASE , range(len(SCREAMING_SNAKE_CASE ) ) ) ) lowerCAmelCase = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] lowerCAmelCase = {"unk_token": "<unk>"} lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(SCREAMING_SNAKE_CASE ) ) def __A ( self : Tuple , **SCREAMING_SNAKE_CASE : List[str] ) -> str: """simple docstring""" kwargs.update(self.special_tokens_map ) return CodeGenTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE ) def __A ( self : List[str] , **SCREAMING_SNAKE_CASE : Dict ) -> List[Any]: """simple docstring""" kwargs.update(self.special_tokens_map ) return CodeGenTokenizerFast.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE ) def __A ( self : Tuple , SCREAMING_SNAKE_CASE : Optional[Any] ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase = "lower newer" lowerCAmelCase = "lower newer" return input_text, output_text def __A ( self : Any ) -> str: """simple docstring""" lowerCAmelCase = CodeGenTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) lowerCAmelCase = "lower newer" lowerCAmelCase = ["\u0120low", "er", "\u0120", "n", "e", "w", "er"] lowerCAmelCase = tokenizer.tokenize(SCREAMING_SNAKE_CASE , add_prefix_space=SCREAMING_SNAKE_CASE ) self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowerCAmelCase = tokens + [tokenizer.unk_token] lowerCAmelCase = [1_4, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) def __A ( self : Tuple ) -> Union[str, Any]: """simple docstring""" if not self.test_rust_tokenizer: return lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = self.get_rust_tokenizer(add_prefix_space=SCREAMING_SNAKE_CASE ) lowerCAmelCase = "lower newer" # Testing tokenization lowerCAmelCase = tokenizer.tokenize(SCREAMING_SNAKE_CASE , add_prefix_space=SCREAMING_SNAKE_CASE ) lowerCAmelCase = rust_tokenizer.tokenize(SCREAMING_SNAKE_CASE ) self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Testing conversion to ids without special tokens lowerCAmelCase = tokenizer.encode(SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE , add_prefix_space=SCREAMING_SNAKE_CASE ) lowerCAmelCase = rust_tokenizer.encode(SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE ) self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Testing conversion to ids with special tokens lowerCAmelCase = self.get_rust_tokenizer(add_prefix_space=SCREAMING_SNAKE_CASE ) lowerCAmelCase = tokenizer.encode(SCREAMING_SNAKE_CASE , add_prefix_space=SCREAMING_SNAKE_CASE ) lowerCAmelCase = rust_tokenizer.encode(SCREAMING_SNAKE_CASE ) self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Testing the unknown token lowerCAmelCase = tokens + [rust_tokenizer.unk_token] lowerCAmelCase = [1_4, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) def __A ( self : List[str] , *SCREAMING_SNAKE_CASE : Optional[Any] , **SCREAMING_SNAKE_CASE : str ) -> Optional[int]: """simple docstring""" pass def __A ( self : Tuple , SCREAMING_SNAKE_CASE : str=1_5 ) -> int: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): lowerCAmelCase = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) # Simple input lowerCAmelCase = "This is a simple input" lowerCAmelCase = ["This is a simple input 1", "This is a simple input 2"] lowerCAmelCase = ("This is a simple input", "This is a pair") lowerCAmelCase = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests self.assertRaises(SCREAMING_SNAKE_CASE , tokenizer_r.encode , SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE , padding="max_length" ) # Simple input self.assertRaises(SCREAMING_SNAKE_CASE , tokenizer_r.encode_plus , SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE , padding="max_length" ) # Simple input self.assertRaises( SCREAMING_SNAKE_CASE , tokenizer_r.batch_encode_plus , SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE , padding="max_length" , ) # Pair input self.assertRaises(SCREAMING_SNAKE_CASE , tokenizer_r.encode , SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE , padding="max_length" ) # Pair input self.assertRaises(SCREAMING_SNAKE_CASE , tokenizer_r.encode_plus , SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE , padding="max_length" ) # Pair input self.assertRaises( SCREAMING_SNAKE_CASE , tokenizer_r.batch_encode_plus , SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE , padding="max_length" , ) def __A ( self : Dict ) -> Optional[int]: """simple docstring""" lowerCAmelCase = CodeGenTokenizer.from_pretrained(self.tmpdirname , pad_token="<pad>" ) # Simple input lowerCAmelCase = "This is a simple input" lowerCAmelCase = ["This is a simple input looooooooong", "This is a simple input"] lowerCAmelCase = ("This is a simple input", "This is a pair") lowerCAmelCase = [ ("This is a simple input loooooong", "This is a simple input"), ("This is a simple pair loooooong", "This is a simple pair"), ] lowerCAmelCase = tokenizer.pad_token_id lowerCAmelCase = tokenizer(SCREAMING_SNAKE_CASE , padding="max_length" , max_length=3_0 , return_tensors="np" ) lowerCAmelCase = tokenizer(SCREAMING_SNAKE_CASE , padding=SCREAMING_SNAKE_CASE , truncate=SCREAMING_SNAKE_CASE , return_tensors="np" ) lowerCAmelCase = tokenizer(*SCREAMING_SNAKE_CASE , padding="max_length" , max_length=6_0 , return_tensors="np" ) lowerCAmelCase = tokenizer(SCREAMING_SNAKE_CASE , padding=SCREAMING_SNAKE_CASE , truncate=SCREAMING_SNAKE_CASE , return_tensors="np" ) # s # test single string max_length padding self.assertEqual(out_s["input_ids"].shape[-1] , 3_0 ) self.assertTrue(pad_token_id in out_s["input_ids"] ) self.assertTrue(0 in out_s["attention_mask"] ) # s2 # test automatic padding self.assertEqual(out_sa["input_ids"].shape[-1] , 3_3 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa["input_ids"][0] ) self.assertFalse(0 in out_sa["attention_mask"][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa["input_ids"][1] ) self.assertTrue(0 in out_sa["attention_mask"][1] ) # p # test single pair max_length padding self.assertEqual(out_p["input_ids"].shape[-1] , 6_0 ) self.assertTrue(pad_token_id in out_p["input_ids"] ) self.assertTrue(0 in out_p["attention_mask"] ) # p2 # test automatic padding pair self.assertEqual(out_pa["input_ids"].shape[-1] , 5_2 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa["input_ids"][0] ) self.assertFalse(0 in out_pa["attention_mask"][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa["input_ids"][1] ) self.assertTrue(0 in out_pa["attention_mask"][1] ) def __A ( self : List[str] ) -> Optional[int]: """simple docstring""" lowerCAmelCase = "$$$" lowerCAmelCase = CodeGenTokenizer.from_pretrained(self.tmpdirname , bos_token=SCREAMING_SNAKE_CASE , add_bos_token=SCREAMING_SNAKE_CASE ) lowerCAmelCase = "This is a simple input" lowerCAmelCase = ["This is a simple input 1", "This is a simple input 2"] lowerCAmelCase = tokenizer.bos_token_id lowerCAmelCase = tokenizer(SCREAMING_SNAKE_CASE ) lowerCAmelCase = tokenizer(SCREAMING_SNAKE_CASE ) self.assertEqual(out_s.input_ids[0] , SCREAMING_SNAKE_CASE ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) lowerCAmelCase = tokenizer.decode(out_s.input_ids ) lowerCAmelCase = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] , SCREAMING_SNAKE_CASE ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) @slow def __A ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" lowerCAmelCase = CodeGenTokenizer.from_pretrained("Salesforce/codegen-350M-mono" ) lowerCAmelCase = "\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#" lowerCAmelCase = "\nif len_a > len_b: result = a\nelse: result = b" lowerCAmelCase = tokenizer.encode(SCREAMING_SNAKE_CASE ) lowerCAmelCase = ["^#", re.escape("<|endoftext|>" ), "^'''", "^\"\"\"", "\n\n\n"] lowerCAmelCase = tokenizer.decode(SCREAMING_SNAKE_CASE , truncate_before_pattern=SCREAMING_SNAKE_CASE ) self.assertEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __A ( self : Optional[Any] ) -> int: """simple docstring""" pass
715
'''simple docstring''' from .configuration_bert_masked import MaskedBertConfig from .modeling_bert_masked import ( MaskedBertForMultipleChoice, MaskedBertForQuestionAnswering, MaskedBertForSequenceClassification, MaskedBertForTokenClassification, MaskedBertModel, ) from .modules import *
159
0
'''simple docstring''' import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class __UpperCamelCase (unittest.TestCase ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase=13 , _lowerCAmelCase=7 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=99 , _lowerCAmelCase=32 , _lowerCAmelCase=5 , _lowerCAmelCase=4 , _lowerCAmelCase=37 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=512 , _lowerCAmelCase=16 , _lowerCAmelCase=2 , _lowerCAmelCase=0.02 , _lowerCAmelCase=4 , ) -> List[str]: '''simple docstring''' lowercase = parent lowercase = batch_size lowercase = seq_length lowercase = is_training lowercase = use_attention_mask lowercase = use_token_type_ids lowercase = use_labels lowercase = vocab_size lowercase = hidden_size lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = intermediate_size lowercase = hidden_act lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = max_position_embeddings lowercase = type_vocab_size lowercase = type_sequence_label_size lowercase = initializer_range lowercase = num_choices def _a ( self ) -> List[Any]: '''simple docstring''' lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase = None if self.use_attention_mask: lowercase = random_attention_mask([self.batch_size, self.seq_length] ) lowercase = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , tie_weights_=_lowerCAmelCase , ) return config, input_ids, attention_mask def _a ( self ) -> Tuple: '''simple docstring''' lowercase = self.prepare_config_and_inputs() lowercase , lowercase , lowercase = config_and_inputs lowercase = {"""input_ids""": input_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_flax class __UpperCamelCase (_UpperCAmelCase , unittest.TestCase ): __A = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def _a ( self ) -> Tuple: '''simple docstring''' lowercase = FlaxDistilBertModelTester(self ) @slow def _a ( self ) -> Optional[int]: '''simple docstring''' for model_class_name in self.all_model_classes: lowercase = model_class_name.from_pretrained("""distilbert-base-uncased""" ) lowercase = model(np.ones((1, 1) ) ) self.assertIsNotNone(_lowerCAmelCase ) @require_flax class __UpperCamelCase (unittest.TestCase ): @slow def _a ( self ) -> Union[str, Any]: '''simple docstring''' lowercase = FlaxDistilBertModel.from_pretrained("""distilbert-base-uncased""" ) lowercase = np.array([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) lowercase = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) lowercase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase )[0] lowercase = (1, 11, 768) self.assertEqual(output.shape , _lowerCAmelCase ) lowercase = np.array([[[-0.1639, 0.3299, 0.1648], [-0.1746, 0.3289, 0.1710], [-0.1884, 0.3357, 0.1810]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , _lowerCAmelCase , atol=1E-4 ) )
588
'''simple docstring''' import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() lowercase_ : Optional[int] = logging.get_logger(__name__) lowercase_ : Union[str, Any] = [ ('''bert.bert''', '''visual_bert'''), ('''bert.cls''', '''cls'''), ('''bert.classifier''', '''cls'''), ('''token_type_embeddings_visual''', '''visual_token_type_embeddings'''), ('''position_embeddings_visual''', '''visual_position_embeddings'''), ('''projection''', '''visual_projection'''), ] lowercase_ : Dict = [ '''nlvr2_coco_pre_trained.th''', '''nlvr2_fine_tuned.th''', '''nlvr2_pre_trained.th''', '''vcr_coco_pre_train.th''', '''vcr_fine_tune.th''', '''vcr_pre_train.th''', '''vqa_coco_pre_trained.th''', '''vqa_fine_tuned.th''', '''vqa_pre_trained.th''', ] def SCREAMING_SNAKE_CASE ( lowercase_ : Union[str, Any] ): lowercase = torch.load(lowercase_ , map_location="""cpu""" ) return sd def SCREAMING_SNAKE_CASE ( lowercase_ : Any , lowercase_ : Dict , lowercase_ : Any=rename_keys_prefix ): lowercase = OrderedDict() lowercase = torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue lowercase = key for name_pair in rename_keys_prefix: lowercase = new_key.replace(name_pair[0] , name_pair[1] ) lowercase = d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately lowercase = new_d["""cls.predictions.bias"""] return new_d @torch.no_grad() def SCREAMING_SNAKE_CASE ( lowercase_ : Optional[Any] , lowercase_ : int ): assert ( checkpoint_path.split("""/""" )[-1] in ACCEPTABLE_CHECKPOINTS ), F"""The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.""" # Get Config if "pre" in checkpoint_path: lowercase = """pretraining""" if "vcr" in checkpoint_path: lowercase = {"""visual_embedding_dim""": 512} elif "vqa_advanced" in checkpoint_path: lowercase = {"""visual_embedding_dim""": 2048} elif "vqa" in checkpoint_path: lowercase = {"""visual_embedding_dim""": 2048} elif "nlvr" in checkpoint_path: lowercase = {"""visual_embedding_dim""": 1024} else: raise NotImplementedError(F"""No implementation found for `{checkpoint_path}`.""" ) else: if "vcr" in checkpoint_path: lowercase = {"""visual_embedding_dim""": 512} lowercase = """multichoice""" elif "vqa_advanced" in checkpoint_path: lowercase = {"""visual_embedding_dim""": 2048} lowercase = """vqa_advanced""" elif "vqa" in checkpoint_path: lowercase = {"""visual_embedding_dim""": 2048, """num_labels""": 3129} lowercase = """vqa""" elif "nlvr" in checkpoint_path: lowercase = { """visual_embedding_dim""": 1024, """num_labels""": 2, } lowercase = """nlvr""" lowercase = VisualBertConfig(**lowercase_ ) # Load State Dict lowercase = load_state_dict(lowercase_ ) lowercase = get_new_dict(lowercase_ , lowercase_ ) if model_type == "pretraining": lowercase = VisualBertForPreTraining(lowercase_ ) elif model_type == "vqa": lowercase = VisualBertForQuestionAnswering(lowercase_ ) elif model_type == "nlvr": lowercase = VisualBertForVisualReasoning(lowercase_ ) elif model_type == "multichoice": lowercase = VisualBertForMultipleChoice(lowercase_ ) model.load_state_dict(lowercase_ ) # Save Checkpoints Path(lowercase_ ).mkdir(exist_ok=lowercase_ ) model.save_pretrained(lowercase_ ) if __name__ == "__main__": lowercase_ : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument('''orig_checkpoint_path''', type=str, help='''A path to .th on local filesystem.''') parser.add_argument('''pytorch_dump_folder_path''', type=str, help='''Path to the output PyTorch model.''') lowercase_ : Optional[Any] = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
588
1
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __UpperCAmelCase :Union[str, Any] = logging.get_logger(__name__) __UpperCAmelCase :Optional[int] = "▁" __UpperCAmelCase :List[str] = {"vocab_file": "sentencepiece.bpe.model", "monolingual_vocab_file": "dict.txt"} __UpperCAmelCase :int = { "vocab_file": { "vinai/bartpho-syllable": "https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model", }, "monolingual_vocab_file": { "vinai/bartpho-syllable": "https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt", }, } __UpperCAmelCase :Optional[int] = {"vinai/bartpho-syllable": 1_0_2_4} class a ( _a ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE : int = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE : Union[str, Any] = ["input_ids", "attention_mask"] def __init__( self : Dict , snake_case : Tuple , snake_case : str , snake_case : Optional[int]="<s>" , snake_case : Tuple="</s>" , snake_case : Tuple="</s>" , snake_case : int="<s>" , snake_case : Tuple="<unk>" , snake_case : Dict="<pad>" , snake_case : str="<mask>" , snake_case : Optional[Dict[str, Any]] = None , **snake_case : Dict , ) -> None: # Mask token behave like a normal word, i.e. include the space before it __UpperCAmelCase : Union[str, Any] = AddedToken(snake_case , lstrip=snake_case , rstrip=snake_case ) if isinstance(snake_case , snake_case ) else mask_token __UpperCAmelCase : List[str] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=snake_case , eos_token=snake_case , unk_token=snake_case , sep_token=snake_case , cls_token=snake_case , pad_token=snake_case , mask_token=snake_case , sp_model_kwargs=self.sp_model_kwargs , **snake_case , ) __UpperCAmelCase : str = vocab_file __UpperCAmelCase : int = monolingual_vocab_file __UpperCAmelCase : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(snake_case ) ) # Load the reduced vocab # Keep order of special tokens for backward compatibility __UpperCAmelCase : List[Any] = {} __UpperCAmelCase : Any = 0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(snake_case ) not in self.fairseq_tokens_to_ids: __UpperCAmelCase : str = cnt cnt += 1 with open(snake_case , '''r''' , encoding='''utf-8''' ) as f: for line in f.readlines(): __UpperCAmelCase : Optional[Any] = line.strip().split()[0] __UpperCAmelCase : Tuple = len(self.fairseq_tokens_to_ids ) if str(snake_case ) not in self.fairseq_tokens_to_ids: __UpperCAmelCase : Optional[int] = len(self.fairseq_tokens_to_ids ) __UpperCAmelCase : Optional[int] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self : Any ) -> Any: __UpperCAmelCase : Any = self.__dict__.copy() __UpperCAmelCase : Optional[int] = None __UpperCAmelCase : Any = self.sp_model.serialized_model_proto() return state def __setstate__( self : Any , snake_case : Any ) -> Optional[int]: __UpperCAmelCase : Optional[Any] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): __UpperCAmelCase : Any = {} __UpperCAmelCase : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def lowerCamelCase__ ( self : Tuple , snake_case : List[int] , snake_case : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __UpperCAmelCase : List[Any] = [self.cls_token_id] __UpperCAmelCase : Dict = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCamelCase__ ( self : List[Any] , snake_case : List[int] , snake_case : Optional[List[int]] = None , snake_case : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case , token_ids_a=snake_case , already_has_special_tokens=snake_case ) if token_ids_a is None: return [1] + ([0] * len(snake_case )) + [1] return [1] + ([0] * len(snake_case )) + [1, 1] + ([0] * len(snake_case )) + [1] def lowerCamelCase__ ( self : List[Any] , snake_case : List[int] , snake_case : Optional[List[int]] = None ) -> List[int]: __UpperCAmelCase : Optional[int] = [self.sep_token_id] __UpperCAmelCase : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def lowerCamelCase__ ( self : str ) -> Optional[int]: return len(self.fairseq_ids_to_tokens ) def lowerCamelCase__ ( self : Dict ) -> Optional[int]: __UpperCAmelCase : List[Any] = {self.convert_ids_to_tokens(snake_case ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCamelCase__ ( self : Optional[Any] , snake_case : str ) -> List[str]: return self.sp_model.encode(snake_case , out_type=snake_case ) def lowerCamelCase__ ( self : Any , snake_case : List[Any] ) -> Any: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def lowerCamelCase__ ( self : Union[str, Any] , snake_case : int ) -> List[str]: return self.fairseq_ids_to_tokens[index] def lowerCamelCase__ ( self : Optional[int] , snake_case : Any ) -> str: __UpperCAmelCase : List[str] = ''''''.join(snake_case ).replace(snake_case , ''' ''' ).strip() return out_string def lowerCamelCase__ ( self : Optional[Any] , snake_case : str , snake_case : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(snake_case ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return __UpperCAmelCase : Optional[int] = os.path.join( snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) __UpperCAmelCase : Union[str, Any] = os.path.join( snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''monolingual_vocab_file'''] , ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , snake_case ) elif not os.path.isfile(self.vocab_file ): with open(snake_case , '''wb''' ) as fi: __UpperCAmelCase : Optional[Any] = self.sp_model.serialized_model_proto() fi.write(snake_case ) if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath( snake_case ) and os.path.isfile(self.monolingual_vocab_file ): copyfile(self.monolingual_vocab_file , snake_case ) elif not os.path.isfile(self.monolingual_vocab_file ): with open(snake_case , '''w''' , encoding='''utf-8''' ) as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(f'{str(snake_case )} \n' ) return out_vocab_file, out_monolingual_vocab_file
266
'''simple docstring''' import json import os import torch from diffusers import UNetaDModel os.makedirs("hub/hopper-medium-v2/unet/hor32", exist_ok=True) os.makedirs("hub/hopper-medium-v2/unet/hor128", exist_ok=True) os.makedirs("hub/hopper-medium-v2/value_function", exist_ok=True) def _a ( _lowercase : Any ): '''simple docstring''' if hor == 128: __UpperCAmelCase : Optional[Any] = ('''DownResnetBlock1D''', '''DownResnetBlock1D''', '''DownResnetBlock1D''') __UpperCAmelCase : Union[str, Any] = (32, 128, 256) __UpperCAmelCase : str = ('''UpResnetBlock1D''', '''UpResnetBlock1D''') elif hor == 32: __UpperCAmelCase : Optional[Any] = ('''DownResnetBlock1D''', '''DownResnetBlock1D''', '''DownResnetBlock1D''', '''DownResnetBlock1D''') __UpperCAmelCase : Any = (32, 64, 128, 256) __UpperCAmelCase : Optional[int] = ('''UpResnetBlock1D''', '''UpResnetBlock1D''', '''UpResnetBlock1D''') __UpperCAmelCase : Any = torch.load(F'/Users/bglickenhaus/Documents/diffuser/temporal_unet-hopper-mediumv2-hor{hor}.torch' ) __UpperCAmelCase : str = model.state_dict() __UpperCAmelCase : int = { '''down_block_types''': down_block_types, '''block_out_channels''': block_out_channels, '''up_block_types''': up_block_types, '''layers_per_block''': 1, '''use_timestep_embedding''': True, '''out_block_type''': '''OutConv1DBlock''', '''norm_num_groups''': 8, '''downsample_each_block''': False, '''in_channels''': 14, '''out_channels''': 14, '''extra_in_channels''': 0, '''time_embedding_type''': '''positional''', '''flip_sin_to_cos''': False, '''freq_shift''': 1, '''sample_size''': 65536, '''mid_block_type''': '''MidResTemporalBlock1D''', '''act_fn''': '''mish''', } __UpperCAmelCase : Optional[Any] = UNetaDModel(**_lowercase ) print(F'length of state dict: {len(state_dict.keys() )}' ) print(F'length of value function dict: {len(hf_value_function.state_dict().keys() )}' ) __UpperCAmelCase : Union[str, Any] = dict(zip(model.state_dict().keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): __UpperCAmelCase : List[Any] = state_dict.pop(_lowercase ) hf_value_function.load_state_dict(_lowercase ) torch.save(hf_value_function.state_dict() , F'hub/hopper-medium-v2/unet/hor{hor}/diffusion_pytorch_model.bin' ) with open(F'hub/hopper-medium-v2/unet/hor{hor}/config.json' , '''w''' ) as f: json.dump(_lowercase , _lowercase ) def _a ( ): '''simple docstring''' __UpperCAmelCase : str = { '''in_channels''': 14, '''down_block_types''': ('''DownResnetBlock1D''', '''DownResnetBlock1D''', '''DownResnetBlock1D''', '''DownResnetBlock1D'''), '''up_block_types''': (), '''out_block_type''': '''ValueFunction''', '''mid_block_type''': '''ValueFunctionMidBlock1D''', '''block_out_channels''': (32, 64, 128, 256), '''layers_per_block''': 1, '''downsample_each_block''': True, '''sample_size''': 65536, '''out_channels''': 14, '''extra_in_channels''': 0, '''time_embedding_type''': '''positional''', '''use_timestep_embedding''': True, '''flip_sin_to_cos''': False, '''freq_shift''': 1, '''norm_num_groups''': 8, '''act_fn''': '''mish''', } __UpperCAmelCase : str = torch.load('''/Users/bglickenhaus/Documents/diffuser/value_function-hopper-mediumv2-hor32.torch''' ) __UpperCAmelCase : Optional[Any] = model __UpperCAmelCase : Optional[int] = UNetaDModel(**_lowercase ) print(F'length of state dict: {len(state_dict.keys() )}' ) print(F'length of value function dict: {len(hf_value_function.state_dict().keys() )}' ) __UpperCAmelCase : Union[str, Any] = dict(zip(state_dict.keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): __UpperCAmelCase : Dict = state_dict.pop(_lowercase ) hf_value_function.load_state_dict(_lowercase ) torch.save(hf_value_function.state_dict() , '''hub/hopper-medium-v2/value_function/diffusion_pytorch_model.bin''' ) with open('''hub/hopper-medium-v2/value_function/config.json''' , '''w''' ) as f: json.dump(_lowercase , _lowercase ) if __name__ == "__main__": unet(3_2) # unet(128) value_function()
266
1
import argparse import OmegaConf import torch from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel def lowerCamelCase__ ( snake_case_ : Tuple , snake_case_ : Any , snake_case_ : List[Any] ) -> Dict: __snake_case = OmegaConf.load(_a ) __snake_case = torch.load(_a , map_location='''cpu''' )['''model'''] __snake_case = list(state_dict.keys() ) # extract state_dict for VQVAE __snake_case = {} __snake_case = '''first_stage_model.''' for key in keys: if key.startswith(_a ): __snake_case = state_dict[key] # extract state_dict for UNetLDM __snake_case = {} __snake_case = '''model.diffusion_model.''' for key in keys: if key.startswith(_a ): __snake_case = state_dict[key] __snake_case = config.model.params.first_stage_config.params __snake_case = config.model.params.unet_config.params __snake_case = VQModel(**_a ).eval() vqvae.load_state_dict(_a ) __snake_case = UNetLDMModel(**_a ).eval() unet.load_state_dict(_a ) __snake_case = DDIMScheduler( timesteps=config.model.params.timesteps , beta_schedule='''scaled_linear''' , beta_start=config.model.params.linear_start , beta_end=config.model.params.linear_end , clip_sample=_a , ) __snake_case = LDMPipeline(_a , _a , _a ) pipeline.save_pretrained(_a ) if __name__ == "__main__": snake_case_ = argparse.ArgumentParser() parser.add_argument('--checkpoint_path', type=str, required=True) parser.add_argument('--config_path', type=str, required=True) parser.add_argument('--output_path', type=str, required=True) snake_case_ = parser.parse_args() convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
592
"""simple docstring""" _snake_case = { "Pillow": "Pillow<10.0.0", "accelerate": "accelerate>=0.20.3", "av": "av==9.2.0", "beautifulsoup4": "beautifulsoup4", "black": "black~=23.1", "codecarbon": "codecarbon==1.2.0", "cookiecutter": "cookiecutter==1.7.3", "dataclasses": "dataclasses", "datasets": "datasets!=2.5.0", "decord": "decord==0.6.0", "deepspeed": "deepspeed>=0.9.3", "diffusers": "diffusers", "dill": "dill<0.3.5", "evaluate": "evaluate>=0.2.0", "fairscale": "fairscale>0.3", "faiss-cpu": "faiss-cpu", "fastapi": "fastapi", "filelock": "filelock", "flax": "flax>=0.4.1,<=0.7.0", "ftfy": "ftfy", "fugashi": "fugashi>=1.0", "GitPython": "GitPython<3.1.19", "hf-doc-builder": "hf-doc-builder>=0.3.0", "huggingface-hub": "huggingface-hub>=0.14.1,<1.0", "importlib_metadata": "importlib_metadata", "ipadic": "ipadic>=1.0.0,<2.0", "isort": "isort>=5.5.4", "jax": "jax>=0.2.8,!=0.3.2,<=0.4.13", "jaxlib": "jaxlib>=0.1.65,<=0.4.13", "jieba": "jieba", "kenlm": "kenlm", "keras-nlp": "keras-nlp>=0.3.1", "librosa": "librosa", "nltk": "nltk", "natten": "natten>=0.14.6", "numpy": "numpy>=1.17", "onnxconverter-common": "onnxconverter-common", "onnxruntime-tools": "onnxruntime-tools>=1.4.2", "onnxruntime": "onnxruntime>=1.4.0", "opencv-python": "opencv-python", "optuna": "optuna", "optax": "optax>=0.0.8,<=0.1.4", "packaging": "packaging>=20.0", "parameterized": "parameterized", "phonemizer": "phonemizer", "protobuf": "protobuf", "psutil": "psutil", "pyyaml": "pyyaml>=5.1", "pydantic": "pydantic<2", "pytest": "pytest>=7.2.0", "pytest-timeout": "pytest-timeout", "pytest-xdist": "pytest-xdist", "python": "python>=3.8.0", "ray[tune]": "ray[tune]", "regex": "regex!=2019.12.17", "requests": "requests", "rhoknp": "rhoknp>=1.1.0,<1.3.1", "rjieba": "rjieba", "rouge-score": "rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1", "ruff": "ruff>=0.0.241,<=0.0.259", "sacrebleu": "sacrebleu>=1.4.12,<2.0.0", "sacremoses": "sacremoses", "safetensors": "safetensors>=0.3.1", "sagemaker": "sagemaker>=2.31.0", "scikit-learn": "scikit-learn", "sentencepiece": "sentencepiece>=0.1.91,!=0.1.92", "sigopt": "sigopt", "starlette": "starlette", "sudachipy": "sudachipy>=0.6.6", "sudachidict_core": "sudachidict_core>=20220729", "tensorflow-cpu": "tensorflow-cpu>=2.6,<2.14", "tensorflow": "tensorflow>=2.6,<2.14", "tensorflow-text": "tensorflow-text<2.14", "tf2onnx": "tf2onnx", "timeout-decorator": "timeout-decorator", "timm": "timm", "tokenizers": "tokenizers>=0.11.1,!=0.11.3,<0.14", "torch": "torch>=1.9,!=1.12.0", "torchaudio": "torchaudio", "torchvision": "torchvision", "pyctcdecode": "pyctcdecode>=0.4.0", "tqdm": "tqdm>=4.27", "unidic": "unidic>=1.0.2", "unidic_lite": "unidic_lite>=1.0.7", "urllib3": "urllib3<2.0.0", "uvicorn": "uvicorn", }
510
0
import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging _a : str = logging.get_logger(__name__) class UpperCamelCase_ ( __UpperCamelCase ): """simple docstring""" A = ['''input_features''', '''is_longer'''] def __init__( self , UpperCAmelCase=6_4 , UpperCAmelCase=4_8_0_0_0 , UpperCAmelCase=4_8_0 , UpperCAmelCase=1_0 , UpperCAmelCase=1_0_2_4 , UpperCAmelCase=0.0 , UpperCAmelCase=False , UpperCAmelCase = 0 , UpperCAmelCase = 1_4_0_0_0 , UpperCAmelCase = None , UpperCAmelCase = "fusion" , UpperCAmelCase = "repeatpad" , **UpperCAmelCase , ): super().__init__( feature_size=UpperCAmelCase , sampling_rate=UpperCAmelCase , padding_value=UpperCAmelCase , return_attention_mask=UpperCAmelCase , **UpperCAmelCase , ) __lowerCamelCase = top_db __lowerCamelCase = truncation __lowerCamelCase = padding __lowerCamelCase = fft_window_size __lowerCamelCase = (fft_window_size >> 1) + 1 __lowerCamelCase = hop_length __lowerCamelCase = max_length_s __lowerCamelCase = max_length_s * sampling_rate __lowerCamelCase = sampling_rate __lowerCamelCase = frequency_min __lowerCamelCase = frequency_max __lowerCamelCase = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=UpperCAmelCase , min_frequency=UpperCAmelCase , max_frequency=UpperCAmelCase , sampling_rate=UpperCAmelCase , norm=UpperCAmelCase , mel_scale="""htk""" , ) __lowerCamelCase = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=UpperCAmelCase , min_frequency=UpperCAmelCase , max_frequency=UpperCAmelCase , sampling_rate=UpperCAmelCase , norm="""slaney""" , mel_scale="""slaney""" , ) def lowerCamelCase_ ( self ): __lowerCamelCase = copy.deepcopy(self.__dict__ ) __lowerCamelCase = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def lowerCamelCase_ ( self , UpperCAmelCase , UpperCAmelCase = None ): __lowerCamelCase = spectrogram( UpperCAmelCase , window_function(self.fft_window_size , """hann""" ) , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=UpperCAmelCase , log_mel="""dB""" , ) return log_mel_spectrogram.T def lowerCamelCase_ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): __lowerCamelCase = np.array_split(list(range(0 , total_frames - chunk_frames + 1 ) ) , 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk __lowerCamelCase = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk __lowerCamelCase = [0] # randomly choose index for each part __lowerCamelCase = np.random.choice(ranges[0] ) __lowerCamelCase = np.random.choice(ranges[1] ) __lowerCamelCase = np.random.choice(ranges[2] ) __lowerCamelCase = mel[idx_front : idx_front + chunk_frames, :] __lowerCamelCase = mel[idx_middle : idx_middle + chunk_frames, :] __lowerCamelCase = mel[idx_back : idx_back + chunk_frames, :] __lowerCamelCase = torch.tensor(mel[None, None, :] ) __lowerCamelCase = torch.nn.functional.interpolate( UpperCAmelCase , size=[chunk_frames, 6_4] , mode="""bilinear""" , align_corners=UpperCAmelCase ) __lowerCamelCase = mel_shrink[0][0].numpy() __lowerCamelCase = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0 ) return mel_fusion def lowerCamelCase_ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): if waveform.shape[0] > max_length: if truncation == "rand_trunc": __lowerCamelCase = True # random crop to max_length (for compatibility) -> this should be handled by self.pad __lowerCamelCase = len(UpperCAmelCase ) - max_length __lowerCamelCase = np.random.randint(0 , overflow + 1 ) __lowerCamelCase = waveform[idx : idx + max_length] __lowerCamelCase = self._np_extract_fbank_features(UpperCAmelCase , self.mel_filters_slaney )[None, :] elif truncation == "fusion": __lowerCamelCase = self._np_extract_fbank_features(UpperCAmelCase , self.mel_filters ) __lowerCamelCase = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed __lowerCamelCase = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. __lowerCamelCase = np.stack([mel, mel, mel, mel] , axis=0 ) __lowerCamelCase = False else: __lowerCamelCase = self._random_mel_fusion(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) __lowerCamelCase = True else: raise NotImplementedError(f'''data_truncating {truncation} not implemented''' ) else: __lowerCamelCase = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": __lowerCamelCase = int(max_length / len(UpperCAmelCase ) ) __lowerCamelCase = np.stack(np.tile(UpperCAmelCase , n_repeat + 1 ) )[:max_length] if padding == "repeatpad": __lowerCamelCase = int(max_length / len(UpperCAmelCase ) ) __lowerCamelCase = np.stack(np.tile(UpperCAmelCase , UpperCAmelCase ) ) __lowerCamelCase = np.pad(UpperCAmelCase , (0, max_length - waveform.shape[0]) , mode="""constant""" , constant_values=0 ) if truncation == "fusion": __lowerCamelCase = self._np_extract_fbank_features(UpperCAmelCase , self.mel_filters ) __lowerCamelCase = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0 ) else: __lowerCamelCase = self._np_extract_fbank_features(UpperCAmelCase , self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , **UpperCAmelCase , ): __lowerCamelCase = truncation if truncation is not None else self.truncation __lowerCamelCase = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'''The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a''' f''' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input''' f''' was sampled with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) __lowerCamelCase = isinstance(UpperCAmelCase , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'''Only mono-channel audio is supported for input to {self}''' ) __lowerCamelCase = is_batched_numpy or ( isinstance(UpperCAmelCase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: __lowerCamelCase = [np.asarray(UpperCAmelCase , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(UpperCAmelCase , np.ndarray ): __lowerCamelCase = np.asarray(UpperCAmelCase , dtype=np.floataa ) elif isinstance(UpperCAmelCase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): __lowerCamelCase = raw_speech.astype(np.floataa ) # always return batch if not is_batched: __lowerCamelCase = [np.asarray(UpperCAmelCase )] # convert to mel spectrogram, truncate and pad if needed. __lowerCamelCase = [ self._get_input_mel(UpperCAmelCase , max_length if max_length else self.nb_max_samples , UpperCAmelCase , UpperCAmelCase ) for waveform in raw_speech ] __lowerCamelCase = [] __lowerCamelCase = [] for mel, longer in padded_inputs: input_mel.append(UpperCAmelCase ) is_longer.append(UpperCAmelCase ) if truncation == "fusion" and sum(UpperCAmelCase ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer __lowerCamelCase = np.random.randint(0 , len(UpperCAmelCase ) ) __lowerCamelCase = True if isinstance(input_mel[0] , UpperCAmelCase ): __lowerCamelCase = [np.asarray(UpperCAmelCase , dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool __lowerCamelCase = [[longer] for longer in is_longer] __lowerCamelCase = {"""input_features""": input_mel, """is_longer""": is_longer} __lowerCamelCase = BatchFeature(UpperCAmelCase ) if return_tensors is not None: __lowerCamelCase = input_features.convert_to_tensors(UpperCAmelCase ) return input_features
571
from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class UpperCamelCase_ : """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase=1_3 , UpperCAmelCase=7 , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=9_9 , UpperCAmelCase=3_2 , UpperCAmelCase=2 , UpperCAmelCase=4 , UpperCAmelCase=3_7 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=5_1_2 , UpperCAmelCase=1_6 , UpperCAmelCase=2 , UpperCAmelCase=0.02 , UpperCAmelCase=3 , UpperCAmelCase=4 , UpperCAmelCase=None , ): __lowerCamelCase = parent __lowerCamelCase = 1_3 __lowerCamelCase = 7 __lowerCamelCase = True __lowerCamelCase = True __lowerCamelCase = True __lowerCamelCase = True __lowerCamelCase = 9_9 __lowerCamelCase = 3_2 __lowerCamelCase = 2 __lowerCamelCase = 4 __lowerCamelCase = 3_7 __lowerCamelCase = """gelu""" __lowerCamelCase = 0.1 __lowerCamelCase = 0.1 __lowerCamelCase = 5_1_2 __lowerCamelCase = 1_6 __lowerCamelCase = 2 __lowerCamelCase = 0.02 __lowerCamelCase = 3 __lowerCamelCase = 4 __lowerCamelCase = None def lowerCamelCase_ ( self ): __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCamelCase = None if self.use_input_mask: __lowerCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCamelCase = None if self.use_token_type_ids: __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCamelCase = None __lowerCamelCase = None __lowerCamelCase = None if self.use_labels: __lowerCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowerCamelCase = ids_tensor([self.batch_size] , self.num_choices ) __lowerCamelCase = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=UpperCAmelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCamelCase_ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): __lowerCamelCase = TFRoFormerModel(config=UpperCAmelCase ) __lowerCamelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} __lowerCamelCase = [input_ids, input_mask] __lowerCamelCase = model(UpperCAmelCase ) __lowerCamelCase = model(UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase_ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): __lowerCamelCase = True __lowerCamelCase = TFRoFormerForCausalLM(config=UpperCAmelCase ) __lowerCamelCase = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __lowerCamelCase = model(UpperCAmelCase )["""logits"""] self.parent.assertListEqual( list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] ) def lowerCamelCase_ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): __lowerCamelCase = TFRoFormerForMaskedLM(config=UpperCAmelCase ) __lowerCamelCase = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __lowerCamelCase = model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase_ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): __lowerCamelCase = self.num_labels __lowerCamelCase = TFRoFormerForSequenceClassification(config=UpperCAmelCase ) __lowerCamelCase = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __lowerCamelCase = model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase_ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): __lowerCamelCase = self.num_choices __lowerCamelCase = TFRoFormerForMultipleChoice(config=UpperCAmelCase ) __lowerCamelCase = tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) __lowerCamelCase = tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) __lowerCamelCase = tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) __lowerCamelCase = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } __lowerCamelCase = model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCamelCase_ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): __lowerCamelCase = self.num_labels __lowerCamelCase = TFRoFormerForTokenClassification(config=UpperCAmelCase ) __lowerCamelCase = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __lowerCamelCase = model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase_ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): __lowerCamelCase = TFRoFormerForQuestionAnswering(config=UpperCAmelCase ) __lowerCamelCase = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __lowerCamelCase = model(UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCamelCase_ ( self ): __lowerCamelCase = self.prepare_config_and_inputs() ( ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ) = config_and_inputs __lowerCamelCase = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class UpperCamelCase_ ( __UpperCamelCase ,__UpperCamelCase ,unittest.TestCase ): """simple docstring""" A = ( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) A = ( { '''feature-extraction''': TFRoFormerModel, '''fill-mask''': TFRoFormerForMaskedLM, '''question-answering''': TFRoFormerForQuestionAnswering, '''text-classification''': TFRoFormerForSequenceClassification, '''text-generation''': TFRoFormerForCausalLM, '''token-classification''': TFRoFormerForTokenClassification, '''zero-shot''': TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) A = False A = False def lowerCamelCase_ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def lowerCamelCase_ ( self ): __lowerCamelCase = TFRoFormerModelTester(self ) __lowerCamelCase = ConfigTester(self , config_class=UpperCAmelCase , hidden_size=3_7 ) def lowerCamelCase_ ( self ): self.config_tester.run_common_tests() def lowerCamelCase_ ( self ): __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def lowerCamelCase_ ( self ): __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase ) def lowerCamelCase_ ( self ): __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*UpperCAmelCase ) def lowerCamelCase_ ( self ): __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*UpperCAmelCase ) def lowerCamelCase_ ( self ): __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase ) def lowerCamelCase_ ( self ): __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase ) def lowerCamelCase_ ( self ): __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase ) @slow def lowerCamelCase_ ( self ): __lowerCamelCase = TFRoFormerModel.from_pretrained("""junnyu/roformer_chinese_base""" ) self.assertIsNotNone(UpperCAmelCase ) @require_tf class UpperCamelCase_ ( unittest.TestCase ): """simple docstring""" @slow def lowerCamelCase_ ( self ): __lowerCamelCase = TFRoFormerForMaskedLM.from_pretrained("""junnyu/roformer_chinese_base""" ) __lowerCamelCase = tf.constant([[0, 1, 2, 3, 4, 5]] ) __lowerCamelCase = model(UpperCAmelCase )[0] # TODO Replace vocab size __lowerCamelCase = 5_0_0_0_0 __lowerCamelCase = [1, 6, vocab_size] self.assertEqual(output.shape , UpperCAmelCase ) print(output[:, :3, :3] ) # TODO Replace values below with what was printed above. __lowerCamelCase = tf.constant( [ [ [-0.12_05_33_41, -1.0_26_49_01, 0.29_22_19_46], [-1.5_13_37_83, 0.19_74_33, 0.15_19_06_07], [-5.0_13_54_03, -3.90_02_56, -0.84_03_87_64], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , UpperCAmelCase , atol=1E-4 ) @require_tf class UpperCamelCase_ ( unittest.TestCase ): """simple docstring""" A = 1e-4 def lowerCamelCase_ ( self ): __lowerCamelCase = tf.constant([[4, 1_0]] ) __lowerCamelCase = TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 ) __lowerCamelCase = emba(input_ids.shape ) __lowerCamelCase = tf.constant( [[0.00_00, 0.00_00, 0.00_00, 1.00_00, 1.00_00, 1.00_00], [0.84_15, 0.04_64, 0.00_22, 0.54_03, 0.99_89, 1.00_00]] ) tf.debugging.assert_near(UpperCAmelCase , UpperCAmelCase , atol=self.tolerance ) def lowerCamelCase_ ( self ): __lowerCamelCase = tf.constant( [ [0.00_00, 0.00_00, 0.00_00, 0.00_00, 0.00_00], [0.84_15, 0.82_19, 0.80_20, 0.78_19, 0.76_17], [0.90_93, 0.93_64, 0.95_81, 0.97_49, 0.98_70], ] ) __lowerCamelCase = TFRoFormerSinusoidalPositionalEmbedding(num_positions=5_1_2 , embedding_dim=5_1_2 ) emba([2, 1_6, 5_1_2] ) __lowerCamelCase = emba.weight[:3, :5] tf.debugging.assert_near(UpperCAmelCase , UpperCAmelCase , atol=self.tolerance ) @require_tf class UpperCamelCase_ ( unittest.TestCase ): """simple docstring""" A = 1e-4 def lowerCamelCase_ ( self ): # 2,12,16,64 __lowerCamelCase = tf.reshape(tf.range(2 * 1_2 * 1_6 * 6_4 , dtype=tf.floataa ) , shape=(2, 1_2, 1_6, 6_4) ) / 1_0_0 __lowerCamelCase = -tf.reshape(tf.range(2 * 1_2 * 1_6 * 6_4 , dtype=tf.floataa ) , shape=(2, 1_2, 1_6, 6_4) ) / 1_0_0 __lowerCamelCase = TFRoFormerSinusoidalPositionalEmbedding(num_positions=3_2 , embedding_dim=6_4 ) __lowerCamelCase = embed_positions([2, 1_6, 7_6_8] )[None, None, :, :] __lowerCamelCase , __lowerCamelCase = TFRoFormerSelfAttention.apply_rotary_position_embeddings( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) __lowerCamelCase = tf.constant( [ [0.00_00, 0.01_00, 0.02_00, 0.03_00, 0.04_00, 0.05_00, 0.06_00, 0.07_00], [-0.20_12, 0.88_97, 0.02_63, 0.94_01, 0.20_74, 0.94_63, 0.34_81, 0.93_43], [-1.70_57, 0.62_71, -1.21_45, 1.38_97, -0.63_03, 1.76_47, -0.11_73, 1.89_85], [-2.17_31, -1.63_97, -2.73_58, 0.28_54, -2.18_40, 1.71_83, -1.30_18, 2.48_71], [0.27_17, -3.61_73, -2.92_06, -2.19_88, -3.66_38, 0.38_58, -2.91_55, 2.29_80], [3.98_59, -2.15_80, -0.79_84, -4.49_04, -4.11_81, -2.02_52, -4.47_82, 1.12_53], ] ) __lowerCamelCase = tf.constant( [ [0.00_00, -0.01_00, -0.02_00, -0.03_00, -0.04_00, -0.05_00, -0.06_00, -0.07_00], [0.20_12, -0.88_97, -0.02_63, -0.94_01, -0.20_74, -0.94_63, -0.34_81, -0.93_43], [1.70_57, -0.62_71, 1.21_45, -1.38_97, 0.63_03, -1.76_47, 0.11_73, -1.89_85], [2.17_31, 1.63_97, 2.73_58, -0.28_54, 2.18_40, -1.71_83, 1.30_18, -2.48_71], [-0.27_17, 3.61_73, 2.92_06, 2.19_88, 3.66_38, -0.38_58, 2.91_55, -2.29_80], [-3.98_59, 2.15_80, 0.79_84, 4.49_04, 4.11_81, 2.02_52, 4.47_82, -1.12_53], ] ) tf.debugging.assert_near(query_layer[0, 0, :6, :8] , UpperCAmelCase , atol=self.tolerance ) tf.debugging.assert_near(key_layer[0, 0, :6, :8] , UpperCAmelCase , atol=self.tolerance )
571
1
import os from argparse import ArgumentParser, Namespace from ..data import SingleSentenceClassificationProcessor as Processor from ..pipelines import TextClassificationPipeline from ..utils import is_tf_available, is_torch_available, logging from . import BaseTransformersCLICommand if not is_tf_available() and not is_torch_available(): raise RuntimeError("At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training") # TF training parameters a : Dict = False a : str = False def lowerCamelCase__ ( __lowerCamelCase : Namespace ): return TrainCommand(__lowerCamelCase ) class a ( lowercase__ ): """simple docstring""" @staticmethod def UpperCAmelCase ( __lowercase : ArgumentParser ) -> Dict: __UpperCAmelCase : Optional[int] = parser.add_parser("""train""" , help="""CLI tool to train a model on a task.""" ) train_parser.add_argument( """--train_data""" , type=__lowercase , required=__lowercase , help="""path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences.""" , ) train_parser.add_argument( """--column_label""" , type=__lowercase , default=0 , help="""Column of the dataset csv file with example labels.""" ) train_parser.add_argument( """--column_text""" , type=__lowercase , default=1 , help="""Column of the dataset csv file with example texts.""" ) train_parser.add_argument( """--column_id""" , type=__lowercase , default=2 , help="""Column of the dataset csv file with example ids.""" ) train_parser.add_argument( """--skip_first_row""" , action="""store_true""" , help="""Skip the first row of the csv file (headers).""" ) train_parser.add_argument("""--validation_data""" , type=__lowercase , default="""""" , help="""path to validation dataset.""" ) train_parser.add_argument( """--validation_split""" , type=__lowercase , default=0.1 , help="""if validation dataset is not provided, fraction of train dataset to use as validation dataset.""" , ) train_parser.add_argument("""--output""" , type=__lowercase , default="""./""" , help="""path to saved the trained model.""" ) train_parser.add_argument( """--task""" , type=__lowercase , default="""text_classification""" , help="""Task to train the model on.""" ) train_parser.add_argument( """--model""" , type=__lowercase , default="""bert-base-uncased""" , help="""Model's name or path to stored model.""" ) train_parser.add_argument("""--train_batch_size""" , type=__lowercase , default=32 , help="""Batch size for training.""" ) train_parser.add_argument("""--valid_batch_size""" , type=__lowercase , default=64 , help="""Batch size for validation.""" ) train_parser.add_argument("""--learning_rate""" , type=__lowercase , default=3e-5 , help="""Learning rate.""" ) train_parser.add_argument("""--adam_epsilon""" , type=__lowercase , default=1e-0_8 , help="""Epsilon for Adam optimizer.""" ) train_parser.set_defaults(func=__lowercase ) def __init__( self : Dict , __lowercase : Namespace ) -> Dict: __UpperCAmelCase : Union[str, Any] = logging.get_logger("""transformers-cli/training""" ) __UpperCAmelCase : Any = """tf""" if is_tf_available() else """torch""" os.makedirs(args.output , exist_ok=__lowercase ) __UpperCAmelCase : List[Any] = args.output __UpperCAmelCase : List[Any] = args.column_label __UpperCAmelCase : int = args.column_text __UpperCAmelCase : Union[str, Any] = args.column_id self.logger.info(f"""Loading {args.task} pipeline for {args.model}""" ) if args.task == "text_classification": __UpperCAmelCase : Any = TextClassificationPipeline.from_pretrained(args.model ) elif args.task == "token_classification": raise NotImplementedError elif args.task == "question_answering": raise NotImplementedError self.logger.info(f"""Loading dataset from {args.train_data}""" ) __UpperCAmelCase : Any = Processor.create_from_csv( args.train_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) __UpperCAmelCase : int = None if args.validation_data: self.logger.info(f"""Loading validation dataset from {args.validation_data}""" ) __UpperCAmelCase : List[str] = Processor.create_from_csv( args.validation_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) __UpperCAmelCase : Optional[Any] = args.validation_split __UpperCAmelCase : Dict = args.train_batch_size __UpperCAmelCase : List[Any] = args.valid_batch_size __UpperCAmelCase : List[str] = args.learning_rate __UpperCAmelCase : Any = args.adam_epsilon def UpperCAmelCase ( self : List[Any] ) -> List[Any]: if self.framework == "tf": return self.run_tf() return self.run_torch() def UpperCAmelCase ( self : Dict ) -> Optional[Any]: raise NotImplementedError def UpperCAmelCase ( self : str ) -> Optional[int]: self.pipeline.fit( self.train_dataset , validation_data=self.valid_dataset , validation_split=self.validation_split , learning_rate=self.learning_rate , adam_epsilon=self.adam_epsilon , train_batch_size=self.train_batch_size , valid_batch_size=self.valid_batch_size , ) # Save trained pipeline self.pipeline.save_pretrained(self.output )
63
def _lowercase ( __SCREAMING_SNAKE_CASE ) -> list[int]: UpperCamelCase__ : Union[str, Any] = len(__SCREAMING_SNAKE_CASE ) for i in range(__SCREAMING_SNAKE_CASE ): for j in range(i + 1 , __SCREAMING_SNAKE_CASE ): if numbers[j] < numbers[i]: UpperCamelCase__ , UpperCamelCase__ : Optional[Any] = numbers[j], numbers[i] return numbers if __name__ == "__main__": UpperCAmelCase__ : Any = input('''Enter numbers separated by a comma:\n''').strip() UpperCAmelCase__ : List[Any] = [int(item) for item in user_input.split(''',''')] print(exchange_sort(unsorted))
410
0
import dataclasses import json import sys import types from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, ArgumentTypeError from copy import copy from enum import Enum from inspect import isclass from pathlib import Path from typing import Any, Callable, Dict, Iterable, List, Literal, NewType, Optional, Tuple, Union, get_type_hints import yaml __lowercase = NewType("""DataClass""", Any) __lowercase = NewType("""DataClassType""", Any) def _lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise ArgumentTypeError( f"Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive)." ) def _lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' A_ = {str(SCREAMING_SNAKE_CASE ): choice for choice in choices} return lambda SCREAMING_SNAKE_CASE : str_to_choice.get(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def _lowerCamelCase ( *, SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = dataclasses.MISSING , SCREAMING_SNAKE_CASE = dataclasses.MISSING , SCREAMING_SNAKE_CASE = None , **SCREAMING_SNAKE_CASE , ): '''simple docstring''' if metadata is None: # Important, don't use as default param in function signature because dict is mutable and shared across function calls A_ = {} if aliases is not None: A_ = aliases if help is not None: A_ = help return dataclasses.field(metadata=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , default_factory=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) class _lowercase ( __lowerCamelCase ): _lowercase : Iterable[DataClassType] def __init__( self : Dict , lowerCamelCase__ : Union[DataClassType, Iterable[DataClassType]] , **lowerCamelCase__ : Dict ) -> str: """simple docstring""" if "formatter_class" not in kwargs: A_ = ArgumentDefaultsHelpFormatter super().__init__(**lowerCamelCase__ ) if dataclasses.is_dataclass(lowerCamelCase__ ): A_ = [dataclass_types] A_ = list(lowerCamelCase__ ) for dtype in self.dataclass_types: self._add_dataclass_arguments(lowerCamelCase__ ) @staticmethod def UpperCamelCase ( lowerCamelCase__ : ArgumentParser , lowerCamelCase__ : dataclasses.Field ) -> Dict: """simple docstring""" A_ = F"--{field.name}" A_ = field.metadata.copy() # field.metadata is not used at all by Data Classes, # it is provided as a third-party extension mechanism. if isinstance(field.type , lowerCamelCase__ ): raise RuntimeError( '''Unresolved type detected, which should have been done with the help of ''' '''`typing.get_type_hints` method by default''' ) A_ = kwargs.pop('''aliases''' , [] ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ): A_ = [aliases] A_ = getattr(field.type , '''__origin__''' , field.type ) if origin_type is Union or (hasattr(lowerCamelCase__ , '''UnionType''' ) and isinstance(lowerCamelCase__ , types.UnionType )): if str not in field.type.__args__ and ( len(field.type.__args__ ) != 2 or type(lowerCamelCase__ ) not in field.type.__args__ ): raise ValueError( '''Only `Union[X, NoneType]` (i.e., `Optional[X]`) is allowed for `Union` because''' ''' the argument parser only supports one type per argument.''' F" Problem encountered in field '{field.name}'." ) if type(lowerCamelCase__ ) not in field.type.__args__: # filter `str` in Union A_ = field.type.__args__[0] if field.type.__args__[1] == str else field.type.__args__[1] A_ = getattr(field.type , '''__origin__''' , field.type ) elif bool not in field.type.__args__: # filter `NoneType` in Union (except for `Union[bool, NoneType]`) A_ = ( field.type.__args__[0] if isinstance(lowerCamelCase__ , field.type.__args__[1] ) else field.type.__args__[1] ) A_ = getattr(field.type , '''__origin__''' , field.type ) # A variable to store kwargs for a boolean field, if needed # so that we can init a `no_*` complement argument (see below) A_ = {} if origin_type is Literal or (isinstance(field.type , lowerCamelCase__ ) and issubclass(field.type , lowerCamelCase__ )): if origin_type is Literal: A_ = field.type.__args__ else: A_ = [x.value for x in field.type] A_ = make_choice_type_function(kwargs['''choices'''] ) if field.default is not dataclasses.MISSING: A_ = field.default else: A_ = True elif field.type is bool or field.type == Optional[bool]: # Copy the currect kwargs to use to instantiate a `no_*` complement argument below. # We do not initialize it here because the `no_*` alternative must be instantiated after the real argument A_ = copy(lowerCamelCase__ ) # Hack because type=bool in argparse does not behave as we want. A_ = string_to_bool if field.type is bool or (field.default is not None and field.default is not dataclasses.MISSING): # Default value is False if we have no default when of type bool. A_ = False if field.default is dataclasses.MISSING else field.default # This is the value that will get picked if we don't include --field_name in any way A_ = default # This tells argparse we accept 0 or 1 value after --field_name A_ = '''?''' # This is the value that will get picked if we do --field_name (without value) A_ = True elif isclass(lowerCamelCase__ ) and issubclass(lowerCamelCase__ , lowerCamelCase__ ): A_ = field.type.__args__[0] A_ = '''+''' if field.default_factory is not dataclasses.MISSING: A_ = field.default_factory() elif field.default is dataclasses.MISSING: A_ = True else: A_ = field.type if field.default is not dataclasses.MISSING: A_ = field.default elif field.default_factory is not dataclasses.MISSING: A_ = field.default_factory() else: A_ = True parser.add_argument(lowerCamelCase__ , *lowerCamelCase__ , **lowerCamelCase__ ) # Add a complement `no_*` argument for a boolean field AFTER the initial field has already been added. # Order is important for arguments with the same destination! # We use a copy of earlier kwargs because the original kwargs have changed a lot before reaching down # here and we do not need those changes/additional keys. if field.default is True and (field.type is bool or field.type == Optional[bool]): A_ = False parser.add_argument(F"--no_{field.name}" , action='''store_false''' , dest=field.name , **lowerCamelCase__ ) def UpperCamelCase ( self : List[str] , lowerCamelCase__ : DataClassType ) -> List[str]: """simple docstring""" if hasattr(lowerCamelCase__ , '''_argument_group_name''' ): A_ = self.add_argument_group(dtype._argument_group_name ) else: A_ = self try: A_ = get_type_hints(lowerCamelCase__ ) except NameError: raise RuntimeError( F"Type resolution failed for {dtype}. Try declaring the class in global scope or " '''removing line of `from __future__ import annotations` which opts in Postponed ''' '''Evaluation of Annotations (PEP 563)''' ) except TypeError as ex: # Remove this block when we drop Python 3.9 support if sys.version_info[:2] < (3, 1_0) and "unsupported operand type(s) for |" in str(lowerCamelCase__ ): A_ = '''.'''.join(map(lowerCamelCase__ , sys.version_info[:3] ) ) raise RuntimeError( F"Type resolution failed for {dtype} on Python {python_version}. Try removing " '''line of `from __future__ import annotations` which opts in union types as ''' '''`X | Y` (PEP 604) via Postponed Evaluation of Annotations (PEP 563). To ''' '''support Python versions that lower than 3.10, you need to use ''' '''`typing.Union[X, Y]` instead of `X | Y` and `typing.Optional[X]` instead of ''' '''`X | None`.''' ) from ex raise for field in dataclasses.fields(lowerCamelCase__ ): if not field.init: continue A_ = type_hints[field.name] self._parse_dataclass_field(lowerCamelCase__ , lowerCamelCase__ ) def UpperCamelCase ( self : Any , lowerCamelCase__ : Any=None , lowerCamelCase__ : Any=False , lowerCamelCase__ : str=True , lowerCamelCase__ : int=None , lowerCamelCase__ : List[Any]=None , ) -> Tuple[DataClass, ...]: """simple docstring""" if args_file_flag or args_filename or (look_for_args_file and len(sys.argv )): A_ = [] if args_filename: args_files.append(Path(lowerCamelCase__ ) ) elif look_for_args_file and len(sys.argv ): args_files.append(Path(sys.argv[0] ).with_suffix('''.args''' ) ) # args files specified via command line flag should overwrite default args files so we add them last if args_file_flag: # Create special parser just to extract the args_file_flag values A_ = ArgumentParser() args_file_parser.add_argument(lowerCamelCase__ , type=lowerCamelCase__ , action='''append''' ) # Use only remaining args for further parsing (remove the args_file_flag) A_ ,A_ = args_file_parser.parse_known_args(args=lowerCamelCase__ ) A_ = vars(lowerCamelCase__ ).get(args_file_flag.lstrip('''-''' ) , lowerCamelCase__ ) if cmd_args_file_paths: args_files.extend([Path(lowerCamelCase__ ) for p in cmd_args_file_paths] ) A_ = [] for args_file in args_files: if args_file.exists(): file_args += args_file.read_text().split() # in case of duplicate arguments the last one has precedence # args specified via the command line should overwrite args from files, so we add them last A_ = file_args + args if args is not None else file_args + sys.argv[1:] A_ ,A_ = self.parse_known_args(args=lowerCamelCase__ ) A_ = [] for dtype in self.dataclass_types: A_ = {f.name for f in dataclasses.fields(lowerCamelCase__ ) if f.init} A_ = {k: v for k, v in vars(lowerCamelCase__ ).items() if k in keys} for k in keys: delattr(lowerCamelCase__ , lowerCamelCase__ ) A_ = dtype(**lowerCamelCase__ ) outputs.append(lowerCamelCase__ ) if len(namespace.__dict__ ) > 0: # additional namespace. outputs.append(lowerCamelCase__ ) if return_remaining_strings: return (*outputs, remaining_args) else: if remaining_args: raise ValueError(F"Some specified arguments are not used by the HfArgumentParser: {remaining_args}" ) return (*outputs,) def UpperCamelCase ( self : Optional[int] , lowerCamelCase__ : Dict[str, Any] , lowerCamelCase__ : bool = False ) -> Tuple[DataClass, ...]: """simple docstring""" A_ = set(args.keys() ) A_ = [] for dtype in self.dataclass_types: A_ = {f.name for f in dataclasses.fields(lowerCamelCase__ ) if f.init} A_ = {k: v for k, v in args.items() if k in keys} unused_keys.difference_update(inputs.keys() ) A_ = dtype(**lowerCamelCase__ ) outputs.append(lowerCamelCase__ ) if not allow_extra_keys and unused_keys: raise ValueError(F"Some keys are not used by the HfArgumentParser: {sorted(lowerCamelCase__ )}" ) return tuple(lowerCamelCase__ ) def UpperCamelCase ( self : Optional[Any] , lowerCamelCase__ : str , lowerCamelCase__ : bool = False ) -> Tuple[DataClass, ...]: """simple docstring""" with open(Path(lowerCamelCase__ ) , encoding='''utf-8''' ) as open_json_file: A_ = json.loads(open_json_file.read() ) A_ = self.parse_dict(lowerCamelCase__ , allow_extra_keys=lowerCamelCase__ ) return tuple(lowerCamelCase__ ) def UpperCamelCase ( self : str , lowerCamelCase__ : str , lowerCamelCase__ : bool = False ) -> Tuple[DataClass, ...]: """simple docstring""" A_ = self.parse_dict(yaml.safe_load(Path(lowerCamelCase__ ).read_text() ) , allow_extra_keys=lowerCamelCase__ ) return tuple(lowerCamelCase__ )
563
def _lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' if p < 2: raise ValueError('''p should not be less than 2!''' ) elif p == 2: return True A_ = 4 A_ = (1 << p) - 1 for _ in range(p - 2 ): A_ = ((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(11))
563
1
"""simple docstring""" import unittest import numpy as np from transformers.file_utils import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class lowercase(unittest.TestCase ): def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=7 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=1_8 , __SCREAMING_SNAKE_CASE=3_0 , __SCREAMING_SNAKE_CASE=4_0_0 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , __SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , ) -> Dict: """simple docstring""" a__ = size if size is not None else {'height': 1_8, 'width': 1_8} a__ = parent a__ = batch_size a__ = num_channels a__ = image_size a__ = min_resolution a__ = max_resolution a__ = do_resize a__ = size a__ = do_normalize a__ = image_mean a__ = image_std def lowercase__ ( self ) -> Any: """simple docstring""" return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class lowercase(a_ , unittest.TestCase ): __snake_case: Dict = DPTImageProcessor if is_vision_available() else None def lowercase__ ( self ) -> Optional[Any]: """simple docstring""" a__ = DPTImageProcessingTester(self ) @property def lowercase__ ( self ) -> Optional[int]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def lowercase__ ( self ) -> Optional[int]: """simple docstring""" a__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase_ , 'image_mean' ) ) self.assertTrue(hasattr(lowerCAmelCase_ , 'image_std' ) ) self.assertTrue(hasattr(lowerCAmelCase_ , 'do_normalize' ) ) self.assertTrue(hasattr(lowerCAmelCase_ , 'do_resize' ) ) self.assertTrue(hasattr(lowerCAmelCase_ , 'size' ) ) def lowercase__ ( self ) -> List[str]: """simple docstring""" a__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 1_8, 'width': 1_8} ) a__ = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 ) self.assertEqual(image_processor.size , {'height': 4_2, 'width': 4_2} ) def lowercase__ ( self ) -> Optional[Any]: """simple docstring""" a__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images a__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase_ , Image.Image ) # Test not batched input a__ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched a__ = image_processing(lowerCAmelCase_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def lowercase__ ( self ) -> Union[str, Any]: """simple docstring""" a__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors a__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase_ , numpify=lowerCAmelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase_ , np.ndarray ) # Test not batched input a__ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched a__ = image_processing(lowerCAmelCase_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def lowercase__ ( self ) -> List[Any]: """simple docstring""" a__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors a__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase_ , torchify=lowerCAmelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase_ , torch.Tensor ) # Test not batched input a__ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched a__ = image_processing(lowerCAmelCase_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , )
273
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) UpperCAmelCase__ = { '''configuration_trocr''': ['''TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TrOCRConfig'''], '''processing_trocr''': ['''TrOCRProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ '''TROCR_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TrOCRForCausalLM''', '''TrOCRPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
186
0
'''simple docstring''' from __future__ import annotations __snake_case : List[str] = list[list[int]] # assigning initial values to the grid __snake_case : Matrix = [ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution __snake_case : Matrix = [ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def _lowercase ( lowerCamelCase__ : Matrix, lowerCamelCase__ : int, lowerCamelCase__ : int, lowerCamelCase__ : int ): for i in range(9 ): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3 ): for j in range(3 ): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def _lowercase ( lowerCamelCase__ : Matrix ): for i in range(9 ): for j in range(9 ): if grid[i][j] == 0: return i, j return None def _lowercase ( lowerCamelCase__ : Matrix ): if location := find_empty_location(lowerCamelCase__ ): _a , _a = location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1, 10 ): if is_safe(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ): _a = digit if sudoku(lowerCamelCase__ ) is not None: return grid _a = 0 return None def _lowercase ( lowerCamelCase__ : Matrix ): for row in grid: for cell in row: print(lowerCamelCase__, end=" " ) print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for example_grid in (initial_grid, no_solution): print("\nExample grid:\n" + "=" * 20) print_solution(example_grid) print("\nExample grid solution:") __snake_case : Dict = sudoku(example_grid) if solution is not None: print_solution(solution) else: print("Cannot find a solution.")
