code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
from ..utils import DummyObject, requires_backends class a_ ( metaclass=a ): A__ : str = ['flax', 'transformers'] def __init__( self : Optional[int] , *UpperCAmelCase__ : List[str] , **UpperCAmelCase__ : Tuple ): """simple docstring""" requires_backends(self , ['''flax''', '''transformers'''] ) @classmethod def lowerCAmelCase( cls : Dict , *UpperCAmelCase__ : int , **UpperCAmelCase__ : int ): """simple docstring""" requires_backends(cls , ['''flax''', '''transformers'''] ) @classmethod def lowerCAmelCase( cls : Optional[int] , *UpperCAmelCase__ : Any , **UpperCAmelCase__ : Tuple ): """simple docstring""" requires_backends(cls , ['''flax''', '''transformers'''] ) class a_ ( metaclass=a ): A__ : Union[str, Any] = ['flax', 'transformers'] def __init__( self : List[str] , *UpperCAmelCase__ : Optional[int] , **UpperCAmelCase__ : List[str] ): """simple docstring""" requires_backends(self , ['''flax''', '''transformers'''] ) @classmethod def lowerCAmelCase( cls : int , *UpperCAmelCase__ : str , **UpperCAmelCase__ : Optional[int] ): """simple docstring""" requires_backends(cls , ['''flax''', '''transformers'''] ) @classmethod def lowerCAmelCase( cls : str , *UpperCAmelCase__ : Optional[Any] , **UpperCAmelCase__ : List[Any] ): """simple docstring""" requires_backends(cls , ['''flax''', '''transformers'''] ) class a_ ( metaclass=a ): A__ : str = ['flax', 'transformers'] def __init__( self : Optional[int] , *UpperCAmelCase__ : Optional[Any] , **UpperCAmelCase__ : Optional[int] ): """simple docstring""" requires_backends(self , ['''flax''', '''transformers'''] ) @classmethod def lowerCAmelCase( cls : List[str] , *UpperCAmelCase__ : List[str] , **UpperCAmelCase__ : int ): """simple docstring""" requires_backends(cls , ['''flax''', '''transformers'''] ) @classmethod def lowerCAmelCase( cls : str , *UpperCAmelCase__ : Union[str, Any] , **UpperCAmelCase__ : str ): """simple docstring""" requires_backends(cls , ['''flax''', '''transformers'''] ) class a_ ( metaclass=a ): A__ : Optional[int] = ['flax', 'transformers'] def __init__( self : List[str] , *UpperCAmelCase__ : List[str] , **UpperCAmelCase__ : Optional[int] ): """simple docstring""" requires_backends(self , ['''flax''', '''transformers'''] ) @classmethod def lowerCAmelCase( cls : Tuple , *UpperCAmelCase__ : Tuple , **UpperCAmelCase__ : Tuple ): """simple docstring""" requires_backends(cls , ['''flax''', '''transformers'''] ) @classmethod def lowerCAmelCase( cls : int , *UpperCAmelCase__ : List[str] , **UpperCAmelCase__ : List[Any] ): """simple docstring""" requires_backends(cls , ['''flax''', '''transformers'''] )
598
from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging A : Optional[int] = logging.get_logger(__name__) class __A( a ): snake_case_ = ['''pixel_values'''] def __init__( self , _snake_case = True , _snake_case = None , _snake_case = PILImageResampling.BICUBIC , _snake_case = True , _snake_case = None , _snake_case = True , _snake_case = 1 / 255 , _snake_case = True , _snake_case = IMAGENET_DEFAULT_MEAN , _snake_case = IMAGENET_DEFAULT_STD , **_snake_case , ) -> None: '''simple docstring''' super().__init__(**_snake_case ) __a = size if size is not None else {'''shortest_edge''': 224} __a = get_size_dict(_snake_case , default_to_square=_snake_case ) __a = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} __a = get_size_dict(_snake_case , param_name='''crop_size''' ) __a = do_resize __a = size __a = resample __a = do_center_crop __a = crop_size __a = do_rescale __a = rescale_factor __a = do_normalize __a = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN __a = image_std if image_std is not None else IMAGENET_DEFAULT_STD def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case = PILImageResampling.BICUBIC , _snake_case = None , **_snake_case , ) -> np.ndarray: '''simple docstring''' __a = get_size_dict(_snake_case , default_to_square=_snake_case ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: __a = int((256 / 224) * size['''shortest_edge'''] ) __a = get_resize_output_image_size(_snake_case , size=_snake_case , default_to_square=_snake_case ) __a = {'''height''': output_size[0], '''width''': output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( F"""Size dict must have keys 'height' and 'width' or 'shortest_edge'. Got {size_dict.keys()}""" ) return resize( _snake_case , size=(size_dict['''height'''], size_dict['''width''']) , resample=_snake_case , data_format=_snake_case , **_snake_case ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case = None , **_snake_case , ) -> np.ndarray: '''simple docstring''' __a = get_size_dict(_snake_case ) if "height" not in size or "width" not in size: raise ValueError(F"""Size dict must have keys 'height' and 'width'. Got {size.keys()}""" ) return center_crop(_snake_case , size=(size['''height'''], size['''width''']) , data_format=_snake_case , **_snake_case ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case = None , **_snake_case , ) -> np.ndarray: '''simple docstring''' return rescale(_snake_case , scale=_snake_case , data_format=_snake_case , **_snake_case ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case , _snake_case = None , **_snake_case , ) -> np.ndarray: '''simple docstring''' return normalize(_snake_case , mean=_snake_case , std=_snake_case , data_format=_snake_case , **_snake_case ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = ChannelDimension.FIRST , **_snake_case , ) -> BatchFeature: '''simple docstring''' __a = do_resize if do_resize is not None else self.do_resize __a = resample if resample is not None else self.resample __a = do_center_crop if do_center_crop is not None else self.do_center_crop __a = do_rescale if do_rescale is not None else self.do_rescale __a = rescale_factor if rescale_factor is not None else self.rescale_factor __a = do_normalize if do_normalize is not None else self.do_normalize __a = image_mean if image_mean is not None else self.image_mean __a = image_std if image_std is not None else self.image_std __a = size if size is not None else self.size __a = get_size_dict(_snake_case , default_to_square=_snake_case ) __a = crop_size if crop_size is not None else self.crop_size __a = get_size_dict(_snake_case , param_name='''crop_size''' ) __a = make_list_of_images(_snake_case ) if not valid_images(_snake_case ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. __a = [to_numpy_array(_snake_case ) for image in images] if do_resize: __a = [self.resize(_snake_case , _snake_case , _snake_case ) for image in images] if do_center_crop: __a = [self.center_crop(_snake_case , _snake_case ) for image in images] if do_rescale: __a = [self.rescale(_snake_case , _snake_case ) for image in images] if do_normalize: __a = [self.normalize(_snake_case , _snake_case , _snake_case ) for image in images] __a = [to_channel_dimension_format(_snake_case , _snake_case ) for image in images] __a = {'''pixel_values''': images} return BatchFeature(data=_snake_case , tensor_type=_snake_case )
219
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available a : Optional[int] = { """configuration_pix2struct""": [ """PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Pix2StructConfig""", """Pix2StructTextConfig""", """Pix2StructVisionConfig""", ], """processing_pix2struct""": ["""Pix2StructProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[Any] = ["""Pix2StructImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Dict = [ """PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST""", """Pix2StructPreTrainedModel""", """Pix2StructForConditionalGeneration""", """Pix2StructVisionModel""", """Pix2StructTextModel""", ] if TYPE_CHECKING: from .configuration_pixastruct import ( PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP, PixaStructConfig, PixaStructTextConfig, PixaStructVisionConfig, ) from .processing_pixastruct import PixaStructProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_pixastruct import PixaStructImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pixastruct import ( PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST, PixaStructForConditionalGeneration, PixaStructPreTrainedModel, PixaStructTextModel, PixaStructVisionModel, ) else: import sys a : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
721
'''simple docstring''' import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class SCREAMING_SNAKE_CASE__ : def __init__( self : str , a_ : Tuple , a_ : Optional[Any]=2 , a_ : str=32 , a_ : Dict=16 , a_ : List[str]=3 , a_ : Dict=True , a_ : Optional[int]=True , a_ : List[str]=32 , a_ : int=4 , a_ : str=[0, 1, 2, 3] , a_ : Any=4 , a_ : Optional[int]=37 , a_ : Any="gelu" , a_ : Optional[int]=0.1 , a_ : Optional[Any]=0.1 , a_ : Union[str, Any]=0.02 , a_ : Union[str, Any]=3 , a_ : Any=[1, 384, 24, 24] , a_ : Optional[Any]=True , a_ : Optional[int]=None , ): """simple docstring""" __snake_case = parent __snake_case = batch_size __snake_case = image_size __snake_case = patch_size __snake_case = num_channels __snake_case = is_training __snake_case = use_labels __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = backbone_out_indices __snake_case = num_attention_heads __snake_case = intermediate_size __snake_case = hidden_act __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = initializer_range __snake_case = num_labels __snake_case = backbone_featmap_shape __snake_case = scope __snake_case = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) __snake_case = (image_size // patch_size) ** 2 __snake_case = num_patches + 1 def A ( self : int ): """simple docstring""" __snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case = None if self.use_labels: __snake_case = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __snake_case = self.get_config() return config, pixel_values, labels def A ( self : Optional[Any] ): """simple docstring""" __snake_case = { "global_padding": "same", "layer_type": "bottleneck", "depths": [3, 4, 9], "out_features": ["stage1", "stage2", "stage3"], "embedding_dynamic_padding": True, "hidden_sizes": [96, 192, 384, 768], "num_groups": 2, } return DPTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=a_ , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=a_ , backbone_featmap_shape=self.backbone_featmap_shape , ) def A ( self : int , a_ : Union[str, Any] , a_ : List[str] , a_ : List[str] ): """simple docstring""" __snake_case = DPTModel(config=a_ ) model.to(a_ ) model.eval() __snake_case = model(a_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A ( self : List[Any] , a_ : List[Any] , a_ : Union[str, Any] , a_ : List[str] ): """simple docstring""" __snake_case = self.num_labels __snake_case = DPTForDepthEstimation(a_ ) model.to(a_ ) model.eval() __snake_case = model(a_ ) self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size) ) def A ( self : Optional[Any] , a_ : List[str] , a_ : int , a_ : Tuple ): """simple docstring""" __snake_case = self.num_labels __snake_case = DPTForSemanticSegmentation(a_ ) model.to(a_ ) model.eval() __snake_case = model(a_ , labels=a_ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def A ( self : List[Any] ): """simple docstring""" __snake_case = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case = config_and_inputs __snake_case = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () __SCREAMING_SNAKE_CASE = ( { """depth-estimation""": DPTForDepthEstimation, """feature-extraction""": DPTModel, """image-segmentation""": DPTForSemanticSegmentation, } if is_torch_available() else {} ) __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False def A ( self : Optional[Any] ): """simple docstring""" __snake_case = DPTModelTester(self ) __snake_case = ConfigTester(self , config_class=a_ , has_text_modality=a_ , hidden_size=37 ) def A ( self : Optional[Any] ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="DPT does not use inputs_embeds" ) def A ( self : Any ): """simple docstring""" pass def A ( self : Union[str, Any] ): """simple docstring""" __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case = model_class(a_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __snake_case = model.get_output_embeddings() self.assertTrue(x is None or isinstance(a_ , nn.Linear ) ) def A ( self : List[str] ): """simple docstring""" __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case = model_class(a_ ) __snake_case = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case = [*signature.parameters.keys()] __snake_case = ["pixel_values"] self.assertListEqual(arg_names[:1] , a_ ) def A ( self : int ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a_ ) def A ( self : Union[str, Any] ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*a_ ) def A ( self : Union[str, Any] ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*a_ ) def A ( self : Optional[int] ): """simple docstring""" for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = True if model_class in get_values(a_ ): continue __snake_case = model_class(a_ ) model.to(a_ ) model.train() __snake_case = self._prepare_for_class(a_ , a_ , return_labels=a_ ) __snake_case = model(**a_ ).loss loss.backward() def A ( self : int ): """simple docstring""" for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = False __snake_case = True if model_class in get_values(a_ ) or not model_class.supports_gradient_checkpointing: continue __snake_case = model_class(a_ ) model.to(a_ ) model.gradient_checkpointing_enable() model.train() __snake_case = self._prepare_for_class(a_ , a_ , return_labels=a_ ) __snake_case = model(**a_ ).loss loss.backward() def A ( self : Dict ): """simple docstring""" __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = _config_zero_init(a_ ) for model_class in self.all_model_classes: __snake_case = model_class(config=a_ ) # Skip the check for the backbone __snake_case = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": __snake_case = [f'''{name}.{key}''' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def A ( self : Tuple ): """simple docstring""" pass @slow def A ( self : int ): """simple docstring""" for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: __snake_case = DPTModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) def A ( self : int ): """simple docstring""" __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = "add" with self.assertRaises(a_ ): __snake_case = DPTForDepthEstimation(a_ ) def __UpperCAmelCase ( ) -> Union[str, Any]: __snake_case = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision @slow class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def A ( self : Dict ): """simple docstring""" __snake_case = DPTImageProcessor.from_pretrained("Intel/dpt-hybrid-midas" ) __snake_case = DPTForDepthEstimation.from_pretrained("Intel/dpt-hybrid-midas" ).to(a_ ) __snake_case = prepare_img() __snake_case = image_processor(images=a_ , return_tensors="pt" ).to(a_ ) # forward pass with torch.no_grad(): __snake_case = model(**a_ ) __snake_case = outputs.predicted_depth # verify the predicted depth __snake_case = torch.Size((1, 384, 384) ) self.assertEqual(predicted_depth.shape , a_ ) __snake_case = torch.tensor( [[[5.6437, 5.6146, 5.6511], [5.4371, 5.5649, 5.5958], [5.5215, 5.5184, 5.5293]]] ).to(a_ ) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 100 , a_ , atol=1e-4 ) )
680
0
"""simple docstring""" from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class __magic_name__ ( A__ ): UpperCamelCase : int = 42 class __magic_name__ ( nn.Module ): def __init__( self , __magic_name__=3 , __magic_name__=3 , __magic_name__=("DownEncoderBlock2D",) , __magic_name__=(6_4,) , __magic_name__=2 , __magic_name__=3_2 , __magic_name__="silu" , __magic_name__=True , ): """simple docstring""" super().__init__() _lowerCAmelCase = layers_per_block _lowerCAmelCase = torch.nn.Convad( __magic_name__ , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , ) _lowerCAmelCase = None _lowerCAmelCase = nn.ModuleList([] ) # down _lowerCAmelCase = block_out_channels[0] for i, down_block_type in enumerate(__magic_name__ ): _lowerCAmelCase = output_channel _lowerCAmelCase = block_out_channels[i] _lowerCAmelCase = i == len(__magic_name__ ) - 1 _lowerCAmelCase = get_down_block( __magic_name__ , num_layers=self.layers_per_block , in_channels=__magic_name__ , out_channels=__magic_name__ , add_downsample=not is_final_block , resnet_eps=1e-6 , downsample_padding=0 , resnet_act_fn=__magic_name__ , resnet_groups=__magic_name__ , attention_head_dim=__magic_name__ , temb_channels=__magic_name__ , ) self.down_blocks.append(__magic_name__ ) # mid _lowerCAmelCase = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=__magic_name__ , output_scale_factor=1 , resnet_time_scale_shift='default' , attention_head_dim=block_out_channels[-1] , resnet_groups=__magic_name__ , temb_channels=__magic_name__ , ) # out _lowerCAmelCase = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=__magic_name__ , eps=1e-6 ) _lowerCAmelCase = nn.SiLU() _lowerCAmelCase = 2 * out_channels if double_z else out_channels _lowerCAmelCase = nn.Convad(block_out_channels[-1] , __magic_name__ , 3 , padding=1 ) _lowerCAmelCase = False def _lowerCamelCase ( self , __magic_name__ ): """simple docstring""" _lowerCAmelCase = x _lowerCAmelCase = self.conv_in(__magic_name__ ) if self.training and self.gradient_checkpointing: def create_custom_forward(__magic_name__ ): def custom_forward(*__magic_name__ ): return module(*__magic_name__ ) return custom_forward # down if is_torch_version('>=' , '1.11.0' ): for down_block in self.down_blocks: _lowerCAmelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(__magic_name__ ) , __magic_name__ , use_reentrant=__magic_name__ ) # middle _lowerCAmelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , __magic_name__ , use_reentrant=__magic_name__ ) else: for down_block in self.down_blocks: _lowerCAmelCase = torch.utils.checkpoint.checkpoint(create_custom_forward(__magic_name__ ) , __magic_name__ ) # middle _lowerCAmelCase = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , __magic_name__ ) else: # down for down_block in self.down_blocks: _lowerCAmelCase = down_block(__magic_name__ ) # middle _lowerCAmelCase = self.mid_block(__magic_name__ ) # post-process _lowerCAmelCase = self.conv_norm_out(__magic_name__ ) _lowerCAmelCase = self.conv_act(__magic_name__ ) _lowerCAmelCase = self.conv_out(__magic_name__ ) return sample class __magic_name__ ( nn.Module ): def __init__( self , __magic_name__=3 , __magic_name__=3 , __magic_name__=("UpDecoderBlock2D",) , __magic_name__=(6_4,) , __magic_name__=2 , __magic_name__=3_2 , __magic_name__="silu" , __magic_name__="group" , ): """simple docstring""" super().__init__() _lowerCAmelCase = layers_per_block _lowerCAmelCase = nn.Convad( __magic_name__ , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , ) _lowerCAmelCase = None _lowerCAmelCase = nn.ModuleList([] ) _lowerCAmelCase = in_channels if norm_type == 'spatial' else None # mid _lowerCAmelCase = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=__magic_name__ , output_scale_factor=1 , resnet_time_scale_shift='default' if norm_type == 'group' else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=__magic_name__ , temb_channels=__magic_name__ , ) # up _lowerCAmelCase = list(reversed(__magic_name__ ) ) _lowerCAmelCase = reversed_block_out_channels[0] for i, up_block_type in enumerate(__magic_name__ ): _lowerCAmelCase = output_channel _lowerCAmelCase = reversed_block_out_channels[i] _lowerCAmelCase = i == len(__magic_name__ ) - 1 _lowerCAmelCase = get_up_block( __magic_name__ , num_layers=self.layers_per_block + 1 , in_channels=__magic_name__ , out_channels=__magic_name__ , prev_output_channel=__magic_name__ , add_upsample=not is_final_block , resnet_eps=1e-6 , resnet_act_fn=__magic_name__ , resnet_groups=__magic_name__ , attention_head_dim=__magic_name__ , temb_channels=__magic_name__ , resnet_time_scale_shift=__magic_name__ , ) self.up_blocks.append(__magic_name__ ) _lowerCAmelCase = output_channel # out if norm_type == "spatial": _lowerCAmelCase = SpatialNorm(block_out_channels[0] , __magic_name__ ) else: _lowerCAmelCase = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=__magic_name__ , eps=1e-6 ) _lowerCAmelCase = nn.SiLU() _lowerCAmelCase = nn.Convad(block_out_channels[0] , __magic_name__ , 3 , padding=1 ) _lowerCAmelCase = False def _lowerCamelCase ( self , __magic_name__ , __magic_name__=None ): """simple docstring""" _lowerCAmelCase = z _lowerCAmelCase = self.conv_in(__magic_name__ ) _lowerCAmelCase = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(__magic_name__ ): def custom_forward(*__magic_name__ ): return module(*__magic_name__ ) return custom_forward if is_torch_version('>=' , '1.11.0' ): # middle _lowerCAmelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , __magic_name__ , __magic_name__ , use_reentrant=__magic_name__ ) _lowerCAmelCase = sample.to(__magic_name__ ) # up for up_block in self.up_blocks: _lowerCAmelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(__magic_name__ ) , __magic_name__ , __magic_name__ , use_reentrant=__magic_name__ ) else: # middle _lowerCAmelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , __magic_name__ , __magic_name__ ) _lowerCAmelCase = sample.to(__magic_name__ ) # up for up_block in self.up_blocks: _lowerCAmelCase = torch.utils.checkpoint.checkpoint(create_custom_forward(__magic_name__ ) , __magic_name__ , __magic_name__ ) else: # middle _lowerCAmelCase = self.mid_block(__magic_name__ , __magic_name__ ) _lowerCAmelCase = sample.to(__magic_name__ ) # up for up_block in self.up_blocks: _lowerCAmelCase = up_block(__magic_name__ , __magic_name__ ) # post-process if latent_embeds is None: _lowerCAmelCase = self.conv_norm_out(__magic_name__ ) else: _lowerCAmelCase = self.conv_norm_out(__magic_name__ , __magic_name__ ) _lowerCAmelCase = self.conv_act(__magic_name__ ) _lowerCAmelCase = self.conv_out(__magic_name__ ) return sample class __magic_name__ ( nn.Module ): def __init__( self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__=None , __magic_name__="random" , __magic_name__=False , __magic_name__=True ): """simple docstring""" super().__init__() _lowerCAmelCase = n_e _lowerCAmelCase = vq_embed_dim _lowerCAmelCase = beta _lowerCAmelCase = legacy _lowerCAmelCase = nn.Embedding(self.n_e , self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e ) _lowerCAmelCase = remap if self.remap is not None: self.register_buffer('used' , torch.tensor(np.load(self.remap ) ) ) _lowerCAmelCase = self.used.shape[0] _lowerCAmelCase = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": _lowerCAmelCase = self.re_embed _lowerCAmelCase = self.re_embed + 1 print( F'''Remapping {self.n_e} indices to {self.re_embed} indices. ''' F'''Using {self.unknown_index} for unknown indices.''' ) else: _lowerCAmelCase = n_e _lowerCAmelCase = sane_index_shape def _lowerCamelCase ( self , __magic_name__ ): """simple docstring""" _lowerCAmelCase = inds.shape assert len(__magic_name__ ) > 1 _lowerCAmelCase = inds.reshape(ishape[0] , -1 ) _lowerCAmelCase = self.used.to(__magic_name__ ) _lowerCAmelCase = (inds[:, :, None] == used[None, None, ...]).long() _lowerCAmelCase = match.argmax(-1 ) _lowerCAmelCase = match.sum(2 ) < 1 if self.unknown_index == "random": _lowerCAmelCase = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device ) else: _lowerCAmelCase = self.unknown_index return new.reshape(__magic_name__ ) def _lowerCamelCase ( self , __magic_name__ ): """simple docstring""" _lowerCAmelCase = inds.shape assert len(__magic_name__ ) > 1 _lowerCAmelCase = inds.reshape(ishape[0] , -1 ) _lowerCAmelCase = self.used.to(__magic_name__ ) if self.re_embed > self.used.shape[0]: # extra token _lowerCAmelCase = 0 # simply set to zero _lowerCAmelCase = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , __magic_name__ ) return back.reshape(__magic_name__ ) def _lowerCamelCase ( self , __magic_name__ ): """simple docstring""" _lowerCAmelCase = z.permute(0 , 2 , 3 , 1 ).contiguous() _lowerCAmelCase = z.view(-1 , self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z _lowerCAmelCase = torch.argmin(torch.cdist(__magic_name__ , self.embedding.weight ) , dim=1 ) _lowerCAmelCase = self.embedding(__magic_name__ ).view(z.shape ) _lowerCAmelCase = None _lowerCAmelCase = None # compute loss for embedding if not self.legacy: _lowerCAmelCase = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: _lowerCAmelCase = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients _lowerCAmelCase = z + (z_q - z).detach() # reshape back to match original input shape _lowerCAmelCase = z_q.permute(0 , 3 , 1 , 2 ).contiguous() if self.remap is not None: _lowerCAmelCase = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis _lowerCAmelCase = self.remap_to_used(__magic_name__ ) _lowerCAmelCase = min_encoding_indices.reshape(-1 , 1 ) # flatten if self.sane_index_shape: _lowerCAmelCase = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def _lowerCamelCase ( self , __magic_name__ , __magic_name__ ): """simple docstring""" if self.remap is not None: _lowerCAmelCase = indices.reshape(shape[0] , -1 ) # add batch axis _lowerCAmelCase = self.unmap_to_all(__magic_name__ ) _lowerCAmelCase = indices.reshape(-1 ) # flatten again # get quantized latent vectors _lowerCAmelCase = self.embedding(__magic_name__ ) if shape is not None: _lowerCAmelCase = z_q.view(__magic_name__ ) # reshape back to match original input shape _lowerCAmelCase = z_q.permute(0 , 3 , 1 , 2 ).contiguous() return z_q class __magic_name__ ( A__ ): def __init__( self , __magic_name__ , __magic_name__=False ): """simple docstring""" _lowerCAmelCase = parameters _lowerCAmelCase , _lowerCAmelCase = torch.chunk(__magic_name__ , 2 , dim=1 ) _lowerCAmelCase = torch.clamp(self.logvar , -30.0 , 20.0 ) _lowerCAmelCase = deterministic _lowerCAmelCase = torch.exp(0.5 * self.logvar ) _lowerCAmelCase = torch.exp(self.logvar ) if self.deterministic: _lowerCAmelCase = _lowerCAmelCase = torch.zeros_like( self.mean , device=self.parameters.device , dtype=self.parameters.dtype ) def _lowerCamelCase ( self , __magic_name__ = None ): """simple docstring""" _lowerCAmelCase = randn_tensor( self.mean.shape , generator=__magic_name__ , device=self.parameters.device , dtype=self.parameters.dtype ) _lowerCAmelCase = self.mean + self.std * sample return x def _lowerCamelCase ( self , __magic_name__=None ): """simple docstring""" if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean , 2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar , dim=[1, 2, 3] , ) def _lowerCamelCase ( self , __magic_name__ , __magic_name__=[1, 2, 3] ): """simple docstring""" if self.deterministic: return torch.Tensor([0.0] ) _lowerCAmelCase = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=__magic_name__ ) def _lowerCamelCase ( self ): """simple docstring""" return self.mean
589
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def a ( lowerCamelCase_=None ): '''simple docstring''' if subparsers is not None: lowercase__ = subparsers.add_parser('''test''' ) else: lowercase__ = argparse.ArgumentParser('''Accelerate test command''' ) parser.add_argument( '''--config_file''' , default=lowerCamelCase_ , help=( '''The path to use to store the config file. Will default to a file named default_config.yaml in the cache ''' '''location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ''' '''such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ''' '''with \'huggingface\'.''' ) , ) if subparsers is not None: parser.set_defaults(func=lowerCamelCase_ ) return parser def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ['''test_utils''', '''scripts''', '''test_script.py'''] ) if args.config_file is None: lowercase__ = script_name else: lowercase__ = F"""--config_file={args.config_file} {script_name}""" lowercase__ = ['''accelerate-launch'''] + test_args.split() lowercase__ = execute_subprocess_async(lowerCamelCase_ , env=os.environ.copy() ) if result.returncode == 0: print('''Test is a success! You are ready for your distributed training!''' ) def a ( ): '''simple docstring''' lowercase__ = test_command_parser() lowercase__ = parser.parse_args() test_command(lowerCamelCase_ ) if __name__ == "__main__": main()
183
0
"""simple docstring""" def a__ ( a : list , a : int , a : int = 0 , a : int = 0 ): """simple docstring""" _snake_case : Optional[int] = right or len(a ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(a , a , left + 1 , right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
87
"""simple docstring""" from __future__ import annotations import requests _a : List[str] = set( """approved_at_utc approved_by author_flair_background_color author_flair_css_class author_flair_richtext author_flair_template_id author_fullname author_premium can_mod_post category clicked content_categories created_utc downs edited gilded gildings hidden hide_score is_created_from_ads_ui is_meta is_original_content is_reddit_media_domain is_video link_flair_css_class link_flair_richtext link_flair_text link_flair_text_color media_embed mod_reason_title name permalink pwls quarantine saved score secure_media secure_media_embed selftext subreddit subreddit_name_prefixed subreddit_type thumbnail title top_awarded_type total_awards_received ups upvote_ratio url user_reports""".split() ) def a__ ( a : str , a : int = 1 , a : str = "new" , a : list | None = None ): """simple docstring""" _snake_case : Any = wanted_data or [] if invalid_search_terms := ", ".join(sorted(set(a ) - valid_terms ) ): _snake_case : Optional[int] = f'Invalid search term: {invalid_search_terms}' raise ValueError(a ) _snake_case : int = requests.get( f'https://reddit.com/r/{subreddit}/{age}.json?limit={limit}' , headers={"User-agent": "A random string"} , ) if response.status_code == 429: raise requests.HTTPError _snake_case : Optional[Any] = response.json() if not wanted_data: return {id_: data["data"]["children"][id_] for id_ in range(a )} _snake_case : Tuple = {} for id_ in range(a ): _snake_case : List[str] = { item: data["data"]["children"][id_]["data"][item] for item in wanted_data } return data_dict if __name__ == "__main__": # If you get Error 429, that means you are rate limited.Try after some time print(get_subreddit_data("""learnpython""", wanted_data=["""title""", """url""", """selftext"""]))
87
1
import re import string from collections import Counter import sacrebleu import sacremoses from packaging import version import datasets a : Any = "\n@inproceedings{xu-etal-2016-optimizing,\n title = {Optimizing Statistical Machine Translation for Text Simplification},\n authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris},\n journal = {Transactions of the Association for Computational Linguistics},\n volume = {4},\n year={2016},\n url = {https://www.aclweb.org/anthology/Q16-1029},\n pages = {401--415\n},\n@inproceedings{post-2018-call,\n title = \"A Call for Clarity in Reporting {BLEU} Scores\",\n author = \"Post, Matt\",\n booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\",\n month = oct,\n year = \"2018\",\n address = \"Belgium, Brussels\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W18-6319\",\n pages = \"186--191\",\n}\n" a : List[Any] = "\\nWIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU\nIt can be used to evaluate the quality of machine-generated texts.\n" a : Any = "\nCalculates sari score (between 0 and 100) given a list of source and predicted\nsentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score.\nArgs:\n sources: list of source sentences where each sentence should be a string.\n predictions: list of predicted sentences where each sentence should be a string.\n references: list of lists of reference sentences where each sentence should be a string.\nReturns:\n sari: sari score\n sacrebleu: sacrebleu score\n exact: exact score\n\nExamples:\n >>> sources=[\"About 95 species are currently accepted .\"]\n >>> predictions=[\"About 95 you now get in .\"]\n >>> references=[[\"About 95 species are currently known .\"]]\n >>> wiki_split = datasets.load_metric(\"wiki_split\")\n >>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references)\n >>> print(results)\n {'sari': 21.805555555555557, 'sacrebleu': 14.535768424205482, 'exact': 0.0}\n" def lowerCamelCase__ ( __lowerCamelCase : List[Any] ): def remove_articles(__lowerCamelCase : List[str] ): __UpperCAmelCase : List[str] = re.compile(R"""\b(a|an|the)\b""" , re.UNICODE ) return re.sub(__lowerCamelCase , """ """ , __lowerCamelCase ) def white_space_fix(__lowerCamelCase : List[str] ): return " ".join(text.split() ) def remove_punc(__lowerCamelCase : Any ): __UpperCAmelCase : List[Any] = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(__lowerCamelCase : Tuple ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(__lowerCamelCase ) ) ) ) def lowerCamelCase__ ( __lowerCamelCase : str , __lowerCamelCase : int ): return int(normalize_answer(__lowerCamelCase ) == normalize_answer(__lowerCamelCase ) ) def lowerCamelCase__ ( __lowerCamelCase : Optional[Any] , __lowerCamelCase : Any ): __UpperCAmelCase : Optional[int] = [any(compute_exact(__lowerCamelCase , __lowerCamelCase ) for ref in refs ) for pred, refs in zip(__lowerCamelCase , __lowerCamelCase )] return (sum(__lowerCamelCase ) / len(__lowerCamelCase )) * 100 def lowerCamelCase__ ( __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Any , __lowerCamelCase : Optional[int] , __lowerCamelCase : str ): __UpperCAmelCase : Dict = [rgram for rgrams in rgramslist for rgram in rgrams] __UpperCAmelCase : Optional[int] = Counter(__lowerCamelCase ) __UpperCAmelCase : List[Any] = Counter(__lowerCamelCase ) __UpperCAmelCase : str = Counter() for sgram, scount in sgramcounter.items(): __UpperCAmelCase : int = scount * numref __UpperCAmelCase : Union[str, Any] = Counter(__lowerCamelCase ) __UpperCAmelCase : Tuple = Counter() for cgram, ccount in cgramcounter.items(): __UpperCAmelCase : str = ccount * numref # KEEP __UpperCAmelCase : Dict = sgramcounter_rep & cgramcounter_rep __UpperCAmelCase : str = keepgramcounter_rep & rgramcounter __UpperCAmelCase : Optional[Any] = sgramcounter_rep & rgramcounter __UpperCAmelCase : int = 0 __UpperCAmelCase : Dict = 0 for keepgram in keepgramcountergood_rep: keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram] # Fix an alleged bug [2] in the keep score computation. # keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram] keeptmpscorea += keepgramcountergood_rep[keepgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. __UpperCAmelCase : int = 1 __UpperCAmelCase : Union[str, Any] = 1 if len(__lowerCamelCase ) > 0: __UpperCAmelCase : Optional[int] = keeptmpscorea / len(__lowerCamelCase ) if len(__lowerCamelCase ) > 0: # Fix an alleged bug [2] in the keep score computation. # keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep) __UpperCAmelCase : Optional[int] = keeptmpscorea / sum(keepgramcounterall_rep.values() ) __UpperCAmelCase : Tuple = 0 if keepscore_precision > 0 or keepscore_recall > 0: __UpperCAmelCase : Optional[Any] = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall) # DELETION __UpperCAmelCase : List[str] = sgramcounter_rep - cgramcounter_rep __UpperCAmelCase : Union[str, Any] = delgramcounter_rep - rgramcounter __UpperCAmelCase : Union[str, Any] = sgramcounter_rep - rgramcounter __UpperCAmelCase : Any = 0 __UpperCAmelCase : Dict = 0 for delgram in delgramcountergood_rep: deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram] deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. __UpperCAmelCase : Union[str, Any] = 1 if len(__lowerCamelCase ) > 0: __UpperCAmelCase : Any = deltmpscorea / len(__lowerCamelCase ) # ADDITION __UpperCAmelCase : Optional[int] = set(__lowerCamelCase ) - set(__lowerCamelCase ) __UpperCAmelCase : List[str] = set(__lowerCamelCase ) & set(__lowerCamelCase ) __UpperCAmelCase : Tuple = set(__lowerCamelCase ) - set(__lowerCamelCase ) __UpperCAmelCase : Any = 0 for addgram in addgramcountergood: addtmpscore += 1 # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. __UpperCAmelCase : Dict = 1 __UpperCAmelCase : str = 1 if len(__lowerCamelCase ) > 0: __UpperCAmelCase : Dict = addtmpscore / len(__lowerCamelCase ) if len(__lowerCamelCase ) > 0: __UpperCAmelCase : str = addtmpscore / len(__lowerCamelCase ) __UpperCAmelCase : Tuple = 0 if addscore_precision > 0 or addscore_recall > 0: __UpperCAmelCase : Union[str, Any] = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall) return (keepscore, delscore_precision, addscore) def lowerCamelCase__ ( __lowerCamelCase : Optional[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[Any] ): __UpperCAmelCase : Optional[int] = len(__lowerCamelCase ) __UpperCAmelCase : Any = ssent.split(""" """ ) __UpperCAmelCase : List[str] = csent.split(""" """ ) __UpperCAmelCase : List[str] = [] __UpperCAmelCase : Optional[int] = [] __UpperCAmelCase : Optional[int] = [] __UpperCAmelCase : List[Any] = [] __UpperCAmelCase : Optional[int] = [] __UpperCAmelCase : Dict = [] __UpperCAmelCase : Tuple = [] __UpperCAmelCase : Union[str, Any] = [] __UpperCAmelCase : Optional[Any] = [] __UpperCAmelCase : Optional[int] = [] for rsent in rsents: __UpperCAmelCase : List[str] = rsent.split(""" """ ) __UpperCAmelCase : List[str] = [] __UpperCAmelCase : int = [] __UpperCAmelCase : str = [] ragramslist.append(__lowerCamelCase ) for i in range(0 , len(__lowerCamelCase ) - 1 ): if i < len(__lowerCamelCase ) - 1: __UpperCAmelCase : Optional[Any] = ragrams[i] + """ """ + ragrams[i + 1] ragrams.append(__lowerCamelCase ) if i < len(__lowerCamelCase ) - 2: __UpperCAmelCase : Union[str, Any] = ragrams[i] + """ """ + ragrams[i + 1] + """ """ + ragrams[i + 2] ragrams.append(__lowerCamelCase ) if i < len(__lowerCamelCase ) - 3: __UpperCAmelCase : Union[str, Any] = ragrams[i] + """ """ + ragrams[i + 1] + """ """ + ragrams[i + 2] + """ """ + ragrams[i + 3] ragrams.append(__lowerCamelCase ) ragramslist.append(__lowerCamelCase ) ragramslist.append(__lowerCamelCase ) ragramslist.append(__lowerCamelCase ) for i in range(0 , len(__lowerCamelCase ) - 1 ): if i < len(__lowerCamelCase ) - 1: __UpperCAmelCase : Tuple = sagrams[i] + """ """ + sagrams[i + 1] sagrams.append(__lowerCamelCase ) if i < len(__lowerCamelCase ) - 2: __UpperCAmelCase : Any = sagrams[i] + """ """ + sagrams[i + 1] + """ """ + sagrams[i + 2] sagrams.append(__lowerCamelCase ) if i < len(__lowerCamelCase ) - 3: __UpperCAmelCase : Union[str, Any] = sagrams[i] + """ """ + sagrams[i + 1] + """ """ + sagrams[i + 2] + """ """ + sagrams[i + 3] sagrams.append(__lowerCamelCase ) for i in range(0 , len(__lowerCamelCase ) - 1 ): if i < len(__lowerCamelCase ) - 1: __UpperCAmelCase : Optional[int] = cagrams[i] + """ """ + cagrams[i + 1] cagrams.append(__lowerCamelCase ) if i < len(__lowerCamelCase ) - 2: __UpperCAmelCase : Dict = cagrams[i] + """ """ + cagrams[i + 1] + """ """ + cagrams[i + 2] cagrams.append(__lowerCamelCase ) if i < len(__lowerCamelCase ) - 3: __UpperCAmelCase : Tuple = cagrams[i] + """ """ + cagrams[i + 1] + """ """ + cagrams[i + 2] + """ """ + cagrams[i + 3] cagrams.append(__lowerCamelCase ) ((__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase)) : Optional[int] = SARIngram(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) ((__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase)) : Optional[Any] = SARIngram(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) ((__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase)) : Union[str, Any] = SARIngram(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) ((__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase)) : int = SARIngram(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase : Optional[int] = sum([keepascore, keepascore, keepascore, keepascore] ) / 4 __UpperCAmelCase : Optional[int] = sum([delascore, delascore, delascore, delascore] ) / 4 __UpperCAmelCase : List[Any] = sum([addascore, addascore, addascore, addascore] ) / 4 __UpperCAmelCase : int = (avgkeepscore + avgdelscore + avgaddscore) / 3 return finalscore def lowerCamelCase__ ( __lowerCamelCase : Any , __lowerCamelCase : bool = True , __lowerCamelCase : str = "13a" , __lowerCamelCase : bool = True ): # Normalization is requried for the ASSET dataset (one of the primary # datasets in sentence simplification) to allow using space # to split the sentence. Even though Wiki-Auto and TURK datasets, # do not require normalization, we do it for consistency. # Code adapted from the EASSE library [1] written by the authors of the ASSET dataset. # [1] https://github.com/feralvam/easse/blob/580bba7e1378fc8289c663f864e0487188fe8067/easse/utils/preprocessing.py#L7 if lowercase: __UpperCAmelCase : Union[str, Any] = sentence.lower() if tokenizer in ["13a", "intl"]: if version.parse(sacrebleu.__version__ ).major >= 2: __UpperCAmelCase : List[str] = sacrebleu.metrics.bleu._get_tokenizer(__lowerCamelCase )()(__lowerCamelCase ) else: __UpperCAmelCase : Optional[int] = sacrebleu.TOKENIZERS[tokenizer]()(__lowerCamelCase ) elif tokenizer == "moses": __UpperCAmelCase : Optional[int] = sacremoses.MosesTokenizer().tokenize(__lowerCamelCase , return_str=__lowerCamelCase , escape=__lowerCamelCase ) elif tokenizer == "penn": __UpperCAmelCase : Optional[int] = sacremoses.MosesTokenizer().penn_tokenize(__lowerCamelCase , return_str=__lowerCamelCase ) else: __UpperCAmelCase : str = sentence if not return_str: __UpperCAmelCase : Optional[int] = normalized_sent.split() return normalized_sent def lowerCamelCase__ ( __lowerCamelCase : Any , __lowerCamelCase : Any , __lowerCamelCase : int ): if not (len(__lowerCamelCase ) == len(__lowerCamelCase ) == len(__lowerCamelCase )): raise ValueError("""Sources length must match predictions and references lengths.""" ) __UpperCAmelCase : Union[str, Any] = 0 for src, pred, refs in zip(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): sari_score += SARIsent(normalize(__lowerCamelCase ) , normalize(__lowerCamelCase ) , [normalize(__lowerCamelCase ) for sent in refs] ) __UpperCAmelCase : List[str] = sari_score / len(__lowerCamelCase ) return 100 * sari_score def lowerCamelCase__ ( __lowerCamelCase : Any , __lowerCamelCase : List[str] , __lowerCamelCase : Optional[Any]="exp" , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : Tuple=False , __lowerCamelCase : Optional[Any]=False , __lowerCamelCase : str=False , ): __UpperCAmelCase : Optional[int] = len(references[0] ) if any(len(__lowerCamelCase ) != references_per_prediction for refs in references ): raise ValueError("""Sacrebleu requires the same number of references for each prediction""" ) __UpperCAmelCase : Optional[Any] = [[refs[i] for refs in references] for i in range(__lowerCamelCase )] __UpperCAmelCase : Union[str, Any] = sacrebleu.corpus_bleu( __lowerCamelCase , __lowerCamelCase , smooth_method=__lowerCamelCase , smooth_value=__lowerCamelCase , force=__lowerCamelCase , lowercase=__lowerCamelCase , use_effective_order=__lowerCamelCase , ) return output.score @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a ( datasets.Metric ): """simple docstring""" def UpperCAmelCase ( self : Union[str, Any] ) -> Dict: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Sequence(datasets.Value("""string""" , id="""sequence""" ) , id="""references""" ), } ) , codebase_urls=[ """https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py""", """https://github.com/cocoxu/simplification/blob/master/SARI.py""", """https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py""", """https://github.com/mjpost/sacreBLEU""", ] , reference_urls=[ """https://www.aclweb.org/anthology/Q16-1029.pdf""", """https://github.com/mjpost/sacreBLEU""", """https://en.wikipedia.org/wiki/BLEU""", """https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213""", ] , ) def UpperCAmelCase ( self : int , __lowercase : str , __lowercase : Optional[int] , __lowercase : int ) -> Union[str, Any]: __UpperCAmelCase : str = {} result.update({"""sari""": compute_sari(sources=__lowercase , predictions=__lowercase , references=__lowercase )} ) result.update({"""sacrebleu""": compute_sacrebleu(predictions=__lowercase , references=__lowercase )} ) result.update({"""exact""": compute_em(predictions=__lowercase , references=__lowercase )} ) return result
63
from ...configuration_utils import PretrainedConfig from ...utils import logging a : Tuple = logging.get_logger(__name__) a : List[str] = {"openai-gpt": "https://huggingface.co/openai-gpt/resolve/main/config.json"} class a ( lowercase__ ): """simple docstring""" a : Optional[Any] = 'openai-gpt' a : List[Any] = { 'max_position_embeddings': 'n_positions', 'hidden_size': 'n_embd', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self : Union[str, Any] , __lowercase : Tuple=40478 , __lowercase : Tuple=512 , __lowercase : int=768 , __lowercase : Dict=12 , __lowercase : Union[str, Any]=12 , __lowercase : Optional[Any]="gelu" , __lowercase : Optional[Any]=0.1 , __lowercase : Optional[Any]=0.1 , __lowercase : Tuple=0.1 , __lowercase : Dict=1e-5 , __lowercase : Any=0.02 , __lowercase : List[str]="cls_index" , __lowercase : str=True , __lowercase : Dict=None , __lowercase : str=True , __lowercase : List[str]=0.1 , **__lowercase : List[Any] , ) -> List[Any]: __UpperCAmelCase : Optional[int] = vocab_size __UpperCAmelCase : Optional[Any] = n_positions __UpperCAmelCase : Optional[int] = n_embd __UpperCAmelCase : str = n_layer __UpperCAmelCase : Any = n_head __UpperCAmelCase : Tuple = afn __UpperCAmelCase : Any = resid_pdrop __UpperCAmelCase : Union[str, Any] = embd_pdrop __UpperCAmelCase : str = attn_pdrop __UpperCAmelCase : str = layer_norm_epsilon __UpperCAmelCase : Dict = initializer_range __UpperCAmelCase : Optional[int] = summary_type __UpperCAmelCase : Optional[Any] = summary_use_proj __UpperCAmelCase : List[Any] = summary_activation __UpperCAmelCase : Union[str, Any] = summary_first_dropout __UpperCAmelCase : Dict = summary_proj_to_labels super().__init__(**__lowercase )
63
1
'''simple docstring''' import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : Any = (DDIMParallelScheduler,) _lowercase : str = (('''eta''', 0.0), ('''num_inference_steps''', 5_0)) def _lowercase ( self , **_lowercase ): """simple docstring""" _lowerCAmelCase = { """num_train_timesteps""": 1_000, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", """clip_sample""": True, } config.update(**_lowercase ) return config def _lowercase ( self , **_lowercase ): """simple docstring""" _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config(**_lowercase ) _lowerCAmelCase = scheduler_class(**_lowercase ) _lowerCAmelCase , _lowerCAmelCase = 10, 0.0 _lowerCAmelCase = self.dummy_model() _lowerCAmelCase = self.dummy_sample_deter scheduler.set_timesteps(_lowercase ) for t in scheduler.timesteps: _lowerCAmelCase = model(_lowercase , _lowercase ) _lowerCAmelCase = scheduler.step(_lowercase , _lowercase , _lowercase , _lowercase ).prev_sample return sample def _lowercase ( self ): """simple docstring""" for timesteps in [100, 500, 1_000]: self.check_over_configs(num_train_timesteps=_lowercase ) def _lowercase ( self ): """simple docstring""" for steps_offset in [0, 1]: self.check_over_configs(steps_offset=_lowercase ) _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config(steps_offset=1 ) _lowerCAmelCase = scheduler_class(**_lowercase ) scheduler.set_timesteps(5 ) assert torch.equal(scheduler.timesteps , torch.LongTensor([801, 601, 401, 201, 1] ) ) def _lowercase ( self ): """simple docstring""" for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=_lowercase , beta_end=_lowercase ) def _lowercase ( self ): """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_lowercase ) def _lowercase ( self ): """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_lowercase ) def _lowercase ( self ): """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=_lowercase ) def _lowercase ( self ): """simple docstring""" for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=_lowercase ) def _lowercase ( self ): """simple docstring""" for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=_lowercase ) def _lowercase ( self ): """simple docstring""" self.check_over_configs(thresholding=_lowercase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=_lowercase , prediction_type=_lowercase , sample_max_value=_lowercase , ) def _lowercase ( self ): """simple docstring""" for t in [1, 10, 49]: self.check_over_forward(time_step=_lowercase ) def _lowercase ( self ): """simple docstring""" for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 500] ): self.check_over_forward(time_step=_lowercase , num_inference_steps=_lowercase ) def _lowercase ( self ): """simple docstring""" for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0] ): self.check_over_forward(time_step=_lowercase , eta=_lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowercase ) assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(420 , 400 ) - 0.1_4771 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(980 , 960 ) - 0.3_2460 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 , 486 ) - 0.0_0979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 , 998 ) - 0.02 ) ) < 1e-5 def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowercase ) _lowerCAmelCase , _lowerCAmelCase = 10, 0.0 scheduler.set_timesteps(_lowercase ) _lowerCAmelCase = self.dummy_model() _lowerCAmelCase = self.dummy_sample_deter _lowerCAmelCase = self.dummy_sample_deter + 0.1 _lowerCAmelCase = self.dummy_sample_deter - 0.1 _lowerCAmelCase = samplea.shape[0] _lowerCAmelCase = torch.stack([samplea, samplea, samplea] , dim=0 ) _lowerCAmelCase = torch.arange(_lowercase )[0:3, None].repeat(1 , _lowercase ) _lowerCAmelCase = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) _lowerCAmelCase = scheduler.batch_step_no_noise(_lowercase , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) , _lowercase ) _lowerCAmelCase = torch.sum(torch.abs(_lowercase ) ) _lowerCAmelCase = torch.mean(torch.abs(_lowercase ) ) assert abs(result_sum.item() - 1147.7904 ) < 1e-2 assert abs(result_mean.item() - 0.4982 ) < 1e-3 def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.full_loop() _lowerCAmelCase = torch.sum(torch.abs(_lowercase ) ) _lowerCAmelCase = torch.mean(torch.abs(_lowercase ) ) assert abs(result_sum.item() - 172.0067 ) < 1e-2 assert abs(result_mean.item() - 0.22_3967 ) < 1e-3 def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.full_loop(prediction_type="""v_prediction""" ) _lowerCAmelCase = torch.sum(torch.abs(_lowercase ) ) _lowerCAmelCase = torch.mean(torch.abs(_lowercase ) ) assert abs(result_sum.item() - 52.5302 ) < 1e-2 assert abs(result_mean.item() - 0.0684 ) < 1e-3 def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.full_loop(set_alpha_to_one=_lowercase , beta_start=0.01 ) _lowerCAmelCase = torch.sum(torch.abs(_lowercase ) ) _lowerCAmelCase = torch.mean(torch.abs(_lowercase ) ) assert abs(result_sum.item() - 149.8295 ) < 1e-2 assert abs(result_mean.item() - 0.1951 ) < 1e-3 def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.full_loop(set_alpha_to_one=_lowercase , beta_start=0.01 ) _lowerCAmelCase = torch.sum(torch.abs(_lowercase ) ) _lowerCAmelCase = torch.mean(torch.abs(_lowercase ) ) assert abs(result_sum.item() - 149.0784 ) < 1e-2 assert abs(result_mean.item() - 0.1941 ) < 1e-3
715
'''simple docstring''' import unittest import numpy as np import torch from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' _lowercase : Optional[Any] = DDIMPipeline _lowercase : Optional[Any] = UNCONDITIONAL_IMAGE_GENERATION_PARAMS _lowercase : Any = PipelineTesterMixin.required_optional_params - { '''num_images_per_prompt''', '''latents''', '''callback''', '''callback_steps''', } _lowercase : Tuple = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS _lowercase : Tuple = False def _lowercase ( self ): """simple docstring""" torch.manual_seed(0 ) _lowerCAmelCase = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , ) _lowerCAmelCase = DDIMScheduler() _lowerCAmelCase = {"""unet""": unet, """scheduler""": scheduler} return components def _lowercase ( self , _lowercase , _lowercase=0 ): """simple docstring""" if str(_lowercase ).startswith("""mps""" ): _lowerCAmelCase = torch.manual_seed(_lowercase ) else: _lowerCAmelCase = torch.Generator(device=_lowercase ).manual_seed(_lowercase ) _lowerCAmelCase = { """batch_size""": 1, """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = """cpu""" _lowerCAmelCase = self.get_dummy_components() _lowerCAmelCase = self.pipeline_class(**_lowercase ) pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) _lowerCAmelCase = self.get_dummy_inputs(_lowercase ) _lowerCAmelCase = pipe(**_lowercase ).images _lowerCAmelCase = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 32, 32, 3) ) _lowerCAmelCase = np.array( [1.000e00, 5.717e-01, 4.717e-01, 1.000e00, 0.000e00, 1.000e00, 3.000e-04, 0.000e00, 9.000e-04] ) _lowerCAmelCase = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_lowercase , 1e-3 ) def _lowercase ( self ): """simple docstring""" super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def _lowercase ( self ): """simple docstring""" super().test_save_load_local(expected_max_difference=3e-3 ) def _lowercase ( self ): """simple docstring""" super().test_save_load_optional_components(expected_max_difference=3e-3 ) def _lowercase ( self ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = """google/ddpm-cifar10-32""" _lowerCAmelCase = UNetaDModel.from_pretrained(_lowercase ) _lowerCAmelCase = DDIMScheduler() _lowerCAmelCase = DDIMPipeline(unet=_lowercase , scheduler=_lowercase ) ddim.to(_lowercase ) ddim.set_progress_bar_config(disable=_lowercase ) _lowerCAmelCase = torch.manual_seed(0 ) _lowerCAmelCase = ddim(generator=_lowercase , eta=0.0 , output_type="""numpy""" ).images _lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _lowerCAmelCase = np.array([0.1723, 0.1617, 0.1600, 0.1626, 0.1497, 0.1513, 0.1505, 0.1442, 0.1453] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = """google/ddpm-ema-bedroom-256""" _lowerCAmelCase = UNetaDModel.from_pretrained(_lowercase ) _lowerCAmelCase = DDIMScheduler.from_pretrained(_lowercase ) _lowerCAmelCase = DDIMPipeline(unet=_lowercase , scheduler=_lowercase ) ddpm.to(_lowercase ) ddpm.set_progress_bar_config(disable=_lowercase ) _lowerCAmelCase = torch.manual_seed(0 ) _lowerCAmelCase = ddpm(generator=_lowercase , output_type="""numpy""" ).images _lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) _lowerCAmelCase = np.array([0.0060, 0.0201, 0.0344, 0.0024, 0.0018, 0.0002, 0.0022, 0.0000, 0.0069] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
162
0
from __future__ import annotations __UpperCamelCase : str = [True] * 1000001 __UpperCamelCase : Tuple = 2 while i * i <= 1000000: if seive[i]: for j in range(i * i, 1000001, i): __UpperCamelCase : List[Any] = False i += 1 def a_ ( _A ) -> bool: """simple docstring""" return seive[n] def a_ ( _A ) -> bool: """simple docstring""" return any(digit in '02468' for digit in str(_A ) ) def a_ ( _A = 1000000 ) -> list[int]: """simple docstring""" snake_case__ = [2] # result already includes the number 2. for num in range(3 , limit + 1 , 2 ): if is_prime(_A ) and not contains_an_even_digit(_A ): snake_case__ = str(_A ) snake_case__ = [int(str_num[j:] + str_num[:j] ) for j in range(len(_A ) )] if all(is_prime(_A ) for i in list_nums ): result.append(_A ) return result def a_ ( ) -> int: """simple docstring""" return len(find_circular_primes() ) if __name__ == "__main__": print(f'''{len(find_circular_primes()) = }''')
328
'''simple docstring''' import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("""TEST_SAGEMAKER""" ,"""False""" ) ) is not True ,reason="""Skipping test because should only be run when releasing minor transformers version""" ,) @pytest.mark.usefixtures("""sm_env""" ) @parameterized_class( [ { """framework""": """pytorch""", """script""": """run_glue.py""", """model_name_or_path""": """distilbert-base-cased""", """instance_type""": """ml.g4dn.xlarge""", """results""": {"""train_runtime""": 650, """eval_accuracy""": 0.6, """eval_loss""": 0.9}, }, { """framework""": """tensorflow""", """script""": """run_tf.py""", """model_name_or_path""": """distilbert-base-cased""", """instance_type""": """ml.g4dn.xlarge""", """results""": {"""train_runtime""": 600, """eval_accuracy""": 0.3, """eval_loss""": 0.9}, }, ] ) class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def snake_case__ ( self : int ): if self.framework == "pytorch": subprocess.run( F'''cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'''.split() , encoding='''utf-8''' , check=a__ , ) assert hasattr(self , '''env''' ) def snake_case__ ( self : str , a__ : int=1 ): # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=F'''{self.env.base_job_name}-single''' , instance_count=a__ , instance_type=self.instance_type , debugger_hook_config=a__ , hyperparameters={**self.env.hyperparameters, '''model_name_or_path''': self.model_name_or_path} , metric_definitions=self.env.metric_definitions , py_version='''py36''' , ) def snake_case__ ( self : Optional[int] , a__ : Tuple ): TrainingJobAnalytics(a__ ).export_csv(F'''{self.env.test_path}/{job_name}_metrics.csv''' ) def snake_case__ ( self : Any ): # create estimator __magic_name__ = self.create_estimator() # run training estimator.fit() # result dataframe __magic_name__ = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis __magic_name__ = list(result_metrics_df[result_metrics_df.metric_name == '''eval_accuracy''']['''value'''] ) __magic_name__ = list(result_metrics_df[result_metrics_df.metric_name == '''eval_loss''']['''value'''] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping __magic_name__ = ( Session().describe_training_job(estimator.latest_training_job.name ).get('''TrainingTimeInSeconds''' , 99_9999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['''eval_accuracy'''] for t in eval_accuracy ) assert all(t <= self.results['''eval_loss'''] for t in eval_loss ) # dump tests result into json file to share in PR with open(F'''{estimator.latest_training_job.name}.json''' , '''w''' ) as outfile: json.dump({'''train_time''': train_runtime, '''eval_accuracy''': eval_accuracy, '''eval_loss''': eval_loss} , a__ )
432
0
def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :list[list[int]] ) -> int: def update_area_of_max_square(SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :int ) -> int: # BASE CASE if row >= rows or col >= cols: return 0 __lowerCAmelCase : str = update_area_of_max_square(SCREAMING_SNAKE_CASE , col + 1 ) __lowerCAmelCase : Optional[Any] = update_area_of_max_square(row + 1 , col + 1 ) __lowerCAmelCase : int = update_area_of_max_square(row + 1 , SCREAMING_SNAKE_CASE ) if mat[row][col]: __lowerCAmelCase : List[Any] = 1 + min([right, diagonal, down] ) __lowerCAmelCase : int = max(largest_square_area[0] , SCREAMING_SNAKE_CASE ) return sub_problem_sol else: return 0 __lowerCAmelCase : List[str] = [0] update_area_of_max_square(0 , 0 ) return largest_square_area[0] def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :list[list[int]] ) -> int: def update_area_of_max_square_using_dp_array( SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :list[list[int]] ) -> int: if row >= rows or col >= cols: return 0 if dp_array[row][col] != -1: return dp_array[row][col] __lowerCAmelCase : Union[str, Any] = update_area_of_max_square_using_dp_array(SCREAMING_SNAKE_CASE , col + 1 , SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[int] = update_area_of_max_square_using_dp_array(row + 1 , col + 1 , SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[Any] = update_area_of_max_square_using_dp_array(row + 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if mat[row][col]: __lowerCAmelCase : Dict = 1 + min([right, diagonal, down] ) __lowerCAmelCase : int = max(largest_square_area[0] , SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[Any] = sub_problem_sol return sub_problem_sol else: return 0 __lowerCAmelCase : Optional[int] = [0] __lowerCAmelCase : List[Any] = [[-1] * cols for _ in range(SCREAMING_SNAKE_CASE )] update_area_of_max_square_using_dp_array(0 , 0 , SCREAMING_SNAKE_CASE ) return largest_square_area[0] def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :list[list[int]] ) -> int: __lowerCAmelCase : Tuple = [[0] * (cols + 1) for _ in range(rows + 1 )] __lowerCAmelCase : Dict = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): __lowerCAmelCase : List[str] = dp_array[row][col + 1] __lowerCAmelCase : List[str] = dp_array[row + 1][col + 1] __lowerCAmelCase : Dict = dp_array[row + 1][col] if mat[row][col] == 1: __lowerCAmelCase : List[str] = 1 + min(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[str] = max(dp_array[row][col] , SCREAMING_SNAKE_CASE ) else: __lowerCAmelCase : Optional[Any] = 0 return largest_square_area def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :list[list[int]] ) -> int: __lowerCAmelCase : Optional[int] = [0] * (cols + 1) __lowerCAmelCase : List[Any] = [0] * (cols + 1) __lowerCAmelCase : Tuple = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): __lowerCAmelCase : Dict = current_row[col + 1] __lowerCAmelCase : Any = next_row[col + 1] __lowerCAmelCase : Optional[Any] = next_row[col] if mat[row][col] == 1: __lowerCAmelCase : int = 1 + min(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[str] = max(current_row[col] , SCREAMING_SNAKE_CASE ) else: __lowerCAmelCase : str = 0 __lowerCAmelCase : List[str] = current_row return largest_square_area if __name__ == "__main__": import doctest doctest.testmod() print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
240
# This model implementation is heavily inspired by https://github.com/haofanwang/ControlNet-for-Diffusers/ import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, ControlNetModel, DDIMScheduler, StableDiffusionControlNetImgaImgPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet import MultiControlNetModel from diffusers.utils import floats_tensor, load_image, load_numpy, randn_tensor, slow, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, ) enable_full_determinism() class snake_case_ ( __lowercase ,__lowercase ,__lowercase ,unittest.TestCase ): A_ = StableDiffusionControlNetImgaImgPipeline A_ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'height', 'width'} A_ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS A_ = IMAGE_TO_IMAGE_IMAGE_PARAMS.union({'control_image'} ) A_ = IMAGE_TO_IMAGE_IMAGE_PARAMS def UpperCAmelCase__ ( self : Dict )->str: '''simple docstring''' torch.manual_seed(0 ) __lowerCAmelCase : List[Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) torch.manual_seed(0 ) __lowerCAmelCase : Any = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) torch.manual_seed(0 ) __lowerCAmelCase : List[Any] = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=_snake_case , set_alpha_to_one=_snake_case , ) torch.manual_seed(0 ) __lowerCAmelCase : int = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) __lowerCAmelCase : List[str] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) __lowerCAmelCase : List[Any] = CLIPTextModel(_snake_case ) __lowerCAmelCase : Optional[Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) __lowerCAmelCase : Tuple = { """unet""": unet, """controlnet""": controlnet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def UpperCAmelCase__ ( self : int , _snake_case : str , _snake_case : int=0 )->str: '''simple docstring''' if str(_snake_case ).startswith("""mps""" ): __lowerCAmelCase : int = torch.manual_seed(_snake_case ) else: __lowerCAmelCase : Optional[int] = torch.Generator(device=_snake_case ).manual_seed(_snake_case ) __lowerCAmelCase : List[str] = 2 __lowerCAmelCase : Any = randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=_snake_case , device=torch.device(_snake_case ) , ) __lowerCAmelCase : Any = floats_tensor(control_image.shape , rng=random.Random(_snake_case ) ).to(_snake_case ) __lowerCAmelCase : Dict = image.cpu().permute(0 , 2 , 3 , 1 )[0] __lowerCAmelCase : Tuple = Image.fromarray(np.uinta(_snake_case ) ).convert("""RGB""" ).resize((64, 64) ) __lowerCAmelCase : List[Any] = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", """image""": image, """control_image""": control_image, } return inputs def UpperCAmelCase__ ( self : Any )->Tuple: '''simple docstring''' return self._test_attention_slicing_forward_pass(expected_max_diff=2E-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def UpperCAmelCase__ ( self : Dict )->int: '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2E-3 ) def UpperCAmelCase__ ( self : Optional[int] )->List[Any]: '''simple docstring''' self._test_inference_batch_single_identical(expected_max_diff=2E-3 ) class snake_case_ ( __lowercase ,__lowercase ,unittest.TestCase ): A_ = StableDiffusionControlNetImgaImgPipeline A_ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'height', 'width'} A_ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS A_ = frozenset([] ) # TO_DO: add image_params once refactored VaeImageProcessor.preprocess def UpperCAmelCase__ ( self : Tuple )->Optional[int]: '''simple docstring''' torch.manual_seed(0 ) __lowerCAmelCase : Optional[int] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) torch.manual_seed(0 ) def init_weights(_snake_case : Optional[Any] ): if isinstance(_snake_case , torch.nn.Convad ): torch.nn.init.normal(m.weight ) m.bias.data.fill_(1.0 ) __lowerCAmelCase : Dict = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(_snake_case ) torch.manual_seed(0 ) __lowerCAmelCase : Optional[Any] = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(_snake_case ) torch.manual_seed(0 ) __lowerCAmelCase : Optional[Any] = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=_snake_case , set_alpha_to_one=_snake_case , ) torch.manual_seed(0 ) __lowerCAmelCase : List[str] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) __lowerCAmelCase : Any = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) __lowerCAmelCase : Optional[Any] = CLIPTextModel(_snake_case ) __lowerCAmelCase : Optional[int] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) __lowerCAmelCase : List[Any] = MultiControlNetModel([controlneta, controlneta] ) __lowerCAmelCase : List[str] = { """unet""": unet, """controlnet""": controlnet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def UpperCAmelCase__ ( self : List[Any] , _snake_case : Dict , _snake_case : List[Any]=0 )->int: '''simple docstring''' if str(_snake_case ).startswith("""mps""" ): __lowerCAmelCase : int = torch.manual_seed(_snake_case ) else: __lowerCAmelCase : Optional[int] = torch.Generator(device=_snake_case ).manual_seed(_snake_case ) __lowerCAmelCase : Union[str, Any] = 2 __lowerCAmelCase : Optional[int] = [ randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=_snake_case , device=torch.device(_snake_case ) , ), randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=_snake_case , device=torch.device(_snake_case ) , ), ] __lowerCAmelCase : int = floats_tensor(control_image[0].shape , rng=random.Random(_snake_case ) ).to(_snake_case ) __lowerCAmelCase : List[str] = image.cpu().permute(0 , 2 , 3 , 1 )[0] __lowerCAmelCase : Optional[int] = Image.fromarray(np.uinta(_snake_case ) ).convert("""RGB""" ).resize((64, 64) ) __lowerCAmelCase : Union[str, Any] = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", """image""": image, """control_image""": control_image, } return inputs def UpperCAmelCase__ ( self : Optional[int] )->str: '''simple docstring''' __lowerCAmelCase : int = self.get_dummy_components() __lowerCAmelCase : Optional[int] = self.pipeline_class(**_snake_case ) pipe.to(_snake_case ) __lowerCAmelCase : Any = 10.0 __lowerCAmelCase : Tuple = 4 __lowerCAmelCase : List[Any] = self.get_dummy_inputs(_snake_case ) __lowerCAmelCase : int = steps __lowerCAmelCase : Tuple = scale __lowerCAmelCase : Optional[int] = pipe(**_snake_case )[0] __lowerCAmelCase : str = self.get_dummy_inputs(_snake_case ) __lowerCAmelCase : List[Any] = steps __lowerCAmelCase : Optional[Any] = scale __lowerCAmelCase : Any = pipe(**_snake_case , control_guidance_start=0.1 , control_guidance_end=0.2 )[0] __lowerCAmelCase : str = self.get_dummy_inputs(_snake_case ) __lowerCAmelCase : Optional[Any] = steps __lowerCAmelCase : str = scale __lowerCAmelCase : str = pipe(**_snake_case , control_guidance_start=[0.1, 0.3] , control_guidance_end=[0.2, 0.7] )[0] __lowerCAmelCase : Tuple = self.get_dummy_inputs(_snake_case ) __lowerCAmelCase : Optional[int] = steps __lowerCAmelCase : Union[str, Any] = scale __lowerCAmelCase : List[Any] = pipe(**_snake_case , control_guidance_start=0.4 , control_guidance_end=[0.5, 0.8] )[0] # make sure that all outputs are different assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 def UpperCAmelCase__ ( self : Tuple )->Dict: '''simple docstring''' return self._test_attention_slicing_forward_pass(expected_max_diff=2E-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def UpperCAmelCase__ ( self : Tuple )->int: '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2E-3 ) def UpperCAmelCase__ ( self : Union[str, Any] )->List[str]: '''simple docstring''' self._test_inference_batch_single_identical(expected_max_diff=2E-3 ) def UpperCAmelCase__ ( self : str )->Tuple: '''simple docstring''' __lowerCAmelCase : Dict = self.get_dummy_components() __lowerCAmelCase : Optional[int] = self.pipeline_class(**_snake_case ) pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) with tempfile.TemporaryDirectory() as tmpdir: try: # save_pretrained is not implemented for Multi-ControlNet pipe.save_pretrained(_snake_case ) except NotImplementedError: pass @slow @require_torch_gpu class snake_case_ ( unittest.TestCase ): def UpperCAmelCase__ ( self : Union[str, Any] )->Any: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self : Union[str, Any] )->Dict: '''simple docstring''' __lowerCAmelCase : str = ControlNetModel.from_pretrained("""lllyasviel/sd-controlnet-canny""" ) __lowerCAmelCase : List[Any] = StableDiffusionControlNetImgaImgPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , safety_checker=_snake_case , controlnet=_snake_case ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=_snake_case ) __lowerCAmelCase : Union[str, Any] = torch.Generator(device="""cpu""" ).manual_seed(0 ) __lowerCAmelCase : List[str] = """evil space-punk bird""" __lowerCAmelCase : Tuple = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png""" ).resize((512, 512) ) __lowerCAmelCase : List[Any] = load_image( """https://huggingface.co/lllyasviel/sd-controlnet-canny/resolve/main/images/bird.png""" ).resize((512, 512) ) __lowerCAmelCase : int = pipe( _snake_case , _snake_case , control_image=_snake_case , generator=_snake_case , output_type="""np""" , num_inference_steps=50 , strength=0.6 , ) __lowerCAmelCase : Optional[Any] = output.images[0] assert image.shape == (512, 512, 3) __lowerCAmelCase : Dict = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/img2img.npy""" ) assert np.abs(expected_image - image ).max() < 9E-2
240
1
'''simple docstring''' import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 lowercase__ : List[Any] = { '''return_dict''': False, '''output_hidden_states''': True, '''output_attentions''': True, '''torchscript''': True, '''torch_dtype''': '''float16''', '''use_bfloat16''': True, '''tf_legacy_loss''': True, '''pruned_heads''': {'''a''': 1}, '''tie_word_embeddings''': False, '''is_decoder''': True, '''cross_attention_hidden_size''': 1_28, '''add_cross_attention''': True, '''tie_encoder_decoder''': True, '''max_length''': 50, '''min_length''': 3, '''do_sample''': True, '''early_stopping''': True, '''num_beams''': 3, '''num_beam_groups''': 3, '''diversity_penalty''': 0.5, '''temperature''': 2.0, '''top_k''': 10, '''top_p''': 0.7, '''typical_p''': 0.2, '''repetition_penalty''': 0.8, '''length_penalty''': 0.8, '''no_repeat_ngram_size''': 5, '''encoder_no_repeat_ngram_size''': 5, '''bad_words_ids''': [1, 2, 3], '''num_return_sequences''': 3, '''chunk_size_feed_forward''': 5, '''output_scores''': True, '''return_dict_in_generate''': True, '''forced_bos_token_id''': 2, '''forced_eos_token_id''': 3, '''remove_invalid_values''': True, '''architectures''': ['''BertModel'''], '''finetuning_task''': '''translation''', '''id2label''': {0: '''label'''}, '''label2id''': {'''label''': '''0'''}, '''tokenizer_class''': '''BertTokenizerFast''', '''prefix''': '''prefix''', '''bos_token_id''': 6, '''pad_token_id''': 7, '''eos_token_id''': 8, '''sep_token_id''': 9, '''decoder_start_token_id''': 10, '''exponential_decay_length_penalty''': (5, 1.01), '''suppress_tokens''': [0, 1], '''begin_suppress_tokens''': 2, '''task_specific_params''': {'''translation''': '''some_params'''}, '''problem_type''': '''regression''', } @is_staging_test class SCREAMING_SNAKE_CASE (unittest.TestCase ): @classmethod def SCREAMING_SNAKE_CASE ( cls): '''simple docstring''' __A : Any = TOKEN HfFolder.save_token(snake_case__) @classmethod def SCREAMING_SNAKE_CASE ( cls): '''simple docstring''' try: delete_repo(token=cls._token , repo_id='test-config') except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-config-org') except HTTPError: pass try: delete_repo(token=cls._token , repo_id='test-dynamic-config') except HTTPError: pass def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[Any] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37) config.push_to_hub('test-config' , use_auth_token=self._token) __A : List[str] = BertConfig.from_pretrained(F'{USER}/test-config') for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(snake_case__ , getattr(snake_case__ , snake_case__)) # Reset repo delete_repo(token=self._token , repo_id='test-config') # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(snake_case__ , repo_id='test-config' , push_to_hub=snake_case__ , use_auth_token=self._token) __A : Optional[int] = BertConfig.from_pretrained(F'{USER}/test-config') for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(snake_case__ , getattr(snake_case__ , snake_case__)) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Any = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37) config.push_to_hub('valid_org/test-config-org' , use_auth_token=self._token) __A : str = BertConfig.from_pretrained('valid_org/test-config-org') for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(snake_case__ , getattr(snake_case__ , snake_case__)) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-config-org') # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( snake_case__ , repo_id='valid_org/test-config-org' , push_to_hub=snake_case__ , use_auth_token=self._token) __A : str = BertConfig.from_pretrained('valid_org/test-config-org') for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(snake_case__ , getattr(snake_case__ , snake_case__)) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' CustomConfig.register_for_auto_class() __A : Optional[int] = CustomConfig(attribute=42) config.push_to_hub('test-dynamic-config' , use_auth_token=self._token) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {'AutoConfig': 'custom_configuration.CustomConfig'}) __A : str = AutoConfig.from_pretrained(F'{USER}/test-dynamic-config' , trust_remote_code=snake_case__) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , 'CustomConfig') self.assertEqual(new_config.attribute , 42) class SCREAMING_SNAKE_CASE (unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Dict = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated __A : Any = c.n_embd + 1 # int __A : Any = c.resid_pdrop + 1.0 # float __A : List[str] = not c.scale_attn_weights # bool __A : int = c.summary_type + 'foo' # str c.update_from_string( F'n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}') self.assertEqual(snake_case__ , c.n_embd , 'mismatch for key: n_embd') self.assertEqual(snake_case__ , c.resid_pdrop , 'mismatch for key: resid_pdrop') self.assertEqual(snake_case__ , c.scale_attn_weights , 'mismatch for key: scale_attn_weights') self.assertEqual(snake_case__ , c.summary_type , 'mismatch for key: summary_type') def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[Any] = PretrainedConfig() __A : Tuple = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( snake_case__ , ['is_encoder_decoder', '_name_or_path', '_commit_hash', 'transformers_version']) __A : List[Any] = [key for key, value in config_common_kwargs.items() if value == getattr(snake_case__ , snake_case__)] if len(snake_case__) > 0: raise ValueError( 'The following keys are set with the default values in' ' `test_configuration_common.config_common_kwargs` pick another value for them:' F' {", ".join(snake_case__)}.') def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' with self.assertRaises(snake_case__): # config is in subfolder, the following should not work without specifying the subfolder __A : Optional[int] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder') __A : Union[str, Any] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' , subfolder='bert') self.assertIsNotNone(snake_case__) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Dict = mock.Mock() __A : Optional[Any] = 500 __A : int = {} __A : int = HTTPError __A : str = {} # Download this model to make sure it's in the cache. __A : Dict = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert') # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request' , return_value=snake_case__) as mock_head: __A : str = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert') # This check we did call the fake head request mock_head.assert_called() def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[int] = BertConfig.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json') def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : str = AutoConfig.from_pretrained('bert-base-cased') __A : List[Any] = ['config.4.0.0.json'] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(snake_case__) __A : Tuple = 2 json.dump(configuration.to_dict() , open(os.path.join(snake_case__ , 'config.4.0.0.json') , 'w')) # This should pick the new configuration file as the version of Transformers is > 4.0.0 __A : Tuple = AutoConfig.from_pretrained(snake_case__) self.assertEqual(new_configuration.hidden_size , 2) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 __A : Dict = ['config.42.0.0.json'] __A : str = 768 configuration.save_pretrained(snake_case__) shutil.move(os.path.join(snake_case__ , 'config.4.0.0.json') , os.path.join(snake_case__ , 'config.42.0.0.json')) __A : int = AutoConfig.from_pretrained(snake_case__) self.assertEqual(new_configuration.hidden_size , 768) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Tuple = 'hf-internal-testing/test-two-configs' import transformers as new_transformers __A : int = 'v4.0.0' __A ,__A : List[Any] = new_transformers.models.auto.AutoConfig.from_pretrained( snake_case__ , return_unused_kwargs=snake_case__) self.assertEqual(new_configuration.hidden_size , 2) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(snake_case__ , {}) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers __A : List[str] = 'v3.0.0' __A : List[str] = old_transformers.models.auto.AutoConfig.from_pretrained(snake_case__) self.assertEqual(old_configuration.hidden_size , 768)
8
