code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING __lowerCamelCase : Dict = logging.get_logger(__name__) __lowerCamelCase : List[Any] = { """salesforce/blip2-opt-2.7b""": """https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json""", } class lowerCAmelCase__ ( __SCREAMING_SNAKE_CASE ): A = "blip_2_vision_model" def __init__( self : List[Any] , UpperCamelCase_ : int=1_408 , UpperCamelCase_ : Optional[Any]=6_144 , UpperCamelCase_ : Union[str, Any]=39 , UpperCamelCase_ : Union[str, Any]=16 , UpperCamelCase_ : Union[str, Any]=224 , UpperCamelCase_ : Dict=14 , UpperCamelCase_ : Any="gelu" , UpperCamelCase_ : List[Any]=0.0_0001 , UpperCamelCase_ : Optional[int]=0.0 , UpperCamelCase_ : List[Any]=1e-1_0 , UpperCamelCase_ : Dict=True , **UpperCamelCase_ : int , ) -> Union[str, Any]: """simple docstring""" super().__init__(**UpperCamelCase__ ) lowerCamelCase_ : int = hidden_size lowerCamelCase_ : Any = intermediate_size lowerCamelCase_ : Union[str, Any] = num_hidden_layers lowerCamelCase_ : int = num_attention_heads lowerCamelCase_ : int = patch_size lowerCamelCase_ : Any = image_size lowerCamelCase_ : Dict = initializer_range lowerCamelCase_ : str = attention_dropout lowerCamelCase_ : Optional[int] = layer_norm_eps lowerCamelCase_ : List[Any] = hidden_act lowerCamelCase_ : Dict = qkv_bias @classmethod def __UpperCamelCase ( cls : Optional[int] , UpperCamelCase_ : Union[str, os.PathLike] , **UpperCamelCase_ : Tuple ) -> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(UpperCamelCase__ ) lowerCamelCase_ : List[str] = cls.get_config_dict(UpperCamelCase__ , **UpperCamelCase__ ) # get the vision config dict if we are loading from Blip2Config if config_dict.get('''model_type''' ) == "blip-2": lowerCamelCase_ : List[str] = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(UpperCamelCase__ , **UpperCamelCase__ ) class lowerCAmelCase__ ( __SCREAMING_SNAKE_CASE ): A = "blip_2_qformer" def __init__( self : Tuple , UpperCamelCase_ : int=30_522 , UpperCamelCase_ : str=768 , UpperCamelCase_ : Dict=12 , UpperCamelCase_ : str=12 , UpperCamelCase_ : Optional[int]=3_072 , UpperCamelCase_ : int="gelu" , UpperCamelCase_ : Union[str, Any]=0.1 , UpperCamelCase_ : str=0.1 , UpperCamelCase_ : Union[str, Any]=512 , UpperCamelCase_ : Tuple=0.02 , UpperCamelCase_ : str=1e-1_2 , UpperCamelCase_ : Optional[Any]=0 , UpperCamelCase_ : Any="absolute" , UpperCamelCase_ : Dict=2 , UpperCamelCase_ : Any=1_408 , **UpperCamelCase_ : Union[str, Any] , ) -> Optional[int]: """simple docstring""" super().__init__(pad_token_id=UpperCamelCase__ , **UpperCamelCase__ ) lowerCamelCase_ : Optional[Any] = vocab_size lowerCamelCase_ : List[Any] = hidden_size lowerCamelCase_ : Optional[int] = num_hidden_layers lowerCamelCase_ : Dict = num_attention_heads lowerCamelCase_ : List[str] = hidden_act lowerCamelCase_ : Union[str, Any] = intermediate_size lowerCamelCase_ : Any = hidden_dropout_prob lowerCamelCase_ : Any = attention_probs_dropout_prob lowerCamelCase_ : str = max_position_embeddings lowerCamelCase_ : Optional[Any] = initializer_range lowerCamelCase_ : Union[str, Any] = layer_norm_eps lowerCamelCase_ : Any = position_embedding_type lowerCamelCase_ : Optional[Any] = cross_attention_frequency lowerCamelCase_ : Optional[int] = encoder_hidden_size @classmethod def __UpperCamelCase ( cls : int , UpperCamelCase_ : Union[str, os.PathLike] , **UpperCamelCase_ : Union[str, Any] ) -> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(UpperCamelCase__ ) lowerCamelCase_ : List[Any] = cls.get_config_dict(UpperCamelCase__ , **UpperCamelCase__ ) # get the qformer config dict if we are loading from Blip2Config if config_dict.get('''model_type''' ) == "blip-2": lowerCamelCase_ : List[str] = config_dict['''qformer_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(UpperCamelCase__ , **UpperCamelCase__ ) class lowerCAmelCase__ ( __SCREAMING_SNAKE_CASE ): A = "blip-2" A = True def __init__( self : Union[str, Any] , UpperCamelCase_ : int=None , UpperCamelCase_ : List[Any]=None , UpperCamelCase_ : int=None , UpperCamelCase_ : Optional[Any]=32 , **UpperCamelCase_ : Optional[Any] ) -> Dict: """simple docstring""" super().__init__(**UpperCamelCase__ ) if vision_config is None: lowerCamelCase_ : Tuple = {} logger.info('''vision_config is None. initializing the Blip2VisionConfig with default values.''' ) if qformer_config is None: lowerCamelCase_ : Tuple = {} logger.info('''qformer_config is None. Initializing the Blip2QFormerConfig with default values.''' ) if text_config is None: lowerCamelCase_ : List[Any] = {} logger.info('''text_config is None. Initializing the text config with default values (`OPTConfig`).''' ) lowerCamelCase_ : str = BlipaVisionConfig(**UpperCamelCase__ ) lowerCamelCase_ : Optional[Any] = BlipaQFormerConfig(**UpperCamelCase__ ) lowerCamelCase_ : Optional[Any] = text_config['''model_type'''] if '''model_type''' in text_config else '''opt''' lowerCamelCase_ : Optional[int] = CONFIG_MAPPING[text_model_type](**UpperCamelCase__ ) lowerCamelCase_ : Tuple = self.text_config.tie_word_embeddings lowerCamelCase_ : Union[str, Any] = self.text_config.is_encoder_decoder lowerCamelCase_ : List[Any] = num_query_tokens lowerCamelCase_ : Dict = self.vision_config.hidden_size lowerCamelCase_ : Optional[int] = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES lowerCamelCase_ : Union[str, Any] = 1.0 lowerCamelCase_ : int = 0.02 @classmethod def __UpperCamelCase ( cls : int , UpperCamelCase_ : BlipaVisionConfig , UpperCamelCase_ : BlipaQFormerConfig , UpperCamelCase_ : PretrainedConfig , **UpperCamelCase_ : Union[str, Any] , ) -> str: """simple docstring""" return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **UpperCamelCase__ , ) def __UpperCamelCase ( self : str ) -> Dict: """simple docstring""" lowerCamelCase_ : Dict = copy.deepcopy(self.__dict__ ) lowerCamelCase_ : Optional[int] = self.vision_config.to_dict() lowerCamelCase_ : Union[str, Any] = self.qformer_config.to_dict() lowerCamelCase_ : Optional[int] = self.text_config.to_dict() lowerCamelCase_ : Optional[int] = self.__class__.model_type return output
501
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowercase__ = {"configuration_encoder_decoder": ["EncoderDecoderConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = ["EncoderDecoderModel"] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = ["TFEncoderDecoderModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = ["FlaxEncoderDecoderModel"] if TYPE_CHECKING: from .configuration_encoder_decoder import EncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encoder_decoder import EncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_encoder_decoder import TFEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_encoder_decoder import FlaxEncoderDecoderModel else: import sys lowercase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
638
0
"""simple docstring""" from __future__ import annotations def lowercase ( _snake_case : tuple[int, int] , _snake_case : int ) ->list[tuple[int, int]]: """simple docstring""" __snake_case , __snake_case : List[str] = position __snake_case : Tuple = [ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] __snake_case : Dict = [] for position in positions: __snake_case , __snake_case : List[str] = position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(_snake_case ) return permissible_positions def lowercase ( _snake_case : list[list[int]] ) ->bool: """simple docstring""" return not any(elem == 0 for row in board for elem in row ) def lowercase ( _snake_case : list[list[int]] , _snake_case : tuple[int, int] , _snake_case : int ) ->bool: """simple docstring""" if is_complete(_snake_case ): return True for position in get_valid_pos(_snake_case , len(_snake_case ) ): __snake_case , __snake_case : Dict = position if board[y][x] == 0: __snake_case : List[Any] = curr + 1 if open_knight_tour_helper(_snake_case , _snake_case , curr + 1 ): return True __snake_case : Dict = 0 return False def lowercase ( _snake_case : int ) ->list[list[int]]: """simple docstring""" __snake_case : int = [[0 for i in range(_snake_case )] for j in range(_snake_case )] for i in range(_snake_case ): for j in range(_snake_case ): __snake_case : Union[str, Any] = 1 if open_knight_tour_helper(_snake_case , (i, j) , 1 ): return board __snake_case : str = 0 __snake_case : Dict = f"""Open Kight Tour cannot be performed on a board of size {n}""" raise ValueError(_snake_case ) if __name__ == "__main__": import doctest doctest.testmod()
229
"""simple docstring""" import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class _UpperCAmelCase : '''simple docstring''' def __init__(self , a_ , a_=None , a_=None , a_=None , a_="resnet50" , a_=3 , a_=32 , a_=3 , a_=True , a_=True , ): '''simple docstring''' __snake_case : List[Any] = parent __snake_case : Tuple = out_indices if out_indices is not None else [4] __snake_case : Optional[Any] = stage_names __snake_case : str = out_features __snake_case : List[str] = backbone __snake_case : Optional[int] = batch_size __snake_case : Optional[int] = image_size __snake_case : str = num_channels __snake_case : Optional[int] = use_pretrained_backbone __snake_case : Optional[int] = is_training def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case : Optional[int] = self.get_config() return config, pixel_values def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def SCREAMING_SNAKE_CASE (self , a_ , a_ ): '''simple docstring''' __snake_case : List[str] = TimmBackbone(config=a_ ) model.to(a_ ) model.eval() with torch.no_grad(): __snake_case : int = model(a_ ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = self.prepare_config_and_inputs() __snake_case , __snake_case : List[Any] = config_and_inputs __snake_case : Tuple = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch @require_timm class _UpperCAmelCase ( __snake_case, __snake_case, __snake_case, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =(TimmBackbone,) if is_torch_available() else () lowerCamelCase__ ={'feature-extraction': TimmBackbone} if is_torch_available() else {} lowerCamelCase__ =False lowerCamelCase__ =False lowerCamelCase__ =False lowerCamelCase__ =False def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : str = TimmBackboneModelTester(self ) __snake_case : Dict = ConfigTester(self , config_class=a_ , has_text_modality=a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : str = '''resnet18''' __snake_case : Tuple = '''microsoft/resnet-18''' __snake_case : Dict = AutoBackbone.from_pretrained(a_ , use_timm_backbone=a_ ) __snake_case : Tuple = AutoBackbone.from_pretrained(a_ ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) __snake_case : Optional[Any] = AutoBackbone.from_pretrained(a_ , use_timm_backbone=a_ , out_indices=[1, 2, 3] ) __snake_case : Optional[int] = AutoBackbone.from_pretrained(a_ , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip('''TimmBackbone doesn\'t support feed forward chunking''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' pass @unittest.skip('''TimmBackbone doesn\'t have num_hidden_layers attribute''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' pass @unittest.skip('''TimmBackbone initialization is managed on the timm side''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' pass @unittest.skip('''TimmBackbone models doesn\'t have inputs_embeds''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' pass @unittest.skip('''TimmBackbone models doesn\'t have inputs_embeds''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' pass @unittest.skip('''TimmBackbone model cannot be created without specifying a backbone checkpoint''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' pass @unittest.skip('''Only checkpoints on timm can be loaded into TimmBackbone''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' pass @unittest.skip('''model weights aren\'t tied in TimmBackbone.''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' pass @unittest.skip('''model weights aren\'t tied in TimmBackbone.''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' pass @unittest.skip('''Only checkpoints on timm can be loaded into TimmBackbone''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' pass @unittest.skip('''Only checkpoints on timm can be loaded into TimmBackbone''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' pass @unittest.skip('''TimmBackbone doesn\'t have hidden size info in its configuration.''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' pass @unittest.skip('''TimmBackbone doesn\'t support output_attentions.''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' pass @unittest.skip('''Safetensors is not supported by timm.''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' pass def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case , __snake_case : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : Any = model_class(a_ ) __snake_case : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case : Tuple = [*signature.parameters.keys()] __snake_case : int = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case , __snake_case : str = self.model_tester.prepare_config_and_inputs_for_common() __snake_case : List[Any] = True __snake_case : List[Any] = self.has_attentions # no need to test all models as different heads yield the same functionality __snake_case : Dict = self.all_model_classes[0] __snake_case : Optional[int] = model_class(a_ ) model.to(a_ ) __snake_case : int = self._prepare_for_class(a_ , a_ ) __snake_case : Optional[Any] = model(**a_ ) __snake_case : int = outputs[0][-1] # Encoder-/Decoder-only models __snake_case : int = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: __snake_case : int = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=a_ ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case , __snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : Optional[int] = model_class(a_ ) model.to(a_ ) model.eval() __snake_case : List[str] = model(**a_ ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None __snake_case : Optional[Any] = copy.deepcopy(a_ ) __snake_case : str = None __snake_case : int = model_class(a_ ) model.to(a_ ) model.eval() __snake_case : Any = model(**a_ ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights __snake_case : Union[str, Any] = copy.deepcopy(a_ ) __snake_case : int = False __snake_case : List[str] = model_class(a_ ) model.to(a_ ) model.eval() __snake_case : Optional[Any] = model(**a_ )
229
1
import unittest from transformers import MPNetConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) class A__ : """simple docstring""" def __init__( self : str , lowerCamelCase__ : str , lowerCamelCase__ : int=13 , lowerCamelCase__ : str=7 , lowerCamelCase__ : Optional[int]=True , lowerCamelCase__ : Optional[int]=True , lowerCamelCase__ : Optional[int]=False , lowerCamelCase__ : Any=True , lowerCamelCase__ : Optional[int]=99 , lowerCamelCase__ : Optional[Any]=64 , lowerCamelCase__ : Any=5 , lowerCamelCase__ : Tuple=4 , lowerCamelCase__ : Dict=64 , lowerCamelCase__ : int="gelu" , lowerCamelCase__ : int=0.1 , lowerCamelCase__ : List[Any]=0.1 , lowerCamelCase__ : Dict=512 , lowerCamelCase__ : int=16 , lowerCamelCase__ : Tuple=2 , lowerCamelCase__ : Union[str, Any]=0.02 , lowerCamelCase__ : List[Any]=3 , lowerCamelCase__ : List[str]=4 , lowerCamelCase__ : int=None , ): a__ : Optional[Any] = parent a__ : List[str] = batch_size a__ : Tuple = seq_length a__ : Dict = is_training a__ : str = use_input_mask a__ : int = use_token_type_ids a__ : Any = use_labels a__ : List[Any] = vocab_size a__ : Optional[Any] = hidden_size a__ : int = num_hidden_layers a__ : Optional[Any] = num_attention_heads a__ : Union[str, Any] = intermediate_size a__ : Tuple = hidden_act a__ : Dict = hidden_dropout_prob a__ : List[str] = attention_probs_dropout_prob a__ : Any = max_position_embeddings a__ : int = type_vocab_size a__ : List[Any] = type_sequence_label_size a__ : Tuple = initializer_range a__ : Any = num_labels a__ : Optional[int] = num_choices a__ : Union[str, Any] = scope def _UpperCamelCase( self : Tuple ): return MPNetConfig.from_pretrained("microsoft/mpnet-base" ) def _UpperCamelCase( self : List[Any] ): a__ : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a__ : Union[str, Any] = None if self.use_input_mask: a__ : str = random_attention_mask([self.batch_size, self.seq_length] ) a__ : Optional[Any] = None a__ : List[Any] = None a__ : str = None if self.use_labels: a__ : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a__ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) a__ : List[Any] = ids_tensor([self.batch_size] , self.num_choices ) a__ : Optional[int] = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _UpperCamelCase( self : Optional[int] ): return MPNetConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def _UpperCamelCase( self : List[Any] , lowerCamelCase__ : Any , lowerCamelCase__ : List[Any] , lowerCamelCase__ : Any , lowerCamelCase__ : List[Any] , lowerCamelCase__ : int , lowerCamelCase__ : str ): a__ : Union[str, Any] = MPNetModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() a__ : int = model(lowerCamelCase__ , lowerCamelCase__ ) a__ : str = model(lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _UpperCamelCase( self : int , lowerCamelCase__ : Dict , lowerCamelCase__ : str , lowerCamelCase__ : int , lowerCamelCase__ : Any , lowerCamelCase__ : List[str] , lowerCamelCase__ : Optional[Any] ): a__ : Union[str, Any] = MPNetForQuestionAnswering(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() a__ : Optional[int] = model( lowerCamelCase__ , attention_mask=lowerCamelCase__ , start_positions=lowerCamelCase__ , end_positions=lowerCamelCase__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _UpperCamelCase( self : Tuple , lowerCamelCase__ : int , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Dict , lowerCamelCase__ : List[Any] , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : Tuple ): a__ : Union[str, Any] = self.num_labels a__ : Tuple = MPNetForSequenceClassification(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() a__ : Tuple = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _UpperCamelCase( self : str , lowerCamelCase__ : Any , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : List[str] , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : Any , lowerCamelCase__ : Tuple ): a__ : str = self.num_choices a__ : List[Any] = MPNetForMultipleChoice(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() a__ : Optional[Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() a__ : str = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() a__ : List[Any] = model( lowerCamelCase__ , attention_mask=lowerCamelCase__ , labels=lowerCamelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _UpperCamelCase( self : Tuple , lowerCamelCase__ : Any , lowerCamelCase__ : Any , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : str , lowerCamelCase__ : List[str] , lowerCamelCase__ : List[str] ): a__ : Any = self.num_labels a__ : Any = MPNetForTokenClassification(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() a__ : int = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _UpperCamelCase( self : Optional[int] ): a__ : Any = self.prepare_config_and_inputs() ((a__), (a__), (a__), (a__), (a__), (a__)) : Optional[Any] = config_and_inputs a__ : Optional[int] = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class A__ ( A__ , A__ , unittest.TestCase ): """simple docstring""" _lowercase = ( ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) if is_torch_available() else () ) _lowercase = ( { 'feature-extraction': MPNetModel, 'fill-mask': MPNetForMaskedLM, 'question-answering': MPNetForQuestionAnswering, 'text-classification': MPNetForSequenceClassification, 'token-classification': MPNetForTokenClassification, 'zero-shot': MPNetForSequenceClassification, } if is_torch_available() else {} ) _lowercase = False _lowercase = True def _UpperCamelCase( self : Dict ): a__ : str = MPNetModelTester(self ) a__ : List[Any] = ConfigTester(self , config_class=lowerCamelCase__ , hidden_size=37 ) def _UpperCamelCase( self : Tuple ): self.config_tester.run_common_tests() def _UpperCamelCase( self : List[str] ): a__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_model(*lowerCamelCase__ ) def _UpperCamelCase( self : Union[str, Any] ): a__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_sequence_classification(*lowerCamelCase__ ) def _UpperCamelCase( self : str ): a__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_multiple_choice(*lowerCamelCase__ ) def _UpperCamelCase( self : Optional[int] ): a__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_token_classification(*lowerCamelCase__ ) def _UpperCamelCase( self : Optional[int] ): a__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_question_answering(*lowerCamelCase__ ) @require_torch class A__ ( unittest.TestCase ): """simple docstring""" @slow def _UpperCamelCase( self : int ): a__ : Dict = MPNetModel.from_pretrained("microsoft/mpnet-base" ) a__ : List[Any] = torch.tensor([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] ) a__ : List[str] = model(lowerCamelCase__ )[0] a__ : Any = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , lowerCamelCase__ ) a__ : Tuple = torch.tensor( [[[-0.0550, 0.1943, -0.0740], [-0.0562, 0.2211, -0.0579], [-0.0437, 0.3337, -0.0641]]] ) # compare the actual values for a slice. self.assertTrue(torch.allclose(output[:, :3, :3] , lowerCamelCase__ , atol=1E-4 ) )
37
def lowerCamelCase_ ( lowerCAmelCase: str )-> str: _snake_case : str = 0 # if input_string is "aba" than new_input_string become "a|b|a" _snake_case : List[Any] = '' _snake_case : Dict = '' # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(lowerCAmelCase ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring _snake_case , _snake_case : Union[str, Any] = 0, 0 # length[i] shows the length of palindromic substring with center i _snake_case : Optional[Any] = [1 for i in range(len(lowerCAmelCase ) )] # for each character in new_string find corresponding palindromic string _snake_case : Any = 0 for j in range(len(lowerCAmelCase ) ): _snake_case : Tuple = 1 if j > r else min(length[l + r - j] // 2 , r - j + 1 ) while ( j - k >= 0 and j + k < len(lowerCAmelCase ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 _snake_case : str = 2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: _snake_case : List[str] = j - k + 1 # noqa: E741 _snake_case : List[Any] = j + k - 1 # update max_length and start position if max_length < length[j]: _snake_case : List[Any] = length[j] _snake_case : Optional[Any] = j # create that string _snake_case : Any = new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
411
0
import argparse from transformers import ( TapasConfig, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasTokenizer, load_tf_weights_in_tapas, ) from transformers.utils import logging logging.set_verbosity_info() def lowerCamelCase__ ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Any , __lowerCAmelCase : Any ): """simple docstring""" lowerCAmelCase_ = TapasConfig.from_json_file(__lowerCAmelCase ) # set absolute/relative position embeddings parameter lowerCAmelCase_ = reset_position_index_per_cell # set remaining parameters of TapasConfig as well as the model based on the task if task == "SQA": lowerCAmelCase_ = TapasForQuestionAnswering(config=__lowerCAmelCase ) elif task == "WTQ": # run_task_main.py hparams lowerCAmelCase_ = 4 lowerCAmelCase_ = True # hparam_utils.py hparams lowerCAmelCase_ = 0.664_694 lowerCAmelCase_ = 0.207_951 lowerCAmelCase_ = 0.121_194 lowerCAmelCase_ = True lowerCAmelCase_ = True lowerCAmelCase_ = False lowerCAmelCase_ = 0.0_352_513 lowerCAmelCase_ = TapasForQuestionAnswering(config=__lowerCAmelCase ) elif task == "WIKISQL_SUPERVISED": # run_task_main.py hparams lowerCAmelCase_ = 4 lowerCAmelCase_ = False # hparam_utils.py hparams lowerCAmelCase_ = 36.4_519 lowerCAmelCase_ = 0.903_421 lowerCAmelCase_ = 222.088 lowerCAmelCase_ = True lowerCAmelCase_ = True lowerCAmelCase_ = True lowerCAmelCase_ = 0.763_141 lowerCAmelCase_ = TapasForQuestionAnswering(config=__lowerCAmelCase ) elif task == "TABFACT": lowerCAmelCase_ = TapasForSequenceClassification(config=__lowerCAmelCase ) elif task == "MLM": lowerCAmelCase_ = TapasForMaskedLM(config=__lowerCAmelCase ) elif task == "INTERMEDIATE_PRETRAINING": lowerCAmelCase_ = TapasModel(config=__lowerCAmelCase ) else: raise ValueError(F"""Task {task} not supported.""" ) print(F"""Building PyTorch model from configuration: {config}""" ) # Load weights from tf checkpoint load_tf_weights_in_tapas(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # Save pytorch-model (weights and configuration) print(F"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(__lowerCAmelCase ) # Save tokenizer files print(F"""Save tokenizer files to {pytorch_dump_path}""" ) lowerCAmelCase_ = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + "vocab.txt" , model_max_length=512 ) tokenizer.save_pretrained(__lowerCAmelCase ) print("Used relative position embeddings:" , model.config.reset_position_index_per_cell ) if __name__ == "__main__": _A = argparse.ArgumentParser() # Required parameters parser.add_argument( "--task", default="SQA", type=str, help="Model task for which to convert a checkpoint. Defaults to SQA." ) parser.add_argument( "--reset_position_index_per_cell", default=False, action="store_true", help="Whether to use relative position embeddings or not. Defaults to True.", ) parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--tapas_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained TAPAS model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) _A = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.task, args.reset_position_index_per_cell, args.tf_checkpoint_path, args.tapas_config_file, args.pytorch_dump_path, )
279
def lowerCamelCase__ ( __lowerCAmelCase : int ): """simple docstring""" if upper_limit < 0: raise ValueError("Limit for the Catalan sequence must be ≥ 0" ) lowerCAmelCase_ = [0] * (upper_limit + 1) # Base case: C(0) = C(1) = 1 lowerCAmelCase_ = 1 if upper_limit > 0: lowerCAmelCase_ = 1 # Recurrence relation: C(i) = sum(C(j).C(i-j-1)), from j = 0 to i for i in range(2 , upper_limit + 1 ): for j in range(__lowerCAmelCase ): catalan_list[i] += catalan_list[j] * catalan_list[i - j - 1] return catalan_list if __name__ == "__main__": print("\n********* Catalan Numbers Using Dynamic Programming ************\n") print("\n*** Enter -1 at any time to quit ***") print("\nEnter the upper limit (≥ 0) for the Catalan number sequence: ", end="") try: while True: _A = int(input().strip()) if N < 0: print("\n********* Goodbye!! ************") break else: print(f"""The Catalan numbers from 0 through {N} are:""") print(catalan_numbers(N)) print("Try another upper limit for the sequence: ", end="") except (NameError, ValueError): print("\n********* Invalid input, goodbye! ************\n") import doctest doctest.testmod()
279
1
"""simple docstring""" import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import is_accelerate_available, is_torch_available, is_transformers_available, is_xformers_available from . import BaseDiffusersCLICommand def _lowerCamelCase ( UpperCAmelCase_ : List[str] ) -> Tuple: """simple docstring""" return EnvironmentCommand() class UpperCamelCase__ ( _SCREAMING_SNAKE_CASE ): """simple docstring""" @staticmethod def snake_case__ ( SCREAMING_SNAKE_CASE__ ) -> Dict: A__ = parser.add_parser("env" ) download_parser.set_defaults(func=lowercase__ ) def snake_case__ ( self ) -> List[str]: A__ = huggingface_hub.__version__ A__ = 'not installed' A__ = 'NA' if is_torch_available(): import torch A__ = torch.__version__ A__ = torch.cuda.is_available() A__ = 'not installed' if is_transformers_available(): import transformers A__ = transformers.__version__ A__ = 'not installed' if is_accelerate_available(): import accelerate A__ = accelerate.__version__ A__ = 'not installed' if is_xformers_available(): import xformers A__ = xformers.__version__ A__ = { '`diffusers` version': version, 'Platform': platform.platform(), 'Python version': platform.python_version(), 'PyTorch version (GPU?)': f"""{pt_version} ({pt_cuda_available})""", 'Huggingface_hub version': hub_version, 'Transformers version': transformers_version, 'Accelerate version': accelerate_version, 'xFormers version': xformers_version, 'Using GPU in script?': '<fill in>', 'Using distributed or parallel set-up in script?': '<fill in>', } print("\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n" ) print(self.format_dict(lowercase__ ) ) return info @staticmethod def snake_case__ ( SCREAMING_SNAKE_CASE__ ) -> Dict: return "\n".join([f"""- {prop}: {val}""" for prop, val in d.items()] ) + "\n"
104
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path import torch from ...utils import is_npu_available, is_xpu_available from .config_args import ClusterConfig, default_json_config_file from .config_utils import SubcommandHelpFormatter _lowerCAmelCase :Optional[Any] = """Create a default config file for Accelerate with only a few flags set.""" def __lowerCAmelCase ( a_="no" , a_ = default_json_config_file , a_ = False ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = Path(a_ ) path.parent.mkdir(parents=a_ , exist_ok=a_ ) if path.exists(): print( f"""Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`.""" ) return False SCREAMING_SNAKE_CASE : List[str] = mixed_precision.lower() if mixed_precision not in ["no", "fp16", "bf16", "fp8"]: raise ValueError( f"""`mixed_precision` should be one of 'no', 'fp16', 'bf16', or 'fp8'. Received {mixed_precision}""" ) SCREAMING_SNAKE_CASE : Union[str, Any] = { 'compute_environment': 'LOCAL_MACHINE', 'mixed_precision': mixed_precision, } if torch.cuda.is_available(): SCREAMING_SNAKE_CASE : Union[str, Any] = torch.cuda.device_count() SCREAMING_SNAKE_CASE : str = num_gpus SCREAMING_SNAKE_CASE : Dict = False if num_gpus > 1: SCREAMING_SNAKE_CASE : List[str] = 'MULTI_GPU' else: SCREAMING_SNAKE_CASE : Optional[int] = 'NO' elif is_xpu_available() and use_xpu: SCREAMING_SNAKE_CASE : List[str] = torch.xpu.device_count() SCREAMING_SNAKE_CASE : List[Any] = num_xpus SCREAMING_SNAKE_CASE : Optional[int] = False if num_xpus > 1: SCREAMING_SNAKE_CASE : List[Any] = 'MULTI_XPU' else: SCREAMING_SNAKE_CASE : List[Any] = 'NO' elif is_npu_available(): SCREAMING_SNAKE_CASE : List[str] = torch.npu.device_count() SCREAMING_SNAKE_CASE : Any = num_npus SCREAMING_SNAKE_CASE : Dict = False if num_npus > 1: SCREAMING_SNAKE_CASE : Any = 'MULTI_NPU' else: SCREAMING_SNAKE_CASE : Union[str, Any] = 'NO' else: SCREAMING_SNAKE_CASE : int = 0 SCREAMING_SNAKE_CASE : Union[str, Any] = True SCREAMING_SNAKE_CASE : Optional[int] = 1 SCREAMING_SNAKE_CASE : List[Any] = 'NO' SCREAMING_SNAKE_CASE : Any = ClusterConfig(**a_ ) config.to_json_file(a_ ) return path def __lowerCAmelCase ( a_ , a_ ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = parser.add_parser('default' , parents=a_ , help=a_ , formatter_class=a_ ) parser.add_argument( '--config_file' , default=a_ , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , dest='save_location' , ) parser.add_argument( '--mixed_precision' , choices=['no', 'fp16', 'bf16'] , type=a_ , help='Whether or not to use mixed precision training. ' 'Choose between FP16 and BF16 (bfloat16) training. ' 'BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later.' , default='no' , ) parser.set_defaults(func=a_ ) return parser def __lowerCAmelCase ( a_ ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = write_basic_config(args.mixed_precision , args.save_location ) if config_file: print(f"""accelerate configuration saved at {config_file}""" )
251
0
'''simple docstring''' import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def A ( self : str , lowercase : Optional[int] ) -> Optional[Any]: '''simple docstring''' for model_result in results.values(): for batch_size, sequence_length in zip(model_result["""bs"""] , model_result["""ss"""] ): UpperCamelCase__ = model_result["""result"""][batch_size][sequence_length] self.assertIsNotNone(lowercase ) def A ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ = """sshleifer/tiny-gpt2""" UpperCamelCase__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowercase , inference=lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowercase , ) UpperCamelCase__ = PyTorchBenchmark(lowercase ) UpperCamelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def A ( self : Any ) -> str: '''simple docstring''' UpperCamelCase__ = """sgugger/tiny-distilbert-classification""" UpperCamelCase__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowercase , inference=lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowercase , only_pretrain_model=lowercase , ) UpperCamelCase__ = PyTorchBenchmark(lowercase ) UpperCamelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def A ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' UpperCamelCase__ = """sshleifer/tiny-gpt2""" UpperCamelCase__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowercase , inference=lowercase , torchscript=lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowercase , ) UpperCamelCase__ = PyTorchBenchmark(lowercase ) UpperCamelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(torch_device == """cpu""" , """Cant do half precision""" ) def A ( self : int ) -> str: '''simple docstring''' UpperCamelCase__ = """sshleifer/tiny-gpt2""" UpperCamelCase__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowercase , inference=lowercase , fpaa=lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowercase , ) UpperCamelCase__ = PyTorchBenchmark(lowercase ) UpperCamelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def A ( self : List[Any] ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ = """sshleifer/tiny-gpt2""" UpperCamelCase__ = AutoConfig.from_pretrained(lowercase ) # set architectures equal to `None` UpperCamelCase__ = None UpperCamelCase__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowercase , inference=lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowercase , ) UpperCamelCase__ = PyTorchBenchmark(lowercase , configs=[config] ) UpperCamelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def A ( self : Dict ) -> int: '''simple docstring''' UpperCamelCase__ = """sshleifer/tiny-gpt2""" UpperCamelCase__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowercase , inference=lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowercase , ) UpperCamelCase__ = PyTorchBenchmark(lowercase ) UpperCamelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) @unittest.skipIf(torch_device == """cpu""" , """Can't do half precision""" ) def A ( self : Tuple ) -> Tuple: '''simple docstring''' UpperCamelCase__ = """sshleifer/tiny-gpt2""" UpperCamelCase__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowercase , inference=lowercase , sequence_lengths=[8] , batch_sizes=[1] , fpaa=lowercase , multi_process=lowercase , ) UpperCamelCase__ = PyTorchBenchmark(lowercase ) UpperCamelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def A ( self : List[str] ) -> List[Any]: '''simple docstring''' UpperCamelCase__ = """sshleifer/tiny-gpt2""" UpperCamelCase__ = AutoConfig.from_pretrained(lowercase ) UpperCamelCase__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowercase , inference=lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowercase , ) UpperCamelCase__ = PyTorchBenchmark(lowercase , configs=[config] ) UpperCamelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def A ( self : Optional[Any] ) -> str: '''simple docstring''' UpperCamelCase__ = """sshleifer/tinier_bart""" UpperCamelCase__ = AutoConfig.from_pretrained(lowercase ) UpperCamelCase__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowercase , inference=lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowercase , ) UpperCamelCase__ = PyTorchBenchmark(lowercase , configs=[config] ) UpperCamelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def A ( self : List[str] ) -> List[Any]: '''simple docstring''' UpperCamelCase__ = """sshleifer/tiny-gpt2""" UpperCamelCase__ = AutoConfig.from_pretrained(lowercase ) UpperCamelCase__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowercase , inference=lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowercase , ) UpperCamelCase__ = PyTorchBenchmark(lowercase , configs=[config] ) UpperCamelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def A ( self : Union[str, Any] ) -> List[Any]: '''simple docstring''' UpperCamelCase__ = """sshleifer/tinier_bart""" UpperCamelCase__ = AutoConfig.from_pretrained(lowercase ) UpperCamelCase__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowercase , inference=lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowercase , ) UpperCamelCase__ = PyTorchBenchmark(lowercase , configs=[config] ) UpperCamelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def A ( self : Any ) -> Any: '''simple docstring''' UpperCamelCase__ = """sshleifer/tiny-gpt2""" with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowercase , inference=lowercase , save_to_csv=lowercase , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(lowercase , """inf_time.csv""" ) , train_memory_csv_file=os.path.join(lowercase , """train_mem.csv""" ) , inference_memory_csv_file=os.path.join(lowercase , """inf_mem.csv""" ) , train_time_csv_file=os.path.join(lowercase , """train_time.csv""" ) , env_info_csv_file=os.path.join(lowercase , """env.csv""" ) , multi_process=lowercase , ) UpperCamelCase__ = PyTorchBenchmark(lowercase ) benchmark.run() self.assertTrue(Path(os.path.join(lowercase , """inf_time.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(lowercase , """train_time.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(lowercase , """inf_mem.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(lowercase , """train_mem.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(lowercase , """env.csv""" ) ).exists() ) def A ( self : int ) -> List[str]: '''simple docstring''' UpperCamelCase__ = """sshleifer/tiny-gpt2""" def _check_summary_is_not_empty(lowercase : List[str] ): self.assertTrue(hasattr(lowercase , """sequential""" ) ) self.assertTrue(hasattr(lowercase , """cumulative""" ) ) self.assertTrue(hasattr(lowercase , """current""" ) ) self.assertTrue(hasattr(lowercase , """total""" ) ) with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowercase , inference=lowercase , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(lowercase , """log.txt""" ) , log_print=lowercase , trace_memory_line_by_line=lowercase , multi_process=lowercase , ) UpperCamelCase__ = PyTorchBenchmark(lowercase ) UpperCamelCase__ = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) _check_summary_is_not_empty(result.train_summary ) self.assertTrue(Path(os.path.join(lowercase , """log.txt""" ) ).exists() )
265
'''simple docstring''' from __future__ import annotations from typing import Any class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Union[str, Any] , lowercase : int ) -> None: '''simple docstring''' UpperCamelCase__ = num_of_nodes UpperCamelCase__ = [] UpperCamelCase__ = {} def A ( self : Optional[Any] , lowercase : int , lowercase : int , lowercase : int ) -> None: '''simple docstring''' self.m_edges.append([u_node, v_node, weight] ) def A ( self : str , lowercase : int ) -> int: '''simple docstring''' if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def A ( self : Union[str, Any] , lowercase : int ) -> None: '''simple docstring''' if self.m_component[u_node] != u_node: for k in self.m_component: UpperCamelCase__ = self.find_component(lowercase ) def A ( self : Tuple , lowercase : list[int] , lowercase : int , lowercase : int ) -> None: '''simple docstring''' if component_size[u_node] <= component_size[v_node]: UpperCamelCase__ = v_node component_size[v_node] += component_size[u_node] self.set_component(lowercase ) elif component_size[u_node] >= component_size[v_node]: UpperCamelCase__ = self.find_component(lowercase ) component_size[u_node] += component_size[v_node] self.set_component(lowercase ) def A ( self : int ) -> None: '''simple docstring''' UpperCamelCase__ = [] UpperCamelCase__ = 0 UpperCamelCase__ = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) UpperCamelCase__ = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = edge UpperCamelCase__ = self.m_component[u] UpperCamelCase__ = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): UpperCamelCase__ = [u, v, w] for edge in minimum_weight_edge: if isinstance(lowercase , lowercase ): UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = edge UpperCamelCase__ = self.m_component[u] UpperCamelCase__ = self.m_component[v] if u_component != v_component: mst_weight += w self.union(lowercase , lowercase , lowercase ) print(f"Added edge [{u} - {v}]\nAdded weight: {w}\n" ) num_of_components -= 1 UpperCamelCase__ = [-1] * self.m_num_of_nodes print(f"The total weight of the minimal spanning tree is: {mst_weight}" ) def __magic_name__( ): '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
265
1
'''simple docstring''' from __future__ import annotations from bisect import bisect_left from functools import total_ordering from heapq import merge @total_ordering class a__ ( a__ ): '''simple docstring''' def __lt__( self , lowerCamelCase_ ) -> List[Any]: return self[-1] < other[-1] def __eq__( self , lowerCamelCase_ ) -> str: return self[-1] == other[-1] def _snake_case ( A ) -> list: lowerCAmelCase__ = [] # sort into stacks for element in collection: lowerCAmelCase__ = Stack([element] ) lowerCAmelCase__ = bisect_left(A , A ) if i != len(A ): stacks[i].append(A ) else: stacks.append(A ) # use a heap-based merge to merge stack efficiently lowerCAmelCase__ = merge(*(reversed(A ) for stack in stacks) ) return collection if __name__ == "__main__": __UpperCAmelCase = input('''Enter numbers separated by a comma:\n''').strip() __UpperCAmelCase = [int(item) for item in user_input.split(''',''')] print(patience_sort(unsorted))
90
'''simple docstring''' def lowerCAmelCase (__A , __A): """simple docstring""" if digit_amount > 0: return round(number - int(__A) , __A) return number - int(__A) if __name__ == "__main__": print(decimal_isolate(1.53, 0)) print(decimal_isolate(35.345, 1)) print(decimal_isolate(35.345, 2)) print(decimal_isolate(35.345, 3)) print(decimal_isolate(-14.789, 3)) print(decimal_isolate(0, 2)) print(decimal_isolate(-14.123, 1)) print(decimal_isolate(-14.123, 2)) print(decimal_isolate(-14.123, 3))
11
0
lowercase = [4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] lowercase = [3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] lowercase = { 0: 'Sunday', 1: 'Monday', 2: 'Tuesday', 3: 'Wednesday', 4: 'Thursday', 5: 'Friday', 6: 'Saturday', } def __UpperCAmelCase ( a_ , a_ , a_): assert len(str(__UpperCamelCase)) > 2, "year should be in YYYY format" assert 1 <= month <= 12, "month should be between 1 to 12" assert 1 <= day <= 31, "day should be between 1 to 31" # Doomsday algorithm: snake_case_ = year // 1_00 snake_case_ = (5 * (century % 4) + 2) % 7 snake_case_ = year % 1_00 snake_case_ = centurian % 12 snake_case_ = ( (centurian // 12) + centurian_m + (centurian_m // 4) + century_anchor ) % 7 snake_case_ = ( DOOMSDAY_NOT_LEAP[month - 1] if (year % 4 != 0) or (centurian == 0 and (year % 4_00) == 0) else DOOMSDAY_LEAP[month - 1] ) snake_case_ = (dooms_day + day - day_anchor) % 7 return WEEK_DAY_NAMES[week_day] if __name__ == "__main__": import doctest doctest.testmod()
711
from typing import List, Optional, Tuple, Union import PIL import torch from torchvision import transforms from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput from diffusers.schedulers import DDIMScheduler from diffusers.utils import randn_tensor lowercase = transforms.Compose( [ transforms.Resize((256, 256)), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def __UpperCAmelCase ( a_): if isinstance(a_ , torch.Tensor): return image elif isinstance(a_ , PIL.Image.Image): snake_case_ = [image] snake_case_ = [trans(img.convert('RGB')) for img in image] snake_case_ = torch.stack(a_) return image class UpperCamelCase_ ( snake_case_ ): '''simple docstring''' def __init__( self , a , a ) -> List[Any]: super().__init__() # make sure scheduler can always be converted to DDIM snake_case_ = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=a , scheduler=a ) def _UpperCamelCase ( self , a ) -> List[str]: if strength < 0 or strength > 1: raise ValueError(F'''The value of strength should in [0.0, 1.0] but is {strength}''' ) def _UpperCamelCase ( self , a , a , a ) -> Any: # get the original timestep using init_timestep snake_case_ = min(int(num_inference_steps * strength ) , a ) snake_case_ = max(num_inference_steps - init_timestep , 0 ) snake_case_ = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def _UpperCamelCase ( self , a , a , a , a , a , a=None ) -> List[Any]: if not isinstance(a , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( F'''`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(a )}''' ) snake_case_ = image.to(device=a , dtype=a ) if isinstance(a , a ) and len(a ) != batch_size: raise ValueError( F'''You have passed a list of generators of length {len(a )}, but requested an effective batch''' F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) snake_case_ = init_latents.shape snake_case_ = randn_tensor(a , generator=a , device=a , dtype=a ) # get latents print('add noise to latents at timestep' , a ) snake_case_ = self.scheduler.add_noise(a , a , a ) snake_case_ = init_latents return latents @torch.no_grad() def __call__( self , a = None , a = 0.8 , a = 1 , a = None , a = 0.0 , a = 50 , a = None , a = "pil" , a = True , ) -> Union[ImagePipelineOutput, Tuple]: self.check_inputs(a ) # 2. Preprocess image snake_case_ = preprocess(a ) # 3. set timesteps self.scheduler.set_timesteps(a , device=self.device ) snake_case_ , snake_case_ = self.get_timesteps(a , a , self.device ) snake_case_ = timesteps[:1].repeat(a ) # 4. Prepare latent variables snake_case_ = self.prepare_latents(a , a , a , self.unet.dtype , self.device , a ) snake_case_ = latents # 5. Denoising loop for t in self.progress_bar(a ): # 1. predict noise model_output snake_case_ = self.unet(a , a ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 snake_case_ = self.scheduler.step( a , a , a , eta=a , use_clipped_model_output=a , generator=a , ).prev_sample snake_case_ = (image / 2 + 0.5).clamp(0 , 1 ) snake_case_ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": snake_case_ = self.numpy_to_pil(a ) if not return_dict: return (image, latent_timestep.item()) return ImagePipelineOutput(images=a )
607
0
"""simple docstring""" import inspect import logging import os import random import shutil import tempfile import unittest import pytest import torch from torch import nn from torch.utils.data import DataLoader, TensorDataset from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_cuda from accelerate.utils import ProjectConfiguration, set_seed A__ : Any = logging.getLogger(__name__) def _lowerCAmelCase ( _UpperCamelCase=2 , _UpperCamelCase=3 , _UpperCamelCase=16 , _UpperCamelCase = 10 , _UpperCamelCase = 2 ): """simple docstring""" def get_dataset(_UpperCamelCase ): _lowercase: Tuple = torch.randn(batch_size * n_batches , 1 ) return TensorDataset(_UpperCamelCase , a * x + b + 0.1 * torch.randn(batch_size * n_batches , 1 ) ) _lowercase: Tuple = get_dataset(_UpperCamelCase ) _lowercase: Dict = get_dataset(_UpperCamelCase ) _lowercase: Optional[int] = DataLoader(_UpperCamelCase , shuffle=_UpperCamelCase , batch_size=_UpperCamelCase , num_workers=4 ) _lowercase: Optional[int] = DataLoader(_UpperCamelCase , shuffle=_UpperCamelCase , batch_size=_UpperCamelCase , num_workers=4 ) return (train_dataloader, valid_dataloader) def _lowerCAmelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=None ): """simple docstring""" _lowercase: Tuple = [] for epoch in range(_UpperCamelCase ): # Train quickly model.train() for batch in dataloader: _lowercase , _lowercase: Optional[Any] = batch _lowercase: Union[str, Any] = model(_UpperCamelCase ) _lowercase: Optional[Any] = torch.nn.functional.mse_loss(_UpperCamelCase , _UpperCamelCase ) accelerator.backward(_UpperCamelCase ) optimizer.step() optimizer.zero_grad() rands.append(random.random() ) # Introduce some randomness if scheduler is not None: scheduler.step() return rands class __magic_name__ ( nn.Module ): def __init__( self ) -> str: """simple docstring""" super().__init__() _lowercase: Optional[Any] = nn.Parameter(torch.randn(1 ) ) _lowercase: int = nn.Parameter(torch.randn(1 ) ) def lowercase_ ( self , A_ ) -> List[str]: """simple docstring""" return x * self.a + self.b class __magic_name__ ( unittest.TestCase ): def lowercase_ ( self ) -> Optional[Any]: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) _lowercase: Union[str, Any] = DummyModel() _lowercase: Optional[int] = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) _lowercase , _lowercase: Union[str, Any] = dummy_dataloaders() _lowercase: Any = ProjectConfiguration(total_limit=1 , project_dir=A_ , automatic_checkpoint_naming=A_ ) # Train baseline _lowercase: Dict = Accelerator(project_config=A_ ) _lowercase , _lowercase , _lowercase , _lowercase: Optional[int] = accelerator.prepare( A_ , A_ , A_ , A_ ) # Save initial accelerator.save_state() # Save second state accelerator.save_state() self.assertEqual(len(os.listdir(accelerator.project_dir ) ) , 1 ) def lowercase_ ( self ) -> int: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) _lowercase: Dict = DummyModel() _lowercase: str = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) _lowercase , _lowercase: Optional[Any] = dummy_dataloaders() # Train baseline _lowercase: Dict = Accelerator() _lowercase , _lowercase , _lowercase , _lowercase: Optional[Any] = accelerator.prepare( A_ , A_ , A_ , A_ ) # Save initial _lowercase: Dict = os.path.join(A_ , '''initial''' ) accelerator.save_state(A_ ) ((_lowercase) , (_lowercase)): Union[str, Any] = model.a.item(), model.b.item() _lowercase: int = optimizer.state_dict() _lowercase: Optional[int] = train(3 , A_ , A_ , A_ , A_ ) ((_lowercase) , (_lowercase)): int = model.a.item(), model.b.item() _lowercase: Optional[int] = optimizer.state_dict() # Train partially set_seed(42 ) _lowercase: Dict = DummyModel() _lowercase: int = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) _lowercase , _lowercase: List[Any] = dummy_dataloaders() _lowercase: str = Accelerator() _lowercase , _lowercase , _lowercase , _lowercase: str = accelerator.prepare( A_ , A_ , A_ , A_ ) accelerator.load_state(A_ ) ((_lowercase) , (_lowercase)): List[Any] = model.a.item(), model.b.item() _lowercase: Dict = optimizer.state_dict() self.assertEqual(A_ , A_ ) self.assertEqual(A_ , A_ ) self.assertEqual(A_ , A_ ) _lowercase: Optional[int] = train(2 , A_ , A_ , A_ , A_ ) # Save everything _lowercase: List[Any] = os.path.join(A_ , '''checkpoint''' ) accelerator.save_state(A_ ) # Load everything back in and make sure all states work accelerator.load_state(A_ ) test_rands += train(1 , A_ , A_ , A_ , A_ ) ((_lowercase) , (_lowercase)): Optional[int] = model.a.item(), model.b.item() _lowercase: Any = optimizer.state_dict() self.assertEqual(A_ , A_ ) self.assertEqual(A_ , A_ ) self.assertEqual(A_ , A_ ) self.assertEqual(A_ , A_ ) def lowercase_ ( self ) -> Union[str, Any]: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) _lowercase: Tuple = DummyModel() _lowercase: int = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) _lowercase , _lowercase: Optional[int] = dummy_dataloaders() _lowercase: Optional[Any] = ProjectConfiguration(automatic_checkpoint_naming=A_ ) # Train baseline _lowercase: List[Any] = Accelerator(project_dir=A_ , project_config=A_ ) _lowercase , _lowercase , _lowercase , _lowercase: str = accelerator.prepare( A_ , A_ , A_ , A_ ) # Save initial accelerator.save_state() ((_lowercase) , (_lowercase)): Dict = model.a.item(), model.b.item() _lowercase: Optional[int] = optimizer.state_dict() _lowercase: Tuple = train(3 , A_ , A_ , A_ , A_ ) ((_lowercase) , (_lowercase)): int = model.a.item(), model.b.item() _lowercase: Union[str, Any] = optimizer.state_dict() # Train partially set_seed(42 ) _lowercase: Any = DummyModel() _lowercase: int = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) _lowercase , _lowercase: int = dummy_dataloaders() _lowercase: List[Any] = ProjectConfiguration(iteration=1 , automatic_checkpoint_naming=A_ ) _lowercase: Any = Accelerator(project_dir=A_ , project_config=A_ ) _lowercase , _lowercase , _lowercase , _lowercase: str = accelerator.prepare( A_ , A_ , A_ , A_ ) accelerator.load_state(os.path.join(A_ , '''checkpoints''' , '''checkpoint_0''' ) ) ((_lowercase) , (_lowercase)): Dict = model.a.item(), model.b.item() _lowercase: Dict = optimizer.state_dict() self.assertEqual(A_ , A_ ) self.assertEqual(A_ , A_ ) self.assertEqual(A_ , A_ ) _lowercase: Any = train(2 , A_ , A_ , A_ , A_ ) # Save everything accelerator.save_state() # Load everything back in and make sure all states work accelerator.load_state(os.path.join(A_ , '''checkpoints''' , '''checkpoint_1''' ) ) test_rands += train(1 , A_ , A_ , A_ , A_ ) ((_lowercase) , (_lowercase)): Optional[int] = model.a.item(), model.b.item() _lowercase: Any = optimizer.state_dict() self.assertEqual(A_ , A_ ) self.assertEqual(A_ , A_ ) self.assertEqual(A_ , A_ ) self.assertEqual(A_ , A_ ) def lowercase_ ( self ) -> Union[str, Any]: """simple docstring""" _lowercase: Optional[Any] = torch.tensor([1, 2, 3] ) _lowercase: Optional[Any] = torch.tensor([2, 3, 4] ) _lowercase: Union[str, Any] = DummyModel() _lowercase: List[Any] = torch.optim.Adam(net.parameters() ) _lowercase: List[Any] = Accelerator() with self.assertRaises(A_ ) as ve: accelerator.register_for_checkpointing(A_ , A_ , A_ , A_ ) _lowercase: Tuple = str(ve.exception ) self.assertTrue('''Item at index 0''' in message ) self.assertTrue('''Item at index 1''' in message ) self.assertFalse('''Item at index 2''' in message ) self.assertFalse('''Item at index 3''' in message ) def lowercase_ ( self ) -> Union[str, Any]: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) _lowercase: Any = DummyModel() _lowercase: List[Any] = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) _lowercase: Optional[Any] = torch.optim.lr_scheduler.StepLR(A_ , step_size=1 , gamma=0.99 ) _lowercase , _lowercase: Optional[int] = dummy_dataloaders() _lowercase: Optional[int] = ProjectConfiguration(automatic_checkpoint_naming=A_ ) # Train baseline _lowercase: int = Accelerator(project_dir=A_ , project_config=A_ ) _lowercase , _lowercase , _lowercase , _lowercase , _lowercase: Tuple = accelerator.prepare( A_ , A_ , A_ , A_ , A_ ) # Save initial accelerator.save_state() _lowercase: Union[str, Any] = scheduler.state_dict() train(3 , A_ , A_ , A_ , A_ , A_ ) self.assertNotEqual(A_ , scheduler.state_dict() ) # Load everything back in and make sure all states work accelerator.load_state(os.path.join(A_ , '''checkpoints''' , '''checkpoint_0''' ) ) self.assertEqual(A_ , scheduler.state_dict() ) def lowercase_ ( self ) -> Optional[Any]: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) _lowercase: List[Any] = DummyModel() _lowercase: List[Any] = ProjectConfiguration(automatic_checkpoint_naming=A_ , total_limit=2 ) # Train baseline _lowercase: Union[str, Any] = Accelerator(project_dir=A_ , project_config=A_ ) _lowercase: Optional[Any] = accelerator.prepare(A_ ) # Save 3 states: for _ in range(11 ): accelerator.save_state() self.assertTrue(not os.path.exists(os.path.join(A_ , '''checkpoints''' , '''checkpoint_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(A_ , '''checkpoints''' , '''checkpoint_9''' ) ) ) self.assertTrue(os.path.exists(os.path.join(A_ , '''checkpoints''' , '''checkpoint_10''' ) ) ) @require_cuda def lowercase_ ( self ) -> Union[str, Any]: """simple docstring""" _lowercase: List[Any] = ['''torchrun''', f'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )] execute_subprocess_async(A_ , env=os.environ.copy() ) if __name__ == "__main__": A__ : Dict = '/tmp/accelerate/state_checkpointing' A__ : Union[str, Any] = DummyModel() A__ : str = torch.optim.Adam(params=model.parameters(), lr=1e-3) A__ : Union[str, Any] = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.99) A__ , A__ : Optional[int] = dummy_dataloaders() A__ : Union[str, Any] = ProjectConfiguration(automatic_checkpoint_naming=True) # Train baseline A__ : List[Any] = Accelerator(project_dir=savedir, project_config=project_config, mixed_precision='no') if accelerator.process_index == 0: if os.path.exists(savedir): shutil.rmtree(savedir) os.makedirs(savedir) A__ , A__ , A__ , A__ , A__ : Union[str, Any] = accelerator.prepare( model, optimizer, train_dataloader, valid_dataloader, scheduler ) A__ , A__ : str = accelerator.prepare(model, optimizer) train(3, model, train_dataloader, optimizer, accelerator, scheduler) # Check that the intial optimizer is loaded on the GPU for group in optimizer.param_groups: A__ : Tuple = group['params'][0].device break assert param_device.type == accelerator.device.type A__ : Tuple = model.cpu() accelerator.wait_for_everyone() accelerator.save_state() accelerator.wait_for_everyone() # Check CPU state accelerator.load_state(os.path.join(savedir, 'checkpoints', 'checkpoint_0'), map_location='cpu') for group in optimizer.param_groups: A__ : int = group['params'][0].device break assert ( param_device.type == torch.device('cpu').type ), f"Loaded optimizer states did not match, expected to be loaded on the CPU but got {param_device}" # Check device state model.to(accelerator.device) accelerator.load_state(os.path.join(savedir, 'checkpoints', 'checkpoint_0'), map_location='on_device') for group in optimizer.param_groups: A__ : List[Any] = group['params'][0].device break assert ( param_device.type == accelerator.device.type ), f"Loaded optimizer states did not match, expected to be loaded on {accelerator.device} but got {param_device}" # Check error with pytest.raises(TypeError, match='Unsupported optimizer map location passed'): accelerator.load_state(os.path.join(savedir, 'checkpoints', 'checkpoint_0'), map_location='invalid') accelerator.wait_for_everyone() if accelerator.process_index == 0: shutil.rmtree(savedir) accelerator.wait_for_everyone()
353
"""simple docstring""" import functools import logging import os import sys import threading from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional import huggingface_hub.utils as hf_hub_utils from tqdm import auto as tqdm_lib A__ : int = threading.Lock() A__ : Optional[logging.Handler] = None A__ : str = { 'debug': logging.DEBUG, 'info': logging.INFO, 'warning': logging.WARNING, 'error': logging.ERROR, 'critical': logging.CRITICAL, } A__ : str = logging.WARNING A__ : Union[str, Any] = True def _lowerCAmelCase ( ): """simple docstring""" _lowercase: List[Any] = os.getenv('''TRANSFORMERS_VERBOSITY''' , _UpperCamelCase ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( f'''Unknown option TRANSFORMERS_VERBOSITY={env_level_str}, ''' f'''has to be one of: { ", ".join(log_levels.keys() ) }''' ) return _default_log_level def _lowerCAmelCase ( ): """simple docstring""" return __name__.split('''.''' )[0] def _lowerCAmelCase ( ): """simple docstring""" return logging.getLogger(_get_library_name() ) def _lowerCAmelCase ( ): """simple docstring""" global _default_handler with _lock: if _default_handler: # This library has already configured the library root logger. return _lowercase: int = logging.StreamHandler() # Set sys.stderr as stream. _lowercase: Dict = sys.stderr.flush # Apply our default configuration to the library root logger. _lowercase: Dict = _get_library_root_logger() library_root_logger.addHandler(_default_handler ) library_root_logger.setLevel(_get_default_logging_level() ) _lowercase: Optional[Any] = False def _lowerCAmelCase ( ): """simple docstring""" global _default_handler with _lock: if not _default_handler: return _lowercase: Tuple = _get_library_root_logger() library_root_logger.removeHandler(_default_handler ) library_root_logger.setLevel(logging.NOTSET ) _lowercase: Dict = None def _lowerCAmelCase ( ): """simple docstring""" return log_levels def _lowerCAmelCase ( _UpperCamelCase = None ): """simple docstring""" if name is None: _lowercase: Tuple = _get_library_name() _configure_library_root_logger() return logging.getLogger(_UpperCamelCase ) def _lowerCAmelCase ( ): """simple docstring""" _configure_library_root_logger() return _get_library_root_logger().getEffectiveLevel() def _lowerCAmelCase ( _UpperCamelCase ): """simple docstring""" _configure_library_root_logger() _get_library_root_logger().setLevel(_UpperCamelCase ) def _lowerCAmelCase ( ): """simple docstring""" return set_verbosity(_UpperCamelCase ) def _lowerCAmelCase ( ): """simple docstring""" return set_verbosity(_UpperCamelCase ) def _lowerCAmelCase ( ): """simple docstring""" return set_verbosity(_UpperCamelCase ) def _lowerCAmelCase ( ): """simple docstring""" return set_verbosity(_UpperCamelCase ) def _lowerCAmelCase ( ): """simple docstring""" _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().removeHandler(_default_handler ) def _lowerCAmelCase ( ): """simple docstring""" _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().addHandler(_default_handler ) def _lowerCAmelCase ( _UpperCamelCase ): """simple docstring""" _configure_library_root_logger() assert handler is not None _get_library_root_logger().addHandler(_UpperCamelCase ) def _lowerCAmelCase ( _UpperCamelCase ): """simple docstring""" _configure_library_root_logger() assert handler is not None and handler not in _get_library_root_logger().handlers _get_library_root_logger().removeHandler(_UpperCamelCase ) def _lowerCAmelCase ( ): """simple docstring""" _configure_library_root_logger() _lowercase: str = False def _lowerCAmelCase ( ): """simple docstring""" _configure_library_root_logger() _lowercase: List[str] = True def _lowerCAmelCase ( ): """simple docstring""" _lowercase: Any = _get_library_root_logger().handlers for handler in handlers: _lowercase: int = logging.Formatter('''[%(levelname)s|%(filename)s:%(lineno)s] %(asctime)s >> %(message)s''' ) handler.setFormatter(_UpperCamelCase ) def _lowerCAmelCase ( ): """simple docstring""" _lowercase: List[str] = _get_library_root_logger().handlers for handler in handlers: handler.setFormatter(_UpperCamelCase ) def _lowerCAmelCase ( self , *_UpperCamelCase , **_UpperCamelCase ): """simple docstring""" _lowercase: Any = os.getenv('''TRANSFORMERS_NO_ADVISORY_WARNINGS''' , _UpperCamelCase ) if no_advisory_warnings: return self.warning(*_UpperCamelCase , **_UpperCamelCase ) A__ : Optional[int] = warning_advice @functools.lru_cache(_UpperCamelCase ) def _lowerCAmelCase ( self , *_UpperCamelCase , **_UpperCamelCase ): """simple docstring""" self.warning(*_UpperCamelCase , **_UpperCamelCase ) A__ : List[Any] = warning_once class __magic_name__ : def __init__( self , *A_ , **A_ ) -> Any: # pylint: disable=unused-argument """simple docstring""" _lowercase: Tuple = args[0] if args else None def __iter__( self ) -> Union[str, Any]: """simple docstring""" return iter(self._iterator ) def __getattr__( self , A_ ) -> List[Any]: """simple docstring""" def empty_fn(*A_ , **A_ ): # pylint: disable=unused-argument return return empty_fn def __enter__( self ) -> Tuple: """simple docstring""" return self def __exit__( self , A_ , A_ , A_ ) -> Optional[Any]: """simple docstring""" return class __magic_name__ : def __call__( self , *A_ , **A_ ) -> Dict: """simple docstring""" if _tqdm_active: return tqdm_lib.tqdm(*A_ , **A_ ) else: return EmptyTqdm(*A_ , **A_ ) def lowercase_ ( self , *A_ , **A_ ) -> List[str]: """simple docstring""" _lowercase: Optional[Any] = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*A_ , **A_ ) def lowercase_ ( self ) -> Optional[Any]: """simple docstring""" if _tqdm_active: return tqdm_lib.tqdm.get_lock() A__ : str = _tqdm_cls() def _lowerCAmelCase ( ): """simple docstring""" global _tqdm_active return bool(_tqdm_active ) def _lowerCAmelCase ( ): """simple docstring""" global _tqdm_active _lowercase: str = True hf_hub_utils.enable_progress_bars() def _lowerCAmelCase ( ): """simple docstring""" global _tqdm_active _lowercase: Union[str, Any] = False hf_hub_utils.disable_progress_bars()
353
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase : List[Any] ={ 'configuration_nezha': ['NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'NezhaConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Union[str, Any] =[ 'NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST', 'NezhaForNextSentencePrediction', 'NezhaForMaskedLM', 'NezhaForPreTraining', 'NezhaForMultipleChoice', 'NezhaForQuestionAnswering', 'NezhaForSequenceClassification', 'NezhaForTokenClassification', 'NezhaModel', 'NezhaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nezha import ( NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, NezhaPreTrainedModel, ) else: import sys lowerCAmelCase : Tuple =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
721
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : Optional[int] =logging.get_logger(__name__) lowerCAmelCase : List[Any] ={} class _a ( snake_case_ ): _UpperCamelCase: Tuple = "llama" _UpperCamelCase: List[str] = ["past_key_values"] def __init__( self , lowercase_=32000 , lowercase_=4096 , lowercase_=11008 , lowercase_=32 , lowercase_=32 , lowercase_=None , lowercase_="silu" , lowercase_=2048 , lowercase_=0.0_2 , lowercase_=1e-6 , lowercase_=True , lowercase_=0 , lowercase_=1 , lowercase_=2 , lowercase_=1 , lowercase_=False , lowercase_=None , **lowercase_ , ) -> Optional[int]: lowerCAmelCase : List[str] = vocab_size lowerCAmelCase : str = max_position_embeddings lowerCAmelCase : int = hidden_size lowerCAmelCase : Optional[int] = intermediate_size lowerCAmelCase : int = num_hidden_layers lowerCAmelCase : Any = num_attention_heads # for backward compatibility if num_key_value_heads is None: lowerCAmelCase : Any = num_attention_heads lowerCAmelCase : Any = num_key_value_heads lowerCAmelCase : Any = hidden_act lowerCAmelCase : Union[str, Any] = initializer_range lowerCAmelCase : str = rms_norm_eps lowerCAmelCase : int = pretraining_tp lowerCAmelCase : int = use_cache lowerCAmelCase : Optional[Any] = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , tie_word_embeddings=lowercase_ , **lowercase_ , ) def _snake_case ( self ) -> Dict: if self.rope_scaling is None: return if not isinstance(self.rope_scaling , lowercase_ ) or len(self.rope_scaling ) != 2: raise ValueError( """`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, """ f"""got {self.rope_scaling}""" ) lowerCAmelCase : Union[str, Any] = self.rope_scaling.get("""type""" , lowercase_ ) lowerCAmelCase : Dict = self.rope_scaling.get("""factor""" , lowercase_ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""" ) if rope_scaling_factor is None or not isinstance(lowercase_ , lowercase_ ) or rope_scaling_factor <= 1.0: raise ValueError(f"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""" )
693
0
import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin lowercase_: Optional[Any] = get_tests_dir('fixtures/spiece.model') @require_sentencepiece @require_tokenizers class lowercase__ (__snake_case , unittest.TestCase ): """simple docstring""" __UpperCamelCase : Tuple = DebertaVaTokenizer __UpperCamelCase : Optional[int] = DebertaVaTokenizerFast __UpperCamelCase : Optional[int] = True __UpperCamelCase : Optional[Any] = True def lowercase ( self : Any ): super().setUp() # We have a SentencePiece fixture for testing snake_case__ : Optional[Any] = DebertaVaTokenizer(__a , unk_token="""<unk>""" ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase ( self : List[str] , __a : Optional[int] ): snake_case__ : Any = """this is a test""" snake_case__ : Optional[int] = """this is a test""" return input_text, output_text def lowercase ( self : str ): snake_case__ : Optional[int] = """<pad>""" snake_case__ : Optional[Any] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__a ) , __a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__a ) , __a ) def lowercase ( self : int ): snake_case__ : Union[str, Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """<unk>""" ) self.assertEqual(vocab_keys[-1] , """[PAD]""" ) self.assertEqual(len(__a ) , 3_0_0_0_1 ) def lowercase ( self : Any ): self.assertEqual(self.get_tokenizer().vocab_size , 3_0_0_0_0 ) def lowercase ( self : Optional[int] ): # fmt: off snake_case__ : List[Any] = """ \tHeLLo!how \n Are yoU? """ snake_case__ : List[str] = ["""▁hello""", """!""", """how""", """▁are""", """▁you""", """?"""] # fmt: on snake_case__ : List[str] = DebertaVaTokenizer(__a , do_lower_case=__a ) snake_case__ : Optional[Any] = tokenizer.convert_ids_to_tokens(tokenizer.encode(__a , add_special_tokens=__a ) ) self.assertListEqual(__a , __a ) snake_case__ : List[Any] = DebertaVaTokenizerFast(__a , do_lower_case=__a ) snake_case__ : Optional[int] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__a , add_special_tokens=__a ) ) self.assertListEqual(__a , __a ) @unittest.skip("""There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.""" ) def lowercase ( self : Dict ): pass @unittest.skip("""There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.""" ) def lowercase ( self : List[str] ): pass def lowercase ( self : List[Any] ): # fmt: off snake_case__ : List[str] = """I was born in 92000, and this is falsé.""" snake_case__ : List[str] = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ] # fmt: on snake_case__ : List[str] = DebertaVaTokenizer(__a , split_by_punct=__a ) snake_case__ : int = tokenizer.convert_ids_to_tokens(tokenizer.encode(__a , add_special_tokens=__a ) ) self.assertListEqual(__a , __a ) snake_case__ : int = DebertaVaTokenizerFast(__a , split_by_punct=__a ) snake_case__ : Dict = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__a , add_special_tokens=__a ) ) self.assertListEqual(__a , __a ) def lowercase ( self : Any ): # fmt: off snake_case__ : Optional[int] = """I was born in 92000, and this is falsé.""" snake_case__ : List[str] = ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ] # fmt: on snake_case__ : Dict = DebertaVaTokenizer(__a , do_lower_case=__a , split_by_punct=__a ) snake_case__ : Tuple = tokenizer.convert_ids_to_tokens(tokenizer.encode(__a , add_special_tokens=__a ) ) self.assertListEqual(__a , __a ) snake_case__ : List[Any] = DebertaVaTokenizerFast(__a , do_lower_case=__a , split_by_punct=__a ) snake_case__ : Optional[int] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__a , add_special_tokens=__a ) ) self.assertListEqual(__a , __a ) def lowercase ( self : List[str] ): # fmt: off snake_case__ : Optional[Any] = """I was born in 92000, and this is falsé.""" snake_case__ : Dict = ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """.""", ] # fmt: on snake_case__ : str = DebertaVaTokenizer(__a , do_lower_case=__a , split_by_punct=__a ) snake_case__ : Dict = tokenizer.convert_ids_to_tokens(tokenizer.encode(__a , add_special_tokens=__a ) ) self.assertListEqual(__a , __a ) snake_case__ : List[Any] = DebertaVaTokenizerFast(__a , do_lower_case=__a , split_by_punct=__a ) snake_case__ : Dict = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__a , add_special_tokens=__a ) ) self.assertListEqual(__a , __a ) def lowercase ( self : str ): # fmt: off snake_case__ : List[Any] = """I was born in 92000, and this is falsé.""" snake_case__ : Optional[Any] = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ] # fmt: on snake_case__ : Dict = DebertaVaTokenizer(__a , do_lower_case=__a , split_by_punct=__a ) snake_case__ : str = tokenizer.convert_ids_to_tokens(tokenizer.encode(__a , add_special_tokens=__a ) ) self.assertListEqual(__a , __a ) snake_case__ : str = DebertaVaTokenizerFast(__a , do_lower_case=__a , split_by_punct=__a ) snake_case__ : Optional[Any] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__a , add_special_tokens=__a ) ) self.assertListEqual(__a , __a ) def lowercase ( self : Tuple ): # fmt: off snake_case__ : List[str] = """ \tHeLLo!how \n Are yoU? """ snake_case__ : Union[str, Any] = ["""▁""", """<unk>""", """e""", """<unk>""", """o""", """!""", """how""", """▁""", """<unk>""", """re""", """▁yo""", """<unk>""", """?"""] # fmt: on snake_case__ : List[Any] = DebertaVaTokenizer(__a , do_lower_case=__a , split_by_punct=__a ) snake_case__ : List[str] = tokenizer.convert_ids_to_tokens(tokenizer.encode(__a , add_special_tokens=__a ) ) self.assertListEqual(__a , __a ) snake_case__ : Union[str, Any] = DebertaVaTokenizerFast(__a , do_lower_case=__a , split_by_punct=__a ) snake_case__ : Any = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__a , add_special_tokens=__a ) ) self.assertListEqual(__a , __a ) def lowercase ( self : List[str] ): snake_case__ : Any = self.get_tokenizer() snake_case__ : Optional[int] = self.get_rust_tokenizer() snake_case__ : int = """I was born in 92000, and this is falsé.""" snake_case__ : Optional[Any] = tokenizer.convert_ids_to_tokens(tokenizer.encode(__a , add_special_tokens=__a ) ) snake_case__ : Union[str, Any] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__a , add_special_tokens=__a ) ) self.assertListEqual(__a , __a ) snake_case__ : Union[str, Any] = tokenizer.encode(__a , add_special_tokens=__a ) snake_case__ : str = rust_tokenizer.encode(__a , add_special_tokens=__a ) self.assertListEqual(__a , __a ) snake_case__ : Optional[int] = self.get_rust_tokenizer() snake_case__ : Optional[Any] = tokenizer.encode(__a ) snake_case__ : Union[str, Any] = rust_tokenizer.encode(__a ) self.assertListEqual(__a , __a ) def lowercase ( self : str ): snake_case__ : Any = """This is a test""" snake_case__ : Optional[int] = [1_3, 1, 4_3_9_8, 2_5, 2_1, 1_2_8_9] snake_case__ : Tuple = ["""▁""", """T""", """his""", """▁is""", """▁a""", """▁test"""] snake_case__ : Any = ["""▁""", """<unk>""", """his""", """▁is""", """▁a""", """▁test"""] snake_case__ : Dict = DebertaVaTokenizer(__a , keep_accents=__a ) snake_case__ : str = DebertaVaTokenizerFast(__a , keep_accents=__a ) snake_case__ : str = tokenizer.encode(__a , add_special_tokens=__a ) self.assertListEqual(__a , __a ) snake_case__ : List[Any] = tokenizer.tokenize(__a ) self.assertListEqual(__a , __a ) snake_case__ : Union[str, Any] = tokenizer.convert_ids_to_tokens(__a ) self.assertListEqual(__a , __a ) snake_case__ : List[str] = rust_tokenizer.encode(__a , add_special_tokens=__a ) self.assertListEqual(__a , __a ) snake_case__ : Optional[Any] = rust_tokenizer.tokenize(__a ) self.assertListEqual(__a , __a ) snake_case__ : List[str] = rust_tokenizer.convert_ids_to_tokens(__a ) self.assertListEqual(__a , __a ) # fmt: off snake_case__ : List[str] = """I was born in 92000, and this is falsé.""" snake_case__ : List[Any] = [1_3, 1, 2_3, 3_8_6, 1_9, 5_6_1, 3_0_5_0, 1_5, 1_7, 4_8, 2_5, 8_2_5_6, 1_8, 1, 9] snake_case__ : Any = ["""▁""", """I""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """é""", """.""", ] snake_case__ : Optional[int] = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """.""", ] # fmt: on snake_case__ : Optional[int] = tokenizer.encode(__a , add_special_tokens=__a ) self.assertListEqual(__a , __a ) snake_case__ : Any = tokenizer.tokenize(__a ) self.assertListEqual(__a , __a ) snake_case__ : List[str] = tokenizer.convert_ids_to_tokens(__a ) self.assertListEqual(__a , __a ) snake_case__ : str = rust_tokenizer.encode(__a , add_special_tokens=__a ) self.assertListEqual(__a , __a ) snake_case__ : Optional[Any] = rust_tokenizer.tokenize(__a ) self.assertListEqual(__a , __a ) snake_case__ : Optional[Any] = rust_tokenizer.convert_ids_to_tokens(__a ) self.assertListEqual(__a , __a ) def lowercase ( self : Dict ): snake_case__ : Optional[int] = DebertaVaTokenizer(__a ) snake_case__ : Optional[int] = tokenizer.encode("""sequence builders""" ) snake_case__ : Any = tokenizer.encode("""multi-sequence build""" ) snake_case__ : Any = tokenizer.build_inputs_with_special_tokens(__a ) snake_case__ : Tuple = tokenizer.build_inputs_with_special_tokens(__a , __a ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , __a ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , __a , ) @slow def lowercase ( self : int ): # fmt: off snake_case__ : Optional[Any] = {"""input_ids""": [[1, 3_9_8_6_7, 3_6, 1_9_3_9_0, 4_8_6, 2_7, 3_5_0_5_2, 8_1_4_3_6, 1_8, 6_0_6_8_5, 1_2_2_5, 7, 3_5_0_5_2, 8_1_4_3_6, 1_8, 9_3_6_7, 1_6_8_9_9, 1_8, 1_5_9_3_7, 5_3, 5_9_4, 7_7_3, 1_8, 1_6_2_8_7, 3_0_4_6_5, 3_6, 1_5_9_3_7, 6, 4_1_1_3_9, 3_8, 3_6_9_7_9, 6_0_7_6_3, 1_9_1, 6, 3_4_1_3_2, 9_9, 6, 5_0_5_3_8, 3_9_0, 4_3_2_3_0, 6, 3_4_1_3_2, 2_7_7_9, 2_0_8_5_0, 1_4, 6_9_9, 1_0_7_2, 1_1_9_4, 3_6, 3_8_2, 1_0_9_0_1, 5_3, 7, 6_9_9, 1_0_7_2, 2_0_8_4, 3_6, 2_0_4_2_2, 6_3_0, 5_3, 1_9, 1_0_5, 3_0_4_9, 1_8_9_6, 1_0_5_3, 1_6_8_9_9, 1_5_0_6, 1_1, 3_7_9_7_8, 4_2_4_3, 7, 1_2_3_7, 3_1_8_6_9, 2_0_0, 1_6_5_6_6, 6_5_4, 6, 3_5_0_5_2, 8_1_4_3_6, 7, 5_5_6_3_0, 1_3_5_9_3, 4, 2], [1, 2_6, 1_5_0_1_1, 1_3, 6_6_7, 8, 1_0_5_3, 1_8, 2_3_6_1_1, 1_2_3_7, 7_2_3_5_6, 1_2_8_2_0, 3_4, 1_0_4_1_3_4, 1_2_0_9, 3_5, 1_3_3_1_3, 6_6_2_7, 2_1, 2_0_2, 3_4_7, 7, 1_6_4, 2_3_9_9, 1_1, 4_6, 4_4_8_5, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1_2_3_2, 2_8_6_4, 1_5_7_8_5, 1_4_9_5_1, 1_0_5, 5, 8_5_8_1, 1_2_5_0, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__a , model_name="""microsoft/deberta-v2-xlarge""" , revision="""ad6e42c1532ddf3a15c39246b63f5559d558b670""" , )
648
import unittest from transformers import BertGenerationConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import BertGenerationDecoder, BertGenerationEncoder class lowercase__ : """simple docstring""" def __init__( self : Dict , __a : List[str] , __a : List[str]=1_3 , __a : List[str]=7 , __a : Dict=True , __a : str=True , __a : str=9_9 , __a : Dict=3_2 , __a : Optional[int]=5 , __a : List[Any]=4 , __a : Dict=3_7 , __a : List[Any]="gelu" , __a : str=0.1 , __a : Dict=0.1 , __a : Optional[Any]=5_0 , __a : Dict=0.02 , __a : List[Any]=True , __a : str=None , ): snake_case__ : int = parent snake_case__ : Any = batch_size snake_case__ : Any = seq_length snake_case__ : Dict = is_training snake_case__ : str = use_input_mask snake_case__ : Optional[Any] = vocab_size snake_case__ : List[Any] = hidden_size snake_case__ : Any = num_hidden_layers snake_case__ : Any = num_attention_heads snake_case__ : Optional[Any] = intermediate_size snake_case__ : str = hidden_act snake_case__ : Any = hidden_dropout_prob snake_case__ : List[str] = attention_probs_dropout_prob snake_case__ : Any = max_position_embeddings snake_case__ : Tuple = initializer_range snake_case__ : str = use_labels snake_case__ : List[str] = scope def lowercase ( self : Optional[Any] ): snake_case__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case__ : Any = None if self.use_input_mask: snake_case__ : int = random_attention_mask([self.batch_size, self.seq_length] ) if self.use_labels: snake_case__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case__ : Optional[int] = self.get_config() return config, input_ids, input_mask, token_labels def lowercase ( self : Optional[Any] ): return BertGenerationConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , is_decoder=__a , initializer_range=self.initializer_range , ) def lowercase ( self : List[str] ): ( ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ) : Any = self.prepare_config_and_inputs() snake_case__ : Union[str, Any] = True snake_case__ : str = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) snake_case__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, token_labels, encoder_hidden_states, encoder_attention_mask, ) def lowercase ( self : int , __a : List[Any] , __a : Optional[Any] , __a : Tuple , __a : Optional[int] , **__a : Union[str, Any] , ): snake_case__ : Optional[Any] = BertGenerationEncoder(config=__a ) model.to(__a ) model.eval() snake_case__ : Optional[int] = model(__a , attention_mask=__a ) snake_case__ : str = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase ( self : str , __a : Union[str, Any] , __a : Any , __a : int , __a : int , __a : List[Any] , __a : List[str] , **__a : List[Any] , ): snake_case__ : Union[str, Any] = True snake_case__ : int = BertGenerationEncoder(config=__a ) model.to(__a ) model.eval() snake_case__ : List[str] = model( __a , attention_mask=__a , encoder_hidden_states=__a , encoder_attention_mask=__a , ) snake_case__ : List[Any] = model( __a , attention_mask=__a , encoder_hidden_states=__a , ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase ( self : int , __a : Tuple , __a : Union[str, Any] , __a : Optional[Any] , __a : str , __a : Union[str, Any] , __a : str , **__a : List[Any] , ): snake_case__ : int = True snake_case__ : Optional[int] = True snake_case__ : List[str] = BertGenerationDecoder(config=__a ).to(__a ).eval() # first forward pass snake_case__ : Union[str, Any] = model( __a , attention_mask=__a , encoder_hidden_states=__a , encoder_attention_mask=__a , use_cache=__a , ) snake_case__ : List[Any] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids snake_case__ : Tuple = ids_tensor((self.batch_size, 3) , config.vocab_size ) snake_case__ : int = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and snake_case__ : Any = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case__ : Tuple = torch.cat([input_mask, next_mask] , dim=-1 ) snake_case__ : Any = model( __a , attention_mask=__a , encoder_hidden_states=__a , encoder_attention_mask=__a , output_hidden_states=__a , )["""hidden_states"""][0] snake_case__ : Any = model( __a , attention_mask=__a , encoder_hidden_states=__a , encoder_attention_mask=__a , past_key_values=__a , output_hidden_states=__a , )["""hidden_states"""][0] # select random slice snake_case__ : List[Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case__ : Optional[Any] = output_from_no_past[:, -3:, random_slice_idx].detach() snake_case__ : Any = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__a , __a , atol=1e-3 ) ) def lowercase ( self : Union[str, Any] , __a : List[Any] , __a : int , __a : Union[str, Any] , __a : int , *__a : str , ): snake_case__ : Union[str, Any] = BertGenerationDecoder(__a ) model.to(__a ) model.eval() snake_case__ : List[Any] = model(__a , attention_mask=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase ( self : Any ): snake_case__ , snake_case__ , snake_case__ , snake_case__ : str = self.prepare_config_and_inputs() snake_case__ : str = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class lowercase__ (__snake_case , __snake_case , __snake_case , unittest.TestCase ): """simple docstring""" __UpperCamelCase : Optional[Any] = (BertGenerationEncoder, BertGenerationDecoder) if is_torch_available() else () __UpperCamelCase : str = (BertGenerationDecoder,) if is_torch_available() else () __UpperCamelCase : str = ( {'feature-extraction': BertGenerationEncoder, 'text-generation': BertGenerationDecoder} if is_torch_available() else {} ) def lowercase ( self : str ): snake_case__ : Dict = BertGenerationEncoderTester(self ) snake_case__ : Tuple = ConfigTester(self , config_class=__a , hidden_size=3_7 ) def lowercase ( self : Optional[int] ): self.config_tester.run_common_tests() def lowercase ( self : Optional[int] ): snake_case__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def lowercase ( self : List[Any] ): snake_case__ , snake_case__ , snake_case__ , snake_case__ : Optional[int] = self.model_tester.prepare_config_and_inputs() snake_case__ : Optional[int] = """bert""" self.model_tester.create_and_check_model(__a , __a , __a , __a ) def lowercase ( self : str ): snake_case__ : Any = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*__a ) def lowercase ( self : Any ): snake_case__ : Any = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_decoder_model_past_large_inputs(*__a ) def lowercase ( self : Tuple ): # This regression test was failing with PyTorch < 1.3 ( ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ) : int = self.model_tester.prepare_config_and_inputs_for_decoder() snake_case__ : int = None self.model_tester.create_and_check_model_as_decoder( __a , __a , __a , __a , __a , __a , ) def lowercase ( self : int ): snake_case__ : int = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_for_causal_lm(*__a ) @slow def lowercase ( self : List[str] ): snake_case__ : int = BertGenerationEncoder.from_pretrained("""google/bert_for_seq_generation_L-24_bbc_encoder""" ) self.assertIsNotNone(__a ) @require_torch class lowercase__ (unittest.TestCase ): """simple docstring""" @slow def lowercase ( self : Optional[int] ): snake_case__ : Dict = BertGenerationEncoder.from_pretrained("""google/bert_for_seq_generation_L-24_bbc_encoder""" ) snake_case__ : Optional[Any] = torch.tensor([[1_0_1, 7_5_9_2, 1_0_1_0, 2_0_2_6, 3_8_9_9, 2_0_0_3, 1_0_1_4_0, 1_0_2]] ) with torch.no_grad(): snake_case__ : Union[str, Any] = model(__a )[0] snake_case__ : Optional[Any] = torch.Size([1, 8, 1_0_2_4] ) self.assertEqual(output.shape , __a ) snake_case__ : List[Any] = torch.tensor( [[[0.1775, 0.0083, -0.0321], [1.6002, 0.1287, 0.3912], [2.1473, 0.5791, 0.6066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __a , atol=1e-4 ) ) @require_torch class lowercase__ (unittest.TestCase ): """simple docstring""" @slow def lowercase ( self : Any ): snake_case__ : List[str] = BertGenerationDecoder.from_pretrained("""google/bert_for_seq_generation_L-24_bbc_encoder""" ) snake_case__ : Tuple = torch.tensor([[1_0_1, 7_5_9_2, 1_0_1_0, 2_0_2_6, 3_8_9_9, 2_0_0_3, 1_0_1_4_0, 1_0_2]] ) with torch.no_grad(): snake_case__ : Any = model(__a )[0] snake_case__ : Optional[Any] = torch.Size([1, 8, 5_0_3_5_8] ) self.assertEqual(output.shape , __a ) snake_case__ : int = torch.tensor( [[[-0.5788, -2.5994, -3.7054], [0.0438, 4.7997, 1.8795], [1.5862, 6.6409, 4.4638]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __a , atol=1e-4 ) )
648
1
'''simple docstring''' def snake_case_ ( a__ : str ,a__ : str ): """simple docstring""" __lowercase = len(_lowerCAmelCase ) print("""The following activities are selected:""" ) # The first activity is always selected __lowercase = 0 print(_lowerCAmelCase ,end=""",""" ) # Consider rest of the activities for j in range(_lowerCAmelCase ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(_lowerCAmelCase ,end=""",""" ) __lowercase = j if __name__ == "__main__": import doctest doctest.testmod() A : str = [1, 3, 0, 5, 8, 5] A : List[Any] = [2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
701
'''simple docstring''' from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
163
0
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy UpperCamelCase__ : List[Any] = logging.get_logger(__name__) class _a (_lowerCamelCase): """simple docstring""" def __init__( self , A__ , A__ , A__ , **A__ ) -> int: _SCREAMING_SNAKE_CASE = feature_size _SCREAMING_SNAKE_CASE = sampling_rate _SCREAMING_SNAKE_CASE = padding_value _SCREAMING_SNAKE_CASE = kwargs.pop("""padding_side""" , """right""" ) _SCREAMING_SNAKE_CASE = kwargs.pop("""return_attention_mask""" , a_ ) super().__init__(**a_ ) def UpperCamelCase ( self , A__ , A__ = True , A__ = None , A__ = False , A__ = None , A__ = None , A__ = None , ) -> BatchFeature: # If we have a list of dicts, let's convert it in a dict of lists # We do this to allow using this method as a collate_fn function in PyTorch Dataloader if isinstance(a_ , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ): _SCREAMING_SNAKE_CASE = { key: [example[key] for example in processed_features] for key in processed_features[0].keys() } # The model's main input name, usually `input_values`, has be passed for padding if self.model_input_names[0] not in processed_features: raise ValueError( """You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`""" F" to this method that includes {self.model_input_names[0]}, but you provided" F" {list(processed_features.keys() )}" ) _SCREAMING_SNAKE_CASE = processed_features[self.model_input_names[0]] _SCREAMING_SNAKE_CASE = ( return_attention_mask if return_attention_mask is not None else self.return_attention_mask ) if len(a_ ) == 0: if return_attention_mask: _SCREAMING_SNAKE_CASE = [] return processed_features # If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays # and rebuild them afterwards if no return_tensors is specified # Note that we lose the specific device the tensor may be on for PyTorch _SCREAMING_SNAKE_CASE = required_input[0] if isinstance(a_ , (list, tuple) ): # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element. _SCREAMING_SNAKE_CASE = 0 while len(required_input[index] ) == 0: index += 1 if index < len(a_ ): _SCREAMING_SNAKE_CASE = required_input[index][0] if return_tensors is None: if is_tf_tensor(a_ ): _SCREAMING_SNAKE_CASE = """tf""" elif is_torch_tensor(a_ ): _SCREAMING_SNAKE_CASE = """pt""" elif isinstance(a_ , (int, float, list, tuple, np.ndarray) ): _SCREAMING_SNAKE_CASE = """np""" else: raise ValueError( F"type of {first_element} unknown: {type(a_ )}. " """Should be one of a python, numpy, pytorch or tensorflow object.""" ) for key, value in processed_features.items(): if isinstance(value[0] , (int, float) ): _SCREAMING_SNAKE_CASE = to_numpy(a_ ) else: _SCREAMING_SNAKE_CASE = [to_numpy(a_ ) for v in value] # Convert padding_strategy in PaddingStrategy _SCREAMING_SNAKE_CASE = self._get_padding_strategies(padding=a_ , max_length=a_ ) _SCREAMING_SNAKE_CASE = processed_features[self.model_input_names[0]] _SCREAMING_SNAKE_CASE = len(a_ ) if not all(len(a_ ) == batch_size for v in processed_features.values() ): raise ValueError("""Some items in the output dictionary have a different batch size than others.""" ) _SCREAMING_SNAKE_CASE = [] for i in range(a_ ): _SCREAMING_SNAKE_CASE = {k: v[i] for k, v in processed_features.items()} # truncation _SCREAMING_SNAKE_CASE = self._truncate( a_ , max_length=a_ , pad_to_multiple_of=a_ , truncation=a_ , ) truncated_inputs.append(a_ ) if padding_strategy == PaddingStrategy.LONGEST: # make sure that `max_length` cannot be longer than the longest truncated length _SCREAMING_SNAKE_CASE = max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs ) _SCREAMING_SNAKE_CASE = PaddingStrategy.MAX_LENGTH _SCREAMING_SNAKE_CASE = {} for i in range(a_ ): # padding _SCREAMING_SNAKE_CASE = self._pad( truncated_inputs[i] , max_length=a_ , padding_strategy=a_ , pad_to_multiple_of=a_ , return_attention_mask=a_ , ) for key, value in outputs.items(): if key not in batch_outputs: _SCREAMING_SNAKE_CASE = [] if value.dtype is np.dtype(np.floataa ): _SCREAMING_SNAKE_CASE = value.astype(np.floataa ) batch_outputs[key].append(a_ ) return BatchFeature(a_ , tensor_type=a_ ) def UpperCamelCase ( self , A__ , A__ = None , A__ = PaddingStrategy.DO_NOT_PAD , A__ = None , A__ = None , ) -> dict: _SCREAMING_SNAKE_CASE = processed_features[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: _SCREAMING_SNAKE_CASE = len(a_ ) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): _SCREAMING_SNAKE_CASE = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of _SCREAMING_SNAKE_CASE = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(a_ ) < max_length if return_attention_mask and "attention_mask" not in processed_features: _SCREAMING_SNAKE_CASE = np.ones(len(a_ ) , dtype=np.intaa ) if needs_to_be_padded: _SCREAMING_SNAKE_CASE = max_length - len(a_ ) if self.padding_side == "right": if return_attention_mask: _SCREAMING_SNAKE_CASE = np.pad( processed_features["""attention_mask"""] , (0, difference) ) _SCREAMING_SNAKE_CASE = ((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference) _SCREAMING_SNAKE_CASE = np.pad( a_ , a_ , """constant""" , constant_values=self.padding_value ) elif self.padding_side == "left": if return_attention_mask: _SCREAMING_SNAKE_CASE = np.pad( processed_features["""attention_mask"""] , (difference, 0) ) _SCREAMING_SNAKE_CASE = ((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0) _SCREAMING_SNAKE_CASE = np.pad( a_ , a_ , """constant""" , constant_values=self.padding_value ) else: raise ValueError("""Invalid padding strategy:""" + str(self.padding_side ) ) return processed_features def UpperCamelCase ( self , A__ , A__ = None , A__ = None , A__ = None , ) -> Tuple: if not truncation: return processed_features elif truncation and max_length is None: raise ValueError("""When setting ``truncation=True``, make sure that ``max_length`` is defined.""" ) _SCREAMING_SNAKE_CASE = processed_features[self.model_input_names[0]] # find `max_length` that fits `pad_to_multiple_of` if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): _SCREAMING_SNAKE_CASE = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of _SCREAMING_SNAKE_CASE = len(a_ ) > max_length if needs_to_be_truncated: _SCREAMING_SNAKE_CASE = processed_features[self.model_input_names[0]][:max_length] if "attention_mask" in processed_features: _SCREAMING_SNAKE_CASE = processed_features["""attention_mask"""][:max_length] return processed_features def UpperCamelCase ( self , A__=False , A__=None ) -> int: # Get padding strategy if padding is not False: if padding is True: _SCREAMING_SNAKE_CASE = PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch elif not isinstance(a_ , a_ ): _SCREAMING_SNAKE_CASE = PaddingStrategy(a_ ) elif isinstance(a_ , a_ ): _SCREAMING_SNAKE_CASE = padding else: _SCREAMING_SNAKE_CASE = PaddingStrategy.DO_NOT_PAD # Set max length if needed if max_length is None: if padding_strategy == PaddingStrategy.MAX_LENGTH: raise ValueError( F"When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined" ) # Test if we have a padding value if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None): raise ValueError( """Asking to pad but the feature_extractor does not have a padding value. Please select a value to use""" """ as `padding_value`. For example: `feature_extractor.padding_value = 0.0`.""" ) return padding_strategy
591
'''simple docstring''' from io import BytesIO from typing import List, Union import requests from ..utils import add_end_docstrings, is_decord_available, is_torch_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_decord_available(): import numpy as np from decord import VideoReader if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING _a : List[Any] = logging.get_logger(__name__) @add_end_docstrings(a ) class lowercase_ ( a ): '''simple docstring''' def __init__( self , *a_ , **a_ ) -> str: """simple docstring""" super().__init__(*a_ , **a_ ) requires_backends(self , 'decord' ) self.check_model_type(a_ ) def snake_case_ ( self , a_=None , a_=None , a_=None ) -> int: """simple docstring""" UpperCAmelCase = {} if frame_sampling_rate is not None: UpperCAmelCase = frame_sampling_rate if num_frames is not None: UpperCAmelCase = num_frames UpperCAmelCase = {} if top_k is not None: UpperCAmelCase = top_k return preprocess_params, {}, postprocess_params def __call__( self , a_ , **a_ ) -> Union[str, Any]: """simple docstring""" return super().__call__(a_ , **a_ ) def snake_case_ ( self , a_ , a_=None , a_=1 ) -> Tuple: """simple docstring""" if num_frames is None: UpperCAmelCase = self.model.config.num_frames if video.startswith('http://' ) or video.startswith('https://' ): UpperCAmelCase = BytesIO(requests.get(a_ ).content ) UpperCAmelCase = VideoReader(a_ ) videoreader.seek(0 ) UpperCAmelCase = 0 UpperCAmelCase = num_frames * frame_sampling_rate - 1 UpperCAmelCase = np.linspace(a_ , a_ , num=a_ , dtype=np.intaa ) UpperCAmelCase = videoreader.get_batch(a_ ).asnumpy() UpperCAmelCase = list(a_ ) UpperCAmelCase = self.image_processor(a_ , return_tensors=self.framework ) return model_inputs def snake_case_ ( self , a_ ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase = self.model(**a_ ) return model_outputs def snake_case_ ( self , a_ , a_=5 ) -> Union[str, Any]: """simple docstring""" if top_k > self.model.config.num_labels: UpperCAmelCase = self.model.config.num_labels if self.framework == "pt": UpperCAmelCase = model_outputs.logits.softmax(-1 )[0] UpperCAmelCase , UpperCAmelCase = probs.topk(a_ ) else: raise ValueError(F'''Unsupported framework: {self.framework}''' ) UpperCAmelCase = scores.tolist() UpperCAmelCase = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(a_ , a_ )]
447
0
'''simple docstring''' import numpy as np import pandas as pd from sklearn.preprocessing import Normalizer from sklearn.svm import SVR from statsmodels.tsa.statespace.sarimax import SARIMAX def __magic_name__ ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> float: '''simple docstring''' UpperCamelCase = np.array([[1, item, train_mtch[i]] for i, item in enumerate(lowercase_ )] ) UpperCamelCase = np.array(lowercase_ ) UpperCamelCase = np.dot(np.dot(np.linalg.inv(np.dot(x.transpose() , lowercase_ ) ) , x.transpose() ) , lowercase_ ) return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2] ) def __magic_name__ ( lowercase_ , lowercase_ , lowercase_ ) -> float: '''simple docstring''' UpperCamelCase = (1, 2, 1) UpperCamelCase = (1, 1, 0, 7) UpperCamelCase = SARIMAX( lowercase_ , exog=lowercase_ , order=lowercase_ , seasonal_order=lowercase_ ) UpperCamelCase = model.fit(disp=lowercase_ , maxiter=600 , method="nm" ) UpperCamelCase = model_fit.predict(1 , len(lowercase_ ) , exog=[test_match] ) return result[0] def __magic_name__ ( lowercase_ , lowercase_ , lowercase_ ) -> float: '''simple docstring''' UpperCamelCase = SVR(kernel="rbf" , C=1 , gamma=0.1 , epsilon=0.1 ) regressor.fit(lowercase_ , lowercase_ ) UpperCamelCase = regressor.predict(lowercase_ ) return y_pred[0] def __magic_name__ ( lowercase_ ) -> float: '''simple docstring''' train_user.sort() UpperCamelCase = np.percentile(lowercase_ , 25 ) UpperCamelCase = np.percentile(lowercase_ , 75 ) UpperCamelCase = qa - qa UpperCamelCase = qa - (iqr * 0.1) return low_lim def __magic_name__ ( lowercase_ , lowercase_ ) -> bool: '''simple docstring''' UpperCamelCase = 0 UpperCamelCase = 0 for i in list_vote: if i > actual_result: UpperCamelCase = not_safe + 1 else: if abs(abs(lowercase_ ) - abs(lowercase_ ) ) <= 0.1: safe += 1 else: not_safe += 1 return safe > not_safe if __name__ == "__main__": # data_input_df = pd.read_csv("ex_data.csv", header=None) __a : Any = [[1_8_2_3_1, 0.0, 1], [2_2_6_2_1, 1.0, 2], [1_5_6_7_5, 0.0, 3], [2_3_5_8_3, 1.0, 4]] __a : Union[str, Any] = pd.DataFrame( data_input, columns=["""total_user""", """total_even""", """days"""] ) __a : Optional[int] = Normalizer().fit_transform(data_input_df.values) # split data __a : Optional[Any] = normalize_df[:, 2].tolist() __a : str = normalize_df[:, 0].tolist() __a : Optional[int] = normalize_df[:, 1].tolist() # for svr (input variable = total date and total match) __a : Union[str, Any] = normalize_df[:, [1, 2]].tolist() __a : Any = x[: len(x) - 1] __a : List[str] = x[len(x) - 1 :] # for linear regression & sarimax __a : Optional[int] = total_date[: len(total_date) - 1] __a : int = total_user[: len(total_user) - 1] __a : int = total_match[: len(total_match) - 1] __a : str = total_date[len(total_date) - 1 :] __a : Any = total_user[len(total_user) - 1 :] __a : Optional[Any] = total_match[len(total_match) - 1 :] # voting system with forecasting __a : Optional[Any] = [ linear_regression_prediction( trn_date, trn_user, trn_match, tst_date, tst_match ), sarimax_predictor(trn_user, trn_match, tst_match), support_vector_regressor(x_train, x_test, trn_user), ] # check the safety of today's data __a : int = """""" if data_safety_checker(res_vote, tst_user) else """not """ print("""Today's data is {not_str}safe.""")