691
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __snake_case : int = { "configuration_bloom": ["BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP", "BloomConfig", "BloomOnnxConfig"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Union[str, Any] = ["BloomTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Dict = [ "BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST", "BloomForCausalLM", "BloomModel", "BloomPreTrainedModel", "BloomForSequenceClassification", "BloomForTokenClassification", "BloomForQuestionAnswering", ] if TYPE_CHECKING: from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bloom_fast import BloomTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bloom import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) else: import sys __snake_case : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
691
1
"""simple docstring""" def UpperCamelCase ( _lowerCAmelCase : int ) -> bool: if number < 0: raise ValueError("""number must not be negative""" ) return number & (number - 1) == 0 if __name__ == "__main__": import doctest doctest.testmod()
238
"""simple docstring""" import json import os import re import sys import urllib.request import requests from bsa import BeautifulSoup lowerCamelCase__ : List[str] = { '''User-Agent''': '''Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36''' ''' (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582''' } def UpperCamelCase ( _lowerCAmelCase : str = "dhaka", _lowerCAmelCase : int = 5 ) -> int: _UpperCAmelCase : str = min(_lowerCAmelCase, 50 ) # Prevent abuse! _UpperCAmelCase : List[str] = { """q""": query, """tbm""": """isch""", """hl""": """en""", """ijn""": """0""", } _UpperCAmelCase : Optional[int] = requests.get("""https://www.google.com/search""", params=_lowerCAmelCase, headers=_lowerCAmelCase ) _UpperCAmelCase : int = BeautifulSoup(html.text, """html.parser""" ) _UpperCAmelCase : Any = """""".join( re.findall(R"""AF_initDataCallback\(([^<]+)\);""", str(soup.select("""script""" ) ) ) ) _UpperCAmelCase : Optional[int] = json.dumps(_lowerCAmelCase ) _UpperCAmelCase : str = json.loads(_lowerCAmelCase ) _UpperCAmelCase : Any = re.findall( R"""\[\"GRID_STATE0\",null,\[\[1,\[0,\".*?\",(.*),\"All\",""", _lowerCAmelCase, ) if not matched_google_image_data: return 0 _UpperCAmelCase : Any = re.sub( R"""\[\"(https\:\/\/encrypted-tbn0\.gstatic\.com\/images\?.*?)\",\d+,\d+\]""", """""", str(_lowerCAmelCase ), ) _UpperCAmelCase : Union[str, Any] = re.findall( R"""(?:'|,),\[\"(https:|http.*?)\",\d+,\d+\]""", _lowerCAmelCase, ) for index, fixed_full_res_image in enumerate(_lowerCAmelCase ): if index >= max_images: return index _UpperCAmelCase : Tuple = bytes(_lowerCAmelCase, """ascii""" ).decode( """unicode-escape""" ) _UpperCAmelCase : Optional[Any] = bytes(_lowerCAmelCase, """ascii""" ).decode( """unicode-escape""" ) _UpperCAmelCase : List[str] = urllib.request.build_opener() _UpperCAmelCase : Optional[int] = [ ( """User-Agent""", """Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36""" """ (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582""", ) ] urllib.request.install_opener(_lowerCAmelCase ) _UpperCAmelCase : List[Any] = f'''query_{query.replace(" ", "_" )}''' if not os.path.exists(_lowerCAmelCase ): os.makedirs(_lowerCAmelCase ) urllib.request.urlretrieve( # noqa: S310 _lowerCAmelCase, f'''{path_name}/original_size_img_{index}.jpg''' ) return index if __name__ == "__main__": try: lowerCamelCase__ : List[str] = download_images_from_google_query(sys.argv[1]) print(F'''{image_count} images were downloaded to disk.''') except IndexError: print('''Please provide a search term.''') raise
238
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) __UpperCamelCase : List[str] = { """configuration_clip""": [ """CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CLIPConfig""", """CLIPOnnxConfig""", """CLIPTextConfig""", """CLIPVisionConfig""", ], """processing_clip""": ["""CLIPProcessor"""], """tokenization_clip""": ["""CLIPTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : List[str] = ["""CLIPTokenizerFast"""] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Any = ["""CLIPFeatureExtractor"""] __UpperCamelCase : Tuple = ["""CLIPImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Any = [ """CLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """CLIPModel""", """CLIPPreTrainedModel""", """CLIPTextModel""", """CLIPTextModelWithProjection""", """CLIPVisionModel""", """CLIPVisionModelWithProjection""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : List[Any] = [ """TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFCLIPModel""", """TFCLIPPreTrainedModel""", """TFCLIPTextModel""", """TFCLIPVisionModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : List[str] = [ """FlaxCLIPModel""", """FlaxCLIPPreTrainedModel""", """FlaxCLIPTextModel""", """FlaxCLIPTextPreTrainedModel""", """FlaxCLIPVisionModel""", """FlaxCLIPVisionPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys __UpperCamelCase : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
710
import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :str = (UnCLIPScheduler,) def _a ( self : Optional[int] , **_lowerCAmelCase : Any ) -> Tuple: """simple docstring""" __lowercase = { """num_train_timesteps""": 1000, """variance_type""": """fixed_small_log""", """clip_sample""": True, """clip_sample_range""": 1.0, """prediction_type""": """epsilon""", } config.update(**_lowerCAmelCase ) return config def _a ( self : Dict ) -> List[Any]: """simple docstring""" for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=_lowerCAmelCase ) def _a ( self : List[str] ) -> Tuple: """simple docstring""" for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=_lowerCAmelCase ) def _a ( self : Any ) -> Any: """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=_lowerCAmelCase ) def _a ( self : Any ) -> Optional[Any]: """simple docstring""" for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=_lowerCAmelCase ) def _a ( self : Optional[int] ) -> Tuple: """simple docstring""" for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=_lowerCAmelCase ) def _a ( self : str ) -> int: """simple docstring""" for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=_lowerCAmelCase , prev_timestep=_lowerCAmelCase ) def _a ( self : Union[str, Any] ) -> Tuple: """simple docstring""" __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config(variance_type="""fixed_small_log""" ) __lowercase = scheduler_class(**_lowerCAmelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0000e-10 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_549_625 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.9_994_987 ) ) < 1e-5 def _a ( self : str ) -> Optional[int]: """simple docstring""" __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config(variance_type="""learned_range""" ) __lowercase = scheduler_class(**_lowerCAmelCase ) __lowercase = 0.5 assert scheduler._get_variance(1 , predicted_variance=_lowerCAmelCase ) - -10.1_712_790 < 1e-5 assert scheduler._get_variance(487 , predicted_variance=_lowerCAmelCase ) - -5.7_998_052 < 1e-5 assert scheduler._get_variance(999 , predicted_variance=_lowerCAmelCase ) - -0.0_010_011 < 1e-5 def _a ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config() __lowercase = scheduler_class(**_lowerCAmelCase ) __lowercase = scheduler.timesteps __lowercase = self.dummy_model() __lowercase = self.dummy_sample_deter __lowercase = torch.manual_seed(0 ) for i, t in enumerate(_lowerCAmelCase ): # 1. predict noise residual __lowercase = model(_lowerCAmelCase , _lowerCAmelCase ) # 2. predict previous mean of sample x_t-1 __lowercase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , generator=_lowerCAmelCase ).prev_sample __lowercase = pred_prev_sample __lowercase = torch.sum(torch.abs(_lowerCAmelCase ) ) __lowercase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 252.2_682_495 ) < 1e-2 assert abs(result_mean.item() - 0.3_284_743 ) < 1e-3 def _a ( self : List[str] ) -> str: """simple docstring""" __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config() __lowercase = scheduler_class(**_lowerCAmelCase ) scheduler.set_timesteps(25 ) __lowercase = scheduler.timesteps __lowercase = self.dummy_model() __lowercase = self.dummy_sample_deter __lowercase = torch.manual_seed(0 ) for i, t in enumerate(_lowerCAmelCase ): # 1. predict noise residual __lowercase = model(_lowerCAmelCase , _lowerCAmelCase ) if i + 1 == timesteps.shape[0]: __lowercase = None else: __lowercase = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 __lowercase = scheduler.step( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , prev_timestep=_lowerCAmelCase , generator=_lowerCAmelCase ).prev_sample __lowercase = pred_prev_sample __lowercase = torch.sum(torch.abs(_lowerCAmelCase ) ) __lowercase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 258.2_044_983 ) < 1e-2 assert abs(result_mean.item() - 0.3_362_038 ) < 1e-3 def _a ( self : str ) -> Union[str, Any]: """simple docstring""" pass def _a ( self : int ) -> List[str]: """simple docstring""" pass
53
0
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_barthez import BarthezTokenizer else: UpperCAmelCase : int = None UpperCAmelCase : List[Any] = logging.get_logger(__name__) UpperCAmelCase : List[str] = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'} UpperCAmelCase : List[Any] = { 'vocab_file': { 'moussaKam/mbarthez': 'https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez': 'https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez-orangesum-title': ( 'https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model' ), }, 'tokenizer_file': { 'moussaKam/mbarthez': 'https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json', 'moussaKam/barthez': 'https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json', 'moussaKam/barthez-orangesum-title': ( 'https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json' ), }, } UpperCAmelCase : Tuple = { 'moussaKam/mbarthez': 1024, 'moussaKam/barthez': 1024, 'moussaKam/barthez-orangesum-title': 1024, } UpperCAmelCase : Optional[int] = '▁' class lowerCamelCase__ ( __a ): """simple docstring""" __a = VOCAB_FILES_NAMES __a = PRETRAINED_VOCAB_FILES_MAP __a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __a = ['''input_ids''', '''attention_mask'''] __a = BarthezTokenizer def __init__( self : str , UpperCamelCase : int=None , UpperCamelCase : str=None , UpperCamelCase : str="<s>" , UpperCamelCase : Any="</s>" , UpperCamelCase : Dict="</s>" , UpperCamelCase : Any="<s>" , UpperCamelCase : Optional[int]="<unk>" , UpperCamelCase : str="<pad>" , UpperCamelCase : Optional[Any]="<mask>" , **UpperCamelCase : Dict , ): '''simple docstring''' __UpperCAmelCase : int = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else mask_token super().__init__( _lowercase , tokenizer_file=_lowercase , bos_token=_lowercase , eos_token=_lowercase , unk_token=_lowercase , sep_token=_lowercase , cls_token=_lowercase , pad_token=_lowercase , mask_token=_lowercase , **_lowercase , ) __UpperCAmelCase : List[Any] = vocab_file __UpperCAmelCase : int = False if not self.vocab_file else True def lowerCamelCase__ ( self : Tuple , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __UpperCAmelCase : Union[str, Any] = [self.cls_token_id] __UpperCAmelCase : Dict = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCamelCase__ ( self : List[str] , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = [self.sep_token_id] __UpperCAmelCase : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCamelCase__ ( self : Dict , UpperCamelCase : str , UpperCamelCase : Optional[str] = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(_lowercase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __UpperCAmelCase : Dict = os.path.join( _lowercase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowercase ): copyfile(self.vocab_file , _lowercase ) return (out_vocab_file,)
139
from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def lowerCAmelCase_ ( lowercase: str , lowercase: complex , lowercase: str = "x" , lowercase: float = 10**-10 , lowercase: int = 1 , ) -> complex: '''simple docstring''' _UpperCamelCase: Any = symbols(lowercase ) _UpperCamelCase: str = lambdify(lowercase , lowercase ) _UpperCamelCase: str = lambdify(lowercase , diff(lowercase , lowercase ) ) _UpperCamelCase: Optional[int] = starting_point while True: if diff_function(lowercase ) != 0: _UpperCamelCase: int = prev_guess - multiplicity * func(lowercase ) / diff_function( lowercase ) else: raise ZeroDivisionError('''Could not find root''' ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess _UpperCamelCase: Any = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f"""The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}""") # Find root of polynomial # Find fourth Root of 5 print(f"""The root of x**4 - 5 = 0 is {newton_raphson('x**4 -5', 0.4 +5J)}""") # Find value of e print( '''The root of log(y) - 1 = 0 is ''', f"""{newton_raphson('log(y) - 1', 2, variable='y')}""", ) # Exponential Roots print( '''The root of exp(x) - 1 = 0 is''', f"""{newton_raphson('exp(x) - 1', 1_0, precision=0.0_0_5)}""", ) # Find root of cos(x) print(f"""The root of cos(x) = 0 is {newton_raphson('cos(x)', 0)}""")
271
0
"""simple docstring""" import os from typing import BinaryIO, Optional, Union import numpy as np import pyarrow.parquet as pq from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config from ..features.features import FeatureType, _visit from ..formatting import query_table from ..packaged_modules import _PACKAGED_DATASETS_MODULES from ..packaged_modules.parquet.parquet import Parquet from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader def __lowerCAmelCase ( lowercase : Optional[int] ) -> int: """simple docstring""" snake_case : Tuple = np.inf def set_batch_size(lowercase : Dict ) -> None: nonlocal batch_size if isinstance(UpperCamelCase__ , UpperCamelCase__ ): snake_case : Optional[Any] = min(UpperCamelCase__ , config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS ) elif isinstance(UpperCamelCase__ , UpperCamelCase__ ): snake_case : str = min(UpperCamelCase__ , config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS ) elif isinstance(UpperCamelCase__ , UpperCamelCase__ ) and feature.dtype == "binary": snake_case : int = min(UpperCamelCase__ , config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS ) _visit(UpperCamelCase__ , UpperCamelCase__ ) return None if batch_size is np.inf else batch_size class _lowerCAmelCase ( lowercase_ ): def __init__( self , UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = False , UpperCamelCase__ = False , UpperCamelCase__ = None , **UpperCamelCase__ , ) -> List[Any]: '''simple docstring''' super().__init__( UpperCamelCase__ , split=UpperCamelCase__ , features=UpperCamelCase__ , cache_dir=UpperCamelCase__ , keep_in_memory=UpperCamelCase__ , streaming=UpperCamelCase__ , num_proc=UpperCamelCase__ , **UpperCamelCase__ , ) snake_case : int = path_or_paths if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else {self.split: path_or_paths} snake_case : Optional[Any] = _PACKAGED_DATASETS_MODULES["parquet"][1] snake_case : List[str] = Parquet( cache_dir=UpperCamelCase__ , data_files=UpperCamelCase__ , features=UpperCamelCase__ , hash=UpperCamelCase__ , **UpperCamelCase__ , ) def lowerCamelCase ( self ) -> Optional[Any]: '''simple docstring''' if self.streaming: snake_case : Any = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: snake_case : str = None snake_case : Optional[Any] = None snake_case : Optional[int] = None snake_case : int = None self.builder.download_and_prepare( download_config=UpperCamelCase__ , download_mode=UpperCamelCase__ , verification_mode=UpperCamelCase__ , base_path=UpperCamelCase__ , num_proc=self.num_proc , ) snake_case : Optional[int] = self.builder.as_dataset( split=self.split , verification_mode=UpperCamelCase__ , in_memory=self.keep_in_memory ) return dataset class _lowerCAmelCase : def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = None , **UpperCamelCase__ , ) -> List[Any]: '''simple docstring''' snake_case : str = dataset snake_case : List[Any] = path_or_buf snake_case : Optional[int] = batch_size or get_writer_batch_size(dataset.features ) snake_case : List[str] = parquet_writer_kwargs def lowerCamelCase ( self ) -> Union[str, Any]: '''simple docstring''' snake_case : str = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with open(self.path_or_buf , "wb+" ) as buffer: snake_case : Optional[int] = self._write(file_obj=UpperCamelCase__ , batch_size=UpperCamelCase__ , **self.parquet_writer_kwargs ) else: snake_case : List[Any] = self._write(file_obj=self.path_or_buf , batch_size=UpperCamelCase__ , **self.parquet_writer_kwargs ) return written def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ) -> Any: '''simple docstring''' snake_case : Union[str, Any] = 0 snake_case : Optional[Any] = parquet_writer_kwargs.pop("path_or_buf" , UpperCamelCase__ ) snake_case : List[Any] = self.dataset.features.arrow_schema snake_case : List[str] = pq.ParquetWriter(UpperCamelCase__ , schema=UpperCamelCase__ , **UpperCamelCase__ ) for offset in logging.tqdm( range(0 , len(self.dataset ) , UpperCamelCase__ ) , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating parquet from Arrow format" , ): snake_case : Optional[int] = query_table( table=self.dataset._data , key=slice(UpperCamelCase__ , offset + batch_size ) , indices=self.dataset._indices if self.dataset._indices is not None else None , ) writer.write_table(UpperCamelCase__ ) written += batch.nbytes writer.close() return written
720
"""simple docstring""" # this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys __snake_case = subprocess.check_output("""git merge-base main HEAD""".split()).decode("""utf-8""") __snake_case = ( subprocess.check_output(F'''git diff --diff-filter=d --name-only {fork_point_sha}'''.split()).decode("""utf-8""").split() ) __snake_case = """|""".join(sys.argv[1:]) __snake_case = re.compile(RF'''^({joined_dirs}).*?\.py$''') __snake_case = [x for x in modified_files if regex.match(x)] print(""" """.join(relevant_modified_files), end="""""")
117
0
UpperCamelCase = { "A": ".-", "B": "-...", "C": "-.-.", "D": "-..", "E": ".", "F": "..-.", "G": "--.", "H": "....", "I": "..", "J": ".---", "K": "-.-", "L": ".-..", "M": "--", "N": "-.", "O": "---", "P": ".--.", "Q": "--.-", "R": ".-.", "S": "...", "T": "-", "U": "..-", "V": "...-", "W": ".--", "X": "-..-", "Y": "-.--", "Z": "--..", "1": ".----", "2": "..---", "3": "...--", "4": "....-", "5": ".....", "6": "-....", "7": "--...", "8": "---..", "9": "----.", "0": "-----", "&": ".-...", "@": ".--.-.", ":": "---...", ",": "--..--", ".": ".-.-.-", "'": ".----.", "\"": ".-..-.", "?": "..--..", "/": "-..-.", "=": "-...-", "+": ".-.-.", "-": "-....-", "(": "-.--.", ")": "-.--.-", "!": "-.-.--", " ": "/" } # Exclamation mark is not in ITU-R recommendation # fmt: on UpperCamelCase = {value: key for key, value in MORSE_CODE_DICT.items()} def A ( lowercase__ : str ) -> str: return " ".join(MORSE_CODE_DICT[char] for char in message.upper() ) def A ( lowercase__ : str ) -> str: return "".join(REVERSE_DICT[char] for char in message.split() ) def A ( ) -> None: UpperCamelCase__ :Union[str, Any] = """Morse code here!""" print(lowercase__ ) UpperCamelCase__ :Dict = encrypt(lowercase__ ) print(lowercase__ ) UpperCamelCase__ :Optional[Any] = decrypt(lowercase__ ) print(lowercase__ ) if __name__ == "__main__": main()
45
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE = { 'caidas/swin2sr-classicalsr-x2-64': ( 'https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json' ), } class lowerCAmelCase__ ( lowerCAmelCase_ ): """simple docstring""" __UpperCamelCase = "swin2sr" __UpperCamelCase = { "hidden_size": "embed_dim", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : Union[str, Any] , A__ : int=6_4 , A__ : List[Any]=1 , A__ : List[Any]=3 , A__ : Any=1_8_0 , A__ : Optional[int]=[6, 6, 6, 6, 6, 6] , A__ : Optional[int]=[6, 6, 6, 6, 6, 6] , A__ : Dict=8 , A__ : Any=2.0 , A__ : Optional[int]=True , A__ : Union[str, Any]=0.0 , A__ : Union[str, Any]=0.0 , A__ : List[str]=0.1 , A__ : Any="gelu" , A__ : Tuple=False , A__ : Optional[int]=0.02 , A__ : List[Any]=1E-5 , A__ : Any=2 , A__ : Union[str, Any]=1.0 , A__ : Dict="1conv" , A__ : Optional[Any]="pixelshuffle" , **A__ : Optional[Any] , ) -> Optional[Any]: '''simple docstring''' super().__init__(**A__ ) a__ : List[str] = image_size a__ : Optional[Any] = patch_size a__ : Dict = num_channels a__ : Optional[int] = embed_dim a__ : int = depths a__ : Optional[int] = len(A__ ) a__ : Dict = num_heads a__ : List[Any] = window_size a__ : Optional[int] = mlp_ratio a__ : Optional[int] = qkv_bias a__ : Union[str, Any] = hidden_dropout_prob a__ : Dict = attention_probs_dropout_prob a__ : Union[str, Any] = drop_path_rate a__ : int = hidden_act a__ : int = use_absolute_embeddings a__ : Dict = layer_norm_eps a__ : List[str] = initializer_range a__ : List[Any] = upscale a__ : List[Any] = img_range a__ : Optional[int] = resi_connection a__ : int = upsampler
688
0
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING lowerCamelCase : Tuple = logging.get_logger(__name__) lowerCamelCase : Union[str, Any] = { """SenseTime/deformable-detr""": """https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json""", # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class __snake_case( __A ): _A = '''deformable_detr''' _A = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', } def __init__( self , A_=True , A_=None , A_=3 , A_=300 , A_=1_024 , A_=6 , A_=1_024 , A_=8 , A_=6 , A_=1_024 , A_=8 , A_=0.0 , A_=True , A_="relu" , A_=256 , A_=0.1 , A_=0.0 , A_=0.0 , A_=0.02 , A_=1.0 , A_=True , A_=False , A_="sine" , A_="resnet50" , A_=True , A_=False , A_=4 , A_=4 , A_=4 , A_=False , A_=300 , A_=False , A_=1 , A_=5 , A_=2 , A_=1 , A_=1 , A_=5 , A_=2 , A_=0.1 , A_=0.25 , A_=False , **A_ , ): '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' ) if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) _SCREAMING_SNAKE_CASE = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] ) elif isinstance(A_ , A_ ): _SCREAMING_SNAKE_CASE = backbone_config.get('''model_type''' ) _SCREAMING_SNAKE_CASE = CONFIG_MAPPING[backbone_model_type] _SCREAMING_SNAKE_CASE = config_class.from_dict(A_ ) _SCREAMING_SNAKE_CASE = use_timm_backbone _SCREAMING_SNAKE_CASE = backbone_config _SCREAMING_SNAKE_CASE = num_channels _SCREAMING_SNAKE_CASE = num_queries _SCREAMING_SNAKE_CASE = max_position_embeddings _SCREAMING_SNAKE_CASE = d_model _SCREAMING_SNAKE_CASE = encoder_ffn_dim _SCREAMING_SNAKE_CASE = encoder_layers _SCREAMING_SNAKE_CASE = encoder_attention_heads _SCREAMING_SNAKE_CASE = decoder_ffn_dim _SCREAMING_SNAKE_CASE = decoder_layers _SCREAMING_SNAKE_CASE = decoder_attention_heads _SCREAMING_SNAKE_CASE = dropout _SCREAMING_SNAKE_CASE = attention_dropout _SCREAMING_SNAKE_CASE = activation_dropout _SCREAMING_SNAKE_CASE = activation_function _SCREAMING_SNAKE_CASE = init_std _SCREAMING_SNAKE_CASE = init_xavier_std _SCREAMING_SNAKE_CASE = encoder_layerdrop _SCREAMING_SNAKE_CASE = auxiliary_loss _SCREAMING_SNAKE_CASE = position_embedding_type _SCREAMING_SNAKE_CASE = backbone _SCREAMING_SNAKE_CASE = use_pretrained_backbone _SCREAMING_SNAKE_CASE = dilation # deformable attributes _SCREAMING_SNAKE_CASE = num_feature_levels _SCREAMING_SNAKE_CASE = encoder_n_points _SCREAMING_SNAKE_CASE = decoder_n_points _SCREAMING_SNAKE_CASE = two_stage _SCREAMING_SNAKE_CASE = two_stage_num_proposals _SCREAMING_SNAKE_CASE = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError('''If two_stage is True, with_box_refine must be True.''' ) # Hungarian matcher _SCREAMING_SNAKE_CASE = class_cost _SCREAMING_SNAKE_CASE = bbox_cost _SCREAMING_SNAKE_CASE = giou_cost # Loss coefficients _SCREAMING_SNAKE_CASE = mask_loss_coefficient _SCREAMING_SNAKE_CASE = dice_loss_coefficient _SCREAMING_SNAKE_CASE = bbox_loss_coefficient _SCREAMING_SNAKE_CASE = giou_loss_coefficient _SCREAMING_SNAKE_CASE = eos_coefficient _SCREAMING_SNAKE_CASE = focal_alpha _SCREAMING_SNAKE_CASE = disable_custom_kernels super().__init__(is_encoder_decoder=A_ , **A_ ) @property def A ( self ): '''simple docstring''' return self.encoder_attention_heads @property def A ( self ): '''simple docstring''' return self.d_model def A ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: _SCREAMING_SNAKE_CASE = self.backbone_config.to_dict() _SCREAMING_SNAKE_CASE = self.__class__.model_type return output
168
"""simple docstring""" import argparse import logging import pickle from collections import Counter logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""", datefmt="""%m/%d/%Y %H:%M:%S""", level=logging.INFO ) lowerCamelCase : str = logging.getLogger(__name__) if __name__ == "__main__": lowerCamelCase : Optional[int] = argparse.ArgumentParser( description="""Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)""" ) parser.add_argument( """--data_file""", type=str, default="""data/dump.bert-base-uncased.pickle""", help="""The binarized dataset.""" ) parser.add_argument( """--token_counts_dump""", type=str, default="""data/token_counts.bert-base-uncased.pickle""", help="""The dump file.""" ) parser.add_argument("""--vocab_size""", default=3_0_5_2_2, type=int) lowerCamelCase : Dict = parser.parse_args() logger.info(F'''Loading data from {args.data_file}''') with open(args.data_file, """rb""") as fp: lowerCamelCase : Union[str, Any] = pickle.load(fp) logger.info("""Counting occurrences for MLM.""") lowerCamelCase : Tuple = Counter() for tk_ids in data: counter.update(tk_ids) lowerCamelCase : Dict = [0] * args.vocab_size for k, v in counter.items(): lowerCamelCase : str = v logger.info(F'''Dump to {args.token_counts_dump}''') with open(args.token_counts_dump, """wb""") as handle: pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
168
1
"""simple docstring""" import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging __UpperCamelCase : Tuple = logging.get_logger(__name__) class a ( a__ ): snake_case__ = ['''input_features''', '''is_longer'''] def __init__( self , _snake_case=64 , _snake_case=4_80_00 , _snake_case=4_80 , _snake_case=10 , _snake_case=10_24 , _snake_case=0.0 , _snake_case=False , _snake_case = 0 , _snake_case = 1_40_00 , _snake_case = None , _snake_case = "fusion" , _snake_case = "repeatpad" , **_snake_case , ): """simple docstring""" super().__init__( feature_size=_snake_case , sampling_rate=_snake_case , padding_value=_snake_case , return_attention_mask=_snake_case , **_snake_case , ) lowerCAmelCase = top_db lowerCAmelCase = truncation lowerCAmelCase = padding lowerCAmelCase = fft_window_size lowerCAmelCase = (fft_window_size >> 1) + 1 lowerCAmelCase = hop_length lowerCAmelCase = max_length_s lowerCAmelCase = max_length_s * sampling_rate lowerCAmelCase = sampling_rate lowerCAmelCase = frequency_min lowerCAmelCase = frequency_max lowerCAmelCase = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=_snake_case , min_frequency=_snake_case , max_frequency=_snake_case , sampling_rate=_snake_case , norm=_snake_case , mel_scale='htk' , ) lowerCAmelCase = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=_snake_case , min_frequency=_snake_case , max_frequency=_snake_case , sampling_rate=_snake_case , norm='slaney' , mel_scale='slaney' , ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = copy.deepcopy(self.__dict__ ) lowerCAmelCase = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def UpperCamelCase__ ( self , _snake_case , _snake_case = None ): """simple docstring""" lowerCAmelCase = spectrogram( _snake_case , window_function(self.fft_window_size , 'hann' ) , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=_snake_case , log_mel='dB' , ) return log_mel_spectrogram.T def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = np.array_split(list(range(0 , total_frames - chunk_frames + 1 ) ) , 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk lowerCAmelCase = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk lowerCAmelCase = [0] # randomly choose index for each part lowerCAmelCase = np.random.choice(ranges[0] ) lowerCAmelCase = np.random.choice(ranges[1] ) lowerCAmelCase = np.random.choice(ranges[2] ) lowerCAmelCase = mel[idx_front : idx_front + chunk_frames, :] lowerCAmelCase = mel[idx_middle : idx_middle + chunk_frames, :] lowerCAmelCase = mel[idx_back : idx_back + chunk_frames, :] lowerCAmelCase = torch.tensor(mel[None, None, :] ) lowerCAmelCase = torch.nn.functional.interpolate( _snake_case , size=[chunk_frames, 64] , mode='bilinear' , align_corners=_snake_case ) lowerCAmelCase = mel_shrink[0][0].numpy() lowerCAmelCase = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0 ) return mel_fusion def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" if waveform.shape[0] > max_length: if truncation == "rand_trunc": lowerCAmelCase = True # random crop to max_length (for compatibility) -> this should be handled by self.pad lowerCAmelCase = len(_snake_case ) - max_length lowerCAmelCase = np.random.randint(0 , overflow + 1 ) lowerCAmelCase = waveform[idx : idx + max_length] lowerCAmelCase = self._np_extract_fbank_features(_snake_case , self.mel_filters_slaney )[None, :] elif truncation == "fusion": lowerCAmelCase = self._np_extract_fbank_features(_snake_case , self.mel_filters ) lowerCAmelCase = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed lowerCAmelCase = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. lowerCAmelCase = np.stack([mel, mel, mel, mel] , axis=0 ) lowerCAmelCase = False else: lowerCAmelCase = self._random_mel_fusion(_snake_case , _snake_case , _snake_case ) lowerCAmelCase = True else: raise NotImplementedError(F'data_truncating {truncation} not implemented' ) else: lowerCAmelCase = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": lowerCAmelCase = int(max_length / len(_snake_case ) ) lowerCAmelCase = np.stack(np.tile(_snake_case , n_repeat + 1 ) )[:max_length] if padding == "repeatpad": lowerCAmelCase = int(max_length / len(_snake_case ) ) lowerCAmelCase = np.stack(np.tile(_snake_case , _snake_case ) ) lowerCAmelCase = np.pad(_snake_case , (0, max_length - waveform.shape[0]) , mode='constant' , constant_values=0 ) if truncation == "fusion": lowerCAmelCase = self._np_extract_fbank_features(_snake_case , self.mel_filters ) lowerCAmelCase = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0 ) else: lowerCAmelCase = self._np_extract_fbank_features(_snake_case , self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self , _snake_case , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , **_snake_case , ): """simple docstring""" lowerCAmelCase = truncation if truncation is not None else self.truncation lowerCAmelCase = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a' F' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input' F' was sampled with {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) lowerCAmelCase = isinstance(_snake_case , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'Only mono-channel audio is supported for input to {self}' ) lowerCAmelCase = is_batched_numpy or ( isinstance(_snake_case , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: lowerCAmelCase = [np.asarray(_snake_case , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(_snake_case , np.ndarray ): lowerCAmelCase = np.asarray(_snake_case , dtype=np.floataa ) elif isinstance(_snake_case , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowerCAmelCase = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowerCAmelCase = [np.asarray(_snake_case )] # convert to mel spectrogram, truncate and pad if needed. lowerCAmelCase = [ self._get_input_mel(_snake_case , max_length if max_length else self.nb_max_samples , _snake_case , _snake_case ) for waveform in raw_speech ] lowerCAmelCase = [] lowerCAmelCase = [] for mel, longer in padded_inputs: input_mel.append(_snake_case ) is_longer.append(_snake_case ) if truncation == "fusion" and sum(_snake_case ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer lowerCAmelCase = np.random.randint(0 , len(_snake_case ) ) lowerCAmelCase = True if isinstance(input_mel[0] , _snake_case ): lowerCAmelCase = [np.asarray(_snake_case , dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool lowerCAmelCase = [[longer] for longer in is_longer] lowerCAmelCase = {'input_features': input_mel, 'is_longer': is_longer} lowerCAmelCase = BatchFeature(_snake_case ) if return_tensors is not None: lowerCAmelCase = input_features.convert_to_tensors(_snake_case ) return input_features
4
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __snake_case = { """configuration_groupvit""": [ """GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GroupViTConfig""", """GroupViTOnnxConfig""", """GroupViTTextConfig""", """GroupViTVisionConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ """GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """GroupViTModel""", """GroupViTPreTrainedModel""", """GroupViTTextModel""", """GroupViTVisionModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ """TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFGroupViTModel""", """TFGroupViTPreTrainedModel""", """TFGroupViTTextModel""", """TFGroupViTVisionModel""", ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys __snake_case = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
658
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor UpperCamelCase : Dict = logging.get_logger(__name__) class UpperCamelCase__ (a ): '''simple docstring''' def __init__( self ,*_lowerCAmelCase ,**_lowerCAmelCase ): warnings.warn( """The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use LayoutLMv2ImageProcessor instead.""" ,_lowerCAmelCase ,) super().__init__(*_lowerCAmelCase ,**_lowerCAmelCase )
716
'''simple docstring''' import argparse import OmegaConf import torch from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel def A__ ( __lowerCAmelCase : str , __lowerCAmelCase : Tuple , __lowerCAmelCase : List[str] ): lowerCamelCase__ = OmegaConf.load(__lowerCAmelCase ) lowerCamelCase__ = torch.load(__lowerCAmelCase , map_location="""cpu""" )["""model"""] lowerCamelCase__ = list(state_dict.keys() ) # extract state_dict for VQVAE lowerCamelCase__ = {} lowerCamelCase__ = """first_stage_model.""" for key in keys: if key.startswith(__lowerCAmelCase ): lowerCamelCase__ = state_dict[key] # extract state_dict for UNetLDM lowerCamelCase__ = {} lowerCamelCase__ = """model.diffusion_model.""" for key in keys: if key.startswith(__lowerCAmelCase ): lowerCamelCase__ = state_dict[key] lowerCamelCase__ = config.model.params.first_stage_config.params lowerCamelCase__ = config.model.params.unet_config.params lowerCamelCase__ = VQModel(**__lowerCAmelCase ).eval() vqvae.load_state_dict(__lowerCAmelCase ) lowerCamelCase__ = UNetLDMModel(**__lowerCAmelCase ).eval() unet.load_state_dict(__lowerCAmelCase ) lowerCamelCase__ = DDIMScheduler( timesteps=config.model.params.timesteps , beta_schedule="""scaled_linear""" , beta_start=config.model.params.linear_start , beta_end=config.model.params.linear_end , clip_sample=__lowerCAmelCase , ) lowerCamelCase__ = LDMPipeline(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) pipeline.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": UpperCamelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument('--checkpoint_path', type=str, required=True) parser.add_argument('--config_path', type=str, required=True) parser.add_argument('--output_path', type=str, required=True) UpperCamelCase : List[Any] = parser.parse_args() convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
9
0
'''simple docstring''' from collections import defaultdict from typing import Optional from ..image_utils import load_image from ..utils import ( add_end_docstrings, is_torch_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING _a : int = logging.get_logger(__name__) @add_end_docstrings(__a ) class _UpperCAmelCase ( __a ): def __init__( self,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' super().__init__(**lowerCAmelCase__ ) requires_backends(self,"""vision""" ) requires_backends(self,"""torch""" ) if self.framework != "pt": raise ValueError(f'The {self.__class__} is only available in PyTorch.' ) self.check_model_type(lowerCAmelCase__ ) def lowerCamelCase__ ( self,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = {} __lowerCAmelCase = {} __lowerCAmelCase = {} # preprocess args if "points_per_batch" in kwargs: __lowerCAmelCase = kwargs["""points_per_batch"""] if "points_per_crop" in kwargs: __lowerCAmelCase = kwargs["""points_per_crop"""] if "crops_n_layers" in kwargs: __lowerCAmelCase = kwargs["""crops_n_layers"""] if "crop_overlap_ratio" in kwargs: __lowerCAmelCase = kwargs["""crop_overlap_ratio"""] if "crop_n_points_downscale_factor" in kwargs: __lowerCAmelCase = kwargs["""crop_n_points_downscale_factor"""] # postprocess args if "pred_iou_thresh" in kwargs: __lowerCAmelCase = kwargs["""pred_iou_thresh"""] if "stability_score_offset" in kwargs: __lowerCAmelCase = kwargs["""stability_score_offset"""] if "mask_threshold" in kwargs: __lowerCAmelCase = kwargs["""mask_threshold"""] if "stability_score_thresh" in kwargs: __lowerCAmelCase = kwargs["""stability_score_thresh"""] if "crops_nms_thresh" in kwargs: __lowerCAmelCase = kwargs["""crops_nms_thresh"""] if "output_rle_mask" in kwargs: __lowerCAmelCase = kwargs["""output_rle_mask"""] if "output_bboxes_mask" in kwargs: __lowerCAmelCase = kwargs["""output_bboxes_mask"""] return preprocess_kwargs, forward_params, postprocess_kwargs def __call__( self,__SCREAMING_SNAKE_CASE,*__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' return super().__call__(lowerCAmelCase__,*lowerCAmelCase__,num_workers=lowerCAmelCase__,batch_size=lowerCAmelCase__,**lowerCAmelCase__ ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=64,__SCREAMING_SNAKE_CASE = 0,__SCREAMING_SNAKE_CASE = 5_12 / 15_00,__SCREAMING_SNAKE_CASE = 32,__SCREAMING_SNAKE_CASE = 1,): '''simple docstring''' __lowerCAmelCase = load_image(lowerCAmelCase__ ) __lowerCAmelCase = self.image_processor.size["""longest_edge"""] __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = self.image_processor.generate_crop_boxes( lowerCAmelCase__,lowerCAmelCase__,lowerCAmelCase__,lowerCAmelCase__,lowerCAmelCase__,lowerCAmelCase__ ) __lowerCAmelCase = self.image_processor(images=lowerCAmelCase__,return_tensors="""pt""" ) with self.device_placement(): if self.framework == "pt": __lowerCAmelCase = self.get_inference_context() with inference_context(): __lowerCAmelCase = self._ensure_tensor_on_device(lowerCAmelCase__,device=self.device ) __lowerCAmelCase = self.model.get_image_embeddings(model_inputs.pop("""pixel_values""" ) ) __lowerCAmelCase = image_embeddings __lowerCAmelCase = grid_points.shape[1] __lowerCAmelCase = points_per_batch if points_per_batch is not None else n_points if points_per_batch <= 0: raise ValueError( """Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. """ """To return all points at once, set points_per_batch to None""" ) for i in range(0,lowerCAmelCase__,lowerCAmelCase__ ): __lowerCAmelCase = grid_points[:, i : i + points_per_batch, :, :] __lowerCAmelCase = input_labels[:, i : i + points_per_batch] __lowerCAmelCase = i == n_points - points_per_batch yield { "input_points": batched_points, "input_labels": labels, "input_boxes": crop_boxes, "is_last": is_last, **model_inputs, } def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=0.88,__SCREAMING_SNAKE_CASE=0.95,__SCREAMING_SNAKE_CASE=0,__SCREAMING_SNAKE_CASE=1,): '''simple docstring''' __lowerCAmelCase = model_inputs.pop("""input_boxes""" ) __lowerCAmelCase = model_inputs.pop("""is_last""" ) __lowerCAmelCase = model_inputs.pop("""original_sizes""" ).tolist() __lowerCAmelCase = model_inputs.pop("""reshaped_input_sizes""" ).tolist() __lowerCAmelCase = self.model(**lowerCAmelCase__ ) # post processing happens here in order to avoid CPU GPU copies of ALL the masks __lowerCAmelCase = model_outputs["""pred_masks"""] __lowerCAmelCase = self.image_processor.post_process_masks( lowerCAmelCase__,lowerCAmelCase__,lowerCAmelCase__,lowerCAmelCase__,binarize=lowerCAmelCase__ ) __lowerCAmelCase = model_outputs["""iou_scores"""] __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = self.image_processor.filter_masks( masks[0],iou_scores[0],original_sizes[0],input_boxes[0],lowerCAmelCase__,lowerCAmelCase__,lowerCAmelCase__,lowerCAmelCase__,) return { "masks": masks, "is_last": is_last, "boxes": boxes, "iou_scores": iou_scores, } def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=False,__SCREAMING_SNAKE_CASE=False,__SCREAMING_SNAKE_CASE=0.7,): '''simple docstring''' __lowerCAmelCase = [] __lowerCAmelCase = [] __lowerCAmelCase = [] for model_output in model_outputs: all_scores.append(model_output.pop("""iou_scores""" ) ) all_masks.extend(model_output.pop("""masks""" ) ) all_boxes.append(model_output.pop("""boxes""" ) ) __lowerCAmelCase = torch.cat(lowerCAmelCase__ ) __lowerCAmelCase = torch.cat(lowerCAmelCase__ ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = self.image_processor.post_process_for_mask_generation( lowerCAmelCase__,lowerCAmelCase__,lowerCAmelCase__,lowerCAmelCase__ ) __lowerCAmelCase = defaultdict(lowerCAmelCase__ ) for output in model_outputs: for k, v in output.items(): extra[k].append(lowerCAmelCase__ ) __lowerCAmelCase = {} if output_rle_mask: __lowerCAmelCase = rle_mask if output_bboxes_mask: __lowerCAmelCase = bounding_boxes return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
689
"""simple docstring""" from __future__ import annotations def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = [] create_all_state(1 , UpperCamelCase_ , UpperCamelCase_ , [] , UpperCamelCase_ ) return result def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , ): if level == 0: total_list.append(current_list[:] ) return for i in range(UpperCamelCase_ , total_number - level + 2 ): current_list.append(UpperCamelCase_ ) create_all_state(i + 1 , UpperCamelCase_ , level - 1 , UpperCamelCase_ , UpperCamelCase_ ) current_list.pop() def _lowerCAmelCase ( UpperCamelCase_ ): for i in total_list: print(*UpperCamelCase_ ) if __name__ == "__main__": __magic_name__ = 4 __magic_name__ = 2 __magic_name__ = generate_all_combinations(n, k) print_all_state(total_list)
155
0
'''simple docstring''' import gc import unittest from transformers import CTRLConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, ) class _snake_case : def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=14 , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=99 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=5 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=37 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=5_12 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=None , ): '''simple docstring''' lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = seq_length lowerCAmelCase = is_training lowerCAmelCase = use_token_type_ids lowerCAmelCase = use_input_mask lowerCAmelCase = use_labels lowerCAmelCase = use_mc_token_ids lowerCAmelCase = vocab_size lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_act lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = type_vocab_size lowerCAmelCase = type_sequence_label_size lowerCAmelCase = initializer_range lowerCAmelCase = num_labels lowerCAmelCase = num_choices lowerCAmelCase = scope lowerCAmelCase = self.vocab_size - 1 def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase = None if self.use_input_mask: lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase = None if self.use_token_type_ids: lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase = None if self.use_mc_token_ids: lowerCAmelCase = ids_tensor([self.batch_size, self.num_choices] , self.seq_length ) lowerCAmelCase = None lowerCAmelCase = None lowerCAmelCase = None if self.use_labels: lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase = self.get_config() lowerCAmelCase = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return CTRLConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) def _SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCAmelCase = CTRLModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() model(_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , head_mask=_SCREAMING_SNAKE_CASE ) model(_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE ) lowerCAmelCase = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(len(result.past_key_values ) , config.n_layer ) def _SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCAmelCase = CTRLLMHeadModel(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() lowerCAmelCase = model(_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ) = config_and_inputs lowerCAmelCase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'head_mask': head_mask} return config, inputs_dict def _SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCAmelCase = self.num_labels lowerCAmelCase = CTRLForSequenceClassification(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase = model(_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) @require_torch class _snake_case ( a_ , a_ , a_ , unittest.TestCase ): SCREAMING_SNAKE_CASE : List[Any] = (CTRLModel, CTRLLMHeadModel, CTRLForSequenceClassification) if is_torch_available() else () SCREAMING_SNAKE_CASE : str = (CTRLLMHeadModel,) if is_torch_available() else () SCREAMING_SNAKE_CASE : Any = ( { '''feature-extraction''': CTRLModel, '''text-classification''': CTRLForSequenceClassification, '''text-generation''': CTRLLMHeadModel, '''zero-shot''': CTRLForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE : Union[str, Any] = True SCREAMING_SNAKE_CASE : str = False SCREAMING_SNAKE_CASE : Optional[Any] = False def _SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): '''simple docstring''' if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `CTRLConfig` was never used in pipeline tests, either because of a missing checkpoint or because a tiny # config could not be created. return True return False def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = CTRLModelTester(self ) lowerCAmelCase = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , n_embd=37 ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_ctrl_model(*_SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*_SCREAMING_SNAKE_CASE ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' pass @slow def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' for model_name in CTRL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase = CTRLModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) @unittest.skip('The model doesn\'t support left padding' ) # and it's not used enough to be worth fixing :) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' pass @require_torch class _snake_case ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() @slow def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = CTRLLMHeadModel.from_pretrained('ctrl' ) model.to(_SCREAMING_SNAKE_CASE ) lowerCAmelCase = torch.tensor( [[1_18_59, 0, 16_11, 8]] , dtype=torch.long , device=_SCREAMING_SNAKE_CASE ) # Legal the president is lowerCAmelCase = [ 1_18_59, 0, 16_11, 8, 5, 1_50, 2_64_49, 2, 19, 3_48, 4_69, 3, 25_95, 48, 2_07_40, 24_65_33, 24_65_33, 19, 30, 5, ] # Legal the president is a good guy and I don't want to lose my job. \n \n I have a lowerCAmelCase = model.generate(_SCREAMING_SNAKE_CASE , do_sample=_SCREAMING_SNAKE_CASE ) self.assertListEqual(output_ids[0].tolist() , _SCREAMING_SNAKE_CASE )
718
'''simple docstring''' import json import os import unittest from transformers.models.roc_bert.tokenization_roc_bert import ( VOCAB_FILES_NAMES, RoCBertBasicTokenizer, RoCBertTokenizer, RoCBertWordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class _snake_case ( a_ , unittest.TestCase ): SCREAMING_SNAKE_CASE : List[str] = RoCBertTokenizer SCREAMING_SNAKE_CASE : List[Any] = None SCREAMING_SNAKE_CASE : Union[str, Any] = False SCREAMING_SNAKE_CASE : str = True SCREAMING_SNAKE_CASE : List[Any] = filter_non_english def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' super().setUp() lowerCAmelCase = ['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', '你', '好', '是', '谁', 'a', 'b', 'c', 'd'] lowerCAmelCase = {} lowerCAmelCase = {} for i, value in enumerate(_SCREAMING_SNAKE_CASE ): lowerCAmelCase = i lowerCAmelCase = i lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['word_shape_file'] ) lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['word_pronunciation_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) with open(self.word_shape_file , 'w' , encoding='utf-8' ) as word_shape_writer: json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ensure_ascii=_SCREAMING_SNAKE_CASE ) with open(self.word_pronunciation_file , 'w' , encoding='utf-8' ) as word_pronunciation_writer: json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ensure_ascii=_SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) lowerCAmelCase = tokenizer.tokenize('你好[SEP]你是谁' ) self.assertListEqual(_SCREAMING_SNAKE_CASE , ['你', '好', '[SEP]', '你', '是', '谁'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(_SCREAMING_SNAKE_CASE ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(_SCREAMING_SNAKE_CASE ) , [5, 6, 2, 5, 7, 8] ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = RoCBertBasicTokenizer() self.assertListEqual(tokenizer.tokenize('ah\u535A\u63A8zz' ) , ['ah', '\u535A', '\u63A8', 'zz'] ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = RoCBertBasicTokenizer(do_lower_case=_SCREAMING_SNAKE_CASE ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['hello', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = RoCBertBasicTokenizer(do_lower_case=_SCREAMING_SNAKE_CASE , strip_accents=_SCREAMING_SNAKE_CASE ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hällo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['h\u00E9llo'] ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = RoCBertBasicTokenizer(do_lower_case=_SCREAMING_SNAKE_CASE , strip_accents=_SCREAMING_SNAKE_CASE ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = RoCBertBasicTokenizer(do_lower_case=_SCREAMING_SNAKE_CASE ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = RoCBertBasicTokenizer(do_lower_case=_SCREAMING_SNAKE_CASE ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?'] ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = RoCBertBasicTokenizer(do_lower_case=_SCREAMING_SNAKE_CASE , strip_accents=_SCREAMING_SNAKE_CASE ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HäLLo', '!', 'how', 'Are', 'yoU', '?'] ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = RoCBertBasicTokenizer(do_lower_case=_SCREAMING_SNAKE_CASE , strip_accents=_SCREAMING_SNAKE_CASE ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HaLLo', '!', 'how', 'Are', 'yoU', '?'] ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = RoCBertBasicTokenizer(do_lower_case=_SCREAMING_SNAKE_CASE , never_split=['[UNK]'] ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? [UNK]' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?', '[UNK]'] ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = ['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing'] lowerCAmelCase = {} for i, token in enumerate(_SCREAMING_SNAKE_CASE ): lowerCAmelCase = i lowerCAmelCase = RoCBertWordpieceTokenizer(vocab=_SCREAMING_SNAKE_CASE , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('unwanted running' ) , ['un', '##want', '##ed', 'runn', '##ing'] ) self.assertListEqual(tokenizer.tokenize('unwantedX running' ) , ['[UNK]', 'runn', '##ing'] ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' self.assertTrue(_is_whitespace(' ' ) ) self.assertTrue(_is_whitespace('\t' ) ) self.assertTrue(_is_whitespace('\r' ) ) self.assertTrue(_is_whitespace('\n' ) ) self.assertTrue(_is_whitespace('\u00A0' ) ) self.assertFalse(_is_whitespace('A' ) ) self.assertFalse(_is_whitespace('-' ) ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' self.assertTrue(_is_control('\u0005' ) ) self.assertFalse(_is_control('A' ) ) self.assertFalse(_is_control(' ' ) ) self.assertFalse(_is_control('\t' ) ) self.assertFalse(_is_control('\r' ) ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' self.assertTrue(_is_punctuation('-' ) ) self.assertTrue(_is_punctuation('$' ) ) self.assertTrue(_is_punctuation('`' ) ) self.assertTrue(_is_punctuation('.' ) ) self.assertFalse(_is_punctuation('A' ) ) self.assertFalse(_is_punctuation(' ' ) ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = self.get_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(_SCREAMING_SNAKE_CASE ) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']] ) if self.test_rust_tokenizer: lowerCAmelCase = self.get_rust_tokenizer() self.assertListEqual( [rust_tokenizer.tokenize(_SCREAMING_SNAKE_CASE ) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']] ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): lowerCAmelCase = self.rust_tokenizer_class.from_pretrained(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) lowerCAmelCase = F'A, naïve {tokenizer_r.mask_token} AllenNLP sentence.' lowerCAmelCase = tokenizer_r.encode_plus( _SCREAMING_SNAKE_CASE , return_attention_mask=_SCREAMING_SNAKE_CASE , return_token_type_ids=_SCREAMING_SNAKE_CASE , return_offsets_mapping=_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE , ) lowerCAmelCase = tokenizer_r.do_lower_case if hasattr(_SCREAMING_SNAKE_CASE , 'do_lower_case' ) else False lowerCAmelCase = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'A'), ((1, 2), ','), ((3, 5), 'na'), ((5, 6), '##ï'), ((6, 8), '##ve'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'Allen'), ((21, 23), '##NL'), ((23, 24), '##P'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'a'), ((1, 2), ','), ((3, 8), 'naive'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'allen'), ((21, 23), '##nl'), ((23, 24), '##p'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['input_ids'] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['offset_mapping'] ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = ['的', '人', '有'] lowerCAmelCase = ''.join(_SCREAMING_SNAKE_CASE ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): lowerCAmelCase = True lowerCAmelCase = self.tokenizer_class.from_pretrained(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) lowerCAmelCase = self.rust_tokenizer_class.from_pretrained(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) lowerCAmelCase = tokenizer_p.encode(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ) lowerCAmelCase = tokenizer_r.encode(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ) lowerCAmelCase = tokenizer_r.convert_ids_to_tokens(_SCREAMING_SNAKE_CASE ) lowerCAmelCase = tokenizer_p.convert_ids_to_tokens(_SCREAMING_SNAKE_CASE ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCAmelCase = False lowerCAmelCase = self.rust_tokenizer_class.from_pretrained(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) lowerCAmelCase = self.tokenizer_class.from_pretrained(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) lowerCAmelCase = tokenizer_r.encode(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ) lowerCAmelCase = tokenizer_p.encode(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ) lowerCAmelCase = tokenizer_r.convert_ids_to_tokens(_SCREAMING_SNAKE_CASE ) lowerCAmelCase = tokenizer_p.convert_ids_to_tokens(_SCREAMING_SNAKE_CASE ) # it is expected that only the first Chinese character is not preceded by "##". lowerCAmelCase = [ F'##{token}' if idx != 0 else token for idx, token in enumerate(_SCREAMING_SNAKE_CASE ) ] self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @slow def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) lowerCAmelCase = tokenizer.encode('你好' , add_special_tokens=_SCREAMING_SNAKE_CASE ) lowerCAmelCase = tokenizer.encode('你是谁' , add_special_tokens=_SCREAMING_SNAKE_CASE ) lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(_SCREAMING_SNAKE_CASE ) lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) assert encoded_sentence == [1] + text + [2] assert encoded_pair == [1] + text + [2] + text_a + [2] def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = self.get_tokenizers(do_lower_case=_SCREAMING_SNAKE_CASE ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): lowerCAmelCase = '你好,你是谁' lowerCAmelCase = tokenizer.tokenize(_SCREAMING_SNAKE_CASE ) lowerCAmelCase = tokenizer.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) lowerCAmelCase = tokenizer.convert_tokens_to_shape_ids(_SCREAMING_SNAKE_CASE ) lowerCAmelCase = tokenizer.convert_tokens_to_pronunciation_ids(_SCREAMING_SNAKE_CASE ) lowerCAmelCase = tokenizer.prepare_for_model( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ) lowerCAmelCase = tokenizer.encode_plus(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ) self.assertEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
514
0
'''simple docstring''' import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py __lowerCAmelCase = 'src/diffusers' __lowerCAmelCase = '.' # This is to make sure the diffusers module imported is the one in the repo. __lowerCAmelCase = importlib.util.spec_from_file_location( 'diffusers', os.path.join(DIFFUSERS_PATH, '__init__.py'), submodule_search_locations=[DIFFUSERS_PATH], ) __lowerCAmelCase = spec.loader.load_module() def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): return line.startswith(_snake_case ) or len(_snake_case ) <= 1 or re.search(R"""^\s*\)(\s*->.*:|:)\s*$""" , _snake_case ) is not None def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): _snake_case = object_name.split(""".""" ) _snake_case = 0 # First let's find the module where our object lives. _snake_case = parts[i] while i < len(_snake_case ) and not os.path.isfile(os.path.join(_snake_case , f"""{module}.py""" ) ): i += 1 if i < len(_snake_case ): _snake_case = os.path.join(_snake_case , parts[i] ) if i >= len(_snake_case ): raise ValueError(f"""`object_name` should begin with the name of a module of diffusers but got {object_name}.""" ) with open(os.path.join(_snake_case , f"""{module}.py""" ) , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: _snake_case = f.readlines() # Now let's find the class / func in the code! _snake_case = """""" _snake_case = 0 for name in parts[i + 1 :]: while ( line_index < len(_snake_case ) and re.search(Rf"""^{indent}(class|def)\s+{name}(\(|\:)""" , lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(_snake_case ): raise ValueError(f""" {object_name} does not match any function or class in {module}.""" ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). _snake_case = line_index while line_index < len(_snake_case ) and _should_continue(lines[line_index] , _snake_case ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 _snake_case = lines[start_index:line_index] return "".join(_snake_case ) __lowerCAmelCase = re.compile(r'^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)') __lowerCAmelCase = re.compile(r'^\s*(\S+)->(\S+)(\s+.*|$)') __lowerCAmelCase = re.compile(r'<FILL\s+[^>]*>') def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): _snake_case = code.split("""\n""" ) _snake_case = 0 while idx < len(_snake_case ) and len(lines[idx] ) == 0: idx += 1 if idx < len(_snake_case ): return re.search(R"""^(\s*)\S""" , lines[idx] ).groups()[0] return "" def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): _snake_case = len(get_indent(_snake_case ) ) > 0 if has_indent: _snake_case = f"""class Bla:\n{code}""" _snake_case = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 , preview=_snake_case ) _snake_case = black.format_str(_snake_case , mode=_snake_case ) _snake_case, _snake_case = style_docstrings_in_code(_snake_case ) return result[len("""class Bla:\n""" ) :] if has_indent else result def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ): with open(_snake_case , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: _snake_case = f.readlines() _snake_case = [] _snake_case = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(_snake_case ): _snake_case = _re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. _snake_case, _snake_case, _snake_case = search.groups() _snake_case = find_code_in_diffusers(_snake_case ) _snake_case = get_indent(_snake_case ) _snake_case = line_index + 1 if indent == theoretical_indent else line_index + 2 _snake_case = theoretical_indent _snake_case = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. _snake_case = True while line_index < len(_snake_case ) and should_continue: line_index += 1 if line_index >= len(_snake_case ): break _snake_case = lines[line_index] _snake_case = _should_continue(_snake_case , _snake_case ) and re.search(f"""^{indent}# End copy""" , _snake_case ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 _snake_case = lines[start_index:line_index] _snake_case = """""".join(_snake_case ) # Remove any nested `Copied from` comments to avoid circular copies _snake_case = [line for line in theoretical_code.split("""\n""" ) if _re_copy_warning.search(_snake_case ) is None] _snake_case = """\n""".join(_snake_case ) # Before comparing, use the `replace_pattern` on the original code. if len(_snake_case ) > 0: _snake_case = replace_pattern.replace("""with""" , """""" ).split(""",""" ) _snake_case = [_re_replace_pattern.search(_snake_case ) for p in patterns] for pattern in patterns: if pattern is None: continue _snake_case, _snake_case, _snake_case = pattern.groups() _snake_case = re.sub(_snake_case , _snake_case , _snake_case ) if option.strip() == "all-casing": _snake_case = re.sub(obja.lower() , obja.lower() , _snake_case ) _snake_case = re.sub(obja.upper() , obja.upper() , _snake_case ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line _snake_case = blackify(lines[start_index - 1] + theoretical_code ) _snake_case = theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: _snake_case = lines[:start_index] + [theoretical_code] + lines[line_index:] _snake_case = start_index + 1 if overwrite and len(_snake_case ) > 0: # Warn the user a file has been modified. print(f"""Detected changes, rewriting {filename}.""" ) with open(_snake_case , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(_snake_case ) return diffs def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE = False ): _snake_case = glob.glob(os.path.join(_snake_case , """**/*.py""" ) , recursive=_snake_case ) _snake_case = [] for filename in all_files: _snake_case = is_copy_consistent(_snake_case , _snake_case ) diffs += [f"""- {filename}: copy does not match {d[0]} at line {d[1]}""" for d in new_diffs] if not overwrite and len(_snake_case ) > 0: _snake_case = """\n""".join(_snake_case ) raise Exception( """Found the following copy inconsistencies:\n""" + diff + """\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them.""" ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') __lowerCAmelCase = parser.parse_args() check_copies(args.fix_and_overwrite)
585
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging a = logging.get_logger(__name__) a = { '''facebook/vit-mae-base''': '''https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json''', # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : int = '''vit_mae''' def __init__( self : Union[str, Any] , _UpperCAmelCase : Optional[int]=768 , _UpperCAmelCase : Tuple=12 , _UpperCAmelCase : Optional[Any]=12 , _UpperCAmelCase : Optional[int]=3_072 , _UpperCAmelCase : Any="gelu" , _UpperCAmelCase : Optional[Any]=0.0 , _UpperCAmelCase : Optional[int]=0.0 , _UpperCAmelCase : Dict=0.02 , _UpperCAmelCase : List[Any]=1E-1_2 , _UpperCAmelCase : Optional[Any]=224 , _UpperCAmelCase : int=16 , _UpperCAmelCase : str=3 , _UpperCAmelCase : Tuple=True , _UpperCAmelCase : int=16 , _UpperCAmelCase : str=512 , _UpperCAmelCase : int=8 , _UpperCAmelCase : List[Any]=2_048 , _UpperCAmelCase : Optional[Any]=0.75 , _UpperCAmelCase : List[str]=False , **_UpperCAmelCase : Union[str, Any] , ): super().__init__(**_UpperCAmelCase ) _A = hidden_size _A = num_hidden_layers _A = num_attention_heads _A = intermediate_size _A = hidden_act _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = initializer_range _A = layer_norm_eps _A = image_size _A = patch_size _A = num_channels _A = qkv_bias _A = decoder_num_attention_heads _A = decoder_hidden_size _A = decoder_num_hidden_layers _A = decoder_intermediate_size _A = mask_ratio _A = norm_pix_loss
7
0
from collections.abc import Sequence from queue import Queue class lowerCamelCase : """simple docstring""" def __init__( self : Optional[Any] , __magic_name__ : List[str] , __magic_name__ : int , __magic_name__ : Optional[Any] , __magic_name__ : str=None , __magic_name__ : List[str]=None ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = start SCREAMING_SNAKE_CASE_ = end SCREAMING_SNAKE_CASE_ = val SCREAMING_SNAKE_CASE_ = (start + end) // 2 SCREAMING_SNAKE_CASE_ = left SCREAMING_SNAKE_CASE_ = right def __repr__( self : Optional[Any] ) -> Optional[Any]: return F'''SegmentTreeNode(start={self.start}, end={self.end}, val={self.val})''' class lowerCamelCase : """simple docstring""" def __init__( self : int , __magic_name__ : Sequence , __magic_name__ : List[str] ) -> str: SCREAMING_SNAKE_CASE_ = collection SCREAMING_SNAKE_CASE_ = function if self.collection: SCREAMING_SNAKE_CASE_ = self._build_tree(0 , len(__magic_name__ ) - 1 ) def __A ( self : str , __magic_name__ : List[str] , __magic_name__ : List[Any] ) -> List[str]: self._update_tree(self.root , __magic_name__ , __magic_name__ ) def __A ( self : Optional[Any] , __magic_name__ : Tuple , __magic_name__ : Dict ) -> List[Any]: return self._query_range(self.root , __magic_name__ , __magic_name__ ) def __A ( self : Union[str, Any] , __magic_name__ : Tuple , __magic_name__ : Optional[Any] ) -> Optional[Any]: if start == end: return SegmentTreeNode(__magic_name__ , __magic_name__ , self.collection[start] ) SCREAMING_SNAKE_CASE_ = (start + end) // 2 SCREAMING_SNAKE_CASE_ = self._build_tree(__magic_name__ , __magic_name__ ) SCREAMING_SNAKE_CASE_ = self._build_tree(mid + 1 , __magic_name__ ) return SegmentTreeNode(__magic_name__ , __magic_name__ , self.fn(left.val , right.val ) , __magic_name__ , __magic_name__ ) def __A ( self : List[str] , __magic_name__ : List[Any] , __magic_name__ : int , __magic_name__ : List[str] ) -> Optional[Any]: if node.start == i and node.end == i: SCREAMING_SNAKE_CASE_ = val return if i <= node.mid: self._update_tree(node.left , __magic_name__ , __magic_name__ ) else: self._update_tree(node.right , __magic_name__ , __magic_name__ ) SCREAMING_SNAKE_CASE_ = self.fn(node.left.val , node.right.val ) def __A ( self : List[str] , __magic_name__ : Optional[Any] , __magic_name__ : Any , __magic_name__ : Any ) -> int: if node.start == i and node.end == j: return node.val if i <= node.mid: if j <= node.mid: # range in left child tree return self._query_range(node.left , __magic_name__ , __magic_name__ ) else: # range in left child tree and right child tree return self.fn( self._query_range(node.left , __magic_name__ , node.mid ) , self._query_range(node.right , node.mid + 1 , __magic_name__ ) , ) else: # range in right child tree return self._query_range(node.right , __magic_name__ , __magic_name__ ) def __A ( self : Optional[int] ) -> str: if self.root is not None: SCREAMING_SNAKE_CASE_ = Queue() queue.put(self.root ) while not queue.empty(): SCREAMING_SNAKE_CASE_ = queue.get() yield node if node.left is not None: queue.put(node.left ) if node.right is not None: queue.put(node.right ) if __name__ == "__main__": import operator for fn in [operator.add, max, min]: print("*" * 50) A : Tuple = SegmentTree([2, 1, 5, 3, 4], fn) for node in arr.traverse(): print(node) print() arr.update(1, 5) for node in arr.traverse(): print(node) print() print(arr.query_range(3, 4)) # 7 print(arr.query_range(2, 2)) # 5 print(arr.query_range(1, 3)) # 13 print()
710
from __future__ import annotations def a__ ( __UpperCamelCase ): # preprocessing the first row for i in range(1 , len(matrix[0] ) ): matrix[0][i] += matrix[0][i - 1] # preprocessing the first column for i in range(1 , len(__UpperCamelCase ) ): matrix[i][0] += matrix[i - 1][0] # updating the path cost for current position for i in range(1 , len(__UpperCamelCase ) ): for j in range(1 , len(matrix[0] ) ): matrix[i][j] += min(matrix[i - 1][j] , matrix[i][j - 1] ) return matrix[-1][-1] if __name__ == "__main__": import doctest doctest.testmod()
356
0
def __SCREAMING_SNAKE_CASE ( a__ : int ) -> list[int]: if num <= 0: raise ValueError("""Input must be a positive integer""" ) __A : Any = [True] * (num + 1) __A : Optional[int] = 2 while p * p <= num: if primes[p]: for i in range(p * p ,num + 1 ,a__ ): __A : Tuple = False p += 1 return [prime for prime in range(2 ,num + 1 ) if primes[prime]] if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase_ : str = int(input('''Enter a positive integer: ''').strip()) print(prime_sieve_eratosthenes(user_num))
17
def __SCREAMING_SNAKE_CASE ( a__ : int ) -> int: if not isinstance(a__ ,a__ ): raise TypeError("""Input value must be an 'int' type""" ) __A : Union[str, Any] = 0 while number: position += 1 number >>= 1 return position if __name__ == "__main__": import doctest doctest.testmod()
17
1
"""simple docstring""" import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin a_ = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece @require_tokenizers class A_(__A , unittest.TestCase ): """simple docstring""" a_ : Union[str, Any] = XGLMTokenizer a_ : Tuple = XGLMTokenizerFast a_ : Optional[int] = True a_ : Union[str, Any] = True def _lowerCAmelCase ( self ): super().setUp() # We have a SentencePiece fixture for testing _lowerCamelCase : str = XGLMTokenizer(A , keep_accents=A ) tokenizer.save_pretrained(self.tmpdirname ) def _lowerCAmelCase ( self ): _lowerCamelCase : List[str] = '<pad>' _lowerCamelCase : Optional[Any] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(A ) , A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(A ) , A ) def _lowerCAmelCase ( self ): _lowerCamelCase : Optional[int] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(len(A ) , 1008 ) def _lowerCAmelCase ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 1008 ) def _lowerCAmelCase ( self ): _lowerCamelCase : str = XGLMTokenizer(A , keep_accents=A ) _lowerCamelCase : int = tokenizer.tokenize('This is a test' ) self.assertListEqual(A , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(A ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) _lowerCamelCase : int = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( A , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) _lowerCamelCase : Optional[int] = tokenizer.convert_tokens_to_ids(A ) self.assertListEqual( A , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) _lowerCamelCase : Union[str, Any] = tokenizer.convert_ids_to_tokens(A ) self.assertListEqual( A , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) @cached_property def _lowerCAmelCase ( self ): return XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) def _lowerCAmelCase ( self ): with tempfile.NamedTemporaryFile() as f: shutil.copyfile(A , f.name ) _lowerCamelCase : int = XGLMTokenizer(f.name , keep_accents=A ) _lowerCamelCase : str = pickle.dumps(A ) pickle.loads(A ) def _lowerCAmelCase ( self ): if not self.test_rust_tokenizer: return _lowerCamelCase : List[Any] = self.get_tokenizer() _lowerCamelCase : Dict = self.get_rust_tokenizer() _lowerCamelCase : Union[str, Any] = 'I was born in 92000, and this is falsé.' _lowerCamelCase : str = tokenizer.tokenize(A ) _lowerCamelCase : Tuple = rust_tokenizer.tokenize(A ) self.assertListEqual(A , A ) _lowerCamelCase : Dict = tokenizer.encode(A , add_special_tokens=A ) _lowerCamelCase : Optional[int] = rust_tokenizer.encode(A , add_special_tokens=A ) self.assertListEqual(A , A ) _lowerCamelCase : Optional[Any] = self.get_rust_tokenizer() _lowerCamelCase : List[Any] = tokenizer.encode(A ) _lowerCamelCase : List[Any] = rust_tokenizer.encode(A ) self.assertListEqual(A , A ) @slow def _lowerCAmelCase ( self ): _lowerCamelCase : Dict = 'Hello World!' _lowerCamelCase : Union[str, Any] = [2, 3_1227, 4447, 35] self.assertListEqual(A , self.big_tokenizer.encode(A ) ) @slow def _lowerCAmelCase ( self ): _lowerCamelCase : Tuple = ( 'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will' ' add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth' ) # fmt: off _lowerCamelCase : Optional[int] = [2, 1018, 67, 11, 1988, 2617, 5631, 278, 11, 3407, 48, 7_1630, 2_8085, 4, 3234, 157, 13, 6, 5, 6, 4, 3526, 768, 15, 659, 57, 298, 3983, 864, 129, 21, 6, 5, 1_3675, 377, 652, 7580, 1_0341, 155, 2817, 422, 1666, 7, 1674, 53, 113, 20_2277, 1_7892, 33, 60, 87, 4, 3234, 157, 61, 2667, 5_2376, 19, 88, 23, 735] # fmt: on self.assertListEqual(A , self.big_tokenizer.encode(A ) ) @slow def _lowerCAmelCase ( self ): _lowerCamelCase : str = { 'input_ids': [[2, 10_8825, 1163, 15, 8_8010, 473, 1_5898, 157, 1_3672, 1857, 312, 8, 23_8021, 1163, 53, 1_3672, 1857, 312, 8, 5_3283, 18_2396, 8, 1_8566, 16, 3_6733, 4101, 8, 230, 24_4017, 12_2553, 7, 15, 13_2597, 4, 293, 1_2511, 7610, 4, 3414, 13_2597, 9, 4, 3_2361, 362, 4, 734, 2_8512, 3_2569, 18, 4, 3_2361, 2_6096, 1_4982, 73, 1_8715, 2_1433, 23_5261, 15, 492, 1_2427, 16, 53, 1_8715, 2_1433, 6_5454, 15, 2_3659, 563, 16, 278, 597, 2843, 595, 7931, 18_2396, 6_4186, 22, 886, 595, 13_2981, 53, 2_5540, 3449, 4_3982, 3_9901, 5951, 878, 330, 4, 2_7694, 8_0269, 312, 53, 6517, 1_1780, 611, 2_0408, 5], [2, 6, 13_2597, 67, 4_2897, 33, 592, 8, 16_3729, 2_5540, 361, 13_6997, 10_9514, 17_3230, 7, 501, 60, 10_2913, 196, 5631, 235, 6_3243, 473, 6, 23_1757, 74, 5277, 7905, 53, 3095, 3_7317, 22, 454, 18_3874, 5], [2, 268, 3_1298, 4_6530, 6, 13_2935, 4_3831, 7, 597, 32, 24, 3688, 9865, 5]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=A , model_name='facebook/xglm-564M' , padding=A , )
704
"""simple docstring""" import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class A_(SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" a_ : Any = DebertaTokenizer a_ : Dict = True a_ : Optional[Any] = DebertaTokenizerFast def _lowerCAmelCase ( self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _lowerCamelCase : List[str] = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '[UNK]', ] _lowerCamelCase : int = dict(zip(A , range(len(A ) ) ) ) _lowerCamelCase : Union[str, Any] = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] _lowerCamelCase : List[str] = {'unk_token': '[UNK]'} _lowerCamelCase : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) _lowerCamelCase : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(A ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(A ) ) def _lowerCAmelCase ( self , **A ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **A ) def _lowerCAmelCase ( self , A ): _lowerCamelCase : Union[str, Any] = 'lower newer' _lowerCamelCase : Optional[int] = 'lower newer' return input_text, output_text def _lowerCAmelCase ( self ): _lowerCamelCase : Dict = self.get_tokenizer() _lowerCamelCase : List[Any] = 'lower newer' _lowerCamelCase : Optional[int] = ['l', 'o', 'w', 'er', '\u0120', 'n', 'e', 'w', 'er'] _lowerCamelCase : Union[str, Any] = tokenizer.tokenize(A ) self.assertListEqual(A , A ) _lowerCamelCase : List[Any] = tokens + [tokenizer.unk_token] _lowerCamelCase : str = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) , A ) def _lowerCAmelCase ( self ): _lowerCamelCase : int = self.get_tokenizer() _lowerCamelCase : Any = tokenizer('Hello' , 'World' ) _lowerCamelCase : Tuple = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd['token_type_ids'] , A ) @slow def _lowerCAmelCase ( self ): _lowerCamelCase : Optional[int] = self.tokenizer_class.from_pretrained('microsoft/deberta-base' ) _lowerCamelCase : Dict = tokenizer.encode('sequence builders' , add_special_tokens=A ) _lowerCamelCase : Optional[int] = tokenizer.encode('multi-sequence build' , add_special_tokens=A ) _lowerCamelCase : str = tokenizer.encode( 'sequence builders' , add_special_tokens=A , add_prefix_space=A ) _lowerCamelCase : Tuple = tokenizer.encode( 'sequence builders' , 'multi-sequence build' , add_special_tokens=A , add_prefix_space=A ) _lowerCamelCase : str = tokenizer.build_inputs_with_special_tokens(A ) _lowerCamelCase : List[Any] = tokenizer.build_inputs_with_special_tokens(A , A ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def _lowerCAmelCase ( self ): _lowerCamelCase : Union[str, Any] = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: _lowerCamelCase : List[Any] = tokenizer_class.from_pretrained('microsoft/deberta-base' ) _lowerCamelCase : Optional[Any] = [ 'ALBERT: A Lite BERT for Self-supervised Learning of Language Representations', 'ALBERT incorporates two parameter reduction techniques', 'The first one is a factorized embedding parameterization. By decomposing the large vocabulary' ' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of' ' vocabulary embedding.', ] _lowerCamelCase : Optional[Any] = tokenizer(A , padding=A ) _lowerCamelCase : List[Any] = [tokenizer.decode(A , skip_special_tokens=A ) for seq in encoding['input_ids']] # fmt: off _lowerCamelCase : Optional[Any] = { 'input_ids': [ [1, 2118, 1_1126, 565, 35, 83, 2_5191, 163, 1_8854, 13, 1_2156, 12, 1_6101, 2_5376, 1_3807, 9, 2_2205, 2_7893, 1635, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 2118, 1_1126, 565, 2_4536, 80, 4_3797, 4878, 7373, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 133, 78, 65, 16, 10, 3724, 1538, 3_3183, 1_1303, 4_3797, 1938, 4, 870, 2_4165, 2_9105, 5, 739, 3_2644, 3_3183, 1_1303, 3_6173, 88, 80, 650, 7821, 4_5940, 6, 52, 2559, 5, 1836, 9, 5, 7397, 1_3171, 31, 5, 1836, 9, 3_2644, 3_3183, 1_1303, 4, 2] ], 'token_type_ids': [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], 'attention_mask': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on _lowerCamelCase : Tuple = [ 'ALBERT: A Lite BERT for Self-supervised Learning of Language Representations', 'ALBERT incorporates two parameter reduction techniques', 'The first one is a factorized embedding parameterization. By decomposing the large vocabulary' ' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of' ' vocabulary embedding.', ] self.assertDictEqual(encoding.data , A ) for expected, decoded in zip(A , A ): self.assertEqual(A , A )
349
0