import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class lowerCAmelCase__ : '''simple docstring''' @staticmethod def _snake_case ( *snake_case__ : Optional[int] , **snake_case__ : Tuple ) -> Optional[Any]: pass def lowerCamelCase ( UpperCamelCase : str ) -> Tuple: return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. A = ( 'https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png' ) @is_pipeline_test @require_torch @require_vision class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def _snake_case ( self : str , snake_case__ : Optional[Any] , snake_case__ : Any , snake_case__ : Union[str, Any] ) -> Dict: _lowerCamelCase = pipeline( 'document-question-answering' , model=snake_case__ , tokenizer=snake_case__ , image_processor=snake_case__ ) _lowerCamelCase = INVOICE_URL _lowerCamelCase = list(zip(*apply_tesseract(load_image(snake_case__ ) , snake_case__ , '' ) ) ) _lowerCamelCase = 'What is the placebo?' _lowerCamelCase = [ { 'image': load_image(snake_case__ ), 'question': question, }, { 'image': image, 'question': question, }, { 'image': image, 'question': question, 'word_boxes': word_boxes, }, ] return dqa_pipeline, examples def _snake_case ( self : Union[str, Any] , snake_case__ : Union[str, Any] , snake_case__ : List[Any] ) -> Tuple: _lowerCamelCase = dqa_pipeline(snake_case__ , top_k=2 ) self.assertEqual( snake_case__ , [ [ {'score': ANY(snake_case__ ), 'answer': ANY(snake_case__ ), 'start': ANY(snake_case__ ), 'end': ANY(snake_case__ )}, {'score': ANY(snake_case__ ), 'answer': ANY(snake_case__ ), 'start': ANY(snake_case__ ), 'end': ANY(snake_case__ )}, ] ] * 3 , ) @require_torch @require_detectrona @require_pytesseract def _snake_case ( self : Union[str, Any] ) -> Optional[int]: _lowerCamelCase = pipeline('document-question-answering' , model='hf-internal-testing/tiny-random-layoutlmv2' ) _lowerCamelCase = INVOICE_URL _lowerCamelCase = 'How many cats are there?' _lowerCamelCase = [ {'score': 0.0001, 'answer': 'oy 2312/2019', 'start': 3_8, 'end': 3_9}, {'score': 0.0001, 'answer': 'oy 2312/2019 DUE', 'start': 3_8, 'end': 4_0}, ] _lowerCamelCase = dqa_pipeline(image=snake_case__ , question=snake_case__ , top_k=2 ) self.assertEqual(nested_simplify(snake_case__ , decimals=4 ) , snake_case__ ) _lowerCamelCase = dqa_pipeline({'image': image, 'question': question} , top_k=2 ) self.assertEqual(nested_simplify(snake_case__ , decimals=4 ) , snake_case__ ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably _lowerCamelCase = './tests/fixtures/tests_samples/COCO/000000039769.png' _lowerCamelCase = dqa_pipeline(image=snake_case__ , question=snake_case__ , top_k=2 ) self.assertEqual(snake_case__ , [] ) # We can optionnally pass directly the words and bounding boxes _lowerCamelCase = './tests/fixtures/tests_samples/COCO/000000039769.png' _lowerCamelCase = [] _lowerCamelCase = [] _lowerCamelCase = dqa_pipeline(image=snake_case__ , question=snake_case__ , words=snake_case__ , boxes=snake_case__ , top_k=2 ) self.assertEqual(snake_case__ , [] ) @slow @require_torch @require_detectrona @require_pytesseract def _snake_case ( self : Optional[int] ) -> List[Any]: _lowerCamelCase = pipeline( 'document-question-answering' , model='tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa' , revision='9977165' , ) _lowerCamelCase = INVOICE_URL _lowerCamelCase = 'What is the invoice number?' _lowerCamelCase = dqa_pipeline(image=snake_case__ , question=snake_case__ , top_k=2 ) self.assertEqual( nested_simplify(snake_case__ , decimals=4 ) , [ {'score': 0.9944, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, {'score': 0.0009, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, ] , ) _lowerCamelCase = dqa_pipeline({'image': image, 'question': question} , top_k=2 ) self.assertEqual( nested_simplify(snake_case__ , decimals=4 ) , [ {'score': 0.9944, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, {'score': 0.0009, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, ] , ) _lowerCamelCase = dqa_pipeline( [{'image': image, 'question': question}, {'image': image, 'question': question}] , top_k=2 ) self.assertEqual( nested_simplify(snake_case__ , decimals=4 ) , [ [ {'score': 0.9944, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, {'score': 0.0009, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, ], ] * 2 , ) @slow @require_torch @require_detectrona @require_pytesseract def _snake_case ( self : int ) -> Optional[Any]: _lowerCamelCase = pipeline( 'document-question-answering' , model='tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa' , revision='9977165' , max_seq_len=5_0 , ) _lowerCamelCase = INVOICE_URL _lowerCamelCase = 'What is the invoice number?' _lowerCamelCase = dqa_pipeline(image=snake_case__ , question=snake_case__ , top_k=2 ) self.assertEqual( nested_simplify(snake_case__ , decimals=4 ) , [ {'score': 0.9974, 'answer': '1110212019', 'start': 2_3, 'end': 2_3}, {'score': 0.9948, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, ] , ) _lowerCamelCase = dqa_pipeline({'image': image, 'question': question} , top_k=2 ) self.assertEqual( nested_simplify(snake_case__ , decimals=4 ) , [ {'score': 0.9974, 'answer': '1110212019', 'start': 2_3, 'end': 2_3}, {'score': 0.9948, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, ] , ) _lowerCamelCase = dqa_pipeline( [{'image': image, 'question': question}, {'image': image, 'question': question}] , top_k=2 ) self.assertEqual( nested_simplify(snake_case__ , decimals=4 ) , [ [ {'score': 0.9974, 'answer': '1110212019', 'start': 2_3, 'end': 2_3}, {'score': 0.9948, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, ] ] * 2 , ) @slow @require_torch @require_pytesseract @require_vision def _snake_case ( self : int ) -> List[Any]: _lowerCamelCase = AutoTokenizer.from_pretrained( 'impira/layoutlm-document-qa' , revision='3dc6de3' , add_prefix_space=snake_case__ ) _lowerCamelCase = pipeline( 'document-question-answering' , model='impira/layoutlm-document-qa' , tokenizer=snake_case__ , revision='3dc6de3' , ) _lowerCamelCase = INVOICE_URL _lowerCamelCase = 'What is the invoice number?' _lowerCamelCase = dqa_pipeline(image=snake_case__ , question=snake_case__ , top_k=2 ) self.assertEqual( nested_simplify(snake_case__ , decimals=4 ) , [ {'score': 0.4251, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, {'score': 0.0819, 'answer': '1110212019', 'start': 2_3, 'end': 2_3}, ] , ) _lowerCamelCase = dqa_pipeline({'image': image, 'question': question} , top_k=2 ) self.assertEqual( nested_simplify(snake_case__ , decimals=4 ) , [ {'score': 0.4251, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, {'score': 0.0819, 'answer': '1110212019', 'start': 2_3, 'end': 2_3}, ] , ) _lowerCamelCase = dqa_pipeline( [{'image': image, 'question': question}, {'image': image, 'question': question}] , top_k=2 ) self.assertEqual( nested_simplify(snake_case__ , decimals=4 ) , [ [ {'score': 0.4251, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, {'score': 0.0819, 'answer': '1110212019', 'start': 2_3, 'end': 2_3}, ] ] * 2 , ) _lowerCamelCase = list(zip(*apply_tesseract(load_image(snake_case__ ) , snake_case__ , '' ) ) ) # This model should also work if `image` is set to None _lowerCamelCase = dqa_pipeline({'image': None, 'word_boxes': word_boxes, 'question': question} , top_k=2 ) self.assertEqual( nested_simplify(snake_case__ , decimals=4 ) , [ {'score': 0.4251, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, {'score': 0.0819, 'answer': '1110212019', 'start': 2_3, 'end': 2_3}, ] , ) @slow @require_torch @require_pytesseract @require_vision def _snake_case ( self : Dict ) -> List[str]: _lowerCamelCase = AutoTokenizer.from_pretrained( 'impira/layoutlm-document-qa' , revision='3dc6de3' , add_prefix_space=snake_case__ ) _lowerCamelCase = pipeline( 'document-question-answering' , model='impira/layoutlm-document-qa' , tokenizer=snake_case__ , revision='3dc6de3' , max_seq_len=5_0 , ) _lowerCamelCase = INVOICE_URL _lowerCamelCase = 'What is the invoice number?' _lowerCamelCase = dqa_pipeline(image=snake_case__ , question=snake_case__ , top_k=2 ) self.assertEqual( nested_simplify(snake_case__ , decimals=4 ) , [ {'score': 0.9999, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, {'score': 0.9998, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, ] , ) _lowerCamelCase = dqa_pipeline( [{'image': image, 'question': question}, {'image': image, 'question': question}] , top_k=2 ) self.assertEqual( nested_simplify(snake_case__ , decimals=4 ) , [ [ {'score': 0.9999, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, {'score': 0.9998, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, ] ] * 2 , ) _lowerCamelCase = list(zip(*apply_tesseract(load_image(snake_case__ ) , snake_case__ , '' ) ) ) # This model should also work if `image` is set to None _lowerCamelCase = dqa_pipeline({'image': None, 'word_boxes': word_boxes, 'question': question} , top_k=2 ) self.assertEqual( nested_simplify(snake_case__ , decimals=4 ) , [ {'score': 0.9999, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, {'score': 0.9998, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, ] , ) @slow @require_torch def _snake_case ( self : Dict ) -> int: _lowerCamelCase = pipeline( 'document-question-answering' , model='naver-clova-ix/donut-base-finetuned-docvqa' , tokenizer=AutoTokenizer.from_pretrained('naver-clova-ix/donut-base-finetuned-docvqa' ) , feature_extractor='naver-clova-ix/donut-base-finetuned-docvqa' , ) _lowerCamelCase = INVOICE_URL _lowerCamelCase = 'What is the invoice number?' _lowerCamelCase = dqa_pipeline(image=snake_case__ , question=snake_case__ , top_k=2 ) self.assertEqual(nested_simplify(snake_case__ , decimals=4 ) , [{'answer': 'us-001'}] ) @require_tf @unittest.skip('Document question answering not implemented in TF' ) def _snake_case ( self : Optional[Any] ) -> Any: pass
544
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig __UpperCAmelCase ={ """albert-base-v1""": """https://huggingface.co/albert-base-v1/resolve/main/config.json""", """albert-large-v1""": """https://huggingface.co/albert-large-v1/resolve/main/config.json""", """albert-xlarge-v1""": """https://huggingface.co/albert-xlarge-v1/resolve/main/config.json""", """albert-xxlarge-v1""": """https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json""", """albert-base-v2""": """https://huggingface.co/albert-base-v2/resolve/main/config.json""", """albert-large-v2""": """https://huggingface.co/albert-large-v2/resolve/main/config.json""", """albert-xlarge-v2""": """https://huggingface.co/albert-xlarge-v2/resolve/main/config.json""", """albert-xxlarge-v2""": """https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json""", } class lowerCAmelCase__ ( UpperCAmelCase__ ): lowercase__ : Any = 'albert' def __init__( self , UpperCamelCase__=3_00_00 , UpperCamelCase__=1_28 , UpperCamelCase__=40_96 , UpperCamelCase__=12 , UpperCamelCase__=1 , UpperCamelCase__=64 , UpperCamelCase__=1_63_84 , UpperCamelCase__=1 , UpperCamelCase__="gelu_new" , UpperCamelCase__=0 , UpperCamelCase__=0 , UpperCamelCase__=5_12 , UpperCamelCase__=2 , UpperCamelCase__=0.02 , UpperCamelCase__=1e-12 , UpperCamelCase__=0.1 , UpperCamelCase__="absolute" , UpperCamelCase__=0 , UpperCamelCase__=2 , UpperCamelCase__=3 , **UpperCamelCase__ , ): '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase__ , bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , **UpperCamelCase__ ) A__ = vocab_size A__ = embedding_size A__ = hidden_size A__ = num_hidden_layers A__ = num_hidden_groups A__ = num_attention_heads A__ = inner_group_num A__ = hidden_act A__ = intermediate_size A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = type_vocab_size A__ = initializer_range A__ = layer_norm_eps A__ = classifier_dropout_prob A__ = position_embedding_type class lowerCAmelCase__ ( UpperCAmelCase__ ): @property def lowercase_ ( self ): '''simple docstring''' if self.task == "multiple-choice": A__ = {0: """batch""", 1: """choice""", 2: """sequence"""} else: A__ = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ] )
714
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, TensorType __UpperCAmelCase =logging.get_logger(__name__) __UpperCAmelCase ={ """openai/imagegpt-small""": """""", """openai/imagegpt-medium""": """""", """openai/imagegpt-large""": """""", } class lowerCAmelCase__ ( UpperCAmelCase_ ): lowercase__ : Dict = """imagegpt""" lowercase__ : str = ["""past_key_values"""] lowercase__ : Union[str, Any] = { """hidden_size""": """n_embd""", """max_position_embeddings""": """n_positions""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , UpperCamelCase__=5_12 + 1 , UpperCamelCase__=32 * 32 , UpperCamelCase__=5_12 , UpperCamelCase__=24 , UpperCamelCase__=8 , UpperCamelCase__=None , UpperCamelCase__="quick_gelu" , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=1e-5 , UpperCamelCase__=0.02 , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=False , UpperCamelCase__=False , UpperCamelCase__=False , **UpperCamelCase__ , ): '''simple docstring''' A__ = vocab_size A__ = n_positions A__ = n_embd A__ = n_layer A__ = n_head A__ = n_inner A__ = activation_function A__ = resid_pdrop A__ = embd_pdrop A__ = attn_pdrop A__ = layer_norm_epsilon A__ = initializer_range A__ = scale_attn_weights A__ = use_cache A__ = scale_attn_by_inverse_layer_idx A__ = reorder_and_upcast_attn A__ = tie_word_embeddings super().__init__(tie_word_embeddings=UpperCamelCase__ , **UpperCamelCase__ ) class lowerCAmelCase__ ( UpperCAmelCase_ ): @property def lowercase_ ( self ): '''simple docstring''' return OrderedDict( [ ("input_ids", {0: "batch", 1: "sequence"}), ] ) def lowercase_ ( self , UpperCamelCase__ , UpperCamelCase__ = 1 , UpperCamelCase__ = -1 , UpperCamelCase__ = False , UpperCamelCase__ = None , UpperCamelCase__ = 3 , UpperCamelCase__ = 32 , UpperCamelCase__ = 32 , ): '''simple docstring''' A__ = self._generate_dummy_images(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) A__ = dict(preprocessor(images=UpperCamelCase__ , return_tensors=UpperCamelCase__ ) ) return inputs
261
0
from typing import List, Optional, Union import numpy as np import tensorflow as tf from .utils import logging SCREAMING_SNAKE_CASE__ : int = logging.get_logger(__name__) def _a ( lowercase__ : Union[tf.Tensor, np.ndarray] ): '''simple docstring''' if isinstance(lowercase__ , np.ndarray ): return list(tensor.shape ) SCREAMING_SNAKE_CASE__ : str = tf.shape(lowercase__ ) if tensor.shape == tf.TensorShape(lowercase__ ): return dynamic SCREAMING_SNAKE_CASE__ : Optional[Any] = tensor.shape.as_list() return [dynamic[i] if s is None else s for i, s in enumerate(lowercase__ )] def _a ( lowercase__ : tf.Tensor , lowercase__ : Optional[int] = None , lowercase__ : Optional[str] = None ): '''simple docstring''' return tf.nn.softmax(logits=logits + 1E-9 , axis=lowercase__ , name=lowercase__ ) def _a ( lowercase__ : List[Any] , lowercase__ : Optional[int] , lowercase__ : Tuple , lowercase__ : Optional[Any]=1E-5 , lowercase__ : Union[str, Any]=-1 ): '''simple docstring''' if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(lowercase__ , lowercase__ ): raise NotImplementedError('Only 1D weight and bias tensors are supported for now, with only a single axis.' ) # Get mean and variance on the axis to be normalized SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[int] = tf.nn.moments(lowercase__ , axes=[axis] , keepdims=lowercase__ ) if axis != -1: # Reshape scale and weight to have the same rank as inputs, but with 1 dimensions # on every dimension except axis SCREAMING_SNAKE_CASE__ : List[Any] = [1] * inputs.shape.rank SCREAMING_SNAKE_CASE__ : Dict = shape_list(lowercase__ )[axis] SCREAMING_SNAKE_CASE__ : Optional[int] = tf.reshape(lowercase__ , lowercase__ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = tf.reshape(lowercase__ , lowercase__ ) # Compute layer normalization using the batch_normalization # function. SCREAMING_SNAKE_CASE__ : Optional[int] = tf.nn.batch_normalization( lowercase__ , lowercase__ , lowercase__ , offset=lowercase__ , scale=lowercase__ , variance_epsilon=lowercase__ , ) return outputs def _a ( lowercase__ : List[Any] , lowercase__ : Dict=0 , lowercase__ : List[Any]=-1 ): '''simple docstring''' if end_dim < 0: end_dim += input.shape.rank if start_dim < 0: start_dim += input.shape.rank if start_dim == end_dim: return input SCREAMING_SNAKE_CASE__ : str = tf.shape(lowercase__ ) SCREAMING_SNAKE_CASE__ : Dict = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] ) SCREAMING_SNAKE_CASE__ : List[Any] = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] , axis=0 ) return tf.reshape(lowercase__ , lowercase__ ) def _a ( lowercase__ : tf.Tensor ): '''simple docstring''' if not isinstance(lowercase__ , tf.Tensor ): SCREAMING_SNAKE_CASE__ : Optional[int] = tf.convert_to_tensor(lowercase__ ) # Catches stray NumPy inputs if encoder_attention_mask.shape.rank == 3: SCREAMING_SNAKE_CASE__ : str = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.shape.rank == 2: SCREAMING_SNAKE_CASE__ : Any = encoder_attention_mask[:, None, None, :] # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow # /transformer/transformer_layers.py#L270 # encoder_extended_attention_mask = (encoder_extended_attention_mask == # encoder_extended_attention_mask.transpose(-1, -2)) SCREAMING_SNAKE_CASE__ : Any = ( tf.cast(1 , encoder_attention_mask.dtype ) - encoder_extended_attention_mask ) * encoder_extended_attention_mask.dtype.min return encoder_extended_attention_mask def _a ( lowercase__ : tf.Tensor , lowercase__ : int , lowercase__ : str = "input_ids" ): '''simple docstring''' tf.debugging.assert_less( lowercase__ , tf.cast(lowercase__ , dtype=tensor.dtype ) , message=( f'''The maximum value of {tensor_name} ({tf.math.reduce_max(lowercase__ )}) must be smaller than the embedding ''' f'''layer\'s input dimension ({embed_dim}). The likely cause is some problem at tokenization time.''' ) , ) def _a ( lowercase__ : Union[str, Any] , lowercase__ : Union[str, Any] , lowercase__ : Optional[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any = 6_45_12 # Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT` # because in that case even chunking the array would not make the saving # possible. SCREAMING_SNAKE_CASE__ : str = [x for x in data if len(lowercase__ ) > HDF5_OBJECT_HEADER_LIMIT] # Expecting this to never be true. if bad_attributes: raise RuntimeError( 'The following attributes cannot be saved to HDF5 file because ' f'''they are larger than {HDF5_OBJECT_HEADER_LIMIT} ''' f'''bytes: {bad_attributes}''' ) SCREAMING_SNAKE_CASE__ : Any = np.asarray(lowercase__ ) SCREAMING_SNAKE_CASE__ : str = 1 SCREAMING_SNAKE_CASE__ : Union[str, Any] = np.array_split(lowercase__ , lowercase__ ) # This will never loop forever thanks to the test above. while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ): num_chunks += 1 SCREAMING_SNAKE_CASE__ : Optional[Any] = np.array_split(lowercase__ , lowercase__ ) if num_chunks > 1: for chunk_id, chunk_data in enumerate(lowercase__ ): SCREAMING_SNAKE_CASE__ : Any = chunk_data else: SCREAMING_SNAKE_CASE__ : Tuple = data def _a ( lowercase__ : List[Any] , lowercase__ : int ): '''simple docstring''' if name in group.attrs: SCREAMING_SNAKE_CASE__ : Dict = [n.decode('utf8' ) if hasattr(lowercase__ , 'decode' ) else n for n in group.attrs[name]] else: SCREAMING_SNAKE_CASE__ : List[str] = [] SCREAMING_SNAKE_CASE__ : Optional[int] = 0 while "%s%d" % (name, chunk_id) in group.attrs: data.extend( [n.decode('utf8' ) if hasattr(lowercase__ , 'decode' ) else n for n in group.attrs['%s%d' % (name, chunk_id)]] ) chunk_id += 1 return data def _a ( lowercase__ : Optional[int] ): '''simple docstring''' def _expand_single_ad_tensor(lowercase__ : Optional[int] ): if isinstance(lowercase__ , tf.Tensor ) and t.shape.rank == 1: return tf.expand_dims(lowercase__ , axis=-1 ) return t return tf.nest.map_structure(_expand_single_ad_tensor , lowercase__ )
85
from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def _lowerCAmelCase ( ) -> str: """simple docstring""" A = HfArgumentParser(UpperCamelCase__ ) A = parser.parse_args_into_dataclasses()[0] A = TensorFlowBenchmark(args=UpperCamelCase__ ) try: A = parser.parse_args_into_dataclasses()[0] except ValueError as e: A = """Arg --no_{0} is no longer used, please use --no-{0} instead.""" A = """ """.join(str(UpperCamelCase__ ).split(""" """ )[:-1] ) A = """""" A = eval(str(UpperCamelCase__ ).split(""" """ )[-1] ) A = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(UpperCamelCase__ ) if len(UpperCamelCase__ ) > 0: A = full_error_msg + begin_error_msg + str(UpperCamelCase__ ) raise ValueError(UpperCamelCase__ ) benchmark.run() if __name__ == "__main__": main()
641
0
"""simple docstring""" import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors lowerCAmelCase__ : int = logging.getLogger(__name__) class snake_case ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" snake_case__ = "sequence-classification" def __init__( self : Optional[int] ,lowerCamelCase__ : str ): if type(UpperCamelCase__ ) == dict: UpperCAmelCase__ = Namespace(**UpperCamelCase__ ) UpperCAmelCase__ = glue_output_modes[hparams.task] UpperCAmelCase__ = glue_tasks_num_labels[hparams.task] super().__init__(UpperCamelCase__ ,UpperCamelCase__ ,self.mode ) def __lowerCAmelCase ( self : str ,**lowerCamelCase__ : Optional[Any] ): return self.model(**UpperCamelCase__ ) def __lowerCAmelCase ( self : List[str] ,lowerCamelCase__ : List[str] ,lowerCamelCase__ : Dict ): UpperCAmelCase__ = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: UpperCAmelCase__ = batch[2] if self.config.model_type in ['''bert''', '''xlnet''', '''albert'''] else None UpperCAmelCase__ = self(**UpperCamelCase__ ) UpperCAmelCase__ = outputs[0] UpperCAmelCase__ = self.trainer.lr_schedulers[0]['''scheduler'''] UpperCAmelCase__ = {'''loss''': loss, '''rate''': lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def __lowerCAmelCase ( self : List[Any] ): UpperCAmelCase__ = self.hparams UpperCAmelCase__ = processors[args.task]() UpperCAmelCase__ = processor.get_labels() for mode in ["train", "dev"]: UpperCAmelCase__ = self._feature_file(UpperCamelCase__ ) if os.path.exists(UpperCamelCase__ ) and not args.overwrite_cache: logger.info('Loading features from cached file %s' ,UpperCamelCase__ ) else: logger.info('Creating features from dataset file at %s' ,args.data_dir ) UpperCAmelCase__ = ( processor.get_dev_examples(args.data_dir ) if mode == '''dev''' else processor.get_train_examples(args.data_dir ) ) UpperCAmelCase__ = convert_examples_to_features( UpperCamelCase__ ,self.tokenizer ,max_length=args.max_seq_length ,label_list=self.labels ,output_mode=args.glue_output_mode ,) logger.info('Saving features into cached file %s' ,UpperCamelCase__ ) torch.save(UpperCamelCase__ ,UpperCamelCase__ ) def __lowerCAmelCase ( self : Dict ,lowerCamelCase__ : List[str] ,lowerCamelCase__ : str ,lowerCamelCase__ : List[str] = False ): UpperCAmelCase__ = '''dev''' if mode == '''test''' else mode UpperCAmelCase__ = self._feature_file(UpperCamelCase__ ) logger.info('Loading features from cached file %s' ,UpperCamelCase__ ) UpperCAmelCase__ = torch.load(UpperCamelCase__ ) UpperCAmelCase__ = torch.tensor([f.input_ids for f in features] ,dtype=torch.long ) UpperCAmelCase__ = torch.tensor([f.attention_mask for f in features] ,dtype=torch.long ) UpperCAmelCase__ = torch.tensor([f.token_type_ids for f in features] ,dtype=torch.long ) if self.hparams.glue_output_mode == "classification": UpperCAmelCase__ = torch.tensor([f.label for f in features] ,dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": UpperCAmelCase__ = torch.tensor([f.label for f in features] ,dtype=torch.float ) return DataLoader( TensorDataset(UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ ) ,batch_size=UpperCamelCase__ ,shuffle=UpperCamelCase__ ,) def __lowerCAmelCase ( self : Union[str, Any] ,lowerCamelCase__ : List[str] ,lowerCamelCase__ : Optional[int] ): UpperCAmelCase__ = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: UpperCAmelCase__ = batch[2] if self.config.model_type in ['''bert''', '''xlnet''', '''albert'''] else None UpperCAmelCase__ = self(**UpperCamelCase__ ) UpperCAmelCase__ = outputs[:2] UpperCAmelCase__ = logits.detach().cpu().numpy() UpperCAmelCase__ = inputs['''labels'''].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def __lowerCAmelCase ( self : Union[str, Any] ,lowerCamelCase__ : int ): UpperCAmelCase__ = torch.stack([x['val_loss'] for x in outputs] ).mean().detach().cpu().item() UpperCAmelCase__ = np.concatenate([x['pred'] for x in outputs] ,axis=0 ) if self.hparams.glue_output_mode == "classification": UpperCAmelCase__ = np.argmax(UpperCamelCase__ ,axis=1 ) elif self.hparams.glue_output_mode == "regression": UpperCAmelCase__ = np.squeeze(UpperCamelCase__ ) UpperCAmelCase__ = np.concatenate([x['target'] for x in outputs] ,axis=0 ) UpperCAmelCase__ = [[] for _ in range(out_label_ids.shape[0] )] UpperCAmelCase__ = [[] for _ in range(out_label_ids.shape[0] )] UpperCAmelCase__ = {**{'''val_loss''': val_loss_mean}, **compute_metrics(self.hparams.task ,UpperCamelCase__ ,UpperCamelCase__ )} UpperCAmelCase__ = dict(results.items() ) UpperCAmelCase__ = results return ret, preds_list, out_label_list def __lowerCAmelCase ( self : List[str] ,lowerCamelCase__ : Tuple ): UpperCAmelCase__ = self._eval_end(UpperCamelCase__ ) UpperCAmelCase__ = ret['''log'''] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def __lowerCAmelCase ( self : Optional[int] ,lowerCamelCase__ : Optional[Any] ): UpperCAmelCase__ = self._eval_end(UpperCamelCase__ ) UpperCAmelCase__ = ret['''log'''] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def __lowerCAmelCase ( lowerCamelCase__ : Dict ,lowerCamelCase__ : Optional[int] ): BaseTransformer.add_model_specific_args(UpperCamelCase__ ,UpperCamelCase__ ) parser.add_argument( '--max_seq_length' ,default=128 ,type=UpperCamelCase__ ,help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) ,) parser.add_argument( '--task' ,default='' ,type=UpperCamelCase__ ,required=UpperCamelCase__ ,help='The GLUE task to run' ,) parser.add_argument( '--gpus' ,default=0 ,type=UpperCamelCase__ ,help='The number of GPUs allocated for this, it is by default 0 meaning none' ,) parser.add_argument( '--overwrite_cache' ,action='store_true' ,help='Overwrite the cached training and evaluation sets' ) return parser def a_ ( ): UpperCAmelCase__ = argparse.ArgumentParser() add_generic_args(__UpperCamelCase , os.getcwd() ) UpperCAmelCase__ = GLUETransformer.add_model_specific_args(__UpperCamelCase , os.getcwd() ) UpperCAmelCase__ = parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: UpperCAmelCase__ = os.path.join( './results' , f'''{args.task}_{time.strftime("%Y%m%d_%H%M%S" )}''' , ) os.makedirs(args.output_dir ) UpperCAmelCase__ = GLUETransformer(__UpperCamelCase ) UpperCAmelCase__ = generic_train(__UpperCamelCase , __UpperCamelCase ) # Optionally, predict on dev set and write to output_dir if args.do_predict: UpperCAmelCase__ = sorted(glob.glob(os.path.join(args.output_dir , 'checkpoint-epoch=*.ckpt' ) , recursive=__UpperCamelCase ) ) UpperCAmelCase__ = model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(__UpperCamelCase ) if __name__ == "__main__": main()
711
"""simple docstring""" import random class snake_case : """simple docstring""" @staticmethod def __lowerCAmelCase ( lowerCamelCase__ : str ): UpperCAmelCase__ = [ord(lowerCamelCase__ ) for i in text] UpperCAmelCase__ = [] UpperCAmelCase__ = [] for i in plain: UpperCAmelCase__ = random.randint(1 ,300 ) UpperCAmelCase__ = (i + k) * k cipher.append(lowerCamelCase__ ) key.append(lowerCamelCase__ ) return cipher, key @staticmethod def __lowerCAmelCase ( lowerCamelCase__ : list[int] ,lowerCamelCase__ : list[int] ): UpperCAmelCase__ = [] for i in range(len(lowerCamelCase__ ) ): UpperCAmelCase__ = int((cipher[i] - (key[i]) ** 2) / key[i] ) plain.append(chr(lowerCamelCase__ ) ) return "".join(lowerCamelCase__ ) if __name__ == "__main__": lowerCAmelCase__ , lowerCAmelCase__ : Dict = Onepad().encrypt('Hello') print(c, k) print(Onepad().decrypt(c, k))
632
0
"""simple docstring""" from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING lowerCamelCase__ : List[str] = logging.get_logger(__name__) @add_end_docstrings(__a) class _UpperCAmelCase ( __a): def __init__( self , **_A ) -> Optional[int]: '''simple docstring''' super().__init__(**a_ ) if self.framework == "tf": raise ValueError(f'''The {self.__class__} is only available in PyTorch.''' ) requires_backends(self , """vision""" ) self.check_model_type(a_ ) def __call__( self , _A , _A = None , **_A , ) -> str: '''simple docstring''' if "text_queries" in kwargs: _UpperCAmelCase : List[Any] = kwargs.pop("""text_queries""" ) if isinstance(a_ , (str, Image.Image) ): _UpperCAmelCase : int = {'image': image, 'candidate_labels': candidate_labels} else: _UpperCAmelCase : int = image _UpperCAmelCase : List[Any] = super().__call__(a_ , **a_ ) return results def __snake_case ( self , **_A ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Tuple = {} if "threshold" in kwargs: _UpperCAmelCase : Tuple = kwargs['threshold'] if "top_k" in kwargs: _UpperCAmelCase : int = kwargs['top_k'] return {}, {}, postprocess_params def __snake_case ( self , _A ) -> List[Any]: '''simple docstring''' _UpperCAmelCase : Any = load_image(inputs["""image"""] ) _UpperCAmelCase : Dict = inputs['candidate_labels'] if isinstance(a_ , a_ ): _UpperCAmelCase : Any = candidate_labels.split(""",""" ) _UpperCAmelCase : List[str] = torch.tensor([[image.height, image.width]] , dtype=torch.intaa ) for i, candidate_label in enumerate(a_ ): _UpperCAmelCase : Optional[Any] = self.tokenizer(a_ , return_tensors=self.framework ) _UpperCAmelCase : int = self.image_processor(a_ , return_tensors=self.framework ) yield { "is_last": i == len(a_ ) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def __snake_case ( self , _A ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase : str = model_inputs.pop("""target_size""" ) _UpperCAmelCase : List[Any] = model_inputs.pop("""candidate_label""" ) _UpperCAmelCase : List[str] = model_inputs.pop("""is_last""" ) _UpperCAmelCase : Union[str, Any] = self.model(**a_ ) _UpperCAmelCase : Any = {'target_size': target_size, 'candidate_label': candidate_label, 'is_last': is_last, **outputs} return model_outputs def __snake_case ( self , _A , _A=0.1 , _A=None ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase : List[str] = [] for model_output in model_outputs: _UpperCAmelCase : Any = model_output['candidate_label'] _UpperCAmelCase : Dict = BaseModelOutput(a_ ) _UpperCAmelCase : Optional[Any] = self.image_processor.post_process_object_detection( outputs=a_ , threshold=a_ , target_sizes=model_output["""target_size"""] )[0] for index in outputs["scores"].nonzero(): _UpperCAmelCase : Optional[Any] = outputs['scores'][index].item() _UpperCAmelCase : Tuple = self._get_bounding_box(outputs["""boxes"""][index][0] ) _UpperCAmelCase : str = {'score': score, 'label': label, 'box': box} results.append(a_ ) _UpperCAmelCase : Optional[Any] = sorted(a_ , key=lambda _A : x["score"] , reverse=a_ ) if top_k: _UpperCAmelCase : str = results[:top_k] return results def __snake_case ( self , _A ) -> Dict[str, int]: '''simple docstring''' if self.framework != "pt": raise ValueError("""The ZeroShotObjectDetectionPipeline is only available in PyTorch.""" ) _UpperCAmelCase : Union[str, Any] = box.int().tolist() _UpperCAmelCase : Any = { 'xmin': xmin, 'ymin': ymin, 'xmax': xmax, 'ymax': ymax, } return bbox
238
'''simple docstring''' import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import BatchEncoding, PreTrainedTokenizer from ...utils import logging a = logging.get_logger(__name__) a = '▁' a = { 'vocab_file': 'vocab.json', 'spm_file': 'sentencepiece.bpe.model', 'tokenizer_config_file': 'tokenizer_config.json', } a = { 'vocab_file': { 'facebook/m2m100_418M': 'https://huggingface.co/facebook/m2m100_418M/resolve/main/vocab.json', 'facebook/m2m100_1.2B': 'https://huggingface.co/facebook/m2m100_1.2B/resolve/main/vocab.json', }, 'spm_file': { 'facebook/m2m100_418M': 'https://huggingface.co/facebook/m2m100_418M/resolve/main/sentencepiece.bpe.model', 'facebook/m2m100_1.2B': 'https://huggingface.co/facebook/m2m100_1.2B/resolve/main/sentencepiece.bpe.model', }, 'tokenizer_config_file': { 'facebook/m2m100_418M': 'https://huggingface.co/facebook/m2m100_418M/resolve/main/tokenizer_config.json', 'facebook/m2m100_1.2B': 'https://huggingface.co/facebook/m2m100_1.2B/resolve/main/tokenizer_config.json', }, } a = { 'facebook/m2m100_418M': 1_024, } # fmt: off a = { 'm2m100': ['af', 'am', 'ar', 'ast', 'az', 'ba', 'be', 'bg', 'bn', 'br', 'bs', 'ca', 'ceb', 'cs', 'cy', 'da', 'de', 'el', 'en', 'es', 'et', 'fa', 'ff', 'fi', 'fr', 'fy', 'ga', 'gd', 'gl', 'gu', 'ha', 'he', 'hi', 'hr', 'ht', 'hu', 'hy', 'id', 'ig', 'ilo', 'is', 'it', 'ja', 'jv', 'ka', 'kk', 'km', 'kn', 'ko', 'lb', 'lg', 'ln', 'lo', 'lt', 'lv', 'mg', 'mk', 'ml', 'mn', 'mr', 'ms', 'my', 'ne', 'nl', 'no', 'ns', 'oc', 'or', 'pa', 'pl', 'ps', 'pt', 'ro', 'ru', 'sd', 'si', 'sk', 'sl', 'so', 'sq', 'sr', 'ss', 'su', 'sv', 'sw', 'ta', 'th', 'tl', 'tn', 'tr', 'uk', 'ur', 'uz', 'vi', 'wo', 'xh', 'yi', 'yo', 'zh', 'zu'], 'wmt21': ['en', 'ha', 'is', 'ja', 'cs', 'ru', 'zh', 'de'] } class a_ ( snake_case ): UpperCAmelCase : int = VOCAB_FILES_NAMES UpperCAmelCase : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase : Any = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase : Tuple = ["""input_ids""", """attention_mask"""] UpperCAmelCase : List[int] = [] UpperCAmelCase : List[int] = [] def __init__( self : int , a_ : Union[str, Any] , a_ : Union[str, Any] , a_ : Optional[Any]=None , a_ : str=None , a_ : Tuple="<s>" , a_ : int="</s>" , a_ : int="</s>" , a_ : Any="<pad>" , a_ : Union[str, Any]="<unk>" , a_ : Optional[Any]="m2m100" , a_ : Optional[Dict[str, Any]] = None , a_ : Dict=8 , **a_ : Union[str, Any] , ) -> None: snake_case: Optional[Any] ={} if sp_model_kwargs is None else sp_model_kwargs snake_case: Union[str, Any] =language_codes snake_case: Optional[int] =FAIRSEQ_LANGUAGE_CODES[language_codes] snake_case: Dict ={lang_code: F'''__{lang_code}__''' for lang_code in fairseq_language_code} snake_case: Optional[int] =kwargs.get('additional_special_tokens' , [] ) kwargs["additional_special_tokens"] += [ self.get_lang_token(a_ ) for lang_code in fairseq_language_code if self.get_lang_token(a_ ) not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=a_ , tgt_lang=a_ , bos_token=a_ , eos_token=a_ , sep_token=a_ , unk_token=a_ , pad_token=a_ , language_codes=a_ , sp_model_kwargs=self.sp_model_kwargs , num_madeup_words=a_ , **a_ , ) snake_case: int =vocab_file snake_case: int =load_json(a_ ) snake_case: Tuple ={v: k for k, v in self.encoder.items()} snake_case: Any =spm_file snake_case: int =load_spm(a_ , self.sp_model_kwargs ) snake_case: List[Any] =len(self.encoder ) snake_case: Optional[Any] ={ self.get_lang_token(a_ ): self.encoder_size + i for i, lang_code in enumerate(a_ ) } snake_case: List[str] ={lang_code: self.encoder_size + i for i, lang_code in enumerate(a_ )} snake_case: int ={v: k for k, v in self.lang_token_to_id.items()} snake_case: Any =src_lang if src_lang is not None else 'en' snake_case: Optional[int] =tgt_lang snake_case: Optional[int] =self.get_lang_id(self._src_lang ) self.set_src_lang_special_tokens(self._src_lang ) snake_case: str =num_madeup_words @property def UpperCamelCase ( self : int ) -> int: return len(self.encoder ) + len(self.lang_token_to_id ) @property def UpperCamelCase ( self : Optional[int] ) -> str: return self._src_lang @src_lang.setter def UpperCamelCase ( self : List[Any] , a_ : str ) -> None: snake_case: Optional[Any] =new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def UpperCamelCase ( self : Optional[int] , a_ : str ) -> List[str]: return self.sp_model.encode(a_ , out_type=a_ ) def UpperCamelCase ( self : List[Any] , a_ : Optional[int] ) -> Union[str, Any]: if token in self.lang_token_to_id: return self.lang_token_to_id[token] return self.encoder.get(a_ , self.encoder[self.unk_token] ) def UpperCamelCase ( self : str , a_ : int ) -> str: if index in self.id_to_lang_token: return self.id_to_lang_token[index] return self.decoder.get(a_ , self.unk_token ) def UpperCamelCase ( self : int , a_ : Optional[Any] ) -> Tuple: snake_case: List[Any] =[] snake_case: List[str] ='' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(a_ ) + token snake_case: Optional[Any] =[] else: current_sub_tokens.append(a_ ) out_string += self.sp_model.decode(a_ ) return out_string.strip() def UpperCamelCase ( self : Dict , a_ : List[int] , a_ : Optional[List[int]] = None , a_ : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a_ , token_ids_a=a_ , already_has_special_tokens=a_ ) snake_case: List[Any] =[1] * len(self.prefix_tokens ) snake_case: Optional[int] =[1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(a_ )) + suffix_ones return prefix_ones + ([0] * len(a_ )) + ([0] * len(a_ )) + suffix_ones def UpperCamelCase ( self : str , a_ : List[int] , a_ : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def UpperCamelCase ( self : Any ) -> Dict: snake_case: List[str] ={self.convert_ids_to_tokens(a_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Union[str, Any] ) -> Dict: snake_case: Optional[int] =self.__dict__.copy() snake_case: List[Any] =None return state def __setstate__( self : int , a_ : Dict ) -> None: snake_case: Any =d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): snake_case: Optional[int] ={} snake_case: List[str] =load_spm(self.spm_file , self.sp_model_kwargs ) def UpperCamelCase ( self : str , a_ : str , a_ : Optional[str] = None ) -> Tuple[str]: snake_case: Tuple =Path(a_ ) if not save_dir.is_dir(): raise OSError(F'''{save_directory} should be a directory''' ) snake_case: Union[str, Any] =save_dir / ( (filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['vocab_file'] ) snake_case: List[Any] =save_dir / ( (filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['spm_file'] ) save_json(self.encoder , a_ ) if os.path.abspath(self.spm_file ) != os.path.abspath(a_ ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , a_ ) elif not os.path.isfile(self.spm_file ): with open(a_ , 'wb' ) as fi: snake_case: Any =self.sp_model.serialized_model_proto() fi.write(a_ ) return (str(a_ ), str(a_ )) def UpperCamelCase ( self : Optional[Any] , a_ : List[str] , a_ : str = "en" , a_ : Optional[List[str]] = None , a_ : str = "ro" , **a_ : List[str] , ) -> BatchEncoding: snake_case: List[str] =src_lang snake_case: Optional[int] =tgt_lang self.set_src_lang_special_tokens(self.src_lang ) return super().prepare_seqaseq_batch(a_ , a_ , **a_ ) def UpperCamelCase ( self : Union[str, Any] , a_ : int , a_ : Optional[str] , a_ : Optional[str] , **a_ : Union[str, Any] ) -> Any: if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) snake_case: List[str] =src_lang snake_case: List[str] =self(a_ , add_special_tokens=a_ , **a_ ) snake_case: List[Any] =self.get_lang_id(a_ ) snake_case: List[str] =tgt_lang_id return inputs def UpperCamelCase ( self : str ) -> List[str]: self.set_src_lang_special_tokens(self.src_lang ) def UpperCamelCase ( self : Dict ) -> Tuple: self.set_tgt_lang_special_tokens(self.tgt_lang ) def UpperCamelCase ( self : List[str] , a_ : str ) -> None: snake_case: Optional[Any] =self.get_lang_token(a_ ) snake_case: Optional[Any] =self.lang_token_to_id[lang_token] snake_case: Optional[Any] =[self.cur_lang_id] snake_case: Optional[int] =[self.eos_token_id] def UpperCamelCase ( self : Optional[int] , a_ : str ) -> None: snake_case: Dict =self.get_lang_token(a_ ) snake_case: Tuple =self.lang_token_to_id[lang_token] snake_case: Optional[int] =[self.cur_lang_id] snake_case: List[str] =[self.eos_token_id] def UpperCamelCase ( self : Union[str, Any] , a_ : str ) -> str: return self.lang_code_to_token[lang] def UpperCamelCase ( self : int , a_ : str ) -> int: snake_case: Union[str, Any] =self.get_lang_token(a_ ) return self.lang_token_to_id[lang_token] def a_ ( __UpperCAmelCase , __UpperCAmelCase ) -> sentencepiece.SentencePieceProcessor: """simple docstring""" snake_case: Dict =sentencepiece.SentencePieceProcessor(**__UpperCAmelCase ) spm.Load(str(__UpperCAmelCase ) ) return spm def a_ ( __UpperCAmelCase ) -> Union[Dict, List]: """simple docstring""" with open(__UpperCAmelCase , 'r' ) as f: return json.load(__UpperCAmelCase ) def a_ ( __UpperCAmelCase , __UpperCAmelCase ) -> None: """simple docstring""" with open(__UpperCAmelCase , 'w' ) as f: json.dump(__UpperCAmelCase , __UpperCAmelCase , indent=2 )
350
0
import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() __lowercase : Optional[int] = logging.get_logger(__name__) def lowercase ( __A : str ) -> List[Any]: '''simple docstring''' snake_case : Optional[int] = torch.load(__A , map_location="""cpu""" ) if "model" in sd.keys(): snake_case : Any = torch.load(__A , map_location="""cpu""" )["""model"""] # pop unnecessary weights snake_case : Optional[Any] = [ """decoder.version""", """decoder.output_projection.weight""", ] for key in keys_to_delete: if key in sd: sd.pop(__A ) snake_case : List[Any] = { """decoder.project_in_dim.weight""": """decoder.project_in.weight""", """decoder.project_out_dim.weight""": """decoder.project_out.weight""", """decoder.layer_norm.weight""": """decoder.final_layer_norm.weight""", """decoder.layer_norm.bias""": """decoder.final_layer_norm.bias""", } for old_key, new_key in keys_to_rename.items(): if old_key in sd: snake_case : int = sd.pop(__A ) snake_case : Optional[int] = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: snake_case : List[str] = sd[key] # We split QKV in separate Q,K,V snake_case : Dict = key.replace(""".qkv_proj.""" , """.q_proj.""" ) snake_case : Any = key.replace(""".qkv_proj.""" , """.k_proj.""" ) snake_case : List[str] = key.replace(""".qkv_proj.""" , """.v_proj.""" ) snake_case : List[Any] = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 snake_case , snake_case , snake_case : str = torch.split(__A , depth // 3 , dim=0 ) snake_case : Tuple = q snake_case : List[Any] = k snake_case : List[Any] = v del sd[key] return sd @torch.no_grad() def lowercase ( __A : Optional[Any] , __A : Tuple , __A : List[str]=None ) -> Optional[int]: '''simple docstring''' snake_case : Any = load_checkpoint(__A ) if config is not None: snake_case : List[Any] = OPTConfig.from_pretrained(__A ) else: snake_case : Any = OPTConfig() snake_case : Union[str, Any] = OPTModel(__A ).half().eval() model.load_state_dict(__A ) # Check results Path(__A ).mkdir(exist_ok=__A ) model.save_pretrained(__A ) if __name__ == "__main__": __lowercase : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--fairseq_path''', type=str, help=( '''path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:''' ''' https://huggingface.co/models?other=opt_metasq''' ), ) parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--hf_config''', default=None, type=str, help='''Define HF config.''') __lowercase : Any = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
315
import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() __lowercase : Optional[int] = logging.get_logger(__name__) def lowercase ( __A : str ) -> List[Any]: '''simple docstring''' snake_case : Optional[int] = torch.load(__A , map_location="""cpu""" ) if "model" in sd.keys(): snake_case : Any = torch.load(__A , map_location="""cpu""" )["""model"""] # pop unnecessary weights snake_case : Optional[Any] = [ """decoder.version""", """decoder.output_projection.weight""", ] for key in keys_to_delete: if key in sd: sd.pop(__A ) snake_case : List[Any] = { """decoder.project_in_dim.weight""": """decoder.project_in.weight""", """decoder.project_out_dim.weight""": """decoder.project_out.weight""", """decoder.layer_norm.weight""": """decoder.final_layer_norm.weight""", """decoder.layer_norm.bias""": """decoder.final_layer_norm.bias""", } for old_key, new_key in keys_to_rename.items(): if old_key in sd: snake_case : int = sd.pop(__A ) snake_case : Optional[int] = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: snake_case : List[str] = sd[key] # We split QKV in separate Q,K,V snake_case : Dict = key.replace(""".qkv_proj.""" , """.q_proj.""" ) snake_case : Any = key.replace(""".qkv_proj.""" , """.k_proj.""" ) snake_case : List[str] = key.replace(""".qkv_proj.""" , """.v_proj.""" ) snake_case : List[Any] = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 snake_case , snake_case , snake_case : str = torch.split(__A , depth // 3 , dim=0 ) snake_case : Tuple = q snake_case : List[Any] = k snake_case : List[Any] = v del sd[key] return sd @torch.no_grad() def lowercase ( __A : Optional[Any] , __A : Tuple , __A : List[str]=None ) -> Optional[int]: '''simple docstring''' snake_case : Any = load_checkpoint(__A ) if config is not None: snake_case : List[Any] = OPTConfig.from_pretrained(__A ) else: snake_case : Any = OPTConfig() snake_case : Union[str, Any] = OPTModel(__A ).half().eval() model.load_state_dict(__A ) # Check results Path(__A ).mkdir(exist_ok=__A ) model.save_pretrained(__A ) if __name__ == "__main__": __lowercase : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--fairseq_path''', type=str, help=( '''path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:''' ''' https://huggingface.co/models?other=opt_metasq''' ), ) parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--hf_config''', default=None, type=str, help='''Define HF config.''') __lowercase : Any = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
315
1
'''simple docstring''' from typing import Dict, Iterable, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract __A = logging.get_logger(__name__) def _A ( lowercase__ , lowercase__ , lowercase__ ): return [ int(1000 * (box[0] / width) ), int(1000 * (box[1] / height) ), int(1000 * (box[2] / width) ), int(1000 * (box[3] / height) ), ] def _A ( lowercase__ , lowercase__ , lowercase__ ): lowercase__ = to_pil_image(lowercase__ ) lowercase__ , lowercase__ = pil_image.size lowercase__ = pytesseract.image_to_data(lowercase__ , lang=lowercase__ , output_type="""dict""" , config=lowercase__ ) lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = data["""text"""], data["""left"""], data["""top"""], data["""width"""], data["""height"""] # filter empty words and corresponding coordinates lowercase__ = [idx for idx, word in enumerate(lowercase__ ) if not word.strip()] lowercase__ = [word for idx, word in enumerate(lowercase__ ) if idx not in irrelevant_indices] lowercase__ = [coord for idx, coord in enumerate(lowercase__ ) if idx not in irrelevant_indices] lowercase__ = [coord for idx, coord in enumerate(lowercase__ ) if idx not in irrelevant_indices] lowercase__ = [coord for idx, coord in enumerate(lowercase__ ) if idx not in irrelevant_indices] lowercase__ = [coord for idx, coord in enumerate(lowercase__ ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format lowercase__ = [] for x, y, w, h in zip(lowercase__ , lowercase__ , lowercase__ , lowercase__ ): lowercase__ = [x, y, x + w, y + h] actual_boxes.append(lowercase__ ) # finally, normalize the bounding boxes lowercase__ = [] for box in actual_boxes: normalized_boxes.append(normalize_box(lowercase__ , lowercase__ , lowercase__ ) ) assert len(lowercase__ ) == len(lowercase__ ), "Not as many words as there are bounding boxes" return words, normalized_boxes class A ( __UpperCAmelCase ): lowerCamelCase : Optional[int] = ["""pixel_values"""] def __init__( self , lowerCamelCase__ = True , lowerCamelCase__ = None , lowerCamelCase__ = PILImageResampling.BILINEAR , lowerCamelCase__ = True , lowerCamelCase__ = 1 / 255 , lowerCamelCase__ = True , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = True , lowerCamelCase__ = None , lowerCamelCase__ = "" , **lowerCamelCase__ , ) -> None: '''simple docstring''' super().__init__(**lowerCamelCase__ ) lowercase__ = size if size is not None else {"""height""": 224, """width""": 224} lowercase__ = get_size_dict(lowerCamelCase__ ) lowercase__ = do_resize lowercase__ = size lowercase__ = resample lowercase__ = do_rescale lowercase__ = rescale_value lowercase__ = do_normalize lowercase__ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowercase__ = image_std if image_std is not None else IMAGENET_STANDARD_STD lowercase__ = apply_ocr lowercase__ = ocr_lang lowercase__ = tesseract_config def A__ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = PILImageResampling.BILINEAR , lowerCamelCase__ = None , **lowerCamelCase__ , ) -> np.ndarray: '''simple docstring''' lowercase__ = get_size_dict(lowerCamelCase__ ) if "height" not in size or "width" not in size: raise ValueError(F'''The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}''' ) lowercase__ = (size["""height"""], size["""width"""]) return resize(lowerCamelCase__ , size=lowerCamelCase__ , resample=lowerCamelCase__ , data_format=lowerCamelCase__ , **lowerCamelCase__ ) def A__ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = None , **lowerCamelCase__ , ) -> np.ndarray: '''simple docstring''' return rescale(lowerCamelCase__ , scale=lowerCamelCase__ , data_format=lowerCamelCase__ , **lowerCamelCase__ ) def A__ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = None , **lowerCamelCase__ , ) -> np.ndarray: '''simple docstring''' return normalize(lowerCamelCase__ , mean=lowerCamelCase__ , std=lowerCamelCase__ , data_format=lowerCamelCase__ , **lowerCamelCase__ ) def A__ ( self , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__=None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = ChannelDimension.FIRST , **lowerCamelCase__ , ) -> PIL.Image.Image: '''simple docstring''' lowercase__ = do_resize if do_resize is not None else self.do_resize lowercase__ = size if size is not None else self.size lowercase__ = get_size_dict(lowerCamelCase__ ) lowercase__ = resample if resample is not None else self.resample lowercase__ = do_rescale if do_rescale is not None else self.do_rescale lowercase__ = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase__ = do_normalize if do_normalize is not None else self.do_normalize lowercase__ = image_mean if image_mean is not None else self.image_mean lowercase__ = image_std if image_std is not None else self.image_std lowercase__ = apply_ocr if apply_ocr is not None else self.apply_ocr lowercase__ = ocr_lang if ocr_lang is not None else self.ocr_lang lowercase__ = tesseract_config if tesseract_config is not None else self.tesseract_config lowercase__ = make_list_of_images(lowerCamelCase__ ) if not valid_images(lowerCamelCase__ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""If do_normalize is True, image_mean and image_std must be specified.""" ) # All transformations expect numpy arrays. lowercase__ = [to_numpy_array(lowerCamelCase__ ) for image in images] # Tesseract OCR to get words + normalized bounding boxes if apply_ocr: requires_backends(self , """pytesseract""" ) lowercase__ = [] lowercase__ = [] for image in images: lowercase__ , lowercase__ = apply_tesseract(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) words_batch.append(lowerCamelCase__ ) boxes_batch.append(lowerCamelCase__ ) if do_resize: lowercase__ = [self.resize(image=lowerCamelCase__ , size=lowerCamelCase__ , resample=lowerCamelCase__ ) for image in images] if do_rescale: lowercase__ = [self.rescale(image=lowerCamelCase__ , scale=lowerCamelCase__ ) for image in images] if do_normalize: lowercase__ = [self.normalize(image=lowerCamelCase__ , mean=lowerCamelCase__ , std=lowerCamelCase__ ) for image in images] lowercase__ = [to_channel_dimension_format(lowerCamelCase__ , lowerCamelCase__ ) for image in images] lowercase__ = BatchFeature(data={"""pixel_values""": images} , tensor_type=lowerCamelCase__ ) if apply_ocr: lowercase__ = words_batch lowercase__ = boxes_batch return data
325
'''simple docstring''' import inspect import unittest from transformers import RegNetConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import RegNetForImageClassification, RegNetModel from transformers.models.regnet.modeling_regnet import REGNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class A : def __init__( self , lowerCamelCase__ , lowerCamelCase__=3 , lowerCamelCase__=32 , lowerCamelCase__=3 , lowerCamelCase__=10 , lowerCamelCase__=[10, 20, 30, 40] , lowerCamelCase__=[1, 1, 2, 1] , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__="relu" , lowerCamelCase__=3 , lowerCamelCase__=None , ) -> List[str]: '''simple docstring''' lowercase__ = parent lowercase__ = batch_size lowercase__ = image_size lowercase__ = num_channels lowercase__ = embeddings_size lowercase__ = hidden_sizes lowercase__ = depths lowercase__ = is_training lowercase__ = use_labels lowercase__ = hidden_act lowercase__ = num_labels lowercase__ = scope lowercase__ = len(lowerCamelCase__ ) def A__ ( self ) -> Optional[int]: '''simple docstring''' lowercase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size] , self.num_labels ) lowercase__ = self.get_config() return config, pixel_values, labels def A__ ( self ) -> Any: '''simple docstring''' return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def A__ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' lowercase__ = RegNetModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() lowercase__ = model(lowerCamelCase__ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def A__ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Any: '''simple docstring''' lowercase__ = self.num_labels lowercase__ = RegNetForImageClassification(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() lowercase__ = model(lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A__ ( self ) -> List[Any]: '''simple docstring''' lowercase__ = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ = config_and_inputs lowercase__ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class A ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): lowerCamelCase : Optional[Any] = (RegNetModel, RegNetForImageClassification) if is_torch_available() else () lowerCamelCase : Any = ( {"""feature-extraction""": RegNetModel, """image-classification""": RegNetForImageClassification} if is_torch_available() else {} ) lowerCamelCase : str = False lowerCamelCase : Optional[int] = False lowerCamelCase : str = False lowerCamelCase : Union[str, Any] = False def A__ ( self ) -> Union[str, Any]: '''simple docstring''' lowercase__ = RegNetModelTester(self ) lowercase__ = ConfigTester(self , config_class=lowerCamelCase__ , has_text_modality=lowerCamelCase__ ) def A__ ( self ) -> List[Any]: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A__ ( self ) -> Any: '''simple docstring''' return @unittest.skip(reason="""RegNet does not use inputs_embeds""" ) def A__ ( self ) -> List[Any]: '''simple docstring''' pass @unittest.skip(reason="""RegNet does not support input and output embeddings""" ) def A__ ( self ) -> str: '''simple docstring''' pass def A__ ( self ) -> str: '''simple docstring''' lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(lowerCamelCase__ ) lowercase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ = [*signature.parameters.keys()] lowercase__ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCamelCase__ ) def A__ ( self ) -> Union[str, Any]: '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase__ ) def A__ ( self ) -> str: '''simple docstring''' lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(config=lowerCamelCase__ ) for name, module in model.named_modules(): if isinstance(lowerCamelCase__ , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) def A__ ( self ) -> Tuple: '''simple docstring''' def check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): lowercase__ = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() with torch.no_grad(): lowercase__ = model(**self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) ) lowercase__ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowercase__ = self.model_tester.num_stages self.assertEqual(len(lowerCamelCase__ ) , expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = ["""basic""", """bottleneck"""] for model_class in self.all_model_classes: for layer_type in layers_type: lowercase__ = layer_type lowercase__ = True check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ = True check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def A__ ( self ) -> Any: '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase__ ) @slow def A__ ( self ) -> Optional[Any]: '''simple docstring''' for model_name in REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ = RegNetModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def _A ( ): lowercase__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class A ( unittest.TestCase ): @cached_property def A__ ( self ) -> Dict: '''simple docstring''' return ( AutoImageProcessor.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def A__ ( self ) -> List[str]: '''simple docstring''' lowercase__ = RegNetForImageClassification.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(lowerCamelCase__ ) lowercase__ = self.default_image_processor lowercase__ = prepare_img() lowercase__ = image_processor(images=lowerCamelCase__ , return_tensors="""pt""" ).to(lowerCamelCase__ ) # forward pass with torch.no_grad(): lowercase__ = model(**lowerCamelCase__ ) # verify the logits lowercase__ = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , lowerCamelCase__ ) lowercase__ = torch.tensor([-0.41_80, -1.50_51, -3.48_36] ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCamelCase__ , atol=1e-4 ) )
325
1
import json import os import re import unicodedata from json.encoder import INFINITY from typing import Any, Dict, List, Optional, Tuple, Union import numpy as np import regex from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available, logging from ...utils.generic import _is_jax, _is_numpy SCREAMING_SNAKE_CASE : List[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Dict = { "artists_file": "artists.json", "lyrics_file": "lyrics.json", "genres_file": "genres.json", } SCREAMING_SNAKE_CASE : int = { "artists_file": { "jukebox": "https://huggingface.co/ArthurZ/jukebox/blob/main/artists.json", }, "genres_file": { "jukebox": "https://huggingface.co/ArthurZ/jukebox/blob/main/genres.json", }, "lyrics_file": { "jukebox": "https://huggingface.co/ArthurZ/jukebox/blob/main/lyrics.json", }, } SCREAMING_SNAKE_CASE : Tuple = { "jukebox": 512, } class lowerCamelCase( __lowerCAmelCase ): lowercase_ : int = VOCAB_FILES_NAMES lowercase_ : Any = PRETRAINED_VOCAB_FILES_MAP lowercase_ : Tuple = PRETRAINED_LYRIC_TOKENS_SIZES lowercase_ : Tuple = ['''input_ids''', '''attention_mask'''] def __init__( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase=["v3", "v2", "v2"], lowerCamelCase=5_12, lowerCamelCase=5, lowerCamelCase="<|endoftext|>", **lowerCamelCase, ) -> Tuple: """simple docstring""" _lowercase : Optional[int] = AddedToken(lowerCAmelCase_, lstrip=lowerCAmelCase_, rstrip=lowerCAmelCase_) if isinstance(lowerCAmelCase_, lowerCAmelCase_) else unk_token super().__init__( unk_token=lowerCAmelCase_, n_genres=lowerCAmelCase_, version=lowerCAmelCase_, max_n_lyric_tokens=lowerCAmelCase_, **lowerCAmelCase_, ) _lowercase : Any = version _lowercase : Any = max_n_lyric_tokens _lowercase : Any = n_genres with open(lowerCAmelCase_, encoding='utf-8') as vocab_handle: _lowercase : Tuple = json.load(lowerCAmelCase_) with open(lowerCAmelCase_, encoding='utf-8') as vocab_handle: _lowercase : str = json.load(lowerCAmelCase_) with open(lowerCAmelCase_, encoding='utf-8') as vocab_handle: _lowercase : List[str] = json.load(lowerCAmelCase_) _lowercase : Optional[Any] = R'[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+' # In v2, we had a n_vocab=80 and in v3 we missed + and so n_vocab=79 of characters. if len(self.lyrics_encoder) == 79: _lowercase : Optional[Any] = oov.replace(R'\-\'', R'\-+\'') _lowercase : List[str] = regex.compile(lowerCAmelCase_) _lowercase : Optional[int] = {v: k for k, v in self.artists_encoder.items()} _lowercase : List[Any] = {v: k for k, v in self.genres_encoder.items()} _lowercase : Union[str, Any] = {v: k for k, v in self.lyrics_encoder.items()} @property def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" return len(self.artists_encoder) + len(self.genres_encoder) + len(self.lyrics_encoder) def UpperCamelCase ( self) -> List[str]: """simple docstring""" return dict(self.artists_encoder, self.genres_encoder, self.lyrics_encoder) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Dict: """simple docstring""" _lowercase : Dict = [self.artists_encoder.get(lowerCAmelCase_, 0) for artist in list_artists] for genres in range(len(lowerCAmelCase_)): _lowercase : Any = [self.genres_encoder.get(lowerCAmelCase_, 0) for genre in list_genres[genres]] _lowercase : List[Any] = list_genres[genres] + [-1] * (self.n_genres - len(list_genres[genres])) _lowercase : Union[str, Any] = [[self.lyrics_encoder.get(lowerCAmelCase_, 0) for character in list_lyrics[0]], [], []] return artists_id, list_genres, lyric_ids def UpperCamelCase ( self, lowerCamelCase) -> int: """simple docstring""" return list(lowerCAmelCase_) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase) -> str: """simple docstring""" _lowercase , _lowercase , _lowercase : Union[str, Any] = self.prepare_for_tokenization(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_) _lowercase : Dict = self._tokenize(lowerCAmelCase_) return artist, genre, lyrics def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase = False) -> Tuple[str, str, str, Dict[str, Any]]: """simple docstring""" for idx in range(len(self.version)): if self.version[idx] == "v3": _lowercase : Union[str, Any] = artists[idx].lower() _lowercase : Optional[int] = [genres[idx].lower()] else: _lowercase : Optional[int] = self._normalize(artists[idx]) + '.v2' _lowercase : Optional[int] = [ self._normalize(lowerCAmelCase_) + '.v2' for genre in genres[idx].split('_') ] # split is for the full dictionary with combined genres if self.version[0] == "v2": _lowercase : Dict = regex.compile(R'[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+') _lowercase : Dict = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;!?-+\'\"()[] \t\n' _lowercase : Optional[Any] = {vocab[index]: index + 1 for index in range(len(lowerCAmelCase_))} _lowercase : Dict = 0 _lowercase : str = len(lowerCAmelCase_) + 1 _lowercase : Tuple = self.vocab _lowercase : Any = {v: k for k, v in self.vocab.items()} _lowercase : Tuple = '' else: _lowercase : Optional[Any] = regex.compile(R'[^A-Za-z0-9.,:;!?\-+\'\"()\[\] \t\n]+') _lowercase : List[str] = self._run_strip_accents(lowerCAmelCase_) _lowercase : str = lyrics.replace('\\', '\n') _lowercase : List[str] = self.out_of_vocab.sub('', lowerCAmelCase_), [], [] return artists, genres, lyrics def UpperCamelCase ( self, lowerCamelCase) -> str: """simple docstring""" _lowercase : List[Any] = unicodedata.normalize('NFD', lowerCAmelCase_) _lowercase : Tuple = [] for char in text: _lowercase : List[Any] = unicodedata.category(lowerCAmelCase_) if cat == "Mn": continue output.append(lowerCAmelCase_) return "".join(lowerCAmelCase_) def UpperCamelCase ( self, lowerCamelCase) -> str: """simple docstring""" _lowercase : Optional[int] = ( [chr(lowerCAmelCase_) for i in range(ord('a'), ord('z') + 1)] + [chr(lowerCAmelCase_) for i in range(ord('A'), ord('Z') + 1)] + [chr(lowerCAmelCase_) for i in range(ord('0'), ord('9') + 1)] + ['.'] ) _lowercase : str = frozenset(lowerCAmelCase_) _lowercase : Dict = re.compile(R'_+') _lowercase : int = ''.join([c if c in accepted else '_' for c in text.lower()]) _lowercase : Dict = pattern.sub('_', lowerCAmelCase_).strip('_') return text def UpperCamelCase ( self, lowerCamelCase) -> str: """simple docstring""" return " ".join(lowerCAmelCase_) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase = None, lowerCamelCase = False) -> Union[str, Any]: """simple docstring""" if not isinstance(lowerCAmelCase_, lowerCAmelCase_): _lowercase : List[str] = TensorType(lowerCAmelCase_) # Get a function reference for the correct framework if tensor_type == TensorType.TENSORFLOW: if not is_tf_available(): raise ImportError( 'Unable to convert output to TensorFlow tensors format, TensorFlow is not installed.') import tensorflow as tf _lowercase : List[str] = tf.constant _lowercase : str = tf.is_tensor elif tensor_type == TensorType.PYTORCH: if not is_torch_available(): raise ImportError('Unable to convert output to PyTorch tensors format, PyTorch is not installed.') import torch _lowercase : Optional[Any] = torch.tensor _lowercase : Tuple = torch.is_tensor elif tensor_type == TensorType.JAX: if not is_flax_available(): raise ImportError('Unable to convert output to JAX tensors format, JAX is not installed.') import jax.numpy as jnp # noqa: F811 _lowercase : str = jnp.array _lowercase : List[str] = _is_jax else: _lowercase : Optional[int] = np.asarray _lowercase : Tuple = _is_numpy # Do the tensor conversion in batch try: if prepend_batch_axis: _lowercase : Optional[Any] = [inputs] if not is_tensor(lowerCAmelCase_): _lowercase : Any = as_tensor(lowerCAmelCase_) except: # noqa E722 raise ValueError( 'Unable to create tensor, you should probably activate truncation and/or padding ' 'with \'padding=True\' \'truncation=True\' to have batched tensors with the same length.') return inputs def __call__( self, lowerCamelCase, lowerCamelCase, lowerCamelCase="", lowerCamelCase="pt") -> BatchEncoding: """simple docstring""" _lowercase : List[Any] = [0, 0, 0] _lowercase : List[str] = [artist] * len(self.version) _lowercase : Tuple = [genres] * len(self.version) _lowercase , _lowercase , _lowercase : int = self.tokenize(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_) _lowercase , _lowercase , _lowercase : Any = self._convert_token_to_id(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_) _lowercase : Any = [-INFINITY] * len(full_tokens[-1]) _lowercase : int = [ self.convert_to_tensors( [input_ids + [artists_id[i]] + genres_ids[i] + full_tokens[i]], tensor_type=lowerCAmelCase_) for i in range(len(self.version)) ] return BatchEncoding({'input_ids': input_ids, 'attention_masks': attention_masks}) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase = None) -> Tuple[str]: """simple docstring""" if not os.path.isdir(lowerCAmelCase_): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''') return _lowercase : List[Any] = os.path.join( lowerCAmelCase_, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['artists_file']) with open(lowerCAmelCase_, 'w', encoding='utf-8') as f: f.write(json.dumps(self.artists_encoder, ensure_ascii=lowerCAmelCase_)) _lowercase : str = os.path.join( lowerCAmelCase_, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['genres_file']) with open(lowerCAmelCase_, 'w', encoding='utf-8') as f: f.write(json.dumps(self.genres_encoder, ensure_ascii=lowerCAmelCase_)) _lowercase : str = os.path.join( lowerCAmelCase_, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['lyrics_file']) with open(lowerCAmelCase_, 'w', encoding='utf-8') as f: f.write(json.dumps(self.lyrics_encoder, ensure_ascii=lowerCAmelCase_)) return (artists_file, genres_file, lyrics_file) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Optional[Any]: """simple docstring""" _lowercase : Any = self.artists_decoder.get(lowerCAmelCase_) _lowercase : str = [self.genres_decoder.get(lowerCAmelCase_) for genre in genres_index] _lowercase : Dict = [self.lyrics_decoder.get(lowerCAmelCase_) for character in lyric_index] return artist, genres, lyrics
717
import unittest from transformers import DebertaVaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaVaForMaskedLM, DebertaVaForMultipleChoice, DebertaVaForQuestionAnswering, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaModel, ) from transformers.models.deberta_va.modeling_deberta_va import DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST class _lowerCamelCase( _a ): def __init__( self, lowerCamelCase, lowerCamelCase=13, lowerCamelCase=7, lowerCamelCase=True, lowerCamelCase=True, lowerCamelCase=True, lowerCamelCase=True, lowerCamelCase=99, lowerCamelCase=32, lowerCamelCase=5, lowerCamelCase=4, lowerCamelCase=37, lowerCamelCase="gelu", lowerCamelCase=0.1, lowerCamelCase=0.1, lowerCamelCase=5_12, lowerCamelCase=16, lowerCamelCase=2, lowerCamelCase=0.0_2, lowerCamelCase=False, lowerCamelCase=True, lowerCamelCase="None", lowerCamelCase=3, lowerCamelCase=4, lowerCamelCase=None, ) -> Optional[Any]: """simple docstring""" _lowercase : Union[str, Any] = parent _lowercase : Optional[Any] = batch_size _lowercase : Optional[Any] = seq_length _lowercase : Dict = is_training _lowercase : Optional[Any] = use_input_mask _lowercase : Optional[int] = use_token_type_ids _lowercase : str = use_labels _lowercase : List[Any] = vocab_size _lowercase : Dict = hidden_size _lowercase : Any = num_hidden_layers _lowercase : Union[str, Any] = num_attention_heads _lowercase : int = intermediate_size _lowercase : List[str] = hidden_act _lowercase : Tuple = hidden_dropout_prob _lowercase : Optional[Any] = attention_probs_dropout_prob _lowercase : int = max_position_embeddings _lowercase : Any = type_vocab_size _lowercase : Tuple = type_sequence_label_size _lowercase : List[Any] = initializer_range _lowercase : Optional[Any] = num_labels _lowercase : Tuple = num_choices _lowercase : Dict = relative_attention _lowercase : Optional[int] = position_biased_input _lowercase : str = pos_att_type _lowercase : Optional[Any] = scope def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" _lowercase : int = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) _lowercase : Union[str, Any] = None if self.use_input_mask: _lowercase : int = ids_tensor([self.batch_size, self.seq_length], vocab_size=2) _lowercase : Tuple = None if self.use_token_type_ids: _lowercase : Tuple = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) _lowercase : Union[str, Any] = None _lowercase : Tuple = None _lowercase : str = None if self.use_labels: _lowercase : List[Any] = ids_tensor([self.batch_size], self.type_sequence_label_size) _lowercase : Optional[int] = ids_tensor([self.batch_size, self.seq_length], self.num_labels) _lowercase : str = ids_tensor([self.batch_size], self.num_choices) _lowercase : Union[str, Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" return DebertaVaConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, relative_attention=self.relative_attention, position_biased_input=self.position_biased_input, pos_att_type=self.pos_att_type, ) def UpperCamelCase ( self, lowerCamelCase) -> int: """simple docstring""" self.parent.assertListEqual(list(result.loss.size()), []) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Union[str, Any]: """simple docstring""" _lowercase : List[str] = DebertaVaModel(config=lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : int = model(lowerCamelCase, attention_mask=lowerCamelCase, token_type_ids=lowerCamelCase)[0] _lowercase : Optional[int] = model(lowerCamelCase, token_type_ids=lowerCamelCase)[0] _lowercase : Dict = model(lowerCamelCase)[0] self.parent.assertListEqual(list(sequence_output.size()), [self.batch_size, self.seq_length, self.hidden_size]) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> List[Any]: """simple docstring""" _lowercase : List[Any] = DebertaVaForMaskedLM(config=lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : str = model(lowerCamelCase, attention_mask=lowerCamelCase, token_type_ids=lowerCamelCase, labels=lowerCamelCase) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> List[str]: """simple docstring""" _lowercase : Optional[int] = self.num_labels _lowercase : Any = DebertaVaForSequenceClassification(lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : Any = model(lowerCamelCase, attention_mask=lowerCamelCase, token_type_ids=lowerCamelCase, labels=lowerCamelCase) self.parent.assertListEqual(list(result.logits.size()), [self.batch_size, self.num_labels]) self.check_loss_output(lowerCamelCase) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Optional[int]: """simple docstring""" _lowercase : Union[str, Any] = self.num_labels _lowercase : Optional[int] = DebertaVaForTokenClassification(config=lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : Optional[Any] = model(lowerCamelCase, attention_mask=lowerCamelCase, token_type_ids=lowerCamelCase, labels=lowerCamelCase) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Union[str, Any]: """simple docstring""" _lowercase : Union[str, Any] = DebertaVaForQuestionAnswering(config=lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : Union[str, Any] = model( lowerCamelCase, attention_mask=lowerCamelCase, token_type_ids=lowerCamelCase, start_positions=lowerCamelCase, end_positions=lowerCamelCase, ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Optional[int]: """simple docstring""" _lowercase : Any = DebertaVaForMultipleChoice(config=lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : Optional[int] = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() _lowercase : List[Any] = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() _lowercase : int = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() _lowercase : str = model( lowerCamelCase, attention_mask=lowerCamelCase, token_type_ids=lowerCamelCase, labels=lowerCamelCase, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices)) def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" _lowercase : Any = self.prepare_config_and_inputs() ( ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ) : List[str] = config_and_inputs _lowercase : int = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class _lowerCamelCase( _a, _a, unittest.TestCase ): lowercase_ : Any = ( ( DebertaVaModel, DebertaVaForMaskedLM, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaForQuestionAnswering, DebertaVaForMultipleChoice, ) if is_torch_available() else () ) lowercase_ : Any = ( { """feature-extraction""": DebertaVaModel, """fill-mask""": DebertaVaForMaskedLM, """question-answering""": DebertaVaForQuestionAnswering, """text-classification""": DebertaVaForSequenceClassification, """token-classification""": DebertaVaForTokenClassification, """zero-shot""": DebertaVaForSequenceClassification, } if is_torch_available() else {} ) lowercase_ : int = True lowercase_ : str = False lowercase_ : str = False lowercase_ : str = False lowercase_ : List[Any] = False def UpperCamelCase ( self) -> str: """simple docstring""" _lowercase : List[Any] = DebertaVaModelTester(self) _lowercase : List[Any] = ConfigTester(self, config_class=lowerCamelCase, hidden_size=37) def UpperCamelCase ( self) -> Dict: """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" _lowercase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*lowerCamelCase) def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" _lowercase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*lowerCamelCase) def UpperCamelCase ( self) -> int: """simple docstring""" _lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*lowerCamelCase) def UpperCamelCase ( self) -> List[str]: """simple docstring""" _lowercase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*lowerCamelCase) def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*lowerCamelCase) def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" _lowercase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_multiple_choice(*lowerCamelCase) @slow def UpperCamelCase ( self) -> List[str]: """simple docstring""" for model_name in DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowercase : Dict = DebertaVaModel.from_pretrained(lowerCamelCase) self.assertIsNotNone(lowerCamelCase) @require_torch @require_sentencepiece @require_tokenizers class _lowerCamelCase( unittest.TestCase ): @unittest.skip(reason='Model not available yet') def UpperCamelCase ( self) -> Tuple: """simple docstring""" pass @slow def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" _lowercase : Dict = DebertaVaModel.from_pretrained('microsoft/deberta-v2-xlarge') _lowercase : str = torch.tensor([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]]) _lowercase : Any = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]) with torch.no_grad(): _lowercase : Tuple = model(lowerCamelCase, attention_mask=lowerCamelCase)[0] # compare the actual values for a slice. _lowercase : int = torch.tensor( [[[0.2_3_5_6, 0.1_9_4_8, 0.0_3_6_9], [-0.1_0_6_3, 0.3_5_8_6, -0.5_1_5_2], [-0.6_3_9_9, -0.0_2_5_9, -0.2_5_2_5]]]) self.assertTrue(torch.allclose(output[:, 1:4, 1:4], lowerCamelCase, atol=1E-4), F'''{output[:, 1:4, 1:4]}''')
354
0
import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler _UpperCAmelCase : Dict = 16 _UpperCAmelCase : str = 32 def lowerCAmelCase_ (lowercase__ : Accelerator , lowercase__ : int = 16 , lowercase__ : str = "bert-base-cased" ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase__ = AutoTokenizer.from_pretrained(lowercase__ ) lowerCAmelCase__ = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(lowercase__ : Tuple ): # max_length=None => use the model max length (it's actually the default) lowerCAmelCase__ = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=lowercase__ , max_length=lowercase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset lowerCAmelCase__ = datasets.map( lowercase__ , batched=lowercase__ , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , load_from_cache_file=lowercase__ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowerCAmelCase__ = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(lowercase__ : List[str] ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(lowercase__ , padding='''max_length''' , max_length=1_28 , return_tensors='''pt''' ) return tokenizer.pad(lowercase__ , padding='''longest''' , return_tensors='''pt''' ) # Instantiate dataloaders. lowerCAmelCase__ = DataLoader( tokenized_datasets['''train'''] , shuffle=lowercase__ , collate_fn=lowercase__ , batch_size=lowercase__ ) lowerCAmelCase__ = DataLoader( tokenized_datasets['''validation'''] , shuffle=lowercase__ , collate_fn=lowercase__ , batch_size=lowercase__ ) return train_dataloader, eval_dataloader def lowerCAmelCase_ (lowercase__ : Optional[Any] , lowercase__ : Tuple ) -> Dict: '''simple docstring''' lowerCAmelCase__ = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCAmelCase__ = config['''lr'''] lowerCAmelCase__ = int(config['''num_epochs'''] ) lowerCAmelCase__ = int(config['''seed'''] ) lowerCAmelCase__ = int(config['''batch_size'''] ) lowerCAmelCase__ = args.model_name_or_path set_seed(lowercase__ ) lowerCAmelCase__ , lowerCAmelCase__ = get_dataloaders(lowercase__ , lowercase__ , lowercase__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCAmelCase__ = AutoModelForSequenceClassification.from_pretrained(lowercase__ , return_dict=lowercase__ ) # Instantiate optimizer lowerCAmelCase__ = ( AdamW if accelerator.state.deepspeed_plugin is None or '''optimizer''' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) lowerCAmelCase__ = optimizer_cls(params=model.parameters() , lr=lowercase__ ) if accelerator.state.deepspeed_plugin is not None: lowerCAmelCase__ = accelerator.state.deepspeed_plugin.deepspeed_config[ '''gradient_accumulation_steps''' ] else: lowerCAmelCase__ = 1 lowerCAmelCase__ = (len(lowercase__ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): lowerCAmelCase__ = get_linear_schedule_with_warmup( optimizer=lowercase__ , num_warmup_steps=0 , num_training_steps=lowercase__ , ) else: lowerCAmelCase__ = DummyScheduler(lowercase__ , total_num_steps=lowercase__ , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = accelerator.prepare( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) # We need to keep track of how many total steps we have iterated over lowerCAmelCase__ = 0 # We also need to keep track of the stating epoch so files are named properly lowerCAmelCase__ = 0 # Now we train the model lowerCAmelCase__ = evaluate.load('''glue''' , '''mrpc''' ) lowerCAmelCase__ = 0 lowerCAmelCase__ = {} for epoch in range(lowercase__ , lowercase__ ): model.train() for step, batch in enumerate(lowercase__ ): lowerCAmelCase__ = model(**lowercase__ ) lowerCAmelCase__ = outputs.loss lowerCAmelCase__ = loss / gradient_accumulation_steps accelerator.backward(lowercase__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 model.eval() lowerCAmelCase__ = 0 for step, batch in enumerate(lowercase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowerCAmelCase__ = model(**lowercase__ ) lowerCAmelCase__ = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times lowerCAmelCase__ , lowerCAmelCase__ = accelerator.gather( (predictions, batch['''labels''']) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(lowercase__ ) - 1: lowerCAmelCase__ = predictions[: len(eval_dataloader.dataset ) - samples_seen] lowerCAmelCase__ = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=lowercase__ , references=lowercase__ , ) lowerCAmelCase__ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'epoch {epoch}:' , lowercase__ ) lowerCAmelCase__ = eval_metric['''accuracy'''] if best_performance < eval_metric["accuracy"]: lowerCAmelCase__ = eval_metric['''accuracy'''] if args.performance_lower_bound is not None: assert ( args.performance_lower_bound <= best_performance ), f'Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}' accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , '''all_results.json''' ) , '''w''' ) as f: json.dump(lowercase__ , lowercase__ ) def lowerCAmelCase_ () -> List[Any]: '''simple docstring''' lowerCAmelCase__ = argparse.ArgumentParser(description='''Simple example of training script tracking peak GPU memory usage.''' ) parser.add_argument( '''--model_name_or_path''' , type=lowercase__ , default='''bert-base-cased''' , help='''Path to pretrained model or model identifier from huggingface.co/models.''' , required=lowercase__ , ) parser.add_argument( '''--output_dir''' , type=lowercase__ , default='''.''' , help='''Optional save directory where all checkpoint folders will be stored. Default is the current working directory.''' , ) parser.add_argument( '''--performance_lower_bound''' , type=lowercase__ , default=lowercase__ , help='''Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value.''' , ) parser.add_argument( '''--num_epochs''' , type=lowercase__ , default=3 , help='''Number of train epochs.''' , ) lowerCAmelCase__ = parser.parse_args() lowerCAmelCase__ = {'''lr''': 2e-5, '''num_epochs''': args.num_epochs, '''seed''': 42, '''batch_size''': 16} training_function(lowercase__ , lowercase__ ) if __name__ == "__main__": main()