700
import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() __a : Union[str, Any] = logging.get_logger(__name__) def __magic_name__ ( lowercase_ ) -> Dict: '''simple docstring''' UpperCamelCase = torch.load(lowercase_ , map_location="cpu" ) if "model" in sd.keys(): UpperCamelCase = torch.load(lowercase_ , map_location="cpu" )["model"] # pop unnecessary weights UpperCamelCase = [ "decoder.version", "decoder.output_projection.weight", ] for key in keys_to_delete: if key in sd: sd.pop(lowercase_ ) UpperCamelCase = { "decoder.project_in_dim.weight": "decoder.project_in.weight", "decoder.project_out_dim.weight": "decoder.project_out.weight", "decoder.layer_norm.weight": "decoder.final_layer_norm.weight", "decoder.layer_norm.bias": "decoder.final_layer_norm.bias", } for old_key, new_key in keys_to_rename.items(): if old_key in sd: UpperCamelCase = sd.pop(lowercase_ ) UpperCamelCase = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: UpperCamelCase = sd[key] # We split QKV in separate Q,K,V UpperCamelCase = key.replace(".qkv_proj." , ".q_proj." ) UpperCamelCase = key.replace(".qkv_proj." , ".k_proj." ) UpperCamelCase = key.replace(".qkv_proj." , ".v_proj." ) UpperCamelCase = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 UpperCamelCase , UpperCamelCase , UpperCamelCase = torch.split(lowercase_ , depth // 3 , dim=0 ) UpperCamelCase = q UpperCamelCase = k UpperCamelCase = v del sd[key] return sd @torch.no_grad() def __magic_name__ ( lowercase_ , lowercase_ , lowercase_=None ) -> str: '''simple docstring''' UpperCamelCase = load_checkpoint(lowercase_ ) if config is not None: UpperCamelCase = OPTConfig.from_pretrained(lowercase_ ) else: UpperCamelCase = OPTConfig() UpperCamelCase = OPTModel(lowercase_ ).half().eval() model.load_state_dict(lowercase_ ) # Check results Path(lowercase_ ).mkdir(exist_ok=lowercase_ ) model.save_pretrained(lowercase_ ) if __name__ == "__main__": __a : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( """--fairseq_path""", type=str, help=( """path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:""" """ https://huggingface.co/models?other=opt_metasq""" ), ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--hf_config""", default=None, type=str, help="""Define HF config.""") __a : Dict = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
414
0
import inspect import unittest from typing import List import numpy as np from transformers import EfficientFormerConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, ) from transformers.models.efficientformer.modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_vision_available(): from PIL import Image from transformers import EfficientFormerImageProcessor class __lowercase : def __init__( self , lowercase_ , lowercase_ = 1_3 , lowercase_ = 6_4 , lowercase_ = 2 , lowercase_ = 3 , lowercase_ = 3 , lowercase_ = True , lowercase_ = True , lowercase_ = 1_2_8 , lowercase_=[1_6, 3_2, 6_4, 1_2_8] , lowercase_ = 7 , lowercase_ = 4 , lowercase_ = 3_7 , lowercase_ = "gelu" , lowercase_ = 0.1 , lowercase_ = 0.1 , lowercase_ = 1_0 , lowercase_ = 0.02 , lowercase_ = 2 , lowercase_ = 1 , lowercase_ = 1_2_8 , lowercase_ = [2, 2, 2, 2] , lowercase_ = 2 , lowercase_ = 2 , ) -> Dict: __snake_case = parent __snake_case = batch_size __snake_case = image_size __snake_case = patch_size __snake_case = num_channels __snake_case = is_training __snake_case = use_labels __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = intermediate_size __snake_case = hidden_act __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = type_sequence_label_size __snake_case = initializer_range __snake_case = encoder_stride __snake_case = num_attention_outputs __snake_case = embed_dim __snake_case = embed_dim + 1 __snake_case = resolution __snake_case = depths __snake_case = hidden_sizes __snake_case = dim __snake_case = mlp_expansion_ratio def _a ( self) -> Tuple: __snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) __snake_case = None if self.use_labels: __snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size) __snake_case = self.get_config() return config, pixel_values, labels def _a ( self) -> str: return EfficientFormerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowercase_ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , resolution=self.resolution , depths=self.depths , hidden_sizes=self.hidden_sizes , dim=self.dim , mlp_expansion_ratio=self.mlp_expansion_ratio , ) def _a ( self , lowercase_ , lowercase_ , lowercase_) -> List[str]: __snake_case = TFEfficientFormerModel(config=lowercase_) __snake_case = model(lowercase_ , training=lowercase_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def _a ( self , lowercase_ , lowercase_ , lowercase_) -> Tuple: __snake_case = self.type_sequence_label_size __snake_case = TFEfficientFormerForImageClassification(lowercase_) __snake_case = model(lowercase_ , labels=lowercase_ , training=lowercase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) # test greyscale images __snake_case = 1 __snake_case = TFEfficientFormerForImageClassification(lowercase_) __snake_case = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) __snake_case = model(lowercase_ , labels=lowercase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def _a ( self) -> Optional[Any]: __snake_case = self.prepare_config_and_inputs() __snake_case = config_and_inputs __snake_case = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class __lowercase ( _A , _A , unittest.TestCase ): __UpperCAmelCase = ( ( TFEfficientFormerModel, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerForImageClassification, ) if is_tf_available() else () ) __UpperCAmelCase = ( { "feature-extraction": TFEfficientFormerModel, "image-classification": ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, ), } if is_tf_available() else {} ) __UpperCAmelCase = False __UpperCAmelCase = False __UpperCAmelCase = False __UpperCAmelCase = False __UpperCAmelCase = False def _a ( self) -> Dict: __snake_case = TFEfficientFormerModelTester(self) __snake_case = ConfigTester( self , config_class=lowercase_ , has_text_modality=lowercase_ , hidden_size=3_7) def _a ( self) -> int: self.config_tester.run_common_tests() @unittest.skip(reason='EfficientFormer does not use inputs_embeds') def _a ( self) -> int: pass @unittest.skip(reason='EfficientFormer does not support input and output embeddings') def _a ( self) -> str: pass def _a ( self) -> List[Any]: __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case = model_class(lowercase_) __snake_case = inspect.signature(model.call) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case = [*signature.parameters.keys()] __snake_case = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowercase_) def _a ( self) -> Any: def check_hidden_states_output(lowercase_ , lowercase_ , lowercase_): __snake_case = model_class(lowercase_) __snake_case = model(**self._prepare_for_class(lowercase_ , lowercase_) , training=lowercase_) __snake_case = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __snake_case = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1) self.assertEqual(len(lowercase_) , lowercase_) if hasattr(self.model_tester , 'encoder_seq_length'): __snake_case = self.model_tester.encoder_seq_length if hasattr(self.model_tester , 'chunk_length') and self.model_tester.chunk_length > 1: __snake_case = seq_length * self.model_tester.chunk_length else: __snake_case = self.model_tester.seq_length self.assertListEqual( list(hidden_states[-1].shape[-2:]) , [seq_length, self.model_tester.hidden_size] , ) if config.is_encoder_decoder: __snake_case = outputs.decoder_hidden_states self.asseretIsInstance(lowercase_ , (list, tuple)) self.assertEqual(len(lowercase_) , lowercase_) __snake_case = getattr(self.model_tester , 'seq_length' , lowercase_) __snake_case = getattr(self.model_tester , 'decoder_seq_length' , lowercase_) self.assertListEqual( list(hidden_states[-1].shape[-2:]) , [decoder_seq_length, self.model_tester.hidden_size] , ) __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case = True check_hidden_states_output(lowercase_ , lowercase_ , lowercase_) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __snake_case = True check_hidden_states_output(lowercase_ , lowercase_ , lowercase_) def _a ( self , lowercase_ , lowercase_ , lowercase_=False) -> int: __snake_case = super()._prepare_for_class(lowercase_ , lowercase_ , return_labels=lowercase_) if return_labels: if model_class.__name__ == "TFEfficientFormerForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def _a ( self) -> Union[str, Any]: __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_) @unittest.skip(reason='EfficientFormer does not implement masked image modeling yet') def _a ( self) -> Optional[int]: __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowercase_) def _a ( self) -> Any: __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase_) @slow def _a ( self) -> str: for model_name in TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case = TFEfficientFormerModel.from_pretrained(lowercase_) self.assertIsNotNone(lowercase_) def _a ( self) -> Dict: __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = True __snake_case = getattr(self.model_tester , 'seq_length' , lowercase_) __snake_case = getattr(self.model_tester , 'encoder_seq_length' , lowercase_) __snake_case = getattr(self.model_tester , 'key_length' , lowercase_) __snake_case = getattr(self.model_tester , 'chunk_length' , lowercase_) if chunk_length is not None and hasattr(self.model_tester , 'num_hashes'): __snake_case = encoder_seq_length * self.model_tester.num_hashes for model_class in self.all_model_classes: __snake_case = True __snake_case = False __snake_case = True __snake_case = model_class(lowercase_) __snake_case = model(**self._prepare_for_class(lowercase_ , lowercase_) , training=lowercase_) __snake_case = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(lowercase_) , self.model_tester.num_attention_outputs) # check that output_attentions also work using config del inputs_dict["output_attentions"] __snake_case = True __snake_case = model_class(lowercase_) __snake_case = model(**self._prepare_for_class(lowercase_ , lowercase_) , training=lowercase_) __snake_case = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(lowercase_) , self.model_tester.num_attention_outputs) if chunk_length is not None: self.assertListEqual( list(attentions[0].shape[-4:]) , [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length] , ) else: self.assertListEqual( list(attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length] , ) def _a ( self) -> Optional[int]: # We use a simplified version of this test for EfficientFormer because it requires training=False # and Keras refuses to let us force that during functional construction __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # Prepare our model __snake_case = model_class(lowercase_) # These are maximally general inputs for the model, with multiple None dimensions # Hopefully this will catch any conditionals that fail for flexible shapes __snake_case = { key: tf.keras.Input(shape=val.shape[1:] , dtype=val.dtype , name=lowercase_) for key, val in model.input_signature.items() if key in model.dummy_inputs } __snake_case = model(lowercase_) self.assertTrue(outputs_dict is not None) def A ( ) -> Union[str, Any]: '''simple docstring''' __snake_case = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class __lowercase ( unittest.TestCase ): @cached_property def _a ( self) -> int: return ( EfficientFormerImageProcessor.from_pretrained('snap-research/efficientformer-l1-300') if is_vision_available() else None ) @slow def _a ( self) -> List[Any]: __snake_case = TFEfficientFormerForImageClassification.from_pretrained('snap-research/efficientformer-l1-300') __snake_case = self.default_image_processor __snake_case = prepare_img() __snake_case = image_processor(images=lowercase_ , return_tensors='tf') # forward pass __snake_case = model(**lowercase_ , training=lowercase_) # verify the logits __snake_case = tf.TensorShape((1, 1_0_0_0)) self.assertEqual(outputs.logits.shape , lowercase_) __snake_case = tf.constant([-0.0555, 0.4825, -0.0852]) self.assertTrue(np.allclose(outputs.logits[0, :3] , lowercase_ , atol=1e-4)) @slow def _a ( self) -> List[str]: __snake_case = TFEfficientFormerForImageClassificationWithTeacher.from_pretrained( 'snap-research/efficientformer-l1-300') __snake_case = self.default_image_processor __snake_case = prepare_img() __snake_case = image_processor(images=lowercase_ , return_tensors='tf') # forward pass __snake_case = model(**lowercase_ , training=lowercase_) # verify the logits __snake_case = tf.TensorShape((1, 1_0_0_0)) self.assertEqual(outputs.logits.shape , lowercase_) __snake_case = tf.constant([-0.1312, 0.4353, -1.0499]) self.assertTrue(np.allclose(outputs.logits[0, :3] , lowercase_ , atol=1e-4))
313
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __A : str = { '''configuration_vivit''': ['''VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''VivitConfig'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Optional[int] = ['''VivitImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Optional[Any] = [ '''VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''VivitModel''', '''VivitPreTrainedModel''', '''VivitForVideoClassification''', ] if TYPE_CHECKING: from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_vivit import VivitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vivit import ( VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST, VivitForVideoClassification, VivitModel, VivitPreTrainedModel, ) else: import sys __A : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
231
0
import unittest from transformers import MobileBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertModel, ) class _UpperCamelCase : """simple docstring""" def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=13 , lowerCAmelCase__=7 , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=99 , lowerCAmelCase__=64 , lowerCAmelCase__=32 , lowerCAmelCase__=5 , lowerCAmelCase__=4 , lowerCAmelCase__=37 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=5_12 , lowerCAmelCase__=16 , lowerCAmelCase__=2 , lowerCAmelCase__=0.02 , lowerCAmelCase__=3 , lowerCAmelCase__=4 , lowerCAmelCase__=None , ) -> Optional[int]: '''simple docstring''' __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_input_mask __lowercase = use_token_type_ids __lowercase = use_labels __lowercase = vocab_size __lowercase = hidden_size __lowercase = embedding_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = type_sequence_label_size __lowercase = initializer_range __lowercase = num_labels __lowercase = num_choices __lowercase = scope def _SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase = None if self.use_input_mask: __lowercase = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase = None if self.use_token_type_ids: __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowercase = None __lowercase = None __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase = ids_tensor([self.batch_size] , self.num_choices ) __lowercase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: '''simple docstring''' return MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase__ , initializer_range=self.initializer_range , ) def _SCREAMING_SNAKE_CASE ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Dict: '''simple docstring''' __lowercase = MobileBertModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __lowercase = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ ) __lowercase = model(lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ ) __lowercase = model(lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _SCREAMING_SNAKE_CASE ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple: '''simple docstring''' __lowercase = MobileBertForMaskedLM(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __lowercase = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _SCREAMING_SNAKE_CASE ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Union[str, Any]: '''simple docstring''' __lowercase = MobileBertForNextSentencePrediction(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __lowercase = model( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def _SCREAMING_SNAKE_CASE ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> str: '''simple docstring''' __lowercase = MobileBertForPreTraining(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __lowercase = model( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ , next_sentence_label=lowerCAmelCase__ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def _SCREAMING_SNAKE_CASE ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> int: '''simple docstring''' __lowercase = MobileBertForQuestionAnswering(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __lowercase = model( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , start_positions=lowerCAmelCase__ , end_positions=lowerCAmelCase__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _SCREAMING_SNAKE_CASE ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Dict: '''simple docstring''' __lowercase = self.num_labels __lowercase = MobileBertForSequenceClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __lowercase = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _SCREAMING_SNAKE_CASE ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Any: '''simple docstring''' __lowercase = self.num_labels __lowercase = MobileBertForTokenClassification(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __lowercase = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _SCREAMING_SNAKE_CASE ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Any: '''simple docstring''' __lowercase = self.num_choices __lowercase = MobileBertForMultipleChoice(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __lowercase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase = model( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: '''simple docstring''' __lowercase = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = config_and_inputs __lowercase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class _UpperCamelCase ( _UpperCAmelCase ,_UpperCAmelCase ,unittest.TestCase ): """simple docstring""" __a : Dict = ( ( MobileBertModel, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, ) if is_torch_available() else () ) __a : Tuple = ( { '''feature-extraction''': MobileBertModel, '''fill-mask''': MobileBertForMaskedLM, '''question-answering''': MobileBertForQuestionAnswering, '''text-classification''': MobileBertForSequenceClassification, '''token-classification''': MobileBertForTokenClassification, '''zero-shot''': MobileBertForSequenceClassification, } if is_torch_available() else {} ) __a : Tuple = True def _SCREAMING_SNAKE_CASE ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=False ) -> List[Any]: '''simple docstring''' __lowercase = super()._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ , return_labels=lowerCAmelCase__ ) if return_labels: if model_class in get_values(lowerCAmelCase__ ): __lowercase = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=lowerCAmelCase__ ) __lowercase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase__ ) return inputs_dict def _SCREAMING_SNAKE_CASE ( self ) -> List[Any]: '''simple docstring''' __lowercase = MobileBertModelTester(self ) __lowercase = ConfigTester(self , config_class=lowerCAmelCase__ , hidden_size=37 ) def _SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: '''simple docstring''' self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( self ) -> List[Any]: '''simple docstring''' __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: '''simple docstring''' __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: '''simple docstring''' __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: '''simple docstring''' __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*lowerCAmelCase__ ) def UpperCAmelCase ( lowercase ): return torch.tensor( lowercase , dtype=torch.long , device=lowercase , ) __a : List[str] = 1e-3 @require_torch @require_sentencepiece @require_tokenizers class _UpperCamelCase ( unittest.TestCase ): """simple docstring""" @slow def _SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: '''simple docstring''' __lowercase = MobileBertModel.from_pretrained('''google/mobilebert-uncased''' ).to(lowerCAmelCase__ ) __lowercase = _long_tensor([[1_01, 71_10, 10_05, 10_56, 20_23, 1_13_33, 1_74_13, 10_29, 1_02]] ) with torch.no_grad(): __lowercase = model(lowerCAmelCase__ )[0] __lowercase = torch.Size((1, 9, 5_12) ) self.assertEqual(output.shape , lowerCAmelCase__ ) __lowercase = torch.tensor( [ [ [-2.473_6526E07, 8.269_1656E04, 1.652_1838E05], [-5.754_1704E-01, 3.905_6022E00, 4.401_1507E00], [2.604_7359E00, 1.567_7652E00, -1.732_4188E-01], ] ] , device=lowerCAmelCase__ , ) # MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a # ~1 difference, it's therefore not a good idea to measure using addition. # Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the # result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE __lowercase = torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE ) __lowercase = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE ) self.assertTrue(lower_bound and upper_bound )
705
from __future__ import annotations def UpperCAmelCase ( lowercase , lowercase , lowercase , lowercase ): # noqa: E741 """simple docstring""" while r - l > 1: __lowercase = (l + r) // 2 if v[m] >= key: __lowercase = m else: __lowercase = m # noqa: E741 return r def UpperCAmelCase ( lowercase ): """simple docstring""" if len(lowercase ) == 0: return 0 __lowercase = [0] * len(lowercase ) __lowercase = 1 __lowercase = v[0] for i in range(1 , len(lowercase ) ): if v[i] < tail[0]: __lowercase = v[i] elif v[i] > tail[length - 1]: __lowercase = v[i] length += 1 else: __lowercase = v[i] return length if __name__ == "__main__": import doctest doctest.testmod()
522
0
from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class lowerCAmelCase__ : def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Collection[float] | None = None ) -> None: if components is None: __lowerCamelCase = [] __lowerCamelCase = list(SCREAMING_SNAKE_CASE__ ) def __len__( self : Union[str, Any] ) -> int: return len(self.__components ) def __str__( self : Dict ) -> str: return "(" + ",".join(map(SCREAMING_SNAKE_CASE__ , self.__components ) ) + ")" def __add__( self : str , SCREAMING_SNAKE_CASE__ : Vector ) -> Vector: __lowerCamelCase = len(self ) if size == len(SCREAMING_SNAKE_CASE__ ): __lowerCamelCase = [self.__components[i] + other.component(SCREAMING_SNAKE_CASE__ ) for i in range(SCREAMING_SNAKE_CASE__ )] return Vector(SCREAMING_SNAKE_CASE__ ) else: raise Exception('''must have the same size''' ) def __sub__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Vector ) -> Vector: __lowerCamelCase = len(self ) if size == len(SCREAMING_SNAKE_CASE__ ): __lowerCamelCase = [self.__components[i] - other.component(SCREAMING_SNAKE_CASE__ ) for i in range(SCREAMING_SNAKE_CASE__ )] return Vector(SCREAMING_SNAKE_CASE__ ) else: # error case raise Exception('''must have the same size''' ) @overload def __mul__( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : float ) -> Vector: ... @overload def __mul__( self : int , SCREAMING_SNAKE_CASE__ : Vector ) -> float: ... def __mul__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : float | Vector ) -> float | Vector: if isinstance(SCREAMING_SNAKE_CASE__ , (float, int) ): __lowerCamelCase = [c * other for c in self.__components] return Vector(SCREAMING_SNAKE_CASE__ ) elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and len(self ) == len(SCREAMING_SNAKE_CASE__ ): __lowerCamelCase = len(self ) __lowerCamelCase = [self.__components[i] * other.component(SCREAMING_SNAKE_CASE__ ) for i in range(SCREAMING_SNAKE_CASE__ )] return sum(SCREAMING_SNAKE_CASE__ ) else: # error case raise Exception('''invalid operand!''' ) def __A ( self : List[str] ) -> Vector: return Vector(self.__components ) def __A ( self : str , SCREAMING_SNAKE_CASE__ : int ) -> float: if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and -len(self.__components ) <= i < len(self.__components ): return self.__components[i] else: raise Exception('''index out of range''' ) def __A ( self : Tuple , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : float ) -> None: assert -len(self.__components ) <= pos < len(self.__components ) __lowerCamelCase = value def __A ( self : Optional[Any] ) -> float: if len(self.__components ) == 0: raise Exception('''Vector is empty''' ) __lowerCamelCase = [c**2 for c in self.__components] return math.sqrt(sum(SCREAMING_SNAKE_CASE__ ) ) def __A ( self : List[str] , SCREAMING_SNAKE_CASE__ : Vector , SCREAMING_SNAKE_CASE__ : bool = False ) -> float: __lowerCamelCase = self * other __lowerCamelCase = self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den ) ) else: return math.acos(num / den ) def __magic_name__ ( __lowerCAmelCase : int ) -> Vector: assert isinstance(__lowerCAmelCase , __lowerCAmelCase ) return Vector([0] * dimension ) def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : int ) -> Vector: assert isinstance(__lowerCAmelCase , __lowerCAmelCase ) and (isinstance(__lowerCAmelCase , __lowerCAmelCase )) __lowerCamelCase = [0] * dimension __lowerCamelCase = 1 return Vector(__lowerCAmelCase ) def __magic_name__ ( __lowerCAmelCase : float , __lowerCAmelCase : Vector , __lowerCAmelCase : Vector ) -> Vector: assert ( isinstance(__lowerCAmelCase , __lowerCAmelCase ) and isinstance(__lowerCAmelCase , __lowerCAmelCase ) and (isinstance(__lowerCAmelCase , (int, float) )) ) return x * scalar + y def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : int ) -> Vector: random.seed(__lowerCAmelCase ) __lowerCamelCase = [random.randint(__lowerCAmelCase , __lowerCAmelCase ) for _ in range(__lowerCAmelCase )] return Vector(__lowerCAmelCase ) class lowerCAmelCase__ : def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : list[list[float]] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ) -> None: __lowerCamelCase = matrix __lowerCamelCase = w __lowerCamelCase = h def __str__( self : Tuple ) -> str: __lowerCamelCase = '''''' for i in range(self.__height ): ans += "|" for j in range(self.__width ): if j < self.__width - 1: ans += str(self.__matrix[i][j] ) + "," else: ans += str(self.__matrix[i][j] ) + "|\n" return ans def __add__( self : Tuple , SCREAMING_SNAKE_CASE__ : Matrix ) -> Matrix: if self.__width == other.width() and self.__height == other.height(): __lowerCamelCase = [] for i in range(self.__height ): __lowerCamelCase = [ self.__matrix[i][j] + other.component(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for j in range(self.__width ) ] matrix.append(SCREAMING_SNAKE_CASE__ ) return Matrix(SCREAMING_SNAKE_CASE__ , self.__width , self.__height ) else: raise Exception('''matrix must have the same dimension!''' ) def __sub__( self : Dict , SCREAMING_SNAKE_CASE__ : Matrix ) -> Matrix: if self.__width == other.width() and self.__height == other.height(): __lowerCamelCase = [] for i in range(self.__height ): __lowerCamelCase = [ self.__matrix[i][j] - other.component(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for j in range(self.__width ) ] matrix.append(SCREAMING_SNAKE_CASE__ ) return Matrix(SCREAMING_SNAKE_CASE__ , self.__width , self.__height ) else: raise Exception('''matrices must have the same dimension!''' ) @overload def __mul__( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : float ) -> Matrix: ... @overload def __mul__( self : int , SCREAMING_SNAKE_CASE__ : Vector ) -> Vector: ... def __mul__( self : List[str] , SCREAMING_SNAKE_CASE__ : float | Vector ) -> Vector | Matrix: if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): # matrix-vector if len(SCREAMING_SNAKE_CASE__ ) == self.__width: __lowerCamelCase = zero_vector(self.__height ) for i in range(self.__height ): __lowerCamelCase = [ self.__matrix[i][j] * other.component(SCREAMING_SNAKE_CASE__ ) for j in range(self.__width ) ] ans.change_component(SCREAMING_SNAKE_CASE__ , sum(SCREAMING_SNAKE_CASE__ ) ) return ans else: raise Exception( '''vector must have the same size as the ''' '''number of columns of the matrix!''' ) elif isinstance(SCREAMING_SNAKE_CASE__ , (int, float) ): # matrix-scalar __lowerCamelCase = [ [self.__matrix[i][j] * other for j in range(self.__width )] for i in range(self.__height ) ] return Matrix(SCREAMING_SNAKE_CASE__ , self.__width , self.__height ) return None def __A ( self : Union[str, Any] ) -> int: return self.__height def __A ( self : List[str] ) -> int: return self.__width def __A ( self : List[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ) -> float: if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception('''change_component: indices out of bounds''' ) def __A ( self : Tuple , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : float ) -> None: if 0 <= x < self.__height and 0 <= y < self.__width: __lowerCamelCase = value else: raise Exception('''change_component: indices out of bounds''' ) def __A ( self : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ) -> float: if self.__height != self.__width: raise Exception('''Matrix is not square''' ) __lowerCamelCase = self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(SCREAMING_SNAKE_CASE__ ) ): __lowerCamelCase = minor[i][:y] + minor[i][y + 1 :] return Matrix(SCREAMING_SNAKE_CASE__ , self.__width - 1 , self.__height - 1 ).determinant() def __A ( self : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ) -> float: if self.__height != self.__width: raise Exception('''Matrix is not square''' ) if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else: raise Exception('''Indices out of bounds''' ) def __A ( self : List[str] ) -> float: if self.__height != self.__width: raise Exception('''Matrix is not square''' ) if self.__height < 1: raise Exception('''Matrix has no element''' ) elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: __lowerCamelCase = [ self.__matrix[0][y] * self.cofactor(0 , SCREAMING_SNAKE_CASE__ ) for y in range(self.__width ) ] return sum(SCREAMING_SNAKE_CASE__ ) def __magic_name__ ( __lowerCAmelCase : int ) -> Matrix: __lowerCamelCase = [[0] * n for _ in range(__lowerCAmelCase )] return Matrix(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : int ) -> Matrix: random.seed(__lowerCAmelCase ) __lowerCamelCase = [ [random.randint(__lowerCAmelCase , __lowerCAmelCase ) for _ in range(__lowerCAmelCase )] for _ in range(__lowerCAmelCase ) ] return Matrix(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
298
from collections import defaultdict from typing import Optional from ..image_utils import load_image from ..utils import ( add_end_docstrings, is_torch_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING SCREAMING_SNAKE_CASE__ : str = logging.get_logger(__name__) @add_end_docstrings(__lowercase ) class lowerCAmelCase__ ( __lowercase ): def __init__( self : Optional[Any] , **SCREAMING_SNAKE_CASE__ : Tuple ) -> Union[str, Any]: super().__init__(**SCREAMING_SNAKE_CASE__ ) requires_backends(self , '''vision''' ) requires_backends(self , '''torch''' ) if self.framework != "pt": raise ValueError(f'''The {self.__class__} is only available in PyTorch.''' ) self.check_model_type(SCREAMING_SNAKE_CASE__ ) def __A ( self : str , **SCREAMING_SNAKE_CASE__ : str ) -> Any: __lowerCamelCase = {} __lowerCamelCase = {} __lowerCamelCase = {} # preprocess args if "points_per_batch" in kwargs: __lowerCamelCase = kwargs['''points_per_batch'''] if "points_per_crop" in kwargs: __lowerCamelCase = kwargs['''points_per_crop'''] if "crops_n_layers" in kwargs: __lowerCamelCase = kwargs['''crops_n_layers'''] if "crop_overlap_ratio" in kwargs: __lowerCamelCase = kwargs['''crop_overlap_ratio'''] if "crop_n_points_downscale_factor" in kwargs: __lowerCamelCase = kwargs['''crop_n_points_downscale_factor'''] # postprocess args if "pred_iou_thresh" in kwargs: __lowerCamelCase = kwargs['''pred_iou_thresh'''] if "stability_score_offset" in kwargs: __lowerCamelCase = kwargs['''stability_score_offset'''] if "mask_threshold" in kwargs: __lowerCamelCase = kwargs['''mask_threshold'''] if "stability_score_thresh" in kwargs: __lowerCamelCase = kwargs['''stability_score_thresh'''] if "crops_nms_thresh" in kwargs: __lowerCamelCase = kwargs['''crops_nms_thresh'''] if "output_rle_mask" in kwargs: __lowerCamelCase = kwargs['''output_rle_mask'''] if "output_bboxes_mask" in kwargs: __lowerCamelCase = kwargs['''output_bboxes_mask'''] return preprocess_kwargs, forward_params, postprocess_kwargs def __call__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] , *SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Any=None , SCREAMING_SNAKE_CASE__ : List[Any]=None , **SCREAMING_SNAKE_CASE__ : int ) -> Union[str, Any]: return super().__call__(SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ , num_workers=SCREAMING_SNAKE_CASE__ , batch_size=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def __A ( self : Any , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any]=64 , SCREAMING_SNAKE_CASE__ : int = 0 , SCREAMING_SNAKE_CASE__ : float = 5_12 / 15_00 , SCREAMING_SNAKE_CASE__ : Optional[int] = 32 , SCREAMING_SNAKE_CASE__ : Optional[int] = 1 , ) -> List[str]: __lowerCamelCase = load_image(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = self.image_processor.size['''longest_edge'''] __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = self.image_processor.generate_crop_boxes( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = self.image_processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='''pt''' ) with self.device_placement(): if self.framework == "pt": __lowerCamelCase = self.get_inference_context() with inference_context(): __lowerCamelCase = self._ensure_tensor_on_device(SCREAMING_SNAKE_CASE__ , device=self.device ) __lowerCamelCase = self.model.get_image_embeddings(model_inputs.pop('''pixel_values''' ) ) __lowerCamelCase = image_embeddings __lowerCamelCase = grid_points.shape[1] __lowerCamelCase = points_per_batch if points_per_batch is not None else n_points if points_per_batch <= 0: raise ValueError( '''Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. ''' '''To return all points at once, set points_per_batch to None''' ) for i in range(0 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __lowerCamelCase = grid_points[:, i : i + points_per_batch, :, :] __lowerCamelCase = input_labels[:, i : i + points_per_batch] __lowerCamelCase = i == n_points - points_per_batch yield { "input_points": batched_points, "input_labels": labels, "input_boxes": crop_boxes, "is_last": is_last, **model_inputs, } def __A ( self : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[int]=0.88 , SCREAMING_SNAKE_CASE__ : Tuple=0.95 , SCREAMING_SNAKE_CASE__ : Dict=0 , SCREAMING_SNAKE_CASE__ : Tuple=1 , ) -> Dict: __lowerCamelCase = model_inputs.pop('''input_boxes''' ) __lowerCamelCase = model_inputs.pop('''is_last''' ) __lowerCamelCase = model_inputs.pop('''original_sizes''' ).tolist() __lowerCamelCase = model_inputs.pop('''reshaped_input_sizes''' ).tolist() __lowerCamelCase = self.model(**SCREAMING_SNAKE_CASE__ ) # post processing happens here in order to avoid CPU GPU copies of ALL the masks __lowerCamelCase = model_outputs['''pred_masks'''] __lowerCamelCase = self.image_processor.post_process_masks( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , binarize=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = model_outputs['''iou_scores'''] __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = self.image_processor.filter_masks( masks[0] , iou_scores[0] , original_sizes[0] , input_boxes[0] , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) return { "masks": masks, "is_last": is_last, "boxes": boxes, "iou_scores": iou_scores, } def __A ( self : str , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[Any]=False , SCREAMING_SNAKE_CASE__ : Optional[Any]=False , SCREAMING_SNAKE_CASE__ : Optional[int]=0.7 , ) -> Union[str, Any]: __lowerCamelCase = [] __lowerCamelCase = [] __lowerCamelCase = [] for model_output in model_outputs: all_scores.append(model_output.pop('''iou_scores''' ) ) all_masks.extend(model_output.pop('''masks''' ) ) all_boxes.append(model_output.pop('''boxes''' ) ) __lowerCamelCase = torch.cat(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = torch.cat(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = self.image_processor.post_process_for_mask_generation( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = defaultdict(SCREAMING_SNAKE_CASE__ ) for output in model_outputs: for k, v in output.items(): extra[k].append(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = {} if output_rle_mask: __lowerCamelCase = rle_mask if output_bboxes_mask: __lowerCamelCase = bounding_boxes return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
298
1
"""simple docstring""" import inspect import unittest from transformers import ConvNextConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextBackbone, ConvNextForImageClassification, ConvNextModel from transformers.models.convnext.modeling_convnext import CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class a : def __init__( self , UpperCamelCase_ , UpperCamelCase_=13 , UpperCamelCase_=32 , UpperCamelCase_=3 , UpperCamelCase_=4 , UpperCamelCase_=[10, 20, 30, 40] , UpperCamelCase_=[2, 2, 3, 2] , UpperCamelCase_=True , UpperCamelCase_=True , UpperCamelCase_=37 , UpperCamelCase_="gelu" , UpperCamelCase_=10 , UpperCamelCase_=0.02 , UpperCamelCase_=["stage2", "stage3", "stage4"] , UpperCamelCase_=[2, 3, 4] , UpperCamelCase_=None , ): UpperCAmelCase__ : Tuple = parent UpperCAmelCase__ : List[str] = batch_size UpperCAmelCase__ : Tuple = image_size UpperCAmelCase__ : List[Any] = num_channels UpperCAmelCase__ : List[str] = num_stages UpperCAmelCase__ : Optional[int] = hidden_sizes UpperCAmelCase__ : int = depths UpperCAmelCase__ : List[str] = is_training UpperCAmelCase__ : Optional[int] = use_labels UpperCAmelCase__ : Union[str, Any] = intermediate_size UpperCAmelCase__ : List[str] = hidden_act UpperCAmelCase__ : int = num_labels UpperCAmelCase__ : int = initializer_range UpperCAmelCase__ : Optional[Any] = out_features UpperCAmelCase__ : Tuple = out_indices UpperCAmelCase__ : Dict = scope def __snake_case ( self ): UpperCAmelCase__ : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase__ : Tuple = None if self.use_labels: UpperCAmelCase__ : Union[str, Any] = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase__ : List[str] = self.get_config() return config, pixel_values, labels def __snake_case ( self ): return ConvNextConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=UpperCamelCase_ , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def __snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): UpperCAmelCase__ : Optional[Any] = ConvNextModel(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() UpperCAmelCase__ : int = model(UpperCamelCase_ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def __snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): UpperCAmelCase__ : str = ConvNextForImageClassification(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() UpperCAmelCase__ : Tuple = model(UpperCamelCase_ , labels=UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): UpperCAmelCase__ : List[str] = ConvNextBackbone(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() UpperCAmelCase__ : Optional[int] = model(UpperCamelCase_ ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None UpperCAmelCase__ : List[Any] = None UpperCAmelCase__ : Dict = ConvNextBackbone(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() UpperCAmelCase__ : Optional[Any] = model(UpperCamelCase_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def __snake_case ( self ): UpperCAmelCase__ : Optional[int] = self.prepare_config_and_inputs() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : int = config_and_inputs UpperCAmelCase__ : List[str] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class a ( lowercase , lowercase , unittest.TestCase ): UpperCamelCase : Optional[Any] = ( ( ConvNextModel, ConvNextForImageClassification, ConvNextBackbone, ) if is_torch_available() else () ) UpperCamelCase : Optional[int] = ( {"""feature-extraction""": ConvNextModel, """image-classification""": ConvNextForImageClassification} if is_torch_available() else {} ) UpperCamelCase : str = True UpperCamelCase : Union[str, Any] = False UpperCamelCase : Any = False UpperCamelCase : Union[str, Any] = False UpperCamelCase : Optional[Any] = False def __snake_case ( self ): UpperCAmelCase__ : str = ConvNextModelTester(self ) UpperCAmelCase__ : Any = ConfigTester(self , config_class=UpperCamelCase_ , has_text_modality=UpperCamelCase_ , hidden_size=37 ) def __snake_case ( self ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __snake_case ( self ): return @unittest.skip(reason='ConvNext does not use inputs_embeds' ) def __snake_case ( self ): pass @unittest.skip(reason='ConvNext does not support input and output embeddings' ) def __snake_case ( self ): pass @unittest.skip(reason='ConvNext does not use feedforward chunking' ) def __snake_case ( self ): pass def __snake_case ( self ): UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : str = model_class(UpperCamelCase_ ) UpperCAmelCase__ : List[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase__ : List[str] = [*signature.parameters.keys()] UpperCAmelCase__ : Union[str, Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] , UpperCamelCase_ ) def __snake_case ( self ): UpperCAmelCase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase_ ) def __snake_case ( self ): UpperCAmelCase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*UpperCamelCase_ ) def __snake_case ( self ): def check_hidden_states_output(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): UpperCAmelCase__ : List[Any] = model_class(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() with torch.no_grad(): UpperCAmelCase__ : Optional[Any] = model(**self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) ) UpperCAmelCase__ : Union[str, Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCAmelCase__ : Optional[Any] = self.model_tester.num_stages self.assertEqual(len(UpperCamelCase_ ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : List[Any] = True check_hidden_states_output(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase__ : str = True check_hidden_states_output(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) def __snake_case ( self ): UpperCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCamelCase_ ) @slow def __snake_case ( self ): for model_name in CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ : List[Any] = ConvNextModel.from_pretrained(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) def lowerCamelCase ( ): UpperCAmelCase__ : int = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class a ( unittest.TestCase ): @cached_property def __snake_case ( self ): return AutoImageProcessor.from_pretrained('facebook/convnext-tiny-224' ) if is_vision_available() else None @slow def __snake_case ( self ): UpperCAmelCase__ : Optional[Any] = ConvNextForImageClassification.from_pretrained('facebook/convnext-tiny-224' ).to(UpperCamelCase_ ) UpperCAmelCase__ : str = self.default_image_processor UpperCAmelCase__ : List[Any] = prepare_img() UpperCAmelCase__ : str = image_processor(images=UpperCamelCase_ , return_tensors='pt' ).to(UpperCamelCase_ ) # forward pass with torch.no_grad(): UpperCAmelCase__ : Optional[Any] = model(**UpperCamelCase_ ) # verify the logits UpperCAmelCase__ : Any = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , UpperCamelCase_ ) UpperCAmelCase__ : Optional[int] = torch.tensor([-0.0260, -0.4739, 0.1911] ).to(UpperCamelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCamelCase_ , atol=1E-4 ) ) @require_torch class a ( unittest.TestCase , lowercase ): UpperCamelCase : str = (ConvNextBackbone,) if is_torch_available() else () UpperCamelCase : List[str] = ConvNextConfig UpperCamelCase : Tuple = False def __snake_case ( self ): UpperCAmelCase__ : List[str] = ConvNextModelTester(self )
254
"""simple docstring""" from __future__ import annotations import unittest from transformers import BlenderbotConfig, BlenderbotTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotForConditionalGeneration, TFBlenderbotModel @require_tf class a : UpperCamelCase : str = BlenderbotConfig UpperCamelCase : int = {} UpperCamelCase : Tuple = """gelu""" def __init__( self , UpperCamelCase_ , UpperCamelCase_=13 , UpperCamelCase_=7 , UpperCamelCase_=True , UpperCamelCase_=False , UpperCamelCase_=99 , UpperCamelCase_=32 , UpperCamelCase_=2 , UpperCamelCase_=4 , UpperCamelCase_=37 , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=20 , UpperCamelCase_=2 , UpperCamelCase_=1 , UpperCamelCase_=0 , ): UpperCAmelCase__ : int = parent UpperCAmelCase__ : Dict = batch_size UpperCAmelCase__ : Optional[Any] = seq_length UpperCAmelCase__ : Any = is_training UpperCAmelCase__ : Optional[int] = use_labels UpperCAmelCase__ : Optional[Any] = vocab_size UpperCAmelCase__ : List[Any] = hidden_size UpperCAmelCase__ : List[str] = num_hidden_layers UpperCAmelCase__ : int = num_attention_heads UpperCAmelCase__ : Union[str, Any] = intermediate_size UpperCAmelCase__ : int = hidden_dropout_prob UpperCAmelCase__ : int = attention_probs_dropout_prob UpperCAmelCase__ : Tuple = max_position_embeddings UpperCAmelCase__ : Dict = eos_token_id UpperCAmelCase__ : int = pad_token_id UpperCAmelCase__ : Union[str, Any] = bos_token_id def __snake_case ( self ): UpperCAmelCase__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) UpperCAmelCase__ : Dict = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) UpperCAmelCase__ : Dict = tf.concat([input_ids, eos_tensor] , axis=1 ) UpperCAmelCase__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase__ : Optional[Any] = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) UpperCAmelCase__ : List[Any] = prepare_blenderbot_inputs_dict(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) return config, inputs_dict def __snake_case ( self , UpperCamelCase_ , UpperCamelCase_ ): UpperCAmelCase__ : Tuple = TFBlenderbotModel(config=UpperCamelCase_ ).get_decoder() UpperCAmelCase__ : Any = inputs_dict['input_ids'] UpperCAmelCase__ : Optional[int] = input_ids[:1, :] UpperCAmelCase__ : str = inputs_dict['attention_mask'][:1, :] UpperCAmelCase__ : str = inputs_dict['head_mask'] UpperCAmelCase__ : List[Any] = 1 # first forward pass UpperCAmelCase__ : Optional[Any] = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , head_mask=UpperCamelCase_ , use_cache=UpperCamelCase_ ) UpperCAmelCase__ , UpperCAmelCase__ : int = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids UpperCAmelCase__ : List[str] = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCAmelCase__ : Union[str, Any] = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and UpperCAmelCase__ : Optional[Any] = tf.concat([input_ids, next_tokens] , axis=-1 ) UpperCAmelCase__ : Any = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) UpperCAmelCase__ : Tuple = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ )[0] UpperCAmelCase__ : Optional[Any] = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , past_key_values=UpperCamelCase_ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice UpperCAmelCase__ : Tuple = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) UpperCAmelCase__ : Tuple = output_from_no_past[:, -3:, random_slice_idx] UpperCAmelCase__ : Optional[Any] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(UpperCamelCase_ , UpperCamelCase_ , rtol=1E-3 ) def lowerCamelCase ( _snake_case ,_snake_case ,_snake_case ,_snake_case=None ,_snake_case=None ,_snake_case=None ,_snake_case=None ,_snake_case=None ,): if attention_mask is None: UpperCAmelCase__ : Tuple = tf.cast(tf.math.not_equal(_snake_case ,config.pad_token_id ) ,tf.inta ) if decoder_attention_mask is None: UpperCAmelCase__ : List[str] = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape ,dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] ,config.pad_token_id ) ,tf.inta ), ] ,axis=-1 ,) if head_mask is None: UpperCAmelCase__ : List[str] = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCAmelCase__ : List[Any] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: UpperCAmelCase__ : Tuple = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class a ( lowercase , lowercase , unittest.TestCase ): UpperCamelCase : int = (TFBlenderbotForConditionalGeneration, TFBlenderbotModel) if is_tf_available() else () UpperCamelCase : Dict = (TFBlenderbotForConditionalGeneration,) if is_tf_available() else () UpperCamelCase : Union[str, Any] = ( { """conversational""": TFBlenderbotForConditionalGeneration, """feature-extraction""": TFBlenderbotModel, """summarization""": TFBlenderbotForConditionalGeneration, """text2text-generation""": TFBlenderbotForConditionalGeneration, """translation""": TFBlenderbotForConditionalGeneration, } if is_tf_available() else {} ) UpperCamelCase : Optional[int] = True UpperCamelCase : List[Any] = False UpperCamelCase : Union[str, Any] = False def __snake_case ( self ): UpperCAmelCase__ : List[Any] = TFBlenderbotModelTester(self ) UpperCAmelCase__ : Tuple = ConfigTester(self , config_class=UpperCamelCase_ ) def __snake_case ( self ): self.config_tester.run_common_tests() def __snake_case ( self ): UpperCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*UpperCamelCase_ ) @require_tokenizers @require_tf class a ( unittest.TestCase ): UpperCamelCase : List[Any] = ["""My friends are cool but they eat too many carbs."""] UpperCamelCase : List[str] = """facebook/blenderbot-400M-distill""" @cached_property def __snake_case ( self ): return BlenderbotTokenizer.from_pretrained(self.model_name ) @cached_property def __snake_case ( self ): UpperCAmelCase__ : Optional[Any] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def __snake_case ( self ): UpperCAmelCase__ : int = self.tokenizer(self.src_text , return_tensors='tf' ) UpperCAmelCase__ : int = self.model.generate( model_inputs.input_ids , ) UpperCAmelCase__ : str = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=UpperCamelCase_ )[0] assert ( generated_words == " That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?" )
254
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available snake_case = { '''configuration_poolformer''': [ '''POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PoolFormerConfig''', '''PoolFormerOnnxConfig''', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = ['''PoolFormerFeatureExtractor'''] snake_case = ['''PoolFormerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = [ '''POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PoolFormerForImageClassification''', '''PoolFormerModel''', '''PoolFormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
309
'''simple docstring''' import warnings from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class SCREAMING_SNAKE_CASE ( __a ): """simple docstring""" __A = ["image_processor", "tokenizer"] __A = "FlavaImageProcessor" __A = ("BertTokenizer", "BertTokenizerFast") def __init__( self : Dict , __lowerCAmelCase : int=None , __lowerCAmelCase : Optional[Any]=None , **__lowerCAmelCase : int ): """simple docstring""" _lowerCAmelCase = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , __lowerCAmelCase , ) _lowerCAmelCase = kwargs.pop('feature_extractor' ) _lowerCAmelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(__lowerCAmelCase , __lowerCAmelCase ) _lowerCAmelCase = self.image_processor def __call__( self : Union[str, Any] , __lowerCAmelCase : Optional[ImageInput] = None , __lowerCAmelCase : Optional[Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]] = None , __lowerCAmelCase : bool = True , __lowerCAmelCase : Union[bool, str, PaddingStrategy] = False , __lowerCAmelCase : Union[bool, str, TruncationStrategy] = False , __lowerCAmelCase : Optional[int] = None , __lowerCAmelCase : int = 0 , __lowerCAmelCase : Optional[int] = None , __lowerCAmelCase : Optional[bool] = None , __lowerCAmelCase : Optional[bool] = None , __lowerCAmelCase : Optional[bool] = None , __lowerCAmelCase : Optional[bool] = None , __lowerCAmelCase : bool = False , __lowerCAmelCase : bool = False , __lowerCAmelCase : bool = False , __lowerCAmelCase : bool = False , __lowerCAmelCase : bool = True , __lowerCAmelCase : Optional[Union[str, TensorType]] = None , **__lowerCAmelCase : Union[str, Any] , ): """simple docstring""" if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: _lowerCAmelCase = self.tokenizer( text=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase , padding=__lowerCAmelCase , truncation=__lowerCAmelCase , max_length=__lowerCAmelCase , stride=__lowerCAmelCase , pad_to_multiple_of=__lowerCAmelCase , return_token_type_ids=__lowerCAmelCase , return_attention_mask=__lowerCAmelCase , return_overflowing_tokens=__lowerCAmelCase , return_special_tokens_mask=__lowerCAmelCase , return_offsets_mapping=__lowerCAmelCase , return_length=__lowerCAmelCase , verbose=__lowerCAmelCase , return_tensors=__lowerCAmelCase , **__lowerCAmelCase , ) if images is not None: _lowerCAmelCase = self.image_processor( __lowerCAmelCase , return_image_mask=__lowerCAmelCase , return_codebook_pixels=__lowerCAmelCase , return_tensors=__lowerCAmelCase , **__lowerCAmelCase , ) if text is not None and images is not None: encoding.update(__lowerCAmelCase ) return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__lowerCAmelCase ) , tensor_type=__lowerCAmelCase ) def a ( self : Any , *__lowerCAmelCase : str , **__lowerCAmelCase : List[Any] ): """simple docstring""" return self.tokenizer.batch_decode(*__lowerCAmelCase , **__lowerCAmelCase ) def a ( self : List[str] , *__lowerCAmelCase : List[str] , **__lowerCAmelCase : Optional[int] ): """simple docstring""" return self.tokenizer.decode(*__lowerCAmelCase , **__lowerCAmelCase ) @property def a ( self : List[str] ): """simple docstring""" _lowerCAmelCase = self.tokenizer.model_input_names _lowerCAmelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def a ( self : Optional[int] ): """simple docstring""" warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , __lowerCAmelCase , ) return self.image_processor_class @property def a ( self : Any ): """simple docstring""" warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , __lowerCAmelCase , ) return self.image_processor
309
1
"""simple docstring""" import math def lowerCamelCase ( _UpperCamelCase : int = 1_0_0 ) -> int: '''simple docstring''' __UpperCAmelCase : List[Any] = sum(i * i for i in range(1 , n + 1 ) ) __UpperCAmelCase : Tuple = int(math.pow(sum(range(1 , n + 1 ) ) , 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(F"{solution() = }")
299
"""simple docstring""" import inspect import unittest from transformers import YolosConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import YolosForObjectDetection, YolosModel from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCamelCase__ : """simple docstring""" def __init__( self : str , UpperCamelCase : Optional[int] , UpperCamelCase : Optional[int]=13 , UpperCamelCase : Optional[Any]=[30, 30] , UpperCamelCase : Dict=2 , UpperCamelCase : Dict=3 , UpperCamelCase : Optional[Any]=True , UpperCamelCase : Dict=True , UpperCamelCase : Tuple=32 , UpperCamelCase : List[Any]=5 , UpperCamelCase : List[Any]=4 , UpperCamelCase : Any=37 , UpperCamelCase : Optional[int]="gelu" , UpperCamelCase : str=0.1 , UpperCamelCase : List[Any]=0.1 , UpperCamelCase : Optional[int]=10 , UpperCamelCase : Optional[int]=0.02 , UpperCamelCase : List[Any]=3 , UpperCamelCase : Optional[int]=None , UpperCamelCase : List[str]=8 , UpperCamelCase : Any=10 , ): '''simple docstring''' __UpperCAmelCase : Optional[int] = parent __UpperCAmelCase : List[Any] = batch_size __UpperCAmelCase : int = image_size __UpperCAmelCase : Optional[Any] = patch_size __UpperCAmelCase : Union[str, Any] = num_channels __UpperCAmelCase : List[str] = is_training __UpperCAmelCase : int = use_labels __UpperCAmelCase : Optional[int] = hidden_size __UpperCAmelCase : Optional[Any] = num_hidden_layers __UpperCAmelCase : Tuple = num_attention_heads __UpperCAmelCase : Optional[int] = intermediate_size __UpperCAmelCase : int = hidden_act __UpperCAmelCase : Dict = hidden_dropout_prob __UpperCAmelCase : str = attention_probs_dropout_prob __UpperCAmelCase : Dict = type_sequence_label_size __UpperCAmelCase : int = initializer_range __UpperCAmelCase : str = num_labels __UpperCAmelCase : Dict = scope __UpperCAmelCase : str = n_targets __UpperCAmelCase : Optional[int] = num_detection_tokens # we set the expected sequence length (which is used in several tests) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens __UpperCAmelCase : Optional[int] = (image_size[1] // patch_size) * (image_size[0] // patch_size) __UpperCAmelCase : List[Any] = num_patches + 1 + self.num_detection_tokens def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' __UpperCAmelCase : int = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]] ) __UpperCAmelCase : Optional[Any] = None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) __UpperCAmelCase : Tuple = [] for i in range(self.batch_size ): __UpperCAmelCase : Optional[int] = {} __UpperCAmelCase : Optional[int] = torch.randint( high=self.num_labels , size=(self.n_targets,) , device=UpperCamelCase ) __UpperCAmelCase : Tuple = torch.rand(self.n_targets , 4 , device=UpperCamelCase ) labels.append(UpperCamelCase ) __UpperCAmelCase : str = self.get_config() return config, pixel_values, labels def lowerCamelCase__ ( self : List[str] ): '''simple docstring''' return YolosConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCamelCase , initializer_range=self.initializer_range , num_detection_tokens=self.num_detection_tokens , num_labels=self.num_labels , ) def lowerCamelCase__ ( self : List[str] , UpperCamelCase : Optional[int] , UpperCamelCase : Tuple , UpperCamelCase : Optional[Any] ): '''simple docstring''' __UpperCAmelCase : str = YolosModel(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() __UpperCAmelCase : str = model(UpperCamelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.expected_seq_len, self.hidden_size) ) def lowerCamelCase__ ( self : Optional[Any] , UpperCamelCase : List[Any] , UpperCamelCase : Optional[Any] , UpperCamelCase : Tuple ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = YolosForObjectDetection(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() __UpperCAmelCase : str = model(pixel_values=UpperCamelCase ) __UpperCAmelCase : str = model(UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) __UpperCAmelCase : Any = model(pixel_values=UpperCamelCase , labels=UpperCamelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' __UpperCAmelCase : Optional[int] = self.prepare_config_and_inputs() __UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase : Union[str, Any] = config_and_inputs __UpperCAmelCase : Union[str, Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowerCamelCase__ ( A , A , unittest.TestCase ): """simple docstring""" __a = (YolosModel, YolosForObjectDetection) if is_torch_available() else () __a = ( {"""feature-extraction""": YolosModel, """object-detection""": YolosForObjectDetection} if is_torch_available() else {} ) __a = False __a = False __a = False __a = False def lowerCamelCase__ ( self : Dict , UpperCamelCase : Optional[Any] , UpperCamelCase : int , UpperCamelCase : int=False ): '''simple docstring''' __UpperCAmelCase : int = super()._prepare_for_class(UpperCamelCase , UpperCamelCase , return_labels=UpperCamelCase ) if return_labels: if model_class.__name__ == "YolosForObjectDetection": __UpperCAmelCase : Optional[Any] = [] for i in range(self.model_tester.batch_size ): __UpperCAmelCase : List[Any] = {} __UpperCAmelCase : Optional[int] = torch.ones( size=(self.model_tester.n_targets,) , device=UpperCamelCase , dtype=torch.long ) __UpperCAmelCase : Union[str, Any] = torch.ones( self.model_tester.n_targets , 4 , device=UpperCamelCase , dtype=torch.float ) labels.append(UpperCamelCase ) __UpperCAmelCase : List[Any] = labels return inputs_dict def lowerCamelCase__ ( self : str ): '''simple docstring''' __UpperCAmelCase : List[str] = YolosModelTester(self ) __UpperCAmelCase : Tuple = ConfigTester(self , config_class=UpperCamelCase , has_text_modality=UpperCamelCase , hidden_size=37 ) def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' self.config_tester.run_common_tests() def lowerCamelCase__ ( self : Optional[int] ): '''simple docstring''' pass def lowerCamelCase__ ( self : Optional[Any] ): '''simple docstring''' __UpperCAmelCase ,__UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : Dict = model_class(UpperCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __UpperCAmelCase : Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCamelCase , nn.Linear ) ) def lowerCamelCase__ ( self : Optional[Any] ): '''simple docstring''' __UpperCAmelCase ,__UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : List[Any] = model_class(UpperCamelCase ) __UpperCAmelCase : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase : int = [*signature.parameters.keys()] __UpperCAmelCase : Tuple = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , UpperCamelCase ) def lowerCamelCase__ ( self : str ): '''simple docstring''' __UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase ) def lowerCamelCase__ ( self : Optional[int] ): '''simple docstring''' __UpperCAmelCase ,__UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Any = True # in YOLOS, the seq_len is different __UpperCAmelCase : List[str] = self.model_tester.expected_seq_len for model_class in self.all_model_classes: __UpperCAmelCase : Union[str, Any] = True __UpperCAmelCase : Any = False __UpperCAmelCase : Any = True __UpperCAmelCase : List[str] = model_class(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() with torch.no_grad(): __UpperCAmelCase : List[str] = model(**self._prepare_for_class(UpperCamelCase , UpperCamelCase ) ) __UpperCAmelCase : str = outputs.attentions self.assertEqual(len(UpperCamelCase ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __UpperCAmelCase : Dict = True __UpperCAmelCase : str = model_class(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() with torch.no_grad(): __UpperCAmelCase : List[Any] = model(**self._prepare_for_class(UpperCamelCase , UpperCamelCase ) ) __UpperCAmelCase : Union[str, Any] = outputs.attentions self.assertEqual(len(UpperCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) __UpperCAmelCase : Optional[int] = len(UpperCamelCase ) # Check attention is always last and order is fine __UpperCAmelCase : Any = True __UpperCAmelCase : Dict = True __UpperCAmelCase : str = model_class(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() with torch.no_grad(): __UpperCAmelCase : Dict = model(**self._prepare_for_class(UpperCamelCase , UpperCamelCase ) ) __UpperCAmelCase : int = 1 self.assertEqual(out_len + added_hidden_states , len(UpperCamelCase ) ) __UpperCAmelCase : Union[str, Any] = outputs.attentions self.assertEqual(len(UpperCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def lowerCamelCase__ ( self : Dict ): '''simple docstring''' def check_hidden_states_output(UpperCamelCase : Union[str, Any] , UpperCamelCase : Union[str, Any] , UpperCamelCase : int ): __UpperCAmelCase : str = model_class(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() with torch.no_grad(): __UpperCAmelCase : Union[str, Any] = model(**self._prepare_for_class(UpperCamelCase , UpperCamelCase ) ) __UpperCAmelCase : str = outputs.hidden_states __UpperCAmelCase : Tuple = getattr( self.model_tester , """expected_num_hidden_layers""" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(UpperCamelCase ) , UpperCamelCase ) # YOLOS has a different seq_length __UpperCAmelCase : int = self.model_tester.expected_seq_len self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) __UpperCAmelCase ,__UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : Any = True check_hidden_states_output(UpperCamelCase , UpperCamelCase , UpperCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCAmelCase : Optional[int] = True check_hidden_states_output(UpperCamelCase , UpperCamelCase , UpperCamelCase ) def lowerCamelCase__ ( self : List[str] ): '''simple docstring''' __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_object_detection(*UpperCamelCase ) @slow def lowerCamelCase__ ( self : Dict ): '''simple docstring''' for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : Union[str, Any] = YolosModel.from_pretrained(UpperCamelCase ) self.assertIsNotNone(UpperCamelCase ) def lowerCamelCase ( ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : Dict = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class lowerCamelCase__ ( unittest.TestCase ): """simple docstring""" @cached_property def lowerCamelCase__ ( self : int ): '''simple docstring''' return AutoImageProcessor.from_pretrained("""hustvl/yolos-small""" ) if is_vision_available() else None @slow def lowerCamelCase__ ( self : int ): '''simple docstring''' __UpperCAmelCase : int = YolosForObjectDetection.from_pretrained("""hustvl/yolos-small""" ).to(UpperCamelCase ) __UpperCAmelCase : List[str] = self.default_image_processor __UpperCAmelCase : Any = prepare_img() __UpperCAmelCase : Union[str, Any] = image_processor(images=UpperCamelCase , return_tensors="""pt""" ).to(UpperCamelCase ) # forward pass with torch.no_grad(): __UpperCAmelCase : Union[str, Any] = model(inputs.pixel_values ) # verify outputs __UpperCAmelCase : Any = torch.Size((1, 100, 92) ) self.assertEqual(outputs.logits.shape , UpperCamelCase ) __UpperCAmelCase : List[str] = torch.tensor( [[-24.0248, -10.3024, -14.8290], [-42.0392, -16.8200, -27.4334], [-27.2743, -11.8154, -18.7148]] , device=UpperCamelCase , ) __UpperCAmelCase : Union[str, Any] = torch.tensor( [[0.2559, 0.5455, 0.4706], [0.2989, 0.7279, 0.1875], [0.7732, 0.4017, 0.4462]] , device=UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , UpperCamelCase , atol=1e-4 ) ) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] , UpperCamelCase , atol=1e-4 ) ) # verify postprocessing __UpperCAmelCase : List[str] = image_processor.post_process_object_detection( UpperCamelCase , threshold=0.3 , target_sizes=[image.size[::-1]] )[0] __UpperCAmelCase : Optional[Any] = torch.tensor([0.9994, 0.9790, 0.9964, 0.9972, 0.9861] ).to(UpperCamelCase ) __UpperCAmelCase : Any = [75, 75, 17, 63, 17] __UpperCAmelCase : Any = torch.tensor([335.0609, 79.3848, 375.4216, 187.2495] ).to(UpperCamelCase ) self.assertEqual(len(results["""scores"""] ) , 5 ) self.assertTrue(torch.allclose(results["""scores"""] , UpperCamelCase , atol=1e-4 ) ) self.assertSequenceEqual(results["""labels"""].tolist() , UpperCamelCase ) self.assertTrue(torch.allclose(results["""boxes"""][0, :] , UpperCamelCase ) )
299
1
from .configuration_bert_masked import MaskedBertConfig from .modeling_bert_masked import ( MaskedBertForMultipleChoice, MaskedBertForQuestionAnswering, MaskedBertForSequenceClassification, MaskedBertForTokenClassification, MaskedBertModel, ) from .modules import *
278
"""simple docstring""" from __future__ import annotations from numpy import array, cos, cross, floataa, radians, sin from numpy.typing import NDArray def lowerCamelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = False ) -> list[float]: '''simple docstring''' if radian_mode: return [magnitude * cos(__lowerCAmelCase ), magnitude * sin(__lowerCAmelCase )] return [magnitude * cos(radians(__lowerCAmelCase ) ), magnitude * sin(radians(__lowerCAmelCase ) )] def lowerCamelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = 10**-1 ) -> bool: '''simple docstring''' lowerCamelCase__ =cross(__lowerCAmelCase , __lowerCAmelCase ) lowerCamelCase__ =sum(__lowerCAmelCase ) return abs(__lowerCAmelCase ) < eps if __name__ == "__main__": # Test to check if it works a =array( [ polar_force(718.4, 180 - 30), polar_force(879.54, 45), polar_force(100, -90), ] ) a =array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem 1 in image_data/2D_problems.jpg a =array( [ polar_force(30 * 9.81, 15), polar_force(215, 180 - 45), polar_force(264, 90 - 30), ] ) a =array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem in image_data/2D_problems_1.jpg a =array([[0, -2000], [0, -1200], [0, 1_5600], [0, -1_2400]]) a =array([[0, 0], [6, 0], [10, 0], [12, 0]]) assert in_static_equilibrium(forces, location) import doctest doctest.testmod()
530
0
'''simple docstring''' import inspect import os import unittest import torch import accelerate from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_multi_gpu from accelerate.utils import patch_environment class lowerCamelCase ( unittest.TestCase ): def SCREAMING_SNAKE_CASE_ ( self : int ): '''simple docstring''' _snake_case: Optional[Any] = inspect.getfile(accelerate.test_utils ) _snake_case: str = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_script.py'] ) _snake_case: Optional[int] = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_distributed_data_loop.py'] ) _snake_case: Union[str, Any] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_ops.py'] ) @require_multi_gpu def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): '''simple docstring''' print(f'''Found {torch.cuda.device_count()} devices.''' ) _snake_case: Tuple = ['torchrun', f'''--nproc_per_node={torch.cuda.device_count()}''', self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__snake_case , env=os.environ.copy() ) @require_multi_gpu def SCREAMING_SNAKE_CASE_ ( self : Tuple ): '''simple docstring''' print(f'''Found {torch.cuda.device_count()} devices.''' ) _snake_case: Any = ['torchrun', f'''--nproc_per_node={torch.cuda.device_count()}''', self.operation_file_path] print(f'''Command: {cmd}''' ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__snake_case , env=os.environ.copy() ) @require_multi_gpu def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): '''simple docstring''' _snake_case: Optional[int] = ['torchrun', f'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__snake_case , env=os.environ.copy() ) @require_multi_gpu def SCREAMING_SNAKE_CASE_ ( self : Tuple ): '''simple docstring''' print(f'''Found {torch.cuda.device_count()} devices, using 2 devices only''' ) _snake_case: Dict = ['torchrun', f'''--nproc_per_node={torch.cuda.device_count()}''', self.data_loop_file_path] with patch_environment(omp_num_threads=1 , cuda_visible_devices='0,1' ): execute_subprocess_async(__snake_case , env=os.environ.copy() ) if __name__ == "__main__": A : Dict = Accelerator() A : List[str] = (accelerator.state.process_index + 2, 10) A : List[Any] = torch.randint(0, 10, shape).to(accelerator.device) A : List[str] = '' A : Union[str, Any] = accelerator.pad_across_processes(tensor) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0): error_msg += "Padding was not done with the right value (0)." A : Optional[Any] = accelerator.pad_across_processes(tensor, pad_first=True) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." A : str = accelerator.state.num_processes - accelerator.state.process_index - 1 if not torch.equal(tensora[index:], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[:index] == 0): error_msg += "Padding was not done with the right value (0)." # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
273
'''simple docstring''' import unittest from transformers import BigBirdTokenizer, BigBirdTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin A : Tuple = '▁' A : Optional[Any] = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class lowerCamelCase ( __UpperCAmelCase , unittest.TestCase ): _SCREAMING_SNAKE_CASE = BigBirdTokenizer _SCREAMING_SNAKE_CASE = BigBirdTokenizerFast _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = True def SCREAMING_SNAKE_CASE_ ( self : str ): '''simple docstring''' super().setUp() _snake_case: Dict = self.tokenizer_class(__snake_case , keep_accents=__snake_case ) tokenizer.save_pretrained(self.tmpdirname ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): '''simple docstring''' _snake_case: List[str] = '<s>' _snake_case: Tuple = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__snake_case ) , __snake_case ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__snake_case ) , __snake_case ) def SCREAMING_SNAKE_CASE_ ( self : int ): '''simple docstring''' _snake_case: Dict = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<unk>' ) self.assertEqual(vocab_keys[1] , '<s>' ) self.assertEqual(vocab_keys[-1] , '[MASK]' ) self.assertEqual(len(__snake_case ) , 10_04 ) def SCREAMING_SNAKE_CASE_ ( self : int ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 10_00 ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ): '''simple docstring''' if not self.test_rust_tokenizer: return _snake_case: Optional[int] = self.get_tokenizer() _snake_case: Union[str, Any] = self.get_rust_tokenizer() _snake_case: List[str] = 'I was born in 92000, and this is falsé.' _snake_case: str = tokenizer.tokenize(__snake_case ) _snake_case: Dict = rust_tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) _snake_case: Union[str, Any] = tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) _snake_case: List[Any] = rust_tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) self.assertListEqual(__snake_case , __snake_case ) _snake_case: Optional[int] = self.get_rust_tokenizer() _snake_case: int = tokenizer.encode(__snake_case ) _snake_case: Tuple = rust_tokenizer.encode(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) def SCREAMING_SNAKE_CASE_ ( self : str ): '''simple docstring''' _snake_case: Tuple = BigBirdTokenizer(__snake_case , keep_accents=__snake_case ) _snake_case: Optional[int] = tokenizer.tokenize('This is a test' ) self.assertListEqual(__snake_case , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__snake_case ) , [2_85, 46, 10, 1_70, 3_82] , ) _snake_case: Any = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( __snake_case , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) _snake_case: List[Any] = tokenizer.convert_tokens_to_ids(__snake_case ) self.assertListEqual( __snake_case , [8, 21, 84, 55, 24, 19, 7, 0, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) _snake_case: Optional[Any] = tokenizer.convert_ids_to_tokens(__snake_case ) self.assertListEqual( __snake_case , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) @cached_property def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): '''simple docstring''' return BigBirdTokenizer.from_pretrained('google/bigbird-roberta-base' ) @slow def SCREAMING_SNAKE_CASE_ ( self : Dict ): '''simple docstring''' _snake_case: Dict = 'Hello World!' _snake_case: Optional[int] = [65, 1_85_36, 22_60, 1_01, 66] self.assertListEqual(__snake_case , self.big_tokenizer.encode(__snake_case ) ) @slow def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): '''simple docstring''' _snake_case: str = ( 'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will' ' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth' ) # fmt: off _snake_case: str = [65, 8_71, 4_19, 3_58, 9_46, 9_91, 25_21, 4_52, 3_58, 13_57, 3_87, 77_51, 35_36, 1_12, 9_85, 4_56, 1_26, 8_65, 9_38, 54_00, 57_34, 4_58, 13_68, 4_67, 7_86, 24_62, 52_46, 11_59, 6_33, 8_65, 45_19, 4_57, 5_82, 8_52, 25_57, 4_27, 9_16, 5_08, 4_05, 3_43_24, 4_97, 3_91, 4_08, 1_13_42, 12_44, 3_85, 1_00, 9_38, 9_85, 4_56, 5_74, 3_62, 1_25_97, 32_00, 31_29, 11_72, 66] # noqa: E231 # fmt: on self.assertListEqual(__snake_case , self.big_tokenizer.encode(__snake_case ) ) @require_torch @slow def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): '''simple docstring''' import torch from transformers import BigBirdConfig, BigBirdModel # Build sequence _snake_case: Tuple = list(self.big_tokenizer.get_vocab().keys() )[:10] _snake_case: Union[str, Any] = ' '.join(__snake_case ) _snake_case: Optional[Any] = self.big_tokenizer.encode_plus(__snake_case , return_tensors='pt' , return_token_type_ids=__snake_case ) _snake_case: int = self.big_tokenizer.batch_encode_plus( [sequence + ' ' + sequence] , return_tensors='pt' , return_token_type_ids=__snake_case ) _snake_case: int = BigBirdConfig(attention_type='original_full' ) _snake_case: int = BigBirdModel(__snake_case ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**__snake_case ) model(**__snake_case ) @slow def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): '''simple docstring''' _snake_case: Tuple = BigBirdTokenizer.from_pretrained('google/bigbird-roberta-base' ) _snake_case: Optional[Any] = tokenizer.decode(tokenizer('Paris is the [MASK].' ).input_ids ) self.assertTrue(decoded_text == '[CLS] Paris is the[MASK].[SEP]' ) @slow def SCREAMING_SNAKE_CASE_ ( self : int ): '''simple docstring''' _snake_case: Dict = {'input_ids': [[65, 3_92_86, 4_58, 3_63_35, 20_01, 4_56, 1_30_73, 1_32_66, 4_55, 1_13, 77_46, 17_41, 1_11_57, 3_91, 1_30_73, 1_32_66, 4_55, 1_13, 39_67, 3_54_12, 1_13, 49_36, 1_09, 38_70, 23_77, 1_13, 3_00_84, 4_57_20, 4_58, 1_34, 1_74_96, 1_12, 5_03, 1_16_72, 1_13, 1_18, 1_12, 56_65, 1_33_47, 3_86_87, 1_12, 14_96, 3_13_89, 1_12, 32_68, 4_72_64, 1_34, 9_62, 1_12, 1_63_77, 80_35, 2_31_30, 4_30, 1_21_69, 1_55_18, 2_85_92, 4_58, 1_46, 4_16_97, 1_09, 3_91, 1_21_69, 1_55_18, 1_66_89, 4_58, 1_46, 4_13_58, 1_09, 4_52, 7_26, 40_34, 1_11, 7_63, 3_54_12, 50_82, 3_88, 19_03, 1_11, 90_51, 3_91, 28_70, 4_89_18, 19_00, 11_23, 5_50, 9_98, 1_12, 95_86, 1_59_85, 4_55, 3_91, 4_10, 2_29_55, 3_76_36, 1_14, 66], [65, 4_48, 1_74_96, 4_19, 36_63, 3_85, 7_63, 1_13, 2_75_33, 28_70, 32_83, 1_30_43, 16_39, 2_47_13, 5_23, 6_56, 2_40_13, 1_85_50, 25_21, 5_17, 2_70_14, 2_12_44, 4_20, 12_12, 14_65, 3_91, 9_27, 48_33, 3_88, 5_78, 1_17_86, 1_14, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [65, 4_84, 21_69, 76_87, 2_19_32, 1_81_46, 7_26, 3_63, 1_70_32, 33_91, 1_14, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__snake_case , model_name='google/bigbird-roberta-base' , revision='215c99f1600e06f83acce68422f2035b2b5c3510' , )
273
1
import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = ['''model.decoder.embed_positions.weights'''] def UpperCAmelCase__ ( lowerCamelCase_ : Tuple ): if "emb" in name: __a : Any = name.replace('emb' , 'model.decoder.embed_tokens' ) if "transformer" in name: __a : str = name.replace('transformer' , 'model.decoder' ) if "cross_attention" in name: __a : List[Any] = name.replace('cross_attention' , 'encoder_attn' ) if "linear1" in name: __a : List[Any] = name.replace('linear1' , 'fc1' ) if "linear2" in name: __a : List[str] = name.replace('linear2' , 'fc2' ) if "norm1" in name: __a : List[str] = name.replace('norm1' , 'self_attn_layer_norm' ) if "norm_cross" in name: __a : List[Any] = name.replace('norm_cross' , 'encoder_attn_layer_norm' ) if "norm2" in name: __a : str = name.replace('norm2' , 'final_layer_norm' ) if "out_norm" in name: __a : int = name.replace('out_norm' , 'model.decoder.layer_norm' ) if "linears" in name: __a : Any = name.replace('linears' , 'lm_heads' ) if "condition_provider.conditioners.description.output_proj" in name: __a : List[Any] = name.replace('condition_provider.conditioners.description.output_proj' , 'enc_to_dec_proj' ) return name def UpperCAmelCase__ ( lowerCamelCase_ : OrderedDict , lowerCamelCase_ : int ): __a : Union[str, Any] = list(state_dict.keys() ) __a : Optional[int] = {} for key in keys: __a : Optional[int] = state_dict.pop(lowerCamelCase_ ) __a : List[Any] = rename_keys(lowerCamelCase_ ) if "in_proj_weight" in key: # split fused qkv proj __a : Optional[Any] = val[:hidden_size, :] __a : Optional[Any] = val[hidden_size : 2 * hidden_size, :] __a : str = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: __a : List[str] = val else: __a : Any = val return state_dict, enc_dec_proj_state_dict def UpperCAmelCase__ ( lowerCamelCase_ : str ): if checkpoint == "small": # default config values __a : Union[str, Any] = 1_0_2_4 __a : Any = 2_4 __a : Tuple = 1_6 elif checkpoint == "medium": __a : Dict = 1_5_3_6 __a : Dict = 4_8 __a : Union[str, Any] = 2_4 elif checkpoint == "large": __a : int = 2_0_4_8 __a : Dict = 4_8 __a : Union[str, Any] = 3_2 else: raise ValueError(f'''Checkpoint should be one of `[\'small\', \'medium\', \'large\']`, got {checkpoint}.''' ) __a : str = MusicgenDecoderConfig( hidden_size=lowerCamelCase_ , ffn_dim=hidden_size * 4 , num_hidden_layers=lowerCamelCase_ , num_attention_heads=lowerCamelCase_ , ) return config @torch.no_grad() def UpperCAmelCase__ ( lowerCamelCase_ : Tuple , lowerCamelCase_ : Optional[Any]=None , lowerCamelCase_ : int=None , lowerCamelCase_ : List[Any]="cpu" ): __a : str = MusicGen.get_pretrained(lowerCamelCase_ , device=lowerCamelCase_ ) __a : str = decoder_config_from_checkpoint(lowerCamelCase_ ) __a : Tuple = fairseq_model.lm.state_dict() __a , __a : int = rename_state_dict( lowerCamelCase_ , hidden_size=decoder_config.hidden_size ) __a : int = TaEncoderModel.from_pretrained('t5-base' ) __a : List[Any] = EncodecModel.from_pretrained('facebook/encodec_32khz' ) __a : Tuple = MusicgenForCausalLM(lowerCamelCase_ ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection __a , __a : Optional[int] = decoder.load_state_dict(lowerCamelCase_ , strict=lowerCamelCase_ ) for key in missing_keys.copy(): if key.startswith(('text_encoder', 'audio_encoder') ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(lowerCamelCase_ ) if len(lowerCamelCase_ ) > 0: raise ValueError(f'''Missing key(s) in state_dict: {missing_keys}''' ) if len(lowerCamelCase_ ) > 0: raise ValueError(f'''Unexpected key(s) in state_dict: {unexpected_keys}''' ) # init the composite model __a : Union[str, Any] = MusicgenForConditionalGeneration(text_encoder=lowerCamelCase_ , audio_encoder=lowerCamelCase_ , decoder=lowerCamelCase_ ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(lowerCamelCase_ ) # check we can do a forward pass __a : Any = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 ) __a : Tuple = input_ids.reshape(2 * 4 , -1 ) with torch.no_grad(): __a : Any = model(input_ids=lowerCamelCase_ , decoder_input_ids=lowerCamelCase_ ).logits if logits.shape != (8, 1, 2_0_4_8): raise ValueError('Incorrect shape for logits' ) # now construct the processor __a : Any = AutoTokenizer.from_pretrained('t5-base' ) __a : Optional[Any] = AutoFeatureExtractor.from_pretrained('facebook/encodec_32khz' , padding_side='left' ) __a : Union[str, Any] = MusicgenProcessor(feature_extractor=lowerCamelCase_ , tokenizer=lowerCamelCase_ ) # set the appropriate bos/pad token ids __a : Tuple = 2_0_4_8 __a : int = 2_0_4_8 # set other default generation config params __a : Union[str, Any] = int(3_0 * audio_encoder.config.frame_rate ) __a : List[Any] = True __a : Any = 3.0 if pytorch_dump_folder is not None: Path(lowerCamelCase_ ).mkdir(exist_ok=lowerCamelCase_ ) logger.info(f'''Saving model {checkpoint} to {pytorch_dump_folder}''' ) model.save_pretrained(lowerCamelCase_ ) processor.save_pretrained(lowerCamelCase_ ) if repo_id: logger.info(f'''Pushing model {checkpoint} to {repo_id}''' ) model.push_to_hub(lowerCamelCase_ ) processor.push_to_hub(lowerCamelCase_ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint''', default='''small''', type=str, help='''Checkpoint size of the MusicGen model you\'d like to convert. Can be one of: `[\'small\', \'medium\', \'large\']`.''', ) parser.add_argument( '''--pytorch_dump_folder''', required=True, default=None, type=str, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.''' ) parser.add_argument( '''--device''', default='''cpu''', type=str, help='''Torch device to run the conversion, either cpu or cuda.''' ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
47
from collections.abc import Sequence from queue import Queue class _UpperCamelCase: def __init__( self : Tuple , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : int=None , SCREAMING_SNAKE_CASE__ : Tuple=None ): '''simple docstring''' __a : Tuple = start __a : Dict = end __a : List[str] = val __a : List[Any] = (start + end) // 2 __a : Optional[Any] = left __a : List[str] = right def __repr__( self : Dict ): '''simple docstring''' return f'''SegmentTreeNode(start={self.start}, end={self.end}, val={self.val})''' class _UpperCamelCase: def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : Sequence , SCREAMING_SNAKE_CASE__ : Optional[Any] ): '''simple docstring''' __a : Tuple = collection __a : Dict = function if self.collection: __a : int = self._build_tree(0 , len(SCREAMING_SNAKE_CASE__ ) - 1 ) def __lowerCAmelCase ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : int ): '''simple docstring''' self._update_tree(self.root , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : str , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[str] ): '''simple docstring''' return self._query_range(self.root , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Dict ): '''simple docstring''' if start == end: return SegmentTreeNode(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , self.collection[start] ) __a : Tuple = (start + end) // 2 __a : Optional[int] = self._build_tree(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __a : Tuple = self._build_tree(mid + 1 , SCREAMING_SNAKE_CASE__ ) return SegmentTreeNode(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , self.fn(left.val , right.val ) , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[Any] ): '''simple docstring''' if node.start == i and node.end == i: __a : Optional[Any] = val return if i <= node.mid: self._update_tree(node.left , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else: self._update_tree(node.right , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __a : int = self.fn(node.left.val , node.right.val ) def __lowerCAmelCase ( self : Any , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any] ): '''simple docstring''' if node.start == i and node.end == j: return node.val if i <= node.mid: if j <= node.mid: # range in left child tree return self._query_range(node.left , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else: # range in left child tree and right child tree return self.fn( self._query_range(node.left , SCREAMING_SNAKE_CASE__ , node.mid ) , self._query_range(node.right , node.mid + 1 , SCREAMING_SNAKE_CASE__ ) , ) else: # range in right child tree return self._query_range(node.right , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : List[Any] ): '''simple docstring''' if self.root is not None: __a : Tuple = Queue() queue.put(self.root ) while not queue.empty(): __a : Tuple = queue.get() yield node if node.left is not None: queue.put(node.left ) if node.right is not None: queue.put(node.right ) if __name__ == "__main__": import operator for fn in [operator.add, max, min]: print('''*''' * 50) SCREAMING_SNAKE_CASE__ = SegmentTree([2, 1, 5, 3, 4], fn) for node in arr.traverse(): print(node) print() arr.update(1, 5) for node in arr.traverse(): print(node) print() print(arr.query_range(3, 4)) # 7 print(arr.query_range(2, 2)) # 5 print(arr.query_range(1, 3)) # 13 print()
47
1
'''simple docstring''' import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin UpperCamelCase_ = get_tests_dir("fixtures/test_sentencepiece_no_bos.model") @require_sentencepiece @require_tokenizers class _a ( SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' A : Any = PegasusTokenizer A : Optional[Any] = PegasusTokenizerFast A : Tuple = True A : Any = True def UpperCamelCase_ ( self ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing SCREAMING_SNAKE_CASE : List[Any] = PegasusTokenizer(A ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def UpperCamelCase_ ( self ): '''simple docstring''' return PegasusTokenizer.from_pretrained('google/pegasus-large' ) def UpperCamelCase_ ( self, **A ): '''simple docstring''' return PegasusTokenizer.from_pretrained(self.tmpdirname, **A ) def UpperCamelCase_ ( self, A ): '''simple docstring''' return ("This is a test", "This is a test") def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = '</s>' SCREAMING_SNAKE_CASE : Optional[Any] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(A ), A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(A ), A ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0], '<pad>' ) self.assertEqual(vocab_keys[1], '</s>' ) self.assertEqual(vocab_keys[-1], 'v' ) self.assertEqual(len(A ), 1_103 ) def UpperCamelCase_ ( self ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size, 1_103 ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE : int = self.tokenizer_class.from_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE : Tuple = ( 'Let\'s see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important' ' </s> <pad> <pad> <pad>' ) SCREAMING_SNAKE_CASE : List[Any] = rust_tokenizer([raw_input_str], return_tensors=A, add_special_tokens=A ).input_ids[0] SCREAMING_SNAKE_CASE : Tuple = py_tokenizer([raw_input_str], return_tensors=A, add_special_tokens=A ).input_ids[0] self.assertListEqual(A, A ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word SCREAMING_SNAKE_CASE : int = '<mask_1> To ensure a <mask_2> flow of bank resolutions.' SCREAMING_SNAKE_CASE : Union[str, Any] = [2, 413, 615, 114, 3, 1_971, 113, 1_679, 10_710, 107, 1] SCREAMING_SNAKE_CASE : List[Any] = tokenizer([raw_input_str], return_tensors=A ).input_ids[0] self.assertListEqual(A, A ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 96_103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1_024 SCREAMING_SNAKE_CASE : Optional[Any] = 'To ensure a smooth flow of bank resolutions.' SCREAMING_SNAKE_CASE : int = [413, 615, 114, 2_291, 1_971, 113, 1_679, 10_710, 107, 1] SCREAMING_SNAKE_CASE : str = tokenizer([raw_input_str], return_tensors=A ).input_ids[0] self.assertListEqual(A, A ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = ['This is going to be way too long.' * 150, 'short example'] SCREAMING_SNAKE_CASE : List[str] = ['not super long but more than 5 tokens', 'tiny'] SCREAMING_SNAKE_CASE : List[Any] = self._large_tokenizer(A, padding=A, truncation=A, return_tensors='pt' ) SCREAMING_SNAKE_CASE : Dict = self._large_tokenizer( text_target=A, max_length=5, padding=A, truncation=A, return_tensors='pt' ) assert batch.input_ids.shape == (2, 1_024) assert batch.attention_mask.shape == (2, 1_024) assert targets["input_ids"].shape == (2, 5) assert len(A ) == 2 # input_ids, attention_mask. @slow def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = {'input_ids': [[38_979, 143, 18_485, 606, 130, 26_669, 87_686, 121, 54_189, 1_129, 111, 26_669, 87_686, 121, 9_114, 14_787, 121, 13_249, 158, 592, 956, 121, 14_621, 31_576, 143, 62_613, 108, 9_688, 930, 43_430, 11_562, 62_613, 304, 108, 11_443, 897, 108, 9_314, 17_415, 63_399, 108, 11_443, 7_614, 18_316, 118, 4_284, 7_148, 12_430, 143, 1_400, 25_703, 158, 111, 4_284, 7_148, 11_772, 143, 21_297, 1_064, 158, 122, 204, 3_506, 1_754, 1_133, 14_787, 1_581, 115, 33_224, 4_482, 111, 1_355, 110, 29_173, 317, 50_833, 108, 20_147, 94_665, 111, 77_198, 107, 1], [110, 62_613, 117, 638, 112, 1_133, 121, 20_098, 1_355, 79_050, 13_872, 135, 1_596, 53_541, 1_352, 141, 13_039, 5_542, 124, 302, 518, 111, 268, 2_956, 115, 149, 4_427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1_235, 2_799, 18_289, 17_780, 204, 109, 9_474, 1_296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=A, model_name='google/bigbird-pegasus-large-arxiv', revision='ba85d0851d708441f91440d509690f1ab6353415', ) @require_sentencepiece @require_tokenizers class _a ( SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' A : List[Any] = PegasusTokenizer A : Any = PegasusTokenizerFast A : Any = True A : str = True def UpperCamelCase_ ( self ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing SCREAMING_SNAKE_CASE : Any = PegasusTokenizer(A, offset=0, mask_token_sent=A, mask_token='[MASK]' ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def UpperCamelCase_ ( self ): '''simple docstring''' return PegasusTokenizer.from_pretrained('google/bigbird-pegasus-large-arxiv' ) def UpperCamelCase_ ( self, **A ): '''simple docstring''' return PegasusTokenizer.from_pretrained(self.tmpdirname, **A ) def UpperCamelCase_ ( self, A ): '''simple docstring''' return ("This is a test", "This is a test") def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE : Optional[int] = self.tokenizer_class.from_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE : Any = ( 'Let\'s see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>' ' <pad> <pad> <pad>' ) SCREAMING_SNAKE_CASE : str = rust_tokenizer([raw_input_str], return_tensors=A, add_special_tokens=A ).input_ids[0] SCREAMING_SNAKE_CASE : List[str] = py_tokenizer([raw_input_str], return_tensors=A, add_special_tokens=A ).input_ids[0] self.assertListEqual(A, A ) @require_torch def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = ['This is going to be way too long.' * 1_000, 'short example'] SCREAMING_SNAKE_CASE : Optional[int] = ['not super long but more than 5 tokens', 'tiny'] SCREAMING_SNAKE_CASE : List[str] = self._large_tokenizer(A, padding=A, truncation=A, return_tensors='pt' ) SCREAMING_SNAKE_CASE : Optional[Any] = self._large_tokenizer( text_target=A, max_length=5, padding=A, truncation=A, return_tensors='pt' ) assert batch.input_ids.shape == (2, 4_096) assert batch.attention_mask.shape == (2, 4_096) assert targets["input_ids"].shape == (2, 5) assert len(A ) == 2 # input_ids, attention_mask. def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = ( 'This is an example string that is used to test the original TF implementation against the HF' ' implementation' ) SCREAMING_SNAKE_CASE : Union[str, Any] = self._large_tokenizer(A ).input_ids self.assertListEqual( A, [182, 117, 142, 587, 4_211, 120, 117, 263, 112, 804, 109, 856, 25_016, 3_137, 464, 109, 26_955, 3_137, 1], )