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = '▁' UpperCamelCase = {'vocab_file': 'sentencepiece.bpe.model', 'monolingual_vocab_file': 'dict.txt'} UpperCamelCase = { 'vocab_file': { 'vinai/bartpho-syllable': 'https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model', }, 'monolingual_vocab_file': { 'vinai/bartpho-syllable': 'https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt', }, } UpperCamelCase = {'vinai/bartpho-syllable': 1024} class UpperCamelCase__ ( snake_case_ ): """simple docstring""" A__ : Dict = VOCAB_FILES_NAMES A__ : Any = PRETRAINED_VOCAB_FILES_MAP A__ : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ : Any = ["input_ids", "attention_mask"] def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__="<s>" , SCREAMING_SNAKE_CASE__="</s>" , SCREAMING_SNAKE_CASE__="</s>" , SCREAMING_SNAKE_CASE__="<s>" , SCREAMING_SNAKE_CASE__="<unk>" , SCREAMING_SNAKE_CASE__="<pad>" , SCREAMING_SNAKE_CASE__="<mask>" , SCREAMING_SNAKE_CASE__ = None , **SCREAMING_SNAKE_CASE__ , ) -> Tuple: A__ = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else mask_token A__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=lowerCamelCase__ , eos_token=lowerCamelCase__ , unk_token=lowerCamelCase__ , sep_token=lowerCamelCase__ , cls_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , mask_token=lowerCamelCase__ , sp_model_kwargs=self.sp_model_kwargs , **lowerCamelCase__ , ) A__ = vocab_file A__ = monolingual_vocab_file A__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowerCamelCase__ ) ) # Load the reduced vocab # Keep order of special tokens for backward compatibility A__ = {} A__ = 0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(lowerCamelCase__ ) not in self.fairseq_tokens_to_ids: A__ = cnt cnt += 1 with open(lowerCamelCase__ , "r" , encoding="utf-8" ) as f: for line in f.readlines(): A__ = line.strip().split()[0] A__ = len(self.fairseq_tokens_to_ids ) if str(lowerCamelCase__ ) not in self.fairseq_tokens_to_ids: A__ = len(self.fairseq_tokens_to_ids ) A__ = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ) -> Any: A__ = self.__dict__.copy() A__ = None A__ = self.sp_model.serialized_model_proto() return state def __setstate__( self , SCREAMING_SNAKE_CASE__ ) -> Tuple: A__ = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): A__ = {} A__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def snake_case__ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ) -> Optional[Any]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] A__ = [self.cls_token_id] A__ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def snake_case__ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = False ) -> List[Any]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase__ , token_ids_a=lowerCamelCase__ , already_has_special_tokens=lowerCamelCase__ ) if token_ids_a is None: return [1] + ([0] * len(lowerCamelCase__ )) + [1] return [1] + ([0] * len(lowerCamelCase__ )) + [1, 1] + ([0] * len(lowerCamelCase__ )) + [1] def snake_case__ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ) -> Dict: A__ = [self.sep_token_id] A__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def snake_case__ ( self ) -> Dict: return len(self.fairseq_ids_to_tokens ) def snake_case__ ( self ) -> Union[str, Any]: A__ = {self.convert_ids_to_tokens(lowerCamelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def snake_case__ ( self , SCREAMING_SNAKE_CASE__ ) -> Optional[int]: return self.sp_model.encode(lowerCamelCase__ , out_type=lowerCamelCase__ ) def snake_case__ ( self , SCREAMING_SNAKE_CASE__ ) -> Any: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def snake_case__ ( self , SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: return self.fairseq_ids_to_tokens[index] def snake_case__ ( self , SCREAMING_SNAKE_CASE__ ) -> str: A__ = "".join(lowerCamelCase__ ).replace(lowerCamelCase__ , " " ).strip() return out_string def snake_case__ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ) -> Optional[int]: if not os.path.isdir(lowerCamelCase__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return A__ = os.path.join( lowerCamelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) A__ = os.path.join( lowerCamelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["monolingual_vocab_file"] , ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCamelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCamelCase__ , "wb" ) as fi: A__ = self.sp_model.serialized_model_proto() fi.write(lowerCamelCase__ ) if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath( lowerCamelCase__ ) and os.path.isfile(self.monolingual_vocab_file ): copyfile(self.monolingual_vocab_file , lowerCamelCase__ ) elif not os.path.isfile(self.monolingual_vocab_file ): with open(lowerCamelCase__ , "w" , encoding="utf-8" ) as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(f"""{str(lowerCamelCase__ )} \n""" ) return out_vocab_file, out_monolingual_vocab_file
104
'''simple docstring''' def __snake_case ( _UpperCAmelCase : int): UpperCamelCase = n ** (1 / 3) return (val * val * val) == n if __name__ == "__main__": print(perfect_cube(27)) print(perfect_cube(4))
212
0
import argparse import os from pathlib import Path import fairseq import torch from packaging import version from torch import nn from transformers import ( BartConfig, BartForConditionalGeneration, BartForSequenceClassification, BartModel, BartTokenizer, ) from transformers.utils import logging UpperCAmelCase = ["""bart.large""", """bart.large.mnli""", """bart.large.cnn""", """bart_xsum/model.pt"""] UpperCAmelCase = {"""bart.large""": BartModel, """bart.large.mnli""": BartForSequenceClassification} if version.parse(fairseq.__version__) < version.parse("""0.9.0"""): raise Exception("""requires fairseq >= 0.9.0""") logging.set_verbosity_info() UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = """ Hello world! cécé herlolip""" UpperCAmelCase = [ ("""model.classification_heads.mnli.dense.weight""", """classification_head.dense.weight"""), ("""model.classification_heads.mnli.dense.bias""", """classification_head.dense.bias"""), ("""model.classification_heads.mnli.out_proj.weight""", """classification_head.out_proj.weight"""), ("""model.classification_heads.mnli.out_proj.bias""", """classification_head.out_proj.bias"""), ] def __lowerCAmelCase (SCREAMING_SNAKE_CASE )-> int: """simple docstring""" snake_case_ = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''_float_tensor''', ] for k in ignore_keys: state_dict.pop(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __lowerCAmelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )-> List[str]: """simple docstring""" snake_case_ = dct.pop(SCREAMING_SNAKE_CASE ) snake_case_ = val def __lowerCAmelCase (SCREAMING_SNAKE_CASE )-> int: """simple docstring""" snake_case_ = torch.load(SCREAMING_SNAKE_CASE , map_location='''cpu''' ) snake_case_ = torch.hub.load('''pytorch/fairseq''' , '''bart.large.cnn''' ).eval() hub_interface.model.load_state_dict(sd['''model'''] ) return hub_interface def __lowerCAmelCase (SCREAMING_SNAKE_CASE )-> Any: """simple docstring""" snake_case_ , snake_case_ = emb.weight.shape snake_case_ = nn.Linear(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , bias=SCREAMING_SNAKE_CASE ) snake_case_ = emb.weight.data return lin_layer @torch.no_grad() def __lowerCAmelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None )-> Any: """simple docstring""" if not os.path.exists(SCREAMING_SNAKE_CASE ): snake_case_ = torch.hub.load('''pytorch/fairseq''' , SCREAMING_SNAKE_CASE ).eval() else: snake_case_ = load_xsum_checkpoint(SCREAMING_SNAKE_CASE ) bart.model.upgrade_state_dict(bart.model.state_dict() ) if hf_checkpoint_name is None: snake_case_ = checkpoint_path.replace('''.''' , '''-''' ) snake_case_ = BartConfig.from_pretrained(SCREAMING_SNAKE_CASE ) snake_case_ = bart.encode(SCREAMING_SNAKE_CASE ).unsqueeze(0 ) snake_case_ = BartTokenizer.from_pretrained(SCREAMING_SNAKE_CASE ).encode(SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).unsqueeze(0 ) if not torch.eq(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).all(): raise ValueError( f'''converted tokenizer and pretrained tokenizer returned different output: {tokens} != {tokensa}''' ) if checkpoint_path == "bart.large.mnli": snake_case_ = bart.state_dict() remove_ignore_keys_(SCREAMING_SNAKE_CASE ) snake_case_ = state_dict['''model.decoder.embed_tokens.weight'''] for src, dest in mnli_rename_keys: rename_key(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) snake_case_ = BartForSequenceClassification(SCREAMING_SNAKE_CASE ).eval() model.load_state_dict(SCREAMING_SNAKE_CASE ) snake_case_ = bart.predict('''mnli''' , SCREAMING_SNAKE_CASE , return_logits=SCREAMING_SNAKE_CASE ) snake_case_ = model(SCREAMING_SNAKE_CASE )[0] # logits else: # no classification heads to worry about snake_case_ = bart.model.state_dict() remove_ignore_keys_(SCREAMING_SNAKE_CASE ) snake_case_ = state_dict['''decoder.embed_tokens.weight'''] snake_case_ = bart.extract_features(SCREAMING_SNAKE_CASE ) if hf_checkpoint_name == "facebook/bart-large": snake_case_ = BartModel(SCREAMING_SNAKE_CASE ).eval() model.load_state_dict(SCREAMING_SNAKE_CASE ) snake_case_ = model(SCREAMING_SNAKE_CASE ).model[0] else: snake_case_ = BartForConditionalGeneration(SCREAMING_SNAKE_CASE ).eval() # an existing summarization ckpt model.model.load_state_dict(SCREAMING_SNAKE_CASE ) if hasattr(SCREAMING_SNAKE_CASE , '''lm_head''' ): snake_case_ = make_linear_from_emb(model.model.shared ) snake_case_ = model.model(SCREAMING_SNAKE_CASE )[0] # Check results if fairseq_output.shape != new_model_outputs.shape: raise ValueError( f'''`fairseq_output` shape and `new_model_output` shape are different: {fairseq_output.shape=}, {new_model_outputs.shape}''' ) if (fairseq_output != new_model_outputs).any().item(): raise ValueError('''Some values in `fairseq_output` are different from `new_model_outputs`''' ) Path(SCREAMING_SNAKE_CASE ).mkdir(exist_ok=SCREAMING_SNAKE_CASE ) model.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """fairseq_path""", type=str, help="""bart.large, bart.large.cnn or a path to a model.pt on local filesystem.""" ) parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument( """--hf_config""", default=None, type=str, help="""Which huggingface architecture to use: bart-large-xsum""" ) UpperCAmelCase = parser.parse_args() convert_bart_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, hf_checkpoint_name=args.hf_config)
531
# Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from packaging import version from .. import __version__ from .constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD from .doc import ( add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, copy_func, replace_return_docstrings, ) from .generic import ( ContextManagers, ExplicitEnum, ModelOutput, PaddingStrategy, TensorType, add_model_info_to_auto_map, cached_property, can_return_loss, expand_dims, find_labels, flatten_dict, infer_framework, is_jax_tensor, is_numpy_array, is_tensor, is_tf_symbolic_tensor, is_tf_tensor, is_torch_device, is_torch_dtype, is_torch_tensor, reshape, squeeze, strtobool, tensor_size, to_numpy, to_py_obj, transpose, working_or_temp_dir, ) from .hub import ( CLOUDFRONT_DISTRIB_PREFIX, DISABLE_TELEMETRY, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, EntryNotFoundError, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, cached_file, default_cache_path, define_sagemaker_information, download_url, extract_commit_hash, get_cached_models, get_file_from_repo, get_full_repo_name, has_file, http_user_agent, is_offline_mode, is_remote_url, move_cache, send_example_telemetry, try_to_load_from_cache, ) from .import_utils import ( ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, TORCH_FX_REQUIRED_VERSION, USE_JAX, USE_TF, USE_TORCH, DummyObject, OptionalDependencyNotAvailable, _LazyModule, ccl_version, direct_transformers_import, get_torch_version, is_accelerate_available, is_apex_available, is_bitsandbytes_available, is_bsa_available, is_coloredlogs_available, is_cython_available, is_datasets_available, is_decord_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_jieba_available, is_jumanpp_available, is_kenlm_available, is_keras_nlp_available, is_librosa_available, is_natten_available, is_ninja_available, is_onnx_available, is_openai_available, is_optimum_available, is_pandas_available, is_peft_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytest_available, is_pytorch_quantization_available, is_rjieba_available, is_sacremoses_available, is_safetensors_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_sudachi_available, is_tensorflow_probability_available, is_tensorflow_text_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_bfaa_cpu_available, is_torch_bfaa_gpu_available, is_torch_compile_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_neuroncore_available, is_torch_tensorrt_fx_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_torchdistx_available, is_torchdynamo_available, is_torchvision_available, is_training_run_on_sagemaker, is_vision_available, requires_backends, torch_only_method, ) UpperCAmelCase = """pytorch_model.bin""" UpperCAmelCase = """pytorch_model.bin.index.json""" UpperCAmelCase = """adapter_config.json""" UpperCAmelCase = """adapter_model.bin""" UpperCAmelCase = """adapter_model.safetensors""" UpperCAmelCase = """tf_model.h5""" UpperCAmelCase = """tf_model.h5.index.json""" UpperCAmelCase = """model.ckpt""" UpperCAmelCase = """flax_model.msgpack""" UpperCAmelCase = """flax_model.msgpack.index.json""" UpperCAmelCase = """model.safetensors""" UpperCAmelCase = """model.safetensors.index.json""" UpperCAmelCase = """config.json""" UpperCAmelCase = """preprocessor_config.json""" UpperCAmelCase = FEATURE_EXTRACTOR_NAME UpperCAmelCase = """generation_config.json""" UpperCAmelCase = """modelcard.json""" UpperCAmelCase = """▁""" UpperCAmelCase = SENTENCEPIECE_UNDERLINE # Kept for backward compatibility UpperCAmelCase = [ [[0, 1, 0, 1], [1, 0, 0, 1]] ] * 2 # Needs to have 0s and 1s only since XLM uses it for langs too. UpperCAmelCase = [[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]] UpperCAmelCase = [[1, 1, 1, 1, 1], [1, 1, 1, 0, 0], [0, 0, 0, 1, 1]] def __lowerCAmelCase (SCREAMING_SNAKE_CASE )-> List[str]: """simple docstring""" if version.parse(SCREAMING_SNAKE_CASE ) < version.parse(SCREAMING_SNAKE_CASE ): if "dev" in min_version: snake_case_ = ( '''This example requires a source install from HuggingFace Transformers (see ''' '''`https://huggingface.co/docs/transformers/installation#install-from-source`),''' ) else: snake_case_ = f'''This example requires a minimum version of {min_version},''' error_message += f''' but the version found is {__version__}.\n''' raise ImportError( error_message + '''Check out https://github.com/huggingface/transformers/tree/main/examples#important-note for the examples corresponding to other ''' '''versions of HuggingFace Transformers.''' )
531
1
"""simple docstring""" def _lowerCamelCase ( UpperCAmelCase_ : Optional[int] ) -> str: """simple docstring""" A__ = [0] * len(UpperCAmelCase_ ) A__ = [] A__ = [1] * len(UpperCAmelCase_ ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(UpperCAmelCase_ ) ): if indegree[i] == 0: queue.append(UpperCAmelCase_ ) while queue: A__ = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: A__ = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(UpperCAmelCase_ ) print(max(UpperCAmelCase_ ) ) # Adjacency list of Graph UpperCamelCase = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
104
"""simple docstring""" import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) UpperCAmelCase__ =logging.getLogger(__name__) UpperCAmelCase__ ="Hello world! cécé herlolip" UpperCAmelCase__ =namedtuple( "BertAbsConfig", [ "temp_dir", "large", "use_bert_emb", "finetune_bert", "encoder", "share_emb", "max_pos", "enc_layers", "enc_hidden_size", "enc_heads", "enc_ff_size", "enc_dropout", "dec_layers", "dec_hidden_size", "dec_heads", "dec_ff_size", "dec_dropout", ], ) def lowerCAmelCase_ ( UpperCamelCase__ : Tuple , UpperCamelCase__ : Union[str, Any] ): """simple docstring""" __lowercase = BertAbsConfig( temp_dir=""".""" , finetune_bert=UpperCamelCase__ , large=UpperCamelCase__ , share_emb=UpperCamelCase__ , use_bert_emb=UpperCamelCase__ , encoder="""bert""" , max_pos=512 , enc_layers=6 , enc_hidden_size=512 , enc_heads=8 , enc_ff_size=512 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=768 , dec_heads=8 , dec_ff_size=2048 , dec_dropout=0.2 , ) __lowercase = torch.load(UpperCamelCase__ , lambda UpperCamelCase__ , UpperCamelCase__ : storage ) __lowercase = AbsSummarizer(UpperCamelCase__ , torch.device("""cpu""" ) , UpperCamelCase__ ) original.eval() __lowercase = BertAbsSummarizer(UpperCamelCase__ , torch.device("""cpu""" ) ) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info("""convert the model""" ) new_model.bert.load_state_dict(original.bert.state_dict() ) new_model.decoder.load_state_dict(original.decoder.state_dict() ) new_model.generator.load_state_dict(original.generator.state_dict() ) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info("""Make sure that the models' outputs are identical""" ) __lowercase = BertTokenizer.from_pretrained("""bert-base-uncased""" ) # prepare the model inputs __lowercase = tokenizer.encode("""This is sample éàalj'-.""" ) encoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(UpperCamelCase__ )) ) __lowercase = torch.tensor(UpperCamelCase__ ).unsqueeze(0 ) __lowercase = tokenizer.encode("""This is sample 3 éàalj'-.""" ) decoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(UpperCamelCase__ )) ) __lowercase = torch.tensor(UpperCamelCase__ ).unsqueeze(0 ) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0 # forward pass __lowercase = encoder_input_ids __lowercase = decoder_input_ids __lowercase = __lowercase = None __lowercase = None __lowercase = __lowercase = None __lowercase = __lowercase = None __lowercase = None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical __lowercase = original(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )[0] __lowercase = original.generator(UpperCamelCase__ ) __lowercase = new_model( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )[0] __lowercase = new_model.generator(UpperCamelCase__ ) __lowercase = torch.max(torch.abs(output_converted_model - output_original_model ) ).item() print("""Maximum absolute difference beween weights: {:.2f}""".format(UpperCamelCase__ ) ) __lowercase = torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item() print("""Maximum absolute difference beween weights: {:.2f}""".format(UpperCamelCase__ ) ) __lowercase = torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1E-3 ) if are_identical: logging.info("""all weights are equal up to 1e-3""" ) else: raise ValueError("""the weights are different. The new model is likely different from the original one.""" ) # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info("""saving the model's state dictionary""" ) torch.save( new_model.state_dict() , """./bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin""" ) if __name__ == "__main__": UpperCAmelCase__ =argparse.ArgumentParser() parser.add_argument( "--bertabs_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model.", ) UpperCAmelCase__ =parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
616
0
'''simple docstring''' import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : List[Any] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : List[Any]=7 , SCREAMING_SNAKE_CASE : Any=3 , SCREAMING_SNAKE_CASE : List[str]=1_8 , SCREAMING_SNAKE_CASE : str=3_0 , SCREAMING_SNAKE_CASE : Optional[Any]=4_0_0 , SCREAMING_SNAKE_CASE : List[Any]=True , SCREAMING_SNAKE_CASE : str=None , SCREAMING_SNAKE_CASE : Optional[Any]=True , ) -> Optional[Any]: """simple docstring""" lowerCAmelCase = size if size is not None else {"height": 1_8, "width": 1_8} lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = num_channels lowerCAmelCase = image_size lowerCAmelCase = min_resolution lowerCAmelCase = max_resolution lowerCAmelCase = do_resize lowerCAmelCase = size lowerCAmelCase = do_normalize def __A ( self : Tuple ) -> List[str]: """simple docstring""" return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.8_8_6_6_4_4_3_6_3_4_0_3_3_2_0_3, 0.6_6_1_8_8_2_9_3_6_9_5_4_4_9_8_3, 0.3_8_9_1_7_4_6_4_0_1_7_8_6_8_0_4], [-0.6_0_4_2_5_5_9_1_4_6_8_8_1_1_0_4, -0.0_2_2_9_5_0_0_8_8_6_0_5_2_8_4_6_9, 0.5_4_2_3_7_9_7_3_6_9_0_0_3_2_9_6], ] ), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class _lowerCAmelCase ( UpperCamelCase_ , unittest.TestCase ): """simple docstring""" lowerCAmelCase = ImageGPTImageProcessor if is_vision_available() else None def __A ( self : Optional[Any] ) -> List[Any]: """simple docstring""" lowerCAmelCase = ImageGPTImageProcessingTester(self ) @property def __A ( self : str ) -> str: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def __A ( self : int ) -> Optional[int]: """simple docstring""" lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , "clusters" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , "do_resize" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , "size" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , "do_normalize" ) ) def __A ( self : Tuple ) -> List[str]: """simple docstring""" lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"height": 1_8, "width": 1_8} ) lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 ) self.assertEqual(image_processor.size , {"height": 4_2, "width": 4_2} ) def __A ( self : List[str] ) -> Optional[int]: """simple docstring""" lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) lowerCAmelCase = json.loads(image_processor.to_json_string() ) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(SCREAMING_SNAKE_CASE , obj[key] ) ) else: self.assertEqual(obj[key] , SCREAMING_SNAKE_CASE ) def __A ( self : int ) -> List[str]: """simple docstring""" lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase = os.path.join(SCREAMING_SNAKE_CASE , "image_processor.json" ) image_processor_first.to_json_file(SCREAMING_SNAKE_CASE ) lowerCAmelCase = self.image_processing_class.from_json_file(SCREAMING_SNAKE_CASE ).to_dict() lowerCAmelCase = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(SCREAMING_SNAKE_CASE , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , SCREAMING_SNAKE_CASE ) def __A ( self : Any ) -> Any: """simple docstring""" lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(SCREAMING_SNAKE_CASE ) lowerCAmelCase = self.image_processing_class.from_pretrained(SCREAMING_SNAKE_CASE ).to_dict() lowerCAmelCase = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(SCREAMING_SNAKE_CASE , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , SCREAMING_SNAKE_CASE ) @unittest.skip("ImageGPT requires clusters at initialization" ) def __A ( self : List[str] ) -> List[str]: """simple docstring""" pass def __a ( ) -> List[str]: lowerCAmelCase = load_dataset("hf-internal-testing/fixtures_image_utils" , split="test" ) lowerCAmelCase = Image.open(dataset[4]["file"] ) lowerCAmelCase = Image.open(dataset[5]["file"] ) lowerCAmelCase = [imagea, imagea] return images @require_vision @require_torch class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def __A ( self : int ) -> Any: """simple docstring""" lowerCAmelCase = ImageGPTImageProcessor.from_pretrained("openai/imagegpt-small" ) lowerCAmelCase = prepare_images() # test non-batched lowerCAmelCase = image_processing(images[0] , return_tensors="pt" ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (1, 1_0_2_4) ) lowerCAmelCase = [3_0_6, 1_9_1, 1_9_1] self.assertEqual(encoding.input_ids[0, :3].tolist() , SCREAMING_SNAKE_CASE ) # test batched lowerCAmelCase = image_processing(SCREAMING_SNAKE_CASE , return_tensors="pt" ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (2, 1_0_2_4) ) lowerCAmelCase = [3_0_3, 1_3, 1_3] self.assertEqual(encoding.input_ids[1, -3:].tolist() , SCREAMING_SNAKE_CASE )
159
'''simple docstring''' import inspect from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch import torch.utils.checkpoint from ...models import UNetaDModel, VQModel from ...schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from ...utils import PIL_INTERPOLATION, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput def __a ( A__ ) -> Dict: lowerCAmelCase , lowerCAmelCase = image.size lowerCAmelCase , lowerCAmelCase = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 lowerCAmelCase = image.resize((w, h) , resample=PIL_INTERPOLATION["lanczos"] ) lowerCAmelCase = np.array(A__ ).astype(np.floataa ) / 255.0 lowerCAmelCase = image[None].transpose(0 , 3 , 1 , 2 ) lowerCAmelCase = torch.from_numpy(A__ ) return 2.0 * image - 1.0 class _lowerCAmelCase ( UpperCamelCase_ ): """simple docstring""" def __init__( self : int , SCREAMING_SNAKE_CASE : VQModel , SCREAMING_SNAKE_CASE : UNetaDModel , SCREAMING_SNAKE_CASE : Union[ DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler, EulerDiscreteScheduler, EulerAncestralDiscreteScheduler, DPMSolverMultistepScheduler, ] , ) -> Optional[Any]: """simple docstring""" super().__init__() self.register_modules(vqvae=SCREAMING_SNAKE_CASE , unet=SCREAMING_SNAKE_CASE , scheduler=SCREAMING_SNAKE_CASE ) @torch.no_grad() def __call__( self : Tuple , SCREAMING_SNAKE_CASE : Union[torch.Tensor, PIL.Image.Image] = None , SCREAMING_SNAKE_CASE : Optional[int] = 1 , SCREAMING_SNAKE_CASE : Optional[int] = 1_0_0 , SCREAMING_SNAKE_CASE : Optional[float] = 0.0 , SCREAMING_SNAKE_CASE : Optional[Union[torch.Generator, List[torch.Generator]]] = None , SCREAMING_SNAKE_CASE : Optional[str] = "pil" , SCREAMING_SNAKE_CASE : bool = True , ) -> Union[Tuple, ImagePipelineOutput]: """simple docstring""" if isinstance(SCREAMING_SNAKE_CASE , PIL.Image.Image ): lowerCAmelCase = 1 elif isinstance(SCREAMING_SNAKE_CASE , torch.Tensor ): lowerCAmelCase = image.shape[0] else: raise ValueError(f"`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(SCREAMING_SNAKE_CASE )}" ) if isinstance(SCREAMING_SNAKE_CASE , PIL.Image.Image ): lowerCAmelCase = preprocess(SCREAMING_SNAKE_CASE ) lowerCAmelCase , lowerCAmelCase = image.shape[-2:] # in_channels should be 6: 3 for latents, 3 for low resolution image lowerCAmelCase = (batch_size, self.unet.config.in_channels // 2, height, width) lowerCAmelCase = next(self.unet.parameters() ).dtype lowerCAmelCase = randn_tensor(SCREAMING_SNAKE_CASE , generator=SCREAMING_SNAKE_CASE , device=self.device , dtype=SCREAMING_SNAKE_CASE ) lowerCAmelCase = image.to(device=self.device , dtype=SCREAMING_SNAKE_CASE ) # set timesteps and move to the correct device self.scheduler.set_timesteps(SCREAMING_SNAKE_CASE , device=self.device ) lowerCAmelCase = self.scheduler.timesteps # scale the initial noise by the standard deviation required by the scheduler lowerCAmelCase = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature. # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] lowerCAmelCase = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) lowerCAmelCase = {} if accepts_eta: lowerCAmelCase = eta for t in self.progress_bar(SCREAMING_SNAKE_CASE ): # concat latents and low resolution image in the channel dimension. lowerCAmelCase = torch.cat([latents, image] , dim=1 ) lowerCAmelCase = self.scheduler.scale_model_input(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # predict the noise residual lowerCAmelCase = self.unet(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).sample # compute the previous noisy sample x_t -> x_t-1 lowerCAmelCase = self.scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ).prev_sample # decode the image latents with the VQVAE lowerCAmelCase = self.vqvae.decode(SCREAMING_SNAKE_CASE ).sample lowerCAmelCase = torch.clamp(SCREAMING_SNAKE_CASE , -1.0 , 1.0 ) lowerCAmelCase = image / 2 + 0.5 lowerCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowerCAmelCase = self.numpy_to_pil(SCREAMING_SNAKE_CASE ) if not return_dict: return (image,) return ImagePipelineOutput(images=SCREAMING_SNAKE_CASE )
159
1
from __future__ import annotations from math import pow, sqrt def SCREAMING_SNAKE_CASE__ ( snake_case__ :float , snake_case__ :float , snake_case__ :float ) -> dict[str, float]: if (resistance, reactance, impedance).count(0 ) != 1: raise ValueError('One and only one argument must be 0' ) if resistance == 0: return {"resistance": sqrt(pow(snake_case__ , 2 ) - pow(snake_case__ , 2 ) )} elif reactance == 0: return {"reactance": sqrt(pow(snake_case__ , 2 ) - pow(snake_case__ , 2 ) )} elif impedance == 0: return {"impedance": sqrt(pow(snake_case__ , 2 ) + pow(snake_case__ , 2 ) )} else: raise ValueError('Exactly one argument must be 0' ) if __name__ == "__main__": import doctest doctest.testmod()
67
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class _UpperCamelCase ( lowerCamelCase__ ): '''simple docstring''' _A = "naver-clova-ix/donut-base-finetuned-docvqa" _A = ( "This is a tool that answers a question about an document (pdf). It takes an input named `document` which " "should be the document containing the information, as well as a `question` that is the question about the " "document. It returns a text that contains the answer to the question." ) _A = "document_qa" _A = AutoProcessor _A = VisionEncoderDecoderModel _A = ["image", "text"] _A = ["text"] def __init__( self : Optional[Any] , *SCREAMING_SNAKE_CASE_ : List[Any] , **SCREAMING_SNAKE_CASE_ : str ): if not is_vision_available(): raise ValueError('Pillow must be installed to use the DocumentQuestionAnsweringTool.' ) super().__init__(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def _UpperCAmelCase ( self : Tuple , SCREAMING_SNAKE_CASE_ : "Image" , SCREAMING_SNAKE_CASE_ : str ): _a = '<s_docvqa><s_question>{user_input}</s_question><s_answer>' _a = task_prompt.replace('{user_input}' , SCREAMING_SNAKE_CASE_ ) _a = self.pre_processor.tokenizer( SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ , return_tensors='pt' ).input_ids _a = self.pre_processor(SCREAMING_SNAKE_CASE_ , return_tensors='pt' ).pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def _UpperCAmelCase ( self : List[str] , SCREAMING_SNAKE_CASE_ : List[str] ): return self.model.generate( inputs['pixel_values'].to(self.device ) , decoder_input_ids=inputs['decoder_input_ids'].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=SCREAMING_SNAKE_CASE_ , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=SCREAMING_SNAKE_CASE_ , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=SCREAMING_SNAKE_CASE_ , ).sequences def _UpperCAmelCase ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : List[Any] ): _a = self.pre_processor.batch_decode(SCREAMING_SNAKE_CASE_ )[0] _a = sequence.replace(self.pre_processor.tokenizer.eos_token , '' ) _a = sequence.replace(self.pre_processor.tokenizer.pad_token , '' ) _a = re.sub(R'<.*?>' , '' , SCREAMING_SNAKE_CASE_ , count=1 ).strip() # remove first task start token _a = self.pre_processor.tokenajson(SCREAMING_SNAKE_CASE_ ) return sequence["answer"]
562
0
class lowerCAmelCase_ : '''simple docstring''' def __init__( self , _UpperCAmelCase ): snake_case_ = val snake_case_ = None snake_case_ = None def UpperCamelCase__ ( self , _UpperCAmelCase ): if self.val: if val < self.val: if self.left is None: snake_case_ = Node(_UpperCAmelCase ) else: self.left.insert(_UpperCAmelCase ) elif val > self.val: if self.right is None: snake_case_ = Node(_UpperCAmelCase ) else: self.right.insert(_UpperCAmelCase ) else: snake_case_ = val def __lowerCAmelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )-> Dict: """simple docstring""" if root: inorder(root.left , SCREAMING_SNAKE_CASE ) res.append(root.val ) inorder(root.right , SCREAMING_SNAKE_CASE ) def __lowerCAmelCase (SCREAMING_SNAKE_CASE )-> Dict: """simple docstring""" if len(SCREAMING_SNAKE_CASE ) == 0: return arr snake_case_ = Node(arr[0] ) for i in range(1 , len(SCREAMING_SNAKE_CASE ) ): root.insert(arr[i] ) # Traverse BST in order. snake_case_ = [] inorder(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return res if __name__ == "__main__": print(tree_sort([10, 1, 3, 2, 9, 14, 13]))
717
import csv from collections import defaultdict from dataclasses import dataclass, field from typing import List, Optional import matplotlib.pyplot as plt import numpy as np from matplotlib.ticker import ScalarFormatter from transformers import HfArgumentParser def __lowerCAmelCase (SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None )-> Tuple: """simple docstring""" return field(default_factory=lambda: default , metadata=SCREAMING_SNAKE_CASE ) @dataclass class lowerCAmelCase_ : '''simple docstring''' __snake_case = field( metadata={"help": "The csv file to plot."} , ) __snake_case = field( default=lowerCamelCase__ , metadata={"help": "Whether to plot along batch size or sequence length. Defaults to sequence length."} , ) __snake_case = field( default=lowerCamelCase__ , metadata={"help": "Whether the csv file has time results or memory results. Defaults to memory results."} , ) __snake_case = field( default=lowerCamelCase__ , metadata={"help": "Disable logarithmic scale when plotting"} , ) __snake_case = field( default=lowerCamelCase__ , metadata={ "help": "Whether the csv file has training results or inference results. Defaults to inference results." } , ) __snake_case = field( default=lowerCamelCase__ , metadata={"help": "Filename under which the plot will be saved. If unused no plot is saved."} , ) __snake_case = list_field( default=lowerCamelCase__ , metadata={"help": "List of model names that are used instead of the ones in the csv file."} ) def __lowerCAmelCase (SCREAMING_SNAKE_CASE )-> Optional[Any]: """simple docstring""" try: int(SCREAMING_SNAKE_CASE ) return True except ValueError: return False def __lowerCAmelCase (SCREAMING_SNAKE_CASE )-> Tuple: """simple docstring""" try: float(SCREAMING_SNAKE_CASE ) return True except ValueError: return False class lowerCAmelCase_ : '''simple docstring''' def __init__( self , _UpperCAmelCase ): snake_case_ = args snake_case_ = defaultdict(lambda: {"bsz": [], "seq_len": [], "result": {}} ) with open(self.args.csv_file , newline='''''' ) as csv_file: snake_case_ = csv.DictReader(_UpperCAmelCase ) for row in reader: snake_case_ = row['''model'''] self.result_dict[model_name]["bsz"].append(int(row['''batch_size'''] ) ) self.result_dict[model_name]["seq_len"].append(int(row['''sequence_length'''] ) ) if can_convert_to_int(row['''result'''] ): # value is not None snake_case_ = int(row['''result'''] ) elif can_convert_to_float(row['''result'''] ): # value is not None snake_case_ = float(row['''result'''] ) def UpperCamelCase__ ( self ): snake_case_ , snake_case_ = plt.subplots() snake_case_ = '''Time usage''' if self.args.is_time else '''Memory usage''' snake_case_ = title_str + ''' for training''' if self.args.is_train else title_str + ''' for inference''' if not self.args.no_log_scale: # set logarithm scales ax.set_xscale('''log''' ) ax.set_yscale('''log''' ) for axis in [ax.xaxis, ax.yaxis]: axis.set_major_formatter(ScalarFormatter() ) for model_name_idx, model_name in enumerate(self.result_dict.keys() ): snake_case_ = sorted(set(self.result_dict[model_name]['''bsz'''] ) ) snake_case_ = sorted(set(self.result_dict[model_name]['''seq_len'''] ) ) snake_case_ = self.result_dict[model_name]['''result'''] ((snake_case_) , (snake_case_)) = ( (batch_sizes, sequence_lengths) if self.args.plot_along_batch else (sequence_lengths, batch_sizes) ) snake_case_ = ( model_name if self.args.short_model_names is None else self.args.short_model_names[model_name_idx] ) for inner_loop_value in inner_loop_array: if self.args.plot_along_batch: snake_case_ = np.asarray( [results[(x, inner_loop_value)] for x in x_axis_array if (x, inner_loop_value) in results] , dtype=_UpperCAmelCase , ) else: snake_case_ = np.asarray( [results[(inner_loop_value, x)] for x in x_axis_array if (inner_loop_value, x) in results] , dtype=np.floataa , ) ((snake_case_) , (snake_case_)) = ( ('''batch_size''', '''len''') if self.args.plot_along_batch else ('''in #tokens''', '''bsz''') ) snake_case_ = np.asarray(_UpperCAmelCase , _UpperCAmelCase )[: len(_UpperCAmelCase )] plt.scatter( _UpperCAmelCase , _UpperCAmelCase , label=F'''{label_model_name} - {inner_loop_label}: {inner_loop_value}''' ) plt.plot(_UpperCAmelCase , _UpperCAmelCase , '''--''' ) title_str += F''' {label_model_name} vs.''' snake_case_ = title_str[:-4] snake_case_ = '''Time in s''' if self.args.is_time else '''Memory in MB''' # plot plt.title(_UpperCAmelCase ) plt.xlabel(_UpperCAmelCase ) plt.ylabel(_UpperCAmelCase ) plt.legend() if self.args.figure_png_file is not None: plt.savefig(self.args.figure_png_file ) else: plt.show() def __lowerCAmelCase ()-> int: """simple docstring""" snake_case_ = HfArgumentParser(SCREAMING_SNAKE_CASE ) snake_case_ = parser.parse_args_into_dataclasses()[0] snake_case_ = Plot(args=SCREAMING_SNAKE_CASE ) plot.plot() if __name__ == "__main__": main()
531
0
'''simple docstring''' import argparse from collections import defaultdict import yaml lowercase : Optional[Any] = 'docs/source/en/_toctree.yml' def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' A : List[str] = defaultdict(snake_case__ ) A : Dict = [] A : Any = [] for doc in doc_list: if "local" in doc: counts[doc["local"]] += 1 if doc["title"].lower() == "overview": overview_doc.append({'''local''': doc['''local'''], '''title''': doc['''title''']} ) else: new_doc_list.append(snake_case__ ) A : Any = new_doc_list A : Any = [key for key, value in counts.items() if value > 1] A : List[Any] = [] for duplicate_key in duplicates: A : List[Any] = list({doc['''title'''] for doc in doc_list if doc['''local'''] == duplicate_key} ) if len(snake_case__ ) > 1: raise ValueError( F'{duplicate_key} is present several times in the documentation table of content at ' '''`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ''' '''others.''' ) # Only add this once new_doc.append({'''local''': duplicate_key, '''title''': titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in doc_list if '''local''' not in counts or counts[doc['''local''']] == 1] ) A : Union[str, Any] = sorted(snake_case__ , key=lambda snake_case__ : s["title"].lower() ) # "overview" gets special treatment and is always first if len(snake_case__ ) > 1: raise ValueError('''{doc_list} has two \'overview\' docs which is not allowed.''' ) overview_doc.extend(snake_case__ ) # Sort return overview_doc def lowerCAmelCase_ ( snake_case__=False ): '''simple docstring''' with open(snake_case__ , encoding='''utf-8''' ) as f: A : Optional[int] = yaml.safe_load(f.read() ) # Get to the API doc A : Any = 0 while content[api_idx]["title"] != "API": api_idx += 1 A : List[str] = content[api_idx]['''sections'''] # Then to the model doc A : str = 0 while api_doc[scheduler_idx]["title"] != "Schedulers": scheduler_idx += 1 A : int = api_doc[scheduler_idx]['''sections'''] A : Union[str, Any] = clean_doc_toc(snake_case__ ) A : str = False if new_scheduler_doc != scheduler_doc: A : str = True if overwrite: A : List[str] = new_scheduler_doc if diff: if overwrite: A : int = api_doc with open(snake_case__ , '''w''' , encoding='''utf-8''' ) as f: f.write(yaml.dump(snake_case__ , allow_unicode=snake_case__ ) ) else: raise ValueError( '''The model doc part of the table of content is not properly sorted, run `make style` to fix this.''' ) def lowerCAmelCase_ ( snake_case__=False ): '''simple docstring''' with open(snake_case__ , encoding='''utf-8''' ) as f: A : str = yaml.safe_load(f.read() ) # Get to the API doc A : Dict = 0 while content[api_idx]["title"] != "API": api_idx += 1 A : Union[str, Any] = content[api_idx]['''sections'''] # Then to the model doc A : List[Any] = 0 while api_doc[pipeline_idx]["title"] != "Pipelines": pipeline_idx += 1 A : Optional[int] = False A : int = api_doc[pipeline_idx]['''sections'''] A : Tuple = [] # sort sub pipeline docs for pipeline_doc in pipeline_docs: if "section" in pipeline_doc: A : Optional[Any] = pipeline_doc['''section'''] A : Union[str, Any] = clean_doc_toc(snake_case__ ) if overwrite: A : int = new_sub_pipeline_doc new_pipeline_docs.append(snake_case__ ) # sort overall pipeline doc A : Optional[Any] = clean_doc_toc(snake_case__ ) if new_pipeline_docs != pipeline_docs: A : List[str] = True if overwrite: A : Tuple = new_pipeline_docs if diff: if overwrite: A : int = api_doc with open(snake_case__ , '''w''' , encoding='''utf-8''' ) as f: f.write(yaml.dump(snake_case__ , allow_unicode=snake_case__ ) ) else: raise ValueError( '''The model doc part of the table of content is not properly sorted, run `make style` to fix this.''' ) if __name__ == "__main__": lowercase : Dict = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') lowercase : Optional[Any] = parser.parse_args() check_scheduler_doc(args.fix_and_overwrite) check_pipeline_doc(args.fix_and_overwrite)
634
'''simple docstring''' import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class A ( __snake_case , unittest.TestCase ): __magic_name__ = DebertaTokenizer __magic_name__ = True __magic_name__ = DebertaTokenizerFast def __lowerCAmelCase ( self ) -> Tuple: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt A : Optional[int] = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''[UNK]''', ] A : List[str] = dict(zip(SCREAMING_SNAKE_CASE , range(len(SCREAMING_SNAKE_CASE ) ) ) ) A : List[Any] = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] A : Tuple = {'''unk_token''': '''[UNK]'''} A : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) A : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(SCREAMING_SNAKE_CASE ) ) def __lowerCAmelCase ( self , **SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" A : Union[str, Any] = '''lower newer''' A : List[Any] = '''lower newer''' return input_text, output_text def __lowerCAmelCase ( self ) -> str: """simple docstring""" A : str = self.get_tokenizer() A : List[str] = '''lower newer''' A : int = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] A : Any = tokenizer.tokenize(SCREAMING_SNAKE_CASE ) self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) A : str = tokens + [tokenizer.unk_token] A : str = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> str: """simple docstring""" A : List[Any] = self.get_tokenizer() A : Tuple = tokenizer('''Hello''' , '''World''' ) A : str = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd['''token_type_ids'''] , SCREAMING_SNAKE_CASE ) @slow def __lowerCAmelCase ( self ) -> int: """simple docstring""" A : Union[str, Any] = self.tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) A : Union[str, Any] = tokenizer.encode('''sequence builders''' , add_special_tokens=SCREAMING_SNAKE_CASE ) A : Any = tokenizer.encode('''multi-sequence build''' , add_special_tokens=SCREAMING_SNAKE_CASE ) A : Tuple = tokenizer.encode( '''sequence builders''' , add_special_tokens=SCREAMING_SNAKE_CASE , add_prefix_space=SCREAMING_SNAKE_CASE ) A : Union[str, Any] = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=SCREAMING_SNAKE_CASE , add_prefix_space=SCREAMING_SNAKE_CASE ) A : List[str] = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE ) A : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def __lowerCAmelCase ( self ) -> int: """simple docstring""" A : Any = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: A : List[str] = tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) A : Dict = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] A : List[Any] = tokenizer(SCREAMING_SNAKE_CASE , padding=SCREAMING_SNAKE_CASE ) A : List[str] = [tokenizer.decode(SCREAMING_SNAKE_CASE , skip_special_tokens=SCREAMING_SNAKE_CASE ) for seq in encoding['''input_ids''']] # fmt: off A : List[str] = { '''input_ids''': [ [1, 2118, 11126, 565, 35, 83, 25191, 163, 18854, 13, 12156, 12, 16101, 25376, 13807, 9, 22205, 27893, 1635, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 2118, 11126, 565, 24536, 80, 43797, 4878, 7373, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 133, 78, 65, 16, 10, 3724, 1538, 33183, 11303, 43797, 1938, 4, 870, 24165, 29105, 5, 739, 32644, 33183, 11303, 36173, 88, 80, 650, 7821, 45940, 6, 52, 2559, 5, 1836, 9, 5, 7397, 13171, 31, 5, 1836, 9, 32644, 33183, 11303, 4, 2] ], '''token_type_ids''': [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], '''attention_mask''': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on A : Any = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] self.assertDictEqual(encoding.data , SCREAMING_SNAKE_CASE ) for expected, decoded in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): self.assertEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
634
1
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE = '▁' __SCREAMING_SNAKE_CASE = {'vocab_file': 'spiece.model'} __SCREAMING_SNAKE_CASE = { 'vocab_file': { 'google/reformer-crime-and-punishment': ( 'https://huggingface.co/google/reformer-crime-and-punishment/resolve/main/spiece.model' ) } } __SCREAMING_SNAKE_CASE = { 'google/reformer-crime-and-punishment': 524_288, } class a__ ( A__ ): UpperCAmelCase__ = VOCAB_FILES_NAMES UpperCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ = ['''input_ids''', '''attention_mask'''] def __init__( self :List[str] , _lowerCamelCase :Union[str, Any] , _lowerCamelCase :Optional[Any]="</s>" , _lowerCamelCase :Tuple="<unk>" , _lowerCamelCase :List[str]=[] , _lowerCamelCase :Optional[Dict[str, Any]] = None , **_lowerCamelCase :Optional[Any] , ): '''simple docstring''' UpperCamelCase_ : List[Any] ={} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=_lowerCamelCase , unk_token=_lowerCamelCase , additional_special_tokens=_lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCamelCase , ) UpperCamelCase_ : Dict =vocab_file UpperCamelCase_ : Optional[int] =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_lowerCamelCase ) @property def lowerCamelCase_ ( self :List[str] ): '''simple docstring''' return self.sp_model.get_piece_size() def lowerCamelCase_ ( self :List[str] ): '''simple docstring''' UpperCamelCase_ : List[Any] ={self.convert_ids_to_tokens(_lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self :Union[str, Any] ): '''simple docstring''' UpperCamelCase_ : str =self.__dict__.copy() UpperCamelCase_ : List[str] =None return state def __setstate__( self :List[str] , _lowerCamelCase :Any ): '''simple docstring''' UpperCamelCase_ : Any =d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): UpperCamelCase_ : Union[str, Any] ={} UpperCamelCase_ : Optional[Any] =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowerCamelCase_ ( self :str , _lowerCamelCase :str ): '''simple docstring''' return self.sp_model.encode(_lowerCamelCase , out_type=_lowerCamelCase ) def lowerCamelCase_ ( self :List[Any] , _lowerCamelCase :List[str] ): '''simple docstring''' return self.sp_model.piece_to_id(_lowerCamelCase ) def lowerCamelCase_ ( self :List[Any] , _lowerCamelCase :List[Any] ): '''simple docstring''' if index < self.sp_model.get_piece_size(): UpperCamelCase_ : Dict =self.sp_model.IdToPiece(_lowerCamelCase ) return token def lowerCamelCase_ ( self :int , _lowerCamelCase :str ): '''simple docstring''' UpperCamelCase_ : List[str] =[] UpperCamelCase_ : List[Any] ='' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(_lowerCamelCase ) + token UpperCamelCase_ : Optional[int] =[] else: current_sub_tokens.append(_lowerCamelCase ) out_string += self.sp_model.decode(_lowerCamelCase ) return out_string.strip() def lowerCamelCase_ ( self :str , _lowerCamelCase :str , _lowerCamelCase :Optional[str] = None ): '''simple docstring''' if not os.path.isdir(_lowerCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCamelCase_ : Dict =os.path.join( _lowerCamelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(_lowerCamelCase , 'wb' ) as fi: UpperCamelCase_ : str =self.sp_model.serialized_model_proto() fi.write(_lowerCamelCase ) return (out_vocab_file,)
395
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor from transformers.utils import logging logging.set_verbosity_info() __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) def A_ ( __lowercase ): UpperCamelCase_ : int =YolosConfig() # size of the architecture if "yolos_ti" in yolos_name: UpperCamelCase_ : Union[str, Any] =1_92 UpperCamelCase_ : Optional[Any] =7_68 UpperCamelCase_ : Optional[int] =12 UpperCamelCase_ : Tuple =3 UpperCamelCase_ : List[str] =[8_00, 13_33] UpperCamelCase_ : List[str] =False elif yolos_name == "yolos_s_dWr": UpperCamelCase_ : str =3_30 UpperCamelCase_ : Dict =14 UpperCamelCase_ : List[str] =6 UpperCamelCase_ : List[str] =13_20 elif "yolos_s" in yolos_name: UpperCamelCase_ : Optional[int] =3_84 UpperCamelCase_ : str =15_36 UpperCamelCase_ : List[Any] =12 UpperCamelCase_ : Union[str, Any] =6 elif "yolos_b" in yolos_name: UpperCamelCase_ : Optional[Any] =[8_00, 13_44] UpperCamelCase_ : Union[str, Any] =91 UpperCamelCase_ : Optional[Any] ='huggingface/label-files' UpperCamelCase_ : Union[str, Any] ='coco-detection-id2label.json' UpperCamelCase_ : Optional[Any] =json.load(open(hf_hub_download(__lowercase , __lowercase , repo_type='dataset' ) , 'r' ) ) UpperCamelCase_ : str ={int(__lowercase ): v for k, v in idalabel.items()} UpperCamelCase_ : str =idalabel UpperCamelCase_ : Optional[int] ={v: k for k, v in idalabel.items()} return config def A_ ( __lowercase , __lowercase , __lowercase = False ): for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCamelCase_ : Optional[Any] =state_dict.pop(F'''blocks.{i}.attn.qkv.weight''' ) UpperCamelCase_ : str =state_dict.pop(F'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict UpperCamelCase_ : int =in_proj_weight[: config.hidden_size, :] UpperCamelCase_ : Optional[Any] =in_proj_bias[: config.hidden_size] UpperCamelCase_ : Optional[Any] =in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCamelCase_ : Optional[int] =in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCamelCase_ : Any =in_proj_weight[-config.hidden_size :, :] UpperCamelCase_ : List[str] =in_proj_bias[-config.hidden_size :] def A_ ( __lowercase ): if "backbone" in name: UpperCamelCase_ : Any =name.replace('backbone' , 'vit' ) if "cls_token" in name: UpperCamelCase_ : str =name.replace('cls_token' , 'embeddings.cls_token' ) if "det_token" in name: UpperCamelCase_ : Optional[Any] =name.replace('det_token' , 'embeddings.detection_tokens' ) if "mid_pos_embed" in name: UpperCamelCase_ : List[Any] =name.replace('mid_pos_embed' , 'encoder.mid_position_embeddings' ) if "pos_embed" in name: UpperCamelCase_ : str =name.replace('pos_embed' , 'embeddings.position_embeddings' ) if "patch_embed.proj" in name: UpperCamelCase_ : Dict =name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "blocks" in name: UpperCamelCase_ : Optional[int] =name.replace('blocks' , 'encoder.layer' ) if "attn.proj" in name: UpperCamelCase_ : Union[str, Any] =name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: UpperCamelCase_ : Optional[Any] =name.replace('attn' , 'attention.self' ) if "norm1" in name: UpperCamelCase_ : Optional[Any] =name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: UpperCamelCase_ : Tuple =name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: UpperCamelCase_ : List[str] =name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: UpperCamelCase_ : int =name.replace('mlp.fc2' , 'output.dense' ) if "class_embed" in name: UpperCamelCase_ : Any =name.replace('class_embed' , 'class_labels_classifier' ) if "bbox_embed" in name: UpperCamelCase_ : Union[str, Any] =name.replace('bbox_embed' , 'bbox_predictor' ) if "vit.norm" in name: UpperCamelCase_ : Union[str, Any] =name.replace('vit.norm' , 'vit.layernorm' ) return name def A_ ( __lowercase , __lowercase ): for key in orig_state_dict.copy().keys(): UpperCamelCase_ : List[str] =orig_state_dict.pop(__lowercase ) if "qkv" in key: UpperCamelCase_ : Any =key.split('.' ) UpperCamelCase_ : List[str] =int(key_split[2] ) UpperCamelCase_ : Union[str, Any] =model.vit.encoder.layer[layer_num].attention.attention.all_head_size if "weight" in key: UpperCamelCase_ : Optional[int] =val[:dim, :] UpperCamelCase_ : List[str] =val[ dim : dim * 2, : ] UpperCamelCase_ : Tuple =val[-dim:, :] else: UpperCamelCase_ : Optional[Any] =val[:dim] UpperCamelCase_ : Optional[Any] =val[dim : dim * 2] UpperCamelCase_ : Union[str, Any] =val[-dim:] else: UpperCamelCase_ : Dict =val return orig_state_dict def A_ ( ): UpperCamelCase_ : str ='http://images.cocodataset.org/val2017/000000039769.jpg' UpperCamelCase_ : Optional[int] =Image.open(requests.get(__lowercase , stream=__lowercase ).raw ) return im @torch.no_grad() def A_ ( __lowercase , __lowercase , __lowercase , __lowercase = False ): UpperCamelCase_ : int =get_yolos_config(__lowercase ) # load original state_dict UpperCamelCase_ : Union[str, Any] =torch.load(__lowercase , map_location='cpu' )['model'] # load 🤗 model UpperCamelCase_ : Dict =YolosForObjectDetection(__lowercase ) model.eval() UpperCamelCase_ : Union[str, Any] =convert_state_dict(__lowercase , __lowercase ) model.load_state_dict(__lowercase ) # Check outputs on an image, prepared by YolosImageProcessor UpperCamelCase_ : Any =8_00 if yolos_name != 'yolos_ti' else 5_12 UpperCamelCase_ : List[Any] =YolosImageProcessor(format='coco_detection' , size=__lowercase ) UpperCamelCase_ : Union[str, Any] =image_processor(images=prepare_img() , return_tensors='pt' ) UpperCamelCase_ : int =model(**__lowercase ) UpperCamelCase_ , UpperCamelCase_ : Optional[Any] =outputs.logits, outputs.pred_boxes UpperCamelCase_ , UpperCamelCase_ : Optional[Any] =None, None if yolos_name == "yolos_ti": UpperCamelCase_ : List[str] =torch.tensor( [[-39.5022, -11.9820, -17.6888], [-29.9574, -9.9769, -17.7691], [-42.3281, -20.7200, -30.6294]] ) UpperCamelCase_ : str =torch.tensor( [[0.4021, 0.0836, 0.7979], [0.0184, 0.2609, 0.0364], [0.1781, 0.2004, 0.2095]] ) elif yolos_name == "yolos_s_200_pre": UpperCamelCase_ : Tuple =torch.tensor( [[-24.0248, -10.3024, -14.8290], [-42.0392, -16.8200, -27.4334], [-27.2743, -11.8154, -18.7148]] ) UpperCamelCase_ : Any =torch.tensor( [[0.2559, 0.5455, 0.4706], [0.2989, 0.7279, 0.1875], [0.7732, 0.4017, 0.4462]] ) elif yolos_name == "yolos_s_300_pre": UpperCamelCase_ : Optional[Any] =torch.tensor( [[-36.2220, -14.4385, -23.5457], [-35.6970, -14.7583, -21.3935], [-31.5939, -13.6042, -16.8049]] ) UpperCamelCase_ : Tuple =torch.tensor( [[0.7614, 0.2316, 0.4728], [0.7168, 0.4495, 0.3855], [0.4996, 0.1466, 0.9996]] ) elif yolos_name == "yolos_s_dWr": UpperCamelCase_ : Union[str, Any] =torch.tensor( [[-42.8668, -24.1049, -41.1690], [-34.7456, -14.1274, -24.9194], [-33.7898, -12.1946, -25.6495]] ) UpperCamelCase_ : Union[str, Any] =torch.tensor( [[0.5587, 0.2773, 0.0605], [0.5004, 0.3014, 0.9994], [0.4999, 0.1548, 0.9994]] ) elif yolos_name == "yolos_base": UpperCamelCase_ : Tuple =torch.tensor( [[-40.6064, -24.3084, -32.6447], [-55.1990, -30.7719, -35.5877], [-51.4311, -33.3507, -35.6462]] ) UpperCamelCase_ : Optional[Any] =torch.tensor( [[0.5555, 0.2794, 0.0655], [0.9049, 0.2664, 0.1894], [0.9183, 0.1984, 0.1635]] ) else: raise ValueError(F'''Unknown yolos_name: {yolos_name}''' ) assert torch.allclose(logits[0, :3, :3] , __lowercase , atol=1e-4 ) assert torch.allclose(pred_boxes[0, :3, :3] , __lowercase , atol=1e-4 ) Path(__lowercase ).mkdir(exist_ok=__lowercase ) print(F'''Saving model {yolos_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(__lowercase ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__lowercase ) if push_to_hub: UpperCamelCase_ : Tuple ={ 'yolos_ti': 'yolos-tiny', 'yolos_s_200_pre': 'yolos-small', 'yolos_s_300_pre': 'yolos-small-300', 'yolos_s_dWr': 'yolos-small-dwr', 'yolos_base': 'yolos-base', } print('Pushing to the hub...' ) UpperCamelCase_ : Optional[int] =model_mapping[yolos_name] image_processor.push_to_hub(__lowercase , organization='hustvl' ) model.push_to_hub(__lowercase , organization='hustvl' ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( '--yolos_name', default='yolos_s_200_pre', type=str, help=( 'Name of the YOLOS model you\'d like to convert. Should be one of \'yolos_ti\', \'yolos_s_200_pre\',' ' \'yolos_s_300_pre\', \'yolos_s_dWr\', \'yolos_base\'.' ), ) parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original state dict (.pth file).' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) __SCREAMING_SNAKE_CASE = parser.parse_args() convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
395
1
import hashlib import unittest from typing import Dict import numpy as np from transformers import ( MODEL_FOR_MASK_GENERATION_MAPPING, TF_MODEL_FOR_MASK_GENERATION_MAPPING, is_vision_available, pipeline, ) from transformers.pipelines import MaskGenerationPipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) if is_vision_available(): from PIL import Image else: class lowerCamelCase : """simple docstring""" @staticmethod def A_ ( *_UpperCAmelCase : str, **_UpperCAmelCase : Dict ) -> Optional[Any]: """simple docstring""" pass def _a ( SCREAMING_SNAKE_CASE__ : Image ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] = hashlib.mda(image.tobytes() ) return m.hexdigest()[:10] def _a ( SCREAMING_SNAKE_CASE__ : Image ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple = np.array(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : str = npimg.shape return {"hash": hashimage(SCREAMING_SNAKE_CASE__ ), "shape": shape} @is_pipeline_test @require_vision @require_torch class lowerCamelCase (unittest.TestCase ): """simple docstring""" UpperCAmelCase_ = dict( (list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) ) UpperCAmelCase_ = dict( (list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) ) def A_ ( self : str, _UpperCAmelCase : List[Any], _UpperCAmelCase : str, _UpperCAmelCase : Dict ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = MaskGenerationPipeline(model=_UpperCAmelCase, image_processor=_UpperCAmelCase ) return image_segmenter, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def A_ ( self : Optional[Any], _UpperCAmelCase : Optional[int], _UpperCAmelCase : Union[str, Any] ) -> Any: """simple docstring""" pass @require_tf @unittest.skip("Image segmentation not implemented in TF" ) def A_ ( self : List[str] ) -> List[Any]: """simple docstring""" pass @slow @require_torch def A_ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = pipeline("mask-generation", model="facebook/sam-vit-huge" ) SCREAMING_SNAKE_CASE__ : Dict = image_segmenter("http://images.cocodataset.org/val2017/000000039769.jpg", points_per_batch=2_5_6 ) # Shortening by hashing SCREAMING_SNAKE_CASE__ : str = [] for i, o in enumerate(outputs["masks"] ): new_outupt += [{"mask": mask_to_test_readable(_UpperCAmelCase ), "scores": outputs["scores"][i]}] # fmt: off self.assertEqual( nested_simplify(_UpperCAmelCase, decimals=4 ), [ {"mask": {"hash": "115ad19f5f", "shape": (4_8_0, 6_4_0)}, "scores": 1.0444}, {"mask": {"hash": "6affa964c6", "shape": (4_8_0, 6_4_0)}, "scores": 1.021}, {"mask": {"hash": "dfe28a0388", "shape": (4_8_0, 6_4_0)}, "scores": 1.0167}, {"mask": {"hash": "c0a5f4a318", "shape": (4_8_0, 6_4_0)}, "scores": 1.0132}, {"mask": {"hash": "fe8065c197", "shape": (4_8_0, 6_4_0)}, "scores": 1.0053}, {"mask": {"hash": "e2d0b7a0b7", "shape": (4_8_0, 6_4_0)}, "scores": 0.9967}, {"mask": {"hash": "453c7844bd", "shape": (4_8_0, 6_4_0)}, "scores": 0.993}, {"mask": {"hash": "3d44f2926d", "shape": (4_8_0, 6_4_0)}, "scores": 0.9909}, {"mask": {"hash": "64033ddc3f", "shape": (4_8_0, 6_4_0)}, "scores": 0.9879}, {"mask": {"hash": "801064ff79", "shape": (4_8_0, 6_4_0)}, "scores": 0.9834}, {"mask": {"hash": "6172f276ef", "shape": (4_8_0, 6_4_0)}, "scores": 0.9716}, {"mask": {"hash": "b49e60e084", "shape": (4_8_0, 6_4_0)}, "scores": 0.9612}, {"mask": {"hash": "a811e775fd", "shape": (4_8_0, 6_4_0)}, "scores": 0.9599}, {"mask": {"hash": "a6a8ebcf4b", "shape": (4_8_0, 6_4_0)}, "scores": 0.9552}, {"mask": {"hash": "9d8257e080", "shape": (4_8_0, 6_4_0)}, "scores": 0.9532}, {"mask": {"hash": "32de6454a8", "shape": (4_8_0, 6_4_0)}, "scores": 0.9516}, {"mask": {"hash": "af3d4af2c8", "shape": (4_8_0, 6_4_0)}, "scores": 0.9499}, {"mask": {"hash": "3c6db475fb", "shape": (4_8_0, 6_4_0)}, "scores": 0.9483}, {"mask": {"hash": "c290813fb9", "shape": (4_8_0, 6_4_0)}, "scores": 0.9464}, {"mask": {"hash": "b6f0b8f606", "shape": (4_8_0, 6_4_0)}, "scores": 0.943}, {"mask": {"hash": "92ce16bfdf", "shape": (4_8_0, 6_4_0)}, "scores": 0.943}, {"mask": {"hash": "c749b25868", "shape": (4_8_0, 6_4_0)}, "scores": 0.9408}, {"mask": {"hash": "efb6cab859", "shape": (4_8_0, 6_4_0)}, "scores": 0.9335}, {"mask": {"hash": "1ff2eafb30", "shape": (4_8_0, 6_4_0)}, "scores": 0.9326}, {"mask": {"hash": "788b798e24", "shape": (4_8_0, 6_4_0)}, "scores": 0.9262}, {"mask": {"hash": "abea804f0e", "shape": (4_8_0, 6_4_0)}, "scores": 0.8999}, {"mask": {"hash": "7b9e8ddb73", "shape": (4_8_0, 6_4_0)}, "scores": 0.8986}, {"mask": {"hash": "cd24047c8a", "shape": (4_8_0, 6_4_0)}, "scores": 0.8984}, {"mask": {"hash": "6943e6bcbd", "shape": (4_8_0, 6_4_0)}, "scores": 0.8873}, {"mask": {"hash": "b5f47c9191", "shape": (4_8_0, 6_4_0)}, "scores": 0.8871} ], ) # fmt: on @require_torch @slow def A_ ( self : Any ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = "facebook/sam-vit-huge" SCREAMING_SNAKE_CASE__ : List[Any] = pipeline("mask-generation", model=_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : List[Any] = image_segmenter( "http://images.cocodataset.org/val2017/000000039769.jpg", pred_iou_thresh=1, points_per_batch=2_5_6 ) # Shortening by hashing SCREAMING_SNAKE_CASE__ : List[str] = [] for i, o in enumerate(outputs["masks"] ): new_outupt += [{"mask": mask_to_test_readable(_UpperCAmelCase ), "scores": outputs["scores"][i]}] self.assertEqual( nested_simplify(_UpperCAmelCase, decimals=4 ), [ {"mask": {"hash": "115ad19f5f", "shape": (4_8_0, 6_4_0)}, "scores": 1.0444}, {"mask": {"hash": "6affa964c6", "shape": (4_8_0, 6_4_0)}, "scores": 1.0210}, {"mask": {"hash": "dfe28a0388", "shape": (4_8_0, 6_4_0)}, "scores": 1.0167}, {"mask": {"hash": "c0a5f4a318", "shape": (4_8_0, 6_4_0)}, "scores": 1.0132}, {"mask": {"hash": "fe8065c197", "shape": (4_8_0, 6_4_0)}, "scores": 1.0053}, ], )
663
import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class lowerCamelCase (__lowerCamelCase ): """simple docstring""" UpperCAmelCase_ = (DPMSolverSDEScheduler,) UpperCAmelCase_ = 10 def A_ ( self : List[str], **_UpperCAmelCase : List[Any] ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = { "num_train_timesteps": 1_1_0_0, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", "noise_sampler_seed": 0, } config.update(**_UpperCAmelCase ) return config def A_ ( self : Tuple ) -> int: """simple docstring""" for timesteps in [1_0, 5_0, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=_UpperCAmelCase ) def A_ ( self : int ) -> int: """simple docstring""" for beta_start, beta_end in zip([0.00001, 0.0001, 0.001], [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=_UpperCAmelCase, beta_end=_UpperCAmelCase ) def A_ ( self : List[Any] ) -> List[Any]: """simple docstring""" for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=_UpperCAmelCase ) def A_ ( self : Optional[int] ) -> int: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_UpperCAmelCase ) def A_ ( self : Optional[int] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ : Optional[int] = self.get_scheduler_config() SCREAMING_SNAKE_CASE__ : int = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(self.num_inference_steps ) SCREAMING_SNAKE_CASE__ : int = self.dummy_model() SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.dummy_sample_deter * scheduler.init_noise_sigma SCREAMING_SNAKE_CASE__ : Union[str, Any] = sample.to(_UpperCAmelCase ) for i, t in enumerate(scheduler.timesteps ): SCREAMING_SNAKE_CASE__ : Dict = scheduler.scale_model_input(_UpperCAmelCase, _UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[int] = model(_UpperCAmelCase, _UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Dict = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = output.prev_sample SCREAMING_SNAKE_CASE__ : Optional[Any] = torch.sum(torch.abs(_UpperCAmelCase ) ) SCREAMING_SNAKE_CASE__ : str = torch.mean(torch.abs(_UpperCAmelCase ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.47821044921875 ) < 1E-2 assert abs(result_mean.item() - 0.2178705964565277 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59352111816406 ) < 1E-2 assert abs(result_mean.item() - 0.22342906892299652 ) < 1E-3 else: assert abs(result_sum.item() - 162.52383422851562 ) < 1E-2 assert abs(result_mean.item() - 0.211619570851326 ) < 1E-3 def A_ ( self : List[Any] ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ : List[str] = self.get_scheduler_config(prediction_type="v_prediction" ) SCREAMING_SNAKE_CASE__ : int = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(self.num_inference_steps ) SCREAMING_SNAKE_CASE__ : List[Any] = self.dummy_model() SCREAMING_SNAKE_CASE__ : List[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma SCREAMING_SNAKE_CASE__ : Optional[Any] = sample.to(_UpperCAmelCase ) for i, t in enumerate(scheduler.timesteps ): SCREAMING_SNAKE_CASE__ : Tuple = scheduler.scale_model_input(_UpperCAmelCase, _UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Any = model(_UpperCAmelCase, _UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[int] = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Tuple = output.prev_sample SCREAMING_SNAKE_CASE__ : str = torch.sum(torch.abs(_UpperCAmelCase ) ) SCREAMING_SNAKE_CASE__ : Optional[int] = torch.mean(torch.abs(_UpperCAmelCase ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 124.77149200439453 ) < 1E-2 assert abs(result_mean.item() - 0.16226289014816284 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 128.1663360595703 ) < 1E-2 assert abs(result_mean.item() - 0.16688326001167297 ) < 1E-3 else: assert abs(result_sum.item() - 119.8487548828125 ) < 1E-2 assert abs(result_mean.item() - 0.1560530662536621 ) < 1E-3 def A_ ( self : Optional[Any] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ : List[str] = self.get_scheduler_config() SCREAMING_SNAKE_CASE__ : Dict = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(self.num_inference_steps, device=_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : List[Any] = self.dummy_model() SCREAMING_SNAKE_CASE__ : List[str] = self.dummy_sample_deter.to(_UpperCAmelCase ) * scheduler.init_noise_sigma for t in scheduler.timesteps: SCREAMING_SNAKE_CASE__ : int = scheduler.scale_model_input(_UpperCAmelCase, _UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : str = model(_UpperCAmelCase, _UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[int] = output.prev_sample SCREAMING_SNAKE_CASE__ : Any = torch.sum(torch.abs(_UpperCAmelCase ) ) SCREAMING_SNAKE_CASE__ : Tuple = torch.mean(torch.abs(_UpperCAmelCase ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.46957397460938 ) < 1E-2 assert abs(result_mean.item() - 0.21805934607982635 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59353637695312 ) < 1E-2 assert abs(result_mean.item() - 0.22342908382415771 ) < 1E-3 else: assert abs(result_sum.item() - 162.52383422851562 ) < 1E-2 assert abs(result_mean.item() - 0.211619570851326 ) < 1E-3 def A_ ( self : str ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ : List[Any] = self.get_scheduler_config() SCREAMING_SNAKE_CASE__ : Any = scheduler_class(**_UpperCAmelCase, use_karras_sigmas=_UpperCAmelCase ) scheduler.set_timesteps(self.num_inference_steps, device=_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : str = self.dummy_model() SCREAMING_SNAKE_CASE__ : Optional[Any] = self.dummy_sample_deter.to(_UpperCAmelCase ) * scheduler.init_noise_sigma SCREAMING_SNAKE_CASE__ : Optional[Any] = sample.to(_UpperCAmelCase ) for t in scheduler.timesteps: SCREAMING_SNAKE_CASE__ : str = scheduler.scale_model_input(_UpperCAmelCase, _UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = model(_UpperCAmelCase, _UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : str = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Tuple = output.prev_sample SCREAMING_SNAKE_CASE__ : List[Any] = torch.sum(torch.abs(_UpperCAmelCase ) ) SCREAMING_SNAKE_CASE__ : Optional[Any] = torch.mean(torch.abs(_UpperCAmelCase ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 176.66974135742188 ) < 1E-2 assert abs(result_mean.item() - 0.23003872730981811 ) < 1E-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 177.63653564453125 ) < 1E-2 assert abs(result_mean.item() - 0.23003872730981811 ) < 1E-2 else: assert abs(result_sum.item() - 170.3135223388672 ) < 1E-2 assert abs(result_mean.item() - 0.23003872730981811 ) < 1E-2
663
1
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() __snake_case = logging.get_logger(__name__) __snake_case = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'adapter_layer': 'encoder.layers.*.adapter_layer', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', 'pooling_layer.linear': 'projector', 'pooling_layer.projection': 'classifier', } __snake_case = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', 'projector', 'classifier', ] def _lowerCamelCase ( lowerCamelCase__ : Optional[int] ): lowercase__ : Any = {} with open(lowerCamelCase__ , """r""" ) as file: for line_number, line in enumerate(lowerCamelCase__ ): lowercase__ : List[str] = line.strip() if line: lowercase__ : List[str] = line.split() lowercase__ : Optional[int] = line_number lowercase__ : Union[str, Any] = words[0] lowercase__ : Optional[int] = value return result def _lowerCamelCase ( lowerCamelCase__ : Any , lowerCamelCase__ : Tuple , lowerCamelCase__ : Any , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : List[Any] ): for attribute in key.split(""".""" ): lowercase__ : Any = getattr(lowerCamelCase__ , lowerCamelCase__ ) lowercase__ : Optional[int] = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(lowerCamelCase__ ): lowercase__ : List[str] = PARAM_MAPPING[full_name.split(""".""" )[-1]] lowercase__ : int = """param""" if weight_type is not None and weight_type != "param": lowercase__ : Union[str, Any] = getattr(lowerCamelCase__ , lowerCamelCase__ ).shape elif weight_type is not None and weight_type == "param": lowercase__ : Optional[int] = hf_pointer for attribute in hf_param_name.split(""".""" ): lowercase__ : Optional[Any] = getattr(lowerCamelCase__ , lowerCamelCase__ ) lowercase__ : List[Any] = shape_pointer.shape # let's reduce dimension lowercase__ : Union[str, Any] = value[0] else: lowercase__ : List[str] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": lowercase__ : List[str] = value elif weight_type == "weight_g": lowercase__ : Any = value elif weight_type == "weight_v": lowercase__ : Optional[Any] = value elif weight_type == "bias": lowercase__ : Any = value elif weight_type == "param": for attribute in hf_param_name.split(""".""" ): lowercase__ : int = getattr(lowerCamelCase__ , lowerCamelCase__ ) lowercase__ : int = value else: lowercase__ : Optional[int] = value logger.info(f'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def _lowerCamelCase ( lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Dict , lowerCamelCase__ : List[Any] , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Optional[int] ): lowercase__ : int = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(lowerCamelCase__ ): lowercase__ : List[str] = PARAM_MAPPING[full_name.split(""".""" )[-1]] lowercase__ : Tuple = """param""" if weight_type is not None and weight_type != "param": lowercase__ : Dict = """.""".join([key, weight_type] ) elif weight_type is not None and weight_type == "param": lowercase__ : Tuple = """.""".join([key, hf_param_name] ) else: lowercase__ : Dict = key lowercase__ : int = value if """lm_head""" in full_key else value[0] __snake_case = { 'W_a': 'linear_1.weight', 'W_b': 'linear_2.weight', 'b_a': 'linear_1.bias', 'b_b': 'linear_2.bias', 'ln_W': 'norm.weight', 'ln_b': 'norm.bias', } def _lowerCamelCase ( lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Tuple , lowerCamelCase__ : Optional[Any]=None , lowerCamelCase__ : Any=None ): lowercase__ : str = False for key, mapped_key in MAPPING.items(): lowercase__ : Tuple = """wav2vec2.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: lowercase__ : List[Any] = True if "*" in mapped_key: lowercase__ : int = name.split(lowerCamelCase__ )[0].split(""".""" )[-2] lowercase__ : Tuple = mapped_key.replace("""*""" , lowerCamelCase__ ) if "weight_g" in name: lowercase__ : Optional[int] = """weight_g""" elif "weight_v" in name: lowercase__ : List[Any] = """weight_v""" elif "bias" in name: lowercase__ : List[str] = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj lowercase__ : List[str] = """weight""" else: lowercase__ : Optional[int] = None if hf_dict is not None: rename_dict(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) else: set_recursively(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) return is_used return is_used def _lowerCamelCase ( lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Tuple ): lowercase__ : Union[str, Any] = [] lowercase__ : Dict = fairseq_model.state_dict() lowercase__ : List[Any] = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): lowercase__ : Dict = False if "conv_layers" in name: load_conv_layer( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , hf_model.config.feat_extract_norm == """group""" , ) lowercase__ : Dict = True else: lowercase__ : int = load_wavaveca_layer(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) if not is_used: unused_weights.append(lowerCamelCase__ ) logger.warning(f'''Unused weights: {unused_weights}''' ) def _lowerCamelCase ( lowerCamelCase__ : Dict , lowerCamelCase__ : int , lowerCamelCase__ : str , lowerCamelCase__ : Tuple , lowerCamelCase__ : Union[str, Any] ): lowercase__ : Any = full_name.split("""conv_layers.""" )[-1] lowercase__ : List[str] = name.split(""".""" ) lowercase__ : Optional[Any] = int(items[0] ) lowercase__ : Dict = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) lowercase__ : Optional[int] = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) lowercase__ : List[str] = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''' ) lowercase__ : str = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''' ) lowercase__ : Tuple = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(lowerCamelCase__ ) @torch.no_grad() def _lowerCamelCase ( lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : str , lowerCamelCase__ : List[Any]=None , lowerCamelCase__ : List[Any]=None , lowerCamelCase__ : Any=True , lowerCamelCase__ : Optional[int]=False ): if config_path is not None: lowercase__ : Optional[Any] = WavaVecaConfig.from_pretrained(lowerCamelCase__ ) else: lowercase__ : Any = WavaVecaConfig() if is_seq_class: lowercase__ : int = read_txt_into_dict(lowerCamelCase__ ) lowercase__ : List[str] = idalabel lowercase__ : Union[str, Any] = WavaVecaForSequenceClassification(lowerCamelCase__ ) lowercase__ : Optional[Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=lowerCamelCase__ , return_attention_mask=lowerCamelCase__ , ) feature_extractor.save_pretrained(lowerCamelCase__ ) elif is_finetuned: if dict_path: lowercase__ : List[Any] = Dictionary.load(lowerCamelCase__ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq lowercase__ : Optional[Any] = target_dict.pad_index lowercase__ : Any = target_dict.bos_index lowercase__ : Any = target_dict.eos_index lowercase__ : str = len(target_dict.symbols ) lowercase__ : Tuple = os.path.join(lowerCamelCase__ , """vocab.json""" ) if not os.path.isdir(lowerCamelCase__ ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(lowerCamelCase__ ) ) return os.makedirs(lowerCamelCase__ , exist_ok=lowerCamelCase__ ) lowercase__ : Optional[int] = target_dict.indices # fairseq has the <pad> and <s> switched lowercase__ : List[str] = 0 lowercase__ : List[str] = 1 with open(lowerCamelCase__ , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(lowerCamelCase__ , lowerCamelCase__ ) lowercase__ : Optional[int] = WavaVecaCTCTokenizer( lowerCamelCase__ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=lowerCamelCase__ , ) lowercase__ : Optional[int] = True if config.feat_extract_norm == """layer""" else False lowercase__ : Optional[int] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=lowerCamelCase__ , return_attention_mask=lowerCamelCase__ , ) lowercase__ : Optional[int] = WavaVecaProcessor(feature_extractor=lowerCamelCase__ , tokenizer=lowerCamelCase__ ) processor.save_pretrained(lowerCamelCase__ ) lowercase__ : List[str] = WavaVecaForCTC(lowerCamelCase__ ) else: lowercase__ : Optional[Any] = WavaVecaForPreTraining(lowerCamelCase__ ) if is_finetuned or is_seq_class: lowercase__ : Optional[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: lowercase__ : int = argparse.Namespace(task="""audio_pretraining""" ) lowercase__ : Tuple = fairseq.tasks.setup_task(lowerCamelCase__ ) lowercase__ : Any = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=lowerCamelCase__ ) lowercase__ : Any = model[0].eval() recursively_load_weights(lowerCamelCase__ , lowerCamelCase__ , not is_finetuned ) hf_wavavec.save_pretrained(lowerCamelCase__ ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) parser.add_argument( '--is_seq_class', action='store_true', help='Whether the model to convert is a fine-tuned sequence classification model or not', ) __snake_case = parser.parse_args() __snake_case = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
708