668
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _UpperCAmelCase : Union[str, Any] = {"configuration_mra": ["MRA_PRETRAINED_CONFIG_ARCHIVE_MAP", "MraConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : List[Any] = [ "MRA_PRETRAINED_MODEL_ARCHIVE_LIST", "MraForMaskedLM", "MraForMultipleChoice", "MraForQuestionAnswering", "MraForSequenceClassification", "MraForTokenClassification", "MraLayer", "MraModel", "MraPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys _UpperCAmelCase : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure)
668
1
"""simple docstring""" from __future__ import annotations def lowerCAmelCase ( __UpperCamelCase ): """simple docstring""" __A = str(__UpperCamelCase ) return n == n[::-1] def lowerCAmelCase ( __UpperCamelCase = 1_0_0_0_0_0_0 ): """simple docstring""" __A = 0 for i in range(1 , __UpperCamelCase ): if is_palindrome(__UpperCamelCase ) and is_palindrome(bin(__UpperCamelCase ).split('''b''' )[1] ): total += i return total if __name__ == "__main__": print(solution(int(str(input().strip()))))
215
"""simple docstring""" lowercase_ = 8.31_4462 # Unit - J mol-1 K-1 def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" if moles < 0 or kelvin < 0 or volume < 0: raise ValueError('''Invalid inputs. Enter positive value.''' ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / volume def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" if moles < 0 or kelvin < 0 or pressure < 0: raise ValueError('''Invalid inputs. Enter positive value.''' ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / pressure if __name__ == "__main__": from doctest import testmod testmod()
215
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _A : List[str] = logging.get_logger(__name__) _A : int = { '''facebook/data2vec-text-base''': '''https://huggingface.co/data2vec/resolve/main/config.json''', } class _lowercase ( UpperCAmelCase__ ): '''simple docstring''' _SCREAMING_SNAKE_CASE : str = """data2vec-text""" def __init__( self : List[Any] , SCREAMING_SNAKE_CASE__ : List[Any]=3_05_22 , SCREAMING_SNAKE_CASE__ : Optional[Any]=7_68 , SCREAMING_SNAKE_CASE__ : Optional[int]=12 , SCREAMING_SNAKE_CASE__ : Optional[int]=12 , SCREAMING_SNAKE_CASE__ : Any=30_72 , SCREAMING_SNAKE_CASE__ : str="gelu" , SCREAMING_SNAKE_CASE__ : List[Any]=0.1 , SCREAMING_SNAKE_CASE__ : Dict=0.1 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=5_12 , SCREAMING_SNAKE_CASE__ : List[str]=2 , SCREAMING_SNAKE_CASE__ : Tuple=0.0_2 , SCREAMING_SNAKE_CASE__ : Optional[Any]=1e-1_2 , SCREAMING_SNAKE_CASE__ : Any=1 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0 , SCREAMING_SNAKE_CASE__ : Optional[Any]=2 , SCREAMING_SNAKE_CASE__ : Tuple="absolute" , SCREAMING_SNAKE_CASE__ : Optional[int]=True , SCREAMING_SNAKE_CASE__ : int=None , **SCREAMING_SNAKE_CASE__ : str , ) -> Optional[Any]: super().__init__(pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = vocab_size __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = hidden_act __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = type_vocab_size __lowerCAmelCase = initializer_range __lowerCAmelCase = layer_norm_eps __lowerCAmelCase = position_embedding_type __lowerCAmelCase = use_cache __lowerCAmelCase = classifier_dropout class _lowercase ( UpperCAmelCase__ ): '''simple docstring''' @property def a ( self : List[str] ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": __lowerCAmelCase = {0: """batch""", 1: """choice""", 2: """sequence"""} else: __lowerCAmelCase = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
427
'''simple docstring''' def UpperCamelCase_ ( snake_case_ : str ) -> str: '''simple docstring''' return "".join(chr(ord(snake_case_ ) - 32 ) if """a""" <= char <= """z""" else char for char in word ) if __name__ == "__main__": from doctest import testmod testmod()
427
1
'''simple docstring''' from typing import Any def __A ( a_ : list ): if not input_list: return [] lowerCAmelCase : Dict = [input_list.count(a_ ) for value in input_list] lowerCAmelCase : int = max(a_ ) # Gets the maximum count in the input list. # Gets values of modes return sorted({input_list[i] for i, value in enumerate(a_ ) if value == y} ) if __name__ == "__main__": import doctest doctest.testmod()
551
'''simple docstring''' import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class lowerCamelCase : def __init__( self , a_ , a_=2 , a_=True , a_=False , a_=10 , a_=3 , a_=32 * 8 , a_=32 * 8 , a_=4 , a_=64 , ): lowerCAmelCase : Optional[int] = parent lowerCAmelCase : Optional[Any] = batch_size lowerCAmelCase : str = is_training lowerCAmelCase : Any = use_auxiliary_loss lowerCAmelCase : Dict = num_queries lowerCAmelCase : Dict = num_channels lowerCAmelCase : str = min_size lowerCAmelCase : Any = max_size lowerCAmelCase : int = num_labels lowerCAmelCase : Tuple = hidden_dim lowerCAmelCase : Optional[Any] = hidden_dim def _lowerCamelCase ( self ): lowerCAmelCase : int = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( a_ ) lowerCAmelCase : Optional[int] = torch.ones([self.batch_size, self.min_size, self.max_size] , device=a_ ) lowerCAmelCase : str = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=a_ ) > 0.5 ).float() lowerCAmelCase : Union[str, Any] = (torch.rand((self.batch_size, self.num_labels) , device=a_ ) > 0.5).long() lowerCAmelCase : Optional[Any] = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def _lowerCamelCase ( self ): lowerCAmelCase : Optional[Any] = MaskaFormerConfig( hidden_size=self.hidden_dim , ) lowerCAmelCase : Optional[Any] = self.num_queries lowerCAmelCase : Optional[Any] = self.num_labels lowerCAmelCase : str = [1, 1, 1, 1] lowerCAmelCase : Tuple = self.num_channels lowerCAmelCase : str = 64 lowerCAmelCase : Any = 128 lowerCAmelCase : List[str] = self.hidden_dim lowerCAmelCase : Optional[Any] = self.hidden_dim lowerCAmelCase : int = self.hidden_dim return config def _lowerCamelCase ( self ): lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : int = self.prepare_config_and_inputs() lowerCAmelCase : Optional[int] = {"pixel_values": pixel_values, "pixel_mask": pixel_mask} return config, inputs_dict def _lowerCamelCase ( self , a_ , a_ ): lowerCAmelCase : str = output.encoder_hidden_states lowerCAmelCase : List[str] = output.pixel_decoder_hidden_states lowerCAmelCase : Any = output.transformer_decoder_hidden_states self.parent.assertTrue(len(a_ ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(a_ ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(a_ ) , config.decoder_layers ) def _lowerCamelCase ( self , a_ , a_ , a_ , a_=False ): with torch.no_grad(): lowerCAmelCase : Tuple = MaskaFormerModel(config=a_ ) model.to(a_ ) model.eval() lowerCAmelCase : Tuple = model(pixel_values=a_ , pixel_mask=a_ ) lowerCAmelCase : str = model(a_ , output_hidden_states=a_ ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(a_ , a_ ) def _lowerCamelCase ( self , a_ , a_ , a_ , a_ , a_ ): lowerCAmelCase : Union[str, Any] = MaskaFormerForUniversalSegmentation(config=a_ ) model.to(a_ ) model.eval() def comm_check_on_output(a_ ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): lowerCAmelCase : List[str] = model(pixel_values=a_ , pixel_mask=a_ ) lowerCAmelCase : Union[str, Any] = model(a_ ) comm_check_on_output(a_ ) lowerCAmelCase : str = model( pixel_values=a_ , pixel_mask=a_ , mask_labels=a_ , class_labels=a_ ) comm_check_on_output(a_ ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class lowerCamelCase ( _A , _A , unittest.TestCase ): snake_case_ = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () snake_case_ = {"feature-extraction": MaskaFormerModel} if is_torch_available() else {} snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False def _lowerCamelCase ( self ): lowerCAmelCase : List[Any] = MaskaFormerModelTester(self ) lowerCAmelCase : Tuple = ConfigTester(self , config_class=a_ , has_text_modality=a_ ) def _lowerCamelCase ( self ): self.config_tester.run_common_tests() def _lowerCamelCase ( self ): lowerCAmelCase , lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(a_ , **a_ , output_hidden_states=a_ ) def _lowerCamelCase ( self ): lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*a_ ) @unittest.skip(reason="Mask2Former does not use inputs_embeds" ) def _lowerCamelCase ( self ): pass @unittest.skip(reason="Mask2Former does not have a get_input_embeddings method" ) def _lowerCamelCase ( self ): pass @unittest.skip(reason="Mask2Former is not a generative model" ) def _lowerCamelCase ( self ): pass @unittest.skip(reason="Mask2Former does not use token embeddings" ) def _lowerCamelCase ( self ): pass @require_torch_multi_gpu @unittest.skip( reason="Mask2Former has some layers using `add_module` which doesn't work well with `nn.DataParallel`" ) def _lowerCamelCase ( self ): pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def _lowerCamelCase ( self ): pass def _lowerCamelCase ( self ): lowerCAmelCase , lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase : Dict = model_class(a_ ) lowerCAmelCase : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase : List[str] = [*signature.parameters.keys()] lowerCAmelCase : Tuple = ["pixel_values"] self.assertListEqual(arg_names[:1] , a_ ) @slow def _lowerCamelCase ( self ): for model_name in ["facebook/mask2former-swin-small-coco-instance"]: lowerCAmelCase : int = MaskaFormerModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) def _lowerCamelCase ( self ): lowerCAmelCase : List[Any] = (self.model_tester.min_size,) * 2 lowerCAmelCase : Union[str, Any] = { "pixel_values": torch.randn((2, 3, *size) , device=a_ ), "mask_labels": torch.randn((2, 10, *size) , device=a_ ), "class_labels": torch.zeros(2 , 10 , device=a_ ).long(), } lowerCAmelCase : Optional[Any] = self.model_tester.get_config() lowerCAmelCase : List[Any] = MaskaFormerForUniversalSegmentation(a_ ).to(a_ ) lowerCAmelCase : Dict = model(**a_ ) self.assertTrue(outputs.loss is not None ) def _lowerCamelCase ( self ): lowerCAmelCase , lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(a_ , **a_ , output_hidden_states=a_ ) def _lowerCamelCase ( self ): lowerCAmelCase , lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase : Optional[int] = model_class(a_ ).to(a_ ) lowerCAmelCase : Union[str, Any] = model(**a_ , output_attentions=a_ ) self.assertTrue(outputs.attentions is not None ) def _lowerCamelCase ( self ): if not self.model_tester.is_training: return lowerCAmelCase : List[Any] = self.all_model_classes[1] lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() lowerCAmelCase : List[Any] = model_class(a_ ) model.to(a_ ) model.train() lowerCAmelCase : Union[str, Any] = model(a_ , mask_labels=a_ , class_labels=a_ ).loss loss.backward() def _lowerCamelCase ( self ): lowerCAmelCase : Optional[int] = self.all_model_classes[1] lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() lowerCAmelCase : Tuple = True lowerCAmelCase : int = True lowerCAmelCase : int = model_class(a_ ).to(a_ ) model.train() lowerCAmelCase : Any = model(a_ , mask_labels=a_ , class_labels=a_ ) lowerCAmelCase : List[Any] = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() lowerCAmelCase : Optional[int] = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() lowerCAmelCase : List[Any] = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() lowerCAmelCase : Tuple = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=a_ ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) lowerCAmelCase = 1e-4 def __A ( ): lowerCAmelCase : str = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_vision @slow class lowerCamelCase ( unittest.TestCase ): @cached_property def _lowerCamelCase ( self ): return "facebook/mask2former-swin-small-coco-instance" @cached_property def _lowerCamelCase ( self ): return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def _lowerCamelCase ( self ): lowerCAmelCase : int = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(a_ ) lowerCAmelCase : Optional[int] = self.default_image_processor lowerCAmelCase : Dict = prepare_img() lowerCAmelCase : Any = image_processor(a_ , return_tensors="pt" ).to(a_ ) lowerCAmelCase : str = inputs["pixel_values"].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(a_ , (1, 3, 384, 384) ) with torch.no_grad(): lowerCAmelCase : Dict = model(**a_ ) lowerCAmelCase : Union[str, Any] = torch.tensor( [[-0.2790, -1.0717, -1.1668], [-0.5128, -0.3128, -0.4987], [-0.5832, 0.1971, -0.0197]] ).to(a_ ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , a_ , atol=a_ ) ) lowerCAmelCase : Optional[Any] = torch.tensor( [[0.8973, 1.1847, 1.1776], [1.1934, 1.5040, 1.5128], [1.1153, 1.4486, 1.4951]] ).to(a_ ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , a_ , atol=a_ ) ) lowerCAmelCase : Optional[int] = torch.tensor( [[2.1152, 1.7000, -0.8603], [1.5808, 1.8004, -0.9353], [1.6043, 1.7495, -0.5999]] ).to(a_ ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , a_ , atol=a_ ) ) def _lowerCamelCase ( self ): lowerCAmelCase : Any = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(a_ ).eval() lowerCAmelCase : Union[str, Any] = self.default_image_processor lowerCAmelCase : Dict = prepare_img() lowerCAmelCase : Tuple = image_processor(a_ , return_tensors="pt" ).to(a_ ) lowerCAmelCase : Any = inputs["pixel_values"].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(a_ , (1, 3, 384, 384) ) with torch.no_grad(): lowerCAmelCase : List[str] = model(**a_ ) # masks_queries_logits lowerCAmelCase : Optional[Any] = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) lowerCAmelCase : Tuple = [ [-8.7839, -9.0056, -8.8121], [-7.4104, -7.0313, -6.5401], [-6.6105, -6.3427, -6.4675], ] lowerCAmelCase : Tuple = torch.tensor(a_ ).to(a_ ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , a_ , atol=a_ ) ) # class_queries_logits lowerCAmelCase : str = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) ) lowerCAmelCase : List[str] = torch.tensor( [ [1.8324, -8.0835, -4.1922], [0.8450, -9.0050, -3.6053], [0.3045, -7.7293, -3.0275], ] ).to(a_ ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , a_ , atol=a_ ) ) def _lowerCamelCase ( self ): lowerCAmelCase : Tuple = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(a_ ).eval() lowerCAmelCase : Optional[Any] = self.default_image_processor lowerCAmelCase : Optional[int] = image_processor( [np.zeros((3, 800, 1_333) ), np.zeros((3, 800, 1_333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors="pt" , ) lowerCAmelCase : Optional[int] = inputs["pixel_values"].to(a_ ) lowerCAmelCase : int = [el.to(a_ ) for el in inputs["mask_labels"]] lowerCAmelCase : Union[str, Any] = [el.to(a_ ) for el in inputs["class_labels"]] with torch.no_grad(): lowerCAmelCase : Optional[Any] = model(**a_ ) self.assertTrue(outputs.loss is not None )
551
1
import itertools from dataclasses import dataclass from typing import Optional import pandas as pd import pyarrow as pa import datasets from datasets.table import table_cast @dataclass class __lowercase (datasets.BuilderConfig ): """simple docstring""" _UpperCAmelCase = None class __lowercase (datasets.ArrowBasedBuilder ): """simple docstring""" _UpperCAmelCase = PandasConfig def UpperCamelCase__ ( self ): """simple docstring""" return datasets.DatasetInfo(features=self.config.features ) def UpperCamelCase__ ( self , lowerCAmelCase__ ): """simple docstring""" if not self.config.data_files: raise ValueError(F'''At least one data file must be specified, but got data_files={self.config.data_files}''' ) SCREAMING_SNAKE_CASE_ : str = dl_manager.download_and_extract(self.config.data_files ) if isinstance(lowerCAmelCase__ , (str, list, tuple) ): SCREAMING_SNAKE_CASE_ : int = data_files if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ : int = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive SCREAMING_SNAKE_CASE_ : Optional[Any] = [dl_manager.iter_files(lowerCAmelCase__ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'files': files} )] SCREAMING_SNAKE_CASE_ : Dict = [] for split_name, files in data_files.items(): if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ : str = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive SCREAMING_SNAKE_CASE_ : Optional[int] = [dl_manager.iter_files(lowerCAmelCase__ ) for file in files] splits.append(datasets.SplitGenerator(name=lowerCAmelCase__ , gen_kwargs={'files': files} ) ) return splits def UpperCamelCase__ ( self , lowerCAmelCase__ ): """simple docstring""" if self.config.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example SCREAMING_SNAKE_CASE_ : List[str] = table_cast(lowerCAmelCase__ , self.config.features.arrow_schema ) return pa_table def UpperCamelCase__ ( self , lowerCAmelCase__ ): """simple docstring""" for i, file in enumerate(itertools.chain.from_iterable(lowerCAmelCase__ ) ): with open(lowerCAmelCase__ , 'rb' ) as f: SCREAMING_SNAKE_CASE_ : Union[str, Any] = pa.Table.from_pandas(pd.read_pickle(lowerCAmelCase__ ) ) yield i, self._cast_table(lowerCAmelCase__ )
101
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available A = {'configuration_mra': ['MRA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MraConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = [ 'MRA_PRETRAINED_MODEL_ARCHIVE_LIST', 'MraForMaskedLM', 'MraForMultipleChoice', 'MraForQuestionAnswering', 'MraForSequenceClassification', 'MraForTokenClassification', 'MraLayer', 'MraModel', 'MraPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys A = _LazyModule(__name__, globals()['__file__'], _import_structure)
187
0
import warnings from ...utils import logging from .image_processing_deformable_detr import DeformableDetrImageProcessor __UpperCamelCase : Optional[int] = logging.get_logger(__name__) class __UpperCamelCase ( _lowerCAmelCase ): def __init__( self : str , *_lowerCAmelCase : Optional[Any] , **_lowerCAmelCase : List[Any] ) -> None: """simple docstring""" warnings.warn( """The class DeformableDetrFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use DeformableDetrImageProcessor instead.""" , _lowerCAmelCase , ) super().__init__(*_lowerCAmelCase , **_lowerCAmelCase )
53
from math import sqrt def snake_case ( lowerCamelCase ): '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(sqrt(lowerCamelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def snake_case ( lowerCamelCase = 10_001 ): '''simple docstring''' __lowercase = 0 __lowercase = 1 while count != nth and number < 3: number += 1 if is_prime(lowerCamelCase ): count += 1 while count != nth: number += 2 if is_prime(lowerCamelCase ): count += 1 return number if __name__ == "__main__": print(F'''{solution() = }''')
53
1
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) _lowerCamelCase : List[str] = { """google/pix2struct-textcaps-base""": ( """https://huggingface.co/google/pix2struct-textcaps-base/resolve/main/config.json""" ), } class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = '''pix2struct_text_model''' UpperCAmelCase__ = ['''past_key_values'''] UpperCAmelCase__ = { '''hidden_size''': '''hidden_size''', '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self : Dict , UpperCAmelCase__ : Any=50_244 , UpperCAmelCase__ : Tuple=768 , UpperCAmelCase__ : Union[str, Any]=64 , UpperCAmelCase__ : Union[str, Any]=2_048 , UpperCAmelCase__ : List[str]=12 , UpperCAmelCase__ : Any=12 , UpperCAmelCase__ : int=32 , UpperCAmelCase__ : Optional[int]=128 , UpperCAmelCase__ : str=0.1 , UpperCAmelCase__ : List[str]=1e-6 , UpperCAmelCase__ : Dict=1.0 , UpperCAmelCase__ : Any="gelu_new" , UpperCAmelCase__ : Dict=0 , UpperCAmelCase__ : Union[str, Any]=False , UpperCAmelCase__ : int=0 , UpperCAmelCase__ : List[str]=1 , UpperCAmelCase__ : str=False , UpperCAmelCase__ : Any=True , **UpperCAmelCase__ : Union[str, Any] , ) ->Union[str, Any]: '''simple docstring''' A__ = vocab_size A__ = hidden_size A__ = d_kv A__ = d_ff A__ = num_layers A__ = num_heads A__ = relative_attention_num_buckets A__ = relative_attention_max_distance A__ = dropout_rate A__ = layer_norm_epsilon A__ = initializer_factor A__ = use_cache A__ = eos_token_id A__ = decoder_start_token_id # for backwards compatibility A__ = dense_act_fn super().__init__( pad_token_id=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ , decoder_start_token_id=UpperCAmelCase__ , tie_word_embeddings=UpperCAmelCase__ , is_decoder=UpperCAmelCase__ , **UpperCAmelCase__ , ) @classmethod def SCREAMING_SNAKE_CASE ( cls : Optional[Any] , UpperCAmelCase__ : Union[str, os.PathLike] , **UpperCAmelCase__ : Any) ->"PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(UpperCAmelCase__) A__ , A__ = cls.get_config_dict(UpperCAmelCase__ , **UpperCAmelCase__) # get the text config dict if we are loading from Pix2StructConfig if config_dict.get('''model_type''') == "pix2struct": A__ = config_dict['''text_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''') and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""") return cls.from_dict(UpperCAmelCase__ , **UpperCAmelCase__) class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = '''pix2struct_vision_model''' def __init__( self : Optional[Any] , UpperCAmelCase__ : Any=768 , UpperCAmelCase__ : int=768 , UpperCAmelCase__ : int=2_048 , UpperCAmelCase__ : int=64 , UpperCAmelCase__ : Optional[Any]=12 , UpperCAmelCase__ : int=12 , UpperCAmelCase__ : List[Any]="gelu_new" , UpperCAmelCase__ : Union[str, Any]=1e-6 , UpperCAmelCase__ : Dict=0.0 , UpperCAmelCase__ : List[Any]=0.0 , UpperCAmelCase__ : Any=1e-10 , UpperCAmelCase__ : Any=1.0 , UpperCAmelCase__ : Optional[int]=4_096 , UpperCAmelCase__ : Dict=32 , UpperCAmelCase__ : int=128 , **UpperCAmelCase__ : Dict , ) ->Optional[Any]: '''simple docstring''' super().__init__(**UpperCAmelCase__) A__ = hidden_size A__ = patch_embed_hidden_size A__ = d_ff A__ = dropout_rate A__ = num_hidden_layers A__ = num_attention_heads A__ = initializer_range A__ = initializer_factor A__ = attention_dropout A__ = layer_norm_eps A__ = dense_act_fn A__ = seq_len A__ = relative_attention_num_buckets A__ = relative_attention_max_distance A__ = d_kv @classmethod def SCREAMING_SNAKE_CASE ( cls : Tuple , UpperCAmelCase__ : Union[str, os.PathLike] , **UpperCAmelCase__ : Tuple) ->"PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(UpperCAmelCase__) A__ , A__ = cls.get_config_dict(UpperCAmelCase__ , **UpperCAmelCase__) # get the vision config dict if we are loading from Pix2StructConfig if config_dict.get('''model_type''') == "pix2struct": A__ = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''') and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""") return cls.from_dict(UpperCAmelCase__ , **UpperCAmelCase__) class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = '''pix2struct''' UpperCAmelCase__ = True def __init__( self : List[str] , UpperCAmelCase__ : Union[str, Any]=None , UpperCAmelCase__ : Tuple=None , UpperCAmelCase__ : str=1.0 , UpperCAmelCase__ : Optional[int]=0.02 , UpperCAmelCase__ : List[Any]=False , UpperCAmelCase__ : List[Any]=False , UpperCAmelCase__ : Dict=True , **UpperCAmelCase__ : List[Any] , ) ->Union[str, Any]: '''simple docstring''' super().__init__(tie_word_embeddings=UpperCAmelCase__ , is_encoder_decoder=UpperCAmelCase__ , **UpperCAmelCase__) if text_config is None: A__ = {} logger.info('''text_config is None. Initializing the Pix2StructTextConfig with default values.''') if vision_config is None: A__ = {} logger.info('''vision_config is None. Initializing the Pix2StructVisionConfig with default values.''') A__ = PixaStructTextConfig(**UpperCAmelCase__) A__ = PixaStructVisionConfig(**UpperCAmelCase__) A__ = self.text_config.decoder_start_token_id A__ = self.text_config.pad_token_id A__ = self.text_config.eos_token_id A__ = initializer_factor A__ = initializer_range A__ = self.initializer_range A__ = self.initializer_range A__ = is_vqa @classmethod def SCREAMING_SNAKE_CASE ( cls : Optional[Any] , UpperCAmelCase__ : PixaStructTextConfig , UpperCAmelCase__ : PixaStructVisionConfig , **UpperCAmelCase__ : Dict) ->Tuple: '''simple docstring''' return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : List[Any]) ->List[str]: '''simple docstring''' A__ = copy.deepcopy(self.__dict__) A__ = self.text_config.to_dict() A__ = self.vision_config.to_dict() A__ = self.__class__.model_type return output
87
class UpperCamelCase_ : # Public class to implement a graph '''simple docstring''' def __init__( self : str , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : list[list[bool]]) ->None: '''simple docstring''' A__ = row A__ = col A__ = graph def SCREAMING_SNAKE_CASE ( self : Any , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : list[list[bool]]) ->bool: '''simple docstring''' return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : list[list[bool]]) ->None: '''simple docstring''' A__ = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order A__ = [-1, 0, 1, -1, 1, -1, 0, 1] A__ = True # Make those cells visited for k in range(8): if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , UpperCAmelCase__): self.diffs(i + row_nbr[k] , j + col_nbr[k] , UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->int: # And finally, count all islands. '''simple docstring''' A__ = [[False for j in range(self.COL)] for i in range(self.ROW)] A__ = 0 for i in range(self.ROW): for j in range(self.COL): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__) count += 1 return count
87
1
import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser _UpperCAmelCase : Optional[int] = re.compile(R"""\s+""") def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' return {"hash": hashlib.mda(re.sub(UpperCamelCase__ , '' , example['content'] ).encode('utf-8' ) ).hexdigest()} def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' snake_case_ = [len(UpperCamelCase__ ) for line in example['content'].splitlines()] return {"line_mean": np.mean(UpperCamelCase__ ), "line_max": max(UpperCamelCase__ )} def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' snake_case_ = np.mean([c.isalnum() for c in example['content']] ) return {"alpha_frac": alpha_frac} def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' if example["hash"] in uniques: uniques.remove(example['hash'] ) return True else: return False def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__=5 ): '''simple docstring''' snake_case_ = ['auto-generated', 'autogenerated', 'automatically generated'] snake_case_ = example['content'].splitlines() for _, line in zip(range(UpperCamelCase__ ) , UpperCamelCase__ ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__=5 , UpperCamelCase__=0.05 ): '''simple docstring''' snake_case_ = ['unit tests', 'test file', 'configuration file'] snake_case_ = example['content'].splitlines() snake_case_ = 0 snake_case_ = 0 # first test for _, line in zip(range(UpperCamelCase__ ) , UpperCamelCase__ ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test snake_case_ = example['content'].count('\n' ) snake_case_ = int(coeff * nlines ) for line in lines: count_config += line.lower().count('config' ) count_test += line.lower().count('test' ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' snake_case_ = ['def ', 'class ', 'for ', 'while '] snake_case_ = example['content'].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__=4 ): '''simple docstring''' snake_case_ = example['content'].splitlines() snake_case_ = 0 for line in lines: counter += line.lower().count('=' ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' snake_case_ = tokenizer(example['content'] , truncation=UpperCamelCase__ )['input_ids'] snake_case_ = len(example['content'] ) / len(UpperCamelCase__ ) return {"ratio": ratio} def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' snake_case_ = {} results.update(get_hash(UpperCamelCase__ ) ) results.update(line_stats(UpperCamelCase__ ) ) results.update(alpha_stats(UpperCamelCase__ ) ) results.update(char_token_ratio(UpperCamelCase__ ) ) results.update(is_autogenerated(UpperCamelCase__ ) ) results.update(is_config_or_test(UpperCamelCase__ ) ) results.update(has_no_keywords(UpperCamelCase__ ) ) results.update(has_few_assignments(UpperCamelCase__ ) ) return results def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' if not check_uniques(UpperCamelCase__ , UpperCamelCase__ ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' with open(UpperCamelCase__ , 'rb' ) as f_in: with gzip.open(str(UpperCamelCase__ ) + '.gz' , 'wb' , compresslevel=6 ) as f_out: shutil.copyfileobj(UpperCamelCase__ , UpperCamelCase__ ) os.unlink(UpperCamelCase__ ) # Settings _UpperCAmelCase : Optional[Any] = HfArgumentParser(PreprocessingArguments) _UpperCAmelCase : List[Any] = parser.parse_args() if args.num_workers is None: _UpperCAmelCase : int = multiprocessing.cpu_count() _UpperCAmelCase : Optional[int] = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset _UpperCAmelCase : Any = time.time() _UpperCAmelCase : int = load_dataset(args.dataset_name, split="""train""") print(F'''Time to load dataset: {time.time()-t_start:.2f}''') # Run preprocessing _UpperCAmelCase : Dict = time.time() _UpperCAmelCase : str = ds.map(preprocess, num_proc=args.num_workers) print(F'''Time to preprocess dataset: {time.time()-t_start:.2f}''') # Deduplicate hashes _UpperCAmelCase : Optional[int] = set(ds.unique("""hash""")) _UpperCAmelCase : Tuple = len(uniques) / len(ds) print(F'''Fraction of duplicates: {1-frac:.2%}''') # Deduplicate data and apply heuristics _UpperCAmelCase : List[Any] = time.time() _UpperCAmelCase : Optional[int] = ds.filter(filter, fn_kwargs={"""uniques""": uniques, """args""": args}) print(F'''Time to filter dataset: {time.time()-t_start:.2f}''') print(F'''Size of filtered dataset: {len(ds_filter)}''') # Deduplicate with minhash and jaccard similarity if args.near_deduplication: _UpperCAmelCase : str = time.time() _UpperCAmelCase , _UpperCAmelCase : int = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(F'''Time to deduplicate dataset: {time.time()-t_start:.2f}''') print(F'''Size of deduplicate dataset: {len(ds_filter)}''') # Save data in batches of samples_per_file _UpperCAmelCase : Tuple = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / """duplicate_clusters.json""", """w""") as f: json.dump(duplicate_clusters, f) _UpperCAmelCase : str = output_dir / """data""" data_dir.mkdir(exist_ok=True) _UpperCAmelCase : List[str] = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): _UpperCAmelCase : List[str] = str(data_dir / F'''file-{file_number+1:012}.json''') _UpperCAmelCase : str = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(F'''Time to save dataset: {time.time()-t_start:.2f}''')
108
from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' for param, grad_param in zip(model_a.parameters() , model_b.parameters() ): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is False ), F'''Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})''' else: # Grads should be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is True ), F'''Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})''' def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=True ): '''simple docstring''' model.train() snake_case_ = model(UpperCamelCase__ ) snake_case_ = F.mse_loss(UpperCamelCase__ , target.to(output.device ) ) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(UpperCamelCase__ ) def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__=False ): '''simple docstring''' set_seed(42 ) snake_case_ = RegressionModel() snake_case_ = deepcopy(UpperCamelCase__ ) snake_case_ = RegressionDataset(length=80 ) snake_case_ = DataLoader(UpperCamelCase__ , batch_size=16 ) model.to(accelerator.device ) if sched: snake_case_ = AdamW(params=model.parameters() , lr=1E-3 ) snake_case_ = AdamW(params=ddp_model.parameters() , lr=1E-3 ) snake_case_ = LambdaLR(UpperCamelCase__ , lr_lambda=lambda UpperCamelCase__ : epoch**0.65 ) snake_case_ = LambdaLR(UpperCamelCase__ , lr_lambda=lambda UpperCamelCase__ : epoch**0.65 ) # Make a copy of `model` if sched: snake_case_ , snake_case_ , snake_case_ , snake_case_ = accelerator.prepare(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) else: snake_case_ , snake_case_ = accelerator.prepare(UpperCamelCase__ , UpperCamelCase__ ) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' snake_case_ , snake_case_ , snake_case_ = get_training_setup(UpperCamelCase__ ) # Use a single batch snake_case_ , snake_case_ = next(iter(UpperCamelCase__ ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model snake_case_ , snake_case_ = accelerator.gather((ddp_input, ddp_target) ) snake_case_ , snake_case_ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(UpperCamelCase__ ): step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) else: # Sync grads step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue assert torch.allclose( param.grad , ddp_param.grad ), F'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) snake_case_ = ddp_input[torch.randperm(len(UpperCamelCase__ ) )] def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' snake_case_ , snake_case_ , snake_case_ = get_training_setup(UpperCamelCase__ ) # Use a single batch snake_case_ , snake_case_ = next(iter(UpperCamelCase__ ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model snake_case_ , snake_case_ = accelerator.gather((ddp_input, ddp_target) ) snake_case_ , snake_case_ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(UpperCamelCase__ ): step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) else: # Sync grads step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), F'''Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})''' else: # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), F'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) snake_case_ = ddp_input[torch.randperm(len(UpperCamelCase__ ) )] def __lowerCamelCase ( UpperCamelCase__=False , UpperCamelCase__=False ): '''simple docstring''' snake_case_ = Accelerator( split_batches=UpperCamelCase__ , dispatch_batches=UpperCamelCase__ , gradient_accumulation_steps=2 ) # Test that context manager behaves properly snake_case_ , snake_case_ , snake_case_ = get_training_setup(UpperCamelCase__ ) for iteration, batch in enumerate(UpperCamelCase__ ): snake_case_ , snake_case_ = batch.values() # Gather the distributed inputs and targs for the base model snake_case_ , snake_case_ = accelerator.gather((ddp_input, ddp_target) ) snake_case_ , snake_case_ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Do "gradient accumulation" (noop) with accelerator.accumulate(UpperCamelCase__ ): step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(UpperCamelCase__ ) - 1): # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), F'''Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' else: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), F'''Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) snake_case_ = ddp_input[torch.randperm(len(UpperCamelCase__ ) )] GradientState._reset_state() def __lowerCamelCase ( UpperCamelCase__=False , UpperCamelCase__=False ): '''simple docstring''' snake_case_ = Accelerator( split_batches=UpperCamelCase__ , dispatch_batches=UpperCamelCase__ , gradient_accumulation_steps=2 ) # Test that context manager behaves properly snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ = get_training_setup(UpperCamelCase__ , UpperCamelCase__ ) for iteration, batch in enumerate(UpperCamelCase__ ): snake_case_ , snake_case_ = batch.values() # Gather the distributed inputs and targs for the base model snake_case_ , snake_case_ = accelerator.gather((ddp_input, ddp_target) ) snake_case_ , snake_case_ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(UpperCamelCase__ )): if split_batches: sched.step() else: for _ in range(accelerator.num_processes ): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(UpperCamelCase__ ): step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), F'''Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]["lr"]}\nDDP opt: {ddp_opt.param_groups[0]["lr"]}\n''' snake_case_ = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(UpperCamelCase__ )) if accelerator.num_processes > 1: check_model_parameters(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) GradientState._reset_state() def __lowerCamelCase ( ): '''simple docstring''' snake_case_ = Accelerator() snake_case_ = RegressionDataset(length=80 ) snake_case_ = DataLoader(UpperCamelCase__ , batch_size=16 ) snake_case_ = RegressionDataset(length=96 ) snake_case_ = DataLoader(UpperCamelCase__ , batch_size=16 ) snake_case_ , snake_case_ = accelerator.prepare(UpperCamelCase__ , UpperCamelCase__ ) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(UpperCamelCase__ ): assert id(accelerator.gradient_state.active_dataloader ) == id(UpperCamelCase__ ) if iteration < len(UpperCamelCase__ ) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(UpperCamelCase__ ): assert id(accelerator.gradient_state.active_dataloader ) == id(UpperCamelCase__ ) if batch_num < len(UpperCamelCase__ ) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def __lowerCamelCase ( ): '''simple docstring''' snake_case_ = Accelerator() snake_case_ = accelerator.state if state.local_process_index == 0: print('**Test `accumulate` gradient accumulation with dataloader break**' ) test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print('**Test NOOP `no_sync` context manager**' ) test_noop_sync(UpperCamelCase__ ) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print('**Test Distributed `no_sync` context manager**' ) test_distributed_sync(UpperCamelCase__ ) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( '**Test `accumulate` gradient accumulation, ' , F'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , ) test_gradient_accumulation(UpperCamelCase__ , UpperCamelCase__ ) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version('<' , '2.0' ) or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( '**Test `accumulate` gradient accumulation with optimizer and scheduler, ' , '`split_batches=False`, `dispatch_batches=False`**' , ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( '**Test `accumulate` gradient accumulation with optimizer and scheduler, ' , F'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , ) test_gradient_accumulation_with_opt_and_scheduler(UpperCamelCase__ , UpperCamelCase__ ) def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' main() if __name__ == "__main__": main()
108
1
"""simple docstring""" import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("TEST_SAGEMAKER" , "False" ) ) is not True , reason="Skipping test because should only be run when releasing minor transformers version" , ) @pytest.mark.usefixtures("sm_env" ) @parameterized_class( [ { "framework": "pytorch", "script": "run_glue.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.g4dn.xlarge", "results": {"train_runtime": 6_50, "eval_accuracy": 0.6, "eval_loss": 0.9}, }, { "framework": "tensorflow", "script": "run_tf.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.g4dn.xlarge", "results": {"train_runtime": 6_00, "eval_accuracy": 0.3, "eval_loss": 0.9}, }, ] ) class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def lowerCamelCase__ ( self : Optional[Any] ) -> str: """simple docstring""" if self.framework == "pytorch": subprocess.run( F'cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'.split() , encoding="utf-8" , check=snake_case__ , ) assert hasattr(self , "env" ) def lowerCamelCase__ ( self : Optional[int] , _snake_case : int=1 ) -> str: """simple docstring""" return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=F'{self.env.base_job_name}-single' , instance_count=snake_case__ , instance_type=self.instance_type , debugger_hook_config=snake_case__ , hyperparameters={**self.env.hyperparameters, "model_name_or_path": self.model_name_or_path} , metric_definitions=self.env.metric_definitions , py_version="py36" , ) def lowerCamelCase__ ( self : Optional[int] , _snake_case : Optional[int] ) -> Any: """simple docstring""" TrainingJobAnalytics(snake_case__ ).export_csv(F'{self.env.test_path}/{job_name}_metrics.csv' ) def lowerCamelCase__ ( self : List[Any] ) -> str: """simple docstring""" A_ = self.create_estimator() # run training estimator.fit() # result dataframe A_ = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis A_ = list(result_metrics_df[result_metrics_df.metric_name == "eval_accuracy"]["value"] ) A_ = list(result_metrics_df[result_metrics_df.metric_name == "eval_loss"]["value"] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping A_ = ( Session().describe_training_job(estimator.latest_training_job.name ).get("TrainingTimeInSeconds" , 999_999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["eval_accuracy"] for t in eval_accuracy ) assert all(t <= self.results["eval_loss"] for t in eval_loss ) # dump tests result into json file to share in PR with open(F'{estimator.latest_training_job.name}.json' , "w" ) as outfile: json.dump({"train_time": train_runtime, "eval_accuracy": eval_accuracy, "eval_loss": eval_loss} , snake_case__ )
115
"""simple docstring""" # This is the module that test_patching.py uses to test patch_submodule() import os # noqa: this is just for tests import os as renamed_os # noqa: this is just for tests from os import path # noqa: this is just for tests from os import path as renamed_path # noqa: this is just for tests from os.path import join # noqa: this is just for tests from os.path import join as renamed_join # noqa: this is just for tests lowerCAmelCase__ = open # noqa: we just need to have a builtin inside this module to test it properly
645
0
import gc import threading import time import psutil import torch class lowerCAmelCase : def __init__( self : Tuple ) -> Tuple: lowerCamelCase__ : str = psutil.Process() lowerCamelCase__ : int = False def A_ ( self : Optional[Any] ) -> Any: lowerCamelCase__ : int = -1 while True: lowerCamelCase__ : Tuple = max(self.process.memory_info().rss , self.cpu_memory_peak ) # can't sleep or will not catch the peak right (this comment is here on purpose) if not self.peak_monitoring: break def A_ ( self : str ) -> List[Any]: lowerCamelCase__ : List[str] = True lowerCamelCase__ : List[Any] = threading.Thread(target=self.peak_monitor ) lowerCamelCase__ : List[Any] = True self.thread.start() def A_ ( self : Dict ) -> List[Any]: lowerCamelCase__ : Union[str, Any] = False self.thread.join() return self.cpu_memory_peak _UpperCAmelCase : Any = PeakCPUMemory() def SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: # Time lowerCamelCase__ : Optional[int] = {'time': time.time()} gc.collect() torch.cuda.empty_cache() # CPU mem lowerCamelCase__ : Optional[int] = psutil.Process().memory_info().rss cpu_peak_tracker.start() # GPU mem for i in range(torch.cuda.device_count() ): lowerCamelCase__ : List[str] = torch.cuda.memory_allocated(_UpperCAmelCase ) torch.cuda.reset_peak_memory_stats() return measures def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> List[Any]: # Time lowerCamelCase__ : Dict = {'time': time.time() - start_measures['time']} gc.collect() torch.cuda.empty_cache() # CPU mem lowerCamelCase__ : Any = (psutil.Process().memory_info().rss - start_measures['cpu']) / 2**20 lowerCamelCase__ : Any = (cpu_peak_tracker.stop() - start_measures['cpu']) / 2**20 # GPU mem for i in range(torch.cuda.device_count() ): lowerCamelCase__ : str = (torch.cuda.memory_allocated(_UpperCAmelCase ) - start_measures[str(_UpperCAmelCase )]) / 2**20 lowerCamelCase__ : Tuple = (torch.cuda.max_memory_allocated(_UpperCAmelCase ) - start_measures[str(_UpperCAmelCase )]) / 2**20 return measures def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> Optional[Any]: print(F"""{description}:""" ) print(F"""- Time: {measures["time"]:.2f}s""" ) for i in range(torch.cuda.device_count() ): print(F"""- GPU {i} allocated: {measures[str(_UpperCAmelCase )]:.2f}MiB""" ) lowerCamelCase__ : Dict = measures[F"""{i}-peak"""] print(F"""- GPU {i} peak: {peak:.2f}MiB""" ) print(F"""- CPU RAM allocated: {measures["cpu"]:.2f}MiB""" ) print(F"""- CPU RAM peak: {measures["cpu-peak"]:.2f}MiB""" )
188
import socket def SCREAMING_SNAKE_CASE ( ) -> Any: lowerCamelCase__ : int = socket.socket(socket.AF_INET , socket.SOCK_STREAM ) lowerCamelCase__ : Optional[int] = socket.gethostname() lowerCamelCase__ : Optional[int] = 1_2312 sock.connect((host, port) ) sock.send(b'Hello server!' ) with open('Received_file' , 'wb' ) as out_file: print('File opened' ) print('Receiving data...' ) while True: lowerCamelCase__ : str = sock.recv(1024 ) if not data: break out_file.write(_UpperCAmelCase ) print('Successfully received the file' ) sock.close() print('Connection closed' ) if __name__ == "__main__": main()
188
1
'''simple docstring''' import re from typing import Callable, List, Optional, Union import tensorflow as tf try: from tensorflow.keras.optimizers.legacy import Adam except ImportError: from tensorflow.keras.optimizers import Adam class snake_case__ ( tf.keras.optimizers.schedules.LearningRateSchedule ): """simple docstring""" def __init__( self : Dict , UpperCamelCase__ : float , UpperCamelCase__ : Callable , UpperCamelCase__ : int , UpperCamelCase__ : float = 1.0 , UpperCamelCase__ : str = None , ) -> Dict: """simple docstring""" super().__init__() snake_case : Optional[Any] = initial_learning_rate snake_case : Optional[Any] = warmup_steps snake_case : List[str] = power snake_case : Tuple = decay_schedule_fn snake_case : str = name def __call__( self : List[str] , UpperCamelCase__ : Tuple ) -> Optional[int]: """simple docstring""" with tf.name_scope(self.name or '''WarmUp''' ) as name: # Implements polynomial warmup. i.e., if global_step < warmup_steps, the # learning rate will be `global_step/num_warmup_steps * init_lr`. snake_case : Optional[int] = tf.cast(UpperCamelCase__ , tf.floataa ) snake_case : List[Any] = tf.cast(self.warmup_steps , tf.floataa ) snake_case : Optional[int] = global_step_float / warmup_steps_float snake_case : Any = self.initial_learning_rate * tf.math.pow(UpperCamelCase__ , self.power ) return tf.cond( global_step_float < warmup_steps_float , lambda: warmup_learning_rate , lambda: self.decay_schedule_fn(step - self.warmup_steps ) , name=UpperCamelCase__ , ) def lowerCAmelCase ( self : Dict ) -> List[Any]: """simple docstring""" return { "initial_learning_rate": self.initial_learning_rate, "decay_schedule_fn": self.decay_schedule_fn, "warmup_steps": self.warmup_steps, "power": self.power, "name": self.name, } def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = 0.0 , SCREAMING_SNAKE_CASE__ = 0.9 , SCREAMING_SNAKE_CASE__ = 0.999 , SCREAMING_SNAKE_CASE__ = 1E-8 , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = 0.0 , SCREAMING_SNAKE_CASE__ = 1.0 , SCREAMING_SNAKE_CASE__ = None , ) -> str: '''simple docstring''' snake_case : Optional[Any] = tf.keras.optimizers.schedules.PolynomialDecay( initial_learning_rate=SCREAMING_SNAKE_CASE__ , decay_steps=num_train_steps - num_warmup_steps , end_learning_rate=init_lr * min_lr_ratio , power=SCREAMING_SNAKE_CASE__ , ) if num_warmup_steps: snake_case : Union[str, Any] = WarmUp( initial_learning_rate=SCREAMING_SNAKE_CASE__ , decay_schedule_fn=SCREAMING_SNAKE_CASE__ , warmup_steps=SCREAMING_SNAKE_CASE__ , ) if weight_decay_rate > 0.0: snake_case : List[Any] = AdamWeightDecay( learning_rate=SCREAMING_SNAKE_CASE__ , weight_decay_rate=SCREAMING_SNAKE_CASE__ , beta_a=SCREAMING_SNAKE_CASE__ , beta_a=SCREAMING_SNAKE_CASE__ , epsilon=SCREAMING_SNAKE_CASE__ , clipnorm=SCREAMING_SNAKE_CASE__ , global_clipnorm=SCREAMING_SNAKE_CASE__ , exclude_from_weight_decay=['''LayerNorm''', '''layer_norm''', '''bias'''] , include_in_weight_decay=SCREAMING_SNAKE_CASE__ , ) else: snake_case : Union[str, Any] = tf.keras.optimizers.Adam( learning_rate=SCREAMING_SNAKE_CASE__ , beta_a=SCREAMING_SNAKE_CASE__ , beta_a=SCREAMING_SNAKE_CASE__ , epsilon=SCREAMING_SNAKE_CASE__ , clipnorm=SCREAMING_SNAKE_CASE__ , global_clipnorm=SCREAMING_SNAKE_CASE__ , ) # We return the optimizer and the LR scheduler in order to better track the # evolution of the LR independently of the optimizer. return optimizer, lr_schedule class snake_case__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" def __init__( self : Union[str, Any] , UpperCamelCase__ : Union[float, tf.keras.optimizers.schedules.LearningRateSchedule] = 0.001 , UpperCamelCase__ : float = 0.9 , UpperCamelCase__ : float = 0.999 , UpperCamelCase__ : float = 1e-7 , UpperCamelCase__ : bool = False , UpperCamelCase__ : float = 0.0 , UpperCamelCase__ : Optional[List[str]] = None , UpperCamelCase__ : Optional[List[str]] = None , UpperCamelCase__ : str = "AdamWeightDecay" , **UpperCamelCase__ : str , ) -> int: """simple docstring""" super().__init__(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ) snake_case : Dict = weight_decay_rate snake_case : Any = include_in_weight_decay snake_case : Optional[Any] = exclude_from_weight_decay @classmethod def lowerCAmelCase ( cls : Optional[Any] , UpperCamelCase__ : int ) -> List[str]: """simple docstring""" snake_case : List[str] = {'''WarmUp''': WarmUp} return super(UpperCamelCase__ , cls ).from_config(UpperCamelCase__ , custom_objects=UpperCamelCase__ ) def lowerCAmelCase ( self : str , UpperCamelCase__ : str , UpperCamelCase__ : List[Any] , UpperCamelCase__ : int ) -> Union[str, Any]: """simple docstring""" super(UpperCamelCase__ , self )._prepare_local(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) snake_case : str = tf.constant( self.weight_decay_rate , name='''adam_weight_decay_rate''' ) def lowerCAmelCase ( self : Dict , UpperCamelCase__ : Dict , UpperCamelCase__ : Dict , UpperCamelCase__ : Dict ) -> Any: """simple docstring""" snake_case : str = self._do_use_weight_decay(var.name ) if do_decay: return var.assign_sub( learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]['''weight_decay_rate'''] , use_locking=self._use_locking , ) return tf.no_op() def lowerCAmelCase ( self : Dict , UpperCamelCase__ : int , UpperCamelCase__ : List[str]=None , **UpperCamelCase__ : Optional[Any] ) -> List[Any]: """simple docstring""" snake_case ,snake_case : str = list(zip(*UpperCamelCase__ ) ) return super(UpperCamelCase__ , self ).apply_gradients(zip(UpperCamelCase__ , UpperCamelCase__ ) , name=UpperCamelCase__ , **UpperCamelCase__ ) def lowerCAmelCase ( self : List[Any] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Union[str, Any] ) -> List[str]: """simple docstring""" if apply_state is None: return self._decayed_lr_t[var_dtype], {} snake_case : Dict = apply_state or {} snake_case : Union[str, Any] = apply_state.get((var_device, var_dtype) ) if coefficients is None: snake_case : Tuple = self._fallback_apply_state(UpperCamelCase__ , UpperCamelCase__ ) snake_case : List[str] = coefficients return coefficients["lr_t"], {"apply_state": apply_state} def lowerCAmelCase ( self : int , UpperCamelCase__ : Dict , UpperCamelCase__ : Any , UpperCamelCase__ : Dict=None ) -> Dict: """simple docstring""" snake_case ,snake_case : Union[str, Any] = self._get_lr(var.device , var.dtype.base_dtype , UpperCamelCase__ ) snake_case : int = self._decay_weights_op(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) with tf.control_dependencies([decay] ): return super(UpperCamelCase__ , self )._resource_apply_dense(UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ) def lowerCAmelCase ( self : Dict , UpperCamelCase__ : List[str] , UpperCamelCase__ : int , UpperCamelCase__ : str , UpperCamelCase__ : List[Any]=None ) -> Dict: """simple docstring""" snake_case ,snake_case : Union[str, Any] = self._get_lr(var.device , var.dtype.base_dtype , UpperCamelCase__ ) snake_case : Optional[Any] = self._decay_weights_op(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) with tf.control_dependencies([decay] ): return super(UpperCamelCase__ , self )._resource_apply_sparse(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ) def lowerCAmelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" snake_case : List[str] = super().get_config() config.update({'''weight_decay_rate''': self.weight_decay_rate} ) return config def lowerCAmelCase ( self : Any , UpperCamelCase__ : Optional[int] ) -> List[str]: """simple docstring""" if self.weight_decay_rate == 0: return False if self._include_in_weight_decay: for r in self._include_in_weight_decay: if re.search(UpperCamelCase__ , UpperCamelCase__ ) is not None: return True if self._exclude_from_weight_decay: for r in self._exclude_from_weight_decay: if re.search(UpperCamelCase__ , UpperCamelCase__ ) is not None: return False return True class snake_case__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" def __init__( self : Any ) -> List[Any]: """simple docstring""" snake_case : List[Any] = [] snake_case : Optional[Any] = None @property def lowerCAmelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" if self._accum_steps is None: snake_case : Optional[int] = tf.Variable( tf.constant(0 , dtype=tf.intaa ) , trainable=UpperCamelCase__ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) return self._accum_steps.value() @property def lowerCAmelCase ( self : Tuple ) -> Tuple: """simple docstring""" if not self._gradients: raise ValueError('''The accumulator should be called first to initialize the gradients''' ) return [gradient.value() if gradient is not None else gradient for gradient in self._gradients] def __call__( self : Any , UpperCamelCase__ : List[str] ) -> str: """simple docstring""" if not self._gradients: snake_case : Optional[int] = self.step # Create the step variable. self._gradients.extend( [ tf.Variable( tf.zeros_like(UpperCamelCase__ ) , trainable=UpperCamelCase__ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) if gradient is not None else gradient for gradient in gradients ] ) if len(UpperCamelCase__ ) != len(self._gradients ): raise ValueError(f'Expected {len(self._gradients )} gradients, but got {len(UpperCamelCase__ )}' ) for accum_gradient, gradient in zip(self._gradients , UpperCamelCase__ ): if accum_gradient is not None and gradient is not None: accum_gradient.assign_add(UpperCamelCase__ ) self._accum_steps.assign_add(1 ) def lowerCAmelCase ( self : List[Any] ) -> int: """simple docstring""" if not self._gradients: return self._accum_steps.assign(0 ) for gradient in self._gradients: if gradient is not None: gradient.assign(tf.zeros_like(UpperCamelCase__ ) )
638
'''simple docstring''' from __future__ import annotations from collections.abc import Callable from typing import Any, Generic, TypeVar lowercase__ = TypeVar("T") class snake_case__ ( Generic[T] ): """simple docstring""" def __init__( self : str , UpperCamelCase__ : list[T] , UpperCamelCase__ : Callable[[T, T], T] ) -> None: """simple docstring""" snake_case : Any | T = None snake_case : int = len(UpperCamelCase__ ) snake_case : list[T] = [any_type for _ in range(self.N )] + arr snake_case : Optional[int] = fnc self.build() def lowerCAmelCase ( self : Optional[Any] ) -> None: """simple docstring""" for p in range(self.N - 1 , 0 , -1 ): snake_case : List[Any] = self.fn(self.st[p * 2] , self.st[p * 2 + 1] ) def lowerCAmelCase ( self : List[Any] , UpperCamelCase__ : int , UpperCamelCase__ : T ) -> None: """simple docstring""" p += self.N snake_case : int = v while p > 1: snake_case : List[Any] = p // 2 snake_case : List[Any] = self.fn(self.st[p * 2] , self.st[p * 2 + 1] ) def lowerCAmelCase ( self : Union[str, Any] , UpperCamelCase__ : int , UpperCamelCase__ : int ) -> T | None: # noqa: E741 """simple docstring""" snake_case ,snake_case : Union[str, Any] = l + self.N, r + self.N snake_case : T | None = None while l <= r: if l % 2 == 1: snake_case : str = self.st[l] if res is None else self.fn(UpperCamelCase__ , self.st[l] ) if r % 2 == 0: snake_case : Tuple = self.st[r] if res is None else self.fn(UpperCamelCase__ , self.st[r] ) snake_case ,snake_case : Dict = (l + 1) // 2, (r - 1) // 2 return res if __name__ == "__main__": from functools import reduce lowercase__ = [1, 1_0, -2, 9, -3, 8, 4, -7, 5, 6, 1_1, -1_2] lowercase__ = { 0: 7, 1: 2, 2: 6, 3: -1_4, 4: 5, 5: 4, 6: 7, 7: -1_0, 8: 9, 9: 1_0, 1_0: 1_2, 1_1: 1, } lowercase__ = SegmentTree(test_array, min) lowercase__ = SegmentTree(test_array, max) lowercase__ = SegmentTree(test_array, lambda a, b: a + b) def _UpperCamelCase ( ) -> None: '''simple docstring''' for i in range(len(SCREAMING_SNAKE_CASE__ ) ): for j in range(SCREAMING_SNAKE_CASE__ , len(SCREAMING_SNAKE_CASE__ ) ): snake_case : int = reduce(SCREAMING_SNAKE_CASE__ , test_array[i : j + 1] ) snake_case : List[str] = reduce(SCREAMING_SNAKE_CASE__ , test_array[i : j + 1] ) snake_case : Tuple = reduce(lambda SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : a + b , test_array[i : j + 1] ) assert min_range == min_segment_tree.query(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) assert max_range == max_segment_tree.query(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) assert sum_range == sum_segment_tree.query(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) test_all_segments() for index, value in test_updates.items(): lowercase__ = value min_segment_tree.update(index, value) max_segment_tree.update(index, value) sum_segment_tree.update(index, value) test_all_segments()
638
1
'''simple docstring''' import itertools import math def __magic_name__( lowerCamelCase): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5, int(math.sqrt(SCREAMING_SNAKE_CASE_) + 1), 6): if number % i == 0 or number % (i + 2) == 0: return False return True def __magic_name__( ): __lowerCAmelCase = 2 while True: if is_prime(SCREAMING_SNAKE_CASE_): yield num num += 1 def __magic_name__( lowerCamelCase = 1_0_0_0_1): return next(itertools.islice(prime_generator(), nth - 1, SCREAMING_SNAKE_CASE_)) if __name__ == "__main__": print(f"""{solution() = }""")
700
'''simple docstring''' import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers _UpperCAmelCase : Tuple = """python tqdm regex requests packaging filelock numpy tokenizers""".split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append("""dataclasses""") if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append("""importlib_metadata""") for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(f"""can't find {pkg} in {deps.keys()}, check dependency_versions_table.py""") def __magic_name__( lowerCamelCase, lowerCamelCase=None): require_version(deps[pkg], lowerCamelCase)
474
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case = logging.get_logger(__name__) snake_case = { # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): A__ : Optional[Any] = '''megatron-bert''' def __init__( self : str , __lowerCamelCase : int=2_9_0_5_6 , __lowerCamelCase : List[str]=1_0_2_4 , __lowerCamelCase : int=2_4 , __lowerCamelCase : List[str]=1_6 , __lowerCamelCase : Optional[Any]=4_0_9_6 , __lowerCamelCase : Optional[int]="gelu" , __lowerCamelCase : List[Any]=0.1 , __lowerCamelCase : Any=0.1 , __lowerCamelCase : List[str]=5_1_2 , __lowerCamelCase : str=2 , __lowerCamelCase : str=0.0_2 , __lowerCamelCase : Dict=1E-12 , __lowerCamelCase : Any=0 , __lowerCamelCase : Any="absolute" , __lowerCamelCase : Optional[int]=True , **__lowerCamelCase : Optional[Any] , ): """simple docstring""" super().__init__(pad_token_id=__lowerCamelCase , **__lowerCamelCase ) _snake_case = vocab_size _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = hidden_act _snake_case = intermediate_size _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = max_position_embeddings _snake_case = type_vocab_size _snake_case = initializer_range _snake_case = layer_norm_eps _snake_case = position_embedding_type _snake_case = use_cache
103
"""simple docstring""" import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): snake_case = '''pt''' elif is_tf_available(): snake_case = '''tf''' else: snake_case = '''jax''' class UpperCAmelCase ( __SCREAMING_SNAKE_CASE,unittest.TestCase ): A__ : Union[str, Any] = PerceiverTokenizer A__ : Optional[int] = False def __UpperCAmelCase ( self : List[Any] ): """simple docstring""" super().setUp() _snake_case = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def __UpperCAmelCase ( self : int ): """simple docstring""" return PerceiverTokenizer.from_pretrained('''deepmind/language-perceiver''' ) def __UpperCAmelCase ( self : Union[str, Any] , **__lowerCamelCase : Union[str, Any] ): """simple docstring""" return self.tokenizer_class.from_pretrained(self.tmpdirname , **__lowerCamelCase ) def __UpperCAmelCase ( self : Dict , __lowerCamelCase : List[Any] , __lowerCamelCase : List[str]=False , __lowerCamelCase : int=2_0 , __lowerCamelCase : List[Any]=5 ): """simple docstring""" # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for Perceiver because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. _snake_case = [] for i in range(len(__lowerCamelCase ) ): try: _snake_case = tokenizer.decode([i] , clean_up_tokenization_spaces=__lowerCamelCase ) except UnicodeDecodeError: pass toks.append((i, tok) ) _snake_case = list(filter(lambda __lowerCamelCase : re.match(R'''^[ a-zA-Z]+$''' , t[1] ) , __lowerCamelCase ) ) _snake_case = list(filter(lambda __lowerCamelCase : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=__lowerCamelCase ) , __lowerCamelCase ) ) if max_length is not None and len(__lowerCamelCase ) > max_length: _snake_case = toks[:max_length] if min_length is not None and len(__lowerCamelCase ) < min_length and len(__lowerCamelCase ) > 0: while len(__lowerCamelCase ) < min_length: _snake_case = toks + toks # toks_str = [t[1] for t in toks] _snake_case = [t[0] for t in toks] # Ensure consistency _snake_case = tokenizer.decode(__lowerCamelCase , clean_up_tokenization_spaces=__lowerCamelCase ) if " " not in output_txt and len(__lowerCamelCase ) > 1: _snake_case = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=__lowerCamelCase ) + ''' ''' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=__lowerCamelCase ) ) if with_prefix_space: _snake_case = ''' ''' + output_txt _snake_case = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) return output_txt, output_ids def __UpperCAmelCase ( self : List[str] ): """simple docstring""" _snake_case = self.perceiver_tokenizer _snake_case = '''Unicode €.''' _snake_case = tokenizer(__lowerCamelCase ) _snake_case = [4, 9_1, 1_1_6, 1_1_1, 1_0_5, 1_1_7, 1_0_6, 1_0_7, 3_8, 2_3_2, 1_3_6, 1_7_8, 5_2, 5] self.assertEqual(encoded['''input_ids'''] , __lowerCamelCase ) # decoding _snake_case = tokenizer.decode(__lowerCamelCase ) self.assertEqual(__lowerCamelCase , '''[CLS]Unicode €.[SEP]''' ) _snake_case = tokenizer('''e è é ê ë''' ) _snake_case = [4, 1_0_7, 3_8, 2_0_1, 1_7_4, 3_8, 2_0_1, 1_7_5, 3_8, 2_0_1, 1_7_6, 3_8, 2_0_1, 1_7_7, 5] self.assertEqual(encoded['''input_ids'''] , __lowerCamelCase ) # decoding _snake_case = tokenizer.decode(__lowerCamelCase ) self.assertEqual(__lowerCamelCase , '''[CLS]e è é ê ë[SEP]''' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('''e è é ê ë''' ) ) , '''[CLS]e è é ê ë[SEP]''' ) def __UpperCAmelCase ( self : Optional[int] ): """simple docstring""" _snake_case = self.perceiver_tokenizer _snake_case = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] # fmt: off _snake_case = [4, 7_1, 3_8, 1_1_4, 1_1_7, 1_1_6, 1_0_9, 3_8, 1_1_8, 1_0_3, 1_2_0, 1_0_3, 1_0_9, 1_2_0, 1_0_3, 1_1_8, 1_1_0, 3_8, 1_0_8, 1_1_7, 1_2_0, 3_8, 1_2_1, 1_2_3, 1_1_5, 1_1_5, 1_0_3, 1_2_0, 1_1_1, 1_2_8, 1_0_3, 1_2_2, 1_1_1, 1_1_7, 1_1_6, 5_2, 5, 0] # fmt: on _snake_case = tokenizer(__lowerCamelCase , padding=__lowerCamelCase , return_tensors=__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) if FRAMEWORK != "jax": _snake_case = list(batch.input_ids.numpy()[0] ) else: _snake_case = list(batch.input_ids.tolist()[0] ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) self.assertEqual((2, 3_8) , batch.input_ids.shape ) self.assertEqual((2, 3_8) , batch.attention_mask.shape ) def __UpperCAmelCase ( self : Any ): """simple docstring""" _snake_case = self.perceiver_tokenizer _snake_case = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] _snake_case = tokenizer(__lowerCamelCase , padding=__lowerCamelCase , return_tensors=__lowerCamelCase ) # check if input_ids are returned and no decoder_input_ids self.assertIn('''input_ids''' , __lowerCamelCase ) self.assertIn('''attention_mask''' , __lowerCamelCase ) self.assertNotIn('''decoder_input_ids''' , __lowerCamelCase ) self.assertNotIn('''decoder_attention_mask''' , __lowerCamelCase ) def __UpperCAmelCase ( self : int ): """simple docstring""" _snake_case = self.perceiver_tokenizer _snake_case = [ '''Summary of the text.''', '''Another summary.''', ] _snake_case = tokenizer( text_target=__lowerCamelCase , max_length=3_2 , padding='''max_length''' , truncation=__lowerCamelCase , return_tensors=__lowerCamelCase ) self.assertEqual(3_2 , targets['''input_ids'''].shape[1] ) def __UpperCAmelCase ( self : List[Any] ): """simple docstring""" # safety check on max_len default value so we are sure the test works _snake_case = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): self.assertNotEqual(tokenizer.model_max_length , 4_2 ) # Now let's start the test _snake_case = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc _snake_case = tempfile.mkdtemp() _snake_case = ''' He is very happy, UNwant\u00E9d,running''' _snake_case = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) tokenizer.save_pretrained(__lowerCamelCase ) _snake_case = tokenizer.__class__.from_pretrained(__lowerCamelCase ) _snake_case = after_tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) shutil.rmtree(__lowerCamelCase ) _snake_case = self.get_tokenizers(model_max_length=4_2 ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc _snake_case = tempfile.mkdtemp() _snake_case = ''' He is very happy, UNwant\u00E9d,running''' tokenizer.add_tokens(['''bim''', '''bambam'''] ) _snake_case = tokenizer.additional_special_tokens additional_special_tokens.append('''new_additional_special_token''' ) tokenizer.add_special_tokens({'''additional_special_tokens''': additional_special_tokens} ) _snake_case = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) tokenizer.save_pretrained(__lowerCamelCase ) _snake_case = tokenizer.__class__.from_pretrained(__lowerCamelCase ) _snake_case = after_tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) self.assertIn('''new_additional_special_token''' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 4_2 ) _snake_case = tokenizer.__class__.from_pretrained(__lowerCamelCase , model_max_length=4_3 ) self.assertEqual(tokenizer.model_max_length , 4_3 ) shutil.rmtree(__lowerCamelCase ) def __UpperCAmelCase ( self : Tuple ): """simple docstring""" _snake_case = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(__lowerCamelCase ) with open(os.path.join(__lowerCamelCase , '''special_tokens_map.json''' ) , encoding='''utf-8''' ) as json_file: _snake_case = json.load(__lowerCamelCase ) with open(os.path.join(__lowerCamelCase , '''tokenizer_config.json''' ) , encoding='''utf-8''' ) as json_file: _snake_case = json.load(__lowerCamelCase ) _snake_case = [f"""<extra_id_{i}>""" for i in range(1_2_5 )] _snake_case = added_tokens_extra_ids + [ '''an_additional_special_token''' ] _snake_case = added_tokens_extra_ids + [ '''an_additional_special_token''' ] with open(os.path.join(__lowerCamelCase , '''special_tokens_map.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(__lowerCamelCase , __lowerCamelCase ) with open(os.path.join(__lowerCamelCase , '''tokenizer_config.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(__lowerCamelCase , __lowerCamelCase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files _snake_case = tokenizer_class.from_pretrained( __lowerCamelCase , ) self.assertIn( '''an_additional_special_token''' , tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ['''an_additional_special_token'''] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['''an_additional_special_token'''] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained _snake_case = added_tokens_extra_ids + [AddedToken('''a_new_additional_special_token''' , lstrip=__lowerCamelCase )] _snake_case = tokenizer_class.from_pretrained( __lowerCamelCase , additional_special_tokens=__lowerCamelCase , ) self.assertIn('''a_new_additional_special_token''' , tokenizer.additional_special_tokens ) self.assertEqual( ['''a_new_additional_special_token'''] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['''a_new_additional_special_token'''] ) ) , ) def __UpperCAmelCase ( self : Optional[int] ): """simple docstring""" _snake_case = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([1_7_8] ) , '''�''' ) def __UpperCAmelCase ( self : Any ): """simple docstring""" pass def __UpperCAmelCase ( self : str ): """simple docstring""" pass def __UpperCAmelCase ( self : str ): """simple docstring""" pass def __UpperCAmelCase ( self : int ): """simple docstring""" pass def __UpperCAmelCase ( self : List[Any] ): """simple docstring""" # The default common tokenizer tests uses invalid tokens for Perceiver that can only accept one-character # strings and special added tokens as tokens _snake_case = self.get_tokenizers(fast=__lowerCamelCase , do_lower_case=__lowerCamelCase ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): _snake_case = ['''[CLS]''', '''t''', '''h''', '''i''', '''s''', ''' ''', '''i''', '''s''', ''' ''', '''a''', ''' ''', '''t''', '''e''', '''s''', '''t''', '''[SEP]'''] _snake_case = tokenizer.convert_tokens_to_string(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase )
103
1
'''simple docstring''' from .integrations import ( is_optuna_available, is_ray_available, is_sigopt_available, is_wandb_available, run_hp_search_optuna, run_hp_search_ray, run_hp_search_sigopt, run_hp_search_wandb, ) from .trainer_utils import ( HPSearchBackend, default_hp_space_optuna, default_hp_space_ray, default_hp_space_sigopt, default_hp_space_wandb, ) from .utils import logging _lowercase : Optional[int] =logging.get_logger(__name__) class _SCREAMING_SNAKE_CASE : A__ = 42 A__ = None @staticmethod def lowerCAmelCase ( ) -> Optional[int]: """simple docstring""" raise NotImplementedError def lowerCAmelCase ( self : Dict , __UpperCamelCase : Optional[int] , __UpperCamelCase : int , __UpperCamelCase : str , **__UpperCamelCase : Any ) -> List[Any]: """simple docstring""" raise NotImplementedError def lowerCAmelCase ( self : int , __UpperCamelCase : Tuple ) -> Tuple: """simple docstring""" raise NotImplementedError def lowerCAmelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" if not self.is_available(): raise RuntimeError( F'''You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}.''' ) @classmethod def lowerCAmelCase ( cls : Any ) -> Union[str, Any]: """simple docstring""" return F'''`pip install {cls.pip_package or cls.name}`''' class _SCREAMING_SNAKE_CASE (lowercase__ ): A__ = 'optuna' @staticmethod def lowerCAmelCase ( ) -> Optional[Any]: """simple docstring""" return is_optuna_available() def lowerCAmelCase ( self : Any , __UpperCamelCase : List[str] , __UpperCamelCase : int , __UpperCamelCase : str , **__UpperCamelCase : Tuple ) -> Optional[Any]: """simple docstring""" return run_hp_search_optuna(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ) def lowerCAmelCase ( self : Tuple , __UpperCamelCase : Union[str, Any] ) -> Optional[Any]: """simple docstring""" return default_hp_space_optuna(__UpperCamelCase ) class _SCREAMING_SNAKE_CASE (lowercase__ ): A__ = 'ray' A__ = '\'ray[tune]\'' @staticmethod def lowerCAmelCase ( ) -> int: """simple docstring""" return is_ray_available() def lowerCAmelCase ( self : Tuple , __UpperCamelCase : Tuple , __UpperCamelCase : int , __UpperCamelCase : str , **__UpperCamelCase : Any ) -> Optional[Any]: """simple docstring""" return run_hp_search_ray(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ) def lowerCAmelCase ( self : Union[str, Any] , __UpperCamelCase : Optional[int] ) -> List[Any]: """simple docstring""" return default_hp_space_ray(__UpperCamelCase ) class _SCREAMING_SNAKE_CASE (lowercase__ ): A__ = 'sigopt' @staticmethod def lowerCAmelCase ( ) -> int: """simple docstring""" return is_sigopt_available() def lowerCAmelCase ( self : Union[str, Any] , __UpperCamelCase : List[str] , __UpperCamelCase : int , __UpperCamelCase : str , **__UpperCamelCase : Tuple ) -> Any: """simple docstring""" return run_hp_search_sigopt(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ) def lowerCAmelCase ( self : Optional[int] , __UpperCamelCase : Optional[int] ) -> Union[str, Any]: """simple docstring""" return default_hp_space_sigopt(__UpperCamelCase ) class _SCREAMING_SNAKE_CASE (lowercase__ ): A__ = 'wandb' @staticmethod def lowerCAmelCase ( ) -> Union[str, Any]: """simple docstring""" return is_wandb_available() def lowerCAmelCase ( self : Optional[Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : int , __UpperCamelCase : str , **__UpperCamelCase : List[Any] ) -> List[Any]: """simple docstring""" return run_hp_search_wandb(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ) def lowerCAmelCase ( self : Optional[Any] , __UpperCamelCase : Any ) -> Union[str, Any]: """simple docstring""" return default_hp_space_wandb(__UpperCamelCase ) _lowercase : Optional[int] ={ HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend] } def __UpperCAmelCase ( ) -> List[str]: snake_case__ : List[str] = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()] if len(_SCREAMING_SNAKE_CASE ) > 0: snake_case__ : int = available_backends[0].name if len(_SCREAMING_SNAKE_CASE ) > 1: logger.info( F'''{len(_SCREAMING_SNAKE_CASE )} hyperparameter search backends available. Using {name} as the default.''' ) return name raise RuntimeError( '''No hyperparameter search backend available.\n''' + '''\n'''.join( F''' - To install {backend.name} run {backend.pip_install()}''' for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() ) )
707
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_albert import AlbertTokenizer else: _lowercase : List[Any] =None _lowercase : List[str] =logging.get_logger(__name__) _lowercase : Tuple ={"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} _lowercase : Optional[Any] ={ "vocab_file": { "albert-base-v1": "https://huggingface.co/albert-base-v1/resolve/main/spiece.model", "albert-large-v1": "https://huggingface.co/albert-large-v1/resolve/main/spiece.model", "albert-xlarge-v1": "https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model", "albert-xxlarge-v1": "https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model", "albert-base-v2": "https://huggingface.co/albert-base-v2/resolve/main/spiece.model", "albert-large-v2": "https://huggingface.co/albert-large-v2/resolve/main/spiece.model", "albert-xlarge-v2": "https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model", "albert-xxlarge-v2": "https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model", }, "tokenizer_file": { "albert-base-v1": "https://huggingface.co/albert-base-v1/resolve/main/tokenizer.json", "albert-large-v1": "https://huggingface.co/albert-large-v1/resolve/main/tokenizer.json", "albert-xlarge-v1": "https://huggingface.co/albert-xlarge-v1/resolve/main/tokenizer.json", "albert-xxlarge-v1": "https://huggingface.co/albert-xxlarge-v1/resolve/main/tokenizer.json", "albert-base-v2": "https://huggingface.co/albert-base-v2/resolve/main/tokenizer.json", "albert-large-v2": "https://huggingface.co/albert-large-v2/resolve/main/tokenizer.json", "albert-xlarge-v2": "https://huggingface.co/albert-xlarge-v2/resolve/main/tokenizer.json", "albert-xxlarge-v2": "https://huggingface.co/albert-xxlarge-v2/resolve/main/tokenizer.json", }, } _lowercase : int ={ "albert-base-v1": 512, "albert-large-v1": 512, "albert-xlarge-v1": 512, "albert-xxlarge-v1": 512, "albert-base-v2": 512, "albert-large-v2": 512, "albert-xlarge-v2": 512, "albert-xxlarge-v2": 512, } _lowercase : Tuple ="▁" class _SCREAMING_SNAKE_CASE (lowercase__ ): A__ = VOCAB_FILES_NAMES A__ = PRETRAINED_VOCAB_FILES_MAP A__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ = AlbertTokenizer def __init__( self : Optional[Any] , __UpperCamelCase : Dict=None , __UpperCamelCase : Optional[int]=None , __UpperCamelCase : Tuple=True , __UpperCamelCase : Optional[int]=True , __UpperCamelCase : Optional[int]=False , __UpperCamelCase : int="[CLS]" , __UpperCamelCase : List[Any]="[SEP]" , __UpperCamelCase : List[Any]="<unk>" , __UpperCamelCase : Optional[int]="[SEP]" , __UpperCamelCase : str="<pad>" , __UpperCamelCase : Any="[CLS]" , __UpperCamelCase : List[str]="[MASK]" , **__UpperCamelCase : str , ) -> int: """simple docstring""" snake_case__ : str = ( AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase , normalized=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else mask_token ) super().__init__( __UpperCamelCase , tokenizer_file=__UpperCamelCase , do_lower_case=__UpperCamelCase , remove_space=__UpperCamelCase , keep_accents=__UpperCamelCase , bos_token=__UpperCamelCase , eos_token=__UpperCamelCase , unk_token=__UpperCamelCase , sep_token=__UpperCamelCase , pad_token=__UpperCamelCase , cls_token=__UpperCamelCase , mask_token=__UpperCamelCase , **__UpperCamelCase , ) snake_case__ : str = do_lower_case snake_case__ : int = remove_space snake_case__ : Optional[Any] = keep_accents snake_case__ : List[Any] = vocab_file snake_case__ : Optional[Any] = False if not self.vocab_file else True def lowerCAmelCase ( self : List[Any] , __UpperCamelCase : List[int] , __UpperCamelCase : Optional[List[int]] = None ) -> List[int]: """simple docstring""" snake_case__ : List[Any] = [self.sep_token_id] snake_case__ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCAmelCase ( self : str , __UpperCamelCase : List[int] , __UpperCamelCase : Optional[List[int]] = None ) -> List[int]: """simple docstring""" snake_case__ : str = [self.sep_token_id] snake_case__ : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCAmelCase ( self : List[str] , __UpperCamelCase : str , __UpperCamelCase : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(__UpperCamelCase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return snake_case__ : int = os.path.join( __UpperCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCamelCase ): copyfile(self.vocab_file , __UpperCamelCase ) return (out_vocab_file,)
574
0