704
'''simple docstring''' import inspect import unittest import warnings from math import ceil, floor from transformers import LevitConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_MAPPING, LevitForImageClassification, LevitForImageClassificationWithTeacher, LevitModel, ) from transformers.models.levit.modeling_levit import LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(A, 'hidden_sizes' ) ) self.parent.assertTrue(hasattr(A, 'num_attention_heads' ) ) class _a : '''simple docstring''' def __init__( self, A, A=13, A=64, A=3, A=3, A=2, A=1, A=16, A=[128, 256, 384], A=[4, 6, 8], A=[2, 3, 4], A=[16, 16, 16], A=0, A=[2, 2, 2], A=[2, 2, 2], A=0.02, A=True, A=True, A=2, ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = parent SCREAMING_SNAKE_CASE : Any = batch_size SCREAMING_SNAKE_CASE : List[Any] = image_size SCREAMING_SNAKE_CASE : Tuple = num_channels SCREAMING_SNAKE_CASE : Tuple = kernel_size SCREAMING_SNAKE_CASE : Tuple = stride SCREAMING_SNAKE_CASE : Union[str, Any] = padding SCREAMING_SNAKE_CASE : int = hidden_sizes SCREAMING_SNAKE_CASE : Optional[int] = num_attention_heads SCREAMING_SNAKE_CASE : Optional[int] = depths SCREAMING_SNAKE_CASE : int = key_dim SCREAMING_SNAKE_CASE : List[str] = drop_path_rate SCREAMING_SNAKE_CASE : int = patch_size SCREAMING_SNAKE_CASE : Tuple = attention_ratio SCREAMING_SNAKE_CASE : Tuple = mlp_ratio SCREAMING_SNAKE_CASE : Dict = initializer_range SCREAMING_SNAKE_CASE : Optional[Any] = [ ['Subsample', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['Subsample', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] SCREAMING_SNAKE_CASE : Union[str, Any] = is_training SCREAMING_SNAKE_CASE : List[str] = use_labels SCREAMING_SNAKE_CASE : List[Any] = num_labels SCREAMING_SNAKE_CASE : Optional[Any] = initializer_range def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE : Union[str, Any] = None if self.use_labels: SCREAMING_SNAKE_CASE : Union[str, Any] = ids_tensor([self.batch_size], self.num_labels ) SCREAMING_SNAKE_CASE : Tuple = self.get_config() return config, pixel_values, labels def UpperCamelCase_ ( self ): '''simple docstring''' return LevitConfig( image_size=self.image_size, num_channels=self.num_channels, kernel_size=self.kernel_size, stride=self.stride, padding=self.padding, patch_size=self.patch_size, hidden_sizes=self.hidden_sizes, num_attention_heads=self.num_attention_heads, depths=self.depths, key_dim=self.key_dim, drop_path_rate=self.drop_path_rate, mlp_ratio=self.mlp_ratio, attention_ratio=self.attention_ratio, initializer_range=self.initializer_range, down_ops=self.down_ops, ) def UpperCamelCase_ ( self, A, A, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = LevitModel(config=A ) model.to(A ) model.eval() SCREAMING_SNAKE_CASE : Tuple = model(A ) SCREAMING_SNAKE_CASE : Tuple = (self.image_size, self.image_size) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = image_size[0], image_size[1] for _ in range(4 ): SCREAMING_SNAKE_CASE : int = floor(((height + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) SCREAMING_SNAKE_CASE : int = floor(((width + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, ceil(height / 4 ) * ceil(width / 4 ), self.hidden_sizes[-1]), ) def UpperCamelCase_ ( self, A, A, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = self.num_labels SCREAMING_SNAKE_CASE : Union[str, Any] = LevitForImageClassification(A ) model.to(A ) model.eval() SCREAMING_SNAKE_CASE : List[Any] = model(A, labels=A ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = config_and_inputs SCREAMING_SNAKE_CASE : Any = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' A : Any = ( (LevitModel, LevitForImageClassification, LevitForImageClassificationWithTeacher) if is_torch_available() else () ) A : Tuple = ( { '''feature-extraction''': LevitModel, '''image-classification''': (LevitForImageClassification, LevitForImageClassificationWithTeacher), } if is_torch_available() else {} ) A : Any = False A : Union[str, Any] = False A : int = False A : int = False A : int = False def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = LevitModelTester(self ) SCREAMING_SNAKE_CASE : Dict = ConfigTester(self, config_class=A, has_text_modality=A, hidden_size=37 ) def UpperCamelCase_ ( self ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCamelCase_ ( self ): '''simple docstring''' return @unittest.skip(reason='Levit does not use inputs_embeds' ) def UpperCamelCase_ ( self ): '''simple docstring''' pass @unittest.skip(reason='Levit does not support input and output embeddings' ) def UpperCamelCase_ ( self ): '''simple docstring''' pass @unittest.skip(reason='Levit does not output attentions' ) def UpperCamelCase_ ( self ): '''simple docstring''' pass def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Optional[Any] = model_class(A ) SCREAMING_SNAKE_CASE : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE : Tuple = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE : Optional[Any] = ['pixel_values'] self.assertListEqual(arg_names[:1], A ) def UpperCamelCase_ ( self ): '''simple docstring''' def check_hidden_states_output(A, A, A ): SCREAMING_SNAKE_CASE : Tuple = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE : Optional[Any] = model(**self._prepare_for_class(A, A ) ) SCREAMING_SNAKE_CASE : List[Any] = outputs.hidden_states SCREAMING_SNAKE_CASE : List[str] = len(self.model_tester.depths ) + 1 self.assertEqual(len(A ), A ) SCREAMING_SNAKE_CASE : Optional[Any] = (self.model_tester.image_size, self.model_tester.image_size) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = image_size[0], image_size[1] for _ in range(4 ): SCREAMING_SNAKE_CASE : Optional[int] = floor( ( (height + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) SCREAMING_SNAKE_CASE : Union[str, Any] = floor( ( (width + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-2:] ), [ height * width, self.model_tester.hidden_sizes[0], ], ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Optional[int] = True check_hidden_states_output(A, A, A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE : List[Any] = True check_hidden_states_output(A, A, A ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def UpperCamelCase_ ( self ): '''simple docstring''' pass def UpperCamelCase_ ( self, A, A, A=False ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = super()._prepare_for_class(A, A, return_labels=A ) if return_labels: if model_class.__name__ == "LevitForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A ) def UpperCamelCase_ ( self ): '''simple docstring''' if not self.model_tester.is_training: return SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : Optional[Any] = True for model_class in self.all_model_classes: # LevitForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(A ) or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue SCREAMING_SNAKE_CASE : Union[str, Any] = model_class(A ) model.to(A ) model.train() SCREAMING_SNAKE_CASE : List[Any] = self._prepare_for_class(A, A, return_labels=A ) SCREAMING_SNAKE_CASE : Any = model(**A ).loss loss.backward() def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return SCREAMING_SNAKE_CASE : Optional[int] = False SCREAMING_SNAKE_CASE : Optional[int] = True for model_class in self.all_model_classes: if model_class in get_values(A ) or not model_class.supports_gradient_checkpointing: continue # LevitForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "LevitForImageClassificationWithTeacher": continue SCREAMING_SNAKE_CASE : List[str] = model_class(A ) model.gradient_checkpointing_enable() model.to(A ) model.train() SCREAMING_SNAKE_CASE : List[Any] = self._prepare_for_class(A, A, return_labels=A ) SCREAMING_SNAKE_CASE : int = model(**A ).loss loss.backward() def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : Dict = [ {'title': 'multi_label_classification', 'num_labels': 2, 'dtype': torch.float}, {'title': 'single_label_classification', 'num_labels': 1, 'dtype': torch.long}, {'title': 'regression', 'num_labels': 1, 'dtype': torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(A ), ] or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=F"Testing {model_class} with {problem_type['title']}" ): SCREAMING_SNAKE_CASE : str = problem_type['title'] SCREAMING_SNAKE_CASE : int = problem_type['num_labels'] SCREAMING_SNAKE_CASE : Any = model_class(A ) model.to(A ) model.train() SCREAMING_SNAKE_CASE : Optional[Any] = self._prepare_for_class(A, A, return_labels=A ) if problem_type["num_labels"] > 1: SCREAMING_SNAKE_CASE : Optional[int] = inputs['labels'].unsqueeze(1 ).repeat(1, problem_type['num_labels'] ) SCREAMING_SNAKE_CASE : Optional[Any] = inputs['labels'].to(problem_type['dtype'] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=A ) as warning_list: SCREAMING_SNAKE_CASE : str = model(**A ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( F"Something is going wrong in the regression problem: intercepted {w.message}" ) loss.backward() @slow def UpperCamelCase_ ( self ): '''simple docstring''' for model_name in LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE : int = LevitModel.from_pretrained(A ) self.assertIsNotNone(A ) def lowercase__( ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class _a ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self ): '''simple docstring''' return LevitImageProcessor.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = LevitForImageClassificationWithTeacher.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( A ) SCREAMING_SNAKE_CASE : List[str] = self.default_image_processor SCREAMING_SNAKE_CASE : List[Any] = prepare_img() SCREAMING_SNAKE_CASE : Tuple = image_processor(images=A, return_tensors='pt' ).to(A ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE : str = model(**A ) # verify the logits SCREAMING_SNAKE_CASE : Optional[int] = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape, A ) SCREAMING_SNAKE_CASE : List[str] = torch.tensor([1.04_48, -0.37_45, -1.83_17] ).to(A ) self.assertTrue(torch.allclose(outputs.logits[0, :3], A, atol=1E-4 ) )
508
0
'''simple docstring''' import json import os from typing import Optional import numpy as np from ...feature_extraction_utils import BatchFeature from ...processing_utils import ProcessorMixin from ...utils import logging from ...utils.hub import get_file_from_repo from ..auto import AutoTokenizer snake_case = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE ( __a ): """simple docstring""" __A = "AutoTokenizer" __A = ["tokenizer"] __A = { "semantic_prompt": 1, "coarse_prompt": 2, "fine_prompt": 2, } def __init__( self : Any , __lowerCAmelCase : Tuple , __lowerCAmelCase : int=None ): """simple docstring""" super().__init__(__lowerCAmelCase ) _lowerCAmelCase = speaker_embeddings @classmethod def a ( cls : Any , __lowerCAmelCase : int , __lowerCAmelCase : str="speaker_embeddings_path.json" , **__lowerCAmelCase : List[Any] ): """simple docstring""" if speaker_embeddings_dict_path is not None: _lowerCAmelCase = get_file_from_repo( __lowerCAmelCase , __lowerCAmelCase , subfolder=kwargs.pop('subfolder' , __lowerCAmelCase ) , cache_dir=kwargs.pop('cache_dir' , __lowerCAmelCase ) , force_download=kwargs.pop('force_download' , __lowerCAmelCase ) , proxies=kwargs.pop('proxies' , __lowerCAmelCase ) , resume_download=kwargs.pop('resume_download' , __lowerCAmelCase ) , local_files_only=kwargs.pop('local_files_only' , __lowerCAmelCase ) , use_auth_token=kwargs.pop('use_auth_token' , __lowerCAmelCase ) , revision=kwargs.pop('revision' , __lowerCAmelCase ) , ) if speaker_embeddings_path is None: logger.warning( F"`{os.path.join(__lowerCAmelCase , __lowerCAmelCase )}` does not exists\n , no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json\n dictionnary if wanted, otherwise set `speaker_embeddings_dict_path=None`." ) _lowerCAmelCase = None else: with open(__lowerCAmelCase ) as speaker_embeddings_json: _lowerCAmelCase = json.load(__lowerCAmelCase ) else: _lowerCAmelCase = None _lowerCAmelCase = AutoTokenizer.from_pretrained(__lowerCAmelCase , **__lowerCAmelCase ) return cls(tokenizer=__lowerCAmelCase , speaker_embeddings=__lowerCAmelCase ) def a ( self : str , __lowerCAmelCase : str , __lowerCAmelCase : Optional[Any]="speaker_embeddings_path.json" , __lowerCAmelCase : Any="speaker_embeddings" , __lowerCAmelCase : bool = False , **__lowerCAmelCase : Dict , ): """simple docstring""" if self.speaker_embeddings is not None: os.makedirs(os.path.join(__lowerCAmelCase , __lowerCAmelCase , 'v2' ) , exist_ok=__lowerCAmelCase ) _lowerCAmelCase = {} _lowerCAmelCase = save_directory for prompt_key in self.speaker_embeddings: if prompt_key != "repo_or_path": _lowerCAmelCase = self._load_voice_preset(__lowerCAmelCase ) _lowerCAmelCase = {} for key in self.speaker_embeddings[prompt_key]: np.save( os.path.join( embeddings_dict['repo_or_path'] , __lowerCAmelCase , F"{prompt_key}_{key}" ) , voice_preset[key] , allow_pickle=__lowerCAmelCase , ) _lowerCAmelCase = os.path.join(__lowerCAmelCase , F"{prompt_key}_{key}.npy" ) _lowerCAmelCase = tmp_dict with open(os.path.join(__lowerCAmelCase , __lowerCAmelCase ) , 'w' ) as fp: json.dump(__lowerCAmelCase , __lowerCAmelCase ) super().save_pretrained(__lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ) def a ( self : Optional[int] , __lowerCAmelCase : str = None , **__lowerCAmelCase : int ): """simple docstring""" _lowerCAmelCase = self.speaker_embeddings[voice_preset] _lowerCAmelCase = {} for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset_paths: raise ValueError( F"Voice preset unrecognized, missing {key} as a key in self.speaker_embeddings[{voice_preset}]." ) _lowerCAmelCase = get_file_from_repo( self.speaker_embeddings.get('repo_or_path' , '/' ) , voice_preset_paths[key] , subfolder=kwargs.pop('subfolder' , __lowerCAmelCase ) , cache_dir=kwargs.pop('cache_dir' , __lowerCAmelCase ) , force_download=kwargs.pop('force_download' , __lowerCAmelCase ) , proxies=kwargs.pop('proxies' , __lowerCAmelCase ) , resume_download=kwargs.pop('resume_download' , __lowerCAmelCase ) , local_files_only=kwargs.pop('local_files_only' , __lowerCAmelCase ) , use_auth_token=kwargs.pop('use_auth_token' , __lowerCAmelCase ) , revision=kwargs.pop('revision' , __lowerCAmelCase ) , ) if path is None: raise ValueError( F"`{os.path.join(self.speaker_embeddings.get('repo_or_path' , '/' ) , voice_preset_paths[key] )}` does not exists\n , no preloaded voice preset will be used - Make sure to provide correct paths to the {voice_preset}\n embeddings." ) _lowerCAmelCase = np.load(__lowerCAmelCase ) return voice_preset_dict def a ( self : List[Any] , __lowerCAmelCase : Optional[dict] = None ): """simple docstring""" for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset: raise ValueError(F"Voice preset unrecognized, missing {key} as a key." ) if not isinstance(voice_preset[key] , np.ndarray ): raise ValueError(F"{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray." ) if len(voice_preset[key].shape ) != self.preset_shape[key]: raise ValueError(F"{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray." ) def __call__( self : Optional[int] , __lowerCAmelCase : Union[str, Any]=None , __lowerCAmelCase : Tuple=None , __lowerCAmelCase : Any="pt" , __lowerCAmelCase : Optional[Any]=256 , __lowerCAmelCase : Optional[Any]=False , __lowerCAmelCase : Optional[int]=True , __lowerCAmelCase : int=False , **__lowerCAmelCase : List[Any] , ): """simple docstring""" if voice_preset is not None and not isinstance(__lowerCAmelCase , __lowerCAmelCase ): if ( isinstance(__lowerCAmelCase , __lowerCAmelCase ) and self.speaker_embeddings is not None and voice_preset in self.speaker_embeddings ): _lowerCAmelCase = self._load_voice_preset(__lowerCAmelCase ) else: if isinstance(__lowerCAmelCase , __lowerCAmelCase ) and not voice_preset.endswith('.npz' ): _lowerCAmelCase = voice_preset + '.npz' _lowerCAmelCase = np.load(__lowerCAmelCase ) if voice_preset is not None: self._validate_voice_preset_dict(__lowerCAmelCase , **__lowerCAmelCase ) _lowerCAmelCase = BatchFeature(data=__lowerCAmelCase , tensor_type=__lowerCAmelCase ) _lowerCAmelCase = self.tokenizer( __lowerCAmelCase , return_tensors=__lowerCAmelCase , padding='max_length' , max_length=__lowerCAmelCase , return_attention_mask=__lowerCAmelCase , return_token_type_ids=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase , **__lowerCAmelCase , ) if voice_preset is not None: _lowerCAmelCase = voice_preset return encoded_text
309
'''simple docstring''' import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class SCREAMING_SNAKE_CASE ( __a ): """simple docstring""" __A = "" __A = ( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) __A = None # compression type in fsspec. ex: "gzip" __A = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__( self : List[str] , __lowerCAmelCase : str = "" , __lowerCAmelCase : Optional[str] = None , __lowerCAmelCase : Optional[dict] = None , **__lowerCAmelCase : Optional[int] ): """simple docstring""" super().__init__(self , **__lowerCAmelCase ) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode _lowerCAmelCase = fsspec.open( __lowerCAmelCase , mode='rb' , protocol=__lowerCAmelCase , compression=self.compression , client_kwargs={ 'requote_redirect_url': False, # see https://github.com/huggingface/datasets/pull/5459 'trust_env': True, # Enable reading proxy env variables. **(target_options or {}).pop('client_kwargs' , {} ), # To avoid issues if it was already passed. } , **(target_options or {}) , ) _lowerCAmelCase = os.path.basename(self.file.path.split('::' )[0] ) _lowerCAmelCase = ( self.compressed_name[: self.compressed_name.rindex('.' )] if '.' in self.compressed_name else self.compressed_name ) _lowerCAmelCase = None @classmethod def a ( cls : int , __lowerCAmelCase : Optional[int] ): """simple docstring""" return super()._strip_protocol(__lowerCAmelCase ).lstrip('/' ) def a ( self : Union[str, Any] ): """simple docstring""" if self.dir_cache is None: _lowerCAmelCase = {**self.file.fs.info(self.file.path ), 'name': self.uncompressed_name} _lowerCAmelCase = {f['name']: f} def a ( self : Optional[Any] , __lowerCAmelCase : str ): """simple docstring""" return self.file.open().read() def a ( self : List[str] , __lowerCAmelCase : str , __lowerCAmelCase : str = "rb" , __lowerCAmelCase : Union[str, Any]=None , __lowerCAmelCase : Dict=True , __lowerCAmelCase : Tuple=None , **__lowerCAmelCase : Dict , ): """simple docstring""" _lowerCAmelCase = self._strip_protocol(__lowerCAmelCase ) if mode != "rb": raise ValueError(F"Tried to read with mode {mode} on file {self.file.path} opened with mode 'rb'" ) return self.file.open() class SCREAMING_SNAKE_CASE ( __a ): """simple docstring""" __A = "bz2" __A = "bz2" __A = ".bz2" class SCREAMING_SNAKE_CASE ( __a ): """simple docstring""" __A = "gzip" __A = "gzip" __A = ".gz" class SCREAMING_SNAKE_CASE ( __a ): """simple docstring""" __A = "lz4" __A = "lz4" __A = ".lz4" class SCREAMING_SNAKE_CASE ( __a ): """simple docstring""" __A = "xz" __A = "xz" __A = ".xz" class SCREAMING_SNAKE_CASE ( __a ): """simple docstring""" __A = "zstd" __A = "zstd" __A = ".zst" def __init__( self : Optional[int] , __lowerCAmelCase : str , __lowerCAmelCase : str = "rb" , __lowerCAmelCase : Optional[str] = None , __lowerCAmelCase : Optional[dict] = None , __lowerCAmelCase : int = DEFAULT_BLOCK_SIZE , **__lowerCAmelCase : Optional[int] , ): """simple docstring""" super().__init__( fo=__lowerCAmelCase , mode=__lowerCAmelCase , target_protocol=__lowerCAmelCase , target_options=__lowerCAmelCase , block_size=__lowerCAmelCase , **__lowerCAmelCase , ) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 _lowerCAmelCase = self.file.__enter__ class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : Dict , __lowerCAmelCase : Union[str, Any] ): """simple docstring""" _lowerCAmelCase = file_ def __enter__( self : List[Any] ): """simple docstring""" self._file.__enter__() return self def __exit__( self : List[str] , *__lowerCAmelCase : int , **__lowerCAmelCase : Optional[int] ): """simple docstring""" self._file.__exit__(*__lowerCAmelCase , **__lowerCAmelCase ) def __iter__( self : Any ): """simple docstring""" return iter(self._file ) def a ( self : int ): """simple docstring""" return next(self._file ) def __getattr__( self : Tuple , __lowerCAmelCase : Dict ): """simple docstring""" return getattr(self._file , __lowerCAmelCase ) def fixed_enter(*__lowerCAmelCase : List[str] , **__lowerCAmelCase : int ): return WrappedFile(_enter(*__lowerCAmelCase , **__lowerCAmelCase ) ) _lowerCAmelCase = fixed_enter
309
1
def UpperCAmelCase_( a__ ): """simple docstring""" if collection == []: return [] # get some information about the collection SCREAMING_SNAKE_CASE : List[Any] = len(a__ ) SCREAMING_SNAKE_CASE : int = max(a__ ) SCREAMING_SNAKE_CASE : Optional[int] = min(a__ ) # create the counting array SCREAMING_SNAKE_CASE : str = coll_max + 1 - coll_min SCREAMING_SNAKE_CASE : Any = [0] * counting_arr_length # count how much a number appears in the collection for number in collection: counting_arr[number - coll_min] += 1 # sum each position with it's predecessors. now, counting_arr[i] tells # us how many elements <= i has in the collection for i in range(1 , a__ ): SCREAMING_SNAKE_CASE : Tuple = counting_arr[i] + counting_arr[i - 1] # create the output collection SCREAMING_SNAKE_CASE : int = [0] * coll_len # place the elements in the output, respecting the original order (stable # sort) from end to begin, updating counting_arr for i in reversed(range(0 , a__ ) ): SCREAMING_SNAKE_CASE : Dict = collection[i] counting_arr[collection[i] - coll_min] -= 1 return ordered def UpperCAmelCase_( a__ ): """simple docstring""" return "".join([chr(a__ ) for i in counting_sort([ord(a__ ) for c in string] )] ) if __name__ == "__main__": # Test string sort assert counting_sort_string('''thisisthestring''') == "eghhiiinrsssttt" a__ : Optional[int] = input('''Enter numbers separated by a comma:\n''').strip() a__ : str = [int(item) for item in user_input.split(''',''')] print(counting_sort(unsorted))
333
from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import KarrasVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : UNetaDModel __SCREAMING_SNAKE_CASE : KarrasVeScheduler def __init__( self , _lowerCamelCase , _lowerCamelCase ) ->Dict: super().__init__() self.register_modules(unet=_lowerCamelCase , scheduler=_lowerCamelCase ) @torch.no_grad() def __call__( self , _lowerCamelCase = 1 , _lowerCamelCase = 50 , _lowerCamelCase = None , _lowerCamelCase = "pil" , _lowerCamelCase = True , **_lowerCamelCase , ) ->Union[Tuple, ImagePipelineOutput]: SCREAMING_SNAKE_CASE : Union[str, Any] = self.unet.config.sample_size SCREAMING_SNAKE_CASE : List[str] = (batch_size, 3, img_size, img_size) SCREAMING_SNAKE_CASE : Optional[int] = self.unet # sample x_0 ~ N(0, sigma_0^2 * I) SCREAMING_SNAKE_CASE : Optional[int] = randn_tensor(_lowerCamelCase , generator=_lowerCamelCase , device=self.device ) * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(_lowerCamelCase ) for t in self.progress_bar(self.scheduler.timesteps ): # here sigma_t == t_i from the paper SCREAMING_SNAKE_CASE : List[Any] = self.scheduler.schedule[t] SCREAMING_SNAKE_CASE : Any = self.scheduler.schedule[t - 1] if t > 0 else 0 # 1. Select temporarily increased noise level sigma_hat # 2. Add new noise to move from sample_i to sample_hat SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = self.scheduler.add_noise_to_input(_lowerCamelCase , _lowerCamelCase , generator=_lowerCamelCase ) # 3. Predict the noise residual given the noise magnitude `sigma_hat` # The model inputs and output are adjusted by following eq. (213) in [1]. SCREAMING_SNAKE_CASE : List[str] = (sigma_hat / 2) * model((sample_hat + 1) / 2 , sigma_hat / 2 ).sample # 4. Evaluate dx/dt at sigma_hat # 5. Take Euler step from sigma to sigma_prev SCREAMING_SNAKE_CASE : Optional[Any] = self.scheduler.step(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if sigma_prev != 0: # 6. Apply 2nd order correction # The model inputs and output are adjusted by following eq. (213) in [1]. SCREAMING_SNAKE_CASE : Union[str, Any] = (sigma_prev / 2) * model((step_output.prev_sample + 1) / 2 , sigma_prev / 2 ).sample SCREAMING_SNAKE_CASE : Optional[Any] = self.scheduler.step_correct( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , step_output.prev_sample , step_output['''derivative'''] , ) SCREAMING_SNAKE_CASE : Optional[int] = step_output.prev_sample SCREAMING_SNAKE_CASE : Any = (sample / 2 + 0.5).clamp(0 , 1 ) SCREAMING_SNAKE_CASE : Tuple = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": SCREAMING_SNAKE_CASE : Any = self.numpy_to_pil(_lowerCamelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=_lowerCamelCase )
333
1
"""simple docstring""" import argparse import os import torch from transformers import ( XLNetConfig, XLNetForQuestionAnswering, XLNetForSequenceClassification, XLNetLMHeadModel, load_tf_weights_in_xlnet, ) from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging lowerCAmelCase_ = { 'cola': 2, 'mnli': 3, 'mrpc': 2, 'sst-2': 2, 'sts-b': 1, 'qqp': 2, 'qnli': 2, 'rte': 2, 'wnli': 2, } logging.set_verbosity_info() def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=None ) -> Union[str, Any]: # Initialise PyTorch model lowercase__ : Dict = XLNetConfig.from_json_file(__lowerCamelCase ) lowercase__ : Any = finetuning_task.lower() if finetuning_task is not None else '''''' if finetuning_task in GLUE_TASKS_NUM_LABELS: print(f"""Building PyTorch XLNetForSequenceClassification model from configuration: {config}""" ) lowercase__ : List[str] = finetuning_task lowercase__ : List[Any] = GLUE_TASKS_NUM_LABELS[finetuning_task] lowercase__ : List[Any] = XLNetForSequenceClassification(__lowerCamelCase ) elif "squad" in finetuning_task: lowercase__ : Any = finetuning_task lowercase__ : int = XLNetForQuestionAnswering(__lowerCamelCase ) else: lowercase__ : Optional[Any] = XLNetLMHeadModel(__lowerCamelCase ) # Load weights from tf checkpoint load_tf_weights_in_xlnet(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # Save pytorch-model lowercase__ : Optional[int] = os.path.join(__lowerCamelCase , __lowerCamelCase ) lowercase__ : int = os.path.join(__lowerCamelCase , __lowerCamelCase ) print(f"""Save PyTorch model to {os.path.abspath(__lowerCamelCase )}""" ) torch.save(model.state_dict() , __lowerCamelCase ) print(f"""Save configuration file to {os.path.abspath(__lowerCamelCase )}""" ) with open(__lowerCamelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--xlnet_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained XLNet model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the folder to store the PyTorch model or dataset/vocab.', ) parser.add_argument( '--finetuning_task', default=None, type=str, help='Name of a task on which the XLNet TensorFlow model was fine-tuned', ) lowerCAmelCase_ = parser.parse_args() print(args) convert_xlnet_checkpoint_to_pytorch( args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task )
560
"""simple docstring""" # coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import sys import transformers lowerCAmelCase_ = '3' print('Python version:', sys.version) print('transformers version:', transformers.__version__) try: import torch print('Torch version:', torch.__version__) print('Cuda available:', torch.cuda.is_available()) print('Cuda version:', torch.version.cuda) print('CuDNN version:', torch.backends.cudnn.version()) print('Number of GPUs available:', torch.cuda.device_count()) print('NCCL version:', torch.cuda.nccl.version()) except ImportError: print('Torch version:', None) try: import deepspeed print('DeepSpeed version:', deepspeed.__version__) except ImportError: print('DeepSpeed version:', None) try: import tensorflow as tf print('TensorFlow version:', tf.__version__) print('TF GPUs available:', bool(tf.config.list_physical_devices('GPU'))) print('Number of TF GPUs available:', len(tf.config.list_physical_devices('GPU'))) except ImportError: print('TensorFlow version:', None)
560
1
"""simple docstring""" from __future__ import annotations def UpperCamelCase_ ( SCREAMING_SNAKE_CASE_ ): if len(SCREAMING_SNAKE_CASE_ ) == 0: return [] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = min(SCREAMING_SNAKE_CASE_ ), max(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = int(max_value - min_value ) + 1 SCREAMING_SNAKE_CASE = [[] for _ in range(SCREAMING_SNAKE_CASE_ )] for i in my_list: buckets[int(i - min_value )].append(SCREAMING_SNAKE_CASE_ ) return [v for bucket in buckets for v in sorted(SCREAMING_SNAKE_CASE_ )] if __name__ == "__main__": from doctest import testmod testmod() assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bucket_sort([0, 1, -1_0, 1_5, 2, -2]) == [-1_0, -2, 0, 1, 2, 1_5]
406
"""simple docstring""" import unittest from transformers import BertGenerationTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin snake_case = '▁' snake_case = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece class UpperCamelCase ( __magic_name__ , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ : int = BertGenerationTokenizer UpperCAmelCase_ : List[str] = False UpperCAmelCase_ : str = True def A ( self ) -> int: """simple docstring""" super().setUp() SCREAMING_SNAKE_CASE = BertGenerationTokenizer(lowercase__ , keep_accents=lowercase__ ) tokenizer.save_pretrained(self.tmpdirname ) def A ( self ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE = '<s>' SCREAMING_SNAKE_CASE = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase__ ) , lowercase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase__ ) , lowercase__ ) def A ( self ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<unk>' ) self.assertEqual(vocab_keys[1] , '<s>' ) self.assertEqual(vocab_keys[-1] , '<pad>' ) self.assertEqual(len(lowercase__ ) , 1002 ) def A ( self ) -> Any: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def A ( self ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE = BertGenerationTokenizer(lowercase__ , keep_accents=lowercase__ ) SCREAMING_SNAKE_CASE = tokenizer.tokenize('This is a test' ) self.assertListEqual(lowercase__ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowercase__ ) , [285, 46, 10, 170, 382] , ) SCREAMING_SNAKE_CASE = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( lowercase__ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) SCREAMING_SNAKE_CASE = tokenizer.convert_tokens_to_ids(lowercase__ ) self.assertListEqual( lowercase__ , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) SCREAMING_SNAKE_CASE = tokenizer.convert_ids_to_tokens(lowercase__ ) self.assertListEqual( lowercase__ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) @cached_property def A ( self ) -> Any: """simple docstring""" return BertGenerationTokenizer.from_pretrained('google/bert_for_seq_generation_L-24_bbc_encoder' ) @slow def A ( self ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE = 'Hello World!' SCREAMING_SNAKE_CASE = [18536, 2260, 101] self.assertListEqual(lowercase__ , self.big_tokenizer.encode(lowercase__ ) ) @slow def A ( self ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE = ( 'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will' ' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth' ) SCREAMING_SNAKE_CASE = [ 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 34324, 497, 391, 408, 11342, 1244, 385, 100, 938, 985, 456, 574, 362, 12597, 3200, 3129, 1172, ] self.assertListEqual(lowercase__ , self.big_tokenizer.encode(lowercase__ ) ) @require_torch @slow def A ( self ) -> int: """simple docstring""" import torch from transformers import BertGenerationConfig, BertGenerationEncoder # Build sequence SCREAMING_SNAKE_CASE = list(self.big_tokenizer.get_vocab().keys() )[:10] SCREAMING_SNAKE_CASE = ' '.join(lowercase__ ) SCREAMING_SNAKE_CASE = self.big_tokenizer.encode_plus(lowercase__ , return_tensors='pt' , return_token_type_ids=lowercase__ ) SCREAMING_SNAKE_CASE = self.big_tokenizer.batch_encode_plus( [sequence + ' ' + sequence] , return_tensors='pt' , return_token_type_ids=lowercase__ ) SCREAMING_SNAKE_CASE = BertGenerationConfig() SCREAMING_SNAKE_CASE = BertGenerationEncoder(lowercase__ ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**lowercase__ ) model(**lowercase__ ) @slow def A ( self ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE = {'input_ids': [[39286, 458, 36335, 2001, 456, 13073, 13266, 455, 113, 7746, 1741, 11157, 391, 13073, 13266, 455, 113, 3967, 35412, 113, 4936, 109, 3870, 2377, 113, 30084, 45720, 458, 134, 17496, 112, 503, 11672, 113, 118, 112, 5665, 13347, 38687, 112, 1496, 31389, 112, 3268, 47264, 134, 962, 112, 16377, 8035, 23130, 430, 12169, 15518, 28592, 458, 146, 41697, 109, 391, 12169, 15518, 16689, 458, 146, 41358, 109, 452, 726, 4034, 111, 763, 35412, 5082, 388, 1903, 111, 9051, 391, 2870, 48918, 1900, 1123, 550, 998, 112, 9586, 15985, 455, 391, 410, 22955, 37636, 114], [448, 17496, 419, 3663, 385, 763, 113, 27533, 2870, 3283, 13043, 1639, 24713, 523, 656, 24013, 18550, 2521, 517, 27014, 21244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 11786, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [484, 2169, 7687, 21932, 18146, 726, 363, 17032, 3391, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowercase__ , model_name='google/bert_for_seq_generation_L-24_bbc_encoder' , revision='c817d1fd1be2ffa69431227a1fe320544943d4db' , )
406
1
"""simple docstring""" lowercase__ = frozenset( [ """prompt""", """height""", """width""", """guidance_scale""", """negative_prompt""", """prompt_embeds""", """negative_prompt_embeds""", """cross_attention_kwargs""", ] ) lowercase__ = frozenset(["""prompt""", """negative_prompt"""]) lowercase__ = frozenset([]) lowercase__ = frozenset(["""image"""]) lowercase__ = frozenset( [ """image""", """height""", """width""", """guidance_scale""", ] ) lowercase__ = frozenset(["""image"""]) lowercase__ = frozenset( [ """prompt""", """image""", """height""", """width""", """guidance_scale""", """negative_prompt""", """prompt_embeds""", """negative_prompt_embeds""", ] ) lowercase__ = frozenset(["""prompt""", """image""", """negative_prompt"""]) lowercase__ = frozenset( [ # Text guided image variation with an image mask """prompt""", """image""", """mask_image""", """height""", """width""", """guidance_scale""", """negative_prompt""", """prompt_embeds""", """negative_prompt_embeds""", ] ) lowercase__ = frozenset(["""prompt""", """image""", """mask_image""", """negative_prompt"""]) lowercase__ = frozenset( [ # image variation with an image mask """image""", """mask_image""", """height""", """width""", """guidance_scale""", ] ) lowercase__ = frozenset(["""image""", """mask_image"""]) lowercase__ = frozenset( [ """example_image""", """image""", """mask_image""", """height""", """width""", """guidance_scale""", ] ) lowercase__ = frozenset(["""example_image""", """image""", """mask_image"""]) lowercase__ = frozenset(["""class_labels"""]) lowercase__ = frozenset(["""class_labels"""]) lowercase__ = frozenset(["""batch_size"""]) lowercase__ = frozenset([]) lowercase__ = frozenset(["""batch_size"""]) lowercase__ = frozenset([]) lowercase__ = frozenset( [ """prompt""", """audio_length_in_s""", """guidance_scale""", """negative_prompt""", """prompt_embeds""", """negative_prompt_embeds""", """cross_attention_kwargs""", ] ) lowercase__ = frozenset(["""prompt""", """negative_prompt"""]) lowercase__ = frozenset(["""input_tokens"""]) lowercase__ = frozenset(["""input_tokens"""])
630
'''simple docstring''' from manim import * class a__ ( UpperCAmelCase__ ): def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): """simple docstring""" __lowerCamelCase = Rectangle(height=0.5 , width=0.5 ) __lowerCamelCase = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) __lowerCamelCase = Rectangle(height=0.25 , width=0.25 ) __lowerCamelCase = [mem.copy() for i in range(6 )] __lowerCamelCase = [mem.copy() for i in range(6 )] __lowerCamelCase = VGroup(*a ).arrange(a , buff=0 ) __lowerCamelCase = VGroup(*a ).arrange(a , buff=0 ) __lowerCamelCase = VGroup(a , a ).arrange(a , buff=0 ) __lowerCamelCase = Text('''CPU''' , font_size=24 ) __lowerCamelCase = Group(a , a ).arrange(a , buff=0.5 , aligned_edge=a ) cpu.move_to([-2.5, -0.5, 0] ) self.add(a ) __lowerCamelCase = [mem.copy() for i in range(4 )] __lowerCamelCase = VGroup(*a ).arrange(a , buff=0 ) __lowerCamelCase = Text('''GPU''' , font_size=24 ) __lowerCamelCase = Group(a , a ).arrange(a , buff=0.5 , aligned_edge=a ) gpu.move_to([-1, -1, 0] ) self.add(a ) __lowerCamelCase = [mem.copy() for i in range(6 )] __lowerCamelCase = VGroup(*a ).arrange(a , buff=0 ) __lowerCamelCase = Text('''Model''' , font_size=24 ) __lowerCamelCase = Group(a , a ).arrange(a , buff=0.5 , aligned_edge=a ) model.move_to([3, -1.0, 0] ) self.add(a ) __lowerCamelCase = [] __lowerCamelCase = [] for i, rect in enumerate(a ): __lowerCamelCase = fill.copy().set_fill(a , opacity=0.8 ) target.move_to(a ) model_arr.append(a ) __lowerCamelCase = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(a , opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(a ) self.add(*a , *a ) __lowerCamelCase = [meta_mem.copy() for i in range(6 )] __lowerCamelCase = [meta_mem.copy() for i in range(6 )] __lowerCamelCase = VGroup(*a ).arrange(a , buff=0 ) __lowerCamelCase = VGroup(*a ).arrange(a , buff=0 ) __lowerCamelCase = VGroup(a , a ).arrange(a , buff=0 ) __lowerCamelCase = Text('''Disk''' , font_size=24 ) __lowerCamelCase = Group(a , a ).arrange(a , buff=0.5 , aligned_edge=a ) disk.move_to([-4, -1.25, 0] ) self.add(a , a ) __lowerCamelCase = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) __lowerCamelCase = MarkupText( f"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(a , a ) __lowerCamelCase = MarkupText( f"""<span fgcolor='{BLUE}'>●</span> Checkpoint""" , font_size=18 , ) blue_text.next_to(a , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(a ) __lowerCamelCase = MarkupText( f"""Now watch as an input is passed through the model\nand how the memory is utilized and handled.""" , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(a ) ) __lowerCamelCase = Square(0.3 ) input.set_fill(a , opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] , a , buff=0.5 ) self.play(Write(a ) ) input.generate_target() input.target.next_to(model_arr[0] , direction=a , buff=0.02 ) self.play(MoveToTarget(a ) ) self.play(FadeOut(a ) ) __lowerCamelCase = Arrow(start=a , end=a , color=a , buff=0.5 ) a.next_to(model_arr[0].get_left() , a , buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) __lowerCamelCase = MarkupText( f"""As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.""" , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(a , run_time=3 ) ) __lowerCamelCase = {'''run_time''': 1, '''fade_in''': True, '''fade_out''': True, '''buff''': 0.02} self.play( Write(a ) , Circumscribe(model_arr[0] , color=a , **a ) , Circumscribe(model_cpu_arr[0] , color=a , **a ) , Circumscribe(gpu_rect[0] , color=a , **a ) , ) self.play(MoveToTarget(model_cpu_arr[0] ) ) __lowerCamelCase = a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.02 , a , buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.02 ) __lowerCamelCase = AnimationGroup( FadeOut(a , run_time=0.5 ) , MoveToTarget(a , run_time=0.5 ) , FadeIn(a , run_time=0.5 ) , lag_ratio=0.2 ) self.play(a ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: __lowerCamelCase = 0.7 self.play( Circumscribe(model_arr[i] , **a ) , Circumscribe(cpu_left_col_base[i] , **a ) , Circumscribe(cpu_left_col_base[i + 1] , color=a , **a ) , Circumscribe(gpu_rect[0] , color=a , **a ) , Circumscribe(model_arr[i + 1] , color=a , **a ) , ) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , ) else: self.play( MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , ) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.02 , buff=0.2 ) self.play( Circumscribe(model_arr[-1] , color=a , **a ) , Circumscribe(cpu_left_col_base[-1] , color=a , **a ) , Circumscribe(gpu_rect[0] , color=a , **a ) , ) self.play(MoveToTarget(model_cpu_arr[i] ) ) __lowerCamelCase = a_c __lowerCamelCase = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] , RIGHT + 0.02 , buff=0.5 ) self.play( FadeOut(a ) , FadeOut(a , run_time=0.5 ) , ) __lowerCamelCase = MarkupText(f"""Inference on a model too large for GPU memory\nis successfully completed.""" , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(a , run_time=3 ) , MoveToTarget(a ) ) self.wait()
546
0
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class _A ( unittest.TestCase ): @property def _a (self ) -> Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) UpperCamelCase__ = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) return model @property def _a (self ) -> Optional[Any]: '''simple docstring''' torch.manual_seed(0 ) UpperCamelCase__ = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=3 , ) return model @property def _a (self ) -> Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) UpperCamelCase__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModel(SCREAMING_SNAKE_CASE_ ) def _a (self ) -> int: '''simple docstring''' UpperCamelCase__ = self.dummy_uncond_unet UpperCamelCase__ = DDIMScheduler() UpperCamelCase__ = self.dummy_vq_model UpperCamelCase__ = LDMPipeline(unet=SCREAMING_SNAKE_CASE_ , vqvae=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ ) ldm.to(SCREAMING_SNAKE_CASE_ ) ldm.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = torch.manual_seed(0 ) UpperCamelCase__ = ldm(generator=SCREAMING_SNAKE_CASE_ , num_inference_steps=2 , output_type='''numpy''' ).images UpperCamelCase__ = torch.manual_seed(0 ) UpperCamelCase__ = ldm(generator=SCREAMING_SNAKE_CASE_ , num_inference_steps=2 , output_type='''numpy''' , return_dict=SCREAMING_SNAKE_CASE_ )[0] UpperCamelCase__ = image[0, -3:, -3:, -1] UpperCamelCase__ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCamelCase__ = np.array([0.8512, 0.818, 0.6411, 0.6808, 0.4465, 0.5618, 0.46, 0.6231, 0.5172] ) UpperCamelCase__ = 1E-2 if torch_device != '''mps''' else 3E-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance @slow @require_torch class _A ( unittest.TestCase ): def _a (self ) -> Optional[int]: '''simple docstring''' UpperCamelCase__ = LDMPipeline.from_pretrained('''CompVis/ldm-celebahq-256''' ) ldm.to(SCREAMING_SNAKE_CASE_ ) ldm.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = torch.manual_seed(0 ) UpperCamelCase__ = ldm(generator=SCREAMING_SNAKE_CASE_ , num_inference_steps=5 , output_type='''numpy''' ).images UpperCamelCase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) UpperCamelCase__ = np.array([0.4399, 0.44975, 0.46825, 0.474, 0.4359, 0.4581, 0.45095, 0.4341, 0.4447] ) UpperCamelCase__ = 1E-2 if torch_device != '''mps''' else 3E-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
469
from ...configuration_utils import PretrainedConfig from ...utils import logging __magic_name__ =logging.get_logger(__name__) __magic_name__ ={ '''facebook/vit-mae-base''': '''https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json''', # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class _A ( __UpperCamelCase ): SCREAMING_SNAKE_CASE_ : Dict ="vit_mae" def __init__(self , SCREAMING_SNAKE_CASE_=768 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=3072 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.02 , SCREAMING_SNAKE_CASE_=1E-12 , SCREAMING_SNAKE_CASE_=224 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=512 , SCREAMING_SNAKE_CASE_=8 , SCREAMING_SNAKE_CASE_=2048 , SCREAMING_SNAKE_CASE_=0.75 , SCREAMING_SNAKE_CASE_=False , **SCREAMING_SNAKE_CASE_ , ) -> Optional[Any]: '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_act UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = initializer_range UpperCamelCase__ = layer_norm_eps UpperCamelCase__ = image_size UpperCamelCase__ = patch_size UpperCamelCase__ = num_channels UpperCamelCase__ = qkv_bias UpperCamelCase__ = decoder_num_attention_heads UpperCamelCase__ = decoder_hidden_size UpperCamelCase__ = decoder_num_hidden_layers UpperCamelCase__ = decoder_intermediate_size UpperCamelCase__ = mask_ratio UpperCamelCase__ = norm_pix_loss
469
1
"""simple docstring""" from torch import nn def SCREAMING_SNAKE_CASE__ ( snake_case : Union[str, Any] )-> Any: '''simple docstring''' if act_fn in ["swish", "silu"]: return nn.SiLU() elif act_fn == "mish": return nn.Mish() elif act_fn == "gelu": return nn.GELU() else: raise ValueError(f'Unsupported activation function: {act_fn}' )
438
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy as np import tensorflow as tf from transformers import ( TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST, FlaubertConfig, TFFlaubertForMultipleChoice, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForSequenceClassification, TFFlaubertForTokenClassification, TFFlaubertModel, TFFlaubertWithLMHeadModel, ) class A : def __init__( self , SCREAMING_SNAKE_CASE , ) -> Optional[Any]: """simple docstring""" A : List[str] = parent A : int = 13 A : Dict = 7 A : str = True A : Dict = True A : Tuple = True A : Union[str, Any] = True A : Dict = True A : str = False A : Union[str, Any] = False A : Union[str, Any] = False A : List[str] = 2 A : Optional[int] = 99 A : List[str] = 0 A : int = 32 A : Any = 2 A : Optional[Any] = 4 A : List[Any] = 0.1 A : List[str] = 0.1 A : Tuple = 512 A : Optional[Any] = 16 A : List[str] = 2 A : Tuple = 0.02 A : List[str] = 3 A : List[Any] = 4 A : Any = '''last''' A : int = True A : Union[str, Any] = None A : Dict = 0 def __lowerCAmelCase ( self ) -> List[Any]: """simple docstring""" A : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A : Any = random_attention_mask([self.batch_size, self.seq_length] , dtype=tf.floataa ) A : int = None if self.use_input_lengths: A : int = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length A : Tuple = None if self.use_token_type_ids: A : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) A : List[Any] = None A : List[Any] = None A : Tuple = None if self.use_labels: A : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A : List[Any] = ids_tensor([self.batch_size] , 2 , dtype=tf.floataa ) A : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) A : Dict = FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , bos_token_id=self.bos_token_id , ) return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ) -> List[str]: """simple docstring""" A : int = TFFlaubertModel(config=SCREAMING_SNAKE_CASE ) A : Optional[int] = {'''input_ids''': input_ids, '''lengths''': input_lengths, '''langs''': token_type_ids} A : int = model(SCREAMING_SNAKE_CASE ) A : List[str] = [input_ids, input_mask] A : str = model(SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ) -> List[str]: """simple docstring""" A : List[str] = TFFlaubertWithLMHeadModel(SCREAMING_SNAKE_CASE ) A : Union[str, Any] = {'''input_ids''': input_ids, '''lengths''': input_lengths, '''langs''': token_type_ids} A : Tuple = model(SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ) -> Optional[Any]: """simple docstring""" A : Union[str, Any] = TFFlaubertForQuestionAnsweringSimple(SCREAMING_SNAKE_CASE ) A : List[str] = {'''input_ids''': input_ids, '''lengths''': input_lengths} A : Tuple = model(SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ) -> Any: """simple docstring""" A : Union[str, Any] = TFFlaubertForSequenceClassification(SCREAMING_SNAKE_CASE ) A : Dict = {'''input_ids''': input_ids, '''lengths''': input_lengths} A : Optional[Any] = model(SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ) -> str: """simple docstring""" A : Optional[Any] = self.num_labels A : str = TFFlaubertForTokenClassification(config=SCREAMING_SNAKE_CASE ) A : List[str] = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} A : int = model(SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ) -> Any: """simple docstring""" A : str = self.num_choices A : int = TFFlaubertForMultipleChoice(config=SCREAMING_SNAKE_CASE ) A : str = tf.tile(tf.expand_dims(SCREAMING_SNAKE_CASE , 1 ) , (1, self.num_choices, 1) ) A : Optional[Any] = tf.tile(tf.expand_dims(SCREAMING_SNAKE_CASE , 1 ) , (1, self.num_choices, 1) ) A : str = tf.tile(tf.expand_dims(SCREAMING_SNAKE_CASE , 1 ) , (1, self.num_choices, 1) ) A : List[str] = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } A : List[Any] = model(SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __lowerCAmelCase ( self ) -> Any: """simple docstring""" A : Tuple = self.prepare_config_and_inputs() ( ( A ), ( A ), ( A ), ( A ), ( A ), ( A ), ( A ), ( A ), ( A ), ) : Any = config_and_inputs A : List[str] = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''langs''': token_type_ids, '''lengths''': input_lengths, } return config, inputs_dict @require_tf class A ( __snake_case , __snake_case , unittest.TestCase ): __magic_name__ = ( ( TFFlaubertModel, TFFlaubertWithLMHeadModel, TFFlaubertForSequenceClassification, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForTokenClassification, TFFlaubertForMultipleChoice, ) if is_tf_available() else () ) __magic_name__ = ( (TFFlaubertWithLMHeadModel,) if is_tf_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable __magic_name__ = ( { '''feature-extraction''': TFFlaubertModel, '''fill-mask''': TFFlaubertWithLMHeadModel, '''question-answering''': TFFlaubertForQuestionAnsweringSimple, '''text-classification''': TFFlaubertForSequenceClassification, '''token-classification''': TFFlaubertForTokenClassification, '''zero-shot''': TFFlaubertForSequenceClassification, } if is_tf_available() else {} ) __magic_name__ = False __magic_name__ = False def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('''Fast''' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def __lowerCAmelCase ( self ) -> Any: """simple docstring""" A : int = TFFlaubertModelTester(self ) A : Dict = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE , emb_dim=37 ) def __lowerCAmelCase ( self ) -> Optional[Any]: """simple docstring""" self.config_tester.run_common_tests() def __lowerCAmelCase ( self ) -> Optional[int]: """simple docstring""" A : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> Dict: """simple docstring""" A : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> List[Any]: """simple docstring""" A : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" A : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> Any: """simple docstring""" A : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_token_classification(*SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> str: """simple docstring""" A : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_multiple_choice(*SCREAMING_SNAKE_CASE ) @slow def __lowerCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" for model_name in TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A : Union[str, Any] = TFFlaubertModel.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsNotNone(SCREAMING_SNAKE_CASE ) @require_tf @require_sentencepiece @require_tokenizers class A ( unittest.TestCase ): @slow def __lowerCAmelCase ( self ) -> int: """simple docstring""" A : Tuple = TFFlaubertModel.from_pretrained('''jplu/tf-flaubert-small-cased''' ) A : List[str] = tf.convert_to_tensor( [[0, 158, 735, 2592, 1424, 6727, 82, 1]] , dtype=tf.intaa , ) # "J'aime flaubert !" A : int = model(SCREAMING_SNAKE_CASE )[0] A : str = tf.TensorShape((1, 8, 512) ) self.assertEqual(output.shape , SCREAMING_SNAKE_CASE ) # compare the actual values for a slice. A : Union[str, Any] = tf.convert_to_tensor( [ [ [-1.8_768_773, -1.566_555, 0.27_072_418], [-1.6_920_038, -0.5_873_505, 1.9_329_599], [-2.9_563_985, -1.6_993_835, 1.7_972_052], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
634
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __UpperCAmelCase = { "configuration_vision_encoder_decoder": ["VisionEncoderDecoderConfig", "VisionEncoderDecoderOnnxConfig"] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ["VisionEncoderDecoderModel"] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ["TFVisionEncoderDecoderModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ["FlaxVisionEncoderDecoderModel"] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
705
import pytest from datasets.splits import SplitDict, SplitInfo from datasets.utils.py_utils import asdict @pytest.mark.parametrize( "split_dict" , [ SplitDict(), SplitDict({"train": SplitInfo(name="train" , num_bytes=1_3_3_7 , num_examples=4_2 , dataset_name="my_dataset" )} ), SplitDict({"train": SplitInfo(name="train" , num_bytes=1_3_3_7 , num_examples=4_2 )} ), SplitDict({"train": SplitInfo()} ), ] , ) def _lowerCamelCase ( A_ : SplitDict ) -> Optional[int]: '''simple docstring''' UpperCamelCase__ : Tuple =split_dict._to_yaml_list() assert len(A_ ) == len(A_ ) UpperCamelCase__ : str =SplitDict._from_yaml_list(A_ ) for split_name, split_info in split_dict.items(): # dataset_name field is deprecated, and is therefore not part of the YAML dump UpperCamelCase__ : int =None # the split name of split_dict takes over the name of the split info object UpperCamelCase__ : Dict =split_name assert split_dict == reloaded @pytest.mark.parametrize( "split_info" , [SplitInfo(), SplitInfo(dataset_name=A_ ), SplitInfo(dataset_name="my_dataset" )] ) def _lowerCamelCase ( A_ : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ : Optional[Any] =asdict(SplitDict({"train": split_info} ) ) assert "dataset_name" in split_dict_asdict["train"] assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
582
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __a: Tuple = { '''configuration_groupvit''': [ '''GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GroupViTConfig''', '''GroupViTOnnxConfig''', '''GroupViTTextConfig''', '''GroupViTVisionConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a: str = [ '''GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GroupViTModel''', '''GroupViTPreTrainedModel''', '''GroupViTTextModel''', '''GroupViTVisionModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a: Optional[Any] = [ '''TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFGroupViTModel''', '''TFGroupViTPreTrainedModel''', '''TFGroupViTTextModel''', '''TFGroupViTVisionModel''', ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys __a: str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
108
import json import logging import os import sys from pathlib import Path import finetune_rag from transformers.file_utils import is_apex_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, require_ray, require_torch_gpu, require_torch_multi_gpu, ) logging.basicConfig(level=logging.DEBUG) _SCREAMING_SNAKE_CASE = logging.getLogger() _SCREAMING_SNAKE_CASE = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase ): def lowerCamelCase_ ( self : Union[str, Any] , lowerCamelCase_ : List[str] ): """simple docstring""" os.makedirs(lowerCamelCase_ , exist_ok=lowerCamelCase_ ) UpperCamelCase = {"""source""": """What is love ?""", """target""": """life"""} UpperCamelCase = {"""train""": 12, """val""": 2, """test""": 2} for split in ["train", "test", "val"]: for field in ["source", "target"]: UpperCamelCase = """\n""".join([contents[field]] * n_lines[split] ) with open(os.path.join(lowerCamelCase_ , f"""{split}.{field}""" ) , """w""" ) as f: f.write(lowerCamelCase_ ) def lowerCamelCase_ ( self : Tuple , lowerCamelCase_ : int , lowerCamelCase_ : str = "pytorch" ): """simple docstring""" UpperCamelCase = self.get_auto_remove_tmp_dir() UpperCamelCase = os.path.join(lowerCamelCase_ , """output""" ) UpperCamelCase = os.path.join(lowerCamelCase_ , """data""" ) self._create_dummy_data(data_dir=lowerCamelCase_ ) UpperCamelCase = f""" --data_dir {data_dir} \ --output_dir {output_dir} \ --model_name_or_path facebook/rag-sequence-base \ --model_type rag_sequence \ --do_train \ --do_predict \ --n_val -1 \ --val_check_interval 1.0 \ --train_batch_size 2 \ --eval_batch_size 1 \ --max_source_length 25 \ --max_target_length 25 \ --val_max_target_length 25 \ --test_max_target_length 25 \ --label_smoothing 0.1 \ --dropout 0.1 \ --attention_dropout 0.1 \ --weight_decay 0.001 \ --adam_epsilon 1e-08 \ --max_grad_norm 0.1 \ --lr_scheduler polynomial \ --learning_rate 3e-04 \ --num_train_epochs 1 \ --warmup_steps 4 \ --gradient_accumulation_steps 1 \ --distributed-port 8787 \ --use_dummy_dataset 1 \ --distributed_retriever {distributed_retriever} \ """.split() if gpus > 0: testargs.append(f"""--gpus={gpus}""" ) if is_apex_available(): testargs.append("""--fp16""" ) else: testargs.append("""--gpus=0""" ) testargs.append("""--distributed_backend=ddp_cpu""" ) testargs.append("""--num_processes=2""" ) UpperCamelCase = [sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs execute_subprocess_async(lowerCamelCase_ , env=self.get_env() ) UpperCamelCase = os.path.join(lowerCamelCase_ , """metrics.json""" ) with open(lowerCamelCase_ ) as f: UpperCamelCase = json.load(lowerCamelCase_ ) return result @require_torch_gpu def lowerCamelCase_ ( self : Tuple ): """simple docstring""" UpperCamelCase = self._run_finetune(gpus=1 ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_multi_gpu def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" UpperCamelCase = self._run_finetune(gpus=2 ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_gpu @require_ray def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase = self._run_finetune(gpus=1 , distributed_retriever="""ray""" ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_multi_gpu @require_ray def lowerCamelCase_ ( self : int ): """simple docstring""" UpperCamelCase = self._run_finetune(gpus=1 , distributed_retriever="""ray""" ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 )
537
0
import pytest import datasets # Import fixture modules as plugins UpperCAmelCase__ : Optional[Any] = ['tests.fixtures.files', 'tests.fixtures.hub', 'tests.fixtures.fsspec'] def _A ( _UpperCamelCase , _UpperCamelCase ): # Mark tests as "unit" by default if not marked as "integration" (or already marked as "unit") for item in items: if any(marker in item.keywords for marker in ['''integration''', '''unit'''] ): continue item.add_marker(pytest.mark.unit ) def _A ( _UpperCamelCase ): config.addinivalue_line('''markers''' , '''torchaudio_latest: mark test to run with torchaudio>=0.12''' ) @pytest.fixture(autouse=_UpperCamelCase ) def _A ( _UpperCamelCase , _UpperCamelCase ): # test_hf_cache_home = tmp_path_factory.mktemp("cache") # TODO: why a cache dir per test function does not work? _UpperCAmelCase : Any = tmp_path_factory.getbasetemp() / '''cache''' _UpperCAmelCase : Any = test_hf_cache_home / '''datasets''' _UpperCAmelCase : List[str] = test_hf_cache_home / '''metrics''' _UpperCAmelCase : List[str] = test_hf_cache_home / '''modules''' monkeypatch.setattr('''datasets.config.HF_DATASETS_CACHE''' , str(_UpperCamelCase ) ) monkeypatch.setattr('''datasets.config.HF_METRICS_CACHE''' , str(_UpperCamelCase ) ) monkeypatch.setattr('''datasets.config.HF_MODULES_CACHE''' , str(_UpperCamelCase ) ) _UpperCAmelCase : Tuple = test_hf_datasets_cache / '''downloads''' monkeypatch.setattr('''datasets.config.DOWNLOADED_DATASETS_PATH''' , str(_UpperCamelCase ) ) _UpperCAmelCase : str = test_hf_datasets_cache / '''downloads''' / '''extracted''' monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_PATH''' , str(_UpperCamelCase ) ) @pytest.fixture(autouse=_UpperCamelCase , scope='''session''' ) def _A ( ): datasets.disable_progress_bar() @pytest.fixture(autouse=_UpperCamelCase ) def _A ( _UpperCamelCase ): # don't take tests into account when counting downloads monkeypatch.setattr('''datasets.config.HF_UPDATE_DOWNLOAD_COUNTS''' , _UpperCamelCase ) @pytest.fixture def _A ( _UpperCamelCase ): # Required to suppress RemovedIn20Warning when feature(s) are not compatible with SQLAlchemy 2.0 # To be removed once SQLAlchemy 2.0 supported monkeypatch.setattr('''sqlalchemy.util.deprecations.SILENCE_UBER_WARNING''' , _UpperCamelCase )
416
from typing import List from .keymap import KEYMAP, get_character def _A ( _UpperCamelCase ): def decorator(_UpperCamelCase ): _UpperCAmelCase : Optional[int] = getattr(_UpperCamelCase , '''handle_key''' , [] ) handle += [key] setattr(_UpperCamelCase , '''handle_key''' , _UpperCamelCase ) return func return decorator def _A ( *_UpperCamelCase ): def decorator(_UpperCamelCase ): _UpperCAmelCase : Any = getattr(_UpperCamelCase , '''handle_key''' , [] ) handle += keys setattr(_UpperCamelCase , '''handle_key''' , _UpperCamelCase ) return func return decorator class lowerCAmelCase_ ( lowercase_ ): def __new__( cls : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Dict ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase : Optional[int] = super().__new__(cls , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) if not hasattr(UpperCAmelCase_ , '''key_handler''' ): setattr(UpperCAmelCase_ , '''key_handler''' , {} ) setattr(UpperCAmelCase_ , '''handle_input''' , KeyHandler.handle_input ) for value in attrs.values(): _UpperCAmelCase : List[str] = getattr(UpperCAmelCase_ , '''handle_key''' , [] ) for key in handled_keys: _UpperCAmelCase : Optional[Any] = value return new_cls @staticmethod def a_ ( cls : Optional[Any] ) -> int: '''simple docstring''' _UpperCAmelCase : Optional[Any] = get_character() if char != KEYMAP["undefined"]: _UpperCAmelCase : str = ord(UpperCAmelCase_ ) _UpperCAmelCase : str = cls.key_handler.get(UpperCAmelCase_ ) if handler: _UpperCAmelCase : Optional[int] = char return handler(cls ) else: return None def _A ( cls ): return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
416
1
from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES __A = logging.get_logger(__name__) __A = OrderedDict( [ # Base model mapping ("albert", "FlaxAlbertModel"), ("bart", "FlaxBartModel"), ("beit", "FlaxBeitModel"), ("bert", "FlaxBertModel"), ("big_bird", "FlaxBigBirdModel"), ("blenderbot", "FlaxBlenderbotModel"), ("blenderbot-small", "FlaxBlenderbotSmallModel"), ("clip", "FlaxCLIPModel"), ("distilbert", "FlaxDistilBertModel"), ("electra", "FlaxElectraModel"), ("gpt-sw3", "FlaxGPT2Model"), ("gpt2", "FlaxGPT2Model"), ("gpt_neo", "FlaxGPTNeoModel"), ("gptj", "FlaxGPTJModel"), ("longt5", "FlaxLongT5Model"), ("marian", "FlaxMarianModel"), ("mbart", "FlaxMBartModel"), ("mt5", "FlaxMT5Model"), ("opt", "FlaxOPTModel"), ("pegasus", "FlaxPegasusModel"), ("regnet", "FlaxRegNetModel"), ("resnet", "FlaxResNetModel"), ("roberta", "FlaxRobertaModel"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormModel"), ("roformer", "FlaxRoFormerModel"), ("t5", "FlaxT5Model"), ("vision-text-dual-encoder", "FlaxVisionTextDualEncoderModel"), ("vit", "FlaxViTModel"), ("wav2vec2", "FlaxWav2Vec2Model"), ("whisper", "FlaxWhisperModel"), ("xglm", "FlaxXGLMModel"), ("xlm-roberta", "FlaxXLMRobertaModel"), ] ) __A = OrderedDict( [ # Model for pre-training mapping ("albert", "FlaxAlbertForPreTraining"), ("bart", "FlaxBartForConditionalGeneration"), ("bert", "FlaxBertForPreTraining"), ("big_bird", "FlaxBigBirdForPreTraining"), ("electra", "FlaxElectraForPreTraining"), ("longt5", "FlaxLongT5ForConditionalGeneration"), ("mbart", "FlaxMBartForConditionalGeneration"), ("mt5", "FlaxMT5ForConditionalGeneration"), ("roberta", "FlaxRobertaForMaskedLM"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMaskedLM"), ("roformer", "FlaxRoFormerForMaskedLM"), ("t5", "FlaxT5ForConditionalGeneration"), ("wav2vec2", "FlaxWav2Vec2ForPreTraining"), ("whisper", "FlaxWhisperForConditionalGeneration"), ("xlm-roberta", "FlaxXLMRobertaForMaskedLM"), ] ) __A = OrderedDict( [ # Model for Masked LM mapping ("albert", "FlaxAlbertForMaskedLM"), ("bart", "FlaxBartForConditionalGeneration"), ("bert", "FlaxBertForMaskedLM"), ("big_bird", "FlaxBigBirdForMaskedLM"), ("distilbert", "FlaxDistilBertForMaskedLM"), ("electra", "FlaxElectraForMaskedLM"), ("mbart", "FlaxMBartForConditionalGeneration"), ("roberta", "FlaxRobertaForMaskedLM"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMaskedLM"), ("roformer", "FlaxRoFormerForMaskedLM"), ("xlm-roberta", "FlaxXLMRobertaForMaskedLM"), ] ) __A = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ("bart", "FlaxBartForConditionalGeneration"), ("blenderbot", "FlaxBlenderbotForConditionalGeneration"), ("blenderbot-small", "FlaxBlenderbotSmallForConditionalGeneration"), ("encoder-decoder", "FlaxEncoderDecoderModel"), ("longt5", "FlaxLongT5ForConditionalGeneration"), ("marian", "FlaxMarianMTModel"), ("mbart", "FlaxMBartForConditionalGeneration"), ("mt5", "FlaxMT5ForConditionalGeneration"), ("pegasus", "FlaxPegasusForConditionalGeneration"), ("t5", "FlaxT5ForConditionalGeneration"), ] ) __A = OrderedDict( [ # Model for Image-classsification ("beit", "FlaxBeitForImageClassification"), ("regnet", "FlaxRegNetForImageClassification"), ("resnet", "FlaxResNetForImageClassification"), ("vit", "FlaxViTForImageClassification"), ] ) __A = OrderedDict( [ ("vision-encoder-decoder", "FlaxVisionEncoderDecoderModel"), ] ) __A = OrderedDict( [ # Model for Causal LM mapping ("bart", "FlaxBartForCausalLM"), ("bert", "FlaxBertForCausalLM"), ("big_bird", "FlaxBigBirdForCausalLM"), ("electra", "FlaxElectraForCausalLM"), ("gpt-sw3", "FlaxGPT2LMHeadModel"), ("gpt2", "FlaxGPT2LMHeadModel"), ("gpt_neo", "FlaxGPTNeoForCausalLM"), ("gptj", "FlaxGPTJForCausalLM"), ("opt", "FlaxOPTForCausalLM"), ("roberta", "FlaxRobertaForCausalLM"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForCausalLM"), ("xglm", "FlaxXGLMForCausalLM"), ("xlm-roberta", "FlaxXLMRobertaForCausalLM"), ] ) __A = OrderedDict( [ # Model for Sequence Classification mapping ("albert", "FlaxAlbertForSequenceClassification"), ("bart", "FlaxBartForSequenceClassification"), ("bert", "FlaxBertForSequenceClassification"), ("big_bird", "FlaxBigBirdForSequenceClassification"), ("distilbert", "FlaxDistilBertForSequenceClassification"), ("electra", "FlaxElectraForSequenceClassification"), ("mbart", "FlaxMBartForSequenceClassification"), ("roberta", "FlaxRobertaForSequenceClassification"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForSequenceClassification"), ("roformer", "FlaxRoFormerForSequenceClassification"), ("xlm-roberta", "FlaxXLMRobertaForSequenceClassification"), ] ) __A = OrderedDict( [ # Model for Question Answering mapping ("albert", "FlaxAlbertForQuestionAnswering"), ("bart", "FlaxBartForQuestionAnswering"), ("bert", "FlaxBertForQuestionAnswering"), ("big_bird", "FlaxBigBirdForQuestionAnswering"), ("distilbert", "FlaxDistilBertForQuestionAnswering"), ("electra", "FlaxElectraForQuestionAnswering"), ("mbart", "FlaxMBartForQuestionAnswering"), ("roberta", "FlaxRobertaForQuestionAnswering"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForQuestionAnswering"), ("roformer", "FlaxRoFormerForQuestionAnswering"), ("xlm-roberta", "FlaxXLMRobertaForQuestionAnswering"), ] ) __A = OrderedDict( [ # Model for Token Classification mapping ("albert", "FlaxAlbertForTokenClassification"), ("bert", "FlaxBertForTokenClassification"), ("big_bird", "FlaxBigBirdForTokenClassification"), ("distilbert", "FlaxDistilBertForTokenClassification"), ("electra", "FlaxElectraForTokenClassification"), ("roberta", "FlaxRobertaForTokenClassification"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForTokenClassification"), ("roformer", "FlaxRoFormerForTokenClassification"), ("xlm-roberta", "FlaxXLMRobertaForTokenClassification"), ] ) __A = OrderedDict( [ # Model for Multiple Choice mapping ("albert", "FlaxAlbertForMultipleChoice"), ("bert", "FlaxBertForMultipleChoice"), ("big_bird", "FlaxBigBirdForMultipleChoice"), ("distilbert", "FlaxDistilBertForMultipleChoice"), ("electra", "FlaxElectraForMultipleChoice"), ("roberta", "FlaxRobertaForMultipleChoice"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMultipleChoice"), ("roformer", "FlaxRoFormerForMultipleChoice"), ("xlm-roberta", "FlaxXLMRobertaForMultipleChoice"), ] ) __A = OrderedDict( [ ("bert", "FlaxBertForNextSentencePrediction"), ] ) __A = OrderedDict( [ ("speech-encoder-decoder", "FlaxSpeechEncoderDecoderModel"), ("whisper", "FlaxWhisperForConditionalGeneration"), ] ) __A = OrderedDict( [ ("whisper", "FlaxWhisperForAudioClassification"), ] ) __A = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) __A = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) __A = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) __A = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) __A = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) __A = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) __A = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) __A = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) __A = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) __A = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) __A = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) __A = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) __A = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) __A = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class _A ( _BaseAutoModelClass ): """simple docstring""" lowerCamelCase : Union[str, Any] = FLAX_MODEL_MAPPING __A = auto_class_update(FlaxAutoModel) class _A ( _BaseAutoModelClass ): """simple docstring""" lowerCamelCase : Optional[Any] = FLAX_MODEL_FOR_PRETRAINING_MAPPING __A = auto_class_update(FlaxAutoModelForPreTraining, head_doc="pretraining") class _A ( _BaseAutoModelClass ): """simple docstring""" lowerCamelCase : int = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING __A = auto_class_update(FlaxAutoModelForCausalLM, head_doc="causal language modeling") class _A ( _BaseAutoModelClass ): """simple docstring""" lowerCamelCase : Dict = FLAX_MODEL_FOR_MASKED_LM_MAPPING __A = auto_class_update(FlaxAutoModelForMaskedLM, head_doc="masked language modeling") class _A ( _BaseAutoModelClass ): """simple docstring""" lowerCamelCase : Union[str, Any] = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING __A = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc="sequence-to-sequence language modeling", checkpoint_for_example="t5-base" ) class _A ( _BaseAutoModelClass ): """simple docstring""" lowerCamelCase : Optional[int] = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING __A = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc="sequence classification" ) class _A ( _BaseAutoModelClass ): """simple docstring""" lowerCamelCase : Any = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING __A = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc="question answering") class _A ( _BaseAutoModelClass ): """simple docstring""" lowerCamelCase : List[str] = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING __A = auto_class_update( FlaxAutoModelForTokenClassification, head_doc="token classification" ) class _A ( _BaseAutoModelClass ): """simple docstring""" lowerCamelCase : List[Any] = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING __A = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc="multiple choice") class _A ( _BaseAutoModelClass ): """simple docstring""" lowerCamelCase : Dict = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING __A = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc="next sentence prediction" ) class _A ( _BaseAutoModelClass ): """simple docstring""" lowerCamelCase : Tuple = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING __A = auto_class_update( FlaxAutoModelForImageClassification, head_doc="image classification" ) class _A ( _BaseAutoModelClass ): """simple docstring""" lowerCamelCase : Optional[Any] = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING __A = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc="vision-to-text modeling") class _A ( _BaseAutoModelClass ): """simple docstring""" lowerCamelCase : List[str] = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING __A = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc="sequence-to-sequence speech-to-text modeling" )
68
import argparse import math import os from copy import deepcopy import torch from audio_diffusion.models import DiffusionAttnUnetaD from diffusion import sampling from torch import nn from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel A = { 'gwf-440k': { 'url': 'https://model-server.zqevans2.workers.dev/gwf-440k.ckpt', 'sample_rate': 4_8_0_0_0, 'sample_size': 6_5_5_3_6, }, 'jmann-small-190k': { 'url': 'https://model-server.zqevans2.workers.dev/jmann-small-190k.ckpt', 'sample_rate': 4_8_0_0_0, 'sample_size': 6_5_5_3_6, }, 'jmann-large-580k': { 'url': 'https://model-server.zqevans2.workers.dev/jmann-large-580k.ckpt', 'sample_rate': 4_8_0_0_0, 'sample_size': 1_3_1_0_7_2, }, 'maestro-uncond-150k': { 'url': 'https://model-server.zqevans2.workers.dev/maestro-uncond-150k.ckpt', 'sample_rate': 1_6_0_0_0, 'sample_size': 6_5_5_3_6, }, 'unlocked-uncond-250k': { 'url': 'https://model-server.zqevans2.workers.dev/unlocked-uncond-250k.ckpt', 'sample_rate': 1_6_0_0_0, 'sample_size': 6_5_5_3_6, }, 'honk-140k': { 'url': 'https://model-server.zqevans2.workers.dev/honk-140k.ckpt', 'sample_rate': 1_6_0_0_0, 'sample_size': 6_5_5_3_6, }, } def lowerCamelCase ( UpperCamelCase : Optional[int] , UpperCamelCase : Union[str, Any] ) -> Optional[Any]: return torch.atana(UpperCamelCase , UpperCamelCase ) / math.pi * 2 def lowerCamelCase ( UpperCamelCase : str ) -> Union[str, Any]: _lowerCamelCase = torch.sin(t * math.pi / 2 ) ** 2 _lowerCamelCase = (1 - sigma**2) ** 0.5 return alpha_sigma_to_t(UpperCamelCase , UpperCamelCase ) class lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' pass class lowerCAmelCase__ ( nn.Module ): '''simple docstring''' def __init__( self : Dict , snake_case__ : Any ) -> Optional[Any]: super().__init__() _lowerCamelCase = DiffusionAttnUnetaD(snake_case__ , n_attn_layers=4 ) _lowerCamelCase = deepcopy(self.diffusion ) _lowerCamelCase = torch.quasirandom.SobolEngine(1 , scramble=snake_case__ ) def lowerCamelCase ( UpperCamelCase : List[Any] ) -> List[str]: _lowerCamelCase = MODELS_MAP[model_name]['url'] os.system(F"""wget {url} ./""" ) return F"""./{model_name}.ckpt""" A = { '1': 'resnets.0', '2': 'attentions.0', '3': 'resnets.1', '4': 'attentions.1', '5': 'resnets.2', '6': 'attentions.2', } A = { '8': 'resnets.0', '9': 'attentions.0', '10': 'resnets.1', '11': 'attentions.1', '12': 'resnets.2', '13': 'attentions.2', } A = { '1': 'resnets.0', '2': 'attentions.0', '3': 'resnets.1', '4': 'attentions.1', '5': 'resnets.2', '6': 'attentions.2', '8': 'resnets.3', '9': 'attentions.3', '10': 'resnets.4', '11': 'attentions.4', '12': 'resnets.5', '13': 'attentions.5', } A = { '0': 'resnets.0', '1': 'resnets.1', '2': 'resnets.2', '4': 'resnets.0', '5': 'resnets.1', '6': 'resnets.2', } A = { 'skip': 'conv_skip', 'main.0': 'conv_1', 'main.1': 'group_norm_1', 'main.3': 'conv_2', 'main.4': 'group_norm_2', } A = { 'norm': 'group_norm', 'qkv_proj': ['query', 'key', 'value'], 'out_proj': ['proj_attn'], } def lowerCamelCase ( UpperCamelCase : Tuple ) -> int: if name.startswith('skip' ): return name.replace('skip' , RES_CONV_MAP['skip'] ) # name has to be of format main.{digit} if not name.startswith('main.' ): raise ValueError(F"""ResConvBlock error with {name}""" ) return name.replace(name[:6] , RES_CONV_MAP[name[:6]] ) def lowerCamelCase ( UpperCamelCase : Optional[Any] ) -> Tuple: for key, value in ATTN_MAP.items(): if name.startswith(UpperCamelCase ) and not isinstance(UpperCamelCase , UpperCamelCase ): return name.replace(UpperCamelCase , UpperCamelCase ) elif name.startswith(UpperCamelCase ): return [name.replace(UpperCamelCase , UpperCamelCase ) for v in value] raise ValueError(F"""Attn error with {name}""" ) def lowerCamelCase ( UpperCamelCase : Any , UpperCamelCase : int=13 ) -> Optional[int]: _lowerCamelCase = input_string if string.split('.' )[0] == "timestep_embed": return string.replace('timestep_embed' , 'time_proj' ) _lowerCamelCase = 0 if string.startswith('net.3.' ): depth += 1 _lowerCamelCase = string[6:] elif string.startswith('net.' ): _lowerCamelCase = string[4:] while string.startswith('main.7.' ): depth += 1 _lowerCamelCase = string[7:] if string.startswith('main.' ): _lowerCamelCase = string[5:] # mid block if string[:2].isdigit(): _lowerCamelCase = string[:2] _lowerCamelCase = string[2:] else: _lowerCamelCase = string[0] _lowerCamelCase = string[1:] if depth == max_depth: _lowerCamelCase = MID_NUM_TO_LAYER[layer_num] _lowerCamelCase = 'mid_block' elif depth > 0 and int(UpperCamelCase ) < 7: _lowerCamelCase = DOWN_NUM_TO_LAYER[layer_num] _lowerCamelCase = F"""down_blocks.{depth}""" elif depth > 0 and int(UpperCamelCase ) > 7: _lowerCamelCase = UP_NUM_TO_LAYER[layer_num] _lowerCamelCase = F"""up_blocks.{max_depth - depth - 1}""" elif depth == 0: _lowerCamelCase = DEPTH_0_TO_LAYER[layer_num] _lowerCamelCase = F"""up_blocks.{max_depth - 1}""" if int(UpperCamelCase ) > 3 else 'down_blocks.0' if not string_left.startswith('.' ): raise ValueError(F"""Naming error with {input_string} and string_left: {string_left}.""" ) _lowerCamelCase = string_left[1:] if "resnets" in new_layer: _lowerCamelCase = convert_resconv_naming(UpperCamelCase ) elif "attentions" in new_layer: _lowerCamelCase = convert_attn_naming(UpperCamelCase ) _lowerCamelCase = new_string_left if not isinstance(UpperCamelCase , UpperCamelCase ): _lowerCamelCase = prefix + '.' + new_layer + '.' + string_left else: _lowerCamelCase = [prefix + '.' + new_layer + '.' + s for s in string_left] return new_string def lowerCamelCase ( UpperCamelCase : List[Any] ) -> int: _lowerCamelCase = {} for k, v in state_dict.items(): if k.endswith('kernel' ): # up- and downsample layers, don't have trainable weights continue _lowerCamelCase = rename(UpperCamelCase ) # check if we need to transform from Conv => Linear for attention if isinstance(UpperCamelCase , UpperCamelCase ): _lowerCamelCase = transform_conv_attns(UpperCamelCase , UpperCamelCase , UpperCamelCase ) else: _lowerCamelCase = v return new_state_dict def lowerCamelCase ( UpperCamelCase : List[str] , UpperCamelCase : Tuple , UpperCamelCase : Dict ) -> Optional[Any]: if len(UpperCamelCase ) == 1: if len(v.shape ) == 3: # weight _lowerCamelCase = v[:, :, 0] else: # bias _lowerCamelCase = v else: # qkv matrices _lowerCamelCase = v.shape[0] _lowerCamelCase = trippled_shape // 3 for i in range(3 ): if len(v.shape ) == 3: _lowerCamelCase = v[i * single_shape : (i + 1) * single_shape, :, 0] else: _lowerCamelCase = v[i * single_shape : (i + 1) * single_shape] return new_state_dict def lowerCamelCase ( UpperCamelCase : Any ) -> Optional[Any]: _lowerCamelCase = torch.device('cuda' if torch.cuda.is_available() else 'cpu' ) _lowerCamelCase = args.model_path.split('/' )[-1].split('.' )[0] if not os.path.isfile(args.model_path ): assert ( model_name == args.model_path ), F"""Make sure to provide one of the official model names {MODELS_MAP.keys()}""" _lowerCamelCase = download(UpperCamelCase ) _lowerCamelCase = MODELS_MAP[model_name]['sample_rate'] _lowerCamelCase = MODELS_MAP[model_name]['sample_size'] _lowerCamelCase = Object() _lowerCamelCase = sample_size _lowerCamelCase = sample_rate _lowerCamelCase = 0 _lowerCamelCase = UNetaDModel(sample_size=UpperCamelCase , sample_rate=UpperCamelCase ) _lowerCamelCase = diffusers_model.state_dict() _lowerCamelCase = DiffusionUncond(UpperCamelCase ) orig_model.load_state_dict(torch.load(args.model_path , map_location=UpperCamelCase )['state_dict'] ) _lowerCamelCase = orig_model.diffusion_ema.eval() _lowerCamelCase = orig_model.state_dict() _lowerCamelCase = rename_orig_weights(UpperCamelCase ) _lowerCamelCase = set(renamed_state_dict.keys() ) - set(diffusers_state_dict.keys() ) _lowerCamelCase = set(diffusers_state_dict.keys() ) - set(renamed_state_dict.keys() ) assert len(UpperCamelCase ) == 0, F"""Problem with {renamed_minus_diffusers}""" assert all(k.endswith('kernel' ) for k in list(UpperCamelCase ) ), F"""Problem with {diffusers_minus_renamed}""" for key, value in renamed_state_dict.items(): assert ( diffusers_state_dict[key].squeeze().shape == value.squeeze().shape ), F"""Shape for {key} doesn't match. Diffusers: {diffusers_state_dict[key].shape} vs. {value.shape}""" if key == "time_proj.weight": _lowerCamelCase = value.squeeze() _lowerCamelCase = value diffusers_model.load_state_dict(UpperCamelCase ) _lowerCamelCase = 1_00 _lowerCamelCase = 33 _lowerCamelCase = IPNDMScheduler(num_train_timesteps=UpperCamelCase ) _lowerCamelCase = torch.manual_seed(UpperCamelCase ) _lowerCamelCase = torch.randn([1, 2, config.sample_size] , generator=UpperCamelCase ).to(UpperCamelCase ) _lowerCamelCase = torch.linspace(1 , 0 , steps + 1 , device=UpperCamelCase )[:-1] _lowerCamelCase = get_crash_schedule(UpperCamelCase ) _lowerCamelCase = DanceDiffusionPipeline(unet=UpperCamelCase , scheduler=UpperCamelCase ) _lowerCamelCase = torch.manual_seed(33 ) _lowerCamelCase = pipe(num_inference_steps=UpperCamelCase , generator=UpperCamelCase ).audios _lowerCamelCase = sampling.iplms_sample(UpperCamelCase , UpperCamelCase , UpperCamelCase , {} ) _lowerCamelCase = generated.clamp(-1 , 1 ) _lowerCamelCase = (generated - audio).abs().sum() _lowerCamelCase = (generated - audio).abs().max() if args.save: pipe.save_pretrained(args.checkpoint_path ) print('Diff sum' , UpperCamelCase ) print('Diff max' , UpperCamelCase ) assert diff_max < 1e-3, F"""Diff max: {diff_max} is too much :-/""" print(F"""Conversion for {model_name} successful!""" ) if __name__ == "__main__": A = argparse.ArgumentParser() parser.add_argument('--model_path', default=None, type=str, required=True, help='Path to the model to convert.') parser.add_argument( '--save', default=True, type=bool, required=False, help='Whether to save the converted model or not.' ) parser.add_argument('--checkpoint_path', default=None, type=str, required=True, help='Path to the output model.') A = parser.parse_args() main(args)
544
0
'''simple docstring''' import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotSmallConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html SCREAMING_SNAKE_CASE_ = 'platform' import jax import jax.numpy as jnp from transformers.models.blenderbot_small.modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, shift_tokens_right, ) def UpperCamelCase__ ( _lowercase : Optional[Any] , _lowercase : Union[str, Any] , _lowercase : Optional[Any]=None , _lowercase : List[str]=None , _lowercase : int=None , _lowercase : Optional[int]=None , _lowercase : Dict=None , _lowercase : Optional[Any]=None , ) -> Tuple: if attention_mask is None: __UpperCAmelCase: Optional[Any] = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: __UpperCAmelCase: int = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: __UpperCAmelCase: Union[str, Any] = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: __UpperCAmelCase: Optional[Any] = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: __UpperCAmelCase: int = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class a : """simple docstring""" def __init__( self , snake_case_ , snake_case_=13 , snake_case_=7 , snake_case_=True , snake_case_=False , snake_case_=99 , snake_case_=16 , snake_case_=2 , snake_case_=4 , snake_case_=4 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=32 , snake_case_=2 , snake_case_=1 , snake_case_=0 , snake_case_=0.0_2 , ): '''simple docstring''' __UpperCAmelCase: int = parent __UpperCAmelCase: int = batch_size __UpperCAmelCase: Union[str, Any] = seq_length __UpperCAmelCase: Tuple = is_training __UpperCAmelCase: Union[str, Any] = use_labels __UpperCAmelCase: Any = vocab_size __UpperCAmelCase: Tuple = hidden_size __UpperCAmelCase: int = num_hidden_layers __UpperCAmelCase: int = num_attention_heads __UpperCAmelCase: Tuple = intermediate_size __UpperCAmelCase: Optional[Any] = hidden_act __UpperCAmelCase: Tuple = hidden_dropout_prob __UpperCAmelCase: Dict = attention_probs_dropout_prob __UpperCAmelCase: Optional[int] = max_position_embeddings __UpperCAmelCase: Optional[int] = eos_token_id __UpperCAmelCase: Optional[int] = pad_token_id __UpperCAmelCase: Dict = bos_token_id __UpperCAmelCase: List[Any] = initializer_range def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase: Union[str, Any] = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) __UpperCAmelCase: str = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) __UpperCAmelCase: Dict = shift_tokens_right(snake_case_ , 1 , 2 ) __UpperCAmelCase: List[str] = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=snake_case_ , ) __UpperCAmelCase: Dict = prepare_blenderbot_inputs_dict(snake_case_ , snake_case_ , snake_case_ ) return config, inputs_dict def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase, __UpperCAmelCase: int = self.prepare_config_and_inputs() return config, inputs_dict def lowercase_ ( self , snake_case_ , snake_case_ , snake_case_ ): '''simple docstring''' __UpperCAmelCase: Any = 20 __UpperCAmelCase: List[str] = model_class_name(snake_case_ ) __UpperCAmelCase: int = model.encode(inputs_dict["""input_ids"""] ) __UpperCAmelCase, __UpperCAmelCase: Any = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) __UpperCAmelCase: Any = model.init_cache(decoder_input_ids.shape[0] , snake_case_ , snake_case_ ) __UpperCAmelCase: Optional[int] = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="""i4""" ) __UpperCAmelCase: str = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) __UpperCAmelCase: Dict = model.decode( decoder_input_ids[:, :-1] , snake_case_ , decoder_attention_mask=snake_case_ , past_key_values=snake_case_ , decoder_position_ids=snake_case_ , ) __UpperCAmelCase: Optional[int] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" ) __UpperCAmelCase: Any = model.decode( decoder_input_ids[:, -1:] , snake_case_ , decoder_attention_mask=snake_case_ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=snake_case_ , ) __UpperCAmelCase: Tuple = model.decode(snake_case_ , snake_case_ ) __UpperCAmelCase: Optional[Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=F'''Max diff is {diff}''' ) def lowercase_ ( self , snake_case_ , snake_case_ , snake_case_ ): '''simple docstring''' __UpperCAmelCase: str = 20 __UpperCAmelCase: Optional[int] = model_class_name(snake_case_ ) __UpperCAmelCase: Optional[Any] = model.encode(inputs_dict["""input_ids"""] ) __UpperCAmelCase, __UpperCAmelCase: Optional[int] = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) __UpperCAmelCase: List[str] = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) __UpperCAmelCase: List[Any] = model.init_cache(decoder_input_ids.shape[0] , snake_case_ , snake_case_ ) __UpperCAmelCase: List[str] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) __UpperCAmelCase: List[str] = model.decode( decoder_input_ids[:, :-1] , snake_case_ , decoder_attention_mask=snake_case_ , past_key_values=snake_case_ , decoder_position_ids=snake_case_ , ) __UpperCAmelCase: Optional[Any] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" ) __UpperCAmelCase: Any = model.decode( decoder_input_ids[:, -1:] , snake_case_ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=snake_case_ , decoder_position_ids=snake_case_ , ) __UpperCAmelCase: Tuple = model.decode(snake_case_ , snake_case_ , decoder_attention_mask=snake_case_ ) __UpperCAmelCase: Optional[Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=F'''Max diff is {diff}''' ) @require_flax class a ( unittest.TestCase ): """simple docstring""" __lowerCAmelCase = 9_9 def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase: Union[str, Any] = np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) __UpperCAmelCase: int = input_ids.shape[0] __UpperCAmelCase: Optional[int] = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase: str = self._get_config_and_data() __UpperCAmelCase: Union[str, Any] = FlaxBlenderbotSmallForConditionalGeneration(snake_case_ ) __UpperCAmelCase: Union[str, Any] = lm_model(input_ids=snake_case_ ) __UpperCAmelCase: List[Any] = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs["""logits"""].shape , snake_case_ ) def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase: Any = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) __UpperCAmelCase: str = FlaxBlenderbotSmallForConditionalGeneration(snake_case_ ) __UpperCAmelCase: Dict = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa ) __UpperCAmelCase: int = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa ) __UpperCAmelCase: List[Any] = lm_model(input_ids=snake_case_ , decoder_input_ids=snake_case_ ) __UpperCAmelCase: str = (*summary.shape, config.vocab_size) self.assertEqual(outputs["""logits"""].shape , snake_case_ ) def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase: str = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa ) __UpperCAmelCase: Tuple = shift_tokens_right(snake_case_ , 1 , 2 ) __UpperCAmelCase: Optional[Any] = np.equal(snake_case_ , 1 ).astype(np.floataa ).sum() __UpperCAmelCase: Tuple = np.equal(snake_case_ , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(snake_case_ , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class a ( __lowerCAmelCase , unittest.TestCase , __lowerCAmelCase ): """simple docstring""" __lowerCAmelCase = True __lowerCAmelCase = ( ( FlaxBlenderbotSmallModel, FlaxBlenderbotSmallForConditionalGeneration, ) if is_flax_available() else () ) __lowerCAmelCase = (FlaxBlenderbotSmallForConditionalGeneration,) if is_flax_available() else () def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase: Optional[int] = FlaxBlenderbotSmallModelTester(self ) def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase, __UpperCAmelCase: int = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(snake_case_ , snake_case_ , snake_case_ ) def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase, __UpperCAmelCase: Union[str, Any] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(snake_case_ , snake_case_ , snake_case_ ) def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase, __UpperCAmelCase: Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __UpperCAmelCase: Dict = self._prepare_for_class(snake_case_ , snake_case_ ) __UpperCAmelCase: Dict = model_class(snake_case_ ) @jax.jit def encode_jitted(snake_case_ , snake_case_=None , **snake_case_ ): return model.encode(input_ids=snake_case_ , attention_mask=snake_case_ ) with self.subTest("""JIT Enabled""" ): __UpperCAmelCase: Optional[int] = encode_jitted(**snake_case_ ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): __UpperCAmelCase: Optional[int] = encode_jitted(**snake_case_ ).to_tuple() self.assertEqual(len(snake_case_ ) , len(snake_case_ ) ) for jitted_output, output in zip(snake_case_ , snake_case_ ): self.assertEqual(jitted_output.shape , output.shape ) def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase, __UpperCAmelCase: Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __UpperCAmelCase: Optional[int] = model_class(snake_case_ ) __UpperCAmelCase: int = model.encode(inputs_dict["""input_ids"""] , inputs_dict["""attention_mask"""] ) __UpperCAmelCase: Optional[Any] = { """decoder_input_ids""": inputs_dict["""decoder_input_ids"""], """decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""], """encoder_outputs""": encoder_outputs, } @jax.jit def decode_jitted(snake_case_ , snake_case_ , snake_case_ ): return model.decode( decoder_input_ids=snake_case_ , decoder_attention_mask=snake_case_ , encoder_outputs=snake_case_ , ) with self.subTest("""JIT Enabled""" ): __UpperCAmelCase: List[str] = decode_jitted(**snake_case_ ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): __UpperCAmelCase: Tuple = decode_jitted(**snake_case_ ).to_tuple() self.assertEqual(len(snake_case_ ) , len(snake_case_ ) ) for jitted_output, output in zip(snake_case_ , snake_case_ ): self.assertEqual(jitted_output.shape , output.shape ) @slow def lowercase_ ( self ): '''simple docstring''' for model_class_name in self.all_model_classes: __UpperCAmelCase: List[Any] = model_class_name.from_pretrained("""facebook/blenderbot_small-90M""" ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids __UpperCAmelCase: Any = np.ones((1, 1) ) * model.config.eos_token_id __UpperCAmelCase: List[str] = model(snake_case_ ) self.assertIsNotNone(snake_case_ )