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() __snake_case = logging.get_logger(__name__) __snake_case = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'ctc_proj', 'mask_emb': 'masked_spec_embed', } __snake_case = [ 'ctc_proj', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def _lowerCamelCase ( lowerCamelCase__ : int , lowerCamelCase__ : Tuple , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : List[str] , lowerCamelCase__ : Tuple ): for attribute in key.split(""".""" ): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models lowercase__ : List[Any] = """lm_head""" lowercase__ : int = getattr(lowerCamelCase__ , lowerCamelCase__ ) if weight_type is not None: lowercase__ : Any = getattr(lowerCamelCase__ , lowerCamelCase__ ).shape else: lowercase__ : Any = hf_pointer.shape assert hf_shape == value.shape, ( f'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": lowercase__ : Dict = value elif weight_type == "weight_g": lowercase__ : Union[str, Any] = value elif weight_type == "weight_v": lowercase__ : str = value elif weight_type == "bias": lowercase__ : int = value else: lowercase__ : Optional[Any] = value logger.info(f'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def _lowerCamelCase ( lowerCamelCase__ : Any , lowerCamelCase__ : str , lowerCamelCase__ : List[str] ): lowercase__ : Tuple = [] lowercase__ : Dict = fairseq_model.state_dict() lowercase__ : Optional[int] = hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): lowercase__ : str = False if "conv_layers" in name: load_conv_layer( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , hf_model.config.feat_extract_norm == """group""" , ) lowercase__ : int = True else: for key, mapped_key in MAPPING.items(): lowercase__ : List[str] = """unispeech.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: lowercase__ : Dict = True if "*" in mapped_key: lowercase__ : List[str] = name.split(lowerCamelCase__ )[0].split(""".""" )[-2] lowercase__ : Optional[Any] = mapped_key.replace("""*""" , lowerCamelCase__ ) if "weight_g" in name: lowercase__ : Any = """weight_g""" elif "weight_v" in name: lowercase__ : Any = """weight_v""" elif "bias" in name: lowercase__ : List[str] = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj lowercase__ : str = """weight""" else: lowercase__ : str = None set_recursively(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) continue if not is_used: unused_weights.append(lowerCamelCase__ ) logger.warning(f'''Unused weights: {unused_weights}''' ) def _lowerCamelCase ( lowerCamelCase__ : Dict , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : List[str] ): lowercase__ : Dict = full_name.split("""conv_layers.""" )[-1] lowercase__ : Union[str, Any] = name.split(""".""" ) lowercase__ : List[Any] = int(items[0] ) lowercase__ : str = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) lowercase__ : Optional[int] = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) lowercase__ : int = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) lowercase__ : Tuple = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) lowercase__ : Any = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(lowerCamelCase__ ) @torch.no_grad() def _lowerCamelCase ( lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : List[str]=None , lowerCamelCase__ : List[Any]=None , lowerCamelCase__ : List[Any]=True ): if config_path is not None: lowercase__ : int = UniSpeechConfig.from_pretrained(lowerCamelCase__ ) else: lowercase__ : Tuple = UniSpeechConfig() if is_finetuned: if dict_path: lowercase__ : Any = Dictionary.load_from_json(lowerCamelCase__ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq lowercase__ : int = target_dict.pad_index lowercase__ : Tuple = target_dict.bos_index lowercase__ : Dict = target_dict.eos_index lowercase__ : Dict = len(target_dict.symbols ) lowercase__ : List[Any] = os.path.join(lowerCamelCase__ , """vocab.json""" ) if not os.path.isdir(lowerCamelCase__ ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(lowerCamelCase__ ) ) return os.makedirs(lowerCamelCase__ , exist_ok=lowerCamelCase__ ) lowercase__ : Any = target_dict.indices # fairseq has the <pad> and <s> switched lowercase__ : Any = 42 lowercase__ : List[str] = 43 with open(lowerCamelCase__ , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(lowerCamelCase__ , lowerCamelCase__ ) lowercase__ : int = WavaVecaPhonemeCTCTokenizer( lowerCamelCase__ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=lowerCamelCase__ , ) lowercase__ : List[str] = True if config.feat_extract_norm == """layer""" else False lowercase__ : List[Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=lowerCamelCase__ , return_attention_mask=lowerCamelCase__ , ) lowercase__ : Any = WavaVecaProcessor(feature_extractor=lowerCamelCase__ , tokenizer=lowerCamelCase__ ) processor.save_pretrained(lowerCamelCase__ ) lowercase__ : Any = UniSpeechForCTC(lowerCamelCase__ ) else: lowercase__ : Dict = UniSpeechForPreTraining(lowerCamelCase__ ) if is_finetuned: lowercase__ , lowercase__ , lowercase__ : List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] ), """w2v_path""": checkpoint_path} ) else: lowercase__ , lowercase__ , lowercase__ : Any = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) lowercase__ : str = model[0].eval() recursively_load_weights(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) hf_unispeech.save_pretrained(lowerCamelCase__ ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) __snake_case = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
128
0
"""simple docstring""" import argparse import torch from torch import nn from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration def lowerCamelCase__ ( __snake_case ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''decoder.output_projection.weight''', '''_float_tensor''', '''encoder.embed_positions._float_tensor''', '''decoder.embed_positions._float_tensor''', ] for k in ignore_keys: state_dict.pop(__snake_case, __snake_case ) def lowerCamelCase__ ( __snake_case ) -> Optional[int]: """simple docstring""" _UpperCamelCase , _UpperCamelCase = emb.weight.shape _UpperCamelCase = nn.Linear(__snake_case, __snake_case, bias=__snake_case ) _UpperCamelCase = emb.weight.data return lin_layer def lowerCamelCase__ ( __snake_case ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = torch.load(__snake_case, map_location='''cpu''' ) _UpperCamelCase = mam_aaa['''args'''] or mam_aaa['''cfg''']['''model'''] _UpperCamelCase = mam_aaa['''model'''] remove_ignore_keys_(__snake_case ) _UpperCamelCase = state_dict['''encoder.embed_tokens.weight'''].shape[0] _UpperCamelCase = MaMaaaConfig( vocab_size=__snake_case, max_position_embeddings=10_24, encoder_layers=args.encoder_layers, decoder_layers=args.decoder_layers, encoder_attention_heads=args.encoder_attention_heads, decoder_attention_heads=args.decoder_attention_heads, encoder_ffn_dim=args.encoder_ffn_embed_dim, decoder_ffn_dim=args.decoder_ffn_embed_dim, d_model=args.encoder_embed_dim, encoder_layerdrop=args.encoder_layerdrop, decoder_layerdrop=args.decoder_layerdrop, dropout=args.dropout, attention_dropout=args.attention_dropout, activation_dropout=args.activation_dropout, activation_function='''relu''', ) _UpperCamelCase = state_dict['''decoder.embed_tokens.weight'''] _UpperCamelCase = MaMaaaForConditionalGeneration(__snake_case ) model.model.load_state_dict(__snake_case, strict=__snake_case ) _UpperCamelCase = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": _a = argparse.ArgumentParser() # Required parameters parser.add_argument("""fairseq_path""", type=str, help="""path to a model.pt on local filesystem.""") parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") _a = parser.parse_args() _a = convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß) model.save_pretrained(args.pytorch_dump_folder_path)
19
import itertools import random import unittest import numpy as np from transformers import is_speech_available from transformers.testing_utils import require_torch, require_torchaudio from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import SpeechaTextFeatureExtractor lowerCamelCase__ = random.Random() def lowerCAmelCase__ ( a__ , a__=1.0 , a__=None , a__=None ) ->Optional[Any]: '''simple docstring''' if rng is None: _UpperCamelCase = global_rng _UpperCamelCase = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : Optional[Any] , lowercase_ : List[str] , lowercase_ : List[str]=7 , lowercase_ : List[str]=400 , lowercase_ : str=2000 , lowercase_ : Optional[int]=24 , lowercase_ : Optional[int]=24 , lowercase_ : Tuple=0.0 , lowercase_ : Any=16000 , lowercase_ : Any=True , lowercase_ : Optional[int]=True , ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = min_seq_length _UpperCamelCase = max_seq_length _UpperCamelCase = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _UpperCamelCase = feature_size _UpperCamelCase = num_mel_bins _UpperCamelCase = padding_value _UpperCamelCase = sampling_rate _UpperCamelCase = return_attention_mask _UpperCamelCase = do_normalize def __UpperCAmelCase ( self : int) -> str: """simple docstring""" return { "feature_size": self.feature_size, "num_mel_bins": self.num_mel_bins, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def __UpperCAmelCase ( self : Tuple , lowercase_ : Optional[Any]=False , lowercase_ : int=False) -> Dict: """simple docstring""" def _flatten(lowercase_ : str): return list(itertools.chain(*lowercase_)) if equal_length: _UpperCamelCase = [floats_list((self.max_seq_length, self.feature_size)) for _ in range(self.batch_size)] else: # make sure that inputs increase in size _UpperCamelCase = [ floats_list((x, self.feature_size)) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff) ] if numpify: _UpperCamelCase = [np.asarray(lowercase_) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class _UpperCAmelCase ( lowerCAmelCase, unittest.TestCase ): '''simple docstring''' __A = SpeechaTextFeatureExtractor if is_speech_available() else None def __UpperCAmelCase ( self : Optional[int]) -> List[Any]: """simple docstring""" _UpperCamelCase = SpeechaTextFeatureExtractionTester(self) def __UpperCAmelCase ( self : Dict , lowercase_ : Tuple) -> int: """simple docstring""" self.assertTrue(np.all(np.mean(lowercase_ , axis=0) < 1e-3)) self.assertTrue(np.all(np.abs(np.var(lowercase_ , axis=0) - 1) < 1e-3)) def __UpperCAmelCase ( self : List[Any]) -> int: """simple docstring""" _UpperCamelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) # create three inputs of length 800, 1000, and 1200 _UpperCamelCase = [floats_list((1, x))[0] for x in range(800 , 1400 , 200)] _UpperCamelCase = [np.asarray(lowercase_) for speech_input in speech_inputs] # Test feature size _UpperCamelCase = feature_extractor(lowercase_ , padding=lowercase_ , return_tensors="np").input_features self.assertTrue(input_features.ndim == 3) self.assertTrue(input_features.shape[-1] == feature_extractor.feature_size) # Test not batched input _UpperCamelCase = feature_extractor(speech_inputs[0] , return_tensors="np").input_features _UpperCamelCase = feature_extractor(np_speech_inputs[0] , return_tensors="np").input_features self.assertTrue(np.allclose(lowercase_ , lowercase_ , atol=1e-3)) # Test batched _UpperCamelCase = feature_extractor(lowercase_ , return_tensors="np").input_features _UpperCamelCase = feature_extractor(lowercase_ , return_tensors="np").input_features for enc_seq_a, enc_seq_a in zip(lowercase_ , lowercase_): self.assertTrue(np.allclose(lowercase_ , lowercase_ , atol=1e-3)) # Test 2-D numpy arrays are batched. _UpperCamelCase = [floats_list((1, x))[0] for x in (800, 800, 800)] _UpperCamelCase = np.asarray(lowercase_) _UpperCamelCase = feature_extractor(lowercase_ , return_tensors="np").input_features _UpperCamelCase = feature_extractor(lowercase_ , return_tensors="np").input_features for enc_seq_a, enc_seq_a in zip(lowercase_ , lowercase_): self.assertTrue(np.allclose(lowercase_ , lowercase_ , atol=1e-3)) def __UpperCAmelCase ( self : Dict) -> List[Any]: """simple docstring""" _UpperCamelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) _UpperCamelCase = [floats_list((1, x))[0] for x in range(800 , 1400 , 200)] _UpperCamelCase = ["longest", "max_length", "do_not_pad"] _UpperCamelCase = [None, 16, None] for max_length, padding in zip(lowercase_ , lowercase_): _UpperCamelCase = feature_extractor( lowercase_ , padding=lowercase_ , max_length=lowercase_ , return_attention_mask=lowercase_) _UpperCamelCase = inputs.input_features _UpperCamelCase = inputs.attention_mask _UpperCamelCase = [np.sum(lowercase_) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]]) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]]) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]]) def __UpperCAmelCase ( self : int) -> str: """simple docstring""" _UpperCamelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) _UpperCamelCase = [floats_list((1, x))[0] for x in range(800 , 1400 , 200)] _UpperCamelCase = ["longest", "max_length", "do_not_pad"] _UpperCamelCase = [None, 16, None] for max_length, padding in zip(lowercase_ , lowercase_): _UpperCamelCase = feature_extractor( lowercase_ , max_length=lowercase_ , padding=lowercase_ , return_tensors="np" , return_attention_mask=lowercase_) _UpperCamelCase = inputs.input_features _UpperCamelCase = inputs.attention_mask _UpperCamelCase = [np.sum(lowercase_) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]]) self.assertTrue(input_features[0][fbank_feat_lengths[0] :].sum() < 1e-6) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]]) self.assertTrue(input_features[0][fbank_feat_lengths[1] :].sum() < 1e-6) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]]) def __UpperCAmelCase ( self : int) -> Optional[int]: """simple docstring""" _UpperCamelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) _UpperCamelCase = [floats_list((1, x))[0] for x in range(800 , 1400 , 200)] _UpperCamelCase = feature_extractor( lowercase_ , padding="max_length" , max_length=4 , truncation=lowercase_ , return_tensors="np" , return_attention_mask=lowercase_ , ) _UpperCamelCase = inputs.input_features _UpperCamelCase = inputs.attention_mask _UpperCamelCase = np.sum(attention_mask == 1 , axis=1) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]]) self._check_zero_mean_unit_variance(input_features[1]) self._check_zero_mean_unit_variance(input_features[2]) def __UpperCAmelCase ( self : Dict) -> Optional[int]: """simple docstring""" _UpperCamelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) _UpperCamelCase = [floats_list((1, x))[0] for x in range(800 , 1400 , 200)] _UpperCamelCase = feature_extractor( lowercase_ , padding="longest" , max_length=4 , truncation=lowercase_ , return_tensors="np" , return_attention_mask=lowercase_ , ) _UpperCamelCase = inputs.input_features _UpperCamelCase = inputs.attention_mask _UpperCamelCase = np.sum(attention_mask == 1 , axis=1) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]]) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]]) self._check_zero_mean_unit_variance(input_features[2]) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape , (3, 4, 24)) _UpperCamelCase = [floats_list((1, x))[0] for x in range(800 , 1400 , 200)] _UpperCamelCase = feature_extractor( lowercase_ , padding="longest" , max_length=16 , truncation=lowercase_ , return_tensors="np" , return_attention_mask=lowercase_ , ) _UpperCamelCase = inputs.input_features _UpperCamelCase = inputs.attention_mask _UpperCamelCase = np.sum(attention_mask == 1 , axis=1) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]]) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]]) self._check_zero_mean_unit_variance(input_features[2]) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape , (3, 6, 24)) def __UpperCAmelCase ( self : Tuple) -> Dict: """simple docstring""" import torch _UpperCamelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) _UpperCamelCase = np.random.rand(100 , 32).astype(np.floataa) _UpperCamelCase = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: _UpperCamelCase = feature_extractor.pad([{"input_features": inputs}] , return_tensors="np") self.assertTrue(np_processed.input_features.dtype == np.floataa) _UpperCamelCase = feature_extractor.pad([{"input_features": inputs}] , return_tensors="pt") self.assertTrue(pt_processed.input_features.dtype == torch.floataa) def __UpperCAmelCase ( self : str , lowercase_ : List[str]) -> Dict: """simple docstring""" from datasets import load_dataset _UpperCamelCase = load_dataset("hf-internal-testing/librispeech_asr_dummy" , "clean" , split="validation") # automatic decoding with librispeech _UpperCamelCase = ds.sort("id").select(range(lowercase_))[:num_samples]["audio"] return [x["array"] for x in speech_samples] def __UpperCAmelCase ( self : str) -> Tuple: """simple docstring""" _UpperCamelCase = np.array([ -1.57_45, -1.77_13, -1.70_20, -1.60_69, -1.22_50, -1.11_05, -0.90_72, -0.82_41, -1.23_10, -0.80_98, -0.33_20, -0.41_01, -0.79_85, -0.49_96, -0.82_13, -0.91_28, -1.04_20, -1.12_86, -1.04_40, -0.79_99, -0.84_05, -1.22_75, -1.54_43, -1.46_25, ]) # fmt: on _UpperCamelCase = self._load_datasamples(1) _UpperCamelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) _UpperCamelCase = feature_extractor(lowercase_ , return_tensors="pt").input_features self.assertEquals(input_features.shape , (1, 584, 24)) self.assertTrue(np.allclose(input_features[0, 0, :30] , lowercase_ , atol=1e-4))
547
0
def __lowercase ( _UpperCAmelCase ) -> float: '''simple docstring''' if edge <= 0 or not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError("Length must be a positive." ) return 3 * ((25 + 10 * (5 ** (1 / 2))) ** (1 / 2)) * (edge**2) def __lowercase ( _UpperCAmelCase ) -> float: '''simple docstring''' if edge <= 0 or not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError("Length must be a positive." ) return ((15 + (7 * (5 ** (1 / 2)))) / 4) * (edge**3) if __name__ == "__main__": import doctest doctest.testmod()
701
from functools import reduce lowerCAmelCase__ = ( '73167176531330624919225119674426574742355349194934' '96983520312774506326239578318016984801869478851843' '85861560789112949495459501737958331952853208805511' '12540698747158523863050715693290963295227443043557' '66896648950445244523161731856403098711121722383113' '62229893423380308135336276614282806444486645238749' '30358907296290491560440772390713810515859307960866' '70172427121883998797908792274921901699720888093776' '65727333001053367881220235421809751254540594752243' '52584907711670556013604839586446706324415722155397' '53697817977846174064955149290862569321978468622482' '83972241375657056057490261407972968652414535100474' '82166370484403199890008895243450658541227588666881' '16427171479924442928230863465674813919123162824586' '17866458359124566529476545682848912883142607690042' '24219022671055626321111109370544217506941658960408' '07198403850962455444362981230987879927244284909188' '84580156166097919133875499200524063689912560717606' '05886116467109405077541002256983155200055935729725' '71636269561882670428252483600823257530420752963450' ) def __lowercase ( _UpperCAmelCase = N ) -> int: '''simple docstring''' return max( # mypy cannot properly interpret reduce int(reduce(lambda _UpperCAmelCase , _UpperCAmelCase : str(int(_UpperCAmelCase ) * int(_UpperCAmelCase ) ) , n[i : i + 13] ) ) for i in range(len(_UpperCAmelCase ) - 12 ) ) if __name__ == "__main__": print(F"{solution() = }")
576
0
"""simple docstring""" from __future__ import annotations import string from itertools import cycle, product from pathlib import Path __lowerCamelCase = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) __lowerCamelCase = [ord(letter) for letter in string.ascii_lowercase] __lowerCamelCase = {ord(char) for char in VALID_CHARS} __lowerCamelCase = ["the", "be", "to", "of", "and", "in", "that", "have"] def a ( __UpperCAmelCase : list[int] , __UpperCAmelCase : tuple[int, ...] ) -> str | None: __magic_name__: str = "" __magic_name__: int __magic_name__: int __magic_name__: int for keychar, cipherchar in zip(cycle(__UpperCAmelCase ) , __UpperCAmelCase ): __magic_name__: str = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(__UpperCAmelCase ) return decoded def a ( __UpperCAmelCase : list[int] ) -> list[str]: __magic_name__: list[str] = [] for key in product(__UpperCAmelCase , repeat=3 ): __magic_name__: List[str] = try_key(__UpperCAmelCase , __UpperCAmelCase ) if encoded is not None: possibles.append(__UpperCAmelCase ) return possibles def a ( __UpperCAmelCase : list[str] , __UpperCAmelCase : str ) -> list[str]: return [possible for possible in possibles if common_word in possible.lower()] def a ( __UpperCAmelCase : str = "p059_cipher.txt" ) -> int: __magic_name__: list[int] __magic_name__: list[str] __magic_name__: str __magic_name__: str __magic_name__: str = Path(__UpperCAmelCase ).parent.joinpath(__UpperCAmelCase ).read_text(encoding="""utf-8""" ) __magic_name__: Dict = [int(__UpperCAmelCase ) for number in data.strip().split(""",""" )] __magic_name__: Optional[int] = filter_valid_chars(__UpperCAmelCase ) for common_word in COMMON_WORDS: __magic_name__: Optional[Any] = filter_common_word(__UpperCAmelCase , __UpperCAmelCase ) if len(__UpperCAmelCase ) == 1: break __magic_name__: Tuple = possibles[0] return sum(ord(__UpperCAmelCase ) for char in decoded_text ) if __name__ == "__main__": print(f'''{solution() = }''')
96
"""simple docstring""" import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class __A ( unittest.TestCase ): def lowerCamelCase__ ( self : Union[str, Any] ) -> Optional[Any]: __magic_name__: List[str] = """| <pad> <unk> <s> </s> a b c d e f g h i j k""".split() __magic_name__: List[Any] = dict(zip(__snake_case , range(len(__snake_case ) ) ) ) __magic_name__: Union[str, Any] = { """unk_token""": """<unk>""", """bos_token""": """<s>""", """eos_token""": """</s>""", } __magic_name__: Optional[int] = { """feature_size""": 1, """padding_value""": 0.0, """sampling_rate""": 1_6_0_0_0, """return_attention_mask""": False, """do_normalize""": True, } __magic_name__: int = tempfile.mkdtemp() __magic_name__: Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __magic_name__: Tuple = os.path.join(self.tmpdirname , __snake_case ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__snake_case ) + """\n""" ) with open(self.feature_extraction_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__snake_case ) + """\n""" ) # load decoder from hub __magic_name__: Dict = """hf-internal-testing/ngram-beam-search-decoder""" def lowerCamelCase__ ( self : Any , **__snake_case : str ) -> Optional[int]: __magic_name__: Union[str, Any] = self.add_kwargs_tokens_map.copy() kwargs.update(__snake_case ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **__snake_case ) def lowerCamelCase__ ( self : str , **__snake_case : int ) -> Dict: return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **__snake_case ) def lowerCamelCase__ ( self : int , **__snake_case : List[str] ) -> int: return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **__snake_case ) def lowerCamelCase__ ( self : Union[str, Any] ) -> Any: shutil.rmtree(self.tmpdirname ) def lowerCamelCase__ ( self : List[Any] ) -> Optional[Any]: __magic_name__: Dict = self.get_tokenizer() __magic_name__: Any = self.get_feature_extractor() __magic_name__: Tuple = self.get_decoder() __magic_name__: Tuple = WavaVecaProcessorWithLM(tokenizer=__snake_case , feature_extractor=__snake_case , decoder=__snake_case ) processor.save_pretrained(self.tmpdirname ) __magic_name__: Dict = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , __snake_case ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , __snake_case ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , __snake_case ) def lowerCamelCase__ ( self : Any ) -> Tuple: __magic_name__: Union[str, Any] = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match __magic_name__: int = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def lowerCamelCase__ ( self : Optional[int] ) -> Optional[Any]: __magic_name__: Union[str, Any] = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(["""xx"""] ) with self.assertRaisesRegex(__snake_case , """include""" ): WavaVecaProcessorWithLM( tokenizer=__snake_case , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def lowerCamelCase__ ( self : Union[str, Any] ) -> int: __magic_name__: int = self.get_feature_extractor() __magic_name__: Optional[Any] = self.get_tokenizer() __magic_name__: List[Any] = self.get_decoder() __magic_name__: int = WavaVecaProcessorWithLM(tokenizer=__snake_case , feature_extractor=__snake_case , decoder=__snake_case ) __magic_name__: Tuple = floats_list((3, 1_0_0_0) ) __magic_name__: List[str] = feature_extractor(__snake_case , return_tensors="""np""" ) __magic_name__: Tuple = processor(__snake_case , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowerCamelCase__ ( self : Union[str, Any] ) -> List[str]: __magic_name__: Tuple = self.get_feature_extractor() __magic_name__: List[str] = self.get_tokenizer() __magic_name__: str = self.get_decoder() __magic_name__: Tuple = WavaVecaProcessorWithLM(tokenizer=__snake_case , feature_extractor=__snake_case , decoder=__snake_case ) __magic_name__: Optional[int] = """This is a test string""" __magic_name__: List[str] = processor(text=__snake_case ) __magic_name__: Tuple = tokenizer(__snake_case ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCamelCase__ ( self : int , __snake_case : List[str]=(2, 1_0, 1_6) , __snake_case : List[Any]=7_7 ) -> Dict: np.random.seed(__snake_case ) return np.random.rand(*__snake_case ) def lowerCamelCase__ ( self : Any ) -> Any: __magic_name__: int = self.get_feature_extractor() __magic_name__: Tuple = self.get_tokenizer() __magic_name__: Any = self.get_decoder() __magic_name__: Tuple = WavaVecaProcessorWithLM(tokenizer=__snake_case , feature_extractor=__snake_case , decoder=__snake_case ) __magic_name__: List[Any] = self._get_dummy_logits(shape=(1_0, 1_6) , seed=1_3 ) __magic_name__: str = processor.decode(__snake_case ) __magic_name__: Optional[int] = decoder.decode_beams(__snake_case )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual("""</s> <s> </s>""" , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ["""fork"""], ["""spawn"""]] ) def lowerCamelCase__ ( self : int , __snake_case : Dict ) -> Any: __magic_name__: int = self.get_feature_extractor() __magic_name__: List[Any] = self.get_tokenizer() __magic_name__: int = self.get_decoder() __magic_name__: Optional[Any] = WavaVecaProcessorWithLM(tokenizer=__snake_case , feature_extractor=__snake_case , decoder=__snake_case ) __magic_name__: Optional[int] = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: __magic_name__: Optional[int] = processor.batch_decode(__snake_case ) else: with get_context(__snake_case ).Pool() as pool: __magic_name__: Any = processor.batch_decode(__snake_case , __snake_case ) __magic_name__: Dict = list(__snake_case ) with get_context("""fork""" ).Pool() as p: __magic_name__: List[str] = decoder.decode_beams_batch(__snake_case , __snake_case ) __magic_name__, __magic_name__, __magic_name__: Optional[int] = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(__snake_case , decoded_processor.text ) self.assertListEqual(["""<s> <s> </s>""", """<s> <s> <s>"""] , decoded_processor.text ) self.assertListEqual(__snake_case , decoded_processor.logit_score ) self.assertListEqual(__snake_case , decoded_processor.lm_score ) def lowerCamelCase__ ( self : List[Any] ) -> List[Any]: __magic_name__: List[str] = self.get_feature_extractor() __magic_name__: Optional[Any] = self.get_tokenizer() __magic_name__: Optional[int] = self.get_decoder() __magic_name__: Dict = WavaVecaProcessorWithLM(tokenizer=__snake_case , feature_extractor=__snake_case , decoder=__snake_case ) __magic_name__: str = self._get_dummy_logits() __magic_name__: Dict = 1_5 __magic_name__: int = -20.0 __magic_name__: int = -4.0 __magic_name__: Dict = processor.batch_decode( __snake_case , beam_width=__snake_case , beam_prune_logp=__snake_case , token_min_logp=__snake_case , ) __magic_name__: Optional[int] = decoded_processor_out.text __magic_name__: Union[str, Any] = list(__snake_case ) with get_context("""fork""" ).Pool() as pool: __magic_name__: str = decoder.decode_beams_batch( __snake_case , __snake_case , beam_width=__snake_case , beam_prune_logp=__snake_case , token_min_logp=__snake_case , ) __magic_name__: Any = [d[0][0] for d in decoded_decoder_out] __magic_name__: Optional[int] = [d[0][2] for d in decoded_decoder_out] __magic_name__: Optional[Any] = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(__snake_case , __snake_case ) self.assertListEqual(["""</s> <s> <s>""", """<s> <s> <s>"""] , __snake_case ) self.assertTrue(np.array_equal(__snake_case , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-20.054, -18.447] , __snake_case , atol=1E-3 ) ) self.assertTrue(np.array_equal(__snake_case , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-15.554, -13.9474] , __snake_case , atol=1E-3 ) ) def lowerCamelCase__ ( self : Union[str, Any] ) -> int: __magic_name__: int = self.get_feature_extractor() __magic_name__: Any = self.get_tokenizer() __magic_name__: Union[str, Any] = self.get_decoder() __magic_name__: str = WavaVecaProcessorWithLM(tokenizer=__snake_case , feature_extractor=__snake_case , decoder=__snake_case ) __magic_name__: Any = self._get_dummy_logits() __magic_name__: Union[str, Any] = 2.0 __magic_name__: Optional[Any] = 5.0 __magic_name__: Optional[Any] = -20.0 __magic_name__: List[str] = True __magic_name__: List[Any] = processor.batch_decode( __snake_case , alpha=__snake_case , beta=__snake_case , unk_score_offset=__snake_case , lm_score_boundary=__snake_case , ) __magic_name__: Union[str, Any] = decoded_processor_out.text __magic_name__: Union[str, Any] = list(__snake_case ) decoder.reset_params( alpha=__snake_case , beta=__snake_case , unk_score_offset=__snake_case , lm_score_boundary=__snake_case , ) with get_context("""fork""" ).Pool() as pool: __magic_name__: str = decoder.decode_beams_batch( __snake_case , __snake_case , ) __magic_name__: List[str] = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(__snake_case , __snake_case ) self.assertListEqual(["""<s> </s> <s> </s> </s>""", """</s> </s> <s> </s> </s>"""] , __snake_case ) __magic_name__: List[str] = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -20.0 ) self.assertEqual(lm_model.score_boundary , __snake_case ) def lowerCamelCase__ ( self : Union[str, Any] ) -> List[Any]: __magic_name__: List[Any] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __magic_name__: Union[str, Any] = processor.decoder.model_container[processor.decoder._model_key] __magic_name__: Union[str, Any] = Path(language_model._kenlm_model.path.decode("""utf-8""" ) ).parent.parent.absolute() __magic_name__: Optional[int] = os.listdir(__snake_case ) __magic_name__: Union[str, Any] = ["""alphabet.json""", """language_model"""] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(__snake_case , __snake_case ) def lowerCamelCase__ ( self : Any ) -> Any: __magic_name__: int = snapshot_download("""hf-internal-testing/processor_with_lm""" ) __magic_name__: List[Any] = WavaVecaProcessorWithLM.from_pretrained(__snake_case ) __magic_name__: Any = processor.decoder.model_container[processor.decoder._model_key] __magic_name__: int = Path(language_model._kenlm_model.path.decode("""utf-8""" ) ).parent.parent.absolute() __magic_name__: str = os.listdir(__snake_case ) __magic_name__: Tuple = os.listdir(__snake_case ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(__snake_case , __snake_case ) def lowerCamelCase__ ( self : Optional[int] ) -> int: __magic_name__: List[Any] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __magic_name__: List[str] = AutoProcessor.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __magic_name__: List[str] = floats_list((3, 1_0_0_0) ) __magic_name__: Tuple = processor_wavaveca(__snake_case , return_tensors="""np""" ) __magic_name__: Optional[Any] = processor_auto(__snake_case , return_tensors="""np""" ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1E-2 ) __magic_name__: int = self._get_dummy_logits() __magic_name__: List[Any] = processor_wavaveca.batch_decode(__snake_case ) __magic_name__: Union[str, Any] = processor_auto.batch_decode(__snake_case ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def lowerCamelCase__ ( self : Union[str, Any] ) -> str: __magic_name__: Optional[int] = self.get_feature_extractor() __magic_name__: Any = self.get_tokenizer() __magic_name__: Dict = self.get_decoder() __magic_name__: List[str] = WavaVecaProcessorWithLM(tokenizer=__snake_case , feature_extractor=__snake_case , decoder=__snake_case ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg="""`processor` and `feature_extractor` model input names do not match""" , ) @staticmethod def lowerCamelCase__ ( __snake_case : Optional[int] , __snake_case : int ) -> int: __magic_name__: Any = [d[key] for d in offsets] return retrieved_list def lowerCamelCase__ ( self : str ) -> Union[str, Any]: __magic_name__: Tuple = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __magic_name__: Tuple = self._get_dummy_logits()[0] __magic_name__: List[Any] = processor.decode(__snake_case , output_word_offsets=__snake_case ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue("""text""" in outputs ) self.assertTrue("""word_offsets""" in outputs ) self.assertTrue(isinstance(__snake_case , __snake_case ) ) self.assertEqual(""" """.join(self.get_from_offsets(outputs["""word_offsets"""] , """word""" ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """word""" ) , ["""<s>""", """<s>""", """</s>"""] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """start_offset""" ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """end_offset""" ) , [1, 3, 5] ) def lowerCamelCase__ ( self : Optional[int] ) -> Dict: __magic_name__: Optional[int] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __magic_name__: Optional[int] = self._get_dummy_logits() __magic_name__: Any = processor.batch_decode(__snake_case , output_word_offsets=__snake_case ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue("""text""" in outputs ) self.assertTrue("""word_offsets""" in outputs ) self.assertTrue(isinstance(__snake_case , __snake_case ) ) self.assertListEqual( [""" """.join(self.get_from_offsets(__snake_case , """word""" ) ) for o in outputs["""word_offsets"""]] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """word""" ) , ["""<s>""", """<s>""", """</s>"""] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """start_offset""" ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """end_offset""" ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def lowerCamelCase__ ( self : Union[str, Any] ) -> int: import torch __magic_name__: List[Any] = load_dataset("""common_voice""" , """en""" , split="""train""" , streaming=__snake_case ) __magic_name__: Dict = ds.cast_column("""audio""" , datasets.Audio(sampling_rate=1_6_0_0_0 ) ) __magic_name__: Any = iter(__snake_case ) __magic_name__: Optional[int] = next(__snake_case ) __magic_name__: Optional[int] = AutoProcessor.from_pretrained("""patrickvonplaten/wav2vec2-base-100h-with-lm""" ) __magic_name__: Tuple = WavaVecaForCTC.from_pretrained("""patrickvonplaten/wav2vec2-base-100h-with-lm""" ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train __magic_name__: List[str] = processor(sample["""audio"""]["""array"""] , return_tensors="""pt""" ).input_values with torch.no_grad(): __magic_name__: List[Any] = model(__snake_case ).logits.cpu().numpy() __magic_name__: Optional[Any] = processor.decode(logits[0] , output_word_offsets=__snake_case ) __magic_name__: List[str] = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate __magic_name__: str = [ { """start_time""": d["""start_offset"""] * time_offset, """end_time""": d["""end_offset"""] * time_offset, """word""": d["""word"""], } for d in output["""word_offsets"""] ] __magic_name__: Tuple = """WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL""" # output words self.assertEqual(""" """.join(self.get_from_offsets(__snake_case , """word""" ) ) , __snake_case ) self.assertEqual(""" """.join(self.get_from_offsets(__snake_case , """word""" ) ) , output.text ) # output times __magic_name__: Dict = torch.tensor(self.get_from_offsets(__snake_case , """start_time""" ) ) __magic_name__: Optional[Any] = torch.tensor(self.get_from_offsets(__snake_case , """end_time""" ) ) # fmt: off __magic_name__: Tuple = torch.tensor([1.4199, 1.6599, 2.2599, 3.0, 3.24, 3.5999, 3.7999, 4.0999, 4.26, 4.94, 5.28, 5.6599, 5.78, 5.94, 6.32, 6.5399, 6.6599] ) __magic_name__: int = torch.tensor([1.5399, 1.8999, 2.9, 3.16, 3.5399, 3.72, 4.0199, 4.1799, 4.76, 5.1599, 5.5599, 5.6999, 5.86, 6.1999, 6.38, 6.6199, 6.94] ) # fmt: on self.assertTrue(torch.allclose(__snake_case , __snake_case , atol=0.01 ) ) self.assertTrue(torch.allclose(__snake_case , __snake_case , atol=0.01 ) )
96
1
"""simple docstring""" def _lowerCamelCase ( UpperCAmelCase_ : list[list[int | float]] ) -> int: """simple docstring""" A__ = len(_lowercase ) A__ = len(matrix[0] ) A__ = min(_lowercase, _lowercase ) for row in range(_lowercase ): # Check if diagonal element is not zero if matrix[row][row] != 0: # Eliminate all the elements below the diagonal for col in range(row + 1, _lowercase ): A__ = matrix[col][row] / matrix[row][row] for i in range(_lowercase, _lowercase ): matrix[col][i] -= multiplier * matrix[row][i] else: # Find a non-zero diagonal element to swap rows A__ = True for i in range(row + 1, _lowercase ): if matrix[i][row] != 0: A__ = matrix[i], matrix[row] A__ = False break if reduce: rank -= 1 for i in range(_lowercase ): A__ = matrix[i][rank] # Reduce the row pointer by one to stay on the same row row -= 1 return rank if __name__ == "__main__": import doctest doctest.testmod()
709
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCamelCase = { """configuration_wav2vec2""": ["""WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Wav2Vec2Config"""], """feature_extraction_wav2vec2""": ["""Wav2Vec2FeatureExtractor"""], """processing_wav2vec2""": ["""Wav2Vec2Processor"""], """tokenization_wav2vec2""": ["""Wav2Vec2CTCTokenizer""", """Wav2Vec2Tokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ """WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST""", """Wav2Vec2ForAudioFrameClassification""", """Wav2Vec2ForCTC""", """Wav2Vec2ForMaskedLM""", """Wav2Vec2ForPreTraining""", """Wav2Vec2ForSequenceClassification""", """Wav2Vec2ForXVector""", """Wav2Vec2Model""", """Wav2Vec2PreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ """TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFWav2Vec2ForCTC""", """TFWav2Vec2Model""", """TFWav2Vec2PreTrainedModel""", """TFWav2Vec2ForSequenceClassification""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ """FlaxWav2Vec2ForCTC""", """FlaxWav2Vec2ForPreTraining""", """FlaxWav2Vec2Model""", """FlaxWav2Vec2PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .processing_wavaveca import WavaVecaProcessor from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavaveca import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaForAudioFrameClassification, WavaVecaForCTC, WavaVecaForMaskedLM, WavaVecaForPreTraining, WavaVecaForSequenceClassification, WavaVecaForXVector, WavaVecaModel, WavaVecaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWavaVecaForCTC, TFWavaVecaForSequenceClassification, TFWavaVecaModel, TFWavaVecaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( FlaxWavaVecaForCTC, FlaxWavaVecaForPreTraining, FlaxWavaVecaModel, FlaxWavaVecaPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
562
0
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL __snake_case : Optional[Any] = logging.get_logger(__name__) def a_ ( __a ): if isinstance(__a , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(__a , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(__a ): return [[videos]] raise ValueError(f'''Could not make batched video from {videos}''' ) class UpperCamelCase ( a ): """simple docstring""" _lowerCamelCase : Optional[int] =["pixel_values"] def __init__( self : Union[str, Any] , _lowerCamelCase : bool = True , _lowerCamelCase : Dict[str, int] = None , _lowerCamelCase : PILImageResampling = PILImageResampling.BILINEAR , _lowerCamelCase : bool = True , _lowerCamelCase : Dict[str, int] = None , _lowerCamelCase : bool = True , _lowerCamelCase : Union[int, float] = 1 / 2_5_5 , _lowerCamelCase : bool = True , _lowerCamelCase : bool = True , _lowerCamelCase : Optional[Union[float, List[float]]] = None , _lowerCamelCase : Optional[Union[float, List[float]]] = None , **_lowerCamelCase : List[Any] , ): super().__init__(**_lowerCamelCase ) A__ = size if size is not None else {'''shortest_edge''': 2_5_6} A__ = get_size_dict(_lowerCamelCase , default_to_square=_lowerCamelCase ) A__ = crop_size if crop_size is not None else {'''height''': 2_2_4, '''width''': 2_2_4} A__ = get_size_dict(_lowerCamelCase , param_name='''crop_size''' ) A__ = do_resize A__ = size A__ = do_center_crop A__ = crop_size A__ = resample A__ = do_rescale A__ = rescale_factor A__ = offset A__ = do_normalize A__ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN A__ = image_std if image_std is not None else IMAGENET_STANDARD_STD def A__ ( self : Any , _lowerCamelCase : np.ndarray , _lowerCamelCase : Dict[str, int] , _lowerCamelCase : PILImageResampling = PILImageResampling.BILINEAR , _lowerCamelCase : Optional[Union[str, ChannelDimension]] = None , **_lowerCamelCase : List[Any] , ): A__ = get_size_dict(_lowerCamelCase , default_to_square=_lowerCamelCase ) if "shortest_edge" in size: A__ = get_resize_output_image_size(_lowerCamelCase , size['''shortest_edge'''] , default_to_square=_lowerCamelCase ) elif "height" in size and "width" in size: A__ = (size['''height'''], size['''width''']) else: raise ValueError(F'''Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}''' ) return resize(_lowerCamelCase , size=_lowerCamelCase , resample=_lowerCamelCase , data_format=_lowerCamelCase , **_lowerCamelCase ) def A__ ( self : List[str] , _lowerCamelCase : np.ndarray , _lowerCamelCase : Dict[str, int] , _lowerCamelCase : Optional[Union[str, ChannelDimension]] = None , **_lowerCamelCase : List[Any] , ): A__ = get_size_dict(_lowerCamelCase ) if "height" not in size or "width" not in size: raise ValueError(F'''Size must have \'height\' and \'width\' as keys. Got {size.keys()}''' ) return center_crop(_lowerCamelCase , size=(size['''height'''], size['''width''']) , data_format=_lowerCamelCase , **_lowerCamelCase ) def A__ ( self : Dict , _lowerCamelCase : np.ndarray , _lowerCamelCase : Union[int, float] , _lowerCamelCase : bool = True , _lowerCamelCase : Optional[Union[str, ChannelDimension]] = None , **_lowerCamelCase : Any , ): A__ = image.astype(np.floataa ) if offset: A__ = image - (scale / 2) return rescale(_lowerCamelCase , scale=_lowerCamelCase , data_format=_lowerCamelCase , **_lowerCamelCase ) def A__ ( self : Any , _lowerCamelCase : np.ndarray , _lowerCamelCase : Union[float, List[float]] , _lowerCamelCase : Union[float, List[float]] , _lowerCamelCase : Optional[Union[str, ChannelDimension]] = None , **_lowerCamelCase : Union[str, Any] , ): return normalize(_lowerCamelCase , mean=_lowerCamelCase , std=_lowerCamelCase , data_format=_lowerCamelCase , **_lowerCamelCase ) def A__ ( self : Tuple , _lowerCamelCase : ImageInput , _lowerCamelCase : bool = None , _lowerCamelCase : Dict[str, int] = None , _lowerCamelCase : PILImageResampling = None , _lowerCamelCase : bool = None , _lowerCamelCase : Dict[str, int] = None , _lowerCamelCase : bool = None , _lowerCamelCase : float = None , _lowerCamelCase : bool = None , _lowerCamelCase : bool = None , _lowerCamelCase : Optional[Union[float, List[float]]] = None , _lowerCamelCase : Optional[Union[float, List[float]]] = None , _lowerCamelCase : Optional[ChannelDimension] = ChannelDimension.FIRST , ): if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) if offset and not do_rescale: raise ValueError('''For offset, do_rescale must also be set to True.''' ) # All transformations expect numpy arrays. A__ = to_numpy_array(_lowerCamelCase ) if do_resize: A__ = self.resize(image=_lowerCamelCase , size=_lowerCamelCase , resample=_lowerCamelCase ) if do_center_crop: A__ = self.center_crop(_lowerCamelCase , size=_lowerCamelCase ) if do_rescale: A__ = self.rescale(image=_lowerCamelCase , scale=_lowerCamelCase , offset=_lowerCamelCase ) if do_normalize: A__ = self.normalize(image=_lowerCamelCase , mean=_lowerCamelCase , std=_lowerCamelCase ) A__ = to_channel_dimension_format(_lowerCamelCase , _lowerCamelCase ) return image def A__ ( self : Any , _lowerCamelCase : ImageInput , _lowerCamelCase : bool = None , _lowerCamelCase : Dict[str, int] = None , _lowerCamelCase : PILImageResampling = None , _lowerCamelCase : bool = None , _lowerCamelCase : Dict[str, int] = None , _lowerCamelCase : bool = None , _lowerCamelCase : float = None , _lowerCamelCase : bool = None , _lowerCamelCase : bool = None , _lowerCamelCase : Optional[Union[float, List[float]]] = None , _lowerCamelCase : Optional[Union[float, List[float]]] = None , _lowerCamelCase : Optional[Union[str, TensorType]] = None , _lowerCamelCase : ChannelDimension = ChannelDimension.FIRST , **_lowerCamelCase : List[str] , ): A__ = do_resize if do_resize is not None else self.do_resize A__ = resample if resample is not None else self.resample A__ = do_center_crop if do_center_crop is not None else self.do_center_crop A__ = do_rescale if do_rescale is not None else self.do_rescale A__ = rescale_factor if rescale_factor is not None else self.rescale_factor A__ = offset if offset is not None else self.offset A__ = do_normalize if do_normalize is not None else self.do_normalize A__ = image_mean if image_mean is not None else self.image_mean A__ = image_std if image_std is not None else self.image_std A__ = size if size is not None else self.size A__ = get_size_dict(_lowerCamelCase , default_to_square=_lowerCamelCase ) A__ = crop_size if crop_size is not None else self.crop_size A__ = get_size_dict(_lowerCamelCase , param_name='''crop_size''' ) if not valid_images(_lowerCamelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) A__ = make_batched(_lowerCamelCase ) A__ = [ [ self._preprocess_image( image=_lowerCamelCase , do_resize=_lowerCamelCase , size=_lowerCamelCase , resample=_lowerCamelCase , do_center_crop=_lowerCamelCase , crop_size=_lowerCamelCase , do_rescale=_lowerCamelCase , rescale_factor=_lowerCamelCase , offset=_lowerCamelCase , do_normalize=_lowerCamelCase , image_mean=_lowerCamelCase , image_std=_lowerCamelCase , data_format=_lowerCamelCase , ) for img in video ] for video in videos ] A__ = {'''pixel_values''': videos} return BatchFeature(data=_lowerCamelCase , tensor_type=_lowerCamelCase )
571
"""simple docstring""" # Logistic Regression from scratch # In[62]: # In[63]: # importing all the required libraries import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def a_ ( __a ): return 1 / (1 + np.exp(-z )) def a_ ( __a , __a ): return (-y * np.log(__a ) - (1 - y) * np.log(1 - h )).mean() def a_ ( __a , __a , __a ): A__ = np.dot(__a , __a ) return np.sum(y * scores - np.log(1 + np.exp(__a ) ) ) def a_ ( __a , __a , __a , __a=7_0000 ): A__ = np.zeros(x.shape[1] ) for iterations in range(__a ): A__ = np.dot(__a , __a ) A__ = sigmoid_function(__a ) A__ = np.dot(x.T , h - y ) / y.size A__ = theta - alpha * gradient # updating the weights A__ = np.dot(__a , __a ) A__ = sigmoid_function(__a ) A__ = cost_function(__a , __a ) if iterations % 100 == 0: print(f'''loss: {j} \t''' ) # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": __snake_case : List[Any] = datasets.load_iris() __snake_case : List[Any] = iris.data[:, :2] __snake_case : List[str] = (iris.target != 0) * 1 __snake_case : List[Any] = 0.1 __snake_case : Optional[Any] = logistic_reg(alpha, x, y, max_iterations=70_000) print('theta: ', theta) # printing the theta i.e our weights vector def a_ ( __a ): return sigmoid_function( np.dot(__a , __a ) ) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(10, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color='b', label='0') plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color='r', label='1') ((__snake_case) , (__snake_case)) : Tuple = (x[:, 0].min(), x[:, 0].max()) ((__snake_case) , (__snake_case)) : Tuple = (x[:, 1].min(), x[:, 1].max()) ((__snake_case) , (__snake_case)) : Optional[Any] = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) __snake_case : int = np.c_[xxa.ravel(), xxa.ravel()] __snake_case : Dict = predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors='black') plt.legend() plt.show()
571
1
import logging import os import threading import time try: import warnings except ImportError: _UpperCamelCase : str = None try: import msvcrt except ImportError: _UpperCamelCase : Union[str, Any] = None try: import fcntl except ImportError: _UpperCamelCase : Any = None # Backward compatibility # ------------------------------------------------ try: TimeoutError except NameError: _UpperCamelCase : Union[str, Any] = OSError # Data # ------------------------------------------------ _UpperCamelCase : List[str] = [ "Timeout", "BaseFileLock", "WindowsFileLock", "UnixFileLock", "SoftFileLock", "FileLock", ] _UpperCamelCase : List[str] = "3.0.12" _UpperCamelCase : Union[str, Any] = None def snake_case ( ) -> Union[str, Any]: """simple docstring""" global _logger lowerCAmelCase = _logger or logging.getLogger(__name__ ) return _logger class _snake_case ( a_ ): def __init__( self , _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCAmelCase = lock_file return None def __str__( self ): '''simple docstring''' lowerCAmelCase = F'The file lock \'{self.lock_file}\' could not be acquired.' return temp class _snake_case : def __init__( self , _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCAmelCase = lock return None def __enter__( self ): '''simple docstring''' return self.lock def __exit__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): '''simple docstring''' self.lock.release() return None class _snake_case : def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=-1 , _SCREAMING_SNAKE_CASE=None ): '''simple docstring''' lowerCAmelCase = max_filename_length if max_filename_length is not None else 2_55 # Hash the filename if it's too long lowerCAmelCase = self.hash_filename_if_too_long(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # The path to the lock file. lowerCAmelCase = lock_file # The file descriptor for the *_lock_file* as it is returned by the # os.open() function. # This file lock is only NOT None, if the object currently holds the # lock. lowerCAmelCase = None # The default timeout value. lowerCAmelCase = timeout # We use this lock primarily for the lock counter. lowerCAmelCase = threading.Lock() # The lock counter is used for implementing the nested locking # mechanism. Whenever the lock is acquired, the counter is increased and # the lock is only released, when this value is 0 again. lowerCAmelCase = 0 return None @property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return self._lock_file @property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return self._timeout @timeout.setter def _SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCAmelCase = float(_SCREAMING_SNAKE_CASE ) return None def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' raise NotImplementedError() def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' raise NotImplementedError() @property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return self._lock_file_fd is not None def _SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=0.05 ): '''simple docstring''' if timeout is None: lowerCAmelCase = self.timeout # Increment the number right at the beginning. # We can still undo it, if something fails. with self._thread_lock: self._lock_counter += 1 lowerCAmelCase = id(self ) lowerCAmelCase = self._lock_file lowerCAmelCase = time.time() try: while True: with self._thread_lock: if not self.is_locked: logger().debug(F'Attempting to acquire lock {lock_id} on {lock_filename}' ) self._acquire() if self.is_locked: logger().debug(F'Lock {lock_id} acquired on {lock_filename}' ) break elif timeout >= 0 and time.time() - start_time > timeout: logger().debug(F'Timeout on acquiring lock {lock_id} on {lock_filename}' ) raise Timeout(self._lock_file ) else: logger().debug( F'Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ...' ) time.sleep(_SCREAMING_SNAKE_CASE ) except: # noqa # Something did go wrong, so decrement the counter. with self._thread_lock: lowerCAmelCase = max(0 , self._lock_counter - 1 ) raise return _Acquire_ReturnProxy(lock=self ) def _SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE=False ): '''simple docstring''' with self._thread_lock: if self.is_locked: self._lock_counter -= 1 if self._lock_counter == 0 or force: lowerCAmelCase = id(self ) lowerCAmelCase = self._lock_file logger().debug(F'Attempting to release lock {lock_id} on {lock_filename}' ) self._release() lowerCAmelCase = 0 logger().debug(F'Lock {lock_id} released on {lock_filename}' ) return None def __enter__( self ): '''simple docstring''' self.acquire() return self def __exit__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): '''simple docstring''' self.release() return None def __del__( self ): '''simple docstring''' self.release(force=_SCREAMING_SNAKE_CASE ) return None def _SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCAmelCase = os.path.basename(_SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) > max_length and max_length > 0: lowerCAmelCase = os.path.dirname(_SCREAMING_SNAKE_CASE ) lowerCAmelCase = str(hash(_SCREAMING_SNAKE_CASE ) ) lowerCAmelCase = filename[: max_length - len(_SCREAMING_SNAKE_CASE ) - 8] + '...' + hashed_filename + '.lock' return os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: return path class _snake_case ( a_ ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=-1 , _SCREAMING_SNAKE_CASE=None ): '''simple docstring''' from .file_utils import relative_to_absolute_path super().__init__(_SCREAMING_SNAKE_CASE , timeout=_SCREAMING_SNAKE_CASE , max_filename_length=_SCREAMING_SNAKE_CASE ) lowerCAmelCase = '\\\\?\\' + relative_to_absolute_path(self.lock_file ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = os.O_RDWR | os.O_CREAT | os.O_TRUNC try: lowerCAmelCase = os.open(self._lock_file , _SCREAMING_SNAKE_CASE ) except OSError: pass else: try: msvcrt.locking(_SCREAMING_SNAKE_CASE , msvcrt.LK_NBLCK , 1 ) except OSError: os.close(_SCREAMING_SNAKE_CASE ) else: lowerCAmelCase = fd return None def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = self._lock_file_fd lowerCAmelCase = None msvcrt.locking(_SCREAMING_SNAKE_CASE , msvcrt.LK_UNLCK , 1 ) os.close(_SCREAMING_SNAKE_CASE ) try: os.remove(self._lock_file ) # Probably another instance of the application # that acquired the file lock. except OSError: pass return None class _snake_case ( a_ ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=-1 , _SCREAMING_SNAKE_CASE=None ): '''simple docstring''' lowerCAmelCase = os.statvfs(os.path.dirname(_SCREAMING_SNAKE_CASE ) ).f_namemax super().__init__(_SCREAMING_SNAKE_CASE , timeout=_SCREAMING_SNAKE_CASE , max_filename_length=_SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = os.O_RDWR | os.O_CREAT | os.O_TRUNC lowerCAmelCase = os.open(self._lock_file , _SCREAMING_SNAKE_CASE ) try: fcntl.flock(_SCREAMING_SNAKE_CASE , fcntl.LOCK_EX | fcntl.LOCK_NB ) except OSError: os.close(_SCREAMING_SNAKE_CASE ) else: lowerCAmelCase = fd return None def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = self._lock_file_fd lowerCAmelCase = None fcntl.flock(_SCREAMING_SNAKE_CASE , fcntl.LOCK_UN ) os.close(_SCREAMING_SNAKE_CASE ) return None class _snake_case ( a_ ): def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC try: lowerCAmelCase = os.open(self._lock_file , _SCREAMING_SNAKE_CASE ) except OSError: pass else: lowerCAmelCase = fd return None def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' os.close(self._lock_file_fd ) lowerCAmelCase = None try: os.remove(self._lock_file ) # The file is already deleted and that's what we want. except OSError: pass return None _UpperCamelCase : Any = None if msvcrt: _UpperCamelCase : str = WindowsFileLock elif fcntl: _UpperCamelCase : Optional[int] = UnixFileLock else: _UpperCamelCase : Optional[int] = SoftFileLock if warnings is not None: warnings.warn("only soft file lock is available")
705
'''simple docstring''' import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch _UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) class _snake_case : def __init__( self , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ): '''simple docstring''' if not conversation_id: lowerCAmelCase = uuid.uuida() if past_user_inputs is None: lowerCAmelCase = [] if generated_responses is None: lowerCAmelCase = [] lowerCAmelCase = conversation_id lowerCAmelCase = past_user_inputs lowerCAmelCase = generated_responses lowerCAmelCase = text def __eq__( self , _SCREAMING_SNAKE_CASE ): '''simple docstring''' if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def _SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = False ): '''simple docstring''' if self.new_user_input: if overwrite: logger.warning( F'User input added while unprocessed input was existing: "{self.new_user_input}" was overwritten ' F'with: "{text}".' ) lowerCAmelCase = text else: logger.warning( F'User input added while unprocessed input was existing: "{self.new_user_input}" new input ' F'ignored: "{text}". Set `overwrite` to True to overwrite unprocessed user input' ) else: lowerCAmelCase = text def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' if self.new_user_input: self.past_user_inputs.append(self.new_user_input ) lowerCAmelCase = None def _SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ): '''simple docstring''' self.generated_responses.append(_SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__( self ): '''simple docstring''' lowerCAmelCase = F'Conversation id: {self.uuid} \n' for is_user, text in self.iter_texts(): lowerCAmelCase = 'user' if is_user else 'bot' output += F'{name} >> {text} \n' return output @add_end_docstrings( a_ , R''' min_length_for_response (`int`, *optional*, defaults to 32): The minimum length (in number of tokens) for a response. minimum_tokens (`int`, *optional*, defaults to 10): The minimum length of tokens to leave for a response. ''' , ) class _snake_case ( a_ ): def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ): '''simple docstring''' super().__init__(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) if self.tokenizer.pad_token_id is None: lowerCAmelCase = self.tokenizer.eos_token def _SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCAmelCase = {} lowerCAmelCase = {} lowerCAmelCase = {} if min_length_for_response is not None: lowerCAmelCase = min_length_for_response if minimum_tokens is not None: lowerCAmelCase = minimum_tokens if "max_length" in generate_kwargs: lowerCAmelCase = generate_kwargs['max_length'] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: lowerCAmelCase = clean_up_tokenization_spaces if generate_kwargs: forward_params.update(_SCREAMING_SNAKE_CASE ) return preprocess_params, forward_params, postprocess_params def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=0 , **_SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCAmelCase = super().__call__(_SCREAMING_SNAKE_CASE , num_workers=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and len(_SCREAMING_SNAKE_CASE ) == 1: return outputs[0] return outputs def _SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=32 ): '''simple docstring''' if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise ValueError('ConversationalPipeline, expects Conversation as inputs' ) if conversation.new_user_input is None: raise ValueError( F'Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. ' 'Add user inputs with the conversation\'s `add_user_input` method' ) if hasattr(self.tokenizer , '_build_conversation_input_ids' ): lowerCAmelCase = self.tokenizer._build_conversation_input_ids(_SCREAMING_SNAKE_CASE ) else: # If the tokenizer cannot handle conversations, we default to only the old version lowerCAmelCase = self._legacy_parse_and_tokenize(_SCREAMING_SNAKE_CASE ) if self.framework == "pt": lowerCAmelCase = torch.LongTensor([input_ids] ) elif self.framework == "tf": lowerCAmelCase = tf.constant([input_ids] ) return {"input_ids": input_ids, "conversation": conversation} def _SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=10 , **_SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCAmelCase = generate_kwargs.get('max_length' , self.model.config.max_length ) lowerCAmelCase = model_inputs['input_ids'].shape[1] if max_length - minimum_tokens < n: logger.warning(F'Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})' ) lowerCAmelCase = max_length - minimum_tokens lowerCAmelCase = model_inputs['input_ids'][:, -trim:] if "attention_mask" in model_inputs: lowerCAmelCase = model_inputs['attention_mask'][:, -trim:] lowerCAmelCase = model_inputs.pop('conversation' ) lowerCAmelCase = max_length lowerCAmelCase = self.model.generate(**_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) if self.model.config.is_encoder_decoder: lowerCAmelCase = 1 else: lowerCAmelCase = n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def _SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=True ): '''simple docstring''' lowerCAmelCase = model_outputs['output_ids'] lowerCAmelCase = self.tokenizer.decode( output_ids[0] , skip_special_tokens=_SCREAMING_SNAKE_CASE , clean_up_tokenization_spaces=_SCREAMING_SNAKE_CASE , ) lowerCAmelCase = model_outputs['conversation'] conversation.mark_processed() conversation.append_response(_SCREAMING_SNAKE_CASE ) return conversation def _SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCAmelCase = self.tokenizer.eos_token_id lowerCAmelCase = [] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ) + [eos_token_id] ) else: input_ids.extend(self.tokenizer.encode(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ) ) if len(_SCREAMING_SNAKE_CASE ) > self.tokenizer.model_max_length: lowerCAmelCase = input_ids[-self.tokenizer.model_max_length :] return input_ids
514
0
import argparse import os import gluonnlp as nlp import mxnet as mx import numpy as np import torch from gluonnlp.base import get_home_dir from gluonnlp.model.bert import BERTEncoder from gluonnlp.model.utils import _load_vocab from gluonnlp.vocab import Vocab from packaging import version from torch import nn from transformers import BertConfig, BertForMaskedLM, BertModel, RobertaTokenizer from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging if version.parse(nlp.__version__) != version.parse('''0.8.3'''): raise Exception('''requires gluonnlp == 0.8.3''') if version.parse(mx.__version__) != version.parse('''1.5.0'''): raise Exception('''requires mxnet == 1.5.0''') logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = """The Nymphenburg Palace is a beautiful palace in Munich!""" def A ( __UpperCamelCase , __UpperCamelCase ) -> Dict: A__ = { 'attention_cell': 'multi_head', 'num_layers': 4, 'units': 1_024, 'hidden_size': 768, 'max_length': 512, 'num_heads': 8, 'scaled': True, 'dropout': 0.1, 'use_residual': True, 'embed_size': 1_024, 'embed_dropout': 0.1, 'word_embed': None, 'layer_norm_eps': 1E-5, 'token_type_vocab_size': 2, } A__ = bort_4_8_768_1024_hparams # Let's construct the original Bort model here # Taken from official BERT implementation, see: # https://github.com/alexa/bort/blob/master/bort/bort.py A__ = BERTEncoder( attention_cell=predefined_args['attention_cell'] , num_layers=predefined_args['num_layers'] , units=predefined_args['units'] , hidden_size=predefined_args['hidden_size'] , max_length=predefined_args['max_length'] , num_heads=predefined_args['num_heads'] , scaled=predefined_args['scaled'] , dropout=predefined_args['dropout'] , output_attention=_A , output_all_encodings=_A , use_residual=predefined_args['use_residual'] , activation=predefined_args.get('activation' , 'gelu' ) , layer_norm_eps=predefined_args.get('layer_norm_eps' , _A ) , ) # Vocab information needs to be fetched first # It's the same as RoBERTa, so RobertaTokenizer can be used later A__ = 'openwebtext_ccnews_stories_books_cased' # Specify download folder to Gluonnlp's vocab A__ = os.path.join(get_home_dir() , 'models' ) A__ = _load_vocab(_A , _A , _A , cls=_A ) A__ = nlp.model.BERTModel( _A , len(_A ) , units=predefined_args['units'] , embed_size=predefined_args['embed_size'] , embed_dropout=predefined_args['embed_dropout'] , word_embed=predefined_args['word_embed'] , use_pooler=_A , use_token_type_embed=_A , token_type_vocab_size=predefined_args['token_type_vocab_size'] , use_classifier=_A , use_decoder=_A , ) original_bort.load_parameters(_A , cast_dtype=_A , ignore_extra=_A ) A__ = original_bort._collect_params_with_prefix() # Build our config 🤗 A__ = { 'architectures': ['BertForMaskedLM'], 'attention_probs_dropout_prob': predefined_args['dropout'], 'hidden_act': 'gelu', 'hidden_dropout_prob': predefined_args['dropout'], 'hidden_size': predefined_args['embed_size'], 'initializer_range': 0.02, 'intermediate_size': predefined_args['hidden_size'], 'layer_norm_eps': predefined_args['layer_norm_eps'], 'max_position_embeddings': predefined_args['max_length'], 'model_type': 'bort', 'num_attention_heads': predefined_args['num_heads'], 'num_hidden_layers': predefined_args['num_layers'], 'pad_token_id': 1, # 2 = BERT, 1 = RoBERTa 'type_vocab_size': 1, # 2 = BERT, 1 = RoBERTa 'vocab_size': len(_A ), } A__ = BertConfig.from_dict(_A ) A__ = BertForMaskedLM(_A ) hf_bort_model.eval() # Parameter mapping table (Gluonnlp to Transformers) # * denotes layer index # # | Gluon Parameter | Transformers Parameter # | -------------------------------------------------------------- | ---------------------- # | `encoder.layer_norm.beta` | `bert.embeddings.LayerNorm.bias` # | `encoder.layer_norm.gamma` | `bert.embeddings.LayerNorm.weight` # | `encoder.position_weight` | `bert.embeddings.position_embeddings.weight` # | `word_embed.0.weight` | `bert.embeddings.word_embeddings.weight` # | `encoder.transformer_cells.*.attention_cell.proj_key.bias` | `bert.encoder.layer.*.attention.self.key.bias` # | `encoder.transformer_cells.*.attention_cell.proj_key.weight` | `bert.encoder.layer.*.attention.self.key.weight` # | `encoder.transformer_cells.*.attention_cell.proj_query.bias` | `bert.encoder.layer.*.attention.self.query.bias` # | `encoder.transformer_cells.*.attention_cell.proj_query.weight` | `bert.encoder.layer.*.attention.self.query.weight` # | `encoder.transformer_cells.*.attention_cell.proj_value.bias` | `bert.encoder.layer.*.attention.self.value.bias` # | `encoder.transformer_cells.*.attention_cell.proj_value.weight` | `bert.encoder.layer.*.attention.self.value.weight` # | `encoder.transformer_cells.*.ffn.ffn_2.bias` | `bert.encoder.layer.*.attention.output.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_2.weight` | `bert.encoder.layer.*.attention.output.dense.weight` # | `encoder.transformer_cells.*.layer_norm.beta` | `bert.encoder.layer.*.attention.output.LayerNorm.bias` # | `encoder.transformer_cells.*.layer_norm.gamma` | `bert.encoder.layer.*.attention.output.LayerNorm.weight` # | `encoder.transformer_cells.*.ffn.ffn_1.bias` | `bert.encoder.layer.*.intermediate.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_1.weight` | `bert.encoder.layer.*.intermediate.dense.weight` # | `encoder.transformer_cells.*.ffn.layer_norm.beta` | `bert.encoder.layer.*.output.LayerNorm.bias` # | `encoder.transformer_cells.*.ffn.layer_norm.gamma` | `bert.encoder.layer.*.output.LayerNorm.weight` # | `encoder.transformer_cells.*.proj.bias` | `bert.encoder.layer.*.output.dense.bias` # | `encoder.transformer_cells.*.proj.weight` | `bert.encoder.layer.*.output.dense.weight` # Helper function to convert MXNET Arrays to PyTorch def to_torch(__UpperCamelCase ) -> nn.Parameter: return nn.Parameter(torch.FloatTensor(mx_array.data().asnumpy() ) ) # Check param shapes and map new HF param back def check_and_map_params(__UpperCamelCase , __UpperCamelCase ): A__ = hf_param.shape A__ = to_torch(params[gluon_param] ) A__ = gluon_param.shape assert ( shape_hf == shape_gluon ), f'''The gluon parameter {gluon_param} has shape {shape_gluon}, but expects shape {shape_hf} for Transformers''' return gluon_param A__ = check_and_map_params( hf_bort_model.bert.embeddings.word_embeddings.weight , 'word_embed.0.weight' ) A__ = check_and_map_params( hf_bort_model.bert.embeddings.position_embeddings.weight , 'encoder.position_weight' ) A__ = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.bias , 'encoder.layer_norm.beta' ) A__ = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.weight , 'encoder.layer_norm.gamma' ) # Inspired by RoBERTa conversion script, we just zero them out (Bort does not use them) A__ = torch.zeros_like( hf_bort_model.bert.embeddings.token_type_embeddings.weight.data ) for i in range(hf_bort_config.num_hidden_layers ): A__ = hf_bort_model.bert.encoder.layer[i] # self attention A__ = layer.attention.self A__ = check_and_map_params( self_attn.key.bias.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_key.bias''' ) A__ = check_and_map_params( self_attn.key.weight.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_key.weight''' ) A__ = check_and_map_params( self_attn.query.bias.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_query.bias''' ) A__ = check_and_map_params( self_attn.query.weight.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_query.weight''' ) A__ = check_and_map_params( self_attn.value.bias.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_value.bias''' ) A__ = check_and_map_params( self_attn.value.weight.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_value.weight''' ) # self attention output A__ = layer.attention.output A__ = check_and_map_params( self_output.dense.bias , f'''encoder.transformer_cells.{i}.proj.bias''' ) A__ = check_and_map_params( self_output.dense.weight , f'''encoder.transformer_cells.{i}.proj.weight''' ) A__ = check_and_map_params( self_output.LayerNorm.bias , f'''encoder.transformer_cells.{i}.layer_norm.beta''' ) A__ = check_and_map_params( self_output.LayerNorm.weight , f'''encoder.transformer_cells.{i}.layer_norm.gamma''' ) # intermediate A__ = layer.intermediate A__ = check_and_map_params( intermediate.dense.bias , f'''encoder.transformer_cells.{i}.ffn.ffn_1.bias''' ) A__ = check_and_map_params( intermediate.dense.weight , f'''encoder.transformer_cells.{i}.ffn.ffn_1.weight''' ) # output A__ = layer.output A__ = check_and_map_params( bert_output.dense.bias , f'''encoder.transformer_cells.{i}.ffn.ffn_2.bias''' ) A__ = check_and_map_params( bert_output.dense.weight , f'''encoder.transformer_cells.{i}.ffn.ffn_2.weight''' ) A__ = check_and_map_params( bert_output.LayerNorm.bias , f'''encoder.transformer_cells.{i}.ffn.layer_norm.beta''' ) A__ = check_and_map_params( bert_output.LayerNorm.weight , f'''encoder.transformer_cells.{i}.ffn.layer_norm.gamma''' ) # Save space and energy 🎄 hf_bort_model.half() # Compare output of both models A__ = RobertaTokenizer.from_pretrained('roberta-base' ) A__ = tokenizer.encode_plus(_A )['input_ids'] # Get gluon output A__ = mx.nd.array([input_ids] ) A__ = original_bort(inputs=_A , token_types=[] ) # Get Transformer output (save and reload model again) hf_bort_model.save_pretrained(_A ) A__ = BertModel.from_pretrained(_A ) hf_bort_model.eval() A__ = tokenizer.encode_plus(_A , return_tensors='pt' ) A__ = hf_bort_model(**_A )[0] A__ = output_gluon[0].asnumpy() A__ = output_hf[0].detach().numpy() A__ = np.max(np.abs(hf_layer - gluon_layer ) ).item() A__ = np.allclose(_A , _A , atol=1E-3 ) if success: print('✔️ Both model do output the same tensors' ) else: print('❌ Both model do **NOT** output the same tensors' ) print('Absolute difference is:' , _A ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--bort_checkpoint_path''', default=None, type=str, required=True, help='''Path the official Bort params file.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_bort_checkpoint_to_pytorch(args.bort_checkpoint_path, args.pytorch_dump_folder_path)
9
from ...utils import logging from ..ta.modeling_tf_ta import TFTaEncoderModel, TFTaForConditionalGeneration, TFTaModel from .configuration_mta import MTaConfig SCREAMING_SNAKE_CASE : int = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Any = """T5Config""" class A_ ( a_ ): _SCREAMING_SNAKE_CASE = """mt5""" _SCREAMING_SNAKE_CASE = MTaConfig class A_ ( a_ ): _SCREAMING_SNAKE_CASE = """mt5""" _SCREAMING_SNAKE_CASE = MTaConfig class A_ ( a_ ): _SCREAMING_SNAKE_CASE = """mt5""" _SCREAMING_SNAKE_CASE = MTaConfig
197
0
"""simple docstring""" import argparse import os import torch from transformers.utils import WEIGHTS_NAME _lowercase = ['''small''', '''medium''', '''large'''] _lowercase = '''lm_head.decoder.weight''' _lowercase = '''lm_head.weight''' def _snake_case ( snake_case__ : str , snake_case__ : str ): A = torch.load(snake_case__ ) A = d.pop(snake_case__ ) os.makedirs(snake_case__ , exist_ok=snake_case__ ) torch.save(snake_case__ , os.path.join(snake_case__ , snake_case__ ) ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() parser.add_argument('''--dialogpt_path''', default='''.''', type=str) _lowercase = parser.parse_args() for MODEL in DIALOGPT_MODELS: _lowercase = os.path.join(args.dialogpt_path, F"""{MODEL}_ft.pkl""") _lowercase = F"""./DialoGPT-{MODEL}""" convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
712
"""simple docstring""" def _snake_case ( snake_case__ : list , snake_case__ : list , snake_case__ : int ): A = len(snake_case__ ) A = [[0] * n for i in range(snake_case__ )] for i in range(snake_case__ ): A = y_points[i] for i in range(2 , snake_case__ ): for j in range(snake_case__ , snake_case__ ): A = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
22
0
'''simple docstring''' from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. UpperCAmelCase : int = 2_0_0 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. UpperCAmelCase : Optional[int] = 5_0 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. UpperCAmelCase : List[str] = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 1_0_0_0)) def a__ ( a__ , a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE = len([g for position, g in enumerate(_UpperCamelCase ) if g == main_target[position]] ) return (item, float(_UpperCamelCase )) def a__ ( a__ , a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE = random.randint(0 , len(_UpperCamelCase ) - 1 ) __SCREAMING_SNAKE_CASE = parent_a[:random_slice] + parent_a[random_slice:] __SCREAMING_SNAKE_CASE = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def a__ ( a__ , a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE = list(_UpperCamelCase ) if random.uniform(0 , 1 ) < MUTATION_PROBABILITY: __SCREAMING_SNAKE_CASE = random.choice(_UpperCamelCase ) return "".join(_UpperCamelCase ) def a__ ( a__ , a__ , a__ , ): """simple docstring""" __SCREAMING_SNAKE_CASE = [] # Generate more children proportionally to the fitness score. __SCREAMING_SNAKE_CASE = int(parent_a[1] * 1_00 ) + 1 __SCREAMING_SNAKE_CASE = 10 if child_n >= 10 else child_n for _ in range(_UpperCamelCase ): __SCREAMING_SNAKE_CASE = population_score[random.randint(0 , _UpperCamelCase )][0] __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = crossover(parent_a[0] , _UpperCamelCase ) # Append new string to the population list. pop.append(mutate(_UpperCamelCase , _UpperCamelCase ) ) pop.append(mutate(_UpperCamelCase , _UpperCamelCase ) ) return pop def a__ ( a__ , a__ , a__ = True ): """simple docstring""" if N_POPULATION < N_SELECTED: __SCREAMING_SNAKE_CASE = F'{N_POPULATION} must be bigger than {N_SELECTED}' raise ValueError(_UpperCamelCase ) # Verify that the target contains no genes besides the ones inside genes variable. __SCREAMING_SNAKE_CASE = sorted({c for c in target if c not in genes} ) if not_in_genes_list: __SCREAMING_SNAKE_CASE = F'{not_in_genes_list} is not in genes list, evolution cannot converge' raise ValueError(_UpperCamelCase ) # Generate random starting population. __SCREAMING_SNAKE_CASE = [] for _ in range(_UpperCamelCase ): population.append("""""".join([random.choice(_UpperCamelCase ) for i in range(len(_UpperCamelCase ) )] ) ) # Just some logs to know what the algorithms is doing. __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(_UpperCamelCase ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. __SCREAMING_SNAKE_CASE = [evaluate(_UpperCamelCase , _UpperCamelCase ) for item in population] # Check if there is a matching evolution. __SCREAMING_SNAKE_CASE = sorted(_UpperCamelCase , key=lambda a__ : x[1] , reverse=_UpperCamelCase ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( F'\nGeneration: {generation}' F'\nTotal Population:{total_population}' F'\nBest score: {population_score[0][1]}' F'\nBest string: {population_score[0][0]}' ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. __SCREAMING_SNAKE_CASE = population[: int(N_POPULATION / 3 )] population.clear() population.extend(_UpperCamelCase ) # Normalize population score to be between 0 and 1. __SCREAMING_SNAKE_CASE = [ (item, score / len(_UpperCamelCase )) for item, score in population_score ] # This is selection for i in range(_UpperCamelCase ): population.extend(select(population_score[int(_UpperCamelCase )] , _UpperCamelCase , _UpperCamelCase ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(_UpperCamelCase ) > N_POPULATION: break if __name__ == "__main__": UpperCAmelCase : str = ( "This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!" ) UpperCAmelCase : Dict = list( ' ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm' 'nopqrstuvwxyz.,;!?+-*#@^\'èéòà€ù=)(&%$£/\\' ) UpperCAmelCase : Dict = basic(target_str, genes_list) print( f"""\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}""" )
627