from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class _UpperCAmelCase : def __init__( self : Tuple , UpperCAmelCase : int , UpperCAmelCase : List[str]=13 , UpperCAmelCase : Union[str, Any]=7 , UpperCAmelCase : Dict=True , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : Tuple=True , UpperCAmelCase : Tuple=True , UpperCAmelCase : List[str]=99 , UpperCAmelCase : List[str]=32 , UpperCAmelCase : str=2 , UpperCAmelCase : Tuple=4 , UpperCAmelCase : List[Any]=37 , UpperCAmelCase : Any="gelu" , UpperCAmelCase : List[Any]=0.1 , UpperCAmelCase : List[str]=0.1 , UpperCAmelCase : Tuple=5_12 , UpperCAmelCase : Tuple=16 , UpperCAmelCase : Tuple=2 , UpperCAmelCase : Any=0.02 , UpperCAmelCase : List[Any]=3 , UpperCAmelCase : Tuple=4 , UpperCAmelCase : Any=None , ): SCREAMING_SNAKE_CASE_ :Optional[Any] = parent SCREAMING_SNAKE_CASE_ :int = 13 SCREAMING_SNAKE_CASE_ :Any = 7 SCREAMING_SNAKE_CASE_ :Tuple = True SCREAMING_SNAKE_CASE_ :Tuple = True SCREAMING_SNAKE_CASE_ :str = True SCREAMING_SNAKE_CASE_ :str = True SCREAMING_SNAKE_CASE_ :Optional[Any] = 99 SCREAMING_SNAKE_CASE_ :int = 3_84 SCREAMING_SNAKE_CASE_ :Union[str, Any] = 2 SCREAMING_SNAKE_CASE_ :Any = 4 SCREAMING_SNAKE_CASE_ :Any = 37 SCREAMING_SNAKE_CASE_ :List[Any] = "gelu" SCREAMING_SNAKE_CASE_ :Dict = 0.1 SCREAMING_SNAKE_CASE_ :int = 0.1 SCREAMING_SNAKE_CASE_ :Optional[Any] = 5_12 SCREAMING_SNAKE_CASE_ :Tuple = 16 SCREAMING_SNAKE_CASE_ :List[str] = 2 SCREAMING_SNAKE_CASE_ :Any = 0.02 SCREAMING_SNAKE_CASE_ :str = 3 SCREAMING_SNAKE_CASE_ :List[str] = 4 SCREAMING_SNAKE_CASE_ :Any = 1_28 SCREAMING_SNAKE_CASE_ :str = 2 SCREAMING_SNAKE_CASE_ :Union[str, Any] = 9 SCREAMING_SNAKE_CASE_ :Any = 1 SCREAMING_SNAKE_CASE_ :int = None def _snake_case ( self : Any): SCREAMING_SNAKE_CASE_ :Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) SCREAMING_SNAKE_CASE_ :int = None if self.use_input_mask: SCREAMING_SNAKE_CASE_ :str = random_attention_mask([self.batch_size, self.seq_length]) SCREAMING_SNAKE_CASE_ :str = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE_ :str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) SCREAMING_SNAKE_CASE_ :Optional[Any] = None SCREAMING_SNAKE_CASE_ :Optional[Any] = None SCREAMING_SNAKE_CASE_ :Optional[int] = None if self.use_labels: SCREAMING_SNAKE_CASE_ :List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size) SCREAMING_SNAKE_CASE_ :List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) SCREAMING_SNAKE_CASE_ :Optional[Any] = ids_tensor([self.batch_size] , self.num_choices) SCREAMING_SNAKE_CASE_ :str = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=UpperCAmelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _snake_case ( self : List[Any] , UpperCAmelCase : str , UpperCAmelCase : Tuple , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[str] , UpperCAmelCase : str , UpperCAmelCase : Tuple , UpperCAmelCase : Dict): SCREAMING_SNAKE_CASE_ :Optional[Any] = TFConvBertModel(config=UpperCAmelCase) SCREAMING_SNAKE_CASE_ :int = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} SCREAMING_SNAKE_CASE_ :Dict = [input_ids, input_mask] SCREAMING_SNAKE_CASE_ :Optional[int] = model(UpperCAmelCase) SCREAMING_SNAKE_CASE_ :int = model(UpperCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def _snake_case ( self : int , UpperCAmelCase : str , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : List[str] , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] , UpperCAmelCase : Tuple): SCREAMING_SNAKE_CASE_ :Optional[int] = TFConvBertForMaskedLM(config=UpperCAmelCase) SCREAMING_SNAKE_CASE_ :Tuple = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } SCREAMING_SNAKE_CASE_ :List[Any] = model(UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def _snake_case ( self : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Any , UpperCAmelCase : List[str] , UpperCAmelCase : int , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : str): SCREAMING_SNAKE_CASE_ :Tuple = self.num_labels SCREAMING_SNAKE_CASE_ :List[Any] = TFConvBertForSequenceClassification(config=UpperCAmelCase) SCREAMING_SNAKE_CASE_ :Tuple = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } SCREAMING_SNAKE_CASE_ :List[str] = model(UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def _snake_case ( self : str , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Any , UpperCAmelCase : Tuple , UpperCAmelCase : Tuple , UpperCAmelCase : Dict): SCREAMING_SNAKE_CASE_ :int = self.num_choices SCREAMING_SNAKE_CASE_ :Tuple = TFConvBertForMultipleChoice(config=UpperCAmelCase) SCREAMING_SNAKE_CASE_ :List[str] = tf.tile(tf.expand_dims(UpperCAmelCase , 1) , (1, self.num_choices, 1)) SCREAMING_SNAKE_CASE_ :List[Any] = tf.tile(tf.expand_dims(UpperCAmelCase , 1) , (1, self.num_choices, 1)) SCREAMING_SNAKE_CASE_ :Optional[Any] = tf.tile(tf.expand_dims(UpperCAmelCase , 1) , (1, self.num_choices, 1)) SCREAMING_SNAKE_CASE_ :Union[str, Any] = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } SCREAMING_SNAKE_CASE_ :List[Any] = model(UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def _snake_case ( self : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : Tuple , UpperCAmelCase : int , UpperCAmelCase : Dict , UpperCAmelCase : Any , UpperCAmelCase : Any , UpperCAmelCase : Any): SCREAMING_SNAKE_CASE_ :List[str] = self.num_labels SCREAMING_SNAKE_CASE_ :List[Any] = TFConvBertForTokenClassification(config=UpperCAmelCase) SCREAMING_SNAKE_CASE_ :int = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } SCREAMING_SNAKE_CASE_ :Any = model(UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def _snake_case ( self : Tuple , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Dict , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : int , UpperCAmelCase : List[str]): SCREAMING_SNAKE_CASE_ :int = TFConvBertForQuestionAnswering(config=UpperCAmelCase) SCREAMING_SNAKE_CASE_ :Any = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } SCREAMING_SNAKE_CASE_ :List[str] = model(UpperCAmelCase) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def _snake_case ( self : Any): SCREAMING_SNAKE_CASE_ :List[Any] = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ) :int = config_and_inputs SCREAMING_SNAKE_CASE_ :str = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class _UpperCAmelCase ( lowercase , lowercase , unittest.TestCase ): lowerCamelCase_ : Dict = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) lowerCamelCase_ : int = ( { """feature-extraction""": TFConvBertModel, """fill-mask""": TFConvBertForMaskedLM, """question-answering""": TFConvBertForQuestionAnswering, """text-classification""": TFConvBertForSequenceClassification, """token-classification""": TFConvBertForTokenClassification, """zero-shot""": TFConvBertForSequenceClassification, } if is_tf_available() else {} ) lowerCamelCase_ : int = False lowerCamelCase_ : List[Any] = False lowerCamelCase_ : List[Any] = False def _snake_case ( self : List[str]): SCREAMING_SNAKE_CASE_ :Union[str, Any] = TFConvBertModelTester(self) SCREAMING_SNAKE_CASE_ :Dict = ConfigTester(self , config_class=UpperCAmelCase , hidden_size=37) def _snake_case ( self : Union[str, Any]): self.config_tester.run_common_tests() def _snake_case ( self : Tuple): SCREAMING_SNAKE_CASE_ :Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase) def _snake_case ( self : str): SCREAMING_SNAKE_CASE_ :List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase) def _snake_case ( self : Tuple): SCREAMING_SNAKE_CASE_ :List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*UpperCAmelCase) def _snake_case ( self : Any): SCREAMING_SNAKE_CASE_ :Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase) def _snake_case ( self : int): SCREAMING_SNAKE_CASE_ :Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase) def _snake_case ( self : int): SCREAMING_SNAKE_CASE_ :Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase) @slow def _snake_case ( self : Dict): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ :str = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ :int = True SCREAMING_SNAKE_CASE_ :List[str] = True if hasattr(UpperCAmelCase , "use_cache"): SCREAMING_SNAKE_CASE_ :Optional[int] = True SCREAMING_SNAKE_CASE_ :List[Any] = getattr(self.model_tester , "encoder_seq_length" , self.model_tester.seq_length) SCREAMING_SNAKE_CASE_ :Union[str, Any] = getattr(self.model_tester , "key_length" , UpperCAmelCase) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ :Tuple = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase) SCREAMING_SNAKE_CASE_ :Dict = model_class(UpperCAmelCase) SCREAMING_SNAKE_CASE_ :Optional[Any] = len(model(UpperCAmelCase)) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(UpperCAmelCase , saved_model=UpperCAmelCase) SCREAMING_SNAKE_CASE_ :Tuple = os.path.join(UpperCAmelCase , "saved_model" , "1") SCREAMING_SNAKE_CASE_ :Dict = tf.keras.models.load_model(UpperCAmelCase) SCREAMING_SNAKE_CASE_ :List[Any] = model(UpperCAmelCase) if self.is_encoder_decoder: SCREAMING_SNAKE_CASE_ :Optional[Any] = outputs["encoder_hidden_states"] SCREAMING_SNAKE_CASE_ :Tuple = outputs["encoder_attentions"] else: SCREAMING_SNAKE_CASE_ :Tuple = outputs["hidden_states"] SCREAMING_SNAKE_CASE_ :Optional[int] = outputs["attentions"] self.assertEqual(len(UpperCAmelCase) , UpperCAmelCase) SCREAMING_SNAKE_CASE_ :List[str] = getattr( self.model_tester , "expected_num_hidden_layers" , self.model_tester.num_hidden_layers + 1) self.assertEqual(len(UpperCAmelCase) , UpperCAmelCase) self.assertListEqual( list(output_hidden_states[0].shape[-2:]) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(UpperCAmelCase) , self.model_tester.num_hidden_layers) self.assertListEqual( list(output_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def _snake_case ( self : Optional[Any]): SCREAMING_SNAKE_CASE_ :List[Any] = TFConvBertModel.from_pretrained("YituTech/conv-bert-base") self.assertIsNotNone(UpperCAmelCase) def _snake_case ( self : Any): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ :List[Any] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ :str = True SCREAMING_SNAKE_CASE_ :Union[str, Any] = getattr(self.model_tester , "decoder_seq_length" , self.model_tester.seq_length) SCREAMING_SNAKE_CASE_ :int = getattr(self.model_tester , "encoder_seq_length" , self.model_tester.seq_length) SCREAMING_SNAKE_CASE_ :List[Any] = getattr(self.model_tester , "key_length" , UpperCAmelCase) SCREAMING_SNAKE_CASE_ :List[Any] = getattr(self.model_tester , "key_length" , UpperCAmelCase) def check_decoder_attentions_output(UpperCAmelCase : int): SCREAMING_SNAKE_CASE_ :Any = len(UpperCAmelCase) self.assertEqual(out_len % 2 , 0) SCREAMING_SNAKE_CASE_ :Optional[Any] = outputs.decoder_attentions self.assertEqual(len(UpperCAmelCase) , self.model_tester.num_hidden_layers) self.assertListEqual( list(decoder_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(UpperCAmelCase : int): SCREAMING_SNAKE_CASE_ :Optional[int] = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(UpperCAmelCase) , self.model_tester.num_hidden_layers) self.assertListEqual( list(attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ :List[Any] = True SCREAMING_SNAKE_CASE_ :List[str] = False SCREAMING_SNAKE_CASE_ :str = model_class(UpperCAmelCase) SCREAMING_SNAKE_CASE_ :Union[str, Any] = model(self._prepare_for_class(UpperCAmelCase , UpperCAmelCase)) SCREAMING_SNAKE_CASE_ :Dict = len(UpperCAmelCase) self.assertEqual(config.output_hidden_states , UpperCAmelCase) check_encoder_attentions_output(UpperCAmelCase) if self.is_encoder_decoder: SCREAMING_SNAKE_CASE_ :str = model_class(UpperCAmelCase) SCREAMING_SNAKE_CASE_ :Optional[int] = model(self._prepare_for_class(UpperCAmelCase , UpperCAmelCase)) self.assertEqual(config.output_hidden_states , UpperCAmelCase) check_decoder_attentions_output(UpperCAmelCase) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] SCREAMING_SNAKE_CASE_ :int = True SCREAMING_SNAKE_CASE_ :str = model_class(UpperCAmelCase) SCREAMING_SNAKE_CASE_ :Optional[int] = model(self._prepare_for_class(UpperCAmelCase , UpperCAmelCase)) self.assertEqual(config.output_hidden_states , UpperCAmelCase) check_encoder_attentions_output(UpperCAmelCase) # Check attention is always last and order is fine SCREAMING_SNAKE_CASE_ :Any = True SCREAMING_SNAKE_CASE_ :int = True SCREAMING_SNAKE_CASE_ :int = model_class(UpperCAmelCase) SCREAMING_SNAKE_CASE_ :Optional[Any] = model(self._prepare_for_class(UpperCAmelCase , UpperCAmelCase)) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(UpperCAmelCase)) self.assertEqual(model.config.output_hidden_states , UpperCAmelCase) check_encoder_attentions_output(UpperCAmelCase) @require_tf class _UpperCAmelCase ( unittest.TestCase ): @slow def _snake_case ( self : str): SCREAMING_SNAKE_CASE_ :Tuple = TFConvBertModel.from_pretrained("YituTech/conv-bert-base") SCREAMING_SNAKE_CASE_ :str = tf.constant([[0, 1, 2, 3, 4, 5]]) SCREAMING_SNAKE_CASE_ :Tuple = model(UpperCAmelCase)[0] SCREAMING_SNAKE_CASE_ :Tuple = [1, 6, 7_68] self.assertEqual(output.shape , UpperCAmelCase) SCREAMING_SNAKE_CASE_ :str = tf.constant( [ [ [-0.03475493, -0.4686034, -0.30638832], [0.22637248, -0.26988646, -0.7423424], [0.10324868, -0.45013508, -0.58280784], ] ]) tf.debugging.assert_near(output[:, :3, :3] , UpperCAmelCase , atol=1E-4)
631
import unittest from transformers.utils.backbone_utils import ( BackboneMixin, get_aligned_output_features_output_indices, verify_out_features_out_indices, ) class _UpperCAmelCase ( unittest.TestCase ): def _snake_case ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_ :Optional[int] = ["a", "b", "c"] # Defaults to last layer if both are None SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ :Dict = get_aligned_output_features_output_indices(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase) self.assertEqual(UpperCAmelCase , ["c"]) self.assertEqual(UpperCAmelCase , [2]) # Out indices set to match out features SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ :Tuple = get_aligned_output_features_output_indices(["a", "c"] , UpperCAmelCase , UpperCAmelCase) self.assertEqual(UpperCAmelCase , ["a", "c"]) self.assertEqual(UpperCAmelCase , [0, 2]) # Out features set to match out indices SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ :int = get_aligned_output_features_output_indices(UpperCAmelCase , [0, 2] , UpperCAmelCase) self.assertEqual(UpperCAmelCase , ["a", "c"]) self.assertEqual(UpperCAmelCase , [0, 2]) # Out features selected from negative indices SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ :Any = get_aligned_output_features_output_indices(UpperCAmelCase , [-3, -1] , UpperCAmelCase) self.assertEqual(UpperCAmelCase , ["a", "c"]) self.assertEqual(UpperCAmelCase , [-3, -1]) def _snake_case ( self : str): # Stage names must be set with self.assertRaises(UpperCAmelCase): verify_out_features_out_indices(["a", "b"] , (0, 1) , UpperCAmelCase) # Out features must be a list with self.assertRaises(UpperCAmelCase): verify_out_features_out_indices(("a", "b") , (0, 1) , ["a", "b"]) # Out features must be a subset of stage names with self.assertRaises(UpperCAmelCase): verify_out_features_out_indices(["a", "b"] , (0, 1) , ["a"]) # Out indices must be a list or tuple with self.assertRaises(UpperCAmelCase): verify_out_features_out_indices(UpperCAmelCase , 0 , ["a", "b"]) # Out indices must be a subset of stage names with self.assertRaises(UpperCAmelCase): verify_out_features_out_indices(UpperCAmelCase , (0, 1) , ["a"]) # Out features and out indices must be the same length with self.assertRaises(UpperCAmelCase): verify_out_features_out_indices(["a", "b"] , (0,) , ["a", "b", "c"]) # Out features should match out indices with self.assertRaises(UpperCAmelCase): verify_out_features_out_indices(["a", "b"] , (0, 2) , ["a", "b", "c"]) # Out features and out indices should be in order with self.assertRaises(UpperCAmelCase): verify_out_features_out_indices(["b", "a"] , (0, 1) , ["a", "b"]) # Check passes with valid inputs verify_out_features_out_indices(["a", "b", "d"] , (0, 1, -1) , ["a", "b", "c", "d"]) def _snake_case ( self : Tuple): SCREAMING_SNAKE_CASE_ :int = BackboneMixin() SCREAMING_SNAKE_CASE_ :List[str] = ["a", "b", "c"] SCREAMING_SNAKE_CASE_ :str = ["a", "c"] SCREAMING_SNAKE_CASE_ :Union[str, Any] = [0, 2] # Check that the output features and indices are set correctly self.assertEqual(backbone.out_features , ["a", "c"]) self.assertEqual(backbone.out_indices , [0, 2]) # Check out features and indices are updated correctly SCREAMING_SNAKE_CASE_ :Tuple = ["a", "b"] self.assertEqual(backbone.out_features , ["a", "b"]) self.assertEqual(backbone.out_indices , [0, 1]) SCREAMING_SNAKE_CASE_ :List[str] = [-3, -1] self.assertEqual(backbone.out_features , ["a", "c"]) self.assertEqual(backbone.out_indices , [-3, -1])
631
1
"""simple docstring""" import enum import warnings from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING from ..utils import add_end_docstrings, is_tf_available from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf class snake_case ( enum.Enum ): lowerCamelCase__ = 0 lowerCamelCase__ = 1 lowerCamelCase__ = 2 @add_end_docstrings(__UpperCAmelCase ) class snake_case ( __UpperCAmelCase ): lowerCamelCase__ = ''' In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The voice of Nicholas\'s young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision and denounces one of the men as a horse thief. Although his father initially slaps him for making such an accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop, begging for his blessing. <eod> </s> <eos> ''' def __init__( self :Optional[Any] , *_lowerCamelCase :Optional[Any] , **_lowerCamelCase :Optional[Any] ): super().__init__(*__UpperCamelCase , **__UpperCamelCase ) self.check_model_type( TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == '''tf''' else MODEL_FOR_CAUSAL_LM_MAPPING ) if "prefix" not in self._preprocess_params: # This is very specific. The logic is quite complex and needs to be done # as a "default". # It also defines both some preprocess_kwargs and generate_kwargs # which is why we cannot put them in their respective methods. __SCREAMING_SNAKE_CASE : Tuple = None if self.model.config.prefix is not None: __SCREAMING_SNAKE_CASE : Tuple = self.model.config.prefix if prefix is None and self.model.__class__.__name__ in [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", ]: # For XLNet and TransformerXL we add an article to the prompt to give more state to the model. __SCREAMING_SNAKE_CASE : Dict = self.XL_PREFIX if prefix is not None: # Recalculate some generate_kwargs linked to prefix. __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Optional[int] = self._sanitize_parameters(prefix=__UpperCamelCase , **self._forward_params ) __SCREAMING_SNAKE_CASE : List[Any] = {**self._preprocess_params, **preprocess_params} __SCREAMING_SNAKE_CASE : Any = {**self._forward_params, **forward_params} def SCREAMING_SNAKE_CASE_ ( self :int , _lowerCamelCase :str=None , _lowerCamelCase :str=None , _lowerCamelCase :Tuple=None , _lowerCamelCase :Any=None , _lowerCamelCase :Dict=None , _lowerCamelCase :Tuple=None , _lowerCamelCase :Any=None , _lowerCamelCase :List[str]=None , **_lowerCamelCase :List[Any] , ): __SCREAMING_SNAKE_CASE : str = {} if prefix is not None: __SCREAMING_SNAKE_CASE : Dict = prefix if prefix: __SCREAMING_SNAKE_CASE : Optional[Any] = self.tokenizer( __UpperCamelCase , padding=__UpperCamelCase , add_special_tokens=__UpperCamelCase , return_tensors=self.framework ) __SCREAMING_SNAKE_CASE : Optional[Any] = prefix_inputs['''input_ids'''].shape[-1] if handle_long_generation is not None: if handle_long_generation not in {"hole"}: raise ValueError( f'''{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected''' ''' [None, \'hole\']''' ) __SCREAMING_SNAKE_CASE : Optional[Any] = handle_long_generation preprocess_params.update(__UpperCamelCase ) __SCREAMING_SNAKE_CASE : Union[str, Any] = generate_kwargs __SCREAMING_SNAKE_CASE : Dict = {} if return_full_text is not None and return_type is None: if return_text is not None: raise ValueError('''`return_text` is mutually exclusive with `return_full_text`''' ) if return_tensors is not None: raise ValueError('''`return_full_text` is mutually exclusive with `return_tensors`''' ) __SCREAMING_SNAKE_CASE : Optional[int] = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT if return_tensors is not None and return_type is None: if return_text is not None: raise ValueError('''`return_text` is mutually exclusive with `return_tensors`''' ) __SCREAMING_SNAKE_CASE : Optional[int] = ReturnType.TENSORS if return_type is not None: __SCREAMING_SNAKE_CASE : int = return_type if clean_up_tokenization_spaces is not None: __SCREAMING_SNAKE_CASE : Union[str, Any] = clean_up_tokenization_spaces if stop_sequence is not None: __SCREAMING_SNAKE_CASE : int = self.tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) if len(__UpperCamelCase ) > 1: warnings.warn( '''Stopping on a multiple token sequence is not yet supported on transformers. The first token of''' ''' the stop sequence will be used as the stop sequence string in the interim.''' ) __SCREAMING_SNAKE_CASE : Dict = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def SCREAMING_SNAKE_CASE_ ( self :List[Any] , *_lowerCamelCase :Optional[Any] , **_lowerCamelCase :List[Any] ): # Parse arguments if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: kwargs.update({'''add_space_before_punct_symbol''': True} ) return super()._parse_and_tokenize(*__UpperCamelCase , **__UpperCamelCase ) def __call__( self :Optional[Any] , _lowerCamelCase :Dict , **_lowerCamelCase :List[str] ): return super().__call__(__UpperCamelCase , **__UpperCamelCase ) def SCREAMING_SNAKE_CASE_ ( self :str , _lowerCamelCase :List[Any] , _lowerCamelCase :List[str]="" , _lowerCamelCase :Tuple=None , **_lowerCamelCase :Union[str, Any] ): __SCREAMING_SNAKE_CASE : Optional[Any] = self.tokenizer( prefix + prompt_text , padding=__UpperCamelCase , add_special_tokens=__UpperCamelCase , return_tensors=self.framework ) __SCREAMING_SNAKE_CASE : Union[str, Any] = prompt_text if handle_long_generation == "hole": __SCREAMING_SNAKE_CASE : List[Any] = inputs['''input_ids'''].shape[-1] if "max_new_tokens" in generate_kwargs: __SCREAMING_SNAKE_CASE : Union[str, Any] = generate_kwargs['''max_new_tokens'''] else: __SCREAMING_SNAKE_CASE : int = generate_kwargs.get('''max_length''' , self.model.config.max_length ) - cur_len if new_tokens < 0: raise ValueError('''We cannot infer how many new tokens are expected''' ) if cur_len + new_tokens > self.tokenizer.model_max_length: __SCREAMING_SNAKE_CASE : int = self.tokenizer.model_max_length - new_tokens if keep_length <= 0: raise ValueError( '''We cannot use `hole` to handle this generation the number of desired tokens exceeds the''' ''' models max length''' ) __SCREAMING_SNAKE_CASE : int = inputs['''input_ids'''][:, -keep_length:] if "attention_mask" in inputs: __SCREAMING_SNAKE_CASE : Dict = inputs['''attention_mask'''][:, -keep_length:] return inputs def SCREAMING_SNAKE_CASE_ ( self :Union[str, Any] , _lowerCamelCase :Optional[Any] , **_lowerCamelCase :List[Any] ): __SCREAMING_SNAKE_CASE : Dict = model_inputs['''input_ids'''] __SCREAMING_SNAKE_CASE : Any = model_inputs.get('''attention_mask''' , __UpperCamelCase ) # Allow empty prompts if input_ids.shape[1] == 0: __SCREAMING_SNAKE_CASE : Any = None __SCREAMING_SNAKE_CASE : int = None __SCREAMING_SNAKE_CASE : Optional[Any] = 1 else: __SCREAMING_SNAKE_CASE : List[str] = input_ids.shape[0] __SCREAMING_SNAKE_CASE : Optional[int] = model_inputs.pop('''prompt_text''' ) # If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying # generate_kwargs, as some of the parameterization may come from the initialization of the pipeline. __SCREAMING_SNAKE_CASE : str = generate_kwargs.pop('''prefix_length''' , 0 ) if prefix_length > 0: __SCREAMING_SNAKE_CASE : Optional[Any] = '''max_new_tokens''' in generate_kwargs or ( '''generation_config''' in generate_kwargs and generate_kwargs['''generation_config'''].max_new_tokens is not None ) if not has_max_new_tokens: __SCREAMING_SNAKE_CASE : str = generate_kwargs.get('''max_length''' ) or self.model.config.max_length generate_kwargs["max_length"] += prefix_length __SCREAMING_SNAKE_CASE : List[Any] = '''min_new_tokens''' in generate_kwargs or ( '''generation_config''' in generate_kwargs and generate_kwargs['''generation_config'''].min_new_tokens is not None ) if not has_min_new_tokens and "min_length" in generate_kwargs: generate_kwargs["min_length"] += prefix_length # BS x SL __SCREAMING_SNAKE_CASE : Optional[int] = self.model.generate(input_ids=__UpperCamelCase , attention_mask=__UpperCamelCase , **__UpperCamelCase ) __SCREAMING_SNAKE_CASE : Union[str, Any] = generated_sequence.shape[0] if self.framework == "pt": __SCREAMING_SNAKE_CASE : Optional[Any] = generated_sequence.reshape(__UpperCamelCase , out_b // in_b , *generated_sequence.shape[1:] ) elif self.framework == "tf": __SCREAMING_SNAKE_CASE : Tuple = tf.reshape(__UpperCamelCase , (in_b, out_b // in_b, *generated_sequence.shape[1:]) ) return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text} def SCREAMING_SNAKE_CASE_ ( self :Union[str, Any] , _lowerCamelCase :int , _lowerCamelCase :Dict=ReturnType.FULL_TEXT , _lowerCamelCase :Any=True ): __SCREAMING_SNAKE_CASE : Union[str, Any] = model_outputs['''generated_sequence'''][0] __SCREAMING_SNAKE_CASE : Any = model_outputs['''input_ids'''] __SCREAMING_SNAKE_CASE : Union[str, Any] = model_outputs['''prompt_text'''] __SCREAMING_SNAKE_CASE : Dict = generated_sequence.numpy().tolist() __SCREAMING_SNAKE_CASE : Optional[Any] = [] for sequence in generated_sequence: if return_type == ReturnType.TENSORS: __SCREAMING_SNAKE_CASE : Dict = {'''generated_token_ids''': sequence} elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}: # Decode text __SCREAMING_SNAKE_CASE : Optional[Any] = self.tokenizer.decode( __UpperCamelCase , skip_special_tokens=__UpperCamelCase , clean_up_tokenization_spaces=__UpperCamelCase , ) # Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used if input_ids is None: __SCREAMING_SNAKE_CASE : int = 0 else: __SCREAMING_SNAKE_CASE : Union[str, Any] = len( self.tokenizer.decode( input_ids[0] , skip_special_tokens=__UpperCamelCase , clean_up_tokenization_spaces=__UpperCamelCase , ) ) if return_type == ReturnType.FULL_TEXT: __SCREAMING_SNAKE_CASE : str = prompt_text + text[prompt_length:] else: __SCREAMING_SNAKE_CASE : List[str] = text[prompt_length:] __SCREAMING_SNAKE_CASE : Tuple = {'''generated_text''': all_text} records.append(__UpperCamelCase ) return records
707
"""simple docstring""" from math import pow, sqrt def lowerCAmelCase_ ( *lowercase_ : float ): '''simple docstring''' __SCREAMING_SNAKE_CASE : int = len(lowercase_ ) > 0 and all(value > 0.0 for value in values ) return result def lowerCAmelCase_ ( lowercase_ : float , lowercase_ : float ): '''simple docstring''' return ( round(sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(lowercase_ , lowercase_ ) else ValueError('''Input Error: Molar mass values must greater than 0.''' ) ) def lowerCAmelCase_ ( lowercase_ : float , lowercase_ : float , lowercase_ : float ): '''simple docstring''' return ( round(effusion_rate * sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(lowercase_ , lowercase_ , lowercase_ ) else ValueError( '''Input Error: Molar mass and effusion rate values must greater than 0.''' ) ) def lowerCAmelCase_ ( lowercase_ : float , lowercase_ : float , lowercase_ : float ): '''simple docstring''' return ( round(effusion_rate / sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(lowercase_ , lowercase_ , lowercase_ ) else ValueError( '''Input Error: Molar mass and effusion rate values must greater than 0.''' ) ) def lowerCAmelCase_ ( lowercase_ : float , lowercase_ : float , lowercase_ : float ): '''simple docstring''' return ( round(molar_mass / pow(effusion_rate_a / effusion_rate_a , 2 ) , 6 ) if validate(lowercase_ , lowercase_ , lowercase_ ) else ValueError( '''Input Error: Molar mass and effusion rate values must greater than 0.''' ) ) def lowerCAmelCase_ ( lowercase_ : float , lowercase_ : float , lowercase_ : float ): '''simple docstring''' return ( round(pow(effusion_rate_a / effusion_rate_a , 2 ) / molar_mass , 6 ) if validate(lowercase_ , lowercase_ , lowercase_ ) else ValueError( '''Input Error: Molar mass and effusion rate values must greater than 0.''' ) )
401
0
from __future__ import annotations class _lowerCAmelCase : '''simple docstring''' def __init__( self : Optional[int] , UpperCamelCase : int ): '''simple docstring''' _snake_case : Dict = data _snake_case : Node | None = None _snake_case : Node | None = None def lowerCamelCase_ ( lowerCAmelCase: Node | None )-> None: # In Order traversal of the tree if tree: display(tree.left ) print(tree.data ) display(tree.right ) def lowerCamelCase_ ( lowerCAmelCase: Node | None )-> int: return 1 + max(depth_of_tree(tree.left ) , depth_of_tree(tree.right ) ) if tree else 0 def lowerCamelCase_ ( lowerCAmelCase: Node )-> bool: if not tree: return True if tree.left and tree.right: return is_full_binary_tree(tree.left ) and is_full_binary_tree(tree.right ) else: return not tree.left and not tree.right def lowerCamelCase_ ( )-> None: # Main function for testing. _snake_case : Tuple = Node(1 ) _snake_case : Optional[int] = Node(2 ) _snake_case : Dict = Node(3 ) _snake_case : List[str] = Node(4 ) _snake_case : str = Node(5 ) _snake_case : Optional[int] = Node(6 ) _snake_case : Any = Node(7 ) _snake_case : Dict = Node(8 ) _snake_case : Optional[int] = Node(9 ) print(is_full_binary_tree(lowerCAmelCase ) ) print(depth_of_tree(lowerCAmelCase ) ) print('Tree is: ' ) display(lowerCAmelCase ) if __name__ == "__main__": main()
411
import unittest from transformers import SPIECE_UNDERLINE from transformers.models.speechta import SpeechTaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.tokenization_utils import AddedToken from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase_ = get_tests_dir("""fixtures/test_sentencepiece_bpe_char.model""") @require_sentencepiece @require_tokenizers class _lowerCAmelCase ( UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' a_ : int =SpeechTaTokenizer a_ : Dict =False a_ : List[Any] =True def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing _snake_case : Union[str, Any] = SpeechTaTokenizer(UpperCamelCase ) _snake_case : Tuple = AddedToken('<mask>' , lstrip=UpperCamelCase , rstrip=UpperCamelCase ) _snake_case : Union[str, Any] = mask_token tokenizer.add_special_tokens({'mask_token': mask_token} ) tokenizer.add_tokens(['<ctc_blank>'] ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase_ ( self : str , UpperCamelCase : List[str] ): '''simple docstring''' _snake_case : Tuple = 'this is a test' _snake_case : Optional[int] = 'this is a test' return input_text, output_text def UpperCamelCase_ ( self : Optional[int] , UpperCamelCase : Optional[int] , UpperCamelCase : str=False , UpperCamelCase : Union[str, Any]=20 , UpperCamelCase : Optional[int]=5 ): '''simple docstring''' _snake_case , _snake_case : str = self.get_input_output_texts(UpperCamelCase ) _snake_case : str = tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) _snake_case : List[str] = tokenizer.decode(UpperCamelCase , clean_up_tokenization_spaces=UpperCamelCase ) return text, ids def UpperCamelCase_ ( self : Any ): '''simple docstring''' _snake_case : str = '<pad>' _snake_case : Optional[int] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCamelCase ) , UpperCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCamelCase ) , UpperCamelCase ) def UpperCamelCase_ ( self : int ): '''simple docstring''' _snake_case : List[str] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-4] , 'œ' ) self.assertEqual(vocab_keys[-2] , '<mask>' ) self.assertEqual(vocab_keys[-1] , '<ctc_blank>' ) self.assertEqual(len(UpperCamelCase ) , 81 ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 79 ) def UpperCamelCase_ ( self : int ): '''simple docstring''' _snake_case : int = self.get_tokenizers(do_lower_case=UpperCamelCase ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): _snake_case : Any = tokenizer.vocab_size _snake_case : Any = len(UpperCamelCase ) self.assertNotEqual(UpperCamelCase , 0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) _snake_case : int = ['aaaaa bbbbbb', 'cccccccccdddddddd'] _snake_case : List[Any] = tokenizer.add_tokens(UpperCamelCase ) _snake_case : Tuple = tokenizer.vocab_size _snake_case : List[Any] = len(UpperCamelCase ) self.assertNotEqual(UpperCamelCase , 0 ) self.assertEqual(UpperCamelCase , UpperCamelCase ) self.assertEqual(UpperCamelCase , len(UpperCamelCase ) ) self.assertEqual(UpperCamelCase , all_size + len(UpperCamelCase ) ) _snake_case : List[Any] = tokenizer.encode('aaaaa bbbbbb low cccccccccdddddddd l' , add_special_tokens=UpperCamelCase ) self.assertGreaterEqual(len(UpperCamelCase ) , 4 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) _snake_case : Dict = {'eos_token': '>>>>|||<||<<|<<', 'pad_token': '<<<<<|||>|>>>>|>'} _snake_case : Dict = tokenizer.add_special_tokens(UpperCamelCase ) _snake_case : int = tokenizer.vocab_size _snake_case : Tuple = len(UpperCamelCase ) self.assertNotEqual(UpperCamelCase , 0 ) self.assertEqual(UpperCamelCase , UpperCamelCase ) self.assertEqual(UpperCamelCase , len(UpperCamelCase ) ) self.assertEqual(UpperCamelCase , all_size_a + len(UpperCamelCase ) ) _snake_case : str = tokenizer.encode( '>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l' , add_special_tokens=UpperCamelCase ) self.assertGreaterEqual(len(UpperCamelCase ) , 6 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] , tokens[1] ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokens[-4] ) self.assertEqual(tokens[0] , tokenizer.eos_token_id ) self.assertEqual(tokens[-3] , tokenizer.pad_token_id ) def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' pass def UpperCamelCase_ ( self : Any ): '''simple docstring''' pass def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' _snake_case : Optional[int] = self.get_tokenizer() _snake_case : Union[str, Any] = tokenizer.tokenize('This is a test' ) # fmt: off self.assertListEqual(UpperCamelCase , [SPIECE_UNDERLINE, 'T', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'a', SPIECE_UNDERLINE, 't', 'e', 's', 't'] ) # fmt: on self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCamelCase ) , [4, 32, 11, 10, 12, 4, 10, 12, 4, 7, 4, 6, 5, 12, 6] , ) _snake_case : List[Any] = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( UpperCamelCase , [SPIECE_UNDERLINE, 'I', SPIECE_UNDERLINE, 'w', 'a', 's', SPIECE_UNDERLINE, 'b', 'o', 'r', 'n', SPIECE_UNDERLINE, 'i', 'n', SPIECE_UNDERLINE, '92000', ',', SPIECE_UNDERLINE, 'a', 'n', 'd', SPIECE_UNDERLINE, 't', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'f', 'a', 'l', 's', 'é', '.'] ) _snake_case : List[Any] = tokenizer.convert_tokens_to_ids(UpperCamelCase ) # fmt: off self.assertListEqual(UpperCamelCase , [4, 30, 4, 20, 7, 12, 4, 25, 8, 13, 9, 4, 10, 9, 4, 3, 23, 4, 7, 9, 14, 4, 6, 11, 10, 12, 4, 10, 12, 4, 19, 7, 15, 12, 73, 26] ) # fmt: on _snake_case : Dict = tokenizer.convert_ids_to_tokens(UpperCamelCase ) self.assertListEqual( UpperCamelCase , [SPIECE_UNDERLINE, 'I', SPIECE_UNDERLINE, 'w', 'a', 's', SPIECE_UNDERLINE, 'b', 'o', 'r', 'n', SPIECE_UNDERLINE, 'i', 'n', SPIECE_UNDERLINE, '<unk>', ',', SPIECE_UNDERLINE, 'a', 'n', 'd', SPIECE_UNDERLINE, 't', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'f', 'a', 'l', 's', 'é', '.'] ) @slow def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _snake_case : List[str] = [ 'Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides ' 'general-purpose architectures (BERT, GPT, RoBERTa, XLM, DistilBert, XLNet...) for Natural ' 'Language Understanding (NLU) and Natural Language Generation (NLG) with over thirty-two pretrained ' 'models in one hundred plus languages and deep interoperability between Jax, PyTorch and TensorFlow.', 'BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly ' 'conditioning on both left and right context in all layers.', 'The quick brown fox jumps over the lazy dog.', ] # fmt: off _snake_case : int = { 'input_ids': [ [4, 32, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 64, 19, 8, 13, 18, 5, 13, 15, 22, 4, 28, 9, 8, 20, 9, 4, 7, 12, 4, 24, 22, 6, 8, 13, 17, 11, 39, 6, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 7, 9, 14, 4, 24, 22, 6, 8, 13, 17, 11, 39, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 39, 25, 5, 13, 6, 63, 4, 24, 13, 8, 27, 10, 14, 5, 12, 4, 21, 5, 9, 5, 13, 7, 15, 39, 24, 16, 13, 24, 8, 12, 5, 4, 7, 13, 17, 11, 10, 6, 5, 17, 6, 16, 13, 5, 12, 4, 64, 40, 47, 54, 32, 23, 4, 53, 49, 32, 23, 4, 54, 8, 40, 47, 54, 32, 7, 23, 4, 69, 52, 43, 23, 4, 51, 10, 12, 6, 10, 15, 40, 5, 13, 6, 23, 4, 69, 52, 48, 5, 6, 26, 26, 26, 63, 4, 19, 8, 13, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 61, 9, 14, 5, 13, 12, 6, 7, 9, 14, 10, 9, 21, 4, 64, 48, 52, 61, 63, 4, 7, 9, 14, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 53, 5, 9, 5, 13, 7, 6, 10, 8, 9, 4, 64, 48, 52, 53, 63, 4, 20, 10, 6, 11, 4, 8, 27, 5, 13, 4, 6, 11, 10, 13, 6, 22, 39, 6, 20, 8, 4, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 4, 18, 8, 14, 5, 15, 12, 4, 10, 9, 4, 8, 9, 5, 4, 11, 16, 9, 14, 13, 5, 14, 4, 24, 15, 16, 12, 4, 15, 7, 9, 21, 16, 7, 21, 5, 12, 4, 7, 9, 14, 4, 14, 5, 5, 24, 4, 10, 9, 6, 5, 13, 8, 24, 5, 13, 7, 25, 10, 15, 10, 6, 22, 4, 25, 5, 6, 20, 5, 5, 9, 4, 58, 7, 37, 23, 4, 49, 22, 32, 8, 13, 17, 11, 4, 7, 9, 14, 4, 32, 5, 9, 12, 8, 13, 55, 15, 8, 20, 26, 2], [4, 40, 47, 54, 32, 4, 10, 12, 4, 14, 5, 12, 10, 21, 9, 5, 14, 4, 6, 8, 4, 24, 13, 5, 39, 6, 13, 7, 10, 9, 4, 14, 5, 5, 24, 4, 25, 10, 14, 10, 13, 5, 17, 6, 10, 8, 9, 7, 15, 4, 13, 5, 24, 13, 5, 12, 5, 9, 6, 7, 6, 10, 8, 9, 12, 4, 19, 13, 8, 18, 4, 16, 9, 15, 7, 25, 5, 15, 5, 14, 4, 6, 5, 37, 6, 4, 25, 22, 4, 46, 8, 10, 9, 6, 15, 22, 4, 17, 8, 9, 14, 10, 6, 10, 8, 9, 10, 9, 21, 4, 8, 9, 4, 25, 8, 6, 11, 4, 15, 5, 19, 6, 4, 7, 9, 14, 4, 13, 10, 21, 11, 6, 4, 17, 8, 9, 6, 5, 37, 6, 4, 10, 9, 4, 7, 15, 15, 4, 15, 7, 22, 5, 13, 12, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [4, 32, 11, 5, 4, 45, 16, 10, 17, 28, 4, 25, 13, 8, 20, 9, 4, 19, 8, 37, 4, 46, 16, 18, 24, 12, 4, 8, 27, 5, 13, 4, 6, 11, 5, 4, 15, 7, 57, 22, 4, 14, 8, 21, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], ], 'attention_mask': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] } # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCamelCase , model_name='microsoft/speecht5_asr' , revision='c5ef64c71905caeccde0e4462ef3f9077224c524' , sequences=UpperCamelCase , )
411
1
"""simple docstring""" import math import sys def lowerCamelCase_ ( _lowerCamelCase : Dict ): lowerCamelCase_ = "" try: with open(__SCREAMING_SNAKE_CASE , '''rb''' ) as binary_file: lowerCamelCase_ = binary_file.read() for dat in data: lowerCamelCase_ = F"""{dat:08b}""" result += curr_byte return result except OSError: print('''File not accessible''' ) sys.exit() def lowerCamelCase_ ( _lowerCamelCase : List[Any] ): lowerCamelCase_ = {"0": "0", "1": "1"} lowerCamelCase_ = "", "" lowerCamelCase_ = len(__SCREAMING_SNAKE_CASE ) for i in range(len(__SCREAMING_SNAKE_CASE ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue lowerCamelCase_ = lexicon[curr_string] result += last_match_id lowerCamelCase_ = last_match_id + "0" if math.loga(__SCREAMING_SNAKE_CASE ).is_integer(): lowerCamelCase_ = {} for curr_key in list(__SCREAMING_SNAKE_CASE ): lowerCamelCase_ = lexicon.pop(__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = new_lex lowerCamelCase_ = last_match_id + "1" index += 1 lowerCamelCase_ = "" return result def lowerCamelCase_ ( _lowerCamelCase : List[Any] , _lowerCamelCase : Optional[Any] ): lowerCamelCase_ = 8 try: with open(__SCREAMING_SNAKE_CASE , '''wb''' ) as opened_file: lowerCamelCase_ = [ to_write[i : i + byte_length] for i in range(0 , len(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append('''10000000''' ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array[:-1]: opened_file.write(int(__SCREAMING_SNAKE_CASE , 2 ).to_bytes(1 , byteorder='''big''' ) ) except OSError: print('''File not accessible''' ) sys.exit() def lowerCamelCase_ ( _lowerCamelCase : List[Any] ): lowerCamelCase_ = 0 for letter in data_bits: if letter == "1": break counter += 1 lowerCamelCase_ = data_bits[counter:] lowerCamelCase_ = data_bits[counter + 1 :] return data_bits def lowerCamelCase_ ( _lowerCamelCase : str , _lowerCamelCase : Any ): lowerCamelCase_ = read_file_binary(__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = remove_prefix(__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = decompress_data(__SCREAMING_SNAKE_CASE ) write_file_binary(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
703
"""simple docstring""" import argparse import os import re __lowercase : Optional[int] = """src/diffusers""" # Pattern that looks at the indentation in a line. __lowercase : Dict = re.compile(r"""^(\s*)\S""") # Pattern that matches `"key":" and puts `key` in group 0. __lowercase : int = re.compile(r"""^\s*\"([^\"]+)\":""") # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. __lowercase : Optional[Any] = re.compile(r"""^\s*_import_structure\[\"([^\"]+)\"\]""") # Pattern that matches `"key",` and puts `key` in group 0. __lowercase : List[str] = re.compile(r"""^\s*\"([^\"]+)\",\s*$""") # Pattern that matches any `[stuff]` and puts `stuff` in group 0. __lowercase : Any = re.compile(r"""\[([^\]]+)\]""") def lowerCamelCase_ ( _lowerCamelCase : List[str] ): lowerCamelCase_ = _re_indent.search(_lowerCamelCase ) return "" if search is None else search.groups()[0] def lowerCamelCase_ ( _lowerCamelCase : int , _lowerCamelCase : List[str]="" , _lowerCamelCase : Dict=None , _lowerCamelCase : int=None ): lowerCamelCase_ = 0 lowerCamelCase_ = code.split('''\n''' ) if start_prompt is not None: while not lines[index].startswith(_lowerCamelCase ): index += 1 lowerCamelCase_ = ['''\n'''.join(lines[:index] )] else: lowerCamelCase_ = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). lowerCamelCase_ = [lines[index]] index += 1 while index < len(_lowerCamelCase ) and (end_prompt is None or not lines[index].startswith(_lowerCamelCase )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(_lowerCamelCase ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ''' ''' ): current_block.append(lines[index] ) blocks.append('''\n'''.join(_lowerCamelCase ) ) if index < len(_lowerCamelCase ) - 1: lowerCamelCase_ = [lines[index + 1]] index += 1 else: lowerCamelCase_ = [] else: blocks.append('''\n'''.join(_lowerCamelCase ) ) lowerCamelCase_ = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(_lowerCamelCase ) > 0: blocks.append('''\n'''.join(_lowerCamelCase ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(_lowerCamelCase ): blocks.append('''\n'''.join(lines[index:] ) ) return blocks def lowerCamelCase_ ( _lowerCamelCase : int ): def _inner(_lowerCamelCase : List[Any] ): return key(_lowerCamelCase ).lower().replace('''_''' , '''''' ) return _inner def lowerCamelCase_ ( _lowerCamelCase : List[Any] , _lowerCamelCase : Tuple=None ): # If no key is provided, we use a noop. def noop(_lowerCamelCase : Union[str, Any] ): return x if key is None: lowerCamelCase_ = noop # Constants are all uppercase, they go first. lowerCamelCase_ = [obj for obj in objects if key(_lowerCamelCase ).isupper()] # Classes are not all uppercase but start with a capital, they go second. lowerCamelCase_ = [obj for obj in objects if key(_lowerCamelCase )[0].isupper() and not key(_lowerCamelCase ).isupper()] # Functions begin with a lowercase, they go last. lowerCamelCase_ = [obj for obj in objects if not key(_lowerCamelCase )[0].isupper()] lowerCamelCase_ = ignore_underscore(_lowerCamelCase ) return sorted(_lowerCamelCase , key=_lowerCamelCase ) + sorted(_lowerCamelCase , key=_lowerCamelCase ) + sorted(_lowerCamelCase , key=_lowerCamelCase ) def lowerCamelCase_ ( _lowerCamelCase : Any ): # This inner function sort imports between [ ]. def _replace(_lowerCamelCase : List[Any] ): lowerCamelCase_ = match.groups()[0] if "," not in imports: return F"""[{imports}]""" lowerCamelCase_ = [part.strip().replace('''"''' , '''''' ) for part in imports.split(''',''' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowerCamelCase_ = keys[:-1] return "[" + ", ".join([F"""\"{k}\"""" for k in sort_objects(_lowerCamelCase )] ) + "]" lowerCamelCase_ = import_statement.split('''\n''' ) if len(_lowerCamelCase ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. lowerCamelCase_ = 2 if lines[1].strip() == '''[''' else 1 lowerCamelCase_ = [(i, _re_strip_line.search(_lowerCamelCase ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] lowerCamelCase_ = sort_objects(_lowerCamelCase , key=lambda _lowerCamelCase : x[1] ) lowerCamelCase_ = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(_lowerCamelCase ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: lowerCamelCase_ = _re_bracket_content.sub(_replace , lines[1] ) else: lowerCamelCase_ = [part.strip().replace('''"''' , '''''' ) for part in lines[1].split(''',''' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowerCamelCase_ = keys[:-1] lowerCamelCase_ = get_indent(lines[1] ) + ''', '''.join([F"""\"{k}\"""" for k in sort_objects(_lowerCamelCase )] ) return "\n".join(_lowerCamelCase ) else: # Finally we have to deal with imports fitting on one line lowerCamelCase_ = _re_bracket_content.sub(_replace , _lowerCamelCase ) return import_statement def lowerCamelCase_ ( _lowerCamelCase : List[str] , _lowerCamelCase : Union[str, Any]=True ): with open(_lowerCamelCase , '''r''' ) as f: lowerCamelCase_ = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 lowerCamelCase_ = split_code_in_indented_blocks( _lowerCamelCase , start_prompt='''_import_structure = {''' , end_prompt='''if TYPE_CHECKING:''' ) # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(_lowerCamelCase ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. lowerCamelCase_ = main_blocks[block_idx] lowerCamelCase_ = block.split('''\n''' ) # Get to the start of the imports. lowerCamelCase_ = 0 while line_idx < len(_lowerCamelCase ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: lowerCamelCase_ = len(_lowerCamelCase ) else: line_idx += 1 if line_idx >= len(_lowerCamelCase ): continue # Ignore beginning and last line: they don't contain anything. lowerCamelCase_ = '''\n'''.join(block_lines[line_idx:-1] ) lowerCamelCase_ = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. lowerCamelCase_ = split_code_in_indented_blocks(_lowerCamelCase , indent_level=_lowerCamelCase ) # We have two categories of import key: list or _import_structure[key].append/extend lowerCamelCase_ = _re_direct_key if '''_import_structure''' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. lowerCamelCase_ = [(pattern.search(_lowerCamelCase ).groups()[0] if pattern.search(_lowerCamelCase ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. lowerCamelCase_ = [(i, key) for i, key in enumerate(_lowerCamelCase ) if key is not None] lowerCamelCase_ = [x[0] for x in sorted(_lowerCamelCase , key=lambda _lowerCamelCase : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. lowerCamelCase_ = 0 lowerCamelCase_ = [] for i in range(len(_lowerCamelCase ) ): if keys[i] is None: reordered_blocks.append(internal_blocks[i] ) else: lowerCamelCase_ = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reordered_blocks.append(_lowerCamelCase ) count += 1 # And we put our main block back together with its first and last line. lowerCamelCase_ = '''\n'''.join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] ) if code != "\n".join(_lowerCamelCase ): if check_only: return True else: print(F"""Overwriting {file}.""" ) with open(_lowerCamelCase , '''w''' ) as f: f.write('''\n'''.join(_lowerCamelCase ) ) def lowerCamelCase_ ( _lowerCamelCase : Tuple=True ): lowerCamelCase_ = [] for root, _, files in os.walk(_lowerCamelCase ): if "__init__.py" in files: lowerCamelCase_ = sort_imports(os.path.join(_lowerCamelCase , '''__init__.py''' ) , check_only=_lowerCamelCase ) if result: lowerCamelCase_ = [os.path.join(_lowerCamelCase , '''__init__.py''' )] if len(_lowerCamelCase ) > 0: raise ValueError(F"""Would overwrite {len(_lowerCamelCase )} files, run `make style`.""" ) if __name__ == "__main__": __lowercase : Any = argparse.ArgumentParser() parser.add_argument("""--check_only""", action="""store_true""", help="""Whether to only check or fix style.""") __lowercase : Optional[int] = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
66
0
"""simple docstring""" import numpy # List of input, output pairs _SCREAMING_SNAKE_CASE : Tuple = ( ((5, 2, 3), 15), ((6, 5, 9), 25), ((11, 12, 13), 41), ((1, 1, 1), 8), ((11, 12, 13), 41), ) _SCREAMING_SNAKE_CASE : Dict = (((515, 22, 13), 555), ((61, 35, 49), 150)) _SCREAMING_SNAKE_CASE : Tuple = [2, 4, 1, 5] _SCREAMING_SNAKE_CASE : Optional[int] = len(train_data) _SCREAMING_SNAKE_CASE : Tuple = 0.009 def lowerCamelCase__ ( _lowerCamelCase : Optional[Any] , _lowerCamelCase : Dict="train" ) -> Tuple: return calculate_hypothesis_value(_lowerCamelCase , _lowerCamelCase ) - output( _lowerCamelCase , _lowerCamelCase ) def lowerCamelCase__ ( _lowerCamelCase : Optional[int] ) -> Union[str, Any]: lowerCamelCase_ = 0 for i in range(len(_lowerCamelCase ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def lowerCamelCase__ ( _lowerCamelCase : Dict , _lowerCamelCase : Any ) -> Union[str, Any]: if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def lowerCamelCase__ ( _lowerCamelCase : Dict , _lowerCamelCase : Any ) -> Optional[int]: if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def lowerCamelCase__ ( _lowerCamelCase : List[Any] , _lowerCamelCase : Union[str, Any]=m ) -> Union[str, Any]: lowerCamelCase_ = 0 for i in range(_lowerCamelCase ): if index == -1: summation_value += _error(_lowerCamelCase ) else: summation_value += _error(_lowerCamelCase ) * train_data[i][0][index] return summation_value def lowerCamelCase__ ( _lowerCamelCase : Optional[int] ) -> Optional[int]: lowerCamelCase_ = summation_of_cost_derivative(_lowerCamelCase , _lowerCamelCase ) / m return cost_derivative_value def lowerCamelCase__ ( ) -> Tuple: global parameter_vector # Tune these values to set a tolerance value for predicted output lowerCamelCase_ = 0.00_00_02 lowerCamelCase_ = 0 lowerCamelCase_ = 0 while True: j += 1 lowerCamelCase_ = [0, 0, 0, 0] for i in range(0 , len(_lowerCamelCase ) ): lowerCamelCase_ = get_cost_derivative(i - 1 ) lowerCamelCase_ = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( _lowerCamelCase , _lowerCamelCase , atol=_lowerCamelCase , rtol=_lowerCamelCase , ): break lowerCamelCase_ = temp_parameter_vector print(('Number of iterations:', j) ) def lowerCamelCase__ ( ) -> Dict: for i in range(len(_lowerCamelCase ) ): print(('Actual output value:', output(_lowerCamelCase , 'test' )) ) print(('Hypothesis output:', calculate_hypothesis_value(_lowerCamelCase , 'test' )) ) if __name__ == "__main__": run_gradient_descent() print('''\nTesting gradient descent for a linear hypothesis function.\n''') test_gradient_descent()
549
# Note: if you intend to run this script make sure you look under scripts/fsmt/ # to locate the appropriate script to do the work correctly. There is a set of scripts to: # - download and prepare data and run the conversion script # - perform eval to get the best hparam into the config # - generate model_cards - useful if you have multiple models from the same paper import argparse import json import os import re from collections import OrderedDict from os.path import basename, dirname import fairseq import torch from fairseq import hub_utils from fairseq.data.dictionary import Dictionary from transformers import FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() _lowercase = 2 # based on the results of a search on a range of `num_beams`, `length_penalty` and `early_stopping` # values against wmt19 test data to obtain the best BLEU scores, we will use the following defaults: # # * `num_beams`: 5 (higher scores better, but requires more memory/is slower, can be adjusted by users) # * `early_stopping`: `False` consistently scored better # * `length_penalty` varied, so will assign the best one depending on the model _lowercase = { # fairseq: '''wmt19-ru-en''': {'''length_penalty''': 1.1}, '''wmt19-en-ru''': {'''length_penalty''': 1.15}, '''wmt19-en-de''': {'''length_penalty''': 1.0}, '''wmt19-de-en''': {'''length_penalty''': 1.1}, # allenai: '''wmt16-en-de-dist-12-1''': {'''length_penalty''': 0.6}, '''wmt16-en-de-dist-6-1''': {'''length_penalty''': 0.6}, '''wmt16-en-de-12-1''': {'''length_penalty''': 0.8}, '''wmt19-de-en-6-6-base''': {'''length_penalty''': 0.6}, '''wmt19-de-en-6-6-big''': {'''length_penalty''': 0.6}, } # this remaps the different models to their organization names _lowercase = {} for m in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: _lowercase = '''facebook''' for m in [ "wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1", "wmt19-de-en-6-6-base", "wmt19-de-en-6-6-big", ]: _lowercase = '''allenai''' def _A (UpperCamelCase : Tuple ) ->Any: '''simple docstring''' lowerCamelCase__ : str = dict((re.sub(r"""@@$""" , """""" , UpperCamelCase ), v) if k.endswith("""@@""" ) else (re.sub(r"""$""" , """</w>""" , UpperCamelCase ), v) for k, v in d.items() ) lowerCamelCase__ : List[Any] = """<s> <pad> </s> <unk>""".split() # restore the special tokens for k in keep_keys: del da[f"{k}</w>"] lowerCamelCase__ : List[str] = d[k] # restore return da def _A (UpperCamelCase : str , UpperCamelCase : List[str] ) ->int: '''simple docstring''' assert os.path.exists(UpperCamelCase ) os.makedirs(UpperCamelCase , exist_ok=UpperCamelCase ) print(f"Writing results to {pytorch_dump_folder_path}" ) # handle various types of models lowerCamelCase__ : str = basename(UpperCamelCase ) lowerCamelCase__ : str = dirname(UpperCamelCase ) lowerCamelCase__ : Any = fairseq.model_parallel.models.transformer.ModelParallelTransformerModel lowerCamelCase__ : Tuple = cls.hub_models() lowerCamelCase__ : Optional[int] = {"""bpe""": """fastbpe""", """tokenizer""": """moses"""} lowerCamelCase__ : List[Any] = """.""" # note: since the model dump is old, fairseq has upgraded its model some # time later, and it does a whole lot of rewrites and splits on the saved # weights, therefore we can't use torch.load() directly on the model file. # see: upgrade_state_dict(state_dict) in fairseq_model.py print(f"using checkpoint {checkpoint_file}" ) lowerCamelCase__ : List[str] = hub_utils.from_pretrained( UpperCamelCase , UpperCamelCase , UpperCamelCase , archive_map=UpperCamelCase , **UpperCamelCase ) lowerCamelCase__ : Union[str, Any] = vars(chkpt["""args"""]["""model"""] ) lowerCamelCase__ : Union[str, Any] = args["""source_lang"""] lowerCamelCase__ : Dict = args["""target_lang"""] lowerCamelCase__ : List[Any] = dirname(UpperCamelCase ) lowerCamelCase__ : Union[str, Any] = basename(UpperCamelCase ) # dicts lowerCamelCase__ : int = os.path.join(UpperCamelCase , f"dict.{src_lang}.txt" ) lowerCamelCase__ : Optional[Any] = os.path.join(UpperCamelCase , f"dict.{tgt_lang}.txt" ) lowerCamelCase__ : Any = Dictionary.load(UpperCamelCase ) lowerCamelCase__ : List[Any] = rewrite_dict_keys(src_dict.indices ) lowerCamelCase__ : Optional[Any] = len(UpperCamelCase ) lowerCamelCase__ : Union[str, Any] = os.path.join(UpperCamelCase , """vocab-src.json""" ) print(f"Generating {src_vocab_file} of {src_vocab_size} of {src_lang} records" ) with open(UpperCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(UpperCamelCase , ensure_ascii=UpperCamelCase , indent=UpperCamelCase ) ) # detect whether this is a do_lower_case situation, which can be derived by checking whether we # have at least one uppercase letter in the source vocab lowerCamelCase__ : Dict = True for k in src_vocab.keys(): if not k.islower(): lowerCamelCase__ : Tuple = False break lowerCamelCase__ : Union[str, Any] = Dictionary.load(UpperCamelCase ) lowerCamelCase__ : List[str] = rewrite_dict_keys(tgt_dict.indices ) lowerCamelCase__ : str = len(UpperCamelCase ) lowerCamelCase__ : List[str] = os.path.join(UpperCamelCase , """vocab-tgt.json""" ) print(f"Generating {tgt_vocab_file} of {tgt_vocab_size} of {tgt_lang} records" ) with open(UpperCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(UpperCamelCase , ensure_ascii=UpperCamelCase , indent=UpperCamelCase ) ) # merges_file (bpecodes) lowerCamelCase__ : List[str] = os.path.join(UpperCamelCase , VOCAB_FILES_NAMES["""merges_file"""] ) for fn in ["bpecodes", "code"]: # older fairseq called the merges file "code" lowerCamelCase__ : Union[str, Any] = os.path.join(UpperCamelCase , UpperCamelCase ) if os.path.exists(UpperCamelCase ): break with open(UpperCamelCase , encoding="""utf-8""" ) as fin: lowerCamelCase__ : Dict = fin.read() lowerCamelCase__ : Tuple = re.sub(r""" \d+$""" , """""" , UpperCamelCase , 0 , re.M ) # remove frequency number print(f"Generating {merges_file}" ) with open(UpperCamelCase , """w""" , encoding="""utf-8""" ) as fout: fout.write(UpperCamelCase ) # model config lowerCamelCase__ : Optional[Any] = os.path.join(UpperCamelCase , """config.json""" ) # validate bpe/tokenizer config, as currently it's hardcoded to moses+fastbpe - # may have to modify the tokenizer if a different type is used by a future model assert args["bpe"] == "fastbpe", f"need to extend tokenizer to support bpe={args['bpe']}" assert args["tokenizer"] == "moses", f"need to extend tokenizer to support bpe={args['tokenizer']}" lowerCamelCase__ : str = { """architectures""": ["""FSMTForConditionalGeneration"""], """model_type""": """fsmt""", """activation_dropout""": args["""activation_dropout"""], """activation_function""": """relu""", """attention_dropout""": args["""attention_dropout"""], """d_model""": args["""decoder_embed_dim"""], """dropout""": args["""dropout"""], """init_std""": 0.02, """max_position_embeddings""": args["""max_source_positions"""], """num_hidden_layers""": args["""encoder_layers"""], """src_vocab_size""": src_vocab_size, """tgt_vocab_size""": tgt_vocab_size, """langs""": [src_lang, tgt_lang], """encoder_attention_heads""": args["""encoder_attention_heads"""], """encoder_ffn_dim""": args["""encoder_ffn_embed_dim"""], """encoder_layerdrop""": args["""encoder_layerdrop"""], """encoder_layers""": args["""encoder_layers"""], """decoder_attention_heads""": args["""decoder_attention_heads"""], """decoder_ffn_dim""": args["""decoder_ffn_embed_dim"""], """decoder_layerdrop""": args["""decoder_layerdrop"""], """decoder_layers""": args["""decoder_layers"""], """bos_token_id""": 0, """pad_token_id""": 1, """eos_token_id""": 2, """is_encoder_decoder""": True, """scale_embedding""": not args["""no_scale_embedding"""], """tie_word_embeddings""": args["""share_all_embeddings"""], } # good hparam defaults to start with lowerCamelCase__ : Dict = 5 lowerCamelCase__ : Optional[Any] = False if model_dir in best_score_hparams and "length_penalty" in best_score_hparams[model_dir]: lowerCamelCase__ : Any = best_score_hparams[model_dir]["""length_penalty"""] else: lowerCamelCase__ : Union[str, Any] = 1.0 print(f"Generating {fsmt_model_config_file}" ) with open(UpperCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(UpperCamelCase , ensure_ascii=UpperCamelCase , indent=UpperCamelCase ) ) # tokenizer config lowerCamelCase__ : Union[str, Any] = os.path.join(UpperCamelCase , UpperCamelCase ) lowerCamelCase__ : Any = { """langs""": [src_lang, tgt_lang], """model_max_length""": 1024, """do_lower_case""": do_lower_case, } print(f"Generating {fsmt_tokenizer_config_file}" ) with open(UpperCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(UpperCamelCase , ensure_ascii=UpperCamelCase , indent=UpperCamelCase ) ) # model lowerCamelCase__ : Tuple = chkpt["""models"""][0] lowerCamelCase__ : Tuple = model.state_dict() # rename keys to start with 'model.' lowerCamelCase__ : Tuple = OrderedDict(("""model.""" + k, v) for k, v in model_state_dict.items() ) # remove unneeded keys lowerCamelCase__ : int = [ """model.model""", """model.encoder.version""", """model.decoder.version""", """model.encoder_embed_tokens.weight""", """model.decoder_embed_tokens.weight""", """model.encoder.embed_positions._float_tensor""", """model.decoder.embed_positions._float_tensor""", ] for k in ignore_keys: model_state_dict.pop(UpperCamelCase , UpperCamelCase ) lowerCamelCase__ : Tuple = FSMTConfig.from_pretrained(UpperCamelCase ) lowerCamelCase__ : List[str] = FSMTForConditionalGeneration(UpperCamelCase ) # check that it loads ok model_new.load_state_dict(UpperCamelCase , strict=UpperCamelCase ) # save lowerCamelCase__ : Any = os.path.join(UpperCamelCase , UpperCamelCase ) print(f"Generating {pytorch_weights_dump_path}" ) torch.save(UpperCamelCase , UpperCamelCase ) print("""Conversion is done!""" ) print("""\nLast step is to upload the files to s3""" ) print(f"cd {data_root}" ) print(f"transformers-cli upload {model_dir}" ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--fsmt_checkpoint_path''', default=None, type=str, required=True, help=( '''Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,''' ''' bpecodes, etc.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) _lowercase = parser.parse_args() convert_fsmt_checkpoint_to_pytorch(args.fsmt_checkpoint_path, args.pytorch_dump_folder_path)
157
0
"""simple docstring""" from graphs.minimum_spanning_tree_kruskal import kruskal def UpperCAmelCase ( ) -> List[Any]: __lowerCamelCase : List[str] = 9 __lowerCamelCase : int = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] __lowerCamelCase : Dict = kruskal(A__ , A__ ) __lowerCamelCase : List[Any] = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] assert sorted(A__ ) == sorted(A__ )
718
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging a_ : Tuple = logging.get_logger(__name__) a_ : str = {'''openai-gpt''': '''https://huggingface.co/openai-gpt/resolve/main/config.json'''} class __lowercase( lowercase__ ): '''simple docstring''' __a : Union[str, Any] = 'openai-gpt' __a : List[Any] = { 'max_position_embeddings': 'n_positions', 'hidden_size': 'n_embd', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , __a=40478 , __a=512 , __a=768 , __a=12 , __a=12 , __a="gelu" , __a=0.1 , __a=0.1 , __a=0.1 , __a=1E-5 , __a=0.02 , __a="cls_index" , __a=True , __a=None , __a=True , __a=0.1 , **__a , ): __lowerCamelCase : List[str] = vocab_size __lowerCamelCase : Union[str, Any] = n_positions __lowerCamelCase : Optional[Any] = n_embd __lowerCamelCase : int = n_layer __lowerCamelCase : List[str] = n_head __lowerCamelCase : Dict = afn __lowerCamelCase : Optional[Any] = resid_pdrop __lowerCamelCase : int = embd_pdrop __lowerCamelCase : int = attn_pdrop __lowerCamelCase : Dict = layer_norm_epsilon __lowerCamelCase : List[str] = initializer_range __lowerCamelCase : Any = summary_type __lowerCamelCase : Tuple = summary_use_proj __lowerCamelCase : List[Any] = summary_activation __lowerCamelCase : str = summary_first_dropout __lowerCamelCase : Tuple = summary_proj_to_labels super().__init__(**__a )
263
0
import warnings from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __lowercase (__SCREAMING_SNAKE_CASE ): """simple docstring""" _UpperCAmelCase = ["""image_processor""", """tokenizer"""] _UpperCAmelCase = """FlavaImageProcessor""" _UpperCAmelCase = ("""BertTokenizer""", """BertTokenizerFast""") def __init__( self , lowerCAmelCase__=None , lowerCAmelCase__=None , **lowerCAmelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , lowerCAmelCase__ , ) SCREAMING_SNAKE_CASE_ : Any = kwargs.pop('feature_extractor' ) SCREAMING_SNAKE_CASE_ : Any = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Dict = self.image_processor def __call__( self , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = True , lowerCAmelCase__ = False , lowerCAmelCase__ = False , lowerCAmelCase__ = None , lowerCAmelCase__ = 0 , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = False , lowerCAmelCase__ = False , lowerCAmelCase__ = False , lowerCAmelCase__ = False , lowerCAmelCase__ = True , lowerCAmelCase__ = None , **lowerCAmelCase__ , ): """simple docstring""" if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: SCREAMING_SNAKE_CASE_ : Optional[int] = self.tokenizer( text=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ , stride=lowerCAmelCase__ , pad_to_multiple_of=lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , return_overflowing_tokens=lowerCAmelCase__ , return_special_tokens_mask=lowerCAmelCase__ , return_offsets_mapping=lowerCAmelCase__ , return_length=lowerCAmelCase__ , verbose=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__ , ) if images is not None: SCREAMING_SNAKE_CASE_ : int = self.image_processor( lowerCAmelCase__ , return_image_mask=lowerCAmelCase__ , return_codebook_pixels=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__ , ) if text is not None and images is not None: encoding.update(lowerCAmelCase__ ) return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowerCAmelCase__ ) , tensor_type=lowerCAmelCase__ ) def UpperCamelCase__ ( self , *lowerCAmelCase__ , **lowerCAmelCase__ ): """simple docstring""" return self.tokenizer.batch_decode(*lowerCAmelCase__ , **lowerCAmelCase__ ) def UpperCamelCase__ ( self , *lowerCAmelCase__ , **lowerCAmelCase__ ): """simple docstring""" return self.tokenizer.decode(*lowerCAmelCase__ , **lowerCAmelCase__ ) @property def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = self.tokenizer.model_input_names SCREAMING_SNAKE_CASE_ : Tuple = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def UpperCamelCase__ ( self ): """simple docstring""" warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , lowerCAmelCase__ , ) return self.image_processor_class @property def UpperCamelCase__ ( self ): """simple docstring""" warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , lowerCAmelCase__ , ) return self.image_processor
101
import argparse import json import re from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileNetVaConfig, MobileNetVaForImageClassification, MobileNetVaImageProcessor, load_tf_weights_in_mobilenet_va, ) from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase_ = logging.get_logger(__name__) def snake_case( __magic_name__ ) -> Optional[Any]: '''simple docstring''' lowercase : Any = MobileNetVaConfig(layer_norm_eps=0.0_0_1 ) if "_quant" in model_name: raise ValueError('''Quantized models are not supported.''' ) lowercase : Optional[int] = re.match(r'''^mobilenet_v1_([^_]*)_([^_]*)$''' , __magic_name__ ) if matches: lowercase : Optional[int] = float(matches[1] ) lowercase : Tuple = int(matches[2] ) # The TensorFlow version of MobileNetV1 predicts 1001 classes instead of # the usual 1000. The first class (index 0) is "background". lowercase : Optional[int] = 10_01 lowercase : str = '''imagenet-1k-id2label.json''' lowercase : Optional[Any] = '''huggingface/label-files''' lowercase : Optional[int] = json.load(open(hf_hub_download(__magic_name__ , __magic_name__ , repo_type='''dataset''' ) , '''r''' ) ) lowercase : Any = {int(__magic_name__ ) + 1: v for k, v in idalabel.items()} lowercase : Any = '''background''' lowercase : Any = idalabel lowercase : Any = {v: k for k, v in idalabel.items()} return config def snake_case( ) -> Optional[Any]: '''simple docstring''' lowercase : Union[str, Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowercase : Tuple = Image.open(requests.get(__magic_name__ , stream=__magic_name__ ).raw ) return im @torch.no_grad() def snake_case( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__=False ) -> int: '''simple docstring''' lowercase : int = get_mobilenet_va_config(__magic_name__ ) # Load 🤗 model lowercase : Tuple = MobileNetVaForImageClassification(__magic_name__ ).eval() # Load weights from TensorFlow checkpoint load_tf_weights_in_mobilenet_va(__magic_name__ , __magic_name__ , __magic_name__ ) # Check outputs on an image, prepared by MobileNetV1ImageProcessor lowercase : List[Any] = MobileNetVaImageProcessor( crop_size={'''width''': config.image_size, '''height''': config.image_size} , size={'''shortest_edge''': config.image_size + 32} , ) lowercase : Dict = image_processor(images=prepare_img() , return_tensors='''pt''' ) lowercase : Optional[Any] = model(**__magic_name__ ) lowercase : int = outputs.logits assert logits.shape == (1, 10_01) if model_name == "mobilenet_v1_1.0_224": lowercase : str = torch.tensor([-4.1_7_3_9, -1.1_2_3_3, 3.1_2_0_5] ) elif model_name == "mobilenet_v1_0.75_192": lowercase : Optional[Any] = torch.tensor([-3.9_4_4_0, -2.3_1_4_1, -0.3_3_3_3] ) else: lowercase : int = None if expected_logits is not None: assert torch.allclose(logits[0, :3] , __magic_name__ , atol=1e-4 ) Path(__magic_name__ ).mkdir(exist_ok=__magic_name__ ) print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__magic_name__ ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__magic_name__ ) if push_to_hub: print('''Pushing to the hub...''' ) lowercase : int = '''google/''' + model_name image_processor.push_to_hub(__magic_name__ ) model.push_to_hub(__magic_name__ ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='mobilenet_v1_1.0_224', type=str, help='Name of the MobileNetV1 model you\'d like to convert. Should in the form \'mobilenet_v1_<depth>_<size>\'.', ) parser.add_argument( '--checkpoint_path', required=True, type=str, help='Path to the original TensorFlow checkpoint (.ckpt file).' ) parser.add_argument( '--pytorch_dump_folder_path', required=True, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) lowerCAmelCase_ = parser.parse_args() convert_movilevit_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
217
0
import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def A ( lowercase__ : int , lowercase__ : Any , lowercase__ : Dict=None ) -> Union[str, Any]: # set parameter of one layer assert torch_layer.weight.shape == weight.shape, f"""{torch_layer} layer.weight does not match""" UpperCamelCase__ :Dict = nn.Parameter(lowercase__ ) if bias is not None: assert torch_layer.bias.shape == bias.shape, f"""{torch_layer} layer.bias does not match""" UpperCamelCase__ :Any = nn.Parameter(lowercase__ ) def A ( lowercase__ : Tuple , lowercase__ : List[str] , lowercase__ : List[Any] ) -> List[Any]: # set torch weights for 1-to-1 comparison UpperCamelCase__ :List[Any] = np.asarray(weights[0] ) UpperCamelCase__ :Dict = np.asarray(weights[1] ) UpperCamelCase__ :Union[str, Any] = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key , torch.tensor(lowercase__ ).transpose(1 , 2 ).contiguous().view(-1 , lowercase__ ) , ) set_param( torch_layer.self_attention.value , torch.tensor(lowercase__ ).transpose(1 , 2 ).contiguous().view(-1 , lowercase__ ) , ) set_param( torch_layer.output.dense , torch.tensor(lowercase__ ).view(-1 , lowercase__ ).contiguous().transpose(0 , 1 ) , ) def A ( lowercase__ : str , lowercase__ : Union[str, Any] , lowercase__ : Dict ) -> str: # set torch weights for 1-to-1 comparison UpperCamelCase__ :List[Any] = np.asarray(weights[0] ) UpperCamelCase__ :List[Any] = np.asarray(weights[1] ) UpperCamelCase__ :Optional[int] = np.asarray(weights[2] ) UpperCamelCase__ :List[Any] = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query , torch.tensor(lowercase__ ).transpose(1 , 2 ).contiguous().view(-1 , lowercase__ ) , ) set_param( torch_layer.self_attention.key , torch.tensor(lowercase__ ).transpose(1 , 2 ).contiguous().view(-1 , lowercase__ ) , ) set_param( torch_layer.self_attention.value , torch.tensor(lowercase__ ).transpose(1 , 2 ).contiguous().view(-1 , lowercase__ ) , ) set_param( torch_layer.output.dense , torch.tensor(lowercase__ ).view(-1 , lowercase__ ).contiguous().transpose(0 , 1 ) , ) def A ( lowercase__ : List[Any] , lowercase__ : str , lowercase__ : List[Any] ) -> Dict: # layernorm 1 UpperCamelCase__ :Any = weights[0][0][0] UpperCamelCase__ :List[str] = np.asarray(layer_norm_a[0] ) UpperCamelCase__ :str = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm , torch.tensor(lowercase__ ) , torch.tensor(lowercase__ ) , ) # lsh weights + output UpperCamelCase__ :Optional[int] = weights[0][1] if len(lowercase__ ) < 4: set_layer_weights_in_torch_lsh(lowercase__ , torch_block.attention , lowercase__ ) else: set_layer_weights_in_torch_local(lowercase__ , torch_block.attention , lowercase__ ) # intermediate weighs UpperCamelCase__ :Any = weights[2][0][1][2] # Chunked Feed Forward if len(lowercase__ ) == 4: UpperCamelCase__ :List[Any] = intermediate_weights[2] # layernorm 2 UpperCamelCase__ :Optional[Any] = np.asarray(intermediate_weights[0][0] ) UpperCamelCase__ :Tuple = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm , torch.tensor(lowercase__ ) , torch.tensor(lowercase__ ) , ) # intermediate dense UpperCamelCase__ :str = np.asarray(intermediate_weights[1][0] ) UpperCamelCase__ :List[Any] = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense , torch.tensor(lowercase__ ).transpose(0 , 1 ).contiguous() , torch.tensor(lowercase__ ) , ) # intermediate out UpperCamelCase__ :Any = np.asarray(intermediate_weights[4][0] ) UpperCamelCase__ :List[Any] = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense , torch.tensor(lowercase__ ).transpose(0 , 1 ).contiguous() , torch.tensor(lowercase__ ) , ) def A ( lowercase__ : Union[str, Any] , lowercase__ : Tuple , lowercase__ : Optional[Any] ) -> str: # reformer model UpperCamelCase__ :Dict = torch_model.reformer # word embeds UpperCamelCase__ :Optional[int] = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings , torch.tensor(lowercase__ ) , ) if isinstance(weights[3] , lowercase__ ): UpperCamelCase__ :str = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): UpperCamelCase__ :str = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), f"""{position_embeddings[emb_idx]} emb does not match""" UpperCamelCase__ :Optional[Any] = nn.Parameter(torch.tensor(lowercase__ ) ) UpperCamelCase__ :Dict = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( lowercase__ ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): UpperCamelCase__ :Optional[Any] = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(lowercase__ , lowercase__ , lowercase__ ) # output layer norm UpperCamelCase__ :Any = np.asarray(weights[7][0] ) UpperCamelCase__ :List[Any] = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm , torch.tensor(lowercase__ ) , torch.tensor(lowercase__ ) , ) # output embeddings UpperCamelCase__ :int = np.asarray(weights[9][0] ) UpperCamelCase__ :List[Any] = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder , torch.tensor(lowercase__ ).transpose(0 , 1 ).contiguous() , torch.tensor(lowercase__ ) , ) def A ( lowercase__ : int , lowercase__ : int , lowercase__ : List[Any] ) -> Any: # Initialise PyTorch model UpperCamelCase__ :List[str] = ReformerConfig.from_json_file(lowercase__ ) print(f"""Building PyTorch model from configuration: {config}""" ) UpperCamelCase__ :Any = ReformerModelWithLMHead(lowercase__ ) with open(lowercase__ , """rb""" ) as f: UpperCamelCase__ :Dict = pickle.load(lowercase__ )["""weights"""] set_model_weights_in_torch(lowercase__ , lowercase__ , config.hidden_size ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , lowercase__ ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--trax_model_pkl_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained Reformer model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) UpperCamelCase = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
383
import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel UpperCamelCase = "0.12" # assumed parallelism: 8 @require_flax @is_staging_test class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" @classmethod def __a ( cls :Optional[int] ): UpperCamelCase__ :Union[str, Any] = TOKEN HfFolder.save_token(lowerCamelCase__ ) @classmethod def __a ( cls :List[str] ): try: delete_repo(token=cls._token , repo_id="""test-model-flax""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-model-flax-org""" ) except HTTPError: pass def __a ( self :Any ): UpperCamelCase__ :Any = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) UpperCamelCase__ :int = FlaxBertModel(lowerCamelCase__ ) model.push_to_hub("""test-model-flax""" , use_auth_token=self._token ) UpperCamelCase__ :Optional[Any] = FlaxBertModel.from_pretrained(f"""{USER}/test-model-flax""" ) UpperCamelCase__ :str = flatten_dict(unfreeze(model.params ) ) UpperCamelCase__ :Optional[int] = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCamelCase__ :Any = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(lowerCamelCase__ , 1e-3 , msg=f"""{key} not identical""" ) # Reset repo delete_repo(token=self._token , repo_id="""test-model-flax""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(lowerCamelCase__ , repo_id="""test-model-flax""" , push_to_hub=lowerCamelCase__ , use_auth_token=self._token ) UpperCamelCase__ :Any = FlaxBertModel.from_pretrained(f"""{USER}/test-model-flax""" ) UpperCamelCase__ :List[Any] = flatten_dict(unfreeze(model.params ) ) UpperCamelCase__ :Tuple = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCamelCase__ :Optional[int] = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(lowerCamelCase__ , 1e-3 , msg=f"""{key} not identical""" ) def __a ( self :List[Any] ): UpperCamelCase__ :Dict = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) UpperCamelCase__ :int = FlaxBertModel(lowerCamelCase__ ) model.push_to_hub("""valid_org/test-model-flax-org""" , use_auth_token=self._token ) UpperCamelCase__ :List[str] = FlaxBertModel.from_pretrained("""valid_org/test-model-flax-org""" ) UpperCamelCase__ :int = flatten_dict(unfreeze(model.params ) ) UpperCamelCase__ :Any = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCamelCase__ :int = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(lowerCamelCase__ , 1e-3 , msg=f"""{key} not identical""" ) # Reset repo delete_repo(token=self._token , repo_id="""valid_org/test-model-flax-org""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( lowerCamelCase__ , repo_id="""valid_org/test-model-flax-org""" , push_to_hub=lowerCamelCase__ , use_auth_token=self._token ) UpperCamelCase__ :List[str] = FlaxBertModel.from_pretrained("""valid_org/test-model-flax-org""" ) UpperCamelCase__ :Optional[int] = flatten_dict(unfreeze(model.params ) ) UpperCamelCase__ :List[Any] = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCamelCase__ :Optional[int] = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(lowerCamelCase__ , 1e-3 , msg=f"""{key} not identical""" ) def A ( lowercase__ : List[Any] , lowercase__ : Union[str, Any] ) -> Union[str, Any]: UpperCamelCase__ :List[str] = True UpperCamelCase__ :Tuple = flatten_dict(modela.params ) UpperCamelCase__ :int = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1E-4: UpperCamelCase__ :Tuple = False return models_are_equal @require_flax class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __a ( self :List[Any] ): UpperCamelCase__ :Union[str, Any] = BertConfig.from_pretrained("""hf-internal-testing/tiny-bert-flax-only""" ) UpperCamelCase__ :List[str] = FlaxBertModel(lowerCamelCase__ ) UpperCamelCase__ :int = """bert""" with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(lowerCamelCase__ , lowerCamelCase__ ) ) with self.assertRaises(lowerCamelCase__ ): UpperCamelCase__ :List[str] = FlaxBertModel.from_pretrained(lowerCamelCase__ ) UpperCamelCase__ :Tuple = FlaxBertModel.from_pretrained(lowerCamelCase__ , subfolder=lowerCamelCase__ ) self.assertTrue(check_models_equal(lowerCamelCase__ , lowerCamelCase__ ) ) def __a ( self :List[str] ): UpperCamelCase__ :List[Any] = BertConfig.from_pretrained("""hf-internal-testing/tiny-bert-flax-only""" ) UpperCamelCase__ :Union[str, Any] = FlaxBertModel(lowerCamelCase__ ) UpperCamelCase__ :Any = """bert""" with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(lowerCamelCase__ , lowerCamelCase__ ) , max_shard_size="""10KB""" ) with self.assertRaises(lowerCamelCase__ ): UpperCamelCase__ :Tuple = FlaxBertModel.from_pretrained(lowerCamelCase__ ) UpperCamelCase__ :Union[str, Any] = FlaxBertModel.from_pretrained(lowerCamelCase__ , subfolder=lowerCamelCase__ ) self.assertTrue(check_models_equal(lowerCamelCase__ , lowerCamelCase__ ) ) def __a ( self :Optional[Any] ): UpperCamelCase__ :Any = """bert""" UpperCamelCase__ :int = """hf-internal-testing/tiny-random-bert-subfolder""" with self.assertRaises(lowerCamelCase__ ): UpperCamelCase__ :str = FlaxBertModel.from_pretrained(lowerCamelCase__ ) UpperCamelCase__ :int = FlaxBertModel.from_pretrained(lowerCamelCase__ , subfolder=lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def __a ( self :Union[str, Any] ): UpperCamelCase__ :Dict = """bert""" UpperCamelCase__ :int = """hf-internal-testing/tiny-random-bert-sharded-subfolder""" with self.assertRaises(lowerCamelCase__ ): UpperCamelCase__ :Optional[int] = FlaxBertModel.from_pretrained(lowerCamelCase__ ) UpperCamelCase__ :List[str] = FlaxBertModel.from_pretrained(lowerCamelCase__ , subfolder=lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ )
383
1
"""simple docstring""" from __future__ import annotations class snake_case_ : """simple docstring""" def __init__( self , lowerCamelCase_) -> None: UpperCamelCase = data UpperCamelCase = None UpperCamelCase = None def __snake_case ( _lowercase ): # In Order traversal of the tree """simple docstring""" if tree: display(tree.left ) print(tree.data ) display(tree.right ) def __snake_case ( _lowercase ): """simple docstring""" return 1 + max(depth_of_tree(tree.left ) ,depth_of_tree(tree.right ) ) if tree else 0 def __snake_case ( _lowercase ): """simple docstring""" if not tree: return True if tree.left and tree.right: return is_full_binary_tree(tree.left ) and is_full_binary_tree(tree.right ) else: return not tree.left and not tree.right def __snake_case ( ): # Main function for testing. """simple docstring""" UpperCamelCase = Node(1 ) UpperCamelCase = Node(2 ) UpperCamelCase = Node(3 ) UpperCamelCase = Node(4 ) UpperCamelCase = Node(5 ) UpperCamelCase = Node(6 ) UpperCamelCase = Node(7 ) UpperCamelCase = Node(8 ) UpperCamelCase = Node(9 ) print(is_full_binary_tree(_lowercase ) ) print(depth_of_tree(_lowercase ) ) print('''Tree is: ''' ) display(_lowercase ) if __name__ == "__main__": main()
34
"""simple docstring""" import os # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_doctest_list.py snake_case_ : Any = """.""" if __name__ == "__main__": snake_case_ : List[str] = os.path.join(REPO_PATH, """utils/documentation_tests.txt""") snake_case_ : Any = [] snake_case_ : Tuple = [] with open(doctest_file_path) as fp: for line in fp: snake_case_ : List[Any] = line.strip() snake_case_ : List[Any] = os.path.join(REPO_PATH, line) if not (os.path.isfile(path) or os.path.isdir(path)): non_existent_paths.append(line) all_paths.append(path) if len(non_existent_paths) > 0: snake_case_ : Union[str, Any] = """\n""".join(non_existent_paths) raise ValueError(f'''`utils/documentation_tests.txt` contains non-existent paths:\n{non_existent_paths}''') if all_paths != sorted(all_paths): raise ValueError("""Files in `utils/documentation_tests.txt` are not in alphabetical order.""")