466
'''simple docstring''' from __future__ import annotations SCREAMING_SNAKE_CASE_ = 10 def UpperCamelCase__ ( _lowercase : list[int] ) -> list[int]: __UpperCAmelCase: Union[str, Any] = 1 __UpperCAmelCase: Optional[Any] = max(_lowercase ) while placement <= max_digit: # declare and initialize empty buckets __UpperCAmelCase: list[list] = [[] for _ in range(_lowercase )] # split list_of_ints between the buckets for i in list_of_ints: __UpperCAmelCase: Optional[Any] = int((i / placement) % RADIX ) buckets[tmp].append(_lowercase ) # put each buckets' contents into list_of_ints __UpperCAmelCase: Optional[int] = 0 for b in range(_lowercase ): for i in buckets[b]: __UpperCAmelCase: str = i a += 1 # move to next placement *= RADIX return list_of_ints if __name__ == "__main__": import doctest doctest.testmod()
466
1
import argparse from collections import defaultdict import yaml A = 'docs/source/en/_toctree.yml' def lowerCamelCase ( UpperCamelCase : Union[str, Any] ) -> Optional[Any]: _lowerCamelCase = defaultdict(UpperCamelCase ) for doc in model_doc: counts[doc["local"]] += 1 _lowerCamelCase = [key for key, value in counts.items() if value > 1] _lowerCamelCase = [] for duplicate_key in duplicates: _lowerCamelCase = list({doc['title'] for doc in model_doc if doc['local'] == duplicate_key} ) if len(UpperCamelCase ) > 1: raise ValueError( F"""{duplicate_key} is present several times in the documentation table of content at """ '`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ' 'others.' ) # Only add this once new_doc.append({'local': duplicate_key, 'title': titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in model_doc if counts[doc['local']] == 1] ) # Sort return sorted(UpperCamelCase , key=lambda UpperCamelCase : s["title"].lower() ) def lowerCamelCase ( UpperCamelCase : List[str]=False ) -> Dict: with open(UpperCamelCase , encoding='utf-8' ) as f: _lowerCamelCase = yaml.safe_load(f.read() ) # Get to the API doc _lowerCamelCase = 0 while content[api_idx]["title"] != "API": api_idx += 1 _lowerCamelCase = content[api_idx]['sections'] # Then to the model doc _lowerCamelCase = 0 while api_doc[model_idx]["title"] != "Models": model_idx += 1 _lowerCamelCase = api_doc[model_idx]['sections'] _lowerCamelCase = [(idx, section) for idx, section in enumerate(UpperCamelCase ) if 'sections' in section] _lowerCamelCase = False for idx, modality_doc in modalities_docs: _lowerCamelCase = modality_doc['sections'] _lowerCamelCase = clean_model_doc_toc(UpperCamelCase ) if old_modality_doc != new_modality_doc: _lowerCamelCase = True if overwrite: _lowerCamelCase = new_modality_doc if diff: if overwrite: _lowerCamelCase = model_doc _lowerCamelCase = api_doc with open(UpperCamelCase , 'w' , encoding='utf-8' ) as f: f.write(yaml.dump(UpperCamelCase , allow_unicode=UpperCamelCase ) ) else: raise ValueError( 'The model doc part of the table of content is not properly sorted, run `make style` to fix this.' ) if __name__ == "__main__": A = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') A = parser.parse_args() check_model_doc(args.fix_and_overwrite)
544
import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ = ShapEImgaImgPipeline lowerCAmelCase_ = ['image'] lowerCAmelCase_ = ['image'] lowerCAmelCase_ = [ 'num_images_per_prompt', 'num_inference_steps', 'generator', 'latents', 'guidance_scale', 'frame_size', 'output_type', 'return_dict', ] lowerCAmelCase_ = False @property def _snake_case ( self : List[str] ) -> Any: return 3_2 @property def _snake_case ( self : int ) -> Dict: return 3_2 @property def _snake_case ( self : Tuple ) -> Optional[Any]: return self.time_input_dim * 4 @property def _snake_case ( self : Tuple ) -> Optional[Any]: return 8 @property def _snake_case ( self : int ) -> Dict: torch.manual_seed(0 ) _lowerCamelCase = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=6_4 , projection_dim=self.text_embedder_hidden_size , intermediate_size=3_7 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) _lowerCamelCase = CLIPVisionModel(snake_case__ ) return model @property def _snake_case ( self : Tuple ) -> Any: _lowerCamelCase = CLIPImageProcessor( crop_size=2_2_4 , do_center_crop=snake_case__ , do_normalize=snake_case__ , do_resize=snake_case__ , image_mean=[0.4814_5466, 0.457_8275, 0.4082_1073] , image_std=[0.2686_2954, 0.2613_0258, 0.2757_7711] , resample=3 , size=2_2_4 , ) return image_processor @property def _snake_case ( self : List[str] ) -> Any: torch.manual_seed(0 ) _lowerCamelCase = { 'num_attention_heads': 2, 'attention_head_dim': 1_6, 'embedding_dim': self.time_input_dim, 'num_embeddings': 3_2, 'embedding_proj_dim': self.text_embedder_hidden_size, 'time_embed_dim': self.time_embed_dim, 'num_layers': 1, 'clip_embed_dim': self.time_input_dim * 2, 'additional_embeddings': 0, 'time_embed_act_fn': 'gelu', 'norm_in_type': 'layer', 'embedding_proj_norm_type': 'layer', 'encoder_hid_proj_type': None, 'added_emb_type': None, } _lowerCamelCase = PriorTransformer(**snake_case__ ) return model @property def _snake_case ( self : List[Any] ) -> Optional[int]: torch.manual_seed(0 ) _lowerCamelCase = { 'param_shapes': ( (self.renderer_dim, 9_3), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), 'd_latent': self.time_input_dim, 'd_hidden': self.renderer_dim, 'n_output': 1_2, 'background': ( 0.1, 0.1, 0.1, ), } _lowerCamelCase = ShapERenderer(**snake_case__ ) return model def _snake_case ( self : Any ) -> str: _lowerCamelCase = self.dummy_prior _lowerCamelCase = self.dummy_image_encoder _lowerCamelCase = self.dummy_image_processor _lowerCamelCase = self.dummy_renderer _lowerCamelCase = HeunDiscreteScheduler( beta_schedule='exp' , num_train_timesteps=1_0_2_4 , prediction_type='sample' , use_karras_sigmas=snake_case__ , clip_sample=snake_case__ , clip_sample_range=1.0 , ) _lowerCamelCase = { 'prior': prior, 'image_encoder': image_encoder, 'image_processor': image_processor, 'renderer': renderer, 'scheduler': scheduler, } return components def _snake_case ( self : List[str] , snake_case__ : str , snake_case__ : Optional[Any]=0 ) -> Union[str, Any]: _lowerCamelCase = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) if str(snake_case__ ).startswith('mps' ): _lowerCamelCase = torch.manual_seed(snake_case__ ) else: _lowerCamelCase = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) _lowerCamelCase = { 'image': input_image, 'generator': generator, 'num_inference_steps': 1, 'frame_size': 3_2, 'output_type': 'np', } return inputs def _snake_case ( self : Union[str, Any] ) -> Union[str, Any]: _lowerCamelCase = 'cpu' _lowerCamelCase = self.get_dummy_components() _lowerCamelCase = self.pipeline_class(**snake_case__ ) _lowerCamelCase = pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) _lowerCamelCase = pipe(**self.get_dummy_inputs(snake_case__ ) ) _lowerCamelCase = output.images[0] _lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (2_0, 3_2, 3_2, 3) _lowerCamelCase = np.array( [ 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _snake_case ( self : Dict ) -> Optional[Any]: # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def _snake_case ( self : Optional[Any] ) -> Tuple: _lowerCamelCase = torch_device == 'cpu' _lowerCamelCase = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=snake_case__ , relax_max_difference=snake_case__ , ) def _snake_case ( self : Any ) -> Tuple: _lowerCamelCase = self.get_dummy_components() _lowerCamelCase = self.pipeline_class(**snake_case__ ) _lowerCamelCase = pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) _lowerCamelCase = 1 _lowerCamelCase = 2 _lowerCamelCase = self.get_dummy_inputs(snake_case__ ) for key in inputs.keys(): if key in self.batch_params: _lowerCamelCase = batch_size * [inputs[key]] _lowerCamelCase = pipe(**snake_case__ , num_images_per_prompt=snake_case__ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self : Union[str, Any] ) -> Optional[int]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self : List[str] ) -> List[Any]: _lowerCamelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/shap_e/corgi.png' ) _lowerCamelCase = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/shap_e/test_shap_e_img2img_out.npy' ) _lowerCamelCase = ShapEImgaImgPipeline.from_pretrained('openai/shap-e-img2img' ) _lowerCamelCase = pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) _lowerCamelCase = torch.Generator(device=snake_case__ ).manual_seed(0 ) _lowerCamelCase = pipe( snake_case__ , generator=snake_case__ , guidance_scale=3.0 , num_inference_steps=6_4 , frame_size=6_4 , output_type='np' , ).images[0] assert images.shape == (2_0, 6_4, 6_4, 3) assert_mean_pixel_difference(snake_case__ , snake_case__ )
544
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __A : Any = logging.get_logger(__name__) __A : Union[str, Any] = { 'weiweishi/roc-bert-base-zh': 'https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json', } class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = "roc_bert" def __init__( self : List[str] , __lowerCamelCase : Any=30522 , __lowerCamelCase : Union[str, Any]=768 , __lowerCamelCase : int=12 , __lowerCamelCase : int=12 , __lowerCamelCase : Any=3072 , __lowerCamelCase : Any="gelu" , __lowerCamelCase : List[str]=0.1 , __lowerCamelCase : Dict=0.1 , __lowerCamelCase : Dict=512 , __lowerCamelCase : List[str]=2 , __lowerCamelCase : List[str]=0.02 , __lowerCamelCase : int=1e-12 , __lowerCamelCase : str=True , __lowerCamelCase : List[Any]=0 , __lowerCamelCase : str="absolute" , __lowerCamelCase : Dict=None , __lowerCamelCase : List[Any]=True , __lowerCamelCase : Tuple=True , __lowerCamelCase : List[str]=768 , __lowerCamelCase : Any=910 , __lowerCamelCase : Union[str, Any]=512 , __lowerCamelCase : Dict=24858 , __lowerCamelCase : Tuple=True , **__lowerCamelCase : Any , ): SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = type_vocab_size SCREAMING_SNAKE_CASE = layer_norm_eps SCREAMING_SNAKE_CASE = use_cache SCREAMING_SNAKE_CASE = enable_pronunciation SCREAMING_SNAKE_CASE = enable_shape SCREAMING_SNAKE_CASE = pronunciation_embed_dim SCREAMING_SNAKE_CASE = pronunciation_vocab_size SCREAMING_SNAKE_CASE = shape_embed_dim SCREAMING_SNAKE_CASE = shape_vocab_size SCREAMING_SNAKE_CASE = concat_input SCREAMING_SNAKE_CASE = position_embedding_type SCREAMING_SNAKE_CASE = classifier_dropout super().__init__(pad_token_id=__lowerCamelCase , **__lowerCamelCase )
716
import cmath import math def __a ( A__ : float , A__ : float , A__ : float , A__ : float ): SCREAMING_SNAKE_CASE = math.radians(A__ ) SCREAMING_SNAKE_CASE = math.radians(A__ ) # Convert voltage and current to rectangular form SCREAMING_SNAKE_CASE = cmath.rect(A__ , A__ ) SCREAMING_SNAKE_CASE = cmath.rect(A__ , A__ ) # Calculate apparent power return voltage_rect * current_rect if __name__ == "__main__": import doctest doctest.testmod()
698
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json""" ), } class UpperCamelCase__ ( lowercase_ ): """simple docstring""" SCREAMING_SNAKE_CASE__ = '''dpr''' def __init__( self : Tuple , lowerCamelCase_ : Dict=3_05_22 , lowerCamelCase_ : List[Any]=7_68 , lowerCamelCase_ : Optional[int]=12 , lowerCamelCase_ : Optional[int]=12 , lowerCamelCase_ : List[str]=30_72 , lowerCamelCase_ : int="gelu" , lowerCamelCase_ : Optional[Any]=0.1 , lowerCamelCase_ : Optional[int]=0.1 , lowerCamelCase_ : Dict=5_12 , lowerCamelCase_ : List[str]=2 , lowerCamelCase_ : Optional[int]=0.02 , lowerCamelCase_ : Optional[int]=1e-12 , lowerCamelCase_ : Any=0 , lowerCamelCase_ : Union[str, Any]="absolute" , lowerCamelCase_ : int = 0 , **lowerCamelCase_ : str , ): '''simple docstring''' super().__init__(pad_token_id=lowerCamelCase_ , **lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = vocab_size SCREAMING_SNAKE_CASE : Optional[int] = hidden_size SCREAMING_SNAKE_CASE : Union[str, Any] = num_hidden_layers SCREAMING_SNAKE_CASE : int = num_attention_heads SCREAMING_SNAKE_CASE : Tuple = hidden_act SCREAMING_SNAKE_CASE : Any = intermediate_size SCREAMING_SNAKE_CASE : List[str] = hidden_dropout_prob SCREAMING_SNAKE_CASE : Optional[int] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Optional[int] = max_position_embeddings SCREAMING_SNAKE_CASE : int = type_vocab_size SCREAMING_SNAKE_CASE : Union[str, Any] = initializer_range SCREAMING_SNAKE_CASE : Tuple = layer_norm_eps SCREAMING_SNAKE_CASE : Any = projection_dim SCREAMING_SNAKE_CASE : str = position_embedding_type
379
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { """google/fnet-base""": """https://huggingface.co/google/fnet-base/resolve/main/config.json""", """google/fnet-large""": """https://huggingface.co/google/fnet-large/resolve/main/config.json""" # See all FNet models at https://huggingface.co/models?filter=fnet } class UpperCamelCase__ ( lowercase_ ): """simple docstring""" SCREAMING_SNAKE_CASE__ = '''fnet''' def __init__( self : Any , lowerCamelCase_ : List[str]=3_20_00 , lowerCamelCase_ : List[Any]=7_68 , lowerCamelCase_ : Union[str, Any]=12 , lowerCamelCase_ : Optional[Any]=30_72 , lowerCamelCase_ : Optional[Any]="gelu_new" , lowerCamelCase_ : Any=0.1 , lowerCamelCase_ : Union[str, Any]=5_12 , lowerCamelCase_ : Optional[int]=4 , lowerCamelCase_ : Optional[int]=0.02 , lowerCamelCase_ : str=1e-12 , lowerCamelCase_ : Any=False , lowerCamelCase_ : str=5_12 , lowerCamelCase_ : str=3 , lowerCamelCase_ : int=1 , lowerCamelCase_ : Optional[Any]=2 , **lowerCamelCase_ : Optional[int] , ): '''simple docstring''' super().__init__(pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , **lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = vocab_size SCREAMING_SNAKE_CASE : Dict = max_position_embeddings SCREAMING_SNAKE_CASE : str = hidden_size SCREAMING_SNAKE_CASE : Optional[Any] = num_hidden_layers SCREAMING_SNAKE_CASE : Union[str, Any] = intermediate_size SCREAMING_SNAKE_CASE : int = hidden_act SCREAMING_SNAKE_CASE : Dict = hidden_dropout_prob SCREAMING_SNAKE_CASE : Tuple = initializer_range SCREAMING_SNAKE_CASE : List[Any] = type_vocab_size SCREAMING_SNAKE_CASE : Any = layer_norm_eps SCREAMING_SNAKE_CASE : int = use_tpu_fourier_optimizations SCREAMING_SNAKE_CASE : List[Any] = tpu_short_seq_length
379
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _UpperCamelCase : Optional[Any] = { "configuration_efficientformer": [ "EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "EfficientFormerConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : str = ["EfficientFormerImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : str = [ "EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "EfficientFormerForImageClassification", "EfficientFormerForImageClassificationWithTeacher", "EfficientFormerModel", "EfficientFormerPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : Union[str, Any] = [ "TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TFEfficientFormerForImageClassification", "TFEfficientFormerForImageClassificationWithTeacher", "TFEfficientFormerModel", "TFEfficientFormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientformer import EfficientFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientformer import ( EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientFormerForImageClassification, EfficientFormerForImageClassificationWithTeacher, EfficientFormerModel, EfficientFormerPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, TFEfficientFormerPreTrainedModel, ) else: import sys _UpperCamelCase : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
710
'''simple docstring''' import pytest from datasets.utils.sharding import _distribute_shards, _number_of_shards_in_gen_kwargs, _split_gen_kwargs @pytest.mark.parametrize( 'kwargs, expected' , [ ({'num_shards': 0, 'max_num_jobs': 1}, []), ({'num_shards': 10, 'max_num_jobs': 1}, [range(10 )]), ({'num_shards': 10, 'max_num_jobs': 10}, [range(snake_case , i + 1 ) for i in range(10 )]), ({'num_shards': 1, 'max_num_jobs': 10}, [range(1 )]), ({'num_shards': 10, 'max_num_jobs': 3}, [range(0 , 4 ), range(4 , 7 ), range(7 , 10 )]), ({'num_shards': 3, 'max_num_jobs': 10}, [range(0 , 1 ), range(1 , 2 ), range(2 , 3 )]), ] , ) def snake_case ( snake_case : Optional[int] , snake_case : str ) -> str: """simple docstring""" lowerCAmelCase = _distribute_shards(**snake_case ) assert out == expected @pytest.mark.parametrize( 'gen_kwargs, max_num_jobs, expected' , [ ({'foo': 0}, 10, [{'foo': 0}]), ({'shards': [0, 1, 2, 3]}, 1, [{'shards': [0, 1, 2, 3]}]), ({'shards': [0, 1, 2, 3]}, 4, [{'shards': [0]}, {'shards': [1]}, {'shards': [2]}, {'shards': [3]}]), ({'shards': [0, 1]}, 4, [{'shards': [0]}, {'shards': [1]}]), ({'shards': [0, 1, 2, 3]}, 2, [{'shards': [0, 1]}, {'shards': [2, 3]}]), ] , ) def snake_case ( snake_case : Optional[int] , snake_case : int , snake_case : Tuple ) -> Optional[Any]: """simple docstring""" lowerCAmelCase = _split_gen_kwargs(snake_case , snake_case ) assert out == expected @pytest.mark.parametrize( 'gen_kwargs, expected' , [ ({'foo': 0}, 1), ({'shards': [0]}, 1), ({'shards': [0, 1, 2, 3]}, 4), ({'shards': [0, 1, 2, 3], 'foo': 0}, 4), ({'shards': [0, 1, 2, 3], 'other': (0, 1)}, 4), ({'shards': [0, 1, 2, 3], 'shards2': [0, 1]}, RuntimeError), ] , ) def snake_case ( snake_case : Union[str, Any] , snake_case : Optional[int] ) -> int: """simple docstring""" if expected is RuntimeError: with pytest.raises(snake_case ): _number_of_shards_in_gen_kwargs(snake_case ) else: lowerCAmelCase = _number_of_shards_in_gen_kwargs(snake_case ) assert out == expected
514
0
"""simple docstring""" import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration _UpperCamelCase = [ # tf -> hf ('/', '.'), ('layer_', 'layers.'), ('kernel', 'weight'), ('beta', 'bias'), ('gamma', 'weight'), ('pegasus', 'model'), ] _UpperCamelCase = [ ('.output.dense', '.fc2'), ('intermediate.LayerNorm', 'final_layer_norm'), ('intermediate.dense', 'fc1'), ] _UpperCamelCase = ( INIT_COMMON + [ ('attention.self.LayerNorm', 'self_attn_layer_norm'), ('attention.output.dense', 'self_attn.out_proj'), ('attention.self', 'self_attn'), ('attention.encdec.LayerNorm', 'encoder_attn_layer_norm'), ('attention.encdec_output.dense', 'encoder_attn.out_proj'), ('attention.encdec', 'encoder_attn'), ('key', 'k_proj'), ('value', 'v_proj'), ('query', 'q_proj'), ('decoder.LayerNorm', 'decoder.layernorm_embedding'), ] + END_COMMON ) _UpperCamelCase = ( INIT_COMMON + [ ('embeddings.word_embeddings', 'shared.weight'), ('embeddings.position_embeddings', 'embed_positions.weight'), ('attention.self.LayerNorm', 'self_attn_layer_norm'), ('attention.output.dense', 'self_attn.output'), ('attention.self', 'self_attn.self'), ('encoder.LayerNorm', 'encoder.layernorm_embedding'), ] + END_COMMON ) _UpperCamelCase = [ 'encdec/key/bias', 'encdec/query/bias', 'encdec/value/bias', 'self/key/bias', 'self/query/bias', 'self/value/bias', 'encdec_output/dense/bias', 'attention/output/dense/bias', ] def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' for tf_name, hf_name in patterns: __lowerCamelCase : List[str] =k.replace(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return k def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE : dict , SCREAMING_SNAKE_CASE : dict ): '''simple docstring''' __lowerCamelCase : int =BigBirdPegasusConfig(**SCREAMING_SNAKE_CASE ) __lowerCamelCase : List[Any] =BigBirdPegasusForConditionalGeneration(SCREAMING_SNAKE_CASE ) __lowerCamelCase : Optional[Any] =torch_model.state_dict() __lowerCamelCase : List[Any] ={} # separating decoder weights __lowerCamelCase : Optional[Any] ={k: tf_weights[k] for k in tf_weights if k.startswith('''pegasus/decoder''' )} __lowerCamelCase : Any ={k: tf_weights[k] for k in tf_weights if not k.startswith('''pegasus/decoder''' )} for k, v in tqdm(decoder_weights.items() , '''tf -> hf conversion''' ): __lowerCamelCase : List[str] =[k.endswith(SCREAMING_SNAKE_CASE ) for ending in KEYS_TO_IGNORE] if any(SCREAMING_SNAKE_CASE ): continue __lowerCamelCase : Union[str, Any] =DECODER_PATTERNS __lowerCamelCase : Optional[int] =rename_state_dict_key(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if new_k not in state_dict: raise ValueError(F'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ): __lowerCamelCase : Dict =v.T __lowerCamelCase : Any =torch.from_numpy(SCREAMING_SNAKE_CASE ) assert v.shape == state_dict[new_k].shape, F'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' for k, v in tqdm(remaining_weights.items() , '''tf -> hf conversion''' ): __lowerCamelCase : Optional[Any] =[k.endswith(SCREAMING_SNAKE_CASE ) for ending in KEYS_TO_IGNORE] if any(SCREAMING_SNAKE_CASE ): continue __lowerCamelCase : List[Any] =REMAINING_PATTERNS __lowerCamelCase : Union[str, Any] =rename_state_dict_key(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(F'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ): __lowerCamelCase : Tuple =v.T __lowerCamelCase : Any =torch.from_numpy(SCREAMING_SNAKE_CASE ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, F'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' __lowerCamelCase : str =mapping["model.embed_positions.weight"] __lowerCamelCase : Tuple =mapping.pop('''model.embed_positions.weight''' ) __lowerCamelCase : Dict =torch_model.load_state_dict(SCREAMING_SNAKE_CASE , strict=SCREAMING_SNAKE_CASE ) __lowerCamelCase : List[Any] =[ k for k in missing if k not in [ "final_logits_bias", "model.encoder.embed_tokens.weight", "model.decoder.embed_tokens.weight", "lm_head.weight", ] ] assert unexpected_missing == [], F'no matches found for the following torch keys {unexpected_missing}' assert extra == [], F'no matches found for the following tf keys {extra}' return torch_model def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' __lowerCamelCase : Optional[Any] =tf.train.list_variables(SCREAMING_SNAKE_CASE ) __lowerCamelCase : Tuple ={} __lowerCamelCase : Tuple =["global_step"] for name, shape in tqdm(SCREAMING_SNAKE_CASE , desc='''converting tf checkpoint to dict''' ): __lowerCamelCase : Tuple =any(pat in name for pat in ignore_name ) if skip_key: continue __lowerCamelCase : List[str] =tf.train.load_variable(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowerCamelCase : str =array return tf_weights def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : dict ): '''simple docstring''' __lowerCamelCase : Dict =get_tf_weights_as_numpy(SCREAMING_SNAKE_CASE ) __lowerCamelCase : Any =convert_bigbird_pegasus(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) torch_model.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() parser.add_argument('--tf_ckpt_path', type=str, help='passed to tf.train.list_variables') parser.add_argument('--save_dir', default=None, type=str, help='Path to the output PyTorch model.') _UpperCamelCase = parser.parse_args() _UpperCamelCase = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
179
'''simple docstring''' def A__ ( A : Any): # noqa: E741 '''simple docstring''' UpperCamelCase : List[Any] = len(A) UpperCamelCase : Any = 0 UpperCamelCase : Optional[Any] = [0] * n UpperCamelCase : Union[str, Any] = [False] * n UpperCamelCase : Dict = [False] * n def dfs(A : Optional[int] , A : Dict , A : List[Any] , A : int): if parent == root: out_edge_count += 1 UpperCamelCase : Union[str, Any] = True UpperCamelCase : Any = at for to in l[at]: if to == parent: pass elif not visited[to]: UpperCamelCase : int = dfs(A , A , A , A) UpperCamelCase : Any = min(low[at] , low[to]) # AP found via bridge if at < low[to]: UpperCamelCase : int = True # AP found via cycle if at == low[to]: UpperCamelCase : Any = True else: UpperCamelCase : List[Any] = min(low[at] , A) return out_edge_count for i in range(A): if not visited[i]: UpperCamelCase : Union[str, Any] = 0 UpperCamelCase : List[Any] = dfs(A , A , -1 , A) UpperCamelCase : Dict = out_edge_count > 1 for x in range(len(A)): if is_art[x] is True: print(A) # Adjacency list of graph lowerCAmelCase_ = { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], } compute_ap(data)
173
0
import functools def __lowerCAmelCase ( A_ : str , A_ : int ) -> int: if not isinstance(a__ , a__ ) or not all(isinstance(a__ , a__ ) for day in days ): raise ValueError("The parameter days should be a list of integers" ) if len(a__ ) != 3 or not all(isinstance(a__ , a__ ) for cost in costs ): raise ValueError("The parameter costs should be a list of three integers" ) if len(a__ ) == 0: return 0 if min(a__ ) <= 0: raise ValueError("All days elements should be greater than 0" ) if max(a__ ) >= 3_66: raise ValueError("All days elements should be less than 366" ) __UpperCAmelCase = set(a__ ) @functools.cache def dynamic_programming(A_ : Tuple ) -> int: if index > 3_65: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
716
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import SegformerImageProcessor, SwinConfig, UperNetConfig, UperNetForSemanticSegmentation def __lowerCAmelCase ( A_ : Tuple ) -> Any: __UpperCAmelCase = 3_84 __UpperCAmelCase = 7 if "tiny" in model_name: __UpperCAmelCase = 96 __UpperCAmelCase = (2, 2, 6, 2) __UpperCAmelCase = (3, 6, 12, 24) elif "small" in model_name: __UpperCAmelCase = 96 __UpperCAmelCase = (2, 2, 18, 2) __UpperCAmelCase = (3, 6, 12, 24) elif "base" in model_name: __UpperCAmelCase = 1_28 __UpperCAmelCase = (2, 2, 18, 2) __UpperCAmelCase = (4, 8, 16, 32) __UpperCAmelCase = 12 __UpperCAmelCase = 5_12 elif "large" in model_name: __UpperCAmelCase = 1_92 __UpperCAmelCase = (2, 2, 18, 2) __UpperCAmelCase = (6, 12, 24, 48) __UpperCAmelCase = 12 __UpperCAmelCase = 7_68 # set label information __UpperCAmelCase = 1_50 __UpperCAmelCase = "huggingface/label-files" __UpperCAmelCase = "ade20k-id2label.json" __UpperCAmelCase = json.load(open(hf_hub_download(A_ , A_ , repo_type="dataset" ) , "r" ) ) __UpperCAmelCase = {int(A_ ): v for k, v in idalabel.items()} __UpperCAmelCase = {v: k for k, v in idalabel.items()} __UpperCAmelCase = SwinConfig( embed_dim=A_ , depths=A_ , num_heads=A_ , window_size=A_ , out_features=["stage1", "stage2", "stage3", "stage4"] , ) __UpperCAmelCase = UperNetConfig( backbone_config=A_ , auxiliary_in_channels=A_ , num_labels=A_ , idalabel=A_ , labelaid=A_ , ) return config def __lowerCAmelCase ( A_ : Optional[int] ) -> Optional[Any]: __UpperCAmelCase = [] # fmt: off # stem rename_keys.append(("backbone.patch_embed.projection.weight", "backbone.embeddings.patch_embeddings.projection.weight") ) rename_keys.append(("backbone.patch_embed.projection.bias", "backbone.embeddings.patch_embeddings.projection.bias") ) rename_keys.append(("backbone.patch_embed.norm.weight", "backbone.embeddings.norm.weight") ) rename_keys.append(("backbone.patch_embed.norm.bias", "backbone.embeddings.norm.bias") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.norm1.weight''', F'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.norm1.bias''', F'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_bias_table''', F'''backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_index''', F'''backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.weight''', F'''backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.bias''', F'''backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.norm2.weight''', F'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.norm2.bias''', F'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.weight''', F'''backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.bias''', F'''backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.ffn.layers.1.weight''', F'''backbone.encoder.layers.{i}.blocks.{j}.output.dense.weight''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.ffn.layers.1.bias''', F'''backbone.encoder.layers.{i}.blocks.{j}.output.dense.bias''') ) if i < 3: rename_keys.append((F'''backbone.stages.{i}.downsample.reduction.weight''', F'''backbone.encoder.layers.{i}.downsample.reduction.weight''') ) rename_keys.append((F'''backbone.stages.{i}.downsample.norm.weight''', F'''backbone.encoder.layers.{i}.downsample.norm.weight''') ) rename_keys.append((F'''backbone.stages.{i}.downsample.norm.bias''', F'''backbone.encoder.layers.{i}.downsample.norm.bias''') ) rename_keys.append((F'''backbone.norm{i}.weight''', F'''backbone.hidden_states_norms.stage{i+1}.weight''') ) rename_keys.append((F'''backbone.norm{i}.bias''', F'''backbone.hidden_states_norms.stage{i+1}.bias''') ) # decode head rename_keys.extend( [ ("decode_head.conv_seg.weight", "decode_head.classifier.weight"), ("decode_head.conv_seg.bias", "decode_head.classifier.bias"), ("auxiliary_head.conv_seg.weight", "auxiliary_head.classifier.weight"), ("auxiliary_head.conv_seg.bias", "auxiliary_head.classifier.bias"), ] ) # fmt: on return rename_keys def __lowerCAmelCase ( A_ : List[Any] , A_ : List[str] , A_ : Optional[Any] ) -> List[str]: __UpperCAmelCase = dct.pop(A_ ) __UpperCAmelCase = val def __lowerCAmelCase ( A_ : Tuple , A_ : Dict ) -> Tuple: __UpperCAmelCase = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): __UpperCAmelCase = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) __UpperCAmelCase = state_dict.pop(F'''backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.weight''' ) __UpperCAmelCase = state_dict.pop(F'''backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict __UpperCAmelCase = in_proj_weight[:dim, :] __UpperCAmelCase = in_proj_bias[: dim] __UpperCAmelCase = in_proj_weight[ dim : dim * 2, : ] __UpperCAmelCase = in_proj_bias[ dim : dim * 2 ] __UpperCAmelCase = in_proj_weight[ -dim :, : ] __UpperCAmelCase = in_proj_bias[-dim :] # fmt: on def __lowerCAmelCase ( A_ : List[Any] ) -> int: __UpperCAmelCase , __UpperCAmelCase = x.shape __UpperCAmelCase = x.reshape(A_ , 4 , in_channel // 4 ) __UpperCAmelCase = x[:, [0, 2, 1, 3], :].transpose(1 , 2 ).reshape(A_ , A_ ) return x def __lowerCAmelCase ( A_ : Tuple ) -> int: __UpperCAmelCase , __UpperCAmelCase = x.shape __UpperCAmelCase = x.reshape(A_ , in_channel // 4 , 4 ) __UpperCAmelCase = x[:, :, [0, 2, 1, 3]].transpose(1 , 2 ).reshape(A_ , A_ ) return x def __lowerCAmelCase ( A_ : Union[str, Any] ) -> str: __UpperCAmelCase = x.shape[0] __UpperCAmelCase = x.reshape(4 , in_channel // 4 ) __UpperCAmelCase = x[[0, 2, 1, 3], :].transpose(0 , 1 ).reshape(A_ ) return x def __lowerCAmelCase ( A_ : Optional[int] ) -> str: __UpperCAmelCase = x.shape[0] __UpperCAmelCase = x.reshape(in_channel // 4 , 4 ) __UpperCAmelCase = x[:, [0, 2, 1, 3]].transpose(0 , 1 ).reshape(A_ ) return x def __lowerCAmelCase ( A_ : Any , A_ : str , A_ : Any ) -> Dict: __UpperCAmelCase = { "upernet-swin-tiny": "https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542-e380ad3e.pth", "upernet-swin-small": "https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015-ee2fff1c.pth", "upernet-swin-base": "https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459-429057bf.pth", "upernet-swin-large": "https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k_20220318_091743-9ba68901.pth", } __UpperCAmelCase = model_name_to_url[model_name] __UpperCAmelCase = torch.hub.load_state_dict_from_url(A_ , map_location="cpu" , file_name=A_ )[ "state_dict" ] for name, param in state_dict.items(): print(A_ , param.shape ) __UpperCAmelCase = get_upernet_config(A_ ) __UpperCAmelCase = UperNetForSemanticSegmentation(A_ ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): __UpperCAmelCase = state_dict.pop(A_ ) if "bn" in key: __UpperCAmelCase = key.replace("bn" , "batch_norm" ) __UpperCAmelCase = val # rename keys __UpperCAmelCase = create_rename_keys(A_ ) for src, dest in rename_keys: rename_key(A_ , A_ , A_ ) read_in_q_k_v(A_ , config.backbone_config ) # fix downsample parameters for key, value in state_dict.items(): if "downsample" in key: if "reduction" in key: __UpperCAmelCase = reverse_correct_unfold_reduction_order(A_ ) if "norm" in key: __UpperCAmelCase = reverse_correct_unfold_norm_order(A_ ) model.load_state_dict(A_ ) # verify on image __UpperCAmelCase = "https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg" __UpperCAmelCase = Image.open(requests.get(A_ , stream=A_ ).raw ).convert("RGB" ) __UpperCAmelCase = SegformerImageProcessor() __UpperCAmelCase = processor(A_ , return_tensors="pt" ).pixel_values with torch.no_grad(): __UpperCAmelCase = model(A_ ) __UpperCAmelCase = outputs.logits print(logits.shape ) print("First values of logits:" , logits[0, 0, :3, :3] ) # assert values if model_name == "upernet-swin-tiny": __UpperCAmelCase = torch.tensor( [[-7.59_58, -7.59_58, -7.43_02], [-7.59_58, -7.59_58, -7.43_02], [-7.47_97, -7.47_97, -7.30_68]] ) elif model_name == "upernet-swin-small": __UpperCAmelCase = torch.tensor( [[-7.19_21, -7.19_21, -6.95_32], [-7.19_21, -7.19_21, -6.95_32], [-7.09_08, -7.09_08, -6.85_34]] ) elif model_name == "upernet-swin-base": __UpperCAmelCase = torch.tensor( [[-6.58_51, -6.58_51, -6.43_30], [-6.58_51, -6.58_51, -6.43_30], [-6.47_63, -6.47_63, -6.32_54]] ) elif model_name == "upernet-swin-large": __UpperCAmelCase = torch.tensor( [[-7.52_97, -7.52_97, -7.38_02], [-7.52_97, -7.52_97, -7.38_02], [-7.40_44, -7.40_44, -7.25_86]] ) print("Logits:" , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , A_ , atol=1e-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(A_ ) print(F'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(A_ ) if push_to_hub: print(F'''Pushing model and processor for {model_name} to hub''' ) model.push_to_hub(F'''openmmlab/{model_name}''' ) processor.push_to_hub(F'''openmmlab/{model_name}''' ) if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""upernet-swin-tiny""", type=str, choices=[F"upernet-swin-{size}" for size in ["""tiny""", """small""", """base""", """large"""]], help="""Name of the Swin + UperNet model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) a_ = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
286
0
def A_ ( a , a ): """simple docstring""" return 1 if input_a == input_a else 0 def A_ ( ): """simple docstring""" assert xnor_gate(0 , 0 ) == 1 assert xnor_gate(0 , 1 ) == 0 assert xnor_gate(1 , 0 ) == 0 assert xnor_gate(1 , 1 ) == 1 if __name__ == "__main__": print(xnor_gate(0, 0)) print(xnor_gate(0, 1)) print(xnor_gate(1, 0)) print(xnor_gate(1, 1))
511
import re from pathlib import Path from unittest import TestCase import pytest @pytest.mark.integration class SCREAMING_SNAKE_CASE_ ( _UpperCamelCase ): """simple docstring""" def lowerCamelCase__ ( self : Any , lowerCAmelCase : str ) -> List[Any]: """simple docstring""" with open(lowerCAmelCase , encoding="""utf-8""" ) as input_file: __UpperCamelCase : Union[str, Any] = re.compile(R"""(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)""" ) __UpperCamelCase : str = input_file.read() __UpperCamelCase : Optional[int] = regexp.search(lowerCAmelCase ) return match def lowerCamelCase__ ( self : Optional[Any] , lowerCAmelCase : str ) -> Union[str, Any]: """simple docstring""" with open(lowerCAmelCase , encoding="""utf-8""" ) as input_file: __UpperCamelCase : Dict = re.compile(R"""#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()""" , re.DOTALL ) __UpperCamelCase : str = input_file.read() # use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search` __UpperCamelCase : List[Any] = regexp.finditer(lowerCAmelCase ) __UpperCamelCase : int = [match for match in matches if match is not None and match.group(1 ) is not None] return matches[0] if matches else None def lowerCamelCase__ ( self : List[Any] ) -> List[str]: """simple docstring""" __UpperCamelCase : Optional[int] = Path("""./datasets""" ) __UpperCamelCase : Optional[int] = list(dataset_paths.absolute().glob("""**/*.py""" ) ) for dataset in dataset_files: if self._no_encoding_on_file_open(str(lowerCAmelCase ) ): raise AssertionError(F'''open(...) must use utf-8 encoding in {dataset}''' ) def lowerCamelCase__ ( self : Optional[Any] ) -> Any: """simple docstring""" __UpperCamelCase : Optional[int] = Path("""./datasets""" ) __UpperCamelCase : Optional[int] = list(dataset_paths.absolute().glob("""**/*.py""" ) ) for dataset in dataset_files: if self._no_print_statements(str(lowerCAmelCase ) ): raise AssertionError(F'''print statement found in {dataset}. Use datasets.logger/logging instead.''' )
279
0
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} lowerCAmelCase__ = { """vocab_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } lowerCAmelCase__ = { """vocab_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } lowerCAmelCase__ = { """vocab_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json""" ), }, } lowerCAmelCase__ = { """facebook/dpr-ctx_encoder-single-nq-base""": 5_1_2, """facebook/dpr-ctx_encoder-multiset-base""": 5_1_2, } lowerCAmelCase__ = { """facebook/dpr-question_encoder-single-nq-base""": 5_1_2, """facebook/dpr-question_encoder-multiset-base""": 5_1_2, } lowerCAmelCase__ = { """facebook/dpr-reader-single-nq-base""": 5_1_2, """facebook/dpr-reader-multiset-base""": 5_1_2, } lowerCAmelCase__ = { """facebook/dpr-ctx_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-ctx_encoder-multiset-base""": {"""do_lower_case""": True}, } lowerCAmelCase__ = { """facebook/dpr-question_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-question_encoder-multiset-base""": {"""do_lower_case""": True}, } lowerCAmelCase__ = { """facebook/dpr-reader-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-reader-multiset-base""": {"""do_lower_case""": True}, } class a__ ( snake_case ): """simple docstring""" __lowerCamelCase = VOCAB_FILES_NAMES __lowerCamelCase = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION __lowerCamelCase = DPRContextEncoderTokenizer class a__ ( snake_case ): """simple docstring""" __lowerCamelCase = VOCAB_FILES_NAMES __lowerCamelCase = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION __lowerCamelCase = DPRQuestionEncoderTokenizer lowerCAmelCase__ = collections.namedtuple( """DPRSpanPrediction""", ["""span_score""", """relevance_score""", """doc_id""", """start_index""", """end_index""", """text"""] ) lowerCAmelCase__ = collections.namedtuple("""DPRReaderOutput""", ["""start_logits""", """end_logits""", """relevance_logits"""]) lowerCAmelCase__ = R""" Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`. It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers), using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)` with the format: [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids> Args: questions (`str` or `List[str]`): The questions to be encoded. You can specify one question for many passages. In this case, the question will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in `titles` or `texts`. titles (`str` or `List[str]`): The passages titles to be encoded. This can be a string or a list of strings if there are several passages. texts (`str` or `List[str]`): The passages texts to be encoded. This can be a string or a list of strings if there are several passages. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return Numpy `np.ndarray` objects. return_attention_mask (`bool`, *optional*): Whether or not to return the attention mask. If not set, will return the attention mask according to the specific tokenizer's default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) Return: `Dict[str, List[List[int]]]`: A dictionary with the following keys: - `input_ids`: List of token ids to be fed to a model. - `attention_mask`: List of indices specifying which tokens should be attended to by the model. """ @add_start_docstrings(snake_case ) class a__ : """simple docstring""" def __call__( self , lowercase , lowercase = None , lowercase = None , lowercase = False , lowercase = False , lowercase = None , lowercase = None , lowercase = None , **lowercase , ) -> BatchEncoding: '''simple docstring''' if titles is None and texts is None: return super().__call__( lowercase , padding=lowercase , truncation=lowercase , max_length=lowercase , return_tensors=lowercase , return_attention_mask=lowercase , **lowercase , ) elif titles is None or texts is None: A__ = titles if texts is None else texts return super().__call__( lowercase , lowercase , padding=lowercase , truncation=lowercase , max_length=lowercase , return_tensors=lowercase , return_attention_mask=lowercase , **lowercase , ) A__ = titles if not isinstance(lowercase , lowercase ) else [titles] A__ = texts if not isinstance(lowercase , lowercase ) else [texts] A__ = len(lowercase ) A__ = questions if not isinstance(lowercase , lowercase ) else [questions] * n_passages assert len(lowercase ) == len( lowercase ), F'There should be as many titles than texts but got {len(lowercase )} titles and {len(lowercase )} texts.' A__ = super().__call__(lowercase , lowercase , padding=lowercase , truncation=lowercase )["input_ids"] A__ = super().__call__(lowercase , add_special_tokens=lowercase , padding=lowercase , truncation=lowercase )["input_ids"] A__ = { "input_ids": [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(lowercase , lowercase ) ] } if return_attention_mask is not False: A__ = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) A__ = attention_mask return self.pad(lowercase , padding=lowercase , max_length=lowercase , return_tensors=lowercase ) def UpperCamelCase ( self , lowercase , lowercase , lowercase = 16 , lowercase = 64 , lowercase = 4 , ) -> List[DPRSpanPrediction]: '''simple docstring''' A__ = reader_input["input_ids"] A__ , A__ , A__ = reader_output[:3] A__ = len(lowercase ) A__ = sorted(range(lowercase ) , reverse=lowercase , key=relevance_logits.__getitem__ ) A__ = [] for doc_id in sorted_docs: A__ = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence A__ = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: A__ = sequence_ids.index(self.pad_token_id ) else: A__ = len(lowercase ) A__ = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=lowercase , top_spans=lowercase , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=lowercase , start_index=lowercase , end_index=lowercase , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(lowercase ) >= num_spans: break return nbest_spans_predictions[:num_spans] def UpperCamelCase ( self , lowercase , lowercase , lowercase , lowercase , ) -> List[DPRSpanPrediction]: '''simple docstring''' A__ = [] for start_index, start_score in enumerate(lowercase ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) A__ = sorted(lowercase , key=lambda lowercase : x[1] , reverse=lowercase ) A__ = [] for (start_index, end_index), score in scores: assert start_index <= end_index, F'Wrong span indices: [{start_index}:{end_index}]' A__ = end_index - start_index + 1 assert length <= max_answer_length, F'Span is too long: {length} > {max_answer_length}' if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(lowercase ) == top_spans: break return chosen_span_intervals @add_end_docstrings(snake_case ) class a__ ( snake_case , snake_case ): """simple docstring""" __lowerCamelCase = VOCAB_FILES_NAMES __lowerCamelCase = READER_PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase = READER_PRETRAINED_INIT_CONFIGURATION __lowerCamelCase = ['input_ids', 'attention_mask'] __lowerCamelCase = DPRReaderTokenizer
626
import inspect import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py lowerCAmelCase__ = """src/transformers""" # This is to make sure the transformers module imported is the one in the repo. lowerCAmelCase__ = direct_transformers_import(PATH_TO_TRANSFORMERS) lowerCAmelCase__ = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` lowerCAmelCase__ = re.compile(R"""\[(.+?)\]\((https://huggingface\.co/.+?)\)""") lowerCAmelCase__ = { """DecisionTransformerConfig""", """EncoderDecoderConfig""", """MusicgenConfig""", """RagConfig""", """SpeechEncoderDecoderConfig""", """TimmBackboneConfig""", """VisionEncoderDecoderConfig""", """VisionTextDualEncoderConfig""", """LlamaConfig""", } def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Union[str, Any] ) -> Dict: '''simple docstring''' A__ = None # source code of `config_class` A__ = inspect.getsource(SCREAMING_SNAKE_CASE_ ) A__ = _re_checkpoint.findall(SCREAMING_SNAKE_CASE_ ) # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` for ckpt_name, ckpt_link in checkpoints: # allow the link to end with `/` if ckpt_link.endswith("/" ): A__ = ckpt_link[:-1] # verify the checkpoint name corresponds to the checkpoint link A__ = F'https://huggingface.co/{ckpt_name}' if ckpt_link == ckpt_link_from_name: A__ = ckpt_name break return checkpoint def lowerCAmelCase__ ( ) -> List[str]: '''simple docstring''' A__ = [] for config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in config_class.__module__: continue A__ = get_checkpoint_from_config_class(SCREAMING_SNAKE_CASE_ ) A__ = config_class.__name__ if checkpoint is None and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(SCREAMING_SNAKE_CASE_ ) if len(SCREAMING_SNAKE_CASE_ ) > 0: A__ = "\n".join(sorted(SCREAMING_SNAKE_CASE_ ) ) raise ValueError(F'The following configurations don\'t contain any valid checkpoint:\n{message}' ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
626
1
import argparse import logging import pickle from collections import Counter logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) __A = logging.getLogger(__name__) if __name__ == "__main__": __A = argparse.ArgumentParser( description='''Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)''' ) parser.add_argument( '''--data_file''', type=str, default='''data/dump.bert-base-uncased.pickle''', help='''The binarized dataset.''' ) parser.add_argument( '''--token_counts_dump''', type=str, default='''data/token_counts.bert-base-uncased.pickle''', help='''The dump file.''' ) parser.add_argument('''--vocab_size''', default=3_0522, type=int) __A = parser.parse_args() logger.info(f'Loading data from {args.data_file}') with open(args.data_file, '''rb''') as fp: __A = pickle.load(fp) logger.info('''Counting occurrences for MLM.''') __A = Counter() for tk_ids in data: counter.update(tk_ids) __A = [0] * args.vocab_size for k, v in counter.items(): __A = v logger.info(f'Dump to {args.token_counts_dump}') with open(args.token_counts_dump, '''wb''') as handle: pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
593
import argparse import requests import torch from PIL import Image from torchvision.transforms import Compose, Normalize, Resize, ToTensor from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor def __a ( lowerCAmelCase_ : Dict ) -> List[Any]: '''simple docstring''' UpperCAmelCase_= SwinaSRConfig() if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: UpperCAmelCase_= 4 elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: UpperCAmelCase_= 4 UpperCAmelCase_= 48 UpperCAmelCase_= """pixelshuffle_aux""" elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: UpperCAmelCase_= [6, 6, 6, 6] UpperCAmelCase_= 60 UpperCAmelCase_= [6, 6, 6, 6] UpperCAmelCase_= """pixelshuffledirect""" elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: UpperCAmelCase_= 4 UpperCAmelCase_= """nearest+conv""" elif "Swin2SR_Jpeg_dynamic" in checkpoint_url: UpperCAmelCase_= 1 UpperCAmelCase_= 1 UpperCAmelCase_= 1_26 UpperCAmelCase_= 7 UpperCAmelCase_= 255.0 UpperCAmelCase_= """""" return config def __a ( lowerCAmelCase_ : Optional[int] ,lowerCAmelCase_ : Optional[Any] ) -> Any: '''simple docstring''' if "patch_embed.proj" in name and "layers" not in name: UpperCAmelCase_= name.replace("""patch_embed.proj""" ,"""embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: UpperCAmelCase_= name.replace("""patch_embed.norm""" ,"""embeddings.patch_embeddings.layernorm""" ) if "layers" in name: UpperCAmelCase_= name.replace("""layers""" ,"""encoder.stages""" ) if "residual_group.blocks" in name: UpperCAmelCase_= name.replace("""residual_group.blocks""" ,"""layers""" ) if "attn.proj" in name: UpperCAmelCase_= name.replace("""attn.proj""" ,"""attention.output.dense""" ) if "attn" in name: UpperCAmelCase_= name.replace("""attn""" ,"""attention.self""" ) if "norm1" in name: UpperCAmelCase_= name.replace("""norm1""" ,"""layernorm_before""" ) if "norm2" in name: UpperCAmelCase_= name.replace("""norm2""" ,"""layernorm_after""" ) if "mlp.fc1" in name: UpperCAmelCase_= name.replace("""mlp.fc1""" ,"""intermediate.dense""" ) if "mlp.fc2" in name: UpperCAmelCase_= name.replace("""mlp.fc2""" ,"""output.dense""" ) if "q_bias" in name: UpperCAmelCase_= name.replace("""q_bias""" ,"""query.bias""" ) if "k_bias" in name: UpperCAmelCase_= name.replace("""k_bias""" ,"""key.bias""" ) if "v_bias" in name: UpperCAmelCase_= name.replace("""v_bias""" ,"""value.bias""" ) if "cpb_mlp" in name: UpperCAmelCase_= name.replace("""cpb_mlp""" ,"""continuous_position_bias_mlp""" ) if "patch_embed.proj" in name: UpperCAmelCase_= name.replace("""patch_embed.proj""" ,"""patch_embed.projection""" ) if name == "norm.weight": UpperCAmelCase_= """layernorm.weight""" if name == "norm.bias": UpperCAmelCase_= """layernorm.bias""" if "conv_first" in name: UpperCAmelCase_= name.replace("""conv_first""" ,"""first_convolution""" ) if ( "upsample" in name or "conv_before_upsample" in name or "conv_bicubic" in name or "conv_up" in name or "conv_hr" in name or "conv_last" in name or "aux" in name ): # heads if "conv_last" in name: UpperCAmelCase_= name.replace("""conv_last""" ,"""final_convolution""" ) if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]: if "conv_before_upsample.0" in name: UpperCAmelCase_= name.replace("""conv_before_upsample.0""" ,"""conv_before_upsample""" ) if "upsample.0" in name: UpperCAmelCase_= name.replace("""upsample.0""" ,"""upsample.convolution_0""" ) if "upsample.2" in name: UpperCAmelCase_= name.replace("""upsample.2""" ,"""upsample.convolution_1""" ) UpperCAmelCase_= """upsample.""" + name elif config.upsampler == "pixelshuffledirect": UpperCAmelCase_= name.replace("""upsample.0.weight""" ,"""upsample.conv.weight""" ) UpperCAmelCase_= name.replace("""upsample.0.bias""" ,"""upsample.conv.bias""" ) else: pass else: UpperCAmelCase_= """swin2sr.""" + name return name def __a ( lowerCAmelCase_ : Union[str, Any] ,lowerCAmelCase_ : Dict ) -> List[Any]: '''simple docstring''' for key in orig_state_dict.copy().keys(): UpperCAmelCase_= orig_state_dict.pop(lowerCAmelCase_ ) if "qkv" in key: UpperCAmelCase_= key.split(""".""" ) UpperCAmelCase_= int(key_split[1] ) UpperCAmelCase_= int(key_split[4] ) UpperCAmelCase_= config.embed_dim if "weight" in key: UpperCAmelCase_= val[:dim, :] UpperCAmelCase_= val[dim : dim * 2, :] UpperCAmelCase_= val[-dim:, :] else: UpperCAmelCase_= val[:dim] UpperCAmelCase_= val[dim : dim * 2] UpperCAmelCase_= val[-dim:] pass else: UpperCAmelCase_= val return orig_state_dict def __a ( lowerCAmelCase_ : Dict ,lowerCAmelCase_ : List[Any] ,lowerCAmelCase_ : List[Any] ) -> int: '''simple docstring''' UpperCAmelCase_= get_config(lowerCAmelCase_ ) UpperCAmelCase_= SwinaSRForImageSuperResolution(lowerCAmelCase_ ) model.eval() UpperCAmelCase_= torch.hub.load_state_dict_from_url(lowerCAmelCase_ ,map_location="""cpu""" ) UpperCAmelCase_= convert_state_dict(lowerCAmelCase_ ,lowerCAmelCase_ ) UpperCAmelCase_, UpperCAmelCase_= model.load_state_dict(lowerCAmelCase_ ,strict=lowerCAmelCase_ ) if len(lowerCAmelCase_ ) > 0: raise ValueError("""Missing keys when converting: {}""".format(lowerCAmelCase_ ) ) for key in unexpected_keys: if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key): raise ValueError(F"""Unexpected key {key} in state_dict""" ) # verify values UpperCAmelCase_= """https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true""" UpperCAmelCase_= Image.open(requests.get(lowerCAmelCase_ ,stream=lowerCAmelCase_ ).raw ).convert("""RGB""" ) UpperCAmelCase_= SwinaSRImageProcessor() # pixel_values = processor(image, return_tensors="pt").pixel_values UpperCAmelCase_= 1_26 if """Jpeg""" in checkpoint_url else 2_56 UpperCAmelCase_= Compose( [ Resize((image_size, image_size) ), ToTensor(), Normalize(mean=[0.485, 0.456, 0.406] ,std=[0.229, 0.224, 0.225] ), ] ) UpperCAmelCase_= transforms(lowerCAmelCase_ ).unsqueeze(0 ) if config.num_channels == 1: UpperCAmelCase_= pixel_values[:, 0, :, :].unsqueeze(1 ) UpperCAmelCase_= model(lowerCAmelCase_ ) # assert values if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url: UpperCAmelCase_= torch.Size([1, 3, 5_12, 5_12] ) UpperCAmelCase_= torch.tensor( [[-0.7_087, -0.7_138, -0.6_721], [-0.8_340, -0.8_095, -0.7_298], [-0.9_149, -0.8_414, -0.7_940]] ) elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: UpperCAmelCase_= torch.Size([1, 3, 10_24, 10_24] ) UpperCAmelCase_= torch.tensor( [[-0.7_775, -0.8_105, -0.8_933], [-0.7_764, -0.8_356, -0.9_225], [-0.7_976, -0.8_686, -0.9_579]] ) elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: # TODO values didn't match exactly here UpperCAmelCase_= torch.Size([1, 3, 10_24, 10_24] ) UpperCAmelCase_= torch.tensor( [[-0.8_035, -0.7_504, -0.7_491], [-0.8_538, -0.8_124, -0.7_782], [-0.8_804, -0.8_651, -0.8_493]] ) elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: UpperCAmelCase_= torch.Size([1, 3, 5_12, 5_12] ) UpperCAmelCase_= torch.tensor( [[-0.7_669, -0.8_662, -0.8_767], [-0.8_810, -0.9_962, -0.9_820], [-0.9_340, -1.0_322, -1.1_149]] ) elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: UpperCAmelCase_= torch.Size([1, 3, 10_24, 10_24] ) UpperCAmelCase_= torch.tensor( [[-0.5_238, -0.5_557, -0.6_321], [-0.6_016, -0.5_903, -0.6_391], [-0.6_244, -0.6_334, -0.6_889]] ) assert ( outputs.reconstruction.shape == expected_shape ), F"""Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}""" assert torch.allclose(outputs.reconstruction[0, 0, :3, :3] ,lowerCAmelCase_ ,atol=1E-3 ) print("""Looks ok!""" ) UpperCAmelCase_= { """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth""": ( """swin2SR-classical-sr-x2-64""" ), """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth""": ( """swin2SR-classical-sr-x4-64""" ), """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth""": ( """swin2SR-compressed-sr-x4-48""" ), """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth""": ( """swin2SR-lightweight-x2-64""" ), """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth""": ( """swin2SR-realworld-sr-x4-64-bsrgan-psnr""" ), } UpperCAmelCase_= url_to_name[checkpoint_url] if pytorch_dump_folder_path is not None: print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowerCAmelCase_ ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) processor.save_pretrained(lowerCAmelCase_ ) if push_to_hub: model.push_to_hub(F"""caidas/{model_name}""" ) processor.push_to_hub(F"""caidas/{model_name}""" ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth''', type=str, help='''URL of the original Swin2SR checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Whether to push the converted model to the hub.''') __A = parser.parse_args() convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
593
1
"""simple docstring""" import argparse import json from collections import OrderedDict from functools import partial from pathlib import Path import timm import torch from huggingface_hub import hf_hub_download from transformers import LevitConfig, LevitForImageClassificationWithTeacher, LevitImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase_ : List[str] = logging.get_logger() def UpperCAmelCase__ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = True ): """simple docstring""" print(f"""Converting {name}...""" ) with torch.no_grad(): if hidden_sizes == 128: if name[-1] == "S": A_ : Optional[Any] = timm.create_model('levit_128s' , pretrained=_UpperCAmelCase ) else: A_ : List[str] = timm.create_model('levit_128' , pretrained=_UpperCAmelCase ) if hidden_sizes == 192: A_ : Optional[int] = timm.create_model('levit_192' , pretrained=_UpperCAmelCase ) if hidden_sizes == 256: A_ : Dict = timm.create_model('levit_256' , pretrained=_UpperCAmelCase ) if hidden_sizes == 384: A_ : Optional[int] = timm.create_model('levit_384' , pretrained=_UpperCAmelCase ) from_model.eval() A_ : Optional[int] = LevitForImageClassificationWithTeacher(_UpperCAmelCase ).eval() A_ : Optional[int] = OrderedDict() A_ : Dict = from_model.state_dict() A_ : Any = list(from_model.state_dict().keys() ) A_ : Any = list(our_model.state_dict().keys() ) print(len(_UpperCAmelCase ) , len(_UpperCAmelCase ) ) for i in range(len(_UpperCAmelCase ) ): A_ : Tuple = weights[og_keys[i]] our_model.load_state_dict(_UpperCAmelCase ) A_ : List[Any] = torch.randn((2, 3, 224, 224) ) A_ : List[Any] = from_model(_UpperCAmelCase ) A_ : Union[str, Any] = our_model(_UpperCAmelCase ).logits assert torch.allclose(_UpperCAmelCase , _UpperCAmelCase ), "The model logits don't match the original one." A_ : str = name print(_UpperCAmelCase ) if push_to_hub: our_model.save_pretrained(save_directory / checkpoint_name ) A_ : Union[str, Any] = LevitImageProcessor() image_processor.save_pretrained(save_directory / checkpoint_name ) print(f"""Pushed {checkpoint_name}""" ) def UpperCAmelCase__ ( _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = True ): """simple docstring""" A_ : List[str] = 'imagenet-1k-id2label.json' A_ : Union[str, Any] = 1000 A_ : Dict = (1, num_labels) A_ : str = 'huggingface/label-files' A_ : Dict = num_labels A_ : Optional[int] = json.load(open(hf_hub_download(_UpperCAmelCase , _UpperCAmelCase , repo_type='dataset' ) , 'r' ) ) A_ : Union[str, Any] = {int(_UpperCAmelCase ): v for k, v in idalabel.items()} A_ : Optional[Any] = idalabel A_ : Optional[Any] = {v: k for k, v in idalabel.items()} A_ : Any = partial(_UpperCAmelCase , num_labels=_UpperCAmelCase , idalabel=_UpperCAmelCase , labelaid=_UpperCAmelCase ) A_ : Union[str, Any] = { 'levit-128S': 128, 'levit-128': 128, 'levit-192': 192, 'levit-256': 256, 'levit-384': 384, } A_ : List[Any] = { 'levit-128S': ImageNetPreTrainedConfig( hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 6, 8] , depths=[2, 3, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), 'levit-128': ImageNetPreTrainedConfig( hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 8, 12] , depths=[4, 4, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), 'levit-192': ImageNetPreTrainedConfig( hidden_sizes=[192, 288, 384] , num_attention_heads=[3, 5, 6] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), 'levit-256': ImageNetPreTrainedConfig( hidden_sizes=[256, 384, 512] , num_attention_heads=[4, 6, 8] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), 'levit-384': ImageNetPreTrainedConfig( hidden_sizes=[384, 512, 768] , num_attention_heads=[6, 9, 12] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0.1 , ), } if model_name: convert_weight_and_push( names_to_hidden_sizes[model_name] , _UpperCAmelCase , names_to_config[model_name] , _UpperCAmelCase , _UpperCAmelCase ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(names_to_hidden_sizes[model_name] , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) return config, expected_shape if __name__ == "__main__": lowerCamelCase_ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default=None, type=str, help='The name of the model you wish to convert, it must be one of the supported Levit* architecture,', ) parser.add_argument( '--pytorch_dump_folder_path', default='levit-dump-folder/', type=Path, required=False, help='Path to the output PyTorch model directory.', ) parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub') parser.add_argument( '--no-push_to_hub', dest='push_to_hub', action='store_false', help='Do not push model and image processor to the hub', ) lowerCamelCase_ : Tuple = parser.parse_args() lowerCamelCase_ : Path = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
302
"""simple docstring""" from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class _UpperCAmelCase : '''simple docstring''' lowercase_ : int lowercase_ : int class _UpperCAmelCase : '''simple docstring''' def __init__( self , snake_case_ ): """simple docstring""" A_ : list[list[Edge]] = [[] for _ in range(snake_case_ )] A_ : Optional[int] = size def __getitem__( self , snake_case_ ): """simple docstring""" return iter(self._graph[vertex] ) @property def lowerCamelCase_ ( self ): """simple docstring""" return self._size def lowerCamelCase_ ( self , snake_case_ , snake_case_ , snake_case_ ): """simple docstring""" if weight not in (0, 1): raise ValueError('Edge weight must be either 0 or 1.' ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError('Vertex indexes must be in [0; size).' ) self._graph[from_vertex].append(Edge(snake_case_ , snake_case_ ) ) def lowerCamelCase_ ( self , snake_case_ , snake_case_ ): """simple docstring""" A_ : List[str] = deque([start_vertex] ) A_ : list[int | None] = [None] * self.size A_ : Optional[Any] = 0 while queue: A_ : Union[str, Any] = queue.popleft() A_ : Tuple = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: A_ : int = current_distance + edge.weight A_ : Union[str, Any] = distances[edge.destination_vertex] if ( isinstance(snake_case_ , snake_case_ ) and new_distance >= dest_vertex_distance ): continue A_ : Union[str, Any] = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError('No path from start_vertex to finish_vertex.' ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
302
1
import argparse import logging import os import sys import numpy as np import onnxruntime import torch from bart_onnx.generation_onnx import BARTBeamSearchGenerator from bart_onnx.reduce_onnx_size import remove_dup_initializers import transformers from transformers import BartForConditionalGeneration, BartTokenizer logging.basicConfig( format='''%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s''', datefmt='''%Y-%m-%d %H:%M:%S''', level=os.environ.get('''LOGLEVEL''', '''INFO''').upper(), stream=sys.stdout, ) __a : List[Any] = logging.getLogger(__name__) __a : int = {'''facebook/bart-base''': BartForConditionalGeneration} __a : List[str] = {'''facebook/bart-base''': BartTokenizer} def snake_case_ ( ) -> List[Any]: lowercase__ : Any = argparse.ArgumentParser(description="Export Bart model + Beam Search to ONNX graph." ) parser.add_argument( "--validation_file" ,type=SCREAMING_SNAKE_CASE_ ,default=SCREAMING_SNAKE_CASE_ ,help="A csv or a json file containing the validation data." ) parser.add_argument( "--max_length" ,type=SCREAMING_SNAKE_CASE_ ,default=5 ,help="The maximum total input sequence length after tokenization." ,) parser.add_argument( "--num_beams" ,type=SCREAMING_SNAKE_CASE_ ,default=SCREAMING_SNAKE_CASE_ ,help=( "Number of beams to use for evaluation. This argument will be " "passed to ``model.generate``, which is used during ``evaluate`` and ``predict``." ) ,) parser.add_argument( "--model_name_or_path" ,type=SCREAMING_SNAKE_CASE_ ,help="Path to pretrained model or model identifier from huggingface.co/models." ,required=SCREAMING_SNAKE_CASE_ ,) parser.add_argument( "--config_name" ,type=SCREAMING_SNAKE_CASE_ ,default=SCREAMING_SNAKE_CASE_ ,help="Pretrained config name or path if not the same as model_name" ,) parser.add_argument( "--device" ,type=SCREAMING_SNAKE_CASE_ ,default="cpu" ,help="Device where the model will be run" ,) parser.add_argument("--output_file_path" ,type=SCREAMING_SNAKE_CASE_ ,default=SCREAMING_SNAKE_CASE_ ,help="Where to store the final ONNX file." ) lowercase__ : str = parser.parse_args() return args def snake_case_ ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_="cpu" ) -> str: lowercase__ : int = model_dict[model_name].from_pretrained(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ ) lowercase__ : List[str] = tokenizer_dict[model_name].from_pretrained(SCREAMING_SNAKE_CASE_ ) if model_name in ["facebook/bart-base"]: lowercase__ : Any = 0 lowercase__ : List[str] = None lowercase__ : int = 0 return huggingface_model, tokenizer def snake_case_ ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) -> Any: model.eval() lowercase__ : List[Any] = None lowercase__ : Optional[Any] = torch.jit.script(BARTBeamSearchGenerator(SCREAMING_SNAKE_CASE_ ) ) with torch.no_grad(): lowercase__ : str = "My friends are cool but they eat too many carbs." lowercase__ : Optional[Any] = tokenizer([ARTICLE_TO_SUMMARIZE] ,max_length=10_24 ,return_tensors="pt" ).to(model.device ) lowercase__ : Optional[int] = model.generate( inputs["input_ids"] ,attention_mask=inputs["attention_mask"] ,num_beams=SCREAMING_SNAKE_CASE_ ,max_length=SCREAMING_SNAKE_CASE_ ,early_stopping=SCREAMING_SNAKE_CASE_ ,decoder_start_token_id=model.config.decoder_start_token_id ,) torch.onnx.export( SCREAMING_SNAKE_CASE_ ,( inputs["input_ids"], inputs["attention_mask"], num_beams, max_length, model.config.decoder_start_token_id, ) ,SCREAMING_SNAKE_CASE_ ,opset_version=14 ,input_names=["input_ids", "attention_mask", "num_beams", "max_length", "decoder_start_token_id"] ,output_names=["output_ids"] ,dynamic_axes={ "input_ids": {0: "batch", 1: "seq"}, "output_ids": {0: "batch", 1: "seq_out"}, } ,example_outputs=SCREAMING_SNAKE_CASE_ ,) logger.info("Model exported to {}".format(SCREAMING_SNAKE_CASE_ ) ) lowercase__ : Tuple = remove_dup_initializers(os.path.abspath(SCREAMING_SNAKE_CASE_ ) ) logger.info("Deduplicated and optimized model written to {}".format(SCREAMING_SNAKE_CASE_ ) ) lowercase__ : int = onnxruntime.InferenceSession(SCREAMING_SNAKE_CASE_ ) lowercase__ : Tuple = ort_sess.run( SCREAMING_SNAKE_CASE_ ,{ "input_ids": inputs["input_ids"].cpu().numpy(), "attention_mask": inputs["attention_mask"].cpu().numpy(), "num_beams": np.array(SCREAMING_SNAKE_CASE_ ), "max_length": np.array(SCREAMING_SNAKE_CASE_ ), "decoder_start_token_id": np.array(model.config.decoder_start_token_id ), } ,) np.testing.assert_allclose(summary_ids.cpu().numpy() ,ort_out[0] ,rtol=1E-3 ,atol=1E-3 ) logger.info("Model outputs from torch and ONNX Runtime are similar." ) logger.info("Success." ) def snake_case_ ( ) -> List[Any]: lowercase__ : Optional[Any] = parse_args() lowercase__ : List[Any] = 5 lowercase__ : List[Any] = 4 # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" ,datefmt="%m/%d/%Y %H:%M:%S" ,level=logging.INFO ,) logger.setLevel(logging.INFO ) transformers.utils.logging.set_verbosity_error() lowercase__ : Optional[int] = torch.device(args.device ) lowercase__ , lowercase__ : Any = load_model_tokenizer(args.model_name_or_path ,SCREAMING_SNAKE_CASE_ ) if model.config.decoder_start_token_id is None: raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined" ) model.to(SCREAMING_SNAKE_CASE_ ) if args.max_length: lowercase__ : Tuple = args.max_length if args.num_beams: lowercase__ : str = args.num_beams if args.output_file_path: lowercase__ : str = args.output_file_path else: lowercase__ : Tuple = "BART.onnx" logger.info("Exporting model to ONNX" ) export_and_validate_model(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": main()
397
import itertools import random import unittest import numpy as np from transformers import BatchFeature, SpeechTaFeatureExtractor from transformers.testing_utils import require_torch from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch __a : List[str] = random.Random() def snake_case_ ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_=1.0 ,SCREAMING_SNAKE_CASE_=None ,SCREAMING_SNAKE_CASE_=None ) -> Optional[int]: if rng is None: lowercase__ : Optional[Any] = global_rng lowercase__ : Union[str, Any] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch class UpperCAmelCase( unittest.TestCase ): """simple docstring""" def __init__( self , lowerCamelCase , lowerCamelCase=7 , lowerCamelCase=400 , lowerCamelCase=2000 , lowerCamelCase=1 , lowerCamelCase=0.0 , lowerCamelCase=16000 , lowerCamelCase=True , lowerCamelCase=80 , lowerCamelCase=16 , lowerCamelCase=64 , lowerCamelCase="hann_window" , lowerCamelCase=80 , lowerCamelCase=7600 , lowerCamelCase=1E-10 , lowerCamelCase=True , ) -> int: """simple docstring""" lowercase__ : Optional[int] = parent lowercase__ : Optional[Any] = batch_size lowercase__ : Dict = min_seq_length lowercase__ : Optional[int] = max_seq_length lowercase__ : str = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) lowercase__ : List[Any] = feature_size lowercase__ : Union[str, Any] = padding_value lowercase__ : Dict = sampling_rate lowercase__ : int = do_normalize lowercase__ : Union[str, Any] = num_mel_bins lowercase__ : Optional[Any] = hop_length lowercase__ : Tuple = win_length lowercase__ : Any = win_function lowercase__ : Optional[Any] = fmin lowercase__ : str = fmax lowercase__ : Union[str, Any] = mel_floor lowercase__ : str = return_attention_mask def __a ( self ) -> Any: """simple docstring""" return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "do_normalize": self.do_normalize, "num_mel_bins": self.num_mel_bins, "hop_length": self.hop_length, "win_length": self.win_length, "win_function": self.win_function, "fmin": self.fmin, "fmax": self.fmax, "mel_floor": self.mel_floor, "return_attention_mask": self.return_attention_mask, } def __a ( self , lowerCamelCase=False , lowerCamelCase=False ) -> List[str]: """simple docstring""" def _flatten(lowerCamelCase ): return list(itertools.chain(*lowerCamelCase ) ) if equal_length: lowercase__ : Optional[int] = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size lowercase__ : List[str] = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: lowercase__ : Dict = [np.asarray(lowerCamelCase ) for x in speech_inputs] return speech_inputs def __a ( self , lowerCamelCase=False , lowerCamelCase=False ) -> Optional[int]: """simple docstring""" if equal_length: lowercase__ : Union[str, Any] = [floats_list((self.max_seq_length, self.num_mel_bins) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size lowercase__ : Tuple = [ floats_list((x, self.num_mel_bins) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: lowercase__ : List[str] = [np.asarray(lowerCamelCase ) for x in speech_inputs] return speech_inputs @require_torch class UpperCAmelCase( snake_case_ , unittest.TestCase ): """simple docstring""" a : List[Any] = SpeechTaFeatureExtractor def __a ( self ) -> Tuple: """simple docstring""" lowercase__ : Union[str, Any] = SpeechTaFeatureExtractionTester(self ) def __a ( self , lowerCamelCase ) -> List[Any]: """simple docstring""" self.assertTrue(np.all(np.mean(lowerCamelCase , axis=0 ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(lowerCamelCase , axis=0 ) - 1 ) < 1E-3 ) ) def __a ( self ) -> List[str]: """simple docstring""" lowercase__ : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 lowercase__ : str = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] lowercase__ : str = [np.asarray(lowerCamelCase ) for speech_input in speech_inputs] # Test not batched input lowercase__ : int = feat_extract(speech_inputs[0] , return_tensors="np" ).input_values lowercase__ : Union[str, Any] = feat_extract(np_speech_inputs[0] , return_tensors="np" ).input_values self.assertTrue(np.allclose(lowerCamelCase , lowerCamelCase , atol=1E-3 ) ) # Test batched lowercase__ : Optional[int] = feat_extract(lowerCamelCase , return_tensors="np" ).input_values lowercase__ : Union[str, Any] = feat_extract(lowerCamelCase , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(lowerCamelCase , lowerCamelCase ): self.assertTrue(np.allclose(lowerCamelCase , lowerCamelCase , atol=1E-3 ) ) def __a ( self ) -> Any: """simple docstring""" lowercase__ : List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowercase__ : List[Any] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] lowercase__ : Any = ["longest", "max_length", "do_not_pad"] lowercase__ : List[Any] = [None, 1600, None] for max_length, padding in zip(lowerCamelCase , lowerCamelCase ): lowercase__ : Optional[int] = feat_extract(lowerCamelCase , padding=lowerCamelCase , max_length=lowerCamelCase , return_tensors="np" ) lowercase__ : List[str] = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self.assertTrue(input_values[0][800:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[1][:1000] ) self.assertTrue(input_values[0][1000:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[2][:1200] ) def __a ( self ) -> Any: """simple docstring""" lowercase__ : List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowercase__ : Dict = range(800 , 1400 , 200 ) lowercase__ : List[str] = [floats_list((1, x) )[0] for x in lengths] lowercase__ : Tuple = ["longest", "max_length", "do_not_pad"] lowercase__ : str = [None, 1600, None] for max_length, padding in zip(lowerCamelCase , lowerCamelCase ): lowercase__ : List[str] = feat_extract(lowerCamelCase , max_length=lowerCamelCase , padding=lowerCamelCase ) lowercase__ : Any = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self._check_zero_mean_unit_variance(input_values[1][:1000] ) self._check_zero_mean_unit_variance(input_values[2][:1200] ) def __a ( self ) -> Optional[Any]: """simple docstring""" lowercase__ : Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowercase__ : List[str] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] lowercase__ : Tuple = feat_extract( lowerCamelCase , truncation=lowerCamelCase , max_length=1000 , padding="max_length" , return_tensors="np" ) lowercase__ : Optional[Any] = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def __a ( self ) -> Any: """simple docstring""" lowercase__ : int = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowercase__ : Any = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] lowercase__ : Tuple = feat_extract( lowerCamelCase , truncation=lowerCamelCase , max_length=1000 , padding="longest" , return_tensors="np" ) lowercase__ : Dict = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1000) ) lowercase__ : str = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] lowercase__ : Union[str, Any] = feat_extract( lowerCamelCase , truncation=lowerCamelCase , max_length=2000 , padding="longest" , return_tensors="np" ) lowercase__ : Union[str, Any] = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1200) ) def __a ( self ) -> Any: """simple docstring""" lowercase__ : Any = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowercase__ : Tuple = np.random.rand(100 ).astype(np.floataa ) lowercase__ : int = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: lowercase__ : Tuple = feature_extractor.pad([{"input_values": inputs}] , return_tensors="np" ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) lowercase__ : Dict = feature_extractor.pad([{"input_values": inputs}] , return_tensors="pt" ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def __a ( self ) -> str: """simple docstring""" lowercase__ : Any = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 lowercase__ : List[str] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] lowercase__ : List[str] = [np.asarray(lowerCamelCase ) for speech_input in speech_inputs] # Test feature size lowercase__ : str = feature_extractor(audio_target=lowerCamelCase , padding=lowerCamelCase , return_tensors="np" ).input_values self.assertTrue(input_values.ndim == 3 ) self.assertTrue(input_values.shape[-1] == feature_extractor.num_mel_bins ) # Test not batched input lowercase__ : Union[str, Any] = feature_extractor(speech_inputs[0] , return_tensors="np" ).input_values lowercase__ : Optional[Any] = feature_extractor(np_speech_inputs[0] , return_tensors="np" ).input_values self.assertTrue(np.allclose(lowerCamelCase , lowerCamelCase , atol=1E-3 ) ) # Test batched lowercase__ : Dict = feature_extractor(lowerCamelCase , return_tensors="np" ).input_values lowercase__ : List[str] = feature_extractor(lowerCamelCase , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(lowerCamelCase , lowerCamelCase ): self.assertTrue(np.allclose(lowerCamelCase , lowerCamelCase , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. lowercase__ : str = [floats_list((1, x) )[0] for x in (800, 800, 800)] lowercase__ : Optional[Any] = np.asarray(lowerCamelCase ) lowercase__ : List[Any] = feature_extractor(lowerCamelCase , return_tensors="np" ).input_values lowercase__ : List[str] = feature_extractor(lowerCamelCase , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(lowerCamelCase , lowerCamelCase ): self.assertTrue(np.allclose(lowerCamelCase , lowerCamelCase , atol=1E-3 ) ) def __a ( self ) -> str: """simple docstring""" lowercase__ : Dict = self.feat_extract_tester.prepare_inputs_for_target() lowercase__ : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_dict ) lowercase__ : Dict = feat_extract.model_input_names[0] lowercase__ : int = BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(lowerCamelCase ) == len(lowerCamelCase ) for x, y in zip(lowerCamelCase , processed_features[input_name] ) ) ) lowercase__ : Optional[int] = self.feat_extract_tester.prepare_inputs_for_target(equal_length=lowerCamelCase ) lowercase__ : List[Any] = BatchFeature({input_name: speech_inputs} , tensor_type="np" ) lowercase__ : Optional[int] = processed_features[input_name] if len(batch_features_input.shape ) < 3: lowercase__ : Tuple = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def __a ( self ) -> Tuple: """simple docstring""" lowercase__ : Dict = self.feat_extract_tester.prepare_inputs_for_target(equal_length=lowerCamelCase ) lowercase__ : List[str] = self.feature_extraction_class(**self.feat_extract_dict ) lowercase__ : Optional[Any] = feat_extract.model_input_names[0] lowercase__ : Dict = BatchFeature({input_name: speech_inputs} , tensor_type="pt" ) lowercase__ : List[str] = processed_features[input_name] if len(batch_features_input.shape ) < 3: lowercase__ : int = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def __a ( self ) -> Tuple: """simple docstring""" lowercase__ : Dict = self.feature_extraction_class(**self.feat_extract_dict ) lowercase__ : Optional[Any] = self.feat_extract_tester.prepare_inputs_for_target() lowercase__ : Optional[Any] = feat_extract.model_input_names[0] lowercase__ : Optional[Any] = BatchFeature({input_name: speech_inputs} ) lowercase__ : Optional[int] = feat_extract.num_mel_bins # hack! lowercase__ : Optional[int] = feat_extract.pad(lowerCamelCase , padding="longest" , return_tensors="np" )[input_name] lowercase__ : Optional[int] = feat_extract.pad(lowerCamelCase , padding="longest" , return_tensors="pt" )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1E-2 ) def __a ( self ) -> Tuple: """simple docstring""" lowercase__ : Tuple = self.feat_extract_dict lowercase__ : int = True lowercase__ : Optional[Any] = self.feature_extraction_class(**lowerCamelCase ) lowercase__ : Optional[int] = self.feat_extract_tester.prepare_inputs_for_target() lowercase__ : Union[str, Any] = [len(lowerCamelCase ) for x in speech_inputs] lowercase__ : Any = feat_extract.model_input_names[0] lowercase__ : Optional[int] = BatchFeature({input_name: speech_inputs} ) lowercase__ : int = feat_extract.num_mel_bins # hack! lowercase__ : int = feat_extract.pad(lowerCamelCase , padding="longest" , return_tensors="np" ) self.assertIn("attention_mask" , lowerCamelCase ) self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , lowerCamelCase ) def __a ( self ) -> Dict: """simple docstring""" lowercase__ : List[Any] = self.feat_extract_dict lowercase__ : Optional[int] = True lowercase__ : List[Any] = self.feature_extraction_class(**lowerCamelCase ) lowercase__ : Optional[int] = self.feat_extract_tester.prepare_inputs_for_target() lowercase__ : List[str] = [len(lowerCamelCase ) for x in speech_inputs] lowercase__ : Any = feat_extract.model_input_names[0] lowercase__ : Dict = BatchFeature({input_name: speech_inputs} ) lowercase__ : int = min(lowerCamelCase ) lowercase__ : List[str] = feat_extract.num_mel_bins # hack! lowercase__ : Dict = feat_extract.pad( lowerCamelCase , padding="max_length" , max_length=lowerCamelCase , truncation=lowerCamelCase , return_tensors="np" ) self.assertIn("attention_mask" , lowerCamelCase ) self.assertListEqual( list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] ) def __a ( self , lowerCamelCase ) -> List[Any]: """simple docstring""" from datasets import load_dataset lowercase__ : Any = load_dataset("hf-internal-testing/librispeech_asr_dummy" , "clean" , split="validation" ) # automatic decoding with librispeech lowercase__ : int = ds.sort("id" ).select(range(lowerCamelCase ) )[:num_samples]["audio"] return [x["array"] for x in speech_samples] def __a ( self ) -> List[str]: """simple docstring""" lowercase__ : List[str] = torch.tensor( [2.3_804E-03, 2.0_752E-03, 1.9_836E-03, 2.1_057E-03, 1.6_174E-03, 3.0_518E-04, 9.1_553E-05, 3.3_569E-04, 9.7_656E-04, 1.8_311E-03, 2.0_142E-03, 2.1_057E-03, 1.7_395E-03, 4.5_776E-04, -3.9_673E-04, 4.5_776E-04, 1.0_071E-03, 9.1_553E-05, 4.8_828E-04, 1.1_597E-03, 7.3_242E-04, 9.4_604E-04, 1.8_005E-03, 1.8_311E-03, 8.8_501E-04, 4.2_725E-04, 4.8_828E-04, 7.3_242E-04, 1.0_986E-03, 2.1_057E-03] ) # fmt: on lowercase__ : List[Any] = self._load_datasamples(1 ) lowercase__ : int = SpeechTaFeatureExtractor() lowercase__ : Tuple = feature_extractor(lowerCamelCase , return_tensors="pt" ).input_values self.assertEquals(input_values.shape , (1, 93680) ) self.assertTrue(torch.allclose(input_values[0, :30] , lowerCamelCase , atol=1E-6 ) ) def __a ( self ) -> int: """simple docstring""" lowercase__ : Optional[int] = torch.tensor( [-2.68_70, -3.01_04, -3.13_56, -3.53_52, -3.00_44, -3.03_53, -3.47_19, -3.67_77, -3.15_20, -2.94_35, -2.65_53, -2.87_95, -2.99_44, -2.59_21, -3.02_79, -3.03_86, -3.08_64, -3.12_91, -3.23_53, -2.74_44, -2.68_31, -2.72_87, -3.17_61, -3.15_71, -3.27_26, -3.05_82, -3.10_07, -3.45_33, -3.46_95, -3.09_98] ) # fmt: on lowercase__ : Any = self._load_datasamples(1 ) lowercase__ : List[Any] = SpeechTaFeatureExtractor() lowercase__ : int = feature_extractor(audio_target=lowerCamelCase , return_tensors="pt" ).input_values self.assertEquals(input_values.shape , (1, 366, 80) ) self.assertTrue(torch.allclose(input_values[0, 0, :30] , lowerCamelCase , atol=1E-4 ) )
397
1
"""simple docstring""" def __lowercase ( a : int = 10**9 ) -> int: __snake_case : List[str] =1 __snake_case : Union[str, Any] =2 __snake_case : int =0 __snake_case : str =0 __snake_case : str =0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value __snake_case : Tuple =2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(F'''{solution() = }''')
497