'''simple docstring''' import importlib import os import fsspec import pytest from fsspec import register_implementation from fsspec.registry import _registry as _fsspec_registry from datasets.filesystems import COMPRESSION_FILESYSTEMS, HfFileSystem, extract_path_from_uri, is_remote_filesystem from .utils import require_lza, require_zstandard def __lowerCamelCase ( _UpperCamelCase : Optional[int] ): '''simple docstring''' assert "mock" in _fsspec_registry assert "bz2" in _fsspec_registry def __lowerCamelCase ( ): '''simple docstring''' assert "mock" not in _fsspec_registry assert "bz2" in _fsspec_registry def __lowerCamelCase ( ): '''simple docstring''' UpperCAmelCase_ = '''mock-s3-bucket''' UpperCAmelCase_ = F"""s3://{mock_bucket}""" UpperCAmelCase_ = extract_path_from_uri(_UpperCamelCase ) assert dataset_path.startswith('''s3://''' ) is False UpperCAmelCase_ = '''./local/path''' UpperCAmelCase_ = extract_path_from_uri(_UpperCamelCase ) assert dataset_path == new_dataset_path def __lowerCamelCase ( _UpperCamelCase : Tuple ): '''simple docstring''' UpperCAmelCase_ = is_remote_filesystem(_UpperCamelCase ) assert is_remote is True UpperCAmelCase_ = fsspec.filesystem('''file''' ) UpperCAmelCase_ = is_remote_filesystem(_UpperCamelCase ) assert is_remote is False @pytest.mark.parametrize('''compression_fs_class''' , _UpperCamelCase ) def __lowerCamelCase ( _UpperCamelCase : List[Any] , _UpperCamelCase : str , _UpperCamelCase : Any , _UpperCamelCase : Any , _UpperCamelCase : Optional[Any] , _UpperCamelCase : str , _UpperCamelCase : List[Any] ): '''simple docstring''' UpperCAmelCase_ = {'''gzip''': gz_file, '''xz''': xz_file, '''zstd''': zstd_file, '''bz2''': bza_file, '''lz4''': lza_file} UpperCAmelCase_ = input_paths[compression_fs_class.protocol] if input_path is None: UpperCAmelCase_ = F"""for '{compression_fs_class.protocol}' compression protocol, """ if compression_fs_class.protocol == "lz4": reason += require_lza.kwargs["reason"] elif compression_fs_class.protocol == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(_UpperCamelCase ) UpperCAmelCase_ = fsspec.filesystem(compression_fs_class.protocol , fo=_UpperCamelCase ) assert isinstance(_UpperCamelCase , _UpperCamelCase ) UpperCAmelCase_ = os.path.basename(_UpperCamelCase ) UpperCAmelCase_ = expected_filename[: expected_filename.rindex('''.''' )] assert fs.glob('''*''' ) == [expected_filename] with fs.open(_UpperCamelCase , '''r''' , encoding='''utf-8''' ) as f, open(_UpperCamelCase , encoding='''utf-8''' ) as expected_file: assert f.read() == expected_file.read() @pytest.mark.parametrize('''protocol''' , ['''zip''', '''gzip'''] ) def __lowerCamelCase ( _UpperCamelCase : Tuple , _UpperCamelCase : List[Any] , _UpperCamelCase : List[Any] ): '''simple docstring''' UpperCAmelCase_ = {'''zip''': zip_jsonl_path, '''gzip''': jsonl_gz_path} UpperCAmelCase_ = compressed_file_paths[protocol] UpperCAmelCase_ = '''dataset.jsonl''' UpperCAmelCase_ = F"""{protocol}://{member_file_path}::{compressed_file_path}""" UpperCAmelCase_ , *UpperCAmelCase_ = fsspec.get_fs_token_paths(_UpperCamelCase ) assert fs.isfile(_UpperCamelCase ) assert not fs.isfile('''non_existing_''' + member_file_path ) @pytest.mark.integration def __lowerCamelCase ( _UpperCamelCase : List[str] , _UpperCamelCase : Dict , _UpperCamelCase : List[str] , _UpperCamelCase : Dict ): '''simple docstring''' UpperCAmelCase_ = hf_api.dataset_info(_UpperCamelCase , token=_UpperCamelCase ) UpperCAmelCase_ = HfFileSystem(repo_info=_UpperCamelCase , token=_UpperCamelCase ) assert sorted(hffs.glob('''*''' ) ) == [".gitattributes", "data"] assert hffs.isdir('''data''' ) assert hffs.isfile('''.gitattributes''' ) and hffs.isfile('''data/text_data.txt''' ) with open(_UpperCamelCase ) as f: assert hffs.open('''data/text_data.txt''' , '''r''' ).read() == f.read() def __lowerCamelCase ( ): '''simple docstring''' UpperCAmelCase_ = '''bz2''' # Import module import datasets.filesystems # Overwrite protocol and reload register_implementation(_UpperCamelCase , _UpperCamelCase , clobber=_UpperCamelCase ) with pytest.warns(_UpperCamelCase ) as warning_info: importlib.reload(datasets.filesystems ) assert len(_UpperCamelCase ) == 1 assert ( str(warning_info[0].message ) == F"""A filesystem protocol was already set for {protocol} and will be overwritten.""" )
390
0
"""simple docstring""" import warnings from functools import wraps from typing import Callable def A_ (__a ): '''simple docstring''' @wraps(__a ) def _inner_fn(*__a , **__a ): warnings.warn( (f'\'{fn.__name__}\' is experimental and might be subject to breaking changes in the future.') , __a , ) return fn(*__a , **__a ) return _inner_fn
482
"""simple docstring""" from __future__ import annotations import math UpperCamelCase_ : List[str] = '''2020.9.26''' UpperCamelCase_ : List[Any] = '''xcodz-dot, cclaus, dhruvmanila''' def A_ (__a , __a , __a , __a , __a ): '''simple docstring''' if not all(isinstance(__a , (float, int) ) for val in locals().values() ): A_ = f'Input values must either be float or int: {list(locals().values() )}' raise TypeError(__a ) A_ = ((x * distance) / (z + distance)) * scale A_ = ((y * distance) / (z + distance)) * scale return projected_x, projected_y def A_ (__a , __a , __a , __a , __a ): '''simple docstring''' if not isinstance(__a , __a ): raise TypeError("Axis must be a str" ) A_ = locals() del input_variables["axis"] if not all(isinstance(__a , (float, int) ) for val in input_variables.values() ): A_ = ( "Input values except axis must either be float or int: " f'{list(input_variables.values() )}' ) raise TypeError(__a ) A_ = (angle % 360) / 450 * 180 / math.pi if axis == "z": A_ = x * math.cos(__a ) - y * math.sin(__a ) A_ = y * math.cos(__a ) + x * math.sin(__a ) A_ = z elif axis == "x": A_ = y * math.cos(__a ) - z * math.sin(__a ) A_ = z * math.cos(__a ) + y * math.sin(__a ) A_ = x elif axis == "y": A_ = x * math.cos(__a ) - z * math.sin(__a ) A_ = z * math.cos(__a ) + x * math.sin(__a ) A_ = y else: raise ValueError("not a valid axis, choose one of 'x', 'y', 'z'" ) return new_x, new_y, new_z if __name__ == "__main__": import doctest doctest.testmod() print(F"""{convert_to_ad(1.0, 2.0, 3.0, 10.0, 10.0) = }""") print(F"""{rotate(1.0, 2.0, 3.0, 'y', 90.0) = }""")
482
1
import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotConfig, is_flax_available from transformers.testing_utils import jax_device, require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html __a : Dict = '''platform''' import jax import jax.numpy as jnp from transformers import BlenderbotTokenizer from transformers.models.blenderbot.modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, shift_tokens_right, ) def UpperCAmelCase ( lowercase , lowercase , lowercase=None , lowercase=None , lowercase=None , lowercase=None , lowercase=None , lowercase=None , ): """simple docstring""" if attention_mask is None: __lowercase = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: __lowercase = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: __lowercase = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: __lowercase = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: __lowercase = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class _UpperCamelCase : """simple docstring""" def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=13 , lowerCAmelCase__=7 , lowerCAmelCase__=True , lowerCAmelCase__=False , lowerCAmelCase__=99 , lowerCAmelCase__=16 , lowerCAmelCase__=2 , lowerCAmelCase__=4 , lowerCAmelCase__=4 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=32 , lowerCAmelCase__=2 , lowerCAmelCase__=1 , lowerCAmelCase__=0 , lowerCAmelCase__=0.02 , ) -> Any: '''simple docstring''' __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_labels __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = eos_token_id __lowercase = pad_token_id __lowercase = bos_token_id __lowercase = initializer_range def _SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: '''simple docstring''' __lowercase = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) __lowercase = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) __lowercase = shift_tokens_right(lowerCAmelCase__ , 1 , 2 ) __lowercase = BlenderbotConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=lowerCAmelCase__ , ) __lowercase = prepare_blenderbot_inputs_dict(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) return config, inputs_dict def _SCREAMING_SNAKE_CASE ( self ) -> Tuple: '''simple docstring''' __lowercase = self.prepare_config_and_inputs() return config, inputs_dict def _SCREAMING_SNAKE_CASE ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> List[str]: '''simple docstring''' __lowercase = 20 __lowercase = model_class_name(lowerCAmelCase__ ) __lowercase = model.encode(inputs_dict['''input_ids'''] ) __lowercase = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) __lowercase = model.init_cache(decoder_input_ids.shape[0] , lowerCAmelCase__ , lowerCAmelCase__ ) __lowercase = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='''i4''' ) __lowercase = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) __lowercase = model.decode( decoder_input_ids[:, :-1] , lowerCAmelCase__ , decoder_attention_mask=lowerCAmelCase__ , past_key_values=lowerCAmelCase__ , decoder_position_ids=lowerCAmelCase__ , ) __lowercase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' ) __lowercase = model.decode( decoder_input_ids[:, -1:] , lowerCAmelCase__ , decoder_attention_mask=lowerCAmelCase__ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=lowerCAmelCase__ , ) __lowercase = model.decode(lowerCAmelCase__ , lowerCAmelCase__ ) __lowercase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F"Max diff is {diff}" ) def _SCREAMING_SNAKE_CASE ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Union[str, Any]: '''simple docstring''' __lowercase = 20 __lowercase = model_class_name(lowerCAmelCase__ ) __lowercase = model.encode(inputs_dict['''input_ids'''] ) __lowercase = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) __lowercase = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) __lowercase = model.init_cache(decoder_input_ids.shape[0] , lowerCAmelCase__ , lowerCAmelCase__ ) __lowercase = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) __lowercase = model.decode( decoder_input_ids[:, :-1] , lowerCAmelCase__ , decoder_attention_mask=lowerCAmelCase__ , past_key_values=lowerCAmelCase__ , decoder_position_ids=lowerCAmelCase__ , ) __lowercase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' ) __lowercase = model.decode( decoder_input_ids[:, -1:] , lowerCAmelCase__ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=lowerCAmelCase__ , decoder_position_ids=lowerCAmelCase__ , ) __lowercase = model.decode(lowerCAmelCase__ , lowerCAmelCase__ , decoder_attention_mask=lowerCAmelCase__ ) __lowercase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F"Max diff is {diff}" ) @require_flax class _UpperCamelCase ( unittest.TestCase ): """simple docstring""" __a : Optional[int] = 99 def _SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: '''simple docstring''' __lowercase = np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) __lowercase = input_ids.shape[0] __lowercase = BlenderbotConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def _SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' __lowercase = self._get_config_and_data() __lowercase = FlaxBlenderbotForConditionalGeneration(lowerCAmelCase__ ) __lowercase = lm_model(input_ids=lowerCAmelCase__ ) __lowercase = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs['''logits'''].shape , lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' __lowercase = BlenderbotConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) __lowercase = FlaxBlenderbotForConditionalGeneration(lowerCAmelCase__ ) __lowercase = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa ) __lowercase = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa ) __lowercase = lm_model(input_ids=lowerCAmelCase__ , decoder_input_ids=lowerCAmelCase__ ) __lowercase = (*summary.shape, config.vocab_size) self.assertEqual(outputs['''logits'''].shape , lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' __lowercase = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa ) __lowercase = shift_tokens_right(lowerCAmelCase__ , 1 , 2 ) __lowercase = np.equal(lowerCAmelCase__ , 1 ).astype(np.floataa ).sum() __lowercase = np.equal(lowerCAmelCase__ , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(lowerCAmelCase__ , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class _UpperCamelCase ( A__ ,unittest.TestCase ,A__ ): """simple docstring""" __a : str = True __a : Any = ( ( FlaxBlenderbotModel, FlaxBlenderbotForConditionalGeneration, ) if is_flax_available() else () ) __a : List[str] = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else () def _SCREAMING_SNAKE_CASE ( self ) -> List[Any]: '''simple docstring''' __lowercase = FlaxBlenderbotModelTester(self ) def _SCREAMING_SNAKE_CASE ( self ) -> List[Any]: '''simple docstring''' __lowercase = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' __lowercase = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __lowercase = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) __lowercase = model_class(lowerCAmelCase__ ) @jax.jit def encode_jitted(lowerCAmelCase__ , lowerCAmelCase__=None , **lowerCAmelCase__ ): return model.encode(input_ids=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ ) with self.subTest('''JIT Enabled''' ): __lowercase = encode_jitted(**lowerCAmelCase__ ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): __lowercase = encode_jitted(**lowerCAmelCase__ ).to_tuple() self.assertEqual(len(lowerCAmelCase__ ) , len(lowerCAmelCase__ ) ) for jitted_output, output in zip(lowerCAmelCase__ , lowerCAmelCase__ ): self.assertEqual(jitted_output.shape , output.shape ) def _SCREAMING_SNAKE_CASE ( self ) -> Any: '''simple docstring''' __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __lowercase = model_class(lowerCAmelCase__ ) __lowercase = model.encode(inputs_dict['''input_ids'''] , inputs_dict['''attention_mask'''] ) __lowercase = { "decoder_input_ids": inputs_dict["decoder_input_ids"], "decoder_attention_mask": inputs_dict["decoder_attention_mask"], "encoder_outputs": encoder_outputs, } @jax.jit def decode_jitted(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): return model.decode( decoder_input_ids=lowerCAmelCase__ , decoder_attention_mask=lowerCAmelCase__ , encoder_outputs=lowerCAmelCase__ , ) with self.subTest('''JIT Enabled''' ): __lowercase = decode_jitted(**lowerCAmelCase__ ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): __lowercase = decode_jitted(**lowerCAmelCase__ ).to_tuple() self.assertEqual(len(lowerCAmelCase__ ) , len(lowerCAmelCase__ ) ) for jitted_output, output in zip(lowerCAmelCase__ , lowerCAmelCase__ ): self.assertEqual(jitted_output.shape , output.shape ) @slow def _SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' for model_class_name in self.all_model_classes: __lowercase = model_class_name.from_pretrained('''facebook/blenderbot-400M-distill''' ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids __lowercase = np.ones((1, 1) ) * model.config.eos_token_id __lowercase = model(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) @unittest.skipUnless(jax_device != '''cpu''' , '''3B test too slow on CPU.''' ) @slow def _SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' __lowercase = {"num_beams": 1, "early_stopping": True, "min_length": 15, "max_length": 25} __lowercase = {"skip_special_tokens": True, "clean_up_tokenization_spaces": True} __lowercase = FlaxBlenderbotForConditionalGeneration.from_pretrained('''facebook/blenderbot-3B''' , from_pt=lowerCAmelCase__ ) __lowercase = BlenderbotTokenizer.from_pretrained('''facebook/blenderbot-3B''' ) __lowercase = ["Sam"] __lowercase = tokenizer(lowerCAmelCase__ , return_tensors='''jax''' ) __lowercase = model.generate(**lowerCAmelCase__ , **lowerCAmelCase__ ) __lowercase = "Sam is a great name. It means \"sun\" in Gaelic." __lowercase = tokenizer.batch_decode(lowerCAmelCase__ , **lowerCAmelCase__ ) assert generated_txt[0].strip() == tgt_text
534
import unittest from transformers import ( MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TextGenerationPipeline, logging, pipeline, ) from transformers.testing_utils import ( CaptureLogger, is_pipeline_test, require_accelerate, require_tf, require_torch, require_torch_gpu, require_torch_or_tf, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf class __a ( unittest.TestCase ): _lowerCAmelCase : Any = MODEL_FOR_CAUSAL_LM_MAPPING _lowerCAmelCase : Any = TF_MODEL_FOR_CAUSAL_LM_MAPPING @require_torch def __lowercase ( self : List[Any] ): '''simple docstring''' UpperCamelCase__ : Dict = pipeline(task="text-generation" , model="sshleifer/tiny-ctrl" , framework="pt" ) # Using `do_sample=False` to force deterministic output UpperCamelCase__ : str = text_generator("This is a test" , do_sample=SCREAMING_SNAKE_CASE ) self.assertEqual( SCREAMING_SNAKE_CASE , [ { "generated_text": ( "This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope." " oscope. FiliFili@@" ) } ] , ) UpperCamelCase__ : Optional[Any] = text_generator(["This is a test", "This is a second test"] ) self.assertEqual( SCREAMING_SNAKE_CASE , [ [ { "generated_text": ( "This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope." " oscope. FiliFili@@" ) } ], [ { "generated_text": ( "This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy" " oscope. oscope. FiliFili@@" ) } ], ] , ) UpperCamelCase__ : Union[str, Any] = text_generator("This is a test" , do_sample=SCREAMING_SNAKE_CASE , num_return_sequences=2 , return_tensors=SCREAMING_SNAKE_CASE ) self.assertEqual( SCREAMING_SNAKE_CASE , [ {"generated_token_ids": ANY(SCREAMING_SNAKE_CASE )}, {"generated_token_ids": ANY(SCREAMING_SNAKE_CASE )}, ] , ) UpperCamelCase__ : Optional[int] = text_generator.model.config.eos_token_id UpperCamelCase__ : Union[str, Any] = "<pad>" UpperCamelCase__ : Any = text_generator( ["This is a test", "This is a second test"] , do_sample=SCREAMING_SNAKE_CASE , num_return_sequences=2 , batch_size=2 , return_tensors=SCREAMING_SNAKE_CASE , ) self.assertEqual( SCREAMING_SNAKE_CASE , [ [ {"generated_token_ids": ANY(SCREAMING_SNAKE_CASE )}, {"generated_token_ids": ANY(SCREAMING_SNAKE_CASE )}, ], [ {"generated_token_ids": ANY(SCREAMING_SNAKE_CASE )}, {"generated_token_ids": ANY(SCREAMING_SNAKE_CASE )}, ], ] , ) @require_tf def __lowercase ( self : Dict ): '''simple docstring''' UpperCamelCase__ : Tuple = pipeline(task="text-generation" , model="sshleifer/tiny-ctrl" , framework="tf" ) # Using `do_sample=False` to force deterministic output UpperCamelCase__ : Dict = text_generator("This is a test" , do_sample=SCREAMING_SNAKE_CASE ) self.assertEqual( SCREAMING_SNAKE_CASE , [ { "generated_text": ( "This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵" " please," ) } ] , ) UpperCamelCase__ : List[Any] = text_generator(["This is a test", "This is a second test"] , do_sample=SCREAMING_SNAKE_CASE ) self.assertEqual( SCREAMING_SNAKE_CASE , [ [ { "generated_text": ( "This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵" " please," ) } ], [ { "generated_text": ( "This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes" " Cannes 閲閲Cannes Cannes Cannes 攵 please," ) } ], ] , ) def __lowercase ( self : int , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' UpperCamelCase__ : Optional[int] = TextGenerationPipeline(model=SCREAMING_SNAKE_CASE , tokenizer=SCREAMING_SNAKE_CASE ) return text_generator, ["This is a test", "Another test"] def __lowercase ( self : str ): '''simple docstring''' UpperCamelCase__ : str = "Hello I believe in" UpperCamelCase__ : int = pipeline("text-generation" , model="hf-internal-testing/tiny-random-gpt2" ) UpperCamelCase__ : List[Any] = text_generator(SCREAMING_SNAKE_CASE ) self.assertEqual( SCREAMING_SNAKE_CASE , [{"generated_text": "Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe"}] , ) UpperCamelCase__ : Optional[int] = text_generator(SCREAMING_SNAKE_CASE , stop_sequence=" fe" ) self.assertEqual(SCREAMING_SNAKE_CASE , [{"generated_text": "Hello I believe in fe"}] ) def __lowercase ( self : Any , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' UpperCamelCase__ : Dict = text_generator.model UpperCamelCase__ : List[str] = text_generator.tokenizer UpperCamelCase__ : Optional[Any] = text_generator("This is a test" ) self.assertEqual(SCREAMING_SNAKE_CASE , [{"generated_text": ANY(SCREAMING_SNAKE_CASE )}] ) self.assertTrue(outputs[0]["generated_text"].startswith("This is a test" ) ) UpperCamelCase__ : Any = text_generator("This is a test" , return_full_text=SCREAMING_SNAKE_CASE ) self.assertEqual(SCREAMING_SNAKE_CASE , [{"generated_text": ANY(SCREAMING_SNAKE_CASE )}] ) self.assertNotIn("This is a test" , outputs[0]["generated_text"] ) UpperCamelCase__ : Optional[int] = pipeline(task="text-generation" , model=SCREAMING_SNAKE_CASE , tokenizer=SCREAMING_SNAKE_CASE , return_full_text=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[str] = text_generator("This is a test" ) self.assertEqual(SCREAMING_SNAKE_CASE , [{"generated_text": ANY(SCREAMING_SNAKE_CASE )}] ) self.assertNotIn("This is a test" , outputs[0]["generated_text"] ) UpperCamelCase__ : str = text_generator("This is a test" , return_full_text=SCREAMING_SNAKE_CASE ) self.assertEqual(SCREAMING_SNAKE_CASE , [{"generated_text": ANY(SCREAMING_SNAKE_CASE )}] ) self.assertTrue(outputs[0]["generated_text"].startswith("This is a test" ) ) UpperCamelCase__ : List[str] = text_generator(["This is great !", "Something else"] , num_return_sequences=2 , do_sample=SCREAMING_SNAKE_CASE ) self.assertEqual( SCREAMING_SNAKE_CASE , [ [{"generated_text": ANY(SCREAMING_SNAKE_CASE )}, {"generated_text": ANY(SCREAMING_SNAKE_CASE )}], [{"generated_text": ANY(SCREAMING_SNAKE_CASE )}, {"generated_text": ANY(SCREAMING_SNAKE_CASE )}], ] , ) if text_generator.tokenizer.pad_token is not None: UpperCamelCase__ : Tuple = text_generator( ["This is great !", "Something else"] , num_return_sequences=2 , batch_size=2 , do_sample=SCREAMING_SNAKE_CASE ) self.assertEqual( SCREAMING_SNAKE_CASE , [ [{"generated_text": ANY(SCREAMING_SNAKE_CASE )}, {"generated_text": ANY(SCREAMING_SNAKE_CASE )}], [{"generated_text": ANY(SCREAMING_SNAKE_CASE )}, {"generated_text": ANY(SCREAMING_SNAKE_CASE )}], ] , ) with self.assertRaises(SCREAMING_SNAKE_CASE ): UpperCamelCase__ : str = text_generator("test" , return_full_text=SCREAMING_SNAKE_CASE , return_text=SCREAMING_SNAKE_CASE ) with self.assertRaises(SCREAMING_SNAKE_CASE ): UpperCamelCase__ : List[str] = text_generator("test" , return_full_text=SCREAMING_SNAKE_CASE , return_tensors=SCREAMING_SNAKE_CASE ) with self.assertRaises(SCREAMING_SNAKE_CASE ): UpperCamelCase__ : List[str] = text_generator("test" , return_text=SCREAMING_SNAKE_CASE , return_tensors=SCREAMING_SNAKE_CASE ) # Empty prompt is slighly special # it requires BOS token to exist. # Special case for Pegasus which will always append EOS so will # work even without BOS. if ( text_generator.tokenizer.bos_token_id is not None or "Pegasus" in tokenizer.__class__.__name__ or "Git" in model.__class__.__name__ ): UpperCamelCase__ : Optional[Any] = text_generator("" ) self.assertEqual(SCREAMING_SNAKE_CASE , [{"generated_text": ANY(SCREAMING_SNAKE_CASE )}] ) else: with self.assertRaises((ValueError, AssertionError) ): UpperCamelCase__ : Dict = text_generator("" ) if text_generator.framework == "tf": # TF generation does not support max_new_tokens, and it's impossible # to control long generation with only max_length without # fancy calculation, dismissing tests for now. return # We don't care about infinite range models. # They already work. # Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly. UpperCamelCase__ : Tuple = ["RwkvForCausalLM", "XGLMForCausalLM", "GPTNeoXForCausalLM"] if ( tokenizer.model_max_length < 1_00_00 and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS ): # Handling of large generations with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError) ): text_generator("This is a test" * 5_00 , max_new_tokens=20 ) UpperCamelCase__ : Dict = text_generator("This is a test" * 5_00 , handle_long_generation="hole" , max_new_tokens=20 ) # Hole strategy cannot work with self.assertRaises(SCREAMING_SNAKE_CASE ): text_generator( "This is a test" * 5_00 , handle_long_generation="hole" , max_new_tokens=tokenizer.model_max_length + 10 , ) @require_torch @require_accelerate @require_torch_gpu def __lowercase ( self : Tuple ): '''simple docstring''' import torch # Classic `model_kwargs` UpperCamelCase__ : Optional[int] = pipeline( model="hf-internal-testing/tiny-random-bloom" , model_kwargs={"device_map": "auto", "torch_dtype": torch.bfloataa} , ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) UpperCamelCase__ : Tuple = pipe("This is a test" ) self.assertEqual( SCREAMING_SNAKE_CASE , [ { "generated_text": ( "This is a test test test test test test test test test test test test test test test test" " test" ) } ] , ) # Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.) UpperCamelCase__ : List[Any] = pipeline(model="hf-internal-testing/tiny-random-bloom" , device_map="auto" , torch_dtype=torch.bfloataa ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) UpperCamelCase__ : int = pipe("This is a test" ) self.assertEqual( SCREAMING_SNAKE_CASE , [ { "generated_text": ( "This is a test test test test test test test test test test test test test test test test" " test" ) } ] , ) # torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602 UpperCamelCase__ : Union[str, Any] = pipeline(model="hf-internal-testing/tiny-random-bloom" , device_map="auto" ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.floataa ) UpperCamelCase__ : Union[str, Any] = pipe("This is a test" ) self.assertEqual( SCREAMING_SNAKE_CASE , [ { "generated_text": ( "This is a test test test test test test test test test test test test test test test test" " test" ) } ] , ) @require_torch @require_torch_gpu def __lowercase ( self : Any ): '''simple docstring''' import torch UpperCamelCase__ : Tuple = pipeline(model="hf-internal-testing/tiny-random-bloom" , device=0 , torch_dtype=torch.floataa ) pipe("This is a test" ) @require_torch @require_accelerate @require_torch_gpu def __lowercase ( self : List[Any] ): '''simple docstring''' import torch UpperCamelCase__ : Any = pipeline(model="hf-internal-testing/tiny-random-bloom" , device_map="auto" , torch_dtype=torch.floataa ) pipe("This is a test" , do_sample=SCREAMING_SNAKE_CASE , top_p=0.5 ) def __lowercase ( self : Dict ): '''simple docstring''' UpperCamelCase__ : str = "Hello world" UpperCamelCase__ : Any = pipeline("text-generation" , model="hf-internal-testing/tiny-random-gpt2" ) if text_generator.model.framework == "tf": UpperCamelCase__ : List[str] = logging.get_logger("transformers.generation.tf_utils" ) else: UpperCamelCase__ : List[Any] = logging.get_logger("transformers.generation.utils" ) UpperCamelCase__ : Optional[Any] = "Both `max_new_tokens`" # The beggining of the message to be checked in this test # Both are set by the user -> log warning with CaptureLogger(SCREAMING_SNAKE_CASE ) as cl: UpperCamelCase__ : Optional[int] = text_generator(SCREAMING_SNAKE_CASE , max_length=10 , max_new_tokens=1 ) self.assertIn(SCREAMING_SNAKE_CASE , cl.out ) # The user only sets one -> no warning with CaptureLogger(SCREAMING_SNAKE_CASE ) as cl: UpperCamelCase__ : List[str] = text_generator(SCREAMING_SNAKE_CASE , max_new_tokens=1 ) self.assertNotIn(SCREAMING_SNAKE_CASE , cl.out ) with CaptureLogger(SCREAMING_SNAKE_CASE ) as cl: UpperCamelCase__ : List[str] = text_generator(SCREAMING_SNAKE_CASE , max_length=10 ) self.assertNotIn(SCREAMING_SNAKE_CASE , cl.out )
228
0
_lowerCamelCase : Union[str, Any] = "Alexander Joslin" import operator as op from .stack import Stack def _UpperCAmelCase (UpperCamelCase_ : str ): '''simple docstring''' _lowerCAmelCase : Any = {"""*""": op.mul, """/""": op.truediv, """+""": op.add, """-""": op.sub} _lowerCAmelCase : Stack[int] = Stack() _lowerCAmelCase : Stack[str] = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(UpperCamelCase_ ) ) elif i in operators: # RULE 2 operator_stack.push(UpperCamelCase_ ) elif i == ")": # RULE 4 _lowerCAmelCase : int = operator_stack.peek() operator_stack.pop() _lowerCAmelCase : List[str] = operand_stack.peek() operand_stack.pop() _lowerCAmelCase : Union[str, Any] = operand_stack.peek() operand_stack.pop() _lowerCAmelCase : Dict = operators[opr](UpperCamelCase_ , UpperCamelCase_ ) operand_stack.push(UpperCamelCase_ ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": _lowerCamelCase : str = "(5 + ((4 * 2) * (2 + 3)))" # answer = 45 print(F'''{equation} = {dijkstras_two_stack_algorithm(equation)}''')
196
from __future__ import annotations from collections.abc import Iterator from typing import Any class __snake_case : def __init__( self : List[Any] , _UpperCAmelCase : Any ) -> Dict: '''simple docstring''' _lowerCAmelCase : Any = data _lowerCAmelCase : Node | None = None class __snake_case : def __init__( self : Tuple ) -> Tuple: '''simple docstring''' _lowerCAmelCase : str = None _lowerCAmelCase : List[Any] = None def __iter__( self : str ) -> Iterator[Any]: '''simple docstring''' _lowerCAmelCase : Optional[int] = self.head while self.head: yield node.data _lowerCAmelCase : List[str] = node.next if node == self.head: break def __len__( self : Union[str, Any] ) -> int: '''simple docstring''' return sum(1 for _ in self ) def __repr__( self : Optional[int] ) -> str: '''simple docstring''' return "->".join(str(_UpperCAmelCase ) for item in iter(self ) ) def SCREAMING_SNAKE_CASE ( self : Any , _UpperCAmelCase : Any ) -> None: '''simple docstring''' self.insert_nth(len(self ) , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Dict , _UpperCAmelCase : Any ) -> None: '''simple docstring''' self.insert_nth(0 , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : Any ) -> None: '''simple docstring''' if index < 0 or index > len(self ): raise IndexError("""list index out of range.""" ) _lowerCAmelCase : Optional[int] = Node(_UpperCAmelCase ) if self.head is None: _lowerCAmelCase : Tuple = new_node # first node points itself _lowerCAmelCase : int = new_node elif index == 0: # insert at head _lowerCAmelCase : Tuple = self.head _lowerCAmelCase : int = new_node else: _lowerCAmelCase : Union[str, Any] = self.head for _ in range(index - 1 ): _lowerCAmelCase : Optional[Any] = temp.next _lowerCAmelCase : Optional[int] = temp.next _lowerCAmelCase : Optional[int] = new_node if index == len(self ) - 1: # insert at tail _lowerCAmelCase : Optional[Any] = new_node def SCREAMING_SNAKE_CASE ( self : Dict ) -> str: '''simple docstring''' return self.delete_nth(0 ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Any: '''simple docstring''' return self.delete_nth(len(self ) - 1 ) def SCREAMING_SNAKE_CASE ( self : str , _UpperCAmelCase : int = 0 ) -> Any: '''simple docstring''' if not 0 <= index < len(self ): raise IndexError("""list index out of range.""" ) _lowerCAmelCase : Optional[Any] = self.head if self.head == self.tail: # just one node _lowerCAmelCase : Optional[Any] = None elif index == 0: # delete head node _lowerCAmelCase : str = self.tail.next.next _lowerCAmelCase : List[str] = self.head.next else: _lowerCAmelCase : List[str] = self.head for _ in range(index - 1 ): _lowerCAmelCase : List[Any] = temp.next _lowerCAmelCase : List[str] = temp.next _lowerCAmelCase : Dict = temp.next.next if index == len(self ) - 1: # delete at tail _lowerCAmelCase : Optional[int] = temp return delete_node.data def SCREAMING_SNAKE_CASE ( self : int ) -> bool: '''simple docstring''' return len(self ) == 0 def _UpperCAmelCase (): '''simple docstring''' _lowerCAmelCase : Dict = CircularLinkedList() assert len(UpperCamelCase_ ) == 0 assert circular_linked_list.is_empty() is True assert str(UpperCamelCase_ ) == "" try: circular_linked_list.delete_front() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_tail() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_nth(-1 ) raise AssertionError except IndexError: assert True try: circular_linked_list.delete_nth(0 ) raise AssertionError except IndexError: assert True assert circular_linked_list.is_empty() is True for i in range(5 ): assert len(UpperCamelCase_ ) == i circular_linked_list.insert_nth(UpperCamelCase_ , i + 1 ) assert str(UpperCamelCase_ ) == "->".join(str(UpperCamelCase_ ) for i in range(1 , 6 ) ) circular_linked_list.insert_tail(6 ) assert str(UpperCamelCase_ ) == "->".join(str(UpperCamelCase_ ) for i in range(1 , 7 ) ) circular_linked_list.insert_head(0 ) assert str(UpperCamelCase_ ) == "->".join(str(UpperCamelCase_ ) for i in range(0 , 7 ) ) assert circular_linked_list.delete_front() == 0 assert circular_linked_list.delete_tail() == 6 assert str(UpperCamelCase_ ) == "->".join(str(UpperCamelCase_ ) for i in range(1 , 6 ) ) assert circular_linked_list.delete_nth(2 ) == 3 circular_linked_list.insert_nth(2 , 3 ) assert str(UpperCamelCase_ ) == "->".join(str(UpperCamelCase_ ) for i in range(1 , 6 ) ) assert circular_linked_list.is_empty() is False if __name__ == "__main__": import doctest doctest.testmod()
196
1
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def lowercase ( ): '''simple docstring''' UpperCAmelCase : Dict = ArgumentParser("Accelerate CLI tool" , usage="accelerate <command> [<args>]" , allow_abbrev=__magic_name__ ) UpperCAmelCase : Tuple = parser.add_subparsers(help="accelerate command helpers" ) # Register commands get_config_parser(subparsers=__magic_name__ ) env_command_parser(subparsers=__magic_name__ ) launch_command_parser(subparsers=__magic_name__ ) tpu_command_parser(subparsers=__magic_name__ ) test_command_parser(subparsers=__magic_name__ ) # Let's go UpperCAmelCase : Optional[int] = parser.parse_args() if not hasattr(__magic_name__ , "func" ): parser.print_help() exit(1 ) # Run args.func(__magic_name__ ) if __name__ == "__main__": main()
679
'''simple docstring''' import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer a : List[Any] = logging.get_logger(__name__) a : List[Any] = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} a : int = { "vocab_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json", }, "merges_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt", }, "tokenizer_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json", }, } a : Any = { "allenai/led-base-16384": 1_63_84, } class UpperCamelCase__ ( lowercase__ ): """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE__ : Tuple = LEDTokenizer SCREAMING_SNAKE_CASE__ : Union[str, Any] = ["input_ids", "attention_mask"] def __init__( self , snake_case=None , snake_case=None , snake_case=None , snake_case="replace" , snake_case="<s>" , snake_case="</s>" , snake_case="</s>" , snake_case="<s>" , snake_case="<unk>" , snake_case="<pad>" , snake_case="<mask>" , snake_case=False , snake_case=True , **snake_case , ): '''simple docstring''' super().__init__( snake_case , snake_case , tokenizer_file=snake_case , errors=snake_case , bos_token=snake_case , eos_token=snake_case , sep_token=snake_case , cls_token=snake_case , unk_token=snake_case , pad_token=snake_case , mask_token=snake_case , add_prefix_space=snake_case , trim_offsets=snake_case , **snake_case , ) UpperCAmelCase : Any = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , snake_case ) != add_prefix_space: UpperCAmelCase : Tuple = getattr(snake_case , pre_tok_state.pop("type" ) ) UpperCAmelCase : Any = add_prefix_space UpperCAmelCase : str = pre_tok_class(**snake_case ) UpperCAmelCase : int = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` UpperCAmelCase : Dict = "post_processor" UpperCAmelCase : Dict = getattr(self.backend_tokenizer , snake_case , snake_case ) if tokenizer_component_instance: UpperCAmelCase : List[str] = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: UpperCAmelCase : int = tuple(state["sep"] ) if "cls" in state: UpperCAmelCase : Union[str, Any] = tuple(state["cls"] ) UpperCAmelCase : Tuple = False if state.get("add_prefix_space" , snake_case ) != add_prefix_space: UpperCAmelCase : Optional[Any] = add_prefix_space UpperCAmelCase : Optional[int] = True if state.get("trim_offsets" , snake_case ) != trim_offsets: UpperCAmelCase : Tuple = trim_offsets UpperCAmelCase : List[str] = True if changes_to_apply: UpperCAmelCase : Optional[Any] = getattr(snake_case , state.pop("type" ) ) UpperCAmelCase : Tuple = component_class(**snake_case ) setattr(self.backend_tokenizer , snake_case , snake_case ) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def A_ ( self ): '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def A_ ( self , snake_case ): '''simple docstring''' UpperCAmelCase : Tuple = AddedToken(snake_case , lstrip=snake_case , rstrip=snake_case ) if isinstance(snake_case , snake_case ) else value UpperCAmelCase : Optional[Any] = value def A_ ( self , *snake_case , **snake_case ): '''simple docstring''' UpperCAmelCase : List[str] = kwargs.get("is_split_into_words" , snake_case ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*snake_case , **snake_case ) def A_ ( self , *snake_case , **snake_case ): '''simple docstring''' UpperCAmelCase : Union[str, Any] = kwargs.get("is_split_into_words" , snake_case ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._encode_plus(*snake_case , **snake_case ) def A_ ( self , snake_case , snake_case = None ): '''simple docstring''' UpperCAmelCase : str = self._tokenizer.model.save(snake_case , name=snake_case ) return tuple(snake_case ) def A_ ( self , snake_case , snake_case=None ): '''simple docstring''' UpperCAmelCase : Optional[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def A_ ( self , snake_case , snake_case = None ): '''simple docstring''' UpperCAmelCase : Union[str, Any] = [self.sep_token_id] UpperCAmelCase : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def A_ ( self , snake_case , snake_case = None , snake_case = PaddingStrategy.DO_NOT_PAD , snake_case = None , snake_case = None , ): '''simple docstring''' UpperCAmelCase : int = super()._pad( encoded_inputs=snake_case , max_length=snake_case , padding_strategy=snake_case , pad_to_multiple_of=snake_case , return_attention_mask=snake_case , ) # Load from model defaults if return_attention_mask is None: UpperCAmelCase : int = "attention_mask" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: UpperCAmelCase : Union[str, Any] = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. UpperCAmelCase : Optional[int] = len(encoded_inputs["global_attention_mask"] ) != len(snake_case ) if needs_to_be_padded: UpperCAmelCase : Tuple = len(snake_case ) - len(encoded_inputs["global_attention_mask"] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` UpperCAmelCase : List[str] = ( encoded_inputs["global_attention_mask"] + [-1] * difference ) elif self.padding_side == "left": UpperCAmelCase : Any = [-1] * difference + encoded_inputs[ "global_attention_mask" ] else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return encoded_inputs
679
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available, is_vision_available, ) lowerCamelCase__ = {"""configuration_beit""": ["""BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BeitConfig""", """BeitOnnxConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ["""BeitFeatureExtractor"""] lowerCamelCase__ = ["""BeitImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """BEIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """BeitForImageClassification""", """BeitForMaskedImageModeling""", """BeitForSemanticSegmentation""", """BeitModel""", """BeitPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """FlaxBeitForImageClassification""", """FlaxBeitForMaskedImageModeling""", """FlaxBeitModel""", """FlaxBeitPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_beit import BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, BeitConfig, BeitOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_beit import BeitFeatureExtractor from .image_processing_beit import BeitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_beit import ( BEIT_PRETRAINED_MODEL_ARCHIVE_LIST, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, BeitPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_beit import ( FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel, FlaxBeitPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
701
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable lowerCamelCase__ = {"""configuration_dpt""": ["""DPT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """DPTConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ["""DPTFeatureExtractor"""] lowerCamelCase__ = ["""DPTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """DPT_PRETRAINED_MODEL_ARCHIVE_LIST""", """DPTForDepthEstimation""", """DPTForSemanticSegmentation""", """DPTModel""", """DPTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
291
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _UpperCamelCase = logging.get_logger(__name__) class __UpperCAmelCase (__A , __A ): '''simple docstring''' _UpperCamelCase : str = 'maskformer-swin' _UpperCamelCase : int = { 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self , snake_case_=224 , snake_case_=4 , snake_case_=3 , snake_case_=96 , snake_case_=[2, 2, 6, 2] , snake_case_=[3, 6, 12, 24] , snake_case_=7 , snake_case_=4.0 , snake_case_=True , snake_case_=0.0 , snake_case_=0.0 , snake_case_=0.1 , snake_case_="gelu" , snake_case_=False , snake_case_=0.02 , snake_case_=1E-5 , snake_case_=None , snake_case_=None , **snake_case_ , ): '''simple docstring''' super().__init__(**snake_case_ ) A__ : Tuple = image_size A__ : Tuple = patch_size A__ : Union[str, Any] = num_channels A__ : Optional[Any] = embed_dim A__ : Dict = depths A__ : List[str] = len(snake_case_ ) A__ : Optional[Any] = num_heads A__ : Optional[Any] = window_size A__ : List[Any] = mlp_ratio A__ : Dict = qkv_bias A__ : Any = hidden_dropout_prob A__ : Any = attention_probs_dropout_prob A__ : Dict = drop_path_rate A__ : str = hidden_act A__ : str = use_absolute_embeddings A__ : Dict = layer_norm_eps A__ : int = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model A__ : int = int(embed_dim * 2 ** (len(snake_case_ ) - 1) ) A__ : Optional[Any] = ["""stem"""] + [F'''stage{idx}''' for idx in range(1 , len(snake_case_ ) + 1 )] A__ , A__ : Optional[int] = get_aligned_output_features_output_indices( out_features=snake_case_ , out_indices=snake_case_ , stage_names=self.stage_names )
363
"""simple docstring""" import datasets from .evaluate import evaluate _UpperCamelCase = "\\n@article{hendrycks2021cuad,\n title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review},\n author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball},\n journal={arXiv preprint arXiv:2103.06268},\n year={2021}\n}\n" _UpperCamelCase = "\nThis metric wrap the official scoring script for version 1 of the Contract\nUnderstanding Atticus Dataset (CUAD).\nContract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510\ncommercial legal contracts that have been manually labeled to identify 41 categories of important\nclauses that lawyers look for when reviewing contracts in connection with corporate transactions.\n" _UpperCamelCase = "\nComputes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - 'id': id of the question-answer pair as given in the references (see below)\n - 'prediction_text': list of possible texts for the answer, as a list of strings\n depending on a threshold on the confidence probability of each prediction.\n references: List of question-answers dictionaries with the following key-values:\n - 'id': id of the question-answer pair (see above),\n - 'answers': a Dict in the CUAD dataset format\n {\n 'text': list of possible texts for the answer, as a list of strings\n 'answer_start': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n 'exact_match': Exact match (the normalized answer exactly match the gold answer)\n 'f1': The F-score of predicted tokens versus the gold answer\n 'aupr': Area Under the Precision-Recall curve\n 'prec_at_80_recall': Precision at 80% recall\n 'prec_at_90_recall': Precision at 90% recall\nExamples:\n >>> predictions = [{'prediction_text': ['The seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.'], 'id': 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties'}]\n >>> references = [{'answers': {'answer_start': [143, 49], 'text': ['The seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.']}, 'id': 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties'}]\n >>> cuad_metric = datasets.load_metric(\"cuad\")\n >>> results = cuad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'exact_match': 100.0, 'f1': 100.0, 'aupr': 0.0, 'prec_at_80_recall': 1.0, 'prec_at_90_recall': 1.0}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __UpperCAmelCase (datasets.Metric ): '''simple docstring''' def lowerCamelCase ( self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": { """id""": datasets.Value("""string""" ), """prediction_text""": datasets.features.Sequence(datasets.Value("""string""" ) ), }, """references""": { """id""": datasets.Value("""string""" ), """answers""": datasets.features.Sequence( { """text""": datasets.Value("""string""" ), """answer_start""": datasets.Value("""int32""" ), } ), }, } ) , codebase_urls=["""https://www.atticusprojectai.org/cuad"""] , reference_urls=["""https://www.atticusprojectai.org/cuad"""] , ) def lowerCamelCase ( self , snake_case_ , snake_case_ ): '''simple docstring''' A__ : str = {prediction["""id"""]: prediction["""prediction_text"""] for prediction in predictions} A__ : Optional[Any] = [ { """paragraphs""": [ { """qas""": [ { """answers""": [{"""text""": answer_text} for answer_text in ref["""answers"""]["""text"""]], """id""": ref["""id"""], } for ref in references ] } ] } ] A__ : Optional[Any] = evaluate(dataset=snake_case_ , predictions=snake_case_ ) return score
363
1
class _lowerCAmelCase : """simple docstring""" def __init__( self : str , UpperCamelCase__ : list): '''simple docstring''' snake_case__ = set_counts snake_case__ = max(UpperCamelCase__) snake_case__ = len(UpperCamelCase__) snake_case__ = [1] * num_sets snake_case__ = list(range(UpperCamelCase__)) def __magic_name__ ( self : Optional[Any] , UpperCamelCase__ : int , UpperCamelCase__ : int): '''simple docstring''' snake_case__ = self.get_parent(UpperCamelCase__) snake_case__ = self.get_parent(UpperCamelCase__) if src_parent == dst_parent: return False if self.ranks[dst_parent] >= self.ranks[src_parent]: self.set_counts[dst_parent] += self.set_counts[src_parent] snake_case__ = 0 snake_case__ = dst_parent if self.ranks[dst_parent] == self.ranks[src_parent]: self.ranks[dst_parent] += 1 snake_case__ = self.set_counts[dst_parent] else: self.set_counts[src_parent] += self.set_counts[dst_parent] snake_case__ = 0 snake_case__ = src_parent snake_case__ = self.set_counts[src_parent] snake_case__ = max(self.max_set , UpperCamelCase__) return True def __magic_name__ ( self : str , UpperCamelCase__ : int): '''simple docstring''' if self.parents[disj_set] == disj_set: return disj_set snake_case__ = self.get_parent(self.parents[disj_set]) return self.parents[disj_set]
99
import math from typing import Any, Callable, List, Optional, Tuple, Union import numpy as np import torch from ...models import TaFilmDecoder from ...schedulers import DDPMScheduler from ...utils import is_onnx_available, logging, randn_tensor if is_onnx_available(): from ..onnx_utils import OnnxRuntimeModel from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline from .continous_encoder import SpectrogramContEncoder from .notes_encoder import SpectrogramNotesEncoder a__ = logging.get_logger(__name__) # pylint: disable=invalid-name a__ = 2_5_6 class _lowerCAmelCase ( lowercase_ ): """simple docstring""" _lowercase : str = ['''melgan'''] def __init__( self : int , UpperCamelCase__ : SpectrogramNotesEncoder , UpperCamelCase__ : SpectrogramContEncoder , UpperCamelCase__ : TaFilmDecoder , UpperCamelCase__ : DDPMScheduler , UpperCamelCase__ : OnnxRuntimeModel if is_onnx_available() else Any , ): '''simple docstring''' super().__init__() # From MELGAN snake_case__ = math.log(1E-5) # Matches MelGAN training. snake_case__ = 4.0 # Largest value for most examples snake_case__ = 1_2_8 self.register_modules( notes_encoder=UpperCamelCase__ , continuous_encoder=UpperCamelCase__ , decoder=UpperCamelCase__ , scheduler=UpperCamelCase__ , melgan=UpperCamelCase__ , ) def __magic_name__ ( self : Tuple , UpperCamelCase__ : Any , UpperCamelCase__ : int=(-1.0, 1.0) , UpperCamelCase__ : Tuple=False): '''simple docstring''' snake_case__ , snake_case__ = output_range if clip: snake_case__ = torch.clip(UpperCamelCase__ , self.min_value , self.max_value) # Scale to [0, 1]. snake_case__ = (features - self.min_value) / (self.max_value - self.min_value) # Scale to [min_out, max_out]. return zero_one * (max_out - min_out) + min_out def __magic_name__ ( self : Optional[Any] , UpperCamelCase__ : str , UpperCamelCase__ : List[str]=(-1.0, 1.0) , UpperCamelCase__ : Optional[Any]=False): '''simple docstring''' snake_case__ , snake_case__ = input_range snake_case__ = torch.clip(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__) if clip else outputs # Scale to [0, 1]. snake_case__ = (outputs - min_out) / (max_out - min_out) # Scale to [self.min_value, self.max_value]. return zero_one * (self.max_value - self.min_value) + self.min_value def __magic_name__ ( self : Optional[int] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Any): '''simple docstring''' snake_case__ = input_tokens > 0 snake_case__ , snake_case__ = self.notes_encoder( encoder_input_tokens=UpperCamelCase__ , encoder_inputs_mask=UpperCamelCase__) snake_case__ , snake_case__ = self.continuous_encoder( encoder_inputs=UpperCamelCase__ , encoder_inputs_mask=UpperCamelCase__) return [(tokens_encoded, tokens_mask), (continuous_encoded, continuous_mask)] def __magic_name__ ( self : List[Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : Any , UpperCamelCase__ : int): '''simple docstring''' snake_case__ = noise_time if not torch.is_tensor(UpperCamelCase__): snake_case__ = torch.tensor([timesteps] , dtype=torch.long , device=input_tokens.device) elif torch.is_tensor(UpperCamelCase__) and len(timesteps.shape) == 0: snake_case__ = timesteps[None].to(input_tokens.device) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML snake_case__ = timesteps * torch.ones(input_tokens.shape[0] , dtype=timesteps.dtype , device=timesteps.device) snake_case__ = self.decoder( encodings_and_masks=UpperCamelCase__ , decoder_input_tokens=UpperCamelCase__ , decoder_noise_time=UpperCamelCase__) return logits @torch.no_grad() def __call__( self : Dict , UpperCamelCase__ : List[List[int]] , UpperCamelCase__ : Optional[torch.Generator] = None , UpperCamelCase__ : int = 1_0_0 , UpperCamelCase__ : bool = True , UpperCamelCase__ : str = "numpy" , UpperCamelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , UpperCamelCase__ : int = 1 , ): '''simple docstring''' if (callback_steps is None) or ( callback_steps is not None and (not isinstance(UpperCamelCase__ , UpperCamelCase__) or callback_steps <= 0) ): raise ValueError( F'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' F''' {type(UpperCamelCase__)}.''') snake_case__ = np.zeros([1, TARGET_FEATURE_LENGTH, self.n_dims] , dtype=np.floataa) snake_case__ = np.zeros([1, 0, self.n_dims] , np.floataa) snake_case__ = torch.ones((1, TARGET_FEATURE_LENGTH) , dtype=UpperCamelCase__ , device=self.device) for i, encoder_input_tokens in enumerate(UpperCamelCase__): if i == 0: snake_case__ = torch.from_numpy(pred_mel[:1].copy()).to( device=self.device , dtype=self.decoder.dtype) # The first chunk has no previous context. snake_case__ = torch.zeros((1, TARGET_FEATURE_LENGTH) , dtype=UpperCamelCase__ , device=self.device) else: # The full song pipeline does not feed in a context feature, so the mask # will be all 0s after the feature converter. Because we know we're # feeding in a full context chunk from the previous prediction, set it # to all 1s. snake_case__ = ones snake_case__ = self.scale_features( UpperCamelCase__ , output_range=[-1.0, 1.0] , clip=UpperCamelCase__) snake_case__ = self.encode( input_tokens=torch.IntTensor([encoder_input_tokens]).to(device=self.device) , continuous_inputs=UpperCamelCase__ , continuous_mask=UpperCamelCase__ , ) # Sample encoder_continuous_inputs shaped gaussian noise to begin loop snake_case__ = randn_tensor( shape=encoder_continuous_inputs.shape , generator=UpperCamelCase__ , device=self.device , dtype=self.decoder.dtype , ) # set step values self.scheduler.set_timesteps(UpperCamelCase__) # Denoising diffusion loop for j, t in enumerate(self.progress_bar(self.scheduler.timesteps)): snake_case__ = self.decode( encodings_and_masks=UpperCamelCase__ , input_tokens=UpperCamelCase__ , noise_time=t / self.scheduler.config.num_train_timesteps , ) # Compute previous output: x_t -> x_t-1 snake_case__ = self.scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , generator=UpperCamelCase__).prev_sample snake_case__ = self.scale_to_features(UpperCamelCase__ , input_range=[-1.0, 1.0]) snake_case__ = mel[:1] snake_case__ = mel.cpu().float().numpy() snake_case__ = np.concatenate([full_pred_mel, pred_mel[:1]] , axis=1) # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(UpperCamelCase__ , UpperCamelCase__) logger.info("""Generated segment""" , UpperCamelCase__) if output_type == "numpy" and not is_onnx_available(): raise ValueError( """Cannot return output in 'np' format if ONNX is not available. Make sure to have ONNX installed or set 'output_type' to 'mel'.""") elif output_type == "numpy" and self.melgan is None: raise ValueError( """Cannot return output in 'np' format if melgan component is not defined. Make sure to define `self.melgan` or set 'output_type' to 'mel'.""") if output_type == "numpy": snake_case__ = self.melgan(input_features=full_pred_mel.astype(np.floataa)) else: snake_case__ = full_pred_mel if not return_dict: return (output,) return AudioPipelineOutput(audios=UpperCamelCase__)
99
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase ={ "configuration_megatron_bert": ["MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MegatronBertConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase =[ "MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST", "MegatronBertForCausalLM", "MegatronBertForMaskedLM", "MegatronBertForMultipleChoice", "MegatronBertForNextSentencePrediction", "MegatronBertForPreTraining", "MegatronBertForQuestionAnswering", "MegatronBertForSequenceClassification", "MegatronBertForTokenClassification", "MegatronBertModel", "MegatronBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_megatron_bert import ( MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, MegatronBertPreTrainedModel, ) else: import sys UpperCamelCase =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
208
import inspect import unittest from transformers import SegformerConfig, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_MAPPING, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerModel, ) from transformers.models.segformer.modeling_segformer import SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import SegformerImageProcessor class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" def _a ( self : List[str] ): """simple docstring""" A__ = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_snake_case , 'hidden_sizes' ) ) self.parent.assertTrue(hasattr(_snake_case , 'num_attention_heads' ) ) self.parent.assertTrue(hasattr(_snake_case , 'num_encoder_blocks' ) ) class __lowerCAmelCase : """simple docstring""" def __init__( self : Any , _snake_case : str , _snake_case : Union[str, Any]=13 , _snake_case : Any=64 , _snake_case : Optional[Any]=3 , _snake_case : Dict=4 , _snake_case : Tuple=[2, 2, 2, 2] , _snake_case : str=[8, 4, 2, 1] , _snake_case : Union[str, Any]=[16, 32, 64, 1_28] , _snake_case : int=[1, 4, 8, 16] , _snake_case : List[str]=[1, 2, 4, 8] , _snake_case : int=True , _snake_case : int=True , _snake_case : Union[str, Any]="gelu" , _snake_case : Optional[int]=0.1 , _snake_case : Tuple=0.1 , _snake_case : Dict=0.02 , _snake_case : Tuple=3 , _snake_case : int=None , ): """simple docstring""" A__ = parent A__ = batch_size A__ = image_size A__ = num_channels A__ = num_encoder_blocks A__ = sr_ratios A__ = depths A__ = hidden_sizes A__ = downsampling_rates A__ = num_attention_heads A__ = is_training A__ = use_labels A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = initializer_range A__ = num_labels A__ = scope def _a ( self : int ): """simple docstring""" A__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) A__ = self.get_config() return config, pixel_values, labels def _a ( self : int ): """simple docstring""" return SegformerConfig( image_size=self.image_size , num_channels=self.num_channels , num_encoder_blocks=self.num_encoder_blocks , depths=self.depths , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def _a ( self : int , _snake_case : Optional[Any] , _snake_case : int , _snake_case : Any ): """simple docstring""" A__ = SegformerModel(config=_snake_case ) model.to(_snake_case ) model.eval() A__ = model(_snake_case ) A__ = A__ = self.image_size // (self.downsampling_rates[-1] * 2) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], expected_height, expected_width) ) def _a ( self : Union[str, Any] , _snake_case : Union[str, Any] , _snake_case : Tuple , _snake_case : Dict ): """simple docstring""" A__ = self.num_labels A__ = SegformerForSemanticSegmentation(_snake_case ) model.to(_snake_case ) model.eval() A__ = model(_snake_case ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) A__ = model(_snake_case , labels=_snake_case ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) self.parent.assertGreater(result.loss , 0.0 ) def _a ( self : List[str] , _snake_case : Optional[Any] , _snake_case : Union[str, Any] , _snake_case : List[str] ): """simple docstring""" A__ = 1 A__ = SegformerForSemanticSegmentation(config=_snake_case ) model.to(_snake_case ) model.eval() A__ = torch.randint(0 , 1 , (self.batch_size, self.image_size, self.image_size) ).to(_snake_case ) A__ = model(_snake_case , labels=_snake_case ) self.parent.assertGreater(result.loss , 0.0 ) def _a ( self : List[Any] ): """simple docstring""" A__ = self.prepare_config_and_inputs() A__ , A__ , A__ = config_and_inputs A__ = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __lowerCAmelCase ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" A__ : Optional[int] = ( ( SegformerModel, SegformerForSemanticSegmentation, SegformerForImageClassification, ) if is_torch_available() else () ) A__ : Union[str, Any] = ( { "feature-extraction": SegformerModel, "image-classification": SegformerForImageClassification, "image-segmentation": SegformerForSemanticSegmentation, } if is_torch_available() else {} ) A__ : Optional[Any] = True A__ : str = False A__ : Tuple = False A__ : Dict = False def _a ( self : Union[str, Any] ): """simple docstring""" A__ = SegformerModelTester(self ) A__ = SegformerConfigTester(self , config_class=_snake_case ) def _a ( self : Optional[int] ): """simple docstring""" self.config_tester.run_common_tests() def _a ( self : Optional[Any] ): """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def _a ( self : List[Any] ): """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_binary_image_segmentation(*_snake_case ) def _a ( self : Tuple ): """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_segmentation(*_snake_case ) @unittest.skip('SegFormer does not use inputs_embeds' ) def _a ( self : List[Any] ): """simple docstring""" pass @unittest.skip('SegFormer does not have get_input_embeddings method and get_output_embeddings methods' ) def _a ( self : Dict ): """simple docstring""" pass def _a ( self : Dict ): """simple docstring""" A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = model_class(_snake_case ) A__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A__ = [*signature.parameters.keys()] A__ = ['pixel_values'] self.assertListEqual(arg_names[:1] , _snake_case ) def _a ( self : Dict ): """simple docstring""" A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() A__ = True for model_class in self.all_model_classes: A__ = True A__ = False A__ = True A__ = model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): A__ = model(**self._prepare_for_class(_snake_case , _snake_case ) ) A__ = outputs.attentions A__ = sum(self.model_tester.depths ) self.assertEqual(len(_snake_case ) , _snake_case ) # check that output_attentions also work using config del inputs_dict["output_attentions"] A__ = True A__ = model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): A__ = model(**self._prepare_for_class(_snake_case , _snake_case ) ) A__ = outputs.attentions self.assertEqual(len(_snake_case ) , _snake_case ) # verify the first attentions (first block, first layer) A__ = (self.model_tester.image_size // 4) ** 2 A__ = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) # verify the last attentions (last block, last layer) A__ = (self.model_tester.image_size // 32) ** 2 A__ = (self.model_tester.image_size // (32 * self.model_tester.sr_ratios[-1])) ** 2 self.assertListEqual( list(attentions[-1].shape[-3:] ) , [self.model_tester.num_attention_heads[-1], expected_seq_len, expected_reduced_seq_len] , ) A__ = len(_snake_case ) # Check attention is always last and order is fine A__ = True A__ = True A__ = model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): A__ = model(**self._prepare_for_class(_snake_case , _snake_case ) ) self.assertEqual(out_len + 1 , len(_snake_case ) ) A__ = outputs.attentions self.assertEqual(len(_snake_case ) , _snake_case ) # verify the first attentions (first block, first layer) A__ = (self.model_tester.image_size // 4) ** 2 A__ = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) def _a ( self : Union[str, Any] ): """simple docstring""" def check_hidden_states_output(_snake_case : Dict , _snake_case : int , _snake_case : List[Any] ): A__ = model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): A__ = model(**self._prepare_for_class(_snake_case , _snake_case ) ) A__ = outputs.hidden_states A__ = self.model_tester.num_encoder_blocks self.assertEqual(len(_snake_case ) , _snake_case ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.hidden_sizes[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = True check_hidden_states_output(_snake_case , _snake_case , _snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A__ = True check_hidden_states_output(_snake_case , _snake_case , _snake_case ) def _a ( self : Tuple ): """simple docstring""" if not self.model_tester.is_training: return A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() A__ = True for model_class in self.all_model_classes: if model_class in get_values(_snake_case ): continue A__ = model_class(_snake_case ) model.to(_snake_case ) model.train() A__ = self._prepare_for_class(_snake_case , _snake_case , return_labels=_snake_case ) A__ = model(**_snake_case ).loss loss.backward() @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def _a ( self : Optional[Any] ): """simple docstring""" pass @slow def _a ( self : Tuple ): """simple docstring""" for model_name in SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = SegformerModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) def A ( ) -> str: A__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def _a ( self : Dict ): """simple docstring""" A__ = SegformerImageProcessor( image_scale=(5_12, 5_12) , keep_ratio=_snake_case , align=_snake_case , do_random_crop=_snake_case ) A__ = SegformerForSemanticSegmentation.from_pretrained('nvidia/segformer-b0-finetuned-ade-512-512' ).to( _snake_case ) A__ = prepare_img() A__ = image_processor(images=_snake_case , return_tensors='pt' ) A__ = encoded_inputs.pixel_values.to(_snake_case ) with torch.no_grad(): A__ = model(_snake_case ) A__ = torch.Size((1, model.config.num_labels, 1_28, 1_28) ) self.assertEqual(outputs.logits.shape , _snake_case ) A__ = torch.tensor( [ [[-4.6310, -5.5232, -6.2356], [-5.1921, -6.1444, -6.5996], [-5.4424, -6.2790, -6.7574]], [[-12.1391, -13.3122, -13.9554], [-12.8732, -13.9352, -14.3563], [-12.9438, -13.8226, -14.2513]], [[-12.5134, -13.4686, -14.4915], [-12.8669, -14.4343, -14.7758], [-13.2523, -14.5819, -15.0694]], ] ).to(_snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , _snake_case , atol=1E-4 ) ) @slow def _a ( self : Optional[Any] ): """simple docstring""" A__ = SegformerImageProcessor( image_scale=(5_12, 5_12) , keep_ratio=_snake_case , align=_snake_case , do_random_crop=_snake_case ) A__ = SegformerForSemanticSegmentation.from_pretrained( 'nvidia/segformer-b1-finetuned-cityscapes-1024-1024' ).to(_snake_case ) A__ = prepare_img() A__ = image_processor(images=_snake_case , return_tensors='pt' ) A__ = encoded_inputs.pixel_values.to(_snake_case ) with torch.no_grad(): A__ = model(_snake_case ) A__ = torch.Size((1, model.config.num_labels, 1_28, 1_28) ) self.assertEqual(outputs.logits.shape , _snake_case ) A__ = torch.tensor( [ [[-13.5748, -13.9111, -12.6500], [-14.3500, -15.3683, -14.2328], [-14.7532, -16.0424, -15.6087]], [[-17.1651, -15.8725, -12.9653], [-17.2580, -17.3718, -14.8223], [-16.6058, -16.8783, -16.7452]], [[-3.6456, -3.0209, -1.4203], [-3.0797, -3.1959, -2.0000], [-1.8757, -1.9217, -1.6997]], ] ).to(_snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , _snake_case , atol=1E-1 ) ) @slow def _a ( self : Any ): """simple docstring""" A__ = SegformerImageProcessor( image_scale=(5_12, 5_12) , keep_ratio=_snake_case , align=_snake_case , do_random_crop=_snake_case ) A__ = SegformerForSemanticSegmentation.from_pretrained('nvidia/segformer-b0-finetuned-ade-512-512' ).to( _snake_case ) A__ = prepare_img() A__ = image_processor(images=_snake_case , return_tensors='pt' ) A__ = encoded_inputs.pixel_values.to(_snake_case ) with torch.no_grad(): A__ = model(_snake_case ) A__ = outputs.logits.detach().cpu() A__ = image_processor.post_process_semantic_segmentation(outputs=_snake_case , target_sizes=[(5_00, 3_00)] ) A__ = torch.Size((5_00, 3_00) ) self.assertEqual(segmentation[0].shape , _snake_case ) A__ = image_processor.post_process_semantic_segmentation(outputs=_snake_case ) A__ = torch.Size((1_28, 1_28) ) self.assertEqual(segmentation[0].shape , _snake_case )
9
0
'''simple docstring''' from math import sqrt def lowerCamelCase__ ( __lowerCamelCase : int ): '''simple docstring''' assert isinstance(__lowerCamelCase , __lowerCamelCase ) and ( number >= 0 ), "'number' must been an int and positive" _UpperCAmelCase : List[Any] =True # 0 and 1 are none primes. if number <= 1: _UpperCAmelCase : Optional[Any] =False for divisor in range(2 , int(round(sqrt(__lowerCamelCase ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: _UpperCAmelCase : Tuple =False break # precondition assert isinstance(__lowerCamelCase , __lowerCamelCase ), "'status' must been from type bool" return status def lowerCamelCase__ ( __lowerCamelCase : str ): '''simple docstring''' assert isinstance(__lowerCamelCase , __lowerCamelCase ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N _UpperCAmelCase : int =list(range(2 , n + 1 ) ) _UpperCAmelCase : Union[str, Any] =[] # this list will be returns. # actual sieve of erathostenes for i in range(len(__lowerCamelCase ) ): for j in range(i + 1 , len(__lowerCamelCase ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): _UpperCAmelCase : List[Any] =0 # filters actual prime numbers. _UpperCAmelCase : str =[x for x in begin_list if x != 0] # precondition assert isinstance(__lowerCamelCase , __lowerCamelCase ), "'ans' must been from type list" return ans def lowerCamelCase__ ( __lowerCamelCase : str ): '''simple docstring''' assert isinstance(__lowerCamelCase , __lowerCamelCase ) and (n > 2), "'N' must been an int and > 2" _UpperCAmelCase : Any =[] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(__lowerCamelCase ): ans.append(__lowerCamelCase ) # precondition assert isinstance(__lowerCamelCase , __lowerCamelCase ), "'ans' must been from type list" return ans def lowerCamelCase__ ( __lowerCamelCase : Optional[Any] ): '''simple docstring''' assert isinstance(__lowerCamelCase , __lowerCamelCase ) and number >= 0, "'number' must been an int and >= 0" _UpperCAmelCase : Any =[] # this list will be returns of the function. # potential prime number factors. _UpperCAmelCase : int =2 _UpperCAmelCase : Tuple =number if number == 0 or number == 1: ans.append(__lowerCamelCase ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(__lowerCamelCase ): while quotient != 1: if is_prime(__lowerCamelCase ) and (quotient % factor == 0): ans.append(__lowerCamelCase ) quotient /= factor else: factor += 1 else: ans.append(__lowerCamelCase ) # precondition assert isinstance(__lowerCamelCase , __lowerCamelCase ), "'ans' must been from type list" return ans def lowerCamelCase__ ( __lowerCamelCase : Optional[Any] ): '''simple docstring''' assert isinstance(__lowerCamelCase , __lowerCamelCase ) and ( number >= 0 ), "'number' bust been an int and >= 0" _UpperCAmelCase : List[Any] =0 # prime factorization of 'number' _UpperCAmelCase : str =prime_factorization(__lowerCamelCase ) _UpperCAmelCase : str =max(__lowerCamelCase ) # precondition assert isinstance(__lowerCamelCase , __lowerCamelCase ), "'ans' must been from type int" return ans def lowerCamelCase__ ( __lowerCamelCase : List[str] ): '''simple docstring''' assert isinstance(__lowerCamelCase , __lowerCamelCase ) and ( number >= 0 ), "'number' bust been an int and >= 0" _UpperCAmelCase : List[str] =0 # prime factorization of 'number' _UpperCAmelCase : Tuple =prime_factorization(__lowerCamelCase ) _UpperCAmelCase : Optional[int] =min(__lowerCamelCase ) # precondition assert isinstance(__lowerCamelCase , __lowerCamelCase ), "'ans' must been from type int" return ans def lowerCamelCase__ ( __lowerCamelCase : List[Any] ): '''simple docstring''' assert isinstance(__lowerCamelCase , __lowerCamelCase ), "'number' must been an int" assert isinstance(number % 2 == 0 , __lowerCamelCase ), "compare bust been from type bool" return number % 2 == 0 def lowerCamelCase__ ( __lowerCamelCase : List[Any] ): '''simple docstring''' assert isinstance(__lowerCamelCase , __lowerCamelCase ), "'number' must been an int" assert isinstance(number % 2 != 0 , __lowerCamelCase ), "compare bust been from type bool" return number % 2 != 0 def lowerCamelCase__ ( __lowerCamelCase : Optional[Any] ): '''simple docstring''' assert ( isinstance(__lowerCamelCase , __lowerCamelCase ) and (number > 2) and is_even(__lowerCamelCase ) ), "'number' must been an int, even and > 2" _UpperCAmelCase : str =[] # this list will returned # creates a list of prime numbers between 2 up to 'number' _UpperCAmelCase : Optional[int] =get_prime_numbers(__lowerCamelCase ) _UpperCAmelCase : List[str] =len(__lowerCamelCase ) # run variable for while-loops. _UpperCAmelCase : Union[str, Any] =0 _UpperCAmelCase : Optional[int] =None # exit variable. for break up the loops _UpperCAmelCase : Optional[int] =True while i < len_pn and loop: _UpperCAmelCase : Any =i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: _UpperCAmelCase : List[Any] =False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(__lowerCamelCase , __lowerCamelCase ) and (len(__lowerCamelCase ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def lowerCamelCase__ ( __lowerCamelCase : Optional[Any] , __lowerCamelCase : str ): '''simple docstring''' assert ( isinstance(__lowerCamelCase , __lowerCamelCase ) and isinstance(__lowerCamelCase , __lowerCamelCase ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." _UpperCAmelCase : int =0 while numbera != 0: _UpperCAmelCase : int =numbera % numbera _UpperCAmelCase : Optional[int] =numbera _UpperCAmelCase : Tuple =rest # precondition assert isinstance(__lowerCamelCase , __lowerCamelCase ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def lowerCamelCase__ ( __lowerCamelCase : str , __lowerCamelCase : Optional[int] ): '''simple docstring''' assert ( isinstance(__lowerCamelCase , __lowerCamelCase ) and isinstance(__lowerCamelCase , __lowerCamelCase ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." _UpperCAmelCase : Dict =1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' _UpperCAmelCase : int =prime_factorization(__lowerCamelCase ) _UpperCAmelCase : Union[str, Any] =prime_factorization(__lowerCamelCase ) elif numbera == 1 or numbera == 1: _UpperCAmelCase : List[str] =[] _UpperCAmelCase : int =[] _UpperCAmelCase : Any =max(__lowerCamelCase , __lowerCamelCase ) _UpperCAmelCase : List[Any] =0 _UpperCAmelCase : Optional[int] =0 _UpperCAmelCase : List[str] =[] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: _UpperCAmelCase : Optional[Any] =prime_fac_a.count(__lowerCamelCase ) _UpperCAmelCase : str =prime_fac_a.count(__lowerCamelCase ) for _ in range(max(__lowerCamelCase , __lowerCamelCase ) ): ans *= n else: _UpperCAmelCase : Any =prime_fac_a.count(__lowerCamelCase ) for _ in range(__lowerCamelCase ): ans *= n done.append(__lowerCamelCase ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: _UpperCAmelCase : Dict =prime_fac_a.count(__lowerCamelCase ) for _ in range(__lowerCamelCase ): ans *= n done.append(__lowerCamelCase ) # precondition assert isinstance(__lowerCamelCase , __lowerCamelCase ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def lowerCamelCase__ ( __lowerCamelCase : Dict ): '''simple docstring''' assert isinstance(__lowerCamelCase , __lowerCamelCase ) and (n >= 0), "'number' must been a positive int" _UpperCAmelCase : Union[str, Any] =0 _UpperCAmelCase : str =2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(__lowerCamelCase ): ans += 1 # precondition assert isinstance(__lowerCamelCase , __lowerCamelCase ) and is_prime( __lowerCamelCase ), "'ans' must been a prime number and from type int" return ans def lowerCamelCase__ ( __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Tuple ): '''simple docstring''' assert ( is_prime(__lowerCamelCase ) and is_prime(__lowerCamelCase ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" _UpperCAmelCase : int =p_number_a + 1 # jump to the next number _UpperCAmelCase : Any =[] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(__lowerCamelCase ): number += 1 while number < p_number_a: ans.append(__lowerCamelCase ) number += 1 # fetch the next prime number. while not is_prime(__lowerCamelCase ): number += 1 # precondition assert ( isinstance(__lowerCamelCase , __lowerCamelCase ) and ans[0] != p_number_a and ans[len(__lowerCamelCase ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def lowerCamelCase__ ( __lowerCamelCase : List[str] ): '''simple docstring''' assert isinstance(__lowerCamelCase , __lowerCamelCase ) and (n >= 1), "'n' must been int and >= 1" _UpperCAmelCase : str =[] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(__lowerCamelCase ) # precondition assert ans[0] == 1 and ans[len(__lowerCamelCase ) - 1] == n, "Error in function getDivisiors(...)" return ans def lowerCamelCase__ ( __lowerCamelCase : Dict ): '''simple docstring''' assert isinstance(__lowerCamelCase , __lowerCamelCase ) and ( number > 1 ), "'number' must been an int and >= 1" _UpperCAmelCase : List[str] =get_divisors(__lowerCamelCase ) # precondition assert ( isinstance(__lowerCamelCase , __lowerCamelCase ) and (divisors[0] == 1) and (divisors[len(__lowerCamelCase ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def lowerCamelCase__ ( __lowerCamelCase : Dict , __lowerCamelCase : Tuple ): '''simple docstring''' assert ( isinstance(__lowerCamelCase , __lowerCamelCase ) and isinstance(__lowerCamelCase , __lowerCamelCase ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. _UpperCAmelCase : Tuple =gcd(abs(__lowerCamelCase ) , abs(__lowerCamelCase ) ) # precondition assert ( isinstance(__lowerCamelCase , __lowerCamelCase ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def lowerCamelCase__ ( __lowerCamelCase : List[str] ): '''simple docstring''' assert isinstance(__lowerCamelCase , __lowerCamelCase ) and (n >= 0), "'n' must been a int and >= 0" _UpperCAmelCase : Tuple =1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def lowerCamelCase__ ( __lowerCamelCase : str ): '''simple docstring''' assert isinstance(__lowerCamelCase , __lowerCamelCase ) and (n >= 0), "'n' must been an int and >= 0" _UpperCAmelCase : List[str] =0 _UpperCAmelCase : Optional[int] =1 _UpperCAmelCase : int =1 # this will be return for _ in range(n - 1 ): _UpperCAmelCase : Optional[int] =ans ans += fiba _UpperCAmelCase : List[str] =tmp return ans
331
'''simple docstring''' from __future__ import annotations lowercase ='Muhammad Umer Farooq' lowercase ='MIT' lowercase ='1.0.0' lowercase ='Muhammad Umer Farooq' lowercase ='contact@muhammadumerfarooq.me' lowercase ='Alpha' import re from html.parser import HTMLParser from urllib import parse import requests class __magic_name__ ( lowerCAmelCase ): def __init__( self , snake_case) -> None: '''simple docstring''' super().__init__() _UpperCAmelCase : list[str] =[] _UpperCAmelCase : List[Any] =domain def lowerCAmelCase ( self , snake_case , snake_case) -> None: '''simple docstring''' # Only parse the 'anchor' tag. if tag == "a": # Check the list of defined attributes. for name, value in attrs: # If href is defined, and not empty nor # print it. if name == "href" and value != "#" and value != "": # If not already in urls. if value not in self.urls: _UpperCAmelCase : Optional[int] =parse.urljoin(self.domain , snake_case) self.urls.append(snake_case) def lowerCamelCase__ ( __lowerCamelCase : str ): '''simple docstring''' return ".".join(get_sub_domain_name(__lowerCamelCase ).split('.' )[-2:] ) def lowerCamelCase__ ( __lowerCamelCase : str ): '''simple docstring''' return parse.urlparse(__lowerCamelCase ).netloc def lowerCamelCase__ ( __lowerCamelCase : str = "https://github.com" ): '''simple docstring''' _UpperCAmelCase : Optional[Any] =get_domain_name(__lowerCamelCase ) # Initialize the parser _UpperCAmelCase : Optional[Any] =Parser(__lowerCamelCase ) try: # Open URL _UpperCAmelCase : Any =requests.get(__lowerCamelCase ) # pass the raw HTML to the parser to get links parser.feed(r.text ) # Get links and loop through _UpperCAmelCase : Dict =set() for link in parser.urls: # open URL. # read = requests.get(link) try: _UpperCAmelCase : Dict =requests.get(__lowerCamelCase ) # Get the valid email. _UpperCAmelCase : List[str] =re.findall('[a-zA-Z0-9]+@' + domain , read.text ) # If not in list then append it. for email in emails: valid_emails.add(__lowerCamelCase ) except ValueError: pass except ValueError: raise SystemExit(1 ) # Finally return a sorted list of email addresses with no duplicates. return sorted(__lowerCamelCase ) if __name__ == "__main__": lowercase =emails_from_url('https://github.com') print(F"""{len(emails)} emails found:""") print('\n'.join(sorted(emails)))
331
1
'''simple docstring''' from __future__ import annotations __a = list[list[int]] # assigning initial values to the grid __a = [ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution __a = [ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> bool: for i in range(9 ): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3 ): for j in range(3 ): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def __snake_case( _lowerCAmelCase ) -> tuple[int, int] | None: for i in range(9 ): for j in range(9 ): if grid[i][j] == 0: return i, j return None def __snake_case( _lowerCAmelCase ) -> Matrix | None: if location := find_empty_location(_lowerCAmelCase ): snake_case__ , snake_case__ : Any = location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1 , 10 ): if is_safe(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): snake_case__ : List[Any] = digit if sudoku(_lowerCAmelCase ) is not None: return grid snake_case__ : List[Any] = 0 return None def __snake_case( _lowerCAmelCase ) -> None: for row in grid: for cell in row: print(_lowerCAmelCase , end=""" """ ) print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for example_grid in (initial_grid, no_solution): print("\nExample grid:\n" + "=" * 20) print_solution(example_grid) print("\nExample grid solution:") __a = sudoku(example_grid) if solution is not None: print_solution(solution) else: print("Cannot find a solution.")