595
0
'''simple docstring''' import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase : str = logging.get_logger(__name__) def __lowerCAmelCase ( lowerCamelCase : List[Any] , lowerCamelCase : List[str]=False ): '''simple docstring''' __lowerCAmelCase = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'''blocks.{i}.norm1.weight''', f'''deit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((f'''blocks.{i}.norm1.bias''', f'''deit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append((f'''blocks.{i}.attn.proj.weight''', f'''deit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((f'''blocks.{i}.attn.proj.bias''', f'''deit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((f'''blocks.{i}.norm2.weight''', f'''deit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((f'''blocks.{i}.norm2.bias''', f'''deit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((f'''blocks.{i}.mlp.fc1.weight''', f'''deit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((f'''blocks.{i}.mlp.fc1.bias''', f'''deit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((f'''blocks.{i}.mlp.fc2.weight''', f'''deit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((f'''blocks.{i}.mlp.fc2.bias''', f'''deit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ ("cls_token", "deit.embeddings.cls_token"), ("dist_token", "deit.embeddings.distillation_token"), ("patch_embed.proj.weight", "deit.embeddings.patch_embeddings.projection.weight"), ("patch_embed.proj.bias", "deit.embeddings.patch_embeddings.projection.bias"), ("pos_embed", "deit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ("pre_logits.fc.weight", "pooler.dense.weight"), ("pre_logits.fc.bias", "pooler.dense.bias"), ] ) # if just the base model, we should remove "deit" from all keys that start with "deit" __lowerCAmelCase = [(pair[0], pair[1][4:]) if pair[1].startswith("deit" ) else pair for pair in rename_keys] else: # layernorm + classification heads rename_keys.extend( [ ("norm.weight", "deit.layernorm.weight"), ("norm.bias", "deit.layernorm.bias"), ("head.weight", "cls_classifier.weight"), ("head.bias", "cls_classifier.bias"), ("head_dist.weight", "distillation_classifier.weight"), ("head_dist.bias", "distillation_classifier.bias"), ] ) return rename_keys def __lowerCAmelCase ( lowerCamelCase : Tuple , lowerCamelCase : Optional[int] , lowerCamelCase : Union[str, Any]=False ): '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: __lowerCAmelCase = '' else: __lowerCAmelCase = 'deit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __lowerCAmelCase = state_dict.pop(f'''blocks.{i}.attn.qkv.weight''' ) __lowerCAmelCase = state_dict.pop(f'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict __lowerCAmelCase = in_proj_weight[ : config.hidden_size, : ] __lowerCAmelCase = in_proj_bias[: config.hidden_size] __lowerCAmelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __lowerCAmelCase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __lowerCAmelCase = in_proj_weight[ -config.hidden_size :, : ] __lowerCAmelCase = in_proj_bias[-config.hidden_size :] def __lowerCAmelCase ( lowerCamelCase : List[Any] , lowerCamelCase : Tuple , lowerCamelCase : Optional[Any] ): '''simple docstring''' __lowerCAmelCase = dct.pop(__lowercase ) __lowerCAmelCase = val def __lowerCAmelCase ( ): '''simple docstring''' __lowerCAmelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg' __lowerCAmelCase = Image.open(requests.get(__lowercase , stream=__lowercase ).raw ) return im @torch.no_grad() def __lowerCAmelCase ( lowerCamelCase : List[str] , lowerCamelCase : Union[str, Any] ): '''simple docstring''' __lowerCAmelCase = DeiTConfig() # all deit models have fine-tuned heads __lowerCAmelCase = False # dataset (fine-tuned on ImageNet 2012), patch_size and image_size __lowerCAmelCase = 10_00 __lowerCAmelCase = 'huggingface/label-files' __lowerCAmelCase = 'imagenet-1k-id2label.json' __lowerCAmelCase = json.load(open(hf_hub_download(__lowercase , __lowercase , repo_type="dataset" ) , "r" ) ) __lowerCAmelCase = {int(__lowercase ): v for k, v in idalabel.items()} __lowerCAmelCase = idalabel __lowerCAmelCase = {v: k for k, v in idalabel.items()} __lowerCAmelCase = int(deit_name[-6:-4] ) __lowerCAmelCase = int(deit_name[-3:] ) # size of the architecture if deit_name[9:].startswith("tiny" ): __lowerCAmelCase = 1_92 __lowerCAmelCase = 7_68 __lowerCAmelCase = 12 __lowerCAmelCase = 3 elif deit_name[9:].startswith("small" ): __lowerCAmelCase = 3_84 __lowerCAmelCase = 15_36 __lowerCAmelCase = 12 __lowerCAmelCase = 6 if deit_name[9:].startswith("base" ): pass elif deit_name[4:].startswith("large" ): __lowerCAmelCase = 10_24 __lowerCAmelCase = 40_96 __lowerCAmelCase = 24 __lowerCAmelCase = 16 # load original model from timm __lowerCAmelCase = timm.create_model(__lowercase , pretrained=__lowercase ) timm_model.eval() # load state_dict of original model, remove and rename some keys __lowerCAmelCase = timm_model.state_dict() __lowerCAmelCase = create_rename_keys(__lowercase , __lowercase ) for src, dest in rename_keys: rename_key(__lowercase , __lowercase , __lowercase ) read_in_q_k_v(__lowercase , __lowercase , __lowercase ) # load HuggingFace model __lowerCAmelCase = DeiTForImageClassificationWithTeacher(__lowercase ).eval() model.load_state_dict(__lowercase ) # Check outputs on an image, prepared by DeiTImageProcessor __lowerCAmelCase = int( (2_56 / 2_24) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103 __lowerCAmelCase = DeiTImageProcessor(size=__lowercase , crop_size=config.image_size ) __lowerCAmelCase = image_processor(images=prepare_img() , return_tensors="pt" ) __lowerCAmelCase = encoding['pixel_values'] __lowerCAmelCase = model(__lowercase ) __lowerCAmelCase = timm_model(__lowercase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(__lowercase , outputs.logits , atol=1e-3 ) Path(__lowercase ).mkdir(exist_ok=__lowercase ) print(f'''Saving model {deit_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(__lowercase ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__lowercase ) if __name__ == "__main__": lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--deit_name''', default='''vit_deit_base_distilled_patch16_224''', type=str, help='''Name of the DeiT timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) lowerCAmelCase : Optional[int] = parser.parse_args() convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
703
'''simple docstring''' import torch from diffusers import CMStochasticIterativeScheduler from .test_schedulers import SchedulerCommonTest class UpperCAmelCase__ ( UpperCamelCase__ ): a : List[str] = (CMStochasticIterativeScheduler,) a : str = 1_0 def UpperCAmelCase_ ( self , **UpperCamelCase ) -> str: __lowerCAmelCase = { "num_train_timesteps": 201, "sigma_min": 0.0_02, "sigma_max": 80.0, } config.update(**UpperCamelCase ) return config def UpperCAmelCase_ ( self ) -> List[Any]: __lowerCAmelCase = 10 __lowerCAmelCase = self.get_scheduler_config() __lowerCAmelCase = self.scheduler_classes[0](**UpperCamelCase ) scheduler.set_timesteps(UpperCamelCase ) __lowerCAmelCase = scheduler.timesteps[0] __lowerCAmelCase = scheduler.timesteps[1] __lowerCAmelCase = self.dummy_sample __lowerCAmelCase = 0.1 * sample __lowerCAmelCase = scheduler.step(UpperCamelCase , UpperCamelCase , UpperCamelCase ).prev_sample __lowerCAmelCase = scheduler.step(UpperCamelCase , UpperCamelCase , UpperCamelCase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def UpperCAmelCase_ ( self ) -> Any: for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=UpperCamelCase ) def UpperCAmelCase_ ( self ) -> Union[str, Any]: for clip_denoised in [True, False]: self.check_over_configs(clip_denoised=UpperCamelCase ) def UpperCAmelCase_ ( self ) -> List[str]: __lowerCAmelCase = self.scheduler_classes[0] __lowerCAmelCase = self.get_scheduler_config() __lowerCAmelCase = scheduler_class(**UpperCamelCase ) __lowerCAmelCase = 1 scheduler.set_timesteps(UpperCamelCase ) __lowerCAmelCase = scheduler.timesteps __lowerCAmelCase = torch.manual_seed(0 ) __lowerCAmelCase = self.dummy_model() __lowerCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma for i, t in enumerate(UpperCamelCase ): # 1. scale model input __lowerCAmelCase = scheduler.scale_model_input(UpperCamelCase , UpperCamelCase ) # 2. predict noise residual __lowerCAmelCase = model(UpperCamelCase , UpperCamelCase ) # 3. predict previous sample x_t-1 __lowerCAmelCase = scheduler.step(UpperCamelCase , UpperCamelCase , UpperCamelCase , generator=UpperCamelCase ).prev_sample __lowerCAmelCase = pred_prev_sample __lowerCAmelCase = torch.sum(torch.abs(UpperCamelCase ) ) __lowerCAmelCase = torch.mean(torch.abs(UpperCamelCase ) ) assert abs(result_sum.item() - 1_92.76_14 ) < 1E-2 assert abs(result_mean.item() - 0.25_10 ) < 1E-3 def UpperCAmelCase_ ( self ) -> Optional[int]: __lowerCAmelCase = self.scheduler_classes[0] __lowerCAmelCase = self.get_scheduler_config() __lowerCAmelCase = scheduler_class(**UpperCamelCase ) __lowerCAmelCase = [106, 0] scheduler.set_timesteps(timesteps=UpperCamelCase ) __lowerCAmelCase = scheduler.timesteps __lowerCAmelCase = torch.manual_seed(0 ) __lowerCAmelCase = self.dummy_model() __lowerCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma for t in timesteps: # 1. scale model input __lowerCAmelCase = scheduler.scale_model_input(UpperCamelCase , UpperCamelCase ) # 2. predict noise residual __lowerCAmelCase = model(UpperCamelCase , UpperCamelCase ) # 3. predict previous sample x_t-1 __lowerCAmelCase = scheduler.step(UpperCamelCase , UpperCamelCase , UpperCamelCase , generator=UpperCamelCase ).prev_sample __lowerCAmelCase = pred_prev_sample __lowerCAmelCase = torch.sum(torch.abs(UpperCamelCase ) ) __lowerCAmelCase = torch.mean(torch.abs(UpperCamelCase ) ) assert abs(result_sum.item() - 3_47.63_57 ) < 1E-2 assert abs(result_mean.item() - 0.45_27 ) < 1E-3 def UpperCAmelCase_ ( self ) -> Any: __lowerCAmelCase = self.scheduler_classes[0] __lowerCAmelCase = self.get_scheduler_config() __lowerCAmelCase = scheduler_class(**UpperCamelCase ) __lowerCAmelCase = [39, 30, 12, 15, 0] with self.assertRaises(UpperCamelCase , msg="`timesteps` must be in descending order." ): scheduler.set_timesteps(timesteps=UpperCamelCase ) def UpperCAmelCase_ ( self ) -> Optional[int]: __lowerCAmelCase = self.scheduler_classes[0] __lowerCAmelCase = self.get_scheduler_config() __lowerCAmelCase = scheduler_class(**UpperCamelCase ) __lowerCAmelCase = [39, 30, 12, 1, 0] __lowerCAmelCase = len(UpperCamelCase ) with self.assertRaises(UpperCamelCase , msg="Can only pass one of `num_inference_steps` or `timesteps`." ): scheduler.set_timesteps(num_inference_steps=UpperCamelCase , timesteps=UpperCamelCase ) def UpperCAmelCase_ ( self ) -> Tuple: __lowerCAmelCase = self.scheduler_classes[0] __lowerCAmelCase = self.get_scheduler_config() __lowerCAmelCase = scheduler_class(**UpperCamelCase ) __lowerCAmelCase = [scheduler.config.num_train_timesteps] with self.assertRaises( UpperCamelCase , msg="`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}" , ): scheduler.set_timesteps(timesteps=UpperCamelCase )
39
0
def A__ ( snake_case_ : int ): SCREAMING_SNAKE_CASE__: Optional[Any]= int(snake_case_ ) if n_element < 1: SCREAMING_SNAKE_CASE__: Union[str, Any]= ValueError('''a should be a positive number''' ) raise my_error SCREAMING_SNAKE_CASE__: Any= [1] SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__: Optional[int]= (0, 0, 0) SCREAMING_SNAKE_CASE__: Optional[int]= 1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": lowercase_ : List[str] = input('Enter the last number (nth term) of the Hamming Number Series: ') print('Formula of Hamming Number Series => 2^i * 3^j * 5^k') lowercase_ : List[str] = hamming(int(n)) print('-----------------------------------------------------') print(f'''The list with nth numbers is: {hamming_numbers}''') print('-----------------------------------------------------')
64
'''simple docstring''' def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __a : Tuple = len(SCREAMING_SNAKE_CASE__ ) __a : int = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): __a : int = True # sum is not zero and set is empty then false for i in range(1 , required_sum + 1 ): __a : Union[str, Any] = False for i in range(1 , arr_len + 1 ): for j in range(1 , required_sum + 1 ): if arr[i - 1] > j: __a : List[str] = subset[i - 1][j] if arr[i - 1] <= j: __a : Union[str, Any] = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
597
0
'''simple docstring''' import os import torch from ..logging import get_logger from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME from .versions import is_torch_version if is_torch_version('>=', FSDP_PYTORCH_VERSION): import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType snake_case_ = get_logger(__name__) def __lowerCamelCase ( SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Dict=0 ) -> Optional[int]: """simple docstring""" os.makedirs(SCREAMING_SNAKE_CASE_ , exist_ok=SCREAMING_SNAKE_CASE_ ) with FSDP.state_dict_type( SCREAMING_SNAKE_CASE_ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): SCREAMING_SNAKE_CASE_ : Optional[Any] = model.state_dict() if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: SCREAMING_SNAKE_CASE_ : List[Any] = F"{MODEL_NAME}.bin" if model_index == 0 else F"{MODEL_NAME}_{model_index}.bin" SCREAMING_SNAKE_CASE_ : Tuple = os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if accelerator.process_index == 0: logger.info(F"Saving model to {output_model_file}" ) torch.save(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) logger.info(F"Model saved to {output_model_file}" ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: SCREAMING_SNAKE_CASE_ : Union[str, Any] = ( F"{MODEL_NAME}_rank{accelerator.process_index}.bin" if model_index == 0 else F"{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin" ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) logger.info(F"Saving model to {output_model_file}" ) torch.save(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) logger.info(F"Model saved to {output_model_file}" ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: SCREAMING_SNAKE_CASE_ : Optional[int] = os.path.join(SCREAMING_SNAKE_CASE_ , F"{MODEL_NAME}_{model_index}" ) os.makedirs(SCREAMING_SNAKE_CASE_ , exist_ok=SCREAMING_SNAKE_CASE_ ) logger.info(F"Saving model to {ckpt_dir}" ) SCREAMING_SNAKE_CASE_ : Optional[int] = {"model": state_dict} dist_cp.save_state_dict( state_dict=SCREAMING_SNAKE_CASE_ , storage_writer=dist_cp.FileSystemWriter(SCREAMING_SNAKE_CASE_ ) , planner=DefaultSavePlanner() , ) logger.info(F"Model saved to {ckpt_dir}" ) def __lowerCamelCase ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Tuple=0 ) -> Any: """simple docstring""" accelerator.wait_for_everyone() with FSDP.state_dict_type( SCREAMING_SNAKE_CASE_ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if type(SCREAMING_SNAKE_CASE_ ) != FSDP and accelerator.process_index != 0: if not fsdp_plugin.sync_module_states: raise ValueError( "Set the `sync_module_states` flag to `True` so that model states are synced across processes when " "initializing FSDP object" ) return SCREAMING_SNAKE_CASE_ : Optional[Any] = F"{MODEL_NAME}.bin" if model_index == 0 else F"{MODEL_NAME}_{model_index}.bin" SCREAMING_SNAKE_CASE_ : int = os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) logger.info(F"Loading model from {input_model_file}" ) SCREAMING_SNAKE_CASE_ : int = torch.load(SCREAMING_SNAKE_CASE_ ) logger.info(F"Model loaded from {input_model_file}" ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: SCREAMING_SNAKE_CASE_ : List[Any] = ( F"{MODEL_NAME}_rank{accelerator.process_index}.bin" if model_index == 0 else F"{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin" ) SCREAMING_SNAKE_CASE_ : str = os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) logger.info(F"Loading model from {input_model_file}" ) SCREAMING_SNAKE_CASE_ : Optional[Any] = torch.load(SCREAMING_SNAKE_CASE_ ) logger.info(F"Model loaded from {input_model_file}" ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: SCREAMING_SNAKE_CASE_ : Dict = ( os.path.join(SCREAMING_SNAKE_CASE_ , F"{MODEL_NAME}_{model_index}" ) if F"{MODEL_NAME}" not in input_dir else input_dir ) logger.info(F"Loading model from {ckpt_dir}" ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = {"model": model.state_dict()} dist_cp.load_state_dict( state_dict=SCREAMING_SNAKE_CASE_ , storage_reader=dist_cp.FileSystemReader(SCREAMING_SNAKE_CASE_ ) , planner=DefaultLoadPlanner() , ) SCREAMING_SNAKE_CASE_ : Dict = state_dict["model"] logger.info(F"Model loaded from {ckpt_dir}" ) model.load_state_dict(SCREAMING_SNAKE_CASE_ ) def __lowerCamelCase ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Optional[int]=0 ) -> Tuple: """simple docstring""" os.makedirs(SCREAMING_SNAKE_CASE_ , exist_ok=SCREAMING_SNAKE_CASE_ ) with FSDP.state_dict_type( SCREAMING_SNAKE_CASE_ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): SCREAMING_SNAKE_CASE_ : List[Any] = FSDP.optim_state_dict(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if accelerator.process_index == 0: SCREAMING_SNAKE_CASE_ : Union[str, Any] = ( F"{OPTIMIZER_NAME}.bin" if optimizer_index == 0 else F"{OPTIMIZER_NAME}_{optimizer_index}.bin" ) SCREAMING_SNAKE_CASE_ : Any = os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) logger.info(F"Saving Optimizer state to {output_optimizer_file}" ) torch.save(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) logger.info(F"Optimizer state saved in {output_optimizer_file}" ) else: SCREAMING_SNAKE_CASE_ : Any = os.path.join(SCREAMING_SNAKE_CASE_ , F"{OPTIMIZER_NAME}_{optimizer_index}" ) os.makedirs(SCREAMING_SNAKE_CASE_ , exist_ok=SCREAMING_SNAKE_CASE_ ) logger.info(F"Saving Optimizer state to {ckpt_dir}" ) dist_cp.save_state_dict( state_dict={"optimizer": optim_state} , storage_writer=dist_cp.FileSystemWriter(SCREAMING_SNAKE_CASE_ ) , planner=DefaultSavePlanner() , ) logger.info(F"Optimizer state saved in {ckpt_dir}" ) def __lowerCamelCase ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Optional[Any]=0 ) -> Tuple: """simple docstring""" accelerator.wait_for_everyone() with FSDP.state_dict_type( SCREAMING_SNAKE_CASE_ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: SCREAMING_SNAKE_CASE_ : int = None # below check should work but currently it isn't working (mostly opytorch issue), # in the meantime disabling it at the cost of excess memory usage # if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: SCREAMING_SNAKE_CASE_ : Tuple = ( F"{OPTIMIZER_NAME}.bin" if optimizer_index == 0 else F"{OPTIMIZER_NAME}_{optimizer_index}.bin" ) SCREAMING_SNAKE_CASE_ : Dict = os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) logger.info(F"Loading Optimizer state from {input_optimizer_file}" ) SCREAMING_SNAKE_CASE_ : Optional[Any] = torch.load(SCREAMING_SNAKE_CASE_ ) logger.info(F"Optimizer state loaded from {input_optimizer_file}" ) else: SCREAMING_SNAKE_CASE_ : Tuple = ( os.path.join(SCREAMING_SNAKE_CASE_ , F"{OPTIMIZER_NAME}_{optimizer_index}" ) if F"{OPTIMIZER_NAME}" not in input_dir else input_dir ) logger.info(F"Loading Optimizer from {ckpt_dir}" ) SCREAMING_SNAKE_CASE_ : Dict = load_sharded_optimizer_state_dict( model_state_dict=model.state_dict() , optimizer_key="optimizer" , storage_reader=dist_cp.FileSystemReader(SCREAMING_SNAKE_CASE_ ) , ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = optim_state["optimizer"] logger.info(F"Optimizer loaded from {ckpt_dir}" ) SCREAMING_SNAKE_CASE_ : int = FSDP.optim_state_dict_to_load(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) optimizer.load_state_dict(SCREAMING_SNAKE_CASE_ )
711
'''simple docstring''' def __lowerCamelCase ( SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Tuple ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = [1] for i in range(2 , SCREAMING_SNAKE_CASE_ ): factorials.append(factorials[-1] * i ) assert 0 <= k < factorials[-1] * n, "k out of bounds" SCREAMING_SNAKE_CASE_ : Union[str, Any] = [] SCREAMING_SNAKE_CASE_ : Dict = list(range(SCREAMING_SNAKE_CASE_ ) ) # Find permutation while factorials: SCREAMING_SNAKE_CASE_ : Any = factorials.pop() SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ : Optional[int] = divmod(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) permutation.append(elements[number] ) elements.remove(elements[number] ) permutation.append(elements[0] ) return permutation if __name__ == "__main__": import doctest doctest.testmod()
68
0
'''simple docstring''' import argparse import logging import pickle from collections import Counter logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""", datefmt="""%m/%d/%Y %H:%M:%S""", level=logging.INFO ) UpperCamelCase_ : int = logging.getLogger(__name__) if __name__ == "__main__": UpperCamelCase_ : List[str] = argparse.ArgumentParser( description="""Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)""" ) parser.add_argument( """--data_file""", type=str, default="""data/dump.bert-base-uncased.pickle""", help="""The binarized dataset.""" ) parser.add_argument( """--token_counts_dump""", type=str, default="""data/token_counts.bert-base-uncased.pickle""", help="""The dump file.""" ) parser.add_argument("""--vocab_size""", default=30_522, type=int) UpperCamelCase_ : Union[str, Any] = parser.parse_args() logger.info(F"Loading data from {args.data_file}") with open(args.data_file, """rb""") as fp: UpperCamelCase_ : Any = pickle.load(fp) logger.info("""Counting occurrences for MLM.""") UpperCamelCase_ : int = Counter() for tk_ids in data: counter.update(tk_ids) UpperCamelCase_ : Optional[Any] = [0] * args.vocab_size for k, v in counter.items(): UpperCamelCase_ : Dict = v logger.info(F"Dump to {args.token_counts_dump}") with open(args.token_counts_dump, """wb""") as handle: pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
331
from __future__ import annotations def lowerCamelCase__ (_UpperCAmelCase): SCREAMING_SNAKE_CASE = 2 SCREAMING_SNAKE_CASE = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(_UpperCAmelCase) if n > 1: factors.append(_UpperCAmelCase) return factors if __name__ == "__main__": import doctest doctest.testmod()
73
0
'''simple docstring''' def UpperCAmelCase ( lowercase__ : int = 1000000 ): '''simple docstring''' a__ = set(range(3 , lowercase__ , 2 ) ) primes.add(2 ) for p in range(3 , lowercase__ , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , lowercase__ , lowercase__ ) ) ) a__ = [float(lowercase__ ) for n in range(limit + 1 )] for p in primes: for n in range(lowercase__ , limit + 1 , lowercase__ ): phi[n] *= 1 - 1 / p return int(sum(phi[2:] ) ) if __name__ == "__main__": print(f'''{solution() = }''')
705
import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler _lowercase : int =16 _lowercase : int =32 def UpperCAmelCase ( lowercase__ : Accelerator , lowercase__ : int = 16 , lowercase__ : str = "bert-base-cased" ): '''simple docstring''' a__ = AutoTokenizer.from_pretrained(lowercase__ ) a__ = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(lowercase__ : int ): # max_length=None => use the model max length (it's actually the default) a__ = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowercase__ , max_length=lowercase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset a__ = datasets.map( lowercase__ , batched=lowercase__ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , load_from_cache_file=lowercase__ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library a__ = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(lowercase__ : Tuple ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(lowercase__ , padding="""max_length""" , max_length=128 , return_tensors="""pt""" ) return tokenizer.pad(lowercase__ , padding="""longest""" , return_tensors="""pt""" ) # Instantiate dataloaders. a__ = DataLoader( tokenized_datasets["""train"""] , shuffle=lowercase__ , collate_fn=lowercase__ , batch_size=lowercase__ ) a__ = DataLoader( tokenized_datasets["""validation"""] , shuffle=lowercase__ , collate_fn=lowercase__ , batch_size=lowercase__ ) return train_dataloader, eval_dataloader def UpperCAmelCase ( lowercase__ : Union[str, Any] , lowercase__ : List[Any] ): '''simple docstring''' a__ = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs a__ = config["""lr"""] a__ = int(config["""num_epochs"""] ) a__ = int(config["""seed"""] ) a__ = int(config["""batch_size"""] ) a__ = args.model_name_or_path set_seed(lowercase__ ) a__ , a__ = get_dataloaders(lowercase__ , lowercase__ , lowercase__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) a__ = AutoModelForSequenceClassification.from_pretrained(lowercase__ , return_dict=lowercase__ ) # Instantiate optimizer a__ = ( AdamW if accelerator.state.deepspeed_plugin is None or """optimizer""" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) a__ = optimizer_cls(params=model.parameters() , lr=lowercase__ ) if accelerator.state.deepspeed_plugin is not None: a__ = accelerator.state.deepspeed_plugin.deepspeed_config[ """gradient_accumulation_steps""" ] else: a__ = 1 a__ = (len(lowercase__ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): a__ = get_linear_schedule_with_warmup( optimizer=lowercase__ , num_warmup_steps=0 , num_training_steps=lowercase__ , ) else: a__ = DummyScheduler(lowercase__ , total_num_steps=lowercase__ , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. a__ , a__ , a__ , a__ , a__ = accelerator.prepare( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) # We need to keep track of how many total steps we have iterated over a__ = 0 # We also need to keep track of the stating epoch so files are named properly a__ = 0 # Now we train the model a__ = evaluate.load("""glue""" , """mrpc""" ) a__ = 0 a__ = {} for epoch in range(lowercase__ , lowercase__ ): model.train() for step, batch in enumerate(lowercase__ ): a__ = model(**lowercase__ ) a__ = outputs.loss a__ = loss / gradient_accumulation_steps accelerator.backward(lowercase__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 model.eval() a__ = 0 for step, batch in enumerate(lowercase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): a__ = model(**lowercase__ ) a__ = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times a__ , a__ = accelerator.gather( (predictions, batch["""labels"""]) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(lowercase__ ) - 1: a__ = predictions[: len(eval_dataloader.dataset ) - samples_seen] a__ = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=lowercase__ , references=lowercase__ , ) a__ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'epoch {epoch}:' , lowercase__ ) a__ = eval_metric["""accuracy"""] if best_performance < eval_metric["accuracy"]: a__ = eval_metric["""accuracy"""] if args.performance_lower_bound is not None: assert ( args.performance_lower_bound <= best_performance ), f'Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}' accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , """all_results.json""" ) , """w""" ) as f: json.dump(lowercase__ , lowercase__ ) def UpperCAmelCase ( ): '''simple docstring''' a__ = argparse.ArgumentParser(description="""Simple example of training script tracking peak GPU memory usage.""" ) parser.add_argument( """--model_name_or_path""" , type=lowercase__ , default="""bert-base-cased""" , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , required=lowercase__ , ) parser.add_argument( """--output_dir""" , type=lowercase__ , default=""".""" , help="""Optional save directory where all checkpoint folders will be stored. Default is the current working directory.""" , ) parser.add_argument( """--performance_lower_bound""" , type=lowercase__ , default=lowercase__ , help="""Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value.""" , ) parser.add_argument( """--num_epochs""" , type=lowercase__ , default=3 , help="""Number of train epochs.""" , ) a__ = parser.parse_args() a__ = {"""lr""": 2e-5, """num_epochs""": args.num_epochs, """seed""": 42, """batch_size""": 16} training_function(lowercase__ , lowercase__ ) if __name__ == "__main__": main()
412
0
"""simple docstring""" class __A : def __init__( self : Union[str, Any] ) -> str: __magic_name__: Any = """""" __magic_name__: Dict = """""" __magic_name__: List[Any] = [] def lowerCamelCase__ ( self : Union[str, Any] , __snake_case : int , __snake_case : int ) -> int: if m == -1: return n + 1 elif n == -1: return m + 1 elif self.dp[m][n] > -1: return self.dp[m][n] else: if self.worda[m] == self.worda[n]: __magic_name__: Tuple = self.__min_dist_top_down_dp(m - 1 , n - 1 ) else: __magic_name__: Any = self.__min_dist_top_down_dp(__snake_case , n - 1 ) __magic_name__: int = self.__min_dist_top_down_dp(m - 1 , __snake_case ) __magic_name__: Optional[Any] = self.__min_dist_top_down_dp(m - 1 , n - 1 ) __magic_name__: Union[str, Any] = 1 + min(__snake_case , __snake_case , __snake_case ) return self.dp[m][n] def lowerCamelCase__ ( self : Optional[Any] , __snake_case : str , __snake_case : str ) -> int: __magic_name__: List[str] = worda __magic_name__: str = worda __magic_name__: List[Any] = [[-1 for _ in range(len(__snake_case ) )] for _ in range(len(__snake_case ) )] return self.__min_dist_top_down_dp(len(__snake_case ) - 1 , len(__snake_case ) - 1 ) def lowerCamelCase__ ( self : Dict , __snake_case : str , __snake_case : str ) -> int: __magic_name__: int = worda __magic_name__: int = worda __magic_name__: Dict = len(__snake_case ) __magic_name__: Union[str, Any] = len(__snake_case ) __magic_name__: List[str] = [[0 for _ in range(n + 1 )] for _ in range(m + 1 )] for i in range(m + 1 ): for j in range(n + 1 ): if i == 0: # first string is empty __magic_name__: Union[str, Any] = j elif j == 0: # second string is empty __magic_name__: str = i elif worda[i - 1] == worda[j - 1]: # last characters are equal __magic_name__: Dict = self.dp[i - 1][j - 1] else: __magic_name__: List[Any] = self.dp[i][j - 1] __magic_name__: List[Any] = self.dp[i - 1][j] __magic_name__: Optional[Any] = self.dp[i - 1][j - 1] __magic_name__: List[str] = 1 + min(__snake_case , __snake_case , __snake_case ) return self.dp[m][n] if __name__ == "__main__": __lowerCamelCase = EditDistance() print('****************** Testing Edit Distance DP Algorithm ******************') print() __lowerCamelCase = input('Enter the first string: ').strip() __lowerCamelCase = input('Enter the second string: ').strip() print() print(f'''The minimum edit distance is: {solver.min_dist_top_down(Sa, Sa)}''') print(f'''The minimum edit distance is: {solver.min_dist_bottom_up(Sa, Sa)}''') print() print('*************** End of Testing Edit Distance DP Algorithm ***************')
96
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __lowerCamelCase : int = logging.get_logger(__name__) __lowerCamelCase : Optional[int] = {"tokenizer_file": "tokenizer.json"} __lowerCamelCase : List[str] = { "tokenizer_file": { "bigscience/tokenizer": "https://huggingface.co/bigscience/tokenizer/blob/main/tokenizer.json", "bigscience/bloom-560m": "https://huggingface.co/bigscience/bloom-560m/blob/main/tokenizer.json", "bigscience/bloom-1b1": "https://huggingface.co/bigscience/bloom-1b1/blob/main/tokenizer.json", "bigscience/bloom-1b7": "https://huggingface.co/bigscience/bloom-1b7/blob/main/tokenizer.json", "bigscience/bloom-3b": "https://huggingface.co/bigscience/bloom-3b/blob/main/tokenizer.json", "bigscience/bloom-7b1": "https://huggingface.co/bigscience/bloom-7b1/blob/main/tokenizer.json", "bigscience/bloom": "https://huggingface.co/bigscience/bloom/blob/main/tokenizer.json", }, } class a ( UpperCamelCase_ ): __lowercase = VOCAB_FILES_NAMES __lowercase = PRETRAINED_VOCAB_FILES_MAP __lowercase = ["""input_ids""", """attention_mask"""] __lowercase = None def __init__( self , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase="<unk>" , __UpperCamelCase="<s>" , __UpperCamelCase="</s>" , __UpperCamelCase="<pad>" , __UpperCamelCase=False , __UpperCamelCase=False , **__UpperCamelCase , )-> str: '''simple docstring''' super().__init__( __UpperCamelCase , __UpperCamelCase , tokenizer_file=__UpperCamelCase , unk_token=__UpperCamelCase , bos_token=__UpperCamelCase , eos_token=__UpperCamelCase , pad_token=__UpperCamelCase , add_prefix_space=__UpperCamelCase , clean_up_tokenization_spaces=__UpperCamelCase , **__UpperCamelCase , ) A__ : str =json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , __UpperCamelCase ) != add_prefix_space: A__ : Union[str, Any] =getattr(__UpperCamelCase , pre_tok_state.pop('''type''' ) ) A__ : Optional[Any] =add_prefix_space A__ : str =pre_tok_class(**__UpperCamelCase ) A__ : Tuple =add_prefix_space def lowerCAmelCase_ ( self , *__UpperCamelCase , **__UpperCamelCase )-> BatchEncoding: '''simple docstring''' A__ : Union[str, Any] =kwargs.get('''is_split_into_words''' , __UpperCamelCase ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with' ''' pretokenized inputs.''' ) return super()._batch_encode_plus(*__UpperCamelCase , **__UpperCamelCase ) def lowerCAmelCase_ ( self , *__UpperCamelCase , **__UpperCamelCase )-> BatchEncoding: '''simple docstring''' A__ : int =kwargs.get('''is_split_into_words''' , __UpperCamelCase ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with' ''' pretokenized inputs.''' ) return super()._encode_plus(*__UpperCamelCase , **__UpperCamelCase ) def lowerCAmelCase_ ( self , __UpperCamelCase , __UpperCamelCase = None )-> Tuple[str]: '''simple docstring''' A__ : Tuple =self._tokenizer.model.save(__UpperCamelCase , name=__UpperCamelCase ) return tuple(__UpperCamelCase ) def lowerCAmelCase_ ( self , __UpperCamelCase )-> List[int]: '''simple docstring''' A__ : str =[] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) + [self.eos_token_id] ) if len(__UpperCamelCase ) > self.model_max_length: A__ : Optional[int] =input_ids[-self.model_max_length :] return input_ids
416
0
import qiskit def _A( UpperCamelCase__ : List[str] = 2 ) -> Union[str, Any]: '''simple docstring''' __lowercase = qubits # Using Aer's simulator __lowercase = qiskit.Aer.get_backend('''aer_simulator''' ) # Creating a Quantum Circuit acting on the q register __lowercase = qiskit.QuantumCircuit(A_ , A_ ) # Adding a H gate on qubit 0 (now q0 in superposition) circuit.h(0 ) for i in range(1 , A_ ): # Adding CX (CNOT) gate circuit.cx(i - 1 , A_ ) # Mapping the quantum measurement to the classical bits circuit.measure(list(range(A_ ) ) , list(range(A_ ) ) ) # Now measuring any one qubit would affect other qubits to collapse # their super position and have same state as the measured one. # Executing the circuit on the simulator __lowercase = qiskit.execute(A_ , A_ , shots=1000 ) return job.result().get_counts(A_ ) if __name__ == "__main__": print(F"""Total count for various states are: {quantum_entanglement(3)}""")
710
from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import KarrasVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class a ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase_ : UNetaDModel UpperCamelCase_ : KarrasVeScheduler def __init__( self : Tuple , lowerCamelCase__ : UNetaDModel , lowerCamelCase__ : KarrasVeScheduler ) -> Optional[Any]: """simple docstring""" super().__init__() self.register_modules(unet=lowerCamelCase__ , scheduler=lowerCamelCase__ ) @torch.no_grad() def __call__( self : str , lowerCamelCase__ : int = 1 , lowerCamelCase__ : int = 50 , lowerCamelCase__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowerCamelCase__ : Optional[str] = "pil" , lowerCamelCase__ : bool = True , **lowerCamelCase__ : int , ) -> Union[Tuple, ImagePipelineOutput]: """simple docstring""" __lowercase = self.unet.config.sample_size __lowercase = (batch_size, 3, img_size, img_size) __lowercase = self.unet # sample x_0 ~ N(0, sigma_0^2 * I) __lowercase = randn_tensor(lowerCamelCase__ , generator=lowerCamelCase__ , device=self.device ) * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(lowerCamelCase__ ) for t in self.progress_bar(self.scheduler.timesteps ): # here sigma_t == t_i from the paper __lowercase = self.scheduler.schedule[t] __lowercase = self.scheduler.schedule[t - 1] if t > 0 else 0 # 1. Select temporarily increased noise level sigma_hat # 2. Add new noise to move from sample_i to sample_hat __lowercase , __lowercase = self.scheduler.add_noise_to_input(lowerCamelCase__ , lowerCamelCase__ , generator=lowerCamelCase__ ) # 3. Predict the noise residual given the noise magnitude `sigma_hat` # The model inputs and output are adjusted by following eq. (213) in [1]. __lowercase = (sigma_hat / 2) * model((sample_hat + 1) / 2 , sigma_hat / 2 ).sample # 4. Evaluate dx/dt at sigma_hat # 5. Take Euler step from sigma to sigma_prev __lowercase = self.scheduler.step(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) if sigma_prev != 0: # 6. Apply 2nd order correction # The model inputs and output are adjusted by following eq. (213) in [1]. __lowercase = (sigma_prev / 2) * model((step_output.prev_sample + 1) / 2 , sigma_prev / 2 ).sample __lowercase = self.scheduler.step_correct( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , step_output.prev_sample , step_output['''derivative'''] , ) __lowercase = step_output.prev_sample __lowercase = (sample / 2 + 0.5).clamp(0 , 1 ) __lowercase = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __lowercase = self.numpy_to_pil(lowerCamelCase__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowerCamelCase__ )
362
0
import argparse import json import numpy import torch from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def __A ( _A , _A ): """simple docstring""" __a = torch.load(_A , map_location="cpu" ) __a = chkpt["model"] # We have the base model one level deeper than the original XLM repository __a = {} for k, v in state_dict.items(): if "pred_layer" in k: __a = v else: __a = v __a = chkpt["params"] __a = {n: v for n, v in config.items() if not isinstance(_A , (torch.FloatTensor, numpy.ndarray) )} __a = chkpt["dico_word2id"] __a = {s + "</w>" if s.find("@@" ) == -1 and i > 13 else s.replace("@@" , "" ): i for s, i in vocab.items()} # Save pytorch-model __a = pytorch_dump_folder_path + "/" + WEIGHTS_NAME __a = pytorch_dump_folder_path + "/" + CONFIG_NAME __a = pytorch_dump_folder_path + "/" + VOCAB_FILES_NAMES["vocab_file"] print(f"""Save PyTorch model to {pytorch_weights_dump_path}""" ) torch.save(_A , _A ) print(f"""Save configuration file to {pytorch_config_dump_path}""" ) with open(_A , "w" , encoding="utf-8" ) as f: f.write(json.dumps(_A , indent=2 ) + "\n" ) print(f"""Save vocab file to {pytorch_config_dump_path}""" ) with open(_A , "w" , encoding="utf-8" ) as f: f.write(json.dumps(_A , indent=2 ) + "\n" ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--xlm_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) SCREAMING_SNAKE_CASE : Any = parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
197
import argparse from copy import deepcopy import numpy as np from datasets import ClassLabel, DatasetDict, load_dataset from evaluate import load from transformers import ( AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, Trainer, TrainerCallback, TrainingArguments, set_seed, ) def __A ( ): """simple docstring""" __a = argparse.ArgumentParser() parser.add_argument("--model_ckpt" , type=_A , default="microsoft/unixcoder-base-nine" ) parser.add_argument("--num_epochs" , type=_A , default=5 ) parser.add_argument("--batch_size" , type=_A , default=6 ) parser.add_argument("--gradient_accumulation_steps" , type=_A , default=1 ) parser.add_argument("--freeze" , type=_A , default=_A ) parser.add_argument("--learning_rate" , type=_A , default=5E-4 ) parser.add_argument("--seed" , type=_A , default=0 ) parser.add_argument("--lr_scheduler_type" , type=_A , default="cosine" ) parser.add_argument("--num_warmup_steps" , type=_A , default=10 ) parser.add_argument("--weight_decay" , type=_A , default=0.01 ) parser.add_argument("--output_dir" , type=_A , default="./results" ) return parser.parse_args() SCREAMING_SNAKE_CASE : Tuple = load("""accuracy""") def __A ( _A ): """simple docstring""" __a , __a = eval_pred __a = np.argmax(_A , axis=1 ) return metric.compute(predictions=_A , references=_A ) class A_ ( a_ ): def __init__( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : int ): super().__init__() __a = trainer def _UpperCAmelCase ( self : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Any , **__SCREAMING_SNAKE_CASE : int ): if control.should_evaluate: __a = deepcopy(__SCREAMING_SNAKE_CASE ) self._trainer.evaluate(eval_dataset=self._trainer.train_dataset , metric_key_prefix="train" ) return control_copy def __A ( ): """simple docstring""" __a = get_args() set_seed(args.seed ) __a = load_dataset("codeparrot/codecomplex" , split="train" ) __a = dataset.train_test_split(test_size=0.2 ) __a = train_test["test"].train_test_split(test_size=0.5 ) __a = DatasetDict( { "train": train_test["train"], "test": test_validation["train"], "valid": test_validation["test"], } ) print("Loading tokenizer and model" ) __a = AutoTokenizer.from_pretrained(args.model_ckpt ) __a = tokenizer.eos_token __a = AutoModelForSequenceClassification.from_pretrained(args.model_ckpt , num_labels=7 ) __a = model.config.eos_token_id if args.freeze: for param in model.roberta.parameters(): __a = False __a = ClassLabel(num_classes=7 , names=list(set(train_test_validation["train"]["complexity"] ) ) ) def tokenize(_A ): __a = tokenizer(example["src"] , truncation=_A , max_length=1024 ) __a = labels.straint(example["complexity"] ) return { "input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"], "label": label, } __a = train_test_validation.map( _A , batched=_A , remove_columns=train_test_validation["train"].column_names , ) __a = DataCollatorWithPadding(tokenizer=_A ) __a = TrainingArguments( output_dir=args.output_dir , learning_rate=args.learning_rate , lr_scheduler_type=args.lr_scheduler_type , evaluation_strategy="epoch" , save_strategy="epoch" , logging_strategy="epoch" , per_device_train_batch_size=args.batch_size , per_device_eval_batch_size=args.batch_size , num_train_epochs=args.num_epochs , gradient_accumulation_steps=args.gradient_accumulation_steps , weight_decay=0.01 , metric_for_best_model="accuracy" , run_name="complexity-java" , report_to="wandb" , ) __a = Trainer( model=_A , args=_A , train_dataset=tokenized_datasets["train"] , eval_dataset=tokenized_datasets["valid"] , tokenizer=_A , data_collator=_A , compute_metrics=_A , ) print("Training..." ) trainer.add_callback(CustomCallback(_A ) ) trainer.train() if __name__ == "__main__": main()
197
1
"""simple docstring""" from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder # @@protoc_insertion_point(imports) UpperCAmelCase_ : Union[str, Any] = _symbol_database.Default() UpperCAmelCase_ : List[Any] = _descriptor_pool.Default().AddSerializedFile( b"""\n\x19sentencepiece_model.proto\x12\rsentencepiece\"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12\"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12\"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18\" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse\"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32\".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL\"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03""" ) UpperCAmelCase_ : str = globals() _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, """sentencepiece_model_pb2""", _globals) if _descriptor._USE_C_DESCRIPTORS is False: UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Tuple = b"""H\003""" # (generated by protobuf compiler, but `_TRAINERSPEC` is not defined) # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001" # _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001" UpperCAmelCase_ : Any = 45 UpperCAmelCase_ : Dict = 1581 UpperCAmelCase_ : Union[str, Any] = 1517 UpperCAmelCase_ : Optional[int] = 1570 UpperCAmelCase_ : Any = 1584 UpperCAmelCase_ : int = 1793 UpperCAmelCase_ : List[str] = 1795 UpperCAmelCase_ : str = 1916 UpperCAmelCase_ : Dict = 1864 UpperCAmelCase_ : Optional[Any] = 1905 UpperCAmelCase_ : Any = 1919 UpperCAmelCase_ : int = 2429 UpperCAmelCase_ : List[str] = 2208 UpperCAmelCase_ : Tuple = 2418 UpperCAmelCase_ : Optional[Any] = 2323 UpperCAmelCase_ : str = 2407 # @@protoc_insertion_point(module_scope)
176
"""simple docstring""" import unittest from transformers import AutoTokenizer, FalconConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, ) class lowerCAmelCase__ : '''simple docstring''' def __init__( self : Any , lowercase_ : Dict , lowercase_ : str=3 , lowercase_ : Dict=7 , lowercase_ : Any=True , lowercase_ : List[Any]=True , lowercase_ : Union[str, Any]=False , lowercase_ : Optional[int]=True , lowercase_ : Union[str, Any]=99 , lowercase_ : Dict=32 , lowercase_ : Union[str, Any]=5 , lowercase_ : Optional[Any]=4 , lowercase_ : List[str]=37 , lowercase_ : int="gelu" , lowercase_ : int=0.1 , lowercase_ : List[str]=0.1 , lowercase_ : Any=512 , lowercase_ : List[Any]=16 , lowercase_ : Union[str, Any]=2 , lowercase_ : Dict=0.02 , lowercase_ : Optional[int]=3 , lowercase_ : Dict=4 , lowercase_ : Optional[int]=None , ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = parent SCREAMING_SNAKE_CASE_ : Optional[int] = batch_size SCREAMING_SNAKE_CASE_ : List[str] = seq_length SCREAMING_SNAKE_CASE_ : Optional[Any] = is_training SCREAMING_SNAKE_CASE_ : Dict = use_input_mask SCREAMING_SNAKE_CASE_ : Union[str, Any] = use_token_type_ids SCREAMING_SNAKE_CASE_ : str = use_labels SCREAMING_SNAKE_CASE_ : Optional[Any] = vocab_size SCREAMING_SNAKE_CASE_ : Optional[int] = hidden_size SCREAMING_SNAKE_CASE_ : str = num_hidden_layers SCREAMING_SNAKE_CASE_ : List[Any] = num_attention_heads SCREAMING_SNAKE_CASE_ : Optional[Any] = intermediate_size SCREAMING_SNAKE_CASE_ : int = hidden_act SCREAMING_SNAKE_CASE_ : Dict = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : str = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : str = max_position_embeddings SCREAMING_SNAKE_CASE_ : Dict = type_vocab_size SCREAMING_SNAKE_CASE_ : str = type_sequence_label_size SCREAMING_SNAKE_CASE_ : List[Any] = initializer_range SCREAMING_SNAKE_CASE_ : int = num_labels SCREAMING_SNAKE_CASE_ : Dict = num_choices SCREAMING_SNAKE_CASE_ : Tuple = scope def _SCREAMING_SNAKE_CASE ( self : List[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) SCREAMING_SNAKE_CASE_ : Tuple = None if self.use_input_mask: SCREAMING_SNAKE_CASE_ : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length]) SCREAMING_SNAKE_CASE_ : Optional[Any] = None SCREAMING_SNAKE_CASE_ : Union[str, Any] = None SCREAMING_SNAKE_CASE_ : Dict = None SCREAMING_SNAKE_CASE_ : Optional[Any] = None if self.use_labels: SCREAMING_SNAKE_CASE_ : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size) SCREAMING_SNAKE_CASE_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) SCREAMING_SNAKE_CASE_ : str = ids_tensor([self.batch_size] , self.num_choices) SCREAMING_SNAKE_CASE_ : Dict = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): '''simple docstring''' return FalconConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase_ , initializer_range=self.initializer_range , pad_token_id=1 , new_decoder_architecture=lowercase_ , ) def _SCREAMING_SNAKE_CASE ( self : Tuple , lowercase_ : List[Any] , lowercase_ : int , lowercase_ : List[str] , lowercase_ : Any , lowercase_ : Optional[Any] , lowercase_ : Union[str, Any] , lowercase_ : Any): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Tuple = FalconModel(config=lowercase_) model.to(lowercase_) model.eval() SCREAMING_SNAKE_CASE_ : Optional[Any] = model(lowercase_ , attention_mask=lowercase_) SCREAMING_SNAKE_CASE_ : Optional[Any] = model(lowercase_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def _SCREAMING_SNAKE_CASE ( self : Tuple , lowercase_ : int , lowercase_ : Dict , lowercase_ : int , lowercase_ : str , lowercase_ : str , lowercase_ : int , lowercase_ : Tuple , lowercase_ : Dict , lowercase_ : int , ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Tuple = True SCREAMING_SNAKE_CASE_ : Optional[int] = FalconModel(lowercase_) model.to(lowercase_) model.eval() SCREAMING_SNAKE_CASE_ : Union[str, Any] = model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , ) SCREAMING_SNAKE_CASE_ : Optional[Any] = model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , ) SCREAMING_SNAKE_CASE_ : Optional[Any] = model(lowercase_ , attention_mask=lowercase_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def _SCREAMING_SNAKE_CASE ( self : Dict , lowercase_ : Union[str, Any] , lowercase_ : Tuple , lowercase_ : int , lowercase_ : Optional[Any] , lowercase_ : Dict , lowercase_ : Dict , lowercase_ : Dict , lowercase_ : List[str] , lowercase_ : List[str] , ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : int = FalconForCausalLM(config=lowercase_) model.to(lowercase_) model.eval() SCREAMING_SNAKE_CASE_ : Any = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def _SCREAMING_SNAKE_CASE ( self : List[str] , lowercase_ : Any , lowercase_ : int , lowercase_ : str , lowercase_ : Tuple , lowercase_ : List[str] , lowercase_ : Optional[int] , lowercase_ : Tuple , lowercase_ : Optional[int] , lowercase_ : str , ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Dict = True SCREAMING_SNAKE_CASE_ : List[Any] = True SCREAMING_SNAKE_CASE_ : Optional[int] = FalconForCausalLM(config=lowercase_) model.to(lowercase_) model.eval() # first forward pass SCREAMING_SNAKE_CASE_ : Optional[Any] = model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , use_cache=lowercase_ , ) SCREAMING_SNAKE_CASE_ : List[Any] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids SCREAMING_SNAKE_CASE_ : Union[str, Any] = ids_tensor((self.batch_size, 3) , config.vocab_size) SCREAMING_SNAKE_CASE_ : List[str] = ids_tensor((self.batch_size, 3) , vocab_size=2) # append to next input_ids and SCREAMING_SNAKE_CASE_ : Dict = torch.cat([input_ids, next_tokens] , dim=-1) SCREAMING_SNAKE_CASE_ : List[Any] = torch.cat([input_mask, next_mask] , dim=-1) SCREAMING_SNAKE_CASE_ : List[str] = model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , output_hidden_states=lowercase_ , )['''hidden_states'''][0] SCREAMING_SNAKE_CASE_ : Any = model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , past_key_values=lowercase_ , output_hidden_states=lowercase_ , )['''hidden_states'''][0] # select random slice SCREAMING_SNAKE_CASE_ : int = ids_tensor((1,) , output_from_past.shape[-1]).item() SCREAMING_SNAKE_CASE_ : List[Any] = output_from_no_past[:, -3:, random_slice_idx].detach() SCREAMING_SNAKE_CASE_ : Dict = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowercase_ , lowercase_ , atol=1e-3)) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Tuple = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ) : Tuple = config_and_inputs SCREAMING_SNAKE_CASE_ : Union[str, Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class lowerCAmelCase__ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase = ( ( FalconModel, FalconForCausalLM, FalconForSequenceClassification, FalconForTokenClassification, FalconForQuestionAnswering, ) if is_torch_available() else () ) __UpperCamelCase = (FalconForCausalLM,) if is_torch_available() else () __UpperCamelCase = ( { "feature-extraction": FalconModel, "text-classification": FalconForSequenceClassification, "text-generation": FalconForCausalLM, "question-answering": FalconForQuestionAnswering, "token-classification": FalconForTokenClassification, "zero-shot": FalconForSequenceClassification, } if is_torch_available() else {} ) __UpperCamelCase = False __UpperCamelCase = False def _SCREAMING_SNAKE_CASE ( self : Optional[int]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : str = FalconModelTester(self) SCREAMING_SNAKE_CASE_ : List[Any] = ConfigTester(self , config_class=lowercase_ , hidden_size=37) def _SCREAMING_SNAKE_CASE ( self : Tuple): '''simple docstring''' self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self : int): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_) def _SCREAMING_SNAKE_CASE ( self : int): '''simple docstring''' SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() for alibi in [True, False]: SCREAMING_SNAKE_CASE_ : Optional[int] = alibi self.model_tester.create_and_check_model(lowercase_ , *lowercase_) def _SCREAMING_SNAKE_CASE ( self : Tuple): '''simple docstring''' SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ : Tuple = 3 SCREAMING_SNAKE_CASE_ : Tuple = input_dict['''input_ids'''] SCREAMING_SNAKE_CASE_ : Optional[int] = input_ids.ne(1).to(lowercase_) SCREAMING_SNAKE_CASE_ : Dict = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size) SCREAMING_SNAKE_CASE_ : Tuple = FalconForSequenceClassification(lowercase_) model.to(lowercase_) model.eval() SCREAMING_SNAKE_CASE_ : List[str] = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) def _SCREAMING_SNAKE_CASE ( self : int): '''simple docstring''' SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ : Optional[int] = 3 SCREAMING_SNAKE_CASE_ : int = '''single_label_classification''' SCREAMING_SNAKE_CASE_ : Optional[int] = input_dict['''input_ids'''] SCREAMING_SNAKE_CASE_ : Optional[Any] = input_ids.ne(1).to(lowercase_) SCREAMING_SNAKE_CASE_ : Dict = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size) SCREAMING_SNAKE_CASE_ : Union[str, Any] = FalconForSequenceClassification(lowercase_) model.to(lowercase_) model.eval() SCREAMING_SNAKE_CASE_ : List[str] = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) def _SCREAMING_SNAKE_CASE ( self : Dict): '''simple docstring''' SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ : List[Any] = input_dict['''input_ids'''] SCREAMING_SNAKE_CASE_ : Optional[Any] = FalconForCausalLM(lowercase_) model.to(lowercase_) model.eval() SCREAMING_SNAKE_CASE_ : str = model(lowercase_ , use_cache=lowercase_) SCREAMING_SNAKE_CASE_ : Any = input_ids.shape[0] SCREAMING_SNAKE_CASE_ : Dict = model._convert_to_rw_cache(result.past_key_values) SCREAMING_SNAKE_CASE_ : int = model._convert_cache_to_standard_format(lowercase_ , lowercase_) for layer in range(len(lowercase_)): for tensor_idx in range(2): self.assertTrue(rw_cache[layer][tensor_idx].ndim == 3) self.assertTrue(result.past_key_values[layer][tensor_idx].ndim == 4) self.assertTrue( torch.all(result.past_key_values[layer][tensor_idx] == standard_cache[layer][tensor_idx])) def _SCREAMING_SNAKE_CASE ( self : Tuple): '''simple docstring''' SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ : int = 3 SCREAMING_SNAKE_CASE_ : Tuple = '''multi_label_classification''' SCREAMING_SNAKE_CASE_ : Tuple = input_dict['''input_ids'''] SCREAMING_SNAKE_CASE_ : List[str] = input_ids.ne(1).to(lowercase_) SCREAMING_SNAKE_CASE_ : Tuple = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size).to(torch.float) SCREAMING_SNAKE_CASE_ : int = FalconForSequenceClassification(lowercase_) model.to(lowercase_) model.eval() SCREAMING_SNAKE_CASE_ : Tuple = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): '''simple docstring''' for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() # If it doesn't support cache, pass the test if not hasattr(lowercase_ , '''use_cache'''): return SCREAMING_SNAKE_CASE_ : Union[str, Any] = model_class(lowercase_).to(lowercase_) if "use_cache" not in inputs: SCREAMING_SNAKE_CASE_ : Dict = True SCREAMING_SNAKE_CASE_ : str = model(**lowercase_) # If "past_key_values" is not returned, pass the test (e.g. RWKV uses a different cache name and format) if "past_key_values" not in outputs: return SCREAMING_SNAKE_CASE_ : Tuple = ( getattr(lowercase_ , '''decoder_layers''' , lowercase_) or getattr(lowercase_ , '''num_decoder_layers''' , lowercase_) or config.num_hidden_layers ) SCREAMING_SNAKE_CASE_ : str = getattr(lowercase_ , '''num_kv_heads''' , config.num_attention_heads) SCREAMING_SNAKE_CASE_ : Tuple = getattr(lowercase_ , '''d_model''' , config.hidden_size) SCREAMING_SNAKE_CASE_ : Dict = embed_dim // num_attention_heads SCREAMING_SNAKE_CASE_ : int = outputs['''past_key_values'''] self.assertEqual(len(lowercase_) , lowercase_) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[Any] = inputs['''input_ids'''].shape for i in range(lowercase_): if config.new_decoder_architecture: SCREAMING_SNAKE_CASE_ : Dict = config.num_attention_heads elif config.multi_query: SCREAMING_SNAKE_CASE_ : Optional[Any] = 1 self.assertEqual(len(past_kv[0]) , 2) # K V for the decoder = 2 self.assertEqual( past_kv[i][0].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim)) self.assertEqual( past_kv[i][1].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim)) @require_torch class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @slow def _SCREAMING_SNAKE_CASE ( self : List[str]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Tuple = AutoTokenizer.from_pretrained('''Rocketknight1/falcon-rw-1b''') SCREAMING_SNAKE_CASE_ : Optional[int] = FalconForCausalLM.from_pretrained('''Rocketknight1/falcon-rw-1b''') model.eval() model.to(lowercase_) SCREAMING_SNAKE_CASE_ : Optional[int] = tokenizer('''My favorite food is''' , return_tensors='''pt''').to(lowercase_) SCREAMING_SNAKE_CASE_ : Union[str, Any] = ( '''My favorite food is pizza. I love it so much that I have a pizza party every year for my birthday.''' ) SCREAMING_SNAKE_CASE_ : Optional[int] = model.generate(**lowercase_ , do_sample=lowercase_ , max_new_tokens=19) SCREAMING_SNAKE_CASE_ : List[Any] = tokenizer.batch_decode(lowercase_)[0] self.assertEqual(lowercase_ , lowercase_) @slow def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): '''simple docstring''' for repo in ["Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b"]: SCREAMING_SNAKE_CASE_ : Optional[Any] = AutoTokenizer.from_pretrained(lowercase_) SCREAMING_SNAKE_CASE_ : str = FalconForCausalLM.from_pretrained(lowercase_) model.eval() model.to(lowercase_) SCREAMING_SNAKE_CASE_ : Optional[Any] = tokenizer('''My favorite food is''' , return_tensors='''pt''').to(lowercase_) # We just test that these run without errors - the models are randomly initialized # and so the actual text outputs will be garbage model.generate(**lowercase_ , do_sample=lowercase_ , max_new_tokens=4) model.generate(**lowercase_ , do_sample=lowercase_ , max_new_tokens=4) model.generate(**lowercase_ , num_beams=2 , max_new_tokens=4) @slow def _SCREAMING_SNAKE_CASE ( self : str): '''simple docstring''' with torch.no_grad(): for repo in [ "Rocketknight1/falcon-rw-1b", "Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b", ]: SCREAMING_SNAKE_CASE_ : List[str] = AutoTokenizer.from_pretrained(lowercase_) SCREAMING_SNAKE_CASE_ : Tuple = FalconForCausalLM.from_pretrained(lowercase_) model.eval() model.to(device=lowercase_) SCREAMING_SNAKE_CASE_ : int = tokenizer('''My favorite food is''' , return_tensors='''pt''').to(lowercase_) # Test results are the same with and without cache SCREAMING_SNAKE_CASE_ : Any = model.generate(**lowercase_ , do_sample=lowercase_ , max_new_tokens=20 , use_cache=lowercase_) SCREAMING_SNAKE_CASE_ : Dict = model.generate(**lowercase_ , do_sample=lowercase_ , max_new_tokens=20 , use_cache=lowercase_) self.assertTrue((outputs_cache - outputs_no_cache).sum().item() == 0)
176
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy as np import tensorflow as tf from transformers import ( TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST, FlaubertConfig, TFFlaubertForMultipleChoice, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForSequenceClassification, TFFlaubertForTokenClassification, TFFlaubertModel, TFFlaubertWithLMHeadModel, ) class lowerCAmelCase__ : '''simple docstring''' def __init__( self : Union[str, Any] , a__ : str , ): UpperCAmelCase = parent UpperCAmelCase = 13 UpperCAmelCase = 7 UpperCAmelCase = True UpperCAmelCase = True UpperCAmelCase = True UpperCAmelCase = True UpperCAmelCase = True UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = 2 UpperCAmelCase = 99 UpperCAmelCase = 0 UpperCAmelCase = 32 UpperCAmelCase = 2 UpperCAmelCase = 4 UpperCAmelCase = 0.1 UpperCAmelCase = 0.1 UpperCAmelCase = 512 UpperCAmelCase = 16 UpperCAmelCase = 2 UpperCAmelCase = 0.02 UpperCAmelCase = 3 UpperCAmelCase = 4 UpperCAmelCase = '''last''' UpperCAmelCase = True UpperCAmelCase = None UpperCAmelCase = 0 def __snake_case ( self : str ): UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] , dtype=tf.floataa ) UpperCAmelCase = None if self.use_input_lengths: UpperCAmelCase = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length UpperCAmelCase = None if self.use_token_type_ids: UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None if self.use_labels: UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase = ids_tensor([self.batch_size] , 2 , dtype=tf.floataa ) UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase = FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , bos_token_id=self.bos_token_id , ) return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def __snake_case ( self : Dict , a__ : Optional[Any] , a__ : Union[str, Any] , a__ : Tuple , a__ : Union[str, Any] , a__ : Optional[int] , a__ : int , a__ : Tuple , a__ : Optional[Any] , a__ : Union[str, Any] , ): UpperCAmelCase = TFFlaubertModel(config=a__ ) UpperCAmelCase = {'''input_ids''': input_ids, '''lengths''': input_lengths, '''langs''': token_type_ids} UpperCAmelCase = model(a__ ) UpperCAmelCase = [input_ids, input_mask] UpperCAmelCase = model(a__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __snake_case ( self : str , a__ : Tuple , a__ : Tuple , a__ : Optional[int] , a__ : str , a__ : Any , a__ : List[str] , a__ : str , a__ : List[str] , a__ : int , ): UpperCAmelCase = TFFlaubertWithLMHeadModel(a__ ) UpperCAmelCase = {'''input_ids''': input_ids, '''lengths''': input_lengths, '''langs''': token_type_ids} UpperCAmelCase = model(a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __snake_case ( self : List[Any] , a__ : Optional[int] , a__ : List[Any] , a__ : Union[str, Any] , a__ : Optional[Any] , a__ : List[Any] , a__ : Union[str, Any] , a__ : Union[str, Any] , a__ : int , a__ : int , ): UpperCAmelCase = TFFlaubertForQuestionAnsweringSimple(a__ ) UpperCAmelCase = {'''input_ids''': input_ids, '''lengths''': input_lengths} UpperCAmelCase = model(a__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __snake_case ( self : Union[str, Any] , a__ : Optional[int] , a__ : Optional[Any] , a__ : Tuple , a__ : Dict , a__ : Dict , a__ : List[Any] , a__ : List[Any] , a__ : List[str] , a__ : Union[str, Any] , ): UpperCAmelCase = TFFlaubertForSequenceClassification(a__ ) UpperCAmelCase = {'''input_ids''': input_ids, '''lengths''': input_lengths} UpperCAmelCase = model(a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __snake_case ( self : Any , a__ : Optional[int] , a__ : Dict , a__ : Any , a__ : Optional[Any] , a__ : str , a__ : Optional[int] , a__ : Any , a__ : Any , a__ : List[Any] , ): UpperCAmelCase = self.num_labels UpperCAmelCase = TFFlaubertForTokenClassification(config=a__ ) UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} UpperCAmelCase = model(a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __snake_case ( self : Union[str, Any] , a__ : Optional[Any] , a__ : Any , a__ : Any , a__ : Optional[int] , a__ : str , a__ : Union[str, Any] , a__ : Optional[Any] , a__ : Tuple , a__ : Tuple , ): UpperCAmelCase = self.num_choices UpperCAmelCase = TFFlaubertForMultipleChoice(config=a__ ) UpperCAmelCase = tf.tile(tf.expand_dims(a__ , 1 ) , (1, self.num_choices, 1) ) UpperCAmelCase = tf.tile(tf.expand_dims(a__ , 1 ) , (1, self.num_choices, 1) ) UpperCAmelCase = tf.tile(tf.expand_dims(a__ , 1 ) , (1, self.num_choices, 1) ) UpperCAmelCase = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } UpperCAmelCase = model(a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __snake_case ( self : int ): UpperCAmelCase = self.prepare_config_and_inputs() ( ( UpperCAmelCase ), ( UpperCAmelCase ), ( UpperCAmelCase ), ( UpperCAmelCase ), ( UpperCAmelCase ), ( UpperCAmelCase ), ( UpperCAmelCase ), ( UpperCAmelCase ), ( UpperCAmelCase ), ) = config_and_inputs UpperCAmelCase = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''langs''': token_type_ids, '''lengths''': input_lengths, } return config, inputs_dict @require_tf class lowerCAmelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' _lowerCamelCase =( ( TFFlaubertModel, TFFlaubertWithLMHeadModel, TFFlaubertForSequenceClassification, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForTokenClassification, TFFlaubertForMultipleChoice, ) if is_tf_available() else () ) _lowerCamelCase =( (TFFlaubertWithLMHeadModel,) if is_tf_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable _lowerCamelCase =( { "feature-extraction": TFFlaubertModel, "fill-mask": TFFlaubertWithLMHeadModel, "question-answering": TFFlaubertForQuestionAnsweringSimple, "text-classification": TFFlaubertForSequenceClassification, "token-classification": TFFlaubertForTokenClassification, "zero-shot": TFFlaubertForSequenceClassification, } if is_tf_available() else {} ) _lowerCamelCase =False _lowerCamelCase =False def __snake_case ( self : Union[str, Any] , a__ : Optional[Any] , a__ : Union[str, Any] , a__ : Optional[Any] , a__ : str , a__ : Optional[int] ): if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('''Fast''' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def __snake_case ( self : int ): UpperCAmelCase = TFFlaubertModelTester(self ) UpperCAmelCase = ConfigTester(self , config_class=a__ , emb_dim=37 ) def __snake_case ( self : Optional[int] ): self.config_tester.run_common_tests() def __snake_case ( self : List[str] ): UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*a__ ) def __snake_case ( self : List[Any] ): UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*a__ ) def __snake_case ( self : List[Any] ): UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*a__ ) def __snake_case ( self : Tuple ): UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*a__ ) def __snake_case ( self : List[str] ): UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_token_classification(*a__ ) def __snake_case ( self : Union[str, Any] ): UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_multiple_choice(*a__ ) @slow def __snake_case ( self : Dict ): for model_name in TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase = TFFlaubertModel.from_pretrained(a__ ) self.assertIsNotNone(a__ ) @require_tf @require_sentencepiece @require_tokenizers class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @slow def __snake_case ( self : Union[str, Any] ): UpperCAmelCase = TFFlaubertModel.from_pretrained('''jplu/tf-flaubert-small-cased''' ) UpperCAmelCase = tf.convert_to_tensor( [[0, 158, 735, 2592, 1424, 6727, 82, 1]] , dtype=tf.intaa , ) # "J'aime flaubert !" UpperCAmelCase = model(a__ )[0] UpperCAmelCase = tf.TensorShape((1, 8, 512) ) self.assertEqual(output.shape , a__ ) # compare the actual values for a slice. UpperCAmelCase = tf.convert_to_tensor( [ [ [-1.8_768_773, -1.566_555, 0.27_072_418], [-1.6_920_038, -0.5_873_505, 1.9_329_599], [-2.9_563_985, -1.6_993_835, 1.7_972_052], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
51
"""simple docstring""" def lowerCAmelCase_ ( UpperCamelCase__ : list , UpperCamelCase__ : int , UpperCamelCase__ : int = 0 , UpperCamelCase__ : int = 0 ): """simple docstring""" __lowercase = right or len(UpperCamelCase__ ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(UpperCamelCase__ , UpperCamelCase__ , left + 1 , right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
616
0
"""simple docstring""" from __future__ import annotations UpperCamelCase = 10 def _lowerCamelCase ( UpperCAmelCase_ : list[int] ) -> list[int]: """simple docstring""" A__ = 1 A__ = max(UpperCAmelCase_ ) while placement <= max_digit: # declare and initialize empty buckets A__ = [[] for _ in range(UpperCAmelCase_ )] # split list_of_ints between the buckets for i in list_of_ints: A__ = int((i / placement) % RADIX ) buckets[tmp].append(UpperCAmelCase_ ) # put each buckets' contents into list_of_ints A__ = 0 for b in range(UpperCAmelCase_ ): for i in buckets[b]: A__ = i a += 1 # move to next placement *= RADIX return list_of_ints if __name__ == "__main__": import doctest doctest.testmod()
708
"""simple docstring""" import math class UpperCamelCase__ : """simple docstring""" def snake_case__ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> int: A__ = 0.0 A__ = 0.0 for i in range(len(SCREAMING_SNAKE_CASE__ ) ): da += math.pow((sample[i] - weights[0][i]) , 2 ) da += math.pow((sample[i] - weights[1][i]) , 2 ) return 0 if da > da else 1 return 0 def snake_case__ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> list[list[int | float]]: for i in range(len(SCREAMING_SNAKE_CASE__ ) ): weights[j][i] += alpha * (sample[i] - weights[j][i]) return weights def _lowerCamelCase ( ) -> None: """simple docstring""" A__ = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]] # weight initialization ( n, C ) A__ = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]] # training A__ = SelfOrganizingMap() A__ = 3 A__ = 0.5 for _ in range(UpperCAmelCase_ ): for j in range(len(UpperCAmelCase_ ) ): # training sample A__ = training_samples[j] # Compute the winning vector A__ = self_organizing_map.get_winner(UpperCAmelCase_, UpperCAmelCase_ ) # Update the winning vector A__ = self_organizing_map.update(UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_ ) # classify test sample A__ = [0, 0, 0, 1] A__ = self_organizing_map.get_winner(UpperCAmelCase_, UpperCAmelCase_ ) # results print(F"""Clusters that the test sample belongs to : {winner}""" ) print(F"""Weights that have been trained : {weights}""" ) # running the main() function if __name__ == "__main__": main()
562
0
import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def UpperCamelCase_( snake_case__: Any ) -> Any: # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0X4E00 and cp <= 0X9FFF) or (cp >= 0X3400 and cp <= 0X4DBF) # or (cp >= 0X20000 and cp <= 0X2A6DF) # or (cp >= 0X2A700 and cp <= 0X2B73F) # or (cp >= 0X2B740 and cp <= 0X2B81F) # or (cp >= 0X2B820 and cp <= 0X2CEAF) # or (cp >= 0XF900 and cp <= 0XFAFF) or (cp >= 0X2F800 and cp <= 0X2FA1F) # ): # return True return False def UpperCamelCase_( snake_case__: int ) -> Tuple: # word like '180' or '身高' or '神' for char in word: UpperCAmelCase__ = ord(snake_case__ ) if not _is_chinese_char(snake_case__ ): return 0 return 1 def UpperCamelCase_( snake_case__: Tuple ) -> int: UpperCAmelCase__ = set() for token in tokens: UpperCAmelCase__ = len(snake_case__ ) > 1 and is_chinese(snake_case__ ) if chinese_word: word_set.add(snake_case__ ) UpperCAmelCase__ = list(snake_case__ ) return word_list def UpperCamelCase_( snake_case__: Optional[int] , snake_case__: Dict ) -> List[str]: if not chinese_word_set: return bert_tokens UpperCAmelCase__ = max([len(snake_case__ ) for w in chinese_word_set] ) UpperCAmelCase__ = bert_tokens UpperCAmelCase__ = 0, len(snake_case__ ) while start < end: UpperCAmelCase__ = True if is_chinese(bert_word[start] ): UpperCAmelCase__ = min(end - start , snake_case__ ) for i in range(snake_case__ , 1 , -1 ): UpperCAmelCase__ = ''''''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): UpperCAmelCase__ = '''##''' + bert_word[j] UpperCAmelCase__ = start + i UpperCAmelCase__ = False break if single_word: start += 1 return bert_word def UpperCamelCase_( snake_case__: Union[str, Any] , snake_case__: Optional[Any] , snake_case__: str ) -> int: UpperCAmelCase__ = [] for i in range(0 , len(snake_case__ ) , 1_00 ): UpperCAmelCase__ = ltp_tokenizer.pipeline(lines[i : i + 1_00] , tasks=['cws'] ).cws UpperCAmelCase__ = [get_chinese_word(snake_case__ ) for r in res] ltp_res.extend(snake_case__ ) assert len(snake_case__ ) == len(snake_case__ ) UpperCAmelCase__ = [] for i in range(0 , len(snake_case__ ) , 1_00 ): UpperCAmelCase__ = bert_tokenizer(lines[i : i + 1_00] , add_special_tokens=snake_case__ , truncation=snake_case__ , max_length=5_12 ) bert_res.extend(res['input_ids'] ) assert len(snake_case__ ) == len(snake_case__ ) UpperCAmelCase__ = [] for input_ids, chinese_word in zip(snake_case__ , snake_case__ ): UpperCAmelCase__ = [] for id in input_ids: UpperCAmelCase__ = bert_tokenizer._convert_id_to_token(snake_case__ ) input_tokens.append(snake_case__ ) UpperCAmelCase__ = add_sub_symbol(snake_case__ , snake_case__ ) UpperCAmelCase__ = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(snake_case__ ): if token[:2] == "##": UpperCAmelCase__ = token[2:] # save chinese tokens' pos if len(snake_case__ ) == 1 and _is_chinese_char(ord(snake_case__ ) ): ref_id.append(snake_case__ ) ref_ids.append(snake_case__ ) assert len(snake_case__ ) == len(snake_case__ ) return ref_ids def UpperCamelCase_( snake_case__: Tuple ) -> Dict: # For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm) # If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp) with open(args.file_name , 'r' , encoding='utf-8' ) as f: UpperCAmelCase__ = f.readlines() UpperCAmelCase__ = [line.strip() for line in data if len(snake_case__ ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' UpperCAmelCase__ = LTP(args.ltp ) # faster in GPU device UpperCAmelCase__ = BertTokenizer.from_pretrained(args.bert ) UpperCAmelCase__ = prepare_ref(snake_case__ , snake_case__ , snake_case__ ) with open(args.save_path , 'w' , encoding='utf-8' ) as f: UpperCAmelCase__ = [json.dumps(snake_case__ ) + '''\n''' for ref in ref_ids] f.writelines(snake_case__ ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser(description='''prepare_chinese_ref''') parser.add_argument( '''--file_name''', required=False, type=str, default='''./resources/chinese-demo.txt''', help='''file need process, same as training data in lm''', ) parser.add_argument( '''--ltp''', required=False, type=str, default='''./resources/ltp''', help='''resources for LTP tokenizer, usually a path''', ) parser.add_argument( '''--bert''', required=False, type=str, default='''./resources/robert''', help='''resources for Bert tokenizer''', ) parser.add_argument( '''--save_path''', required=False, type=str, default='''./resources/ref.txt''', help='''path to save res''', ) _UpperCamelCase = parser.parse_args() main(args)
146
import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor lowercase_ = logging.get_logger(__name__) class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" def __init__( self : Tuple , *_A : Optional[int] , **_A : Tuple ): """simple docstring""" warnings.warn( '''The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use MobileViTImageProcessor instead.''' , _A , ) super().__init__(*_A , **_A )
74
0
def __snake_case ( _UpperCAmelCase ): if num < 0: return False __a = num __a = 0 while num > 0: __a = rev_num * 10 + (num % 10) num //= 10 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
718
from typing import List import jiwer import jiwer.transforms as tr from packaging import version import datasets from datasets.config import PY_VERSION if PY_VERSION < version.parse('''3.8'''): import importlib_metadata else: import importlib.metadata as importlib_metadata __snake_case :int = '''''' if version.parse(importlib_metadata.version('''jiwer''')) < version.parse('''2.3.0'''): class _A ( tr.AbstractTransform ): def __init__( self : List[Any] , __SCREAMING_SNAKE_CASE : str = " "): '''simple docstring''' __a = sentence_delimiter def _lowerCamelCase ( self : Dict , __SCREAMING_SNAKE_CASE : str): '''simple docstring''' return list(__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : int , __SCREAMING_SNAKE_CASE : List[str]): '''simple docstring''' __a = [] for sent_idx, sentence in enumerate(__SCREAMING_SNAKE_CASE): chars.extend(self.process_string(__SCREAMING_SNAKE_CASE)) if self.sentence_delimiter is not None and self.sentence_delimiter != "" and sent_idx < len(__SCREAMING_SNAKE_CASE) - 1: chars.append(self.sentence_delimiter) return chars __snake_case :Any = tr.Compose( [tr.RemoveMultipleSpaces(), tr.Strip(), SentencesToListOfCharacters(SENTENCE_DELIMITER)] ) else: __snake_case :Optional[int] = tr.Compose( [ tr.RemoveMultipleSpaces(), tr.Strip(), tr.ReduceToSingleSentence(SENTENCE_DELIMITER), tr.ReduceToListOfListOfChars(), ] ) __snake_case :Optional[int] = '''\ @inproceedings{inproceedings, author = {Morris, Andrew and Maier, Viktoria and Green, Phil}, year = {2004}, month = {01}, pages = {}, title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.} } ''' __snake_case :Tuple = '''\ Character error rate (CER) is a common metric of the performance of an automatic speech recognition system. CER is similar to Word Error Rate (WER), but operates on character instead of word. Please refer to docs of WER for further information. Character error rate can be computed as: CER = (S + D + I) / N = (S + D + I) / (S + D + C) where S is the number of substitutions, D is the number of deletions, I is the number of insertions, C is the number of correct characters, N is the number of characters in the reference (N=S+D+C). CER\'s output is not always a number between 0 and 1, in particular when there is a high number of insertions. This value is often associated to the percentage of characters that were incorrectly predicted. The lower the value, the better the performance of the ASR system with a CER of 0 being a perfect score. ''' __snake_case :Tuple = ''' Computes CER score of transcribed segments against references. Args: references: list of references for each speech input. predictions: list of transcribtions to score. concatenate_texts: Whether or not to concatenate sentences before evaluation, set to True for more accurate result. Returns: (float): the character error rate Examples: >>> predictions = ["this is the prediction", "there is an other sample"] >>> references = ["this is the reference", "there is another one"] >>> cer = datasets.load_metric("cer") >>> cer_score = cer.compute(predictions=predictions, references=references) >>> print(cer_score) 0.34146341463414637 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class _A ( datasets.Metric ): def _lowerCamelCase ( self : Optional[Any]): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence'''), '''references''': datasets.Value('''string''' , id='''sequence'''), }) , codebase_urls=['''https://github.com/jitsi/jiwer/'''] , reference_urls=[ '''https://en.wikipedia.org/wiki/Word_error_rate''', '''https://sites.google.com/site/textdigitisation/qualitymeasures/computingerrorrates''', ] , ) def _lowerCamelCase ( self : Optional[int] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Dict=False): '''simple docstring''' if concatenate_texts: return jiwer.compute_measures( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , truth_transform=__SCREAMING_SNAKE_CASE , hypothesis_transform=__SCREAMING_SNAKE_CASE , )["wer"] __a = 0 __a = 0 for prediction, reference in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE): __a = jiwer.compute_measures( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , truth_transform=__SCREAMING_SNAKE_CASE , hypothesis_transform=__SCREAMING_SNAKE_CASE , ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
60
0
import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs __snake_case :Union[str, Any] =imread(r'digital_image_processing/image_data/lena_small.jpg') __snake_case :List[str] =cvtColor(img, COLOR_BGR2GRAY) def lowerCamelCase_ ( ) -> Tuple: '''simple docstring''' A = cn.convert_to_negative(lowerCAmelCase__ ) # assert negative_img array for at least one True assert negative_img.any() def lowerCamelCase_ ( ) -> List[str]: '''simple docstring''' with Image.open('digital_image_processing/image_data/lena_small.jpg' ) as img: # Work around assertion for response assert str(cc.change_contrast(lowerCAmelCase__ , 110 ) ).startswith( '<PIL.Image.Image image mode=RGB size=100x100 at' ) def lowerCamelCase_ ( ) -> List[Any]: '''simple docstring''' A = canny.gen_gaussian_kernel(9 , sigma=1.4 ) # Assert ambiguous array assert resp.all() def lowerCamelCase_ ( ) -> Dict: '''simple docstring''' A = imread('digital_image_processing/image_data/lena_small.jpg' , 0 ) # assert ambiguous array for all == True assert canny_img.all() A = canny.canny(lowerCAmelCase__ ) # assert canny array for at least one True assert canny_array.any() def lowerCamelCase_ ( ) -> Union[str, Any]: '''simple docstring''' assert gg.gaussian_filter(lowerCAmelCase__ , 5 , sigma=0.9 ).all() def lowerCamelCase_ ( ) -> List[Any]: '''simple docstring''' A = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) A = conv.img_convolve(lowerCAmelCase__ , lowerCAmelCase__ ).astype(lowerCAmelCase__ ) assert res.any() def lowerCamelCase_ ( ) -> Optional[int]: '''simple docstring''' assert med.median_filter(lowerCAmelCase__ , 3 ).any() def lowerCamelCase_ ( ) -> Optional[Any]: '''simple docstring''' A , A = sob.sobel_filter(lowerCAmelCase__ ) assert grad.any() and theta.any() def lowerCamelCase_ ( ) -> Union[str, Any]: '''simple docstring''' A = sp.make_sepia(lowerCAmelCase__ , 20 ) assert sepia.all() def lowerCamelCase_ ( lowerCAmelCase__ : str = "digital_image_processing/image_data/lena_small.jpg" ) -> Any: '''simple docstring''' A = bs.Burkes(imread(lowerCAmelCase__ , 1 ) , 120 ) burkes.process() assert burkes.output_img.any() def lowerCamelCase_ ( lowerCAmelCase__ : str = "digital_image_processing/image_data/lena_small.jpg" , ) -> str: '''simple docstring''' A = rs.NearestNeighbour(imread(lowerCAmelCase__ , 1 ) , 400 , 200 ) nn.process() assert nn.output.any() def lowerCamelCase_ ( ) -> int: '''simple docstring''' A = 'digital_image_processing/image_data/lena.jpg' # Reading the image and converting it to grayscale. A = imread(lowerCAmelCase__ , 0 ) # Test for get_neighbors_pixel function() return not None A = 0 A = 0 A = image[x_coordinate][y_coordinate] A = lbp.get_neighbors_pixel( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image A = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0] ): for j in range(0 , image.shape[1] ): A = lbp.local_binary_value(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) assert lbp_image.any()
106
from __future__ import annotations from collections.abc import Sequence from typing import Literal def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ , UpperCamelCase__ ) -> str | Literal[False]: '''simple docstring''' UpperCAmelCase = list(UpperCamelCase__ ) UpperCAmelCase = list(UpperCamelCase__ ) UpperCAmelCase = 0 for i in range(len(UpperCamelCase__ ) ): if lista[i] != lista[i]: count += 1 UpperCAmelCase = '''_''' if count > 1: return False else: return "".join(UpperCamelCase__ ) def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ ) -> list[str]: '''simple docstring''' UpperCAmelCase = [] while True: UpperCAmelCase = ['''$'''] * len(UpperCamelCase__ ) UpperCAmelCase = [] for i in range(len(UpperCamelCase__ ) ): for j in range(i + 1 , len(UpperCamelCase__ ) ): UpperCAmelCase = compare_string(binary[i] , binary[j] ) if k is False: UpperCAmelCase = '''*''' UpperCAmelCase = '''*''' temp.append('''X''' ) for i in range(len(UpperCamelCase__ ) ): if checka[i] == "$": pi.append(binary[i] ) if len(UpperCamelCase__ ) == 0: return pi UpperCAmelCase = list(set(UpperCamelCase__ ) ) def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ , UpperCamelCase__ ) -> list[str]: '''simple docstring''' UpperCAmelCase = [] for minterm in minterms: UpperCAmelCase = '''''' for _ in range(UpperCamelCase__ ): UpperCAmelCase = str(minterm % 2 ) + string minterm //= 2 temp.append(UpperCamelCase__ ) return temp def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> bool: '''simple docstring''' UpperCAmelCase = list(UpperCamelCase__ ) UpperCAmelCase = list(UpperCamelCase__ ) UpperCAmelCase = 0 for i in range(len(UpperCamelCase__ ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ , UpperCamelCase__ ) -> list[str]: '''simple docstring''' UpperCAmelCase = [] UpperCAmelCase = [0] * len(UpperCamelCase__ ) for i in range(len(chart[0] ) ): UpperCAmelCase = 0 UpperCAmelCase = -1 for j in range(len(UpperCamelCase__ ) ): if chart[j][i] == 1: count += 1 UpperCAmelCase = j if count == 1: UpperCAmelCase = 1 for i in range(len(UpperCamelCase__ ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(UpperCamelCase__ ) ): UpperCAmelCase = 0 temp.append(prime_implicants[i] ) while True: UpperCAmelCase = 0 UpperCAmelCase = -1 UpperCAmelCase = 0 for i in range(len(UpperCamelCase__ ) ): UpperCAmelCase = chart[i].count(1 ) if count_n > max_n: UpperCAmelCase = count_n UpperCAmelCase = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(UpperCamelCase__ ) ): UpperCAmelCase = 0 def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ , UpperCamelCase__ ) -> list[list[int]]: '''simple docstring''' UpperCAmelCase = [[0 for x in range(len(UpperCamelCase__ ) )] for x in range(len(UpperCamelCase__ ) )] for i in range(len(UpperCamelCase__ ) ): UpperCAmelCase = prime_implicants[i].count('''_''' ) for j in range(len(UpperCamelCase__ ) ): if is_for_table(prime_implicants[i] , binary[j] , UpperCamelCase__ ): UpperCAmelCase = 1 return chart def __SCREAMING_SNAKE_CASE ( ) -> None: '''simple docstring''' UpperCAmelCase = int(input('''Enter the no. of variables\n''' ) ) UpperCAmelCase = [ float(UpperCamelCase__ ) for x in input( '''Enter the decimal representation of Minterms \'Spaces Separated\'\n''' ).split() ] UpperCAmelCase = decimal_to_binary(UpperCamelCase__ , UpperCamelCase__ ) UpperCAmelCase = check(UpperCamelCase__ ) print('''Prime Implicants are:''' ) print(UpperCamelCase__ ) UpperCAmelCase = prime_implicant_chart(UpperCamelCase__ , UpperCamelCase__ ) UpperCAmelCase = selection(UpperCamelCase__ , UpperCamelCase__ ) print('''Essential Prime Implicants are:''' ) print(UpperCamelCase__ ) if __name__ == "__main__": import doctest doctest.testmod() main()
130
0