"""simple docstring""" import tempfile import unittest import numpy as np from diffusers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionPipeline, PNDMScheduler, ) from diffusers.utils.testing_utils import is_onnx_available, nightly, require_onnxruntime, require_torch_gpu from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class _lowercase ( lowerCAmelCase , unittest.TestCase ): _a : Tuple = '''hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline''' def _UpperCamelCase ( self : Dict , a : Optional[Any]=0 ): """simple docstring""" __snake_case : List[str] =np.random.RandomState(a ) __snake_case : Union[str, Any] ={ '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def _UpperCamelCase ( self : str ): """simple docstring""" __snake_case : Dict =OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) pipe.set_progress_bar_config(disable=a ) __snake_case : Tuple =self.get_dummy_inputs() __snake_case : List[str] =pipe(**a ).images __snake_case : int =image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) __snake_case : str =np.array([0.6_5_0_7_2, 0.5_8_4_9_2, 0.4_8_2_1_9, 0.5_5_5_2_1, 0.5_3_1_8_0, 0.5_5_9_3_9, 0.5_0_6_9_7, 0.3_9_8_0_0, 0.4_6_4_5_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" __snake_case : Dict =OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) __snake_case : Dict =PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=a ) pipe.set_progress_bar_config(disable=a ) __snake_case : List[Any] =self.get_dummy_inputs() __snake_case : Dict =pipe(**a ).images __snake_case : Union[str, Any] =image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) __snake_case : Optional[Any] =np.array([0.6_5_8_6_3, 0.5_9_4_2_5, 0.4_9_3_2_6, 0.5_6_3_1_3, 0.5_3_8_7_5, 0.5_6_6_2_7, 0.5_1_0_6_5, 0.3_9_7_7_7, 0.4_6_3_3_0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _UpperCamelCase ( self : Optional[int] ): """simple docstring""" __snake_case : Any =OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) __snake_case : Any =LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=a ) __snake_case : int =self.get_dummy_inputs() __snake_case : List[str] =pipe(**a ).images __snake_case : str =image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) __snake_case : int =np.array([0.5_3_7_5_5, 0.6_0_7_8_6, 0.4_7_4_0_2, 0.4_9_4_8_8, 0.5_1_8_6_9, 0.4_9_8_1_9, 0.4_7_9_8_5, 0.3_8_9_5_7, 0.4_4_2_7_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _UpperCamelCase ( self : List[str] ): """simple docstring""" __snake_case : Optional[int] =OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) __snake_case : Optional[Any] =EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=a ) __snake_case : str =self.get_dummy_inputs() __snake_case : int =pipe(**a ).images __snake_case : str =image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) __snake_case : Union[str, Any] =np.array([0.5_3_7_5_5, 0.6_0_7_8_6, 0.4_7_4_0_2, 0.4_9_4_8_8, 0.5_1_8_6_9, 0.4_9_8_1_9, 0.4_7_9_8_5, 0.3_8_9_5_7, 0.4_4_2_7_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _UpperCamelCase ( self : List[Any] ): """simple docstring""" __snake_case : Any =OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) __snake_case : List[str] =EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=a ) __snake_case : List[str] =self.get_dummy_inputs() __snake_case : Dict =pipe(**a ).images __snake_case : List[Any] =image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) __snake_case : Tuple =np.array([0.5_3_8_1_7, 0.6_0_8_1_2, 0.4_7_3_8_4, 0.4_9_5_3_0, 0.5_1_8_9_4, 0.4_9_8_1_4, 0.4_7_9_8_4, 0.3_8_9_5_8, 0.4_4_2_7_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _UpperCamelCase ( self : Dict ): """simple docstring""" __snake_case : Tuple =OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) __snake_case : Any =DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=a ) __snake_case : Tuple =self.get_dummy_inputs() __snake_case : Tuple =pipe(**a ).images __snake_case : Optional[Any] =image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) __snake_case : Dict =np.array([0.5_3_8_9_5, 0.6_0_8_0_8, 0.4_7_9_3_3, 0.4_9_6_0_8, 0.5_1_8_8_6, 0.4_9_9_5_0, 0.4_8_0_5_3, 0.3_8_9_5_7, 0.4_4_2_0_0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _UpperCamelCase ( self : int ): """simple docstring""" __snake_case : Dict =OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) pipe.set_progress_bar_config(disable=a ) __snake_case : Optional[int] =self.get_dummy_inputs() __snake_case : Any =3 * [inputs['''prompt''']] # forward __snake_case : Any =pipe(**a ) __snake_case : str =output.images[0, -3:, -3:, -1] __snake_case : Tuple =self.get_dummy_inputs() __snake_case : Any =3 * [inputs.pop('''prompt''' )] __snake_case : Optional[Any] =pipe.tokenizer( a , padding='''max_length''' , max_length=pipe.tokenizer.model_max_length , truncation=a , return_tensors='''np''' , ) __snake_case : List[Any] =text_inputs['''input_ids'''] __snake_case : str =pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] __snake_case : Optional[Any] =prompt_embeds # forward __snake_case : Dict =pipe(**a ) __snake_case : Any =output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4 def _UpperCamelCase ( self : Any ): """simple docstring""" __snake_case : Dict =OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) pipe.set_progress_bar_config(disable=a ) __snake_case : List[Any] =self.get_dummy_inputs() __snake_case : Optional[Any] =3 * ['''this is a negative prompt'''] __snake_case : List[str] =negative_prompt __snake_case : str =3 * [inputs['''prompt''']] # forward __snake_case : int =pipe(**a ) __snake_case : Union[str, Any] =output.images[0, -3:, -3:, -1] __snake_case : Tuple =self.get_dummy_inputs() __snake_case : Union[str, Any] =3 * [inputs.pop('''prompt''' )] __snake_case : Optional[int] =[] for p in [prompt, negative_prompt]: __snake_case : Optional[int] =pipe.tokenizer( a , padding='''max_length''' , max_length=pipe.tokenizer.model_max_length , truncation=a , return_tensors='''np''' , ) __snake_case : Optional[Any] =text_inputs['''input_ids'''] embeds.append(pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] ) __snake_case , __snake_case : Optional[Any] =embeds # forward __snake_case : Any =pipe(**a ) __snake_case : Union[str, Any] =output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4 @nightly @require_onnxruntime @require_torch_gpu class _lowercase ( unittest.TestCase ): @property def _UpperCamelCase ( self : List[Any] ): """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def _UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" __snake_case : List[str] =ort.SessionOptions() __snake_case : Optional[int] =False return options def _UpperCamelCase ( self : Any ): """simple docstring""" __snake_case : List[Any] =OnnxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''onnx''' , safety_checker=a , feature_extractor=a , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=a ) __snake_case : List[str] ='''A painting of a squirrel eating a burger''' np.random.seed(0 ) __snake_case : Tuple =sd_pipe([prompt] , guidance_scale=6.0 , num_inference_steps=1_0 , output_type='''np''' ) __snake_case : Union[str, Any] =output.images __snake_case : Optional[Any] =image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) __snake_case : Any =np.array([0.0_4_5_2, 0.0_3_9_0, 0.0_0_8_7, 0.0_3_5_0, 0.0_6_1_7, 0.0_3_6_4, 0.0_5_4_4, 0.0_5_2_3, 0.0_7_2_0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _UpperCamelCase ( self : Optional[Any] ): """simple docstring""" __snake_case : List[str] =DDIMScheduler.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , subfolder='''scheduler''' , revision='''onnx''' ) __snake_case : List[Any] =OnnxStableDiffusionPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , revision='''onnx''' , scheduler=a , safety_checker=a , feature_extractor=a , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=a ) __snake_case : Optional[Any] ='''open neural network exchange''' __snake_case : Optional[int] =np.random.RandomState(0 ) __snake_case : int =sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=1_0 , generator=a , output_type='''np''' ) __snake_case : Union[str, Any] =output.images __snake_case : str =image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) __snake_case : Union[str, Any] =np.array([0.2_8_6_7, 0.1_9_7_4, 0.1_4_8_1, 0.7_2_9_4, 0.7_2_5_1, 0.6_6_6_7, 0.4_1_9_4, 0.5_6_4_2, 0.6_4_8_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _UpperCamelCase ( self : Tuple ): """simple docstring""" __snake_case : List[str] =LMSDiscreteScheduler.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , subfolder='''scheduler''' , revision='''onnx''' ) __snake_case : int =OnnxStableDiffusionPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , revision='''onnx''' , scheduler=a , safety_checker=a , feature_extractor=a , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=a ) __snake_case : Optional[int] ='''open neural network exchange''' __snake_case : Optional[Any] =np.random.RandomState(0 ) __snake_case : Any =sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=1_0 , generator=a , output_type='''np''' ) __snake_case : Optional[int] =output.images __snake_case : Any =image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) __snake_case : Optional[int] =np.array([0.2_3_0_6, 0.1_9_5_9, 0.1_5_9_3, 0.6_5_4_9, 0.6_3_9_4, 0.5_4_0_8, 0.5_0_6_5, 0.6_0_1_0, 0.6_1_6_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" __snake_case : Union[str, Any] =0 def test_callback_fn(a : int , a : int , a : np.ndarray ) -> None: __snake_case : Dict =True nonlocal number_of_steps number_of_steps += 1 if step == 0: assert latents.shape == (1, 4, 6_4, 6_4) __snake_case : Union[str, Any] =latents[0, -3:, -3:, -1] __snake_case : str =np.array( [-0.6_7_7_2, -0.3_8_3_5, -1.2_4_5_6, 0.1_9_0_5, -1.0_9_7_4, 0.6_9_6_7, -1.9_3_5_3, 0.0_1_7_8, 1.0_1_6_7] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1e-3 elif step == 5: assert latents.shape == (1, 4, 6_4, 6_4) __snake_case : List[Any] =latents[0, -3:, -3:, -1] __snake_case : List[Any] =np.array( [-0.3_3_5_1, 0.2_2_4_1, -0.1_8_3_7, -0.2_3_2_5, -0.6_5_7_7, 0.3_3_9_3, -0.0_2_4_1, 0.5_8_9_9, 1.3_8_7_5] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1e-3 __snake_case : str =False __snake_case : int =OnnxStableDiffusionPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , revision='''onnx''' , safety_checker=a , feature_extractor=a , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=a ) __snake_case : List[Any] ='''Andromeda galaxy in a bottle''' __snake_case : Optional[int] =np.random.RandomState(0 ) pipe( prompt=a , num_inference_steps=5 , guidance_scale=7.5 , generator=a , callback=a , callback_steps=1 , ) assert test_callback_fn.has_been_called assert number_of_steps == 6 def _UpperCamelCase ( self : List[Any] ): """simple docstring""" __snake_case : Optional[Any] =OnnxStableDiffusionPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , revision='''onnx''' , safety_checker=a , feature_extractor=a , provider=self.gpu_provider , sess_options=self.gpu_options , ) assert isinstance(a , a ) assert pipe.safety_checker is None __snake_case : int =pipe('''example prompt''' , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(a ) __snake_case : List[Any] =OnnxStableDiffusionPipeline.from_pretrained(a ) # sanity check that the pipeline still works assert pipe.safety_checker is None __snake_case : Any =pipe('''example prompt''' , num_inference_steps=2 ).images[0] assert image is not None
497
1
'''simple docstring''' def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE__ ): __a : Any = len(UpperCAmelCase_ ) for i in range(length - 1 ): __a : Union[str, Any] = i for k in range(i + 1 , UpperCAmelCase_ ): if collection[k] < collection[least]: __a : Any = k if least != i: __a : List[Any] = (collection[i], collection[least]) return collection if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = input("Enter numbers separated by a comma:\n").strip() SCREAMING_SNAKE_CASE_ = [int(item) for item in user_input.split(",")] print(selection_sort(unsorted))
597
from __future__ import annotations from typing import Any class UpperCAmelCase__ : '''simple docstring''' def __init__( self : Dict , UpperCamelCase : int = 6 ): """simple docstring""" _lowercase : Node | None = None _lowercase : Node | None = None self.create_linked_list(UpperCamelCase ) def lowerCAmelCase_ ( self : List[str] , UpperCamelCase : int ): """simple docstring""" _lowercase : Union[str, Any] = Node() _lowercase : Any = current_node _lowercase : List[Any] = current_node _lowercase : str = current_node for _ in range(1 , UpperCamelCase ): _lowercase : Any = Node() _lowercase : Union[str, Any] = current_node _lowercase : List[str] = previous_node _lowercase : List[str] = current_node _lowercase : str = self.front _lowercase : Optional[int] = previous_node def lowerCAmelCase_ ( self : List[Any] ): """simple docstring""" return ( self.front == self.rear and self.front is not None and self.front.data is None ) def lowerCAmelCase_ ( self : int ): """simple docstring""" self.check_can_perform_operation() return self.front.data if self.front else None def lowerCAmelCase_ ( self : Any , UpperCamelCase : Any ): """simple docstring""" if self.rear is None: return self.check_is_full() if not self.is_empty(): _lowercase : List[str] = self.rear.next if self.rear: _lowercase : Union[str, Any] = data def lowerCAmelCase_ ( self : Any ): """simple docstring""" self.check_can_perform_operation() if self.rear is None or self.front is None: return None if self.front == self.rear: _lowercase : Optional[int] = self.front.data _lowercase : Any = None return data _lowercase : Union[str, Any] = self.front _lowercase : int = old_front.next _lowercase : Any = old_front.data _lowercase : Any = None return data def lowerCAmelCase_ ( self : Tuple ): """simple docstring""" if self.is_empty(): raise Exception('''Empty Queue''' ) def lowerCAmelCase_ ( self : Any ): """simple docstring""" if self.rear and self.rear.next == self.front: raise Exception('''Full Queue''' ) class UpperCAmelCase__ : '''simple docstring''' def __init__( self : int ): """simple docstring""" _lowercase : Any | None = None _lowercase : Node | None = None _lowercase : Node | None = None if __name__ == "__main__": import doctest doctest.testmod()
322
0
"""simple docstring""" import argparse import math import os import torch from neural_compressor.utils.pytorch import load from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, StableDiffusionPipeline, UNetaDConditionModel def lowercase_ ( ) -> Any: lowerCAmelCase__ : List[str] = argparse.ArgumentParser() parser.add_argument( """-m""" , """--pretrained_model_name_or_path""" , type=lowercase_ , default=lowercase_ , required=lowercase_ , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , ) parser.add_argument( """-c""" , """--caption""" , type=lowercase_ , default="""robotic cat with wings""" , help="""Text used to generate images.""" , ) parser.add_argument( """-n""" , """--images_num""" , type=lowercase_ , default=4 , help="""How much images to generate.""" , ) parser.add_argument( """-s""" , """--seed""" , type=lowercase_ , default=42 , help="""Seed for random process.""" , ) parser.add_argument( """-ci""" , """--cuda_id""" , type=lowercase_ , default=0 , help="""cuda_id.""" , ) lowerCAmelCase__ : Optional[int] = parser.parse_args() return args def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: if not len(lowercase_ ) == rows * cols: raise ValueError("""The specified number of rows and columns are not correct.""" ) lowerCAmelCase__ : Union[str, Any] = imgs[0].size lowerCAmelCase__ : Optional[int] = Image.new("""RGB""" , size=(cols * w, rows * h) ) lowerCAmelCase__ : Tuple = grid.size for i, img in enumerate(lowercase_ ): grid.paste(lowercase_ , box=(i % cols * w, i // cols * h) ) return grid def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase="robotic cat with wings" , __UpperCAmelCase=7.5 , __UpperCAmelCase=50 , __UpperCAmelCase=1 , __UpperCAmelCase=42 , ) -> int: lowerCAmelCase__ : List[str] = torch.Generator(pipeline.device ).manual_seed(lowercase_ ) lowerCAmelCase__ : int = pipeline( lowercase_ , guidance_scale=lowercase_ , num_inference_steps=lowercase_ , generator=lowercase_ , num_images_per_prompt=lowercase_ , ).images lowerCAmelCase__ : Dict = int(math.sqrt(lowercase_ ) ) lowerCAmelCase__ : Optional[int] = image_grid(lowercase_ , rows=_rows , cols=num_images_per_prompt // _rows ) return grid, images _A = parse_args() # Load models and create wrapper for stable diffusion _A = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder="""tokenizer""") _A = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="""text_encoder""") _A = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="""vae""") _A = UNetaDConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="""unet""") _A = StableDiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, text_encoder=text_encoder, vae=vae, unet=unet, tokenizer=tokenizer ) _A = lambda images, clip_input: (images, False) if os.path.exists(os.path.join(args.pretrained_model_name_or_path, """best_model.pt""")): _A = load(args.pretrained_model_name_or_path, model=unet) unet.eval() setattr(pipeline, """unet""", unet) else: _A = unet.to(torch.device("""cuda""", args.cuda_id)) _A = pipeline.to(unet.device) _A = generate_images(pipeline, prompt=args.caption, num_images_per_prompt=args.images_num, seed=args.seed) grid.save(os.path.join(args.pretrained_model_name_or_path, """{}.png""".format("""_""".join(args.caption.split())))) _A = os.path.join(args.pretrained_model_name_or_path, """_""".join(args.caption.split())) os.makedirs(dirname, exist_ok=True) for idx, image in enumerate(images): image.save(os.path.join(dirname, """{}.png""".format(idx + 1)))
720
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from accelerate import PartialState from accelerate.utils.operations import broadcast, gather, gather_object, pad_across_processes, reduce def lowercase_ ( __UpperCAmelCase ) -> Tuple: return (torch.arange(state.num_processes ) + 1.0 + (state.num_processes * state.process_index)).to(state.device ) def lowercase_ ( __UpperCAmelCase ) -> Tuple: lowerCAmelCase__ : Optional[int] = create_tensor(__UpperCAmelCase ) lowerCAmelCase__ : List[Any] = gather(__UpperCAmelCase ) assert gathered_tensor.tolist() == list(range(1 , state.num_processes**2 + 1 ) ) def lowercase_ ( __UpperCAmelCase ) -> List[Any]: lowerCAmelCase__ : Any = [state.process_index] lowerCAmelCase__ : Dict = gather_object(__UpperCAmelCase ) assert len(__UpperCAmelCase ) == state.num_processes, f"""{gathered_obj}, {len(__UpperCAmelCase )} != {state.num_processes}""" assert gathered_obj == list(range(state.num_processes ) ), f"""{gathered_obj} != {list(range(state.num_processes ) )}""" def lowercase_ ( __UpperCAmelCase ) -> Dict: lowerCAmelCase__ : Union[str, Any] = create_tensor(__UpperCAmelCase ) lowerCAmelCase__ : Any = broadcast(__UpperCAmelCase ) assert broadcasted_tensor.shape == torch.Size([state.num_processes] ) assert broadcasted_tensor.tolist() == list(range(1 , state.num_processes + 1 ) ) def lowercase_ ( __UpperCAmelCase ) -> Union[str, Any]: # We need to pad the tensor with one more element if we are the main process # to ensure that we can pad if state.is_main_process: lowerCAmelCase__ : int = torch.arange(state.num_processes + 1 ).to(state.device ) else: lowerCAmelCase__ : Optional[Any] = torch.arange(state.num_processes ).to(state.device ) lowerCAmelCase__ : Any = pad_across_processes(__UpperCAmelCase ) assert padded_tensor.shape == torch.Size([state.num_processes + 1] ) if not state.is_main_process: assert padded_tensor.tolist() == list(range(0 , state.num_processes ) ) + [0] def lowercase_ ( __UpperCAmelCase ) -> Optional[Any]: # For now runs on only two processes if state.num_processes != 2: return lowerCAmelCase__ : Union[str, Any] = create_tensor(__UpperCAmelCase ) lowerCAmelCase__ : Any = reduce(__UpperCAmelCase , """sum""" ) lowerCAmelCase__ : Union[str, Any] = torch.tensor([4.0, 6] ).to(state.device ) assert torch.allclose(__UpperCAmelCase , __UpperCAmelCase ), f"""{reduced_tensor} != {truth_tensor}""" def lowercase_ ( __UpperCAmelCase ) -> List[str]: # For now runs on only two processes if state.num_processes != 2: return lowerCAmelCase__ : List[str] = create_tensor(__UpperCAmelCase ) lowerCAmelCase__ : Any = reduce(__UpperCAmelCase , """mean""" ) lowerCAmelCase__ : str = torch.tensor([2.0, 3] ).to(state.device ) assert torch.allclose(__UpperCAmelCase , __UpperCAmelCase ), f"""{reduced_tensor} != {truth_tensor}""" def lowercase_ ( __UpperCAmelCase ) -> Dict: # For xla_spawn (TPUs) main() def lowercase_ ( ) -> Optional[int]: lowerCAmelCase__ : str = PartialState() state.print(f"""State: {state}""" ) state.print("""testing gather""" ) test_gather(__UpperCAmelCase ) state.print("""testing gather_object""" ) test_gather_object(__UpperCAmelCase ) state.print("""testing broadcast""" ) test_broadcast(__UpperCAmelCase ) state.print("""testing pad_across_processes""" ) test_pad_across_processes(__UpperCAmelCase ) state.print("""testing reduce_sum""" ) test_reduce_sum(__UpperCAmelCase ) state.print("""testing reduce_mean""" ) test_reduce_mean(__UpperCAmelCase ) if __name__ == "__main__": main()
507
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaPriorEmbaEmbPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class UpperCAmelCase ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE_ = KandinskyVaaControlnetImgaImgPipeline SCREAMING_SNAKE_CASE_ = ['image_embeds', 'negative_image_embeds', 'image', 'hint'] SCREAMING_SNAKE_CASE_ = ['image_embeds', 'negative_image_embeds', 'image', 'hint'] SCREAMING_SNAKE_CASE_ = [ 'generator', 'height', 'width', 'strength', 'guidance_scale', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] SCREAMING_SNAKE_CASE_ = False @property def UpperCamelCase( self ) -> Tuple: '''simple docstring''' return 32 @property def UpperCamelCase( self ) -> Dict: '''simple docstring''' return 32 @property def UpperCamelCase( self ) -> int: '''simple docstring''' return self.time_input_dim @property def UpperCamelCase( self ) -> str: '''simple docstring''' return self.time_input_dim * 4 @property def UpperCamelCase( self ) -> List[Any]: '''simple docstring''' return 100 @property def UpperCamelCase( self ) -> List[Any]: '''simple docstring''' torch.manual_seed(0 ) lowerCamelCase_ = { 'in_channels': 8, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'image_hint', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } lowerCamelCase_ = UNetaDConditionModel(**SCREAMING_SNAKE_CASE_ ) return model @property def UpperCamelCase( self ) -> Dict: '''simple docstring''' return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def UpperCamelCase( self ) -> str: '''simple docstring''' torch.manual_seed(0 ) lowerCamelCase_ = VQModel(**self.dummy_movq_kwargs ) return model def UpperCamelCase( self ) -> Tuple: '''simple docstring''' lowerCamelCase_ = self.dummy_unet lowerCamelCase_ = self.dummy_movq lowerCamelCase_ = { 'num_train_timesteps': 1000, 'beta_schedule': 'linear', 'beta_start': 0.00_085, 'beta_end': 0.012, 'clip_sample': False, 'set_alpha_to_one': False, 'steps_offset': 0, 'prediction_type': 'epsilon', 'thresholding': False, } lowerCamelCase_ = DDIMScheduler(**SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = { 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=0 ) -> Optional[int]: '''simple docstring''' lowerCamelCase_ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(SCREAMING_SNAKE_CASE_ ) ).to(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( SCREAMING_SNAKE_CASE_ ) # create init_image lowerCamelCase_ = floats_tensor((1, 3, 64, 64) , rng=random.Random(SCREAMING_SNAKE_CASE_ ) ).to(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCamelCase_ = Image.fromarray(np.uinta(SCREAMING_SNAKE_CASE_ ) ).convert('RGB' ).resize((256, 256) ) # create hint lowerCamelCase_ = floats_tensor((1, 3, 64, 64) , rng=random.Random(SCREAMING_SNAKE_CASE_ ) ).to(SCREAMING_SNAKE_CASE_ ) if str(SCREAMING_SNAKE_CASE_ ).startswith('mps' ): lowerCamelCase_ = torch.manual_seed(SCREAMING_SNAKE_CASE_ ) else: lowerCamelCase_ = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = { 'image': init_image, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'hint': hint, 'generator': generator, 'height': 64, 'width': 64, 'num_inference_steps': 10, 'guidance_scale': 7.0, 'strength': 0.2, 'output_type': 'np', } return inputs def UpperCamelCase( self ) -> Optional[Any]: '''simple docstring''' lowerCamelCase_ = 'cpu' lowerCamelCase_ = self.get_dummy_components() lowerCamelCase_ = self.pipeline_class(**SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = pipe(**self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) ) lowerCamelCase_ = output.images lowerCamelCase_ = pipe( **self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) , return_dict=SCREAMING_SNAKE_CASE_ , )[0] lowerCamelCase_ = image[0, -3:, -3:, -1] lowerCamelCase_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCamelCase_ = np.array( [0.54_985_034, 0.55_509_365, 0.52_561_504, 0.5_570_494, 0.5_593_818, 0.5_263_979, 0.50_285_643, 0.5_069_846, 0.51_196_736] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase( self ) -> Tuple: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase( self ) -> Any: '''simple docstring''' lowerCamelCase_ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy' ) lowerCamelCase_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' ) lowerCamelCase_ = init_image.resize((512, 512) ) lowerCamelCase_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/hint_image_cat.png' ) lowerCamelCase_ = torch.from_numpy(np.array(SCREAMING_SNAKE_CASE_ ) ).float() / 255.0 lowerCamelCase_ = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) lowerCamelCase_ = 'A robot, 4k photo' lowerCamelCase_ = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-prior' , torch_dtype=torch.floataa ) pipe_prior.to(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = KandinskyVaaControlnetImgaImgPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-controlnet-depth' , torch_dtype=torch.floataa ) lowerCamelCase_ = pipeline.to(SCREAMING_SNAKE_CASE_ ) pipeline.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = torch.Generator(device='cpu' ).manual_seed(0 ) lowerCamelCase_ ,lowerCamelCase_ = pipe_prior( SCREAMING_SNAKE_CASE_ , image=SCREAMING_SNAKE_CASE_ , strength=0.85 , generator=SCREAMING_SNAKE_CASE_ , negative_prompt='' , ).to_tuple() lowerCamelCase_ = pipeline( image=SCREAMING_SNAKE_CASE_ , image_embeds=SCREAMING_SNAKE_CASE_ , negative_image_embeds=SCREAMING_SNAKE_CASE_ , hint=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , num_inference_steps=100 , height=512 , width=512 , strength=0.5 , output_type='np' , ) lowerCamelCase_ = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
42
"""simple docstring""" from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup __magic_name__ = "https://www.indeed.co.in/jobs?q=mobile+app+development&l=" def _lowerCAmelCase ( UpperCamelCase_ = "mumbai" ): __SCREAMING_SNAKE_CASE = BeautifulSoup(requests.get(url + location ).content , """html.parser""" ) # This attribute finds out all the specifics listed in a job for job in soup.find_all("""div""" , attrs={"""data-tn-component""": """organicJob"""} ): __SCREAMING_SNAKE_CASE = job.find("""a""" , attrs={"""data-tn-element""": """jobTitle"""} ).text.strip() __SCREAMING_SNAKE_CASE = job.find("""span""" , {"""class""": """company"""} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs("Bangalore"), 1): print(F"""Job {i:>2} is {job[0]} at {job[1]}""")
155
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE__ : List[Any] = {"""configuration_xlnet""": ["""XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XLNetConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : Union[str, Any] = ["""XLNetTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : int = ["""XLNetTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : Union[str, Any] = [ """XLNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """XLNetForMultipleChoice""", """XLNetForQuestionAnswering""", """XLNetForQuestionAnsweringSimple""", """XLNetForSequenceClassification""", """XLNetForTokenClassification""", """XLNetLMHeadModel""", """XLNetModel""", """XLNetPreTrainedModel""", """load_tf_weights_in_xlnet""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : Optional[Any] = [ """TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFXLNetForMultipleChoice""", """TFXLNetForQuestionAnsweringSimple""", """TFXLNetForSequenceClassification""", """TFXLNetForTokenClassification""", """TFXLNetLMHeadModel""", """TFXLNetMainLayer""", """TFXLNetModel""", """TFXLNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
233
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE__ : int = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : Any = { """xlm-roberta-base""": """https://huggingface.co/xlm-roberta-base/resolve/main/config.json""", """xlm-roberta-large""": """https://huggingface.co/xlm-roberta-large/resolve/main/config.json""", """xlm-roberta-large-finetuned-conll02-dutch""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json""" ), """xlm-roberta-large-finetuned-conll02-spanish""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json""" ), """xlm-roberta-large-finetuned-conll03-english""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json""" ), """xlm-roberta-large-finetuned-conll03-german""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json""" ), } class __lowerCAmelCase( lowerCAmelCase__ ): __snake_case : List[str] = 'xlm-roberta' def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE : List[str]=30_522 , SCREAMING_SNAKE_CASE : List[str]=768 , SCREAMING_SNAKE_CASE : List[str]=12 , SCREAMING_SNAKE_CASE : str=12 , SCREAMING_SNAKE_CASE : Optional[Any]=3_072 , SCREAMING_SNAKE_CASE : int="gelu" , SCREAMING_SNAKE_CASE : str=0.1 , SCREAMING_SNAKE_CASE : Union[str, Any]=0.1 , SCREAMING_SNAKE_CASE : Union[str, Any]=512 , SCREAMING_SNAKE_CASE : Union[str, Any]=2 , SCREAMING_SNAKE_CASE : str=0.02 , SCREAMING_SNAKE_CASE : List[str]=1E-12 , SCREAMING_SNAKE_CASE : List[str]=1 , SCREAMING_SNAKE_CASE : Any=0 , SCREAMING_SNAKE_CASE : Optional[int]=2 , SCREAMING_SNAKE_CASE : Union[str, Any]="absolute" , SCREAMING_SNAKE_CASE : Any=True , SCREAMING_SNAKE_CASE : Dict=None , **SCREAMING_SNAKE_CASE : int , ): """simple docstring""" super().__init__(pad_token_id=SCREAMING_SNAKE_CASE , bos_token_id=SCREAMING_SNAKE_CASE , eos_token_id=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ :Optional[Any] = vocab_size SCREAMING_SNAKE_CASE_ :int = hidden_size SCREAMING_SNAKE_CASE_ :Tuple = num_hidden_layers SCREAMING_SNAKE_CASE_ :Tuple = num_attention_heads SCREAMING_SNAKE_CASE_ :List[Any] = hidden_act SCREAMING_SNAKE_CASE_ :Optional[Any] = intermediate_size SCREAMING_SNAKE_CASE_ :Tuple = hidden_dropout_prob SCREAMING_SNAKE_CASE_ :Optional[Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ :List[str] = max_position_embeddings SCREAMING_SNAKE_CASE_ :Union[str, Any] = type_vocab_size SCREAMING_SNAKE_CASE_ :Any = initializer_range SCREAMING_SNAKE_CASE_ :List[Any] = layer_norm_eps SCREAMING_SNAKE_CASE_ :Any = position_embedding_type SCREAMING_SNAKE_CASE_ :List[Any] = use_cache SCREAMING_SNAKE_CASE_ :int = classifier_dropout class __lowerCAmelCase( lowerCAmelCase__ ): @property def _lowercase ( self : Optional[int] ): """simple docstring""" if self.task == "multiple-choice": SCREAMING_SNAKE_CASE_ :str = {0: 'batch', 1: 'choice', 2: 'sequence'} else: SCREAMING_SNAKE_CASE_ :Optional[int] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
233
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __a = logging.get_logger(__name__) __a = { 'distilbert-base-uncased': 'https://huggingface.co/distilbert-base-uncased/resolve/main/config.json', 'distilbert-base-uncased-distilled-squad': ( 'https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json' ), 'distilbert-base-cased': 'https://huggingface.co/distilbert-base-cased/resolve/main/config.json', 'distilbert-base-cased-distilled-squad': ( 'https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json' ), 'distilbert-base-german-cased': 'https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json', 'distilbert-base-multilingual-cased': ( 'https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json' ), 'distilbert-base-uncased-finetuned-sst-2-english': ( 'https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json' ), } class __a( _a ): """simple docstring""" lowerCAmelCase = '''distilbert''' lowerCAmelCase = { '''hidden_size''': '''dim''', '''num_attention_heads''': '''n_heads''', '''num_hidden_layers''': '''n_layers''', } def __init__( self ,_SCREAMING_SNAKE_CASE=30_522 ,_SCREAMING_SNAKE_CASE=512 ,_SCREAMING_SNAKE_CASE=False ,_SCREAMING_SNAKE_CASE=6 ,_SCREAMING_SNAKE_CASE=12 ,_SCREAMING_SNAKE_CASE=768 ,_SCREAMING_SNAKE_CASE=4 * 768 ,_SCREAMING_SNAKE_CASE=0.1 ,_SCREAMING_SNAKE_CASE=0.1 ,_SCREAMING_SNAKE_CASE="gelu" ,_SCREAMING_SNAKE_CASE=0.02 ,_SCREAMING_SNAKE_CASE=0.1 ,_SCREAMING_SNAKE_CASE=0.2 ,_SCREAMING_SNAKE_CASE=0 ,**_SCREAMING_SNAKE_CASE ,) -> Tuple: UpperCAmelCase_ : Dict = vocab_size UpperCAmelCase_ : List[Any] = max_position_embeddings UpperCAmelCase_ : Dict = sinusoidal_pos_embds UpperCAmelCase_ : Optional[Any] = n_layers UpperCAmelCase_ : Any = n_heads UpperCAmelCase_ : Optional[int] = dim UpperCAmelCase_ : str = hidden_dim UpperCAmelCase_ : Optional[Any] = dropout UpperCAmelCase_ : Tuple = attention_dropout UpperCAmelCase_ : Union[str, Any] = activation UpperCAmelCase_ : Union[str, Any] = initializer_range UpperCAmelCase_ : Dict = qa_dropout UpperCAmelCase_ : Optional[int] = seq_classif_dropout super().__init__(**_SCREAMING_SNAKE_CASE ,pad_token_id=_SCREAMING_SNAKE_CASE ) class __a( _a ): """simple docstring""" @property def a__ ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": UpperCAmelCase_ : int = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: UpperCAmelCase_ : List[Any] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
30
def __lowerCamelCase ( __a :Optional[Any] ) -> Tuple: """simple docstring""" A__ = len(__a ) while cur > 1: # Find the maximum number in arr A__ = arr.index(max(arr[0:cur] ) ) # Reverse from 0 to mi A__ = arr[mi::-1] + arr[mi + 1 : len(__a )] # Reverse whole list A__ = arr[cur - 1 :: -1] + arr[cur : len(__a )] cur -= 1 return arr if __name__ == "__main__": A : List[str] = input('''Enter numbers separated by a comma:\n''').strip() A : int = [int(item) for item in user_input.split(''',''')] print(pancake_sort(unsorted))
176
0
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from .config import config_command_parser from .config_args import default_config_file, load_config_from_file # noqa: F401 from .default import default_command_parser from .update import update_command_parser def _a ( _SCREAMING_SNAKE_CASE : Union[str, Any]=None ): _SCREAMING_SNAKE_CASE = argparse.ArgumentParser(add_help=_SCREAMING_SNAKE_CASE , allow_abbrev=_SCREAMING_SNAKE_CASE ) # The main config parser _SCREAMING_SNAKE_CASE = config_command_parser(_SCREAMING_SNAKE_CASE ) # The subparser to add commands to _SCREAMING_SNAKE_CASE = config_parser.add_subparsers(title="subcommands" , dest="subcommand" ) # Then add other parsers with the parent parser default_command_parser(_SCREAMING_SNAKE_CASE , parents=[parent_parser] ) update_command_parser(_SCREAMING_SNAKE_CASE , parents=[parent_parser] ) return config_parser def _a ( ): _SCREAMING_SNAKE_CASE = get_config_parser() _SCREAMING_SNAKE_CASE = config_parser.parse_args() if not hasattr(_SCREAMING_SNAKE_CASE , "func" ): config_parser.print_help() exit(1 ) # Run args.func(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
493
'''simple docstring''' import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): a : int = LayoutLMTokenizer a : Optional[int] = LayoutLMTokenizerFast a : Optional[int] = True a : Any = True def lowercase ( self ): super().setUp() _SCREAMING_SNAKE_CASE = [ "[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] _SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def lowercase ( self , **UpperCamelCase ): return LayoutLMTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase ) def lowercase ( self , UpperCamelCase ): _SCREAMING_SNAKE_CASE = "UNwant\u00E9d,running" _SCREAMING_SNAKE_CASE = "unwanted, running" return input_text, output_text def lowercase ( self ): _SCREAMING_SNAKE_CASE = self.tokenizer_class(self.vocab_file ) _SCREAMING_SNAKE_CASE = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(UpperCamelCase , ["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase ) , [7, 4, 5, 10, 8, 9] ) def lowercase ( self ): pass
493
1
"""simple docstring""" import gc import unittest import torch from parameterized import parameterized from diffusers import AutoencoderKL from diffusers.utils import floats_tensor, load_hf_numpy, require_torch_gpu, slow, torch_all_close, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class __snake_case ( _lowercase , _lowercase , unittest.TestCase): snake_case__ : Tuple = AutoencoderKL snake_case__ : Optional[int] = "sample" snake_case__ : Optional[Any] = 1e-2 @property def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" _lowerCamelCase : Optional[Any] = 4 _lowerCamelCase : Optional[Any] = 3 _lowerCamelCase : List[str] = (3_2, 3_2) _lowerCamelCase : Any = floats_tensor((batch_size, num_channels) + sizes ).to(__lowerCAmelCase ) return {"sample": image} @property def SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" return (3, 3_2, 3_2) @property def SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" return (3, 3_2, 3_2) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" _lowerCamelCase : Any = { '''block_out_channels''': [3_2, 6_4], '''in_channels''': 3, '''out_channels''': 3, '''down_block_types''': ['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''], '''up_block_types''': ['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''], '''latent_channels''': 4, } _lowerCamelCase : Tuple = self.dummy_input return init_dict, inputs_dict def SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" pass def SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" pass @unittest.skipIf(torch_device == '''mps''' , '''Gradient checkpointing skipped on MPS''' ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" _lowerCamelCase , _lowerCamelCase : Union[str, Any] = self.prepare_init_args_and_inputs_for_common() _lowerCamelCase : List[str] = self.model_class(**__lowerCAmelCase ) model.to(__lowerCAmelCase ) assert not model.is_gradient_checkpointing and model.training _lowerCamelCase : Union[str, Any] = model(**__lowerCAmelCase ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model.zero_grad() _lowerCamelCase : List[Any] = torch.randn_like(__lowerCAmelCase ) _lowerCamelCase : Tuple = (out - labels).mean() loss.backward() # re-instantiate the model now enabling gradient checkpointing _lowerCamelCase : List[Any] = self.model_class(**__lowerCAmelCase ) # clone model model_a.load_state_dict(model.state_dict() ) model_a.to(__lowerCAmelCase ) model_a.enable_gradient_checkpointing() assert model_a.is_gradient_checkpointing and model_a.training _lowerCamelCase : List[Any] = model_a(**__lowerCAmelCase ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model_a.zero_grad() _lowerCamelCase : Any = (out_a - labels).mean() loss_a.backward() # compare the output and parameters gradients self.assertTrue((loss - loss_a).abs() < 1E-5 ) _lowerCamelCase : Optional[int] = dict(model.named_parameters() ) _lowerCamelCase : Any = dict(model_a.named_parameters() ) for name, param in named_params.items(): self.assertTrue(torch_all_close(param.grad.data , named_params_a[name].grad.data , atol=5E-5 ) ) def SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" _lowerCamelCase , _lowerCamelCase : List[Any] = AutoencoderKL.from_pretrained('''fusing/autoencoder-kl-dummy''' , output_loading_info=__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" _lowerCamelCase : List[Any] = AutoencoderKL.from_pretrained('''fusing/autoencoder-kl-dummy''' ) _lowerCamelCase : int = model.to(__lowerCAmelCase ) model.eval() if torch_device == "mps": _lowerCamelCase : int = torch.manual_seed(0 ) else: _lowerCamelCase : str = torch.Generator(device=__lowerCAmelCase ).manual_seed(0 ) _lowerCamelCase : int = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) _lowerCamelCase : Optional[int] = image.to(__lowerCAmelCase ) with torch.no_grad(): _lowerCamelCase : str = model(__lowerCAmelCase , sample_posterior=__lowerCAmelCase , generator=__lowerCAmelCase ).sample _lowerCamelCase : List[str] = output[0, -1, -3:, -3:].flatten().cpu() # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. if torch_device == "mps": _lowerCamelCase : str = torch.tensor( [ -4.0078E-01, -3.8323E-04, -1.2681E-01, -1.1462E-01, 2.0095E-01, 1.0893E-01, -8.8247E-02, -3.0361E-01, -9.8644E-03, ] ) elif torch_device == "cpu": _lowerCamelCase : Optional[int] = torch.tensor( [-0.13_52, 0.08_78, 0.04_19, -0.08_18, -0.10_69, 0.06_88, -0.14_58, -0.44_46, -0.00_26] ) else: _lowerCamelCase : List[str] = torch.tensor( [-0.24_21, 0.46_42, 0.25_07, -0.04_38, 0.06_82, 0.31_60, -0.20_18, -0.07_27, 0.24_85] ) self.assertTrue(torch_all_close(__lowerCAmelCase , __lowerCAmelCase , rtol=1E-2 ) ) @slow class __snake_case ( unittest.TestCase): def SCREAMING_SNAKE_CASE ( self : Any , __lowerCAmelCase : Tuple , __lowerCAmelCase : Any ): """simple docstring""" return f'''gaussian_noise_s={seed}_shape={"_".join([str(__lowerCAmelCase ) for s in shape] )}.npy''' def SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE ( self : int , __lowerCAmelCase : Dict=0 , __lowerCAmelCase : Tuple=(4, 3, 5_1_2, 5_1_2) , __lowerCAmelCase : Tuple=False ): """simple docstring""" _lowerCamelCase : str = torch.floataa if fpaa else torch.floataa _lowerCamelCase : List[Any] = torch.from_numpy(load_hf_numpy(self.get_file_format(__lowerCAmelCase , __lowerCAmelCase ) ) ).to(__lowerCAmelCase ).to(__lowerCAmelCase ) return image def SCREAMING_SNAKE_CASE ( self : Dict , __lowerCAmelCase : List[str]="CompVis/stable-diffusion-v1-4" , __lowerCAmelCase : List[str]=False ): """simple docstring""" _lowerCamelCase : Any = '''fp16''' if fpaa else None _lowerCamelCase : str = torch.floataa if fpaa else torch.floataa _lowerCamelCase : Any = AutoencoderKL.from_pretrained( __lowerCAmelCase , subfolder='''vae''' , torch_dtype=__lowerCAmelCase , revision=__lowerCAmelCase , ) model.to(__lowerCAmelCase ).eval() return model def SCREAMING_SNAKE_CASE ( self : int , __lowerCAmelCase : int=0 ): """simple docstring""" if torch_device == "mps": return torch.manual_seed(__lowerCAmelCase ) return torch.Generator(device=__lowerCAmelCase ).manual_seed(__lowerCAmelCase ) @parameterized.expand( [ # fmt: off [3_3, [-0.16_03, 0.98_78, -0.04_95, -0.07_90, -0.27_09, 0.83_75, -0.20_60, -0.08_24], [-0.23_95, 0.00_98, 0.01_02, -0.07_09, -0.28_40, -0.02_74, -0.07_18, -0.18_24]], [4_7, [-0.23_76, 0.11_68, 0.13_32, -0.48_40, -0.25_08, -0.07_91, -0.04_93, -0.40_89], [0.03_50, 0.08_47, 0.04_67, 0.03_44, -0.08_42, -0.05_47, -0.06_33, -0.11_31]], # fmt: on ] ) def SCREAMING_SNAKE_CASE ( self : str , __lowerCAmelCase : Tuple , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Union[str, Any] ): """simple docstring""" _lowerCamelCase : Dict = self.get_sd_vae_model() _lowerCamelCase : List[str] = self.get_sd_image(__lowerCAmelCase ) _lowerCamelCase : Optional[int] = self.get_generator(__lowerCAmelCase ) with torch.no_grad(): _lowerCamelCase : Any = model(__lowerCAmelCase , generator=__lowerCAmelCase , sample_posterior=__lowerCAmelCase ).sample assert sample.shape == image.shape _lowerCamelCase : Optional[int] = sample[-1, -2:, -2:, :2].flatten().float().cpu() _lowerCamelCase : Tuple = torch.tensor(expected_slice_mps if torch_device == '''mps''' else expected_slice ) assert torch_all_close(__lowerCAmelCase , __lowerCAmelCase , atol=3E-3 ) @parameterized.expand( [ # fmt: off [3_3, [-0.05_13, 0.02_89, 1.37_99, 0.21_66, -0.25_73, -0.08_71, 0.51_03, -0.09_99]], [4_7, [-0.41_28, -0.13_20, -0.37_04, 0.19_65, -0.41_16, -0.23_32, -0.33_40, 0.22_47]], # fmt: on ] ) @require_torch_gpu def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : Tuple ): """simple docstring""" _lowerCamelCase : List[str] = self.get_sd_vae_model(fpaa=__lowerCAmelCase ) _lowerCamelCase : int = self.get_sd_image(__lowerCAmelCase , fpaa=__lowerCAmelCase ) _lowerCamelCase : Optional[int] = self.get_generator(__lowerCAmelCase ) with torch.no_grad(): _lowerCamelCase : Optional[Any] = model(__lowerCAmelCase , generator=__lowerCAmelCase , sample_posterior=__lowerCAmelCase ).sample assert sample.shape == image.shape _lowerCamelCase : Union[str, Any] = sample[-1, -2:, :2, -2:].flatten().float().cpu() _lowerCamelCase : Optional[Any] = torch.tensor(__lowerCAmelCase ) assert torch_all_close(__lowerCAmelCase , __lowerCAmelCase , atol=1E-2 ) @parameterized.expand( [ # fmt: off [3_3, [-0.16_09, 0.98_66, -0.04_87, -0.07_77, -0.27_16, 0.83_68, -0.20_55, -0.08_14], [-0.23_95, 0.00_98, 0.01_02, -0.07_09, -0.28_40, -0.02_74, -0.07_18, -0.18_24]], [4_7, [-0.23_77, 0.11_47, 0.13_33, -0.48_41, -0.25_06, -0.08_05, -0.04_91, -0.40_85], [0.03_50, 0.08_47, 0.04_67, 0.03_44, -0.08_42, -0.05_47, -0.06_33, -0.11_31]], # fmt: on ] ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , __lowerCAmelCase : Any , __lowerCAmelCase : Tuple , __lowerCAmelCase : Union[str, Any] ): """simple docstring""" _lowerCamelCase : Union[str, Any] = self.get_sd_vae_model() _lowerCamelCase : int = self.get_sd_image(__lowerCAmelCase ) with torch.no_grad(): _lowerCamelCase : List[str] = model(__lowerCAmelCase ).sample assert sample.shape == image.shape _lowerCamelCase : Optional[int] = sample[-1, -2:, -2:, :2].flatten().float().cpu() _lowerCamelCase : Tuple = torch.tensor(expected_slice_mps if torch_device == '''mps''' else expected_slice ) assert torch_all_close(__lowerCAmelCase , __lowerCAmelCase , atol=3E-3 ) @parameterized.expand( [ # fmt: off [1_3, [-0.20_51, -0.18_03, -0.23_11, -0.21_14, -0.32_92, -0.35_74, -0.29_53, -0.33_23]], [3_7, [-0.26_32, -0.26_25, -0.21_99, -0.27_41, -0.45_39, -0.49_90, -0.37_20, -0.49_25]], # fmt: on ] ) @require_torch_gpu def SCREAMING_SNAKE_CASE ( self : Optional[Any] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : Dict = self.get_sd_vae_model() _lowerCamelCase : Any = self.get_sd_image(__lowerCAmelCase , shape=(3, 4, 6_4, 6_4) ) with torch.no_grad(): _lowerCamelCase : List[Any] = model.decode(__lowerCAmelCase ).sample assert list(sample.shape ) == [3, 3, 5_1_2, 5_1_2] _lowerCamelCase : Tuple = sample[-1, -2:, :2, -2:].flatten().cpu() _lowerCamelCase : List[Any] = torch.tensor(__lowerCAmelCase ) assert torch_all_close(__lowerCAmelCase , __lowerCAmelCase , atol=1E-3 ) @parameterized.expand( [ # fmt: off [2_7, [-0.03_69, 0.02_07, -0.07_76, -0.06_82, -0.17_47, -0.19_30, -0.14_65, -0.20_39]], [1_6, [-0.16_28, -0.21_34, -0.27_47, -0.26_42, -0.37_74, -0.44_04, -0.36_87, -0.42_77]], # fmt: on ] ) @require_torch_gpu def SCREAMING_SNAKE_CASE ( self : Optional[Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Any ): """simple docstring""" _lowerCamelCase : str = self.get_sd_vae_model(fpaa=__lowerCAmelCase ) _lowerCamelCase : int = self.get_sd_image(__lowerCAmelCase , shape=(3, 4, 6_4, 6_4) , fpaa=__lowerCAmelCase ) with torch.no_grad(): _lowerCamelCase : Dict = model.decode(__lowerCAmelCase ).sample assert list(sample.shape ) == [3, 3, 5_1_2, 5_1_2] _lowerCamelCase : Dict = sample[-1, -2:, :2, -2:].flatten().float().cpu() _lowerCamelCase : Union[str, Any] = torch.tensor(__lowerCAmelCase ) assert torch_all_close(__lowerCAmelCase , __lowerCAmelCase , atol=5E-3 ) @parameterized.expand([(1_3,), (1_6,), (2_7,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason='''xformers is not required when using PyTorch 2.0.''' ) def SCREAMING_SNAKE_CASE ( self : Any , __lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : str = self.get_sd_vae_model(fpaa=__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = self.get_sd_image(__lowerCAmelCase , shape=(3, 4, 6_4, 6_4) , fpaa=__lowerCAmelCase ) with torch.no_grad(): _lowerCamelCase : List[str] = model.decode(__lowerCAmelCase ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): _lowerCamelCase : Optional[int] = model.decode(__lowerCAmelCase ).sample assert list(sample.shape ) == [3, 3, 5_1_2, 5_1_2] assert torch_all_close(__lowerCAmelCase , __lowerCAmelCase , atol=1E-1 ) @parameterized.expand([(1_3,), (1_6,), (3_7,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason='''xformers is not required when using PyTorch 2.0.''' ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , __lowerCAmelCase : List[Any] ): """simple docstring""" _lowerCamelCase : Dict = self.get_sd_vae_model() _lowerCamelCase : List[str] = self.get_sd_image(__lowerCAmelCase , shape=(3, 4, 6_4, 6_4) ) with torch.no_grad(): _lowerCamelCase : Optional[int] = model.decode(__lowerCAmelCase ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): _lowerCamelCase : Any = model.decode(__lowerCAmelCase ).sample assert list(sample.shape ) == [3, 3, 5_1_2, 5_1_2] assert torch_all_close(__lowerCAmelCase , __lowerCAmelCase , atol=1E-2 ) @parameterized.expand( [ # fmt: off [3_3, [-0.30_01, 0.09_18, -2.69_84, -3.97_20, -3.20_99, -5.03_53, 1.73_38, -0.20_65, 3.42_67]], [4_7, [-1.50_30, -4.38_71, -6.03_55, -9.11_57, -1.66_61, -2.78_53, 2.16_07, -5.08_23, 2.56_33]], # fmt: on ] ) def SCREAMING_SNAKE_CASE ( self : Any , __lowerCAmelCase : int , __lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : Optional[int] = self.get_sd_vae_model() _lowerCamelCase : Optional[Any] = self.get_sd_image(__lowerCAmelCase ) _lowerCamelCase : List[str] = self.get_generator(__lowerCAmelCase ) with torch.no_grad(): _lowerCamelCase : Tuple = model.encode(__lowerCAmelCase ).latent_dist _lowerCamelCase : Tuple = dist.sample(generator=__lowerCAmelCase ) assert list(sample.shape ) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]] _lowerCamelCase : Optional[Any] = sample[0, -1, -3:, -3:].flatten().cpu() _lowerCamelCase : str = torch.tensor(__lowerCAmelCase ) _lowerCamelCase : Optional[int] = 3E-3 if torch_device != '''mps''' else 1E-2 assert torch_all_close(__lowerCAmelCase , __lowerCAmelCase , atol=__lowerCAmelCase )
83
def A__ (snake_case : float , snake_case : int ) -> float: if digit_amount > 0: return round(number - int(snake_case ) , snake_case ) return number - int(snake_case ) if __name__ == "__main__": print(decimal_isolate(1.53, 0)) print(decimal_isolate(35.345, 1)) print(decimal_isolate(35.345, 2)) print(decimal_isolate(35.345, 3)) print(decimal_isolate(-14.789, 3)) print(decimal_isolate(0, 2)) print(decimal_isolate(-14.123, 1)) print(decimal_isolate(-14.123, 2)) print(decimal_isolate(-14.123, 3))
279
0
from typing import List, Optional import numpy as np from ...processing_utils import ProcessorMixin from ...utils import to_numpy class UpperCamelCase_ ( A ): '''simple docstring''' a :List[str] = 'EncodecFeatureExtractor' a :int = ('T5Tokenizer', 'T5TokenizerFast') def __init__( self , _UpperCAmelCase , _UpperCAmelCase): super().__init__(_UpperCAmelCase , _UpperCAmelCase) lowerCAmelCase_ = self.feature_extractor lowerCAmelCase_ = False def lowercase__ ( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=True): return self.tokenizer.get_decoder_prompt_ids(task=_UpperCAmelCase , language=_UpperCAmelCase , no_timestamps=_UpperCAmelCase) def __call__( self , *_UpperCAmelCase , **_UpperCAmelCase): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*_UpperCAmelCase , **_UpperCAmelCase) lowerCAmelCase_ = kwargs.pop('''audio''' , _UpperCAmelCase) lowerCAmelCase_ = kwargs.pop('''sampling_rate''' , _UpperCAmelCase) lowerCAmelCase_ = kwargs.pop('''text''' , _UpperCAmelCase) if len(_UpperCAmelCase) > 0: lowerCAmelCase_ = args[0] lowerCAmelCase_ = args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''') if text is not None: lowerCAmelCase_ = self.tokenizer(_UpperCAmelCase , **_UpperCAmelCase) if audio is not None: lowerCAmelCase_ = self.feature_extractor(_UpperCAmelCase , *_UpperCAmelCase , sampling_rate=_UpperCAmelCase , **_UpperCAmelCase) if audio is None: return inputs elif text is None: return audio_inputs else: lowerCAmelCase_ = audio_inputs['''input_values'''] if "padding_mask" in audio_inputs: lowerCAmelCase_ = audio_inputs['''padding_mask'''] return inputs def lowercase__ ( self , *_UpperCAmelCase , **_UpperCAmelCase): lowerCAmelCase_ = kwargs.pop('''audio''' , _UpperCAmelCase) lowerCAmelCase_ = kwargs.pop('''padding_mask''' , _UpperCAmelCase) if len(_UpperCAmelCase) > 0: lowerCAmelCase_ = args[0] lowerCAmelCase_ = args[1:] if audio_values is not None: return self._decode_audio(_UpperCAmelCase , padding_mask=_UpperCAmelCase) else: return self.tokenizer.batch_decode(*_UpperCAmelCase , **_UpperCAmelCase) def lowercase__ ( self , *_UpperCAmelCase , **_UpperCAmelCase): return self.tokenizer.decode(*_UpperCAmelCase , **_UpperCAmelCase) def lowercase__ ( self , _UpperCAmelCase , _UpperCAmelCase = None): lowerCAmelCase_ = to_numpy(_UpperCAmelCase) lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = audio_values.shape if padding_mask is None: return list(_UpperCAmelCase) lowerCAmelCase_ = to_numpy(_UpperCAmelCase) # match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding** # token (so that the generated audio values are **not** treated as padded tokens) lowerCAmelCase_ = seq_len - padding_mask.shape[-1] lowerCAmelCase_ = 1 - self.feature_extractor.padding_value lowerCAmelCase_ = np.pad(_UpperCAmelCase , ((0, 0), (0, difference)) , '''constant''' , constant_values=_UpperCAmelCase) lowerCAmelCase_ = audio_values.tolist() for i in range(_UpperCAmelCase): lowerCAmelCase_ = np.asarray(audio_values[i])[ padding_mask[i][None, :] != self.feature_extractor.padding_value ] lowerCAmelCase_ = sliced_audio.reshape(_UpperCAmelCase , -1) return audio_values
413
import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all feature extractors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...feature_extraction_utils import FeatureExtractionMixin from ...utils import CONFIG_NAME, FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) _snake_case = logging.get_logger(__name__) _snake_case = OrderedDict( [ ("audio-spectrogram-transformer", "ASTFeatureExtractor"), ("beit", "BeitFeatureExtractor"), ("chinese_clip", "ChineseCLIPFeatureExtractor"), ("clap", "ClapFeatureExtractor"), ("clip", "CLIPFeatureExtractor"), ("clipseg", "ViTFeatureExtractor"), ("conditional_detr", "ConditionalDetrFeatureExtractor"), ("convnext", "ConvNextFeatureExtractor"), ("cvt", "ConvNextFeatureExtractor"), ("data2vec-audio", "Wav2Vec2FeatureExtractor"), ("data2vec-vision", "BeitFeatureExtractor"), ("deformable_detr", "DeformableDetrFeatureExtractor"), ("deit", "DeiTFeatureExtractor"), ("detr", "DetrFeatureExtractor"), ("dinat", "ViTFeatureExtractor"), ("donut-swin", "DonutFeatureExtractor"), ("dpt", "DPTFeatureExtractor"), ("encodec", "EncodecFeatureExtractor"), ("flava", "FlavaFeatureExtractor"), ("glpn", "GLPNFeatureExtractor"), ("groupvit", "CLIPFeatureExtractor"), ("hubert", "Wav2Vec2FeatureExtractor"), ("imagegpt", "ImageGPTFeatureExtractor"), ("layoutlmv2", "LayoutLMv2FeatureExtractor"), ("layoutlmv3", "LayoutLMv3FeatureExtractor"), ("levit", "LevitFeatureExtractor"), ("maskformer", "MaskFormerFeatureExtractor"), ("mctct", "MCTCTFeatureExtractor"), ("mobilenet_v1", "MobileNetV1FeatureExtractor"), ("mobilenet_v2", "MobileNetV2FeatureExtractor"), ("mobilevit", "MobileViTFeatureExtractor"), ("nat", "ViTFeatureExtractor"), ("owlvit", "OwlViTFeatureExtractor"), ("perceiver", "PerceiverFeatureExtractor"), ("poolformer", "PoolFormerFeatureExtractor"), ("regnet", "ConvNextFeatureExtractor"), ("resnet", "ConvNextFeatureExtractor"), ("segformer", "SegformerFeatureExtractor"), ("sew", "Wav2Vec2FeatureExtractor"), ("sew-d", "Wav2Vec2FeatureExtractor"), ("speech_to_text", "Speech2TextFeatureExtractor"), ("speecht5", "SpeechT5FeatureExtractor"), ("swiftformer", "ViTFeatureExtractor"), ("swin", "ViTFeatureExtractor"), ("swinv2", "ViTFeatureExtractor"), ("table-transformer", "DetrFeatureExtractor"), ("timesformer", "VideoMAEFeatureExtractor"), ("tvlt", "TvltFeatureExtractor"), ("unispeech", "Wav2Vec2FeatureExtractor"), ("unispeech-sat", "Wav2Vec2FeatureExtractor"), ("van", "ConvNextFeatureExtractor"), ("videomae", "VideoMAEFeatureExtractor"), ("vilt", "ViltFeatureExtractor"), ("vit", "ViTFeatureExtractor"), ("vit_mae", "ViTFeatureExtractor"), ("vit_msn", "ViTFeatureExtractor"), ("wav2vec2", "Wav2Vec2FeatureExtractor"), ("wav2vec2-conformer", "Wav2Vec2FeatureExtractor"), ("wavlm", "Wav2Vec2FeatureExtractor"), ("whisper", "WhisperFeatureExtractor"), ("xclip", "CLIPFeatureExtractor"), ("yolos", "YolosFeatureExtractor"), ] ) _snake_case = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FEATURE_EXTRACTOR_MAPPING_NAMES) def lowerCamelCase_ ( A : str ): """simple docstring""" for module_name, extractors in FEATURE_EXTRACTOR_MAPPING_NAMES.items(): if class_name in extractors: lowerCAmelCase_ = model_type_to_module_name(A ) lowerCAmelCase_ = importlib.import_module(F'.{module_name}' , '''transformers.models''' ) try: return getattr(A , A ) except AttributeError: continue for _, extractor in FEATURE_EXTRACTOR_MAPPING._extra_content.items(): if getattr(A , '''__name__''' , A ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. lowerCAmelCase_ = importlib.import_module('''transformers''' ) if hasattr(A , A ): return getattr(A , A ) return None def lowerCamelCase_ ( A : Union[str, os.PathLike] , A : Optional[Union[str, os.PathLike]] = None , A : bool = False , A : bool = False , A : Optional[Dict[str, str]] = None , A : Optional[Union[bool, str]] = None , A : Optional[str] = None , A : bool = False , **A : Any , ): """simple docstring""" lowerCAmelCase_ = get_file_from_repo( A , A , cache_dir=A , force_download=A , resume_download=A , proxies=A , use_auth_token=A , revision=A , local_files_only=A , ) if resolved_config_file is None: logger.info( '''Could not locate the feature extractor configuration file, will try to use the model config instead.''' ) return {} with open(A , encoding='''utf-8''' ) as reader: return json.load(A ) class UpperCamelCase_ : '''simple docstring''' def __init__( self): raise EnvironmentError( '''AutoFeatureExtractor is designed to be instantiated ''' '''using the `AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)` method.''') @classmethod @replace_list_option_in_docstrings(_UpperCAmelCase) def lowercase__ ( cls , _UpperCAmelCase , **_UpperCAmelCase): lowerCAmelCase_ = kwargs.pop('''config''' , _UpperCAmelCase) lowerCAmelCase_ = kwargs.pop('''trust_remote_code''' , _UpperCAmelCase) lowerCAmelCase_ = True lowerCAmelCase_ , lowerCAmelCase_ = FeatureExtractionMixin.get_feature_extractor_dict(_UpperCAmelCase , **_UpperCAmelCase) lowerCAmelCase_ = config_dict.get('''feature_extractor_type''' , _UpperCAmelCase) lowerCAmelCase_ = None if "AutoFeatureExtractor" in config_dict.get('''auto_map''' , {}): lowerCAmelCase_ = config_dict['''auto_map''']['''AutoFeatureExtractor'''] # If we don't find the feature extractor class in the feature extractor config, let's try the model config. if feature_extractor_class is None and feature_extractor_auto_map is None: if not isinstance(_UpperCAmelCase , _UpperCAmelCase): lowerCAmelCase_ = AutoConfig.from_pretrained(_UpperCAmelCase , **_UpperCAmelCase) # It could be in `config.feature_extractor_type`` lowerCAmelCase_ = getattr(_UpperCAmelCase , '''feature_extractor_type''' , _UpperCAmelCase) if hasattr(_UpperCAmelCase , '''auto_map''') and "AutoFeatureExtractor" in config.auto_map: lowerCAmelCase_ = config.auto_map['''AutoFeatureExtractor'''] if feature_extractor_class is not None: lowerCAmelCase_ = feature_extractor_class_from_name(_UpperCAmelCase) lowerCAmelCase_ = feature_extractor_auto_map is not None lowerCAmelCase_ = feature_extractor_class is not None or type(_UpperCAmelCase) in FEATURE_EXTRACTOR_MAPPING lowerCAmelCase_ = resolve_trust_remote_code( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) if has_remote_code and trust_remote_code: lowerCAmelCase_ = get_class_from_dynamic_module( _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase) lowerCAmelCase_ = kwargs.pop('''code_revision''' , _UpperCAmelCase) if os.path.isdir(_UpperCAmelCase): feature_extractor_class.register_for_auto_class() return feature_extractor_class.from_dict(_UpperCAmelCase , **_UpperCAmelCase) elif feature_extractor_class is not None: return feature_extractor_class.from_dict(_UpperCAmelCase , **_UpperCAmelCase) # Last try: we use the FEATURE_EXTRACTOR_MAPPING. elif type(_UpperCAmelCase) in FEATURE_EXTRACTOR_MAPPING: lowerCAmelCase_ = FEATURE_EXTRACTOR_MAPPING[type(_UpperCAmelCase)] return feature_extractor_class.from_dict(_UpperCAmelCase , **_UpperCAmelCase) raise ValueError( f'Unrecognized feature extractor in {pretrained_model_name_or_path}. Should have a ' f'`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following ' f'`model_type` keys in its {CONFIG_NAME}: {", ".join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys())}') @staticmethod def lowercase__ ( _UpperCAmelCase , _UpperCAmelCase): FEATURE_EXTRACTOR_MAPPING.register(_UpperCAmelCase , _UpperCAmelCase)
413
1
import warnings from pathlib import Path from typing import List, Tuple, Union import fire from torch import nn from transformers import AutoModelForSeqaSeqLM, AutoTokenizer, PreTrainedModel from transformers.utils import logging __UpperCAmelCase = logging.get_logger(__name__) def UpperCamelCase ( snake_case__ : nn.ModuleList , snake_case__ : nn.ModuleList , snake_case__ : List[int] ) -> List[Any]: UpperCamelCase : Optional[int] = nn.ModuleList([src_layers[i] for i in layers_to_copy] ) assert len(UpperCamelCase_ ) == len(UpperCamelCase_ ), F"""{len(UpperCamelCase_ )} != {len(UpperCamelCase_ )}""" dest_layers.load_state_dict(layers_to_copy.state_dict() ) __UpperCAmelCase = { # maps num layers in teacher -> num_layers in student -> which teacher layers to copy. # 12: bart, 16: pegasus, 6: marian/Helsinki-NLP 12: { 1: [0], # This says that if the teacher has 12 layers and the student has 1, copy layer 0 of the teacher 2: [0, 6], 3: [0, 6, 11], 4: [0, 4, 8, 11], 6: [0, 2, 4, 7, 9, 11], 9: [0, 1, 2, 4, 5, 7, 9, 10, 11], 12: list(range(12)), }, 16: { # maps num layers in student -> which teacher layers to copy 1: [0], 2: [0, 15], 3: [0, 8, 15], 4: [0, 5, 10, 15], 6: [0, 3, 6, 9, 12, 15], 8: [0, 2, 4, 6, 8, 10, 12, 15], 9: [0, 1, 3, 5, 7, 9, 11, 13, 15], 12: [0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 15], 16: list(range(16)), }, 6: {1: [0], 2: [0, 5], 3: [0, 2, 5], 4: [0, 1, 3, 5], 6: list(range(6))}, } __UpperCAmelCase = { # maps num layers in student -> which teacher layers to copy. 6: {1: [5], 2: [3, 5], 3: [1, 4, 5], 4: [1, 2, 4, 5]}, 12: {1: [11], 2: [5, 11], 3: [3, 7, 11], 6: [1, 3, 5, 8, 10, 11]}, 16: {1: [15], 4: [4, 9, 12, 15], 8: [1, 3, 5, 7, 9, 11, 13, 15]}, } def UpperCamelCase ( snake_case__ : Tuple , snake_case__ : Dict ) -> Any: try: UpperCamelCase : List[str] = LAYERS_TO_COPY[n_teacher][n_student] return val except KeyError: if n_student != n_teacher: warnings.warn( F"""no hardcoded layers to copy for teacher {n_teacher} -> student {n_student}, defaulting to first""" F""" {n_student}""" ) return list(range(UpperCamelCase_ ) ) def UpperCamelCase ( snake_case__ : int , snake_case__ : Dict ) -> Optional[int]: if n_student > n_teacher: raise ValueError(F"""Cannot perform intermediate supervision for student {n_student} > teacher {n_teacher}""" ) elif n_teacher == n_student: return list(range(UpperCamelCase_ ) ) elif n_student == 1: return [n_teacher - 1] else: return LAYERS_TO_SUPERVISE[n_teacher][n_student] def UpperCamelCase ( snake_case__ : Union[str, PreTrainedModel] , snake_case__ : Union[str, Path] = "student" , snake_case__ : Union[int, None] = None , snake_case__ : Union[int, None] = None , snake_case__ : Optional[int]=False , snake_case__ : Optional[Any]=None , snake_case__ : Tuple=None , **snake_case__ : str , ) -> Any: UpperCamelCase : Union[str, Any] = '''encoder_layers and decoder_layers cannot be both None-- you would just have an identical teacher.''' assert (e is not None) or (d is not None), _msg if isinstance(UpperCamelCase_ , UpperCamelCase_ ): AutoTokenizer.from_pretrained(UpperCamelCase_ ).save_pretrained(UpperCamelCase_ ) # purely for convenience UpperCamelCase : List[Any] = AutoModelForSeqaSeqLM.from_pretrained(UpperCamelCase_ ).eval() else: assert isinstance(UpperCamelCase_ , UpperCamelCase_ ), F"""teacher must be a model or string got type {type(UpperCamelCase_ )}""" UpperCamelCase : List[Any] = teacher.config.to_diff_dict() try: UpperCamelCase : Tuple = teacher.config.encoder_layers, teacher.config.decoder_layers if e is None: UpperCamelCase : int = teacher_e if d is None: UpperCamelCase : Union[str, Any] = teacher_d init_kwargs.update({'encoder_layers': e, 'decoder_layers': d} ) except AttributeError: # T5 if hasattr(teacher.config , 'num_encoder_layers' ): UpperCamelCase : str = teacher.config.num_encoder_layers, teacher.config.num_decoder_layers else: UpperCamelCase : str = teacher.config.num_layers, teacher.config.num_decoder_layers if e is None: UpperCamelCase : Union[str, Any] = teacher_e if d is None: UpperCamelCase : Any = teacher_d if hasattr(teacher.config , 'num_encoder_layers' ): init_kwargs.update({'num_encoder_layers': e, 'num_decoder_layers': d} ) else: init_kwargs.update({'num_layers': e, 'num_decoder_layers': d} ) # Kwargs to instantiate student: teacher kwargs with updated layer numbers + **extra_config_kwargs init_kwargs.update(UpperCamelCase_ ) # Copy weights UpperCamelCase : Any = teacher.config_class(**UpperCamelCase_ ) UpperCamelCase : List[str] = AutoModelForSeqaSeqLM.from_config(UpperCamelCase_ ) # Start by copying the full teacher state dict this will copy the first N teacher layers to the student. UpperCamelCase : str = student.load_state_dict(teacher.state_dict() , strict=UpperCamelCase_ ) assert info.missing_keys == [], info.missing_keys # every student key should have a teacher keys. if copy_first_teacher_layers: # Our copying is done. We just log and save UpperCamelCase : Union[str, Any] = list(range(UpperCamelCase_ ) ), list(range(UpperCamelCase_ ) ) logger.info( F"""Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to""" F""" {save_path}""" ) student.save_pretrained(UpperCamelCase_ ) return student, e_layers_to_copy, d_layers_to_copy # Decide which layers of the teacher to copy. Not exactly alternating -- we try to keep first and last layer. if e_layers_to_copy is None: UpperCamelCase : List[int] = pick_layers_to_copy(UpperCamelCase_ , UpperCamelCase_ ) if d_layers_to_copy is None: UpperCamelCase : List[int] = pick_layers_to_copy(UpperCamelCase_ , UpperCamelCase_ ) try: if hasattr( UpperCamelCase_ , 'prophetnet' ): # For ProphetNet, student.model.encoder.layers is called student.prophetnet.encoder.layers copy_layers(teacher.prophetnet.encoder.layers , student.prophetnet.encoder.layers , UpperCamelCase_ ) copy_layers(teacher.prophetnet.decoder.layers , student.prophetnet.decoder.layers , UpperCamelCase_ ) else: copy_layers(teacher.model.encoder.layers , student.model.encoder.layers , UpperCamelCase_ ) copy_layers(teacher.model.decoder.layers , student.model.decoder.layers , UpperCamelCase_ ) except AttributeError: # For t5, student.model.encoder.layers is called student.encoder.block copy_layers(teacher.encoder.block , student.encoder.block , UpperCamelCase_ ) copy_layers(teacher.decoder.block , student.decoder.block , UpperCamelCase_ ) logger.info( F"""Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to {save_path}""" ) UpperCamelCase : Dict = { '''teacher_type''': teacher.config.model_type, '''copied_encoder_layers''': e_layers_to_copy, '''copied_decoder_layers''': d_layers_to_copy, } student.save_pretrained(UpperCamelCase_ ) # Save information about copying for easier reproducibility return student, e_layers_to_copy, d_layers_to_copy if __name__ == "__main__": fire.Fire(create_student_by_copying_alternating_layers)
40
'''simple docstring''' from functools import reduce __lowerCamelCase = ( '''73167176531330624919225119674426574742355349194934''' '''96983520312774506326239578318016984801869478851843''' '''85861560789112949495459501737958331952853208805511''' '''12540698747158523863050715693290963295227443043557''' '''66896648950445244523161731856403098711121722383113''' '''62229893423380308135336276614282806444486645238749''' '''30358907296290491560440772390713810515859307960866''' '''70172427121883998797908792274921901699720888093776''' '''65727333001053367881220235421809751254540594752243''' '''52584907711670556013604839586446706324415722155397''' '''53697817977846174064955149290862569321978468622482''' '''83972241375657056057490261407972968652414535100474''' '''82166370484403199890008895243450658541227588666881''' '''16427171479924442928230863465674813919123162824586''' '''17866458359124566529476545682848912883142607690042''' '''24219022671055626321111109370544217506941658960408''' '''07198403850962455444362981230987879927244284909188''' '''84580156166097919133875499200524063689912560717606''' '''05886116467109405077541002256983155200055935729725''' '''71636269561882670428252483600823257530420752963450''' ) def a__ ( UpperCamelCase_ : str = N ): return max( # mypy cannot properly interpret reduce int(reduce(lambda UpperCamelCase_, UpperCamelCase_ : str(int(UpperCamelCase_ ) * int(UpperCamelCase_ ) ), n[i : i + 13] ) ) for i in range(len(UpperCamelCase_ ) - 12 ) ) if __name__ == "__main__": print(F'''{solution() = }''')
467
0
"""simple docstring""" import argparse import os.path as osp import re import torch from safetensors.torch import load_file, save_file # =================# # UNet Conversion # # =================# SCREAMING_SNAKE_CASE_ = [ # (stable-diffusion, HF Diffusers) ('''time_embed.0.weight''', '''time_embedding.linear_1.weight'''), ('''time_embed.0.bias''', '''time_embedding.linear_1.bias'''), ('''time_embed.2.weight''', '''time_embedding.linear_2.weight'''), ('''time_embed.2.bias''', '''time_embedding.linear_2.bias'''), ('''input_blocks.0.0.weight''', '''conv_in.weight'''), ('''input_blocks.0.0.bias''', '''conv_in.bias'''), ('''out.0.weight''', '''conv_norm_out.weight'''), ('''out.0.bias''', '''conv_norm_out.bias'''), ('''out.2.weight''', '''conv_out.weight'''), ('''out.2.bias''', '''conv_out.bias'''), ] SCREAMING_SNAKE_CASE_ = [ # (stable-diffusion, HF Diffusers) ('''in_layers.0''', '''norm1'''), ('''in_layers.2''', '''conv1'''), ('''out_layers.0''', '''norm2'''), ('''out_layers.3''', '''conv2'''), ('''emb_layers.1''', '''time_emb_proj'''), ('''skip_connection''', '''conv_shortcut'''), ] SCREAMING_SNAKE_CASE_ = [] # hardcoded number of downblocks and resnets/attentions... # would need smarter logic for other networks. for i in range(4): # loop over downblocks/upblocks for j in range(2): # loop over resnets/attentions for downblocks SCREAMING_SNAKE_CASE_ = F"down_blocks.{i}.resnets.{j}." SCREAMING_SNAKE_CASE_ = F"input_blocks.{3*i + j + 1}.0." unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix)) if i < 3: # no attention layers in down_blocks.3 SCREAMING_SNAKE_CASE_ = F"down_blocks.{i}.attentions.{j}." SCREAMING_SNAKE_CASE_ = F"input_blocks.{3*i + j + 1}.1." unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix)) for j in range(3): # loop over resnets/attentions for upblocks SCREAMING_SNAKE_CASE_ = F"up_blocks.{i}.resnets.{j}." SCREAMING_SNAKE_CASE_ = F"output_blocks.{3*i + j}.0." unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix)) if i > 0: # no attention layers in up_blocks.0 SCREAMING_SNAKE_CASE_ = F"up_blocks.{i}.attentions.{j}." SCREAMING_SNAKE_CASE_ = F"output_blocks.{3*i + j}.1." unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix)) if i < 3: # no downsample in down_blocks.3 SCREAMING_SNAKE_CASE_ = F"down_blocks.{i}.downsamplers.0.conv." SCREAMING_SNAKE_CASE_ = F"input_blocks.{3*(i+1)}.0.op." unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix)) # no upsample in up_blocks.3 SCREAMING_SNAKE_CASE_ = F"up_blocks.{i}.upsamplers.0." SCREAMING_SNAKE_CASE_ = F"output_blocks.{3*i + 2}.{1 if i == 0 else 2}." unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix)) SCREAMING_SNAKE_CASE_ = '''mid_block.attentions.0.''' SCREAMING_SNAKE_CASE_ = '''middle_block.1.''' unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix)) for j in range(2): SCREAMING_SNAKE_CASE_ = F"mid_block.resnets.{j}." SCREAMING_SNAKE_CASE_ = F"middle_block.{2*j}." unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix)) def lowercase (_lowerCAmelCase ): # buyer beware: this is a *brittle* function, # and correct output requires that all of these pieces interact in # the exact order in which I have arranged them. __lowerCAmelCase = {k: k for k in unet_state_dict.keys()} for sd_name, hf_name in unet_conversion_map: __lowerCAmelCase = sd_name for k, v in mapping.items(): if "resnets" in k: for sd_part, hf_part in unet_conversion_map_resnet: __lowerCAmelCase = v.replace(_lowerCAmelCase , _lowerCAmelCase ) __lowerCAmelCase = v for k, v in mapping.items(): for sd_part, hf_part in unet_conversion_map_layer: __lowerCAmelCase = v.replace(_lowerCAmelCase , _lowerCAmelCase ) __lowerCAmelCase = v __lowerCAmelCase = {v: unet_state_dict[k] for k, v in mapping.items()} return new_state_dict # ================# # VAE Conversion # # ================# SCREAMING_SNAKE_CASE_ = [ # (stable-diffusion, HF Diffusers) ('''nin_shortcut''', '''conv_shortcut'''), ('''norm_out''', '''conv_norm_out'''), ('''mid.attn_1.''', '''mid_block.attentions.0.'''), ] for i in range(4): # down_blocks have two resnets for j in range(2): SCREAMING_SNAKE_CASE_ = F"encoder.down_blocks.{i}.resnets.{j}." SCREAMING_SNAKE_CASE_ = F"encoder.down.{i}.block.{j}." vae_conversion_map.append((sd_down_prefix, hf_down_prefix)) if i < 3: SCREAMING_SNAKE_CASE_ = F"down_blocks.{i}.downsamplers.0." SCREAMING_SNAKE_CASE_ = F"down.{i}.downsample." vae_conversion_map.append((sd_downsample_prefix, hf_downsample_prefix)) SCREAMING_SNAKE_CASE_ = F"up_blocks.{i}.upsamplers.0." SCREAMING_SNAKE_CASE_ = F"up.{3-i}.upsample." vae_conversion_map.append((sd_upsample_prefix, hf_upsample_prefix)) # up_blocks have three resnets # also, up blocks in hf are numbered in reverse from sd for j in range(3): SCREAMING_SNAKE_CASE_ = F"decoder.up_blocks.{i}.resnets.{j}." SCREAMING_SNAKE_CASE_ = F"decoder.up.{3-i}.block.{j}." vae_conversion_map.append((sd_up_prefix, hf_up_prefix)) # this part accounts for mid blocks in both the encoder and the decoder for i in range(2): SCREAMING_SNAKE_CASE_ = F"mid_block.resnets.{i}." SCREAMING_SNAKE_CASE_ = F"mid.block_{i+1}." vae_conversion_map.append((sd_mid_res_prefix, hf_mid_res_prefix)) SCREAMING_SNAKE_CASE_ = [ # (stable-diffusion, HF Diffusers) ('''norm.''', '''group_norm.'''), ('''q.''', '''query.'''), ('''k.''', '''key.'''), ('''v.''', '''value.'''), ('''proj_out.''', '''proj_attn.'''), ] def lowercase (_lowerCAmelCase ): # convert HF linear weights to SD conv2d weights return w.reshape(*w.shape , 1 , 1 ) def lowercase (_lowerCAmelCase ): __lowerCAmelCase = {k: k for k in vae_state_dict.keys()} for k, v in mapping.items(): for sd_part, hf_part in vae_conversion_map: __lowerCAmelCase = v.replace(_lowerCAmelCase , _lowerCAmelCase ) __lowerCAmelCase = v for k, v in mapping.items(): if "attentions" in k: for sd_part, hf_part in vae_conversion_map_attn: __lowerCAmelCase = v.replace(_lowerCAmelCase , _lowerCAmelCase ) __lowerCAmelCase = v __lowerCAmelCase = {v: vae_state_dict[k] for k, v in mapping.items()} __lowerCAmelCase = ["""q""", """k""", """v""", """proj_out"""] for k, v in new_state_dict.items(): for weight_name in weights_to_convert: if f"""mid.attn_1.{weight_name}.weight""" in k: print(f"""Reshaping {k} for SD format""" ) __lowerCAmelCase = reshape_weight_for_sd(_lowerCAmelCase ) return new_state_dict # =========================# # Text Encoder Conversion # # =========================# SCREAMING_SNAKE_CASE_ = [ # (stable-diffusion, HF Diffusers) ('''resblocks.''', '''text_model.encoder.layers.'''), ('''ln_1''', '''layer_norm1'''), ('''ln_2''', '''layer_norm2'''), ('''.c_fc.''', '''.fc1.'''), ('''.c_proj.''', '''.fc2.'''), ('''.attn''', '''.self_attn'''), ('''ln_final.''', '''transformer.text_model.final_layer_norm.'''), ('''token_embedding.weight''', '''transformer.text_model.embeddings.token_embedding.weight'''), ('''positional_embedding''', '''transformer.text_model.embeddings.position_embedding.weight'''), ] SCREAMING_SNAKE_CASE_ = {re.escape(x[1]): x[0] for x in textenc_conversion_lst} SCREAMING_SNAKE_CASE_ = re.compile('''|'''.join(protected.keys())) # Ordering is from https://github.com/pytorch/pytorch/blob/master/test/cpp/api/modules.cpp SCREAMING_SNAKE_CASE_ = {'''q''': 0, '''k''': 1, '''v''': 2} def lowercase (_lowerCAmelCase ): __lowerCAmelCase = {} __lowerCAmelCase = {} __lowerCAmelCase = {} for k, v in text_enc_dict.items(): if ( k.endswith(""".self_attn.q_proj.weight""" ) or k.endswith(""".self_attn.k_proj.weight""" ) or k.endswith(""".self_attn.v_proj.weight""" ) ): __lowerCAmelCase = k[: -len(""".q_proj.weight""" )] __lowerCAmelCase = k[-len("""q_proj.weight""" )] if k_pre not in capture_qkv_weight: __lowerCAmelCase = [None, None, None] __lowerCAmelCase = v continue if ( k.endswith(""".self_attn.q_proj.bias""" ) or k.endswith(""".self_attn.k_proj.bias""" ) or k.endswith(""".self_attn.v_proj.bias""" ) ): __lowerCAmelCase = k[: -len(""".q_proj.bias""" )] __lowerCAmelCase = k[-len("""q_proj.bias""" )] if k_pre not in capture_qkv_bias: __lowerCAmelCase = [None, None, None] __lowerCAmelCase = v continue __lowerCAmelCase = textenc_pattern.sub(lambda _lowerCAmelCase : protected[re.escape(m.group(0 ) )] , _lowerCAmelCase ) __lowerCAmelCase = v for k_pre, tensors in capture_qkv_weight.items(): if None in tensors: raise Exception("""CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing""" ) __lowerCAmelCase = textenc_pattern.sub(lambda _lowerCAmelCase : protected[re.escape(m.group(0 ) )] , _lowerCAmelCase ) __lowerCAmelCase = torch.cat(_lowerCAmelCase ) for k_pre, tensors in capture_qkv_bias.items(): if None in tensors: raise Exception("""CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing""" ) __lowerCAmelCase = textenc_pattern.sub(lambda _lowerCAmelCase : protected[re.escape(m.group(0 ) )] , _lowerCAmelCase ) __lowerCAmelCase = torch.cat(_lowerCAmelCase ) return new_state_dict def lowercase (_lowerCAmelCase ): return text_enc_dict if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() parser.add_argument('''--model_path''', default=None, type=str, required=True, help='''Path to the model to convert.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument('''--half''', action='''store_true''', help='''Save weights in half precision.''') parser.add_argument( '''--use_safetensors''', action='''store_true''', help='''Save weights use safetensors, default is ckpt.''' ) SCREAMING_SNAKE_CASE_ = parser.parse_args() assert args.model_path is not None, "Must provide a model path!" assert args.checkpoint_path is not None, "Must provide a checkpoint path!" # Path for safetensors SCREAMING_SNAKE_CASE_ = osp.join(args.model_path, '''unet''', '''diffusion_pytorch_model.safetensors''') SCREAMING_SNAKE_CASE_ = osp.join(args.model_path, '''vae''', '''diffusion_pytorch_model.safetensors''') SCREAMING_SNAKE_CASE_ = osp.join(args.model_path, '''text_encoder''', '''model.safetensors''') # Load models from safetensors if it exists, if it doesn't pytorch if osp.exists(unet_path): SCREAMING_SNAKE_CASE_ = load_file(unet_path, device='''cpu''') else: SCREAMING_SNAKE_CASE_ = osp.join(args.model_path, '''unet''', '''diffusion_pytorch_model.bin''') SCREAMING_SNAKE_CASE_ = torch.load(unet_path, map_location='''cpu''') if osp.exists(vae_path): SCREAMING_SNAKE_CASE_ = load_file(vae_path, device='''cpu''') else: SCREAMING_SNAKE_CASE_ = osp.join(args.model_path, '''vae''', '''diffusion_pytorch_model.bin''') SCREAMING_SNAKE_CASE_ = torch.load(vae_path, map_location='''cpu''') if osp.exists(text_enc_path): SCREAMING_SNAKE_CASE_ = load_file(text_enc_path, device='''cpu''') else: SCREAMING_SNAKE_CASE_ = osp.join(args.model_path, '''text_encoder''', '''pytorch_model.bin''') SCREAMING_SNAKE_CASE_ = torch.load(text_enc_path, map_location='''cpu''') # Convert the UNet model SCREAMING_SNAKE_CASE_ = convert_unet_state_dict(unet_state_dict) SCREAMING_SNAKE_CASE_ = {'''model.diffusion_model.''' + k: v for k, v in unet_state_dict.items()} # Convert the VAE model SCREAMING_SNAKE_CASE_ = convert_vae_state_dict(vae_state_dict) SCREAMING_SNAKE_CASE_ = {'''first_stage_model.''' + k: v for k, v in vae_state_dict.items()} # Easiest way to identify v2.0 model seems to be that the text encoder (OpenCLIP) is deeper SCREAMING_SNAKE_CASE_ = '''text_model.encoder.layers.22.layer_norm2.bias''' in text_enc_dict if is_vaa_model: # Need to add the tag 'transformer' in advance so we can knock it out from the final layer-norm SCREAMING_SNAKE_CASE_ = {'''transformer.''' + k: v for k, v in text_enc_dict.items()} SCREAMING_SNAKE_CASE_ = convert_text_enc_state_dict_vaa(text_enc_dict) SCREAMING_SNAKE_CASE_ = {'''cond_stage_model.model.''' + k: v for k, v in text_enc_dict.items()} else: SCREAMING_SNAKE_CASE_ = convert_text_enc_state_dict(text_enc_dict) SCREAMING_SNAKE_CASE_ = {'''cond_stage_model.transformer.''' + k: v for k, v in text_enc_dict.items()} # Put together new checkpoint SCREAMING_SNAKE_CASE_ = {**unet_state_dict, **vae_state_dict, **text_enc_dict} if args.half: SCREAMING_SNAKE_CASE_ = {k: v.half() for k, v in state_dict.items()} if args.use_safetensors: save_file(state_dict, args.checkpoint_path) else: SCREAMING_SNAKE_CASE_ = {'''state_dict''': state_dict} torch.save(state_dict, args.checkpoint_path)
573
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_video_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import VivitImageProcessor class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def __init__( self , snake_case_ , snake_case_=7 , snake_case_=3 , snake_case_=10 , snake_case_=18 , snake_case_=30 , snake_case_=400 , snake_case_=True , snake_case_=None , snake_case_=True , snake_case_=[0.5, 0.5, 0.5] , snake_case_=[0.5, 0.5, 0.5] , snake_case_=None , ) -> int: __lowerCAmelCase = size if size is not None else {"""shortest_edge""": 18} __lowerCAmelCase = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = num_channels __lowerCAmelCase = num_frames __lowerCAmelCase = image_size __lowerCAmelCase = min_resolution __lowerCAmelCase = max_resolution __lowerCAmelCase = do_resize __lowerCAmelCase = size __lowerCAmelCase = do_normalize __lowerCAmelCase = image_mean __lowerCAmelCase = image_std __lowerCAmelCase = crop_size def A__ ( self ) -> Optional[Any]: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class lowerCAmelCase_ ( A__ , unittest.TestCase ): '''simple docstring''' _snake_case = VivitImageProcessor if is_vision_available() else None def A__ ( self ) -> List[Any]: __lowerCAmelCase = VivitImageProcessingTester(self ) @property def A__ ( self ) -> Optional[Any]: return self.image_processor_tester.prepare_image_processor_dict() def A__ ( self ) -> Union[str, Any]: __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case_ , """image_mean""" ) ) self.assertTrue(hasattr(snake_case_ , """image_std""" ) ) self.assertTrue(hasattr(snake_case_ , """do_normalize""" ) ) self.assertTrue(hasattr(snake_case_ , """do_resize""" ) ) self.assertTrue(hasattr(snake_case_ , """do_center_crop""" ) ) self.assertTrue(hasattr(snake_case_ , """size""" ) ) def A__ ( self ) -> Union[str, Any]: __lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 18} ) self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18} ) __lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} ) def A__ ( self ) -> Optional[Any]: # Initialize image_processing __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL videos __lowerCAmelCase = prepare_video_inputs(self.image_processor_tester , equal_resolution=snake_case_ ) for video in video_inputs: self.assertIsInstance(snake_case_ , snake_case_ ) self.assertIsInstance(video[0] , Image.Image ) # Test not batched input __lowerCAmelCase = image_processing(video_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched __lowerCAmelCase = image_processing(snake_case_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def A__ ( self ) -> Tuple: # Initialize image_processing __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowerCAmelCase = prepare_video_inputs(self.image_processor_tester , equal_resolution=snake_case_ , numpify=snake_case_ ) for video in video_inputs: self.assertIsInstance(snake_case_ , snake_case_ ) self.assertIsInstance(video[0] , np.ndarray ) # Test not batched input __lowerCAmelCase = image_processing(video_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched __lowerCAmelCase = image_processing(snake_case_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def A__ ( self ) -> Union[str, Any]: # Initialize image_processing __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowerCAmelCase = prepare_video_inputs(self.image_processor_tester , equal_resolution=snake_case_ , torchify=snake_case_ ) for video in video_inputs: self.assertIsInstance(snake_case_ , snake_case_ ) self.assertIsInstance(video[0] , torch.Tensor ) # Test not batched input __lowerCAmelCase = image_processing(video_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched __lowerCAmelCase = image_processing(snake_case_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
573
1