374
'''simple docstring''' import os from tempfile import TemporaryDirectory from unittest import TestCase import pytest from absl.testing import parameterized from datasets import config from datasets.arrow_reader import HF_GCP_BASE_URL from datasets.builder import DatasetBuilder from datasets.dataset_dict import IterableDatasetDict from datasets.iterable_dataset import IterableDataset from datasets.load import dataset_module_factory, import_main_class from datasets.utils.file_utils import cached_path __a = [ {"dataset": "wikipedia", "config_name": "20220301.de"}, {"dataset": "wikipedia", "config_name": "20220301.en"}, {"dataset": "wikipedia", "config_name": "20220301.fr"}, {"dataset": "wikipedia", "config_name": "20220301.frr"}, {"dataset": "wikipedia", "config_name": "20220301.it"}, {"dataset": "wikipedia", "config_name": "20220301.simple"}, {"dataset": "snli", "config_name": "plain_text"}, {"dataset": "eli5", "config_name": "LFQA_reddit"}, {"dataset": "wiki40b", "config_name": "en"}, {"dataset": "wiki_dpr", "config_name": "psgs_w100.nq.compressed"}, {"dataset": "wiki_dpr", "config_name": "psgs_w100.nq.no_index"}, {"dataset": "wiki_dpr", "config_name": "psgs_w100.multiset.no_index"}, {"dataset": "natural_questions", "config_name": "default"}, ] def __snake_case( _lowerCAmelCase=True ) -> Dict: if with_config: return [ { "testcase_name": d["dataset"] + "/" + d["config_name"], "dataset": d["dataset"], "config_name": d["config_name"], } for d in DATASETS_ON_HF_GCP ] else: return [ {"testcase_name": dataset, "dataset": dataset} for dataset in {d["dataset"] for d in DATASETS_ON_HF_GCP} ] @parameterized.named_parameters(list_datasets_on_hf_gcp_parameters(with_config=_a ) ) class UpperCAmelCase_ ( _a ): """simple docstring""" lowercase = None lowercase = None def lowerCamelCase ( self : List[Any] , snake_case_ : Union[str, Any] , snake_case_ : Optional[int] ): with TemporaryDirectory() as tmp_dir: snake_case__ : Dict = dataset_module_factory(snake_case_ , cache_dir=snake_case_ ) snake_case__ : Optional[int] = import_main_class(dataset_module.module_path , dataset=snake_case_ ) snake_case__ : DatasetBuilder = builder_cls( cache_dir=snake_case_ , config_name=snake_case_ , hash=dataset_module.hash , ) snake_case__ : Dict = """/""".join( [ HF_GCP_BASE_URL, builder_instance._relative_data_dir(with_hash=snake_case_ ).replace(os.sep , """/""" ), config.DATASET_INFO_FILENAME, ] ) snake_case__ : List[str] = cached_path(snake_case_ , cache_dir=snake_case_ ) self.assertTrue(os.path.exists(snake_case_ ) ) @pytest.mark.integration def __snake_case( _lowerCAmelCase ) -> Tuple: snake_case__ : Optional[int] = tmp_path_factory.mktemp("""test_hf_gcp""" ) / """test_wikipedia_simple""" snake_case__ : Dict = dataset_module_factory("""wikipedia""" , cache_dir=_lowerCAmelCase ) snake_case__ : Dict = import_main_class(dataset_module.module_path ) snake_case__ : DatasetBuilder = builder_cls( cache_dir=_lowerCAmelCase , config_name="""20220301.frr""" , hash=dataset_module.hash , ) # use the HF cloud storage, not the original download_and_prepare that uses apache-beam snake_case__ : Any = None builder_instance.download_and_prepare() snake_case__ : Union[str, Any] = builder_instance.as_dataset() assert ds @pytest.mark.integration def __snake_case( _lowerCAmelCase ) -> List[str]: snake_case__ : Optional[int] = dataset_module_factory("""wikipedia""" , cache_dir=_lowerCAmelCase ) snake_case__ : List[str] = import_main_class(dataset_module.module_path , dataset=_lowerCAmelCase ) snake_case__ : DatasetBuilder = builder_cls( cache_dir=_lowerCAmelCase , config_name="""20220301.frr""" , hash=dataset_module.hash , ) snake_case__ : Any = builder_instance.as_streaming_dataset() assert ds assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) assert "train" in ds assert isinstance(ds["""train"""] , _lowerCAmelCase ) assert next(iter(ds["""train"""] ) )
374
1
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class a ( _lowerCamelCase ): snake_case_ = ["image_processor", "tokenizer"] snake_case_ = "CLIPImageProcessor" snake_case_ = ("XLMRobertaTokenizer", "XLMRobertaTokenizerFast") def __init__( self : Optional[int] , lowercase_ : Dict=None , lowercase_ : str=None , **lowercase_ : Union[str, Any] ): snake_case_ = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , UpperCAmelCase__ , ) snake_case_ = kwargs.pop('''feature_extractor''' ) snake_case_ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(UpperCAmelCase__ , UpperCAmelCase__ ) def __call__( self : str , lowercase_ : List[str]=None , lowercase_ : List[str]=None , lowercase_ : List[str]=None , **lowercase_ : Dict ): if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: snake_case_ = self.tokenizer(UpperCAmelCase__ , return_tensors=UpperCAmelCase__ , **UpperCAmelCase__ ) if images is not None: snake_case_ = self.image_processor(UpperCAmelCase__ , return_tensors=UpperCAmelCase__ , **UpperCAmelCase__ ) if text is not None and images is not None: snake_case_ = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCAmelCase__ ) , tensor_type=UpperCAmelCase__ ) def A_ ( self : Tuple , *lowercase_ : Optional[int] , **lowercase_ : Optional[Any] ): return self.tokenizer.batch_decode(*UpperCAmelCase__ , **UpperCAmelCase__ ) def A_ ( self : int , *lowercase_ : str , **lowercase_ : Any ): return self.tokenizer.decode(*UpperCAmelCase__ , **UpperCAmelCase__ ) @property def A_ ( self : Tuple ): snake_case_ = self.tokenizer.model_input_names snake_case_ = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
721
'''simple docstring''' import logging import os from typing import Dict, List, Optional, Union import torch import torch.nn as nn from accelerate.utils.imports import ( is_abit_bnb_available, is_abit_bnb_available, is_bnb_available, ) from ..big_modeling import dispatch_model, init_empty_weights from .dataclasses import BnbQuantizationConfig from .modeling import ( find_tied_parameters, get_balanced_memory, infer_auto_device_map, load_checkpoint_in_model, offload_weight, set_module_tensor_to_device, ) if is_bnb_available(): import bitsandbytes as bnb from copy import deepcopy a : Dict = logging.getLogger(__name__) def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase = None, __UpperCAmelCase = None, __UpperCAmelCase = None, __UpperCAmelCase = None, __UpperCAmelCase = None, __UpperCAmelCase = False, ) -> Tuple: '''simple docstring''' snake_case_ = bnb_quantization_config.load_in_abit snake_case_ = bnb_quantization_config.load_in_abit if load_in_abit and not is_abit_bnb_available(): raise ImportError( '''You have a version of `bitsandbytes` that is not compatible with 8bit quantization,''' ''' make sure you have the latest version of `bitsandbytes` installed.''' ) if load_in_abit and not is_abit_bnb_available(): raise ValueError( '''You have a version of `bitsandbytes` that is not compatible with 4bit quantization,''' '''make sure you have the latest version of `bitsandbytes` installed.''' ) snake_case_ = [] # custom device map if isinstance(__UpperCAmelCase, __UpperCAmelCase ) and len(device_map.keys() ) > 1: snake_case_ = [key for key, value in device_map.items() if value in ['''disk''', '''cpu''']] # We keep some modules such as the lm_head in their original dtype for numerical stability reasons if bnb_quantization_config.skip_modules is None: snake_case_ = get_keys_to_not_convert(__UpperCAmelCase ) # add cpu modules to skip modules only for 4-bit modules if load_in_abit: bnb_quantization_config.skip_modules.extend(__UpperCAmelCase ) snake_case_ = bnb_quantization_config.skip_modules # We add the modules we want to keep in full precision if bnb_quantization_config.keep_in_fpaa_modules is None: snake_case_ = [] snake_case_ = bnb_quantization_config.keep_in_fpaa_modules modules_to_not_convert.extend(__UpperCAmelCase ) # compatibility with peft snake_case_ = load_in_abit snake_case_ = load_in_abit snake_case_ = get_parameter_device(__UpperCAmelCase ) if model_device.type != "meta": # quantization of an already loaded model logger.warning( '''It is not recommended to quantize a loaded model. ''' '''The model should be instantiated under the `init_empty_weights` context manager.''' ) snake_case_ = replace_with_bnb_layers(__UpperCAmelCase, __UpperCAmelCase, modules_to_not_convert=__UpperCAmelCase ) # convert param to the right dtype snake_case_ = bnb_quantization_config.torch_dtype for name, param in model.state_dict().items(): if any(module_to_keep_in_fpaa in name for module_to_keep_in_fpaa in keep_in_fpaa_modules ): param.to(torch.floataa ) if param.dtype != torch.floataa: snake_case_ = name.replace('''.weight''', '''''' ).replace('''.bias''', '''''' ) snake_case_ = getattr(__UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ) if param is not None: param.to(torch.floataa ) elif torch.is_floating_point(__UpperCAmelCase ): param.to(__UpperCAmelCase ) if model_device.type == "cuda": # move everything to cpu in the first place because we can't do quantization if the weights are already on cuda model.cuda(torch.cuda.current_device() ) torch.cuda.empty_cache() elif torch.cuda.is_available(): model.to(torch.cuda.current_device() ) else: raise RuntimeError('''No GPU found. A GPU is needed for quantization.''' ) logger.info( F"The model device type is {model_device.type}. However, cuda is needed for quantization." '''We move the model to cuda.''' ) return model elif weights_location is None: raise RuntimeError( F"`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} " ) else: with init_empty_weights(): snake_case_ = replace_with_bnb_layers( __UpperCAmelCase, __UpperCAmelCase, modules_to_not_convert=__UpperCAmelCase ) snake_case_ = get_quantized_model_device_map( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, max_memory=__UpperCAmelCase, no_split_module_classes=__UpperCAmelCase, ) if offload_state_dict is None and device_map is not None and "disk" in device_map.values(): snake_case_ = True snake_case_ = any(x in list(device_map.values() ) for x in ['''cpu''', '''disk'''] ) load_checkpoint_in_model( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, dtype=bnb_quantization_config.torch_dtype, offload_folder=__UpperCAmelCase, offload_state_dict=__UpperCAmelCase, keep_in_fpaa_modules=bnb_quantization_config.keep_in_fpaa_modules, offload_abit_bnb=load_in_abit and offload, ) return dispatch_model(__UpperCAmelCase, device_map=__UpperCAmelCase, offload_dir=__UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase=None, __UpperCAmelCase=None, __UpperCAmelCase=None ) -> Optional[int]: '''simple docstring''' if device_map is None: if torch.cuda.is_available(): snake_case_ = {'''''': torch.cuda.current_device()} else: raise RuntimeError('''No GPU found. A GPU is needed for quantization.''' ) logger.info('''The device_map was not initialized.''' '''Setting device_map to `{\'\':torch.cuda.current_device()}`.''' ) if isinstance(__UpperCAmelCase, __UpperCAmelCase ): if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]: raise ValueError( '''If passing a string for `device_map`, please choose \'auto\', \'balanced\', \'balanced_low_0\' or ''' '''\'sequential\'.''' ) snake_case_ = {} special_dtypes.update( { name: bnb_quantization_config.torch_dtype for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.skip_modules ) } ) special_dtypes.update( { name: torch.floataa for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.keep_in_fpaa_modules ) } ) snake_case_ = {} snake_case_ = special_dtypes snake_case_ = no_split_module_classes snake_case_ = bnb_quantization_config.target_dtype # get max_memory for each device. if device_map != "sequential": snake_case_ = get_balanced_memory( __UpperCAmelCase, low_zero=(device_map == '''balanced_low_0'''), max_memory=__UpperCAmelCase, **__UpperCAmelCase, ) snake_case_ = max_memory snake_case_ = infer_auto_device_map(__UpperCAmelCase, **__UpperCAmelCase ) if isinstance(__UpperCAmelCase, __UpperCAmelCase ): # check if don't have any quantized module on the cpu snake_case_ = bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fpaa_modules snake_case_ = { key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert } for device in ["cpu", "disk"]: if device in device_map_without_some_modules.values(): if bnb_quantization_config.load_in_abit: raise ValueError( ''' Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit the quantized model. If you want to dispatch the model on the CPU or the disk while keeping these modules in `torch_dtype`, you need to pass a custom `device_map` to `load_and_quantize_model`. Check https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk for more details. ''' ) else: logger.info( '''Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit''' ) del device_map_without_some_modules return device_map def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase=None, __UpperCAmelCase=None ) -> List[Any]: '''simple docstring''' if modules_to_not_convert is None: snake_case_ = [] snake_case_ ,snake_case_ = _replace_with_bnb_layers( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ) if not has_been_replaced: logger.warning( '''You are loading your model in 8bit or 4bit but no linear modules were found in your model.''' ''' this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers.''' ''' Please double check your model architecture, or submit an issue on github if you think this is''' ''' a bug.''' ) return model def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase=None, __UpperCAmelCase=None, ) -> str: '''simple docstring''' snake_case_ = False for name, module in model.named_children(): if current_key_name is None: snake_case_ = [] current_key_name.append(__UpperCAmelCase ) if isinstance(__UpperCAmelCase, nn.Linear ) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` snake_case_ = '''.'''.join(__UpperCAmelCase ) snake_case_ = True for key in modules_to_not_convert: if ( (key in current_key_name_str) and (key + "." in current_key_name_str) ) or key == current_key_name_str: snake_case_ = False break if proceed: # Load bnb module with empty weight and replace ``nn.Linear` module if bnb_quantization_config.load_in_abit: snake_case_ = bnb.nn.LinearabitLt( module.in_features, module.out_features, module.bias is not None, has_fpaa_weights=__UpperCAmelCase, threshold=bnb_quantization_config.llm_inta_threshold, ) elif bnb_quantization_config.load_in_abit: snake_case_ = bnb.nn.Linearabit( module.in_features, module.out_features, module.bias is not None, bnb_quantization_config.bnb_abit_compute_dtype, compress_statistics=bnb_quantization_config.bnb_abit_use_double_quant, quant_type=bnb_quantization_config.bnb_abit_quant_type, ) else: raise ValueError('''load_in_8bit and load_in_4bit can\'t be both False''' ) snake_case_ = module.weight.data if module.bias is not None: snake_case_ = module.bias.data bnb_module.requires_grad_(__UpperCAmelCase ) setattr(__UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ) snake_case_ = True if len(list(module.children() ) ) > 0: snake_case_ ,snake_case_ = _replace_with_bnb_layers( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ) snake_case_ = has_been_replaced | _has_been_replaced # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def __magic_name__ ( __UpperCAmelCase ) -> List[str]: '''simple docstring''' with init_empty_weights(): snake_case_ = deepcopy(__UpperCAmelCase ) # this has 0 cost since it is done inside `init_empty_weights` context manager` snake_case_ = find_tied_parameters(__UpperCAmelCase ) # For compatibility with Accelerate < 0.18 if isinstance(__UpperCAmelCase, __UpperCAmelCase ): snake_case_ = sum(list(tied_params.values() ), [] ) + list(tied_params.keys() ) else: snake_case_ = sum(__UpperCAmelCase, [] ) snake_case_ = len(__UpperCAmelCase ) > 0 # Check if it is a base model snake_case_ = False if hasattr(__UpperCAmelCase, '''base_model_prefix''' ): snake_case_ = not hasattr(__UpperCAmelCase, model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head snake_case_ = list(model.named_children() ) snake_case_ = [list_modules[-1][0]] # add last module together with tied weights snake_case_ = set(__UpperCAmelCase ) - set(__UpperCAmelCase ) snake_case_ = list(set(__UpperCAmelCase ) ) + list(__UpperCAmelCase ) # remove ".weight" from the keys snake_case_ = ['''.weight''', '''.bias'''] snake_case_ = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: snake_case_ = name.replace(__UpperCAmelCase, '''''' ) filtered_module_names.append(__UpperCAmelCase ) return filtered_module_names def __magic_name__ ( __UpperCAmelCase ) -> Any: '''simple docstring''' for m in model.modules(): if isinstance(__UpperCAmelCase, bnb.nn.Linearabit ): return True return False def __magic_name__ ( __UpperCAmelCase ) -> str: '''simple docstring''' return next(parameter.parameters() ).device def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ) -> Tuple: '''simple docstring''' if fpaa_statistics is None: set_module_tensor_to_device(__UpperCAmelCase, __UpperCAmelCase, 0, dtype=__UpperCAmelCase, value=__UpperCAmelCase ) snake_case_ = param_name snake_case_ = model if "." in tensor_name: snake_case_ = tensor_name.split('''.''' ) for split in splits[:-1]: snake_case_ = getattr(__UpperCAmelCase, __UpperCAmelCase ) if new_module is None: raise ValueError(F"{module} has no attribute {split}." ) snake_case_ = new_module snake_case_ = splits[-1] # offload weights snake_case_ = False offload_weight(module._parameters[tensor_name], __UpperCAmelCase, __UpperCAmelCase, index=__UpperCAmelCase ) if hasattr(module._parameters[tensor_name], '''SCB''' ): offload_weight( module._parameters[tensor_name].SCB, param_name.replace('''weight''', '''SCB''' ), __UpperCAmelCase, index=__UpperCAmelCase, ) else: offload_weight(__UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, index=__UpperCAmelCase ) offload_weight(__UpperCAmelCase, param_name.replace('''weight''', '''SCB''' ), __UpperCAmelCase, index=__UpperCAmelCase ) set_module_tensor_to_device(__UpperCAmelCase, __UpperCAmelCase, '''meta''', dtype=__UpperCAmelCase, value=torch.empty(*param.size() ) )
593
0
import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.text import TextDatasetReader from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def a_ ( lowerCAmelCase_ : Optional[Any], lowerCAmelCase_ : Optional[Any] ): assert isinstance(lowerCAmelCase_, lowerCAmelCase_ ) assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory', [False, True] ) def a_ ( lowerCAmelCase_ : int, lowerCAmelCase_ : str, lowerCAmelCase_ : int ): __lowerCAmelCase = tmp_path / 'cache' __lowerCAmelCase = {'text': 'string'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __lowerCAmelCase = TextDatasetReader(lowerCAmelCase_, cache_dir=lowerCAmelCase_, keep_in_memory=lowerCAmelCase_ ).read() _check_text_dataset(lowerCAmelCase_, lowerCAmelCase_ ) @pytest.mark.parametrize( 'features', [ None, {'text': 'string'}, {'text': 'int32'}, {'text': 'float32'}, ], ) def a_ ( lowerCAmelCase_ : Any, lowerCAmelCase_ : Dict, lowerCAmelCase_ : Union[str, Any] ): __lowerCAmelCase = tmp_path / 'cache' __lowerCAmelCase = {'text': 'string'} __lowerCAmelCase = features.copy() if features else default_expected_features __lowerCAmelCase = ( Features({feature: Value(lowerCAmelCase_ ) for feature, dtype in features.items()} ) if features is not None else None ) __lowerCAmelCase = TextDatasetReader(lowerCAmelCase_, features=lowerCAmelCase_, cache_dir=lowerCAmelCase_ ).read() _check_text_dataset(lowerCAmelCase_, lowerCAmelCase_ ) @pytest.mark.parametrize('split', [None, NamedSplit('train' ), 'train', 'test'] ) def a_ ( lowerCAmelCase_ : List[Any], lowerCAmelCase_ : List[str], lowerCAmelCase_ : Any ): __lowerCAmelCase = tmp_path / 'cache' __lowerCAmelCase = {'text': 'string'} __lowerCAmelCase = TextDatasetReader(lowerCAmelCase_, cache_dir=lowerCAmelCase_, split=lowerCAmelCase_ ).read() _check_text_dataset(lowerCAmelCase_, lowerCAmelCase_ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('path_type', [str, list] ) def a_ ( lowerCAmelCase_ : Dict, lowerCAmelCase_ : Any, lowerCAmelCase_ : Dict ): if issubclass(lowerCAmelCase_, lowerCAmelCase_ ): __lowerCAmelCase = text_path elif issubclass(lowerCAmelCase_, lowerCAmelCase_ ): __lowerCAmelCase = [text_path] __lowerCAmelCase = tmp_path / 'cache' __lowerCAmelCase = {'text': 'string'} __lowerCAmelCase = TextDatasetReader(lowerCAmelCase_, cache_dir=lowerCAmelCase_ ).read() _check_text_dataset(lowerCAmelCase_, lowerCAmelCase_ ) def a_ ( lowerCAmelCase_ : str, lowerCAmelCase_ : int, lowerCAmelCase_ : Tuple=("train",) ): assert isinstance(lowerCAmelCase_, lowerCAmelCase_ ) for split in splits: __lowerCAmelCase = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory', [False, True] ) def a_ ( lowerCAmelCase_ : Tuple, lowerCAmelCase_ : Union[str, Any], lowerCAmelCase_ : Dict ): __lowerCAmelCase = tmp_path / 'cache' __lowerCAmelCase = {'text': 'string'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __lowerCAmelCase = TextDatasetReader({'train': text_path}, cache_dir=lowerCAmelCase_, keep_in_memory=lowerCAmelCase_ ).read() _check_text_datasetdict(lowerCAmelCase_, lowerCAmelCase_ ) @pytest.mark.parametrize( 'features', [ None, {'text': 'string'}, {'text': 'int32'}, {'text': 'float32'}, ], ) def a_ ( lowerCAmelCase_ : Optional[int], lowerCAmelCase_ : Union[str, Any], lowerCAmelCase_ : List[Any] ): __lowerCAmelCase = tmp_path / 'cache' # CSV file loses col_1 string dtype information: default now is "int64" instead of "string" __lowerCAmelCase = {'text': 'string'} __lowerCAmelCase = features.copy() if features else default_expected_features __lowerCAmelCase = ( Features({feature: Value(lowerCAmelCase_ ) for feature, dtype in features.items()} ) if features is not None else None ) __lowerCAmelCase = TextDatasetReader({'train': text_path}, features=lowerCAmelCase_, cache_dir=lowerCAmelCase_ ).read() _check_text_datasetdict(lowerCAmelCase_, lowerCAmelCase_ ) @pytest.mark.parametrize('split', [None, NamedSplit('train' ), 'train', 'test'] ) def a_ ( lowerCAmelCase_ : int, lowerCAmelCase_ : str, lowerCAmelCase_ : Optional[int] ): if split: __lowerCAmelCase = {split: text_path} else: __lowerCAmelCase = 'train' __lowerCAmelCase = {'train': text_path, 'test': text_path} __lowerCAmelCase = tmp_path / 'cache' __lowerCAmelCase = {'text': 'string'} __lowerCAmelCase = TextDatasetReader(lowerCAmelCase_, cache_dir=lowerCAmelCase_ ).read() _check_text_datasetdict(lowerCAmelCase_, lowerCAmelCase_, splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() )
53
'''simple docstring''' import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() __lowerCamelCase : int = logging.get_logger() @dataclass class A_ : """simple docstring""" a__ = 42 a__ = field(default_factory=a_ ) a__ = field(default_factory=a_ ) def _A ( self :List[Any] , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Tensor , lowerCAmelCase__ :Tensor ) -> int: '''simple docstring''' snake_case_ : int = len(list(m.modules() ) ) == 1 or isinstance(lowerCAmelCase__ , nn.Convad ) or isinstance(lowerCAmelCase__ , nn.BatchNormad ) if has_not_submodules: self.traced.append(lowerCAmelCase__ ) def __call__( self :List[Any] , lowerCAmelCase__ :Tensor ) -> Union[str, Any]: '''simple docstring''' for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(lowerCAmelCase__ ) [x.remove() for x in self.handles] return self @property def _A ( self :int ) -> List[Any]: '''simple docstring''' return list(filter(lambda lowerCAmelCase__ : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class A_ : """simple docstring""" a__ = 42 a__ = 42 a__ = 0 a__ = field(default_factory=a_ ) a__ = field(default_factory=a_ ) def __call__( self :Tuple , lowerCAmelCase__ :Tensor ) -> Tuple: '''simple docstring''' snake_case_ : List[Any] = Tracker(self.dest )(lowerCAmelCase__ ).parametrized snake_case_ : Tuple = Tracker(self.src )(lowerCAmelCase__ ).parametrized snake_case_ : List[str] = list(filter(lambda lowerCAmelCase__ : type(lowerCAmelCase__ ) not in self.src_skip , lowerCAmelCase__ ) ) snake_case_ : Tuple = list(filter(lambda lowerCAmelCase__ : type(lowerCAmelCase__ ) not in self.dest_skip , lowerCAmelCase__ ) ) if len(lowerCAmelCase__ ) != len(lowerCAmelCase__ ): raise Exception( F'''Numbers of operations are different. Source module has {len(lowerCAmelCase__ )} operations while''' F''' destination module has {len(lowerCAmelCase__ )}.''' ) for dest_m, src_m in zip(lowerCAmelCase__ , lowerCAmelCase__ ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(F'''Transfered from={src_m} to={dest_m}''' ) def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ = True )-> Optional[int]: """simple docstring""" print(F'''Converting {name}...''' ) with torch.no_grad(): snake_case_ : List[str] = timm.create_model(__magic_name__ ,pretrained=__magic_name__ ).eval() snake_case_ : Optional[int] = ResNetForImageClassification(__magic_name__ ).eval() snake_case_ : Dict = ModuleTransfer(src=__magic_name__ ,dest=__magic_name__ ) snake_case_ : Optional[int] = torch.randn((1, 3, 224, 224) ) module_transfer(__magic_name__ ) assert torch.allclose(from_model(__magic_name__ ) ,our_model(__magic_name__ ).logits ), "The model logits don't match the original one." snake_case_ : str = F'''resnet{'-'.join(name.split('resnet' ) )}''' print(__magic_name__ ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name ,commit_message="Add model" ,use_temp_dir=__magic_name__ ,) # we can use the convnext one snake_case_ : Optional[Any] = AutoImageProcessor.from_pretrained("facebook/convnext-base-224-22k-1k" ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name ,commit_message="Add image processor" ,use_temp_dir=__magic_name__ ,) print(F'''Pushed {checkpoint_name}''' ) def __UpperCAmelCase ( __magic_name__ ,__magic_name__ = None ,__magic_name__ = True )-> Tuple: """simple docstring""" snake_case_ : List[str] = "imagenet-1k-id2label.json" snake_case_ : Optional[Any] = 1000 snake_case_ : List[Any] = (1, num_labels) snake_case_ : Optional[Any] = "huggingface/label-files" snake_case_ : Dict = num_labels snake_case_ : List[Any] = json.load(open(hf_hub_download(__magic_name__ ,__magic_name__ ,repo_type="dataset" ) ,"r" ) ) snake_case_ : List[str] = {int(__magic_name__ ): v for k, v in idalabel.items()} snake_case_ : Any = idalabel snake_case_ : List[Any] = {v: k for k, v in idalabel.items()} snake_case_ : Optional[int] = partial(__magic_name__ ,num_labels=__magic_name__ ,idalabel=__magic_name__ ,labelaid=__magic_name__ ) snake_case_ : Optional[int] = { "resnet18": ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] ,hidden_sizes=[64, 128, 256, 512] ,layer_type="basic" ), "resnet26": ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] ,hidden_sizes=[256, 512, 1024, 2048] ,layer_type="bottleneck" ), "resnet34": ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] ,hidden_sizes=[64, 128, 256, 512] ,layer_type="basic" ), "resnet50": ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] ,hidden_sizes=[256, 512, 1024, 2048] ,layer_type="bottleneck" ), "resnet101": ImageNetPreTrainedConfig( depths=[3, 4, 23, 3] ,hidden_sizes=[256, 512, 1024, 2048] ,layer_type="bottleneck" ), "resnet152": ImageNetPreTrainedConfig( depths=[3, 8, 36, 3] ,hidden_sizes=[256, 512, 1024, 2048] ,layer_type="bottleneck" ), } if model_name: convert_weight_and_push(__magic_name__ ,names_to_config[model_name] ,__magic_name__ ,__magic_name__ ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(__magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ ) return config, expected_shape if __name__ == "__main__": __lowerCamelCase : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default=None, type=str, help=( '''The name of the model you wish to convert, it must be one of the supported resnet* architecture,''' ''' currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=Path, required=True, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', default=True, type=bool, required=False, help='''If True, push model and image processor to the hub.''', ) __lowerCamelCase : Tuple = parser.parse_args() __lowerCamelCase : Path = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
653
0
'''simple docstring''' from collections import deque def __lowerCamelCase ( __snake_case : List[str] ) -> Union[str, Any]: """simple docstring""" A__ : List[str] =len(__snake_case ) A__ : Optional[Any] =deque() A__ : Tuple =[False for _ in range(__snake_case )] A__ : Any =[-1 for _ in range(__snake_case )] A__ : List[str] =index_of[:] def strong_connect(__snake_case : Any, __snake_case : Optional[int], __snake_case : Union[str, Any] ): A__ : Dict =index # the number when this node is seen A__ : Optional[Any] =index # lowest rank node reachable from here index += 1 stack.append(__snake_case ) A__ : Dict =True for w in g[v]: if index_of[w] == -1: A__ : List[str] =strong_connect(__snake_case, __snake_case, __snake_case ) A__ : str =( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) elif on_stack[w]: A__ : List[str] =( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) if lowlink_of[v] == index_of[v]: A__ : Any =[] A__ : Tuple =stack.pop() A__ : List[str] =False component.append(__snake_case ) while w != v: A__ : Union[str, Any] =stack.pop() A__ : List[Any] =False component.append(__snake_case ) components.append(__snake_case ) return index A__ : Any =[] for v in range(__snake_case ): if index_of[v] == -1: strong_connect(__snake_case, 0, __snake_case ) return components def __lowerCamelCase ( __snake_case : List[Any], __snake_case : Any ) -> List[str]: """simple docstring""" A__ : Dict =[[] for _ in range(__snake_case )] for u, v in edges: g[u].append(__snake_case ) return g if __name__ == "__main__": # Test __snake_case : Optional[int] = 7 __snake_case : Union[str, Any] = [0, 0, 1, 2, 3, 3, 4, 4, 6] __snake_case : List[Any] = [1, 3, 2, 0, 1, 4, 5, 6, 5] __snake_case : str = [(u, v) for u, v in zip(source, target)] __snake_case : Optional[int] = create_graph(n_vertices, edges) assert [[5], [6], [4], [3, 2, 1, 0]] == tarjan(g)
687
'''simple docstring''' from __future__ import annotations import requests __snake_case : Union[str, Any] = set( 'approved_at_utc approved_by author_flair_background_color\nauthor_flair_css_class author_flair_richtext author_flair_template_id author_fullname\nauthor_premium can_mod_post category clicked content_categories created_utc downs\nedited gilded gildings hidden hide_score is_created_from_ads_ui is_meta\nis_original_content is_reddit_media_domain is_video link_flair_css_class\nlink_flair_richtext link_flair_text link_flair_text_color media_embed mod_reason_title\nname permalink pwls quarantine saved score secure_media secure_media_embed selftext\nsubreddit subreddit_name_prefixed subreddit_type thumbnail title top_awarded_type\ntotal_awards_received ups upvote_ratio url user_reports'.split() ) def __lowerCamelCase ( __snake_case : str, __snake_case : int = 1, __snake_case : str = "new", __snake_case : list | None = None ) -> dict: """simple docstring""" A__ : Union[str, Any] =wanted_data or [] if invalid_search_terms := ", ".join(sorted(set(__snake_case ) - valid_terms ) ): A__ : Optional[int] =f"Invalid search term: {invalid_search_terms}" raise ValueError(__snake_case ) A__ : Tuple =requests.get( f"https://reddit.com/r/{subreddit}/{age}.json?limit={limit}", headers={"""User-agent""": """A random string"""}, ) if response.status_code == 429: raise requests.HTTPError A__ : Tuple =response.json() if not wanted_data: return {id_: data["data"]["children"][id_] for id_ in range(__snake_case )} A__ : Tuple ={} for id_ in range(__snake_case ): A__ : List[Any] ={ item: data["""data"""]["""children"""][id_]["""data"""][item] for item in wanted_data } return data_dict if __name__ == "__main__": # If you get Error 429, that means you are rate limited.Try after some time print(get_subreddit_data('learnpython', wanted_data=['title', 'url', 'selftext']))
687
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer _A : int = logging.get_logger(__name__) _A : Tuple = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} _A : Any = { """vocab_file""": { """distilbert-base-uncased""": """https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt""", """distilbert-base-uncased-distilled-squad""": ( """https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt""" ), """distilbert-base-cased""": """https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt""", """distilbert-base-cased-distilled-squad""": ( """https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt""" ), """distilbert-base-german-cased""": """https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt""", """distilbert-base-multilingual-cased""": ( """https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """distilbert-base-uncased""": """https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json""", """distilbert-base-uncased-distilled-squad""": ( """https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json""" ), """distilbert-base-cased""": """https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json""", """distilbert-base-cased-distilled-squad""": ( """https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json""" ), """distilbert-base-german-cased""": ( """https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json""" ), """distilbert-base-multilingual-cased""": ( """https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json""" ), }, } _A : Optional[int] = { """distilbert-base-uncased""": 5_12, """distilbert-base-uncased-distilled-squad""": 5_12, """distilbert-base-cased""": 5_12, """distilbert-base-cased-distilled-squad""": 5_12, """distilbert-base-german-cased""": 5_12, """distilbert-base-multilingual-cased""": 5_12, } _A : Optional[Any] = { """distilbert-base-uncased""": {"""do_lower_case""": True}, """distilbert-base-uncased-distilled-squad""": {"""do_lower_case""": True}, """distilbert-base-cased""": {"""do_lower_case""": False}, """distilbert-base-cased-distilled-squad""": {"""do_lower_case""": False}, """distilbert-base-german-cased""": {"""do_lower_case""": False}, """distilbert-base-multilingual-cased""": {"""do_lower_case""": False}, } class __snake_case ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCamelCase__ : Dict = VOCAB_FILES_NAMES lowerCamelCase__ : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ : Optional[Any] = PRETRAINED_INIT_CONFIGURATION lowerCamelCase__ : Dict = ["""input_ids""", """attention_mask"""] lowerCamelCase__ : str = DistilBertTokenizer def __init__( self , A_=None , A_=None , A_=True , A_="[UNK]" , A_="[SEP]" , A_="[PAD]" , A_="[CLS]" , A_="[MASK]" , A_=True , A_=None , **A_ , ): '''simple docstring''' super().__init__( A_ , tokenizer_file=A_ , do_lower_case=A_ , unk_token=A_ , sep_token=A_ , pad_token=A_ , cls_token=A_ , mask_token=A_ , tokenize_chinese_chars=A_ , strip_accents=A_ , **A_ , ) SCREAMING_SNAKE_CASE__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , A_ ) != do_lower_case or normalizer_state.get('''strip_accents''' , A_ ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , A_ ) != tokenize_chinese_chars ): SCREAMING_SNAKE_CASE__ = getattr(A_ , normalizer_state.pop('''type''' ) ) SCREAMING_SNAKE_CASE__ = do_lower_case SCREAMING_SNAKE_CASE__ = strip_accents SCREAMING_SNAKE_CASE__ = tokenize_chinese_chars SCREAMING_SNAKE_CASE__ = normalizer_class(**A_ ) SCREAMING_SNAKE_CASE__ = do_lower_case def lowercase_ ( self , A_ , A_=None ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowercase_ ( self , A_ , A_ = None ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = [self.sep_token_id] SCREAMING_SNAKE_CASE__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase_ ( self , A_ , A_ = None ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = self._tokenizer.model.save(A_ , name=A_ ) return tuple(A_ )
100
import sys UpperCamelCase = ( "73167176531330624919225119674426574742355349194934" "96983520312774506326239578318016984801869478851843" "85861560789112949495459501737958331952853208805511" "12540698747158523863050715693290963295227443043557" "66896648950445244523161731856403098711121722383113" "62229893423380308135336276614282806444486645238749" "30358907296290491560440772390713810515859307960866" "70172427121883998797908792274921901699720888093776" "65727333001053367881220235421809751254540594752243" "52584907711670556013604839586446706324415722155397" "53697817977846174064955149290862569321978468622482" "83972241375657056057490261407972968652414535100474" "82166370484403199890008895243450658541227588666881" "16427171479924442928230863465674813919123162824586" "17866458359124566529476545682848912883142607690042" "24219022671055626321111109370544217506941658960408" "07198403850962455444362981230987879927244284909188" "84580156166097919133875499200524063689912560717606" "05886116467109405077541002256983155200055935729725" "71636269561882670428252483600823257530420752963450" ) def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> int: _lowercase : List[Any] = 1 for digit in s: product *= int(SCREAMING_SNAKE_CASE ) return product def __magic_name__ ( SCREAMING_SNAKE_CASE = N ) -> int: _lowercase : Dict = -sys.maxsize - 1 _lowercase : Tuple = n[:13] _lowercase : List[Any] = 13 while cur_index < len(SCREAMING_SNAKE_CASE ) - 13: if int(n[cur_index] ) >= int(substr[0] ): _lowercase : List[str] = substr[1:] + n[cur_index] cur_index += 1 else: _lowercase : str = max(SCREAMING_SNAKE_CASE , str_eval(SCREAMING_SNAKE_CASE ) ) _lowercase : Dict = n[cur_index : cur_index + 13] cur_index += 13 return largest_product if __name__ == "__main__": print(f'''{solution() = }''')
66
0
"""simple docstring""" import argparse import torch from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel from transformers.utils import logging logging.set_verbosity_info() def __a ( _lowercase , _lowercase , _lowercase , _lowercase ): """simple docstring""" lowerCamelCase__ : Any = FunnelConfig.from_json_file(a_ ) print(f"""Building PyTorch model from configuration: {config}""" ) lowerCamelCase__ : str = FunnelBaseModel(a_ ) if base_model else FunnelModel(a_ ) # Load weights from tf checkpoint load_tf_weights_in_funnel(a_ , a_ , a_ ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , a_ ) if __name__ == "__main__": UpperCAmelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--base_model", action="store_true", help="Whether you want just the base model (no decoder) or not." ) UpperCAmelCase : Any = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model )
718
"""simple docstring""" def __a ( _lowercase ): """simple docstring""" lowerCamelCase__ : Union[str, Any] = '''''' for ch in key: if ch == " " or ch not in key_no_dups and ch.isalpha(): key_no_dups += ch return key_no_dups def __a ( _lowercase ): """simple docstring""" lowerCamelCase__ : int = [chr(i + 65 ) for i in range(26 )] # Remove duplicate characters from key lowerCamelCase__ : Tuple = remove_duplicates(key.upper() ) lowerCamelCase__ : Optional[Any] = len(_lowercase ) # First fill cipher with key characters lowerCamelCase__ : int = {alphabet[i]: char for i, char in enumerate(_lowercase )} # Then map remaining characters in alphabet to # the alphabet from the beginning for i in range(len(_lowercase ) , 26 ): lowerCamelCase__ : Optional[int] = alphabet[i - offset] # Ensure we are not mapping letters to letters previously mapped while char in key: offset -= 1 lowerCamelCase__ : Optional[Any] = alphabet[i - offset] lowerCamelCase__ : Union[str, Any] = char return cipher_alphabet def __a ( _lowercase , _lowercase ): """simple docstring""" return "".join(cipher_map.get(_lowercase , _lowercase ) for ch in message.upper() ) def __a ( _lowercase , _lowercase ): """simple docstring""" lowerCamelCase__ : Tuple = {v: k for k, v in cipher_map.items()} return "".join(rev_cipher_map.get(_lowercase , _lowercase ) for ch in message.upper() ) def __a ( ): """simple docstring""" lowerCamelCase__ : Optional[Any] = input('''Enter message to encode or decode: ''' ).strip() lowerCamelCase__ : List[str] = input('''Enter keyword: ''' ).strip() lowerCamelCase__ : int = input('''Encipher or decipher? E/D:''' ).strip()[0].lower() try: lowerCamelCase__ : int = {'''e''': encipher, '''d''': decipher}[option] except KeyError: raise KeyError('''invalid input option''' ) lowerCamelCase__ : Optional[Any] = create_cipher_map(_lowercase ) print(func(_lowercase , _lowercase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
121
0
import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self ) -> Optional[Any]: """simple docstring""" snake_case__ : Optional[int] ='''ylacombe/bark-small''' snake_case__ : List[str] =tempfile.mkdtemp() snake_case__ : str ='''en_speaker_1''' snake_case__ : Dict ='''This is a test string''' snake_case__ : Optional[int] ='''speaker_embeddings_path.json''' snake_case__ : Optional[int] ='''speaker_embeddings''' def UpperCAmelCase ( self , **__SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" return AutoTokenizer.from_pretrained(self.checkpoint , **__SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self ) -> List[str]: """simple docstring""" shutil.rmtree(self.tmpdirname ) def UpperCAmelCase ( self ) -> List[Any]: """simple docstring""" snake_case__ : Dict =self.get_tokenizer() snake_case__ : List[str] =BarkProcessor(tokenizer=__SCREAMING_SNAKE_CASE ) processor.save_pretrained(self.tmpdirname ) snake_case__ : List[str] =BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def UpperCAmelCase ( self ) -> List[str]: """simple docstring""" snake_case__ : Dict =BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) snake_case__ : Optional[int] =self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) snake_case__ : int =BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token='''(BOS)''' , eos_token='''(EOS)''' , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def UpperCAmelCase ( self ) -> Optional[int]: """simple docstring""" snake_case__ : Tuple =BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) snake_case__ : Tuple =35 snake_case__ : List[str] =2 snake_case__ : List[Any] =8 snake_case__ : Dict ={ '''semantic_prompt''': np.ones(__SCREAMING_SNAKE_CASE ), '''coarse_prompt''': np.ones((nb_codebooks_coarse, seq_len) ), '''fine_prompt''': np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset snake_case__ : Dict =processor(text=self.input_string , voice_preset=__SCREAMING_SNAKE_CASE ) snake_case__ : Union[str, Any] =inputs['''history_prompt'''] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(__SCREAMING_SNAKE_CASE , np.array([] ) ).tolist() ) # test loading voice preset from npz file snake_case__ : List[Any] =os.path.join(self.tmpdirname , '''file.npz''' ) np.savez(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) snake_case__ : List[Any] =processor(text=self.input_string , voice_preset=__SCREAMING_SNAKE_CASE ) snake_case__ : List[Any] =inputs['''history_prompt'''] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(__SCREAMING_SNAKE_CASE , np.array([] ) ).tolist() ) # test loading voice preset from the hub snake_case__ : Dict =processor(text=self.input_string , voice_preset=self.voice_preset ) def UpperCAmelCase ( self ) -> List[Any]: """simple docstring""" snake_case__ : Any =self.get_tokenizer() snake_case__ : Union[str, Any] =BarkProcessor(tokenizer=__SCREAMING_SNAKE_CASE ) snake_case__ : List[str] =processor(text=self.input_string ) snake_case__ : Dict =tokenizer( self.input_string , padding='''max_length''' , max_length=256 , add_special_tokens=__SCREAMING_SNAKE_CASE , return_attention_mask=__SCREAMING_SNAKE_CASE , return_token_type_ids=__SCREAMING_SNAKE_CASE , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
381
import numpy as np from numpy import ndarray from scipy.optimize import Bounds, LinearConstraint, minimize def lowercase_ ( SCREAMING_SNAKE_CASE : ndarray ): """simple docstring""" return np.dot(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) class _lowerCAmelCase : """simple docstring""" def __init__( self , *, __SCREAMING_SNAKE_CASE = np.inf , __SCREAMING_SNAKE_CASE = "linear" , __SCREAMING_SNAKE_CASE = 0.0 , ) -> None: """simple docstring""" snake_case__ : int =regularization snake_case__ : Tuple =gamma if kernel == "linear": snake_case__ : str =self.__linear elif kernel == "rbf": if self.gamma == 0: raise ValueError('''rbf kernel requires gamma''' ) if not isinstance(self.gamma , (float, int) ): raise ValueError('''gamma must be float or int''' ) if not self.gamma > 0: raise ValueError('''gamma must be > 0''' ) snake_case__ : Dict =self.__rbf # in the future, there could be a default value like in sklearn # sklear: def_gamma = 1/(n_features * X.var()) (wiki) # previously it was 1/(n_features) else: snake_case__ : Optional[int] =f'''Unknown kernel: {kernel}''' raise ValueError(__SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" return np.dot(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" return np.exp(-(self.gamma * norm_squared(vectora - vectora )) ) def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> None: """simple docstring""" snake_case__ : Optional[Any] =observations snake_case__ : Union[str, Any] =classes # using Wolfe's Dual to calculate w. # Primal problem: minimize 1/2*norm_squared(w) # constraint: yn(w . xn + b) >= 1 # # With l a vector # Dual problem: maximize sum_n(ln) - # 1/2 * sum_n(sum_m(ln*lm*yn*ym*xn . xm)) # constraint: self.C >= ln >= 0 # and sum_n(ln*yn) = 0 # Then we get w using w = sum_n(ln*yn*xn) # At the end we can get b ~= mean(yn - w . xn) # # Since we use kernels, we only need l_star to calculate b # and to classify observations ((snake_case__), ) : Dict =np.shape(__SCREAMING_SNAKE_CASE ) def to_minimize(__SCREAMING_SNAKE_CASE ) -> float: snake_case__ : List[str] =0 ((snake_case__), ) : int =np.shape(__SCREAMING_SNAKE_CASE ) for i in range(__SCREAMING_SNAKE_CASE ): for j in range(__SCREAMING_SNAKE_CASE ): s += ( candidate[i] * candidate[j] * classes[i] * classes[j] * self.kernel(observations[i] , observations[j] ) ) return 1 / 2 * s - sum(__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[Any] =LinearConstraint(__SCREAMING_SNAKE_CASE , 0 , 0 ) snake_case__ : int =Bounds(0 , self.regularization ) snake_case__ : Union[str, Any] =minimize( __SCREAMING_SNAKE_CASE , np.ones(__SCREAMING_SNAKE_CASE ) , bounds=__SCREAMING_SNAKE_CASE , constraints=[ly_contraint] ).x snake_case__ : Optional[int] =l_star # calculating mean offset of separation plane to points snake_case__ : Optional[Any] =0 for i in range(__SCREAMING_SNAKE_CASE ): for j in range(__SCREAMING_SNAKE_CASE ): s += classes[i] - classes[i] * self.optimum[i] * self.kernel( observations[i] , observations[j] ) snake_case__ : int =s / n def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" snake_case__ : int =sum( self.optimum[n] * self.classes[n] * self.kernel(self.observations[n] , __SCREAMING_SNAKE_CASE ) for n in range(len(self.classes ) ) ) return 1 if s + self.offset >= 0 else -1 if __name__ == "__main__": import doctest doctest.testmod()
381
1
"""simple docstring""" def __lowerCamelCase ( SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" assert column_title.isupper() _UpperCAmelCase = 0 _UpperCAmelCase = len(SCREAMING_SNAKE_CASE ) - 1 _UpperCAmelCase = 0 while index >= 0: _UpperCAmelCase = (ord(column_title[index] ) - 64) * pow(26,SCREAMING_SNAKE_CASE ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
494
"""simple docstring""" def __lowerCamelCase ( SCREAMING_SNAKE_CASE ) -> list: """simple docstring""" _UpperCAmelCase = False while is_sorted is False: # Until all the indices are traversed keep looping _UpperCAmelCase = True for i in range(0,len(SCREAMING_SNAKE_CASE ) - 1,2 ): # iterating over all even indices if input_list[i] > input_list[i + 1]: _UpperCAmelCase , _UpperCAmelCase = input_list[i + 1], input_list[i] # swapping if elements not in order _UpperCAmelCase = False for i in range(1,len(SCREAMING_SNAKE_CASE ) - 1,2 ): # iterating over all odd indices if input_list[i] > input_list[i + 1]: _UpperCAmelCase , _UpperCAmelCase = input_list[i + 1], input_list[i] # swapping if elements not in order _UpperCAmelCase = False return input_list if __name__ == "__main__": print('''Enter list to be sorted''') lowerCAmelCase_ = [int(x) for x in input().split()] # inputing elements of the list in one line lowerCAmelCase_ = odd_even_sort(input_list) print('''The sorted list is''') print(sorted_list)
494
1
from __future__ import annotations _lowerCamelCase : List[Any] = 8.9_8_8e9 # units = N * m^s * C^-2 def _a ( SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float ) -> dict[str, float]: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = abs(chargea * chargea ) if (force, chargea, chargea, distance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if distance < 0: raise ValueError("Distance cannot be negative" ) if force == 0: SCREAMING_SNAKE_CASE__ : List[str] = COULOMBS_CONSTANT * charge_product / (distance**2) return {"force": force} elif chargea == 0: SCREAMING_SNAKE_CASE__ : List[str] = abs(SCREAMING_SNAKE_CASE__ ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge1": chargea} elif chargea == 0: SCREAMING_SNAKE_CASE__ : Optional[Any] = abs(SCREAMING_SNAKE_CASE__ ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge2": chargea} elif distance == 0: SCREAMING_SNAKE_CASE__ : Union[str, Any] = (COULOMBS_CONSTANT * charge_product / abs(SCREAMING_SNAKE_CASE__ )) ** 0.5 return {"distance": distance} raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
663
import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class lowerCamelCase : """simple docstring""" def __init__( self : Any, _UpperCAmelCase : Union[str, Any], _UpperCAmelCase : Union[str, Any]=1_3, _UpperCAmelCase : Union[str, Any]=3_2, _UpperCAmelCase : Optional[Any]=2, _UpperCAmelCase : Tuple=3, _UpperCAmelCase : str=1_6, _UpperCAmelCase : Tuple=[1, 2, 1], _UpperCAmelCase : List[str]=[2, 2, 4], _UpperCAmelCase : Tuple=2, _UpperCAmelCase : str=2.0, _UpperCAmelCase : Optional[int]=True, _UpperCAmelCase : int=0.0, _UpperCAmelCase : Any=0.0, _UpperCAmelCase : Optional[int]=0.1, _UpperCAmelCase : int="gelu", _UpperCAmelCase : Any=False, _UpperCAmelCase : Any=True, _UpperCAmelCase : Tuple=0.02, _UpperCAmelCase : Any=1E-5, _UpperCAmelCase : Optional[int]=True, _UpperCAmelCase : List[Any]=None, _UpperCAmelCase : str=True, _UpperCAmelCase : Union[str, Any]=1_0, _UpperCAmelCase : List[str]=8, _UpperCAmelCase : Union[str, Any]=["stage1", "stage2", "stage3"], _UpperCAmelCase : Any=[1, 2, 3], ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = parent SCREAMING_SNAKE_CASE__ : Tuple = batch_size SCREAMING_SNAKE_CASE__ : List[Any] = image_size SCREAMING_SNAKE_CASE__ : Optional[int] = patch_size SCREAMING_SNAKE_CASE__ : List[str] = num_channels SCREAMING_SNAKE_CASE__ : Optional[int] = embed_dim SCREAMING_SNAKE_CASE__ : List[Any] = depths SCREAMING_SNAKE_CASE__ : List[str] = num_heads SCREAMING_SNAKE_CASE__ : str = window_size SCREAMING_SNAKE_CASE__ : Any = mlp_ratio SCREAMING_SNAKE_CASE__ : List[str] = qkv_bias SCREAMING_SNAKE_CASE__ : List[Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE__ : Optional[Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ : Tuple = drop_path_rate SCREAMING_SNAKE_CASE__ : Dict = hidden_act SCREAMING_SNAKE_CASE__ : List[str] = use_absolute_embeddings SCREAMING_SNAKE_CASE__ : Tuple = patch_norm SCREAMING_SNAKE_CASE__ : List[str] = layer_norm_eps SCREAMING_SNAKE_CASE__ : List[Any] = initializer_range SCREAMING_SNAKE_CASE__ : List[str] = is_training SCREAMING_SNAKE_CASE__ : List[Any] = scope SCREAMING_SNAKE_CASE__ : Optional[int] = use_labels SCREAMING_SNAKE_CASE__ : Dict = type_sequence_label_size SCREAMING_SNAKE_CASE__ : Optional[int] = encoder_stride SCREAMING_SNAKE_CASE__ : List[Any] = out_features SCREAMING_SNAKE_CASE__ : Dict = out_indices def A_ ( self : List[str] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE__ : str = None if self.use_labels: SCREAMING_SNAKE_CASE__ : List[str] = ids_tensor([self.batch_size], self.type_sequence_label_size ) SCREAMING_SNAKE_CASE__ : Optional[int] = self.get_config() return config, pixel_values, labels def A_ ( self : Optional[int] ) -> List[str]: """simple docstring""" return MaskFormerSwinConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, embed_dim=self.embed_dim, depths=self.depths, num_heads=self.num_heads, window_size=self.window_size, mlp_ratio=self.mlp_ratio, qkv_bias=self.qkv_bias, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, drop_path_rate=self.drop_path_rate, hidden_act=self.hidden_act, use_absolute_embeddings=self.use_absolute_embeddings, path_norm=self.patch_norm, layer_norm_eps=self.layer_norm_eps, initializer_range=self.initializer_range, encoder_stride=self.encoder_stride, out_features=self.out_features, out_indices=self.out_indices, ) def A_ ( self : Dict, _UpperCAmelCase : int, _UpperCAmelCase : str, _UpperCAmelCase : Any ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = MaskFormerSwinModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() SCREAMING_SNAKE_CASE__ : Optional[Any] = model(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) SCREAMING_SNAKE_CASE__ : Union[str, Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, expected_seq_len, expected_dim) ) def A_ ( self : Optional[int], _UpperCAmelCase : Union[str, Any], _UpperCAmelCase : Any, _UpperCAmelCase : Tuple ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = MaskFormerSwinBackbone(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() SCREAMING_SNAKE_CASE__ : Union[str, Any] = model(_UpperCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ), len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ), [1_3, 1_6, 1_6, 1_6] ) # verify channels self.parent.assertEqual(len(model.channels ), len(config.out_features ) ) self.parent.assertListEqual(model.channels, [1_6, 3_2, 6_4] ) # verify ValueError with self.parent.assertRaises(_UpperCAmelCase ): SCREAMING_SNAKE_CASE__ : List[Any] = ["stem"] SCREAMING_SNAKE_CASE__ : str = MaskFormerSwinBackbone(config=_UpperCAmelCase ) def A_ ( self : str ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : List[str] = config_and_inputs SCREAMING_SNAKE_CASE__ : Dict = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowerCamelCase (__lowerCamelCase , __lowerCamelCase , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) UpperCAmelCase_ = {"feature-extraction": MaskFormerSwinModel} if is_torch_available() else {} UpperCAmelCase_ = False UpperCAmelCase_ = False UpperCAmelCase_ = False UpperCAmelCase_ = False UpperCAmelCase_ = False def A_ ( self : int ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = MaskFormerSwinModelTester(self ) SCREAMING_SNAKE_CASE__ : Any = ConfigTester(self, config_class=_UpperCAmelCase, embed_dim=3_7 ) @require_torch_multi_gpu @unittest.skip( reason=( "`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn't work well with" " `nn.DataParallel`" ) ) def A_ ( self : Any ) -> List[Any]: """simple docstring""" pass def A_ ( self : Tuple ) -> Any: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A_ ( self : int ) -> Optional[Any]: """simple docstring""" return def A_ ( self : Any ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def A_ ( self : List[Any] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_UpperCAmelCase ) @unittest.skip("Swin does not use inputs_embeds" ) def A_ ( self : Any ) -> Optional[int]: """simple docstring""" pass @unittest.skip("Swin does not support feedforward chunking" ) def A_ ( self : List[str] ) -> Optional[int]: """simple docstring""" pass def A_ ( self : Any ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ : List[Any] = model_class(_UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings(), (nn.Module) ) SCREAMING_SNAKE_CASE__ : Optional[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_UpperCAmelCase, nn.Linear ) ) def A_ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ : Dict = model_class(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : List[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE__ : str = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE__ : Tuple = ["pixel_values"] self.assertListEqual(arg_names[:1], _UpperCAmelCase ) @unittest.skip(reason="MaskFormerSwin is only used as backbone and doesn't support output_attentions" ) def A_ ( self : Tuple ) -> List[Any]: """simple docstring""" pass @unittest.skip(reason="MaskFormerSwin is only used as an internal backbone" ) def A_ ( self : Dict ) -> List[str]: """simple docstring""" pass def A_ ( self : List[str], _UpperCAmelCase : Optional[int], _UpperCAmelCase : Optional[Any], _UpperCAmelCase : Union[str, Any], _UpperCAmelCase : List[Any] ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE__ : Dict = model(**self._prepare_for_class(_UpperCAmelCase, _UpperCAmelCase ) ) SCREAMING_SNAKE_CASE__ : List[Any] = outputs.hidden_states SCREAMING_SNAKE_CASE__ : Optional[Any] = getattr( self.model_tester, "expected_num_hidden_layers", len(self.model_tester.depths ) + 1 ) self.assertEqual(len(_UpperCAmelCase ), _UpperCAmelCase ) # Swin has a different seq_length SCREAMING_SNAKE_CASE__ : Optional[Any] = ( config.patch_size if isinstance(config.patch_size, collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) SCREAMING_SNAKE_CASE__ : Any = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ), [num_patches, self.model_tester.embed_dim], ) def A_ ( self : Optional[int] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE__ : int = ( self.model_tester.image_size if isinstance(self.model_tester.image_size, collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ : str = True self.check_hidden_states_output(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE__ : Optional[int] = True self.check_hidden_states_output(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) def A_ ( self : Tuple ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : str = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE__ : Optional[int] = 3 SCREAMING_SNAKE_CASE__ : str = ( self.model_tester.image_size if isinstance(self.model_tester.image_size, collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) SCREAMING_SNAKE_CASE__ : str = ( config.patch_size if isinstance(config.patch_size, collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) SCREAMING_SNAKE_CASE__ : Dict = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) SCREAMING_SNAKE_CASE__ : List[str] = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ : List[Any] = True self.check_hidden_states_output(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE__ : Any = True self.check_hidden_states_output(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, (padded_height, padded_width) ) @unittest.skip(reason="MaskFormerSwin doesn't have pretrained checkpoints" ) def A_ ( self : List[Any] ) -> Dict: """simple docstring""" pass @unittest.skip(reason="This will be fixed once MaskFormerSwin is replaced by native Swin" ) def A_ ( self : Dict ) -> str: """simple docstring""" pass @unittest.skip(reason="This will be fixed once MaskFormerSwin is replaced by native Swin" ) def A_ ( self : Optional[Any] ) -> List[str]: """simple docstring""" pass def A_ ( self : int ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(_UpperCAmelCase : Optional[Any] ): SCREAMING_SNAKE_CASE__ : Dict = 0 return t def check_equivalence(_UpperCAmelCase : Union[str, Any], _UpperCAmelCase : Optional[Any], _UpperCAmelCase : Tuple, _UpperCAmelCase : Optional[Any]={} ): with torch.no_grad(): SCREAMING_SNAKE_CASE__ : str = model(**_UpperCAmelCase, return_dict=_UpperCAmelCase, **_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : List[Any] = model(**_UpperCAmelCase, return_dict=_UpperCAmelCase, **_UpperCAmelCase ).to_tuple() def recursive_check(_UpperCAmelCase : int, _UpperCAmelCase : Dict ): if isinstance(_UpperCAmelCase, (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(_UpperCAmelCase, _UpperCAmelCase ): recursive_check(_UpperCAmelCase, _UpperCAmelCase ) elif isinstance(_UpperCAmelCase, _UpperCAmelCase ): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values(), dict_object.values() ): recursive_check(_UpperCAmelCase, _UpperCAmelCase ) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(_UpperCAmelCase ), set_nan_tensor_to_zero(_UpperCAmelCase ), atol=1E-5 ), msg=( "Tuple and dict output are not equal. Difference:" F''' {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:''' F''' {torch.isnan(_UpperCAmelCase ).any()} and `inf`: {torch.isinf(_UpperCAmelCase )}. Dict has''' F''' `nan`: {torch.isnan(_UpperCAmelCase ).any()} and `inf`: {torch.isinf(_UpperCAmelCase )}.''' ), ) recursive_check(_UpperCAmelCase, _UpperCAmelCase ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ : List[Any] = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() SCREAMING_SNAKE_CASE__ : Optional[Any] = self._prepare_for_class(_UpperCAmelCase, _UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = self._prepare_for_class(_UpperCAmelCase, _UpperCAmelCase ) check_equivalence(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Any = self._prepare_for_class(_UpperCAmelCase, _UpperCAmelCase, return_labels=_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = self._prepare_for_class(_UpperCAmelCase, _UpperCAmelCase, return_labels=_UpperCAmelCase ) check_equivalence(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : List[Any] = self._prepare_for_class(_UpperCAmelCase, _UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[int] = self._prepare_for_class(_UpperCAmelCase, _UpperCAmelCase ) check_equivalence(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, {"output_hidden_states": True} ) SCREAMING_SNAKE_CASE__ : Dict = self._prepare_for_class(_UpperCAmelCase, _UpperCAmelCase, return_labels=_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[int] = self._prepare_for_class(_UpperCAmelCase, _UpperCAmelCase, return_labels=_UpperCAmelCase ) check_equivalence(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, {"output_hidden_states": True} ) @require_torch class lowerCamelCase (unittest.TestCase , __lowerCamelCase ): """simple docstring""" UpperCAmelCase_ = (MaskFormerSwinBackbone,) if is_torch_available() else () UpperCAmelCase_ = MaskFormerSwinConfig def A_ ( self : Any ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = MaskFormerSwinModelTester(self ) def A_ ( self : int ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE__ : Any = inputs_dict["pixel_values"].shape[0] for backbone_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ : str = backbone_class(_UpperCAmelCase ) backbone.to(_UpperCAmelCase ) backbone.eval() SCREAMING_SNAKE_CASE__ : Optional[int] = backbone(**_UpperCAmelCase ) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps, _UpperCAmelCase ) self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) ) for feature_map, n_channels in zip(outputs.feature_maps, backbone.channels ): self.assertTrue(feature_map.shape[:2], (batch_size, n_channels) ) self.assertIsNone(outputs.hidden_states ) self.assertIsNone(outputs.attentions ) # Test output_hidden_states=True SCREAMING_SNAKE_CASE__ : Optional[int] = backbone(**_UpperCAmelCase, output_hidden_states=_UpperCAmelCase ) self.assertIsNotNone(outputs.hidden_states ) self.assertTrue(len(outputs.hidden_states ), len(backbone.stage_names ) ) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:], backbone.channels ): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : Union[str, Any] = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels), (batch_size, n_channels) ) # Test output_attentions=True if self.has_attentions: SCREAMING_SNAKE_CASE__ : int = backbone(**_UpperCAmelCase, output_attentions=_UpperCAmelCase ) self.assertIsNotNone(outputs.attentions )