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ConditionalDetrImageProcessor class __lowercase ( unittest.TestCase ): """simple docstring""" def __init__( self , __UpperCAmelCase , __UpperCAmelCase=7 , __UpperCAmelCase=3 , __UpperCAmelCase=30 , __UpperCAmelCase=4_00 , __UpperCAmelCase=True , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase=[0.5, 0.5, 0.5] , __UpperCAmelCase=[0.5, 0.5, 0.5] , __UpperCAmelCase=True , __UpperCAmelCase=1 / 2_55 , __UpperCAmelCase=True , ) -> List[Any]: # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p A : List[Any] = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 13_33} A : List[Any] = parent A : Dict = batch_size A : Optional[Any] = num_channels A : Union[str, Any] = min_resolution A : int = max_resolution A : Optional[int] = do_resize A : Dict = size A : List[Any] = do_normalize A : int = image_mean A : List[str] = image_std A : Optional[int] = do_rescale A : Any = rescale_factor A : int = do_pad def snake_case ( self ) -> List[str]: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase=False ) -> Optional[Any]: if not batched: A : List[Any] = image_inputs[0] if isinstance(__UpperCAmelCase , Image.Image ): A : Tuple = image.size else: A : Dict = image.shape[1], image.shape[2] if w < h: A : str = int(self.size['''shortest_edge'''] * h / w ) A : Dict = self.size['''shortest_edge'''] elif w > h: A : Union[str, Any] = self.size['''shortest_edge'''] A : Any = int(self.size['''shortest_edge'''] * w / h ) else: A : Any = self.size['''shortest_edge'''] A : Union[str, Any] = self.size['''shortest_edge'''] else: A : Optional[Any] = [] for image in image_inputs: A : List[Any] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) A : Optional[int] = max(__UpperCAmelCase , key=lambda __UpperCAmelCase : item[0] )[0] A : Union[str, Any] = max(__UpperCAmelCase , key=lambda __UpperCAmelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class __lowercase ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ : Dict = ConditionalDetrImageProcessor if is_vision_available() else None def snake_case ( self ) -> Optional[int]: A : str = ConditionalDetrImageProcessingTester(self ) @property def snake_case ( self ) -> Any: return self.image_processor_tester.prepare_image_processor_dict() def snake_case ( self ) -> str: A : Dict = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__UpperCAmelCase , '''image_mean''' ) ) self.assertTrue(hasattr(__UpperCAmelCase , '''image_std''' ) ) self.assertTrue(hasattr(__UpperCAmelCase , '''do_normalize''' ) ) self.assertTrue(hasattr(__UpperCAmelCase , '''do_resize''' ) ) self.assertTrue(hasattr(__UpperCAmelCase , '''size''' ) ) def snake_case ( self ) -> List[Any]: A : str = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 13_33} ) self.assertEqual(image_processor.do_pad , __UpperCAmelCase ) A : Union[str, Any] = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=__UpperCAmelCase ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42, '''longest_edge''': 84} ) self.assertEqual(image_processor.do_pad , __UpperCAmelCase ) def snake_case ( self ) -> Dict: pass def snake_case ( self ) -> Tuple: # Initialize image_processing A : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase , Image.Image ) # Test not batched input A : List[str] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values A : Tuple = self.image_processor_tester.get_expected_values(__UpperCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A : Optional[Any] = self.image_processor_tester.get_expected_values(__UpperCAmelCase , batched=__UpperCAmelCase ) A : Any = image_processing(__UpperCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def snake_case ( self ) -> Optional[Any]: # Initialize image_processing A : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase , numpify=__UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase , np.ndarray ) # Test not batched input A : Optional[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values A : Optional[int] = self.image_processor_tester.get_expected_values(__UpperCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A : Any = image_processing(__UpperCAmelCase , return_tensors='''pt''' ).pixel_values A : Union[str, Any] = self.image_processor_tester.get_expected_values(__UpperCAmelCase , batched=__UpperCAmelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def snake_case ( self ) -> List[str]: # Initialize image_processing A : Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase , torchify=__UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase , torch.Tensor ) # Test not batched input A : Optional[int] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values A : Dict = self.image_processor_tester.get_expected_values(__UpperCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A : int = image_processing(__UpperCAmelCase , return_tensors='''pt''' ).pixel_values A : Tuple = self.image_processor_tester.get_expected_values(__UpperCAmelCase , batched=__UpperCAmelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def snake_case ( self ) -> Optional[Any]: # prepare image and target A : Union[str, Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: A : int = json.loads(f.read() ) A : Tuple = {'''image_id''': 3_97_69, '''annotations''': target} # encode them A : Tuple = ConditionalDetrImageProcessor.from_pretrained('''microsoft/conditional-detr-resnet-50''' ) A : Union[str, Any] = image_processing(images=__UpperCAmelCase , annotations=__UpperCAmelCase , return_tensors='''pt''' ) # verify pixel values A : Optional[Any] = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding['''pixel_values'''].shape , __UpperCAmelCase ) A : List[str] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , __UpperCAmelCase , atol=1E-4 ) ) # verify area A : Optional[Any] = torch.tensor([58_87.96_00, 1_12_50.20_61, 48_93_53.84_38, 83_71_22.75_00, 14_79_67.51_56, 16_57_32.34_38] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , __UpperCAmelCase ) ) # verify boxes A : List[Any] = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , __UpperCAmelCase ) A : Tuple = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , __UpperCAmelCase , atol=1E-3 ) ) # verify image_id A : str = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , __UpperCAmelCase ) ) # verify is_crowd A : int = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , __UpperCAmelCase ) ) # verify class_labels A : Tuple = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , __UpperCAmelCase ) ) # verify orig_size A : List[str] = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , __UpperCAmelCase ) ) # verify size A : List[str] = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , __UpperCAmelCase ) ) @slow def snake_case ( self ) -> Tuple: # prepare image, target and masks_path A : str = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: A : Optional[Any] = json.loads(f.read() ) A : int = {'''file_name''': '''000000039769.png''', '''image_id''': 3_97_69, '''segments_info''': target} A : Dict = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them A : Dict = ConditionalDetrImageProcessor(format='''coco_panoptic''' ) A : List[str] = image_processing(images=__UpperCAmelCase , annotations=__UpperCAmelCase , masks_path=__UpperCAmelCase , return_tensors='''pt''' ) # verify pixel values A : Any = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding['''pixel_values'''].shape , __UpperCAmelCase ) A : Dict = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , __UpperCAmelCase , atol=1E-4 ) ) # verify area A : int = torch.tensor([14_79_79.68_75, 16_55_27.04_69, 48_46_38.59_38, 1_12_92.93_75, 58_79.65_62, 76_34.11_47] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , __UpperCAmelCase ) ) # verify boxes A : Any = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , __UpperCAmelCase ) A : List[Any] = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , __UpperCAmelCase , atol=1E-3 ) ) # verify image_id A : int = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , __UpperCAmelCase ) ) # verify is_crowd A : List[Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , __UpperCAmelCase ) ) # verify class_labels A : Optional[int] = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , __UpperCAmelCase ) ) # verify masks A : Dict = 82_28_73 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , __UpperCAmelCase ) # verify orig_size A : Tuple = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , __UpperCAmelCase ) ) # verify size A : int = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , __UpperCAmelCase ) )
714
import collections import gzip import os import urllib import numpy from tensorflow.python.framework import dtypes, random_seed from tensorflow.python.platform import gfile from tensorflow.python.util.deprecation import deprecated lowercase : List[Any] = collections.namedtuple("_Datasets", ["train", "validation", "test"]) # CVDF mirror of http://yann.lecun.com/exdb/mnist/ lowercase : Any = "https://storage.googleapis.com/cvdf-datasets/mnist/" def snake_case__ ( lowerCamelCase_ ): A : int = numpy.dtype(numpy.uintaa ).newbyteorder('''>''' ) return numpy.frombuffer(bytestream.read(4 ) , dtype=lowerCamelCase_ )[0] @deprecated(lowerCamelCase_ , '''Please use tf.data to implement this functionality.''' ) def snake_case__ ( lowerCamelCase_ ): print('''Extracting''' , f.name ) with gzip.GzipFile(fileobj=lowerCamelCase_ ) as bytestream: A : int = _readaa(lowerCamelCase_ ) if magic != 2051: raise ValueError( '''Invalid magic number %d in MNIST image file: %s''' % (magic, f.name) ) A : Tuple = _readaa(lowerCamelCase_ ) A : Union[str, Any] = _readaa(lowerCamelCase_ ) A : Tuple = _readaa(lowerCamelCase_ ) A : Tuple = bytestream.read(rows * cols * num_images ) A : List[str] = numpy.frombuffer(lowerCamelCase_ , dtype=numpy.uinta ) A : Dict = data.reshape(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , 1 ) return data @deprecated(lowerCamelCase_ , '''Please use tf.one_hot on tensors.''' ) def snake_case__ ( lowerCamelCase_ , lowerCamelCase_ ): A : List[str] = labels_dense.shape[0] A : List[Any] = numpy.arange(lowerCamelCase_ ) * num_classes A : Any = numpy.zeros((num_labels, num_classes) ) A : Optional[Any] = 1 return labels_one_hot @deprecated(lowerCamelCase_ , '''Please use tf.data to implement this functionality.''' ) def snake_case__ ( lowerCamelCase_ , lowerCamelCase_=False , lowerCamelCase_=10 ): print('''Extracting''' , f.name ) with gzip.GzipFile(fileobj=lowerCamelCase_ ) as bytestream: A : Optional[int] = _readaa(lowerCamelCase_ ) if magic != 2049: raise ValueError( '''Invalid magic number %d in MNIST label file: %s''' % (magic, f.name) ) A : List[str] = _readaa(lowerCamelCase_ ) A : Optional[Any] = bytestream.read(lowerCamelCase_ ) A : List[str] = numpy.frombuffer(lowerCamelCase_ , dtype=numpy.uinta ) if one_hot: return _dense_to_one_hot(lowerCamelCase_ , lowerCamelCase_ ) return labels class __lowercase : """simple docstring""" @deprecated( __UpperCAmelCase , '''Please use alternatives such as official/mnist/_DataSet.py''' ''' from tensorflow/models.''' , ) def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=dtypes.floataa , __UpperCAmelCase=True , __UpperCAmelCase=None , ) -> Optional[Any]: A , A : Any = random_seed.get_seed(__UpperCAmelCase ) # If op level seed is not set, use whatever graph level seed is returned numpy.random.seed(seeda if seed is None else seeda ) A : Optional[int] = dtypes.as_dtype(__UpperCAmelCase ).base_dtype if dtype not in (dtypes.uinta, dtypes.floataa): raise TypeError('''Invalid image dtype %r, expected uint8 or float32''' % dtype ) if fake_data: A : int = 1_00_00 A : Union[str, Any] = one_hot else: assert ( images.shape[0] == labels.shape[0] ), f'images.shape: {images.shape} labels.shape: {labels.shape}' A : int = images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) if reshape: assert images.shape[3] == 1 A : Dict = images.reshape( images.shape[0] , images.shape[1] * images.shape[2] ) if dtype == dtypes.floataa: # Convert from [0, 255] -> [0.0, 1.0]. A : Dict = images.astype(numpy.floataa ) A : Optional[Any] = numpy.multiply(__UpperCAmelCase , 1.0 / 2_5_5.0 ) A : Optional[Any] = images A : int = labels A : Tuple = 0 A : int = 0 @property def snake_case ( self ) -> Optional[Any]: return self._images @property def snake_case ( self ) -> List[str]: return self._labels @property def snake_case ( self ) -> Tuple: return self._num_examples @property def snake_case ( self ) -> List[str]: return self._epochs_completed def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase=False , __UpperCAmelCase=True ) -> Optional[int]: if fake_data: A : int = [1] * 7_84 A : List[Any] = [1] + [0] * 9 if self.one_hot else 0 return ( [fake_image for _ in range(__UpperCAmelCase )], [fake_label for _ in range(__UpperCAmelCase )], ) A : Optional[int] = self._index_in_epoch # Shuffle for the first epoch if self._epochs_completed == 0 and start == 0 and shuffle: A : Any = numpy.arange(self._num_examples ) numpy.random.shuffle(__UpperCAmelCase ) A : Dict = self.images[perma] A : Tuple = self.labels[perma] # Go to the next epoch if start + batch_size > self._num_examples: # Finished epoch self._epochs_completed += 1 # Get the rest examples in this epoch A : Union[str, Any] = self._num_examples - start A : str = self._images[start : self._num_examples] A : Union[str, Any] = self._labels[start : self._num_examples] # Shuffle the data if shuffle: A : Dict = numpy.arange(self._num_examples ) numpy.random.shuffle(__UpperCAmelCase ) A : str = self.images[perm] A : Dict = self.labels[perm] # Start next epoch A : Dict = 0 A : List[Any] = batch_size - rest_num_examples A : int = self._index_in_epoch A : Dict = self._images[start:end] A : Optional[Any] = self._labels[start:end] return ( numpy.concatenate((images_rest_part, images_new_part) , axis=0 ), numpy.concatenate((labels_rest_part, labels_new_part) , axis=0 ), ) else: self._index_in_epoch += batch_size A : Union[str, Any] = self._index_in_epoch return self._images[start:end], self._labels[start:end] @deprecated(lowerCamelCase_ , '''Please write your own downloading logic.''' ) def snake_case__ ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): if not gfile.Exists(lowerCamelCase_ ): gfile.MakeDirs(lowerCamelCase_ ) A : List[str] = os.path.join(lowerCamelCase_ , lowerCamelCase_ ) if not gfile.Exists(lowerCamelCase_ ): urllib.request.urlretrieve(lowerCamelCase_ , lowerCamelCase_ ) # noqa: S310 with gfile.GFile(lowerCamelCase_ ) as f: A : int = f.size() print('''Successfully downloaded''' , lowerCamelCase_ , lowerCamelCase_ , '''bytes.''' ) return filepath @deprecated( lowerCamelCase_ , '''Please use alternatives such as:''' ''' tensorflow_datasets.load(\'mnist\')''' ) def snake_case__ ( lowerCamelCase_ , lowerCamelCase_=False , lowerCamelCase_=False , lowerCamelCase_=dtypes.floataa , lowerCamelCase_=True , lowerCamelCase_=5000 , lowerCamelCase_=None , lowerCamelCase_=DEFAULT_SOURCE_URL , ): if fake_data: def fake(): return _DataSet( [] , [] , fake_data=lowerCamelCase_ , one_hot=lowerCamelCase_ , dtype=lowerCamelCase_ , seed=lowerCamelCase_ ) A : List[str] = fake() A : int = fake() A : Optional[int] = fake() return _Datasets(train=lowerCamelCase_ , validation=lowerCamelCase_ , test=lowerCamelCase_ ) if not source_url: # empty string check A : str = DEFAULT_SOURCE_URL A : List[Any] = '''train-images-idx3-ubyte.gz''' A : Dict = '''train-labels-idx1-ubyte.gz''' A : List[Any] = '''t10k-images-idx3-ubyte.gz''' A : Optional[Any] = '''t10k-labels-idx1-ubyte.gz''' A : Tuple = _maybe_download( lowerCamelCase_ , lowerCamelCase_ , source_url + train_images_file ) with gfile.Open(lowerCamelCase_ , '''rb''' ) as f: A : Tuple = _extract_images(lowerCamelCase_ ) A : List[str] = _maybe_download( lowerCamelCase_ , lowerCamelCase_ , source_url + train_labels_file ) with gfile.Open(lowerCamelCase_ , '''rb''' ) as f: A : Tuple = _extract_labels(lowerCamelCase_ , one_hot=lowerCamelCase_ ) A : Any = _maybe_download( lowerCamelCase_ , lowerCamelCase_ , source_url + test_images_file ) with gfile.Open(lowerCamelCase_ , '''rb''' ) as f: A : Union[str, Any] = _extract_images(lowerCamelCase_ ) A : List[Any] = _maybe_download( lowerCamelCase_ , lowerCamelCase_ , source_url + test_labels_file ) with gfile.Open(lowerCamelCase_ , '''rb''' ) as f: A : str = _extract_labels(lowerCamelCase_ , one_hot=lowerCamelCase_ ) if not 0 <= validation_size <= len(lowerCamelCase_ ): A : Union[str, Any] = ( '''Validation size should be between 0 and ''' F'{len(lowerCamelCase_ )}. Received: {validation_size}.' ) raise ValueError(lowerCamelCase_ ) A : Tuple = train_images[:validation_size] A : str = train_labels[:validation_size] A : int = train_images[validation_size:] A : Optional[Any] = train_labels[validation_size:] A : List[Any] = {'''dtype''': dtype, '''reshape''': reshape, '''seed''': seed} A : Optional[int] = _DataSet(lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ) A : Any = _DataSet(lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ) A : Union[str, Any] = _DataSet(lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ) return _Datasets(train=lowerCamelCase_ , validation=lowerCamelCase_ , test=lowerCamelCase_ )
423
0
"""simple docstring""" import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class __magic_name__ : def __init__( self , __magic_name__ , __magic_name__=sys.maxsize ): """simple docstring""" _lowerCAmelCase = 'bilinear' _lowerCAmelCase = max_size _lowerCAmelCase = short_edge_length def __call__( self , __magic_name__ ): """simple docstring""" _lowerCAmelCase = [] for img in imgs: _lowerCAmelCase , _lowerCAmelCase = img.shape[:2] # later: provide list and randomly choose index for resize _lowerCAmelCase = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1 ) if size == 0: return img _lowerCAmelCase = size * 1.0 / min(__magic_name__ , __magic_name__ ) if h < w: _lowerCAmelCase , _lowerCAmelCase = size, scale * w else: _lowerCAmelCase , _lowerCAmelCase = scale * h, size if max(__magic_name__ , __magic_name__ ) > self.max_size: _lowerCAmelCase = self.max_size * 1.0 / max(__magic_name__ , __magic_name__ ) _lowerCAmelCase = newh * scale _lowerCAmelCase = neww * scale _lowerCAmelCase = int(neww + 0.5 ) _lowerCAmelCase = int(newh + 0.5 ) if img.dtype == np.uinta: _lowerCAmelCase = Image.fromarray(__magic_name__ ) _lowerCAmelCase = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR ) _lowerCAmelCase = np.asarray(__magic_name__ ) else: _lowerCAmelCase = img.permute(2 , 0 , 1 ).unsqueeze(0 ) # 3, 0, 1) # hw(c) -> nchw _lowerCAmelCase = nn.functional.interpolate( __magic_name__ , (newh, neww) , mode=self.interp_method , align_corners=__magic_name__ ).squeeze(0 ) img_augs.append(__magic_name__ ) return img_augs class __magic_name__ : def __init__( self , __magic_name__ ): """simple docstring""" _lowerCAmelCase = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST ) _lowerCAmelCase = cfg.INPUT.FORMAT _lowerCAmelCase = cfg.SIZE_DIVISIBILITY _lowerCAmelCase = cfg.PAD_VALUE _lowerCAmelCase = cfg.INPUT.MAX_SIZE_TEST _lowerCAmelCase = cfg.MODEL.DEVICE _lowerCAmelCase = torch.tensor(cfg.MODEL.PIXEL_STD ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) _lowerCAmelCase = torch.tensor(cfg.MODEL.PIXEL_MEAN ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) _lowerCAmelCase = lambda __magic_name__ : (x - self.pixel_mean) / self.pixel_std def _lowerCamelCase ( self , __magic_name__ ): """simple docstring""" _lowerCAmelCase = tuple(max(__magic_name__ ) for s in zip(*[img.shape for img in images] ) ) _lowerCAmelCase = [im.shape[-2:] for im in images] _lowerCAmelCase = [ nn.functional.pad( __magic_name__ , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , ) for size, im in zip(__magic_name__ , __magic_name__ ) ] return torch.stack(__magic_name__ ), torch.tensor(__magic_name__ ) def __call__( self , __magic_name__ , __magic_name__=False ): """simple docstring""" with torch.no_grad(): if not isinstance(__magic_name__ , __magic_name__ ): _lowerCAmelCase = [images] if single_image: assert len(__magic_name__ ) == 1 for i in range(len(__magic_name__ ) ): if isinstance(images[i] , torch.Tensor ): images.insert(__magic_name__ , images.pop(__magic_name__ ).to(self.device ).float() ) elif not isinstance(images[i] , torch.Tensor ): images.insert( __magic_name__ , torch.as_tensor(img_tensorize(images.pop(__magic_name__ ) , input_format=self.input_format ) ) .to(self.device ) .float() , ) # resize smallest edge _lowerCAmelCase = torch.tensor([im.shape[:2] for im in images] ) _lowerCAmelCase = self.aug(__magic_name__ ) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic _lowerCAmelCase = [self.normalizer(__magic_name__ ) for x in images] # now pad them to do the following operations _lowerCAmelCase , _lowerCAmelCase = self.pad(__magic_name__ ) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad _lowerCAmelCase = torch.true_divide(__magic_name__ , __magic_name__ ) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def A__ ( __lowerCamelCase, __lowerCamelCase ): """simple docstring""" boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def A__ ( __lowerCamelCase, __lowerCamelCase ): """simple docstring""" assert torch.isfinite(__lowerCamelCase ).all(), "Box tensor contains infinite or NaN!" _lowerCAmelCase , _lowerCAmelCase = box_size tensor[:, 0].clamp_(min=0, max=__lowerCamelCase ) tensor[:, 1].clamp_(min=0, max=__lowerCamelCase ) tensor[:, 2].clamp_(min=0, max=__lowerCamelCase ) tensor[:, 3].clamp_(min=0, max=__lowerCamelCase )
589
"""simple docstring""" def A__ ( __lowerCamelCase ): """simple docstring""" if not head: return True # split the list to two parts _lowerCAmelCase , _lowerCAmelCase = head.next, head while fast and fast.next: _lowerCAmelCase = fast.next.next _lowerCAmelCase = slow.next _lowerCAmelCase = slow.next _lowerCAmelCase = None # Don't forget here! But forget still works! # reverse the second part _lowerCAmelCase = None while second: _lowerCAmelCase = second.next _lowerCAmelCase = node _lowerCAmelCase = second _lowerCAmelCase = nxt # compare two parts # second part has the same or one less node while node: if node.val != head.val: return False _lowerCAmelCase = node.next _lowerCAmelCase = head.next return True def A__ ( __lowerCamelCase ): """simple docstring""" if not head or not head.next: return True # 1. Get the midpoint (slow) _lowerCAmelCase = _lowerCAmelCase = _lowerCAmelCase = head while fast and fast.next: _lowerCAmelCase , _lowerCAmelCase = fast.next.next, slow.next # 2. Push the second half into the stack _lowerCAmelCase = [slow.val] while slow.next: _lowerCAmelCase = slow.next stack.append(slow.val ) # 3. Comparison while stack: if stack.pop() != cur.val: return False _lowerCAmelCase = cur.next return True def A__ ( __lowerCamelCase ): """simple docstring""" if not head or not head.next: return True _lowerCAmelCase = {} _lowerCAmelCase = 0 while head: if head.val in d: d[head.val].append(__lowerCamelCase ) else: _lowerCAmelCase = [pos] _lowerCAmelCase = head.next pos += 1 _lowerCAmelCase = pos - 1 _lowerCAmelCase = 0 for v in d.values(): if len(__lowerCamelCase ) % 2 != 0: middle += 1 else: _lowerCAmelCase = 0 for i in range(0, len(__lowerCamelCase ) ): if v[i] + v[len(__lowerCamelCase ) - 1 - step] != checksum: return False step += 1 if middle > 1: return False return True
589
1
'''simple docstring''' from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class lowerCAmelCase__ : def __init__( self , a = None ) -> None: '''simple docstring''' if components is None: _UpperCamelCase = [] _UpperCamelCase = list(a ) def __len__( self ) -> int: '''simple docstring''' return len(self.__components ) def __str__( self ) -> str: '''simple docstring''' return "(" + ",".join(map(a , self.__components ) ) + ")" def __add__( self , a ) -> Vector: '''simple docstring''' _UpperCamelCase = len(self ) if size == len(a ): _UpperCamelCase = [self.__components[i] + other.component(a ) for i in range(a )] return Vector(a ) else: raise Exception("""must have the same size""" ) def __sub__( self , a ) -> Vector: '''simple docstring''' _UpperCamelCase = len(self ) if size == len(a ): _UpperCamelCase = [self.__components[i] - other.component(a ) for i in range(a )] return Vector(a ) else: # error case raise Exception("""must have the same size""" ) @overload def __mul__( self , a ) -> Vector: '''simple docstring''' ... @overload def __mul__( self , a ) -> float: '''simple docstring''' ... def __mul__( self , a ) -> float | Vector: '''simple docstring''' if isinstance(a , (float, int) ): _UpperCamelCase = [c * other for c in self.__components] return Vector(a ) elif isinstance(a , a ) and len(self ) == len(a ): _UpperCamelCase = len(self ) _UpperCamelCase = [self.__components[i] * other.component(a ) for i in range(a )] return sum(a ) else: # error case raise Exception("""invalid operand!""" ) def A_ ( self ) -> Vector: '''simple docstring''' return Vector(self.__components ) def A_ ( self , a ) -> float: '''simple docstring''' if isinstance(a , a ) and -len(self.__components ) <= i < len(self.__components ): return self.__components[i] else: raise Exception("""index out of range""" ) def A_ ( self , a , a ) -> None: '''simple docstring''' assert -len(self.__components ) <= pos < len(self.__components ) _UpperCamelCase = value def A_ ( self ) -> float: '''simple docstring''' if len(self.__components ) == 0: raise Exception("""Vector is empty""" ) _UpperCamelCase = [c**2 for c in self.__components] return math.sqrt(sum(a ) ) def A_ ( self , a , a = False ) -> float: '''simple docstring''' _UpperCamelCase = self * other _UpperCamelCase = self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den ) ) else: return math.acos(num / den ) def __A(lowerCAmelCase ) -> Vector: """simple docstring""" assert isinstance(lowerCAmelCase , lowerCAmelCase ) return Vector([0] * dimension ) def __A(lowerCAmelCase , lowerCAmelCase ) -> Vector: """simple docstring""" assert isinstance(lowerCAmelCase , lowerCAmelCase ) and (isinstance(lowerCAmelCase , lowerCAmelCase )) _UpperCamelCase = [0] * dimension _UpperCamelCase = 1 return Vector(lowerCAmelCase ) def __A(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) -> Vector: """simple docstring""" assert ( isinstance(lowerCAmelCase , lowerCAmelCase ) and isinstance(lowerCAmelCase , lowerCAmelCase ) and (isinstance(lowerCAmelCase , (int, float) )) ) return x * scalar + y def __A(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) -> Vector: """simple docstring""" random.seed(lowerCAmelCase ) _UpperCamelCase = [random.randint(lowerCAmelCase , lowerCAmelCase ) for _ in range(lowerCAmelCase )] return Vector(lowerCAmelCase ) class lowerCAmelCase__ : def __init__( self , a , a , a ) -> None: '''simple docstring''' _UpperCamelCase = matrix _UpperCamelCase = w _UpperCamelCase = h def __str__( self ) -> str: '''simple docstring''' _UpperCamelCase = """""" for i in range(self.__height ): ans += "|" for j in range(self.__width ): if j < self.__width - 1: ans += str(self.__matrix[i][j] ) + "," else: ans += str(self.__matrix[i][j] ) + "|\n" return ans def __add__( self , a ) -> Matrix: '''simple docstring''' if self.__width == other.width() and self.__height == other.height(): _UpperCamelCase = [] for i in range(self.__height ): _UpperCamelCase = [ self.__matrix[i][j] + other.component(a , a ) for j in range(self.__width ) ] matrix.append(a ) return Matrix(a , self.__width , self.__height ) else: raise Exception("""matrix must have the same dimension!""" ) def __sub__( self , a ) -> Matrix: '''simple docstring''' if self.__width == other.width() and self.__height == other.height(): _UpperCamelCase = [] for i in range(self.__height ): _UpperCamelCase = [ self.__matrix[i][j] - other.component(a , a ) for j in range(self.__width ) ] matrix.append(a ) return Matrix(a , self.__width , self.__height ) else: raise Exception("""matrices must have the same dimension!""" ) @overload def __mul__( self , a ) -> Matrix: '''simple docstring''' ... @overload def __mul__( self , a ) -> Vector: '''simple docstring''' ... def __mul__( self , a ) -> Vector | Matrix: '''simple docstring''' if isinstance(a , a ): # matrix-vector if len(a ) == self.__width: _UpperCamelCase = zero_vector(self.__height ) for i in range(self.__height ): _UpperCamelCase = [ self.__matrix[i][j] * other.component(a ) for j in range(self.__width ) ] ans.change_component(a , sum(a ) ) return ans else: raise Exception( """vector must have the same size as the """ """number of columns of the matrix!""" ) elif isinstance(a , (int, float) ): # matrix-scalar _UpperCamelCase = [ [self.__matrix[i][j] * other for j in range(self.__width )] for i in range(self.__height ) ] return Matrix(a , self.__width , self.__height ) return None def A_ ( self ) -> int: '''simple docstring''' return self.__height def A_ ( self ) -> int: '''simple docstring''' return self.__width def A_ ( self , a , a ) -> float: '''simple docstring''' if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception("""change_component: indices out of bounds""" ) def A_ ( self , a , a , a ) -> None: '''simple docstring''' if 0 <= x < self.__height and 0 <= y < self.__width: _UpperCamelCase = value else: raise Exception("""change_component: indices out of bounds""" ) def A_ ( self , a , a ) -> float: '''simple docstring''' if self.__height != self.__width: raise Exception("""Matrix is not square""" ) _UpperCamelCase = self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(a ) ): _UpperCamelCase = minor[i][:y] + minor[i][y + 1 :] return Matrix(a , self.__width - 1 , self.__height - 1 ).determinant() def A_ ( self , a , a ) -> float: '''simple docstring''' if self.__height != self.__width: raise Exception("""Matrix is not square""" ) if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(a , a ) else: raise Exception("""Indices out of bounds""" ) def A_ ( self ) -> float: '''simple docstring''' if self.__height != self.__width: raise Exception("""Matrix is not square""" ) if self.__height < 1: raise Exception("""Matrix has no element""" ) elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: _UpperCamelCase = [ self.__matrix[0][y] * self.cofactor(0 , a ) for y in range(self.__width ) ] return sum(a ) def __A(lowerCAmelCase ) -> Matrix: """simple docstring""" _UpperCamelCase = [[0] * n for _ in range(lowerCAmelCase )] return Matrix(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def __A(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) -> Matrix: """simple docstring""" random.seed(lowerCAmelCase ) _UpperCamelCase = [ [random.randint(lowerCAmelCase , lowerCAmelCase ) for _ in range(lowerCAmelCase )] for _ in range(lowerCAmelCase ) ] return Matrix(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase )
709
import argparse import torch from transformers import YosoConfig, YosoForMaskedLM def __A(lowerCAmelCase ) -> List[str]: """simple docstring""" if "model" in orig_key: _UpperCamelCase = orig_key.replace("""model.""" , """""" ) if "norm1" in orig_key: _UpperCamelCase = orig_key.replace("""norm1""" , """attention.output.LayerNorm""" ) if "norm2" in orig_key: _UpperCamelCase = orig_key.replace("""norm2""" , """output.LayerNorm""" ) if "norm" in orig_key: _UpperCamelCase = orig_key.replace("""norm""" , """LayerNorm""" ) if "transformer" in orig_key: _UpperCamelCase = orig_key.split(""".""" )[0].split("""_""" )[-1] _UpperCamelCase = orig_key.replace(F'transformer_{layer_num}' , F'encoder.layer.{layer_num}' ) if "mha.attn" in orig_key: _UpperCamelCase = orig_key.replace("""mha.attn""" , """attention.self""" ) if "mha" in orig_key: _UpperCamelCase = orig_key.replace("""mha""" , """attention""" ) if "W_q" in orig_key: _UpperCamelCase = orig_key.replace("""W_q""" , """self.query""" ) if "W_k" in orig_key: _UpperCamelCase = orig_key.replace("""W_k""" , """self.key""" ) if "W_v" in orig_key: _UpperCamelCase = orig_key.replace("""W_v""" , """self.value""" ) if "ff1" in orig_key: _UpperCamelCase = orig_key.replace("""ff1""" , """intermediate.dense""" ) if "ff2" in orig_key: _UpperCamelCase = orig_key.replace("""ff2""" , """output.dense""" ) if "ff" in orig_key: _UpperCamelCase = orig_key.replace("""ff""" , """output.dense""" ) if "mlm_class" in orig_key: _UpperCamelCase = orig_key.replace("""mlm.mlm_class""" , """cls.predictions.decoder""" ) if "mlm" in orig_key: _UpperCamelCase = orig_key.replace("""mlm""" , """cls.predictions.transform""" ) if "cls" not in orig_key: _UpperCamelCase = """yoso.""" + orig_key return orig_key def __A(lowerCAmelCase , lowerCAmelCase ) -> List[str]: """simple docstring""" for key in orig_state_dict.copy().keys(): _UpperCamelCase = orig_state_dict.pop(lowerCAmelCase ) if ("pooler" in key) or ("sen_class" in key): continue else: _UpperCamelCase = val _UpperCamelCase = orig_state_dict["""cls.predictions.decoder.bias"""] _UpperCamelCase = torch.arange(lowerCAmelCase ).expand((1, -1) ) + 2 return orig_state_dict def __A(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) -> Optional[int]: """simple docstring""" _UpperCamelCase = torch.load(lowerCAmelCase , map_location="""cpu""" )["""model_state_dict"""] _UpperCamelCase = YosoConfig.from_json_file(lowerCAmelCase ) _UpperCamelCase = YosoForMaskedLM(lowerCAmelCase ) _UpperCamelCase = convert_checkpoint_helper(config.max_position_embeddings , lowerCAmelCase ) print(model.load_state_dict(lowerCAmelCase ) ) model.eval() model.save_pretrained(lowerCAmelCase ) print(F'Checkpoint successfuly converted. Model saved at {pytorch_dump_path}' ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--pytorch_model_path", default=None, type=str, required=True, help="Path to YOSO pytorch checkpoint." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The json file for YOSO model config.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) lowerCamelCase__ = parser.parse_args() convert_yoso_checkpoint(args.pytorch_model_path, args.config_file, args.pytorch_dump_path)
202
0
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __SCREAMING_SNAKE_CASE : Optional[int] = {'configuration_timm_backbone': ['TimmBackboneConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Dict = ['TimmBackbone'] if TYPE_CHECKING: from .configuration_timm_backbone import TimmBackboneConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timm_backbone import TimmBackbone else: import sys __SCREAMING_SNAKE_CASE : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
670
import functools import gc import inspect import torch from .imports import is_npu_available, is_xpu_available def snake_case (*__lowercase ) -> Dict: '''simple docstring''' if not isinstance(__lowercase , __lowercase ): _snake_case : Dict = list(__lowercase ) for i in range(len(__lowercase ) ): _snake_case : List[str] = None gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() return objects def snake_case (__lowercase ) -> bool: '''simple docstring''' _snake_case : str = [ "CUDA out of memory.", # CUDA OOM "cuDNN error: CUDNN_STATUS_NOT_SUPPORTED.", # CUDNN SNAFU "DefaultCPUAllocator: can't allocate memory", # CPU OOM ] if isinstance(__lowercase , __lowercase ) and len(exception.args ) == 1: return any(err in exception.args[0] for err in _statements ) return False def snake_case (__lowercase = None , __lowercase = 128 ) -> Any: '''simple docstring''' if function is None: return functools.partial(__lowercase , starting_batch_size=__lowercase ) _snake_case : List[str] = starting_batch_size def decorator(*__lowercase , **__lowercase ): nonlocal batch_size gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() _snake_case : Optional[Any] = list(inspect.signature(__lowercase ).parameters.keys() ) # Guard against user error if len(__lowercase ) < (len(__lowercase ) + 1): _snake_case : str = ", ".join([F"""{arg}={value}""" for arg, value in zip(params[1:] , args[1:] )] ) raise TypeError( F"""Batch size was passed into `{function.__name__}` as the first argument when called.""" F"""Remove this as the decorator already does so: `{function.__name__}({arg_str})`""" ) while True: if batch_size == 0: raise RuntimeError("No executable batch size found, reached zero." ) try: return function(__lowercase , *__lowercase , **__lowercase ) except Exception as e: if should_reduce_batch_size(__lowercase ): gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() batch_size //= 2 else: raise return decorator
670
1
'''simple docstring''' import math def lowercase ( __magic_name__ ): '''simple docstring''' UpperCAmelCase : List[str] = 0 UpperCAmelCase : List[Any] = 0 while num > 0: UpperCAmelCase : List[Any] = num % 8 UpperCAmelCase : Dict = octal + (remainder * math.floor(math.pow(10 , __magic_name__ ) )) counter += 1 UpperCAmelCase : Optional[int] = math.floor(num / 8 ) # basically /= 8 without remainder if any # This formatting removes trailing '.0' from `octal`. return F"0o{int(__magic_name__ )}" def lowercase ( ): '''simple docstring''' print("\n2 in octal is:" ) print(decimal_to_octal(2 ) ) # = 2 print("\n8 in octal is:" ) print(decimal_to_octal(8 ) ) # = 10 print("\n65 in octal is:" ) print(decimal_to_octal(65 ) ) # = 101 print("\n216 in octal is:" ) print(decimal_to_octal(216 ) ) # = 330 print("\n512 in octal is:" ) print(decimal_to_octal(512 ) ) # = 1000 print("\n" ) if __name__ == "__main__": main()
609
'''simple docstring''' from argparse import ArgumentParser from ..pipelines import Pipeline, PipelineDataFormat, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand a : Any = logging.get_logger(__name__) # pylint: disable=invalid-name def lowercase ( __magic_name__ ): '''simple docstring''' if not path: return "pipe" for ext in PipelineDataFormat.SUPPORTED_FORMATS: if path.endswith(__magic_name__ ): return ext raise Exception( F"Unable to determine file format from file extension {path}. " F"Please provide the format through --format {PipelineDataFormat.SUPPORTED_FORMATS}" ) def lowercase ( __magic_name__ ): '''simple docstring''' UpperCAmelCase : Dict = pipeline( task=args.task , model=args.model if args.model else None , config=args.config , tokenizer=args.tokenizer , device=args.device , ) UpperCAmelCase : Any = try_infer_format_from_ext(args.input ) if args.format == "infer" else args.format UpperCAmelCase : Tuple = PipelineDataFormat.from_str( format=__magic_name__ , output_path=args.output , input_path=args.input , column=args.column if args.column else nlp.default_input_names , overwrite=args.overwrite , ) return RunCommand(__magic_name__ , __magic_name__ ) class UpperCamelCase__ ( lowercase__ ): """simple docstring""" def __init__( self , snake_case , snake_case ): '''simple docstring''' UpperCAmelCase : Dict = nlp UpperCAmelCase : str = reader @staticmethod def A_ ( snake_case ): '''simple docstring''' UpperCAmelCase : str = parser.add_parser("run" , help="Run a pipeline through the CLI" ) run_parser.add_argument("--task" , choices=get_supported_tasks() , help="Task to run" ) run_parser.add_argument("--input" , type=snake_case , help="Path to the file to use for inference" ) run_parser.add_argument("--output" , type=snake_case , help="Path to the file that will be used post to write results." ) run_parser.add_argument("--model" , type=snake_case , help="Name or path to the model to instantiate." ) run_parser.add_argument("--config" , type=snake_case , help="Name or path to the model's config to instantiate." ) run_parser.add_argument( "--tokenizer" , type=snake_case , help="Name of the tokenizer to use. (default: same as the model name)" ) run_parser.add_argument( "--column" , type=snake_case , help="Name of the column to use as input. (For multi columns input as QA use column1,columns2)" , ) run_parser.add_argument( "--format" , type=snake_case , default="infer" , choices=PipelineDataFormat.SUPPORTED_FORMATS , help="Input format to read from" , ) run_parser.add_argument( "--device" , type=snake_case , default=-1 , help="Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)" , ) run_parser.add_argument("--overwrite" , action="store_true" , help="Allow overwriting the output file." ) run_parser.set_defaults(func=snake_case ) def A_ ( self ): '''simple docstring''' UpperCAmelCase , UpperCAmelCase : Union[str, Any] = self._nlp, [] for entry in self._reader: UpperCAmelCase : Dict = nlp(**snake_case ) if self._reader.is_multi_columns else nlp(snake_case ) if isinstance(snake_case , snake_case ): outputs.append(snake_case ) else: outputs += output # Saving data if self._nlp.binary_output: UpperCAmelCase : str = self._reader.save_binary(snake_case ) logger.warning(f"Current pipeline requires output to be in binary format, saving at {binary_path}" ) else: self._reader.save(snake_case )
609
1
from __future__ import annotations def _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case , __snake_case ) -> float: if days_between_payments <= 0: raise ValueError("""days_between_payments must be > 0""" ) if daily_interest_rate < 0: raise ValueError("""daily_interest_rate must be >= 0""" ) if principal <= 0: raise ValueError("""principal must be > 0""" ) return principal * daily_interest_rate * days_between_payments def _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case , __snake_case , ) -> float: if number_of_compounding_periods <= 0: raise ValueError("""number_of_compounding_periods must be > 0""" ) if nominal_annual_interest_rate_percentage < 0: raise ValueError("""nominal_annual_interest_rate_percentage must be >= 0""" ) if principal <= 0: raise ValueError("""principal must be > 0""" ) return principal * ( (1 + nominal_annual_interest_rate_percentage) ** number_of_compounding_periods - 1 ) def _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case , __snake_case , ) -> float: if number_of_years <= 0: raise ValueError("""number_of_years must be > 0""" ) if nominal_annual_percentage_rate < 0: raise ValueError("""nominal_annual_percentage_rate must be >= 0""" ) if principal <= 0: raise ValueError("""principal must be > 0""" ) return compound_interest( __snake_case , nominal_annual_percentage_rate / 3_6_5 , number_of_years * 3_6_5 ) if __name__ == "__main__": import doctest doctest.testmod()
108
"""simple docstring""" # DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion # and https://github.com/hojonathanho/diffusion import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import torch from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.schedulers.scheduling_utils import SchedulerMixin from diffusers.utils import BaseOutput, deprecate @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = 42 lowerCamelCase__ = None def _snake_case ( lowercase__ , lowercase__=0.9_9_9 , lowercase__="cosine" , ): if alpha_transform_type == "cosine": def alpha_bar_fn(lowercase__ ): return math.cos((t + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(lowercase__ ): return math.exp(t * -1_2.0 ) else: raise ValueError(f'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) _lowerCamelCase : Optional[Any] = [] for i in range(lowercase__ ): _lowerCamelCase : Optional[Any] = i / num_diffusion_timesteps _lowerCamelCase : List[str] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(lowercase__ ) / alpha_bar_fn(lowercase__ ) , lowercase__ ) ) return torch.tensor(lowercase__ , dtype=torch.floataa ) class lowerCAmelCase__ ( lowercase, lowercase ): '''simple docstring''' lowerCamelCase__ = 1 @register_to_config def __init__( self , lowercase = 1000 , lowercase = 0.00_01 , lowercase = 0.02 , lowercase = "linear" , lowercase = None , lowercase = True , lowercase = True , lowercase = 0 , lowercase = "epsilon" , lowercase = 1.0 , **lowercase , ): if kwargs.get('set_alpha_to_one' , lowercase ) is not None: _lowerCamelCase : List[str] = ( 'The `set_alpha_to_one` argument is deprecated. Please use `set_alpha_to_zero` instead.' ) deprecate('set_alpha_to_one' , '1.0.0' , lowercase , standard_warn=lowercase ) _lowerCamelCase : Union[str, Any] = kwargs['set_alpha_to_one'] if trained_betas is not None: _lowerCamelCase : Tuple = torch.tensor(lowercase , dtype=torch.floataa ) elif beta_schedule == "linear": _lowerCamelCase : List[str] = torch.linspace(lowercase , lowercase , lowercase , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _lowerCamelCase : Any = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , lowercase , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _lowerCamelCase : Tuple = betas_for_alpha_bar(lowercase ) else: raise NotImplementedError(F'''{beta_schedule} does is not implemented for {self.__class__}''' ) _lowerCamelCase : str = 1.0 - self.betas _lowerCamelCase : str = torch.cumprod(self.alphas , dim=0 ) # At every step in inverted ddim, we are looking into the next alphas_cumprod # For the final step, there is no next alphas_cumprod, and the index is out of bounds # `set_alpha_to_zero` decides whether we set this parameter simply to zero # in this case, self.step() just output the predicted noise # or whether we use the final alpha of the "non-previous" one. _lowerCamelCase : int = torch.tensor(0.0 ) if set_alpha_to_zero else self.alphas_cumprod[-1] # standard deviation of the initial noise distribution _lowerCamelCase : Optional[Any] = 1.0 # setable values _lowerCamelCase : Dict = None _lowerCamelCase : int = torch.from_numpy(np.arange(0 , lowercase ).copy().astype(np.intaa ) ) def A_ ( self , lowercase , lowercase = None ): return sample def A_ ( self , lowercase , lowercase = None ): if num_inference_steps > self.config.num_train_timesteps: raise ValueError( F'''`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:''' F''' {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle''' F''' maximal {self.config.num_train_timesteps} timesteps.''' ) _lowerCamelCase : int = num_inference_steps _lowerCamelCase : Optional[int] = self.config.num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _lowerCamelCase : Any = (np.arange(0 , lowercase ) * step_ratio).round().copy().astype(np.intaa ) _lowerCamelCase : Any = torch.from_numpy(lowercase ).to(lowercase ) self.timesteps += self.config.steps_offset def A_ ( self , lowercase , lowercase , lowercase , lowercase = 0.0 , lowercase = False , lowercase = None , lowercase = True , ): # 1. get previous step value (=t+1) _lowerCamelCase : int = timestep + self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas # change original implementation to exactly match noise levels for analogous forward process _lowerCamelCase : Dict = self.alphas_cumprod[timestep] _lowerCamelCase : str = ( self.alphas_cumprod[prev_timestep] if prev_timestep < self.config.num_train_timesteps else self.final_alpha_cumprod ) _lowerCamelCase : Any = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf if self.config.prediction_type == "epsilon": _lowerCamelCase : Optional[int] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 _lowerCamelCase : Any = model_output elif self.config.prediction_type == "sample": _lowerCamelCase : Optional[Any] = model_output _lowerCamelCase : Tuple = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 elif self.config.prediction_type == "v_prediction": _lowerCamelCase : Any = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output _lowerCamelCase : Tuple = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample else: raise ValueError( F'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or''' ' `v_prediction`' ) # 4. Clip or threshold "predicted x_0" if self.config.clip_sample: _lowerCamelCase : Tuple = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) # 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _lowerCamelCase : Optional[int] = (1 - alpha_prod_t_prev) ** 0.5 * pred_epsilon # 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _lowerCamelCase : Dict = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if not return_dict: return (prev_sample, pred_original_sample) return DDIMSchedulerOutput(prev_sample=lowercase , pred_original_sample=lowercase ) def __len__( self ): return self.config.num_train_timesteps
630
0
'''simple docstring''' import unittest from transformers import DonutProcessor lowercase_ = "naver-clova-ix/donut-base" class __A ( unittest.TestCase ): '''simple docstring''' def a__ (self ) -> List[str]: """simple docstring""" _a = DonutProcessor.from_pretrained(A ) def a__ (self ) -> List[str]: """simple docstring""" _a = { '''name''': '''John Doe''', '''age''': '''99''', '''city''': '''Atlanta''', '''state''': '''GA''', '''zip''': '''30301''', '''phone''': '''123-4567''', '''nicknames''': [{'''nickname''': '''Johnny'''}, {'''nickname''': '''JD'''}], } _a = ( '''<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>''' '''<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>''' '''<s_nicknames><s_nickname>Johnny</s_nickname>''' '''<sep/><s_nickname>JD</s_nickname></s_nicknames>''' ) _a = self.processor.tokenajson(A ) self.assertDictEqual(A , A )
352
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "google/pegasus-large": "https://huggingface.co/google/pegasus-large/resolve/main/config.json", # See all PEGASUS models at https://huggingface.co/models?filter=pegasus } class __A ( A ): '''simple docstring''' __lowerCamelCase : Union[str, Any] = 'pegasus' __lowerCamelCase : Tuple = ['past_key_values'] __lowerCamelCase : List[Any] = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__(self , A=50_265 , A=1_024 , A=12 , A=4_096 , A=16 , A=12 , A=4_096 , A=16 , A=0.0 , A=0.0 , A=True , A=True , A="gelu" , A=1_024 , A=0.1 , A=0.0 , A=0.0 , A=0.02 , A=0 , A=False , A=0 , A=1 , A=1 , **A , ) -> str: """simple docstring""" _a = vocab_size _a = max_position_embeddings _a = d_model _a = encoder_ffn_dim _a = encoder_layers _a = encoder_attention_heads _a = decoder_ffn_dim _a = decoder_layers _a = decoder_attention_heads _a = dropout _a = attention_dropout _a = activation_dropout _a = activation_function _a = init_std _a = encoder_layerdrop _a = decoder_layerdrop _a = use_cache _a = encoder_layers _a = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=A , eos_token_id=A , is_encoder_decoder=A , decoder_start_token_id=A , forced_eos_token_id=A , **A , ) @property def a__ (self ) -> int: """simple docstring""" return self.encoder_attention_heads @property def a__ (self ) -> int: """simple docstring""" return self.d_model
352
1
def _UpperCamelCase ( snake_case__ ) -> bool: return credit_card_number.startswith(("34", "35", "37", "4", "5", "6") ) def _UpperCamelCase ( snake_case__ ) -> bool: __UpperCAmelCase : Any = credit_card_number __UpperCAmelCase : List[Any] = 0 __UpperCAmelCase : List[Any] = len(snake_case__ ) - 2 for i in range(snake_case__, -1, -2 ): # double the value of every second digit __UpperCAmelCase : Optional[Any] = int(cc_number[i] ) digit *= 2 # If doubling of a number results in a two digit number # i.e greater than 9(e.g., 6 × 2 = 12), # then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6), # to get a single digit number. if digit > 9: digit %= 10 digit += 1 __UpperCAmelCase : Dict = cc_number[:i] + str(snake_case__ ) + cc_number[i + 1 :] total += digit # Sum up the remaining digits for i in range(len(snake_case__ ) - 1, -1, -2 ): total += int(cc_number[i] ) return total % 10 == 0 def _UpperCamelCase ( snake_case__ ) -> bool: __UpperCAmelCase : List[str] = f'''{credit_card_number} is an invalid credit card number because''' if not credit_card_number.isdigit(): print(f'''{error_message} it has nonnumerical characters.''' ) return False if not 13 <= len(snake_case__ ) <= 16: print(f'''{error_message} of its length.''' ) return False if not validate_initial_digits(snake_case__ ): print(f'''{error_message} of its first two digits.''' ) return False if not luhn_validation(snake_case__ ): print(f'''{error_message} it fails the Luhn check.''' ) return False print(f'''{credit_card_number} is a valid credit card number.''' ) return True if __name__ == "__main__": import doctest doctest.testmod() validate_credit_card_number('''4111111111111111''') validate_credit_card_number('''32323''')
382
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _snake_case = {'''configuration_encoder_decoder''': ['''EncoderDecoderConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ['''EncoderDecoderModel'''] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ['''TFEncoderDecoderModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ['''FlaxEncoderDecoderModel'''] if TYPE_CHECKING: from .configuration_encoder_decoder import EncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encoder_decoder import EncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_encoder_decoder import TFEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_encoder_decoder import FlaxEncoderDecoderModel else: import sys _snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
382
1
'''simple docstring''' def _A ( ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = 1 while len(SCREAMING_SNAKE_CASE__ ) < 1e6: constant.append(str(SCREAMING_SNAKE_CASE__ ) ) i += 1 __SCREAMING_SNAKE_CASE = """""".join(SCREAMING_SNAKE_CASE__ ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[99] ) * int(constant[999] ) * int(constant[9999] ) * int(constant[9_9999] ) * int(constant[99_9999] ) ) if __name__ == "__main__": print(solution())
704
import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _snake_case : Any = logging.get_logger(__name__) _snake_case : Optional[Any] = {'vocab_file': 'vocab.json'} _snake_case : Any = { 'vocab_file': { 'mgp-str': 'https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json', } } _snake_case : Optional[int] = {'mgp-str': 27} class __SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE__ =VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ =PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self, _a, _a="[GO]", _a="[GO]", _a="[s]", _a="[GO]", **_a ) -> Dict: super().__init__( unk_token=_a, bos_token=_a, eos_token=_a, pad_token=_a, **_a, ) with open(_a, encoding="utf-8" ) as vocab_handle: __SCREAMING_SNAKE_CASE = json.load(_a ) __SCREAMING_SNAKE_CASE = {v: k for k, v in self.vocab.items()} @property def __lowerCAmelCase ( self ) -> List[str]: return len(self.vocab ) def __lowerCAmelCase ( self ) -> Tuple: return dict(self.vocab, **self.added_tokens_encoder ) def __lowerCAmelCase ( self, _a ) -> int: __SCREAMING_SNAKE_CASE = [] for s in text: char_tokens.extend(_a ) return char_tokens def __lowerCAmelCase ( self, _a ) -> List[Any]: return self.vocab.get(_a, self.vocab.get(self.unk_token ) ) def __lowerCAmelCase ( self, _a ) -> Tuple: return self.decoder.get(_a ) def __lowerCAmelCase ( self, _a, _a = None ) -> Tuple[str]: if not os.path.isdir(_a ): logger.error("Vocabulary path ({}) should be a directory".format(_a ) ) return __SCREAMING_SNAKE_CASE = os.path.join( _a, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) with open(_a, "w", encoding="utf-8" ) as f: f.write(json.dumps(self.vocab, indent=2, sort_keys=_a, ensure_ascii=_a ) + "\n" ) return (vocab_file,)
214
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) A_ : Tuple = {'''configuration_deit''': ['''DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''DeiTConfig''', '''DeiTOnnxConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[Any] = ['''DeiTFeatureExtractor'''] A_ : Union[str, Any] = ['''DeiTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Tuple = [ '''DEIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''DeiTForImageClassification''', '''DeiTForImageClassificationWithTeacher''', '''DeiTForMaskedImageModeling''', '''DeiTModel''', '''DeiTPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Union[str, Any] = [ '''TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFDeiTForImageClassification''', '''TFDeiTForImageClassificationWithTeacher''', '''TFDeiTForMaskedImageModeling''', '''TFDeiTModel''', '''TFDeiTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys A_ : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
196
import inspect import unittest import numpy as np from transformers import ViTConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel class __a ( unittest.TestCase ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=13 , _SCREAMING_SNAKE_CASE=30 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=5 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=37 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=10 , _SCREAMING_SNAKE_CASE=0.02 , ) -> int: """simple docstring""" _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = image_size _UpperCAmelCase = patch_size _UpperCAmelCase = num_channels _UpperCAmelCase = is_training _UpperCAmelCase = use_labels _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = initializer_range # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _UpperCAmelCase = (image_size // patch_size) ** 2 _UpperCAmelCase = num_patches + 1 def UpperCAmelCase__ ( self ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCAmelCase = ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , ) return config, pixel_values def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" _UpperCAmelCase = FlaxViTModel(config=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = model(_SCREAMING_SNAKE_CASE ) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) _UpperCAmelCase = (self.image_size, self.image_size) _UpperCAmelCase = (self.patch_size, self.patch_size) _UpperCAmelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, num_patches + 1, self.hidden_size) ) def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" _UpperCAmelCase = self.type_sequence_label_size _UpperCAmelCase = FlaxViTForImageClassification(config=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _UpperCAmelCase = 1 _UpperCAmelCase = FlaxViTForImageClassification(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _UpperCAmelCase = model(_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self ) -> str: """simple docstring""" _UpperCAmelCase = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) = config_and_inputs _UpperCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_flax class __a ( UpperCAmelCase , unittest.TestCase ): _a : List[str] = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else () def UpperCAmelCase__ ( self ) -> None: """simple docstring""" _UpperCAmelCase = FlaxViTModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , has_text_modality=_SCREAMING_SNAKE_CASE , hidden_size=37 ) def UpperCAmelCase__ ( self ) -> Dict: """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase__ ( self ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self ) -> List[Any]: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self ) -> str: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase = [*signature.parameters.keys()] _UpperCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , _SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self ) -> int: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _UpperCAmelCase = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = model_class(_SCREAMING_SNAKE_CASE ) @jax.jit def model_jitted(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ): return model(pixel_values=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) with self.subTest('JIT Enabled' ): _UpperCAmelCase = model_jitted(**_SCREAMING_SNAKE_CASE ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): _UpperCAmelCase = model_jitted(**_SCREAMING_SNAKE_CASE ).to_tuple() self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , len(_SCREAMING_SNAKE_CASE ) ) for jitted_output, output in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): self.assertEqual(jitted_output.shape , output.shape ) @slow def UpperCAmelCase__ ( self ) -> Dict: """simple docstring""" for model_class_name in self.all_model_classes: _UpperCAmelCase = model_class_name.from_pretrained('google/vit-base-patch16-224' ) _UpperCAmelCase = model(np.ones((1, 3, 224, 224) ) ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE )
618
0
"""simple docstring""" def snake_case (A_ :Dict ): '''simple docstring''' a : Dict = len(SCREAMING_SNAKE_CASE_ ) a : str = sum(SCREAMING_SNAKE_CASE_ ) a : str = [[False for x in range(s + 1 )] for y in range(n + 1 )] for i in range(1 , n + 1 ): a : List[Any] = True for i in range(1 , s + 1 ): a : Optional[Any] = False for i in range(1 , n + 1 ): for j in range(1 , s + 1 ): a : List[str] = dp[i][j - 1] if arr[i - 1] <= j: a : List[Any] = dp[i][j] or dp[i - 1][j - arr[i - 1]] for j in range(int(s / 2 ) , -1 , -1 ): if dp[n][j] is True: a : str = s - 2 * j break return diff
702
"""simple docstring""" from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _UpperCamelCase : Optional[Any] = { 'configuration_informer': [ 'INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'InformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : Tuple = [ 'INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'InformerForPrediction', 'InformerModel', 'InformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys _UpperCamelCase : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
118
0
"""simple docstring""" import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import BatchEncoding, PreTrainedTokenizer from ...utils import logging _UpperCamelCase : Dict = logging.get_logger(__name__) _UpperCamelCase : Any = "▁" _UpperCamelCase : Any = { "vocab_file": "vocab.json", "spm_file": "sentencepiece.bpe.model", "tokenizer_config_file": "tokenizer_config.json", } _UpperCamelCase : str = { "vocab_file": { "facebook/m2m100_418M": "https://huggingface.co/facebook/m2m100_418M/resolve/main/vocab.json", "facebook/m2m100_1.2B": "https://huggingface.co/facebook/m2m100_1.2B/resolve/main/vocab.json", }, "spm_file": { "facebook/m2m100_418M": "https://huggingface.co/facebook/m2m100_418M/resolve/main/sentencepiece.bpe.model", "facebook/m2m100_1.2B": "https://huggingface.co/facebook/m2m100_1.2B/resolve/main/sentencepiece.bpe.model", }, "tokenizer_config_file": { "facebook/m2m100_418M": "https://huggingface.co/facebook/m2m100_418M/resolve/main/tokenizer_config.json", "facebook/m2m100_1.2B": "https://huggingface.co/facebook/m2m100_1.2B/resolve/main/tokenizer_config.json", }, } _UpperCamelCase : Optional[int] = { "facebook/m2m100_418M": 10_24, } # fmt: off _UpperCamelCase : str = { "m2m100": ["af", "am", "ar", "ast", "az", "ba", "be", "bg", "bn", "br", "bs", "ca", "ceb", "cs", "cy", "da", "de", "el", "en", "es", "et", "fa", "ff", "fi", "fr", "fy", "ga", "gd", "gl", "gu", "ha", "he", "hi", "hr", "ht", "hu", "hy", "id", "ig", "ilo", "is", "it", "ja", "jv", "ka", "kk", "km", "kn", "ko", "lb", "lg", "ln", "lo", "lt", "lv", "mg", "mk", "ml", "mn", "mr", "ms", "my", "ne", "nl", "no", "ns", "oc", "or", "pa", "pl", "ps", "pt", "ro", "ru", "sd", "si", "sk", "sl", "so", "sq", "sr", "ss", "su", "sv", "sw", "ta", "th", "tl", "tn", "tr", "uk", "ur", "uz", "vi", "wo", "xh", "yi", "yo", "zh", "zu"], "wmt21": ["en", "ha", "is", "ja", "cs", "ru", "zh", "de"] } class UpperCAmelCase_ ( A_): lowerCamelCase__ : int = VOCAB_FILES_NAMES lowerCamelCase__ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ : str = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ : Optional[int] = ["input_ids", "attention_mask"] lowerCamelCase__ : List[str] = [] lowerCamelCase__ : Tuple = [] def __init__( self , a , a , a=None , a=None , a="<s>" , a="</s>" , a="</s>" , a="<pad>" , a="<unk>" , a="m2m100" , a = None , a=8 , **a , ) -> None: lowercase__ : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs lowercase__ : List[Any] = language_codes lowercase__ : List[Any] = FAIRSEQ_LANGUAGE_CODES[language_codes] lowercase__ : str = {lang_code: f"""__{lang_code}__""" for lang_code in fairseq_language_code} lowercase__ : Optional[Any] = kwargs.get('additional_special_tokens' , [] ) kwargs["additional_special_tokens"] += [ self.get_lang_token(a ) for lang_code in fairseq_language_code if self.get_lang_token(a ) not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=a , tgt_lang=a , bos_token=a , eos_token=a , sep_token=a , unk_token=a , pad_token=a , language_codes=a , sp_model_kwargs=self.sp_model_kwargs , num_madeup_words=a , **a , ) lowercase__ : Union[str, Any] = vocab_file lowercase__ : str = load_json(a ) lowercase__ : List[Any] = {v: k for k, v in self.encoder.items()} lowercase__ : Optional[int] = spm_file lowercase__ : Union[str, Any] = load_spm(a , self.sp_model_kwargs ) lowercase__ : Optional[int] = len(self.encoder ) lowercase__ : Dict = { self.get_lang_token(a ): self.encoder_size + i for i, lang_code in enumerate(a ) } lowercase__ : List[Any] = {lang_code: self.encoder_size + i for i, lang_code in enumerate(a )} lowercase__ : str = {v: k for k, v in self.lang_token_to_id.items()} lowercase__ : List[str] = src_lang if src_lang is not None else """en""" lowercase__ : List[str] = tgt_lang lowercase__ : List[str] = self.get_lang_id(self._src_lang ) self.set_src_lang_special_tokens(self._src_lang ) lowercase__ : Dict = num_madeup_words @property def _UpperCAmelCase ( self ) -> int: return len(self.encoder ) + len(self.lang_token_to_id ) @property def _UpperCAmelCase ( self ) -> str: return self._src_lang @src_lang.setter def _UpperCAmelCase ( self , a ) -> None: lowercase__ : Dict = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def _UpperCAmelCase ( self , a ) -> List[str]: return self.sp_model.encode(a , out_type=a ) def _UpperCAmelCase ( self , a ) -> List[str]: if token in self.lang_token_to_id: return self.lang_token_to_id[token] return self.encoder.get(a , self.encoder[self.unk_token] ) def _UpperCAmelCase ( self , a ) -> str: if index in self.id_to_lang_token: return self.id_to_lang_token[index] return self.decoder.get(a , self.unk_token ) def _UpperCAmelCase ( self , a ) -> Dict: lowercase__ : Tuple = [] lowercase__ : Optional[int] = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(a ) + token lowercase__ : Tuple = [] else: current_sub_tokens.append(a ) out_string += self.sp_model.decode(a ) return out_string.strip() def _UpperCAmelCase ( self , a , a = None , a = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a , token_ids_a=a , already_has_special_tokens=a ) lowercase__ : Union[str, Any] = [1] * len(self.prefix_tokens ) lowercase__ : Dict = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(a )) + suffix_ones return prefix_ones + ([0] * len(a )) + ([0] * len(a )) + suffix_ones def _UpperCAmelCase ( self , a , a = None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _UpperCAmelCase ( self ) -> Dict: lowercase__ : Dict = {self.convert_ids_to_tokens(a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Dict: lowercase__ : str = self.__dict__.copy() lowercase__ : List[Any] = None return state def __setstate__( self , a ) -> None: lowercase__ : Any = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): lowercase__ : int = {} lowercase__ : Any = load_spm(self.spm_file , self.sp_model_kwargs ) def _UpperCAmelCase ( self , a , a = None ) -> Tuple[str]: lowercase__ : Optional[int] = Path(a ) if not save_dir.is_dir(): raise OSError(f"""{save_directory} should be a directory""" ) lowercase__ : Any = save_dir / ( (filename_prefix + """-""" if filename_prefix else """""") + self.vocab_files_names["""vocab_file"""] ) lowercase__ : Optional[Any] = save_dir / ( (filename_prefix + """-""" if filename_prefix else """""") + self.vocab_files_names["""spm_file"""] ) save_json(self.encoder , a ) if os.path.abspath(self.spm_file ) != os.path.abspath(a ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , a ) elif not os.path.isfile(self.spm_file ): with open(a , 'wb' ) as fi: lowercase__ : Union[str, Any] = self.sp_model.serialized_model_proto() fi.write(a ) return (str(a ), str(a )) def _UpperCAmelCase ( self , a , a = "en" , a = None , a = "ro" , **a , ) -> BatchEncoding: lowercase__ : List[Any] = src_lang lowercase__ : Union[str, Any] = tgt_lang self.set_src_lang_special_tokens(self.src_lang ) return super().prepare_seqaseq_batch(a , a , **a ) def _UpperCAmelCase ( self , a , a , a , **a ) -> List[str]: if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) lowercase__ : List[str] = src_lang lowercase__ : str = self(a , add_special_tokens=a , **a ) lowercase__ : List[Any] = self.get_lang_id(a ) lowercase__ : str = tgt_lang_id return inputs def _UpperCAmelCase ( self ) -> Any: self.set_src_lang_special_tokens(self.src_lang ) def _UpperCAmelCase ( self ) -> Tuple: self.set_tgt_lang_special_tokens(self.tgt_lang ) def _UpperCAmelCase ( self , a ) -> None: lowercase__ : List[Any] = self.get_lang_token(a ) lowercase__ : List[str] = self.lang_token_to_id[lang_token] lowercase__ : str = [self.cur_lang_id] lowercase__ : int = [self.eos_token_id] def _UpperCAmelCase ( self , a ) -> None: lowercase__ : int = self.get_lang_token(a ) lowercase__ : Optional[Any] = self.lang_token_to_id[lang_token] lowercase__ : List[Any] = [self.cur_lang_id] lowercase__ : Tuple = [self.eos_token_id] def _UpperCAmelCase ( self , a ) -> str: return self.lang_code_to_token[lang] def _UpperCAmelCase ( self , a ) -> int: lowercase__ : int = self.get_lang_token(a ) return self.lang_token_to_id[lang_token] def a_ ( _lowerCAmelCase : str , _lowerCAmelCase : Dict[str, Any] ): '''simple docstring''' lowercase__ : List[str] = sentencepiece.SentencePieceProcessor(**__snake_case ) spm.Load(str(__snake_case ) ) return spm def a_ ( _lowerCAmelCase : str ): '''simple docstring''' with open(__snake_case , 'r' ) as f: return json.load(__snake_case ) def a_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : str ): '''simple docstring''' with open(__snake_case , 'w' ) as f: json.dump(__snake_case , __snake_case , indent=2 )
599
"""simple docstring""" from datetime import datetime import matplotlib.pyplot as plt import torch def _snake_case ( __snake_case : List[str] ): """simple docstring""" for param in module.parameters(): _lowerCamelCase : Optional[Any] = False def _snake_case ( ): """simple docstring""" _lowerCamelCase : Any = """cuda""" if torch.cuda.is_available() else """cpu""" if torch.backends.mps.is_available() and torch.backends.mps.is_built(): _lowerCamelCase : Any = """mps""" if device == "mps": print( """WARNING: MPS currently doesn't seem to work, and messes up backpropagation without any visible torch""" """ errors. I recommend using CUDA on a colab notebook or CPU instead if you're facing inexplicable issues""" """ with generations.""" ) return device def _snake_case ( __snake_case : Union[str, Any] ): """simple docstring""" _lowerCamelCase : int = plt.imshow(__snake_case ) fig.axes.get_xaxis().set_visible(__snake_case ) fig.axes.get_yaxis().set_visible(__snake_case ) plt.show() def _snake_case ( ): """simple docstring""" _lowerCamelCase : Tuple = datetime.now() _lowerCamelCase : Optional[Any] = current_time.strftime("""%H:%M:%S""" ) return timestamp
88
0
'''simple docstring''' from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import ( BackboneOutput, BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ...utils.backbone_utils import BackboneMixin from .configuration_resnet import ResNetConfig __magic_name__ = logging.get_logger(__name__) # General docstring __magic_name__ = 'ResNetConfig' # Base docstring __magic_name__ = 'microsoft/resnet-50' __magic_name__ = [1, 2_048, 7, 7] # Image classification docstring __magic_name__ = 'microsoft/resnet-50' __magic_name__ = 'tiger cat' __magic_name__ = [ 'microsoft/resnet-50', # See all resnet models at https://huggingface.co/models?filter=resnet ] class __lowerCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : str ,_a : int ,_a : str ,_a : List[Any] = 3 ,_a : Optional[Any] = 1 ,_a : List[Any] = "relu" ): '''simple docstring''' super().__init__() A_ : Optional[Any] = nn.Convad( _a ,_a ,kernel_size=_a ,stride=_a ,padding=kernel_size // 2 ,bias=_a ) A_ : List[Any] = nn.BatchNormad(_a ) A_ : int = ACTaFN[activation] if activation is not None else nn.Identity() def _a ( self : List[Any] ,_a : List[str] ): '''simple docstring''' A_ : Optional[int] = self.convolution(_a ) A_ : List[Any] = self.normalization(_a ) A_ : Optional[int] = self.activation(_a ) return hidden_state class __lowerCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Any ,_a : Tuple ): '''simple docstring''' super().__init__() A_ : Optional[int] = ResNetConvLayer( config.num_channels ,config.embedding_size ,kernel_size=7 ,stride=2 ,activation=config.hidden_act ) A_ : int = nn.MaxPoolad(kernel_size=3 ,stride=2 ,padding=1 ) A_ : Dict = config.num_channels def _a ( self : Optional[Any] ,_a : Any ): '''simple docstring''' A_ : Any = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( """Make sure that the channel dimension of the pixel values match with the one set in the configuration.""" ) A_ : Any = self.embedder(_a ) A_ : str = self.pooler(_a ) return embedding class __lowerCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : List[Any] ,_a : List[Any] ,_a : Any ,_a : Optional[int] = 2 ): '''simple docstring''' super().__init__() A_ : List[Any] = nn.Convad(_a ,_a ,kernel_size=1 ,stride=_a ,bias=_a ) A_ : Optional[int] = nn.BatchNormad(_a ) def _a ( self : List[str] ,_a : int ): '''simple docstring''' A_ : Any = self.convolution(_a ) A_ : Union[str, Any] = self.normalization(_a ) return hidden_state class __lowerCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] ,_a : List[str] ,_a : Any ,_a : Dict = 1 ,_a : Optional[Any] = "relu" ): '''simple docstring''' super().__init__() A_ : Dict = in_channels != out_channels or stride != 1 A_ : Union[str, Any] = ( ResNetShortCut(_a ,_a ,stride=_a ) if should_apply_shortcut else nn.Identity() ) A_ : Tuple = nn.Sequential( ResNetConvLayer(_a ,_a ,stride=_a ) ,ResNetConvLayer(_a ,_a ,activation=_a ) ,) A_ : int = ACTaFN[activation] def _a ( self : List[Any] ,_a : Optional[int] ): '''simple docstring''' A_ : Dict = hidden_state A_ : Optional[int] = self.layer(_a ) A_ : Any = self.shortcut(_a ) hidden_state += residual A_ : Tuple = self.activation(_a ) return hidden_state class __lowerCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Dict ,_a : List[str] ,_a : int ,_a : Any = 1 ,_a : Union[str, Any] = "relu" ,_a : str = 4 ): '''simple docstring''' super().__init__() A_ : Optional[int] = in_channels != out_channels or stride != 1 A_ : List[Any] = out_channels // reduction A_ : Dict = ( ResNetShortCut(_a ,_a ,stride=_a ) if should_apply_shortcut else nn.Identity() ) A_ : Dict = nn.Sequential( ResNetConvLayer(_a ,_a ,kernel_size=1 ) ,ResNetConvLayer(_a ,_a ,stride=_a ) ,ResNetConvLayer(_a ,_a ,kernel_size=1 ,activation=_a ) ,) A_ : Union[str, Any] = ACTaFN[activation] def _a ( self : List[Any] ,_a : Optional[Any] ): '''simple docstring''' A_ : Any = hidden_state A_ : List[str] = self.layer(_a ) A_ : Any = self.shortcut(_a ) hidden_state += residual A_ : int = self.activation(_a ) return hidden_state class __lowerCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] ,_a : str ,_a : str ,_a : int ,_a : Optional[Any] = 2 ,_a : List[Any] = 2 ,): '''simple docstring''' super().__init__() A_ : Optional[int] = ResNetBottleNeckLayer if config.layer_type == """bottleneck""" else ResNetBasicLayer A_ : str = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer(_a ,_a ,stride=_a ,activation=config.hidden_act ) ,*[layer(_a ,_a ,activation=config.hidden_act ) for _ in range(depth - 1 )] ,) def _a ( self : Optional[int] ,_a : Optional[int] ): '''simple docstring''' A_ : Optional[int] = input for layer in self.layers: A_ : str = layer(_a ) return hidden_state class __lowerCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Tuple ,_a : str ): '''simple docstring''' super().__init__() A_ : Optional[int] = nn.ModuleList([] ) # based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input self.stages.append( ResNetStage( _a ,config.embedding_size ,config.hidden_sizes[0] ,stride=2 if config.downsample_in_first_stage else 1 ,depth=config.depths[0] ,) ) A_ : str = zip(config.hidden_sizes ,config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(_a ,config.depths[1:] ): self.stages.append(ResNetStage(_a ,_a ,_a ,depth=_a ) ) def _a ( self : Tuple ,_a : Optional[Any] ,_a : Optional[Any] = False ,_a : Tuple = True ): '''simple docstring''' A_ : Optional[Any] = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: A_ : Optional[Any] = hidden_states + (hidden_state,) A_ : Tuple = stage_module(_a ) if output_hidden_states: A_ : int = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention( last_hidden_state=_a ,hidden_states=_a ,) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' a_ = ResNetConfig a_ = """resnet""" a_ = """pixel_values""" a_ = True def _a ( self : List[Any] ,_a : int ): '''simple docstring''' if isinstance(_a ,nn.Convad ): nn.init.kaiming_normal_(module.weight ,mode="""fan_out""" ,nonlinearity="""relu""" ) elif isinstance(_a ,(nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight ,1 ) nn.init.constant_(module.bias ,0 ) def _a ( self : str ,_a : List[Any] ,_a : Tuple=False ): '''simple docstring''' if isinstance(_a ,_a ): A_ : Tuple = value __magic_name__ = r'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`ResNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' __magic_name__ = r'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConvNextImageProcessor.__call__`] for details.\n\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( """The bare ResNet model outputting raw features without any specific head on top.""" , __SCREAMING_SNAKE_CASE , ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : List[str] ,_a : Dict ): '''simple docstring''' super().__init__(_a ) A_ : str = config A_ : Optional[int] = ResNetEmbeddings(_a ) A_ : Union[str, Any] = ResNetEncoder(_a ) A_ : str = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_a ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC ,output_type=_a ,config_class=_CONFIG_FOR_DOC ,modality="""vision""" ,expected_output=_EXPECTED_OUTPUT_SHAPE ,) def _a ( self : str ,_a : str ,_a : str = None ,_a : Optional[int] = None ): '''simple docstring''' A_ : List[Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) A_ : int = return_dict if return_dict is not None else self.config.use_return_dict A_ : List[Any] = self.embedder(_a ) A_ : List[Any] = self.encoder( _a ,output_hidden_states=_a ,return_dict=_a ) A_ : str = encoder_outputs[0] A_ : Optional[Any] = self.pooler(_a ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=_a ,pooler_output=_a ,hidden_states=encoder_outputs.hidden_states ,) @add_start_docstrings( """ ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. """ , __SCREAMING_SNAKE_CASE , ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : Dict ,_a : Union[str, Any] ): '''simple docstring''' super().__init__(_a ) A_ : Dict = config.num_labels A_ : List[Any] = ResNetModel(_a ) # classification head A_ : Optional[Any] = nn.Sequential( nn.Flatten() ,nn.Linear(config.hidden_sizes[-1] ,config.num_labels ) if config.num_labels > 0 else nn.Identity() ,) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_a ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT ,output_type=_a ,config_class=_CONFIG_FOR_DOC ,expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT ,) def _a ( self : Union[str, Any] ,_a : Union[str, Any] = None ,_a : Optional[int] = None ,_a : List[str] = None ,_a : str = None ,): '''simple docstring''' A_ : Any = return_dict if return_dict is not None else self.config.use_return_dict A_ : List[str] = self.resnet(_a ,output_hidden_states=_a ,return_dict=_a ) A_ : List[str] = outputs.pooler_output if return_dict else outputs[1] A_ : str = self.classifier(_a ) A_ : int = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: A_ : Optional[int] = """regression""" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): A_ : Optional[int] = """single_label_classification""" else: A_ : Tuple = """multi_label_classification""" if self.config.problem_type == "regression": A_ : Optional[int] = MSELoss() if self.num_labels == 1: A_ : List[str] = loss_fct(logits.squeeze() ,labels.squeeze() ) else: A_ : Tuple = loss_fct(_a ,_a ) elif self.config.problem_type == "single_label_classification": A_ : Tuple = CrossEntropyLoss() A_ : Tuple = loss_fct(logits.view(-1 ,self.num_labels ) ,labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": A_ : List[Any] = BCEWithLogitsLoss() A_ : Optional[Any] = loss_fct(_a ,_a ) if not return_dict: A_ : List[Any] = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=_a ,logits=_a ,hidden_states=outputs.hidden_states ) @add_start_docstrings( """ ResNet backbone, to be used with frameworks like DETR and MaskFormer. """ , __SCREAMING_SNAKE_CASE , ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : Union[str, Any] ,_a : int ): '''simple docstring''' super().__init__(_a ) super()._init_backbone(_a ) A_ : List[str] = [config.embedding_size] + config.hidden_sizes A_ : Tuple = ResNetEmbeddings(_a ) A_ : Optional[Any] = ResNetEncoder(_a ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_a ) @replace_return_docstrings(output_type=_a ,config_class=_CONFIG_FOR_DOC ) def _a ( self : str ,_a : Any ,_a : List[Any] = None ,_a : Optional[Any] = None ): '''simple docstring''' A_ : Optional[int] = return_dict if return_dict is not None else self.config.use_return_dict A_ : str = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) A_ : List[Any] = self.embedder(_a ) A_ : List[str] = self.encoder(_a ,output_hidden_states=_a ,return_dict=_a ) A_ : Optional[int] = outputs.hidden_states A_ : int = () for idx, stage in enumerate(self.stage_names ): if stage in self.out_features: feature_maps += (hidden_states[idx],) if not return_dict: A_ : Tuple = (feature_maps,) if output_hidden_states: output += (outputs.hidden_states,) return output return BackboneOutput( feature_maps=_a ,hidden_states=outputs.hidden_states if output_hidden_states else None ,attentions=_a ,)
702
'''simple docstring''' from ..utils import DummyObject, requires_backends class __lowerCAmelCase ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' a_ = ["""torch""", """torchsde"""] def __init__( self : Any ,*_a : Union[str, Any] ,**_a : Optional[int] ): '''simple docstring''' requires_backends(self ,["""torch""", """torchsde"""] ) @classmethod def _a ( cls : Optional[int] ,*_a : List[Any] ,**_a : Any ): '''simple docstring''' requires_backends(cls ,["""torch""", """torchsde"""] ) @classmethod def _a ( cls : List[Any] ,*_a : Tuple ,**_a : Union[str, Any] ): '''simple docstring''' requires_backends(cls ,["""torch""", """torchsde"""] )
27
0
'''simple docstring''' from __future__ import annotations def lowerCamelCase__ ( a__) -> float: """simple docstring""" if not nums: raise ValueError('List is empty') return sum(a__) / len(a__) if __name__ == "__main__": import doctest doctest.testmod()
517
'''simple docstring''' import copy import random from transformers import CLIPTokenizer class SCREAMING_SNAKE_CASE ( lowercase_ ): '''simple docstring''' def __init__( self : int , *snake_case : Optional[Any] , **snake_case : Optional[int] ): """simple docstring""" super().__init__(*snake_case , **snake_case ) _snake_case : Tuple = {} def __UpperCAmelCase ( self : int , snake_case : List[Any] , *snake_case : Optional[Any] , **snake_case : List[Any] ): """simple docstring""" _snake_case : str = super().add_tokens(snake_case , *snake_case , **snake_case ) if num_added_tokens == 0: raise ValueError( F"""The tokenizer already contains the token {placeholder_token}. Please pass a different""" ' `placeholder_token` that is not already in the tokenizer.' ) def __UpperCAmelCase ( self : Union[str, Any] , snake_case : Optional[int] , *snake_case : Dict , snake_case : int=1 , **snake_case : int ): """simple docstring""" _snake_case : str = [] if num_vec_per_token == 1: self.try_adding_tokens(snake_case , *snake_case , **snake_case ) output.append(snake_case ) else: _snake_case : Optional[Any] = [] for i in range(snake_case ): _snake_case : int = placeholder_token + F"""_{i}""" self.try_adding_tokens(snake_case , *snake_case , **snake_case ) output.append(snake_case ) # handle cases where there is a new placeholder token that contains the current placeholder token but is larger for token in self.token_map: if token in placeholder_token: raise ValueError( F"""The tokenizer already has placeholder token {token} that can get confused with""" F""" {placeholder_token}keep placeholder tokens independent""" ) _snake_case : Dict = output def __UpperCAmelCase ( self : Union[str, Any] , snake_case : str , snake_case : Dict=False , snake_case : List[str]=1.0 ): """simple docstring""" if isinstance(snake_case , snake_case ): _snake_case : int = [] for i in range(len(snake_case ) ): output.append(self.replace_placeholder_tokens_in_text(text[i] , vector_shuffle=snake_case ) ) return output for placeholder_token in self.token_map: if placeholder_token in text: _snake_case : Union[str, Any] = self.token_map[placeholder_token] _snake_case : Any = tokens[: 1 + int(len(snake_case ) * prop_tokens_to_load )] if vector_shuffle: _snake_case : Union[str, Any] = copy.copy(snake_case ) random.shuffle(snake_case ) _snake_case : List[str] = text.replace(snake_case , ' '.join(snake_case ) ) return text def __call__( self : List[Any] , snake_case : Optional[int] , *snake_case : Any , snake_case : int=False , snake_case : str=1.0 , **snake_case : Optional[Any] ): """simple docstring""" return super().__call__( self.replace_placeholder_tokens_in_text( snake_case , vector_shuffle=snake_case , prop_tokens_to_load=snake_case ) , *snake_case , **snake_case , ) def __UpperCAmelCase ( self : int , snake_case : List[str] , *snake_case : List[Any] , snake_case : Optional[int]=False , snake_case : Optional[Any]=1.0 , **snake_case : Any ): """simple docstring""" return super().encode( self.replace_placeholder_tokens_in_text( snake_case , vector_shuffle=snake_case , prop_tokens_to_load=snake_case ) , *snake_case , **snake_case , )
517
1
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { "microsoft/git-base": "https://huggingface.co/microsoft/git-base/resolve/main/config.json", } class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = "git_vision_model" def __init__( self : Any , __snake_case : Tuple=7_68 , __snake_case : Optional[Any]=30_72 , __snake_case : Any=12 , __snake_case : Tuple=12 , __snake_case : List[Any]=3 , __snake_case : Dict=2_24 , __snake_case : Union[str, Any]=16 , __snake_case : Optional[Any]="quick_gelu" , __snake_case : List[str]=1e-5 , __snake_case : Dict=0.0 , __snake_case : List[str]=0.02 , **__snake_case : Dict , )-> List[str]: super().__init__(**__snake_case ) snake_case = hidden_size snake_case = intermediate_size snake_case = num_hidden_layers snake_case = num_attention_heads snake_case = num_channels snake_case = patch_size snake_case = image_size snake_case = initializer_range snake_case = attention_dropout snake_case = layer_norm_eps snake_case = hidden_act @classmethod def lowerCAmelCase ( cls : Dict , __snake_case : Union[str, os.PathLike] , **__snake_case : List[str] )-> "PretrainedConfig": cls._set_token_in_kwargs(__snake_case ) snake_case , snake_case = cls.get_config_dict(__snake_case , **__snake_case ) # get the vision config dict if we are loading from GITConfig if config_dict.get("""model_type""" ) == "git": snake_case = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__snake_case , **__snake_case ) class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = "git" def __init__( self : str , __snake_case : List[Any]=None , __snake_case : List[Any]=3_05_22 , __snake_case : Any=7_68 , __snake_case : Union[str, Any]=6 , __snake_case : str=12 , __snake_case : int=30_72 , __snake_case : str="gelu" , __snake_case : Union[str, Any]=0.1 , __snake_case : Any=0.1 , __snake_case : int=10_24 , __snake_case : Optional[int]=0.02 , __snake_case : Union[str, Any]=1e-12 , __snake_case : List[str]=0 , __snake_case : Dict="absolute" , __snake_case : Union[str, Any]=True , __snake_case : Union[str, Any]=False , __snake_case : Optional[int]=1_01 , __snake_case : List[Any]=1_02 , __snake_case : str=None , **__snake_case : Tuple , )-> Dict: super().__init__(bos_token_id=__snake_case , eos_token_id=__snake_case , pad_token_id=__snake_case , **__snake_case ) if vision_config is None: snake_case = {} logger.info("""vision_config is None. initializing the GitVisionConfig with default values.""" ) snake_case = GitVisionConfig(**__snake_case ) snake_case = vocab_size snake_case = hidden_size snake_case = num_hidden_layers snake_case = num_attention_heads snake_case = hidden_act snake_case = intermediate_size snake_case = hidden_dropout_prob snake_case = attention_probs_dropout_prob snake_case = max_position_embeddings snake_case = initializer_range snake_case = layer_norm_eps snake_case = position_embedding_type snake_case = use_cache snake_case = tie_word_embeddings snake_case = num_image_with_embedding snake_case = bos_token_id snake_case = eos_token_id def lowerCAmelCase ( self : Any )-> Optional[Any]: snake_case = copy.deepcopy(self.__dict__ ) snake_case = self.vision_config.to_dict() snake_case = self.__class__.model_type return output
517