from ..utils import DummyObject, requires_backends class UpperCAmelCase_ ( metaclass=SCREAMING_SNAKE_CASE__ ): '''simple docstring''' A : Any = ['torch'] def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> List[Any]: requires_backends(self , ["torch"] ) @classmethod def _lowerCAmelCase ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> str: requires_backends(cls , ["torch"] ) @classmethod def _lowerCAmelCase ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> List[str]: requires_backends(cls , ["torch"] ) class UpperCAmelCase_ ( metaclass=SCREAMING_SNAKE_CASE__ ): '''simple docstring''' A : Optional[int] = ['torch'] def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> List[str]: requires_backends(self , ["torch"] ) @classmethod def _lowerCAmelCase ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Optional[Any]: requires_backends(cls , ["torch"] ) @classmethod def _lowerCAmelCase ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Union[str, Any]: requires_backends(cls , ["torch"] ) class UpperCAmelCase_ ( metaclass=SCREAMING_SNAKE_CASE__ ): '''simple docstring''' A : Optional[Any] = ['torch'] def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> List[str]: requires_backends(self , ["torch"] ) @classmethod def _lowerCAmelCase ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Optional[int]: requires_backends(cls , ["torch"] ) @classmethod def _lowerCAmelCase ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> str: requires_backends(cls , ["torch"] ) class UpperCAmelCase_ ( metaclass=SCREAMING_SNAKE_CASE__ ): '''simple docstring''' A : int = ['torch'] def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def _lowerCAmelCase ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Any: requires_backends(cls , ["torch"] ) @classmethod def _lowerCAmelCase ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Dict: requires_backends(cls , ["torch"] ) class UpperCAmelCase_ ( metaclass=SCREAMING_SNAKE_CASE__ ): '''simple docstring''' A : str = ['torch'] def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Union[str, Any]: requires_backends(self , ["torch"] ) @classmethod def _lowerCAmelCase ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Dict: requires_backends(cls , ["torch"] ) @classmethod def _lowerCAmelCase ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Any: requires_backends(cls , ["torch"] ) class UpperCAmelCase_ ( metaclass=SCREAMING_SNAKE_CASE__ ): '''simple docstring''' A : str = ['torch'] def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Dict: requires_backends(self , ["torch"] ) @classmethod def _lowerCAmelCase ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Optional[int]: requires_backends(cls , ["torch"] ) @classmethod def _lowerCAmelCase ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Dict: requires_backends(cls , ["torch"] ) class UpperCAmelCase_ ( metaclass=SCREAMING_SNAKE_CASE__ ): '''simple docstring''' A : Optional[int] = ['torch'] def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Dict: requires_backends(self , ["torch"] ) @classmethod def _lowerCAmelCase ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Any: requires_backends(cls , ["torch"] ) @classmethod def _lowerCAmelCase ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Dict: requires_backends(cls , ["torch"] ) class UpperCAmelCase_ ( metaclass=SCREAMING_SNAKE_CASE__ ): '''simple docstring''' A : Optional[Any] = ['torch'] def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def _lowerCAmelCase ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Union[str, Any]: requires_backends(cls , ["torch"] ) @classmethod def _lowerCAmelCase ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Optional[int]: requires_backends(cls , ["torch"] ) class UpperCAmelCase_ ( metaclass=SCREAMING_SNAKE_CASE__ ): '''simple docstring''' A : Dict = ['torch'] def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> int: requires_backends(self , ["torch"] ) @classmethod def _lowerCAmelCase ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Dict: requires_backends(cls , ["torch"] ) @classmethod def _lowerCAmelCase ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> str: requires_backends(cls , ["torch"] ) class UpperCAmelCase_ ( metaclass=SCREAMING_SNAKE_CASE__ ): '''simple docstring''' A : List[str] = ['torch'] def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> List[str]: requires_backends(self , ["torch"] ) @classmethod def _lowerCAmelCase ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Union[str, Any]: requires_backends(cls , ["torch"] ) @classmethod def _lowerCAmelCase ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Dict: requires_backends(cls , ["torch"] ) class UpperCAmelCase_ ( metaclass=SCREAMING_SNAKE_CASE__ ): '''simple docstring''' A : Dict = ['torch'] def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Tuple: requires_backends(self , ["torch"] ) @classmethod def _lowerCAmelCase ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Any: requires_backends(cls , ["torch"] ) @classmethod def _lowerCAmelCase ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Any: requires_backends(cls , ["torch"] ) def lowerCAmelCase__ ( *_a : int , **_a : Dict ): requires_backends(_a , ["torch"] ) def lowerCAmelCase__ ( *_a : int , **_a : List[Any] ): requires_backends(_a , ["torch"] ) def lowerCAmelCase__ ( *_a : Tuple , **_a : int ): requires_backends(_a , ["torch"] ) def lowerCAmelCase__ ( *_a : str , **_a : int ): requires_backends(_a , ["torch"] ) def lowerCAmelCase__ ( *_a : List[str] , **_a : Optional[Any] ): requires_backends(_a , ["torch"] ) def lowerCAmelCase__ ( *_a : int , **_a : Dict ): requires_backends(_a , ["torch"] ) def lowerCAmelCase__ ( *_a : Tuple , **_a : Union[str, Any] ): requires_backends(_a , ["torch"] ) class UpperCAmelCase_ ( metaclass=SCREAMING_SNAKE_CASE__ ): '''simple docstring''' A : List[str] = ['torch'] def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> List[Any]: requires_backends(self , ["torch"] ) @classmethod def _lowerCAmelCase ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Optional[int]: requires_backends(cls , ["torch"] ) @classmethod def _lowerCAmelCase ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> List[Any]: requires_backends(cls , ["torch"] ) class UpperCAmelCase_ ( metaclass=SCREAMING_SNAKE_CASE__ ): '''simple docstring''' A : Any = ['torch'] def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Tuple: requires_backends(self , ["torch"] ) @classmethod def _lowerCAmelCase ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> List[str]: requires_backends(cls , ["torch"] ) @classmethod def _lowerCAmelCase ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> List[str]: requires_backends(cls , ["torch"] ) class UpperCAmelCase_ ( metaclass=SCREAMING_SNAKE_CASE__ ): '''simple docstring''' A : int = ['torch'] def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> str: requires_backends(self , ["torch"] ) @classmethod def _lowerCAmelCase ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Any: requires_backends(cls , ["torch"] ) @classmethod def _lowerCAmelCase ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> List[str]: requires_backends(cls , ["torch"] ) class UpperCAmelCase_ ( metaclass=SCREAMING_SNAKE_CASE__ ): '''simple docstring''' A : int = ['torch'] def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def _lowerCAmelCase ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Dict: requires_backends(cls , ["torch"] ) @classmethod def _lowerCAmelCase ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Optional[int]: requires_backends(cls , ["torch"] ) class UpperCAmelCase_ ( metaclass=SCREAMING_SNAKE_CASE__ ): '''simple docstring''' A : Optional[Any] = ['torch'] def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Any: requires_backends(self , ["torch"] ) @classmethod def _lowerCAmelCase ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> int: requires_backends(cls , ["torch"] ) @classmethod def _lowerCAmelCase ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Dict: requires_backends(cls , ["torch"] ) class UpperCAmelCase_ ( metaclass=SCREAMING_SNAKE_CASE__ ): '''simple docstring''' A : Tuple = ['torch'] def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Union[str, Any]: requires_backends(self , ["torch"] ) @classmethod def _lowerCAmelCase ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Any: requires_backends(cls , ["torch"] ) @classmethod def _lowerCAmelCase ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Any: requires_backends(cls , ["torch"] ) class UpperCAmelCase_ ( metaclass=SCREAMING_SNAKE_CASE__ ): '''simple docstring''' A : List[str] = ['torch'] def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Any: requires_backends(self , ["torch"] ) @classmethod def _lowerCAmelCase ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Optional[int]: requires_backends(cls , ["torch"] ) @classmethod def _lowerCAmelCase ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Union[str, Any]: requires_backends(cls , ["torch"] ) class UpperCAmelCase_ ( metaclass=SCREAMING_SNAKE_CASE__ ): '''simple docstring''' A : Union[str, Any] = ['torch'] def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> int: requires_backends(self , ["torch"] ) @classmethod def _lowerCAmelCase ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> List[str]: requires_backends(cls , ["torch"] ) @classmethod def _lowerCAmelCase ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Tuple: requires_backends(cls , ["torch"] ) class UpperCAmelCase_ ( metaclass=SCREAMING_SNAKE_CASE__ ): '''simple docstring''' A : Union[str, Any] = ['torch'] def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Any: requires_backends(self , ["torch"] ) @classmethod def _lowerCAmelCase ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Tuple: requires_backends(cls , ["torch"] ) @classmethod def _lowerCAmelCase ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> List[Any]: requires_backends(cls , ["torch"] ) class UpperCAmelCase_ ( metaclass=SCREAMING_SNAKE_CASE__ ): '''simple docstring''' A : int = ['torch'] def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> str: requires_backends(self , ["torch"] ) @classmethod def _lowerCAmelCase ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> int: requires_backends(cls , ["torch"] ) @classmethod def _lowerCAmelCase ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> List[str]: requires_backends(cls , ["torch"] ) class UpperCAmelCase_ ( metaclass=SCREAMING_SNAKE_CASE__ ): '''simple docstring''' A : Union[str, Any] = ['torch'] def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Optional[int]: requires_backends(self , ["torch"] ) @classmethod def _lowerCAmelCase ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Optional[int]: requires_backends(cls , ["torch"] ) @classmethod def _lowerCAmelCase ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> List[str]: requires_backends(cls , ["torch"] ) class UpperCAmelCase_ ( metaclass=SCREAMING_SNAKE_CASE__ ): '''simple docstring''' A : Optional[Any] = ['torch'] def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Optional[int]: requires_backends(self , ["torch"] ) @classmethod def _lowerCAmelCase ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Optional[Any]: requires_backends(cls , ["torch"] ) @classmethod def _lowerCAmelCase ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> List[Any]: requires_backends(cls , ["torch"] ) class UpperCAmelCase_ ( metaclass=SCREAMING_SNAKE_CASE__ ): '''simple docstring''' A : Union[str, Any] = ['torch'] def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> List[str]: requires_backends(self , ["torch"] ) @classmethod def _lowerCAmelCase ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Optional[int]: requires_backends(cls , ["torch"] ) @classmethod def _lowerCAmelCase ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Dict: requires_backends(cls , ["torch"] ) class UpperCAmelCase_ ( metaclass=SCREAMING_SNAKE_CASE__ ): '''simple docstring''' A : Dict = ['torch'] def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> str: requires_backends(self , ["torch"] ) @classmethod def _lowerCAmelCase ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Dict: requires_backends(cls , ["torch"] ) @classmethod def _lowerCAmelCase ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> int: requires_backends(cls , ["torch"] ) class UpperCAmelCase_ ( metaclass=SCREAMING_SNAKE_CASE__ ): '''simple docstring''' A : str = ['torch'] def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Optional[int]: requires_backends(self , ["torch"] ) @classmethod def _lowerCAmelCase ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Any: requires_backends(cls , ["torch"] ) @classmethod def _lowerCAmelCase ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Any: requires_backends(cls , ["torch"] ) class UpperCAmelCase_ ( metaclass=SCREAMING_SNAKE_CASE__ ): '''simple docstring''' A : Optional[Any] = ['torch'] def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Any: requires_backends(self , ["torch"] ) @classmethod def _lowerCAmelCase ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Any: requires_backends(cls , ["torch"] ) @classmethod def _lowerCAmelCase ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> List[str]: requires_backends(cls , ["torch"] ) class UpperCAmelCase_ ( metaclass=SCREAMING_SNAKE_CASE__ ): '''simple docstring''' A : Union[str, Any] = ['torch'] def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Dict: requires_backends(self , ["torch"] ) @classmethod def _lowerCAmelCase ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Any: requires_backends(cls , ["torch"] ) @classmethod def _lowerCAmelCase ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Union[str, Any]: requires_backends(cls , ["torch"] ) class UpperCAmelCase_ ( metaclass=SCREAMING_SNAKE_CASE__ ): '''simple docstring''' A : Tuple = ['torch'] def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Tuple: requires_backends(self , ["torch"] ) @classmethod def _lowerCAmelCase ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> int: requires_backends(cls , ["torch"] ) @classmethod def _lowerCAmelCase ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> List[Any]: requires_backends(cls , ["torch"] ) class UpperCAmelCase_ ( metaclass=SCREAMING_SNAKE_CASE__ ): '''simple docstring''' A : Any = ['torch'] def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> int: requires_backends(self , ["torch"] ) @classmethod def _lowerCAmelCase ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> str: requires_backends(cls , ["torch"] ) @classmethod def _lowerCAmelCase ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Union[str, Any]: requires_backends(cls , ["torch"] ) class UpperCAmelCase_ ( metaclass=SCREAMING_SNAKE_CASE__ ): '''simple docstring''' A : int = ['torch'] def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Optional[int]: requires_backends(self , ["torch"] ) @classmethod def _lowerCAmelCase ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> List[Any]: requires_backends(cls , ["torch"] ) @classmethod def _lowerCAmelCase ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> str: requires_backends(cls , ["torch"] ) class UpperCAmelCase_ ( metaclass=SCREAMING_SNAKE_CASE__ ): '''simple docstring''' A : Optional[Any] = ['torch'] def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> List[Any]: requires_backends(self , ["torch"] ) @classmethod def _lowerCAmelCase ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> str: requires_backends(cls , ["torch"] ) @classmethod def _lowerCAmelCase ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Optional[Any]: requires_backends(cls , ["torch"] ) class UpperCAmelCase_ ( metaclass=SCREAMING_SNAKE_CASE__ ): '''simple docstring''' A : Union[str, Any] = ['torch'] def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def _lowerCAmelCase ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Optional[int]: requires_backends(cls , ["torch"] ) @classmethod def _lowerCAmelCase ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Any: requires_backends(cls , ["torch"] ) class UpperCAmelCase_ ( metaclass=SCREAMING_SNAKE_CASE__ ): '''simple docstring''' A : Union[str, Any] = ['torch'] def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Optional[int]: requires_backends(self , ["torch"] ) @classmethod def _lowerCAmelCase ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> int: requires_backends(cls , ["torch"] ) @classmethod def _lowerCAmelCase ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> str: requires_backends(cls , ["torch"] ) class UpperCAmelCase_ ( metaclass=SCREAMING_SNAKE_CASE__ ): '''simple docstring''' A : List[Any] = ['torch'] def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def _lowerCAmelCase ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> str: requires_backends(cls , ["torch"] ) @classmethod def _lowerCAmelCase ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Optional[int]: requires_backends(cls , ["torch"] ) class UpperCAmelCase_ ( metaclass=SCREAMING_SNAKE_CASE__ ): '''simple docstring''' A : Any = ['torch'] def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> List[Any]: requires_backends(self , ["torch"] ) @classmethod def _lowerCAmelCase ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Tuple: requires_backends(cls , ["torch"] ) @classmethod def _lowerCAmelCase ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Dict: requires_backends(cls , ["torch"] ) class UpperCAmelCase_ ( metaclass=SCREAMING_SNAKE_CASE__ ): '''simple docstring''' A : Dict = ['torch'] def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> int: requires_backends(self , ["torch"] ) @classmethod def _lowerCAmelCase ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> str: requires_backends(cls , ["torch"] ) @classmethod def _lowerCAmelCase ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Dict: requires_backends(cls , ["torch"] ) class UpperCAmelCase_ ( metaclass=SCREAMING_SNAKE_CASE__ ): '''simple docstring''' A : Any = ['torch'] def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> str: requires_backends(self , ["torch"] ) @classmethod def _lowerCAmelCase ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> int: requires_backends(cls , ["torch"] ) @classmethod def _lowerCAmelCase ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Optional[Any]: requires_backends(cls , ["torch"] ) class UpperCAmelCase_ ( metaclass=SCREAMING_SNAKE_CASE__ ): '''simple docstring''' A : Union[str, Any] = ['torch'] def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Tuple: requires_backends(self , ["torch"] ) @classmethod def _lowerCAmelCase ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Dict: requires_backends(cls , ["torch"] ) @classmethod def _lowerCAmelCase ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> str: requires_backends(cls , ["torch"] ) class UpperCAmelCase_ ( metaclass=SCREAMING_SNAKE_CASE__ ): '''simple docstring''' A : str = ['torch'] def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Optional[int]: requires_backends(self , ["torch"] ) @classmethod def _lowerCAmelCase ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Union[str, Any]: requires_backends(cls , ["torch"] ) @classmethod def _lowerCAmelCase ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Union[str, Any]: requires_backends(cls , ["torch"] ) class UpperCAmelCase_ ( metaclass=SCREAMING_SNAKE_CASE__ ): '''simple docstring''' A : List[Any] = ['torch'] def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Any: requires_backends(self , ["torch"] ) @classmethod def _lowerCAmelCase ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> List[str]: requires_backends(cls , ["torch"] ) @classmethod def _lowerCAmelCase ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> List[str]: requires_backends(cls , ["torch"] ) class UpperCAmelCase_ ( metaclass=SCREAMING_SNAKE_CASE__ ): '''simple docstring''' A : List[Any] = ['torch'] def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Optional[int]: requires_backends(self , ["torch"] ) @classmethod def _lowerCAmelCase ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Any: requires_backends(cls , ["torch"] ) @classmethod def _lowerCAmelCase ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Dict: requires_backends(cls , ["torch"] ) class UpperCAmelCase_ ( metaclass=SCREAMING_SNAKE_CASE__ ): '''simple docstring''' A : Dict = ['torch'] def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Any: requires_backends(self , ["torch"] ) @classmethod def _lowerCAmelCase ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> int: requires_backends(cls , ["torch"] ) @classmethod def _lowerCAmelCase ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Optional[Any]: requires_backends(cls , ["torch"] ) class UpperCAmelCase_ ( metaclass=SCREAMING_SNAKE_CASE__ ): '''simple docstring''' A : Any = ['torch'] def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Dict: requires_backends(self , ["torch"] ) @classmethod def _lowerCAmelCase ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> int: requires_backends(cls , ["torch"] ) @classmethod def _lowerCAmelCase ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Optional[Any]: requires_backends(cls , ["torch"] ) class UpperCAmelCase_ ( metaclass=SCREAMING_SNAKE_CASE__ ): '''simple docstring''' A : Optional[Any] = ['torch'] def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Tuple: requires_backends(self , ["torch"] ) @classmethod def _lowerCAmelCase ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Union[str, Any]: requires_backends(cls , ["torch"] ) @classmethod def _lowerCAmelCase ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> int: requires_backends(cls , ["torch"] ) class UpperCAmelCase_ ( metaclass=SCREAMING_SNAKE_CASE__ ): '''simple docstring''' A : Any = ['torch'] def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> List[Any]: requires_backends(self , ["torch"] ) @classmethod def _lowerCAmelCase ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> int: requires_backends(cls , ["torch"] ) @classmethod def _lowerCAmelCase ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> int: requires_backends(cls , ["torch"] ) class UpperCAmelCase_ ( metaclass=SCREAMING_SNAKE_CASE__ ): '''simple docstring''' A : Optional[Any] = ['torch'] def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> List[str]: requires_backends(self , ["torch"] ) @classmethod def _lowerCAmelCase ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> List[str]: requires_backends(cls , ["torch"] ) @classmethod def _lowerCAmelCase ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Tuple: requires_backends(cls , ["torch"] ) class UpperCAmelCase_ ( metaclass=SCREAMING_SNAKE_CASE__ ): '''simple docstring''' A : Dict = ['torch'] def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Dict: requires_backends(self , ["torch"] ) @classmethod def _lowerCAmelCase ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> List[str]: requires_backends(cls , ["torch"] ) @classmethod def _lowerCAmelCase ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> str: requires_backends(cls , ["torch"] ) class UpperCAmelCase_ ( metaclass=SCREAMING_SNAKE_CASE__ ): '''simple docstring''' A : Optional[int] = ['torch'] def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def _lowerCAmelCase ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Union[str, Any]: requires_backends(cls , ["torch"] ) @classmethod def _lowerCAmelCase ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> List[Any]: requires_backends(cls , ["torch"] ) class UpperCAmelCase_ ( metaclass=SCREAMING_SNAKE_CASE__ ): '''simple docstring''' A : Tuple = ['torch'] def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Tuple: requires_backends(self , ["torch"] ) @classmethod def _lowerCAmelCase ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> List[str]: requires_backends(cls , ["torch"] ) @classmethod def _lowerCAmelCase ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> int: requires_backends(cls , ["torch"] )
568
import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() lowercase : Dict = logging.get_logger(__name__) lowercase : Union[str, Any] = '''https://openaipublic.azureedge.net/jukebox/models/''' lowercase : Union[str, Any] = { '''jukebox-1b-lyrics''': [ '''5b/vqvae.pth.tar''', '''5b/prior_level_0.pth.tar''', '''5b/prior_level_1.pth.tar''', '''1b_lyrics/prior_level_2.pth.tar''', ], '''jukebox-5b-lyrics''': [ '''5b/vqvae.pth.tar''', '''5b/prior_level_0.pth.tar''', '''5b/prior_level_1.pth.tar''', '''5b_lyrics/prior_level_2.pth.tar''', ], } def lowerCAmelCase__ ( _a : Union[str, Any] ): if key.endswith(".model.1.bias" ) and len(key.split("." ) ) > 10: snake_case_ : int = key.replace(".model.1.bias" , ".conv1d_1.bias" ) elif key.endswith(".model.1.weight" ) and len(key.split("." ) ) > 10: snake_case_ : str = key.replace(".model.1.weight" , ".conv1d_1.weight" ) elif key.endswith(".model.3.bias" ) and len(key.split("." ) ) > 10: snake_case_ : List[Any] = key.replace(".model.3.bias" , ".conv1d_2.bias" ) elif key.endswith(".model.3.weight" ) and len(key.split("." ) ) > 10: snake_case_ : int = key.replace(".model.3.weight" , ".conv1d_2.weight" ) if "conditioner_blocks.0." in key: snake_case_ : int = key.replace("conditioner_blocks.0" , "conditioner_blocks" ) if "prime_prior" in key: snake_case_ : int = key.replace("prime_prior" , "encoder" ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: snake_case_ : Optional[int] = key.replace(".emb." , "." ) if key.endswith("k" ): # replace vqvae.X.k with vqvae.X.codebook return key.replace(".k" , ".codebook" ) if "y_emb." in key: return key.replace("y_emb." , "metadata_embedding." ) if "x_emb.emb." in key: snake_case_ : str = key.replace("0.x_emb.emb" , "embed_tokens" ) if "prime_state_ln" in key: return key.replace("prime_state_ln" , "encoder.final_layer_norm" ) if ".ln" in key: return key.replace(".ln" , ".layer_norm" ) if "_ln" in key: return key.replace("_ln" , "_layer_norm" ) if "prime_state_proj" in key: return key.replace("prime_state_proj" , "encoder.proj_in" ) if "prime_x_out" in key: return key.replace("prime_x_out" , "encoder.lm_head" ) if "prior.x_out" in key: return key.replace("x_out" , "fc_proj_out" ) if "x_emb" in key: return key.replace("x_emb" , "embed_tokens" ) return key def lowerCAmelCase__ ( _a : Union[str, Any] , _a : str , _a : Optional[Any] , _a : Optional[Any] ): snake_case_ : Any = {} import re snake_case_ : Optional[int] = re.compile(R"encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)" ) snake_case_ : Union[str, Any] = re.compile( R"encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" ) snake_case_ : int = re.compile(R"encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)" ) snake_case_ : str = re.compile(R"decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)" ) snake_case_ : Any = re.compile( R"decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" ) snake_case_ : Dict = re.compile(R"decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)" ) snake_case_ : List[str] = re.compile(R"conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)" ) snake_case_ : Optional[int] = re.compile( R"conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" ) snake_case_ : Optional[Any] = re.compile(R"conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)" ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(_a ): snake_case_ : int = re_encoder_block_conv_in.match(_a ) snake_case_ : Dict = regex_match.groups() snake_case_ : Tuple = int(groups[2] ) * 2 + int(groups[3] ) snake_case_ : List[Any] = F'''encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}''' snake_case_ : List[str] = re_encoder_block_conv_in.sub(_a , _a ) elif re_encoder_block_resnet.fullmatch(_a ): snake_case_ : List[str] = re_encoder_block_resnet.match(_a ) snake_case_ : List[Any] = regex_match.groups() snake_case_ : Optional[int] = int(groups[2] ) * 2 + int(groups[3] ) snake_case_ : Any = {"1": 1, "3": 2}[groups[-2]] snake_case_ : Tuple = F'''encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.''' snake_case_ : Optional[int] = F'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}''' snake_case_ : Any = prefix + resnet_block snake_case_ : List[Any] = re_encoder_block_resnet.sub(_a , _a ) elif re_encoder_block_proj_out.fullmatch(_a ): snake_case_ : List[Any] = re_encoder_block_proj_out.match(_a ) snake_case_ : List[str] = regex_match.groups() snake_case_ : Union[str, Any] = F'''encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}''' snake_case_ : Any = re_encoder_block_proj_out.sub(_a , _a ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(_a ): snake_case_ : Tuple = re_decoder_block_conv_out.match(_a ) snake_case_ : List[Any] = regex_match.groups() snake_case_ : Tuple = int(groups[2] ) * 2 + int(groups[3] ) - 2 snake_case_ : Any = F'''decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}''' snake_case_ : Dict = re_decoder_block_conv_out.sub(_a , _a ) elif re_decoder_block_resnet.fullmatch(_a ): snake_case_ : Any = re_decoder_block_resnet.match(_a ) snake_case_ : List[str] = regex_match.groups() snake_case_ : Tuple = int(groups[2] ) * 2 + int(groups[3] ) - 2 snake_case_ : int = {"1": 1, "3": 2}[groups[-2]] snake_case_ : Any = F'''decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.''' snake_case_ : Dict = F'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}''' snake_case_ : str = prefix + resnet_block snake_case_ : Optional[int] = re_decoder_block_resnet.sub(_a , _a ) elif re_decoder_block_proj_in.fullmatch(_a ): snake_case_ : Any = re_decoder_block_proj_in.match(_a ) snake_case_ : Optional[int] = regex_match.groups() snake_case_ : int = F'''decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}''' snake_case_ : Dict = re_decoder_block_proj_in.sub(_a , _a ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(_a ): snake_case_ : List[str] = re_prior_cond_conv_out.match(_a ) snake_case_ : List[Any] = regex_match.groups() snake_case_ : Tuple = int(groups[1] ) * 2 + int(groups[2] ) - 2 snake_case_ : str = F'''conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}''' snake_case_ : List[Any] = re_prior_cond_conv_out.sub(_a , _a ) elif re_prior_cond_resnet.fullmatch(_a ): snake_case_ : str = re_prior_cond_resnet.match(_a ) snake_case_ : str = regex_match.groups() snake_case_ : Optional[Any] = int(groups[1] ) * 2 + int(groups[2] ) - 2 snake_case_ : str = {"1": 1, "3": 2}[groups[-2]] snake_case_ : List[Any] = F'''conditioner_blocks.upsampler.upsample_block.{block_index}.''' snake_case_ : Union[str, Any] = F'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}''' snake_case_ : Optional[int] = prefix + resnet_block snake_case_ : List[str] = re_prior_cond_resnet.sub(_a , _a ) elif re_prior_cond_proj_in.fullmatch(_a ): snake_case_ : Any = re_prior_cond_proj_in.match(_a ) snake_case_ : int = regex_match.groups() snake_case_ : Dict = F'''conditioner_blocks.upsampler.proj_in.{groups[-1]}''' snake_case_ : Union[str, Any] = re_prior_cond_proj_in.sub(_a , _a ) # keep original key else: snake_case_ : List[Any] = original_key snake_case_ : Any = replace_key(_a ) if F'''{key_prefix}.{key}''' not in model_state_dict or key is None: print(F'''failed converting {original_key} to {key}, does not match''' ) # handle missmatched shape elif value.shape != model_state_dict[F'''{key_prefix}.{key}'''].shape: snake_case_ : List[Any] = model_state_dict[F'''{key_prefix}.{key}'''] print(F'''{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match''' ) snake_case_ : Dict = original_key snake_case_ : str = original_key snake_case_ : Union[str, Any] = value return new_dict @torch.no_grad() def lowerCAmelCase__ ( _a : Any=None , _a : Any=None ): for file in MODEL_MAPPING[model_name]: if not os.path.isfile(F'''{pytorch_dump_folder_path}/{file.split('/' )[-1]}''' ): snake_case_ : int = requests.get(F'''{PREFIX}{file}''' , allow_redirects=_a ) os.makedirs(F'''{pytorch_dump_folder_path}/''' , exist_ok=_a ) open(F'''{pytorch_dump_folder_path}/{file.split('/' )[-1]}''' , "wb" ).write(r.content ) snake_case_ : Union[str, Any] = MODEL_MAPPING[model_name.split("/" )[-1]] snake_case_ : Dict = JukeboxConfig.from_pretrained(_a ) snake_case_ : List[Any] = JukeboxModel(_a ) snake_case_ : Dict = [] snake_case_ : int = {} for i, dict_name in enumerate(_a ): snake_case_ : Optional[int] = torch.load(F'''{pytorch_dump_folder_path}/{dict_name.split('/' )[-1]}''' )["model"] snake_case_ : Union[str, Any] = {} for k in old_dic.keys(): if k.endswith(".b" ): snake_case_ : Tuple = old_dic[k] elif k.endswith(".w" ): snake_case_ : Optional[Any] = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: snake_case_ : Dict = old_dic[k] else: snake_case_ : Optional[Any] = old_dic[k] snake_case_ : List[str] = "vqvae" if i == 0 else F'''priors.{3 - i}''' snake_case_ : List[str] = fix_jukebox_keys(_a , model.state_dict() , _a , _a ) weight_dict.append(_a ) snake_case_ : Tuple = weight_dict.pop(0 ) model.vqvae.load_state_dict(_a ) for i in range(len(_a ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(_a ).mkdir(exist_ok=_a ) with open(F'''{pytorch_dump_folder_path}/mapping.json''' , "w" ) as txtfile: json.dump(_a , _a ) print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(_a ) return weight_dict if __name__ == "__main__": lowercase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''jukebox-5b-lyrics''', type=str, help='''Name of the model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''jukebox-5b-lyrics-converted''', type=str, help='''Path to the output PyTorch model directory.''', ) lowercase : Optional[int] = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
568
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = {'''vocab_file''': '''vocab.txt'''} SCREAMING_SNAKE_CASE__ = { '''vocab_file''': { '''YituTech/conv-bert-base''': '''https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt''', '''YituTech/conv-bert-medium-small''': ( '''https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt''' ), '''YituTech/conv-bert-small''': '''https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt''', } } SCREAMING_SNAKE_CASE__ = { '''YituTech/conv-bert-base''': 512, '''YituTech/conv-bert-medium-small''': 512, '''YituTech/conv-bert-small''': 512, } SCREAMING_SNAKE_CASE__ = { '''YituTech/conv-bert-base''': {'''do_lower_case''': True}, '''YituTech/conv-bert-medium-small''': {'''do_lower_case''': True}, '''YituTech/conv-bert-small''': {'''do_lower_case''': True}, } class _UpperCamelCase( __lowerCamelCase ): __SCREAMING_SNAKE_CASE : int = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : List[Any] = PRETRAINED_INIT_CONFIGURATION __SCREAMING_SNAKE_CASE : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : Union[str, Any] = ConvBertTokenizer def __init__( self : Dict , SCREAMING_SNAKE_CASE__ : List[Any]=None , SCREAMING_SNAKE_CASE__ : Optional[int]=None , SCREAMING_SNAKE_CASE__ : Any=True , SCREAMING_SNAKE_CASE__ : Union[str, Any]="[UNK]" , SCREAMING_SNAKE_CASE__ : Any="[SEP]" , SCREAMING_SNAKE_CASE__ : Optional[Any]="[PAD]" , SCREAMING_SNAKE_CASE__ : Dict="[CLS]" , SCREAMING_SNAKE_CASE__ : List[Any]="[MASK]" , SCREAMING_SNAKE_CASE__ : List[Any]=True , SCREAMING_SNAKE_CASE__ : List[Any]=None , **SCREAMING_SNAKE_CASE__ : str , ): '''simple docstring''' super().__init__( SCREAMING_SNAKE_CASE__ , tokenizer_file=SCREAMING_SNAKE_CASE__ , do_lower_case=SCREAMING_SNAKE_CASE__ , unk_token=SCREAMING_SNAKE_CASE__ , sep_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , cls_token=SCREAMING_SNAKE_CASE__ , mask_token=SCREAMING_SNAKE_CASE__ , tokenize_chinese_chars=SCREAMING_SNAKE_CASE__ , strip_accents=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) __a : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , SCREAMING_SNAKE_CASE__ ) != do_lower_case or normalizer_state.get('strip_accents' , SCREAMING_SNAKE_CASE__ ) != strip_accents or normalizer_state.get('handle_chinese_chars' , SCREAMING_SNAKE_CASE__ ) != tokenize_chinese_chars ): __a : List[Any] = getattr(SCREAMING_SNAKE_CASE__ , normalizer_state.pop('type' ) ) __a : int = do_lower_case __a : Dict = strip_accents __a : List[Any] = tokenize_chinese_chars __a : List[Any] = normalizer_class(**SCREAMING_SNAKE_CASE__ ) __a : List[Any] = do_lower_case def __lowerCAmelCase ( self : List[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : str=None ): '''simple docstring''' __a : str = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __lowerCAmelCase ( self : Tuple , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None ): '''simple docstring''' __a : Union[str, Any] = [self.sep_token_id] __a : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowerCAmelCase ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[str] = None ): '''simple docstring''' __a : List[str] = self._tokenizer.model.save(SCREAMING_SNAKE_CASE__ , name=SCREAMING_SNAKE_CASE__ ) return tuple(SCREAMING_SNAKE_CASE__ )
577
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { '''xlm-mlm-en-2048''': '''https://huggingface.co/xlm-mlm-en-2048/resolve/main/config.json''', '''xlm-mlm-ende-1024''': '''https://huggingface.co/xlm-mlm-ende-1024/resolve/main/config.json''', '''xlm-mlm-enfr-1024''': '''https://huggingface.co/xlm-mlm-enfr-1024/resolve/main/config.json''', '''xlm-mlm-enro-1024''': '''https://huggingface.co/xlm-mlm-enro-1024/resolve/main/config.json''', '''xlm-mlm-tlm-xnli15-1024''': '''https://huggingface.co/xlm-mlm-tlm-xnli15-1024/resolve/main/config.json''', '''xlm-mlm-xnli15-1024''': '''https://huggingface.co/xlm-mlm-xnli15-1024/resolve/main/config.json''', '''xlm-clm-enfr-1024''': '''https://huggingface.co/xlm-clm-enfr-1024/resolve/main/config.json''', '''xlm-clm-ende-1024''': '''https://huggingface.co/xlm-clm-ende-1024/resolve/main/config.json''', '''xlm-mlm-17-1280''': '''https://huggingface.co/xlm-mlm-17-1280/resolve/main/config.json''', '''xlm-mlm-100-1280''': '''https://huggingface.co/xlm-mlm-100-1280/resolve/main/config.json''', } class _UpperCamelCase( __lowerCamelCase ): __SCREAMING_SNAKE_CASE : Tuple = '''xlm''' __SCREAMING_SNAKE_CASE : int = { '''hidden_size''': '''emb_dim''', '''num_attention_heads''': '''n_heads''', '''num_hidden_layers''': '''n_layers''', '''n_words''': '''vocab_size''', # For backward compatibility } def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[int]=3_0_1_4_5 , SCREAMING_SNAKE_CASE__ : int=2_0_4_8 , SCREAMING_SNAKE_CASE__ : int=1_2 , SCREAMING_SNAKE_CASE__ : Any=1_6 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0.1 , SCREAMING_SNAKE_CASE__ : Tuple=0.1 , SCREAMING_SNAKE_CASE__ : Optional[int]=True , SCREAMING_SNAKE_CASE__ : Optional[Any]=False , SCREAMING_SNAKE_CASE__ : Dict=False , SCREAMING_SNAKE_CASE__ : Any=False , SCREAMING_SNAKE_CASE__ : int=1 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=True , SCREAMING_SNAKE_CASE__ : Dict=5_1_2 , SCREAMING_SNAKE_CASE__ : List[str]=2_0_4_8**-0.5 , SCREAMING_SNAKE_CASE__ : Dict=1e-12 , SCREAMING_SNAKE_CASE__ : Tuple=0.02 , SCREAMING_SNAKE_CASE__ : List[str]=0 , SCREAMING_SNAKE_CASE__ : Optional[Any]=1 , SCREAMING_SNAKE_CASE__ : str=2 , SCREAMING_SNAKE_CASE__ : int=3 , SCREAMING_SNAKE_CASE__ : Tuple=5 , SCREAMING_SNAKE_CASE__ : List[Any]=True , SCREAMING_SNAKE_CASE__ : Union[str, Any]="first" , SCREAMING_SNAKE_CASE__ : str=True , SCREAMING_SNAKE_CASE__ : int=None , SCREAMING_SNAKE_CASE__ : Tuple=True , SCREAMING_SNAKE_CASE__ : Dict=0.1 , SCREAMING_SNAKE_CASE__ : str=5 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=5 , SCREAMING_SNAKE_CASE__ : str=0 , SCREAMING_SNAKE_CASE__ : str=0 , SCREAMING_SNAKE_CASE__ : Optional[Any]=2 , SCREAMING_SNAKE_CASE__ : Dict=0 , **SCREAMING_SNAKE_CASE__ : Optional[Any] , ): '''simple docstring''' __a : Optional[Any] = vocab_size __a : int = emb_dim __a : Tuple = n_layers __a : List[str] = n_heads __a : Any = dropout __a : Any = attention_dropout __a : Any = gelu_activation __a : Optional[int] = sinusoidal_embeddings __a : Union[str, Any] = causal __a : str = asm __a : Optional[Any] = n_langs __a : int = use_lang_emb __a : List[str] = layer_norm_eps __a : Optional[int] = bos_index __a : Any = eos_index __a : str = pad_index __a : List[str] = unk_index __a : List[Any] = mask_index __a : Tuple = is_encoder __a : str = max_position_embeddings __a : Any = embed_init_std __a : int = init_std __a : Dict = summary_type __a : List[Any] = summary_use_proj __a : Dict = summary_activation __a : Union[str, Any] = summary_proj_to_labels __a : List[Any] = summary_first_dropout __a : List[Any] = start_n_top __a : Tuple = end_n_top __a : int = mask_token_id __a : str = lang_id if "n_words" in kwargs: __a : Optional[Any] = kwargs['n_words'] super().__init__(pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) class _UpperCamelCase( __lowerCamelCase ): @property def __lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' if self.task == "multiple-choice": __a : Optional[Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: __a : List[Any] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
577
1
import math from typing import Any, Callable, List, Optional, Tuple, Union import numpy as np import torch from ...models import TaFilmDecoder from ...schedulers import DDPMScheduler from ...utils import is_onnx_available, logging, randn_tensor if is_onnx_available(): from ..onnx_utils import OnnxRuntimeModel from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline from .continous_encoder import SpectrogramContEncoder from .notes_encoder import SpectrogramNotesEncoder a__ : Any = logging.get_logger(__name__) # pylint: disable=invalid-name a__ : str = 2_5_6 class lowercase ( UpperCAmelCase_ ): """simple docstring""" snake_case_ = ['melgan'] def __init__( self : Dict , a_ : SpectrogramNotesEncoder , a_ : SpectrogramContEncoder , a_ : TaFilmDecoder , a_ : DDPMScheduler , a_ : OnnxRuntimeModel if is_onnx_available() else Any , ): """simple docstring""" super().__init__() # From MELGAN lowerCamelCase__ = math.log(1e-5 ) # Matches MelGAN training. lowerCamelCase__ = 4.0 # Largest value for most examples lowerCamelCase__ = 1_28 self.register_modules( notes_encoder=a_ , continuous_encoder=a_ , decoder=a_ , scheduler=a_ , melgan=a_ , ) def _UpperCamelCase ( self : Tuple , a_ : Tuple , a_ : List[str]=(-1.0, 1.0) , a_ : Union[str, Any]=False ): """simple docstring""" lowerCamelCase__ , lowerCamelCase__ = output_range if clip: lowerCamelCase__ = torch.clip(a_ , self.min_value , self.max_value ) # Scale to [0, 1]. lowerCamelCase__ = (features - self.min_value) / (self.max_value - self.min_value) # Scale to [min_out, max_out]. return zero_one * (max_out - min_out) + min_out def _UpperCamelCase ( self : Optional[Any] , a_ : Dict , a_ : Union[str, Any]=(-1.0, 1.0) , a_ : Any=False ): """simple docstring""" lowerCamelCase__ , lowerCamelCase__ = input_range lowerCamelCase__ = torch.clip(a_ , a_ , a_ ) if clip else outputs # Scale to [0, 1]. lowerCamelCase__ = (outputs - min_out) / (max_out - min_out) # Scale to [self.min_value, self.max_value]. return zero_one * (self.max_value - self.min_value) + self.min_value def _UpperCamelCase ( self : int , a_ : List[str] , a_ : Optional[Any] , a_ : Union[str, Any] ): """simple docstring""" lowerCamelCase__ = input_tokens > 0 lowerCamelCase__ , lowerCamelCase__ = self.notes_encoder( encoder_input_tokens=a_ , encoder_inputs_mask=a_ ) lowerCamelCase__ , lowerCamelCase__ = self.continuous_encoder( encoder_inputs=a_ , encoder_inputs_mask=a_ ) return [(tokens_encoded, tokens_mask), (continuous_encoded, continuous_mask)] def _UpperCamelCase ( self : Dict , a_ : int , a_ : int , a_ : Union[str, Any] ): """simple docstring""" lowerCamelCase__ = noise_time if not torch.is_tensor(a_ ): lowerCamelCase__ = torch.tensor([timesteps] , dtype=torch.long , device=input_tokens.device ) elif torch.is_tensor(a_ ) and len(timesteps.shape ) == 0: lowerCamelCase__ = timesteps[None].to(input_tokens.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML lowerCamelCase__ = timesteps * torch.ones(input_tokens.shape[0] , dtype=timesteps.dtype , device=timesteps.device ) lowerCamelCase__ = self.decoder( encodings_and_masks=a_ , decoder_input_tokens=a_ , decoder_noise_time=a_ ) return logits @torch.no_grad() def __call__( self : Dict , a_ : List[List[int]] , a_ : Optional[torch.Generator] = None , a_ : int = 1_00 , a_ : bool = True , a_ : str = "numpy" , a_ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , a_ : int = 1 , ): """simple docstring""" if (callback_steps is None) or ( callback_steps is not None and (not isinstance(a_ , a_ ) or callback_steps <= 0) ): raise ValueError( F'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' F''' {type(a_ )}.''' ) lowerCamelCase__ = np.zeros([1, TARGET_FEATURE_LENGTH, self.n_dims] , dtype=np.floataa ) lowerCamelCase__ = np.zeros([1, 0, self.n_dims] , np.floataa ) lowerCamelCase__ = torch.ones((1, TARGET_FEATURE_LENGTH) , dtype=a_ , device=self.device ) for i, encoder_input_tokens in enumerate(a_ ): if i == 0: lowerCamelCase__ = torch.from_numpy(pred_mel[:1].copy() ).to( device=self.device , dtype=self.decoder.dtype ) # The first chunk has no previous context. lowerCamelCase__ = torch.zeros((1, TARGET_FEATURE_LENGTH) , dtype=a_ , device=self.device ) else: # The full song pipeline does not feed in a context feature, so the mask # will be all 0s after the feature converter. Because we know we're # feeding in a full context chunk from the previous prediction, set it # to all 1s. lowerCamelCase__ = ones lowerCamelCase__ = self.scale_features( a_ , output_range=[-1.0, 1.0] , clip=a_ ) lowerCamelCase__ = self.encode( input_tokens=torch.IntTensor([encoder_input_tokens] ).to(device=self.device ) , continuous_inputs=a_ , continuous_mask=a_ , ) # Sample encoder_continuous_inputs shaped gaussian noise to begin loop lowerCamelCase__ = randn_tensor( shape=encoder_continuous_inputs.shape , generator=a_ , device=self.device , dtype=self.decoder.dtype , ) # set step values self.scheduler.set_timesteps(a_ ) # Denoising diffusion loop for j, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): lowerCamelCase__ = self.decode( encodings_and_masks=a_ , input_tokens=a_ , noise_time=t / self.scheduler.config.num_train_timesteps , ) # Compute previous output: x_t -> x_t-1 lowerCamelCase__ = self.scheduler.step(a_ , a_ , a_ , generator=a_ ).prev_sample lowerCamelCase__ = self.scale_to_features(a_ , input_range=[-1.0, 1.0] ) lowerCamelCase__ = mel[:1] lowerCamelCase__ = mel.cpu().float().numpy() lowerCamelCase__ = np.concatenate([full_pred_mel, pred_mel[:1]] , axis=1 ) # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(a_ , a_ ) logger.info("""Generated segment""" , a_ ) if output_type == "numpy" and not is_onnx_available(): raise ValueError( """Cannot return output in 'np' format if ONNX is not available. Make sure to have ONNX installed or set 'output_type' to 'mel'.""" ) elif output_type == "numpy" and self.melgan is None: raise ValueError( """Cannot return output in 'np' format if melgan component is not defined. Make sure to define `self.melgan` or set 'output_type' to 'mel'.""" ) if output_type == "numpy": lowerCamelCase__ = self.melgan(input_features=full_pred_mel.astype(np.floataa ) ) else: lowerCamelCase__ = full_pred_mel if not return_dict: return (output,) return AudioPipelineOutput(audios=a_ )
165
from sklearn.metrics import recall_score import datasets a__ : str = """ Recall is the fraction of the positive examples that were correctly labeled by the model as positive. It can be computed with the equation: Recall = TP / (TP + FN) Where TP is the true positives and FN is the false negatives. """ a__ : Dict = """ Args: - **predictions** (`list` of `int`): The predicted labels. - **references** (`list` of `int`): The ground truth labels. - **labels** (`list` of `int`): The set of labels to include when `average` is not set to `binary`, and their order when average is `None`. Labels present in the data can be excluded in this input, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in y_true and y_pred are used in sorted order. Defaults to None. - **pos_label** (`int`): The class label to use as the 'positive class' when calculating the recall. Defaults to `1`. - **average** (`string`): This parameter is required for multiclass/multilabel targets. If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`. - `'binary'`: Only report results for the class specified by `pos_label`. This is applicable only if the target labels and predictions are binary. - `'micro'`: Calculate metrics globally by counting the total true positives, false negatives, and false positives. - `'macro'`: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. - `'weighted'`: Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. Note that it can result in an F-score that is not between precision and recall. - `'samples'`: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification). - **sample_weight** (`list` of `float`): Sample weights Defaults to `None`. - **zero_division** (): Sets the value to return when there is a zero division. Defaults to . - `'warn'`: If there is a zero division, the return value is `0`, but warnings are also raised. - `0`: If there is a zero division, the return value is `0`. - `1`: If there is a zero division, the return value is `1`. Returns: - **recall** (`float`, or `array` of `float`): Either the general recall score, or the recall scores for individual classes, depending on the values input to `labels` and `average`. Minimum possible value is 0. Maximum possible value is 1. A higher recall means that more of the positive examples have been labeled correctly. Therefore, a higher recall is generally considered better. Examples: Example 1-A simple example with some errors >>> recall_metric = datasets.load_metric('recall') >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1]) >>> print(results) {'recall': 0.6666666666666666} Example 2-The same example as Example 1, but with `pos_label=0` instead of the default `pos_label=1`. >>> recall_metric = datasets.load_metric('recall') >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], pos_label=0) >>> print(results) {'recall': 0.5} Example 3-The same example as Example 1, but with `sample_weight` included. >>> recall_metric = datasets.load_metric('recall') >>> sample_weight = [0.9, 0.2, 0.9, 0.3, 0.8] >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], sample_weight=sample_weight) >>> print(results) {'recall': 0.55} Example 4-A multiclass example, using different averages. >>> recall_metric = datasets.load_metric('recall') >>> predictions = [0, 2, 1, 0, 0, 1] >>> references = [0, 1, 2, 0, 1, 2] >>> results = recall_metric.compute(predictions=predictions, references=references, average='macro') >>> print(results) {'recall': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average='micro') >>> print(results) {'recall': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average='weighted') >>> print(results) {'recall': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average=None) >>> print(results) {'recall': array([1., 0., 0.])} """ a__ : List[Any] = """ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase ( datasets.Metric ): """simple docstring""" def _UpperCamelCase ( self : List[Any] ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""int32""" ) ), """references""": datasets.Sequence(datasets.Value("""int32""" ) ), } if self.config_name == """multilabel""" else { """predictions""": datasets.Value("""int32""" ), """references""": datasets.Value("""int32""" ), } ) , reference_urls=["""https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html"""] , ) def _UpperCamelCase ( self : Dict , a_ : Tuple , a_ : Optional[Any] , a_ : Union[str, Any]=None , a_ : List[Any]=1 , a_ : List[str]="binary" , a_ : List[str]=None , a_ : int="warn" , ): """simple docstring""" lowerCamelCase__ = recall_score( a_ , a_ , labels=a_ , pos_label=a_ , average=a_ , sample_weight=a_ , zero_division=a_ , ) return {"recall": float(a_ ) if score.size == 1 else score}
165
1
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging __A : Dict = logging.get_logger(__name__) __A : int = { 'BAAI/AltCLIP': 'https://huggingface.co/BAAI/AltCLIP/resolve/main/config.json', # See all AltCLIP models at https://huggingface.co/models?filter=altclip } class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = "altclip_text_model" def __init__( self : List[str] , __lowerCamelCase : Union[str, Any]=250002 , __lowerCamelCase : List[str]=1024 , __lowerCamelCase : int=24 , __lowerCamelCase : int=16 , __lowerCamelCase : Dict=4096 , __lowerCamelCase : List[Any]="gelu" , __lowerCamelCase : List[str]=0.1 , __lowerCamelCase : List[str]=0.1 , __lowerCamelCase : int=514 , __lowerCamelCase : Optional[Any]=1 , __lowerCamelCase : int=0.02 , __lowerCamelCase : Tuple=0.02 , __lowerCamelCase : Optional[int]=1e-05 , __lowerCamelCase : Any=1 , __lowerCamelCase : Optional[int]=0 , __lowerCamelCase : Union[str, Any]=2 , __lowerCamelCase : Dict="absolute" , __lowerCamelCase : Any=True , __lowerCamelCase : Tuple=768 , **__lowerCamelCase : Optional[int] , ): super().__init__(pad_token_id=__A , bos_token_id=__A , eos_token_id=__A , **__A ) SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = type_vocab_size SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = initializer_factor SCREAMING_SNAKE_CASE = layer_norm_eps SCREAMING_SNAKE_CASE = position_embedding_type SCREAMING_SNAKE_CASE = use_cache SCREAMING_SNAKE_CASE = project_dim class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = "altclip_vision_model" def __init__( self : Any , __lowerCamelCase : Union[str, Any]=768 , __lowerCamelCase : List[Any]=3072 , __lowerCamelCase : str=512 , __lowerCamelCase : Optional[int]=12 , __lowerCamelCase : Optional[int]=12 , __lowerCamelCase : Optional[Any]=3 , __lowerCamelCase : Tuple=224 , __lowerCamelCase : Dict=32 , __lowerCamelCase : Tuple="quick_gelu" , __lowerCamelCase : List[str]=1e-5 , __lowerCamelCase : Tuple=0.0 , __lowerCamelCase : Tuple=0.02 , __lowerCamelCase : str=1.0 , **__lowerCamelCase : str , ): super().__init__(**__A ) SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = projection_dim SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = patch_size SCREAMING_SNAKE_CASE = image_size SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = initializer_factor SCREAMING_SNAKE_CASE = attention_dropout SCREAMING_SNAKE_CASE = layer_norm_eps SCREAMING_SNAKE_CASE = hidden_act @classmethod def _snake_case ( cls : List[str] , __lowerCamelCase : Union[str, os.PathLike] , **__lowerCamelCase : Optional[int] ): cls._set_token_in_kwargs(__A ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = cls.get_config_dict(__A , **__A ) # get the vision config dict if we are loading from AltCLIPConfig if config_dict.get("model_type" ) == "altclip": SCREAMING_SNAKE_CASE = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(__A , **__A ) class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = "altclip" lowerCamelCase__ = True def __init__( self : Optional[int] , __lowerCamelCase : Tuple=None , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : Dict=768 , __lowerCamelCase : Optional[Any]=2.6_592 , **__lowerCamelCase : Dict ): # If `_config_dict` exist, we use them for the backward compatibility. # We pop out these 2 attributes before calling `super().__init__` to avoid them being saved (which causes a lot # of confusion!). SCREAMING_SNAKE_CASE = kwargs.pop("text_config_dict" , __A ) SCREAMING_SNAKE_CASE = kwargs.pop("vision_config_dict" , __A ) super().__init__(**__A ) # Instead of simply assigning `[text|vision]_config_dict` to `[text|vision]_config`, we use the values in # `[text|vision]_config_dict` to update the values in `[text|vision]_config`. The values should be same in most # cases, but we don't want to break anything regarding `_config_dict` that existed before commit `8827e1b2`. if text_config_dict is not None: if text_config is None: SCREAMING_SNAKE_CASE = {} # This is the complete result when using `text_config_dict`. SCREAMING_SNAKE_CASE = AltCLIPTextConfig(**__A ).to_dict() # Give a warning if the values exist in both `_text_config_dict` and `text_config` but being different. for key, value in _text_config_dict.items(): if key in text_config and value != text_config[key] and key not in ["transformers_version"]: # If specified in `text_config_dict` if key in text_config_dict: SCREAMING_SNAKE_CASE = ( f"`{key}` is found in both `text_config_dict` and `text_config` but with different values. " f"The value `text_config_dict[\"{key}\"]` will be used instead." ) # If inferred from default argument values (just to be super careful) else: SCREAMING_SNAKE_CASE = ( f"`text_config_dict` is provided which will be used to initialize `AltCLIPTextConfig`. The " f"value `text_config[\"{key}\"]` will be overriden." ) logger.warning(__A ) # Update all values in `text_config` with the ones in `_text_config_dict`. text_config.update(_text_config_dict ) if vision_config_dict is not None: if vision_config is None: SCREAMING_SNAKE_CASE = {} # This is the complete result when using `vision_config_dict`. SCREAMING_SNAKE_CASE = AltCLIPVisionConfig(**__A ).to_dict() # convert keys to string instead of integer if "id2label" in _vision_config_dict: SCREAMING_SNAKE_CASE = { str(__A ): value for key, value in _vision_config_dict["id2label"].items() } # Give a warning if the values exist in both `_vision_config_dict` and `vision_config` but being different. for key, value in _vision_config_dict.items(): if key in vision_config and value != vision_config[key] and key not in ["transformers_version"]: # If specified in `vision_config_dict` if key in vision_config_dict: SCREAMING_SNAKE_CASE = ( f"`{key}` is found in both `vision_config_dict` and `vision_config` but with different " f"values. The value `vision_config_dict[\"{key}\"]` will be used instead." ) # If inferred from default argument values (just to be super careful) else: SCREAMING_SNAKE_CASE = ( f"`vision_config_dict` is provided which will be used to initialize `AltCLIPVisionConfig`. " f"The value `vision_config[\"{key}\"]` will be overriden." ) logger.warning(__A ) # Update all values in `vision_config` with the ones in `_vision_config_dict`. vision_config.update(_vision_config_dict ) if text_config is None: SCREAMING_SNAKE_CASE = {} logger.info("`text_config` is `None`. Initializing the `AltCLIPTextConfig` with default values." ) if vision_config is None: SCREAMING_SNAKE_CASE = {} logger.info("`vision_config` is `None`. initializing the `AltCLIPVisionConfig` with default values." ) SCREAMING_SNAKE_CASE = AltCLIPTextConfig(**__A ) SCREAMING_SNAKE_CASE = AltCLIPVisionConfig(**__A ) SCREAMING_SNAKE_CASE = projection_dim SCREAMING_SNAKE_CASE = logit_scale_init_value SCREAMING_SNAKE_CASE = 1.0 @classmethod def _snake_case ( cls : str , __lowerCamelCase : AltCLIPTextConfig , __lowerCamelCase : AltCLIPVisionConfig , **__lowerCamelCase : Dict ): return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **__A ) def _snake_case ( self : str ): SCREAMING_SNAKE_CASE = copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE = self.text_config.to_dict() SCREAMING_SNAKE_CASE = self.vision_config.to_dict() SCREAMING_SNAKE_CASE = self.__class__.model_type return output
718
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast @require_vision class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE = tempfile.mkdtemp() SCREAMING_SNAKE_CASE = BlipImageProcessor() SCREAMING_SNAKE_CASE = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-BertModel" ) SCREAMING_SNAKE_CASE = BlipProcessor(__lowerCamelCase , __lowerCamelCase ) processor.save_pretrained(self.tmpdirname ) def _snake_case ( self : Dict , **__lowerCamelCase : Any ): return AutoProcessor.from_pretrained(self.tmpdirname , **__lowerCamelCase ).tokenizer def _snake_case ( self : List[Any] , **__lowerCamelCase : Optional[Any] ): return AutoProcessor.from_pretrained(self.tmpdirname , **__lowerCamelCase ).image_processor def _snake_case ( self : Union[str, Any] ): shutil.rmtree(self.tmpdirname ) def _snake_case ( self : Tuple ): SCREAMING_SNAKE_CASE = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] SCREAMING_SNAKE_CASE = [Image.fromarray(np.moveaxis(__lowerCamelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def _snake_case ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) SCREAMING_SNAKE_CASE = self.get_image_processor(do_normalize=__lowerCamelCase , padding_value=1.0 ) SCREAMING_SNAKE_CASE = BlipProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=__lowerCamelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __lowerCamelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowerCamelCase ) def _snake_case ( self : Optional[int] ): SCREAMING_SNAKE_CASE = self.get_image_processor() SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE = self.prepare_image_inputs() SCREAMING_SNAKE_CASE = image_processor(__lowerCamelCase , return_tensors="np" ) SCREAMING_SNAKE_CASE = processor(images=__lowerCamelCase , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _snake_case ( self : Dict ): SCREAMING_SNAKE_CASE = self.get_image_processor() SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE = "lower newer" SCREAMING_SNAKE_CASE = processor(text=__lowerCamelCase ) SCREAMING_SNAKE_CASE = tokenizer(__lowerCamelCase , return_token_type_ids=__lowerCamelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _snake_case ( self : str ): SCREAMING_SNAKE_CASE = self.get_image_processor() SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE = "lower newer" SCREAMING_SNAKE_CASE = self.prepare_image_inputs() SCREAMING_SNAKE_CASE = processor(text=__lowerCamelCase , images=__lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] ) # test if it raises when no input is passed with pytest.raises(__lowerCamelCase ): processor() def _snake_case ( self : Any ): SCREAMING_SNAKE_CASE = self.get_image_processor() SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] SCREAMING_SNAKE_CASE = processor.batch_decode(__lowerCamelCase ) SCREAMING_SNAKE_CASE = tokenizer.batch_decode(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) def _snake_case ( self : Dict ): SCREAMING_SNAKE_CASE = self.get_image_processor() SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE = "lower newer" SCREAMING_SNAKE_CASE = self.prepare_image_inputs() SCREAMING_SNAKE_CASE = processor(text=__lowerCamelCase , images=__lowerCamelCase ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] )
698
0
"""simple docstring""" from __future__ import annotations def lowercase__( __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : int ): lowercase_ : List[Any] = [] lowercase_ : Optional[Any] = [] lowercase_ : List[str] = 0 lowercase_ : Any = sum(__SCREAMING_SNAKE_CASE ) create_state_space_tree(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return result def lowercase__( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : List[Any] , ): if sum(__SCREAMING_SNAKE_CASE ) > max_sum or (remaining_nums_sum + sum(__SCREAMING_SNAKE_CASE )) < max_sum: return if sum(__SCREAMING_SNAKE_CASE ) == max_sum: result.append(__SCREAMING_SNAKE_CASE ) return for index in range(__SCREAMING_SNAKE_CASE , len(__SCREAMING_SNAKE_CASE ) ): create_state_space_tree( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , index + 1 , [*path, nums[index]] , __SCREAMING_SNAKE_CASE , remaining_nums_sum - nums[index] , ) __SCREAMING_SNAKE_CASE =[3, 34, 4, 12, 5, 2] __SCREAMING_SNAKE_CASE =9 __SCREAMING_SNAKE_CASE =generate_sum_of_subsets_soln(nums, max_sum) print(*result)
425
'''simple docstring''' import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEmbeddings, BertLayer, BertPooler, BertPreTrainedModel, ) def UpperCamelCase ( a ) -> Any: '''simple docstring''' __magic_name__ = torch.exp(a ) __magic_name__ = torch.sum(a , dim=1 ) # sum of exp(x_i) __magic_name__ = torch.sum(x * exp_x , dim=1 ) # sum of x_i * exp(x_i) return torch.log(a ) - B / A class _SCREAMING_SNAKE_CASE ( nn.Module ): def __init__( self : Optional[int] , a__ : Any ): super().__init__() __magic_name__ = config.output_attentions __magic_name__ = config.output_hidden_states __magic_name__ = nn.ModuleList([BertLayer(a__ ) for _ in range(config.num_hidden_layers )] ) __magic_name__ = nn.ModuleList([BertHighway(a__ ) for _ in range(config.num_hidden_layers )] ) __magic_name__ = [-1 for _ in range(config.num_hidden_layers )] def snake_case__ ( self : Dict , a__ : Optional[Any] ): if (type(a__ ) is float) or (type(a__ ) is int): for i in range(len(self.early_exit_entropy ) ): __magic_name__ = x else: __magic_name__ = x def snake_case__ ( self : Union[str, Any] , a__ : int ): __magic_name__ = pooler.state_dict() for highway in self.highway: for name, param in highway.pooler.state_dict().items(): param.copy_(loaded_model[name] ) def snake_case__ ( self : Optional[int] , a__ : Union[str, Any] , a__ : Union[str, Any]=None , a__ : int=None , a__ : Dict=None , a__ : str=None , ): __magic_name__ = () __magic_name__ = () __magic_name__ = () for i, layer_module in enumerate(self.layer ): if self.output_hidden_states: __magic_name__ = all_hidden_states + (hidden_states,) __magic_name__ = layer_module( a__ , a__ , head_mask[i] , a__ , a__ ) __magic_name__ = layer_outputs[0] if self.output_attentions: __magic_name__ = all_attentions + (layer_outputs[1],) __magic_name__ = (hidden_states,) if self.output_hidden_states: __magic_name__ = current_outputs + (all_hidden_states,) if self.output_attentions: __magic_name__ = current_outputs + (all_attentions,) __magic_name__ = self.highway[i](a__ ) # logits, pooled_output if not self.training: __magic_name__ = highway_exit[0] __magic_name__ = entropy(a__ ) __magic_name__ = highway_exit + (highway_entropy,) # logits, hidden_states(?), entropy __magic_name__ = all_highway_exits + (highway_exit,) if highway_entropy < self.early_exit_entropy[i]: __magic_name__ = (highway_logits,) + current_outputs[1:] + (all_highway_exits,) raise HighwayException(a__ , i + 1 ) else: __magic_name__ = all_highway_exits + (highway_exit,) # Add last layer if self.output_hidden_states: __magic_name__ = all_hidden_states + (hidden_states,) __magic_name__ = (hidden_states,) if self.output_hidden_states: __magic_name__ = outputs + (all_hidden_states,) if self.output_attentions: __magic_name__ = outputs + (all_attentions,) __magic_name__ = outputs + (all_highway_exits,) return outputs # last-layer hidden state, (all hidden states), (all attentions), all highway exits @add_start_docstrings( """The Bert Model transformer with early exiting (DeeBERT). """ ,__a ,) class _SCREAMING_SNAKE_CASE ( __a ): def __init__( self : Optional[Any] , a__ : Any ): super().__init__(a__ ) __magic_name__ = config __magic_name__ = BertEmbeddings(a__ ) __magic_name__ = DeeBertEncoder(a__ ) __magic_name__ = BertPooler(a__ ) self.init_weights() def snake_case__ ( self : Optional[int] ): self.encoder.init_highway_pooler(self.pooler ) def snake_case__ ( self : int ): return self.embeddings.word_embeddings def snake_case__ ( self : str , a__ : Union[str, Any] ): __magic_name__ = value def snake_case__ ( self : List[Any] , a__ : List[Any] ): for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(a__ ) @add_start_docstrings_to_model_forward(a__ ) def snake_case__ ( self : int , a__ : Tuple=None , a__ : Dict=None , a__ : Union[str, Any]=None , a__ : List[Any]=None , a__ : Dict=None , a__ : Optional[Any]=None , a__ : int=None , a__ : Union[str, Any]=None , ): if input_ids is not None and inputs_embeds is not None: raise ValueError('''You cannot specify both input_ids and inputs_embeds at the same time''' ) elif input_ids is not None: __magic_name__ = input_ids.size() elif inputs_embeds is not None: __magic_name__ = inputs_embeds.size()[:-1] else: raise ValueError('''You have to specify either input_ids or inputs_embeds''' ) __magic_name__ = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: __magic_name__ = torch.ones(a__ , device=a__ ) if encoder_attention_mask is None: __magic_name__ = torch.ones(a__ , device=a__ ) if token_type_ids is None: __magic_name__ = torch.zeros(a__ , dtype=torch.long , device=a__ ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. __magic_name__ = self.get_extended_attention_mask(a__ , a__ , a__ ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if encoder_attention_mask.dim() == 3: __magic_name__ = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.dim() == 2: __magic_name__ = encoder_attention_mask[:, None, None, :] __magic_name__ = encoder_extended_attention_mask.to( dtype=next(self.parameters() ).dtype ) # fp16 compatibility __magic_name__ = (1.0 - encoder_extended_attention_mask) * -10_000.0 # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] __magic_name__ = self.get_head_mask(a__ , self.config.num_hidden_layers ) __magic_name__ = self.embeddings( input_ids=a__ , position_ids=a__ , token_type_ids=a__ , inputs_embeds=a__ ) __magic_name__ = self.encoder( a__ , attention_mask=a__ , head_mask=a__ , encoder_hidden_states=a__ , encoder_attention_mask=a__ , ) __magic_name__ = encoder_outputs[0] __magic_name__ = self.pooler(a__ ) __magic_name__ = ( sequence_output, pooled_output, ) + encoder_outputs[ 1: ] # add hidden_states and attentions if they are here return outputs # sequence_output, pooled_output, (hidden_states), (attentions), highway exits class _SCREAMING_SNAKE_CASE ( __a ): def __init__( self : Optional[int] , a__ : Union[str, Any] , a__ : List[str] ): __magic_name__ = message __magic_name__ = exit_layer # start from 1! class _SCREAMING_SNAKE_CASE ( nn.Module ): def __init__( self : Optional[Any] , a__ : List[Any] ): super().__init__() __magic_name__ = BertPooler(a__ ) __magic_name__ = nn.Dropout(config.hidden_dropout_prob ) __magic_name__ = nn.Linear(config.hidden_size , config.num_labels ) def snake_case__ ( self : int , a__ : Union[str, Any] ): # Pooler __magic_name__ = encoder_outputs[0] __magic_name__ = self.pooler(a__ ) # "return" pooler_output # BertModel __magic_name__ = (pooler_input, pooler_output) + encoder_outputs[1:] # "return" bmodel_output # Dropout and classification __magic_name__ = bmodel_output[1] __magic_name__ = self.dropout(a__ ) __magic_name__ = self.classifier(a__ ) return logits, pooled_output @add_start_docstrings( """Bert Model (with early exiting - DeeBERT) with a classifier on top, also takes care of multi-layer training. """ ,__a ,) class _SCREAMING_SNAKE_CASE ( __a ): def __init__( self : Tuple , a__ : int ): super().__init__(a__ ) __magic_name__ = config.num_labels __magic_name__ = config.num_hidden_layers __magic_name__ = DeeBertModel(a__ ) __magic_name__ = nn.Dropout(config.hidden_dropout_prob ) __magic_name__ = nn.Linear(config.hidden_size , self.config.num_labels ) self.init_weights() @add_start_docstrings_to_model_forward(a__ ) def snake_case__ ( self : str , a__ : Optional[Any]=None , a__ : Union[str, Any]=None , a__ : Union[str, Any]=None , a__ : Dict=None , a__ : str=None , a__ : List[Any]=None , a__ : Optional[int]=None , a__ : int=-1 , a__ : Tuple=False , ): __magic_name__ = self.num_layers try: __magic_name__ = self.bert( a__ , attention_mask=a__ , token_type_ids=a__ , position_ids=a__ , head_mask=a__ , inputs_embeds=a__ , ) # sequence_output, pooled_output, (hidden_states), (attentions), highway exits __magic_name__ = outputs[1] __magic_name__ = self.dropout(a__ ) __magic_name__ = self.classifier(a__ ) __magic_name__ = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: __magic_name__ = e.message __magic_name__ = e.exit_layer __magic_name__ = outputs[0] if not self.training: __magic_name__ = entropy(a__ ) __magic_name__ = [] __magic_name__ = [] if labels is not None: if self.num_labels == 1: # We are doing regression __magic_name__ = MSELoss() __magic_name__ = loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: __magic_name__ = CrossEntropyLoss() __magic_name__ = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits __magic_name__ = [] for highway_exit in outputs[-1]: __magic_name__ = highway_exit[0] if not self.training: highway_logits_all.append(a__ ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression __magic_name__ = MSELoss() __magic_name__ = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: __magic_name__ = CrossEntropyLoss() __magic_name__ = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(a__ ) if train_highway: __magic_name__ = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: __magic_name__ = (loss,) + outputs if not self.training: __magic_name__ = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: __magic_name__ = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), (highway_exits)
432
0
def _a ( __UpperCamelCase ): a_ : list[list[int]] = [[0 for _ in range(__UpperCamelCase )] for _ in range(m + 1 )] for i in range(m + 1 ): a_ : str = 1 for n in range(m + 1 ): for k in range(1 , __UpperCamelCase ): memo[n][k] += memo[n][k - 1] if n - k > 0: memo[n][k] += memo[n - k - 1][k] return memo[m][m - 1] if __name__ == "__main__": import sys if len(sys.argv) == 1: try: __lowerCamelCase = int(input('''Enter a number: ''').strip()) print(partition(n)) except ValueError: print('''Please enter a number.''') else: try: __lowerCamelCase = int(sys.argv[1]) print(partition(n)) except ValueError: print('''Please pass a number.''')
478
import numpy as np __lowerCamelCase = [ ['''a''', '''b''', '''c''', '''d''', '''e'''], ['''f''', '''g''', '''h''', '''i''', '''k'''], ['''l''', '''m''', '''n''', '''o''', '''p'''], ['''q''', '''r''', '''s''', '''t''', '''u'''], ['''v''', '''w''', '''x''', '''y''', '''z'''], ] class a__ : def __init__( self : Union[str, Any] ): a_ : List[Any] = np.array(lowerCamelCase_ ) def UpperCAmelCase( self : Union[str, Any] , lowerCamelCase_ : str ): a_ , a_ : Optional[int] = np.where(letter == self.SQUARE ) a_ : Union[str, Any] = np.concatenate([indexa + 1, indexa + 1] ) return indexes def UpperCAmelCase( self : Tuple , lowerCamelCase_ : int , lowerCamelCase_ : int ): a_ : str = self.SQUARE[indexa - 1, indexa - 1] return letter def UpperCAmelCase( self : Optional[Any] , lowerCamelCase_ : str ): a_ : List[str] = message.lower() a_ : str = message.replace(""" """ , """""" ) a_ : Union[str, Any] = message.replace("""j""" , """i""" ) a_ : Optional[Any] = np.empty((2, len(lowerCamelCase_ )) ) for letter_index in range(len(lowerCamelCase_ ) ): a_ : int = self.letter_to_numbers(message[letter_index] ) a_ : str = numbers[0] a_ : int = numbers[1] a_ : int = first_step.reshape(2 * len(lowerCamelCase_ ) ) a_ : Optional[Any] = """""" for numbers_index in range(len(lowerCamelCase_ ) ): a_ : Optional[Any] = int(second_step[numbers_index * 2] ) a_ : Optional[Any] = int(second_step[(numbers_index * 2) + 1] ) a_ : Optional[Any] = self.numbers_to_letter(lowerCamelCase_ , lowerCamelCase_ ) a_ : List[str] = encoded_message + letter return encoded_message def UpperCAmelCase( self : Tuple , lowerCamelCase_ : str ): a_ : Optional[Any] = message.lower() message.replace(""" """ , """""" ) a_ : int = np.empty(2 * len(lowerCamelCase_ ) ) for letter_index in range(len(lowerCamelCase_ ) ): a_ : str = self.letter_to_numbers(message[letter_index] ) a_ : Optional[int] = numbers[0] a_ : Optional[Any] = numbers[1] a_ : Tuple = first_step.reshape((2, len(lowerCamelCase_ )) ) a_ : Optional[int] = """""" for numbers_index in range(len(lowerCamelCase_ ) ): a_ : Dict = int(second_step[0, numbers_index] ) a_ : Tuple = int(second_step[1, numbers_index] ) a_ : Tuple = self.numbers_to_letter(lowerCamelCase_ , lowerCamelCase_ ) a_ : Union[str, Any] = decoded_message + letter return decoded_message
478
1
"""simple docstring""" import inspect from typing import Callable, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import DiffusionPipeline from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import logging UpperCamelCase = logging.get_logger(__name__) # pylint: disable=invalid-name class UpperCamelCase__ ( _lowerCAmelCase ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) -> Union[str, Any]: super().__init__() self.register_modules( vae=SCREAMING_SNAKE_CASE__ , text_encoder=SCREAMING_SNAKE_CASE__ , tokenizer=SCREAMING_SNAKE_CASE__ , unet=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ , safety_checker=SCREAMING_SNAKE_CASE__ , feature_extractor=SCREAMING_SNAKE_CASE__ , ) def snake_case__ ( self , SCREAMING_SNAKE_CASE__ = "auto" ) -> int: if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory A__ = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(SCREAMING_SNAKE_CASE__ ) def snake_case__ ( self ) -> Union[str, Any]: self.enable_attention_slicing(SCREAMING_SNAKE_CASE__ ) @torch.no_grad() def __call__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = 512 , SCREAMING_SNAKE_CASE__ = 512 , SCREAMING_SNAKE_CASE__ = 50 , SCREAMING_SNAKE_CASE__ = 7.5 , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = 1 , SCREAMING_SNAKE_CASE__ = 0.0 , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = "pil" , SCREAMING_SNAKE_CASE__ = True , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = 1 , SCREAMING_SNAKE_CASE__ = None , **SCREAMING_SNAKE_CASE__ , ) -> Dict: if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): A__ = 1 elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): A__ = len(SCREAMING_SNAKE_CASE__ ) else: raise ValueError(f"""`prompt` has to be of type `str` or `list` but is {type(SCREAMING_SNAKE_CASE__ )}""" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or callback_steps <= 0) ): raise ValueError( f"""`callback_steps` has to be a positive integer but is {callback_steps} of type""" f""" {type(SCREAMING_SNAKE_CASE__ )}.""" ) # get prompt text embeddings A__ = self.tokenizer( SCREAMING_SNAKE_CASE__ , padding="max_length" , max_length=self.tokenizer.model_max_length , return_tensors="pt" , ) A__ = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: A__ = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f""" {self.tokenizer.model_max_length} tokens: {removed_text}""" ) A__ = text_input_ids[:, : self.tokenizer.model_max_length] if text_embeddings is None: A__ = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method A__ , A__ , A__ = text_embeddings.shape A__ = text_embeddings.repeat(1 , SCREAMING_SNAKE_CASE__ , 1 ) A__ = text_embeddings.view(bs_embed * num_images_per_prompt , SCREAMING_SNAKE_CASE__ , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. A__ = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: A__ = 42 if negative_prompt is None: A__ = [""] elif type(SCREAMING_SNAKE_CASE__ ) is not type(SCREAMING_SNAKE_CASE__ ): raise TypeError( f"""`negative_prompt` should be the same type to `prompt`, but got {type(SCREAMING_SNAKE_CASE__ )} !=""" f""" {type(SCREAMING_SNAKE_CASE__ )}.""" ) elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): A__ = [negative_prompt] elif batch_size != len(SCREAMING_SNAKE_CASE__ ): raise ValueError( f"""`negative_prompt`: {negative_prompt} has batch size {len(SCREAMING_SNAKE_CASE__ )}, but `prompt`:""" f""" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches""" " the batch size of `prompt`." ) else: A__ = negative_prompt A__ = text_input_ids.shape[-1] A__ = self.tokenizer( SCREAMING_SNAKE_CASE__ , padding="max_length" , max_length=SCREAMING_SNAKE_CASE__ , truncation=SCREAMING_SNAKE_CASE__ , return_tensors="pt" , ) A__ = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method A__ = uncond_embeddings.shape[1] A__ = uncond_embeddings.repeat(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 1 ) A__ = uncond_embeddings.view(batch_size * num_images_per_prompt , SCREAMING_SNAKE_CASE__ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes A__ = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. A__ = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) A__ = (batch_size * num_images_per_prompt, self.unet.config.in_channels, 64, 64) A__ = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps A__ = torch.randn( SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , device="cpu" , dtype=SCREAMING_SNAKE_CASE__ ).to(self.device ) A__ = torch.randn(SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , device="cpu" , dtype=SCREAMING_SNAKE_CASE__ ).to( self.device ) else: A__ = torch.randn( SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , device=self.device , dtype=SCREAMING_SNAKE_CASE__ ) A__ = torch.randn(SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , device=self.device , dtype=SCREAMING_SNAKE_CASE__ ) else: if latents_reference.shape != latents_shape: raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) A__ = latents_reference.to(self.device ) A__ = latents.to(self.device ) # This is the key part of the pipeline where we # try to ensure that the generated images w/ the same seed # but different sizes actually result in similar images A__ = (latents_shape[3] - latents_shape_reference[3]) // 2 A__ = (latents_shape[2] - latents_shape_reference[2]) // 2 A__ = latents_shape_reference[3] if dx >= 0 else latents_shape_reference[3] + 2 * dx A__ = latents_shape_reference[2] if dy >= 0 else latents_shape_reference[2] + 2 * dy A__ = 0 if dx < 0 else dx A__ = 0 if dy < 0 else dy A__ = max(-dx , 0 ) A__ = max(-dy , 0 ) # import pdb # pdb.set_trace() A__ = latents_reference[:, :, dy : dy + h, dx : dx + w] # set timesteps self.scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand A__ = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler A__ = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] A__ = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) A__ = {} if accepts_eta: A__ = eta for i, t in enumerate(self.progress_bar(SCREAMING_SNAKE_CASE__ ) ): # expand the latents if we are doing classifier free guidance A__ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents A__ = self.scheduler.scale_model_input(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # predict the noise residual A__ = self.unet(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , encoder_hidden_states=SCREAMING_SNAKE_CASE__ ).sample # perform guidance if do_classifier_free_guidance: A__ , A__ = noise_pred.chunk(2 ) A__ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 A__ = self.scheduler.step(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) A__ = 1 / 0.1_8_2_1_5 * latents A__ = self.vae.decode(SCREAMING_SNAKE_CASE__ ).sample A__ = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 A__ = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if self.safety_checker is not None: A__ = self.feature_extractor(self.numpy_to_pil(SCREAMING_SNAKE_CASE__ ) , return_tensors="pt" ).to( self.device ) A__ , A__ = self.safety_checker( images=SCREAMING_SNAKE_CASE__ , clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype ) ) else: A__ = None if output_type == "pil": A__ = self.numpy_to_pil(SCREAMING_SNAKE_CASE__ ) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=SCREAMING_SNAKE_CASE__ , nsfw_content_detected=SCREAMING_SNAKE_CASE__ )
104
'''simple docstring''' import argparse import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( CLIPTokenizer, CLIPTokenizerFast, VideoMAEImageProcessor, XCLIPConfig, XCLIPModel, XCLIPProcessor, XCLIPTextConfig, XCLIPVisionConfig, ) def __lowercase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" __a = XCLIPTextConfig() # derive patch size from model name __a = model_name.find("""patch""" ) __a = int(model_name[start_idx + len("""patch""" ) : start_idx + len("""patch""" ) + 2] ) __a = XCLIPVisionConfig(patch_size=__SCREAMING_SNAKE_CASE , num_frames=__SCREAMING_SNAKE_CASE ) if "large" in model_name: __a = 768 __a = 3072 __a = 12 __a = 1024 __a = 4096 __a = 16 __a = 24 __a = 768 __a = 3072 if model_name == "xclip-large-patch14-16-frames": __a = 336 __a = XCLIPConfig.from_text_vision_configs(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if "large" in model_name: __a = 768 return config def __lowercase ( __SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" if name == "token_embedding.weight": __a = name.replace("""token_embedding.weight""" , """text_model.embeddings.token_embedding.weight""" ) if name == "positional_embedding": __a = name.replace("""positional_embedding""" , """text_model.embeddings.position_embedding.weight""" ) if "ln_1" in name: __a = name.replace("""ln_1""" , """layer_norm1""" ) if "ln_2" in name: __a = name.replace("""ln_2""" , """layer_norm2""" ) if "c_fc" in name: __a = name.replace("""c_fc""" , """fc1""" ) if "c_proj" in name: __a = name.replace("""c_proj""" , """fc2""" ) if name.startswith("""transformer.resblocks""" ): __a = name.replace("""transformer.resblocks""" , """text_model.encoder.layers""" ) if "attn.out_proj" in name and "message" not in name: __a = name.replace("""attn.out_proj""" , """self_attn.out_proj""" ) if "ln_final" in name: __a = name.replace("""ln_final""" , """text_model.final_layer_norm""" ) # visual encoder if name == "visual.class_embedding": __a = name.replace("""visual.class_embedding""" , """vision_model.embeddings.class_embedding""" ) if name == "visual.positional_embedding": __a = name.replace("""visual.positional_embedding""" , """vision_model.embeddings.position_embedding.weight""" ) if name.startswith("""visual.transformer.resblocks""" ): __a = name.replace("""visual.transformer.resblocks""" , """vision_model.encoder.layers""" ) if "visual.conv1" in name: __a = name.replace("""visual.conv1""" , """vision_model.embeddings.patch_embedding""" ) if "visual.ln_pre" in name: __a = name.replace("""visual.ln_pre""" , """vision_model.pre_layernorm""" ) if "visual.ln_post" in name: __a = name.replace("""visual.ln_post""" , """vision_model.post_layernorm""" ) if "visual.proj" in name: __a = name.replace("""visual.proj""" , """visual_projection.weight""" ) if "text_projection" in name: __a = name.replace("""text_projection""" , """text_projection.weight""" ) # things on top if "prompts_visual_proj" in name: __a = name.replace("""prompts_visual_proj""" , """prompts_visual_projection""" ) if "prompts_visual_ln" in name: __a = name.replace("""prompts_visual_ln""" , """prompts_visual_layernorm""" ) # mit if name == "mit.positional_embedding": __a = name.replace("""positional""" , """position""" ) if name.startswith("""mit.resblocks""" ): __a = name.replace("""mit.resblocks""" , """mit.encoder.layers""" ) # prompts generator if name.startswith("""prompts_generator.norm""" ): __a = name.replace("""prompts_generator.norm""" , """prompts_generator.layernorm""" ) return name def __lowercase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" for key in orig_state_dict.copy().keys(): __a = orig_state_dict.pop(__SCREAMING_SNAKE_CASE ) if "attn.in_proj" in key: __a = key.split(""".""" ) if key.startswith("""visual""" ): __a = key_split[3] __a = config.vision_config.hidden_size if "message_attn" in key: if "weight" in key: __a = val[ :dim, : ] __a = val[ dim : dim * 2, : ] __a = val[ -dim:, : ] else: __a = val[ :dim ] __a = val[ dim : dim * 2 ] __a = val[ -dim: ] else: if "weight" in key: __a = val[ :dim, : ] __a = val[ dim : dim * 2, : ] __a = val[ -dim:, : ] else: __a = val[:dim] __a = val[ dim : dim * 2 ] __a = val[-dim:] elif key.startswith("""mit""" ): __a = key_split[2] __a = config.vision_config.mit_hidden_size if "weight" in key: __a = val[:dim, :] __a = val[dim : dim * 2, :] __a = val[-dim:, :] else: __a = val[:dim] __a = val[dim : dim * 2] __a = val[-dim:] else: __a = key_split[2] __a = config.text_config.hidden_size if "weight" in key: __a = val[:dim, :] __a = val[ dim : dim * 2, : ] __a = val[-dim:, :] else: __a = val[:dim] __a = val[ dim : dim * 2 ] __a = val[-dim:] else: __a = rename_key(__SCREAMING_SNAKE_CASE ) if new_key_name in ["visual_projection.weight", "text_projection.weight"]: __a = val.T __a = val return orig_state_dict def __lowercase ( __SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" if num_frames == 8: __a = """eating_spaghetti_8_frames.npy""" elif num_frames == 16: __a = """eating_spaghetti.npy""" elif num_frames == 32: __a = """eating_spaghetti_32_frames.npy""" __a = hf_hub_download( repo_id="""hf-internal-testing/spaghetti-video""" , filename=__SCREAMING_SNAKE_CASE , repo_type="""dataset""" , ) __a = np.load(__SCREAMING_SNAKE_CASE ) return list(__SCREAMING_SNAKE_CASE ) def __lowercase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=False ) -> Union[str, Any]: """simple docstring""" __a = { # fully supervised kinetics-400 checkpoints """xclip-base-patch32""": """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_8.pth""", """xclip-base-patch32-16-frames""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_16.pth""" ), """xclip-base-patch16""": """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_8.pth""", """xclip-base-patch16-16-frames""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_16.pth""" ), """xclip-large-patch14""": """https://drive.google.com/u/0/uc?id=1NUOImq0o5DlQTST17iIP3vG7DgmHQuCx&amp;export=download&amp;confirm=t&amp;uuid=b26caedc-88e2-473e-830a-9d158b653cdb""", """xclip-large-patch14-16-frames""": """https://drive.google.com/u/0/uc?id=1FOYgnJc097OJ4lGwtRCCydQyVPJEOH7d&amp;export=download&amp;confirm=t&amp;uuid=538fa810-e671-4050-b385-9a623f89804f""", # fully supervised kinetics-600 checkpoints """xclip-base-patch16-kinetics-600""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_8.pth""" ), """xclip-base-patch16-kinetics-600-16-frames""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_16.pth""" ), """xclip-large-patch14-kinetics-600""": """https://drive.google.com/u/0/uc?id=1FV8C1INuM91sLAN4ImjzePLIlpMSihwV&amp;export=download&amp;confirm=t&amp;uuid=141d4977-4a65-44ae-864f-4b0c19f838be""", # few shot """xclip-base-patch16-hmdb-2-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_2.pth""" ), """xclip-base-patch16-hmdb-4-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_4.pth""" ), """xclip-base-patch16-hmdb-8-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_8.pth""" ), """xclip-base-patch16-hmdb-16-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_16.pth""" ), """xclip-base-patch16-ucf-2-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_2.pth""" ), """xclip-base-patch16-ucf-4-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_4.pth""" ), """xclip-base-patch16-ucf-8-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_8.pth""" ), """xclip-base-patch16-ucf-16-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_16.pth""" ), # zero shot """xclip-base-patch16-zero-shot""": """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/zero.pth""", } __a = model_to_url[model_name] __a = 8 if "16-frames" in model_name: __a = 16 elif "shot" in model_name: __a = 32 __a = get_xclip_config(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __a = XCLIPModel(__SCREAMING_SNAKE_CASE ) model.eval() if "drive" in checkpoint_url: __a = """pytorch_model.bin""" gdown.cached_download(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , quiet=__SCREAMING_SNAKE_CASE ) __a = torch.load(__SCREAMING_SNAKE_CASE , map_location="""cpu""" )["""model"""] else: __a = torch.hub.load_state_dict_from_url(__SCREAMING_SNAKE_CASE )["""model"""] __a = convert_state_dict(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __a = XCLIPModel(__SCREAMING_SNAKE_CASE ) __a , __a = model.load_state_dict(__SCREAMING_SNAKE_CASE , strict=__SCREAMING_SNAKE_CASE ) assert missing_keys == ["text_model.embeddings.position_ids", "vision_model.embeddings.position_ids"] model.eval() __a = 336 if model_name == """xclip-large-patch14-16-frames""" else 224 __a = VideoMAEImageProcessor(size=__SCREAMING_SNAKE_CASE ) __a = CLIPTokenizer.from_pretrained("""openai/clip-vit-base-patch32""" ) __a = CLIPTokenizerFast.from_pretrained("""openai/clip-vit-base-patch32""" ) __a = XCLIPProcessor(image_processor=__SCREAMING_SNAKE_CASE , tokenizer=__SCREAMING_SNAKE_CASE ) __a = prepare_video(__SCREAMING_SNAKE_CASE ) __a = processor( text=["""playing sports""", """eating spaghetti""", """go shopping"""] , videos=__SCREAMING_SNAKE_CASE , return_tensors="""pt""" , padding=__SCREAMING_SNAKE_CASE ) print("""Shape of pixel values:""" , inputs.pixel_values.shape ) with torch.no_grad(): __a = model(**__SCREAMING_SNAKE_CASE ) # Verify outputs __a = outputs.logits_per_video __a = logits_per_video.softmax(dim=1 ) print("""Probs:""" , __SCREAMING_SNAKE_CASE ) # kinetics-400 if model_name == "xclip-base-patch32": __a = torch.tensor([[0.0_019, 0.9_951, 0.0_030]] ) elif model_name == "xclip-base-patch32-16-frames": __a = torch.tensor([[7.0999E-04, 9.9883E-01, 4.5580E-04]] ) elif model_name == "xclip-base-patch16": __a = torch.tensor([[0.0_083, 0.9_681, 0.0_236]] ) elif model_name == "xclip-base-patch16-16-frames": __a = torch.tensor([[7.6937E-04, 9.9728E-01, 1.9473E-03]] ) elif model_name == "xclip-large-patch14": __a = torch.tensor([[0.0_062, 0.9_864, 0.0_075]] ) elif model_name == "xclip-large-patch14-16-frames": __a = torch.tensor([[3.3877E-04, 9.9937E-01, 2.8888E-04]] ) # kinetics-600 elif model_name == "xclip-base-patch16-kinetics-600": __a = torch.tensor([[0.0_555, 0.8_914, 0.0_531]] ) elif model_name == "xclip-base-patch16-kinetics-600-16-frames": __a = torch.tensor([[3.8554E-04, 9.9929E-01, 3.2754E-04]] ) elif model_name == "xclip-large-patch14-kinetics-600": __a = torch.tensor([[0.0_036, 0.9_920, 0.0_045]] ) # few shot elif model_name == "xclip-base-patch16-hmdb-2-shot": __a = torch.tensor([[7.1890E-06, 9.9994E-01, 5.6559E-05]] ) elif model_name == "xclip-base-patch16-hmdb-4-shot": __a = torch.tensor([[1.0320E-05, 9.9993E-01, 6.2435E-05]] ) elif model_name == "xclip-base-patch16-hmdb-8-shot": __a = torch.tensor([[4.1377E-06, 9.9990E-01, 9.8386E-05]] ) elif model_name == "xclip-base-patch16-hmdb-16-shot": __a = torch.tensor([[4.1347E-05, 9.9962E-01, 3.3411E-04]] ) elif model_name == "xclip-base-patch16-ucf-2-shot": __a = torch.tensor([[8.5857E-05, 9.9928E-01, 6.3291E-04]] ) elif model_name == "xclip-base-patch16-ucf-4-shot": __a = torch.tensor([[8.5857E-05, 9.9928E-01, 6.3291E-04]] ) elif model_name == "xclip-base-patch16-ucf-8-shot": __a = torch.tensor([[0.0_027, 0.9_904, 0.0_070]] ) elif model_name == "xclip-base-patch16-ucf-16-shot": __a = torch.tensor([[9.8219E-04, 9.9593E-01, 3.0863E-03]] ) # zero shot elif model_name == "xclip-base-patch16-zero-shot": __a = torch.tensor([[3.5082E-04, 9.9785E-01, 1.7966E-03]] ) else: raise ValueError(F'''Model name {model_name} not supported''' ) assert torch.allclose(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , atol=1E-3 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(__SCREAMING_SNAKE_CASE ) if push_to_hub: print("""Pushing model, processor and slow tokenizer files to the hub...""" ) model.push_to_hub(__SCREAMING_SNAKE_CASE , organization="""nielsr""" ) processor.push_to_hub(__SCREAMING_SNAKE_CASE , organization="""nielsr""" ) slow_tokenizer.push_to_hub(__SCREAMING_SNAKE_CASE , organization="""nielsr""" ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='xclip-base-patch32', type=str, help='Name of the model.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) SCREAMING_SNAKE_CASE_ = parser.parse_args() convert_xclip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
582
0
'''simple docstring''' import argparse import gc import json import os import re import torch from huggingface_hub import hf_hub_download from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerFast, RwkvConfig from transformers.modeling_utils import WEIGHTS_INDEX_NAME, shard_checkpoint SCREAMING_SNAKE_CASE_ = { '169M': 12, '430M': 24, '1B5': 24, '3B': 32, '7B': 32, '14B': 40, } SCREAMING_SNAKE_CASE_ = { '169M': 7_68, '430M': 10_24, '1B5': 20_48, '3B': 25_60, '7B': 40_96, '14B': 51_20, } def __lowercase ( __SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" __a = list(state_dict.keys() ) for name in state_dict_keys: __a = state_dict.pop(__SCREAMING_SNAKE_CASE ) # emb -> embedding if name.startswith("""emb.""" ): __a = name.replace("""emb.""" , """embeddings.""" ) # ln_0 -> pre_ln (only present at block 0) if name.startswith("""blocks.0.ln0""" ): __a = name.replace("""blocks.0.ln0""" , """blocks.0.pre_ln""" ) # att -> attention __a = re.sub(r"""blocks\.(\d+)\.att""" , r"""blocks.\1.attention""" , __SCREAMING_SNAKE_CASE ) # ffn -> feed_forward __a = re.sub(r"""blocks\.(\d+)\.ffn""" , r"""blocks.\1.feed_forward""" , __SCREAMING_SNAKE_CASE ) # time_mix_k -> time_mix_key and reshape if name.endswith(""".time_mix_k""" ): __a = name.replace(""".time_mix_k""" , """.time_mix_key""" ) # time_mix_v -> time_mix_value and reshape if name.endswith(""".time_mix_v""" ): __a = name.replace(""".time_mix_v""" , """.time_mix_value""" ) # time_mix_r -> time_mix_key and reshape if name.endswith(""".time_mix_r""" ): __a = name.replace(""".time_mix_r""" , """.time_mix_receptance""" ) if name != "head.weight": __a = """rwkv.""" + name __a = weight return state_dict def __lowercase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=None ) -> Tuple: """simple docstring""" if tokenizer_file is None: print("""No `--tokenizer_file` provided, we will use the default tokenizer.""" ) __a = 5_0277 __a = AutoTokenizer.from_pretrained("""EleutherAI/gpt-neox-20b""" ) else: __a = PreTrainedTokenizerFast(tokenizer_file=__SCREAMING_SNAKE_CASE ) __a = len(__SCREAMING_SNAKE_CASE ) tokenizer.save_pretrained(__SCREAMING_SNAKE_CASE ) # 2. Build the config __a = list(NUM_HIDDEN_LAYERS_MAPPING.keys() ) if size is None: # Try to infer size from the checkpoint name for candidate in possible_sizes: if candidate in checkpoint_file: __a = candidate break if size is None: raise ValueError("""Could not infer the size, please provide it with the `--size` argument.""" ) if size not in possible_sizes: raise ValueError(F'''`size` should be one of {possible_sizes}, got {size}.''' ) __a = RwkvConfig( vocab_size=__SCREAMING_SNAKE_CASE , num_hidden_layers=NUM_HIDDEN_LAYERS_MAPPING[size] , hidden_size=HIDEN_SIZE_MAPPING[size] , ) config.save_pretrained(__SCREAMING_SNAKE_CASE ) # 3. Download model file then convert state_dict __a = hf_hub_download(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __a = torch.load(__SCREAMING_SNAKE_CASE , map_location="""cpu""" ) __a = convert_state_dict(__SCREAMING_SNAKE_CASE ) # 4. Split in shards and save __a , __a = shard_checkpoint(__SCREAMING_SNAKE_CASE ) for shard_file, shard in shards.items(): torch.save(__SCREAMING_SNAKE_CASE , os.path.join(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) if index is not None: __a = os.path.join(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Save the index as well with open(__SCREAMING_SNAKE_CASE , """w""" , encoding="""utf-8""" ) as f: __a = json.dumps(__SCREAMING_SNAKE_CASE , indent=2 , sort_keys=__SCREAMING_SNAKE_CASE ) + """\n""" f.write(__SCREAMING_SNAKE_CASE ) # 5. Clean up shards (for some reason the file PyTorch saves take the same space as the whole state_dict print( """Cleaning up shards. This may error with an OOM error, it this is the case don't worry you still have converted the model.""" ) __a = list(shards.keys() ) del state_dict del shards gc.collect() for shard_file in shard_files: __a = torch.load(os.path.join(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) torch.save({k: v.cpu().clone() for k, v in state_dict.items()} , os.path.join(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) del state_dict gc.collect() if push_to_hub: if model_name is None: raise ValueError("""Please provide a `model_name` to push the model to the Hub.""" ) __a = AutoModelForCausalLM.from_pretrained(__SCREAMING_SNAKE_CASE ) model.push_to_hub(__SCREAMING_SNAKE_CASE , max_shard_size="""2GB""" ) tokenizer.push_to_hub(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--repo_id', default=None, type=str, required=True, help='Repo ID from which to pull the checkpoint.' ) parser.add_argument( '--checkpoint_file', default=None, type=str, required=True, help='Name of the checkpoint file in the repo.' ) parser.add_argument( '--output_dir', default=None, type=str, required=True, help='Where to save the converted model.' ) parser.add_argument( '--tokenizer_file', default=None, type=str, help='Path to the tokenizer file to use (if not provided, only the model is converted).', ) parser.add_argument( '--size', default=None, type=str, help='Size of the model. Will be inferred from the `checkpoint_file` if not passed.', ) parser.add_argument( '--push_to_hub', action='store_true', help='Push to the Hub the converted model.', ) parser.add_argument( '--model_name', default=None, type=str, help='Name of the pushed model on the Hub, including the username / organization.', ) SCREAMING_SNAKE_CASE_ = parser.parse_args() convert_rmkv_checkpoint_to_hf_format( args.repo_id, args.checkpoint_file, args.output_dir, size=args.size, tokenizer_file=args.tokenizer_file, push_to_hub=args.push_to_hub, model_name=args.model_name, )
201
'''simple docstring''' from __future__ import annotations import os from typing import Any import requests SCREAMING_SNAKE_CASE_ = 'https://api.github.com' # https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user SCREAMING_SNAKE_CASE_ = BASE_URL + '/user' # https://github.com/settings/tokens SCREAMING_SNAKE_CASE_ = os.environ.get('USER_TOKEN', '') def __lowercase ( __SCREAMING_SNAKE_CASE ) -> dict[Any, Any]: """simple docstring""" __a = { """Authorization""": F'''token {auth_token}''', """Accept""": """application/vnd.github.v3+json""", } return requests.get(__SCREAMING_SNAKE_CASE , headers=__SCREAMING_SNAKE_CASE ).json() if __name__ == "__main__": # pragma: no cover if USER_TOKEN: for key, value in fetch_github_info(USER_TOKEN).items(): print(f"""{key}: {value}""") else: raise ValueError('\'USER_TOKEN\' field cannot be empty.')