663
1
import json import os import shutil import warnings from argparse import ArgumentParser, Namespace from pathlib import Path from typing import List from ..utils import logging from . import BaseTransformersCLICommand try: from cookiecutter.main import cookiecutter __UpperCamelCase : Any = True except ImportError: __UpperCamelCase : Optional[Any] = False __UpperCamelCase : List[str] = logging.get_logger(__name__) # pylint: disable=invalid-name def _a ( SCREAMING_SNAKE_CASE : Namespace ): """simple docstring""" return AddNewModelCommand(args.testing , args.testing_file , path=args.path ) class __magic_name__ ( __lowerCAmelCase): @staticmethod def UpperCAmelCase__ ( lowerCamelCase__ : ArgumentParser ) -> List[str]: '''simple docstring''' UpperCamelCase__ : Dict = parser.add_parser('''add-new-model''' ) add_new_model_parser.add_argument('''--testing''' , action='''store_true''' , help='''If in testing mode.''' ) add_new_model_parser.add_argument('''--testing_file''' , type=lowerCamelCase__ , help='''Configuration file on which to run.''' ) add_new_model_parser.add_argument( '''--path''' , type=lowerCamelCase__ , help='''Path to cookiecutter. Should only be used for testing purposes.''' ) add_new_model_parser.set_defaults(func=lowerCamelCase__ ) def __init__( self : List[str] , lowerCamelCase__ : bool , lowerCamelCase__ : str , lowerCamelCase__ : List[Any]=None , *lowerCamelCase__ : Optional[Any] ) -> Tuple: '''simple docstring''' UpperCamelCase__ : int = testing UpperCamelCase__ : int = testing_file UpperCamelCase__ : List[str] = path def UpperCAmelCase__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' warnings.warn( '''The command `transformers-cli add-new-model` is deprecated and will be removed in v5 of Transformers. ''' '''It is not actively maintained anymore, so might give a result that won\'t pass all tests and quality ''' '''checks, you should use `transformers-cli add-new-model-like` instead.''' ) if not _has_cookiecutter: raise ImportError( '''Model creation dependencies are required to use the `add_new_model` command. Install them by running ''' '''the following at the root of your `transformers` clone:\n\n\t$ pip install -e .[modelcreation]\n''' ) # Ensure that there is no other `cookiecutter-template-xxx` directory in the current working directory UpperCamelCase__ : Dict = [directory for directory in os.listdir() if '''cookiecutter-template-''' == directory[:22]] if len(lowerCamelCase__ ) > 0: raise ValueError( '''Several directories starting with `cookiecutter-template-` in current working directory. ''' '''Please clean your directory by removing all folders starting with `cookiecutter-template-` or ''' '''change your working directory.''' ) UpperCamelCase__ : Optional[Any] = ( Path(lowerCamelCase__ ).parent.parent.parent.parent if self._path is None else Path(self._path ).parent.parent ) UpperCamelCase__ : Tuple = path_to_transformer_root / '''templates''' / '''adding_a_new_model''' # Execute cookiecutter if not self._testing: cookiecutter(str(lowerCamelCase__ ) ) else: with open(self._testing_file , '''r''' ) as configuration_file: UpperCamelCase__ : str = json.load(lowerCamelCase__ ) cookiecutter( str(path_to_cookiecutter if self._path is None else self._path ) , no_input=lowerCamelCase__ , extra_context=lowerCamelCase__ , ) UpperCamelCase__ : Union[str, Any] = [directory for directory in os.listdir() if '''cookiecutter-template-''' in directory[:22]][0] # Retrieve configuration with open(directory + '''/configuration.json''' , '''r''' ) as configuration_file: UpperCamelCase__ : Any = json.load(lowerCamelCase__ ) UpperCamelCase__ : List[Any] = configuration['''lowercase_modelname'''] UpperCamelCase__ : int = configuration['''generate_tensorflow_pytorch_and_flax'''] os.remove(F"{directory}/configuration.json" ) UpperCamelCase__ : str = '''PyTorch''' in generate_tensorflow_pytorch_and_flax UpperCamelCase__ : Dict = '''TensorFlow''' in generate_tensorflow_pytorch_and_flax UpperCamelCase__ : Dict = '''Flax''' in generate_tensorflow_pytorch_and_flax UpperCamelCase__ : Union[str, Any] = F"{path_to_transformer_root}/src/transformers/models/{lowercase_model_name}" os.makedirs(lowerCamelCase__ , exist_ok=lowerCamelCase__ ) os.makedirs(F"{path_to_transformer_root}/tests/models/{lowercase_model_name}" , exist_ok=lowerCamelCase__ ) # Tests require submodules as they have parent imports with open(F"{path_to_transformer_root}/tests/models/{lowercase_model_name}/__init__.py" , '''w''' ): pass shutil.move( F"{directory}/__init__.py" , F"{model_dir}/__init__.py" , ) shutil.move( F"{directory}/configuration_{lowercase_model_name}.py" , F"{model_dir}/configuration_{lowercase_model_name}.py" , ) def remove_copy_lines(lowerCamelCase__ : Union[str, Any] ): with open(lowerCamelCase__ , '''r''' ) as f: UpperCamelCase__ : Tuple = f.readlines() with open(lowerCamelCase__ , '''w''' ) as f: for line in lines: if "# Copied from transformers." not in line: f.write(lowerCamelCase__ ) if output_pytorch: if not self._testing: remove_copy_lines(F"{directory}/modeling_{lowercase_model_name}.py" ) shutil.move( F"{directory}/modeling_{lowercase_model_name}.py" , F"{model_dir}/modeling_{lowercase_model_name}.py" , ) shutil.move( F"{directory}/test_modeling_{lowercase_model_name}.py" , F"{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_{lowercase_model_name}.py" , ) else: os.remove(F"{directory}/modeling_{lowercase_model_name}.py" ) os.remove(F"{directory}/test_modeling_{lowercase_model_name}.py" ) if output_tensorflow: if not self._testing: remove_copy_lines(F"{directory}/modeling_tf_{lowercase_model_name}.py" ) shutil.move( F"{directory}/modeling_tf_{lowercase_model_name}.py" , F"{model_dir}/modeling_tf_{lowercase_model_name}.py" , ) shutil.move( F"{directory}/test_modeling_tf_{lowercase_model_name}.py" , F"{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_tf_{lowercase_model_name}.py" , ) else: os.remove(F"{directory}/modeling_tf_{lowercase_model_name}.py" ) os.remove(F"{directory}/test_modeling_tf_{lowercase_model_name}.py" ) if output_flax: if not self._testing: remove_copy_lines(F"{directory}/modeling_flax_{lowercase_model_name}.py" ) shutil.move( F"{directory}/modeling_flax_{lowercase_model_name}.py" , F"{model_dir}/modeling_flax_{lowercase_model_name}.py" , ) shutil.move( F"{directory}/test_modeling_flax_{lowercase_model_name}.py" , F"{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_flax_{lowercase_model_name}.py" , ) else: os.remove(F"{directory}/modeling_flax_{lowercase_model_name}.py" ) os.remove(F"{directory}/test_modeling_flax_{lowercase_model_name}.py" ) shutil.move( F"{directory}/{lowercase_model_name}.md" , F"{path_to_transformer_root}/docs/source/en/model_doc/{lowercase_model_name}.md" , ) shutil.move( F"{directory}/tokenization_{lowercase_model_name}.py" , F"{model_dir}/tokenization_{lowercase_model_name}.py" , ) shutil.move( F"{directory}/tokenization_fast_{lowercase_model_name}.py" , F"{model_dir}/tokenization_{lowercase_model_name}_fast.py" , ) from os import fdopen, remove from shutil import copymode, move from tempfile import mkstemp def replace(lowerCamelCase__ : str , lowerCamelCase__ : str , lowerCamelCase__ : List[str] ): # Create temp file UpperCamelCase__ , UpperCamelCase__ : int = mkstemp() UpperCamelCase__ : Optional[int] = False with fdopen(lowerCamelCase__ , '''w''' ) as new_file: with open(lowerCamelCase__ ) as old_file: for line in old_file: new_file.write(lowerCamelCase__ ) if line_to_copy_below in line: UpperCamelCase__ : int = True for line_to_copy in lines_to_copy: new_file.write(lowerCamelCase__ ) if not line_found: raise ValueError(F"Line {line_to_copy_below} was not found in file." ) # Copy the file permissions from the old file to the new file copymode(lowerCamelCase__ , lowerCamelCase__ ) # Remove original file remove(lowerCamelCase__ ) # Move new file move(lowerCamelCase__ , lowerCamelCase__ ) def skip_units(lowerCamelCase__ : int ): return ( ("generating PyTorch" in line and not output_pytorch) or ("generating TensorFlow" in line and not output_tensorflow) or ("generating Flax" in line and not output_flax) ) def replace_in_files(lowerCamelCase__ : Tuple ): with open(lowerCamelCase__ ) as datafile: UpperCamelCase__ : Optional[Any] = [] UpperCamelCase__ : str = False UpperCamelCase__ : Tuple = False for line in datafile: if "# To replace in: " in line and "##" not in line: UpperCamelCase__ : Optional[int] = line.split('''"''' )[1] UpperCamelCase__ : Tuple = skip_units(lowerCamelCase__ ) elif "# Below: " in line and "##" not in line: UpperCamelCase__ : int = line.split('''"''' )[1] UpperCamelCase__ : int = skip_units(lowerCamelCase__ ) elif "# End." in line and "##" not in line: if not skip_file and not skip_snippet: replace(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ : Dict = [] elif "# Replace with" in line and "##" not in line: UpperCamelCase__ : Dict = [] elif "##" not in line: lines_to_copy.append(lowerCamelCase__ ) remove(lowerCamelCase__ ) replace_in_files(F"{directory}/to_replace_{lowercase_model_name}.py" ) os.rmdir(lowerCamelCase__ )
106
import contextlib import importlib import io import unittest import transformers # Try to import everything from transformers to ensure every object can be loaded. from transformers import * # noqa F406 from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, require_tf, require_torch from transformers.utils import ContextManagers, find_labels, is_flax_available, is_tf_available, is_torch_available if is_torch_available(): from transformers import BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification if is_tf_available(): from transformers import TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification if is_flax_available(): from transformers import FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification __UpperCamelCase : Dict = DUMMY_UNKNOWN_IDENTIFIER # An actual model hosted on huggingface.co __UpperCamelCase : Optional[int] = "main" # Default branch name __UpperCamelCase : Optional[Any] = "f2c752cfc5c0ab6f4bdec59acea69eefbee381c2" # One particular commit (not the top of `main`) __UpperCamelCase : str = "aaaaaaa" # This commit does not exist, so we should 404. __UpperCamelCase : Optional[Any] = "d9e9f15bc825e4b2c9249e9578f884bbcb5e3684" # Sha-1 of config.json on the top of `main`, for checking purposes __UpperCamelCase : Tuple = "4b243c475af8d0a7754e87d7d096c92e5199ec2fe168a2ee7998e3b8e9bcb1d3" @contextlib.contextmanager def _a ( ): """simple docstring""" print('''Welcome!''' ) yield print('''Bye!''' ) @contextlib.contextmanager def _a ( ): """simple docstring""" print('''Bonjour!''' ) yield print('''Au revoir!''' ) class __magic_name__ ( unittest.TestCase): def UpperCAmelCase__ ( self : Union[str, Any] ) -> Any: '''simple docstring''' assert transformers.__spec__ is not None assert importlib.util.find_spec('''transformers''' ) is not None class __magic_name__ ( unittest.TestCase): @unittest.mock.patch('''sys.stdout''' , new_callable=io.StringIO ) def UpperCAmelCase__ ( self : Union[str, Any] , lowerCamelCase__ : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' with ContextManagers([] ): print('''Transformers are awesome!''' ) # The print statement adds a new line at the end of the output self.assertEqual(mock_stdout.getvalue() , '''Transformers are awesome!\n''' ) @unittest.mock.patch('''sys.stdout''' , new_callable=io.StringIO ) def UpperCAmelCase__ ( self : Any , lowerCamelCase__ : Union[str, Any] ) -> Dict: '''simple docstring''' with ContextManagers([context_en()] ): print('''Transformers are awesome!''' ) # The output should be wrapped with an English welcome and goodbye self.assertEqual(mock_stdout.getvalue() , '''Welcome!\nTransformers are awesome!\nBye!\n''' ) @unittest.mock.patch('''sys.stdout''' , new_callable=io.StringIO ) def UpperCAmelCase__ ( self : List[Any] , lowerCamelCase__ : List[str] ) -> Tuple: '''simple docstring''' with ContextManagers([context_fr(), context_en()] ): print('''Transformers are awesome!''' ) # The output should be wrapped with an English and French welcome and goodbye self.assertEqual(mock_stdout.getvalue() , '''Bonjour!\nWelcome!\nTransformers are awesome!\nBye!\nAu revoir!\n''' ) @require_torch def UpperCAmelCase__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' self.assertEqual(find_labels(lowerCamelCase__ ) , ['''labels'''] ) self.assertEqual(find_labels(lowerCamelCase__ ) , ['''labels''', '''next_sentence_label'''] ) self.assertEqual(find_labels(lowerCamelCase__ ) , ['''start_positions''', '''end_positions'''] ) class __magic_name__ ( __lowerCAmelCase): pass self.assertEqual(find_labels(lowerCamelCase__ ) , ['''labels'''] ) @require_tf def UpperCAmelCase__ ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' self.assertEqual(find_labels(lowerCamelCase__ ) , ['''labels'''] ) self.assertEqual(find_labels(lowerCamelCase__ ) , ['''labels''', '''next_sentence_label'''] ) self.assertEqual(find_labels(lowerCamelCase__ ) , ['''start_positions''', '''end_positions'''] ) class __magic_name__ ( __lowerCAmelCase): pass self.assertEqual(find_labels(lowerCamelCase__ ) , ['''labels'''] ) @require_flax def UpperCAmelCase__ ( self : str ) -> Optional[Any]: '''simple docstring''' self.assertEqual(find_labels(lowerCamelCase__ ) , [] ) self.assertEqual(find_labels(lowerCamelCase__ ) , [] ) self.assertEqual(find_labels(lowerCamelCase__ ) , [] ) class __magic_name__ ( __lowerCAmelCase): pass self.assertEqual(find_labels(lowerCamelCase__ ) , [] )
106
1
'''simple docstring''' import argparse import os import torch from transformers.utils import WEIGHTS_NAME __lowercase : str = ["""small""", """medium""", """large"""] __lowercase : Optional[Any] = """lm_head.decoder.weight""" __lowercase : Optional[int] = """lm_head.weight""" def lowerCamelCase (_SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str ): __a : Union[str, Any] = torch.load(__lowerCamelCase ) __a : Union[str, Any] = d.pop(__lowerCamelCase ) os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) torch.save(__lowerCamelCase , os.path.join(__lowerCamelCase , __lowerCamelCase ) ) if __name__ == "__main__": __lowercase : Tuple = argparse.ArgumentParser() parser.add_argument('--dialogpt_path', default='.', type=str) __lowercase : int = parser.parse_args() for MODEL in DIALOGPT_MODELS: __lowercase : Optional[int] = os.path.join(args.dialogpt_path, f'''{MODEL}_ft.pkl''') __lowercase : Optional[Any] = f'''./DialoGPT-{MODEL}''' convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
476
_SCREAMING_SNAKE_CASE : dict[str, float] = { "joule": 1.0, "kilojoule": 1000, "megajoule": 1000000, "gigajoule": 1000000000, "wattsecond": 1.0, "watthour": 3600, "kilowatthour": 3600000, "newtonmeter": 1.0, "calorie_nutr": 4186.8, "kilocalorie_nutr": 4186800.00, "electronvolt": 1.6_0217_6634e-19, "britishthermalunit_it": 1055.05585, "footpound": 1.355_818, } def _lowercase ( __lowerCamelCase : str ,__lowerCamelCase : str ,__lowerCamelCase : float ) -> float: '''simple docstring''' if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: UpperCamelCase__ : List[str] = ( F'Incorrect \'from_type\' or \'to_type\' value: {from_type!r}, {to_type!r}\n' F'Valid values are: {", ".join(__lowerCamelCase )}' ) raise ValueError(__lowerCamelCase ) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
344
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowercase__ = { "configuration_rag": ["RagConfig"], "retrieval_rag": ["RagRetriever"], "tokenization_rag": ["RagTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ "RagModel", "RagPreTrainedModel", "RagSequenceForGeneration", "RagTokenForGeneration", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ "TFRagModel", "TFRagPreTrainedModel", "TFRagSequenceForGeneration", "TFRagTokenForGeneration", ] if TYPE_CHECKING: from .configuration_rag import RagConfig from .retrieval_rag import RagRetriever from .tokenization_rag import RagTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rag import RagModel, RagPreTrainedModel, RagSequenceForGeneration, RagTokenForGeneration try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rag import ( TFRagModel, TFRagPreTrainedModel, TFRagSequenceForGeneration, TFRagTokenForGeneration, ) else: import sys lowercase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
715
'''simple docstring''' class __SCREAMING_SNAKE_CASE : def __init__( self , __UpperCamelCase ) -> Optional[Any]: # we need a list not a string, so do something to change the type _a = arr.split("," ) def a_ ( self ) -> List[Any]: _a = [int(self.array[0] )] * len(self.array ) _a = [int(self.array[0] )] * len(self.array ) for i in range(1 , len(self.array ) ): _a = max( int(self.array[i] ) + sum_value[i - 1] , int(self.array[i] ) ) _a = max(sum_value[i] , rear[i - 1] ) return rear[len(self.array ) - 1] if __name__ == "__main__": lowercase__ = input("please input some numbers:") lowercase__ = SubArray(whole_array) lowercase__ = array.solve_sub_array() print(("the results is:", re))
276
0
'''simple docstring''' import argparse import torch # Step 1. clone https://github.com/microsoft/unilm # Step 2. git checkout to https://github.com/microsoft/unilm/commit/b94ec76c36f02fb2b0bf0dcb0b8554a2185173cd # Step 3. cd unilm # Step 4. ln -s $(realpath wavlm/modules.py) ./ # create simlink # import classes from unilm.wavlm.WavLM import WavLM as WavLMOrig from unilm.wavlm.WavLM import WavLMConfig as WavLMConfigOrig from transformers import WavLMConfig, WavLMModel, logging logging.set_verbosity_info() lowerCAmelCase_ : List[Any] = logging.get_logger(__name__) lowerCAmelCase_ : Optional[int] = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn.grep_linear''': '''encoder.layers.*.attention.gru_rel_pos_linear''', '''self_attn.relative_attention_bias''': '''encoder.layers.*.attention.rel_attn_embed''', '''self_attn.grep_a''': '''encoder.layers.*.attention.gru_rel_pos_const''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''ctc_proj''', '''mask_emb''': '''masked_spec_embed''', } lowerCAmelCase_ : List[str] = [ '''ctc_proj''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def __A ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): for attribute in key.split(""".""" ): _UpperCAmelCase : Any = getattr(lowerCAmelCase_ , lowerCAmelCase_ ) if weight_type is not None: _UpperCAmelCase : str = getattr(lowerCAmelCase_ , lowerCAmelCase_ ).shape else: _UpperCAmelCase : Any = hf_pointer.shape assert hf_shape == value.shape, ( f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" f" {value.shape} for {full_name}" ) if weight_type == "weight": _UpperCAmelCase : Union[str, Any] = value elif weight_type == "weight_g": _UpperCAmelCase : List[str] = value elif weight_type == "weight_v": _UpperCAmelCase : List[Any] = value elif weight_type == "bias": _UpperCAmelCase : List[Any] = value else: _UpperCAmelCase : Dict = value logger.info(f"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def __A ( lowerCAmelCase_ , lowerCAmelCase_ ): _UpperCAmelCase : Optional[int] = [] _UpperCAmelCase : List[str] = fairseq_model.state_dict() _UpperCAmelCase : Tuple = hf_model.feature_extractor for name, value in fairseq_dict.items(): _UpperCAmelCase : str = False if "conv_layers" in name: load_conv_layer( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , hf_model.config.feat_extract_norm == """group""" , ) _UpperCAmelCase : str = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: _UpperCAmelCase : List[str] = True if "*" in mapped_key: _UpperCAmelCase : List[Any] = name.split(lowerCAmelCase_ )[0].split(""".""" )[-2] _UpperCAmelCase : Any = mapped_key.replace("""*""" , lowerCAmelCase_ ) if "weight_g" in name: _UpperCAmelCase : str = """weight_g""" elif "weight_v" in name: _UpperCAmelCase : Union[str, Any] = """weight_v""" elif "bias" in name and "relative_attention_bias" not in name: _UpperCAmelCase : Any = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj _UpperCAmelCase : Optional[int] = """weight""" else: _UpperCAmelCase : List[Any] = None set_recursively(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) continue if not is_used: unused_weights.append(lowerCAmelCase_ ) logger.warning(f"Unused weights: {unused_weights}" ) def __A ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): _UpperCAmelCase : Optional[int] = full_name.split("""conv_layers.""" )[-1] _UpperCAmelCase : str = name.split(""".""" ) _UpperCAmelCase : int = int(items[0] ) _UpperCAmelCase : Union[str, Any] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) _UpperCAmelCase : str = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) _UpperCAmelCase : str = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was" " found." ) _UpperCAmelCase : Optional[Any] = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found." ) _UpperCAmelCase : Any = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(lowerCAmelCase_ ) @torch.no_grad() def __A ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=None ): # load the pre-trained checkpoints _UpperCAmelCase : int = torch.load(lowerCAmelCase_ ) _UpperCAmelCase : Tuple = WavLMConfigOrig(checkpoint["""cfg"""] ) _UpperCAmelCase : str = WavLMOrig(lowerCAmelCase_ ) model.load_state_dict(checkpoint["""model"""] ) model.eval() if config_path is not None: _UpperCAmelCase : Tuple = WavLMConfig.from_pretrained(lowerCAmelCase_ ) else: _UpperCAmelCase : Optional[int] = WavLMConfig() _UpperCAmelCase : int = WavLMModel(lowerCAmelCase_ ) recursively_load_weights(lowerCAmelCase_ , lowerCAmelCase_ ) hf_wavlm.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": lowerCAmelCase_ : Any = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') lowerCAmelCase_ : List[str] = parser.parse_args() convert_wavlm_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
414
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ : List[str] = logging.get_logger(__name__) lowerCAmelCase_ : int = { '''SCUT-DLVCLab/lilt-roberta-en-base''': ( '''https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base/resolve/main/config.json''' ), } class __lowerCAmelCase ( __a ): snake_case : Tuple = """lilt""" def __init__(self , lowerCAmelCase__=3_0_5_2_2 , lowerCAmelCase__=7_6_8 , lowerCAmelCase__=1_2 , lowerCAmelCase__=1_2 , lowerCAmelCase__=3_0_7_2 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=5_1_2 , lowerCAmelCase__=2 , lowerCAmelCase__=0.0_2 , lowerCAmelCase__=1e-12 , lowerCAmelCase__=0 , lowerCAmelCase__="absolute" , lowerCAmelCase__=None , lowerCAmelCase__=4 , lowerCAmelCase__=1_0_2_4 , **lowerCAmelCase__ , ): super().__init__(pad_token_id=lowerCAmelCase__ , **lowerCAmelCase__ ) _UpperCAmelCase : int = vocab_size _UpperCAmelCase : Optional[int] = hidden_size _UpperCAmelCase : int = num_hidden_layers _UpperCAmelCase : Optional[int] = num_attention_heads _UpperCAmelCase : int = hidden_act _UpperCAmelCase : Optional[Any] = intermediate_size _UpperCAmelCase : Tuple = hidden_dropout_prob _UpperCAmelCase : int = attention_probs_dropout_prob _UpperCAmelCase : List[Any] = max_position_embeddings _UpperCAmelCase : List[Any] = type_vocab_size _UpperCAmelCase : Tuple = initializer_range _UpperCAmelCase : Optional[Any] = layer_norm_eps _UpperCAmelCase : List[Any] = position_embedding_type _UpperCAmelCase : Optional[int] = classifier_dropout _UpperCAmelCase : Optional[Any] = channel_shrink_ratio _UpperCAmelCase : Tuple = max_ad_position_embeddings
414
1
'''simple docstring''' import unittest import torch from diffusers import DDIMScheduler, DDPMScheduler, UNetaDModel from diffusers.training_utils import set_seed from diffusers.utils.testing_utils import slow UpperCamelCase_ = False class _SCREAMING_SNAKE_CASE( unittest.TestCase ): def __lowerCamelCase ( self : Tuple , UpperCamelCase_ : Union[str, Any]=32 ) -> Union[str, Any]: set_seed(0 ) SCREAMING_SNAKE_CASE__ :Optional[Any] = UNetaDModel(sample_size=UpperCamelCase_ , in_channels=3 , out_channels=3 ) SCREAMING_SNAKE_CASE__ :Union[str, Any] = torch.optim.SGD(model.parameters() , lr=0.0001 ) return model, optimizer @slow def __lowerCamelCase ( self : Optional[int] ) -> List[Any]: SCREAMING_SNAKE_CASE__ :List[str] = 'cpu' # ensure full determinism without setting the CUBLAS_WORKSPACE_CONFIG env variable SCREAMING_SNAKE_CASE__ :List[Any] = DDPMScheduler( num_train_timesteps=10_00 , beta_start=0.0001 , beta_end=0.02 , beta_schedule='linear' , clip_sample=UpperCamelCase_ , ) SCREAMING_SNAKE_CASE__ :int = DDIMScheduler( num_train_timesteps=10_00 , beta_start=0.0001 , beta_end=0.02 , beta_schedule='linear' , clip_sample=UpperCamelCase_ , ) assert ddpm_scheduler.config.num_train_timesteps == ddim_scheduler.config.num_train_timesteps # shared batches for DDPM and DDIM set_seed(0 ) SCREAMING_SNAKE_CASE__ :List[str] = [torch.randn((4, 3, 32, 32) ).clip(-1 , 1 ).to(UpperCamelCase_ ) for _ in range(4 )] SCREAMING_SNAKE_CASE__ :int = [torch.randn((4, 3, 32, 32) ).to(UpperCamelCase_ ) for _ in range(4 )] SCREAMING_SNAKE_CASE__ :Tuple = [torch.randint(0 , 10_00 , (4,) ).long().to(UpperCamelCase_ ) for _ in range(4 )] # train with a DDPM scheduler SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ :Union[str, Any] = self.get_model_optimizer(resolution=32 ) model.train().to(UpperCamelCase_ ) for i in range(4 ): optimizer.zero_grad() SCREAMING_SNAKE_CASE__ :Tuple = ddpm_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] ) SCREAMING_SNAKE_CASE__ :Dict = model(UpperCamelCase_ , timesteps[i] ).sample SCREAMING_SNAKE_CASE__ :List[str] = torch.nn.functional.mse_loss(UpperCamelCase_ , noise[i] ) loss.backward() optimizer.step() del model, optimizer # recreate the model and optimizer, and retry with DDIM SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ :str = self.get_model_optimizer(resolution=32 ) model.train().to(UpperCamelCase_ ) for i in range(4 ): optimizer.zero_grad() SCREAMING_SNAKE_CASE__ :Tuple = ddim_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] ) SCREAMING_SNAKE_CASE__ :Optional[Any] = model(UpperCamelCase_ , timesteps[i] ).sample SCREAMING_SNAKE_CASE__ :Any = torch.nn.functional.mse_loss(UpperCamelCase_ , noise[i] ) loss.backward() optimizer.step() del model, optimizer self.assertTrue(torch.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1e-5 ) ) self.assertTrue(torch.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1e-5 ) )
320
'''simple docstring''' import argparse from pathlib import Path import torch from packaging import version from torch.onnx import export from diffusers import AutoencoderKL UpperCamelCase_ = version.parse(version.parse(torch.__version__).base_version) < version.parse('''1.11''') def lowerCamelCase ( UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : tuple , UpperCAmelCase__ : Path , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Optional[Any]=False , ) -> Union[str, Any]: '''simple docstring''' output_path.parent.mkdir(parents=UpperCAmelCase__ , exist_ok=UpperCAmelCase__ ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( UpperCAmelCase__ , UpperCAmelCase__ , f=output_path.as_posix() , input_names=UpperCAmelCase__ , output_names=UpperCAmelCase__ , dynamic_axes=UpperCAmelCase__ , do_constant_folding=UpperCAmelCase__ , use_external_data_format=UpperCAmelCase__ , enable_onnx_checker=UpperCAmelCase__ , opset_version=UpperCAmelCase__ , ) else: export( UpperCAmelCase__ , UpperCAmelCase__ , f=output_path.as_posix() , input_names=UpperCAmelCase__ , output_names=UpperCAmelCase__ , dynamic_axes=UpperCAmelCase__ , do_constant_folding=UpperCAmelCase__ , opset_version=UpperCAmelCase__ , ) @torch.no_grad() def lowerCamelCase ( UpperCAmelCase__ : str , UpperCAmelCase__ : str , UpperCAmelCase__ : int , UpperCAmelCase__ : bool = False ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE__ :Dict = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): SCREAMING_SNAKE_CASE__ :Optional[int] = 'cuda' elif fpaa and not torch.cuda.is_available(): raise ValueError('`float16` model export is only supported on GPUs with CUDA' ) else: SCREAMING_SNAKE_CASE__ :Tuple = 'cpu' SCREAMING_SNAKE_CASE__ :Tuple = Path(UpperCAmelCase__ ) # VAE DECODER SCREAMING_SNAKE_CASE__ :Union[str, Any] = AutoencoderKL.from_pretrained(model_path + '/vae' ) SCREAMING_SNAKE_CASE__ :Optional[int] = vae_decoder.config.latent_channels # forward only through the decoder part SCREAMING_SNAKE_CASE__ :Dict = vae_decoder.decode onnx_export( UpperCAmelCase__ , model_args=( torch.randn(1 , UpperCAmelCase__ , 2_5 , 2_5 ).to(device=UpperCAmelCase__ , dtype=UpperCAmelCase__ ), False, ) , output_path=output_path / 'vae_decoder' / 'model.onnx' , ordered_input_names=['latent_sample', 'return_dict'] , output_names=['sample'] , dynamic_axes={ 'latent_sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, } , opset=UpperCAmelCase__ , ) del vae_decoder if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() parser.add_argument( '''--model_path''', type=str, required=True, help='''Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).''', ) parser.add_argument('''--output_path''', type=str, required=True, help='''Path to the output model.''') parser.add_argument( '''--opset''', default=14, type=int, help='''The version of the ONNX operator set to use.''', ) parser.add_argument('''--fp16''', action='''store_true''', default=False, help='''Export the models in `float16` mode''') UpperCamelCase_ = parser.parse_args() print(args.output_path) convert_models(args.model_path, args.output_path, args.opset, args.fpaa) print('''SD: Done: ONNX''')
320
1
"""simple docstring""" import unittest import numpy as np import torch from diffusers import ScoreSdeVePipeline, ScoreSdeVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @property def _lowerCAmelCase ( self ) -> str: '''simple docstring''' torch.manual_seed(0 ) lowerCamelCase_ = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) return model def _lowerCAmelCase ( self ) -> Any: '''simple docstring''' lowerCamelCase_ = self.dummy_uncond_unet lowerCamelCase_ = ScoreSdeVeScheduler() lowerCamelCase_ = ScoreSdeVePipeline(unet=UpperCamelCase__ , scheduler=UpperCamelCase__ ) sde_ve.to(UpperCamelCase__ ) sde_ve.set_progress_bar_config(disable=UpperCamelCase__ ) lowerCamelCase_ = torch.manual_seed(0 ) lowerCamelCase_ = sde_ve(num_inference_steps=2 , output_type='''numpy''' , generator=UpperCamelCase__ ).images lowerCamelCase_ = torch.manual_seed(0 ) lowerCamelCase_ = sde_ve(num_inference_steps=2 , output_type='''numpy''' , generator=UpperCamelCase__ , return_dict=UpperCamelCase__ )[ 0 ] lowerCamelCase_ = image[0, -3:, -3:, -1] lowerCamelCase_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowerCamelCase_ = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self ) -> Tuple: '''simple docstring''' lowerCamelCase_ = '''google/ncsnpp-church-256''' lowerCamelCase_ = UNetaDModel.from_pretrained(UpperCamelCase__ ) lowerCamelCase_ = ScoreSdeVeScheduler.from_pretrained(UpperCamelCase__ ) lowerCamelCase_ = ScoreSdeVePipeline(unet=UpperCamelCase__ , scheduler=UpperCamelCase__ ) sde_ve.to(UpperCamelCase__ ) sde_ve.set_progress_bar_config(disable=UpperCamelCase__ ) lowerCamelCase_ = torch.manual_seed(0 ) lowerCamelCase_ = sde_ve(num_inference_steps=10 , output_type='''numpy''' , generator=UpperCamelCase__ ).images lowerCamelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) lowerCamelCase_ = np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
142
"""simple docstring""" __lowercase : Union[str, Any] = 8.3_1_4_4_6_2 # Unit - J mol-1 K-1 def lowerCamelCase_ ( _lowerCamelCase : float , _lowerCamelCase : float , _lowerCamelCase : float ): if moles < 0 or kelvin < 0 or volume < 0: raise ValueError('''Invalid inputs. Enter positive value.''' ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / volume def lowerCamelCase_ ( _lowerCamelCase : float , _lowerCamelCase : float , _lowerCamelCase : float ): if moles < 0 or kelvin < 0 or pressure < 0: raise ValueError('''Invalid inputs. Enter positive value.''' ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / pressure if __name__ == "__main__": from doctest import testmod testmod()
142
1
def UpperCamelCase_ ( a_ , a_ ) ->int: return int((input_a, input_a).count(0 ) != 0 ) def UpperCamelCase_ ( ) ->None: assert nand_gate(0 , 0 ) == 1 assert nand_gate(0 , 1 ) == 1 assert nand_gate(1 , 0 ) == 1 assert nand_gate(1 , 1 ) == 0 if __name__ == "__main__": print(nand_gate(0, 0)) print(nand_gate(0, 1)) print(nand_gate(1, 0)) print(nand_gate(1, 1))
700
def UpperCamelCase_ ( a_ , a_ ) ->list[int]: A =int(a_ ) # Initialize Result A =[] # Traverse through all denomination for denomination in reversed(a_ ): # Find denominations while int(a_ ) >= int(a_ ): total_value -= int(a_ ) answer.append(a_ ) # Append the "answers" array return answer # Driver Code if __name__ == "__main__": __a = [] __a = """0""" if ( input("""Do you want to enter your denominations ? (yY/n): """).strip().lower() == "y" ): __a = int(input("""Enter the number of denominations you want to add: """).strip()) for i in range(0, n): denominations.append(int(input(F'''Denomination {i}: ''').strip())) __a = input("""Enter the change you want to make in Indian Currency: """).strip() else: # All denominations of Indian Currency if user does not enter __a = [1, 2, 5, 1_0, 2_0, 5_0, 1_0_0, 5_0_0, 2_0_0_0] __a = input("""Enter the change you want to make: """).strip() if int(value) == 0 or int(value) < 0: print("""The total value cannot be zero or negative.""") else: print(F'''Following is minimal change for {value}: ''') __a = find_minimum_change(denominations, value) # Print result for i in range(len(answer)): print(answer[i], end=""" """)
689
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a__ = logging.get_logger(__name__) a__ = { '''facebook/data2vec-vision-base-ft''': ( '''https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json''' ), } class SCREAMING_SNAKE_CASE_ ( _UpperCamelCase ): """simple docstring""" __magic_name__ : Any = 'data2vec-vision' def __init__( self : Any , lowerCAmelCase : Optional[int]=768 , lowerCAmelCase : Tuple=12 , lowerCAmelCase : int=12 , lowerCAmelCase : Optional[int]=3072 , lowerCAmelCase : int="gelu" , lowerCAmelCase : Tuple=0.0 , lowerCAmelCase : Dict=0.0 , lowerCAmelCase : Optional[Any]=0.02 , lowerCAmelCase : str=1E-12 , lowerCAmelCase : Tuple=224 , lowerCAmelCase : Any=16 , lowerCAmelCase : Any=3 , lowerCAmelCase : Dict=False , lowerCAmelCase : List[Any]=False , lowerCAmelCase : Dict=False , lowerCAmelCase : Optional[Any]=False , lowerCAmelCase : Optional[int]=0.1 , lowerCAmelCase : Union[str, Any]=0.1 , lowerCAmelCase : Tuple=True , lowerCAmelCase : Tuple=[3, 5, 7, 11] , lowerCAmelCase : int=[1, 2, 3, 6] , lowerCAmelCase : List[Any]=True , lowerCAmelCase : List[str]=0.4 , lowerCAmelCase : Union[str, Any]=256 , lowerCAmelCase : Optional[int]=1 , lowerCAmelCase : Tuple=False , lowerCAmelCase : Dict=255 , **lowerCAmelCase : List[str] , ) -> Dict: """simple docstring""" super().__init__(**lowerCAmelCase ) __UpperCamelCase : List[str] = hidden_size __UpperCamelCase : Optional[int] = num_hidden_layers __UpperCamelCase : Union[str, Any] = num_attention_heads __UpperCamelCase : int = intermediate_size __UpperCamelCase : Union[str, Any] = hidden_act __UpperCamelCase : Dict = hidden_dropout_prob __UpperCamelCase : Any = attention_probs_dropout_prob __UpperCamelCase : Union[str, Any] = initializer_range __UpperCamelCase : Optional[int] = layer_norm_eps __UpperCamelCase : Optional[Any] = image_size __UpperCamelCase : int = patch_size __UpperCamelCase : Optional[int] = num_channels __UpperCamelCase : Tuple = use_mask_token __UpperCamelCase : List[str] = use_absolute_position_embeddings __UpperCamelCase : Union[str, Any] = use_relative_position_bias __UpperCamelCase : str = use_shared_relative_position_bias __UpperCamelCase : int = layer_scale_init_value __UpperCamelCase : Optional[int] = drop_path_rate __UpperCamelCase : Dict = use_mean_pooling # decode head attributes (semantic segmentation) __UpperCamelCase : Optional[Any] = out_indices __UpperCamelCase : Tuple = pool_scales # auxiliary head attributes (semantic segmentation) __UpperCamelCase : Dict = use_auxiliary_head __UpperCamelCase : Optional[Any] = auxiliary_loss_weight __UpperCamelCase : Optional[Any] = auxiliary_channels __UpperCamelCase : int = auxiliary_num_convs __UpperCamelCase : Dict = auxiliary_concat_input __UpperCamelCase : Tuple = semantic_loss_ignore_index class SCREAMING_SNAKE_CASE_ ( _UpperCamelCase ): """simple docstring""" __magic_name__ : Optional[int] = version.parse('1.11' ) @property def lowerCamelCase__ ( self : Any ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def lowerCamelCase__ ( self : List[Any] ) -> float: """simple docstring""" return 1E-4
279
def A__ (snake_case : float , snake_case : int ) -> float: if digit_amount > 0: return round(number - int(snake_case ) , snake_case ) return number - int(snake_case ) if __name__ == "__main__": print(decimal_isolate(1.53, 0)) print(decimal_isolate(35.345, 1)) print(decimal_isolate(35.345, 2)) print(decimal_isolate(35.345, 3)) print(decimal_isolate(-14.789, 3)) print(decimal_isolate(0, 2)) print(decimal_isolate(-14.123, 1)) print(decimal_isolate(-14.123, 2)) print(decimal_isolate(-14.123, 3))
279
1
from collections import defaultdict from typing import Optional from ..image_utils import load_image from ..utils import ( add_end_docstrings, is_torch_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING __lowerCamelCase : Any = logging.get_logger(__name__) @add_end_docstrings(_A ) class _lowercase ( _A ): def __init__( self , **a ): super().__init__(**a ) requires_backends(self , """vision""" ) requires_backends(self , """torch""" ) if self.framework != "pt": raise ValueError(F"The {self.__class__} is only available in PyTorch." ) self.check_model_type(a ) def lowercase__ ( self , **a ): snake_case__ : List[str] ={} snake_case__ : Optional[int] ={} snake_case__ : Dict ={} # preprocess args if "points_per_batch" in kwargs: snake_case__ : Any =kwargs["""points_per_batch"""] if "points_per_crop" in kwargs: snake_case__ : Union[str, Any] =kwargs["""points_per_crop"""] if "crops_n_layers" in kwargs: snake_case__ : int =kwargs["""crops_n_layers"""] if "crop_overlap_ratio" in kwargs: snake_case__ : Optional[int] =kwargs["""crop_overlap_ratio"""] if "crop_n_points_downscale_factor" in kwargs: snake_case__ : Optional[int] =kwargs["""crop_n_points_downscale_factor"""] # postprocess args if "pred_iou_thresh" in kwargs: snake_case__ : Tuple =kwargs["""pred_iou_thresh"""] if "stability_score_offset" in kwargs: snake_case__ : Dict =kwargs["""stability_score_offset"""] if "mask_threshold" in kwargs: snake_case__ : Tuple =kwargs["""mask_threshold"""] if "stability_score_thresh" in kwargs: snake_case__ : Optional[int] =kwargs["""stability_score_thresh"""] if "crops_nms_thresh" in kwargs: snake_case__ : List[Any] =kwargs["""crops_nms_thresh"""] if "output_rle_mask" in kwargs: snake_case__ : List[str] =kwargs["""output_rle_mask"""] if "output_bboxes_mask" in kwargs: snake_case__ : Union[str, Any] =kwargs["""output_bboxes_mask"""] return preprocess_kwargs, forward_params, postprocess_kwargs def __call__( self , a , *a , a=None , a=None , **a ): return super().__call__(a , *a , num_workers=a , batch_size=a , **a ) def lowercase__ ( self , a , a=6_4 , a = 0 , a = 5_1_2 / 1_5_0_0 , a = 3_2 , a = 1 , ): snake_case__ : Dict =load_image(a ) snake_case__ : str =self.image_processor.size["""longest_edge"""] snake_case__ , snake_case__ , snake_case__ , snake_case__ : Optional[Any] =self.image_processor.generate_crop_boxes( a , a , a , a , a , a ) snake_case__ : Any =self.image_processor(images=a , return_tensors="""pt""" ) with self.device_placement(): if self.framework == "pt": snake_case__ : List[Any] =self.get_inference_context() with inference_context(): snake_case__ : Any =self._ensure_tensor_on_device(a , device=self.device ) snake_case__ : Dict =self.model.get_image_embeddings(model_inputs.pop("""pixel_values""" ) ) snake_case__ : List[Any] =image_embeddings snake_case__ : Optional[Any] =grid_points.shape[1] snake_case__ : str =points_per_batch if points_per_batch is not None else n_points if points_per_batch <= 0: raise ValueError( """Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. """ """To return all points at once, set points_per_batch to None""" ) for i in range(0 , a , a ): snake_case__ : List[str] =grid_points[:, i : i + points_per_batch, :, :] snake_case__ : Any =input_labels[:, i : i + points_per_batch] snake_case__ : Any =i == n_points - points_per_batch yield { "input_points": batched_points, "input_labels": labels, "input_boxes": crop_boxes, "is_last": is_last, **model_inputs, } def lowercase__ ( self , a , a=0.88 , a=0.95 , a=0 , a=1 , ): snake_case__ : Optional[Any] =model_inputs.pop("""input_boxes""" ) snake_case__ : Tuple =model_inputs.pop("""is_last""" ) snake_case__ : str =model_inputs.pop("""original_sizes""" ).tolist() snake_case__ : Dict =model_inputs.pop("""reshaped_input_sizes""" ).tolist() snake_case__ : Optional[int] =self.model(**a ) # post processing happens here in order to avoid CPU GPU copies of ALL the masks snake_case__ : str =model_outputs["""pred_masks"""] snake_case__ : List[str] =self.image_processor.post_process_masks( a , a , a , a , binarize=a ) snake_case__ : Dict =model_outputs["""iou_scores"""] snake_case__ , snake_case__ , snake_case__ : Optional[Any] =self.image_processor.filter_masks( masks[0] , iou_scores[0] , original_sizes[0] , input_boxes[0] , a , a , a , a , ) return { "masks": masks, "is_last": is_last, "boxes": boxes, "iou_scores": iou_scores, } def lowercase__ ( self , a , a=False , a=False , a=0.7 , ): snake_case__ : Dict =[] snake_case__ : Union[str, Any] =[] snake_case__ : Optional[int] =[] for model_output in model_outputs: all_scores.append(model_output.pop("""iou_scores""" ) ) all_masks.extend(model_output.pop("""masks""" ) ) all_boxes.append(model_output.pop("""boxes""" ) ) snake_case__ : List[str] =torch.cat(a ) snake_case__ : str =torch.cat(a ) snake_case__ , snake_case__ , snake_case__ , snake_case__ : str =self.image_processor.post_process_for_mask_generation( a , a , a , a ) snake_case__ : Union[str, Any] =defaultdict(a ) for output in model_outputs: for k, v in output.items(): extra[k].append(a ) snake_case__ : str ={} if output_rle_mask: snake_case__ : Optional[int] =rle_mask if output_bboxes_mask: snake_case__ : str =bounding_boxes return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
448
import sacrebleu as scb from packaging import version from sacrebleu import CHRF import datasets __lowerCamelCase : Dict = """\ @inproceedings{popovic-2015-chrf, title = \"chr{F}: character n-gram {F}-score for automatic {MT} evaluation\", author = \"Popovi{\'c}, Maja\", booktitle = \"Proceedings of the Tenth Workshop on Statistical Machine Translation\", month = sep, year = \"2015\", address = \"Lisbon, Portugal\", publisher = \"Association for Computational Linguistics\", url = \"https://aclanthology.org/W15-3049\", doi = \"10.18653/v1/W15-3049\", pages = \"392--395\", } @inproceedings{popovic-2017-chrf, title = \"chr{F}++: words helping character n-grams\", author = \"Popovi{\'c}, Maja\", booktitle = \"Proceedings of the Second Conference on Machine Translation\", month = sep, year = \"2017\", address = \"Copenhagen, Denmark\", publisher = \"Association for Computational Linguistics\", url = \"https://aclanthology.org/W17-4770\", doi = \"10.18653/v1/W17-4770\", pages = \"612--618\", } @inproceedings{post-2018-call, title = \"A Call for Clarity in Reporting {BLEU} Scores\", author = \"Post, Matt\", booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\", month = oct, year = \"2018\", address = \"Belgium, Brussels\", publisher = \"Association for Computational Linguistics\", url = \"https://www.aclweb.org/anthology/W18-6319\", pages = \"186--191\", } """ __lowerCamelCase : Optional[int] = """\ ChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches, and ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation that is already present in sacrebleu. The implementation here is slightly different from sacrebleu in terms of the required input format. The length of the references and hypotheses lists need to be the same, so you may need to transpose your references compared to sacrebleu's required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534 See the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information. """ __lowerCamelCase : List[str] = """ Produces ChrF(++) scores for hypotheses given reference translations. Args: predictions (list of str): The predicted sentences. references (list of list of str): The references. There should be one reference sub-list for each prediction sentence. char_order (int): Character n-gram order. Defaults to `6`. word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`. beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`. lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`. whitespace (bool): If `True`, include whitespaces when extracting character n-grams. eps_smoothing (bool): If `True`, applies epsilon smoothing similar to reference chrF++.py, NLTK and Moses implementations. If `False`, it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`. Returns: 'score' (float): The chrF (chrF++) score, 'char_order' (int): The character n-gram order, 'word_order' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++, 'beta' (int): Determine the importance of recall w.r.t precision Examples: Example 1--a simple example of calculating chrF: >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"] >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]] >>> chrf = datasets.load_metric(\"chrf\") >>> results = chrf.compute(predictions=prediction, references=reference) >>> print(results) {'score': 84.64214891738334, 'char_order': 6, 'word_order': 0, 'beta': 2} Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF: >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"] >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]] >>> chrf = datasets.load_metric(\"chrf\") >>> results = chrf.compute(predictions=prediction, ... references=reference, ... word_order=2) >>> print(results) {'score': 82.87263732906315, 'char_order': 6, 'word_order': 2, 'beta': 2} Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case: >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"] >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]] >>> chrf = datasets.load_metric(\"chrf\") >>> results = chrf.compute(predictions=prediction, ... references=reference, ... word_order=2, ... lowercase=True) >>> print(results) {'score': 92.12853119829202, 'char_order': 6, 'word_order': 2, 'beta': 2} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowercase ( datasets.Metric ): def lowercase__ ( self ): if version.parse(scb.__version__ ) < version.parse("""1.4.12""" ): raise ImportWarning( """To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n""" """You can install it with `pip install \"sacrebleu>=1.4.12\"`.""" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="""https://github.com/mjpost/sacreBLEU#chrf--chrf""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Sequence(datasets.Value("""string""" , id="""sequence""" ) , id="""references""" ), } ) , codebase_urls=["""https://github.com/mjpost/sacreBLEU#chrf--chrf"""] , reference_urls=[ """https://github.com/m-popovic/chrF""", ] , ) def lowercase__ ( self , a , a , a = CHRF.CHAR_ORDER , a = CHRF.WORD_ORDER , a = CHRF.BETA , a = False , a = False , a = False , ): snake_case__ : str =len(references[0] ) if any(len(a ) != references_per_prediction for refs in references ): raise ValueError("""Sacrebleu requires the same number of references for each prediction""" ) snake_case__ : List[Any] =[[refs[i] for refs in references] for i in range(a )] snake_case__ : int =CHRF(a , a , a , a , a , a ) snake_case__ : int =sb_chrf.corpus_score(a , a ) return { "score": output.score, "char_order": output.char_order, "word_order": output.word_order, "beta": output.beta, }
448
1
import argparse import os import torch from transformers import FlavaConfig, FlavaForPreTraining from transformers.models.flava.convert_dalle_to_flava_codebook import convert_dalle_checkpoint def lowerCamelCase__ ( _a): # encoder.embeddings are double copied in original FLAVA return sum(param.float().sum() if "encoder.embeddings" not in key else 0 for key, param in state_dict.items()) def lowerCamelCase__ ( _a , _a): SCREAMING_SNAKE_CASE : Dict = {} for key, value in state_dict.items(): if "text_encoder.embeddings" in key or "image_encoder.embeddings" in key: continue SCREAMING_SNAKE_CASE : Tuple = key.replace("heads.cmd.mim_head.cls.predictions" , "mmm_image_head") SCREAMING_SNAKE_CASE : Dict = key.replace("heads.cmd.mlm_head.cls.predictions" , "mmm_text_head") SCREAMING_SNAKE_CASE : List[str] = key.replace("heads.cmd.itm_head.cls" , "itm_head") SCREAMING_SNAKE_CASE : List[Any] = key.replace("heads.cmd.itm_head.pooler" , "itm_head.pooler") SCREAMING_SNAKE_CASE : Union[str, Any] = key.replace("heads.cmd.clip_head.logit_scale" , "flava.logit_scale") SCREAMING_SNAKE_CASE : Dict = key.replace("heads.fairseq_mlm.cls.predictions" , "mlm_head") SCREAMING_SNAKE_CASE : str = key.replace("heads.imagenet.mim_head.cls.predictions" , "mim_head") SCREAMING_SNAKE_CASE : str = key.replace("mm_text_projection" , "flava.text_to_mm_projection") SCREAMING_SNAKE_CASE : List[Any] = key.replace("mm_image_projection" , "flava.image_to_mm_projection") SCREAMING_SNAKE_CASE : Optional[int] = key.replace("image_encoder.module" , "flava.image_model") SCREAMING_SNAKE_CASE : Tuple = key.replace("text_encoder.module" , "flava.text_model") SCREAMING_SNAKE_CASE : Optional[Any] = key.replace("mm_encoder.module.encoder.cls_token" , "flava.multimodal_model.cls_token") SCREAMING_SNAKE_CASE : Dict = key.replace("mm_encoder.module" , "flava.multimodal_model") SCREAMING_SNAKE_CASE : int = key.replace("text_projection" , "flava.text_projection") SCREAMING_SNAKE_CASE : List[str] = key.replace("image_projection" , "flava.image_projection") SCREAMING_SNAKE_CASE : Union[str, Any] = value.float() for key, value in codebook_state_dict.items(): SCREAMING_SNAKE_CASE : Tuple = value return upgrade @torch.no_grad() def lowerCamelCase__ ( _a , _a , _a , _a=None): if config_path is not None: SCREAMING_SNAKE_CASE : Any = FlavaConfig.from_pretrained(_a) else: SCREAMING_SNAKE_CASE : Tuple = FlavaConfig() SCREAMING_SNAKE_CASE : Union[str, Any] = FlavaForPreTraining(_a).eval() SCREAMING_SNAKE_CASE : int = convert_dalle_checkpoint(_a , _a , save_checkpoint=_a) if os.path.exists(_a): SCREAMING_SNAKE_CASE : List[Any] = torch.load(_a , map_location="cpu") else: SCREAMING_SNAKE_CASE : str = torch.hub.load_state_dict_from_url(_a , map_location="cpu") SCREAMING_SNAKE_CASE : Tuple = upgrade_state_dict(_a , _a) hf_model.load_state_dict(_a) SCREAMING_SNAKE_CASE : List[Any] = hf_model.state_dict() SCREAMING_SNAKE_CASE : Optional[int] = count_parameters(_a) SCREAMING_SNAKE_CASE : Union[str, Any] = count_parameters(_a) + count_parameters(_a) assert torch.allclose(_a , _a , atol=1E-3) hf_model.save_pretrained(_a) if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to flava checkpoint') parser.add_argument('--codebook_path', default=None, type=str, help='Path to flava codebook checkpoint') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') a_ = parser.parse_args() convert_flava_checkpoint(args.checkpoint_path, args.codebook_path, args.pytorch_dump_folder_path, args.config_path)
25
import logging from transformers.configuration_utils import PretrainedConfig A__ : Tuple = logging.getLogger(__name__) class lowercase ( __UpperCamelCase ): __a = """masked_bert""" def __init__( self , SCREAMING_SNAKE_CASE__=30522 , SCREAMING_SNAKE_CASE__=768 , SCREAMING_SNAKE_CASE__=12 , SCREAMING_SNAKE_CASE__=12 , SCREAMING_SNAKE_CASE__=3072 , SCREAMING_SNAKE_CASE__="gelu" , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=512 , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__=0.02 , SCREAMING_SNAKE_CASE__=1E-12 , SCREAMING_SNAKE_CASE__=0 , SCREAMING_SNAKE_CASE__="topK" , SCREAMING_SNAKE_CASE__="constant" , SCREAMING_SNAKE_CASE__=0.0 , **SCREAMING_SNAKE_CASE__ , ): """simple docstring""" super().__init__(pad_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ : Dict = vocab_size lowerCAmelCase__ : List[str] = hidden_size lowerCAmelCase__ : Optional[Any] = num_hidden_layers lowerCAmelCase__ : Dict = num_attention_heads lowerCAmelCase__ : Union[str, Any] = hidden_act lowerCAmelCase__ : Any = intermediate_size lowerCAmelCase__ : Tuple = hidden_dropout_prob lowerCAmelCase__ : Tuple = attention_probs_dropout_prob lowerCAmelCase__ : int = max_position_embeddings lowerCAmelCase__ : Optional[int] = type_vocab_size lowerCAmelCase__ : Union[str, Any] = initializer_range lowerCAmelCase__ : List[Any] = layer_norm_eps lowerCAmelCase__ : List[str] = pruning_method lowerCAmelCase__ : List[Any] = mask_init lowerCAmelCase__ : Dict = mask_scale
233
0
"""simple docstring""" def __UpperCamelCase ( ) -> list[list[int]]: """simple docstring""" return [list(range(10_00 - i , -10_00 - i , -1 ) ) for i in range(10_00 )] _SCREAMING_SNAKE_CASE = generate_large_matrix() _SCREAMING_SNAKE_CASE = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def __UpperCamelCase ( SCREAMING_SNAKE_CASE ) -> None: """simple docstring""" assert all(row == sorted(SCREAMING_SNAKE_CASE , reverse=SCREAMING_SNAKE_CASE ) for row in grid ) assert all(list(SCREAMING_SNAKE_CASE ) == sorted(SCREAMING_SNAKE_CASE , reverse=SCREAMING_SNAKE_CASE ) for col in zip(*SCREAMING_SNAKE_CASE ) ) def __UpperCamelCase ( SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" __snake_case = 0 __snake_case = len(SCREAMING_SNAKE_CASE ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: __snake_case = (left + right) // 2 __snake_case = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: __snake_case = mid + 1 else: __snake_case = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" __snake_case = 0 __snake_case = len(grid[0] ) for i in range(len(SCREAMING_SNAKE_CASE ) ): __snake_case = find_negative_index(grid[i][:bound] ) total += bound return (len(SCREAMING_SNAKE_CASE ) * len(grid[0] )) - total def __UpperCamelCase ( SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" return len([number for row in grid for number in row if number < 0] ) def __UpperCamelCase ( SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" __snake_case = 0 for row in grid: for i, number in enumerate(SCREAMING_SNAKE_CASE ): if number < 0: total += len(SCREAMING_SNAKE_CASE ) - i break return total def __UpperCamelCase ( ) -> None: """simple docstring""" from timeit import timeit print("Running benchmarks" ) __snake_case = ( "from __main__ import count_negatives_binary_search, " "count_negatives_brute_force, count_negatives_brute_force_with_break, grid" ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): __snake_case = timeit(F'''{func}(grid=grid)''' , setup=SCREAMING_SNAKE_CASE , number=5_00 ) print(F'''{func}() took {time:0.4f} seconds''' ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
614
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _SCREAMING_SNAKE_CASE = { """configuration_groupvit""": [ """GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GroupViTConfig""", """GroupViTOnnxConfig""", """GroupViTTextConfig""", """GroupViTVisionConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ """GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """GroupViTModel""", """GroupViTPreTrainedModel""", """GroupViTTextModel""", """GroupViTVisionModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ """TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFGroupViTModel""", """TFGroupViTPreTrainedModel""", """TFGroupViTTextModel""", """TFGroupViTVisionModel""", ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
614
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _UpperCamelCase = { """configuration_lilt""": ["""LILT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LiltConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ """LILT_PRETRAINED_MODEL_ARCHIVE_LIST""", """LiltForQuestionAnswering""", """LiltForSequenceClassification""", """LiltForTokenClassification""", """LiltModel""", """LiltPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_lilt import LILT_PRETRAINED_CONFIG_ARCHIVE_MAP, LiltConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lilt import ( LILT_PRETRAINED_MODEL_ARCHIVE_LIST, LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, LiltPreTrainedModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
243
"""simple docstring""" import warnings from ...utils import logging from .image_processing_donut import DonutImageProcessor SCREAMING_SNAKE_CASE__:Dict = logging.get_logger(__name__) class snake_case__ ( snake_case_ ): def __init__( self , *lowerCamelCase , **lowerCamelCase ): warnings.warn( "The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use DonutImageProcessor instead." , lowerCamelCase , ) super().__init__(*lowerCamelCase , **lowerCamelCase )
528
0
"""simple docstring""" from __future__ import annotations def _snake_case ( lowerCamelCase__ : List[Any] ) -> List[Any]: if not nums: raise ValueError("List is empty" ) return sum(A_ ) / len(A_ ) if __name__ == "__main__": import doctest doctest.testmod()
710
"""simple docstring""" import warnings from ...utils import logging from .image_processing_dpt import DPTImageProcessor A__ : Dict = logging.get_logger(__name__) class lowercase__ ( snake_case__ ): def __init__( self : Dict , *snake_case__ : Optional[Any] , **snake_case__ : Tuple ): warnings.warn( "The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use DPTImageProcessor instead." , snake_case__ , ) super().__init__(*snake_case__ , **snake_case__ )
244
0
from __future__ import annotations import bisect def __lowercase ( _UpperCamelCase, _UpperCamelCase, _UpperCamelCase = 0, _UpperCamelCase = -1 ) ->Dict: """simple docstring""" if hi < 0: lowercase : Optional[Any] = len(_UpperCamelCase ) while lo < hi: lowercase : Optional[Any] = lo + (hi - lo) // 2 if sorted_collection[mid] < item: lowercase : str = mid + 1 else: lowercase : Union[str, Any] = mid return lo def __lowercase ( _UpperCamelCase, _UpperCamelCase, _UpperCamelCase = 0, _UpperCamelCase = -1 ) ->List[str]: """simple docstring""" if hi < 0: lowercase : int = len(_UpperCamelCase ) while lo < hi: lowercase : str = lo + (hi - lo) // 2 if sorted_collection[mid] <= item: lowercase : Union[str, Any] = mid + 1 else: lowercase : Optional[int] = mid return lo def __lowercase ( _UpperCamelCase, _UpperCamelCase, _UpperCamelCase = 0, _UpperCamelCase = -1 ) ->str: """simple docstring""" sorted_collection.insert(bisect_left(_UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase ), _UpperCamelCase ) def __lowercase ( _UpperCamelCase, _UpperCamelCase, _UpperCamelCase = 0, _UpperCamelCase = -1 ) ->Union[str, Any]: """simple docstring""" sorted_collection.insert(bisect_right(_UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase ), _UpperCamelCase ) def __lowercase ( _UpperCamelCase, _UpperCamelCase ) ->Union[str, Any]: """simple docstring""" lowercase : Any = 0 lowercase : Any = len(_UpperCamelCase ) - 1 while left <= right: lowercase : List[str] = left + (right - left) // 2 lowercase : Any = sorted_collection[midpoint] if current_item == item: return midpoint elif item < current_item: lowercase : Optional[int] = midpoint - 1 else: lowercase : List[Any] = midpoint + 1 return None def __lowercase ( _UpperCamelCase, _UpperCamelCase ) ->Dict: """simple docstring""" lowercase : Union[str, Any] = bisect.bisect_left(_UpperCamelCase, _UpperCamelCase ) if index != len(_UpperCamelCase ) and sorted_collection[index] == item: return index return None def __lowercase ( _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase ) ->Tuple: """simple docstring""" if right < left: return None lowercase : Tuple = left + (right - left) // 2 if sorted_collection[midpoint] == item: return midpoint elif sorted_collection[midpoint] > item: return binary_search_by_recursion(_UpperCamelCase, _UpperCamelCase, _UpperCamelCase, midpoint - 1 ) else: return binary_search_by_recursion(_UpperCamelCase, _UpperCamelCase, midpoint + 1, _UpperCamelCase ) if __name__ == "__main__": __a = input('''Enter numbers separated by comma:\n''').strip() __a = sorted(int(item) for item in user_input.split(''',''')) __a = int(input('''Enter a single number to be found in the list:\n''')) __a = binary_search(collection, target) if result is None: print(F'''{target} was not found in {collection}.''') else: print(F'''{target} was found at position {result} in {collection}.''')