'''simple docstring''' import argparse import hashlib import os import urllib import warnings import torch from torch import nn from tqdm import tqdm from transformers import WhisperConfig, WhisperForConditionalGeneration _SCREAMING_SNAKE_CASE = { "tiny.en": "https://openaipublic.azureedge.net/main/whisper/models/d3dd57d32accea0b295c96e26691aa14d8822fac7d9d27d5dc00b4ca2826dd03/tiny.en.pt", "tiny": "https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt", "base.en": "https://openaipublic.azureedge.net/main/whisper/models/25a8566e1d0c1e2231d1c762132cd20e0f96a85d16145c3a00adf5d1ac670ead/base.en.pt", "base": "https://openaipublic.azureedge.net/main/whisper/models/ed3a0b6b1c0edf879ad9b11b1af5a0e6ab5db9205f891f668f8b0e6c6326e34e/base.pt", "small.en": "https://openaipublic.azureedge.net/main/whisper/models/f953ad0fd29cacd07d5a9eda5624af0f6bcf2258be67c92b79389873d91e0872/small.en.pt", "small": "https://openaipublic.azureedge.net/main/whisper/models/9ecf779972d90ba49c06d968637d720dd632c55bbf19d441fb42bf17a411e794/small.pt", "medium.en": "https://openaipublic.azureedge.net/main/whisper/models/d7440d1dc186f76616474e0ff0b3b6b879abc9d1a4926b7adfa41db2d497ab4f/medium.en.pt", "medium": "https://openaipublic.azureedge.net/main/whisper/models/345ae4da62f9b3d59415adc60127b97c714f32e89e936602e85993674d08dcb1/medium.pt", "large": "https://openaipublic.azureedge.net/main/whisper/models/e4b87e7e0bf463eb8e6956e646f1e277e901512310def2c24bf0e11bd3c28e9a/large.pt", "large-v2": "https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt", } def __lowerCamelCase ( __lowerCAmelCase : Any ) -> List[str]: snake_case = ["""layers""", """blocks"""] for k in ignore_keys: state_dict.pop(__lowerCAmelCase , __lowerCAmelCase ) _SCREAMING_SNAKE_CASE = { "blocks": "layers", "mlp.0": "fc1", "mlp.2": "fc2", "mlp_ln": "final_layer_norm", ".attn.query": ".self_attn.q_proj", ".attn.key": ".self_attn.k_proj", ".attn.value": ".self_attn.v_proj", ".attn_ln": ".self_attn_layer_norm", ".attn.out": ".self_attn.out_proj", ".cross_attn.query": ".encoder_attn.q_proj", ".cross_attn.key": ".encoder_attn.k_proj", ".cross_attn.value": ".encoder_attn.v_proj", ".cross_attn_ln": ".encoder_attn_layer_norm", ".cross_attn.out": ".encoder_attn.out_proj", "decoder.ln.": "decoder.layer_norm.", "encoder.ln.": "encoder.layer_norm.", "token_embedding": "embed_tokens", "encoder.positional_embedding": "encoder.embed_positions.weight", "decoder.positional_embedding": "decoder.embed_positions.weight", "ln_post": "layer_norm", } def __lowerCamelCase ( __lowerCAmelCase : int ) -> Optional[int]: snake_case = list(s_dict.keys() ) for key in keys: snake_case = key for k, v in WHISPER_MAPPING.items(): if k in key: snake_case = new_key.replace(__lowerCAmelCase , __lowerCAmelCase ) print(F'''{key} -> {new_key}''' ) snake_case = s_dict.pop(__lowerCAmelCase ) return s_dict def __lowerCamelCase ( __lowerCAmelCase : Tuple ) -> Union[str, Any]: snake_case , snake_case = emb.weight.shape snake_case = nn.Linear(__lowerCAmelCase , __lowerCAmelCase , bias=__lowerCAmelCase ) snake_case = emb.weight.data return lin_layer def __lowerCamelCase ( __lowerCAmelCase : str , __lowerCAmelCase : str ) -> bytes: os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase ) snake_case = os.path.basename(__lowerCAmelCase ) snake_case = url.split("""/""" )[-2] snake_case = os.path.join(__lowerCAmelCase , __lowerCAmelCase ) if os.path.exists(__lowerCAmelCase ) and not os.path.isfile(__lowerCAmelCase ): raise RuntimeError(F'''{download_target} exists and is not a regular file''' ) if os.path.isfile(__lowerCAmelCase ): snake_case = open(__lowerCAmelCase , """rb""" ).read() if hashlib.shaaaa(__lowerCAmelCase ).hexdigest() == expected_shaaaa: return model_bytes else: warnings.warn(F'''{download_target} exists, but the SHA256 checksum does not match; re-downloading the file''' ) with urllib.request.urlopen(__lowerCAmelCase ) as source, open(__lowerCAmelCase , """wb""" ) as output: with tqdm( total=int(source.info().get("""Content-Length""" ) ) , ncols=80 , unit="""iB""" , unit_scale=__lowerCAmelCase , unit_divisor=10_24 ) as loop: while True: snake_case = source.read(81_92 ) if not buffer: break output.write(__lowerCAmelCase ) loop.update(len(__lowerCAmelCase ) ) snake_case = open(__lowerCAmelCase , """rb""" ).read() if hashlib.shaaaa(__lowerCAmelCase ).hexdigest() != expected_shaaaa: raise RuntimeError( """Model has been downloaded but the SHA256 checksum does not not match. Please retry loading the model.""" ) return model_bytes def __lowerCamelCase ( __lowerCAmelCase : Tuple , __lowerCAmelCase : Union[str, Any] ) -> List[str]: if ".pt" not in checkpoint_path: snake_case = _download(_MODELS[checkpoint_path] ) else: snake_case = torch.load(__lowerCAmelCase , map_location="""cpu""" ) snake_case = original_checkpoint["""dims"""] snake_case = original_checkpoint["""model_state_dict"""] snake_case = state_dict["""decoder.token_embedding.weight"""] remove_ignore_keys_(__lowerCAmelCase ) rename_keys(__lowerCAmelCase ) snake_case = True snake_case = state_dict["""decoder.layers.0.fc1.weight"""].shape[0] snake_case = WhisperConfig( vocab_size=dimensions["""n_vocab"""] , encoder_ffn_dim=__lowerCAmelCase , decoder_ffn_dim=__lowerCAmelCase , num_mel_bins=dimensions["""n_mels"""] , d_model=dimensions["""n_audio_state"""] , max_target_positions=dimensions["""n_text_ctx"""] , encoder_layers=dimensions["""n_audio_layer"""] , encoder_attention_heads=dimensions["""n_audio_head"""] , decoder_layers=dimensions["""n_text_layer"""] , decoder_attention_heads=dimensions["""n_text_state"""] , max_source_positions=dimensions["""n_audio_ctx"""] , ) snake_case = WhisperForConditionalGeneration(__lowerCAmelCase ) snake_case , snake_case = model.model.load_state_dict(__lowerCAmelCase , strict=__lowerCAmelCase ) if len(__lowerCAmelCase ) > 0 and not set(__lowerCAmelCase ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( """Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,""" F''' but all the following weights are missing {missing}''' ) if tie_embeds: snake_case = make_linear_from_emb(model.model.decoder.embed_tokens ) else: snake_case = proj_out_weights model.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # # Required parameters parser.add_argument("--checkpoint_path", type=str, help="Patht to the downloaded checkpoints") parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") _SCREAMING_SNAKE_CASE = parser.parse_args() convert_openai_whisper_to_tfms(args.checkpoint_path, args.pytorch_dump_folder_path)
517
1
"""simple docstring""" import unittest from transformers import AlbertTokenizer, AlbertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase__ = get_tests_dir('''fixtures/spiece.model''') @require_sentencepiece @require_tokenizers class __snake_case ( _lowercase , unittest.TestCase): snake_case__ : Tuple = AlbertTokenizer snake_case__ : Dict = AlbertTokenizerFast snake_case__ : int = True snake_case__ : Any = True snake_case__ : Any = True def SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing _lowerCamelCase : Optional[int] = AlbertTokenizer(__lowerCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , __lowerCAmelCase : Dict ): """simple docstring""" _lowerCamelCase : Tuple = '''this is a test''' _lowerCamelCase : Tuple = '''this is a test''' return input_text, output_text def SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" _lowerCamelCase : List[Any] = '''<pad>''' _lowerCamelCase : Optional[int] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowerCAmelCase ) , __lowerCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowerCAmelCase ) , __lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" _lowerCamelCase : Optional[int] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<pad>''' ) self.assertEqual(vocab_keys[1] , '''<unk>''' ) self.assertEqual(vocab_keys[-1] , '''▁eloquent''' ) self.assertEqual(len(__lowerCAmelCase ) , 3_0_0_0_0 ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 3_0_0_0_0 ) def SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" if not self.test_rust_tokenizer: return _lowerCamelCase : str = self.get_tokenizer() _lowerCamelCase : Any = self.get_rust_tokenizer() _lowerCamelCase : Any = '''I was born in 92000, and this is falsé.''' _lowerCamelCase : List[Any] = tokenizer.tokenize(__lowerCAmelCase ) _lowerCamelCase : Dict = rust_tokenizer.tokenize(__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) _lowerCamelCase : Any = tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = rust_tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) _lowerCamelCase : Optional[Any] = self.get_rust_tokenizer() _lowerCamelCase : str = tokenizer.encode(__lowerCAmelCase ) _lowerCamelCase : List[Any] = rust_tokenizer.encode(__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" _lowerCamelCase : Optional[Any] = AlbertTokenizer(__lowerCAmelCase , keep_accents=__lowerCAmelCase ) _lowerCamelCase : List[str] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(__lowerCAmelCase , ['''▁this''', '''▁is''', '''▁a''', '''▁test'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) , [4_8, 2_5, 2_1, 1_2_8_9] ) _lowerCamelCase : int = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( __lowerCAmelCase , ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''é''', '''.'''] ) _lowerCamelCase : Any = tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , [3_1, 2_3, 3_8_6, 1_9, 5_6_1, 3_0_5_0, 1_5, 1_7, 4_8, 2_5, 8_2_5_6, 1_8, 1, 9] ) _lowerCamelCase : Tuple = tokenizer.convert_ids_to_tokens(__lowerCAmelCase ) self.assertListEqual( __lowerCAmelCase , ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.'''] , ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" _lowerCamelCase : str = AlbertTokenizer(__lowerCAmelCase ) _lowerCamelCase : Tuple = tokenizer.encode('''sequence builders''' ) _lowerCamelCase : Tuple = tokenizer.encode('''multi-sequence build''' ) _lowerCamelCase : Optional[int] = tokenizer.build_inputs_with_special_tokens(__lowerCAmelCase ) _lowerCamelCase : int = tokenizer.build_inputs_with_special_tokens(__lowerCAmelCase , __lowerCAmelCase ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ] @slow def SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" _lowerCamelCase : Dict = {'''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''input_ids''': [[2, 2_1_9_7_0, 1_3, 5, 6_0_9_2, 1_6_7, 2_8, 7_1_0_3, 2_1_5_3, 6_7_3, 8, 7_0_2_8, 1_2_0_5_1, 1_8, 1_7, 7_1_0_3, 2_1_5_3, 6_7_3, 8, 3_5_1_5, 1_8_6_8_4, 8, 4_4_6_1, 6, 1_9_2_7, 2_9_7, 8, 1_2_0_6_0, 2_6_0_7, 1_8, 1_3, 5, 4_4_6_1, 1_5, 1_0_5_3_8, 3_8, 8, 1_3_5, 1_5, 8_2_2, 5_8, 1_5, 9_9_3, 1_0_3_6_3, 1_5, 1_4_6_0, 8_0_0_5, 4_4_6_1, 1_5, 9_9_3, 2_5_5, 2_3_2_8, 9, 9, 9, 6, 2_6, 1_1_1_2, 8_1_6, 3_2_6_0, 1_3, 5, 1_0_3, 2_3_7_7, 6, 1_7, 1_1_1_2, 8_1_6, 2_7_8_2, 1_3, 5, 1_0_3, 1_0_6_4_1, 6, 2_9, 8_4, 2_5_1_2, 2_4_3_0, 7_8_2, 1_8_6_8_4, 2_7_6_1, 1_9, 8_0_8, 2_4_3_0, 2_5_5_6, 1_7, 8_5_5, 1_4_8_0, 9_4_7_7, 4_0_9_1, 1_2_8, 1_1_7_1_2, 1_5, 7_1_0_3, 2_1_5_3, 6_7_3, 1_7, 2_4_8_8_3, 9_9_9_0, 9, 3], [2, 1_1_5_0_2, 2_5, 1_0_0_6, 2_0, 7_8_2, 8, 1_1_8_0_9, 8_5_5, 1_7_3_2, 1_9_3_9_3, 1_8_6_6_7, 3_7, 3_6_7, 2_1_0_1_8, 6_9, 1_8_5_4, 3_4, 1_1_8_6_0, 1_9_1_2_4, 2_7, 1_5_6, 2_2_5, 1_7, 1_9_3, 4_1_4_1, 1_9, 6_5, 9_1_2_4, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 1_4, 2_2_3_1, 8_8_6, 2_3_8_5, 1_7_6_5_9, 8_4, 1_4, 1_6_7_9_2, 1_9_5_2, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__lowerCAmelCase , model_name='''albert-base-v2''' , revision='''6b6560eaf5ff2e250b00c50f380c5389a9c2d82e''' , )
83
"""simple docstring""" import math import random from typing import Any from .hill_climbing import SearchProblem def snake_case_ ( A_ : Dict, A_ : bool = True, A_ : float = math.inf, A_ : float = -math.inf, A_ : float = math.inf, A_ : float = -math.inf, A_ : bool = False, A_ : float = 1_00, A_ : float = 0.01, A_ : float = 1, ): '''simple docstring''' _lowerCamelCase : Optional[int] = False _lowerCamelCase : str = search_prob _lowerCamelCase : str = start_temperate _lowerCamelCase : Optional[Any] = [] _lowerCamelCase : int = 0 _lowerCamelCase : Any = None while not search_end: _lowerCamelCase : Dict = current_state.score() if best_state is None or current_score > best_state.score(): _lowerCamelCase : Tuple = current_state scores.append(A_ ) iterations += 1 _lowerCamelCase : List[Any] = None _lowerCamelCase : Optional[int] = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to _lowerCamelCase : List[Any] = random.randint(0, len(A_ ) - 1 ) # picking a random neighbor _lowerCamelCase : Dict = neighbors.pop(A_ ) _lowerCamelCase : Union[str, Any] = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: _lowerCamelCase : str = change * -1 # in case we are finding minimum if change > 0: # improves the solution _lowerCamelCase : Optional[Any] = picked_neighbor else: _lowerCamelCase : Optional[int] = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability _lowerCamelCase : Union[str, Any] = picked_neighbor _lowerCamelCase : List[str] = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor _lowerCamelCase : Tuple = True else: _lowerCamelCase : Optional[Any] = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(A_ ), A_ ) plt.xlabel('''Iterations''' ) plt.ylabel('''Function values''' ) plt.show() return best_state if __name__ == "__main__": def snake_case_ ( A_ : int, A_ : Tuple ): '''simple docstring''' return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) lowerCAmelCase__ = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) lowerCAmelCase__ = simulated_annealing( prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( '''The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ''' F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) # starting the problem with initial coordinates (12, 47) lowerCAmelCase__ = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) lowerCAmelCase__ = simulated_annealing( prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( '''The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ''' F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) def snake_case_ ( A_ : Optional[int], A_ : List[Any] ): '''simple docstring''' return (3 * x**2) - (6 * y) lowerCAmelCase__ = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) lowerCAmelCase__ = simulated_annealing(prob, find_max=False, visualization=True) print( '''The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ''' F"""{local_min.score()}""" ) lowerCAmelCase__ = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) lowerCAmelCase__ = simulated_annealing(prob, find_max=True, visualization=True) print( '''The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ''' F"""{local_min.score()}""" )
83
1
from unittest.mock import Mock, patch from file_transfer.send_file import send_file @patch('''socket.socket''') @patch('''builtins.open''') def lowerCAmelCase__ ( lowerCamelCase_ : Tuple ,lowerCamelCase_ : List[Any]): '''simple docstring''' lowerCAmelCase__ : Tuple = Mock() lowerCAmelCase__ : int = conn, Mock() lowerCAmelCase__ : List[Any] = iter([1, None]) lowerCAmelCase__ : Dict = lambda lowerCamelCase_: next(lowerCamelCase_) # ===== invoke ===== send_file(filename='''mytext.txt''' ,testing=lowerCamelCase_) # ===== ensurance ===== sock.assert_called_once() sock.return_value.bind.assert_called_once() sock.return_value.listen.assert_called_once() sock.return_value.accept.assert_called_once() conn.recv.assert_called_once() file.return_value.__enter__.assert_called_once() file.return_value.__enter__.return_value.read.assert_called() conn.send.assert_called_once() conn.close.assert_called_once() sock.return_value.shutdown.assert_called_once() sock.return_value.close.assert_called_once()
703
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case : Any =logging.get_logger(__name__) class lowerCamelCase__ ( lowerCamelCase__): '''simple docstring''' snake_case_ ="""encoder-decoder""" snake_case_ =True def __init__(self ,**__lowerCamelCase ) -> Union[str, Any]: """simple docstring""" super().__init__(**__lowerCamelCase ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" lowerCAmelCase__ : Optional[Any] = kwargs.pop('''encoder''' ) lowerCAmelCase__ : Any = encoder_config.pop('''model_type''' ) lowerCAmelCase__ : str = kwargs.pop('''decoder''' ) lowerCAmelCase__ : Tuple = decoder_config.pop('''model_type''' ) from ..auto.configuration_auto import AutoConfig lowerCAmelCase__ : Tuple = AutoConfig.for_model(__lowerCamelCase ,**__lowerCamelCase ) lowerCAmelCase__ : Any = AutoConfig.for_model(__lowerCamelCase ,**__lowerCamelCase ) lowerCAmelCase__ : str = True @classmethod def lowerCAmelCase__ (cls ,__lowerCamelCase ,__lowerCamelCase ,**__lowerCamelCase ) -> PretrainedConfig: """simple docstring""" logger.info('''Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config''' ) lowerCAmelCase__ : Optional[int] = True lowerCAmelCase__ : List[str] = True return cls(encoder=encoder_config.to_dict() ,decoder=decoder_config.to_dict() ,**__lowerCamelCase ) def lowerCAmelCase__ (self ) -> Tuple: """simple docstring""" lowerCAmelCase__ : int = copy.deepcopy(self.__dict__ ) lowerCAmelCase__ : Optional[Any] = self.encoder.to_dict() lowerCAmelCase__ : str = self.decoder.to_dict() lowerCAmelCase__ : Optional[int] = self.__class__.model_type return output
90
0
'''simple docstring''' from math import pi, sqrt, tan def __UpperCAmelCase ( A : float ) -> float: if side_length < 0: raise ValueError('''surface_area_cube() only accepts non-negative values''' ) return 6 * side_length**2 def __UpperCAmelCase ( A : float , A : float , A : float ) -> float: if length < 0 or breadth < 0 or height < 0: raise ValueError('''surface_area_cuboid() only accepts non-negative values''' ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def __UpperCAmelCase ( A : float ) -> float: if radius < 0: raise ValueError('''surface_area_sphere() only accepts non-negative values''' ) return 4 * pi * radius**2 def __UpperCAmelCase ( A : float ) -> float: if radius < 0: raise ValueError('''surface_area_hemisphere() only accepts non-negative values''' ) return 3 * pi * radius**2 def __UpperCAmelCase ( A : float , A : float ) -> float: if radius < 0 or height < 0: raise ValueError('''surface_area_cone() only accepts non-negative values''' ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def __UpperCAmelCase ( A : float , A : float , A : float ) -> float: if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( '''surface_area_conical_frustum() only accepts non-negative values''' ) UpperCAmelCase_ : Optional[int] = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def __UpperCAmelCase ( A : float , A : float ) -> float: if radius < 0 or height < 0: raise ValueError('''surface_area_cylinder() only accepts non-negative values''' ) return 2 * pi * radius * (height + radius) def __UpperCAmelCase ( A : float , A : float ) -> float: if torus_radius < 0 or tube_radius < 0: raise ValueError('''surface_area_torus() only accepts non-negative values''' ) if torus_radius < tube_radius: raise ValueError( '''surface_area_torus() does not support spindle or self intersecting tori''' ) return 4 * pow(__UpperCAmelCase , 2 ) * torus_radius * tube_radius def __UpperCAmelCase ( A : float , A : float ) -> float: if length < 0 or width < 0: raise ValueError('''area_rectangle() only accepts non-negative values''' ) return length * width def __UpperCAmelCase ( A : float ) -> float: if side_length < 0: raise ValueError('''area_square() only accepts non-negative values''' ) return side_length**2 def __UpperCAmelCase ( A : float , A : float ) -> float: if base < 0 or height < 0: raise ValueError('''area_triangle() only accepts non-negative values''' ) return (base * height) / 2 def __UpperCAmelCase ( A : float , A : float , A : float ) -> float: if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError('''area_triangle_three_sides() only accepts non-negative values''' ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError('''Given three sides do not form a triangle''' ) UpperCAmelCase_ : List[str] = (sidea + sidea + sidea) / 2 UpperCAmelCase_ : Dict = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def __UpperCAmelCase ( A : float , A : float ) -> float: if base < 0 or height < 0: raise ValueError('''area_parallelogram() only accepts non-negative values''' ) return base * height def __UpperCAmelCase ( A : float , A : float , A : float ) -> float: if basea < 0 or basea < 0 or height < 0: raise ValueError('''area_trapezium() only accepts non-negative values''' ) return 1 / 2 * (basea + basea) * height def __UpperCAmelCase ( A : float ) -> float: if radius < 0: raise ValueError('''area_circle() only accepts non-negative values''' ) return pi * radius**2 def __UpperCAmelCase ( A : float , A : float ) -> float: if radius_x < 0 or radius_y < 0: raise ValueError('''area_ellipse() only accepts non-negative values''' ) return pi * radius_x * radius_y def __UpperCAmelCase ( A : float , A : float ) -> float: if diagonal_a < 0 or diagonal_a < 0: raise ValueError('''area_rhombus() only accepts non-negative values''' ) return 1 / 2 * diagonal_a * diagonal_a def __UpperCAmelCase ( A : int , A : float ) -> float: if not isinstance(__UpperCAmelCase , __UpperCAmelCase ) or sides < 3: raise ValueError( '''area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides''' ) elif length < 0: raise ValueError( '''area_reg_polygon() only accepts non-negative values as \ length of a side''' ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print('[DEMO] Areas of various geometric shapes: \n') print(f'''Rectangle: {area_rectangle(10, 20) = }''') print(f'''Square: {area_square(10) = }''') print(f'''Triangle: {area_triangle(10, 10) = }''') print(f'''Triangle: {area_triangle_three_sides(5, 12, 13) = }''') print(f'''Parallelogram: {area_parallelogram(10, 20) = }''') print(f'''Rhombus: {area_rhombus(10, 20) = }''') print(f'''Trapezium: {area_trapezium(10, 20, 30) = }''') print(f'''Circle: {area_circle(20) = }''') print(f'''Ellipse: {area_ellipse(10, 20) = }''') print('\nSurface Areas of various geometric shapes: \n') print(f'''Cube: {surface_area_cube(20) = }''') print(f'''Cuboid: {surface_area_cuboid(10, 20, 30) = }''') print(f'''Sphere: {surface_area_sphere(20) = }''') print(f'''Hemisphere: {surface_area_hemisphere(20) = }''') print(f'''Cone: {surface_area_cone(10, 20) = }''') print(f'''Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }''') print(f'''Cylinder: {surface_area_cylinder(10, 20) = }''') print(f'''Torus: {surface_area_torus(20, 10) = }''') print(f'''Equilateral Triangle: {area_reg_polygon(3, 10) = }''') print(f'''Square: {area_reg_polygon(4, 10) = }''') print(f'''Reqular Pentagon: {area_reg_polygon(5, 10) = }''')
541
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) snake_case_ : Tuple = { "configuration_albert": ["ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "AlbertConfig", "AlbertOnnxConfig"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Dict = ["AlbertTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Union[str, Any] = ["AlbertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Union[str, Any] = [ "ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "AlbertForMaskedLM", "AlbertForMultipleChoice", "AlbertForPreTraining", "AlbertForQuestionAnswering", "AlbertForSequenceClassification", "AlbertForTokenClassification", "AlbertModel", "AlbertPreTrainedModel", "load_tf_weights_in_albert", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : List[Any] = [ "TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFAlbertForMaskedLM", "TFAlbertForMultipleChoice", "TFAlbertForPreTraining", "TFAlbertForQuestionAnswering", "TFAlbertForSequenceClassification", "TFAlbertForTokenClassification", "TFAlbertMainLayer", "TFAlbertModel", "TFAlbertPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Optional[Any] = [ "FlaxAlbertForMaskedLM", "FlaxAlbertForMultipleChoice", "FlaxAlbertForPreTraining", "FlaxAlbertForQuestionAnswering", "FlaxAlbertForSequenceClassification", "FlaxAlbertForTokenClassification", "FlaxAlbertModel", "FlaxAlbertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_albert import ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, AlbertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_albert import AlbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_albert_fast import AlbertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_albert import ( ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, AlbertPreTrainedModel, load_tf_weights_in_albert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_albert import ( TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFAlbertForMaskedLM, TFAlbertForMultipleChoice, TFAlbertForPreTraining, TFAlbertForQuestionAnswering, TFAlbertForSequenceClassification, TFAlbertForTokenClassification, TFAlbertMainLayer, TFAlbertModel, TFAlbertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, FlaxAlbertPreTrainedModel, ) else: import sys snake_case_ : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
488
0
from __future__ import annotations from typing import Any class _a: def __init__( self , __snake_case , __snake_case , __snake_case = 0 ) -> None: '''simple docstring''' _snake_case , _snake_case : Optional[int] = row, column _snake_case : Union[str, Any] = [[default_value for c in range(__snake_case )] for r in range(__snake_case )] def __str__( self ) -> str: '''simple docstring''' _snake_case : List[Any] = f"""Matrix consist of {self.row} rows and {self.column} columns\n""" # Make string identifier _snake_case : Union[str, Any] = 0 for row_vector in self.array: for obj in row_vector: _snake_case : int = max(__snake_case , len(str(__snake_case ) ) ) _snake_case : int = f"""%{max_element_length}s""" # Make string and return def single_line(__snake_case ) -> str: nonlocal string_format_identifier _snake_case : Any = "[" line += ", ".join(string_format_identifier % (obj,) for obj in row_vector ) line += "]" return line s += "\n".join(single_line(__snake_case ) for row_vector in self.array ) return s def __repr__( self ) -> str: '''simple docstring''' return str(self ) def lowercase ( self , __snake_case ) -> bool: '''simple docstring''' if not (isinstance(__snake_case , (list, tuple) ) and len(__snake_case ) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__( self , __snake_case ) -> Any: '''simple docstring''' assert self.validate_indicies(__snake_case ) return self.array[loc[0]][loc[1]] def __setitem__( self , __snake_case , __snake_case ) -> None: '''simple docstring''' assert self.validate_indicies(__snake_case ) _snake_case : List[str] = value def __add__( self , __snake_case ) -> Matrix: '''simple docstring''' assert isinstance(__snake_case , __snake_case ) assert self.row == another.row and self.column == another.column # Add _snake_case : str = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): _snake_case : Union[str, Any] = self[r, c] + another[r, c] return result def __neg__( self ) -> Matrix: '''simple docstring''' _snake_case : int = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): _snake_case : Optional[Any] = -self[r, c] return result def __sub__( self , __snake_case ) -> Matrix: '''simple docstring''' return self + (-another) def __mul__( self , __snake_case ) -> Matrix: '''simple docstring''' if isinstance(__snake_case , (int, float) ): # Scalar multiplication _snake_case : Optional[int] = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): _snake_case : List[Any] = self[r, c] * another return result elif isinstance(__snake_case , __snake_case ): # Matrix multiplication assert self.column == another.row _snake_case : Optional[int] = Matrix(self.row , another.column ) for r in range(self.row ): for c in range(another.column ): for i in range(self.column ): result[r, c] += self[r, i] * another[i, c] return result else: _snake_case : List[str] = f"""Unsupported type given for another ({type(__snake_case )})""" raise TypeError(__snake_case ) def lowercase ( self ) -> Matrix: '''simple docstring''' _snake_case : Optional[Any] = Matrix(self.column , self.row ) for r in range(self.row ): for c in range(self.column ): _snake_case : Tuple = self[r, c] return result def lowercase ( self , __snake_case , __snake_case ) -> Any: '''simple docstring''' assert isinstance(__snake_case , __snake_case ) and isinstance(__snake_case , __snake_case ) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate _snake_case : Tuple = v.transpose() _snake_case : Tuple = (v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def A ( ): # a^(-1) _snake_case : int = Matrix(3 , 3 , 0 ) for i in range(3 ): _snake_case : Optional[Any] = 1 print(F"""a^(-1) is {ainv}""" ) # u, v _snake_case : List[Any] = Matrix(3 , 1 , 0 ) _snake_case , _snake_case , _snake_case : List[str] = 1, 2, -3 _snake_case : Optional[int] = Matrix(3 , 1 , 0 ) _snake_case , _snake_case , _snake_case : Optional[int] = 4, -2, 5 print(F"""u is {u}""" ) print(F"""v is {v}""" ) print(F"""uv^T is {u * v.transpose()}""" ) # Sherman Morrison print(F"""(a + uv^T)^(-1) is {ainv.sherman_morrison(UpperCAmelCase , UpperCAmelCase )}""" ) def A ( ): import doctest doctest.testmod() testa()
278
import json import os import torch from diffusers import UNetaDModel os.makedirs('hub/hopper-medium-v2/unet/hor32', exist_ok=True) os.makedirs('hub/hopper-medium-v2/unet/hor128', exist_ok=True) os.makedirs('hub/hopper-medium-v2/value_function', exist_ok=True) def A ( UpperCAmelCase ): if hor == 128: _snake_case : int = ("DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D") _snake_case : Tuple = (32, 128, 256) _snake_case : str = ("UpResnetBlock1D", "UpResnetBlock1D") elif hor == 32: _snake_case : List[Any] = ("DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D") _snake_case : Optional[int] = (32, 64, 128, 256) _snake_case : int = ("UpResnetBlock1D", "UpResnetBlock1D", "UpResnetBlock1D") _snake_case : Dict = torch.load(F"""/Users/bglickenhaus/Documents/diffuser/temporal_unet-hopper-mediumv2-hor{hor}.torch""" ) _snake_case : Dict = model.state_dict() _snake_case : Tuple = { "down_block_types": down_block_types, "block_out_channels": block_out_channels, "up_block_types": up_block_types, "layers_per_block": 1, "use_timestep_embedding": True, "out_block_type": "OutConv1DBlock", "norm_num_groups": 8, "downsample_each_block": False, "in_channels": 14, "out_channels": 14, "extra_in_channels": 0, "time_embedding_type": "positional", "flip_sin_to_cos": False, "freq_shift": 1, "sample_size": 65_536, "mid_block_type": "MidResTemporalBlock1D", "act_fn": "mish", } _snake_case : Any = UNetaDModel(**UpperCAmelCase ) print(F"""length of state dict: {len(state_dict.keys() )}""" ) print(F"""length of value function dict: {len(hf_value_function.state_dict().keys() )}""" ) _snake_case : List[Any] = dict(zip(model.state_dict().keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): _snake_case : Optional[int] = state_dict.pop(UpperCAmelCase ) hf_value_function.load_state_dict(UpperCAmelCase ) torch.save(hf_value_function.state_dict() , F"""hub/hopper-medium-v2/unet/hor{hor}/diffusion_pytorch_model.bin""" ) with open(F"""hub/hopper-medium-v2/unet/hor{hor}/config.json""" , "w" ) as f: json.dump(UpperCAmelCase , UpperCAmelCase ) def A ( ): _snake_case : Any = { "in_channels": 14, "down_block_types": ("DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D"), "up_block_types": (), "out_block_type": "ValueFunction", "mid_block_type": "ValueFunctionMidBlock1D", "block_out_channels": (32, 64, 128, 256), "layers_per_block": 1, "downsample_each_block": True, "sample_size": 65_536, "out_channels": 14, "extra_in_channels": 0, "time_embedding_type": "positional", "use_timestep_embedding": True, "flip_sin_to_cos": False, "freq_shift": 1, "norm_num_groups": 8, "act_fn": "mish", } _snake_case : Dict = torch.load("/Users/bglickenhaus/Documents/diffuser/value_function-hopper-mediumv2-hor32.torch" ) _snake_case : Optional[int] = model _snake_case : List[str] = UNetaDModel(**UpperCAmelCase ) print(F"""length of state dict: {len(state_dict.keys() )}""" ) print(F"""length of value function dict: {len(hf_value_function.state_dict().keys() )}""" ) _snake_case : Optional[int] = dict(zip(state_dict.keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): _snake_case : Any = state_dict.pop(UpperCAmelCase ) hf_value_function.load_state_dict(UpperCAmelCase ) torch.save(hf_value_function.state_dict() , "hub/hopper-medium-v2/value_function/diffusion_pytorch_model.bin" ) with open("hub/hopper-medium-v2/value_function/config.json" , "w" ) as f: json.dump(UpperCAmelCase , UpperCAmelCase ) if __name__ == "__main__": unet(32) # unet(128) value_function()
278
1
"""simple docstring""" import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin class SCREAMING_SNAKE_CASE__ ( unittest.TestCase , __snake_case ): """simple docstring""" def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Tuple = load_tool("text-classification" ) self.tool.setup() lowerCAmelCase : str = load_tool("text-classification" , remote=a__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[str] = self.tool("That's quite cool" , ["positive", "negative"] ) self.assertEqual(a__ , "positive" ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Tuple = self.remote_tool("That's quite cool" , ["positive", "negative"] ) self.assertEqual(a__ , "positive" ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : str = self.tool(text="That's quite cool" , labels=["positive", "negative"] ) self.assertEqual(a__ , "positive" ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : str = self.remote_tool(text="That's quite cool" , labels=["positive", "negative"] ) self.assertEqual(a__ , "positive" )
645
import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() _lowercase : List[str] = logging.get_logger(__name__) _lowercase : int = [ ["attention", "attn"], ["encoder_attention", "encoder_attn"], ["q_lin", "q_proj"], ["k_lin", "k_proj"], ["v_lin", "v_proj"], ["out_lin", "out_proj"], ["norm_embeddings", "layernorm_embedding"], ["position_embeddings", "embed_positions"], ["embeddings", "embed_tokens"], ["ffn.lin", "fc"], ] def _lowerCAmelCase ( UpperCamelCase__: str ) -> int: """simple docstring""" if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: A = k.replace(UpperCamelCase__ , UpperCamelCase__ ) if k.startswith("""encoder""" ): A = k.replace(""".attn""" , """.self_attn""" ) A = k.replace("""norm1""" , """self_attn_layer_norm""" ) A = k.replace("""norm2""" , """final_layer_norm""" ) elif k.startswith("""decoder""" ): A = k.replace("""norm1""" , """self_attn_layer_norm""" ) A = k.replace("""norm2""" , """encoder_attn_layer_norm""" ) A = k.replace("""norm3""" , """final_layer_norm""" ) return k def _lowerCAmelCase ( UpperCamelCase__: Tuple ) -> str: """simple docstring""" A = [ """model.encoder.layernorm_embedding.weight""", """model.encoder.layernorm_embedding.bias""", """model.decoder.layernorm_embedding.weight""", """model.decoder.layernorm_embedding.bias""", ] for k in keys: A = sd.pop(UpperCamelCase__ ) A = k.replace("""layernorm_embedding""" , """layer_norm""" ) assert new_k not in sd A = v _lowercase : List[Any] = ["START"] @torch.no_grad() def _lowerCAmelCase ( UpperCamelCase__: List[Any] , UpperCamelCase__: Any , UpperCamelCase__: Optional[int] ) -> int: """simple docstring""" A = torch.load(UpperCamelCase__ , map_location="""cpu""" ) A = model["""model"""] A = BlenderbotConfig.from_json_file(UpperCamelCase__ ) A = BlenderbotForConditionalGeneration(UpperCamelCase__ ) A = m.model.state_dict().keys() A = [] A = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue A = rename_state_dict_key(UpperCamelCase__ ) if new_k not in valid_keys: failures.append([k, new_k] ) else: A = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(UpperCamelCase__ ) m.model.load_state_dict(UpperCamelCase__ , strict=UpperCamelCase__ ) m.half() m.save_pretrained(UpperCamelCase__ ) if __name__ == "__main__": _lowercase : str = argparse.ArgumentParser() # Required parameters parser.add_argument("--src_path", type=str, help="like blenderbot-model.bin") parser.add_argument("--save_dir", default="hf_blenderbot", type=str, help="Where to save converted model.") parser.add_argument( "--hf_config_json", default="blenderbot-3b-config.json", type=str, help="Path to config to use" ) _lowercase : List[str] = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
641
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase__ = { "configuration_squeezebert": [ "SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "SqueezeBertConfig", "SqueezeBertOnnxConfig", ], "tokenization_squeezebert": ["SqueezeBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ["SqueezeBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ "SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "SqueezeBertForMaskedLM", "SqueezeBertForMultipleChoice", "SqueezeBertForQuestionAnswering", "SqueezeBertForSequenceClassification", "SqueezeBertForTokenClassification", "SqueezeBertModel", "SqueezeBertModule", "SqueezeBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
594
import gc import unittest from diffusers import FlaxDPMSolverMultistepScheduler, FlaxStableDiffusionPipeline from diffusers.utils import is_flax_available, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class _a ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() def __lowerCAmelCase ( self ): _lowercase , _lowercase =FlaxStableDiffusionPipeline.from_pretrained( "stabilityai/stable-diffusion-2" , revision="bf16" , dtype=jnp.bfloataa , ) _lowercase ="A painting of a squirrel eating a burger" _lowercase =jax.device_count() _lowercase =num_samples * [prompt] _lowercase =sd_pipe.prepare_inputs(lowerCAmelCase_ ) _lowercase =replicate(lowerCAmelCase_ ) _lowercase =shard(lowerCAmelCase_ ) _lowercase =jax.random.PRNGKey(0 ) _lowercase =jax.random.split(lowerCAmelCase_ , jax.device_count() ) _lowercase =sd_pipe(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , num_inference_steps=25 , jit=lowerCAmelCase_ )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) _lowercase =images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) _lowercase =images[0, 253:256, 253:256, -1] _lowercase =jnp.asarray(jax.device_get(image_slice.flatten() ) ) _lowercase =jnp.array([0.4_2_3_8, 0.4_4_1_4, 0.4_3_9_5, 0.4_4_5_3, 0.4_6_2_9, 0.4_5_9_0, 0.4_5_3_1, 0.4_5_5_0_8, 0.4_5_1_2] ) print(F'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2 def __lowerCAmelCase ( self ): _lowercase ="stabilityai/stable-diffusion-2" _lowercase , _lowercase =FlaxDPMSolverMultistepScheduler.from_pretrained(lowerCAmelCase_ , subfolder="scheduler" ) _lowercase , _lowercase =FlaxStableDiffusionPipeline.from_pretrained( lowerCAmelCase_ , scheduler=lowerCAmelCase_ , revision="bf16" , dtype=jnp.bfloataa , ) _lowercase =scheduler_params _lowercase ="A painting of a squirrel eating a burger" _lowercase =jax.device_count() _lowercase =num_samples * [prompt] _lowercase =sd_pipe.prepare_inputs(lowerCAmelCase_ ) _lowercase =replicate(lowerCAmelCase_ ) _lowercase =shard(lowerCAmelCase_ ) _lowercase =jax.random.PRNGKey(0 ) _lowercase =jax.random.split(lowerCAmelCase_ , jax.device_count() ) _lowercase =sd_pipe(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , num_inference_steps=25 , jit=lowerCAmelCase_ )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) _lowercase =images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) _lowercase =images[0, 253:256, 253:256, -1] _lowercase =jnp.asarray(jax.device_get(image_slice.flatten() ) ) _lowercase =jnp.array([0.4_3_3_6, 0.4_2_9_6_9, 0.4_4_5_3, 0.4_1_9_9, 0.4_2_9_7, 0.4_5_3_1, 0.4_4_3_4, 0.4_4_3_4, 0.4_2_9_7] ) print(F'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
594
1
import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def _A ( ): """simple docstring""" raise RuntimeError("CUDA out of memory." ) class __lowerCamelCase ( nn.Module ): """simple docstring""" def __init__( self : Any ) -> str: super().__init__() lowerCAmelCase__ = nn.Linear(3 , 4 ) lowerCAmelCase__ = nn.BatchNormad(4 ) lowerCAmelCase__ = nn.Linear(4 , 5 ) def a ( self : Dict , SCREAMING_SNAKE_CASE__ : Tuple ) -> int: return self.lineara(self.batchnorm(self.lineara(SCREAMING_SNAKE_CASE__ ) ) ) class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" def a ( self : Optional[Any] ) -> Tuple: lowerCAmelCase__ = [] @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(SCREAMING_SNAKE_CASE__ : Optional[int] ): nonlocal batch_sizes batch_sizes.append(SCREAMING_SNAKE_CASE__ ) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(SCREAMING_SNAKE_CASE__ , [128, 64, 32, 16, 8] ) def a ( self : Union[str, Any] ) -> Optional[int]: lowerCAmelCase__ = [] @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[str] ): nonlocal batch_sizes batch_sizes.append(SCREAMING_SNAKE_CASE__ ) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga lowerCAmelCase__ , lowerCAmelCase__ = mock_training_loop_function("hello" ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , [128, 64, 32, 16, 8] ) self.assertListEqual([bs, arga] , [8, "hello"] ) def a ( self : Union[str, Any] ) -> Any: @find_executable_batch_size(starting_batch_size=0 ) def mock_training_loop_function(SCREAMING_SNAKE_CASE__ : List[Any] ): pass with self.assertRaises(SCREAMING_SNAKE_CASE__ ) as cm: mock_training_loop_function() self.assertIn("No executable batch size found, reached zero." , cm.exception.args[0] ) def a ( self : List[str] ) -> Any: @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(SCREAMING_SNAKE_CASE__ : str ): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(SCREAMING_SNAKE_CASE__ ) as cm: mock_training_loop_function() self.assertIn("No executable batch size found, reached zero." , cm.exception.args[0] ) def a ( self : Dict ) -> Union[str, Any]: @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Dict ): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(SCREAMING_SNAKE_CASE__ ) as cm: mock_training_loop_function(128 , "hello" , "world" ) self.assertIn("Batch size was passed into `f`" , cm.exception.args[0] ) self.assertIn("`f(arg1='hello', arg2='world')" , cm.exception.args[0] ) def a ( self : Optional[Any] ) -> List[Any]: @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(SCREAMING_SNAKE_CASE__ : List[Any] ): raise ValueError("Oops, we had an error!" ) with self.assertRaises(SCREAMING_SNAKE_CASE__ ) as cm: mock_training_loop_function() self.assertIn("Oops, we had an error!" , cm.exception.args[0] ) @require_cuda def a ( self : Optional[Any] ) -> List[str]: lowerCAmelCase__ = torch.cuda.memory_allocated() lowerCAmelCase__ = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = release_memory(SCREAMING_SNAKE_CASE__ ) self.assertEqual(torch.cuda.memory_allocated() , SCREAMING_SNAKE_CASE__ )
61
import builtins import sys from ...utils.imports import _is_package_available from . import cursor, input from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor from .keymap import KEYMAP lowercase_ = False try: lowercase_ = _is_package_available('google.colab') except ModuleNotFoundError: pass @input.register class A_ : '''simple docstring''' def __init__( self: int , a: str = None , a: list = [] ): __lowerCamelCase : Dict = 0 __lowerCamelCase : Dict = choices __lowerCamelCase : Tuple = prompt if sys.platform == "win32": __lowerCamelCase : Union[str, Any] = '*' else: __lowerCamelCase : Any = '➔ ' def _snake_case ( self: Any , a: Tuple , a: str = "" ): if sys.platform != "win32": writeColor(self.choices[index] , 32 , a ) else: forceWrite(self.choices[index] , a ) def _snake_case ( self: Tuple , a: int ): if index == self.position: forceWrite(F' {self.arrow_char} ' ) self.write_choice(a ) else: forceWrite(F' {self.choices[index]}' ) reset_cursor() def _snake_case ( self: Optional[int] , a: Direction , a: int = 1 ): __lowerCamelCase : str = self.position if direction == Direction.DOWN: if self.position + 1 >= len(self.choices ): return self.position += num_spaces else: if self.position - 1 < 0: return self.position -= num_spaces clear_line() self.print_choice(a ) move_cursor(a , direction.name ) self.print_choice(self.position ) @input.mark(KEYMAP['up'] ) def _snake_case ( self: Tuple ): self.move_direction(Direction.UP ) @input.mark(KEYMAP['down'] ) def _snake_case ( self: Optional[int] ): self.move_direction(Direction.DOWN ) @input.mark(KEYMAP['newline'] ) def _snake_case ( self: str ): move_cursor(len(self.choices ) - self.position , 'DOWN' ) return self.position @input.mark(KEYMAP['interrupt'] ) def _snake_case ( self: Union[str, Any] ): move_cursor(len(self.choices ) - self.position , 'DOWN' ) raise KeyboardInterrupt @input.mark_multiple(*[KEYMAP[str(a )] for number in range(10 )] ) def _snake_case ( self: str ): __lowerCamelCase : List[Any] = int(chr(self.current_selection ) ) __lowerCamelCase : Any = index - self.position if index == self.position: return if index < len(self.choices ): if self.position > index: self.move_direction(Direction.UP , -movement ) elif self.position < index: self.move_direction(Direction.DOWN , a ) else: return else: return def _snake_case ( self: str , a: int = 0 ): if self.prompt: linebreak() forceWrite(self.prompt , '\n' ) if in_colab: forceWrite('Please input a choice index (starting from 0), and press enter' , '\n' ) else: forceWrite('Please select a choice using the arrow or number keys, and selecting with enter' , '\n' ) __lowerCamelCase : Dict = default_choice for i in range(len(self.choices ) ): self.print_choice(a ) forceWrite('\n' ) move_cursor(len(self.choices ) - self.position , 'UP' ) with cursor.hide(): while True: if in_colab: try: __lowerCamelCase : Any = int(builtins.input() ) except ValueError: __lowerCamelCase : str = default_choice else: __lowerCamelCase : Optional[int] = self.handle_input() if choice is not None: reset_cursor() for _ in range(len(self.choices ) + 1 ): move_cursor(1 , 'UP' ) clear_line() self.write_choice(a , '\n' ) return choice
669
0
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu UpperCamelCase_ = False class a ( unittest.TestCase ): def UpperCAmelCase__ ( self : List[Any] ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @property def UpperCAmelCase__ ( self : Optional[Any] ): """simple docstring""" return 12 @property def UpperCAmelCase__ ( self : List[Any] ): """simple docstring""" return 12 @property def UpperCAmelCase__ ( self : str ): """simple docstring""" return 32 @property def UpperCAmelCase__ ( self : Union[str, Any] ): """simple docstring""" torch.manual_seed(0 ) __lowerCAmelCase = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=3 , num_vq_embeddings=self.num_embed , vq_embed_dim=3 , ) return model @property def UpperCAmelCase__ ( self : Dict ): """simple docstring""" __lowerCAmelCase = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) return tokenizer @property def UpperCAmelCase__ ( self : Dict ): """simple docstring""" torch.manual_seed(0 ) __lowerCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModel(_UpperCAmelCase ) @property def UpperCAmelCase__ ( self : Tuple ): """simple docstring""" torch.manual_seed(0 ) __lowerCAmelCase = 12 __lowerCAmelCase = 12 __lowerCAmelCase = { '''attention_bias''': True, '''cross_attention_dim''': 32, '''attention_head_dim''': height * width, '''num_attention_heads''': 1, '''num_vector_embeds''': self.num_embed, '''num_embeds_ada_norm''': self.num_embeds_ada_norm, '''norm_num_groups''': 32, '''sample_size''': width, '''activation_fn''': '''geglu-approximate''', } __lowerCAmelCase = TransformeraDModel(**_UpperCAmelCase ) return model def UpperCAmelCase__ ( self : List[Any] ): """simple docstring""" __lowerCAmelCase = '''cpu''' __lowerCAmelCase = self.dummy_vqvae __lowerCAmelCase = self.dummy_text_encoder __lowerCAmelCase = self.dummy_tokenizer __lowerCAmelCase = self.dummy_transformer __lowerCAmelCase = VQDiffusionScheduler(self.num_embed ) __lowerCAmelCase = LearnedClassifierFreeSamplingEmbeddings(learnable=_UpperCAmelCase ) __lowerCAmelCase = VQDiffusionPipeline( vqvae=_UpperCAmelCase , text_encoder=_UpperCAmelCase , tokenizer=_UpperCAmelCase , transformer=_UpperCAmelCase , scheduler=_UpperCAmelCase , learned_classifier_free_sampling_embeddings=_UpperCAmelCase , ) __lowerCAmelCase = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __lowerCAmelCase = '''teddy bear playing in the pool''' __lowerCAmelCase = torch.Generator(device=_UpperCAmelCase ).manual_seed(0 ) __lowerCAmelCase = pipe([prompt] , generator=_UpperCAmelCase , num_inference_steps=2 , output_type="np" ) __lowerCAmelCase = output.images __lowerCAmelCase = torch.Generator(device=_UpperCAmelCase ).manual_seed(0 ) __lowerCAmelCase = pipe( [prompt] , generator=_UpperCAmelCase , output_type="np" , return_dict=_UpperCAmelCase , num_inference_steps=2 )[0] __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) __lowerCAmelCase = np.array([0.6_5_5_1, 0.6_1_6_8, 0.5_0_0_8, 0.5_6_7_6, 0.5_6_5_9, 0.4_2_9_5, 0.6_0_7_3, 0.5_5_9_9, 0.4_9_9_2] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase__ ( self : Dict ): """simple docstring""" __lowerCAmelCase = '''cpu''' __lowerCAmelCase = self.dummy_vqvae __lowerCAmelCase = self.dummy_text_encoder __lowerCAmelCase = self.dummy_tokenizer __lowerCAmelCase = self.dummy_transformer __lowerCAmelCase = VQDiffusionScheduler(self.num_embed ) __lowerCAmelCase = LearnedClassifierFreeSamplingEmbeddings( learnable=_UpperCAmelCase , hidden_size=self.text_embedder_hidden_size , length=tokenizer.model_max_length ) __lowerCAmelCase = VQDiffusionPipeline( vqvae=_UpperCAmelCase , text_encoder=_UpperCAmelCase , tokenizer=_UpperCAmelCase , transformer=_UpperCAmelCase , scheduler=_UpperCAmelCase , learned_classifier_free_sampling_embeddings=_UpperCAmelCase , ) __lowerCAmelCase = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __lowerCAmelCase = '''teddy bear playing in the pool''' __lowerCAmelCase = torch.Generator(device=_UpperCAmelCase ).manual_seed(0 ) __lowerCAmelCase = pipe([prompt] , generator=_UpperCAmelCase , num_inference_steps=2 , output_type="np" ) __lowerCAmelCase = output.images __lowerCAmelCase = torch.Generator(device=_UpperCAmelCase ).manual_seed(0 ) __lowerCAmelCase = pipe( [prompt] , generator=_UpperCAmelCase , output_type="np" , return_dict=_UpperCAmelCase , num_inference_steps=2 )[0] __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) __lowerCAmelCase = np.array([0.6_6_9_3, 0.6_0_7_5, 0.4_9_5_9, 0.5_7_0_1, 0.5_5_8_3, 0.4_3_3_3, 0.6_1_7_1, 0.5_6_8_4, 0.4_9_8_8] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class a ( unittest.TestCase ): def UpperCAmelCase__ ( self : Union[str, Any] ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self : Tuple ): """simple docstring""" __lowerCAmelCase = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy" ) __lowerCAmelCase = VQDiffusionPipeline.from_pretrained("microsoft/vq-diffusion-ithq" ) __lowerCAmelCase = pipeline.to(_UpperCAmelCase ) pipeline.set_progress_bar_config(disable=_UpperCAmelCase ) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though __lowerCAmelCase = torch.Generator(device=_UpperCAmelCase ).manual_seed(0 ) __lowerCAmelCase = pipeline( "teddy bear playing in the pool" , num_images_per_prompt=1 , generator=_UpperCAmelCase , output_type="np" , ) __lowerCAmelCase = output.images[0] assert image.shape == (256, 256, 3) assert np.abs(expected_image - image ).max() < 2.0
713
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class a ( __UpperCAmelCase ): lowercase_ : Dict = (DPMSolverSinglestepScheduler,) lowercase_ : Optional[Any] = (('num_inference_steps', 25),) def UpperCAmelCase__ ( self : Optional[Any] , **snake_case__ : Union[str, Any] ): """simple docstring""" __lowerCAmelCase = { "num_train_timesteps": 1_000, "beta_start": 0.0_0_0_1, "beta_end": 0.0_2, "beta_schedule": "linear", "solver_order": 2, "prediction_type": "epsilon", "thresholding": False, "sample_max_value": 1.0, "algorithm_type": "dpmsolver++", "solver_type": "midpoint", "lambda_min_clipped": -float("inf" ), "variance_type": None, } config.update(**snake_case__ ) return config def UpperCAmelCase__ ( self : Any , snake_case__ : Tuple=0 , **snake_case__ : Optional[Any] ): """simple docstring""" __lowerCAmelCase = dict(self.forward_default_kwargs ) __lowerCAmelCase = kwargs.pop("num_inference_steps" , snake_case__ ) __lowerCAmelCase = self.dummy_sample __lowerCAmelCase = 0.1 * sample __lowerCAmelCase = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: __lowerCAmelCase = self.get_scheduler_config(**snake_case__ ) __lowerCAmelCase = scheduler_class(**snake_case__ ) scheduler.set_timesteps(snake_case__ ) # copy over dummy past residuals __lowerCAmelCase = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(snake_case__ ) __lowerCAmelCase = scheduler_class.from_pretrained(snake_case__ ) new_scheduler.set_timesteps(snake_case__ ) # copy over dummy past residuals __lowerCAmelCase = dummy_past_residuals[: new_scheduler.config.solver_order] __lowerCAmelCase , __lowerCAmelCase = sample, sample for t in range(snake_case__ , time_step + scheduler.config.solver_order + 1 ): __lowerCAmelCase = scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample __lowerCAmelCase = new_scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCAmelCase__ ( self : List[str] ): """simple docstring""" pass def UpperCAmelCase__ ( self : str , snake_case__ : Tuple=0 , **snake_case__ : Tuple ): """simple docstring""" __lowerCAmelCase = dict(self.forward_default_kwargs ) __lowerCAmelCase = kwargs.pop("num_inference_steps" , snake_case__ ) __lowerCAmelCase = self.dummy_sample __lowerCAmelCase = 0.1 * sample __lowerCAmelCase = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: __lowerCAmelCase = self.get_scheduler_config() __lowerCAmelCase = scheduler_class(**snake_case__ ) scheduler.set_timesteps(snake_case__ ) # copy over dummy past residuals (must be after setting timesteps) __lowerCAmelCase = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(snake_case__ ) __lowerCAmelCase = scheduler_class.from_pretrained(snake_case__ ) # copy over dummy past residuals new_scheduler.set_timesteps(snake_case__ ) # copy over dummy past residual (must be after setting timesteps) __lowerCAmelCase = dummy_past_residuals[: new_scheduler.config.solver_order] __lowerCAmelCase = scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample __lowerCAmelCase = new_scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCAmelCase__ ( self : Optional[Any] , snake_case__ : Optional[Any]=None , **snake_case__ : Optional[int] ): """simple docstring""" if scheduler is None: __lowerCAmelCase = self.scheduler_classes[0] __lowerCAmelCase = self.get_scheduler_config(**snake_case__ ) __lowerCAmelCase = scheduler_class(**snake_case__ ) __lowerCAmelCase = self.scheduler_classes[0] __lowerCAmelCase = self.get_scheduler_config(**snake_case__ ) __lowerCAmelCase = scheduler_class(**snake_case__ ) __lowerCAmelCase = 10 __lowerCAmelCase = self.dummy_model() __lowerCAmelCase = self.dummy_sample_deter scheduler.set_timesteps(snake_case__ ) for i, t in enumerate(scheduler.timesteps ): __lowerCAmelCase = model(snake_case__ , snake_case__ ) __lowerCAmelCase = scheduler.step(snake_case__ , snake_case__ , snake_case__ ).prev_sample return sample def UpperCAmelCase__ ( self : Union[str, Any] ): """simple docstring""" __lowerCAmelCase = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) __lowerCAmelCase = 50 __lowerCAmelCase = self.dummy_model() __lowerCAmelCase = self.dummy_sample_deter scheduler.set_timesteps(snake_case__ ) # make sure that the first t is uneven for i, t in enumerate(scheduler.timesteps[3:] ): __lowerCAmelCase = model(snake_case__ , snake_case__ ) __lowerCAmelCase = scheduler.step(snake_case__ , snake_case__ , snake_case__ ).prev_sample __lowerCAmelCase = torch.mean(torch.abs(snake_case__ ) ) assert abs(result_mean.item() - 0.2_5_7_4 ) < 1E-3 def UpperCAmelCase__ ( self : List[str] ): """simple docstring""" for timesteps in [25, 50, 100, 999, 1_000]: self.check_over_configs(num_train_timesteps=snake_case__ ) def UpperCAmelCase__ ( self : Optional[int] ): """simple docstring""" __lowerCAmelCase = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) __lowerCAmelCase = self.full_loop(scheduler=snake_case__ ) __lowerCAmelCase = torch.mean(torch.abs(snake_case__ ) ) assert abs(result_mean.item() - 0.2_7_9_1 ) < 1E-3 __lowerCAmelCase = DEISMultistepScheduler.from_config(scheduler.config ) __lowerCAmelCase = DPMSolverMultistepScheduler.from_config(scheduler.config ) __lowerCAmelCase = UniPCMultistepScheduler.from_config(scheduler.config ) __lowerCAmelCase = DPMSolverSinglestepScheduler.from_config(scheduler.config ) __lowerCAmelCase = self.full_loop(scheduler=snake_case__ ) __lowerCAmelCase = torch.mean(torch.abs(snake_case__ ) ) assert abs(result_mean.item() - 0.2_7_9_1 ) < 1E-3 def UpperCAmelCase__ ( self : str ): """simple docstring""" self.check_over_configs(thresholding=snake_case__ ) for order in [1, 2, 3]: for solver_type in ["midpoint", "heun"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=snake_case__ , prediction_type=snake_case__ , sample_max_value=snake_case__ , algorithm_type="dpmsolver++" , solver_order=snake_case__ , solver_type=snake_case__ , ) def UpperCAmelCase__ ( self : Union[str, Any] ): """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=snake_case__ ) def UpperCAmelCase__ ( self : str ): """simple docstring""" for algorithm_type in ["dpmsolver", "dpmsolver++"]: for solver_type in ["midpoint", "heun"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=snake_case__ , solver_type=snake_case__ , prediction_type=snake_case__ , algorithm_type=snake_case__ , ) __lowerCAmelCase = self.full_loop( solver_order=snake_case__ , solver_type=snake_case__ , prediction_type=snake_case__ , algorithm_type=snake_case__ , ) assert not torch.isnan(snake_case__ ).any(), "Samples have nan numbers" def UpperCAmelCase__ ( self : List[str] ): """simple docstring""" self.check_over_configs(lower_order_final=snake_case__ ) self.check_over_configs(lower_order_final=snake_case__ ) def UpperCAmelCase__ ( self : Dict ): """simple docstring""" self.check_over_configs(lambda_min_clipped=-float("inf" ) ) self.check_over_configs(lambda_min_clipped=-5.1 ) def UpperCAmelCase__ ( self : Any ): """simple docstring""" self.check_over_configs(variance_type=snake_case__ ) self.check_over_configs(variance_type="learned_range" ) def UpperCAmelCase__ ( self : List[Any] ): """simple docstring""" for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1_000]: self.check_over_forward(num_inference_steps=snake_case__ , time_step=0 ) def UpperCAmelCase__ ( self : List[Any] ): """simple docstring""" __lowerCAmelCase = self.full_loop() __lowerCAmelCase = torch.mean(torch.abs(snake_case__ ) ) assert abs(result_mean.item() - 0.2_7_9_1 ) < 1E-3 def UpperCAmelCase__ ( self : List[str] ): """simple docstring""" __lowerCAmelCase = self.full_loop(use_karras_sigmas=snake_case__ ) __lowerCAmelCase = torch.mean(torch.abs(snake_case__ ) ) assert abs(result_mean.item() - 0.2_2_4_8 ) < 1E-3 def UpperCAmelCase__ ( self : List[str] ): """simple docstring""" __lowerCAmelCase = self.full_loop(prediction_type="v_prediction" ) __lowerCAmelCase = torch.mean(torch.abs(snake_case__ ) ) assert abs(result_mean.item() - 0.1_4_5_3 ) < 1E-3 def UpperCAmelCase__ ( self : Optional[Any] ): """simple docstring""" __lowerCAmelCase = self.full_loop(prediction_type="v_prediction" , use_karras_sigmas=snake_case__ ) __lowerCAmelCase = torch.mean(torch.abs(snake_case__ ) ) assert abs(result_mean.item() - 0.0_6_4_9 ) < 1E-3 def UpperCAmelCase__ ( self : int ): """simple docstring""" __lowerCAmelCase = self.scheduler_classes[0] __lowerCAmelCase = self.get_scheduler_config(thresholding=snake_case__ , dynamic_thresholding_ratio=0 ) __lowerCAmelCase = scheduler_class(**snake_case__ ) __lowerCAmelCase = 10 __lowerCAmelCase = self.dummy_model() __lowerCAmelCase = self.dummy_sample_deter.half() scheduler.set_timesteps(snake_case__ ) for i, t in enumerate(scheduler.timesteps ): __lowerCAmelCase = model(snake_case__ , snake_case__ ) __lowerCAmelCase = scheduler.step(snake_case__ , snake_case__ , snake_case__ ).prev_sample assert sample.dtype == torch.floataa
376
0
'''simple docstring''' import json import os import unittest from transformers import BatchEncoding, MvpTokenizer, MvpTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin, filter_roberta_detectors @require_tokenizers class _snake_case ( lowercase_ , unittest.TestCase ): lowerCAmelCase_ : Optional[int] = MvpTokenizer lowerCAmelCase_ : List[Any] = MvpTokenizerFast lowerCAmelCase_ : str = True lowerCAmelCase_ : List[str] = filter_roberta_detectors def lowerCAmelCase__ ( self ) -> int: '''simple docstring''' super().setUp() snake_case_ = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] snake_case_ = dict(zip(a__ , range(len(a__ ) ) ) ) snake_case_ = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] snake_case_ = {"unk_token": "<unk>"} snake_case_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) snake_case_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(a__ ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(a__ ) ) def lowerCAmelCase__ ( self , **a__ ) -> Any: '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **a__ ) def lowerCAmelCase__ ( self , **a__ ) -> Optional[int]: '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **a__ ) def lowerCAmelCase__ ( self , a__ ) -> Union[str, Any]: '''simple docstring''' return "lower newer", "lower newer" @cached_property def lowerCAmelCase__ ( self ) -> Tuple: '''simple docstring''' return MvpTokenizer.from_pretrained("RUCAIBox/mvp" ) @cached_property def lowerCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' return MvpTokenizerFast.from_pretrained("RUCAIBox/mvp" ) @require_torch def lowerCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ = ["A long paragraph for summarization.", "Another paragraph for summarization."] snake_case_ = [0, 250, 251, 17_818, 13, 39_186, 1_938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: snake_case_ = tokenizer(a__ , max_length=len(a__ ) , padding=a__ , return_tensors="pt" ) self.assertIsInstance(a__ , a__ ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) snake_case_ = batch.input_ids.tolist()[0] self.assertListEqual(a__ , a__ ) # Test that special tokens are reset @require_torch def lowerCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ = ["A long paragraph for summarization.", "Another paragraph for summarization."] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: snake_case_ = tokenizer(a__ , padding=a__ , return_tensors="pt" ) # check if input_ids are returned and no labels self.assertIn("input_ids" , a__ ) self.assertIn("attention_mask" , a__ ) self.assertNotIn("labels" , a__ ) self.assertNotIn("decoder_attention_mask" , a__ ) @require_torch def lowerCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ = [ "Summary of the text.", "Another summary.", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: snake_case_ = tokenizer(text_target=a__ , max_length=32 , padding="max_length" , return_tensors="pt" ) self.assertEqual(32 , targets["input_ids"].shape[1] ) @require_torch def lowerCAmelCase__ ( self ) -> List[str]: '''simple docstring''' for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: snake_case_ = tokenizer( ["I am a small frog" * 1_024, "I am a small frog"] , padding=a__ , truncation=a__ , return_tensors="pt" ) self.assertIsInstance(a__ , a__ ) self.assertEqual(batch.input_ids.shape , (2, 1_024) ) @require_torch def lowerCAmelCase__ ( self ) -> Any: '''simple docstring''' snake_case_ = ["A long paragraph for summarization."] snake_case_ = [ "Summary of the text.", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: snake_case_ = tokenizer(a__ , text_target=a__ , return_tensors="pt" ) snake_case_ = inputs["input_ids"] snake_case_ = inputs["labels"] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) def lowerCAmelCase__ ( self ) -> Dict: '''simple docstring''' pass def lowerCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): snake_case_ = self.rust_tokenizer_class.from_pretrained(a__ , **a__ ) snake_case_ = self.tokenizer_class.from_pretrained(a__ , **a__ ) snake_case_ = "A, <mask> AllenNLP sentence." snake_case_ = tokenizer_r.encode_plus(a__ , add_special_tokens=a__ , return_token_type_ids=a__ ) snake_case_ = tokenizer_p.encode_plus(a__ , add_special_tokens=a__ , return_token_type_ids=a__ ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["token_type_ids"] ) , sum(tokens_p["token_type_ids"] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["attention_mask"] ) / len(tokens_r["attention_mask"] ) , sum(tokens_p["attention_mask"] ) / len(tokens_p["attention_mask"] ) , ) snake_case_ = tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"] ) snake_case_ = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["input_ids"] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual(tokens_r["input_ids"] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual( a__ , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] ) self.assertSequenceEqual( a__ , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] )
400
'''simple docstring''' import os import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from huggingface_hub.file_download import http_get from requests.exceptions import HTTPError from transformers import ( AlbertTokenizer, AutoTokenizer, BertTokenizer, BertTokenizerFast, GPTaTokenizerFast, is_tokenizers_available, ) from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers from transformers.tokenization_utils import Trie sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class _snake_case ( unittest.TestCase ): def lowerCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' snake_case_ = mock.Mock() snake_case_ = 500 snake_case_ = {} snake_case_ = HTTPError snake_case_ = {} # Download this model to make sure it's in the cache. snake_case_ = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert" ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("requests.Session.request" , return_value=a__ ) as mock_head: snake_case_ = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert" ) # This check we did call the fake head request mock_head.assert_called() @require_tokenizers def lowerCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ = mock.Mock() snake_case_ = 500 snake_case_ = {} snake_case_ = HTTPError snake_case_ = {} # Download this model to make sure it's in the cache. snake_case_ = GPTaTokenizerFast.from_pretrained("gpt2" ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("requests.Session.request" , return_value=a__ ) as mock_head: snake_case_ = GPTaTokenizerFast.from_pretrained("gpt2" ) # This check we did call the fake head request mock_head.assert_called() def lowerCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' try: snake_case_ = tempfile.mktemp() with open(a__ , "wb" ) as f: http_get("https://huggingface.co/albert-base-v1/resolve/main/spiece.model" , a__ ) snake_case_ = AlbertTokenizer.from_pretrained(a__ ) finally: os.remove(a__ ) # Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in # the current folder and have the right name. if os.path.isfile("tokenizer.json" ): # We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it. return try: with open("tokenizer.json" , "wb" ) as f: http_get("https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json" , a__ ) snake_case_ = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) # The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000 self.assertEqual(tokenizer.vocab_size , 1_000 ) # Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file. finally: os.remove("tokenizer.json" ) def lowerCAmelCase__ ( self ) -> Dict: '''simple docstring''' snake_case_ = AlbertTokenizer.from_pretrained("https://huggingface.co/albert-base-v1/resolve/main/spiece.model" ) @is_staging_test class _snake_case ( unittest.TestCase ): lowerCAmelCase_ : Optional[int] = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] @classmethod def lowerCAmelCase__ ( cls ) -> List[str]: '''simple docstring''' snake_case_ = TOKEN HfFolder.save_token(a__ ) @classmethod def lowerCAmelCase__ ( cls ) -> Any: '''simple docstring''' try: delete_repo(token=cls._token , repo_id="test-tokenizer" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-tokenizer-org" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="test-dynamic-tokenizer" ) except HTTPError: pass def lowerCAmelCase__ ( self ) -> List[str]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: snake_case_ = os.path.join(a__ , "vocab.txt" ) with open(a__ , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) snake_case_ = BertTokenizer(a__ ) tokenizer.push_to_hub("test-tokenizer" , use_auth_token=self._token ) snake_case_ = BertTokenizer.from_pretrained(F'{USER}/test-tokenizer' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) # Reset repo delete_repo(token=self._token , repo_id="test-tokenizer" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(a__ , repo_id="test-tokenizer" , push_to_hub=a__ , use_auth_token=self._token ) snake_case_ = BertTokenizer.from_pretrained(F'{USER}/test-tokenizer' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) def lowerCAmelCase__ ( self ) -> Any: '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: snake_case_ = os.path.join(a__ , "vocab.txt" ) with open(a__ , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) snake_case_ = BertTokenizer(a__ ) tokenizer.push_to_hub("valid_org/test-tokenizer-org" , use_auth_token=self._token ) snake_case_ = BertTokenizer.from_pretrained("valid_org/test-tokenizer-org" ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-tokenizer-org" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained( a__ , repo_id="valid_org/test-tokenizer-org" , push_to_hub=a__ , use_auth_token=self._token ) snake_case_ = BertTokenizer.from_pretrained("valid_org/test-tokenizer-org" ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) @require_tokenizers def lowerCAmelCase__ ( self ) -> int: '''simple docstring''' CustomTokenizer.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: snake_case_ = os.path.join(a__ , "vocab.txt" ) with open(a__ , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) snake_case_ = CustomTokenizer(a__ ) # No fast custom tokenizer tokenizer.push_to_hub("test-dynamic-tokenizer" , use_auth_token=self._token ) snake_case_ = AutoTokenizer.from_pretrained(F'{USER}/test-dynamic-tokenizer' , trust_remote_code=a__ ) # Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , "CustomTokenizer" ) # Fast and slow custom tokenizer CustomTokenizerFast.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: snake_case_ = os.path.join(a__ , "vocab.txt" ) with open(a__ , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) snake_case_ = BertTokenizerFast.from_pretrained(a__ ) bert_tokenizer.save_pretrained(a__ ) snake_case_ = CustomTokenizerFast.from_pretrained(a__ ) tokenizer.push_to_hub("test-dynamic-tokenizer" , use_auth_token=self._token ) snake_case_ = AutoTokenizer.from_pretrained(F'{USER}/test-dynamic-tokenizer' , trust_remote_code=a__ ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , "CustomTokenizerFast" ) snake_case_ = AutoTokenizer.from_pretrained( F'{USER}/test-dynamic-tokenizer' , use_fast=a__ , trust_remote_code=a__ ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , "CustomTokenizer" ) class _snake_case ( unittest.TestCase ): def lowerCAmelCase__ ( self ) -> Dict: '''simple docstring''' snake_case_ = Trie() trie.add("Hello 友達" ) self.assertEqual(trie.data , {"H": {"e": {"l": {"l": {"o": {" ": {"友": {"達": {"": 1}}}}}}}}} ) trie.add("Hello" ) trie.data self.assertEqual(trie.data , {"H": {"e": {"l": {"l": {"o": {"": 1, " ": {"友": {"達": {"": 1}}}}}}}}} ) def lowerCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' snake_case_ = Trie() self.assertEqual(trie.split("[CLS] This is a extra_id_100" ) , ["[CLS] This is a extra_id_100"] ) trie.add("[CLS]" ) trie.add("extra_id_1" ) trie.add("extra_id_100" ) self.assertEqual(trie.split("[CLS] This is a extra_id_100" ) , ["[CLS]", " This is a ", "extra_id_100"] ) def lowerCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ = Trie() trie.add("A" ) self.assertEqual(trie.split("ABC" ) , ["A", "BC"] ) self.assertEqual(trie.split("BCA" ) , ["BC", "A"] ) def lowerCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' snake_case_ = Trie() trie.add("TOKEN]" ) trie.add("[SPECIAL_TOKEN]" ) self.assertEqual(trie.split("This is something [SPECIAL_TOKEN]" ) , ["This is something ", "[SPECIAL_TOKEN]"] ) def lowerCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ = Trie() trie.add("A" ) trie.add("P" ) trie.add("[SPECIAL_TOKEN]" ) self.assertEqual(trie.split("This is something [SPECIAL_TOKEN]" ) , ["This is something ", "[SPECIAL_TOKEN]"] ) def lowerCAmelCase__ ( self ) -> Any: '''simple docstring''' snake_case_ = Trie() trie.add("AB" ) trie.add("B" ) trie.add("C" ) self.assertEqual(trie.split("ABC" ) , ["AB", "C"] ) def lowerCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' snake_case_ = Trie() trie.add("ABC" ) trie.add("B" ) trie.add("CD" ) self.assertEqual(trie.split("ABCD" ) , ["ABC", "D"] ) def lowerCAmelCase__ ( self ) -> Dict: '''simple docstring''' snake_case_ = Trie() snake_case_ = trie.cut_text("ABC" , [0, 0, 2, 1, 2, 3] ) self.assertEqual(a__ , ["AB", "C"] )
400
1
from ....utils import logging A_ = logging.get_logger(__name__) class __lowercase ( __A ): def __init__( self : Dict , __lowerCamelCase : Optional[Any] , __lowerCamelCase : int=None , __lowerCamelCase : str=20_48 ) -> Union[str, Any]: '''simple docstring''' lowercase = config.__dict__ lowercase = modal_hidden_size if num_labels: lowercase = num_labels
704
import math import sys import cva import numpy as np def __UpperCAmelCase ( UpperCAmelCase, UpperCAmelCase )-> np.ndarray: """simple docstring""" lowercase = math.sqrt(UpperCAmelCase ) lowercase = 1 / (sigma * math.sqrt(2 * math.pi )) return cons * np.exp(-((img / sigma) ** 2) * 0.5 ) def __UpperCAmelCase ( UpperCAmelCase, UpperCAmelCase, UpperCAmelCase, UpperCAmelCase )-> np.ndarray: """simple docstring""" lowercase = kernel_size // 2 return img[x - half : x + half + 1, y - half : y + half + 1] def __UpperCAmelCase ( UpperCAmelCase, UpperCAmelCase )-> np.ndarray: """simple docstring""" lowercase = np.zeros((kernel_size, kernel_size) ) for i in range(0, UpperCAmelCase ): for j in range(0, UpperCAmelCase ): lowercase = math.sqrt( abs(i - kernel_size // 2 ) ** 2 + abs(j - kernel_size // 2 ) ** 2 ) return vec_gaussian(UpperCAmelCase, UpperCAmelCase ) def __UpperCAmelCase ( UpperCAmelCase, UpperCAmelCase, UpperCAmelCase, UpperCAmelCase, )-> np.ndarray: """simple docstring""" lowercase = np.zeros(img.shape ) lowercase = get_gauss_kernel(UpperCAmelCase, UpperCAmelCase ) lowercase ,lowercase = img.shape for i in range(kernel_size // 2, size_x - kernel_size // 2 ): for j in range(kernel_size // 2, size_y - kernel_size // 2 ): lowercase = get_slice(UpperCAmelCase, UpperCAmelCase, UpperCAmelCase, UpperCAmelCase ) lowercase = img_s - img_s[kernel_size // 2, kernel_size // 2] lowercase = vec_gaussian(UpperCAmelCase, UpperCAmelCase ) lowercase = np.multiply(UpperCAmelCase, UpperCAmelCase ) lowercase = np.multiply(UpperCAmelCase, UpperCAmelCase ) lowercase = np.sum(UpperCAmelCase ) / np.sum(UpperCAmelCase ) lowercase = val return imga def __UpperCAmelCase ( UpperCAmelCase )-> tuple: """simple docstring""" lowercase = args[1] if args[1:] else '''../image_data/lena.jpg''' lowercase = float(args[2] ) if args[2:] else 1.0 lowercase = float(args[3] ) if args[3:] else 1.0 if args[4:]: lowercase = int(args[4] ) lowercase = kernel_size + abs(kernel_size % 2 - 1 ) else: lowercase = 5 return filename, spatial_variance, intensity_variance, kernel_size if __name__ == "__main__": A_ , A_ , A_ , A_ = parse_args(sys.argv) A_ = cva.imread(filename, 0) cva.imshow("input image", img) A_ = img / 255 A_ = out.astype("float32") A_ = bilateral_filter(out, spatial_variance, intensity_variance, kernel_size) A_ = out * 255 A_ = np.uinta(out) cva.imshow("output image", out) cva.waitKey(0) cva.destroyAllWindows()
479
0
from typing import TYPE_CHECKING from ..utils import _LazyModule __snake_case :int ={ 'config': [ 'EXTERNAL_DATA_FORMAT_SIZE_LIMIT', 'OnnxConfig', 'OnnxConfigWithPast', 'OnnxSeq2SeqConfigWithPast', 'PatchingSpec', ], 'convert': ['export', 'validate_model_outputs'], 'features': ['FeaturesManager'], 'utils': ['ParameterFormat', 'compute_serialized_parameters_size'], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys __snake_case :Union[str, Any] =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
106
import os import unittest from transformers import LxmertTokenizer, LxmertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Any = LxmertTokenizer UpperCAmelCase__ : Optional[Any] = LxmertTokenizerFast UpperCAmelCase__ : Any = True UpperCAmelCase__ : Dict = True def __lowercase ( self ) -> Union[str, Any]: super().setUp() _a : int = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] _a : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def __lowercase ( self , _a ) -> List[str]: _a : Tuple = '''UNwant\u00E9d,running''' _a : str = '''unwanted, running''' return input_text, output_text def __lowercase ( self ) -> List[Any]: _a : str = self.tokenizer_class(self.vocab_file ) _a : str = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(_a , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , [7, 4, 5, 1_0, 8, 9] ) def __lowercase ( self ) -> List[Any]: if not self.test_rust_tokenizer: return _a : Optional[Any] = self.get_tokenizer() _a : str = self.get_rust_tokenizer() _a : Optional[Any] = '''I was born in 92000, and this is falsé.''' _a : Optional[Any] = tokenizer.tokenize(_a ) _a : List[Any] = rust_tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) _a : List[Any] = tokenizer.encode(_a , add_special_tokens=_a ) _a : Any = rust_tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) _a : Dict = self.get_rust_tokenizer() _a : Optional[int] = tokenizer.encode(_a ) _a : Dict = rust_tokenizer.encode(_a ) self.assertListEqual(_a , _a )
14
0
# Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib lowercase = get_logger() lowercase = None class __lowercase ( TensorFormatter[Mapping, '''jax.Array''', Mapping] ): '''simple docstring''' def __init__( self : List[str] , _a : Optional[Any]=None , _a : Any=None , **_a : List[Any] ): super().__init__(features=_a ) import jax from jaxlib.xla_client import Device if isinstance(_a , _a ): raise ValueError( F"""Expected {device} to be a `str` not {type(_a )}, as `jaxlib.xla_extension.Device` """ '''is not serializable neither with `pickle` nor with `dill`. Instead you can surround ''' '''the device with `str()` to get its string identifier that will be internally mapped ''' '''to the actual `jaxlib.xla_extension.Device`.''' ) UpperCamelCase__ = device if isinstance(_a , _a ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: UpperCamelCase__ = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( F"""Device with string identifier {self.device} not listed among the available """ F"""devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default """ F"""device: {str(jax.devices()[0] )}.""" ) UpperCamelCase__ = str(jax.devices()[0] ) UpperCamelCase__ = jnp_array_kwargs @staticmethod def A_ ( ): import jax return {str(_a ): device for device in jax.devices()} def A_ ( self : Optional[int] , _a : Tuple ): import jax import jax.numpy as jnp if isinstance(_a , _a ) and column: if all( isinstance(_a , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(_a , axis=0 ) return column def A_ ( self : Optional[int] , _a : List[Any] ): import jax import jax.numpy as jnp if isinstance(_a , (str, bytes, type(_a )) ): return value elif isinstance(_a , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() UpperCamelCase__ = {} if isinstance(_a , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: UpperCamelCase__ = {'''dtype''': jnp.intaa} else: UpperCamelCase__ = {'''dtype''': jnp.intaa} elif isinstance(_a , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): UpperCamelCase__ = {'''dtype''': jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(_a , PIL.Image.Image ): UpperCamelCase__ = np.asarray(_a ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: UpperCamelCase__ = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(_a , **{**default_dtype, **self.jnp_array_kwargs} ) def A_ ( self : Optional[Any] , _a : Any ): import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(_a , torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(_a , '''__array__''' ) and not isinstance(_a , jax.Array ): UpperCamelCase__ = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(_a , np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(_a ) for substruct in data_struct] ) elif isinstance(_a , (list, tuple) ): return self._consolidate([self.recursive_tensorize(_a ) for substruct in data_struct] ) return self._tensorize(_a ) def A_ ( self : int , _a : dict ): return map_nested(self._recursive_tensorize , _a , map_list=_a ) def A_ ( self : List[Any] , _a : pa.Table ): UpperCamelCase__ = self.numpy_arrow_extractor().extract_row(_a ) UpperCamelCase__ = self.python_features_decoder.decode_row(_a ) return self.recursive_tensorize(_a ) def A_ ( self : Optional[int] , _a : pa.Table ): UpperCamelCase__ = self.numpy_arrow_extractor().extract_column(_a ) UpperCamelCase__ = self.python_features_decoder.decode_column(_a , pa_table.column_names[0] ) UpperCamelCase__ = self.recursive_tensorize(_a ) UpperCamelCase__ = self._consolidate(_a ) return column def A_ ( self : int , _a : pa.Table ): UpperCamelCase__ = self.numpy_arrow_extractor().extract_batch(_a ) UpperCamelCase__ = self.python_features_decoder.decode_batch(_a ) UpperCamelCase__ = self.recursive_tensorize(_a ) for column_name in batch: UpperCamelCase__ = self._consolidate(batch[column_name] ) return batch
591
import functools from typing import Any def lowerCamelCase_ ( UpperCamelCase__ : str, UpperCamelCase__ : list[str] ): '''simple docstring''' if not isinstance(UpperCamelCase__, UpperCamelCase__ ) or len(UpperCamelCase__ ) == 0: raise ValueError('''the string should be not empty string''' ) if not isinstance(UpperCamelCase__, UpperCamelCase__ ) or not all( isinstance(UpperCamelCase__, UpperCamelCase__ ) and len(UpperCamelCase__ ) > 0 for item in words ): raise ValueError('''the words should be a list of non-empty strings''' ) # Build trie UpperCamelCase__ = {} UpperCamelCase__ = '''WORD_KEEPER''' for word in words: UpperCamelCase__ = trie for c in word: if c not in trie_node: UpperCamelCase__ = {} UpperCamelCase__ = trie_node[c] UpperCamelCase__ = True UpperCamelCase__ = len(UpperCamelCase__ ) # Dynamic programming method @functools.cache def is_breakable(UpperCamelCase__ : int ) -> bool: if index == len_string: return True UpperCamelCase__ = trie for i in range(UpperCamelCase__, UpperCamelCase__ ): UpperCamelCase__ = trie_node.get(string[i], UpperCamelCase__ ) if trie_node is None: return False if trie_node.get(UpperCamelCase__, UpperCamelCase__ ) and is_breakable(i + 1 ): return True return False return is_breakable(0 ) if __name__ == "__main__": import doctest doctest.testmod()
591
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A_ : List[str] = { 'configuration_instructblip': [ 'INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'InstructBlipConfig', 'InstructBlipQFormerConfig', 'InstructBlipVisionConfig', ], 'processing_instructblip': ['InstructBlipProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[str] = [ 'INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'InstructBlipQFormerModel', 'InstructBlipPreTrainedModel', 'InstructBlipForConditionalGeneration', 'InstructBlipVisionModel', ] if TYPE_CHECKING: from .configuration_instructblip import ( INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, InstructBlipConfig, InstructBlipQFormerConfig, InstructBlipVisionConfig, ) from .processing_instructblip import InstructBlipProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_instructblip import ( INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST, InstructBlipForConditionalGeneration, InstructBlipPreTrainedModel, InstructBlipQFormerModel, InstructBlipVisionModel, ) else: import sys A_ : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
303
from __future__ import annotations from sys import maxsize from typing import Generic, TypeVar A_ : int = TypeVar('T') def __a ( SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' return (position - 1) // 2 def __a ( SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' return (2 * position) + 1 def __a ( SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' return (2 * position) + 2 class A_ ( Generic[T] ): '''simple docstring''' def __init__(self ) -> None: __UpperCAmelCase = [] __UpperCAmelCase = {} __UpperCAmelCase = 0 def __len__(self ) -> int: return self.elements def __repr__(self ) -> str: return str(self.heap ) def lowerCAmelCase_ (self ) -> bool: # Check if the priority queue is empty return self.elements == 0 def lowerCAmelCase_ (self , lowercase__ , lowercase__ ) -> None: # Add an element with given priority to the queue self.heap.append((elem, weight) ) __UpperCAmelCase = self.elements self.elements += 1 self._bubble_up(lowercase__ ) def lowerCAmelCase_ (self ) -> T: # Remove and return the element with lowest weight (highest priority) if self.elements > 1: self._swap_nodes(0 , self.elements - 1 ) __UpperCAmelCase , __UpperCAmelCase = self.heap.pop() del self.position_map[elem] self.elements -= 1 if self.elements > 0: __UpperCAmelCase , __UpperCAmelCase = self.heap[0] self._bubble_down(lowercase__ ) return elem def lowerCAmelCase_ (self , lowercase__ , lowercase__ ) -> None: # Update the weight of the given key __UpperCAmelCase = self.position_map[elem] __UpperCAmelCase = (elem, weight) if position > 0: __UpperCAmelCase = get_parent_position(lowercase__ ) __UpperCAmelCase , __UpperCAmelCase = self.heap[parent_position] if parent_weight > weight: self._bubble_up(lowercase__ ) else: self._bubble_down(lowercase__ ) else: self._bubble_down(lowercase__ ) def lowerCAmelCase_ (self , lowercase__ ) -> None: # Place a node at the proper position (upward movement) [to be used internally # only] __UpperCAmelCase = self.position_map[elem] if curr_pos == 0: return None __UpperCAmelCase = get_parent_position(lowercase__ ) __UpperCAmelCase , __UpperCAmelCase = self.heap[curr_pos] __UpperCAmelCase , __UpperCAmelCase = self.heap[parent_position] if parent_weight > weight: self._swap_nodes(lowercase__ , lowercase__ ) return self._bubble_up(lowercase__ ) return None def lowerCAmelCase_ (self , lowercase__ ) -> None: # Place a node at the proper position (downward movement) [to be used # internally only] __UpperCAmelCase = self.position_map[elem] __UpperCAmelCase , __UpperCAmelCase = self.heap[curr_pos] __UpperCAmelCase = get_child_left_position(lowercase__ ) __UpperCAmelCase = get_child_right_position(lowercase__ ) if child_left_position < self.elements and child_right_position < self.elements: __UpperCAmelCase , __UpperCAmelCase = self.heap[child_left_position] __UpperCAmelCase , __UpperCAmelCase = self.heap[child_right_position] if child_right_weight < child_left_weight and child_right_weight < weight: self._swap_nodes(lowercase__ , lowercase__ ) return self._bubble_down(lowercase__ ) if child_left_position < self.elements: __UpperCAmelCase , __UpperCAmelCase = self.heap[child_left_position] if child_left_weight < weight: self._swap_nodes(lowercase__ , lowercase__ ) return self._bubble_down(lowercase__ ) else: return None if child_right_position < self.elements: __UpperCAmelCase , __UpperCAmelCase = self.heap[child_right_position] if child_right_weight < weight: self._swap_nodes(lowercase__ , lowercase__ ) return self._bubble_down(lowercase__ ) return None def lowerCAmelCase_ (self , lowercase__ , lowercase__ ) -> None: # Swap the nodes at the given positions __UpperCAmelCase = self.heap[nodea_pos][0] __UpperCAmelCase = self.heap[nodea_pos][0] __UpperCAmelCase , __UpperCAmelCase = ( self.heap[nodea_pos], self.heap[nodea_pos], ) __UpperCAmelCase = nodea_pos __UpperCAmelCase = nodea_pos class A_ ( Generic[T] ): '''simple docstring''' def __init__(self ) -> None: __UpperCAmelCase = {} __UpperCAmelCase = 0 def __repr__(self ) -> str: return str(self.connections ) def __len__(self ) -> int: return self.nodes def lowerCAmelCase_ (self , lowercase__ ) -> None: # Add a node in the graph if it is not in the graph if node not in self.connections: __UpperCAmelCase = {} self.nodes += 1 def lowerCAmelCase_ (self , lowercase__ , lowercase__ , lowercase__ ) -> None: # Add an edge between 2 nodes in the graph self.add_node(lowercase__ ) self.add_node(lowercase__ ) __UpperCAmelCase = weight __UpperCAmelCase = weight def __a ( SCREAMING_SNAKE_CASE , ) -> tuple[dict[T, int], dict[T, T | None]]: '''simple docstring''' __UpperCAmelCase = {node: maxsize for node in graph.connections} __UpperCAmelCase = {node: None for node in graph.connections} __UpperCAmelCase = MinPriorityQueue() for node, weight in dist.items(): priority_queue.push(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if priority_queue.is_empty(): return dist, parent # initialization __UpperCAmelCase = priority_queue.extract_min() __UpperCAmelCase = 0 for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: __UpperCAmelCase = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(SCREAMING_SNAKE_CASE , dist[neighbour] ) __UpperCAmelCase = node # running prim's algorithm while not priority_queue.is_empty(): __UpperCAmelCase = priority_queue.extract_min() for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: __UpperCAmelCase = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(SCREAMING_SNAKE_CASE , dist[neighbour] ) __UpperCAmelCase = node return dist, parent