201
1
from __future__ import annotations import unittest from transformers import DistilBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.distilbert.modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertModel, ) class UpperCamelCase : '''simple docstring''' def __init__( self , UpperCamelCase_ , ): lowercase_ :Dict = parent lowercase_ :Union[str, Any] = 13 lowercase_ :Union[str, Any] = 7 lowercase_ :Any = True lowercase_ :Tuple = True lowercase_ :Optional[Any] = False lowercase_ :Optional[Any] = True lowercase_ :Optional[Any] = 99 lowercase_ :Optional[Any] = 32 lowercase_ :Any = 2 lowercase_ :str = 4 lowercase_ :Dict = 37 lowercase_ :str = '''gelu''' lowercase_ :List[str] = 0.1 lowercase_ :List[str] = 0.1 lowercase_ :Optional[int] = 512 lowercase_ :int = 16 lowercase_ :Any = 2 lowercase_ :List[Any] = 0.02 lowercase_ :Tuple = 3 lowercase_ :Any = 4 lowercase_ :List[str] = None def UpperCamelCase ( self ): lowercase_ :Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase_ :Dict = None if self.use_input_mask: lowercase_ :Tuple = random_attention_mask([self.batch_size, self.seq_length] ) lowercase_ :Optional[Any] = None lowercase_ :Dict = None lowercase_ :str = None if self.use_labels: lowercase_ :List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase_ :List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase_ :Optional[int] = ids_tensor([self.batch_size] , self.num_choices ) lowercase_ :Any = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): lowercase_ :Union[str, Any] = TFDistilBertModel(config=_A ) lowercase_ :Optional[int] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} lowercase_ :List[str] = model(_A ) lowercase_ :Any = [input_ids, input_mask] lowercase_ :Union[str, Any] = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): lowercase_ :Union[str, Any] = TFDistilBertForMaskedLM(config=_A ) lowercase_ :Union[str, Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} lowercase_ :Dict = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): lowercase_ :Union[str, Any] = TFDistilBertForQuestionAnswering(config=_A ) lowercase_ :Union[str, Any] = { '''input_ids''': input_ids, '''attention_mask''': input_mask, } lowercase_ :Optional[int] = model(_A ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): lowercase_ :Tuple = self.num_labels lowercase_ :List[Any] = TFDistilBertForSequenceClassification(_A ) lowercase_ :Dict = {'''input_ids''': input_ids, '''attention_mask''': input_mask} lowercase_ :Optional[int] = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): lowercase_ :int = self.num_choices lowercase_ :str = TFDistilBertForMultipleChoice(_A ) lowercase_ :Union[str, Any] = tf.tile(tf.expand_dims(_A , 1 ) , (1, self.num_choices, 1) ) lowercase_ :int = tf.tile(tf.expand_dims(_A , 1 ) , (1, self.num_choices, 1) ) lowercase_ :List[str] = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, } lowercase_ :Union[str, Any] = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): lowercase_ :List[str] = self.num_labels lowercase_ :int = TFDistilBertForTokenClassification(_A ) lowercase_ :List[str] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} lowercase_ :int = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase ( self ): lowercase_ :Any = self.prepare_config_and_inputs() ((lowercase_) , (lowercase_) , (lowercase_) , (lowercase_) , (lowercase_) , (lowercase_)) :Tuple = config_and_inputs lowercase_ :Optional[int] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class UpperCamelCase ( UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ): '''simple docstring''' lowercase : List[str] =( ( TFDistilBertModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertForMultipleChoice, ) if is_tf_available() else None ) lowercase : Tuple =( { '''feature-extraction''': TFDistilBertModel, '''fill-mask''': TFDistilBertForMaskedLM, '''question-answering''': TFDistilBertForQuestionAnswering, '''text-classification''': TFDistilBertForSequenceClassification, '''token-classification''': TFDistilBertForTokenClassification, '''zero-shot''': TFDistilBertForSequenceClassification, } if is_tf_available() else {} ) lowercase : str =False lowercase : str =False def UpperCamelCase ( self ): lowercase_ :Tuple = TFDistilBertModelTester(self ) lowercase_ :int = ConfigTester(self , config_class=_A , dim=37 ) def UpperCamelCase ( self ): self.config_tester.run_common_tests() def UpperCamelCase ( self ): lowercase_ :Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*_A ) def UpperCamelCase ( self ): lowercase_ :int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*_A ) def UpperCamelCase ( self ): lowercase_ :Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*_A ) def UpperCamelCase ( self ): lowercase_ :Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*_A ) def UpperCamelCase ( self ): lowercase_ :List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*_A ) def UpperCamelCase ( self ): lowercase_ :List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*_A ) @slow def UpperCamelCase ( self ): for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ): lowercase_ :List[str] = TFDistilBertModel.from_pretrained(_A ) self.assertIsNotNone(_A ) @require_tf class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def UpperCamelCase ( self ): lowercase_ :str = TFDistilBertModel.from_pretrained('''distilbert-base-uncased''' ) lowercase_ :int = tf.constant([[0, 1, 2, 3, 4, 5]] ) lowercase_ :Optional[int] = model(_A )[0] lowercase_ :Optional[int] = [1, 6, 768] self.assertEqual(output.shape , _A ) lowercase_ :List[str] = tf.constant( [ [ [0.1926_1885, -0.1373_2955, 0.411_9799], [0.2215_0156, -0.0742_2661, 0.3903_7204], [0.2275_6018, -0.089_6414, 0.370_1467], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , _A , atol=1E-4 )
257
# flake8: noqa # Lint as: python3 from typing import Dict, List, Optional, Type from .. import config from ..utils import logging from .formatting import ( ArrowFormatter, CustomFormatter, Formatter, PandasFormatter, PythonFormatter, TensorFormatter, format_table, query_table, ) from .np_formatter import NumpyFormatter lowerCAmelCase__ : Tuple =logging.get_logger(__name__) lowerCAmelCase__ : Dict[Optional[str], Type[Formatter]] ={} lowerCAmelCase__ : Dict[Optional[str], str] ={} lowerCAmelCase__ : Dict[Optional[str], Exception] ={} def __lowercase ( a__ , a__ , a__ = None , ) -> Optional[Any]: __SCREAMING_SNAKE_CASE = aliases if aliases is not None else [] if format_type in _FORMAT_TYPES: logger.warning( f"""Overwriting format type '{format_type}' ({_FORMAT_TYPES[format_type].__name__} -> {formatter_cls.__name__})""" ) __SCREAMING_SNAKE_CASE = formatter_cls for alias in set(aliases + [format_type] ): if alias in _FORMAT_TYPES_ALIASES: logger.warning( f"""Overwriting format type alias '{alias}' ({_FORMAT_TYPES_ALIASES[alias]} -> {format_type})""" ) __SCREAMING_SNAKE_CASE = format_type def __lowercase ( a__ , a__ , a__ = None ) -> List[str]: __SCREAMING_SNAKE_CASE = aliases if aliases is not None else [] for alias in set(aliases + [format_type] ): __SCREAMING_SNAKE_CASE = unavailable_error # Here we define all the available formatting functions that can be used by `Dataset.set_format` _register_formatter(PythonFormatter, None, aliases=['''python''']) _register_formatter(ArrowFormatter, '''arrow''', aliases=['''pa''', '''pyarrow''']) _register_formatter(NumpyFormatter, '''numpy''', aliases=['''np''']) _register_formatter(PandasFormatter, '''pandas''', aliases=['''pd''']) _register_formatter(CustomFormatter, '''custom''') if config.TORCH_AVAILABLE: from .torch_formatter import TorchFormatter _register_formatter(TorchFormatter, '''torch''', aliases=['''pt''', '''pytorch''']) else: lowerCAmelCase__ : List[Any] =ValueError('''PyTorch needs to be installed to be able to return PyTorch tensors.''') _register_unavailable_formatter(_torch_error, '''torch''', aliases=['''pt''', '''pytorch''']) if config.TF_AVAILABLE: from .tf_formatter import TFFormatter _register_formatter(TFFormatter, '''tensorflow''', aliases=['''tf''']) else: lowerCAmelCase__ : Optional[Any] =ValueError('''Tensorflow needs to be installed to be able to return Tensorflow tensors.''') _register_unavailable_formatter(_tf_error, '''tensorflow''', aliases=['''tf''']) if config.JAX_AVAILABLE: from .jax_formatter import JaxFormatter _register_formatter(JaxFormatter, '''jax''', aliases=[]) else: lowerCAmelCase__ : Optional[int] =ValueError('''JAX needs to be installed to be able to return JAX arrays.''') _register_unavailable_formatter(_jax_error, '''jax''', aliases=[]) def __lowercase ( a__ ) -> Optional[str]: if format_type in _FORMAT_TYPES_ALIASES: return _FORMAT_TYPES_ALIASES[format_type] else: return format_type def __lowercase ( a__ , **a__ ) -> Formatter: __SCREAMING_SNAKE_CASE = get_format_type_from_alias(a__ ) if format_type in _FORMAT_TYPES: return _FORMAT_TYPES[format_type](**a__ ) if format_type in _FORMAT_TYPES_ALIASES_UNAVAILABLE: raise _FORMAT_TYPES_ALIASES_UNAVAILABLE[format_type] else: raise ValueError( f"""Return type should be None or selected in {list(type for type in _FORMAT_TYPES.keys() if type != None )}, but got '{format_type}'""" )
148
0
import itertools from dataclasses import dataclass from typing import Optional import pandas as pd import pyarrow as pa import datasets from datasets.table import table_cast @dataclass class lowerCamelCase__ ( datasets.BuilderConfig ): """simple docstring""" _UpperCamelCase : Optional[datasets.Features] = None class lowerCamelCase__ ( datasets.ArrowBasedBuilder ): """simple docstring""" _UpperCamelCase : Optional[Any] = PandasConfig def snake_case__ ( self ): '''simple docstring''' return datasets.DatasetInfo(features=self.config.features ) def snake_case__ ( self , snake_case ): '''simple docstring''' if not self.config.data_files: raise ValueError(F'''At least one data file must be specified, but got data_files={self.config.data_files}''' ) UpperCamelCase__ = dl_manager.download_and_extract(self.config.data_files ) if isinstance(snake_case , (str, list, tuple) ): UpperCamelCase__ = data_files if isinstance(snake_case , snake_case ): UpperCamelCase__ = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive UpperCamelCase__ = [dl_manager.iter_files(snake_case ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files} )] UpperCamelCase__ = [] for split_name, files in data_files.items(): if isinstance(snake_case , snake_case ): UpperCamelCase__ = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive UpperCamelCase__ = [dl_manager.iter_files(snake_case ) for file in files] splits.append(datasets.SplitGenerator(name=snake_case , gen_kwargs={"files": files} ) ) return splits def snake_case__ ( self , snake_case ): '''simple docstring''' if self.config.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example UpperCamelCase__ = table_cast(snake_case , self.config.features.arrow_schema ) return pa_table def snake_case__ ( self , snake_case ): '''simple docstring''' for i, file in enumerate(itertools.chain.from_iterable(snake_case ) ): with open(snake_case , "rb" ) as f: UpperCamelCase__ = pa.Table.from_pandas(pd.read_pickle(snake_case ) ) yield i, self._cast_table(snake_case )
185
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { 'facebook/data2vec-text-base': 'https://huggingface.co/data2vec/resolve/main/config.json', } class lowerCamelCase__ ( UpperCAmelCase ): """simple docstring""" _UpperCamelCase : int = 'data2vec-text' def __init__( self , snake_case=30522 , snake_case=768 , snake_case=12 , snake_case=12 , snake_case=3072 , snake_case="gelu" , snake_case=0.1 , snake_case=0.1 , snake_case=512 , snake_case=2 , snake_case=0.02 , snake_case=1E-1_2 , snake_case=1 , snake_case=0 , snake_case=2 , snake_case="absolute" , snake_case=True , snake_case=None , **snake_case , ): '''simple docstring''' super().__init__(pad_token_id=snake_case , bos_token_id=snake_case , eos_token_id=snake_case , **snake_case ) UpperCamelCase__ = vocab_size UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = hidden_act UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = max_position_embeddings UpperCamelCase__ = type_vocab_size UpperCamelCase__ = initializer_range UpperCamelCase__ = layer_norm_eps UpperCamelCase__ = position_embedding_type UpperCamelCase__ = use_cache UpperCamelCase__ = classifier_dropout class lowerCamelCase__ ( UpperCAmelCase ): """simple docstring""" @property def snake_case__ ( self ): '''simple docstring''' if self.task == "multiple-choice": UpperCamelCase__ = {0: "batch", 1: "choice", 2: "sequence"} else: UpperCamelCase__ = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
185
1
'''simple docstring''' import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetaImageProcessor class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : Any , lowerCAmelCase : Any , lowerCAmelCase : Optional[Any]=7 , lowerCAmelCase : Optional[Any]=3 , lowerCAmelCase : Optional[Any]=30 , lowerCAmelCase : Union[str, Any]=4_00 , lowerCAmelCase : int=True , lowerCAmelCase : Union[str, Any]=None , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : List[str]=[0.5, 0.5, 0.5] , lowerCAmelCase : List[str]=[0.5, 0.5, 0.5] , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : Optional[int]=1 / 2_55 , lowerCAmelCase : Optional[Any]=True , ): A_ = size if size is not None else {"shortest_edge": 18, "longest_edge": 13_33} A_ = parent A_ = batch_size A_ = num_channels A_ = min_resolution A_ = max_resolution A_ = do_resize A_ = size A_ = do_normalize A_ = image_mean A_ = image_std A_ = do_rescale A_ = rescale_factor A_ = do_pad def _UpperCAmelCase ( self : Dict ): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def _UpperCAmelCase ( self : int , lowerCAmelCase : Optional[int] , lowerCAmelCase : Tuple=False ): if not batched: A_ = image_inputs[0] if isinstance(_UpperCamelCase , Image.Image ): A_ = image.size else: A_ = image.shape[1], image.shape[2] if w < h: A_ = int(self.size["shortest_edge"] * h / w ) A_ = self.size["shortest_edge"] elif w > h: A_ = self.size["shortest_edge"] A_ = int(self.size["shortest_edge"] * w / h ) else: A_ = self.size["shortest_edge"] A_ = self.size["shortest_edge"] else: A_ = [] for image in image_inputs: A_ = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) A_ = max(_UpperCamelCase , key=lambda lowerCAmelCase : item[0] )[0] A_ = max(_UpperCamelCase , key=lambda lowerCAmelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class __lowerCAmelCase ( lowerCamelCase_ , unittest.TestCase ): """simple docstring""" _UpperCAmelCase : int =DetaImageProcessor if is_vision_available() else None def _UpperCAmelCase ( self : Union[str, Any] ): A_ = DetaImageProcessingTester(self ) @property def _UpperCAmelCase ( self : Union[str, Any] ): return self.image_processor_tester.prepare_image_processor_dict() def _UpperCAmelCase ( self : Any ): A_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_UpperCamelCase , "image_mean" ) ) self.assertTrue(hasattr(_UpperCamelCase , "image_std" ) ) self.assertTrue(hasattr(_UpperCamelCase , "do_normalize" ) ) self.assertTrue(hasattr(_UpperCamelCase , "do_resize" ) ) self.assertTrue(hasattr(_UpperCamelCase , "do_rescale" ) ) self.assertTrue(hasattr(_UpperCamelCase , "do_pad" ) ) self.assertTrue(hasattr(_UpperCamelCase , "size" ) ) def _UpperCAmelCase ( self : List[str] ): A_ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 18, "longest_edge": 13_33} ) self.assertEqual(image_processor.do_pad , _UpperCamelCase ) def _UpperCAmelCase ( self : str ): pass def _UpperCAmelCase ( self : Dict ): A_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCamelCase ) for image in image_inputs: self.assertIsInstance(_UpperCamelCase , Image.Image ) # Test not batched input A_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values A_ = self.image_processor_tester.get_expected_values(_UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A_ = self.image_processor_tester.get_expected_values(_UpperCamelCase , batched=_UpperCamelCase ) A_ = image_processing(_UpperCamelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _UpperCAmelCase ( self : List[Any] ): A_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCamelCase , numpify=_UpperCamelCase ) for image in image_inputs: self.assertIsInstance(_UpperCamelCase , np.ndarray ) # Test not batched input A_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values A_ = self.image_processor_tester.get_expected_values(_UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A_ = image_processing(_UpperCamelCase , return_tensors="pt" ).pixel_values A_ = self.image_processor_tester.get_expected_values(_UpperCamelCase , batched=_UpperCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _UpperCAmelCase ( self : List[Any] ): A_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCamelCase , torchify=_UpperCamelCase ) for image in image_inputs: self.assertIsInstance(_UpperCamelCase , torch.Tensor ) # Test not batched input A_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values A_ = self.image_processor_tester.get_expected_values(_UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A_ = image_processing(_UpperCamelCase , return_tensors="pt" ).pixel_values A_ = self.image_processor_tester.get_expected_values(_UpperCamelCase , batched=_UpperCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def _UpperCAmelCase ( self : Tuple ): A_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r" ) as f: A_ = json.loads(f.read() ) A_ = {"image_id": 3_97_69, "annotations": target} # encode them A_ = DetaImageProcessor() A_ = image_processing(images=_UpperCamelCase , annotations=_UpperCamelCase , return_tensors="pt" ) # verify pixel values A_ = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding["pixel_values"].shape , _UpperCamelCase ) A_ = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , _UpperCamelCase , atol=1e-4 ) ) # verify area A_ = torch.tensor([58_87.96_00, 1_12_50.20_61, 48_93_53.84_38, 83_71_22.75_00, 14_79_67.51_56, 16_57_32.34_38] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , _UpperCamelCase ) ) # verify boxes A_ = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , _UpperCamelCase ) A_ = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , _UpperCamelCase , atol=1e-3 ) ) # verify image_id A_ = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , _UpperCamelCase ) ) # verify is_crowd A_ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , _UpperCamelCase ) ) # verify class_labels A_ = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , _UpperCamelCase ) ) # verify orig_size A_ = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , _UpperCamelCase ) ) # verify size A_ = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , _UpperCamelCase ) ) @slow def _UpperCAmelCase ( self : List[str] ): A_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r" ) as f: A_ = json.loads(f.read() ) A_ = {"file_name": "000000039769.png", "image_id": 3_97_69, "segments_info": target} A_ = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" ) # encode them A_ = DetaImageProcessor(format="coco_panoptic" ) A_ = image_processing(images=_UpperCamelCase , annotations=_UpperCamelCase , masks_path=_UpperCamelCase , return_tensors="pt" ) # verify pixel values A_ = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding["pixel_values"].shape , _UpperCamelCase ) A_ = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , _UpperCamelCase , atol=1e-4 ) ) # verify area A_ = torch.tensor([14_79_79.68_75, 16_55_27.04_69, 48_46_38.59_38, 1_12_92.93_75, 58_79.65_62, 76_34.11_47] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , _UpperCamelCase ) ) # verify boxes A_ = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , _UpperCamelCase ) A_ = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , _UpperCamelCase , atol=1e-3 ) ) # verify image_id A_ = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , _UpperCamelCase ) ) # verify is_crowd A_ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , _UpperCamelCase ) ) # verify class_labels A_ = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , _UpperCamelCase ) ) # verify masks A_ = 82_28_73 self.assertEqual(encoding["labels"][0]["masks"].sum().item() , _UpperCamelCase ) # verify orig_size A_ = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , _UpperCamelCase ) ) # verify size A_ = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , _UpperCamelCase ) )
452
'''simple docstring''' import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) def _A ( snake_case ) -> str: _lowercase : Dict = torch.load(snake_case , map_location="cpu" ) if "model" in sd.keys(): _lowercase : Tuple = torch.load(snake_case , map_location="cpu" )["model"] # pop unnecessary weights _lowercase : Any = [ "decoder.version", "decoder.output_projection.weight", ] for key in keys_to_delete: if key in sd: sd.pop(snake_case ) _lowercase : List[Any] = { "decoder.project_in_dim.weight": "decoder.project_in.weight", "decoder.project_out_dim.weight": "decoder.project_out.weight", "decoder.layer_norm.weight": "decoder.final_layer_norm.weight", "decoder.layer_norm.bias": "decoder.final_layer_norm.bias", } for old_key, new_key in keys_to_rename.items(): if old_key in sd: _lowercase : Dict = sd.pop(snake_case ) _lowercase : List[str] = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: _lowercase : List[Any] = sd[key] # We split QKV in separate Q,K,V _lowercase : str = key.replace(".qkv_proj." , ".q_proj." ) _lowercase : List[str] = key.replace(".qkv_proj." , ".k_proj." ) _lowercase : Optional[Any] = key.replace(".qkv_proj." , ".v_proj." ) _lowercase : Union[str, Any] = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 _lowercase , _lowercase , _lowercase : Dict = torch.split(snake_case , depth // 3 , dim=0 ) _lowercase : Optional[int] = q _lowercase : str = k _lowercase : List[str] = v del sd[key] return sd @torch.no_grad() def _A ( snake_case , snake_case , snake_case=None ) -> Any: _lowercase : Union[str, Any] = load_checkpoint(snake_case ) if config is not None: _lowercase : Tuple = OPTConfig.from_pretrained(snake_case ) else: _lowercase : Optional[int] = OPTConfig() _lowercase : List[Any] = OPTModel(snake_case ).half().eval() model.load_state_dict(snake_case ) # Check results Path(snake_case ).mkdir(exist_ok=snake_case ) model.save_pretrained(snake_case ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '--fairseq_path', type=str, help=( 'path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:' ' https://huggingface.co/models?other=opt_metasq' ), ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--hf_config', default=None, type=str, help='Define HF config.') _snake_case = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
245
0
import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class UpperCAmelCase ( unittest.TestCase ): def __lowerCAmelCase ( self , _lowerCAmelCase ): for model_result in results.values(): for batch_size, sequence_length in zip(model_result['''bs'''] , model_result['''ss'''] ): _lowerCAmelCase = model_result['''result'''][batch_size][sequence_length] self.assertIsNotNone(_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = '''sshleifer/tiny-gpt2''' _lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowerCAmelCase , inference=_lowerCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowerCAmelCase , ) _lowerCAmelCase = PyTorchBenchmark(_lowerCAmelCase ) _lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __lowerCAmelCase ( self ): _lowerCAmelCase = '''sgugger/tiny-distilbert-classification''' _lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowerCAmelCase , inference=_lowerCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowerCAmelCase , only_pretrain_model=_lowerCAmelCase , ) _lowerCAmelCase = PyTorchBenchmark(_lowerCAmelCase ) _lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __lowerCAmelCase ( self ): _lowerCAmelCase = '''sshleifer/tiny-gpt2''' _lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowerCAmelCase , inference=_lowerCAmelCase , torchscript=_lowerCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowerCAmelCase , ) _lowerCAmelCase = PyTorchBenchmark(_lowerCAmelCase ) _lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(torch_device == '''cpu''' , '''Cant do half precision''' ) def __lowerCAmelCase ( self ): _lowerCAmelCase = '''sshleifer/tiny-gpt2''' _lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowerCAmelCase , inference=_lowerCAmelCase , fpaa=_lowerCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowerCAmelCase , ) _lowerCAmelCase = PyTorchBenchmark(_lowerCAmelCase ) _lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __lowerCAmelCase ( self ): _lowerCAmelCase = '''sshleifer/tiny-gpt2''' _lowerCAmelCase = AutoConfig.from_pretrained(_lowerCAmelCase ) # set architectures equal to `None` _lowerCAmelCase = None _lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowerCAmelCase , inference=_lowerCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowerCAmelCase , ) _lowerCAmelCase = PyTorchBenchmark(_lowerCAmelCase , configs=[config] ) _lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __lowerCAmelCase ( self ): _lowerCAmelCase = '''sshleifer/tiny-gpt2''' _lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowerCAmelCase , inference=_lowerCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowerCAmelCase , ) _lowerCAmelCase = PyTorchBenchmark(_lowerCAmelCase ) _lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) @unittest.skipIf(torch_device == '''cpu''' , '''Can\'t do half precision''' ) def __lowerCAmelCase ( self ): _lowerCAmelCase = '''sshleifer/tiny-gpt2''' _lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowerCAmelCase , inference=_lowerCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , fpaa=_lowerCAmelCase , multi_process=_lowerCAmelCase , ) _lowerCAmelCase = PyTorchBenchmark(_lowerCAmelCase ) _lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def __lowerCAmelCase ( self ): _lowerCAmelCase = '''sshleifer/tiny-gpt2''' _lowerCAmelCase = AutoConfig.from_pretrained(_lowerCAmelCase ) _lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowerCAmelCase , inference=_lowerCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowerCAmelCase , ) _lowerCAmelCase = PyTorchBenchmark(_lowerCAmelCase , configs=[config] ) _lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __lowerCAmelCase ( self ): _lowerCAmelCase = '''sshleifer/tinier_bart''' _lowerCAmelCase = AutoConfig.from_pretrained(_lowerCAmelCase ) _lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowerCAmelCase , inference=_lowerCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowerCAmelCase , ) _lowerCAmelCase = PyTorchBenchmark(_lowerCAmelCase , configs=[config] ) _lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __lowerCAmelCase ( self ): _lowerCAmelCase = '''sshleifer/tiny-gpt2''' _lowerCAmelCase = AutoConfig.from_pretrained(_lowerCAmelCase ) _lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowerCAmelCase , inference=_lowerCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowerCAmelCase , ) _lowerCAmelCase = PyTorchBenchmark(_lowerCAmelCase , configs=[config] ) _lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def __lowerCAmelCase ( self ): _lowerCAmelCase = '''sshleifer/tinier_bart''' _lowerCAmelCase = AutoConfig.from_pretrained(_lowerCAmelCase ) _lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowerCAmelCase , inference=_lowerCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowerCAmelCase , ) _lowerCAmelCase = PyTorchBenchmark(_lowerCAmelCase , configs=[config] ) _lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def __lowerCAmelCase ( self ): _lowerCAmelCase = '''sshleifer/tiny-gpt2''' with tempfile.TemporaryDirectory() as tmp_dir: _lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowerCAmelCase , inference=_lowerCAmelCase , save_to_csv=_lowerCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(_lowerCAmelCase , '''inf_time.csv''' ) , train_memory_csv_file=os.path.join(_lowerCAmelCase , '''train_mem.csv''' ) , inference_memory_csv_file=os.path.join(_lowerCAmelCase , '''inf_mem.csv''' ) , train_time_csv_file=os.path.join(_lowerCAmelCase , '''train_time.csv''' ) , env_info_csv_file=os.path.join(_lowerCAmelCase , '''env.csv''' ) , multi_process=_lowerCAmelCase , ) _lowerCAmelCase = PyTorchBenchmark(_lowerCAmelCase ) benchmark.run() self.assertTrue(Path(os.path.join(_lowerCAmelCase , '''inf_time.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_lowerCAmelCase , '''train_time.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_lowerCAmelCase , '''inf_mem.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_lowerCAmelCase , '''train_mem.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_lowerCAmelCase , '''env.csv''' ) ).exists() ) def __lowerCAmelCase ( self ): _lowerCAmelCase = '''sshleifer/tiny-gpt2''' def _check_summary_is_not_empty(_lowerCAmelCase ): self.assertTrue(hasattr(_lowerCAmelCase , '''sequential''' ) ) self.assertTrue(hasattr(_lowerCAmelCase , '''cumulative''' ) ) self.assertTrue(hasattr(_lowerCAmelCase , '''current''' ) ) self.assertTrue(hasattr(_lowerCAmelCase , '''total''' ) ) with tempfile.TemporaryDirectory() as tmp_dir: _lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowerCAmelCase , inference=_lowerCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(_lowerCAmelCase , '''log.txt''' ) , log_print=_lowerCAmelCase , trace_memory_line_by_line=_lowerCAmelCase , multi_process=_lowerCAmelCase , ) _lowerCAmelCase = PyTorchBenchmark(_lowerCAmelCase ) _lowerCAmelCase = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) _check_summary_is_not_empty(result.train_summary ) self.assertTrue(Path(os.path.join(_lowerCAmelCase , '''log.txt''' ) ).exists() )
709
import numpy as np import torch from torch.utils.data import Dataset, IterableDataset from ..utils.generic import ModelOutput class UpperCAmelCase ( snake_case_ ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = dataset _lowerCAmelCase = process _lowerCAmelCase = params def __len__( self ): return len(self.dataset ) def __getitem__( self , _lowerCAmelCase ): _lowerCAmelCase = self.dataset[i] _lowerCAmelCase = self.process(_lowerCAmelCase , **self.params ) return processed class UpperCAmelCase ( snake_case_ ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None ): _lowerCAmelCase = loader _lowerCAmelCase = infer _lowerCAmelCase = params if loader_batch_size == 1: # Let's spare some time by deactivating altogether _lowerCAmelCase = None _lowerCAmelCase = loader_batch_size # Internal bookkeeping _lowerCAmelCase = None _lowerCAmelCase = None def __len__( self ): return len(self.loader ) def __iter__( self ): _lowerCAmelCase = iter(self.loader ) return self def __lowerCAmelCase ( self ): if isinstance(self._loader_batch_data , torch.Tensor ): # Batch data is simple tensor, just fetch the slice _lowerCAmelCase = self._loader_batch_data[self._loader_batch_index] else: # Batch data is assumed to be BaseModelOutput (or dict) _lowerCAmelCase = {} for k, element in self._loader_batch_data.items(): if isinstance(_lowerCAmelCase , _lowerCAmelCase ): # Convert ModelOutput to tuple first _lowerCAmelCase = element.to_tuple() if isinstance(element[0] , torch.Tensor ): _lowerCAmelCase = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): _lowerCAmelCase = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if k in {"hidden_states", "past_key_values", "attentions"} and isinstance(_lowerCAmelCase , _lowerCAmelCase ): # Those are stored as lists of tensors so need specific unbatching. if isinstance(element[0] , torch.Tensor ): _lowerCAmelCase = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): _lowerCAmelCase = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if element is None: # This can happen for optional data that get passed around _lowerCAmelCase = None elif isinstance(element[self._loader_batch_index] , torch.Tensor ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers _lowerCAmelCase = element[self._loader_batch_index].unsqueeze(0 ) elif isinstance(element[self._loader_batch_index] , np.ndarray ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers _lowerCAmelCase = np.expand_dims(element[self._loader_batch_index] , 0 ) else: # This is typically a list, so no need to `unsqueeze`. _lowerCAmelCase = element[self._loader_batch_index] # Recreate the element by reusing the original class to make it look # batch_size=1 _lowerCAmelCase = self._loader_batch_data.__class__(_lowerCAmelCase ) self._loader_batch_index += 1 return result def __lowerCAmelCase ( self ): if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: # We are currently unrolling a batch so we just need to return # the current item within a batch return self.loader_batch_item() # We're out of items within a batch _lowerCAmelCase = next(self.iterator ) _lowerCAmelCase = self.infer(_lowerCAmelCase , **self.params ) # We now have a batch of "inferred things". if self.loader_batch_size is not None: # Try to infer the size of the batch if isinstance(_lowerCAmelCase , torch.Tensor ): _lowerCAmelCase = processed else: _lowerCAmelCase = list(processed.keys() )[0] _lowerCAmelCase = processed[key] if isinstance(_lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = len(_lowerCAmelCase ) else: _lowerCAmelCase = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. _lowerCAmelCase = observed_batch_size # Setting internal index to unwrap the batch _lowerCAmelCase = processed _lowerCAmelCase = 0 return self.loader_batch_item() else: # We're not unrolling batches return processed class UpperCAmelCase ( snake_case_ ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None ): super().__init__(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def __iter__( self ): _lowerCAmelCase = iter(self.loader ) _lowerCAmelCase = None return self def __lowerCAmelCase ( self ): if self.subiterator is None: _lowerCAmelCase = self.infer(next(self.iterator ) , **self.params ) try: # Try to return next item _lowerCAmelCase = next(self.subiterator ) except StopIteration: # When a preprocess iterator ends, we can start lookig at the next item # ChunkIterator will keep feeding until ALL elements of iterator # all have created their subiterator and have been iterating against. # # Another way to look at it, is we're basically flattening lists of lists # into a single list, but with generators _lowerCAmelCase = self.infer(next(self.iterator ) , **self.params ) _lowerCAmelCase = next(self.subiterator ) return processed class UpperCAmelCase ( snake_case_ ): def __iter__( self ): _lowerCAmelCase = iter(self.loader ) return self def __lowerCAmelCase ( self ): # Extremely similar to PipelineIterator in its unpacking mechanism # BUT, we have an extra required item which is the presence of `is_last` # That is because everything is flattened by `PipelineChunkIterator` we # need to keep track of how to regroup here in the original `process` # boundaries so that `process` and `postprocess` see the same data. # This iterator accumulates items (possibly while unbatching) until it # its a `is_last` and then just passes it on to the caller. _lowerCAmelCase = False _lowerCAmelCase = [] if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: while self._loader_batch_index < self.loader_batch_size: _lowerCAmelCase = self.loader_batch_item() _lowerCAmelCase = item.pop('''is_last''' ) accumulator.append(_lowerCAmelCase ) if is_last: return accumulator while not is_last: _lowerCAmelCase = self.infer(next(self.iterator ) , **self.params ) if self.loader_batch_size is not None: if isinstance(_lowerCAmelCase , torch.Tensor ): _lowerCAmelCase = processed else: _lowerCAmelCase = list(processed.keys() )[0] _lowerCAmelCase = processed[key] if isinstance(_lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = len(_lowerCAmelCase ) else: _lowerCAmelCase = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. _lowerCAmelCase = observed_batch_size _lowerCAmelCase = processed _lowerCAmelCase = 0 while self._loader_batch_index < self.loader_batch_size: _lowerCAmelCase = self.loader_batch_item() _lowerCAmelCase = item.pop('''is_last''' ) accumulator.append(_lowerCAmelCase ) if is_last: return accumulator else: _lowerCAmelCase = processed _lowerCAmelCase = item.pop('''is_last''' ) accumulator.append(_lowerCAmelCase ) return accumulator class UpperCAmelCase ( snake_case_ ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = dataset _lowerCAmelCase = key def __len__( self ): return len(self.dataset ) def __getitem__( self , _lowerCAmelCase ): return self.dataset[i][self.key] class UpperCAmelCase ( snake_case_ ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = dataset _lowerCAmelCase = keya _lowerCAmelCase = keya def __len__( self ): return len(self.dataset ) def __getitem__( self , _lowerCAmelCase ): return {"text": self.dataset[i][self.keya], "text_pair": self.dataset[i][self.keya]}
664
0
"""simple docstring""" import copy from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging lowerCamelCase__ = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE ( lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :Any = ['input_features'] def __init__( self : List[str] , __a : List[str]=80 , __a : List[str]=1_6000 , __a : List[str]=160 , __a : Optional[int]=30 , __a : List[str]=400 , __a : Union[str, Any]=0.0 , __a : List[str]=False , **__a : Dict , ) -> Union[str, Any]: super().__init__( feature_size=snake_case_ , sampling_rate=snake_case_ , padding_value=snake_case_ , return_attention_mask=snake_case_ , **snake_case_ , ) _UpperCamelCase : Dict = n_fft _UpperCamelCase : int = hop_length _UpperCamelCase : Optional[int] = chunk_length _UpperCamelCase : List[str] = chunk_length * sampling_rate _UpperCamelCase : List[str] = self.n_samples // hop_length _UpperCamelCase : Any = sampling_rate _UpperCamelCase : str = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=snake_case_ , min_frequency=0.0 , max_frequency=80_00.0 , sampling_rate=snake_case_ , norm="slaney" , mel_scale="slaney" , ) def __SCREAMING_SNAKE_CASE ( self : List[Any] , __a : np.array ) -> List[Any]: _UpperCamelCase : Tuple = spectrogram( snake_case_ , window_function(self.n_fft , "hann" ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters , log_mel="log10" , ) _UpperCamelCase : Dict = log_spec[:, :-1] _UpperCamelCase : Optional[int] = np.maximum(snake_case_ , log_spec.max() - 8.0 ) _UpperCamelCase : Union[str, Any] = (log_spec + 4.0) / 4.0 return log_spec @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def __SCREAMING_SNAKE_CASE ( __a : List[np.ndarray] , __a : List[np.ndarray] , __a : float = 0.0 ) -> List[Any]: if attention_mask is not None: _UpperCamelCase : Union[str, Any] = np.array(snake_case_ , np.intaa ) _UpperCamelCase : Tuple = [] for vector, length in zip(snake_case_ , attention_mask.sum(-1 ) ): _UpperCamelCase : Any = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1e-7 ) if length < normed_slice.shape[0]: _UpperCamelCase : List[Any] = padding_value normed_input_values.append(snake_case_ ) else: _UpperCamelCase : int = [(x - x.mean()) / np.sqrt(x.var() + 1e-7 ) for x in input_values] return normed_input_values def __call__( self : List[Any] , __a : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , __a : bool = True , __a : Optional[int] = None , __a : Optional[Union[str, TensorType]] = None , __a : Optional[bool] = None , __a : Optional[str] = "max_length" , __a : Optional[int] = None , __a : Optional[int] = None , __a : Optional[bool] = None , **__a : int , ) -> Tuple: if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'''The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a''' F''' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input''' F''' was sampled with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) _UpperCamelCase : List[Any] = isinstance(snake_case_ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' ) _UpperCamelCase : List[Any] = is_batched_numpy or ( isinstance(snake_case_ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: _UpperCamelCase : List[Any] = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(snake_case_ , np.ndarray ): _UpperCamelCase : Tuple = np.asarray(snake_case_ , dtype=np.floataa ) elif isinstance(snake_case_ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): _UpperCamelCase : List[Any] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: _UpperCamelCase : List[Any] = [np.asarray([raw_speech] ).T] _UpperCamelCase : Dict = BatchFeature({"input_features": raw_speech} ) # convert into correct format for padding _UpperCamelCase : Any = self.pad( snake_case_ , padding=snake_case_ , max_length=max_length if max_length else self.n_samples , truncation=snake_case_ , pad_to_multiple_of=snake_case_ , return_attention_mask=return_attention_mask or do_normalize , ) # zero-mean and unit-variance normalization if do_normalize: _UpperCamelCase : Tuple = self.zero_mean_unit_var_norm( padded_inputs["input_features"] , attention_mask=padded_inputs["attention_mask"] , padding_value=self.padding_value , ) _UpperCamelCase : Optional[Any] = np.stack(padded_inputs["input_features"] , axis=0 ) # make sure list is in array format _UpperCamelCase : Optional[int] = padded_inputs.get("input_features" ).transpose(2 , 0 , 1 ) _UpperCamelCase : Union[str, Any] = [self._np_extract_fbank_features(snake_case_ ) for waveform in input_features[0]] if isinstance(input_features[0] , snake_case_ ): _UpperCamelCase : List[str] = [np.asarray(snake_case_ , dtype=np.floataa ) for feature in input_features] else: _UpperCamelCase : Optional[int] = input_features if return_attention_mask: # rescale from sample (48000) to feature (3000) _UpperCamelCase : Dict = padded_inputs["attention_mask"][:, :: self.hop_length] if return_tensors is not None: _UpperCamelCase : str = padded_inputs.convert_to_tensors(snake_case_ ) return padded_inputs def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[Any]: _UpperCamelCase : Optional[int] = copy.deepcopy(self.__dict__ ) _UpperCamelCase : Optional[Any] = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] return output
624
"""simple docstring""" import os import pytest from transformers.dynamic_module_utils import get_imports _SCREAMING_SNAKE_CASE = """ import os """ _SCREAMING_SNAKE_CASE = """ def foo(): import os return False """ _SCREAMING_SNAKE_CASE = """ def foo(): def bar(): if True: import os return False return bar() """ _SCREAMING_SNAKE_CASE = """ import os try: import bar except ImportError: raise ValueError() """ _SCREAMING_SNAKE_CASE = """ import os def foo(): try: import bar except ImportError: raise ValueError() """ _SCREAMING_SNAKE_CASE = """ import os try: import bar except (ImportError, AttributeError): raise ValueError() """ _SCREAMING_SNAKE_CASE = """ import os try: import bar except ImportError as e: raise ValueError() """ _SCREAMING_SNAKE_CASE = """ import os try: import bar except: raise ValueError() """ _SCREAMING_SNAKE_CASE = """ import os try: import bar import baz except ImportError: raise ValueError() """ _SCREAMING_SNAKE_CASE = """ import os try: import bar import baz except ImportError: x = 1 raise ValueError() """ _SCREAMING_SNAKE_CASE = [ TOP_LEVEL_IMPORT, IMPORT_IN_FUNCTION, DEEPLY_NESTED_IMPORT, TOP_LEVEL_TRY_IMPORT, GENERIC_EXCEPT_IMPORT, MULTILINE_TRY_IMPORT, MULTILINE_BOTH_IMPORT, MULTIPLE_EXCEPTS_IMPORT, EXCEPT_AS_IMPORT, TRY_IMPORT_IN_FUNCTION, ] @pytest.mark.parametrize("case" , SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" __snake_case = os.path.join(SCREAMING_SNAKE_CASE , "test_file.py" ) with open(SCREAMING_SNAKE_CASE , "w" ) as _tmp_file: _tmp_file.write(SCREAMING_SNAKE_CASE ) __snake_case = get_imports(SCREAMING_SNAKE_CASE ) assert parsed_imports == ["os"]
163
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCamelCase : Tuple = logging.get_logger(__name__) _UpperCamelCase : List[Any] = { "google/pegasus-large": "https://huggingface.co/google/pegasus-large/resolve/main/config.json", # See all PEGASUS models at https://huggingface.co/models?filter=pegasus } class _snake_case ( a_ ): SCREAMING_SNAKE_CASE : Any = '''pegasus''' SCREAMING_SNAKE_CASE : Union[str, Any] = ['''past_key_values'''] SCREAMING_SNAKE_CASE : Optional[int] = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self , _SCREAMING_SNAKE_CASE=5_02_65 , _SCREAMING_SNAKE_CASE=10_24 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=40_96 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=40_96 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=10_24 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=1 , **_SCREAMING_SNAKE_CASE , ): '''simple docstring''' lowerCAmelCase = vocab_size lowerCAmelCase = max_position_embeddings lowerCAmelCase = d_model lowerCAmelCase = encoder_ffn_dim lowerCAmelCase = encoder_layers lowerCAmelCase = encoder_attention_heads lowerCAmelCase = decoder_ffn_dim lowerCAmelCase = decoder_layers lowerCAmelCase = decoder_attention_heads lowerCAmelCase = dropout lowerCAmelCase = attention_dropout lowerCAmelCase = activation_dropout lowerCAmelCase = activation_function lowerCAmelCase = init_std lowerCAmelCase = encoder_layerdrop lowerCAmelCase = decoder_layerdrop lowerCAmelCase = use_cache lowerCAmelCase = encoder_layers lowerCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE , is_encoder_decoder=_SCREAMING_SNAKE_CASE , decoder_start_token_id=_SCREAMING_SNAKE_CASE , forced_eos_token_id=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) @property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return self.encoder_attention_heads @property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return self.d_model
716
'''simple docstring''' from __future__ import annotations def snake_case ( snake_case : list , snake_case : int ) -> List[str]: """simple docstring""" if len(snake_case ) <= 1 or n <= 1: return insert_next(snake_case , n - 1 ) rec_insertion_sort(snake_case , n - 1 ) def snake_case ( snake_case : list , snake_case : int ) -> str: """simple docstring""" if index >= len(snake_case ) or collection[index - 1] <= collection[index]: return # Swaps adjacent elements since they are not in ascending order lowerCAmelCase , lowerCAmelCase = ( collection[index], collection[index - 1], ) insert_next(snake_case , index + 1 ) if __name__ == "__main__": _UpperCamelCase : List[str] = input("Enter integers separated by spaces: ") _UpperCamelCase : list[int] = [int(num) for num in numbers.split()] rec_insertion_sort(number_list, len(number_list)) print(number_list)
514
0
from scipy.stats import pearsonr import datasets A : Any = '\nPearson correlation coefficient and p-value for testing non-correlation.\nThe Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases.\nThe p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets.\n' A : Optional[Any] = '\nArgs:\n predictions (`list` of `int`): Predicted class labels, as returned by a model.\n references (`list` of `int`): Ground truth labels.\n return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`.\n\nReturns:\n pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation.\n p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities.\n\nExamples:\n\n Example 1-A simple example using only predictions and references.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5])\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n\n Example 2-The same as Example 1, but that also returns the `p-value`.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True)\n >>> print(sorted(list(results.keys())))\n [\'p-value\', \'pearsonr\']\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n >>> print(round(results[\'p-value\'], 2))\n 0.15\n' A : int = '\n@article{2020SciPy-NMeth,\nauthor = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, Ilhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Antonio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\ntitle = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\njournal = {Nature Methods},\nyear = {2020},\nvolume = {17},\npages = {261--272},\nadsurl = {https://rdcu.be/b08Wh},\ndoi = {10.1038/s41592-019-0686-2},\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A ( datasets.Metric ): '''simple docstring''' def lowerCamelCase__ (self : Union[str, Any] ) -> List[Any]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""float""" ), """references""": datasets.Value("""float""" ), } ) , reference_urls=["""https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html"""] , ) def lowerCamelCase__ (self : Dict , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int]=False ) -> Tuple: """simple docstring""" if return_pvalue: lowercase__ = pearsonr(_UpperCAmelCase , _UpperCAmelCase ) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(_UpperCAmelCase , _UpperCAmelCase )[0] )}
15
'''simple docstring''' from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def UpperCamelCase_ ( A__ : int ): '''simple docstring''' lowerCAmelCase_ : Any = prime_factors(A__ ) if is_square_free(A__ ): return -1 if len(A__ ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
275
0
'''simple docstring''' import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() snake_case__ : List[str] = 2 class SCREAMING_SNAKE_CASE__ : def __init__( self , *, # begin keyword-only arguments A_="<s>" , A_="<pad>" , A_="</s>" , A_="<unk>" , A_=None , )-> Optional[Any]: '''simple docstring''' UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = bos, unk, pad, eos UpperCamelCase = [] UpperCamelCase = [] UpperCamelCase = {} UpperCamelCase = self.add_symbol(A_ ) UpperCamelCase = self.add_symbol(A_ ) UpperCamelCase = self.add_symbol(A_ ) UpperCamelCase = self.add_symbol(A_ ) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(A_ ) UpperCamelCase = len(self.symbols ) def __eq__( self , A_ )-> str: '''simple docstring''' return self.indices == other.indices def __getitem__( self , A_ )-> List[Any]: '''simple docstring''' if idx < len(self.symbols ): return self.symbols[idx] return self.unk_word def __len__( self )-> Union[str, Any]: '''simple docstring''' return len(self.symbols ) def __contains__( self , A_ )-> str: '''simple docstring''' return sym in self.indices @classmethod def UpperCAmelCase_ ( cls , A_ )-> Optional[int]: '''simple docstring''' UpperCamelCase = cls() d.add_from_file(A_ ) return d def UpperCAmelCase_ ( self , A_ , A_=1 , A_=False )-> Union[str, Any]: '''simple docstring''' if word in self.indices and not overwrite: UpperCamelCase = self.indices[word] UpperCamelCase = self.count[idx] + n return idx else: UpperCamelCase = len(self.symbols ) UpperCamelCase = idx self.symbols.append(A_ ) self.count.append(A_ ) return idx def UpperCAmelCase_ ( self , A_ )-> List[str]: '''simple docstring''' return 0 def UpperCAmelCase_ ( self , A_ )-> Union[str, Any]: '''simple docstring''' if isinstance(A_ , A_ ): try: with open(A_ , 'r' , encoding='utf-8' ) as fd: self.add_from_file(A_ ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception('Incorrect encoding detected in {}, please rebuild the dataset'.format(A_ ) ) return UpperCamelCase = f.readlines() UpperCamelCase = self._load_meta(A_ ) for line in lines[indices_start_line:]: try: UpperCamelCase , UpperCamelCase = line.rstrip().rsplit(' ' , 1 ) if field == "#fairseq:overwrite": UpperCamelCase = True UpperCamelCase , UpperCamelCase = line.rsplit(' ' , 1 ) else: UpperCamelCase = False UpperCamelCase = int(A_ ) UpperCamelCase = line if word in self and not overwrite: raise RuntimeError( 'Duplicate word found when loading Dictionary: \'{}\'. ' 'Duplicate words can overwrite earlier ones by adding the ' '#fairseq:overwrite flag at the end of the corresponding row ' 'in the dictionary file. If using the Camembert model, please ' 'download an updated copy of the model file.'.format(A_ ) ) self.add_symbol(A_ , n=A_ , overwrite=A_ ) except ValueError: raise ValueError('Incorrect dictionary format, expected \'<token> <cnt> [flags]\'' ) def A_( A : List[str]): # (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up, # e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7} UpperCamelCase = dict((re.sub(r'@@$' , '' , A), v) if k.endswith('@@') else (re.sub(r'$' , '</w>' , A), v) for k, v in d.items()) UpperCamelCase = '<s> <pad> </s> <unk>'.split() # restore the special tokens for k in keep_keys: del da[f'''{k}</w>'''] UpperCamelCase = d[k] # restore return da def A_( A : Any , A : Any): # prep if not os.path.exists(A): raise ValueError(f'''path {biogpt_checkpoint_path} does not exist!''') os.makedirs(A , exist_ok=A) print(f'''Writing results to {pytorch_dump_folder_path}''') # handle various types of models UpperCamelCase = os.path.join(A , 'checkpoint.pt') if not os.path.isfile(A): raise ValueError(f'''path to the file {checkpoint_file} does not exist!''') UpperCamelCase = torch.load(A , map_location='cpu') UpperCamelCase = chkpt['cfg']['model'] # dicts UpperCamelCase = os.path.join(A , 'dict.txt') if not os.path.isfile(A): raise ValueError(f'''path to the file {dict_file} does not exist!''') UpperCamelCase = Dictionary.load(A) UpperCamelCase = rewrite_dict_keys(src_dict.indices) UpperCamelCase = len(A) UpperCamelCase = os.path.join(A , VOCAB_FILES_NAMES['vocab_file']) print(f'''Generating {src_vocab_file} of {src_vocab_size} records''') with open(A , 'w' , encoding='utf-8') as f: f.write(json.dumps(A , ensure_ascii=A , indent=A)) # merges_file (bpecodes) UpperCamelCase = os.path.join(A , 'bpecodes') if not os.path.isfile(A): raise ValueError(f'''path to the file {bpecodes_file} does not exist!''') UpperCamelCase = os.path.join(A , VOCAB_FILES_NAMES['merges_file']) shutil.copyfile(A , A) # model config UpperCamelCase = os.path.join(A , 'config.json') UpperCamelCase = { 'activation_dropout': args['activation_dropout'], 'architectures': ['BioGptForCausalLM'], 'attention_probs_dropout_prob': args['attention_dropout'], 'bos_token_id': 0, 'eos_token_id': 2, 'hidden_act': args['activation_fn'], 'hidden_dropout_prob': args['dropout'], 'hidden_size': args['decoder_embed_dim'], 'initializer_range': 0.02, 'intermediate_size': args['decoder_ffn_embed_dim'], 'layer_norm_eps': 1E-12, 'layerdrop': args['decoder_layerdrop'], 'max_position_embeddings': args['max_target_positions'], 'model_type': 'biogpt', 'num_attention_heads': args['decoder_attention_heads'], 'num_hidden_layers': args['decoder_layers'], 'pad_token_id': 1, 'scale_embedding': not args['no_scale_embedding'], 'tie_word_embeddings': args['share_decoder_input_output_embed'], 'vocab_size': src_vocab_size, } # good hparam defaults to start with print(f'''Generating {biogpt_model_config_file}''') with open(A , 'w' , encoding='utf-8') as f: f.write(json.dumps(A , ensure_ascii=A , indent=A)) # tokenizer config UpperCamelCase = os.path.join(A , A) UpperCamelCase = { 'bos_token': '<s>', 'eos_token': '</s>', 'model_max_length': 1024, 'pad_token': '<pad>', 'special_tokens_map_file': None, 'tokenizer_class': 'BioGptTokenizer', 'unk_token': '<unk>', } print(f'''Generating {biogpt_tokenizer_config_file}''') with open(A , 'w' , encoding='utf-8') as f: f.write(json.dumps(A , ensure_ascii=A , indent=A)) # model UpperCamelCase = chkpt['model'] # remove unneeded keys UpperCamelCase = [ 'decoder.version', ] for k in ignore_keys: model_state_dict.pop(A , A) UpperCamelCase = list(model_state_dict.keys()) for layer_name in layer_names: if layer_name.endswith('output_projection.weight'): UpperCamelCase = model_state_dict.pop(A) else: UpperCamelCase = model_state_dict.pop(A) UpperCamelCase = BioGptConfig.from_pretrained(A) UpperCamelCase = BioGptForCausalLM(A) # check that it loads ok model_new.load_state_dict(A) # save UpperCamelCase = os.path.join(A , A) print(f'''Generating {pytorch_weights_dump_path}''') torch.save(A , A) print('Conversion is done!') if __name__ == "__main__": snake_case__ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '--biogpt_checkpoint_path', default=None, type=str, required=True, help=( 'Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,' ' bpecodes, etc.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) snake_case__ : int = parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
707
'''simple docstring''' import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class SCREAMING_SNAKE_CASE__ ( unittest.TestCase): @slow def UpperCAmelCase_ ( self )-> Union[str, Any]: '''simple docstring''' UpperCamelCase = FlaxMTaForConditionalGeneration.from_pretrained('google/mt5-small' ) UpperCamelCase = AutoTokenizer.from_pretrained('google/mt5-small' ) UpperCamelCase = tokenizer('Hello there' , return_tensors='np' ).input_ids UpperCamelCase = tokenizer('Hi I am' , return_tensors='np' ).input_ids UpperCamelCase = shift_tokens_right(A_ , model.config.pad_token_id , model.config.decoder_start_token_id ) UpperCamelCase = model(A_ , decoder_input_ids=A_ ).logits UpperCamelCase = optax.softmax_cross_entropy(A_ , onehot(A_ , logits.shape[-1] ) ).mean() UpperCamelCase = -(labels.shape[-1] * loss.item()) UpperCamelCase = -84.9_127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
432
0
import os def _snake_case ( __snake_case = "input.txt" ): with open(os.path.join(os.path.dirname(__snake_case ) , __snake_case ) ) as input_file: _UpperCamelCase = [ [int(__snake_case ) for element in line.split(''',''' )] for line in input_file.readlines() ] _UpperCamelCase = len(__snake_case ) _UpperCamelCase = len(matrix[0] ) _UpperCamelCase = [[-1 for _ in range(__snake_case )] for _ in range(__snake_case )] for i in range(__snake_case ): _UpperCamelCase = matrix[i][0] for j in range(1 , __snake_case ): for i in range(__snake_case ): _UpperCamelCase = minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , __snake_case ): _UpperCamelCase = min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): _UpperCamelCase = min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(f'{solution() = }')
10
from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging SCREAMING_SNAKE_CASE: List[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE: Optional[Any] = { '''google/umt5-small''': '''https://huggingface.co/google/umt5-small/resolve/main/config.json''', # See all umt5 models at https://huggingface.co/models?filter=umt5 } class lowercase_ (SCREAMING_SNAKE_CASE__ ): lowerCAmelCase__ ="umt5" lowerCAmelCase__ =["past_key_values"] def __init__( self : Optional[Any] , snake_case__ : Union[str, Any]=25_01_12 , snake_case__ : Optional[int]=5_12 , snake_case__ : Optional[Any]=64 , snake_case__ : str=10_24 , snake_case__ : Dict=8 , snake_case__ : Union[str, Any]=None , snake_case__ : List[Any]=6 , snake_case__ : List[Any]=32 , snake_case__ : List[Any]=1_28 , snake_case__ : Optional[int]=0.1 , snake_case__ : List[str]=1e-6 , snake_case__ : Optional[Any]=1.0 , snake_case__ : Optional[int]="gated-gelu" , snake_case__ : Any=True , snake_case__ : List[Any]=True , snake_case__ : List[str]="T5Tokenizer" , snake_case__ : List[str]=True , snake_case__ : Tuple=0 , snake_case__ : Optional[int]=1 , snake_case__ : List[str]=0 , **snake_case__ : Any , ): """simple docstring""" super().__init__( is_encoder_decoder=snake_case__ , tokenizer_class=snake_case__ , tie_word_embeddings=snake_case__ , pad_token_id=snake_case__ , eos_token_id=snake_case__ , decoder_start_token_id=snake_case__ , **snake_case__ , ) SCREAMING_SNAKE_CASE_ = vocab_size SCREAMING_SNAKE_CASE_ = d_model SCREAMING_SNAKE_CASE_ = d_kv SCREAMING_SNAKE_CASE_ = d_ff SCREAMING_SNAKE_CASE_ = num_layers SCREAMING_SNAKE_CASE_ = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry SCREAMING_SNAKE_CASE_ = num_heads SCREAMING_SNAKE_CASE_ = relative_attention_num_buckets SCREAMING_SNAKE_CASE_ = relative_attention_max_distance SCREAMING_SNAKE_CASE_ = dropout_rate SCREAMING_SNAKE_CASE_ = layer_norm_epsilon SCREAMING_SNAKE_CASE_ = initializer_factor SCREAMING_SNAKE_CASE_ = feed_forward_proj SCREAMING_SNAKE_CASE_ = use_cache SCREAMING_SNAKE_CASE_ = self.feed_forward_proj.split('-' ) SCREAMING_SNAKE_CASE_ = act_info[-1] SCREAMING_SNAKE_CASE_ = act_info[0] == 'gated' if len(snake_case__ ) > 1 and act_info[0] != "gated" or len(snake_case__ ) > 2: raise ValueError( f'''`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.''' 'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ' '\'gated-gelu\' or \'relu\'' ) if feed_forward_proj == "gated-gelu": SCREAMING_SNAKE_CASE_ = 'gelu_new' @property def __a ( self : Optional[Any] ): """simple docstring""" return self.d_model @property def __a ( self : Union[str, Any] ): """simple docstring""" return self.num_heads @property def __a ( self : Optional[Any] ): """simple docstring""" return self.num_layers class lowercase_ (SCREAMING_SNAKE_CASE__ ): @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs def __a ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ = { 'input_ids': {0: 'batch', 1: 'encoder_sequence'}, 'attention_mask': {0: 'batch', 1: 'encoder_sequence'}, } if self.use_past: SCREAMING_SNAKE_CASE_ = 'past_encoder_sequence + sequence' SCREAMING_SNAKE_CASE_ = {0: 'batch'} SCREAMING_SNAKE_CASE_ = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: SCREAMING_SNAKE_CASE_ = {0: 'batch', 1: 'decoder_sequence'} SCREAMING_SNAKE_CASE_ = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(snake_case__ , direction='inputs' ) return common_inputs @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset def __a ( self : Union[str, Any] ): """simple docstring""" return 13 @property def __a ( self : Dict ): """simple docstring""" return 5e-4
360
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { "microsoft/focalnet-tiny": "https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json", } class _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' A : Optional[int] = '''focalnet''' def __init__( self, A=224, A=4, A=3, A=96, A=False, A=[192, 384, 768, 768], A=[2, 2, 6, 2], A=[2, 2, 2, 2], A=[3, 3, 3, 3], A="gelu", A=4.0, A=0.0, A=0.1, A=False, A=1E-4, A=False, A=False, A=False, A=0.02, A=1E-5, A=32, A=None, A=None, **A, ): '''simple docstring''' super().__init__(**A ) SCREAMING_SNAKE_CASE : List[Any] = image_size SCREAMING_SNAKE_CASE : Dict = patch_size SCREAMING_SNAKE_CASE : Optional[int] = num_channels SCREAMING_SNAKE_CASE : List[Any] = embed_dim SCREAMING_SNAKE_CASE : Tuple = use_conv_embed SCREAMING_SNAKE_CASE : List[Any] = hidden_sizes SCREAMING_SNAKE_CASE : Union[str, Any] = depths SCREAMING_SNAKE_CASE : List[str] = focal_levels SCREAMING_SNAKE_CASE : int = focal_windows SCREAMING_SNAKE_CASE : List[Any] = hidden_act SCREAMING_SNAKE_CASE : int = mlp_ratio SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE : Dict = drop_path_rate SCREAMING_SNAKE_CASE : Optional[int] = use_layerscale SCREAMING_SNAKE_CASE : int = layerscale_value SCREAMING_SNAKE_CASE : Optional[Any] = use_post_layernorm SCREAMING_SNAKE_CASE : List[Any] = use_post_layernorm_in_modulation SCREAMING_SNAKE_CASE : int = normalize_modulator SCREAMING_SNAKE_CASE : str = initializer_range SCREAMING_SNAKE_CASE : str = layer_norm_eps SCREAMING_SNAKE_CASE : int = encoder_stride SCREAMING_SNAKE_CASE : Optional[int] = ['stem'] + [F"stage{idx}" for idx in range(1, len(self.depths ) + 1 )] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = get_aligned_output_features_output_indices( out_features=A, out_indices=A, stage_names=self.stage_names )
508
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available UpperCamelCase_ = { "configuration_longt5": ["LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP", "LongT5Config", "LongT5OnnxConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST", "LongT5EncoderModel", "LongT5ForConditionalGeneration", "LongT5Model", "LongT5PreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "FlaxLongT5ForConditionalGeneration", "FlaxLongT5Model", "FlaxLongT5PreTrainedModel", ] if TYPE_CHECKING: from .configuration_longta import LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP, LongTaConfig, LongTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longta import ( LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST, LongTaEncoderModel, LongTaForConditionalGeneration, LongTaModel, LongTaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_longta import ( FlaxLongTaForConditionalGeneration, FlaxLongTaModel, FlaxLongTaPreTrainedModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
508
1
'''simple docstring''' def __lowerCamelCase ( _UpperCamelCase : list ): '''simple docstring''' def merge(_UpperCamelCase : list , _UpperCamelCase : list ) -> list: def _merge(): while left and right: yield (left if left[0] <= right[0] else right).pop(0 ) yield from left yield from right return list(_merge() ) if len(_UpperCamelCase ) <= 1: return collection UpperCAmelCase_ = len(_UpperCamelCase ) // 2 return merge(merge_sort(collection[:mid] ) , merge_sort(collection[mid:] ) ) if __name__ == "__main__": import doctest doctest.testmod() lowercase__ : Union[str, Any] = input("Enter numbers separated by a comma:\n").strip() lowercase__ : Optional[Any] = [int(item) for item in user_input.split(",")] print(*merge_sort(unsorted), sep=",")
390
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline else: from .pipeline_kandinsky import KandinskyPipeline from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput from .text_encoder import MultilingualCLIP
390
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _SCREAMING_SNAKE_CASE = { "configuration_mgp_str": ["MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP", "MgpstrConfig"], "processing_mgp_str": ["MgpstrProcessor"], "tokenization_mgp_str": ["MgpstrTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ "MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST", "MgpstrModel", "MgpstrPreTrainedModel", "MgpstrForSceneTextRecognition", ] if TYPE_CHECKING: from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig from .processing_mgp_str import MgpstrProcessor from .tokenization_mgp_str import MgpstrTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mgp_str import ( MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST, MgpstrForSceneTextRecognition, MgpstrModel, MgpstrPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
707
'''simple docstring''' import itertools import random import unittest import numpy as np from transformers import WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaConfig, WavaVecaFeatureExtractor from transformers.testing_utils import require_torch, slow from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin _SCREAMING_SNAKE_CASE = random.Random() def __lowerCamelCase ( __lowerCAmelCase : Any , __lowerCAmelCase : Union[str, Any]=1.0 , __lowerCAmelCase : Union[str, Any]=None , __lowerCAmelCase : Optional[int]=None ) -> Optional[Any]: if rng is None: snake_case = global_rng snake_case = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : int , __snake_case : int , __snake_case : Dict=7 , __snake_case : Optional[int]=4_00 , __snake_case : Optional[int]=20_00 , __snake_case : List[str]=1 , __snake_case : str=0.0 , __snake_case : Dict=1_60_00 , __snake_case : Dict=True , __snake_case : Optional[int]=True , )-> Optional[int]: snake_case = parent snake_case = batch_size snake_case = min_seq_length snake_case = max_seq_length snake_case = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) snake_case = feature_size snake_case = padding_value snake_case = sampling_rate snake_case = return_attention_mask snake_case = do_normalize def lowerCAmelCase ( self : Union[str, Any] )-> Dict: return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def lowerCAmelCase ( self : Tuple , __snake_case : List[Any]=False , __snake_case : int=False )-> Tuple: def _flatten(__snake_case : List[str] ): return list(itertools.chain(*__snake_case ) ) if equal_length: snake_case = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size snake_case = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: snake_case = [np.asarray(__snake_case ) for x in speech_inputs] return speech_inputs class _lowerCAmelCase ( A__ , unittest.TestCase ): """simple docstring""" snake_case_ = WavaVecaFeatureExtractor def lowerCAmelCase ( self : Tuple )-> Optional[Any]: snake_case = WavaVecaFeatureExtractionTester(self ) def lowerCAmelCase ( self : Dict , __snake_case : str )-> List[Any]: self.assertTrue(np.all(np.mean(__snake_case , axis=0 ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(__snake_case , axis=0 ) - 1 ) < 1e-3 ) ) def lowerCAmelCase ( self : Optional[Any] )-> Optional[int]: # Tests that all call wrap to encode_plus and batch_encode_plus snake_case = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 snake_case = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] snake_case = [np.asarray(__snake_case ) for speech_input in speech_inputs] # Test not batched input snake_case = feat_extract(speech_inputs[0] , return_tensors="""np""" ).input_values snake_case = feat_extract(np_speech_inputs[0] , return_tensors="""np""" ).input_values self.assertTrue(np.allclose(__snake_case , __snake_case , atol=1e-3 ) ) # Test batched snake_case = feat_extract(__snake_case , return_tensors="""np""" ).input_values snake_case = feat_extract(__snake_case , return_tensors="""np""" ).input_values for enc_seq_a, enc_seq_a in zip(__snake_case , __snake_case ): self.assertTrue(np.allclose(__snake_case , __snake_case , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. snake_case = [floats_list((1, x) )[0] for x in (8_00, 8_00, 8_00)] snake_case = np.asarray(__snake_case ) snake_case = feat_extract(__snake_case , return_tensors="""np""" ).input_values snake_case = feat_extract(__snake_case , return_tensors="""np""" ).input_values for enc_seq_a, enc_seq_a in zip(__snake_case , __snake_case ): self.assertTrue(np.allclose(__snake_case , __snake_case , atol=1e-3 ) ) def lowerCAmelCase ( self : int )-> List[str]: snake_case = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) snake_case = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] snake_case = ["""longest""", """max_length""", """do_not_pad"""] snake_case = [None, 16_00, None] for max_length, padding in zip(__snake_case , __snake_case ): snake_case = feat_extract(__snake_case , padding=__snake_case , max_length=__snake_case , return_tensors="""np""" ) snake_case = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:8_00] ) self.assertTrue(input_values[0][8_00:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[1][:10_00] ) self.assertTrue(input_values[0][10_00:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[2][:12_00] ) def lowerCAmelCase ( self : Any )-> Tuple: snake_case = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) snake_case = range(8_00 , 14_00 , 2_00 ) snake_case = [floats_list((1, x) )[0] for x in lengths] snake_case = ["""longest""", """max_length""", """do_not_pad"""] snake_case = [None, 16_00, None] for max_length, padding in zip(__snake_case , __snake_case ): snake_case = feat_extract(__snake_case , max_length=__snake_case , padding=__snake_case ) snake_case = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:8_00] ) self._check_zero_mean_unit_variance(input_values[1][:10_00] ) self._check_zero_mean_unit_variance(input_values[2][:12_00] ) def lowerCAmelCase ( self : int )-> str: snake_case = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) snake_case = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] snake_case = feat_extract( __snake_case , truncation=__snake_case , max_length=10_00 , padding="""max_length""" , return_tensors="""np""" ) snake_case = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_00] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def lowerCAmelCase ( self : int )-> str: snake_case = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) snake_case = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] snake_case = feat_extract( __snake_case , truncation=__snake_case , max_length=10_00 , padding="""longest""" , return_tensors="""np""" ) snake_case = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_00] ) self._check_zero_mean_unit_variance(input_values[1, :10_00] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 10_00) ) snake_case = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] snake_case = feat_extract( __snake_case , truncation=__snake_case , max_length=20_00 , padding="""longest""" , return_tensors="""np""" ) snake_case = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_00] ) self._check_zero_mean_unit_variance(input_values[1, :10_00] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 12_00) ) @require_torch def lowerCAmelCase ( self : List[str] )-> Union[str, Any]: import torch snake_case = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) snake_case = np.random.rand(1_00 ).astype(np.floataa ) snake_case = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: snake_case = feature_extractor.pad([{"""input_values""": inputs}] , return_tensors="""np""" ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) snake_case = feature_extractor.pad([{"""input_values""": inputs}] , return_tensors="""pt""" ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) @slow @require_torch def lowerCAmelCase ( self : str )-> List[Any]: # this test makes sure that models that are using # group norm don't have their feature extractor return the # attention_mask for model_id in WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST: snake_case = WavaVecaConfig.from_pretrained(__snake_case ) snake_case = WavaVecaFeatureExtractor.from_pretrained(__snake_case ) # only "layer" feature extraction norm should make use of # attention_mask self.assertEqual(feat_extract.return_attention_mask , config.feat_extract_norm == """layer""" )
517
0
import logging import os import sys from dataclasses import dataclass, field from importlib import import_module from typing import Dict, List, Optional, Tuple import numpy as np from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch import nn from utils_ner import Split, TokenClassificationDataset, TokenClassificationTask import transformers from transformers import ( AutoConfig, AutoModelForTokenClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process A_ = logging.getLogger(__name__) @dataclass class __lowercase : lowercase = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) lowercase = field( default=a__ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) lowercase = field( default='NER' , metadata={'help': 'Task type to fine tune in training (e.g. NER, POS, etc)'} ) lowercase = field( default=a__ , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) lowercase = field(default=a__ , metadata={'help': 'Set this flag to use fast tokenization.'} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. lowercase = field( default=a__ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) @dataclass class __lowercase : lowercase = field( metadata={'help': 'The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task.'} ) lowercase = field( default=a__ , metadata={'help': 'Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.'} , ) lowercase = field( default=128 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowercase = field( default=a__ , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) def __UpperCAmelCase ( )-> Dict: """simple docstring""" lowercase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f'Output directory ({training_args.output_dir}) already exists and is not empty. Use' ''' --overwrite_output_dir to overcome.''' ) lowercase = import_module('''tasks''' ) try: lowercase = getattr(_lowerCamelCase, model_args.task_type ) lowercase = token_classification_task_clazz() except AttributeError: raise ValueError( f'Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. ' f'Available tasks classes are: {TokenClassificationTask.__subclasses__()}' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN, ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''', training_args.local_rank, training_args.device, training_args.n_gpu, bool(training_args.local_rank != -1 ), training_args.fpaa, ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''', _lowerCamelCase ) # Set seed set_seed(training_args.seed ) # Prepare CONLL-2003 task lowercase = token_classification_task.get_labels(data_args.labels ) lowercase = dict(enumerate(_lowerCamelCase ) ) lowercase = len(_lowerCamelCase ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowercase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path, num_labels=_lowerCamelCase, idalabel=_lowerCamelCase, labelaid={label: i for i, label in enumerate(_lowerCamelCase )}, cache_dir=model_args.cache_dir, ) lowercase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast, ) lowercase = AutoModelForTokenClassification.from_pretrained( model_args.model_name_or_path, from_tf=bool('''.ckpt''' in model_args.model_name_or_path ), config=_lowerCamelCase, cache_dir=model_args.cache_dir, ) # Get datasets lowercase = ( TokenClassificationDataset( token_classification_task=_lowerCamelCase, data_dir=data_args.data_dir, tokenizer=_lowerCamelCase, labels=_lowerCamelCase, model_type=config.model_type, max_seq_length=data_args.max_seq_length, overwrite_cache=data_args.overwrite_cache, mode=Split.train, ) if training_args.do_train else None ) lowercase = ( TokenClassificationDataset( token_classification_task=_lowerCamelCase, data_dir=data_args.data_dir, tokenizer=_lowerCamelCase, labels=_lowerCamelCase, model_type=config.model_type, max_seq_length=data_args.max_seq_length, overwrite_cache=data_args.overwrite_cache, mode=Split.dev, ) if training_args.do_eval else None ) def align_predictions(UpperCAmelCase, UpperCAmelCase ) -> Tuple[List[int], List[int]]: lowercase = np.argmax(_lowerCamelCase, axis=2 ) lowercase = preds.shape lowercase = [[] for _ in range(_lowerCamelCase )] lowercase = [[] for _ in range(_lowerCamelCase )] for i in range(_lowerCamelCase ): for j in range(_lowerCamelCase ): if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index: out_label_list[i].append(label_map[label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) return preds_list, out_label_list def compute_metrics(UpperCAmelCase ) -> Dict: lowercase = align_predictions(p.predictions, p.label_ids ) return { "accuracy_score": accuracy_score(_lowerCamelCase, _lowerCamelCase ), "precision": precision_score(_lowerCamelCase, _lowerCamelCase ), "recall": recall_score(_lowerCamelCase, _lowerCamelCase ), "f1": fa_score(_lowerCamelCase, _lowerCamelCase ), } # Data collator lowercase = DataCollatorWithPadding(_lowerCamelCase, pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer lowercase = Trainer( model=_lowerCamelCase, args=_lowerCamelCase, train_dataset=_lowerCamelCase, eval_dataset=_lowerCamelCase, compute_metrics=_lowerCamelCase, data_collator=_lowerCamelCase, ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_process_zero(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation lowercase = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) lowercase = trainer.evaluate() lowercase = os.path.join(training_args.output_dir, '''eval_results.txt''' ) if trainer.is_world_process_zero(): with open(_lowerCamelCase, '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in result.items(): logger.info(''' %s = %s''', _lowerCamelCase, _lowerCamelCase ) writer.write('''%s = %s\n''' % (key, value) ) results.update(_lowerCamelCase ) # Predict if training_args.do_predict: lowercase = TokenClassificationDataset( token_classification_task=_lowerCamelCase, data_dir=data_args.data_dir, tokenizer=_lowerCamelCase, labels=_lowerCamelCase, model_type=config.model_type, max_seq_length=data_args.max_seq_length, overwrite_cache=data_args.overwrite_cache, mode=Split.test, ) lowercase = trainer.predict(_lowerCamelCase ) lowercase = align_predictions(_lowerCamelCase, _lowerCamelCase ) lowercase = os.path.join(training_args.output_dir, '''test_results.txt''' ) if trainer.is_world_process_zero(): with open(_lowerCamelCase, '''w''' ) as writer: for key, value in metrics.items(): logger.info(''' %s = %s''', _lowerCamelCase, _lowerCamelCase ) writer.write('''%s = %s\n''' % (key, value) ) # Save predictions lowercase = os.path.join(training_args.output_dir, '''test_predictions.txt''' ) if trainer.is_world_process_zero(): with open(_lowerCamelCase, '''w''' ) as writer: with open(os.path.join(data_args.data_dir, '''test.txt''' ), '''r''' ) as f: token_classification_task.write_predictions_to_file(_lowerCamelCase, _lowerCamelCase, _lowerCamelCase ) return results def __UpperCAmelCase ( UpperCAmelCase )-> Dict: """simple docstring""" main() if __name__ == "__main__": main()
604
"""simple docstring""" import os import sys from contextlib import contextmanager # Windows only if os.name == "nt": import ctypes import msvcrt # noqa class _snake_case ( ctypes.Structure ): # _fields is a specific attr expected by ctypes snake_case__ = [("size", ctypes.c_int), ("visible", ctypes.c_byte)] def lowercase_ ( ) -> Optional[int]: '''simple docstring''' if os.name == "nt": __lowerCamelCase : str = CursorInfo() __lowerCamelCase : Union[str, Any] = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(_lowerCamelCase , ctypes.byref(_lowerCamelCase ) ) __lowerCamelCase : Tuple = False ctypes.windll.kernelaa.SetConsoleCursorInfo(_lowerCamelCase , ctypes.byref(_lowerCamelCase ) ) elif os.name == "posix": sys.stdout.write("\033[?25l" ) sys.stdout.flush() def lowercase_ ( ) -> Any: '''simple docstring''' if os.name == "nt": __lowerCamelCase : List[str] = CursorInfo() __lowerCamelCase : List[Any] = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(_lowerCamelCase , ctypes.byref(_lowerCamelCase ) ) __lowerCamelCase : str = True ctypes.windll.kernelaa.SetConsoleCursorInfo(_lowerCamelCase , ctypes.byref(_lowerCamelCase ) ) elif os.name == "posix": sys.stdout.write("\033[?25h" ) sys.stdout.flush() @contextmanager def lowercase_ ( ) -> List[Any]: '''simple docstring''' try: hide_cursor() yield finally: show_cursor()
646
0
'''simple docstring''' import os import unittest from huggingface_hub.utils import are_progress_bars_disabled import transformers.models.bart.tokenization_bart from transformers import logging from transformers.testing_utils import CaptureLogger, mockenv, mockenv_context from transformers.utils.logging import disable_progress_bar, enable_progress_bar class snake_case (unittest.TestCase ): def _a ( self ) -> Optional[int]: lowercase__ = logging.get_logger() # the current default level is logging.WARNING lowercase__ = logging.get_verbosity() logging.set_verbosity_error() self.assertEqual(logger.getEffectiveLevel() ,logging.get_verbosity() ) logging.set_verbosity_warning() self.assertEqual(logger.getEffectiveLevel() ,logging.get_verbosity() ) logging.set_verbosity_info() self.assertEqual(logger.getEffectiveLevel() ,logging.get_verbosity() ) logging.set_verbosity_debug() self.assertEqual(logger.getEffectiveLevel() ,logging.get_verbosity() ) # restore to the original level logging.set_verbosity(A_ ) def _a ( self ) -> str: lowercase__ = logging.get_verbosity() lowercase__ = logging.get_logger("transformers.models.bart.tokenization_bart" ) lowercase__ = "Testing 1, 2, 3" # should be able to log warnings (if default settings weren't overridden by `pytest --log-level-all`) if level_origin <= logging.WARNING: with CaptureLogger(A_ ) as cl: logger.warning(A_ ) self.assertEqual(cl.out ,msg + "\n" ) # this is setting the level for all of `transformers.*` loggers logging.set_verbosity_error() # should not be able to log warnings with CaptureLogger(A_ ) as cl: logger.warning(A_ ) self.assertEqual(cl.out ,"" ) # should be able to log warnings again logging.set_verbosity_warning() with CaptureLogger(A_ ) as cl: logger.warning(A_ ) self.assertEqual(cl.out ,msg + "\n" ) # restore to the original level logging.set_verbosity(A_ ) @mockenv(TRANSFORMERS_VERBOSITY="error" ) def _a ( self ) -> str: transformers.utils.logging._reset_library_root_logger() # this action activates the env var lowercase__ = logging.get_logger("transformers.models.bart.tokenization_bart" ) lowercase__ = os.getenv("TRANSFORMERS_VERBOSITY" ,A_ ) lowercase__ = logging.log_levels[env_level_str] lowercase__ = logging.get_verbosity() self.assertEqual( A_ ,A_ ,F'''TRANSFORMERS_VERBOSITY={env_level_str}/{env_level}, but internal verbosity is {current_level}''' ,) # restore to the original level lowercase__ = "" transformers.utils.logging._reset_library_root_logger() @mockenv(TRANSFORMERS_VERBOSITY="super-error" ) def _a ( self ) -> Optional[int]: transformers.utils.logging._reset_library_root_logger() lowercase__ = logging.logging.getLogger() with CaptureLogger(A_ ) as cl: # this action activates the env var logging.get_logger("transformers.models.bart.tokenization_bart" ) self.assertIn("Unknown option TRANSFORMERS_VERBOSITY=super-error" ,cl.out ) # no need to restore as nothing was changed def _a ( self ) -> Union[str, Any]: transformers.utils.logging._reset_library_root_logger() lowercase__ = logging.get_logger("transformers.models.bart.tokenization_bart" ) lowercase__ = "Testing 1, 2, 3" with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS="1" ): # nothing should be logged as env var disables this method with CaptureLogger(A_ ) as cl: logger.warning_advice(A_ ) self.assertEqual(cl.out ,"" ) with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS="" ): # should log normally as TRANSFORMERS_NO_ADVISORY_WARNINGS is unset with CaptureLogger(A_ ) as cl: logger.warning_advice(A_ ) self.assertEqual(cl.out ,msg + "\n" ) def lowerCamelCase ( ): '''simple docstring''' disable_progress_bar() assert are_progress_bars_disabled() enable_progress_bar() assert not are_progress_bars_disabled()
716
'''simple docstring''' import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class snake_case : def __init__( self ,UpperCAmelCase_ ,UpperCAmelCase_=13 ,UpperCAmelCase_=32 ,UpperCAmelCase_=2 ,UpperCAmelCase_=3 ,UpperCAmelCase_=16 ,UpperCAmelCase_=[32, 64, 128] ,UpperCAmelCase_=[1, 2, 1] ,UpperCAmelCase_=[2, 2, 4] ,UpperCAmelCase_=2 ,UpperCAmelCase_=2.0 ,UpperCAmelCase_=True ,UpperCAmelCase_=0.0 ,UpperCAmelCase_=0.0 ,UpperCAmelCase_=0.1 ,UpperCAmelCase_="gelu" ,UpperCAmelCase_=False ,UpperCAmelCase_=True ,UpperCAmelCase_=0.02 ,UpperCAmelCase_=1E-5 ,UpperCAmelCase_=True ,UpperCAmelCase_=None ,UpperCAmelCase_=True ,UpperCAmelCase_=10 ,UpperCAmelCase_=8 ,UpperCAmelCase_=["stage1", "stage2"] ,UpperCAmelCase_=[1, 2] ,) -> Dict: lowercase__ = parent lowercase__ = batch_size lowercase__ = image_size lowercase__ = patch_size lowercase__ = num_channels lowercase__ = embed_dim lowercase__ = hidden_sizes lowercase__ = depths lowercase__ = num_heads lowercase__ = window_size lowercase__ = mlp_ratio lowercase__ = qkv_bias lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = drop_path_rate lowercase__ = hidden_act lowercase__ = use_absolute_embeddings lowercase__ = patch_norm lowercase__ = layer_norm_eps lowercase__ = initializer_range lowercase__ = is_training lowercase__ = scope lowercase__ = use_labels lowercase__ = type_sequence_label_size lowercase__ = encoder_stride lowercase__ = out_features lowercase__ = out_indices def _a ( self ) -> int: lowercase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) lowercase__ = self.get_config() return config, pixel_values, labels def _a ( self ) -> Any: return FocalNetConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,embed_dim=self.embed_dim ,hidden_sizes=self.hidden_sizes ,depths=self.depths ,num_heads=self.num_heads ,window_size=self.window_size ,mlp_ratio=self.mlp_ratio ,qkv_bias=self.qkv_bias ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,drop_path_rate=self.drop_path_rate ,hidden_act=self.hidden_act ,use_absolute_embeddings=self.use_absolute_embeddings ,path_norm=self.patch_norm ,layer_norm_eps=self.layer_norm_eps ,initializer_range=self.initializer_range ,encoder_stride=self.encoder_stride ,out_features=self.out_features ,out_indices=self.out_indices ,) def _a ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ) -> str: lowercase__ = FocalNetModel(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() lowercase__ = model(UpperCAmelCase_ ) lowercase__ = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) lowercase__ = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, expected_seq_len, expected_dim) ) def _a ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ) -> Dict: lowercase__ = FocalNetBackbone(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() lowercase__ = model(UpperCAmelCase_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) ,len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) ,[self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) ,len(config.out_features ) ) self.parent.assertListEqual(model.channels ,config.hidden_sizes[:-1] ) # verify backbone works with out_features=None lowercase__ = None lowercase__ = FocalNetBackbone(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() lowercase__ = model(UpperCAmelCase_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) ,1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) ,[self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) ,1 ) self.parent.assertListEqual(model.channels ,[config.hidden_sizes[-1]] ) def _a ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ) -> Dict: lowercase__ = FocalNetForMaskedImageModeling(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() lowercase__ = model(UpperCAmelCase_ ) self.parent.assertEqual( result.reconstruction.shape ,(self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowercase__ = 1 lowercase__ = FocalNetForMaskedImageModeling(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() lowercase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase__ = model(UpperCAmelCase_ ) self.parent.assertEqual(result.reconstruction.shape ,(self.batch_size, 1, self.image_size, self.image_size) ) def _a ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ) -> Optional[Any]: lowercase__ = self.type_sequence_label_size lowercase__ = FocalNetForImageClassification(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() lowercase__ = model(UpperCAmelCase_ ,labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowercase__ = 1 lowercase__ = FocalNetForImageClassification(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() lowercase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase__ = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def _a ( self ) -> List[str]: lowercase__ = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ = config_and_inputs lowercase__ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class snake_case (UpperCamelCase , UpperCamelCase , unittest.TestCase ): lowerCAmelCase__ :List[str] = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) lowerCAmelCase__ :str = ( {"feature-extraction": FocalNetModel, "image-classification": FocalNetForImageClassification} if is_torch_available() else {} ) lowerCAmelCase__ :str = False lowerCAmelCase__ :List[Any] = False lowerCAmelCase__ :Dict = False lowerCAmelCase__ :List[Any] = False lowerCAmelCase__ :Union[str, Any] = False def _a ( self ) -> Any: lowercase__ = FocalNetModelTester(self ) lowercase__ = ConfigTester(self ,config_class=UpperCAmelCase_ ,embed_dim=37 ,has_text_modality=UpperCAmelCase_ ) def _a ( self ) -> Optional[int]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _a ( self ) -> List[Any]: return def _a ( self ) -> Tuple: lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def _a ( self ) -> Union[str, Any]: lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*UpperCAmelCase_ ) def _a ( self ) -> str: lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*UpperCAmelCase_ ) def _a ( self ) -> Dict: lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase_ ) @unittest.skip(reason="FocalNet does not use inputs_embeds" ) def _a ( self ) -> str: pass @unittest.skip(reason="FocalNet does not use feedforward chunking" ) def _a ( self ) -> Optional[int]: pass def _a ( self ) -> int: lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: lowercase__ = model_class(UpperCAmelCase_ ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) lowercase__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCAmelCase_ ,nn.Linear ) ) def _a ( self ) -> Union[str, Any]: lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: lowercase__ = model_class(UpperCAmelCase_ ) lowercase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ = [*signature.parameters.keys()] lowercase__ = ["pixel_values"] self.assertListEqual(arg_names[:1] ,UpperCAmelCase_ ) def _a ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ) -> List[Any]: lowercase__ = model_class(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() with torch.no_grad(): lowercase__ = model(**self._prepare_for_class(UpperCAmelCase_ ,UpperCAmelCase_ ) ) lowercase__ = outputs.hidden_states lowercase__ = getattr( self.model_tester ,"expected_num_hidden_layers" ,len(self.model_tester.depths ) + 1 ) self.assertEqual(len(UpperCAmelCase_ ) ,UpperCAmelCase_ ) # FocalNet has a different seq_length lowercase__ = ( config.patch_size if isinstance(config.patch_size ,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowercase__ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[num_patches, self.model_tester.embed_dim] ,) lowercase__ = outputs.reshaped_hidden_states self.assertEqual(len(UpperCAmelCase_ ) ,UpperCAmelCase_ ) lowercase__ , lowercase__ , lowercase__ , lowercase__ = reshaped_hidden_states[0].shape lowercase__ = ( reshaped_hidden_states[0].view(UpperCAmelCase_ ,UpperCAmelCase_ ,height * width ).permute(0 ,2 ,1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) ,[num_patches, self.model_tester.embed_dim] ,) def _a ( self ) -> str: lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size ,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: lowercase__ = True self.check_hidden_states_output(UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ = True self.check_hidden_states_output(UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ) def _a ( self ) -> int: lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = 3 lowercase__ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size ,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) lowercase__ = ( config.patch_size if isinstance(config.patch_size ,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowercase__ = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) lowercase__ = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: lowercase__ = True self.check_hidden_states_output(UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,(padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ = True self.check_hidden_states_output(UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,(padded_height, padded_width) ) @slow def _a ( self ) -> Dict: for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ = FocalNetModel.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) def _a ( self ) -> List[Any]: lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = _config_zero_init(UpperCAmelCase_ ) for model_class in self.all_model_classes: lowercase__ = model_class(config=UpperCAmelCase_ ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() ,[0.0, 1.0] ,msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' ,) @require_vision @require_torch class snake_case (unittest.TestCase ): @cached_property def _a ( self ) -> Optional[int]: # TODO update organization return AutoImageProcessor.from_pretrained("microsoft/focalnet-tiny" ) if is_vision_available() else None @slow def _a ( self ) -> List[str]: lowercase__ = FocalNetForImageClassification.from_pretrained("microsoft/focalnet-tiny" ).to(UpperCAmelCase_ ) lowercase__ = self.default_image_processor lowercase__ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) lowercase__ = image_processor(images=UpperCAmelCase_ ,return_tensors="pt" ).to(UpperCAmelCase_ ) # forward pass with torch.no_grad(): lowercase__ = model(**UpperCAmelCase_ ) # verify the logits lowercase__ = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape ,UpperCAmelCase_ ) lowercase__ = torch.tensor([0.21_66, -0.43_68, 0.21_91] ).to(UpperCAmelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,UpperCAmelCase_ ,atol=1E-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() ,281 ) @require_torch class snake_case (UpperCamelCase , unittest.TestCase ): lowerCAmelCase__ :Tuple = (FocalNetBackbone,) if is_torch_available() else () lowerCAmelCase__ :int = FocalNetConfig lowerCAmelCase__ :List[Any] = False def _a ( self ) -> Optional[int]: lowercase__ = FocalNetModelTester(self )
539
0
from ...configuration_utils import PretrainedConfig from ...utils import logging a_ : Dict = logging.get_logger(__name__) a_ : List[str] = { 'studio-ousia/luke-base': 'https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json', 'studio-ousia/luke-large': 'https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json', } class _snake_case ( A__ ): _lowercase : str = '''luke''' def __init__( self , a=5_0267 , a=50_0000 , a=768 , a=256 , a=12 , a=12 , a=3072 , a="gelu" , a=0.1 , a=0.1 , a=512 , a=2 , a=0.02 , a=1E-12 , a=True , a=None , a=1 , a=0 , a=2 , **a , ) -> Dict: super().__init__(pad_token_id=a , bos_token_id=a , eos_token_id=a , **a) SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = entity_vocab_size SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = entity_emb_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = type_vocab_size SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = layer_norm_eps SCREAMING_SNAKE_CASE = use_entity_aware_attention SCREAMING_SNAKE_CASE = classifier_dropout
73
import numpy as np import datasets SCREAMING_SNAKE_CASE : Optional[int] = "\nCompute the Mahalanobis Distance\n\nMahalonobis distance is the distance between a point and a distribution.\nAnd not between two distinct points. It is effectively a multivariate equivalent of the Euclidean distance.\nIt was introduced by Prof. P. C. Mahalanobis in 1936\nand has been used in various statistical applications ever since\n[source: https://www.machinelearningplus.com/statistics/mahalanobis-distance/]\n" SCREAMING_SNAKE_CASE : Dict = "\\n@article{de2000mahalanobis,\n title={The mahalanobis distance},\n author={De Maesschalck, Roy and Jouan-Rimbaud, Delphine and Massart, D{\'e}sir{\'e} L},\n journal={Chemometrics and intelligent laboratory systems},\n volume={50},\n number={1},\n pages={1--18},\n year={2000},\n publisher={Elsevier}\n}\n" SCREAMING_SNAKE_CASE : List[str] = "\nArgs:\n X: List of datapoints to be compared with the `reference_distribution`.\n reference_distribution: List of datapoints from the reference distribution we want to compare to.\nReturns:\n mahalanobis: The Mahalonobis distance for each datapoint in `X`.\nExamples:\n\n >>> mahalanobis_metric = datasets.load_metric(\"mahalanobis\")\n >>> results = mahalanobis_metric.compute(reference_distribution=[[0, 1], [1, 0]], X=[[0, 1]])\n >>> print(results)\n {'mahalanobis': array([0.5])}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase ( datasets.Metric ): def A_ (self ) -> str: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """X""": datasets.Sequence(datasets.Value("""float""" , id="""sequence""" ) , id="""X""" ), } ) , ) def A_ (self , __UpperCamelCase , __UpperCamelCase ) -> int: # convert to numpy arrays UpperCamelCase_ : int = np.array(__UpperCamelCase ) UpperCamelCase_ : Union[str, Any] = np.array(__UpperCamelCase ) # Assert that arrays are 2D if len(X.shape ) != 2: raise ValueError("""Expected `X` to be a 2D vector""" ) if len(reference_distribution.shape ) != 2: raise ValueError("""Expected `reference_distribution` to be a 2D vector""" ) if reference_distribution.shape[0] < 2: raise ValueError( """Expected `reference_distribution` to be a 2D vector with more than one element in the first dimension""" ) # Get mahalanobis distance for each prediction UpperCamelCase_ : str = X - np.mean(__UpperCamelCase ) UpperCamelCase_ : Dict = np.cov(reference_distribution.T ) try: UpperCamelCase_ : str = np.linalg.inv(__UpperCamelCase ) except np.linalg.LinAlgError: UpperCamelCase_ : List[Any] = np.linalg.pinv(__UpperCamelCase ) UpperCamelCase_ : Tuple = np.dot(__UpperCamelCase , __UpperCamelCase ) UpperCamelCase_ : Tuple = np.dot(__UpperCamelCase , X_minus_mu.T ).diagonal() return {"mahalanobis": mahal_dist}
635
0