319
'''simple docstring''' from typing import Optional, Tuple, Union import torch from einops import rearrange, reduce from diffusers import DDIMScheduler, DDPMScheduler, DiffusionPipeline, ImagePipelineOutput, UNetaDConditionModel from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput _snake_case : Optional[Any] = 8 def snake_case_ (UpperCamelCase : List[Any] , UpperCamelCase : Dict=BITS ): '''simple docstring''' _a = x.device _a = (x * 255).int().clamp(0 , 255 ) _a = 2 ** torch.arange(bits - 1 , -1 , -1 , device=UpperCamelCase ) _a = rearrange(UpperCamelCase , '''d -> d 1 1''' ) _a = rearrange(UpperCamelCase , '''b c h w -> b c 1 h w''' ) _a = ((x & mask) != 0).float() _a = rearrange(UpperCamelCase , '''b c d h w -> b (c d) h w''' ) _a = bits * 2 - 1 return bits def snake_case_ (UpperCamelCase : List[Any] , UpperCamelCase : Any=BITS ): '''simple docstring''' _a = x.device _a = (x > 0).int() _a = 2 ** torch.arange(bits - 1 , -1 , -1 , device=UpperCamelCase , dtype=torch.intaa ) _a = rearrange(UpperCamelCase , '''d -> d 1 1''' ) _a = rearrange(UpperCamelCase , '''b (c d) h w -> b c d h w''' , d=8 ) _a = reduce(x * mask , '''b c d h w -> b c h w''' , '''sum''' ) return (dec / 255).clamp(0.0 , 1.0 ) def snake_case_ (self : Union[str, Any] , UpperCamelCase : torch.FloatTensor , UpperCamelCase : int , UpperCamelCase : torch.FloatTensor , UpperCamelCase : float = 0.0 , UpperCamelCase : bool = True , UpperCamelCase : Any=None , UpperCamelCase : bool = True , ): '''simple docstring''' if self.num_inference_steps is None: raise ValueError( '''Number of inference steps is \'None\', you need to run \'set_timesteps\' after creating the scheduler''' ) # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf # Ideally, read DDIM paper in-detail understanding # Notation (<variable name> -> <name in paper> # - pred_noise_t -> e_theta(x_t, t) # - pred_original_sample -> f_theta(x_t, t) or x_0 # - std_dev_t -> sigma_t # - eta -> η # - pred_sample_direction -> "direction pointing to x_t" # - pred_prev_sample -> "x_t-1" # 1. get previous step value (=t-1) _a = timestep - self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas _a = self.alphas_cumprod[timestep] _a = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod _a = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _a = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 # 4. Clip "predicted x_0" _a = self.bit_scale if self.config.clip_sample: _a = torch.clamp(UpperCamelCase , -scale , UpperCamelCase ) # 5. compute variance: "sigma_t(η)" -> see formula (16) # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1) _a = self._get_variance(UpperCamelCase , UpperCamelCase ) _a = eta * variance ** 0.5 if use_clipped_model_output: # the model_output is always re-derived from the clipped x_0 in Glide _a = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _a = (1 - alpha_prod_t_prev - std_dev_t**2) ** 0.5 * model_output # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _a = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if eta > 0: # randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072 _a = model_output.device if torch.is_tensor(UpperCamelCase ) else '''cpu''' _a = torch.randn(model_output.shape , dtype=model_output.dtype , generator=UpperCamelCase ).to(UpperCamelCase ) _a = self._get_variance(UpperCamelCase , UpperCamelCase ) ** 0.5 * eta * noise _a = prev_sample + variance if not return_dict: return (prev_sample,) return DDIMSchedulerOutput(prev_sample=UpperCamelCase , pred_original_sample=UpperCamelCase ) def snake_case_ (self : Any , UpperCamelCase : torch.FloatTensor , UpperCamelCase : int , UpperCamelCase : torch.FloatTensor , UpperCamelCase : str="epsilon" , UpperCamelCase : Dict=None , UpperCamelCase : bool = True , ): '''simple docstring''' _a = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]: _a , _a = torch.split(UpperCamelCase , sample.shape[1] , dim=1 ) else: _a = None # 1. compute alphas, betas _a = self.alphas_cumprod[t] _a = self.alphas_cumprod[t - 1] if t > 0 else self.one _a = 1 - alpha_prod_t _a = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if prediction_type == "epsilon": _a = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif prediction_type == "sample": _a = model_output else: raise ValueError(f'Unsupported prediction_type {prediction_type}.' ) # 3. Clip "predicted x_0" _a = self.bit_scale if self.config.clip_sample: _a = torch.clamp(UpperCamelCase , -scale , UpperCamelCase ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf _a = (alpha_prod_t_prev ** 0.5 * self.betas[t]) / beta_prod_t _a = self.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf _a = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise _a = 0 if t > 0: _a = torch.randn( model_output.size() , dtype=model_output.dtype , layout=model_output.layout , generator=UpperCamelCase ).to(model_output.device ) _a = (self._get_variance(UpperCamelCase , predicted_variance=UpperCamelCase ) ** 0.5) * noise _a = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return DDPMSchedulerOutput(prev_sample=UpperCamelCase , pred_original_sample=UpperCamelCase ) class A ( _a ): def __init__( self : Any , lowerCAmelCase_ : UNetaDConditionModel , lowerCAmelCase_ : Union[DDIMScheduler, DDPMScheduler] , lowerCAmelCase_ : Optional[float] = 1.0 , ) -> int: """simple docstring""" super().__init__() _a = bit_scale _a = ( ddim_bit_scheduler_step if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else ddpm_bit_scheduler_step ) self.register_modules(unet=lowerCAmelCase_ , scheduler=lowerCAmelCase_ ) @torch.no_grad() def __call__( self : List[Any] , lowerCAmelCase_ : Optional[int] = 2_56 , lowerCAmelCase_ : Optional[int] = 2_56 , lowerCAmelCase_ : Optional[int] = 50 , lowerCAmelCase_ : Optional[torch.Generator] = None , lowerCAmelCase_ : Optional[int] = 1 , lowerCAmelCase_ : Optional[str] = "pil" , lowerCAmelCase_ : bool = True , **lowerCAmelCase_ : Any , ) -> Union[Tuple, ImagePipelineOutput]: """simple docstring""" _a = torch.randn( (batch_size, self.unet.config.in_channels, height, width) , generator=lowerCAmelCase_ , ) _a = decimal_to_bits(lowerCAmelCase_ ) * self.bit_scale _a = latents.to(self.device ) self.scheduler.set_timesteps(lowerCAmelCase_ ) for t in self.progress_bar(self.scheduler.timesteps ): # predict the noise residual _a = self.unet(lowerCAmelCase_ , lowerCAmelCase_ ).sample # compute the previous noisy sample x_t -> x_t-1 _a = self.scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ).prev_sample _a = bits_to_decimal(lowerCAmelCase_ ) if output_type == "pil": _a = self.numpy_to_pil(lowerCAmelCase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowerCAmelCase_ )
22
0
'''simple docstring''' from typing import List, Union import numpy as np from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, logging from .base import PIPELINE_INIT_ARGS, ArgumentHandler, ChunkPipeline snake_case_ = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): def __lowerCamelCase ( self , lowercase__ ): """simple docstring""" if isinstance(lowercase__ , lowercase__ ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = [label.strip() for label in labels.split("," ) if label.strip()] return labels def __call__( self , lowercase__ , lowercase__ , lowercase__ ): """simple docstring""" if len(lowercase__ ) == 0 or len(lowercase__ ) == 0: raise ValueError("You must include at least one label and at least one sequence." ) if hypothesis_template.format(labels[0] ) == hypothesis_template: raise ValueError( ( "The provided hypothesis_template \"{}\" was not able to be formatted with the target labels. " "Make sure the passed template includes formatting syntax such as {{}} where the label should go." ).format(lowercase__ ) ) if isinstance(lowercase__ , lowercase__ ): SCREAMING_SNAKE_CASE_ : Optional[int] = [sequences] SCREAMING_SNAKE_CASE_ : Optional[Any] = [] for sequence in sequences: sequence_pairs.extend([[sequence, hypothesis_template.format(lowercase__ )] for label in labels] ) return sequence_pairs, sequences @add_end_docstrings(_UpperCAmelCase ) class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): def __init__( self , lowercase__=ZeroShotClassificationArgumentHandler() , *lowercase__ , **lowercase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = args_parser super().__init__(*lowercase__ , **lowercase__ ) if self.entailment_id == -1: logger.warning( "Failed to determine 'entailment' label id from the label2id mapping in the model config. Setting to " "-1. Define a descriptive label2id mapping in the model config to ensure correct outputs." ) @property def __lowerCamelCase ( self ): """simple docstring""" for label, ind in self.model.config.labelaid.items(): if label.lower().startswith("entail" ): return ind return -1 def __lowerCamelCase ( self , lowercase__ , lowercase__=True , lowercase__=True , lowercase__=TruncationStrategy.ONLY_FIRST , **lowercase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = self.framework if self.tokenizer.pad_token is None: # Override for tokenizers not supporting padding logger.error( "Tokenizer was not supporting padding necessary for zero-shot, attempting to use " " `pad_token=eos_token`" ) SCREAMING_SNAKE_CASE_ : Optional[int] = self.tokenizer.eos_token try: SCREAMING_SNAKE_CASE_ : Optional[int] = self.tokenizer( lowercase__ , add_special_tokens=lowercase__ , return_tensors=lowercase__ , padding=lowercase__ , truncation=lowercase__ , ) except Exception as e: if "too short" in str(lowercase__ ): # tokenizers might yell that we want to truncate # to a value that is not even reached by the input. # In that case we don't want to truncate. # It seems there's not a really better way to catch that # exception. SCREAMING_SNAKE_CASE_ : Optional[Any] = self.tokenizer( lowercase__ , add_special_tokens=lowercase__ , return_tensors=lowercase__ , padding=lowercase__ , truncation=TruncationStrategy.DO_NOT_TRUNCATE , ) else: raise e return inputs def __lowerCamelCase ( self , **lowercase__ ): """simple docstring""" if kwargs.get("multi_class" , lowercase__ ) is not None: SCREAMING_SNAKE_CASE_ : Optional[int] = kwargs["multi_class"] logger.warning( "The `multi_class` argument has been deprecated and renamed to `multi_label`. " "`multi_class` will be removed in a future version of Transformers." ) SCREAMING_SNAKE_CASE_ : Optional[int] = {} if "candidate_labels" in kwargs: SCREAMING_SNAKE_CASE_ : Union[str, Any] = self._args_parser._parse_labels(kwargs["candidate_labels"] ) if "hypothesis_template" in kwargs: SCREAMING_SNAKE_CASE_ : int = kwargs["hypothesis_template"] SCREAMING_SNAKE_CASE_ : List[Any] = {} if "multi_label" in kwargs: SCREAMING_SNAKE_CASE_ : Tuple = kwargs["multi_label"] return preprocess_params, {}, postprocess_params def __call__( self , lowercase__ , *lowercase__ , **lowercase__ , ): """simple docstring""" if len(lowercase__ ) == 0: pass elif len(lowercase__ ) == 1 and "candidate_labels" not in kwargs: SCREAMING_SNAKE_CASE_ : Any = args[0] else: raise ValueError(F"Unable to understand extra arguments {args}" ) return super().__call__(lowercase__ , **lowercase__ ) def __lowerCamelCase ( self , lowercase__ , lowercase__=None , lowercase__="This example is {}." ): """simple docstring""" SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ : List[Any] = self._args_parser(lowercase__ , lowercase__ , lowercase__ ) for i, (candidate_label, sequence_pair) in enumerate(zip(lowercase__ , lowercase__ ) ): SCREAMING_SNAKE_CASE_ : Dict = self._parse_and_tokenize([sequence_pair] ) yield { "candidate_label": candidate_label, "sequence": sequences[0], "is_last": i == len(lowercase__ ) - 1, **model_input, } def __lowerCamelCase ( self , lowercase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = inputs["candidate_label"] SCREAMING_SNAKE_CASE_ : Union[str, Any] = inputs["sequence"] SCREAMING_SNAKE_CASE_ : Any = {k: inputs[k] for k in self.tokenizer.model_input_names} SCREAMING_SNAKE_CASE_ : List[Any] = self.model(**lowercase__ ) SCREAMING_SNAKE_CASE_ : str = { "candidate_label": candidate_label, "sequence": sequence, "is_last": inputs["is_last"], **outputs, } return model_outputs def __lowerCamelCase ( self , lowercase__ , lowercase__=False ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = [outputs["candidate_label"] for outputs in model_outputs] SCREAMING_SNAKE_CASE_ : Tuple = [outputs["sequence"] for outputs in model_outputs] SCREAMING_SNAKE_CASE_ : Optional[Any] = np.concatenate([output["logits"].numpy() for output in model_outputs] ) SCREAMING_SNAKE_CASE_ : Any = logits.shape[0] SCREAMING_SNAKE_CASE_ : str = len(lowercase__ ) SCREAMING_SNAKE_CASE_ : str = N // n SCREAMING_SNAKE_CASE_ : List[str] = logits.reshape((num_sequences, n, -1) ) if multi_label or len(lowercase__ ) == 1: # softmax over the entailment vs. contradiction dim for each label independently SCREAMING_SNAKE_CASE_ : Optional[Any] = self.entailment_id SCREAMING_SNAKE_CASE_ : Optional[Any] = -1 if entailment_id == 0 else 0 SCREAMING_SNAKE_CASE_ : str = reshaped_outputs[..., [contradiction_id, entailment_id]] SCREAMING_SNAKE_CASE_ : Optional[int] = np.exp(lowercase__ ) / np.exp(lowercase__ ).sum(-1 , keepdims=lowercase__ ) SCREAMING_SNAKE_CASE_ : Tuple = scores[..., 1] else: # softmax the "entailment" logits over all candidate labels SCREAMING_SNAKE_CASE_ : List[Any] = reshaped_outputs[..., self.entailment_id] SCREAMING_SNAKE_CASE_ : List[Any] = np.exp(lowercase__ ) / np.exp(lowercase__ ).sum(-1 , keepdims=lowercase__ ) SCREAMING_SNAKE_CASE_ : Dict = list(reversed(scores[0].argsort() ) ) return { "sequence": sequences[0], "labels": [candidate_labels[i] for i in top_inds], "scores": scores[0, top_inds].tolist(), }
68
'''simple docstring''' def __lowerCamelCase ( SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float , ) -> float: """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = [redshift, radiation_density, matter_density, dark_energy] if any(p < 0 for p in parameters ): raise ValueError("All input parameters must be positive" ) if any(p > 1 for p in parameters[1:4] ): raise ValueError("Relative densities cannot be greater than one" ) else: SCREAMING_SNAKE_CASE_ : int = 1 - (matter_density + radiation_density + dark_energy) SCREAMING_SNAKE_CASE_ : List[Any] = ( radiation_density * (redshift + 1) ** 4 + matter_density * (redshift + 1) ** 3 + curvature * (redshift + 1) ** 2 + dark_energy ) SCREAMING_SNAKE_CASE_ : Dict = hubble_constant * e_a ** (1 / 2) return hubble if __name__ == "__main__": import doctest # run doctest doctest.testmod() # demo LCDM approximation snake_case_ = 0.3 print( hubble_parameter( hubble_constant=6_8.3, radiation_density=1E-4, matter_density=matter_density, dark_energy=1 - matter_density, redshift=0, ) )
68
1
"""simple docstring""" import itertools from dataclasses import dataclass from typing import List, Optional import pyarrow as pa import pyarrow.parquet as pq import datasets from datasets.table import table_cast lowerCAmelCase__ =datasets.utils.logging.get_logger(__name__) @dataclass class A__( datasets.BuilderConfig ): lowerCAmelCase = 1_00_00 lowerCAmelCase = None lowerCAmelCase = None class A__( datasets.ArrowBasedBuilder ): lowerCAmelCase = ParquetConfig def _a ( self : str ) -> int: """simple docstring""" return datasets.DatasetInfo(features=self.config.features ) def _a ( self : Tuple , __SCREAMING_SNAKE_CASE : int ) -> str: """simple docstring""" if not self.config.data_files: raise ValueError(f"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) __SCREAMING_SNAKE_CASE = dl_manager.download_and_extract(self.config.data_files ) if isinstance(__SCREAMING_SNAKE_CASE , (str, list, tuple) ): __SCREAMING_SNAKE_CASE = data_files if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): __SCREAMING_SNAKE_CASE = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive __SCREAMING_SNAKE_CASE = [dl_manager.iter_files(__SCREAMING_SNAKE_CASE ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] __SCREAMING_SNAKE_CASE = [] for split_name, files in data_files.items(): if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): __SCREAMING_SNAKE_CASE = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive __SCREAMING_SNAKE_CASE = [dl_manager.iter_files(__SCREAMING_SNAKE_CASE ) for file in files] # Infer features is they are stoed in the arrow schema if self.info.features is None: for file in itertools.chain.from_iterable(__SCREAMING_SNAKE_CASE ): with open(__SCREAMING_SNAKE_CASE , '''rb''' ) as f: __SCREAMING_SNAKE_CASE = datasets.Features.from_arrow_schema(pq.read_schema(__SCREAMING_SNAKE_CASE ) ) break splits.append(datasets.SplitGenerator(name=__SCREAMING_SNAKE_CASE , gen_kwargs={'''files''': files} ) ) return splits def _a ( self : List[Any] , __SCREAMING_SNAKE_CASE : pa.Table ) -> pa.Table: """simple docstring""" if self.info.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example __SCREAMING_SNAKE_CASE = table_cast(__SCREAMING_SNAKE_CASE , self.info.features.arrow_schema ) return pa_table def _a ( self : str , __SCREAMING_SNAKE_CASE : Dict ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = self.info.features.arrow_schema if self.info.features is not None else None if self.info.features is not None and self.config.columns is not None: if sorted(field.name for field in schema ) != sorted(self.config.columns ): raise ValueError( f"""Tried to load parquet data with columns '{self.config.columns}' with mismatching features '{self.info.features}'""" ) for file_idx, file in enumerate(itertools.chain.from_iterable(__SCREAMING_SNAKE_CASE ) ): with open(__SCREAMING_SNAKE_CASE , '''rb''' ) as f: __SCREAMING_SNAKE_CASE = pq.ParquetFile(__SCREAMING_SNAKE_CASE ) try: for batch_idx, record_batch in enumerate( parquet_file.iter_batches(batch_size=self.config.batch_size , columns=self.config.columns ) ): __SCREAMING_SNAKE_CASE = pa.Table.from_batches([record_batch] ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield f"""{file_idx}_{batch_idx}""", self._cast_table(__SCREAMING_SNAKE_CASE ) except ValueError as e: logger.error(f"""Failed to read file '{file}' with error {type(__SCREAMING_SNAKE_CASE )}: {e}""" ) raise
482
"""simple docstring""" lowerCAmelCase__ ="ABCDEFGHIJKLMNOPQRSTUVWXYZ" def _a ( ) -> None: __SCREAMING_SNAKE_CASE = input('''Enter message: ''' ) __SCREAMING_SNAKE_CASE = input('''Enter key [alphanumeric]: ''' ) __SCREAMING_SNAKE_CASE = input('''Encrypt/Decrypt [e/d]: ''' ) if mode.lower().startswith('''e''' ): __SCREAMING_SNAKE_CASE = '''encrypt''' __SCREAMING_SNAKE_CASE = encrypt_message(UpperCAmelCase__ , UpperCAmelCase__ ) elif mode.lower().startswith('''d''' ): __SCREAMING_SNAKE_CASE = '''decrypt''' __SCREAMING_SNAKE_CASE = decrypt_message(UpperCAmelCase__ , UpperCAmelCase__ ) print(f"""\n{mode.title()}ed message:""" ) print(UpperCAmelCase__ ) def _a ( UpperCAmelCase__ , UpperCAmelCase__ ) -> str: return translate_message(UpperCAmelCase__ , UpperCAmelCase__ , '''encrypt''' ) def _a ( UpperCAmelCase__ , UpperCAmelCase__ ) -> str: return translate_message(UpperCAmelCase__ , UpperCAmelCase__ , '''decrypt''' ) def _a ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> str: __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = key.upper() for symbol in message: __SCREAMING_SNAKE_CASE = LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(UpperCAmelCase__ ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(UpperCAmelCase__ ): __SCREAMING_SNAKE_CASE = 0 else: translated.append(UpperCAmelCase__ ) return "".join(UpperCAmelCase__ ) if __name__ == "__main__": main()
482
1
"""simple docstring""" from pathlib import Path import numpy as np from PIL import Image def lowercase ( A_ )-> np.ndarray: '''simple docstring''' a , a , a : Union[str, Any] = rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2] return 0.2_9_8_9 * r + 0.5_8_7_0 * g + 0.1_1_4_0 * b def lowercase ( A_ )-> np.ndarray: '''simple docstring''' return (gray > 127) & (gray <= 255) def lowercase ( A_ , A_ )-> np.ndarray: '''simple docstring''' a : Optional[Any] = np.zeros_like(__UpperCamelCase ) a : Optional[Any] = np.zeros( (image.shape[0] + kernel.shape[0] - 1, image.shape[1] + kernel.shape[1] - 1) ) # Copy image to padded image a : List[str] = image # Iterate over image & apply kernel for x in range(image.shape[1] ): for y in range(image.shape[0] ): a : Any = ( kernel * image_padded[y : y + kernel.shape[0], x : x + kernel.shape[1]] ).sum() a : List[str] = int(summation > 0 ) return output if __name__ == "__main__": # read original image __lowercase = Path(__file__).resolve().parent / """image_data""" / """lena.jpg""" __lowercase = np.array(Image.open(lena_path)) # kernel to be applied __lowercase = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]]) __lowercase = dilation(gray_to_binary(rgb_to_gray(lena)), structuring_element) # Save the output image __lowercase = Image.fromarray(output).convert("""RGB""") pil_img.save("""result_dilation.png""")
708
"""simple docstring""" import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class _A ( _a ): """simple docstring""" UpperCAmelCase : Any = (IPNDMScheduler,) UpperCAmelCase : Optional[int] = (("""num_inference_steps""", 5_0),) def __snake_case ( self : Dict , **__UpperCAmelCase : Optional[Any]): a : str = {"num_train_timesteps": 1000} config.update(**__UpperCAmelCase) return config def __snake_case ( self : int , __UpperCAmelCase : Optional[Any]=0 , **__UpperCAmelCase : Union[str, Any]): a : List[Any] = dict(self.forward_default_kwargs) a : int = kwargs.pop("num_inference_steps" , __UpperCAmelCase) a : int = self.dummy_sample a : str = 0.1 * sample a : Dict = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: a : List[Any] = self.get_scheduler_config(**__UpperCAmelCase) a : List[str] = scheduler_class(**__UpperCAmelCase) scheduler.set_timesteps(__UpperCAmelCase) # copy over dummy past residuals a : List[Any] = dummy_past_residuals[:] if time_step is None: a : Any = scheduler.timesteps[len(scheduler.timesteps) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__UpperCAmelCase) a : List[Any] = scheduler_class.from_pretrained(__UpperCAmelCase) new_scheduler.set_timesteps(__UpperCAmelCase) # copy over dummy past residuals a : Optional[Any] = dummy_past_residuals[:] a : int = scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase).prev_sample a : Dict = new_scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" a : Optional[int] = scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase).prev_sample a : str = new_scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" def __snake_case ( self : int): pass def __snake_case ( self : Optional[Any] , __UpperCAmelCase : str=0 , **__UpperCAmelCase : List[Any]): a : List[str] = dict(self.forward_default_kwargs) a : Any = kwargs.pop("num_inference_steps" , __UpperCAmelCase) a : Tuple = self.dummy_sample a : str = 0.1 * sample a : Dict = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: a : Optional[int] = self.get_scheduler_config() a : List[str] = scheduler_class(**__UpperCAmelCase) scheduler.set_timesteps(__UpperCAmelCase) # copy over dummy past residuals (must be after setting timesteps) a : Optional[int] = dummy_past_residuals[:] if time_step is None: a : Any = scheduler.timesteps[len(scheduler.timesteps) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__UpperCAmelCase) a : List[Any] = scheduler_class.from_pretrained(__UpperCAmelCase) # copy over dummy past residuals new_scheduler.set_timesteps(__UpperCAmelCase) # copy over dummy past residual (must be after setting timesteps) a : str = dummy_past_residuals[:] a : List[str] = scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase).prev_sample a : Tuple = new_scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" a : Dict = scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase).prev_sample a : List[str] = new_scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" def __snake_case ( self : str , **__UpperCAmelCase : Dict): a : Tuple = self.scheduler_classes[0] a : Optional[Any] = self.get_scheduler_config(**__UpperCAmelCase) a : Any = scheduler_class(**__UpperCAmelCase) a : int = 10 a : Union[str, Any] = self.dummy_model() a : List[str] = self.dummy_sample_deter scheduler.set_timesteps(__UpperCAmelCase) for i, t in enumerate(scheduler.timesteps): a : Union[str, Any] = model(__UpperCAmelCase , __UpperCAmelCase) a : Any = scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase).prev_sample for i, t in enumerate(scheduler.timesteps): a : Tuple = model(__UpperCAmelCase , __UpperCAmelCase) a : Union[str, Any] = scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase).prev_sample return sample def __snake_case ( self : Optional[Any]): a : List[Any] = dict(self.forward_default_kwargs) a : List[str] = kwargs.pop("num_inference_steps" , __UpperCAmelCase) for scheduler_class in self.scheduler_classes: a : Tuple = self.get_scheduler_config() a : Any = scheduler_class(**__UpperCAmelCase) a : Dict = self.dummy_sample a : List[str] = 0.1 * sample if num_inference_steps is not None and hasattr(__UpperCAmelCase , "set_timesteps"): scheduler.set_timesteps(__UpperCAmelCase) elif num_inference_steps is not None and not hasattr(__UpperCAmelCase , "set_timesteps"): a : Union[str, Any] = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) a : List[str] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] a : Dict = dummy_past_residuals[:] a : Optional[int] = scheduler.timesteps[5] a : List[Any] = scheduler.timesteps[6] a : Any = scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase).prev_sample a : List[str] = scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase).prev_sample self.assertEqual(output_a.shape , sample.shape) self.assertEqual(output_a.shape , output_a.shape) a : Any = scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase).prev_sample a : Dict = scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase).prev_sample self.assertEqual(output_a.shape , sample.shape) self.assertEqual(output_a.shape , output_a.shape) def __snake_case ( self : Tuple): for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=__UpperCAmelCase , time_step=__UpperCAmelCase) def __snake_case ( self : int): for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100]): self.check_over_forward(num_inference_steps=__UpperCAmelCase , time_step=__UpperCAmelCase) def __snake_case ( self : Optional[Any]): a : Optional[int] = self.full_loop() a : List[str] = torch.mean(torch.abs(__UpperCAmelCase)) assert abs(result_mean.item() - 2540529) < 10
135
0
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): lowercase_ : str = ( 'This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image.' 'It takes two arguments named `image` which should be the original image, and `label` which should be a text ' 'describing the elements what should be identified in the segmentation mask. The tool returns the mask.' ) lowercase_ : Tuple = 'CIDAS/clipseg-rd64-refined' lowercase_ : Dict = 'image_segmenter' lowercase_ : str = CLIPSegForImageSegmentation lowercase_ : Optional[int] = ['image', 'text'] lowercase_ : Dict = ['image'] def __init__( self , *a_ , **a_ ) -> Union[str, Any]: requires_backends(self , ["vision"] ) super().__init__(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def _a ( self , a_ , a_ ) -> Dict: return self.pre_processor(text=[label] , images=[image] , padding=_SCREAMING_SNAKE_CASE , return_tensors="pt" ) def _a ( self , a_ ) -> Optional[Any]: with torch.no_grad(): _UpperCAmelCase = self.model(**_SCREAMING_SNAKE_CASE ).logits return logits def _a ( self , a_ ) -> Dict: _UpperCAmelCase = outputs.cpu().detach().numpy() _UpperCAmelCase = 0 _UpperCAmelCase = 1 return Image.fromarray((array * 255).astype(np.uinta ) )
657
import argparse import os import torch from transformers import FlavaImageCodebook, FlavaImageCodebookConfig def lowerCAmelCase__ ( _a : Union[str, Any] , _a : Dict , _a : Optional[int] , _a : str ): snake_case_ : int = s.rsplit(_a , _a ) return new.join(_a ) def lowerCAmelCase__ ( _a : Optional[int] ): # encoder.embeddings are double copied in original FLAVA return sum(param.float().sum() if "encoder.embeddings" not in key else 0 for key, param in state_dict.items() ) def lowerCAmelCase__ ( _a : Optional[Any] ): snake_case_ : Dict = {} snake_case_ : List[Any] = ["group_1", "group_2", "group_3", "group_4"] for key, value in state_dict.items(): for group_key in group_keys: if group_key in key: snake_case_ : Tuple = key.replace(F'''{group_key}.''' , F'''{group_key}.group.''' ) if "res_path" in key: snake_case_ : str = key.replace("res_path." , "res_path.path." ) if key.endswith(".w" ): snake_case_ : List[Any] = rreplace(_a , ".w" , ".weight" , 1 ) if key.endswith(".b" ): snake_case_ : List[Any] = rreplace(_a , ".b" , ".bias" , 1 ) snake_case_ : Dict = value.float() return upgrade @torch.no_grad() def lowerCAmelCase__ ( _a : List[Any] , _a : Optional[int] , _a : Optional[Any]=None , _a : Optional[int]=True ): from dall_e import Encoder snake_case_ : Optional[Any] = Encoder() if os.path.exists(_a ): snake_case_ : Tuple = torch.load(_a ) else: snake_case_ : Any = torch.hub.load_state_dict_from_url(_a ) if isinstance(_a , _a ): snake_case_ : Optional[Any] = ckpt.state_dict() encoder.load_state_dict(_a ) if config_path is not None: snake_case_ : Union[str, Any] = FlavaImageCodebookConfig.from_pretrained(_a ) else: snake_case_ : Union[str, Any] = FlavaImageCodebookConfig() snake_case_ : int = FlavaImageCodebook(_a ).eval() snake_case_ : int = encoder.state_dict() snake_case_ : Optional[int] = upgrade_state_dict(_a ) hf_model.load_state_dict(_a ) snake_case_ : int = hf_model.state_dict() snake_case_ : Optional[Any] = count_parameters(_a ) snake_case_ : Union[str, Any] = count_parameters(_a ) assert torch.allclose(_a , _a , atol=1E-3 ) if save_checkpoint: hf_model.save_pretrained(_a ) else: return hf_state_dict if __name__ == "__main__": lowercase : Optional[Any] = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to flava checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') lowercase : Union[str, Any] = parser.parse_args() convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
568
0
'''simple docstring''' import json import logging import os import sys from time import time from unittest.mock import patch from transformers.testing_utils import TestCasePlus, require_torch_tpu logging.basicConfig(level=logging.DEBUG) UpperCAmelCase_ : Tuple = logging.getLogger() def _lowercase ( UpperCamelCase__ : Dict ): __A : Any = {} __A : Any = os.path.join(UpperCamelCase__, 'all_results.json' ) if os.path.exists(UpperCamelCase__ ): with open(UpperCamelCase__, 'r' ) as f: __A : Union[str, Any] = json.load(UpperCamelCase__ ) else: raise ValueError(f"""can't find {path}""" ) return results UpperCAmelCase_ : int = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) @require_torch_tpu class _lowerCamelCase ( snake_case_ ): '''simple docstring''' def snake_case__ ( self ): """simple docstring""" import xla_spawn __A : List[Any] = self.get_auto_remove_tmp_dir() __A : Any = F""" ./examples/pytorch/text-classification/run_glue.py --num_cores=8 ./examples/pytorch/text-classification/run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --overwrite_output_dir --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --do_train --do_eval --debug tpu_metrics_debug --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --max_steps=10 --warmup_steps=2 --seed=42 --max_seq_length=128 """.split() with patch.object(__lowercase , 'argv' , __lowercase ): __A : Union[str, Any] = time() xla_spawn.main() __A : Any = time() __A : List[str] = get_results(__lowercase ) self.assertGreaterEqual(result['eval_accuracy'] , 0.7_5 ) # Assert that the script takes less than 500 seconds to make sure it doesn't hang. self.assertLess(end - start , 500 ) def snake_case__ ( self ): """simple docstring""" import xla_spawn __A : int = '\n ./tests/test_trainer_tpu.py\n --num_cores=8\n ./tests/test_trainer_tpu.py\n '.split() with patch.object(__lowercase , 'argv' , __lowercase ): xla_spawn.main()
711
'''simple docstring''' import argparse import shutil import time from json import JSONDecodeError from logging import getLogger from pathlib import Path from typing import Dict, List import torch from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import ( SeqaSeqDataset, calculate_bleu, calculate_rouge, chunks, lmap, load_json, parse_numeric_n_bool_cl_kwargs, save_json, use_task_specific_params, write_txt_file, ) UpperCAmelCase_ : Dict = getLogger(__name__) def _lowercase ( UpperCamelCase__ : List[Any], UpperCamelCase__ : str, UpperCamelCase__ : str, UpperCamelCase__ : int = 8, UpperCamelCase__ : int = 1024, UpperCamelCase__ : List[Any]="val", UpperCamelCase__ : int=None, UpperCamelCase__ : str=False, UpperCamelCase__ : int="summarization", UpperCamelCase__ : List[Any]=None, UpperCamelCase__ : List[Any]=1, UpperCamelCase__ : Dict = None, UpperCamelCase__ : Optional[int]="", **UpperCamelCase__ : str, ): __A : Dict = str(UpperCamelCase__ ) assert local_rank is not None torch.distributed.init_process_group(backend='nccl', rank=UpperCamelCase__ ) __A : Union[str, Any] = Path(UpperCamelCase__ ) __A : Optional[int] = save_dir.joinpath(f"""rank_{local_rank}_output.json""" ) torch.cuda.set_device(UpperCamelCase__ ) __A : Dict = AutoModelForSeqaSeqLM.from_pretrained(UpperCamelCase__ ).cuda() if fpaa: __A : Optional[Any] = model.half() # determine if we need to increase num_beams use_task_specific_params(UpperCamelCase__, UpperCamelCase__ ) # update config with task specific params __A : Any = generate_kwargs.pop('num_beams', model.config.num_beams ) # AttributeError risk? if num_return_sequences > num_beams: __A : int = num_return_sequences __A : Optional[Any] = AutoTokenizer.from_pretrained(UpperCamelCase__ ) logger.info(f"""Inferred tokenizer type: {tokenizer.__class__}""" ) # if this is wrong, check config.model_type. if max_source_length is None: __A : Union[str, Any] = tokenizer.model_max_length if prefix is None: __A : List[Any] = prefix or getattr(model.config, 'prefix', '' ) or '' __A : Tuple = SeqaSeqDataset( UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, max_target_length=1024, type_path=UpperCamelCase__, n_obs=UpperCamelCase__, prefix=UpperCamelCase__, **UpperCamelCase__, ) # I set shuffle=True for a more accurate progress bar. # If all the longest samples are first, the prog bar estimate is too high at the beginning. __A : Any = ds.make_sortish_sampler(UpperCamelCase__, distributed=UpperCamelCase__, add_extra_examples=UpperCamelCase__, shuffle=UpperCamelCase__ ) __A : Union[str, Any] = DataLoader(UpperCamelCase__, sampler=UpperCamelCase__, batch_size=UpperCamelCase__, collate_fn=ds.collate_fn ) __A : Tuple = [] for batch in tqdm(UpperCamelCase__ ): __A : Any = model.generate( input_ids=batch['input_ids'].to(model.device ), attention_mask=batch['attention_mask'].to(model.device ), num_return_sequences=UpperCamelCase__, num_beams=UpperCamelCase__, **UpperCamelCase__, ) __A : Dict = tokenizer.batch_decode(UpperCamelCase__, skip_special_tokens=UpperCamelCase__, clean_up_tokenization_spaces=UpperCamelCase__ ) __A : List[str] = batch['ids'] if num_return_sequences > 1: __A : str = chunks(UpperCamelCase__, UpperCamelCase__ ) # batch size chunks, each of size num_return_seq for i, pred in enumerate(UpperCamelCase__ ): results.append({'pred': pred, 'id': ids[i].item()} ) save_json(UpperCamelCase__, UpperCamelCase__ ) return results, sampler.num_replicas def _lowercase ( ): __A : Optional[Any] = argparse.ArgumentParser( epilog='Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate' ) parser.add_argument('--data_dir', type=UpperCamelCase__, help='like cnn_dm/test.source' ) parser.add_argument( '--model_name', type=UpperCamelCase__, help='like facebook/bart-large-cnn,t5-base, etc.', default='sshleifer/distilbart-xsum-12-3', ) parser.add_argument('--save_dir', type=UpperCamelCase__, help='where to save', default='tmp_gen' ) parser.add_argument('--max_source_length', type=UpperCamelCase__, default=UpperCamelCase__ ) parser.add_argument( '--type_path', type=UpperCamelCase__, default='test', help='which subset to evaluate typically train/val/test' ) parser.add_argument('--task', type=UpperCamelCase__, default='summarization', help='used for task_specific_params + metrics' ) parser.add_argument('--bs', type=UpperCamelCase__, default=8, required=UpperCamelCase__, help='batch size' ) parser.add_argument( '--local_rank', type=UpperCamelCase__, default=-1, required=UpperCamelCase__, help='should be passed by distributed.launch' ) parser.add_argument( '--n_obs', type=UpperCamelCase__, default=UpperCamelCase__, required=UpperCamelCase__, help='How many observations. Defaults to all.' ) parser.add_argument( '--num_return_sequences', type=UpperCamelCase__, default=1, required=UpperCamelCase__, help='How many sequences to return' ) parser.add_argument( '--sync_timeout', type=UpperCamelCase__, default=600, required=UpperCamelCase__, help='How long should master process wait for other processes to finish.', ) parser.add_argument('--src_lang', type=UpperCamelCase__, default=UpperCamelCase__, required=UpperCamelCase__ ) parser.add_argument('--tgt_lang', type=UpperCamelCase__, default=UpperCamelCase__, required=UpperCamelCase__ ) parser.add_argument( '--prefix', type=UpperCamelCase__, required=UpperCamelCase__, default=UpperCamelCase__, help='will be added to the begininng of src examples' ) parser.add_argument('--fp16', action='store_true' ) parser.add_argument('--debug', action='store_true' ) __A : int = time.time() __A ,__A : int = parser.parse_known_args() __A : List[str] = parse_numeric_n_bool_cl_kwargs(UpperCamelCase__ ) if generate_kwargs and args.local_rank <= 0: print(f"""parsed the following generate kwargs: {generate_kwargs}""" ) __A : List[str] = Path(args.save_dir + '_tmp' ) Path(UpperCamelCase__ ).mkdir(exist_ok=UpperCamelCase__ ) # this handles locking. __A : Optional[Any] = list(json_save_dir.glob('rank_*.json' ) ) if intermediate_files: raise ValueError(f"""Found files at {json_save_dir} please move or remove them.""" ) # In theory, a node could finish and save before another node hits this. If this happens, we can address later. __A : List[str] = {} if args.src_lang is not None: __A : Dict = args.src_lang if args.tgt_lang is not None: __A : Optional[Any] = args.tgt_lang Path(args.save_dir ).mkdir(exist_ok=UpperCamelCase__ ) __A ,__A : List[Any] = eval_data_dir( args.data_dir, UpperCamelCase__, args.model_name, type_path=args.type_path, bs=args.bs, fpaa=args.fpaa, task=args.task, local_rank=args.local_rank, n_obs=args.n_obs, max_source_length=args.max_source_length, num_return_sequences=args.num_return_sequences, prefix=args.prefix, dataset_kwargs=UpperCamelCase__, **UpperCamelCase__, ) if args.local_rank <= 0: __A : Tuple = Path(args.save_dir ) save_dir.mkdir(exist_ok=UpperCamelCase__ ) __A : Dict = gather_results_from_each_node(UpperCamelCase__, UpperCamelCase__, args.sync_timeout ) __A : Union[str, Any] = combine_partial_results(UpperCamelCase__ ) if args.num_return_sequences > 1: __A : Any = save_dir.joinpath('pseudolabel_results.json' ) print(f"""Saving aggregated results at {save_path}, intermediate in {json_save_dir}/""" ) save_json(UpperCamelCase__, UpperCamelCase__ ) return __A : int = Path(args.data_dir ).joinpath(args.type_path + '.target' ) with open(UpperCamelCase__ ) as f: __A : str = [x.rstrip() for x in f.readlines()][: len(UpperCamelCase__ )] # Calculate metrics, save metrics, and save _generations.txt __A : Tuple = 'translation' in args.task __A : Union[str, Any] = calculate_bleu if calc_bleu else calculate_rouge __A : Optional[Any] = 'bleu' if calc_bleu else 'rouge' __A : Dict = score_fn(UpperCamelCase__, UpperCamelCase__ ) __A : Any = len(UpperCamelCase__ ) __A : Tuple = time.time() - start_time __A : Tuple = round(runtime / metrics['n_obs'], 4 ) __A : int = num_replicas # TODO(@stas00): add whatever metadata to metrics __A : List[Any] = save_dir.joinpath(f"""{args.type_path}_{metric_name}.json""" ) save_json(UpperCamelCase__, UpperCamelCase__, indent=UpperCamelCase__ ) print(UpperCamelCase__ ) write_txt_file(UpperCamelCase__, save_dir.joinpath(f"""{args.type_path}_generations.txt""" ) ) if args.debug: write_txt_file(UpperCamelCase__, save_dir.joinpath(f"""{args.type_path}.target""" ) ) else: shutil.rmtree(UpperCamelCase__ ) def _lowercase ( UpperCamelCase__ : List[str] ): __A : List[str] = [] for partial_result in partial_results: records.extend(UpperCamelCase__ ) __A : List[Any] = sorted(UpperCamelCase__, key=lambda UpperCamelCase__ : x["id"] ) __A : Dict = [x['pred'] for x in records] return preds def _lowercase ( UpperCamelCase__ : Dict, UpperCamelCase__ : List[Any], UpperCamelCase__ : int ): # WAIT FOR lots of .json files __A : Dict = time.time() logger.info('waiting for all nodes to finish' ) __A : int = None while (time.time() - start_wait) < timeout: __A : List[Any] = list(save_dir.glob('rank_*.json' ) ) if len(UpperCamelCase__ ) < num_replicas: continue try: # make sure all json files are fully saved __A : List[Any] = lmap(UpperCamelCase__, UpperCamelCase__ ) return json_data except JSONDecodeError: continue else: raise TimeoutError('Rank 0 gave up on waiting for other processes' ) # Unreachable if __name__ == "__main__": # Usage for MT: run_generate()
540
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __magic_name__ = {"configuration_plbart": ["PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP", "PLBartConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = ["PLBartTokenizer"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ "PLBART_PRETRAINED_MODEL_ARCHIVE_LIST", "PLBartForCausalLM", "PLBartForConditionalGeneration", "PLBartForSequenceClassification", "PLBartModel", "PLBartPreTrainedModel", ] if TYPE_CHECKING: from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_plbart import PLBartTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_plbart import ( PLBART_PRETRAINED_MODEL_ARCHIVE_LIST, PLBartForCausalLM, PLBartForConditionalGeneration, PLBartForSequenceClassification, PLBartModel, PLBartPreTrainedModel, ) else: import sys __magic_name__ = _LazyModule(__name__, globals()["__file__"], _import_structure)
232
"""simple docstring""" def _lowerCamelCase ( UpperCAmelCase__ = 60_08_51_47_51_43 ) -> int: '''simple docstring''' try: a__ = int(UpperCAmelCase__ ) except (TypeError, ValueError): raise TypeError('Parameter n must be int or castable to int.' ) if n <= 0: raise ValueError('Parameter n must be greater than or equal to one.' ) a__ = 2 a__ = 0 if n == 2: return 2 while n > 2: while n % i != 0: i += 1 a__ = i while n % i == 0: a__ = n // i i += 1 return int(UpperCAmelCase__ ) if __name__ == "__main__": print(F'''{solution() = }''')
232
1
import numpy as np from scipy.spatial.distance import cdist from sklearn.metrics import fa_score import datasets UpperCAmelCase_ = "\\n @inproceedings{kakwani2020indicnlpsuite,\n title={{IndicNLPSuite: Monolingual Corpora, Evaluation Benchmarks and Pre-trained Multilingual Language Models for Indian Languages}},\n author={Divyanshu Kakwani and Anoop Kunchukuttan and Satish Golla and Gokul N.C. and Avik Bhattacharyya and Mitesh M. Khapra and Pratyush Kumar},\n year={2020},\n booktitle={Findings of EMNLP},\n}\n" UpperCAmelCase_ = "\\n IndicGLUE is a natural language understanding benchmark for Indian languages. It contains a wide\n variety of tasks and covers 11 major Indian languages - as, bn, gu, hi, kn, ml, mr, or, pa, ta, te.\n" UpperCAmelCase_ = "\nCompute IndicGLUE evaluation metric associated to each IndicGLUE dataset.\nArgs:\n predictions: list of predictions to score (as int64),\n except for 'cvit-mkb-clsr' where each prediction is a vector (of float32).\n references: list of ground truth labels corresponding to the predictions (as int64),\n except for 'cvit-mkb-clsr' where each reference is a vector (of float32).\nReturns: depending on the IndicGLUE subset, one or several of:\n \"accuracy\": Accuracy\n \"f1\": F1 score\n \"precision\": Precision@10\nExamples:\n\n >>> indic_glue_metric = datasets.load_metric('indic_glue', 'wnli') # 'wnli' or any of [\"copa\", \"sna\", \"csqa\", \"wstp\", \"inltkh\", \"bbca\", \"iitp-mr\", \"iitp-pr\", \"actsa-sc\", \"md\"]\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = indic_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0}\n\n >>> indic_glue_metric = datasets.load_metric('indic_glue', 'wiki-ner')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = indic_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0, 'f1': 1.0}\n\n >>> indic_glue_metric = datasets.load_metric('indic_glue', 'cvit-mkb-clsr')\n >>> references = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]]\n >>> predictions = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]]\n >>> results = indic_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'precision@10': 1.0}\n\n" def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Optional[int] )->Dict: return float((preds == labels).mean() ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Tuple )->Dict: _lowerCAmelCase = simple_accuracy(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _lowerCAmelCase = float(fa_score(y_true=_SCREAMING_SNAKE_CASE , y_pred=_SCREAMING_SNAKE_CASE ) ) return { "accuracy": acc, "f1": fa, } def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : str )->Optional[int]: _lowerCAmelCase = np.array(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = np.array(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = en_sentvecs.shape[0] # mean centering _lowerCAmelCase = en_sentvecs - np.mean(_SCREAMING_SNAKE_CASE , axis=0 ) _lowerCAmelCase = in_sentvecs - np.mean(_SCREAMING_SNAKE_CASE , axis=0 ) _lowerCAmelCase = cdist(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , '''cosine''' ) _lowerCAmelCase = np.array(range(_SCREAMING_SNAKE_CASE ) ) _lowerCAmelCase = sim.argsort(axis=1 )[:, :1_0] _lowerCAmelCase = np.any(preds == actual[:, None] , axis=1 ) return float(matches.mean() ) @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class UpperCAmelCase ( datasets.Metric ): def __lowerCAmelCase ( self ): if self.config_name not in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", "wiki-ner", ]: raise KeyError( '''You should supply a configuration name selected in ''' '''["wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", ''' '''"cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", ''' '''"wiki-ner"]''' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''int64''' ) if self.config_name != '''cvit-mkb-clsr''' else datasets.Sequence(datasets.Value('''float32''' ) ), '''references''': datasets.Value('''int64''' ) if self.config_name != '''cvit-mkb-clsr''' else datasets.Sequence(datasets.Value('''float32''' ) ), } ) , codebase_urls=[] , reference_urls=[] , format='''numpy''' if self.config_name != '''cvit-mkb-clsr''' else None , ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase ): if self.config_name == "cvit-mkb-clsr": return {"precision@10": precision_at_aa(_lowerCAmelCase , _lowerCAmelCase )} elif self.config_name in ["wiki-ner"]: return acc_and_fa(_lowerCAmelCase , _lowerCAmelCase ) elif self.config_name in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "iitp-mr", "iitp-pr", "actsa-sc", "md", ]: return {"accuracy": simple_accuracy(_lowerCAmelCase , _lowerCAmelCase )} else: raise KeyError( '''You should supply a configuration name selected in ''' '''["wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", ''' '''"cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", ''' '''"wiki-ner"]''' )
664
from tempfile import TemporaryDirectory from unittest import TestCase from unittest.mock import MagicMock, patch from transformers import AutoModel, TFAutoModel from transformers.onnx import FeaturesManager from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch @require_torch @require_tf class UpperCAmelCase ( snake_case_ ): def __lowerCAmelCase ( self ): _lowerCAmelCase = SMALL_MODEL_IDENTIFIER _lowerCAmelCase = '''pt''' _lowerCAmelCase = '''tf''' def __lowerCAmelCase ( self , _lowerCAmelCase ): _lowerCAmelCase = AutoModel.from_pretrained(self.test_model ) model_pt.save_pretrained(_lowerCAmelCase ) def __lowerCAmelCase ( self , _lowerCAmelCase ): _lowerCAmelCase = TFAutoModel.from_pretrained(self.test_model , from_pt=_lowerCAmelCase ) model_tf.save_pretrained(_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = '''mock_framework''' # Framework provided - return whatever the user provides _lowerCAmelCase = FeaturesManager.determine_framework(self.test_model , _lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) # Local checkpoint and framework provided - return provided framework # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(_lowerCAmelCase ) _lowerCAmelCase = FeaturesManager.determine_framework(_lowerCAmelCase , _lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(_lowerCAmelCase ) _lowerCAmelCase = FeaturesManager.determine_framework(_lowerCAmelCase , _lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) def __lowerCAmelCase ( self ): # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(_lowerCAmelCase ) _lowerCAmelCase = FeaturesManager.determine_framework(_lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , self.framework_pt ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(_lowerCAmelCase ) _lowerCAmelCase = FeaturesManager.determine_framework(_lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , self.framework_tf ) # Invalid local checkpoint with TemporaryDirectory() as local_invalid_ckpt: with self.assertRaises(_lowerCAmelCase ): _lowerCAmelCase = FeaturesManager.determine_framework(_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = MagicMock(return_value=_lowerCAmelCase ) with patch('''transformers.onnx.features.is_tf_available''' , _lowerCAmelCase ): _lowerCAmelCase = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(_lowerCAmelCase , self.framework_pt ) # PyTorch not in environment -> use TensorFlow _lowerCAmelCase = MagicMock(return_value=_lowerCAmelCase ) with patch('''transformers.onnx.features.is_torch_available''' , _lowerCAmelCase ): _lowerCAmelCase = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(_lowerCAmelCase , self.framework_tf ) # Both in environment -> use PyTorch _lowerCAmelCase = MagicMock(return_value=_lowerCAmelCase ) _lowerCAmelCase = MagicMock(return_value=_lowerCAmelCase ) with patch('''transformers.onnx.features.is_tf_available''' , _lowerCAmelCase ), patch( '''transformers.onnx.features.is_torch_available''' , _lowerCAmelCase ): _lowerCAmelCase = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(_lowerCAmelCase , self.framework_pt ) # Both not in environment -> raise error _lowerCAmelCase = MagicMock(return_value=_lowerCAmelCase ) _lowerCAmelCase = MagicMock(return_value=_lowerCAmelCase ) with patch('''transformers.onnx.features.is_tf_available''' , _lowerCAmelCase ), patch( '''transformers.onnx.features.is_torch_available''' , _lowerCAmelCase ): with self.assertRaises(_lowerCAmelCase ): _lowerCAmelCase = FeaturesManager.determine_framework(self.test_model )
664
1
"""simple docstring""" import argparse import json from collections import OrderedDict from functools import partial from pathlib import Path import timm import torch from huggingface_hub import hf_hub_download from transformers import LevitConfig, LevitForImageClassificationWithTeacher, LevitImageProcessor from transformers.utils import logging logging.set_verbosity_info() a__ : Any = logging.get_logger() def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = True ): '''simple docstring''' print(f"""Converting {name}...""" ) with torch.no_grad(): if hidden_sizes == 128: if name[-1] == "S": __SCREAMING_SNAKE_CASE = timm.create_model("levit_128s" , pretrained=lowerCAmelCase_ ) else: __SCREAMING_SNAKE_CASE = timm.create_model("levit_128" , pretrained=lowerCAmelCase_ ) if hidden_sizes == 192: __SCREAMING_SNAKE_CASE = timm.create_model("levit_192" , pretrained=lowerCAmelCase_ ) if hidden_sizes == 256: __SCREAMING_SNAKE_CASE = timm.create_model("levit_256" , pretrained=lowerCAmelCase_ ) if hidden_sizes == 384: __SCREAMING_SNAKE_CASE = timm.create_model("levit_384" , pretrained=lowerCAmelCase_ ) from_model.eval() __SCREAMING_SNAKE_CASE = LevitForImageClassificationWithTeacher(lowerCAmelCase_ ).eval() __SCREAMING_SNAKE_CASE = OrderedDict() __SCREAMING_SNAKE_CASE = from_model.state_dict() __SCREAMING_SNAKE_CASE = list(from_model.state_dict().keys() ) __SCREAMING_SNAKE_CASE = list(our_model.state_dict().keys() ) print(len(lowerCAmelCase_ ) , len(lowerCAmelCase_ ) ) for i in range(len(lowerCAmelCase_ ) ): __SCREAMING_SNAKE_CASE = weights[og_keys[i]] our_model.load_state_dict(lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = torch.randn((2, 3, 224, 224) ) __SCREAMING_SNAKE_CASE = from_model(lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = our_model(lowerCAmelCase_ ).logits assert torch.allclose(lowerCAmelCase_ , lowerCAmelCase_ ), "The model logits don't match the original one." __SCREAMING_SNAKE_CASE = name print(lowerCAmelCase_ ) if push_to_hub: our_model.save_pretrained(save_directory / checkpoint_name ) __SCREAMING_SNAKE_CASE = LevitImageProcessor() image_processor.save_pretrained(save_directory / checkpoint_name ) print(f"""Pushed {checkpoint_name}""" ) def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = True ): '''simple docstring''' __SCREAMING_SNAKE_CASE = "imagenet-1k-id2label.json" __SCREAMING_SNAKE_CASE = 1000 __SCREAMING_SNAKE_CASE = (1, num_labels) __SCREAMING_SNAKE_CASE = "huggingface/label-files" __SCREAMING_SNAKE_CASE = num_labels __SCREAMING_SNAKE_CASE = json.load(open(hf_hub_download(lowerCAmelCase_ , lowerCAmelCase_ , repo_type="dataset" ) , "r" ) ) __SCREAMING_SNAKE_CASE = {int(lowerCAmelCase_ ): v for k, v in idalabel.items()} __SCREAMING_SNAKE_CASE = idalabel __SCREAMING_SNAKE_CASE = {v: k for k, v in idalabel.items()} __SCREAMING_SNAKE_CASE = partial(lowerCAmelCase_ , num_labels=lowerCAmelCase_ , idalabel=lowerCAmelCase_ , labelaid=lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = { "levit-128S": 128, "levit-128": 128, "levit-192": 192, "levit-256": 256, "levit-384": 384, } __SCREAMING_SNAKE_CASE = { "levit-128S": ImageNetPreTrainedConfig( hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 6, 8] , depths=[2, 3, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), "levit-128": ImageNetPreTrainedConfig( hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 8, 12] , depths=[4, 4, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), "levit-192": ImageNetPreTrainedConfig( hidden_sizes=[192, 288, 384] , num_attention_heads=[3, 5, 6] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), "levit-256": ImageNetPreTrainedConfig( hidden_sizes=[256, 384, 512] , num_attention_heads=[4, 6, 8] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), "levit-384": ImageNetPreTrainedConfig( hidden_sizes=[384, 512, 768] , num_attention_heads=[6, 9, 12] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0.1 , ), } if model_name: convert_weight_and_push( names_to_hidden_sizes[model_name] , lowerCAmelCase_ , names_to_config[model_name] , lowerCAmelCase_ , lowerCAmelCase_ ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(names_to_hidden_sizes[model_name] , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) return config, expected_shape if __name__ == "__main__": a__ : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default=None, type=str, help='''The name of the model you wish to convert, it must be one of the supported Levit* architecture,''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''levit-dump-folder/''', type=Path, required=False, help='''Path to the output PyTorch model directory.''', ) parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Push model and image processor to the hub''') parser.add_argument( '''--no-push_to_hub''', dest='''push_to_hub''', action='''store_false''', help='''Do not push model and image processor to the hub''', ) a__ : str = parser.parse_args() a__ : Path = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
682
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available a__ : Tuple = { '''configuration_rag''': ['''RagConfig'''], '''retrieval_rag''': ['''RagRetriever'''], '''tokenization_rag''': ['''RagTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : int = [ '''RagModel''', '''RagPreTrainedModel''', '''RagSequenceForGeneration''', '''RagTokenForGeneration''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : int = [ '''TFRagModel''', '''TFRagPreTrainedModel''', '''TFRagSequenceForGeneration''', '''TFRagTokenForGeneration''', ] if TYPE_CHECKING: from .configuration_rag import RagConfig from .retrieval_rag import RagRetriever from .tokenization_rag import RagTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rag import RagModel, RagPreTrainedModel, RagSequenceForGeneration, RagTokenForGeneration try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rag import ( TFRagModel, TFRagPreTrainedModel, TFRagSequenceForGeneration, TFRagTokenForGeneration, ) else: import sys a__ : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
682
1
def __UpperCAmelCase ( __A , __A , __A , __A ) -> int: '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ = len(__A ), len(grid[0] ) if ( min(__A , __A ) < 0 or row == row_length or col == col_length or (row, col) in visit or grid[row][col] == 1 ): return 0 if row == row_length - 1 and col == col_length - 1: return 1 visit.add((row, col) ) UpperCAmelCase__ = 0 count += depth_first_search(__A , row + 1 , __A , __A ) count += depth_first_search(__A , row - 1 , __A , __A ) count += depth_first_search(__A , __A , col + 1 , __A ) count += depth_first_search(__A , __A , col - 1 , __A ) visit.remove((row, col) ) return count if __name__ == "__main__": import doctest doctest.testmod()
707
class lowercase__ : def __init__( self : List[str] , _lowercase : list ): """simple docstring""" UpperCAmelCase__ = set_counts UpperCAmelCase__ = max(_lowercase ) UpperCAmelCase__ = len(_lowercase ) UpperCAmelCase__ = [1] * num_sets UpperCAmelCase__ = list(range(_lowercase ) ) def _UpperCAmelCase ( self : Dict , _lowercase : int , _lowercase : int ): """simple docstring""" UpperCAmelCase__ = self.get_parent(_lowercase ) UpperCAmelCase__ = self.get_parent(_lowercase ) if src_parent == dst_parent: return False if self.ranks[dst_parent] >= self.ranks[src_parent]: self.set_counts[dst_parent] += self.set_counts[src_parent] UpperCAmelCase__ = 0 UpperCAmelCase__ = dst_parent if self.ranks[dst_parent] == self.ranks[src_parent]: self.ranks[dst_parent] += 1 UpperCAmelCase__ = self.set_counts[dst_parent] else: self.set_counts[src_parent] += self.set_counts[dst_parent] UpperCAmelCase__ = 0 UpperCAmelCase__ = src_parent UpperCAmelCase__ = self.set_counts[src_parent] UpperCAmelCase__ = max(self.max_set , _lowercase ) return True def _UpperCAmelCase ( self : Optional[Any] , _lowercase : int ): """simple docstring""" if self.parents[disj_set] == disj_set: return disj_set UpperCAmelCase__ = self.get_parent(self.parents[disj_set] ) return self.parents[disj_set]
277
0
from __future__ import annotations def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" if len(_SCREAMING_SNAKE_CASE ) <= 1 or n <= 1: return insert_next(_SCREAMING_SNAKE_CASE , n - 1 ) rec_insertion_sort(_SCREAMING_SNAKE_CASE , n - 1 ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" if index >= len(_SCREAMING_SNAKE_CASE ) or collection[index - 1] <= collection[index]: return # Swaps adjacent elements since they are not in ascending order _A, _A = ( collection[index], collection[index - 1], ) insert_next(_SCREAMING_SNAKE_CASE , index + 1 ) if __name__ == "__main__": __A : str = input("Enter integers separated by spaces: ") __A : list[int] = [int(num) for num in numbers.split()] rec_insertion_sort(number_list, len(number_list)) print(number_list)
27
'''simple docstring''' import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCamelCase_ : '''simple docstring''' def __init__( self : Union[str, Any] , A : Union[str, Any] , A : Optional[int]=13 , A : Tuple=7 , A : str=True , A : Union[str, Any]=True , A : str=True , A : Any=True , A : Optional[Any]=99 , A : List[str]=24 , A : Dict=2 , A : int=6 , A : Any=37 , A : Any="gelu" , A : str=0.1 , A : Dict=0.1 , A : List[Any]=512 , A : Union[str, Any]=16 , A : Any=2 , A : Optional[int]=0.02 , A : str=3 , A : List[Any]=None , A : str=1000 , ): _UpperCAmelCase : List[Any] = parent _UpperCAmelCase : Any = batch_size _UpperCAmelCase : Tuple = seq_length _UpperCAmelCase : str = is_training _UpperCAmelCase : Union[str, Any] = use_input_mask _UpperCAmelCase : Union[str, Any] = use_token_type_ids _UpperCAmelCase : Dict = use_labels _UpperCAmelCase : Dict = vocab_size _UpperCAmelCase : Dict = hidden_size _UpperCAmelCase : int = num_hidden_layers _UpperCAmelCase : Any = num_attention_heads _UpperCAmelCase : Union[str, Any] = intermediate_size _UpperCAmelCase : Optional[Any] = hidden_act _UpperCAmelCase : List[Any] = hidden_dropout_prob _UpperCAmelCase : Tuple = attention_probs_dropout_prob _UpperCAmelCase : Optional[Any] = max_position_embeddings _UpperCAmelCase : Any = type_vocab_size _UpperCAmelCase : str = type_sequence_label_size _UpperCAmelCase : int = initializer_range _UpperCAmelCase : List[str] = num_labels _UpperCAmelCase : Union[str, Any] = scope _UpperCAmelCase : List[str] = range_bbox def _A ( self : Optional[int] ): _UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: _UpperCAmelCase : int = bbox[i, j, 3] _UpperCAmelCase : Optional[Any] = bbox[i, j, 1] _UpperCAmelCase : List[Any] = t if bbox[i, j, 2] < bbox[i, j, 0]: _UpperCAmelCase : List[str] = bbox[i, j, 2] _UpperCAmelCase : Optional[Any] = bbox[i, j, 0] _UpperCAmelCase : str = t _UpperCAmelCase : List[Any] = None if self.use_input_mask: _UpperCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) _UpperCAmelCase : Any = None if self.use_token_type_ids: _UpperCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCAmelCase : Optional[Any] = None _UpperCAmelCase : Optional[int] = None if self.use_labels: _UpperCAmelCase : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCAmelCase : str = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def _A ( self : List[Any] ): return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def _A ( self : Any , A : List[Any] , A : List[str] , A : Optional[Any] , A : Union[str, Any] , A : Union[str, Any] , A : Tuple , A : Optional[int] , ): _UpperCAmelCase : Optional[int] = LiltModel(config=A ) model.to(A ) model.eval() _UpperCAmelCase : int = model(A , bbox=A , attention_mask=A , token_type_ids=A ) _UpperCAmelCase : Dict = model(A , bbox=A , token_type_ids=A ) _UpperCAmelCase : str = model(A , bbox=A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _A ( self : Any , A : List[Any] , A : Optional[int] , A : str , A : List[str] , A : Union[str, Any] , A : Dict , A : int , ): _UpperCAmelCase : int = self.num_labels _UpperCAmelCase : Optional[int] = LiltForTokenClassification(config=A ) model.to(A ) model.eval() _UpperCAmelCase : Tuple = model( A , bbox=A , attention_mask=A , token_type_ids=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _A ( self : int , A : Optional[int] , A : Union[str, Any] , A : Union[str, Any] , A : Optional[int] , A : Dict , A : Any , A : Dict , ): _UpperCAmelCase : Tuple = LiltForQuestionAnswering(config=A ) model.to(A ) model.eval() _UpperCAmelCase : Union[str, Any] = model( A , bbox=A , attention_mask=A , token_type_ids=A , start_positions=A , end_positions=A , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _A ( self : int ): _UpperCAmelCase : List[str] = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) : Optional[int] = config_and_inputs _UpperCAmelCase : Optional[int] = { "input_ids": input_ids, "bbox": bbox, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_torch class lowerCamelCase_ (snake_case__ , snake_case__ , snake_case__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase: Optional[int] = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) __UpperCamelCase: List[Any] = ( { "feature-extraction": LiltModel, "question-answering": LiltForQuestionAnswering, "text-classification": LiltForSequenceClassification, "token-classification": LiltForTokenClassification, "zero-shot": LiltForSequenceClassification, } if is_torch_available() else {} ) __UpperCamelCase: Dict = False __UpperCamelCase: Optional[Any] = False def _A ( self : str , A : int , A : Dict , A : List[Any] , A : List[str] , A : int ): return True def _A ( self : Dict ): _UpperCAmelCase : Dict = LiltModelTester(self ) _UpperCAmelCase : List[Any] = ConfigTester(self , config_class=A , hidden_size=37 ) def _A ( self : int ): self.config_tester.run_common_tests() def _A ( self : List[str] ): _UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def _A ( self : int ): _UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _UpperCAmelCase : str = type self.model_tester.create_and_check_model(*A ) def _A ( self : str ): _UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*A ) def _A ( self : Union[str, Any] ): _UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*A ) @slow def _A ( self : List[Any] ): for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase : Optional[int] = LiltModel.from_pretrained(A ) self.assertIsNotNone(A ) @require_torch @slow class lowerCamelCase_ (unittest.TestCase ): '''simple docstring''' def _A ( self : List[Any] ): _UpperCAmelCase : str = LiltModel.from_pretrained("SCUT-DLVCLab/lilt-roberta-en-base" ).to(A ) _UpperCAmelCase : Optional[Any] = torch.tensor([[1, 2]] , device=A ) _UpperCAmelCase : Any = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=A ) # forward pass with torch.no_grad(): _UpperCAmelCase : int = model(input_ids=A , bbox=A ) _UpperCAmelCase : Optional[int] = torch.Size([1, 2, 768] ) _UpperCAmelCase : Dict = torch.tensor( [[-0.0_653, 0.0_950, -0.0_061], [-0.0_545, 0.0_926, -0.0_324]] , device=A , ) self.assertTrue(outputs.last_hidden_state.shape , A ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , A , atol=1E-3 ) )
244
0
import unittest from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __lowerCamelCase : List[Any] = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece class A__ ( __snake_case , unittest.TestCase ): _UpperCAmelCase :str = XLMProphetNetTokenizer _UpperCAmelCase :List[Any] = False _UpperCAmelCase :List[str] = True def __UpperCamelCase( self ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing UpperCamelCase : str = XLMProphetNetTokenizer(A_ , keep_accents=A_ ) tokenizer.save_pretrained(self.tmpdirname ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : List[str] = "[PAD]" UpperCamelCase : List[Any] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(A_ ) , A_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(A_ ) , A_ ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Tuple = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "[PAD]" ) self.assertEqual(vocab_keys[1] , "[CLS]" ) self.assertEqual(vocab_keys[-1] , "j" ) self.assertEqual(len(A_ ) , 1012 ) def __UpperCamelCase( self ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1012 ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : List[Any] = XLMProphetNetTokenizer(A_ , keep_accents=A_ ) UpperCamelCase : str = tokenizer.tokenize("This is a test" ) self.assertListEqual(A_ , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(A_ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) UpperCamelCase : Optional[Any] = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( A_ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) UpperCamelCase : Dict = tokenizer.convert_tokens_to_ids(A_ ) self.assertListEqual( A_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, -9, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, -9, 4] ] , ) UpperCamelCase : Any = tokenizer.convert_ids_to_tokens(A_ ) self.assertListEqual( A_ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "[UNK]", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "[UNK]", ".", ] , ) @cached_property def __UpperCamelCase( self ): '''simple docstring''' return XLMProphetNetTokenizer.from_pretrained("microsoft/xprophetnet-large-wiki100-cased" ) @slow def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : int = "Hello World!" UpperCamelCase : str = [3_5389, 6672, 49, 2] self.assertListEqual(A_ , self.big_tokenizer.encode(A_ ) ) @slow def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : List[Any] = {"input_ids": [[1_1073, 8_2783, 18, 26, 8_2783, 549, 5_1540, 248, 1_7209, 1301, 217, 20, 21_5186, 1325, 147, 1_7209, 1301, 217, 20, 5_6370, 53, 12_2020, 20, 1_6477, 27, 8_7355, 4548, 20, 4728, 7_8392, 17, 15_9969, 18, 26, 2_4491, 629, 15, 538, 2_2704, 5439, 15, 2788, 2_4491, 9885, 15, 4_3534, 605, 15, 814, 1_8403, 3_3200, 29, 15, 4_3534, 2_4458, 1_2410, 111, 2_4966, 8_3669, 9637, 14_4068, 26, 850, 2_2346, 27, 147, 2_4966, 8_3669, 8_3490, 26, 3_9113, 735, 27, 689, 656, 2800, 1339, 4600, 53, 12_2020, 11_5785, 34, 816, 1339, 4_6887, 18, 147, 5_3905, 1951, 4_2238, 4_1170, 1_7732, 834, 436, 15, 2_7523, 9_8733, 217, 147, 5542, 4981, 930, 1_7347, 16, 2], [2_0091, 629, 94, 8_2786, 58, 490, 20, 1528, 84, 5_3905, 344, 8_0592, 11_0128, 1_8822, 5267, 1306, 62, 15_2537, 308, 7997, 401, 12_4427, 549, 3_5442, 225, 109, 1_5055, 2_5748, 147, 7119, 4_3712, 34, 767, 13_5366, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [592, 6_3784, 11_9466, 17, 14_7808, 8_8214, 18, 656, 81, 32, 3296, 1_0280, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=A_ , model_name="microsoft/xprophetnet-large-wiki100-cased" , revision="1acad1643ddd54a44df6a1b797ada8373685d90e" , )
38
from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class A__ ( __snake_case ): _UpperCAmelCase :Optional[int] = ['image_processor', 'tokenizer'] _UpperCAmelCase :Tuple = 'BlipImageProcessor' _UpperCAmelCase :Optional[int] = 'AutoTokenizer' def __init__( self , A_ , A_ ): '''simple docstring''' UpperCamelCase : str = False super().__init__(A_ , A_ ) UpperCamelCase : str = self.image_processor def __call__( self , A_ = None , A_ = None , A_ = True , A_ = False , A_ = None , A_ = None , A_ = 0 , A_ = None , A_ = None , A_ = False , A_ = False , A_ = False , A_ = False , A_ = False , A_ = True , A_ = None , **A_ , ): '''simple docstring''' if images is None and text is None: raise ValueError("You have to specify either images or text." ) # Get only text if images is None: UpperCamelCase : int = self.tokenizer UpperCamelCase : Optional[int] = self.tokenizer( text=A_ , add_special_tokens=A_ , padding=A_ , truncation=A_ , max_length=A_ , stride=A_ , pad_to_multiple_of=A_ , return_attention_mask=A_ , return_overflowing_tokens=A_ , return_special_tokens_mask=A_ , return_offsets_mapping=A_ , return_token_type_ids=A_ , return_length=A_ , verbose=A_ , return_tensors=A_ , **A_ , ) return text_encoding # add pixel_values UpperCamelCase : int = self.image_processor(A_ , return_tensors=A_ ) if text is not None: UpperCamelCase : Dict = self.tokenizer( text=A_ , add_special_tokens=A_ , padding=A_ , truncation=A_ , max_length=A_ , stride=A_ , pad_to_multiple_of=A_ , return_attention_mask=A_ , return_overflowing_tokens=A_ , return_special_tokens_mask=A_ , return_offsets_mapping=A_ , return_token_type_ids=A_ , return_length=A_ , verbose=A_ , return_tensors=A_ , **A_ , ) else: UpperCamelCase : Dict = None if text_encoding is not None: encoding_image_processor.update(A_ ) return encoding_image_processor def __UpperCamelCase( self , *A_ , **A_ ): '''simple docstring''' return self.tokenizer.batch_decode(*A_ , **A_ ) def __UpperCamelCase( self , *A_ , **A_ ): '''simple docstring''' return self.tokenizer.decode(*A_ , **A_ ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : List[str] = self.tokenizer.model_input_names UpperCamelCase : int = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
38
1
'''simple docstring''' import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger __magic_name__ = '<<<<<<< This should probably be modified because it mentions: ' __magic_name__ = '=======\n>>>>>>>\n' __magic_name__ = [ 'TextEncoderConfig', 'ByteTextEncoder', 'SubwordTextEncoder', 'encoder_config', 'maybe_build_from_corpus', 'manual_dir', ] __magic_name__ = [ # (pattern, replacement) # Order is important here for some replacements (r'tfds\.core', r'datasets'), (r'tf\.io\.gfile\.GFile', r'open'), (r'tf\.([\w\d]+)', r'datasets.Value(\'\1\')'), (r'tfds\.features\.Text\(\)', r'datasets.Value(\'string\')'), (r'tfds\.features\.Text\(', r'datasets.Value(\'string\'),'), (r'features\s*=\s*tfds.features.FeaturesDict\(', r'features=datasets.Features('), (r'tfds\.features\.FeaturesDict\(', r'dict('), (r'The TensorFlow Datasets Authors', r'The TensorFlow Datasets Authors and the HuggingFace Datasets Authors'), (r'tfds\.', r'datasets.'), (r'dl_manager\.manual_dir', r'self.config.data_dir'), (r'self\.builder_config', r'self.config'), ] def lowerCamelCase ( lowerCamelCase : Namespace): return ConvertCommand(args.tfds_path , args.datasets_directory) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' @staticmethod def _a ( _a : ArgumentParser ): '''simple docstring''' A_ : Union[str, Any] = parser.add_parser( """convert""" ,help="""Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset.""" ,) train_parser.add_argument( """--tfds_path""" ,type=__lowerCAmelCase ,required=__lowerCAmelCase ,help="""Path to a TensorFlow Datasets folder to convert or a single tfds file to convert.""" ,) train_parser.add_argument( """--datasets_directory""" ,type=__lowerCAmelCase ,required=__lowerCAmelCase ,help="""Path to the HuggingFace Datasets folder.""" ) train_parser.set_defaults(func=__lowerCAmelCase ) def __init__( self : Optional[int] ,_a : str ,_a : str ,*_a : int ): '''simple docstring''' A_ : Union[str, Any] = get_logger("""datasets-cli/converting""" ) A_ : Any = tfds_path A_ : Union[str, Any] = datasets_directory def _a ( self : Any ): '''simple docstring''' if os.path.isdir(self._tfds_path ): A_ : Union[str, Any] = os.path.abspath(self._tfds_path ) elif os.path.isfile(self._tfds_path ): A_ : List[Any] = os.path.dirname(self._tfds_path ) else: raise ValueError("""--tfds_path is neither a directory nor a file. Please check path.""" ) A_ : Dict = os.path.abspath(self._datasets_directory ) self._logger.info(f'Converting datasets from {abs_tfds_path} to {abs_datasets_path}' ) A_ : Any = [] A_ : str = [] A_ : List[str] = {} if os.path.isdir(self._tfds_path ): A_ : List[str] = os.listdir(__lowerCAmelCase ) else: A_ : Optional[int] = [os.path.basename(self._tfds_path )] for f_name in file_names: self._logger.info(f'Looking at file {f_name}' ) A_ : str = os.path.join(__lowerCAmelCase ,__lowerCAmelCase ) A_ : Union[str, Any] = os.path.join(__lowerCAmelCase ,__lowerCAmelCase ) if not os.path.isfile(__lowerCAmelCase ) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info("""Skipping file""" ) continue with open(__lowerCAmelCase ,encoding="""utf-8""" ) as f: A_ : List[Any] = f.readlines() A_ : Dict = [] A_ : Optional[Any] = False A_ : Union[str, Any] = False A_ : Optional[int] = [] for line in lines: A_ : Tuple = line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: A_ : str = """import datasets\n""" elif "import tensorflow" in out_line: # order is important here A_ : Optional[int] = """""" continue elif "from absl import logging" in out_line: A_ : Dict = """from datasets import logging\n""" elif "getLogger" in out_line: A_ : List[Any] = out_line.replace("""getLogger""" ,"""get_logger""" ) elif any(expression in out_line for expression in TO_HIGHLIGHT ): A_ : Any = True A_ : Tuple = list(filter(lambda _a : e in out_line ,__lowerCAmelCase ) ) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(__lowerCAmelCase ) + """\n""" ) out_lines.append(__lowerCAmelCase ) out_lines.append(__lowerCAmelCase ) continue else: for pattern, replacement in TO_CONVERT: A_ : Union[str, Any] = re.sub(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: A_ : Any = re.match(r"""from\stensorflow_datasets.*import\s([^\.\r\n]+)""" ,__lowerCAmelCase ) tfds_imports.extend(imp.strip() for imp in match.group(1 ).split(""",""" ) ) A_ : Optional[Any] = """from . import """ + match.group(1 ) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(f'Error converting {out_line.strip()}' ) if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: A_ : str = True out_lines.append(__lowerCAmelCase ) if is_builder or "wmt" in f_name: # We create a new directory for each dataset A_ : int = f_name.replace(""".py""" ,"""""" ) A_ : Optional[Any] = os.path.join(__lowerCAmelCase ,__lowerCAmelCase ) A_ : List[Any] = os.path.join(__lowerCAmelCase ,__lowerCAmelCase ) os.makedirs(__lowerCAmelCase ,exist_ok=__lowerCAmelCase ) self._logger.info(f'Adding directory {output_dir}' ) imports_to_builder_map.update({imp: output_dir for imp in tfds_imports} ) else: # Utilities will be moved at the end utils_files.append(__lowerCAmelCase ) if needs_manual_update: with_manual_update.append(__lowerCAmelCase ) with open(__lowerCAmelCase ,"""w""" ,encoding="""utf-8""" ) as f: f.writelines(__lowerCAmelCase ) self._logger.info(f'Converted in {output_file}' ) for utils_file in utils_files: try: A_ : Union[str, Any] = os.path.basename(__lowerCAmelCase ) A_ : Dict = imports_to_builder_map[f_name.replace(""".py""" ,"""""" )] self._logger.info(f'Moving {dest_folder} to {utils_file}' ) shutil.copy(__lowerCAmelCase ,__lowerCAmelCase ) except KeyError: self._logger.error(f'Cannot find destination folder for {utils_file}. Please copy manually.' ) if with_manual_update: for file_path in with_manual_update: self._logger.warning( f'You need to manually update file {file_path} to remove configurations using \'TextEncoderConfig\'.' )
665
def __lowerCAmelCase ( A_ : str ) -> str: __UpperCAmelCase = "" for ch in key: if ch == " " or ch not in key_no_dups and ch.isalpha(): key_no_dups += ch return key_no_dups def __lowerCAmelCase ( A_ : str ) -> dict[str, str]: __UpperCAmelCase = [chr(i + 65 ) for i in range(26 )] # Remove duplicate characters from key __UpperCAmelCase = remove_duplicates(key.upper() ) __UpperCAmelCase = len(A_ ) # First fill cipher with key characters __UpperCAmelCase = {alphabet[i]: char for i, char in enumerate(A_ )} # Then map remaining characters in alphabet to # the alphabet from the beginning for i in range(len(A_ ) , 26 ): __UpperCAmelCase = alphabet[i - offset] # Ensure we are not mapping letters to letters previously mapped while char in key: offset -= 1 __UpperCAmelCase = alphabet[i - offset] __UpperCAmelCase = char return cipher_alphabet def __lowerCAmelCase ( A_ : str , A_ : dict[str, str] ) -> str: return "".join(cipher_map.get(A_ , A_ ) for ch in message.upper() ) def __lowerCAmelCase ( A_ : str , A_ : dict[str, str] ) -> str: __UpperCAmelCase = {v: k for k, v in cipher_map.items()} return "".join(rev_cipher_map.get(A_ , A_ ) for ch in message.upper() ) def __lowerCAmelCase ( ) -> None: __UpperCAmelCase = input("Enter message to encode or decode: " ).strip() __UpperCAmelCase = input("Enter keyword: " ).strip() __UpperCAmelCase = input("Encipher or decipher? E/D:" ).strip()[0].lower() try: __UpperCAmelCase = {"e": encipher, "d": decipher}[option] except KeyError: raise KeyError("invalid input option" ) __UpperCAmelCase = create_cipher_map(A_ ) print(func(A_ , A_ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
221
0
import argparse import os import gluonnlp as nlp import mxnet as mx import numpy as np import torch from gluonnlp.base import get_home_dir from gluonnlp.model.bert import BERTEncoder from gluonnlp.model.utils import _load_vocab from gluonnlp.vocab import Vocab from packaging import version from torch import nn from transformers import BertConfig, BertForMaskedLM, BertModel, RobertaTokenizer from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging if version.parse(nlp.__version__) != version.parse('0.8.3'): raise Exception('requires gluonnlp == 0.8.3') if version.parse(mx.__version__) != version.parse('1.5.0'): raise Exception('requires mxnet == 1.5.0') logging.set_verbosity_info() _A = logging.get_logger(__name__) _A = 'The Nymphenburg Palace is a beautiful palace in Munich!' def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str ): __UpperCamelCase ={ 'attention_cell': 'multi_head', 'num_layers': 4, 'units': 10_24, 'hidden_size': 7_68, 'max_length': 5_12, 'num_heads': 8, 'scaled': True, 'dropout': 0.1, 'use_residual': True, 'embed_size': 10_24, 'embed_dropout': 0.1, 'word_embed': None, 'layer_norm_eps': 1E-5, 'token_type_vocab_size': 2, } __UpperCamelCase =bort_4_8_768_1024_hparams # Let's construct the original Bort model here # Taken from official BERT implementation, see: # https://github.com/alexa/bort/blob/master/bort/bort.py __UpperCamelCase =BERTEncoder( attention_cell=predefined_args['attention_cell'] , num_layers=predefined_args['num_layers'] , units=predefined_args['units'] , hidden_size=predefined_args['hidden_size'] , max_length=predefined_args['max_length'] , num_heads=predefined_args['num_heads'] , scaled=predefined_args['scaled'] , dropout=predefined_args['dropout'] , output_attention=SCREAMING_SNAKE_CASE__ , output_all_encodings=SCREAMING_SNAKE_CASE__ , use_residual=predefined_args['use_residual'] , activation=predefined_args.get('activation' , 'gelu' ) , layer_norm_eps=predefined_args.get('layer_norm_eps' , SCREAMING_SNAKE_CASE__ ) , ) # Vocab information needs to be fetched first # It's the same as RoBERTa, so RobertaTokenizer can be used later __UpperCamelCase ='openwebtext_ccnews_stories_books_cased' # Specify download folder to Gluonnlp's vocab __UpperCamelCase =os.path.join(get_home_dir() , 'models' ) __UpperCamelCase =_load_vocab(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , cls=SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =nlp.model.BERTModel( SCREAMING_SNAKE_CASE__ , len(SCREAMING_SNAKE_CASE__ ) , units=predefined_args['units'] , embed_size=predefined_args['embed_size'] , embed_dropout=predefined_args['embed_dropout'] , word_embed=predefined_args['word_embed'] , use_pooler=SCREAMING_SNAKE_CASE__ , use_token_type_embed=SCREAMING_SNAKE_CASE__ , token_type_vocab_size=predefined_args['token_type_vocab_size'] , use_classifier=SCREAMING_SNAKE_CASE__ , use_decoder=SCREAMING_SNAKE_CASE__ , ) original_bort.load_parameters(SCREAMING_SNAKE_CASE__ , cast_dtype=SCREAMING_SNAKE_CASE__ , ignore_extra=SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =original_bort._collect_params_with_prefix() # Build our config 🤗 __UpperCamelCase ={ 'architectures': ['BertForMaskedLM'], 'attention_probs_dropout_prob': predefined_args['dropout'], 'hidden_act': 'gelu', 'hidden_dropout_prob': predefined_args['dropout'], 'hidden_size': predefined_args['embed_size'], 'initializer_range': 0.02, 'intermediate_size': predefined_args['hidden_size'], 'layer_norm_eps': predefined_args['layer_norm_eps'], 'max_position_embeddings': predefined_args['max_length'], 'model_type': 'bort', 'num_attention_heads': predefined_args['num_heads'], 'num_hidden_layers': predefined_args['num_layers'], 'pad_token_id': 1, # 2 = BERT, 1 = RoBERTa 'type_vocab_size': 1, # 2 = BERT, 1 = RoBERTa 'vocab_size': len(SCREAMING_SNAKE_CASE__ ), } __UpperCamelCase =BertConfig.from_dict(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =BertForMaskedLM(SCREAMING_SNAKE_CASE__ ) hf_bort_model.eval() # Parameter mapping table (Gluonnlp to Transformers) # * denotes layer index # # | Gluon Parameter | Transformers Parameter # | -------------------------------------------------------------- | ---------------------- # | `encoder.layer_norm.beta` | `bert.embeddings.LayerNorm.bias` # | `encoder.layer_norm.gamma` | `bert.embeddings.LayerNorm.weight` # | `encoder.position_weight` | `bert.embeddings.position_embeddings.weight` # | `word_embed.0.weight` | `bert.embeddings.word_embeddings.weight` # | `encoder.transformer_cells.*.attention_cell.proj_key.bias` | `bert.encoder.layer.*.attention.self.key.bias` # | `encoder.transformer_cells.*.attention_cell.proj_key.weight` | `bert.encoder.layer.*.attention.self.key.weight` # | `encoder.transformer_cells.*.attention_cell.proj_query.bias` | `bert.encoder.layer.*.attention.self.query.bias` # | `encoder.transformer_cells.*.attention_cell.proj_query.weight` | `bert.encoder.layer.*.attention.self.query.weight` # | `encoder.transformer_cells.*.attention_cell.proj_value.bias` | `bert.encoder.layer.*.attention.self.value.bias` # | `encoder.transformer_cells.*.attention_cell.proj_value.weight` | `bert.encoder.layer.*.attention.self.value.weight` # | `encoder.transformer_cells.*.ffn.ffn_2.bias` | `bert.encoder.layer.*.attention.output.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_2.weight` | `bert.encoder.layer.*.attention.output.dense.weight` # | `encoder.transformer_cells.*.layer_norm.beta` | `bert.encoder.layer.*.attention.output.LayerNorm.bias` # | `encoder.transformer_cells.*.layer_norm.gamma` | `bert.encoder.layer.*.attention.output.LayerNorm.weight` # | `encoder.transformer_cells.*.ffn.ffn_1.bias` | `bert.encoder.layer.*.intermediate.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_1.weight` | `bert.encoder.layer.*.intermediate.dense.weight` # | `encoder.transformer_cells.*.ffn.layer_norm.beta` | `bert.encoder.layer.*.output.LayerNorm.bias` # | `encoder.transformer_cells.*.ffn.layer_norm.gamma` | `bert.encoder.layer.*.output.LayerNorm.weight` # | `encoder.transformer_cells.*.proj.bias` | `bert.encoder.layer.*.output.dense.bias` # | `encoder.transformer_cells.*.proj.weight` | `bert.encoder.layer.*.output.dense.weight` # Helper function to convert MXNET Arrays to PyTorch def to_torch(SCREAMING_SNAKE_CASE__ : Tuple ) -> nn.Parameter: return nn.Parameter(torch.FloatTensor(mx_array.data().asnumpy() ) ) # Check param shapes and map new HF param back def check_and_map_params(SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[Any] ): __UpperCamelCase =hf_param.shape __UpperCamelCase =to_torch(params[gluon_param] ) __UpperCamelCase =gluon_param.shape assert ( shape_hf == shape_gluon ), F'The gluon parameter {gluon_param} has shape {shape_gluon}, but expects shape {shape_hf} for Transformers' return gluon_param __UpperCamelCase =check_and_map_params( hf_bort_model.bert.embeddings.word_embeddings.weight , 'word_embed.0.weight' ) __UpperCamelCase =check_and_map_params( hf_bort_model.bert.embeddings.position_embeddings.weight , 'encoder.position_weight' ) __UpperCamelCase =check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.bias , 'encoder.layer_norm.beta' ) __UpperCamelCase =check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.weight , 'encoder.layer_norm.gamma' ) # Inspired by RoBERTa conversion script, we just zero them out (Bort does not use them) __UpperCamelCase =torch.zeros_like( hf_bort_model.bert.embeddings.token_type_embeddings.weight.data ) for i in range(hf_bort_config.num_hidden_layers ): __UpperCamelCase =hf_bort_model.bert.encoder.layer[i] # self attention __UpperCamelCase =layer.attention.self __UpperCamelCase =check_and_map_params( self_attn.key.bias.data , F'encoder.transformer_cells.{i}.attention_cell.proj_key.bias' ) __UpperCamelCase =check_and_map_params( self_attn.key.weight.data , F'encoder.transformer_cells.{i}.attention_cell.proj_key.weight' ) __UpperCamelCase =check_and_map_params( self_attn.query.bias.data , F'encoder.transformer_cells.{i}.attention_cell.proj_query.bias' ) __UpperCamelCase =check_and_map_params( self_attn.query.weight.data , F'encoder.transformer_cells.{i}.attention_cell.proj_query.weight' ) __UpperCamelCase =check_and_map_params( self_attn.value.bias.data , F'encoder.transformer_cells.{i}.attention_cell.proj_value.bias' ) __UpperCamelCase =check_and_map_params( self_attn.value.weight.data , F'encoder.transformer_cells.{i}.attention_cell.proj_value.weight' ) # self attention output __UpperCamelCase =layer.attention.output __UpperCamelCase =check_and_map_params( self_output.dense.bias , F'encoder.transformer_cells.{i}.proj.bias' ) __UpperCamelCase =check_and_map_params( self_output.dense.weight , F'encoder.transformer_cells.{i}.proj.weight' ) __UpperCamelCase =check_and_map_params( self_output.LayerNorm.bias , F'encoder.transformer_cells.{i}.layer_norm.beta' ) __UpperCamelCase =check_and_map_params( self_output.LayerNorm.weight , F'encoder.transformer_cells.{i}.layer_norm.gamma' ) # intermediate __UpperCamelCase =layer.intermediate __UpperCamelCase =check_and_map_params( intermediate.dense.bias , F'encoder.transformer_cells.{i}.ffn.ffn_1.bias' ) __UpperCamelCase =check_and_map_params( intermediate.dense.weight , F'encoder.transformer_cells.{i}.ffn.ffn_1.weight' ) # output __UpperCamelCase =layer.output __UpperCamelCase =check_and_map_params( bert_output.dense.bias , F'encoder.transformer_cells.{i}.ffn.ffn_2.bias' ) __UpperCamelCase =check_and_map_params( bert_output.dense.weight , F'encoder.transformer_cells.{i}.ffn.ffn_2.weight' ) __UpperCamelCase =check_and_map_params( bert_output.LayerNorm.bias , F'encoder.transformer_cells.{i}.ffn.layer_norm.beta' ) __UpperCamelCase =check_and_map_params( bert_output.LayerNorm.weight , F'encoder.transformer_cells.{i}.ffn.layer_norm.gamma' ) # Save space and energy 🎄 hf_bort_model.half() # Compare output of both models __UpperCamelCase =RobertaTokenizer.from_pretrained('roberta-base' ) __UpperCamelCase =tokenizer.encode_plus(SCREAMING_SNAKE_CASE__ )['input_ids'] # Get gluon output __UpperCamelCase =mx.nd.array([input_ids] ) __UpperCamelCase =original_bort(inputs=SCREAMING_SNAKE_CASE__ , token_types=[] ) # Get Transformer output (save and reload model again) hf_bort_model.save_pretrained(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =BertModel.from_pretrained(SCREAMING_SNAKE_CASE__ ) hf_bort_model.eval() __UpperCamelCase =tokenizer.encode_plus(SCREAMING_SNAKE_CASE__ , return_tensors='pt' ) __UpperCamelCase =hf_bort_model(**SCREAMING_SNAKE_CASE__ )[0] __UpperCamelCase =output_gluon[0].asnumpy() __UpperCamelCase =output_hf[0].detach().numpy() __UpperCamelCase =np.max(np.abs(hf_layer - gluon_layer ) ).item() __UpperCamelCase =np.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , atol=1E-3 ) if success: print('✔️ Both model do output the same tensors' ) else: print('❌ Both model do **NOT** output the same tensors' ) print('Absolute difference is:' , SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": _A = argparse.ArgumentParser() # Required parameters parser.add_argument( '--bort_checkpoint_path', default=None, type=str, required=True, help='Path the official Bort params file.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) _A = parser.parse_args() convert_bort_checkpoint_to_pytorch(args.bort_checkpoint_path, args.pytorch_dump_folder_path)
682
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Optional[Any]=None ): if subparsers is not None: __UpperCamelCase =subparsers.add_parser('test' ) else: __UpperCamelCase =argparse.ArgumentParser('Accelerate test command' ) parser.add_argument( '--config_file' , default=SCREAMING_SNAKE_CASE__ , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , ) if subparsers is not None: parser.set_defaults(func=SCREAMING_SNAKE_CASE__ ) return parser def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Any ): __UpperCamelCase =os.path.sep.join(__file__.split(os.path.sep )[:-2] + ['test_utils', 'scripts', 'test_script.py'] ) if args.config_file is None: __UpperCamelCase =script_name else: __UpperCamelCase =F'--config_file={args.config_file} {script_name}' __UpperCamelCase =['accelerate-launch'] + test_args.split() __UpperCamelCase =execute_subprocess_async(SCREAMING_SNAKE_CASE__ , env=os.environ.copy() ) if result.returncode == 0: print('Test is a success! You are ready for your distributed training!' ) def _UpperCAmelCase ( ): __UpperCamelCase =test_command_parser() __UpperCamelCase =parser.parse_args() test_command(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": main()
682
1