import unittest from transformers import BertGenerationTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowercase_ = "▁" lowercase_ = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase , unittest.TestCase ): A : str = BertGenerationTokenizer A : Dict = False A : Any = True def snake_case__ ( self : Any ): super().setUp() __snake_case : Dict = BertGenerationTokenizer(_lowerCAmelCase , keep_accents=_lowerCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def snake_case__ ( self : Tuple ): __snake_case : List[str] = """<s>""" __snake_case : int = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowerCAmelCase ) , _lowerCAmelCase ) def snake_case__ ( self : List[str] ): __snake_case : List[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<unk>""" ) self.assertEqual(vocab_keys[1] , """<s>""" ) self.assertEqual(vocab_keys[-1] , """<pad>""" ) self.assertEqual(len(_lowerCAmelCase ) , 10_02 ) def snake_case__ ( self : List[Any] ): self.assertEqual(self.get_tokenizer().vocab_size , 10_00 ) def snake_case__ ( self : List[str] ): __snake_case : int = BertGenerationTokenizer(_lowerCAmelCase , keep_accents=_lowerCAmelCase ) __snake_case : Optional[int] = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(_lowerCAmelCase , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) , [2_85, 46, 10, 1_70, 3_82] , ) __snake_case : Optional[Any] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( _lowerCAmelCase , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) __snake_case : Optional[int] = tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) self.assertListEqual( _lowerCAmelCase , [8, 21, 84, 55, 24, 19, 7, 0, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) __snake_case : Any = tokenizer.convert_ids_to_tokens(_lowerCAmelCase ) self.assertListEqual( _lowerCAmelCase , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) @cached_property def snake_case__ ( self : Tuple ): return BertGenerationTokenizer.from_pretrained("""google/bert_for_seq_generation_L-24_bbc_encoder""" ) @slow def snake_case__ ( self : Optional[int] ): __snake_case : Tuple = """Hello World!""" __snake_case : Union[str, Any] = [1_85_36, 22_60, 1_01] self.assertListEqual(_lowerCAmelCase , self.big_tokenizer.encode(_lowerCAmelCase ) ) @slow def snake_case__ ( self : Dict ): __snake_case : Any = ( """This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will""" """ add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth""" ) __snake_case : List[Any] = [ 8_71, 4_19, 3_58, 9_46, 9_91, 25_21, 4_52, 3_58, 13_57, 3_87, 77_51, 35_36, 1_12, 9_85, 4_56, 1_26, 8_65, 9_38, 54_00, 57_34, 4_58, 13_68, 4_67, 7_86, 24_62, 52_46, 11_59, 6_33, 8_65, 45_19, 4_57, 5_82, 8_52, 25_57, 4_27, 9_16, 5_08, 4_05, 3_43_24, 4_97, 3_91, 4_08, 1_13_42, 12_44, 3_85, 1_00, 9_38, 9_85, 4_56, 5_74, 3_62, 1_25_97, 32_00, 31_29, 11_72, ] self.assertListEqual(_lowerCAmelCase , self.big_tokenizer.encode(_lowerCAmelCase ) ) @require_torch @slow def snake_case__ ( self : Any ): import torch from transformers import BertGenerationConfig, BertGenerationEncoder # Build sequence __snake_case : Dict = list(self.big_tokenizer.get_vocab().keys() )[:10] __snake_case : List[str] = """ """.join(_lowerCAmelCase ) __snake_case : List[Any] = self.big_tokenizer.encode_plus(_lowerCAmelCase , return_tensors="""pt""" , return_token_type_ids=_lowerCAmelCase ) __snake_case : Any = self.big_tokenizer.batch_encode_plus( [sequence + """ """ + sequence] , return_tensors="""pt""" , return_token_type_ids=_lowerCAmelCase ) __snake_case : List[Any] = BertGenerationConfig() __snake_case : Any = BertGenerationEncoder(_lowerCAmelCase ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**_lowerCAmelCase ) model(**_lowerCAmelCase ) @slow def snake_case__ ( self : List[Any] ): # fmt: off __snake_case : str = {"""input_ids""": [[3_92_86, 4_58, 3_63_35, 20_01, 4_56, 1_30_73, 1_32_66, 4_55, 1_13, 77_46, 17_41, 1_11_57, 3_91, 1_30_73, 1_32_66, 4_55, 1_13, 39_67, 3_54_12, 1_13, 49_36, 1_09, 38_70, 23_77, 1_13, 3_00_84, 4_57_20, 4_58, 1_34, 1_74_96, 1_12, 5_03, 1_16_72, 1_13, 1_18, 1_12, 56_65, 1_33_47, 3_86_87, 1_12, 14_96, 3_13_89, 1_12, 32_68, 4_72_64, 1_34, 9_62, 1_12, 1_63_77, 80_35, 2_31_30, 4_30, 1_21_69, 1_55_18, 2_85_92, 4_58, 1_46, 4_16_97, 1_09, 3_91, 1_21_69, 1_55_18, 1_66_89, 4_58, 1_46, 4_13_58, 1_09, 4_52, 7_26, 40_34, 1_11, 7_63, 3_54_12, 50_82, 3_88, 19_03, 1_11, 90_51, 3_91, 28_70, 4_89_18, 19_00, 11_23, 5_50, 9_98, 1_12, 95_86, 1_59_85, 4_55, 3_91, 4_10, 2_29_55, 3_76_36, 1_14], [4_48, 1_74_96, 4_19, 36_63, 3_85, 7_63, 1_13, 2_75_33, 28_70, 32_83, 1_30_43, 16_39, 2_47_13, 5_23, 6_56, 2_40_13, 1_85_50, 25_21, 5_17, 2_70_14, 2_12_44, 4_20, 12_12, 14_65, 3_91, 9_27, 48_33, 3_88, 5_78, 1_17_86, 1_14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4_84, 21_69, 76_87, 2_19_32, 1_81_46, 7_26, 3_63, 1_70_32, 33_91, 1_14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowerCAmelCase , model_name="""google/bert_for_seq_generation_L-24_bbc_encoder""" , revision="""c817d1fd1be2ffa69431227a1fe320544943d4db""" , )
390
from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase , __UpperCamelCase ): @register_to_config def __init__( self : int , _lowerCAmelCase : int = 7_68 , ): super().__init__() __snake_case : Optional[Any] = nn.Parameter(torch.zeros(1 , _lowerCAmelCase ) ) __snake_case : str = nn.Parameter(torch.ones(1 , _lowerCAmelCase ) ) def snake_case__ ( self : str , _lowerCAmelCase : Optional[Union[str, torch.device]] = None , _lowerCAmelCase : Optional[torch.dtype] = None , ): __snake_case : int = nn.Parameter(self.mean.to(_lowerCAmelCase ).to(_lowerCAmelCase ) ) __snake_case : List[str] = nn.Parameter(self.std.to(_lowerCAmelCase ).to(_lowerCAmelCase ) ) return self def snake_case__ ( self : Any , _lowerCAmelCase : Optional[Any] ): __snake_case : Optional[int] = (embeds - self.mean) * 1.0 / self.std return embeds def snake_case__ ( self : Optional[Any] , _lowerCAmelCase : Optional[int] ): __snake_case : Optional[int] = (embeds * self.std) + self.mean return embeds
390
1
'''simple docstring''' from __future__ import annotations import typing from collections import Counter def a__ ( UpperCamelCase_ : int ): UpperCAmelCase__ :typing.Counter[int] = Counter() for base in range(1, max_perimeter + 1 ): for perpendicular in range(UpperCamelCase_, max_perimeter + 1 ): UpperCAmelCase__ :Tuple = (base * base + perpendicular * perpendicular) ** 0.5 if hypotenuse == int(UpperCamelCase_ ): UpperCAmelCase__ :List[str] = int(base + perpendicular + hypotenuse ) if perimeter > max_perimeter: continue triplets[perimeter] += 1 return triplets def a__ ( UpperCamelCase_ : int = 1_000 ): UpperCAmelCase__ :List[str] = pythagorean_triple(UpperCamelCase_ ) return triplets.most_common(1 )[0][0] if __name__ == "__main__": print(F'''Perimeter {solution()} has maximum solutions''')
467
'''simple docstring''' from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time __lowerCamelCase = Lock() def a__ ( UpperCamelCase_ : str, UpperCamelCase_ : Any, UpperCamelCase_ : Any, UpperCamelCase_ : int, UpperCamelCase_ : Union[str, Any], UpperCamelCase_ : List[str], UpperCamelCase_ : Optional[int] ): global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0, 10 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(UpperCamelCase_ ) process_lock.release() # receive your right neighbor's value process_lock.acquire() UpperCAmelCase__ :Union[str, Any] = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left UpperCAmelCase__ :List[Any] = min(UpperCamelCase_, UpperCamelCase_ ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(UpperCamelCase_ ) process_lock.release() # receive your left neighbor's value process_lock.acquire() UpperCAmelCase__ :List[str] = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right UpperCAmelCase__ :List[Any] = max(UpperCamelCase_, UpperCamelCase_ ) # after all swaps are performed, send the values back to main result_pipe[1].send(UpperCamelCase_ ) def a__ ( UpperCamelCase_ : int ): UpperCAmelCase__ :List[str] = [] UpperCAmelCase__ :Any = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop UpperCAmelCase__ :str = Pipe() UpperCAmelCase__ :Dict = Pipe() process_array_.append( Process( target=UpperCamelCase_, args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]), ) ) UpperCAmelCase__ :Optional[Any] = temp_rs UpperCAmelCase__ :Any = temp_rr for i in range(1, len(UpperCamelCase_ ) - 1 ): UpperCAmelCase__ :Optional[int] = Pipe() UpperCAmelCase__ :List[str] = Pipe() process_array_.append( Process( target=UpperCamelCase_, args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]), ) ) UpperCAmelCase__ :Optional[Any] = temp_rs UpperCAmelCase__ :str = temp_rr process_array_.append( Process( target=UpperCamelCase_, args=( len(UpperCamelCase_ ) - 1, arr[len(UpperCamelCase_ ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(UpperCamelCase_ ) - 1], ), ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0, len(UpperCamelCase_ ) ): UpperCAmelCase__ :List[str] = result_pipe[p][0].recv() process_array_[p].join() return arr def a__ ( ): UpperCAmelCase__ :Optional[Any] = list(range(10, 0, -1 ) ) print('''Initial List''' ) print(*UpperCamelCase_ ) UpperCAmelCase__ :str = odd_even_transposition(UpperCamelCase_ ) print('''Sorted List\n''' ) print(*UpperCamelCase_ ) if __name__ == "__main__": main()
467
1
import baseaa def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Any ): '''simple docstring''' return baseaa.aaaencode(string.encode("utf-8" ) ) def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: List[str] ): '''simple docstring''' return baseaa.aaadecode(A_ ).decode("utf-8" ) if __name__ == "__main__": import doctest doctest.testmod()
710
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary # Register SEW's fairseq modules from sew_asapp import tasks # noqa: F401 from transformers import ( SEWConfig, SEWForCTC, SEWModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { """post_extract_proj""": """feature_projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.upsample.0""": """encoder.upsample.projection""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """layer_norm""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", } def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Tuple , __lowerCamelCase: List[str] , __lowerCamelCase: int , __lowerCamelCase: Optional[Any] , __lowerCamelCase: Union[str, Any] ): '''simple docstring''' for attribute in key.split("." ): lowercase_ = getattr(__lowerCamelCase , __lowerCamelCase ) if weight_type is not None: lowercase_ = getattr(__lowerCamelCase , __lowerCamelCase ).shape else: lowercase_ = hf_pointer.shape assert hf_shape == value.shape, ( F'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' F' {value.shape} for {full_name}' ) if weight_type == "weight": lowercase_ = value elif weight_type == "weight_g": lowercase_ = value elif weight_type == "weight_v": lowercase_ = value elif weight_type == "bias": lowercase_ = value else: lowercase_ = value logger.info(F'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: List[Any] , __lowerCamelCase: Optional[int] , __lowerCamelCase: Any ): '''simple docstring''' lowercase_ = [] lowercase_ = fairseq_model.state_dict() lowercase_ = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): lowercase_ = False if "conv_layers" in name: load_conv_layer( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , hf_model.config.feat_extract_norm == "group" , ) lowercase_ = True else: for key, mapped_key in MAPPING.items(): lowercase_ = "sew." + mapped_key if (is_finetuned and mapped_key != "lm_head") else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: lowercase_ = True if "*" in mapped_key: lowercase_ = name.split(__lowerCamelCase )[0].split("." )[-2] lowercase_ = mapped_key.replace("*" , __lowerCamelCase ) if "weight_g" in name: lowercase_ = "weight_g" elif "weight_v" in name: lowercase_ = "weight_v" elif "weight" in name: lowercase_ = "weight" elif "bias" in name: lowercase_ = "bias" else: lowercase_ = None set_recursively(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) continue if not is_used: unused_weights.append(__lowerCamelCase ) logger.warning(F'Unused weights: {unused_weights}' ) def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: List[str] , __lowerCamelCase: List[Any] , __lowerCamelCase: List[Any] , __lowerCamelCase: List[Any] , __lowerCamelCase: Dict ): '''simple docstring''' lowercase_ = full_name.split("conv_layers." )[-1] lowercase_ = name.split("." ) lowercase_ = int(items[0] ) lowercase_ = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) lowercase_ = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) lowercase_ = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) lowercase_ = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) lowercase_ = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Optional[Any] , __lowerCamelCase: Any ): '''simple docstring''' lowercase_ = SEWConfig() if is_finetuned: lowercase_ = model.wav_encoder.wav_model.cfg else: lowercase_ = model.cfg lowercase_ = fs_config.conv_bias lowercase_ = eval(fs_config.conv_feature_layers ) lowercase_ = [x[0] for x in conv_layers] lowercase_ = [x[1] for x in conv_layers] lowercase_ = [x[2] for x in conv_layers] lowercase_ = "gelu" lowercase_ = "layer" if fs_config.extractor_mode == "layer_norm" else "group" lowercase_ = 0.0 lowercase_ = fs_config.activation_fn.name lowercase_ = fs_config.encoder_embed_dim lowercase_ = 0.02 lowercase_ = fs_config.encoder_ffn_embed_dim lowercase_ = 1E-5 lowercase_ = fs_config.encoder_layerdrop lowercase_ = fs_config.encoder_attention_heads lowercase_ = fs_config.conv_pos_groups lowercase_ = fs_config.conv_pos lowercase_ = len(__lowerCamelCase ) lowercase_ = fs_config.encoder_layers lowercase_ = fs_config.squeeze_factor # take care of any params that are overridden by the Wav2VecCtc model if is_finetuned: lowercase_ = model.cfg lowercase_ = fs_config.final_dropout lowercase_ = fs_config.layerdrop lowercase_ = fs_config.activation_dropout lowercase_ = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0 lowercase_ = fs_config.attention_dropout lowercase_ = fs_config.dropout_input lowercase_ = fs_config.dropout lowercase_ = fs_config.mask_channel_length lowercase_ = fs_config.mask_channel_prob lowercase_ = fs_config.mask_length lowercase_ = fs_config.mask_prob lowercase_ = "Wav2Vec2FeatureExtractor" lowercase_ = "Wav2Vec2CTCTokenizer" return config @torch.no_grad() def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Union[str, Any] , __lowerCamelCase: Tuple , __lowerCamelCase: Tuple=None , __lowerCamelCase: List[Any]=None , __lowerCamelCase: str=True ): '''simple docstring''' if is_finetuned: lowercase_ , lowercase_ , lowercase_ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) else: lowercase_ , lowercase_ , lowercase_ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) if config_path is not None: lowercase_ = SEWConfig.from_pretrained(__lowerCamelCase ) else: lowercase_ = convert_config(model[0] , __lowerCamelCase ) lowercase_ = model[0].eval() lowercase_ = True if config.feat_extract_norm == "layer" else False lowercase_ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=__lowerCamelCase , return_attention_mask=__lowerCamelCase , ) if is_finetuned: if dict_path: lowercase_ = Dictionary.load(__lowerCamelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq lowercase_ = target_dict.pad_index lowercase_ = target_dict.bos_index lowercase_ = target_dict.pad_index lowercase_ = target_dict.bos_index lowercase_ = target_dict.eos_index lowercase_ = len(target_dict.symbols ) lowercase_ = os.path.join(__lowerCamelCase , "vocab.json" ) if not os.path.isdir(__lowerCamelCase ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(__lowerCamelCase ) ) return os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) with open(__lowerCamelCase , "w" , encoding="utf-8" ) as vocab_handle: json.dump(target_dict.indices , __lowerCamelCase ) lowercase_ = WavaVecaCTCTokenizer( __lowerCamelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=__lowerCamelCase , ) lowercase_ = WavaVecaProcessor(feature_extractor=__lowerCamelCase , tokenizer=__lowerCamelCase ) processor.save_pretrained(__lowerCamelCase ) lowercase_ = SEWForCTC(__lowerCamelCase ) else: lowercase_ = SEWModel(__lowerCamelCase ) feature_extractor.save_pretrained(__lowerCamelCase ) recursively_load_weights(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) hf_model.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--is_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_sew_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned )
601
0
"""simple docstring""" from __future__ import annotations import math def a__ ( lowerCAmelCase__ ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowerCAmelCase__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True lowerCamelCase = [num for num in range(3, 100_001, 2) if not is_prime(num)] def a__ ( lowerCAmelCase__ ): if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise ValueError("n must be an integer" ) if n <= 0: raise ValueError("n must be >= 0" ) UpperCAmelCase_ = [] for num in range(len(lowerCAmelCase__ ) ): UpperCAmelCase_ = 0 while 2 * i * i <= odd_composites[num]: UpperCAmelCase_ = odd_composites[num] - 2 * i * i if is_prime(lowerCAmelCase__ ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(lowerCAmelCase__ ) == n: return list_nums return [] def a__ ( ): return compute_nums(1 )[0] if __name__ == "__main__": print(F"{solution() = }")
82
'''simple docstring''' import numpy as np # Importing the Keras libraries and packages import tensorflow as tf from tensorflow.keras import layers, models if __name__ == "__main__": # Initialising the CNN # (Sequential- Building the model layer by layer) __UpperCamelCase : Union[str, Any] = models.Sequential() # Step 1 - Convolution # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel # (3,3) is the kernel size (filter matrix) classifier.add( layers.ConvaD(32, (3, 3), input_shape=(64, 64, 3), activation="""relu""") ) # Step 2 - Pooling classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(layers.ConvaD(32, (3, 3), activation="""relu""")) classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Step 3 - Flattening classifier.add(layers.Flatten()) # Step 4 - Full connection classifier.add(layers.Dense(units=128, activation="""relu""")) classifier.add(layers.Dense(units=1, activation="""sigmoid""")) # Compiling the CNN classifier.compile( optimizer="""adam""", loss="""binary_crossentropy""", metrics=["""accuracy"""] ) # Part 2 - Fitting the CNN to the images # Load Trained model weights # from keras.models import load_model # regressor=load_model('cnn.h5') __UpperCamelCase : Optional[Any] = tf.keras.preprocessing.image.ImageDataGenerator( rescale=1.0 / 255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) __UpperCamelCase : Union[str, Any] = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 255) __UpperCamelCase : Any = train_datagen.flow_from_directory( """dataset/training_set""", target_size=(64, 64), batch_size=32, class_mode="""binary""" ) __UpperCamelCase : str = test_datagen.flow_from_directory( """dataset/test_set""", target_size=(64, 64), batch_size=32, class_mode="""binary""" ) classifier.fit_generator( training_set, steps_per_epoch=5, epochs=30, validation_data=test_set ) classifier.save("""cnn.h5""") # Part 3 - Making new predictions __UpperCamelCase : Optional[Any] = tf.keras.preprocessing.image.load_img( """dataset/single_prediction/image.png""", target_size=(64, 64) ) __UpperCamelCase : List[Any] = tf.keras.preprocessing.image.img_to_array(test_image) __UpperCamelCase : Dict = np.expand_dims(test_image, axis=0) __UpperCamelCase : Optional[Any] = classifier.predict(test_image) # training_set.class_indices if result[0][0] == 0: __UpperCamelCase : Optional[int] = """Normal""" if result[0][0] == 1: __UpperCamelCase : Optional[int] = """Abnormality detected"""
448
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __lowerCAmelCase : List[Any] = { 'configuration_conditional_detr': [ 'CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConditionalDetrConfig', 'ConditionalDetrOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Any = ['ConditionalDetrFeatureExtractor'] __lowerCAmelCase : str = ['ConditionalDetrImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Optional[int] = [ 'CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConditionalDetrForObjectDetection', 'ConditionalDetrForSegmentation', 'ConditionalDetrModel', 'ConditionalDetrPreTrainedModel', ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys __lowerCAmelCase : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
709
from __future__ import annotations def UpperCAmelCase_ ( __lowerCAmelCase ) -> int: if not nums: return 0 __lowercase : List[Any] = nums[0] __lowercase : Union[str, Any] = 0 for num in nums[1:]: __lowercase , __lowercase : Dict = ( max_excluding + num, max(__lowerCAmelCase , __lowerCAmelCase ), ) return max(__lowerCAmelCase , __lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
284
0
"""simple docstring""" import string def A_ ( snake_case_ : str ): '''simple docstring''' UpperCamelCase : Union[str, Any] = """""" for i in sequence: UpperCamelCase : int = ord(snake_case_ ) if 6_5 <= extract <= 9_0: output += chr(1_5_5 - extract ) elif 9_7 <= extract <= 1_2_2: output += chr(2_1_9 - extract ) else: output += i return output def A_ ( snake_case_ : str ): '''simple docstring''' UpperCamelCase : str = string.ascii_letters UpperCamelCase : Any = string.ascii_lowercase[::-1] + string.ascii_uppercase[::-1] return "".join( letters_reversed[letters.index(snake_case_ )] if c in letters else c for c in sequence ) def A_ ( ): '''simple docstring''' from timeit import timeit print("""Running performance benchmarks...""" ) UpperCamelCase : str = """from string import printable ; from __main__ import atbash, atbash_slow""" print(f'> atbash_slow(): {timeit("atbash_slow(printable)" ,setup=snake_case_ )} seconds' ) print(f'> atbash(): {timeit("atbash(printable)" ,setup=snake_case_ )} seconds' ) if __name__ == "__main__": for example in ("ABCDEFGH", "123GGjj", "testStringtest", "with space"): print(F'''{example} encrypted in atbash: {atbash(example)}''') benchmark()
499
"""simple docstring""" from PIL import Image def A_ ( snake_case_ : Image ,snake_case_ : int ): '''simple docstring''' UpperCamelCase : Optional[int] = (2_5_9 * (level + 2_5_5)) / (2_5_5 * (2_5_9 - level)) def contrast(snake_case_ : int ) -> int: return int(1_2_8 + factor * (c - 1_2_8) ) return img.point(snake_case_ ) if __name__ == "__main__": # Load image with Image.open('''image_data/lena.jpg''') as img: # Change contrast to 170 __A : Optional[int] = change_contrast(img, 170) cont_img.save('''image_data/lena_high_contrast.png''', format='''png''')
499
1
from __future__ import annotations def __lowerCamelCase ( _lowercase ) -> Union[str, Any]: UpperCamelCase = len(UpperCamelCase__ ) # We need to create solution object to save path. UpperCamelCase = [[0 for _ in range(UpperCamelCase__ )] for _ in range(UpperCamelCase__ )] UpperCamelCase = run_maze(UpperCamelCase__ , 0 , 0 , UpperCamelCase__ ) if solved: print('\n'.join(str(UpperCamelCase__ ) for row in solutions ) ) else: print('No solution exists!' ) return solved def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase ) -> str: UpperCamelCase = len(UpperCamelCase__ ) # Final check point. if i == j == (size - 1): UpperCamelCase = 1 return True UpperCamelCase = (not i < 0) and (not j < 0) # Check lower bounds UpperCamelCase = (i < size) and (j < size) # Check upper bounds if lower_flag and upper_flag: # check for already visited and block points. UpperCamelCase = (not solutions[i][j]) and (not maze[i][j]) if block_flag: # check visited UpperCamelCase = 1 # check for directions if ( run_maze(UpperCamelCase__ , i + 1 , UpperCamelCase__ , UpperCamelCase__ ) or run_maze(UpperCamelCase__ , UpperCamelCase__ , j + 1 , UpperCamelCase__ ) or run_maze(UpperCamelCase__ , i - 1 , UpperCamelCase__ , UpperCamelCase__ ) or run_maze(UpperCamelCase__ , UpperCamelCase__ , j - 1 , UpperCamelCase__ ) ): return True UpperCamelCase = 0 return False return False if __name__ == "__main__": import doctest doctest.testmod()
715
import cva import numpy as np class _lowerCAmelCase : """simple docstring""" def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" if k in (0.04, 0.06): UpperCamelCase = k UpperCamelCase = window_size else: raise ValueError('invalid k value' ) def __str__( self : Any ): """simple docstring""" return str(self.k ) def __lowerCAmelCase ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : str ): """simple docstring""" UpperCamelCase = cva.imread(SCREAMING_SNAKE_CASE__ , 0 ) UpperCamelCase , UpperCamelCase = img.shape UpperCamelCase = [] UpperCamelCase = img.copy() UpperCamelCase = cva.cvtColor(SCREAMING_SNAKE_CASE__ , cva.COLOR_GRAY2RGB ) UpperCamelCase , UpperCamelCase = np.gradient(SCREAMING_SNAKE_CASE__ ) UpperCamelCase = dx**2 UpperCamelCase = dy**2 UpperCamelCase = dx * dy UpperCamelCase = 0.04 UpperCamelCase = self.window_size // 2 for y in range(SCREAMING_SNAKE_CASE__ , h - offset ): for x in range(SCREAMING_SNAKE_CASE__ , w - offset ): UpperCamelCase = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() UpperCamelCase = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() UpperCamelCase = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() UpperCamelCase = (wxx * wyy) - (wxy**2) UpperCamelCase = wxx + wyy UpperCamelCase = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 2_55 ) return color_img, corner_list if __name__ == "__main__": _snake_case = HarrisCorner(0.04, 3) _snake_case , _snake_case = edge_detect.detect('''path_to_image''') cva.imwrite('''detect.png''', color_img)
170
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase_ : Any = {'''configuration_opt''': ['''OPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''OPTConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Dict = [ '''OPT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''OPTForCausalLM''', '''OPTModel''', '''OPTPreTrainedModel''', '''OPTForSequenceClassification''', '''OPTForQuestionAnswering''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Optional[Any] = ['''TFOPTForCausalLM''', '''TFOPTModel''', '''TFOPTPreTrainedModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : str = [ '''FlaxOPTForCausalLM''', '''FlaxOPTModel''', '''FlaxOPTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_opt import OPT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_opt import ( OPT_PRETRAINED_MODEL_ARCHIVE_LIST, OPTForCausalLM, OPTForQuestionAnswering, OPTForSequenceClassification, OPTModel, OPTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_opt import TFOPTForCausalLM, TFOPTModel, TFOPTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_opt import FlaxOPTForCausalLM, FlaxOPTModel, FlaxOPTPreTrainedModel else: import sys UpperCAmelCase_ : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
17
from PIL import Image def UpperCamelCase__ ( lowerCAmelCase__ ,lowerCAmelCase__ ): def brightness(lowerCAmelCase__ ) -> float: return 128 + level + (c - 128) if not -255.0 <= level <= 255.0: raise ValueError("""level must be between -255.0 (black) and 255.0 (white)""" ) return img.point(lowerCAmelCase__ ) if __name__ == "__main__": # Load image with Image.open('''image_data/lena.jpg''') as img: # Change brightness to 100 __SCREAMING_SNAKE_CASE : int =change_brightness(img, 100) brigt_img.save('''image_data/lena_brightness.png''', format='''png''')
428
0
import random import sys import numpy as np from matplotlib import pyplot as plt from matplotlib.colors import ListedColormap __SCREAMING_SNAKE_CASE : int = '''Usage of script: script_name <size_of_canvas:int>''' __SCREAMING_SNAKE_CASE : List[str] = [0] * 100 + [1] * 10 random.shuffle(choice) def snake_case_ ( lowercase__ : int ): '''simple docstring''' _lowerCAmelCase =[[False for i in range(lowercase__ )] for j in range(lowercase__ )] return canvas def snake_case_ ( lowercase__ : list[list[bool]] ): '''simple docstring''' for i, row in enumerate(lowercase__ ): for j, _ in enumerate(lowercase__ ): _lowerCAmelCase =bool(random.getrandbits(1 ) ) def snake_case_ ( lowercase__ : list[list[bool]] ): '''simple docstring''' _lowerCAmelCase =np.array(lowercase__ ) _lowerCAmelCase =np.array(create_canvas(current_canvas.shape[0] ) ) for r, row in enumerate(lowercase__ ): for c, pt in enumerate(lowercase__ ): _lowerCAmelCase =__judge_point( lowercase__ , current_canvas[r - 1 : r + 2, c - 1 : c + 2] ) _lowerCAmelCase =next_gen_canvas del next_gen_canvas # cleaning memory as we move on. _lowerCAmelCase =current_canvas.tolist() return return_canvas def snake_case_ ( lowercase__ : bool , lowercase__ : list[list[bool]] ): '''simple docstring''' _lowerCAmelCase =0 _lowerCAmelCase =0 # finding dead or alive neighbours count. for i in neighbours: for status in i: if status: alive += 1 else: dead += 1 # handling duplicate entry for focus pt. if pt: alive -= 1 else: dead -= 1 # running the rules of game here. _lowerCAmelCase =pt if pt: if alive < 2: _lowerCAmelCase =False elif alive == 2 or alive == 3: _lowerCAmelCase =True elif alive > 3: _lowerCAmelCase =False else: if alive == 3: _lowerCAmelCase =True return state if __name__ == "__main__": if len(sys.argv) != 2: raise Exception(usage_doc) __SCREAMING_SNAKE_CASE : str = int(sys.argv[1]) # main working structure of this module. __SCREAMING_SNAKE_CASE : List[str] = create_canvas(canvas_size) seed(c) __SCREAMING_SNAKE_CASE : str = plt.subplots() fig.show() __SCREAMING_SNAKE_CASE : str = ListedColormap(['''w''', '''k''']) try: while True: __SCREAMING_SNAKE_CASE : Union[str, Any] = run(c) ax.matshow(c, cmap=cmap) fig.canvas.draw() ax.cla() except KeyboardInterrupt: # do nothing. pass
713
from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def snake_case_ ( lowercase__ : Optional[int] , lowercase__ : Any , lowercase__ : Dict , lowercase__ : int ): '''simple docstring''' for param, grad_param in zip(model_a.parameters() , model_b.parameters() ): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is False ), f"Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})" else: # Grads should be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is True ), f"Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})" def snake_case_ ( lowercase__ : int , lowercase__ : int , lowercase__ : str , lowercase__ : Optional[int] , lowercase__ : Any=True ): '''simple docstring''' model.train() _lowerCAmelCase =model(lowercase__ ) _lowerCAmelCase =F.mse_loss(lowercase__ , target.to(output.device ) ) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(lowercase__ ) def snake_case_ ( lowercase__ : Dict , lowercase__ : List[str]=False ): '''simple docstring''' set_seed(42 ) _lowerCAmelCase =RegressionModel() _lowerCAmelCase =deepcopy(lowercase__ ) _lowerCAmelCase =RegressionDataset(length=80 ) _lowerCAmelCase =DataLoader(lowercase__ , batch_size=16 ) model.to(accelerator.device ) if sched: _lowerCAmelCase =AdamW(params=model.parameters() , lr=1e-3 ) _lowerCAmelCase =AdamW(params=ddp_model.parameters() , lr=1e-3 ) _lowerCAmelCase =LambdaLR(lowercase__ , lr_lambda=lambda lowercase__ : epoch**0.6_5 ) _lowerCAmelCase =LambdaLR(lowercase__ , lr_lambda=lambda lowercase__ : epoch**0.6_5 ) # Make a copy of `model` if sched: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =accelerator.prepare(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) else: _lowerCAmelCase , _lowerCAmelCase =accelerator.prepare(lowercase__ , lowercase__ ) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def snake_case_ ( lowercase__ : Union[str, Any] ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =get_training_setup(lowercase__ ) # Use a single batch _lowerCAmelCase , _lowerCAmelCase =next(iter(lowercase__ ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model _lowerCAmelCase , _lowerCAmelCase =accelerator.gather((ddp_input, ddp_target) ) _lowerCAmelCase , _lowerCAmelCase =input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(lowercase__ ): step_model(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) else: # Sync grads step_model(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue assert torch.allclose( param.grad , ddp_param.grad ), f"Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})" # Shuffle ddp_input on each iteration torch.manual_seed(13_37 + iteration ) _lowerCAmelCase =ddp_input[torch.randperm(len(lowercase__ ) )] def snake_case_ ( lowercase__ : List[str] ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =get_training_setup(lowercase__ ) # Use a single batch _lowerCAmelCase , _lowerCAmelCase =next(iter(lowercase__ ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model _lowerCAmelCase , _lowerCAmelCase =accelerator.gather((ddp_input, ddp_target) ) _lowerCAmelCase , _lowerCAmelCase =input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(lowercase__ ): step_model(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) else: # Sync grads step_model(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), f"Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})" else: # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), f"Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})" # Shuffle ddp_input on each iteration torch.manual_seed(13_37 + iteration ) _lowerCAmelCase =ddp_input[torch.randperm(len(lowercase__ ) )] def snake_case_ ( lowercase__ : Optional[Any]=False , lowercase__ : List[str]=False ): '''simple docstring''' _lowerCAmelCase =Accelerator( split_batches=lowercase__ , dispatch_batches=lowercase__ , gradient_accumulation_steps=2 ) # Test that context manager behaves properly _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =get_training_setup(lowercase__ ) for iteration, batch in enumerate(lowercase__ ): _lowerCAmelCase , _lowerCAmelCase =batch.values() # Gather the distributed inputs and targs for the base model _lowerCAmelCase , _lowerCAmelCase =accelerator.gather((ddp_input, ddp_target) ) _lowerCAmelCase , _lowerCAmelCase =input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) # Do "gradient accumulation" (noop) with accelerator.accumulate(lowercase__ ): step_model(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(lowercase__ ) - 1): # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), f"Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})" else: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), f"Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})" # Shuffle ddp_input on each iteration torch.manual_seed(13_37 + iteration ) _lowerCAmelCase =ddp_input[torch.randperm(len(lowercase__ ) )] GradientState._reset_state() def snake_case_ ( lowercase__ : int=False , lowercase__ : Dict=False ): '''simple docstring''' _lowerCAmelCase =Accelerator( split_batches=lowercase__ , dispatch_batches=lowercase__ , gradient_accumulation_steps=2 ) # Test that context manager behaves properly _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =get_training_setup(lowercase__ , lowercase__ ) for iteration, batch in enumerate(lowercase__ ): _lowerCAmelCase , _lowerCAmelCase =batch.values() # Gather the distributed inputs and targs for the base model _lowerCAmelCase , _lowerCAmelCase =accelerator.gather((ddp_input, ddp_target) ) _lowerCAmelCase , _lowerCAmelCase =input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(lowercase__ )): if split_batches: sched.step() else: for _ in range(accelerator.num_processes ): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(lowercase__ ): step_model(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), f"Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]['lr']}\nDDP opt: {ddp_opt.param_groups[0]['lr']}\n" _lowerCAmelCase =(((iteration + 1) % 2) == 0) or ((iteration + 1) == len(lowercase__ )) if accelerator.num_processes > 1: check_model_parameters(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) # Shuffle ddp_input on each iteration torch.manual_seed(13_37 + iteration ) GradientState._reset_state() def snake_case_ ( ): '''simple docstring''' _lowerCAmelCase =Accelerator() _lowerCAmelCase =RegressionDataset(length=80 ) _lowerCAmelCase =DataLoader(lowercase__ , batch_size=16 ) _lowerCAmelCase =RegressionDataset(length=96 ) _lowerCAmelCase =DataLoader(lowercase__ , batch_size=16 ) _lowerCAmelCase , _lowerCAmelCase =accelerator.prepare(lowercase__ , lowercase__ ) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(lowercase__ ): assert id(accelerator.gradient_state.active_dataloader ) == id(lowercase__ ) if iteration < len(lowercase__ ) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(lowercase__ ): assert id(accelerator.gradient_state.active_dataloader ) == id(lowercase__ ) if batch_num < len(lowercase__ ) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def snake_case_ ( ): '''simple docstring''' _lowerCAmelCase =Accelerator() _lowerCAmelCase =accelerator.state if state.local_process_index == 0: print("""**Test `accumulate` gradient accumulation with dataloader break**""" ) test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print("""**Test NOOP `no_sync` context manager**""" ) test_noop_sync(lowercase__ ) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print("""**Test Distributed `no_sync` context manager**""" ) test_distributed_sync(lowercase__ ) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( """**Test `accumulate` gradient accumulation, """ , f"`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**" , ) test_gradient_accumulation(lowercase__ , lowercase__ ) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version("""<""" , """2.0""" ) or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( """**Test `accumulate` gradient accumulation with optimizer and scheduler, """ , """`split_batches=False`, `dispatch_batches=False`**""" , ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( """**Test `accumulate` gradient accumulation with optimizer and scheduler, """ , f"`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**" , ) test_gradient_accumulation_with_opt_and_scheduler(lowercase__ , lowercase__ ) def snake_case_ ( lowercase__ : Tuple ): '''simple docstring''' main() if __name__ == "__main__": main()
149
0
import warnings from ...utils import logging from .image_processing_deit import DeiTImageProcessor _a : Optional[Any] = logging.get_logger(__name__) class UpperCamelCase_ ( __UpperCamelCase ): """simple docstring""" def __init__( self , *UpperCAmelCase , **UpperCAmelCase ): warnings.warn( """The class DeiTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use DeiTImageProcessor instead.""" , UpperCAmelCase , ) super().__init__(*UpperCAmelCase , **UpperCAmelCase )
479
from transformers import BertTokenizerFast from .custom_tokenization import CustomTokenizer class UpperCamelCase_ ( __UpperCamelCase ): """simple docstring""" A = CustomTokenizer pass
479
1
from __future__ import annotations import math def _A ( __snake_case :int , __snake_case :int , __snake_case :bool , __snake_case :list[int] , __snake_case :float ) -> int: """simple docstring""" if depth < 0: raise ValueError("Depth cannot be less than 0" ) if not scores: raise ValueError("Scores cannot be empty" ) if depth == height: return scores[node_index] return ( max( minimax(depth + 1 , node_index * 2 , __snake_case , __snake_case , __snake_case ) , minimax(depth + 1 , node_index * 2 + 1 , __snake_case , __snake_case , __snake_case ) , ) if is_max else min( minimax(depth + 1 , node_index * 2 , __snake_case , __snake_case , __snake_case ) , minimax(depth + 1 , node_index * 2 + 1 , __snake_case , __snake_case , __snake_case ) , ) ) def _A ( ) -> None: """simple docstring""" __SCREAMING_SNAKE_CASE = [90, 23, 6, 33, 21, 65, 123, 3_4423] __SCREAMING_SNAKE_CASE = math.log(len(__snake_case ) , 2 ) print(f'''Optimal value : {minimax(0 , 0 , __snake_case , __snake_case , __snake_case )}''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
214
import re def _A ( __snake_case :str ) -> str: """simple docstring""" if len(re.findall("[ATCG]" , __snake_case ) ) != len(__snake_case ): raise ValueError("Invalid Strand" ) return dna.translate(dna.maketrans("ATCG" , "TAGC" ) ) if __name__ == "__main__": import doctest doctest.testmod()
214
1
'''simple docstring''' def _lowercase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' if b == 0: return 1 if (b % 2) == 0: return actual_power(__lowercase , int(b / 2 ) ) * actual_power(__lowercase , int(b / 2 ) ) else: return a * actual_power(__lowercase , int(b / 2 ) ) * actual_power(__lowercase , int(b / 2 ) ) def _lowercase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' if b < 0: return 1 / actual_power(__lowercase , __lowercase ) return actual_power(__lowercase , __lowercase ) if __name__ == "__main__": print(power(-2, -3))
111
'''simple docstring''' from __future__ import annotations import math import random from typing import Any class snake_case : """simple docstring""" def __init__( self : Optional[int] ): __UpperCamelCase = [] __UpperCamelCase = 0 __UpperCamelCase = 0 def _lowerCamelCase ( self : Dict ): return self.head == self.tail def _lowerCamelCase ( self : int , __A : Any ): self.data.append(__A ) __UpperCamelCase = self.tail + 1 def _lowerCamelCase ( self : Tuple ): __UpperCamelCase = self.data[self.head] __UpperCamelCase = self.head + 1 return ret def _lowerCamelCase ( self : Union[str, Any] ): return self.tail - self.head def _lowerCamelCase ( self : Optional[int] ): print(self.data ) print('**************' ) print(self.data[self.head : self.tail] ) class snake_case : """simple docstring""" def __init__( self : str , __A : Any ): __UpperCamelCase = data __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = 1 def _lowerCamelCase ( self : str ): return self.data def _lowerCamelCase ( self : Optional[int] ): return self.left def _lowerCamelCase ( self : Tuple ): return self.right def _lowerCamelCase ( self : str ): return self.height def _lowerCamelCase ( self : int , __A : Any ): __UpperCamelCase = data def _lowerCamelCase ( self : Optional[Any] , __A : MyNode | None ): __UpperCamelCase = node def _lowerCamelCase ( self : Tuple , __A : MyNode | None ): __UpperCamelCase = node def _lowerCamelCase ( self : List[str] , __A : int ): __UpperCamelCase = height def lowercase__ ( __lowercase : MyNode | None ) -> int: """simple docstring""" if node is None: return 0 return node.get_height() def lowercase__ ( __lowercase : int , __lowercase : int ) -> int: """simple docstring""" if a > b: return a return b def lowercase__ ( __lowercase : MyNode ) -> MyNode: """simple docstring""" print('left rotation node:' , node.get_data() ) __UpperCamelCase = node.get_left() assert ret is not None node.set_left(ret.get_right() ) ret.set_right(__lowercase ) __UpperCamelCase = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(__lowercase ) __UpperCamelCase = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(__lowercase ) return ret def lowercase__ ( __lowercase : MyNode ) -> MyNode: """simple docstring""" print('right rotation node:' , node.get_data() ) __UpperCamelCase = node.get_right() assert ret is not None node.set_right(ret.get_left() ) ret.set_left(__lowercase ) __UpperCamelCase = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(__lowercase ) __UpperCamelCase = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(__lowercase ) return ret def lowercase__ ( __lowercase : MyNode ) -> MyNode: """simple docstring""" __UpperCamelCase = node.get_left() assert left_child is not None node.set_left(left_rotation(__lowercase ) ) return right_rotation(__lowercase ) def lowercase__ ( __lowercase : MyNode ) -> MyNode: """simple docstring""" __UpperCamelCase = node.get_right() assert right_child is not None node.set_right(right_rotation(__lowercase ) ) return left_rotation(__lowercase ) def lowercase__ ( __lowercase : MyNode | None , __lowercase : Any ) -> MyNode | None: """simple docstring""" if node is None: return MyNode(__lowercase ) if data < node.get_data(): node.set_left(insert_node(node.get_left() , __lowercase ) ) if ( get_height(node.get_left() ) - get_height(node.get_right() ) == 2 ): # an unbalance detected __UpperCamelCase = node.get_left() assert left_child is not None if ( data < left_child.get_data() ): # new node is the left child of the left child __UpperCamelCase = right_rotation(__lowercase ) else: __UpperCamelCase = lr_rotation(__lowercase ) else: node.set_right(insert_node(node.get_right() , __lowercase ) ) if get_height(node.get_right() ) - get_height(node.get_left() ) == 2: __UpperCamelCase = node.get_right() assert right_child is not None if data < right_child.get_data(): __UpperCamelCase = rl_rotation(__lowercase ) else: __UpperCamelCase = left_rotation(__lowercase ) __UpperCamelCase = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(__lowercase ) return node def lowercase__ ( __lowercase : MyNode ) -> Any: """simple docstring""" while True: __UpperCamelCase = root.get_right() if right_child is None: break __UpperCamelCase = right_child return root.get_data() def lowercase__ ( __lowercase : MyNode ) -> Any: """simple docstring""" while True: __UpperCamelCase = root.get_left() if left_child is None: break __UpperCamelCase = left_child return root.get_data() def lowercase__ ( __lowercase : MyNode , __lowercase : Any ) -> MyNode | None: """simple docstring""" __UpperCamelCase = root.get_left() __UpperCamelCase = root.get_right() if root.get_data() == data: if left_child is not None and right_child is not None: __UpperCamelCase = get_left_most(__lowercase ) root.set_data(__lowercase ) root.set_right(del_node(__lowercase , __lowercase ) ) elif left_child is not None: __UpperCamelCase = left_child elif right_child is not None: __UpperCamelCase = right_child else: return None elif root.get_data() > data: if left_child is None: print('No such data' ) return root else: root.set_left(del_node(__lowercase , __lowercase ) ) else: # root.get_data() < data if right_child is None: return root else: root.set_right(del_node(__lowercase , __lowercase ) ) if get_height(__lowercase ) - get_height(__lowercase ) == 2: assert right_child is not None if get_height(right_child.get_right() ) > get_height(right_child.get_left() ): __UpperCamelCase = left_rotation(__lowercase ) else: __UpperCamelCase = rl_rotation(__lowercase ) elif get_height(__lowercase ) - get_height(__lowercase ) == -2: assert left_child is not None if get_height(left_child.get_left() ) > get_height(left_child.get_right() ): __UpperCamelCase = right_rotation(__lowercase ) else: __UpperCamelCase = lr_rotation(__lowercase ) __UpperCamelCase = my_max(get_height(root.get_right() ) , get_height(root.get_left() ) ) + 1 root.set_height(__lowercase ) return root class snake_case : """simple docstring""" def __init__( self : Optional[Any] ): __UpperCamelCase = None def _lowerCamelCase ( self : List[Any] ): return get_height(self.root ) def _lowerCamelCase ( self : Dict , __A : Any ): print('insert:' + str(__A ) ) __UpperCamelCase = insert_node(self.root , __A ) def _lowerCamelCase ( self : Any , __A : Any ): print('delete:' + str(__A ) ) if self.root is None: print('Tree is empty!' ) return __UpperCamelCase = del_node(self.root , __A ) def __str__( self : Any , ): # a level traversale, gives a more intuitive look on the tree __UpperCamelCase = '' __UpperCamelCase = MyQueue() q.push(self.root ) __UpperCamelCase = self.get_height() if layer == 0: return output __UpperCamelCase = 0 while not q.is_empty(): __UpperCamelCase = q.pop() __UpperCamelCase = ' ' * int(math.pow(2 , layer - 1 ) ) output += space if node is None: output += "*" q.push(__A ) q.push(__A ) else: output += str(node.get_data() ) q.push(node.get_left() ) q.push(node.get_right() ) output += space __UpperCamelCase = cnt + 1 for i in range(1_0_0 ): if cnt == math.pow(2 , __A ) - 1: __UpperCamelCase = layer - 1 if layer == 0: output += "\n*************************************" return output output += "\n" break output += "\n*************************************" return output def lowercase__ ( ) -> None: """simple docstring""" import doctest doctest.testmod() if __name__ == "__main__": _test() a__ : Optional[int] =AVLtree() a__ : List[str] =list(range(10)) random.shuffle(lst) for i in lst: t.insert(i) print(str(t)) random.shuffle(lst) for i in lst: t.del_node(i) print(str(t))
399
0
"""simple docstring""" import os import sys import unittest a_ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) a_ = os.path.join("tests", "models", "bert", "test_modeling_bert.py") a_ = os.path.join("tests", "models", "blip", "test_modeling_blip.py") class snake_case ( unittest.TestCase): def a_ ( self : str ) -> List[str]: '''simple docstring''' _A = get_test_to_tester_mapping(a__ ) _A = get_test_to_tester_mapping(a__ ) _A = {"BertModelTest": "BertModelTester"} _A = { "BlipModelTest": "BlipModelTester", "BlipTextImageModelTest": "BlipTextImageModelsModelTester", "BlipTextModelTest": "BlipTextModelTester", "BlipTextRetrievalModelTest": "BlipTextRetrievalModelTester", "BlipVQAModelTest": "BlipVQAModelTester", "BlipVisionModelTest": "BlipVisionModelTester", } self.assertEqual(get_test_info.to_json(a__ ) , a__ ) self.assertEqual(get_test_info.to_json(a__ ) , a__ ) def a_ ( self : Union[str, Any] ) -> int: '''simple docstring''' _A = get_model_to_test_mapping(a__ ) _A = get_model_to_test_mapping(a__ ) _A = { "BertForMaskedLM": ["BertModelTest"], "BertForMultipleChoice": ["BertModelTest"], "BertForNextSentencePrediction": ["BertModelTest"], "BertForPreTraining": ["BertModelTest"], "BertForQuestionAnswering": ["BertModelTest"], "BertForSequenceClassification": ["BertModelTest"], "BertForTokenClassification": ["BertModelTest"], "BertLMHeadModel": ["BertModelTest"], "BertModel": ["BertModelTest"], } _A = { "BlipForConditionalGeneration": ["BlipTextImageModelTest"], "BlipForImageTextRetrieval": ["BlipTextRetrievalModelTest"], "BlipForQuestionAnswering": ["BlipVQAModelTest"], "BlipModel": ["BlipModelTest"], "BlipTextModel": ["BlipTextModelTest"], "BlipVisionModel": ["BlipVisionModelTest"], } self.assertEqual(get_test_info.to_json(a__ ) , a__ ) self.assertEqual(get_test_info.to_json(a__ ) , a__ ) def a_ ( self : str ) -> Tuple: '''simple docstring''' _A = get_model_to_tester_mapping(a__ ) _A = get_model_to_tester_mapping(a__ ) _A = { "BertForMaskedLM": ["BertModelTester"], "BertForMultipleChoice": ["BertModelTester"], "BertForNextSentencePrediction": ["BertModelTester"], "BertForPreTraining": ["BertModelTester"], "BertForQuestionAnswering": ["BertModelTester"], "BertForSequenceClassification": ["BertModelTester"], "BertForTokenClassification": ["BertModelTester"], "BertLMHeadModel": ["BertModelTester"], "BertModel": ["BertModelTester"], } _A = { "BlipForConditionalGeneration": ["BlipTextImageModelsModelTester"], "BlipForImageTextRetrieval": ["BlipTextRetrievalModelTester"], "BlipForQuestionAnswering": ["BlipVQAModelTester"], "BlipModel": ["BlipModelTester"], "BlipTextModel": ["BlipTextModelTester"], "BlipVisionModel": ["BlipVisionModelTester"], } self.assertEqual(get_test_info.to_json(a__ ) , a__ ) self.assertEqual(get_test_info.to_json(a__ ) , a__ )
717
"""simple docstring""" import argparse import torch from torch import nn from transformers import MBartConfig, MBartForConditionalGeneration def a__ ( __lowercase ) -> Optional[int]: _A = [ "encoder.version", "decoder.version", "model.encoder.version", "model.decoder.version", "_float_tensor", "decoder.output_projection.weight", ] for k in ignore_keys: state_dict.pop(__lowercase , __lowercase ) def a__ ( __lowercase ) -> List[Any]: _A , _A = emb.weight.shape _A = nn.Linear(__lowercase , __lowercase , bias=__lowercase ) _A = emb.weight.data return lin_layer def a__ ( __lowercase , __lowercase="facebook/mbart-large-en-ro" , __lowercase=False , __lowercase=False ) -> List[str]: _A = torch.load(__lowercase , map_location="cpu" )["model"] remove_ignore_keys_(__lowercase ) _A = state_dict["encoder.embed_tokens.weight"].shape[0] _A = MBartConfig.from_pretrained(__lowercase , vocab_size=__lowercase ) if mbart_aa and finetuned: _A = "relu" _A = state_dict["decoder.embed_tokens.weight"] _A = MBartForConditionalGeneration(__lowercase ) model.model.load_state_dict(__lowercase ) if finetuned: _A = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "fairseq_path", type=str, help="bart.large, bart.large.cnn or a path to a model.pt on local filesystem." ) parser.add_argument("pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument( "--hf_config", default="facebook/mbart-large-cc25", type=str, help="Which huggingface architecture to use: mbart-large", ) parser.add_argument("--mbart_50", action="store_true", help="whether the model is mMART-50 checkpoint") parser.add_argument("--finetuned", action="store_true", help="whether the model is a fine-tuned checkpoint") a_ = parser.parse_args() a_ = convert_fairseq_mbart_checkpoint_from_disk( args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa ) model.save_pretrained(args.pytorch_dump_folder_path)
621
0
from __future__ import annotations from scipy.special import comb # type: ignore class snake_case__: """simple docstring""" def __init__( self : Dict , SCREAMING_SNAKE_CASE : List[Any] ): lowercase__ : Optional[int] = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. lowercase__ : Tuple = len(snake_case__ ) - 1 def snake_case ( self : List[Any] , SCREAMING_SNAKE_CASE : Dict ): assert 0 <= t <= 1, "Time t must be between 0 and 1." lowercase__ : list[float] = [] for i in range(len(self.list_of_points ) ): # basis function for each i output_values.append( comb(self.degree , snake_case__ ) * ((1 - t) ** (self.degree - i)) * (t**i) ) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(snake_case__ ) , 5 ) == 1 return output_values def snake_case ( self : Union[str, Any] , SCREAMING_SNAKE_CASE : Any ): assert 0 <= t <= 1, "Time t must be between 0 and 1." lowercase__ : int = self.basis_function(snake_case__ ) lowercase__ : List[Any] = 0.0 lowercase__ : Union[str, Any] = 0.0 for i in range(len(self.list_of_points ) ): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def snake_case ( self : int , SCREAMING_SNAKE_CASE : int = 0.01 ): from matplotlib import pyplot as plt # type: ignore lowercase__ : list[float] = [] # x coordinates of points to plot lowercase__ : list[float] = [] # y coordinates of points to plot lowercase__ : List[str] = 0.0 while t <= 1: lowercase__ : int = self.bezier_curve_function(snake_case__ ) to_plot_x.append(value[0] ) to_plot_y.append(value[1] ) t += step_size lowercase__ : Dict = [i[0] for i in self.list_of_points] lowercase__ : Union[str, Any] = [i[1] for i in self.list_of_points] plt.plot( snake_case__ , snake_case__ , color="blue" , label="Curve of Degree " + str(self.degree ) , ) plt.scatter(snake_case__ , snake_case__ , color="red" , label="Control Points" ) plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
496
from __future__ import annotations from scipy.special import comb # type: ignore class lowerCAmelCase_ : def __init__( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Optional[int] = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. SCREAMING_SNAKE_CASE_ : Tuple = len(snake_case__ ) - 1 def snake_case ( self ,snake_case__ ): assert 0 <= t <= 1, "Time t must be between 0 and 1." SCREAMING_SNAKE_CASE_ : list[float] = [] for i in range(len(self.list_of_points ) ): # basis function for each i output_values.append( comb(self.degree ,snake_case__ ) * ((1 - t) ** (self.degree - i)) * (t**i) ) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(snake_case__ ) ,5 ) == 1 return output_values def snake_case ( self ,snake_case__ ): assert 0 <= t <= 1, "Time t must be between 0 and 1." SCREAMING_SNAKE_CASE_ : int = self.basis_function(snake_case__ ) SCREAMING_SNAKE_CASE_ : List[Any] = 0.0 SCREAMING_SNAKE_CASE_ : Union[str, Any] = 0.0 for i in range(len(self.list_of_points ) ): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def snake_case ( self ,snake_case__ = 0.01 ): from matplotlib import pyplot as plt # type: ignore SCREAMING_SNAKE_CASE_ : list[float] = [] # x coordinates of points to plot SCREAMING_SNAKE_CASE_ : list[float] = [] # y coordinates of points to plot SCREAMING_SNAKE_CASE_ : List[str] = 0.0 while t <= 1: SCREAMING_SNAKE_CASE_ : int = self.bezier_curve_function(snake_case__ ) to_plot_x.append(value[0] ) to_plot_y.append(value[1] ) t += step_size SCREAMING_SNAKE_CASE_ : Dict = [i[0] for i in self.list_of_points] SCREAMING_SNAKE_CASE_ : Union[str, Any] = [i[1] for i in self.list_of_points] plt.plot( snake_case__ ,snake_case__ ,color='blue' ,label='Curve of Degree ' + str(self.degree ) ,) plt.scatter(snake_case__ ,snake_case__ ,color='red' ,label='Control Points' ) plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
105
0
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.activations import gelu_new, gelu_python, get_activation @require_torch class _SCREAMING_SNAKE_CASE ( unittest.TestCase): def _snake_case ( self )-> List[str]: lowerCamelCase_ =torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100] ) lowerCamelCase_ =get_activation("""gelu""" ) self.assertTrue(torch.allclose(gelu_python(_SCREAMING_SNAKE_CASE ) , torch_builtin(_SCREAMING_SNAKE_CASE ) ) ) self.assertFalse(torch.allclose(gelu_python(_SCREAMING_SNAKE_CASE ) , gelu_new(_SCREAMING_SNAKE_CASE ) ) ) def _snake_case ( self )-> int: lowerCamelCase_ =torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100] ) lowerCamelCase_ =get_activation("""gelu""" ) lowerCamelCase_ =get_activation("""gelu_10""" ) lowerCamelCase_ =torch_builtin(_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =geluaa(_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =torch.where(y_gelu_aa < 1_0.0 , 1 , 0 ) self.assertTrue(torch.max(_SCREAMING_SNAKE_CASE ).item() == 1_0.0 ) self.assertTrue(torch.allclose(y_gelu * clipped_mask , y_gelu_aa * clipped_mask ) ) def _snake_case ( self )-> Dict: get_activation("""gelu""" ) get_activation("""gelu_10""" ) get_activation("""gelu_fast""" ) get_activation("""gelu_new""" ) get_activation("""gelu_python""" ) get_activation("""gelu_pytorch_tanh""" ) get_activation("""linear""" ) get_activation("""mish""" ) get_activation("""quick_gelu""" ) get_activation("""relu""" ) get_activation("""sigmoid""" ) get_activation("""silu""" ) get_activation("""swish""" ) get_activation("""tanh""" ) with self.assertRaises(_SCREAMING_SNAKE_CASE ): get_activation("""bogus""" ) with self.assertRaises(_SCREAMING_SNAKE_CASE ): get_activation(_SCREAMING_SNAKE_CASE ) def _snake_case ( self )-> Any: lowerCamelCase_ =get_activation("""gelu""" ) lowerCamelCase_ =1 lowerCamelCase_ =get_activation("""gelu""" ) self.assertEqual(acta.a , 1 ) with self.assertRaises(_SCREAMING_SNAKE_CASE ): lowerCamelCase_ =acta.a
75
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input __A : List[str] = 'Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine' def __UpperCamelCase ( ) ->List[str]: """simple docstring""" lowerCamelCase_ =_ask_options( """In which compute environment are you running?""" , ["""This machine""", """AWS (Amazon SageMaker)"""] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: lowerCamelCase_ =get_sagemaker_input() else: lowerCamelCase_ =get_cluster_input() return config def __UpperCamelCase ( _A : List[str]=None ) ->str: """simple docstring""" if subparsers is not None: lowerCamelCase_ =subparsers.add_parser("""config""" , description=_A ) else: lowerCamelCase_ =argparse.ArgumentParser("""Accelerate config command""" , description=_A ) parser.add_argument( """--config_file""" , default=_A , help=( """The path to use to store the config file. Will default to a file named default_config.yaml in the cache """ """location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have """ """such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed """ """with 'huggingface'.""" ) , ) if subparsers is not None: parser.set_defaults(func=_A ) return parser def __UpperCamelCase ( _A : Union[str, Any] ) ->Optional[int]: """simple docstring""" lowerCamelCase_ =get_user_input() if args.config_file is not None: lowerCamelCase_ =args.config_file else: if not os.path.isdir(_A ): os.makedirs(_A ) lowerCamelCase_ =default_yaml_config_file if config_file.endswith(""".json""" ): config.to_json_file(_A ) else: config.to_yaml_file(_A ) print(f'accelerate configuration saved at {config_file}' ) def __UpperCamelCase ( ) ->Dict: """simple docstring""" lowerCamelCase_ =config_command_parser() lowerCamelCase_ =parser.parse_args() config_command(_A ) if __name__ == "__main__": main()
75
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging lowerCAmelCase__ : List[Any] =logging.get_logger(__name__) lowerCAmelCase__ : Optional[int] ='▁' lowerCAmelCase__ : Union[str, Any] ={'vocab_file': 'sentencepiece.bpe.model'} lowerCAmelCase__ : List[str] ={ 'vocab_file': { 'facebook/mbart-large-en-ro': ( 'https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model' ), 'facebook/mbart-large-cc25': ( 'https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model' ), } } lowerCAmelCase__ : Dict ={ 'facebook/mbart-large-en-ro': 10_24, 'facebook/mbart-large-cc25': 10_24, } # fmt: off lowerCAmelCase__ : Dict =['ar_AR', 'cs_CZ', 'de_DE', 'en_XX', 'es_XX', 'et_EE', 'fi_FI', 'fr_XX', 'gu_IN', 'hi_IN', 'it_IT', 'ja_XX', 'kk_KZ', 'ko_KR', 'lt_LT', 'lv_LV', 'my_MM', 'ne_NP', 'nl_XX', 'ro_RO', 'ru_RU', 'si_LK', 'tr_TR', 'vi_VN', 'zh_CN'] class __lowercase (_lowerCamelCase ): """simple docstring""" _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = ["""input_ids""", """attention_mask"""] _UpperCAmelCase = [] _UpperCAmelCase = [] def __init__( self , lowerCAmelCase__ , lowerCAmelCase__="<s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="<s>" , lowerCAmelCase__="<unk>" , lowerCAmelCase__="<pad>" , lowerCAmelCase__="<mask>" , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__ = None , lowerCAmelCase__=None , **lowerCAmelCase__ , ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token SCREAMING_SNAKE_CASE_ : Any = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , src_lang=lowerCAmelCase__ , tgt_lang=lowerCAmelCase__ , additional_special_tokens=lowerCAmelCase__ , sp_model_kwargs=self.sp_model_kwargs , **lowerCAmelCase__ , ) SCREAMING_SNAKE_CASE_ : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowerCAmelCase__ ) ) SCREAMING_SNAKE_CASE_ : int = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token SCREAMING_SNAKE_CASE_ : str = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab SCREAMING_SNAKE_CASE_ : Union[str, Any] = 1 SCREAMING_SNAKE_CASE_ : Union[str, Any] = len(self.sp_model ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(lowerCAmelCase__ ) } SCREAMING_SNAKE_CASE_ : Tuple = {v: k for k, v in self.lang_code_to_id.items()} SCREAMING_SNAKE_CASE_ : List[Any] = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) SCREAMING_SNAKE_CASE_ : Tuple = {v: k for k, v in self.fairseq_tokens_to_ids.items()} SCREAMING_SNAKE_CASE_ : List[str] = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) SCREAMING_SNAKE_CASE_ : Tuple = src_lang if src_lang is not None else 'en_XX' SCREAMING_SNAKE_CASE_ : List[Any] = self.lang_code_to_id[self._src_lang] SCREAMING_SNAKE_CASE_ : List[Any] = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = self.__dict__.copy() SCREAMING_SNAKE_CASE_ : Optional[int] = None SCREAMING_SNAKE_CASE_ : List[str] = self.sp_model.serialized_model_proto() return state def __setstate__( self , lowerCAmelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): SCREAMING_SNAKE_CASE_ : Dict = {} SCREAMING_SNAKE_CASE_ : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def UpperCamelCase__ ( self ): """simple docstring""" return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def UpperCamelCase__ ( self ): """simple docstring""" return self._src_lang @src_lang.setter def UpperCamelCase__ ( self , lowerCAmelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : str = [1] * len(self.prefix_tokens ) SCREAMING_SNAKE_CASE_ : Tuple = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(lowerCAmelCase__ )) + suffix_ones return prefix_ones + ([0] * len(lowerCAmelCase__ )) + ([0] * len(lowerCAmelCase__ )) + suffix_ones def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ): """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = [self.sep_token_id] SCREAMING_SNAKE_CASE_ : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ): """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) SCREAMING_SNAKE_CASE_ : Any = src_lang SCREAMING_SNAKE_CASE_ : Any = self(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = self.convert_tokens_to_ids(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : List[str] = tgt_lang_id return inputs def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = {self.convert_ids_to_tokens(lowerCAmelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCamelCase__ ( self , lowerCAmelCase__ ): """simple docstring""" return self.sp_model.encode(lowerCAmelCase__ , out_type=lowerCAmelCase__ ) def UpperCamelCase__ ( self , lowerCAmelCase__ ): """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] SCREAMING_SNAKE_CASE_ : Optional[Any] = self.sp_model.PieceToId(lowerCAmelCase__ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def UpperCamelCase__ ( self , lowerCAmelCase__ ): """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def UpperCamelCase__ ( self , lowerCAmelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = ''.join(lowerCAmelCase__ ).replace(lowerCAmelCase__ , ' ' ).strip() return out_string def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ): """simple docstring""" if not os.path.isdir(lowerCAmelCase__ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return SCREAMING_SNAKE_CASE_ : int = os.path.join( lowerCAmelCase__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCAmelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCAmelCase__ , 'wb' ) as fi: SCREAMING_SNAKE_CASE_ : Any = self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase__ ) return (out_vocab_file,) def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = "en_XX" , lowerCAmelCase__ = None , lowerCAmelCase__ = "ro_RO" , **lowerCAmelCase__ , ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = src_lang SCREAMING_SNAKE_CASE_ : int = tgt_lang return super().prepare_seqaseq_batch(lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ) def UpperCamelCase__ ( self ): """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def UpperCamelCase__ ( self ): """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def UpperCamelCase__ ( self , lowerCAmelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.lang_code_to_id[src_lang] SCREAMING_SNAKE_CASE_ : Dict = [] SCREAMING_SNAKE_CASE_ : int = [self.eos_token_id, self.cur_lang_code] def UpperCamelCase__ ( self , lowerCAmelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = self.lang_code_to_id[lang] SCREAMING_SNAKE_CASE_ : Tuple = [] SCREAMING_SNAKE_CASE_ : Dict = [self.eos_token_id, self.cur_lang_code]
101
'''simple docstring''' import argparse import collections import os import re import tempfile import pandas as pd from datasets import Dataset from huggingface_hub import hf_hub_download, upload_folder from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/update_metadata.py _UpperCamelCase : Optional[Any] = 'src/transformers' # This is to make sure the transformers module imported is the one in the repo. _UpperCamelCase : Optional[int] = direct_transformers_import(TRANSFORMERS_PATH) # Regexes that match TF/Flax/PT model names. _UpperCamelCase : Union[str, Any] = re.compile(R'TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') _UpperCamelCase : int = re.compile(R'Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. _UpperCamelCase : List[str] = re.compile(R'(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # Fill this with tuples (pipeline_tag, model_mapping, auto_model) _UpperCamelCase : List[Any] = [ ('pretraining', 'MODEL_FOR_PRETRAINING_MAPPING_NAMES', 'AutoModelForPreTraining'), ('feature-extraction', 'MODEL_MAPPING_NAMES', 'AutoModel'), ('audio-classification', 'MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForAudioClassification'), ('text-generation', 'MODEL_FOR_CAUSAL_LM_MAPPING_NAMES', 'AutoModelForCausalLM'), ('automatic-speech-recognition', 'MODEL_FOR_CTC_MAPPING_NAMES', 'AutoModelForCTC'), ('image-classification', 'MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForImageClassification'), ('image-segmentation', 'MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES', 'AutoModelForImageSegmentation'), ('fill-mask', 'MODEL_FOR_MASKED_LM_MAPPING_NAMES', 'AutoModelForMaskedLM'), ('object-detection', 'MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES', 'AutoModelForObjectDetection'), ( 'zero-shot-object-detection', 'MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES', 'AutoModelForZeroShotObjectDetection', ), ('question-answering', 'MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForQuestionAnswering'), ('text2text-generation', 'MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES', 'AutoModelForSeq2SeqLM'), ('text-classification', 'MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForSequenceClassification'), ('automatic-speech-recognition', 'MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES', 'AutoModelForSpeechSeq2Seq'), ( 'table-question-answering', 'MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForTableQuestionAnswering', ), ('token-classification', 'MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForTokenClassification'), ('multiple-choice', 'MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES', 'AutoModelForMultipleChoice'), ( 'next-sentence-prediction', 'MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES', 'AutoModelForNextSentencePrediction', ), ( 'audio-frame-classification', 'MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForAudioFrameClassification', ), ('audio-xvector', 'MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES', 'AutoModelForAudioXVector'), ( 'document-question-answering', 'MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForDocumentQuestionAnswering', ), ( 'visual-question-answering', 'MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForVisualQuestionAnswering', ), ('image-to-text', 'MODEL_FOR_FOR_VISION_2_SEQ_MAPPING_NAMES', 'AutoModelForVision2Seq'), ( 'zero-shot-image-classification', 'MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForZeroShotImageClassification', ), ('depth-estimation', 'MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES', 'AutoModelForDepthEstimation'), ('video-classification', 'MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForVideoClassification'), ('mask-generation', 'MODEL_FOR_MASK_GENERATION_MAPPING_NAMES', 'AutoModelForMaskGeneration'), ] def __snake_case ( lowerCAmelCase : int ): __UpperCAmelCase = re.finditer('.+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)' , lowerCAmelCase ) return [m.group(0 ) for m in matches] def __snake_case ( ): __UpperCAmelCase = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES __UpperCAmelCase = { config.replace('Config' , '' ): model_type for model_type, config in config_maping_names.items() } # Dictionaries flagging if each model prefix has a backend in PT/TF/Flax. __UpperCAmelCase = collections.defaultdict(lowerCAmelCase ) __UpperCAmelCase = collections.defaultdict(lowerCAmelCase ) __UpperCAmelCase = collections.defaultdict(lowerCAmelCase ) # Let's lookup through all transformers object (once) and find if models are supported by a given backend. for attr_name in dir(lowerCAmelCase ): __UpperCAmelCase = None if _re_tf_models.match(lowerCAmelCase ) is not None: __UpperCAmelCase = tf_models __UpperCAmelCase = _re_tf_models.match(lowerCAmelCase ).groups()[0] elif _re_flax_models.match(lowerCAmelCase ) is not None: __UpperCAmelCase = flax_models __UpperCAmelCase = _re_flax_models.match(lowerCAmelCase ).groups()[0] elif _re_pt_models.match(lowerCAmelCase ) is not None: __UpperCAmelCase = pt_models __UpperCAmelCase = _re_pt_models.match(lowerCAmelCase ).groups()[0] if lookup_dict is not None: while len(lowerCAmelCase ) > 0: if attr_name in model_prefix_to_model_type: __UpperCAmelCase = True break # Try again after removing the last word in the name __UpperCAmelCase = ''.join(camel_case_split(lowerCAmelCase )[:-1] ) __UpperCAmelCase = set(list(pt_models.keys() ) + list(tf_models.keys() ) + list(flax_models.keys() ) ) __UpperCAmelCase = list(lowerCAmelCase ) all_models.sort() __UpperCAmelCase = {'model_type': all_models} __UpperCAmelCase = [pt_models[t] for t in all_models] __UpperCAmelCase = [tf_models[t] for t in all_models] __UpperCAmelCase = [flax_models[t] for t in all_models] # Now let's use the auto-mapping names to make sure __UpperCAmelCase = {} for t in all_models: if t in transformers_module.models.auto.processing_auto.PROCESSOR_MAPPING_NAMES: __UpperCAmelCase = 'AutoProcessor' elif t in transformers_module.models.auto.tokenization_auto.TOKENIZER_MAPPING_NAMES: __UpperCAmelCase = 'AutoTokenizer' elif t in transformers_module.models.auto.feature_extraction_auto.FEATURE_EXTRACTOR_MAPPING_NAMES: __UpperCAmelCase = 'AutoFeatureExtractor' else: # Default to AutoTokenizer if a model has nothing, for backward compatibility. __UpperCAmelCase = 'AutoTokenizer' __UpperCAmelCase = [processors[t] for t in all_models] return pd.DataFrame(lowerCAmelCase ) def __snake_case ( lowerCAmelCase : Any ): __UpperCAmelCase = [ transformers_module.models.auto.modeling_auto, transformers_module.models.auto.modeling_tf_auto, transformers_module.models.auto.modeling_flax_auto, ] for pipeline_tag, model_mapping, auto_class in PIPELINE_TAGS_AND_AUTO_MODELS: __UpperCAmelCase = [model_mapping, F"""TF_{model_mapping}""", F"""FLAX_{model_mapping}"""] __UpperCAmelCase = [auto_class, F"""TF_{auto_class}""", F"""Flax_{auto_class}"""] # Loop through all three frameworks for module, cls, mapping in zip(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): # The type of pipeline may not exist in this framework if not hasattr(lowerCAmelCase , lowerCAmelCase ): continue # First extract all model_names __UpperCAmelCase = [] for name in getattr(lowerCAmelCase , lowerCAmelCase ).values(): if isinstance(lowerCAmelCase , lowerCAmelCase ): model_names.append(lowerCAmelCase ) else: model_names.extend(list(lowerCAmelCase ) ) # Add pipeline tag and auto model class for those models table.update({model_name: (pipeline_tag, cls) for model_name in model_names} ) return table def __snake_case ( lowerCAmelCase : str , lowerCAmelCase : int ): __UpperCAmelCase = get_frameworks_table() __UpperCAmelCase = Dataset.from_pandas(lowerCAmelCase ) __UpperCAmelCase = hf_hub_download( 'huggingface/transformers-metadata' , 'pipeline_tags.json' , repo_type='dataset' , token=lowerCAmelCase ) __UpperCAmelCase = Dataset.from_json(lowerCAmelCase ) __UpperCAmelCase = { tags_dataset[i]['model_class']: (tags_dataset[i]['pipeline_tag'], tags_dataset[i]['auto_class']) for i in range(len(lowerCAmelCase ) ) } __UpperCAmelCase = update_pipeline_and_auto_class_table(lowerCAmelCase ) # Sort the model classes to avoid some nondeterministic updates to create false update commits. __UpperCAmelCase = sorted(table.keys() ) __UpperCAmelCase = pd.DataFrame( { 'model_class': model_classes, 'pipeline_tag': [table[m][0] for m in model_classes], 'auto_class': [table[m][1] for m in model_classes], } ) __UpperCAmelCase = Dataset.from_pandas(lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: frameworks_dataset.to_json(os.path.join(lowerCAmelCase , 'frameworks.json' ) ) tags_dataset.to_json(os.path.join(lowerCAmelCase , 'pipeline_tags.json' ) ) if commit_sha is not None: __UpperCAmelCase = ( F"""Update with commit {commit_sha}\n\nSee: """ F"""https://github.com/huggingface/transformers/commit/{commit_sha}""" ) else: __UpperCAmelCase = 'Update' upload_folder( repo_id='huggingface/transformers-metadata' , folder_path=lowerCAmelCase , repo_type='dataset' , token=lowerCAmelCase , commit_message=lowerCAmelCase , ) def __snake_case ( ): __UpperCAmelCase = {tag: cls for tag, _, cls in PIPELINE_TAGS_AND_AUTO_MODELS} __UpperCAmelCase = transformers_module.pipelines.SUPPORTED_TASKS __UpperCAmelCase = [] for key in pipeline_tasks: if key not in in_table: __UpperCAmelCase = pipeline_tasks[key]['pt'] if isinstance(lowerCAmelCase , (list, tuple) ): __UpperCAmelCase = model[0] __UpperCAmelCase = model.__name__ if model not in in_table.values(): missing.append(lowerCAmelCase ) if len(lowerCAmelCase ) > 0: __UpperCAmelCase = ', '.join(lowerCAmelCase ) raise ValueError( 'The following pipeline tags are not present in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant inside ' F"""`utils/update_metadata.py`: {msg}. Please add them!""" ) if __name__ == "__main__": _UpperCamelCase : Tuple = argparse.ArgumentParser() parser.add_argument('--token', type=str, help='The token to use to push to the transformers-metadata dataset.') parser.add_argument('--commit_sha', type=str, help='The sha of the commit going with this update.') parser.add_argument('--check-only', action='store_true', help='Activate to just check all pipelines are present.') _UpperCamelCase : Optional[Any] = parser.parse_args() if args.check_only: check_pipeline_tags() else: update_metadata(args.token, args.commit_sha)
396
0
"""simple docstring""" import logging import os from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union from filelock import FileLock from transformers import PreTrainedTokenizer, is_tf_available, is_torch_available UpperCamelCase : Any = logging.getLogger(__name__) @dataclass class lowerCamelCase__ : lowerCAmelCase = 42 lowerCAmelCase = 42 lowerCAmelCase = 42 @dataclass class lowerCamelCase__ : lowerCAmelCase = 42 lowerCAmelCase = 42 lowerCAmelCase = None lowerCAmelCase = None class lowerCamelCase__ ( UpperCAmelCase_ ): lowerCAmelCase = """train""" lowerCAmelCase = """dev""" lowerCAmelCase = """test""" class lowerCamelCase__ : @staticmethod def __a ( _lowercase : List[Any] , _lowercase : Union[Split, str] ): raise NotImplementedError @staticmethod def __a ( _lowercase : str ): raise NotImplementedError @staticmethod def __a ( _lowercase : List[InputExample] , _lowercase : List[str] , _lowercase : int , _lowercase : PreTrainedTokenizer , _lowercase : List[str]=False , _lowercase : Optional[int]="[CLS]" , _lowercase : Any=1 , _lowercase : Optional[int]="[SEP]" , _lowercase : str=False , _lowercase : Optional[Any]=False , _lowercase : int=0 , _lowercase : List[str]=0 , _lowercase : Tuple=-100 , _lowercase : str=0 , _lowercase : Any=True , ): A = {label: i for i, label in enumerate(_lowercase )} A = [] for ex_index, example in enumerate(_lowercase ): if ex_index % 10_000 == 0: logger.info('Writing example %d of %d' , _lowercase , len(_lowercase ) ) A = [] A = [] for word, label in zip(example.words , example.labels ): A = tokenizer.tokenize(_lowercase ) # bert-base-multilingual-cased sometimes output "nothing ([]) when calling tokenize with just a space. if len(_lowercase ) > 0: tokens.extend(_lowercase ) # Use the real label id for the first token of the word, and padding ids for the remaining tokens label_ids.extend([label_map[label]] + [pad_token_label_id] * (len(_lowercase ) - 1) ) # Account for [CLS] and [SEP] with "- 2" and with "- 3" for RoBERTa. A = tokenizer.num_special_tokens_to_add() if len(_lowercase ) > max_seq_length - special_tokens_count: A = tokens[: (max_seq_length - special_tokens_count)] A = label_ids[: (max_seq_length - special_tokens_count)] # The convention in BERT is: # (a) For sequence pairs: # tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP] # type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 # (b) For single sequences: # tokens: [CLS] the dog is hairy . [SEP] # type_ids: 0 0 0 0 0 0 0 # # Where "type_ids" are used to indicate whether this is the first # sequence or the second sequence. The embedding vectors for `type=0` and # `type=1` were learned during pre-training and are added to the wordpiece # embedding vector (and position vector). This is not *strictly* necessary # since the [SEP] token unambiguously separates the sequences, but it makes # it easier for the model to learn the concept of sequences. # # For classification tasks, the first vector (corresponding to [CLS]) is # used as the "sentence vector". Note that this only makes sense because # the entire model is fine-tuned. tokens += [sep_token] label_ids += [pad_token_label_id] if sep_token_extra: # roberta uses an extra separator b/w pairs of sentences tokens += [sep_token] label_ids += [pad_token_label_id] A = [sequence_a_segment_id] * len(_lowercase ) if cls_token_at_end: tokens += [cls_token] label_ids += [pad_token_label_id] segment_ids += [cls_token_segment_id] else: A = [cls_token] + tokens A = [pad_token_label_id] + label_ids A = [cls_token_segment_id] + segment_ids A = tokenizer.convert_tokens_to_ids(_lowercase ) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. A = [1 if mask_padding_with_zero else 0] * len(_lowercase ) # Zero-pad up to the sequence length. A = max_seq_length - len(_lowercase ) if pad_on_left: A = ([pad_token] * padding_length) + input_ids A = ([0 if mask_padding_with_zero else 1] * padding_length) + input_mask A = ([pad_token_segment_id] * padding_length) + segment_ids A = ([pad_token_label_id] * padding_length) + label_ids else: input_ids += [pad_token] * padding_length input_mask += [0 if mask_padding_with_zero else 1] * padding_length segment_ids += [pad_token_segment_id] * padding_length label_ids += [pad_token_label_id] * padding_length assert len(_lowercase ) == max_seq_length assert len(_lowercase ) == max_seq_length assert len(_lowercase ) == max_seq_length assert len(_lowercase ) == max_seq_length if ex_index < 5: logger.info('*** Example ***' ) logger.info('guid: %s' , example.guid ) logger.info('tokens: %s' , ' '.join([str(_lowercase ) for x in tokens] ) ) logger.info('input_ids: %s' , ' '.join([str(_lowercase ) for x in input_ids] ) ) logger.info('input_mask: %s' , ' '.join([str(_lowercase ) for x in input_mask] ) ) logger.info('segment_ids: %s' , ' '.join([str(_lowercase ) for x in segment_ids] ) ) logger.info('label_ids: %s' , ' '.join([str(_lowercase ) for x in label_ids] ) ) if "token_type_ids" not in tokenizer.model_input_names: A = None features.append( InputFeatures( input_ids=_lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , label_ids=_lowercase ) ) return features if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset class lowerCamelCase__ ( UpperCAmelCase_ ): lowerCAmelCase = 42 lowerCAmelCase = nn.CrossEntropyLoss().ignore_index def __init__( self : Dict , _lowercase : TokenClassificationTask , _lowercase : str , _lowercase : PreTrainedTokenizer , _lowercase : List[str] , _lowercase : str , _lowercase : Optional[int] = None , _lowercase : Tuple=False , _lowercase : Split = Split.train , ): # Load data features from cache or dataset file A = os.path.join( _lowercase , 'cached_{}_{}_{}'.format(mode.value , tokenizer.__class__.__name__ , str(_lowercase ) ) , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. A = cached_features_file + '.lock' with FileLock(_lowercase ): if os.path.exists(_lowercase ) and not overwrite_cache: logger.info(f'Loading features from cached file {cached_features_file}' ) A = torch.load(_lowercase ) else: logger.info(f'Creating features from dataset file at {data_dir}' ) A = token_classification_task.read_examples_from_file(_lowercase , _lowercase ) # TODO clean up all this to leverage built-in features of tokenizers A = token_classification_task.convert_examples_to_features( _lowercase , _lowercase , _lowercase , _lowercase , cls_token_at_end=bool(model_type in ['xlnet'] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ['xlnet'] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=_lowercase , pad_on_left=bool(tokenizer.padding_side == 'left' ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info(f'Saving features into cached file {cached_features_file}' ) torch.save(self.features , _lowercase ) def __len__( self : Optional[Any] ): return len(self.features ) def __getitem__( self : str , _lowercase : Optional[Any] ): return self.features[i] if is_tf_available(): import tensorflow as tf class lowerCamelCase__ : lowerCAmelCase = 42 lowerCAmelCase = -100 def __init__( self : Any , _lowercase : TokenClassificationTask , _lowercase : str , _lowercase : PreTrainedTokenizer , _lowercase : List[str] , _lowercase : str , _lowercase : Optional[int] = None , _lowercase : Optional[int]=False , _lowercase : Split = Split.train , ): A = token_classification_task.read_examples_from_file(_lowercase , _lowercase ) # TODO clean up all this to leverage built-in features of tokenizers A = token_classification_task.convert_examples_to_features( _lowercase , _lowercase , _lowercase , _lowercase , cls_token_at_end=bool(model_type in ['xlnet'] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ['xlnet'] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=_lowercase , pad_on_left=bool(tokenizer.padding_side == 'left' ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) def gen(): for ex in self.features: if ex.token_type_ids is None: yield ( {"input_ids": ex.input_ids, "attention_mask": ex.attention_mask}, ex.label_ids, ) else: yield ( { "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label_ids, ) if "token_type_ids" not in tokenizer.model_input_names: A = tf.data.Dataset.from_generator( _lowercase , ({'input_ids': tf.intaa, 'attention_mask': tf.intaa}, tf.intaa) , ( {'input_ids': tf.TensorShape([None] ), 'attention_mask': tf.TensorShape([None] )}, tf.TensorShape([None] ), ) , ) else: A = tf.data.Dataset.from_generator( _lowercase , ({'input_ids': tf.intaa, 'attention_mask': tf.intaa, 'token_type_ids': tf.intaa}, tf.intaa) , ( { 'input_ids': tf.TensorShape([None] ), 'attention_mask': tf.TensorShape([None] ), 'token_type_ids': tf.TensorShape([None] ), }, tf.TensorShape([None] ), ) , ) def __a ( self : Tuple ): A = self.dataset.apply(tf.data.experimental.assert_cardinality(len(self.features ) ) ) return self.dataset def __len__( self : Optional[Any] ): return len(self.features ) def __getitem__( self : Union[str, Any] , _lowercase : Optional[Any] ): return self.features[i]
91
"""simple docstring""" import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("""TEST_SAGEMAKER""" , """False""" ) ) is not True , reason="""Skipping test because should only be run when releasing minor transformers version""" , ) @pytest.mark.usefixtures("""sm_env""" ) @parameterized_class( [ { """framework""": """pytorch""", """script""": """run_glue.py""", """model_name_or_path""": """distilbert-base-cased""", """instance_type""": """ml.p3.16xlarge""", """results""": {"""train_runtime""": 650, """eval_accuracy""": 0.7, """eval_loss""": 0.6}, }, { """framework""": """pytorch""", """script""": """run_ddp.py""", """model_name_or_path""": """distilbert-base-cased""", """instance_type""": """ml.p3.16xlarge""", """results""": {"""train_runtime""": 600, """eval_accuracy""": 0.7, """eval_loss""": 0.6}, }, { """framework""": """tensorflow""", """script""": """run_tf_dist.py""", """model_name_or_path""": """distilbert-base-cased""", """instance_type""": """ml.p3.16xlarge""", """results""": {"""train_runtime""": 600, """eval_accuracy""": 0.6, """eval_loss""": 0.7}, }, ] ) class lowerCamelCase__ ( unittest.TestCase ): def __a ( self : int ): if self.framework == "pytorch": subprocess.run( f'cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'.split() , encoding='utf-8' , check=_lowercase , ) assert hasattr(self , 'env' ) def __a ( self : Optional[int] , _lowercase : int ): A = f'{self.env.base_job_name}-{instance_count}-{"ddp" if "ddp" in self.script else "smd"}' # distributed data settings A = {'smdistributed': {'dataparallel': {'enabled': True}}} if self.script != 'run_ddp.py' else None # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=_lowercase , instance_count=_lowercase , instance_type=self.instance_type , debugger_hook_config=_lowercase , hyperparameters={**self.env.distributed_hyperparameters, 'model_name_or_path': self.model_name_or_path} , metric_definitions=self.env.metric_definitions , distribution=_lowercase , py_version='py36' , ) def __a ( self : Tuple , _lowercase : List[str] ): TrainingJobAnalytics(_lowercase ).export_csv(f'{self.env.test_path}/{job_name}_metrics.csv' ) @parameterized.expand([(2,)] ) def __a ( self : List[Any] , _lowercase : Union[str, Any] ): # create estimator A = self.create_estimator(_lowercase ) # run training estimator.fit() # result dataframe A = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis A = list(result_metrics_df[result_metrics_df.metric_name == 'eval_accuracy']['value'] ) A = list(result_metrics_df[result_metrics_df.metric_name == 'eval_loss']['value'] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping A = ( Session().describe_training_job(estimator.latest_training_job.name ).get('TrainingTimeInSeconds' , 999_999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['eval_accuracy'] for t in eval_accuracy ) assert all(t <= self.results['eval_loss'] for t in eval_loss ) # dump tests result into json file to share in PR with open(f'{estimator.latest_training_job.name}.json' , 'w' ) as outfile: json.dump({'train_time': train_runtime, 'eval_accuracy': eval_accuracy, 'eval_loss': eval_loss} , _lowercase )
91
1
def UpperCamelCase ( __magic_name__ : int , __magic_name__ : int ) -> int: """simple docstring""" lowercase__ = 1 # To kept the Calculated Value # Since C(n, k) = C(n, n-k) if k > (n - k): lowercase__ = n - k # Calculate C(n,k) for i in range(__magic_name__ ): result *= n - i result //= i + 1 return result def UpperCamelCase ( __magic_name__ : int ) -> int: """simple docstring""" return binomial_coefficient(2 * node_count , __magic_name__ ) // (node_count + 1) def UpperCamelCase ( __magic_name__ : int ) -> int: """simple docstring""" if n < 0: raise ValueError("""factorial() not defined for negative values""" ) lowercase__ = 1 for i in range(1 , n + 1 ): result *= i return result def UpperCamelCase ( __magic_name__ : int ) -> int: """simple docstring""" return catalan_number(__magic_name__ ) * factorial(__magic_name__ ) if __name__ == "__main__": A : Tuple = int(input('Enter the number of nodes: ').strip() or 0) if node_count <= 0: raise ValueError('We need some nodes to work with.') print( F'Given {node_count} nodes, there are {binary_tree_count(node_count)} ' F'binary trees and {catalan_number(node_count)} binary search trees.' )
15
"""simple docstring""" from maths.prime_check import is_prime def _snake_case ( snake_case__ : int ): if not isinstance(snake_case__ , snake_case__ ): A = F'Input value of [number={number}] must be an integer' raise TypeError(snake_case__ ) if is_prime(snake_case__ ) and is_prime(number + 2 ): return number + 2 else: return -1 if __name__ == "__main__": import doctest doctest.testmod()
91
0
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class a__ ( UpperCamelCase__ ): __magic_name__ : List[Any] = "facebook/bart-large-mnli" __magic_name__ : Union[str, Any] = ( "This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which " "should be the text to classify, and `labels`, which should be the list of labels to use for classification. " "It returns the most likely label in the list of provided `labels` for the input text." ) __magic_name__ : Optional[int] = "text_classifier" __magic_name__ : Optional[int] = AutoTokenizer __magic_name__ : List[str] = AutoModelForSequenceClassification __magic_name__ : Optional[int] = ["text", ["text"]] __magic_name__ : List[Any] = ["text"] def lowercase__ (self : Union[str, Any] ) -> str: """simple docstring""" super().setup() SCREAMING_SNAKE_CASE : Any = self.model.config SCREAMING_SNAKE_CASE : str = -1 for idx, label in config.idalabel.items(): if label.lower().startswith('''entail''' ): SCREAMING_SNAKE_CASE : int = int(__A ) if self.entailment_id == -1: raise ValueError('''Could not determine the entailment ID from the model config, please pass it at init.''' ) def lowercase__ (self : Union[str, Any], __UpperCAmelCase : Optional[int], __UpperCAmelCase : int ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = labels return self.pre_processor( [text] * len(__A ), [F'''This example is {label}''' for label in labels], return_tensors='''pt''', padding='''max_length''', ) def lowercase__ (self : Tuple, __UpperCAmelCase : Optional[int] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : int = outputs.logits SCREAMING_SNAKE_CASE : str = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
715
'''simple docstring''' import heapq import sys import numpy as np snake_case_ = tuple[int, int] class a__ : def __init__(self : int ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : str = [] SCREAMING_SNAKE_CASE : Tuple = set() def lowercase__ (self : Any ) -> Dict: """simple docstring""" if not self.empty(): return self.elements[0][0] else: return float('''inf''' ) def lowercase__ (self : Dict ) -> Union[str, Any]: """simple docstring""" return len(self.elements ) == 0 def lowercase__ (self : Dict, __UpperCAmelCase : int, __UpperCAmelCase : List[Any] ) -> Tuple: """simple docstring""" if item not in self.set: heapq.heappush(self.elements, (priority, item) ) self.set.add(__UpperCAmelCase ) else: # update # print("update", item) SCREAMING_SNAKE_CASE : List[Any] = [] ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) : Any = heapq.heappop(self.elements ) while x != item: temp.append((pri, x) ) ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) : Any = heapq.heappop(self.elements ) temp.append((priority, item) ) for pro, xxx in temp: heapq.heappush(self.elements, (pro, xxx) ) def lowercase__ (self : Union[str, Any], __UpperCAmelCase : Optional[Any] ) -> Optional[int]: """simple docstring""" if item in self.set: self.set.remove(__UpperCAmelCase ) SCREAMING_SNAKE_CASE : Optional[int] = [] ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) : Any = heapq.heappop(self.elements ) while x != item: temp.append((pro, x) ) ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) : Optional[Any] = heapq.heappop(self.elements ) for prito, yyy in temp: heapq.heappush(self.elements, (prito, yyy) ) def lowercase__ (self : Tuple ) -> Dict: """simple docstring""" return self.elements[0][1] def lowercase__ (self : Optional[Any] ) -> Tuple: """simple docstring""" ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) : Optional[int] = heapq.heappop(self.elements ) self.set.remove(__UpperCAmelCase ) return (priority, item) def __lowercase (_SCREAMING_SNAKE_CASE :TPos , _SCREAMING_SNAKE_CASE :TPos ): # euclidean distance SCREAMING_SNAKE_CASE : str = np.array(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : List[Any] = np.array(_SCREAMING_SNAKE_CASE ) return np.linalg.norm(a - b ) def __lowercase (_SCREAMING_SNAKE_CASE :TPos , _SCREAMING_SNAKE_CASE :TPos ): # integer division by time variable return consistent_heuristic(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) // t def __lowercase (_SCREAMING_SNAKE_CASE :TPos , _SCREAMING_SNAKE_CASE :TPos ): # manhattan distance return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def __lowercase (_SCREAMING_SNAKE_CASE :TPos , _SCREAMING_SNAKE_CASE :int , _SCREAMING_SNAKE_CASE :TPos , _SCREAMING_SNAKE_CASE :dict[TPos, float] ): SCREAMING_SNAKE_CASE : List[str] = g_function[start] + Wa * heuristics[i](_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return ans def __lowercase (_SCREAMING_SNAKE_CASE :Optional[Any] , _SCREAMING_SNAKE_CASE :List[str] , _SCREAMING_SNAKE_CASE :Tuple ): SCREAMING_SNAKE_CASE : Optional[int] = np.chararray((n, n) ) for i in range(_SCREAMING_SNAKE_CASE ): for j in range(_SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE : Tuple = '''*''' for i in range(_SCREAMING_SNAKE_CASE ): for j in range(_SCREAMING_SNAKE_CASE ): if (j, (n - 1) - i) in blocks: SCREAMING_SNAKE_CASE : Tuple = '''#''' SCREAMING_SNAKE_CASE : List[Any] = '''-''' SCREAMING_SNAKE_CASE : Any = back_pointer[goal] while x != start: ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) : Optional[int] = x # print(x) SCREAMING_SNAKE_CASE : int = '''-''' SCREAMING_SNAKE_CASE : Dict = back_pointer[x] SCREAMING_SNAKE_CASE : int = '''-''' for i in range(_SCREAMING_SNAKE_CASE ): for j in range(_SCREAMING_SNAKE_CASE ): if (i, j) == (0, n - 1): print(grid[i][j] , end=''' ''' ) print('''<-- End position''' , end=''' ''' ) else: print(grid[i][j] , end=''' ''' ) print() print('''^''' ) print('''Start position''' ) print() print('''# is an obstacle''' ) print('''- is the path taken by algorithm''' ) print('''PATH TAKEN BY THE ALGORITHM IS:-''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = back_pointer[goal] while x != start: print(_SCREAMING_SNAKE_CASE , end=''' ''' ) SCREAMING_SNAKE_CASE : Optional[int] = back_pointer[x] print(_SCREAMING_SNAKE_CASE ) sys.exit() def __lowercase (_SCREAMING_SNAKE_CASE :TPos ): if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def __lowercase (_SCREAMING_SNAKE_CASE :Union[str, Any] , _SCREAMING_SNAKE_CASE :int , _SCREAMING_SNAKE_CASE :List[str] , _SCREAMING_SNAKE_CASE :List[str] , _SCREAMING_SNAKE_CASE :List[str] , _SCREAMING_SNAKE_CASE :Union[str, Any] , _SCREAMING_SNAKE_CASE :Tuple , _SCREAMING_SNAKE_CASE :Optional[int] , ): for itera in range(_SCREAMING_SNAKE_CASE ): open_list[itera].remove_element(_SCREAMING_SNAKE_CASE ) # print("s", s) # print("j", j) ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) : Tuple = s SCREAMING_SNAKE_CASE : List[Any] = (x - 1, y) SCREAMING_SNAKE_CASE : Optional[Any] = (x + 1, y) SCREAMING_SNAKE_CASE : List[Any] = (x, y + 1) SCREAMING_SNAKE_CASE : Any = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(_SCREAMING_SNAKE_CASE ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : Optional[int] = -1 SCREAMING_SNAKE_CASE : List[str] = float('''inf''' ) if valid(_SCREAMING_SNAKE_CASE ) and g_function[neighbours] > g_function[s] + 1: SCREAMING_SNAKE_CASE : List[str] = g_function[s] + 1 SCREAMING_SNAKE_CASE : Optional[Any] = s if neighbours not in close_list_anchor: open_list[0].put(_SCREAMING_SNAKE_CASE , key(_SCREAMING_SNAKE_CASE , 0 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) if neighbours not in close_list_inad: for var in range(1 , _SCREAMING_SNAKE_CASE ): if key(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) <= Wa * key( _SCREAMING_SNAKE_CASE , 0 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): open_list[j].put( _SCREAMING_SNAKE_CASE , key(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) def __lowercase (): SCREAMING_SNAKE_CASE : Optional[int] = [] for x in range(1 , 5 ): for y in range(1 , 6 ): some_list.append((x, y) ) for x in range(15 , 20 ): some_list.append((x, 17) ) for x in range(10 , 19 ): for y in range(1 , 15 ): some_list.append((x, y) ) # L block for x in range(1 , 4 ): for y in range(12 , 19 ): some_list.append((x, y) ) for x in range(3 , 13 ): for y in range(16 , 19 ): some_list.append((x, y) ) return some_list snake_case_ = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} snake_case_ = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1), (16, 1), (17, 1), (18, 1), (19, 1), ] snake_case_ = make_common_ground() snake_case_ = blocks_blk # hyper parameters snake_case_ = 1 snake_case_ = 1 snake_case_ = 20 snake_case_ = 3 # one consistent and two other inconsistent # start and end destination snake_case_ = (0, 0) snake_case_ = (n - 1, n - 1) snake_case_ = 1 def __lowercase (_SCREAMING_SNAKE_CASE :TPos , _SCREAMING_SNAKE_CASE :TPos , _SCREAMING_SNAKE_CASE :int ): SCREAMING_SNAKE_CASE : Any = {start: 0, goal: float('''inf''' )} SCREAMING_SNAKE_CASE : Tuple = {start: -1, goal: -1} SCREAMING_SNAKE_CASE : Tuple = [] SCREAMING_SNAKE_CASE : Union[str, Any] = set() for i in range(_SCREAMING_SNAKE_CASE ): open_list.append(PriorityQueue() ) open_list[i].put(_SCREAMING_SNAKE_CASE , key(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) SCREAMING_SNAKE_CASE : list[int] = [] SCREAMING_SNAKE_CASE : list[int] = [] while open_list[0].minkey() < float('''inf''' ): for i in range(1 , _SCREAMING_SNAKE_CASE ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float('''inf''' ): do_something(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = open_list[i].top_show() visited.add(_SCREAMING_SNAKE_CASE ) expand_state( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) close_list_inad.append(_SCREAMING_SNAKE_CASE ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float('''inf''' ): do_something(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: SCREAMING_SNAKE_CASE : List[Any] = open_list[0].top_show() visited.add(_SCREAMING_SNAKE_CASE ) expand_state( _SCREAMING_SNAKE_CASE , 0 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) close_list_anchor.append(_SCREAMING_SNAKE_CASE ) print('''No path found to goal''' ) print() for i in range(n - 1 , -1 , -1 ): for j in range(_SCREAMING_SNAKE_CASE ): if (j, i) in blocks: print('''#''' , end=''' ''' ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print('''*''' , end=''' ''' ) else: print('''-''' , end=''' ''' ) else: print('''*''' , end=''' ''' ) if (j, i) == (n - 1, n - 1): print('''<-- End position''' , end=''' ''' ) print() print('''^''' ) print('''Start position''' ) print() print('''# is an obstacle''' ) print('''- is the path taken by algorithm''' ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
355
0