303
1
from typing import List, Optional, Tuple, Union import PIL import torch from torchvision import transforms from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput from diffusers.schedulers import DDIMScheduler from diffusers.utils import randn_tensor UpperCAmelCase : Optional[Any] = transforms.Compose( [ transforms.Resize((2_56, 2_56)), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def _SCREAMING_SNAKE_CASE ( a ) -> Union[str, Any]: if isinstance(a , torch.Tensor ): return image elif isinstance(a , PIL.Image.Image ): __A : int = [image] __A : int = [trans(img.convert('RGB' ) ) for img in image] __A : Dict = torch.stack(a ) return image class _A( snake_case__ ): """simple docstring""" def __init__( self , _A , _A ): super().__init__() # make sure scheduler can always be converted to DDIM __A : Tuple = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=_A , scheduler=_A ) def UpperCAmelCase_ ( self , _A ): if strength < 0 or strength > 1: raise ValueError(F"""The value of strength should in [0.0, 1.0] but is {strength}""" ) def UpperCAmelCase_ ( self , _A , _A , _A ): # get the original timestep using init_timestep __A : Optional[int] = min(int(num_inference_steps * strength ) , _A ) __A : str = max(num_inference_steps - init_timestep , 0 ) __A : Optional[int] = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def UpperCAmelCase_ ( self , _A , _A , _A , _A , _A , _A=None ): if not isinstance(_A , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( F"""`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(_A )}""" ) __A : Union[str, Any] = image.to(device=_A , dtype=_A ) if isinstance(_A , _A ) and len(_A ) != batch_size: raise ValueError( F"""You have passed a list of generators of length {len(_A )}, but requested an effective batch""" F""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) __A : Dict = init_latents.shape __A : Optional[int] = randn_tensor(_A , generator=_A , device=_A , dtype=_A ) # get latents print('add noise to latents at timestep' , _A ) __A : List[Any] = self.scheduler.add_noise(_A , _A , _A ) __A : Optional[int] = init_latents return latents @torch.no_grad() def __call__( self , _A = None , _A = 0.8 , _A = 1 , _A = None , _A = 0.0 , _A = 50 , _A = None , _A = "pil" , _A = True , ): self.check_inputs(_A ) # 2. Preprocess image __A : int = preprocess(_A ) # 3. set timesteps self.scheduler.set_timesteps(_A , device=self.device ) __A : Tuple = self.get_timesteps(_A , _A , self.device ) __A : int = timesteps[:1].repeat(_A ) # 4. Prepare latent variables __A : Dict = self.prepare_latents(_A , _A , _A , self.unet.dtype , self.device , _A ) __A : List[Any] = latents # 5. Denoising loop for t in self.progress_bar(_A ): # 1. predict noise model_output __A : Optional[Any] = self.unet(_A , _A ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 __A : List[Any] = self.scheduler.step( _A , _A , _A , eta=_A , use_clipped_model_output=_A , generator=_A , ).prev_sample __A : List[Any] = (image / 2 + 0.5).clamp(0 , 1 ) __A : List[str] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __A : Optional[int] = self.numpy_to_pil(_A ) if not return_dict: return (image, latent_timestep.item()) return ImagePipelineOutput(images=_A )
715
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCAmelCase : Optional[int] = {'''configuration_unispeech''': ['''UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''UniSpeechConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Optional[Any] = [ '''UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST''', '''UniSpeechForCTC''', '''UniSpeechForPreTraining''', '''UniSpeechForSequenceClassification''', '''UniSpeechModel''', '''UniSpeechPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_unispeech import ( UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST, UniSpeechForCTC, UniSpeechForPreTraining, UniSpeechForSequenceClassification, UniSpeechModel, UniSpeechPreTrainedModel, ) else: import sys UpperCAmelCase : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
77
0
"""simple docstring""" from __future__ import annotations def lowercase__( __SCREAMING_SNAKE_CASE : list[float] ): if len(__SCREAMING_SNAKE_CASE ) < 2: raise ValueError('Monogons and Digons are not polygons in the Euclidean space' ) if any(i <= 0 for i in nums ): raise ValueError('All values must be greater than 0' ) lowercase_ : List[Any] = nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
425
"""simple docstring""" import qiskit def lowercase__( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ): lowercase_ : Tuple = qiskit.Aer.get_backend('aer_simulator' ) # Create a Quantum Circuit acting on the q register lowercase_ : List[str] = qiskit.QuantumCircuit(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Apply X (NOT) Gate to Qubits 0 & 1 circuit.x(0 ) circuit.x(1 ) # Map the quantum measurement to the classical bits circuit.measure([0, 1] , [0, 1] ) # Execute the circuit on the qasm simulator lowercase_ : List[Any] = qiskit.execute(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , shots=10_00 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE =single_qubit_measure(2, 2) print(F"Total count for various states are: {counts}")
425
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __snake_case : int = { "configuration_bloom": ["BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP", "BloomConfig", "BloomOnnxConfig"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Union[str, Any] = ["BloomTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Dict = [ "BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST", "BloomForCausalLM", "BloomModel", "BloomPreTrainedModel", "BloomForSequenceClassification", "BloomForTokenClassification", "BloomForQuestionAnswering", ] if TYPE_CHECKING: from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bloom_fast import BloomTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bloom import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) else: import sys __snake_case : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
691
'''simple docstring''' from ..utils import DummyObject, requires_backends class A ( metaclass=a ): __UpperCAmelCase : int = ["""torch""", """scipy"""] def __init__( self , *snake_case_ , **snake_case_ ) -> Tuple: requires_backends(self , ["torch", "scipy"] ) @classmethod def __lowerCAmelCase ( cls , *snake_case_ , **snake_case_ ) -> Union[str, Any]: requires_backends(cls , ["torch", "scipy"] ) @classmethod def __lowerCAmelCase ( cls , *snake_case_ , **snake_case_ ) -> Any: requires_backends(cls , ["torch", "scipy"] )
691
1
"""simple docstring""" import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import ( AutoProcessor, BertTokenizerFast, BlipImageProcessor, GPTaTokenizer, InstructBlipProcessor, PreTrainedTokenizerFast, ) @require_vision class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE =tempfile.mkdtemp() _SCREAMING_SNAKE_CASE =BlipImageProcessor() _SCREAMING_SNAKE_CASE =GPTaTokenizer.from_pretrained('''hf-internal-testing/tiny-random-GPT2Model''' ) _SCREAMING_SNAKE_CASE =BertTokenizerFast.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) _SCREAMING_SNAKE_CASE =InstructBlipProcessor(_A , _A , _A ) processor.save_pretrained(self.tmpdirname ) def UpperCamelCase_ ( self , **_A ): '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **_A ).tokenizer def UpperCamelCase_ ( self , **_A ): '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **_A ).image_processor def UpperCamelCase_ ( self , **_A ): '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **_A ).qformer_tokenizer def UpperCamelCase_ ( self ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def UpperCamelCase_ ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE =[np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )] _SCREAMING_SNAKE_CASE =[Image.fromarray(np.moveaxis(_A , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCamelCase_ ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE =InstructBlipProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() , qformer_tokenizer=self.get_qformer_tokenizer() , ) processor.save_pretrained(self.tmpdirname ) _SCREAMING_SNAKE_CASE =self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) _SCREAMING_SNAKE_CASE =self.get_image_processor(do_normalize=_A , padding_value=1.0 ) _SCREAMING_SNAKE_CASE =InstructBlipProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=_A , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _A ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _A ) self.assertIsInstance(processor.qformer_tokenizer , _A ) def UpperCamelCase_ ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE =self.get_image_processor() _SCREAMING_SNAKE_CASE =self.get_tokenizer() _SCREAMING_SNAKE_CASE =self.get_qformer_tokenizer() _SCREAMING_SNAKE_CASE =InstructBlipProcessor( tokenizer=_A , image_processor=_A , qformer_tokenizer=_A ) _SCREAMING_SNAKE_CASE =self.prepare_image_inputs() _SCREAMING_SNAKE_CASE =image_processor(_A , return_tensors='''np''' ) _SCREAMING_SNAKE_CASE =processor(images=_A , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def UpperCamelCase_ ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE =self.get_image_processor() _SCREAMING_SNAKE_CASE =self.get_tokenizer() _SCREAMING_SNAKE_CASE =self.get_qformer_tokenizer() _SCREAMING_SNAKE_CASE =InstructBlipProcessor( tokenizer=_A , image_processor=_A , qformer_tokenizer=_A ) _SCREAMING_SNAKE_CASE ="""lower newer""" _SCREAMING_SNAKE_CASE =processor(text=_A ) _SCREAMING_SNAKE_CASE =tokenizer(_A , return_token_type_ids=_A ) _SCREAMING_SNAKE_CASE =qformer_tokenizer(_A , return_token_type_ids=_A ) for key in encoded_tokens.keys(): self.assertListEqual(encoded_tokens[key] , encoded_processor[key] ) for key in encoded_tokens_qformer.keys(): self.assertListEqual(encoded_tokens_qformer[key] , encoded_processor['''qformer_''' + key] ) def UpperCamelCase_ ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE =self.get_image_processor() _SCREAMING_SNAKE_CASE =self.get_tokenizer() _SCREAMING_SNAKE_CASE =self.get_qformer_tokenizer() _SCREAMING_SNAKE_CASE =InstructBlipProcessor( tokenizer=_A , image_processor=_A , qformer_tokenizer=_A ) _SCREAMING_SNAKE_CASE ="""lower newer""" _SCREAMING_SNAKE_CASE =self.prepare_image_inputs() _SCREAMING_SNAKE_CASE =processor(text=_A , images=_A ) self.assertListEqual( list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''qformer_input_ids''', '''qformer_attention_mask''', '''pixel_values'''] , ) # test if it raises when no input is passed with pytest.raises(_A ): processor() def UpperCamelCase_ ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE =self.get_image_processor() _SCREAMING_SNAKE_CASE =self.get_tokenizer() _SCREAMING_SNAKE_CASE =self.get_qformer_tokenizer() _SCREAMING_SNAKE_CASE =InstructBlipProcessor( tokenizer=_A , image_processor=_A , qformer_tokenizer=_A ) _SCREAMING_SNAKE_CASE =[[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _SCREAMING_SNAKE_CASE =processor.batch_decode(_A ) _SCREAMING_SNAKE_CASE =tokenizer.batch_decode(_A ) self.assertListEqual(_A , _A ) def UpperCamelCase_ ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE =self.get_image_processor() _SCREAMING_SNAKE_CASE =self.get_tokenizer() _SCREAMING_SNAKE_CASE =self.get_qformer_tokenizer() _SCREAMING_SNAKE_CASE =InstructBlipProcessor( tokenizer=_A , image_processor=_A , qformer_tokenizer=_A ) _SCREAMING_SNAKE_CASE ="""lower newer""" _SCREAMING_SNAKE_CASE =self.prepare_image_inputs() _SCREAMING_SNAKE_CASE =processor(text=_A , images=_A ) self.assertListEqual( list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''qformer_input_ids''', '''qformer_attention_mask''', '''pixel_values'''] , )
255
import gc import math import unittest import torch from diffusers import UNetaDModel from diffusers.utils import floats_tensor, logging, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin __UpperCAmelCase = logging.get_logger(__name__) enable_full_determinism() class __a ( __UpperCamelCase ,__UpperCamelCase ,unittest.TestCase ): __snake_case : Any = UNetaDModel __snake_case : str = """sample""" @property def A ( self : List[Any] ): lowerCAmelCase_ : str = 4 lowerCAmelCase_ : List[str] = 3 lowerCAmelCase_ : Tuple = (32, 32) lowerCAmelCase_ : Optional[Any] = floats_tensor((batch_size, num_channels) + sizes ).to(UpperCAmelCase ) lowerCAmelCase_ : Tuple = torch.tensor([10] ).to(UpperCAmelCase ) return {"sample": noise, "timestep": time_step} @property def A ( self : List[str] ): return (3, 32, 32) @property def A ( self : List[Any] ): return (3, 32, 32) def A ( self : Optional[int] ): lowerCAmelCase_ : Any = { """block_out_channels""": (32, 64), """down_block_types""": ("""DownBlock2D""", """AttnDownBlock2D"""), """up_block_types""": ("""AttnUpBlock2D""", """UpBlock2D"""), """attention_head_dim""": 3, """out_channels""": 3, """in_channels""": 3, """layers_per_block""": 2, """sample_size""": 32, } lowerCAmelCase_ : Dict = self.dummy_input return init_dict, inputs_dict class __a ( __UpperCamelCase ,__UpperCamelCase ,unittest.TestCase ): __snake_case : Dict = UNetaDModel __snake_case : List[str] = """sample""" @property def A ( self : Optional[Any] ): lowerCAmelCase_ : List[Any] = 4 lowerCAmelCase_ : Dict = 4 lowerCAmelCase_ : Optional[Any] = (32, 32) lowerCAmelCase_ : Union[str, Any] = floats_tensor((batch_size, num_channels) + sizes ).to(UpperCAmelCase ) lowerCAmelCase_ : List[str] = torch.tensor([10] ).to(UpperCAmelCase ) return {"sample": noise, "timestep": time_step} @property def A ( self : Any ): return (4, 32, 32) @property def A ( self : str ): return (4, 32, 32) def A ( self : List[str] ): lowerCAmelCase_ : str = { """sample_size""": 32, """in_channels""": 4, """out_channels""": 4, """layers_per_block""": 2, """block_out_channels""": (32, 64), """attention_head_dim""": 32, """down_block_types""": ("""DownBlock2D""", """DownBlock2D"""), """up_block_types""": ("""UpBlock2D""", """UpBlock2D"""), } lowerCAmelCase_ : Dict = self.dummy_input return init_dict, inputs_dict def A ( self : Optional[int] ): lowerCAmelCase_ , lowerCAmelCase_ : Dict = UNetaDModel.from_pretrained("""fusing/unet-ldm-dummy-update""" , output_loading_info=UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) self.assertEqual(len(loading_info["""missing_keys"""] ) , 0 ) model.to(UpperCAmelCase ) lowerCAmelCase_ : Optional[Any] = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != """cuda""" , """This test is supposed to run on GPU""" ) def A ( self : List[Any] ): lowerCAmelCase_ , lowerCAmelCase_ : Any = UNetaDModel.from_pretrained("""fusing/unet-ldm-dummy-update""" , output_loading_info=UpperCAmelCase ) model.to(UpperCAmelCase ) lowerCAmelCase_ : Any = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != """cuda""" , """This test is supposed to run on GPU""" ) def A ( self : List[str] ): # by defautl model loading will use accelerate as `low_cpu_mem_usage=True` lowerCAmelCase_ , lowerCAmelCase_ : Optional[Any] = UNetaDModel.from_pretrained("""fusing/unet-ldm-dummy-update""" , output_loading_info=UpperCAmelCase ) model_accelerate.to(UpperCAmelCase ) model_accelerate.eval() lowerCAmelCase_ : int = torch.randn( 1 , model_accelerate.config.in_channels , model_accelerate.config.sample_size , model_accelerate.config.sample_size , generator=torch.manual_seed(0 ) , ) lowerCAmelCase_ : Dict = noise.to(UpperCAmelCase ) lowerCAmelCase_ : int = torch.tensor([10] * noise.shape[0] ).to(UpperCAmelCase ) lowerCAmelCase_ : List[str] = model_accelerate(UpperCAmelCase , UpperCAmelCase )["""sample"""] # two models don't need to stay in the device at the same time del model_accelerate torch.cuda.empty_cache() gc.collect() lowerCAmelCase_ , lowerCAmelCase_ : int = UNetaDModel.from_pretrained( """fusing/unet-ldm-dummy-update""" , output_loading_info=UpperCAmelCase , low_cpu_mem_usage=UpperCAmelCase ) model_normal_load.to(UpperCAmelCase ) model_normal_load.eval() lowerCAmelCase_ : List[str] = model_normal_load(UpperCAmelCase , UpperCAmelCase )["""sample"""] assert torch_all_close(UpperCAmelCase , UpperCAmelCase , rtol=1e-3 ) def A ( self : Tuple ): lowerCAmelCase_ : Optional[int] = UNetaDModel.from_pretrained("""fusing/unet-ldm-dummy-update""" ) model.eval() model.to(UpperCAmelCase ) lowerCAmelCase_ : Tuple = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) lowerCAmelCase_ : List[str] = noise.to(UpperCAmelCase ) lowerCAmelCase_ : List[Any] = torch.tensor([10] * noise.shape[0] ).to(UpperCAmelCase ) with torch.no_grad(): lowerCAmelCase_ : Tuple = model(UpperCAmelCase , UpperCAmelCase ).sample lowerCAmelCase_ : str = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off lowerCAmelCase_ : Any = torch.tensor([-13.3258, -20.1100, -15.9873, -17.6617, -23.0596, -17.9419, -13.3675, -16.1889, -12.3800] ) # fmt: on self.assertTrue(torch_all_close(UpperCAmelCase , UpperCAmelCase , rtol=1e-3 ) ) class __a ( __UpperCamelCase ,__UpperCamelCase ,unittest.TestCase ): __snake_case : int = UNetaDModel __snake_case : Any = """sample""" @property def A ( self : Optional[int] , UpperCAmelCase : Optional[int]=(32, 32) ): lowerCAmelCase_ : Optional[Any] = 4 lowerCAmelCase_ : str = 3 lowerCAmelCase_ : Union[str, Any] = floats_tensor((batch_size, num_channels) + sizes ).to(UpperCAmelCase ) lowerCAmelCase_ : str = torch.tensor(batch_size * [10] ).to(dtype=torch.intaa , device=UpperCAmelCase ) return {"sample": noise, "timestep": time_step} @property def A ( self : Optional[int] ): return (3, 32, 32) @property def A ( self : Tuple ): return (3, 32, 32) def A ( self : Tuple ): lowerCAmelCase_ : str = { """block_out_channels""": [32, 64, 64, 64], """in_channels""": 3, """layers_per_block""": 1, """out_channels""": 3, """time_embedding_type""": """fourier""", """norm_eps""": 1e-6, """mid_block_scale_factor""": math.sqrt(2.0 ), """norm_num_groups""": None, """down_block_types""": [ """SkipDownBlock2D""", """AttnSkipDownBlock2D""", """SkipDownBlock2D""", """SkipDownBlock2D""", ], """up_block_types""": [ """SkipUpBlock2D""", """SkipUpBlock2D""", """AttnSkipUpBlock2D""", """SkipUpBlock2D""", ], } lowerCAmelCase_ : Any = self.dummy_input return init_dict, inputs_dict @slow def A ( self : str ): lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] = UNetaDModel.from_pretrained("""google/ncsnpp-celebahq-256""" , output_loading_info=UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) self.assertEqual(len(loading_info["""missing_keys"""] ) , 0 ) model.to(UpperCAmelCase ) lowerCAmelCase_ : Any = self.dummy_input lowerCAmelCase_ : Tuple = floats_tensor((4, 3) + (2_56, 2_56) ).to(UpperCAmelCase ) lowerCAmelCase_ : Dict = noise lowerCAmelCase_ : str = model(**UpperCAmelCase ) assert image is not None, "Make sure output is not None" @slow def A ( self : Optional[int] ): lowerCAmelCase_ : Dict = UNetaDModel.from_pretrained("""google/ncsnpp-celebahq-256""" ) model.to(UpperCAmelCase ) lowerCAmelCase_ : Any = 4 lowerCAmelCase_ : int = 3 lowerCAmelCase_ : Union[str, Any] = (2_56, 2_56) lowerCAmelCase_ : List[str] = torch.ones((batch_size, num_channels) + sizes ).to(UpperCAmelCase ) lowerCAmelCase_ : List[Any] = torch.tensor(batch_size * [1e-4] ).to(UpperCAmelCase ) with torch.no_grad(): lowerCAmelCase_ : Optional[Any] = model(UpperCAmelCase , UpperCAmelCase ).sample lowerCAmelCase_ : Tuple = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off lowerCAmelCase_ : List[Any] = torch.tensor([-4842.8691, -6499.6631, -3800.1953, -7978.2686, -1_0980.7129, -2_0028.8535, 8148.2822, 2342.2905, 567.7608] ) # fmt: on self.assertTrue(torch_all_close(UpperCAmelCase , UpperCAmelCase , rtol=1e-2 ) ) def A ( self : List[Any] ): lowerCAmelCase_ : Optional[Any] = UNetaDModel.from_pretrained("""fusing/ncsnpp-ffhq-ve-dummy-update""" ) model.to(UpperCAmelCase ) lowerCAmelCase_ : str = 4 lowerCAmelCase_ : Optional[int] = 3 lowerCAmelCase_ : Tuple = (32, 32) lowerCAmelCase_ : Optional[Any] = torch.ones((batch_size, num_channels) + sizes ).to(UpperCAmelCase ) lowerCAmelCase_ : Tuple = torch.tensor(batch_size * [1e-4] ).to(UpperCAmelCase ) with torch.no_grad(): lowerCAmelCase_ : int = model(UpperCAmelCase , UpperCAmelCase ).sample lowerCAmelCase_ : List[str] = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off lowerCAmelCase_ : Optional[Any] = torch.tensor([-0.0325, -0.0900, -0.0869, -0.0332, -0.0725, -0.0270, -0.0101, 0.0227, 0.0256] ) # fmt: on self.assertTrue(torch_all_close(UpperCAmelCase , UpperCAmelCase , rtol=1e-2 ) ) def A ( self : int ): # not required for this model pass
600
0
import json import os import re import unittest from transformers import CodeGenTokenizer, CodeGenTokenizerFast from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _UpperCAmelCase ( A__ , unittest.TestCase ): UpperCamelCase__ = CodeGenTokenizer UpperCamelCase__ = CodeGenTokenizerFast UpperCamelCase__ = True UpperCamelCase__ = {'''add_prefix_space''': True} UpperCamelCase__ = False def snake_case_ ( self): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt A__ = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', '''<|endoftext|>''', ] A__ = dict(zip(a__ , range(len(a__)))) A__ = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] A__ = {'''unk_token''': '''<unk>'''} A__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file''']) A__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file''']) with open(self.vocab_file , '''w''' , encoding='''utf-8''') as fp: fp.write(json.dumps(a__) + '''\n''') with open(self.merges_file , '''w''' , encoding='''utf-8''') as fp: fp.write('''\n'''.join(a__)) def snake_case_ ( self , **a__): kwargs.update(self.special_tokens_map) return CodeGenTokenizer.from_pretrained(self.tmpdirname , **a__) def snake_case_ ( self , **a__): kwargs.update(self.special_tokens_map) return CodeGenTokenizerFast.from_pretrained(self.tmpdirname , **a__) def snake_case_ ( self , a__): A__ = '''lower newer''' A__ = '''lower newer''' return input_text, output_text def snake_case_ ( self): A__ = CodeGenTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map) A__ = '''lower newer''' A__ = ['''\u0120low''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] A__ = tokenizer.tokenize(a__ , add_prefix_space=a__) self.assertListEqual(a__ , a__) A__ = tokens + [tokenizer.unk_token] A__ = [1_4, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(tokenizer.convert_tokens_to_ids(a__) , a__) def snake_case_ ( self): if not self.test_rust_tokenizer: return A__ = self.get_tokenizer() A__ = self.get_rust_tokenizer(add_prefix_space=a__) A__ = '''lower newer''' # Testing tokenization A__ = tokenizer.tokenize(a__ , add_prefix_space=a__) A__ = rust_tokenizer.tokenize(a__) self.assertListEqual(a__ , a__) # Testing conversion to ids without special tokens A__ = tokenizer.encode(a__ , add_special_tokens=a__ , add_prefix_space=a__) A__ = rust_tokenizer.encode(a__ , add_special_tokens=a__) self.assertListEqual(a__ , a__) # Testing conversion to ids with special tokens A__ = self.get_rust_tokenizer(add_prefix_space=a__) A__ = tokenizer.encode(a__ , add_prefix_space=a__) A__ = rust_tokenizer.encode(a__) self.assertListEqual(a__ , a__) # Testing the unknown token A__ = tokens + [rust_tokenizer.unk_token] A__ = [1_4, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(a__) , a__) def snake_case_ ( self , *a__ , **a__): # It's very difficult to mix/test pretokenization with byte-level # And get both CodeGen and Roberta to work at the same time (mostly an issue of adding a space before the string) pass def snake_case_ ( self , a__=1_5): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})"): A__ = self.rust_tokenizer_class.from_pretrained(a__ , **a__) # Simple input A__ = '''This is a simple input''' A__ = ['''This is a simple input 1''', '''This is a simple input 2'''] A__ = ('''This is a simple input''', '''This is a pair''') A__ = [ ('''This is a simple input 1''', '''This is a simple input 2'''), ('''This is a simple pair 1''', '''This is a simple pair 2'''), ] # Simple input tests self.assertRaises(a__ , tokenizer_r.encode , a__ , max_length=a__ , padding='''max_length''') # Simple input self.assertRaises(a__ , tokenizer_r.encode_plus , a__ , max_length=a__ , padding='''max_length''') # Simple input self.assertRaises( a__ , tokenizer_r.batch_encode_plus , a__ , max_length=a__ , padding='''max_length''' , ) # Pair input self.assertRaises(a__ , tokenizer_r.encode , a__ , max_length=a__ , padding='''max_length''') # Pair input self.assertRaises(a__ , tokenizer_r.encode_plus , a__ , max_length=a__ , padding='''max_length''') # Pair input self.assertRaises( a__ , tokenizer_r.batch_encode_plus , a__ , max_length=a__ , padding='''max_length''' , ) def snake_case_ ( self): A__ = CodeGenTokenizer.from_pretrained(self.tmpdirname , pad_token='''<pad>''') # Simple input A__ = '''This is a simple input''' A__ = ['''This is a simple input looooooooong''', '''This is a simple input'''] A__ = ('''This is a simple input''', '''This is a pair''') A__ = [ ('''This is a simple input loooooong''', '''This is a simple input'''), ('''This is a simple pair loooooong''', '''This is a simple pair'''), ] A__ = tokenizer.pad_token_id A__ = tokenizer(a__ , padding='''max_length''' , max_length=3_0 , return_tensors='''np''') A__ = tokenizer(a__ , padding=a__ , truncate=a__ , return_tensors='''np''') A__ = tokenizer(*a__ , padding='''max_length''' , max_length=6_0 , return_tensors='''np''') A__ = tokenizer(a__ , padding=a__ , truncate=a__ , return_tensors='''np''') # s # test single string max_length padding self.assertEqual(out_s['''input_ids'''].shape[-1] , 3_0) self.assertTrue(pad_token_id in out_s['''input_ids''']) self.assertTrue(0 in out_s['''attention_mask''']) # s2 # test automatic padding self.assertEqual(out_sa['''input_ids'''].shape[-1] , 3_3) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa['''input_ids'''][0]) self.assertFalse(0 in out_sa['''attention_mask'''][0]) # short slice does have padding self.assertTrue(pad_token_id in out_sa['''input_ids'''][1]) self.assertTrue(0 in out_sa['''attention_mask'''][1]) # p # test single pair max_length padding self.assertEqual(out_p['''input_ids'''].shape[-1] , 6_0) self.assertTrue(pad_token_id in out_p['''input_ids''']) self.assertTrue(0 in out_p['''attention_mask''']) # p2 # test automatic padding pair self.assertEqual(out_pa['''input_ids'''].shape[-1] , 5_2) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa['''input_ids'''][0]) self.assertFalse(0 in out_pa['''attention_mask'''][0]) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa['''input_ids'''][1]) self.assertTrue(0 in out_pa['''attention_mask'''][1]) def snake_case_ ( self): A__ = '''$$$''' A__ = CodeGenTokenizer.from_pretrained(self.tmpdirname , bos_token=a__ , add_bos_token=a__) A__ = '''This is a simple input''' A__ = ['''This is a simple input 1''', '''This is a simple input 2'''] A__ = tokenizer.bos_token_id A__ = tokenizer(a__) A__ = tokenizer(a__) self.assertEqual(out_s.input_ids[0] , a__) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids)) A__ = tokenizer.decode(out_s.input_ids) A__ = tokenizer.batch_decode(out_sa.input_ids) self.assertEqual(decode_s.split()[0] , a__) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa)) @slow def snake_case_ ( self): A__ = CodeGenTokenizer.from_pretrained('''Salesforce/codegen-350M-mono''') A__ = '''\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#''' A__ = '''\nif len_a > len_b: result = a\nelse: result = b''' A__ = tokenizer.encode(a__) A__ = ['''^#''', re.escape('''<|endoftext|>'''), '''^\'\'\'''', '''^"""''', '''\n\n\n'''] A__ = tokenizer.decode(a__ , truncate_before_pattern=a__) self.assertEqual(a__ , a__) def snake_case_ ( self): pass
526
# Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _lowercase = { "configuration_cpmant": ["CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP", "CpmAntConfig"], "tokenization_cpmant": ["CpmAntTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ "CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST", "CpmAntForCausalLM", "CpmAntModel", "CpmAntPreTrainedModel", ] if TYPE_CHECKING: from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig from .tokenization_cpmant import CpmAntTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_cpmant import ( CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST, CpmAntForCausalLM, CpmAntModel, CpmAntPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
526
1
"""simple docstring""" def a__ ( lowerCAmelCase = 1 , lowerCAmelCase = 10_00 ) -> Dict: UpperCAmelCase__ : Optional[int] = 1 UpperCAmelCase__ : Any = 0 for divide_by_number in range(__A , digit + 1 ): UpperCAmelCase__ : List[str] = [] UpperCAmelCase__ : str = numerator for _ in range(1 , digit + 1 ): if now_divide in has_been_divided: if longest_list_length < len(__A ): UpperCAmelCase__ : Tuple = len(__A ) UpperCAmelCase__ : int = divide_by_number else: has_been_divided.append(__A ) UpperCAmelCase__ : str = now_divide * 10 % divide_by_number return the_digit # Tests if __name__ == "__main__": import doctest doctest.testmod()
182
'''simple docstring''' import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument lowercase_ = { "/attention/": "/0/SelfAttention/", "/self_attention/": "/0/SelfAttention/", "/encoder_decoder_attention/": "/1/EncDecAttention/", "value": "v", "query": "q", "key": "k", "out": "o", "pre_self_attention_layer_norm": "0/layer_norm", "pre_cross_attention_layer_norm": "1/layer_norm", "pre_attention_layer_norm": "0/layer_norm", # previously 1, but seems wrong "token_embedder": "shared", "encoder_norm": "final_layer_norm", "decoder_norm": "final_layer_norm", "relpos_bias/rel_embedding": "block/0/layer/0/SelfAttention/relative_attention_bias/weight", "router/router_weights/w/": "router/classifier/", "roer/roer_weights/w/": "router/classifier/", "logits_dense": "lm_head", } def lowerCAmelCase (__A): """simple docstring""" _a = list(s_dict.keys()) for key in keys: _a = r'''.*/layers_(\d+)''' _a = key if re.match(__A , __A): _a = re.sub(r'''layers_(\d+)''' , r'''block/\1/layer''' , __A) _a = r'''(encoder|decoder)\/''' if re.match(__A , __A): _a = re.match(__A , __A).groups() if groups[0] == "encoder": _a = re.sub(r'''/mlp/''' , r'''/1/mlp/''' , __A) _a = re.sub(r'''/pre_mlp_layer_norm/''' , r'''/1/layer_norm/''' , __A) elif groups[0] == "decoder": _a = re.sub(r'''/mlp/''' , r'''/2/mlp/''' , __A) _a = re.sub(r'''/pre_mlp_layer_norm/''' , r'''/2/layer_norm/''' , __A) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: _a = new_key.replace(__A , __A) print(F'''{key} -> {new_key}''') _a = s_dict.pop(__A) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: _a = s_dict[ '''encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight''' ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: _a = s_dict[ '''decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight''' ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys()): if "expert" in key: _a = s_dict[key].shape[0] _a = s_dict[key] for idx in range(__A): _a = expert_weihts[idx] print(F'''{key} -> {key.replace('expert/' , 'nested fstring')}''') s_dict.pop(__A) return s_dict lowercase_ = { "NUM_ENCODER_LAYERS": "num_layers", "NUM_DECODER_LAYERS": "num_decoder_layers", "NUM_HEADS": "num_heads", "HEAD_DIM": "d_kv", "EMBED_DIM": "d_model", "MLP_DIM": "d_ff", "NUM_SELECTED_EXPERTS": "num_selected_experts", "NUM_ENCODER_SPARSE_LAYERS": "num_sparse_encoder_layers", "NUM_DECODER_SPARSE_LAYERS": "num_sparse_decoder_layers", "dense.MlpBlock.activations": "feed_forward_proj", } def lowerCAmelCase (__A , __A): """simple docstring""" import regex as re with open(__A , '''r''') as f: _a = f.read() _a = re.findall(r'''(.*) = ([0-9.]*)''' , __A) _a = {} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": _a = float(__A) if '''.''' in value else int(__A) _a = re.findall(r'''(.*activations) = \(\'(.*)\',\)''' , __A)[0] _a = str(activation[1]) _a = num_experts _a = SwitchTransformersConfig(**__A) return config def lowerCAmelCase (__A , __A , __A=None , __A="./" , __A=8): """simple docstring""" print(F'''Loading flax weights from : {flax_checkpoint_path}''') _a = checkpoints.load_tax_checkpoint(__A) if gin_file is not None: _a = convert_gin_to_config(__A , __A) else: _a = SwitchTransformersConfig.from_pretrained(__A) _a = SwitchTransformersForConditionalGeneration(__A) _a = flax_params['''target'''] _a = flatten_dict(__A , sep='''/''') _a = rename_keys(__A) _a = unflatten_dict(__A , sep='''/''') # Load the flax params in the PT model load_flax_weights_in_pytorch_model(__A , __A) print(F'''Save PyTorch model to {pytorch_dump_path}''') pt_model.save_pretrained(__A) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--switch_t5x_checkpoint_path", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the" " model architecture. If not provided, a `gin_file` has to be provided." ), ) parser.add_argument( "--gin_file", default=None, type=str, required=False, help="Path to the gin config file. If not provided, a `config_file` has to be passed ", ) parser.add_argument( "--config_name", default=None, type=str, required=False, help="Config name of SwitchTransformers model." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output pytorch model." ) parser.add_argument("--num_experts", default=8, type=int, required=False, help="Number of experts") lowercase_ = parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
11
0
import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class __a : def __init__( self : str , snake_case_ : Optional[int] , snake_case_ : List[str]=13 , snake_case_ : Tuple=7 , snake_case_ : Optional[int]=True , snake_case_ : List[str]=True , snake_case_ : List[str]=False , snake_case_ : List[Any]=True , snake_case_ : Union[str, Any]=99 , snake_case_ : Union[str, Any]=32 , snake_case_ : str=5 , snake_case_ : str=4 , snake_case_ : Union[str, Any]=37 , snake_case_ : List[str]="gelu" , snake_case_ : List[Any]=0.1 , snake_case_ : Union[str, Any]=0.1 , snake_case_ : Any=5_12 , snake_case_ : Union[str, Any]=16 , snake_case_ : str=2 , snake_case_ : Optional[Any]=0.0_2 , snake_case_ : List[str]=3 , snake_case_ : Union[str, Any]=4 , snake_case_ : Tuple=None , )-> Union[str, Any]: __lowerCAmelCase =parent __lowerCAmelCase =batch_size __lowerCAmelCase =seq_length __lowerCAmelCase =is_training __lowerCAmelCase =use_input_mask __lowerCAmelCase =use_token_type_ids __lowerCAmelCase =use_labels __lowerCAmelCase =vocab_size __lowerCAmelCase =hidden_size __lowerCAmelCase =num_hidden_layers __lowerCAmelCase =num_attention_heads __lowerCAmelCase =intermediate_size __lowerCAmelCase =hidden_act __lowerCAmelCase =hidden_dropout_prob __lowerCAmelCase =attention_probs_dropout_prob __lowerCAmelCase =max_position_embeddings __lowerCAmelCase =type_vocab_size __lowerCAmelCase =type_sequence_label_size __lowerCAmelCase =initializer_range __lowerCAmelCase =num_labels __lowerCAmelCase =num_choices __lowerCAmelCase =scope def UpperCamelCase ( self : Tuple)-> Optional[int]: __lowerCAmelCase =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) __lowerCAmelCase =None if self.use_input_mask: __lowerCAmelCase =random_attention_mask([self.batch_size, self.seq_length]) __lowerCAmelCase =None if self.use_token_type_ids: __lowerCAmelCase =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) __lowerCAmelCase =None __lowerCAmelCase =None __lowerCAmelCase =None if self.use_labels: __lowerCAmelCase =ids_tensor([self.batch_size] , self.type_sequence_label_size) __lowerCAmelCase =ids_tensor([self.batch_size, self.seq_length] , self.num_labels) __lowerCAmelCase =ids_tensor([self.batch_size] , self.num_choices) __lowerCAmelCase =self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase ( self : Any)-> List[str]: return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case_ , initializer_range=self.initializer_range , use_stable_embedding=snake_case_ , ) def UpperCamelCase ( self : str , snake_case_ : List[Any] , snake_case_ : Dict , snake_case_ : Union[str, Any] , snake_case_ : Union[str, Any] , snake_case_ : Optional[Any] , snake_case_ : Tuple , snake_case_ : Dict)-> Union[str, Any]: __lowerCAmelCase =OpenLlamaModel(config=snake_case_) model.to(snake_case_) model.eval() __lowerCAmelCase =model(snake_case_ , attention_mask=snake_case_) __lowerCAmelCase =model(snake_case_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def UpperCamelCase ( self : Tuple , snake_case_ : int , snake_case_ : List[str] , snake_case_ : Optional[int] , snake_case_ : List[Any] , snake_case_ : Dict , snake_case_ : Optional[int] , snake_case_ : Optional[Any] , snake_case_ : Optional[Any] , snake_case_ : int , )-> Optional[Any]: __lowerCAmelCase =True __lowerCAmelCase =OpenLlamaModel(snake_case_) model.to(snake_case_) model.eval() __lowerCAmelCase =model( snake_case_ , attention_mask=snake_case_ , encoder_hidden_states=snake_case_ , encoder_attention_mask=snake_case_ , ) __lowerCAmelCase =model( snake_case_ , attention_mask=snake_case_ , encoder_hidden_states=snake_case_ , ) __lowerCAmelCase =model(snake_case_ , attention_mask=snake_case_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def UpperCamelCase ( self : Optional[Any] , snake_case_ : List[Any] , snake_case_ : Optional[int] , snake_case_ : List[Any] , snake_case_ : Optional[Any] , snake_case_ : Optional[Any] , snake_case_ : int , snake_case_ : int , snake_case_ : List[Any] , snake_case_ : Tuple , )-> Any: __lowerCAmelCase =OpenLlamaForCausalLM(config=snake_case_) model.to(snake_case_) model.eval() __lowerCAmelCase =model(snake_case_ , attention_mask=snake_case_ , labels=snake_case_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def UpperCamelCase ( self : str , snake_case_ : List[Any] , snake_case_ : Dict , snake_case_ : List[Any] , snake_case_ : Union[str, Any] , snake_case_ : Optional[Any] , snake_case_ : Union[str, Any] , snake_case_ : Optional[int] , snake_case_ : List[Any] , snake_case_ : List[str] , )-> int: __lowerCAmelCase =True __lowerCAmelCase =True __lowerCAmelCase =OpenLlamaForCausalLM(config=snake_case_) model.to(snake_case_) model.eval() # first forward pass __lowerCAmelCase =model( snake_case_ , attention_mask=snake_case_ , encoder_hidden_states=snake_case_ , encoder_attention_mask=snake_case_ , use_cache=snake_case_ , ) __lowerCAmelCase =outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __lowerCAmelCase =ids_tensor((self.batch_size, 3) , config.vocab_size) __lowerCAmelCase =ids_tensor((self.batch_size, 3) , vocab_size=2) # append to next input_ids and __lowerCAmelCase =torch.cat([input_ids, next_tokens] , dim=-1) __lowerCAmelCase =torch.cat([input_mask, next_mask] , dim=-1) __lowerCAmelCase =model( snake_case_ , attention_mask=snake_case_ , encoder_hidden_states=snake_case_ , encoder_attention_mask=snake_case_ , output_hidden_states=snake_case_ , )["""hidden_states"""][0] __lowerCAmelCase =model( snake_case_ , attention_mask=snake_case_ , encoder_hidden_states=snake_case_ , encoder_attention_mask=snake_case_ , past_key_values=snake_case_ , output_hidden_states=snake_case_ , )["""hidden_states"""][0] # select random slice __lowerCAmelCase =ids_tensor((1,) , output_from_past.shape[-1]).item() __lowerCAmelCase =output_from_no_past[:, -3:, random_slice_idx].detach() __lowerCAmelCase =output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(snake_case_ , snake_case_ , atol=1e-3)) def UpperCamelCase ( self : Union[str, Any])-> List[str]: __lowerCAmelCase =self.prepare_config_and_inputs() ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) =config_and_inputs __lowerCAmelCase ={"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): SCREAMING_SNAKE_CASE = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) SCREAMING_SNAKE_CASE = (OpenLlamaForCausalLM,) if is_torch_available() else () SCREAMING_SNAKE_CASE = ( { "feature-extraction": OpenLlamaModel, "text-classification": OpenLlamaForSequenceClassification, "text-generation": OpenLlamaForCausalLM, "zero-shot": OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False def UpperCamelCase ( self : Union[str, Any])-> int: __lowerCAmelCase =OpenLlamaModelTester(self) __lowerCAmelCase =ConfigTester(self , config_class=snake_case_ , hidden_size=37) def UpperCamelCase ( self : List[Any])-> Optional[Any]: self.config_tester.run_common_tests() def UpperCamelCase ( self : int)-> int: __lowerCAmelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_) def UpperCamelCase ( self : Optional[int])-> Any: __lowerCAmelCase =self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __lowerCAmelCase =type self.model_tester.create_and_check_model(*snake_case_) def UpperCamelCase ( self : Optional[Any])-> Any: __lowerCAmelCase , __lowerCAmelCase =self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase =3 __lowerCAmelCase =input_dict["""input_ids"""] __lowerCAmelCase =input_ids.ne(1).to(snake_case_) __lowerCAmelCase =ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size) __lowerCAmelCase =OpenLlamaForSequenceClassification(snake_case_) model.to(snake_case_) model.eval() __lowerCAmelCase =model(snake_case_ , attention_mask=snake_case_ , labels=snake_case_) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) def UpperCamelCase ( self : Any)-> List[str]: __lowerCAmelCase , __lowerCAmelCase =self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase =3 __lowerCAmelCase ="""single_label_classification""" __lowerCAmelCase =input_dict["""input_ids"""] __lowerCAmelCase =input_ids.ne(1).to(snake_case_) __lowerCAmelCase =ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size) __lowerCAmelCase =OpenLlamaForSequenceClassification(snake_case_) model.to(snake_case_) model.eval() __lowerCAmelCase =model(snake_case_ , attention_mask=snake_case_ , labels=snake_case_) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) def UpperCamelCase ( self : int)-> List[str]: __lowerCAmelCase , __lowerCAmelCase =self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase =3 __lowerCAmelCase ="""multi_label_classification""" __lowerCAmelCase =input_dict["""input_ids"""] __lowerCAmelCase =input_ids.ne(1).to(snake_case_) __lowerCAmelCase =ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size).to(torch.float) __lowerCAmelCase =OpenLlamaForSequenceClassification(snake_case_) model.to(snake_case_) model.eval() __lowerCAmelCase =model(snake_case_ , attention_mask=snake_case_ , labels=snake_case_) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) @unittest.skip("""Open-Llama buffers include complex numbers, which breaks this test""") def UpperCamelCase ( self : str)-> int: pass @parameterized.expand([("""linear""",), ("""dynamic""",)]) def UpperCamelCase ( self : Dict , snake_case_ : List[str])-> Tuple: __lowerCAmelCase , __lowerCAmelCase =self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase =ids_tensor([1, 10] , config.vocab_size) __lowerCAmelCase =ids_tensor([1, int(config.max_position_embeddings * 1.5)] , config.vocab_size) set_seed(42) # Fixed seed at init time so the two models get the same random weights __lowerCAmelCase =OpenLlamaModel(snake_case_) original_model.to(snake_case_) original_model.eval() __lowerCAmelCase =original_model(snake_case_).last_hidden_state __lowerCAmelCase =original_model(snake_case_).last_hidden_state set_seed(42) # Fixed seed at init time so the two models get the same random weights __lowerCAmelCase ={"""type""": scaling_type, """factor""": 1_0.0} __lowerCAmelCase =OpenLlamaModel(snake_case_) scaled_model.to(snake_case_) scaled_model.eval() __lowerCAmelCase =scaled_model(snake_case_).last_hidden_state __lowerCAmelCase =scaled_model(snake_case_).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(snake_case_ , snake_case_ , atol=1e-5)) else: self.assertFalse(torch.allclose(snake_case_ , snake_case_ , atol=1e-5)) # The output should be different for long inputs self.assertFalse(torch.allclose(snake_case_ , snake_case_ , atol=1e-5))
456
def __lowerCAmelCase ( __lowerCamelCase : List[Any] ) -> Any: __lowerCAmelCase =[] __lowerCAmelCase =set({"""(""", """[""", """{"""} ) __lowerCAmelCase =set({""")""", """]""", """}"""} ) __lowerCAmelCase ={"""{""": """}""", """[""": """]""", """(""": """)"""} for i in range(len(__lowerCamelCase ) ): if s[i] in open_brackets: stack.append(s[i] ) elif s[i] in closed_brackets and ( len(__lowerCamelCase ) == 0 or (len(__lowerCamelCase ) > 0 and open_to_closed[stack.pop()] != s[i]) ): return False return len(__lowerCamelCase ) == 0 def __lowerCAmelCase ( ) -> List[str]: __lowerCAmelCase =input("""Enter sequence of brackets: """ ) if is_balanced(__lowerCamelCase ): print(__lowerCamelCase , """is balanced""" ) else: print(__lowerCamelCase , """is not balanced""" ) if __name__ == "__main__": main()
456
1
'''simple docstring''' from __future__ import annotations def _lowercase ( lowerCamelCase__ ) -> list[int]: """simple docstring""" __UpperCAmelCase : Union[str, Any] = 2 __UpperCAmelCase : List[str] = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(lowerCamelCase__ ) if n > 1: factors.append(lowerCamelCase__ ) return factors if __name__ == "__main__": import doctest doctest.testmod()
168
'''simple docstring''' import operator def _lowercase ( lowerCamelCase__ , lowerCamelCase__ = False , lowerCamelCase__ = None ) -> list: """simple docstring""" __UpperCAmelCase : Tuple = operator.lt if reverse else operator.gt __UpperCAmelCase : Any = solution or [] if not arr: return solution __UpperCAmelCase : Dict = [arr.pop(0 )] for i, item in enumerate(lowerCamelCase__ ): if _operator(lowerCamelCase__ , sublist[-1] ): sublist.append(lowerCamelCase__ ) arr.pop(lowerCamelCase__ ) # merging sublist into solution list if not solution: solution.extend(lowerCamelCase__ ) else: while sublist: __UpperCAmelCase : int = sublist.pop(0 ) for i, xx in enumerate(lowerCamelCase__ ): if not _operator(lowerCamelCase__ , lowerCamelCase__ ): solution.insert(lowerCamelCase__ , lowerCamelCase__ ) break else: solution.append(lowerCamelCase__ ) strand_sort(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) return solution if __name__ == "__main__": assert strand_sort([4, 3, 5, 1, 2]) == [1, 2, 3, 4, 5] assert strand_sort([4, 3, 5, 1, 2], reverse=True) == [5, 4, 3, 2, 1]
168
1
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() __snake_case : Optional[Any] = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) __snake_case : Union[str, Any] = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f'transformer.encoder.layers.{i}.self_attn.out_proj.weight', f'encoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (f'transformer.encoder.layers.{i}.self_attn.out_proj.bias', f'encoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear1.weight', f'encoder.layers.{i}.fc1.weight')) rename_keys.append((f'transformer.encoder.layers.{i}.linear1.bias', f'encoder.layers.{i}.fc1.bias')) rename_keys.append((f'transformer.encoder.layers.{i}.linear2.weight', f'encoder.layers.{i}.fc2.weight')) rename_keys.append((f'transformer.encoder.layers.{i}.linear2.bias', f'encoder.layers.{i}.fc2.bias')) rename_keys.append( (f'transformer.encoder.layers.{i}.norm1.weight', f'encoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.norm1.bias', f'encoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append((f'transformer.encoder.layers.{i}.norm2.weight', f'encoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((f'transformer.encoder.layers.{i}.norm2.bias', f'encoder.layers.{i}.final_layer_norm.bias')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (f'transformer.decoder.layers.{i}.self_attn.out_proj.weight', f'decoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.self_attn.out_proj.bias', f'decoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append( ( f'transformer.decoder.layers.{i}.cross_attn.out_proj.weight', f'decoder.layers.{i}.encoder_attn.out_proj.weight', ) ) rename_keys.append( ( f'transformer.decoder.layers.{i}.cross_attn.out_proj.bias', f'decoder.layers.{i}.encoder_attn.out_proj.bias', ) ) rename_keys.append((f'transformer.decoder.layers.{i}.linear1.weight', f'decoder.layers.{i}.fc1.weight')) rename_keys.append((f'transformer.decoder.layers.{i}.linear1.bias', f'decoder.layers.{i}.fc1.bias')) rename_keys.append((f'transformer.decoder.layers.{i}.linear2.weight', f'decoder.layers.{i}.fc2.weight')) rename_keys.append((f'transformer.decoder.layers.{i}.linear2.bias', f'decoder.layers.{i}.fc2.bias')) rename_keys.append( (f'transformer.decoder.layers.{i}.norm1.weight', f'decoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm1.bias', f'decoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append( (f'transformer.decoder.layers.{i}.norm2.weight', f'decoder.layers.{i}.encoder_attn_layer_norm.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.norm2.bias', f'decoder.layers.{i}.encoder_attn_layer_norm.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm3.weight', f'decoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((f'transformer.decoder.layers.{i}.norm3.bias', f'decoder.layers.{i}.final_layer_norm.bias')) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (f'transformer.decoder.layers.{i}.sa_qcontent_proj.weight', f'decoder.layers.{i}.sa_qcontent_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.sa_kcontent_proj.weight', f'decoder.layers.{i}.sa_kcontent_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.sa_qpos_proj.weight', f'decoder.layers.{i}.sa_qpos_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.sa_kpos_proj.weight', f'decoder.layers.{i}.sa_kpos_proj.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.sa_v_proj.weight', f'decoder.layers.{i}.sa_v_proj.weight')) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_qcontent_proj.weight', f'decoder.layers.{i}.ca_qcontent_proj.weight') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_kcontent_proj.weight', f'decoder.layers.{i}.ca_kcontent_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_kpos_proj.weight', f'decoder.layers.{i}.ca_kpos_proj.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.ca_v_proj.weight', f'decoder.layers.{i}.ca_v_proj.weight')) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight', f'decoder.layers.{i}.ca_qpos_sine_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.sa_qcontent_proj.bias', f'decoder.layers.{i}.sa_qcontent_proj.bias') ) rename_keys.append( (f'transformer.decoder.layers.{i}.sa_kcontent_proj.bias', f'decoder.layers.{i}.sa_kcontent_proj.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.sa_qpos_proj.bias', f'decoder.layers.{i}.sa_qpos_proj.bias')) rename_keys.append((f'transformer.decoder.layers.{i}.sa_kpos_proj.bias', f'decoder.layers.{i}.sa_kpos_proj.bias')) rename_keys.append((f'transformer.decoder.layers.{i}.sa_v_proj.bias', f'decoder.layers.{i}.sa_v_proj.bias')) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_qcontent_proj.bias', f'decoder.layers.{i}.ca_qcontent_proj.bias') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_kcontent_proj.bias', f'decoder.layers.{i}.ca_kcontent_proj.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.ca_kpos_proj.bias', f'decoder.layers.{i}.ca_kpos_proj.bias')) rename_keys.append((f'transformer.decoder.layers.{i}.ca_v_proj.bias', f'decoder.layers.{i}.ca_v_proj.bias')) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias', f'decoder.layers.{i}.ca_qpos_sine_proj.bias') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ("""input_proj.weight""", """input_projection.weight"""), ("""input_proj.bias""", """input_projection.bias"""), ("""query_embed.weight""", """query_position_embeddings.weight"""), ("""transformer.decoder.norm.weight""", """decoder.layernorm.weight"""), ("""transformer.decoder.norm.bias""", """decoder.layernorm.bias"""), ("""class_embed.weight""", """class_labels_classifier.weight"""), ("""class_embed.bias""", """class_labels_classifier.bias"""), ("""bbox_embed.layers.0.weight""", """bbox_predictor.layers.0.weight"""), ("""bbox_embed.layers.0.bias""", """bbox_predictor.layers.0.bias"""), ("""bbox_embed.layers.1.weight""", """bbox_predictor.layers.1.weight"""), ("""bbox_embed.layers.1.bias""", """bbox_predictor.layers.1.bias"""), ("""bbox_embed.layers.2.weight""", """bbox_predictor.layers.2.weight"""), ("""bbox_embed.layers.2.bias""", """bbox_predictor.layers.2.bias"""), ("""transformer.decoder.ref_point_head.layers.0.weight""", """decoder.ref_point_head.layers.0.weight"""), ("""transformer.decoder.ref_point_head.layers.0.bias""", """decoder.ref_point_head.layers.0.bias"""), ("""transformer.decoder.ref_point_head.layers.1.weight""", """decoder.ref_point_head.layers.1.weight"""), ("""transformer.decoder.ref_point_head.layers.1.bias""", """decoder.ref_point_head.layers.1.bias"""), ("""transformer.decoder.query_scale.layers.0.weight""", """decoder.query_scale.layers.0.weight"""), ("""transformer.decoder.query_scale.layers.0.bias""", """decoder.query_scale.layers.0.bias"""), ("""transformer.decoder.query_scale.layers.1.weight""", """decoder.query_scale.layers.1.weight"""), ("""transformer.decoder.query_scale.layers.1.bias""", """decoder.query_scale.layers.1.bias"""), ("""transformer.decoder.layers.0.ca_qpos_proj.weight""", """decoder.layers.0.ca_qpos_proj.weight"""), ("""transformer.decoder.layers.0.ca_qpos_proj.bias""", """decoder.layers.0.ca_qpos_proj.bias"""), ] ) def _UpperCamelCase ( UpperCamelCase_ : Optional[int] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Optional[Any] ) -> Any: """simple docstring""" lowerCAmelCase__ = state_dict.pop(UpperCamelCase_ ) lowerCAmelCase__ = val def _UpperCamelCase ( UpperCamelCase_ : str ) -> Any: """simple docstring""" lowerCAmelCase__ = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: lowerCAmelCase__ = key.replace('backbone.0.body' , 'backbone.conv_encoder.model' ) lowerCAmelCase__ = value else: lowerCAmelCase__ = value return new_state_dict def _UpperCamelCase ( UpperCamelCase_ : Any , UpperCamelCase_ : List[Any]=False ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase__ = '' if is_panoptic: lowerCAmelCase__ = 'conditional_detr.' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) lowerCAmelCase__ = state_dict.pop(F"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight" ) lowerCAmelCase__ = state_dict.pop(F"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias" ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase__ = in_proj_weight[:256, :] lowerCAmelCase__ = in_proj_bias[:256] lowerCAmelCase__ = in_proj_weight[256:512, :] lowerCAmelCase__ = in_proj_bias[256:512] lowerCAmelCase__ = in_proj_weight[-256:, :] lowerCAmelCase__ = in_proj_bias[-256:] def _UpperCamelCase ( ) -> List[str]: """simple docstring""" lowerCAmelCase__ = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowerCAmelCase__ = Image.open(requests.get(UpperCamelCase_ , stream=UpperCamelCase_ ).raw ) return im @torch.no_grad() def _UpperCamelCase ( UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Tuple ) -> Any: """simple docstring""" lowerCAmelCase__ = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: lowerCAmelCase__ = 'resnet101' if "dc5" in model_name: lowerCAmelCase__ = True lowerCAmelCase__ = 'panoptic' in model_name if is_panoptic: lowerCAmelCase__ = 250 else: lowerCAmelCase__ = 91 lowerCAmelCase__ = 'huggingface/label-files' lowerCAmelCase__ = 'coco-detection-id2label.json' lowerCAmelCase__ = json.load(open(hf_hub_download(UpperCamelCase_ , UpperCamelCase_ , repo_type='dataset' ) , 'r' ) ) lowerCAmelCase__ = {int(UpperCamelCase_ ): v for k, v in idalabel.items()} lowerCAmelCase__ = idalabel lowerCAmelCase__ = {v: k for k, v in idalabel.items()} # load image processor lowerCAmelCase__ = 'coco_panoptic' if is_panoptic else 'coco_detection' lowerCAmelCase__ = ConditionalDetrImageProcessor(format=UpperCamelCase_ ) # prepare image lowerCAmelCase__ = prepare_img() lowerCAmelCase__ = image_processor(images=UpperCamelCase_ , return_tensors='pt' ) lowerCAmelCase__ = encoding['pixel_values'] logger.info(F"Converting model {model_name}..." ) # load original model from torch hub lowerCAmelCase__ = torch.hub.load('DeppMeng/ConditionalDETR' , UpperCamelCase_ , pretrained=UpperCamelCase_ ).eval() lowerCAmelCase__ = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: lowerCAmelCase__ = 'conditional_detr.' + src rename_key(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase__ = rename_backbone_keys(UpperCamelCase_ ) # query, key and value matrices need special treatment read_in_q_k_v(UpperCamelCase_ , is_panoptic=UpperCamelCase_ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them lowerCAmelCase__ = 'conditional_detr.model.' if is_panoptic else 'model.' for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith('conditional_detr' ) and not key.startswith('class_labels_classifier' ) and not key.startswith('bbox_predictor' ) ): lowerCAmelCase__ = state_dict.pop(UpperCamelCase_ ) lowerCAmelCase__ = val elif "class_labels_classifier" in key or "bbox_predictor" in key: lowerCAmelCase__ = state_dict.pop(UpperCamelCase_ ) lowerCAmelCase__ = val elif key.startswith('bbox_attention' ) or key.startswith('mask_head' ): continue else: lowerCAmelCase__ = state_dict.pop(UpperCamelCase_ ) lowerCAmelCase__ = val else: if not key.startswith('class_labels_classifier' ) and not key.startswith('bbox_predictor' ): lowerCAmelCase__ = state_dict.pop(UpperCamelCase_ ) lowerCAmelCase__ = val # finally, create HuggingFace model and load state dict lowerCAmelCase__ = ConditionalDetrForSegmentation(UpperCamelCase_ ) if is_panoptic else ConditionalDetrForObjectDetection(UpperCamelCase_ ) model.load_state_dict(UpperCamelCase_ ) model.eval() model.push_to_hub(repo_id=UpperCamelCase_ , organization='DepuMeng' , commit_message='Add model' ) # verify our conversion lowerCAmelCase__ = conditional_detr(UpperCamelCase_ ) lowerCAmelCase__ = model(UpperCamelCase_ ) assert torch.allclose(outputs.logits , original_outputs['pred_logits'] , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes , original_outputs['pred_boxes'] , atol=1e-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs['pred_masks'] , atol=1e-4 ) # Save model and image processor logger.info(F"Saving PyTorch model and image processor to {pytorch_dump_folder_path}..." ) Path(UpperCamelCase_ ).mkdir(exist_ok=UpperCamelCase_ ) model.save_pretrained(UpperCamelCase_ ) image_processor.save_pretrained(UpperCamelCase_ ) if __name__ == "__main__": __snake_case : Optional[int] = argparse.ArgumentParser() parser.add_argument( """--model_name""", default="""conditional_detr_resnet50""", type=str, help="""Name of the CONDITIONAL_DETR model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) __snake_case : Any = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
365
import argparse import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert from transformers.utils import logging logging.set_verbosity_info() def _UpperCamelCase ( UpperCamelCase_ : Dict , UpperCamelCase_ : str , UpperCamelCase_ : Optional[Any] ) -> Any: """simple docstring""" lowerCAmelCase__ = BertConfig.from_json_file(UpperCamelCase_ ) print(F"Building PyTorch model from configuration: {config}" ) lowerCAmelCase__ = BertForPreTraining(UpperCamelCase_ ) # Load weights from tf checkpoint load_tf_weights_in_bert(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # Save pytorch-model print(F"Save PyTorch model to {pytorch_dump_path}" ) torch.save(model.state_dict() , UpperCamelCase_ ) if __name__ == "__main__": __snake_case : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--bert_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained BERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) __snake_case : List[str] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
365
1
import requests from bsa import BeautifulSoup def _lowerCamelCase ( SCREAMING_SNAKE_CASE_ : str = "AAPL" ): """simple docstring""" a_ : Optional[Any] = F"""https://in.finance.yahoo.com/quote/{symbol}?s={symbol}""" a_ : Optional[int] = BeautifulSoup(requests.get(SCREAMING_SNAKE_CASE_ ).text , """html.parser""" ) a_ : Tuple = """My(6px) Pos(r) smartphone_Mt(6px)""" return soup.find("""div""" , class_=class_ ).find("""span""" ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(F"""Current {symbol:<4} stock price is {stock_price(symbol):>8}""")
419
from __future__ import annotations from cmath import sqrt def _lowerCamelCase ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ): """simple docstring""" if a == 0: raise ValueError("""Coefficient 'a' must not be zero.""" ) a_ : Any = b * b - 4 * a * c a_ : List[str] = (-b + sqrt(SCREAMING_SNAKE_CASE_ )) / (2 * a) a_ : Union[str, Any] = (-b - sqrt(SCREAMING_SNAKE_CASE_ )) / (2 * a) return ( root_a.real if not root_a.imag else root_a, root_a.real if not root_a.imag else root_a, ) def _lowerCamelCase ( ): """simple docstring""" a_ , a_ : str = quadratic_roots(a=5 , b=6 , c=1 ) print(F"""The solutions are: {solutiona} and {solutiona}""" ) if __name__ == "__main__": main()
419
1
'''simple docstring''' import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() snake_case_ : List[str] = logging.get_logger(__name__) snake_case_ : List[Any] = { "b0": efficientnet.EfficientNetBa, "b1": efficientnet.EfficientNetBa, "b2": efficientnet.EfficientNetBa, "b3": efficientnet.EfficientNetBa, "b4": efficientnet.EfficientNetBa, "b5": efficientnet.EfficientNetBa, "b6": efficientnet.EfficientNetBa, "b7": efficientnet.EfficientNetBa, } snake_case_ : Optional[Any] = { "b0": { "hidden_dim": 12_80, "width_coef": 1.0, "depth_coef": 1.0, "image_size": 2_24, "dropout_rate": 0.2, "dw_padding": [], }, "b1": { "hidden_dim": 12_80, "width_coef": 1.0, "depth_coef": 1.1, "image_size": 2_40, "dropout_rate": 0.2, "dw_padding": [16], }, "b2": { "hidden_dim": 14_08, "width_coef": 1.1, "depth_coef": 1.2, "image_size": 2_60, "dropout_rate": 0.3, "dw_padding": [5, 8, 16], }, "b3": { "hidden_dim": 15_36, "width_coef": 1.2, "depth_coef": 1.4, "image_size": 3_00, "dropout_rate": 0.3, "dw_padding": [5, 18], }, "b4": { "hidden_dim": 17_92, "width_coef": 1.4, "depth_coef": 1.8, "image_size": 3_80, "dropout_rate": 0.4, "dw_padding": [6], }, "b5": { "hidden_dim": 20_48, "width_coef": 1.6, "depth_coef": 2.2, "image_size": 4_56, "dropout_rate": 0.4, "dw_padding": [13, 27], }, "b6": { "hidden_dim": 23_04, "width_coef": 1.8, "depth_coef": 2.6, "image_size": 5_28, "dropout_rate": 0.5, "dw_padding": [31], }, "b7": { "hidden_dim": 25_60, "width_coef": 2.0, "depth_coef": 3.1, "image_size": 6_00, "dropout_rate": 0.5, "dw_padding": [18], }, } def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : str ) -> Dict: UpperCAmelCase_ : int = EfficientNetConfig() UpperCAmelCase_ : str = CONFIG_MAP[model_name]['''hidden_dim'''] UpperCAmelCase_ : Any = CONFIG_MAP[model_name]['''width_coef'''] UpperCAmelCase_ : Tuple = CONFIG_MAP[model_name]['''depth_coef'''] UpperCAmelCase_ : List[Any] = CONFIG_MAP[model_name]['''image_size'''] UpperCAmelCase_ : int = CONFIG_MAP[model_name]['''dropout_rate'''] UpperCAmelCase_ : Optional[int] = CONFIG_MAP[model_name]['''dw_padding'''] UpperCAmelCase_ : int = '''huggingface/label-files''' UpperCAmelCase_ : Dict = '''imagenet-1k-id2label.json''' UpperCAmelCase_ : Union[str, Any] = 1000 UpperCAmelCase_ : Tuple = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, repo_type='''dataset''' ), '''r''' ) ) UpperCAmelCase_ : str = {int(SCREAMING_SNAKE_CASE__ ): v for k, v in idalabel.items()} UpperCAmelCase_ : Any = idalabel UpperCAmelCase_ : List[str] = {v: k for k, v in idalabel.items()} return config def lowerCamelCase_ ( ) -> Optional[Any]: UpperCAmelCase_ : Optional[int] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' UpperCAmelCase_ : List[Any] = Image.open(requests.get(SCREAMING_SNAKE_CASE__, stream=SCREAMING_SNAKE_CASE__ ).raw ) return im def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Optional[int] ) -> List[str]: UpperCAmelCase_ : Optional[Any] = CONFIG_MAP[model_name]['''image_size'''] UpperCAmelCase_ : str = EfficientNetImageProcessor( size={'''height''': size, '''width''': size}, image_mean=[0.4_85, 0.4_56, 0.4_06], image_std=[0.47_85_39_44, 0.4_73_28_64, 0.47_43_41_63], do_center_crop=SCREAMING_SNAKE_CASE__, ) return preprocessor def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int ) -> Tuple: UpperCAmelCase_ : Dict = [v.split('''_''' )[0].split('''block''' )[1] for v in original_param_names if v.startswith('''block''' )] UpperCAmelCase_ : Optional[int] = sorted(set(SCREAMING_SNAKE_CASE__ ) ) UpperCAmelCase_ : Union[str, Any] = len(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : str = {b: str(SCREAMING_SNAKE_CASE__ ) for b, i in zip(SCREAMING_SNAKE_CASE__, range(SCREAMING_SNAKE_CASE__ ) )} UpperCAmelCase_ : Optional[int] = [] rename_keys.append(('''stem_conv/kernel:0''', '''embeddings.convolution.weight''') ) rename_keys.append(('''stem_bn/gamma:0''', '''embeddings.batchnorm.weight''') ) rename_keys.append(('''stem_bn/beta:0''', '''embeddings.batchnorm.bias''') ) rename_keys.append(('''stem_bn/moving_mean:0''', '''embeddings.batchnorm.running_mean''') ) rename_keys.append(('''stem_bn/moving_variance:0''', '''embeddings.batchnorm.running_var''') ) for b in block_names: UpperCAmelCase_ : Union[str, Any] = block_name_mapping[b] rename_keys.append((F"""block{b}_expand_conv/kernel:0""", F"""encoder.blocks.{hf_b}.expansion.expand_conv.weight""") ) rename_keys.append((F"""block{b}_expand_bn/gamma:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.weight""") ) rename_keys.append((F"""block{b}_expand_bn/beta:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.bias""") ) rename_keys.append( (F"""block{b}_expand_bn/moving_mean:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.running_mean""") ) rename_keys.append( (F"""block{b}_expand_bn/moving_variance:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.running_var""") ) rename_keys.append( (F"""block{b}_dwconv/depthwise_kernel:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight""") ) rename_keys.append((F"""block{b}_bn/gamma:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight""") ) rename_keys.append((F"""block{b}_bn/beta:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias""") ) rename_keys.append( (F"""block{b}_bn/moving_mean:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean""") ) rename_keys.append( (F"""block{b}_bn/moving_variance:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var""") ) rename_keys.append((F"""block{b}_se_reduce/kernel:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.reduce.weight""") ) rename_keys.append((F"""block{b}_se_reduce/bias:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.reduce.bias""") ) rename_keys.append((F"""block{b}_se_expand/kernel:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.expand.weight""") ) rename_keys.append((F"""block{b}_se_expand/bias:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.expand.bias""") ) rename_keys.append( (F"""block{b}_project_conv/kernel:0""", F"""encoder.blocks.{hf_b}.projection.project_conv.weight""") ) rename_keys.append((F"""block{b}_project_bn/gamma:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.weight""") ) rename_keys.append((F"""block{b}_project_bn/beta:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.bias""") ) rename_keys.append( (F"""block{b}_project_bn/moving_mean:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.running_mean""") ) rename_keys.append( (F"""block{b}_project_bn/moving_variance:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.running_var""") ) rename_keys.append(('''top_conv/kernel:0''', '''encoder.top_conv.weight''') ) rename_keys.append(('''top_bn/gamma:0''', '''encoder.top_bn.weight''') ) rename_keys.append(('''top_bn/beta:0''', '''encoder.top_bn.bias''') ) rename_keys.append(('''top_bn/moving_mean:0''', '''encoder.top_bn.running_mean''') ) rename_keys.append(('''top_bn/moving_variance:0''', '''encoder.top_bn.running_var''') ) UpperCAmelCase_ : Optional[int] = {} for item in rename_keys: if item[0] in original_param_names: UpperCAmelCase_ : Optional[int] = '''efficientnet.''' + item[1] UpperCAmelCase_ : Any = '''classifier.weight''' UpperCAmelCase_ : Dict = '''classifier.bias''' return key_mapping def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Optional[Any], SCREAMING_SNAKE_CASE__ : int, SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Optional[int]: for key, value in tf_params.items(): if "normalization" in key: continue UpperCAmelCase_ : List[str] = key_mapping[key] if "_conv" in key and "kernel" in key: UpperCAmelCase_ : Union[str, Any] = torch.from_numpy(SCREAMING_SNAKE_CASE__ ).permute(3, 2, 0, 1 ) elif "depthwise_kernel" in key: UpperCAmelCase_ : Tuple = torch.from_numpy(SCREAMING_SNAKE_CASE__ ).permute(2, 3, 0, 1 ) elif "kernel" in key: UpperCAmelCase_ : str = torch.from_numpy(np.transpose(SCREAMING_SNAKE_CASE__ ) ) else: UpperCAmelCase_ : Tuple = torch.from_numpy(SCREAMING_SNAKE_CASE__ ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(SCREAMING_SNAKE_CASE__ ) @torch.no_grad() def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : List[Any], SCREAMING_SNAKE_CASE__ : Dict, SCREAMING_SNAKE_CASE__ : Any, SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Any: UpperCAmelCase_ : Optional[Any] = model_classes[model_name]( include_top=SCREAMING_SNAKE_CASE__, weights='''imagenet''', input_tensor=SCREAMING_SNAKE_CASE__, input_shape=SCREAMING_SNAKE_CASE__, pooling=SCREAMING_SNAKE_CASE__, classes=1000, classifier_activation='''softmax''', ) UpperCAmelCase_ : int = original_model.trainable_variables UpperCAmelCase_ : List[Any] = original_model.non_trainable_variables UpperCAmelCase_ : Tuple = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: UpperCAmelCase_ : Dict = param.numpy() UpperCAmelCase_ : Dict = list(tf_params.keys() ) # Load HuggingFace model UpperCAmelCase_ : str = get_efficientnet_config(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : Optional[int] = EfficientNetForImageClassification(SCREAMING_SNAKE_CASE__ ).eval() UpperCAmelCase_ : Optional[int] = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print('''Converting parameters...''' ) UpperCAmelCase_ : List[Any] = rename_keys(SCREAMING_SNAKE_CASE__ ) replace_params(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) # Initialize preprocessor and preprocess input image UpperCAmelCase_ : Optional[Any] = convert_image_processor(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : Union[str, Any] = preprocessor(images=prepare_img(), return_tensors='''pt''' ) # HF model inference hf_model.eval() with torch.no_grad(): UpperCAmelCase_ : str = hf_model(**SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : Dict = outputs.logits.detach().numpy() # Original model inference UpperCAmelCase_ : List[str] = False UpperCAmelCase_ : Union[str, Any] = CONFIG_MAP[model_name]['''image_size'''] UpperCAmelCase_ : str = prepare_img().resize((image_size, image_size), resample=PIL.Image.NEAREST ) UpperCAmelCase_ : Union[str, Any] = image.img_to_array(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : Optional[Any] = np.expand_dims(SCREAMING_SNAKE_CASE__, axis=0 ) UpperCAmelCase_ : Optional[int] = original_model.predict(SCREAMING_SNAKE_CASE__ ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, atol=1E-3 ), "The predicted logits are not the same." print('''Model outputs match!''' ) if save_model: # Create folder to save model if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): os.mkdir(SCREAMING_SNAKE_CASE__ ) # Save converted model and image processor hf_model.save_pretrained(SCREAMING_SNAKE_CASE__ ) preprocessor.save_pretrained(SCREAMING_SNAKE_CASE__ ) if push_to_hub: # Push model and image processor to hub print(F"""Pushing converted {model_name} to the hub...""" ) UpperCAmelCase_ : List[str] = F"""efficientnet-{model_name}""" preprocessor.push_to_hub(SCREAMING_SNAKE_CASE__ ) hf_model.push_to_hub(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": snake_case_ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="b0", type=str, help="Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].", ) parser.add_argument( "--pytorch_dump_folder_path", default="hf_model", type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument("--save_model", action="store_true", help="Save model to local") parser.add_argument("--push_to_hub", action="store_true", help="Push model and image processor to the hub") snake_case_ : List[Any] = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
644
'''simple docstring''' def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int ) -> str: if number > 0: raise ValueError('''input must be a negative integer''' ) UpperCAmelCase_ : Union[str, Any] = len(bin(SCREAMING_SNAKE_CASE__ )[3:] ) UpperCAmelCase_ : Union[str, Any] = bin(abs(SCREAMING_SNAKE_CASE__ ) - (1 << binary_number_length) )[3:] UpperCAmelCase_ : Optional[Any] = ( ( '''1''' + '''0''' * (binary_number_length - len(SCREAMING_SNAKE_CASE__ )) + twos_complement_number ) if number < 0 else '''0''' ) return "0b" + twos_complement_number if __name__ == "__main__": import doctest doctest.testmod()
644
1
import re def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ ) -> list: '''simple docstring''' return [char.split() for char in re.split(R'''[^ a-z A-Z 0-9 \s]''' , str_ )] def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ ) -> str: '''simple docstring''' UpperCAmelCase = split_input(str_ ) return "".join( [''''''.join([char.capitalize() for char in sub_str] ) for sub_str in string_split] ) def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> str: '''simple docstring''' try: UpperCAmelCase = split_input(UpperCamelCase__ ) if upper: UpperCAmelCase = ''''''.join( [ separator.join([char.upper() for char in sub_str] ) for sub_str in string_split ] ) else: UpperCAmelCase = ''''''.join( [ separator.join([char.lower() for char in sub_str] ) for sub_str in string_split ] ) return res_str except IndexError: return "not valid string" def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ ) -> str: '''simple docstring''' return to_simple_case(UpperCamelCase__ ) def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ ) -> str: '''simple docstring''' try: UpperCAmelCase = to_simple_case(UpperCamelCase__ ) return res_str[0].lower() + res_str[1:] except IndexError: return "not valid string" def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ , UpperCamelCase__ ) -> str: '''simple docstring''' return to_complex_case(UpperCamelCase__ , UpperCamelCase__ , '''_''' ) def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ , UpperCamelCase__ ) -> str: '''simple docstring''' return to_complex_case(UpperCamelCase__ , UpperCamelCase__ , '''-''' ) if __name__ == "__main__": __import__("doctest").testmod()
130
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.activations import gelu_new, gelu_python, get_activation @require_torch class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self ) -> int: '''simple docstring''' __lowerCamelCase = torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100] ) __lowerCamelCase = get_activation('gelu' ) self.assertTrue(torch.allclose(gelu_python(lowerCamelCase__ ) , torch_builtin(lowerCamelCase__ ) ) ) self.assertFalse(torch.allclose(gelu_python(lowerCamelCase__ ) , gelu_new(lowerCamelCase__ ) ) ) def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' __lowerCamelCase = torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100] ) __lowerCamelCase = get_activation('gelu' ) __lowerCamelCase = get_activation('gelu_10' ) __lowerCamelCase = torch_builtin(lowerCamelCase__ ) __lowerCamelCase = geluaa(lowerCamelCase__ ) __lowerCamelCase = torch.where(y_gelu_aa < 10.0 , 1 , 0 ) self.assertTrue(torch.max(lowerCamelCase__ ).item() == 10.0 ) self.assertTrue(torch.allclose(y_gelu * clipped_mask , y_gelu_aa * clipped_mask ) ) def lowercase_ ( self ) -> Any: '''simple docstring''' get_activation('gelu' ) get_activation('gelu_10' ) get_activation('gelu_fast' ) get_activation('gelu_new' ) get_activation('gelu_python' ) get_activation('gelu_pytorch_tanh' ) get_activation('linear' ) get_activation('mish' ) get_activation('quick_gelu' ) get_activation('relu' ) get_activation('sigmoid' ) get_activation('silu' ) get_activation('swish' ) get_activation('tanh' ) with self.assertRaises(lowerCamelCase__ ): get_activation('bogus' ) with self.assertRaises(lowerCamelCase__ ): get_activation(lowerCamelCase__ ) def lowercase_ ( self ) -> Dict: '''simple docstring''' __lowerCamelCase = get_activation('gelu' ) __lowerCamelCase = 1 __lowerCamelCase = get_activation('gelu' ) self.assertEqual(acta.a , 1 ) with self.assertRaises(lowerCamelCase__ ): __lowerCamelCase = acta.a
469
0
import datetime import platform import subprocess from typing import Optional, Tuple, Union import numpy as np def _a ( lowercase__ : bytes , lowercase__ : int ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] = f'''{sampling_rate}''' SCREAMING_SNAKE_CASE__ : Optional[int] = '1' SCREAMING_SNAKE_CASE__ : int = 'f32le' SCREAMING_SNAKE_CASE__ : int = [ 'ffmpeg', '-i', 'pipe:0', '-ac', ac, '-ar', ar, '-f', format_for_conversion, '-hide_banner', '-loglevel', 'quiet', 'pipe:1', ] try: with subprocess.Popen(lowercase__ , stdin=subprocess.PIPE , stdout=subprocess.PIPE ) as ffmpeg_process: SCREAMING_SNAKE_CASE__ : Dict = ffmpeg_process.communicate(lowercase__ ) except FileNotFoundError as error: raise ValueError('ffmpeg was not found but is required to load audio files from filename' ) from error SCREAMING_SNAKE_CASE__ : Tuple = output_stream[0] SCREAMING_SNAKE_CASE__ : Any = np.frombuffer(lowercase__ , np.floataa ) if audio.shape[0] == 0: raise ValueError('Malformed soundfile' ) return audio def _a ( lowercase__ : int , lowercase__ : float , lowercase__ : str = "f32le" , ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple = f'''{sampling_rate}''' SCREAMING_SNAKE_CASE__ : Optional[Any] = '1' if format_for_conversion == "s16le": SCREAMING_SNAKE_CASE__ : Optional[Any] = 2 elif format_for_conversion == "f32le": SCREAMING_SNAKE_CASE__ : List[str] = 4 else: raise ValueError(f'''Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`''' ) SCREAMING_SNAKE_CASE__ : List[str] = platform.system() if system == "Linux": SCREAMING_SNAKE_CASE__ : Any = 'alsa' SCREAMING_SNAKE_CASE__ : int = 'default' elif system == "Darwin": SCREAMING_SNAKE_CASE__ : str = 'avfoundation' SCREAMING_SNAKE_CASE__ : Dict = ':0' elif system == "Windows": SCREAMING_SNAKE_CASE__ : Any = 'dshow' SCREAMING_SNAKE_CASE__ : Any = 'default' SCREAMING_SNAKE_CASE__ : List[str] = [ 'ffmpeg', '-f', format_, '-i', input_, '-ac', ac, '-ar', ar, '-f', format_for_conversion, '-fflags', 'nobuffer', '-hide_banner', '-loglevel', 'quiet', 'pipe:1', ] SCREAMING_SNAKE_CASE__ : Any = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample SCREAMING_SNAKE_CASE__ : List[Any] = _ffmpeg_stream(lowercase__ , lowercase__ ) for item in iterator: yield item def _a ( lowercase__ : int , lowercase__ : float , lowercase__ : Optional[int] = None , lowercase__ : Optional[Union[Tuple[float, float], float]] = None , lowercase__ : str = "f32le" , ): '''simple docstring''' if stream_chunk_s is not None: SCREAMING_SNAKE_CASE__ : Dict = stream_chunk_s else: SCREAMING_SNAKE_CASE__ : Optional[Any] = chunk_length_s SCREAMING_SNAKE_CASE__ : Union[str, Any] = ffmpeg_microphone(lowercase__ , lowercase__ , format_for_conversion=lowercase__ ) if format_for_conversion == "s16le": SCREAMING_SNAKE_CASE__ : Tuple = np.intaa SCREAMING_SNAKE_CASE__ : Any = 2 elif format_for_conversion == "f32le": SCREAMING_SNAKE_CASE__ : Any = np.floataa SCREAMING_SNAKE_CASE__ : int = 4 else: raise ValueError(f'''Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`''' ) if stride_length_s is None: SCREAMING_SNAKE_CASE__ : str = chunk_length_s / 6 SCREAMING_SNAKE_CASE__ : str = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample if isinstance(lowercase__ , (int, float) ): SCREAMING_SNAKE_CASE__ : Optional[Any] = [stride_length_s, stride_length_s] SCREAMING_SNAKE_CASE__ : Optional[int] = int(round(sampling_rate * stride_length_s[0] ) ) * size_of_sample SCREAMING_SNAKE_CASE__ : str = int(round(sampling_rate * stride_length_s[1] ) ) * size_of_sample SCREAMING_SNAKE_CASE__ : Any = datetime.datetime.now() SCREAMING_SNAKE_CASE__ : Any = datetime.timedelta(seconds=lowercase__ ) for item in chunk_bytes_iter(lowercase__ , lowercase__ , stride=(stride_left, stride_right) , stream=lowercase__ ): # Put everything back in numpy scale SCREAMING_SNAKE_CASE__ : Any = np.frombuffer(item['raw'] , dtype=lowercase__ ) SCREAMING_SNAKE_CASE__ : Optional[int] = ( item['stride'][0] // size_of_sample, item['stride'][1] // size_of_sample, ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = sampling_rate audio_time += delta if datetime.datetime.now() > audio_time + 10 * delta: # We're late !! SKIP continue yield item def _a ( lowercase__ : Any , lowercase__ : int , lowercase__ : Tuple[int, int] , lowercase__ : bool = False ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = b'' SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : int = stride if stride_left + stride_right >= chunk_len: raise ValueError( f'''Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}''' ) SCREAMING_SNAKE_CASE__ : Optional[Any] = 0 for raw in iterator: acc += raw if stream and len(lowercase__ ) < chunk_len: SCREAMING_SNAKE_CASE__ : Dict = (_stride_left, 0) yield {"raw": acc[:chunk_len], "stride": stride, "partial": True} else: while len(lowercase__ ) >= chunk_len: # We are flushing the accumulator SCREAMING_SNAKE_CASE__ : List[Any] = (_stride_left, stride_right) SCREAMING_SNAKE_CASE__ : List[str] = {'raw': acc[:chunk_len], 'stride': stride} if stream: SCREAMING_SNAKE_CASE__ : List[str] = False yield item SCREAMING_SNAKE_CASE__ : Optional[Any] = stride_left SCREAMING_SNAKE_CASE__ : Tuple = acc[chunk_len - stride_left - stride_right :] # Last chunk if len(lowercase__ ) > stride_left: SCREAMING_SNAKE_CASE__ : Tuple = {'raw': acc, 'stride': (_stride_left, 0)} if stream: SCREAMING_SNAKE_CASE__ : Tuple = False yield item def _a ( lowercase__ : List[Any] , lowercase__ : int ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = 2**24 # 16Mo try: with subprocess.Popen(lowercase__ , stdout=subprocess.PIPE , bufsize=lowercase__ ) as ffmpeg_process: while True: SCREAMING_SNAKE_CASE__ : int = ffmpeg_process.stdout.read(lowercase__ ) if raw == b"": break yield raw except FileNotFoundError as error: raise ValueError('ffmpeg was not found but is required to stream audio files from filename' ) from error
636
import itertools import random import unittest import numpy as np from transformers import BatchFeature, SpeechTaFeatureExtractor from transformers.testing_utils import require_torch from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch SCREAMING_SNAKE_CASE__ : Optional[Any] = random.Random() def _a ( lowercase__ : List[str] , lowercase__ : List[Any]=1.0 , lowercase__ : Optional[int]=None , lowercase__ : List[str]=None ): '''simple docstring''' if rng is None: SCREAMING_SNAKE_CASE__ : Optional[int] = global_rng SCREAMING_SNAKE_CASE__ : Optional[Any] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch class snake_case ( unittest.TestCase ): def __init__( self : List[Any] , a_ : Optional[Any] , a_ : Union[str, Any]=7 , a_ : Any=400 , a_ : List[Any]=2000 , a_ : Tuple=1 , a_ : Optional[int]=0.0 , a_ : Optional[Any]=1_6000 , a_ : str=True , a_ : Union[str, Any]=80 , a_ : Dict=16 , a_ : Tuple=64 , a_ : Any="hann_window" , a_ : Union[str, Any]=80 , a_ : List[Any]=7600 , a_ : Optional[Any]=1e-1_0 , a_ : Dict=True , )-> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = parent SCREAMING_SNAKE_CASE__ : List[Any] = batch_size SCREAMING_SNAKE_CASE__ : str = min_seq_length SCREAMING_SNAKE_CASE__ : Optional[int] = max_seq_length SCREAMING_SNAKE_CASE__ : str = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) SCREAMING_SNAKE_CASE__ : int = feature_size SCREAMING_SNAKE_CASE__ : str = padding_value SCREAMING_SNAKE_CASE__ : Any = sampling_rate SCREAMING_SNAKE_CASE__ : Optional[int] = do_normalize SCREAMING_SNAKE_CASE__ : int = num_mel_bins SCREAMING_SNAKE_CASE__ : int = hop_length SCREAMING_SNAKE_CASE__ : str = win_length SCREAMING_SNAKE_CASE__ : Optional[Any] = win_function SCREAMING_SNAKE_CASE__ : List[str] = fmin SCREAMING_SNAKE_CASE__ : Dict = fmax SCREAMING_SNAKE_CASE__ : int = mel_floor SCREAMING_SNAKE_CASE__ : Tuple = return_attention_mask def __lowercase( self : Dict )-> Dict: """simple docstring""" return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "do_normalize": self.do_normalize, "num_mel_bins": self.num_mel_bins, "hop_length": self.hop_length, "win_length": self.win_length, "win_function": self.win_function, "fmin": self.fmin, "fmax": self.fmax, "mel_floor": self.mel_floor, "return_attention_mask": self.return_attention_mask, } def __lowercase( self : List[Any] , a_ : str=False , a_ : List[Any]=False )-> Optional[Any]: """simple docstring""" def _flatten(a_ : int ): return list(itertools.chain(*a_ ) ) if equal_length: SCREAMING_SNAKE_CASE__ : Tuple = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size SCREAMING_SNAKE_CASE__ : Optional[int] = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: SCREAMING_SNAKE_CASE__ : int = [np.asarray(a_ ) for x in speech_inputs] return speech_inputs def __lowercase( self : Any , a_ : int=False , a_ : Any=False )-> Union[str, Any]: """simple docstring""" if equal_length: SCREAMING_SNAKE_CASE__ : str = [floats_list((self.max_seq_length, self.num_mel_bins) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size SCREAMING_SNAKE_CASE__ : Tuple = [ floats_list((x, self.num_mel_bins) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: SCREAMING_SNAKE_CASE__ : List[str] = [np.asarray(a_ ) for x in speech_inputs] return speech_inputs @require_torch class snake_case ( UpperCamelCase_ , unittest.TestCase ): lowercase_ = SpeechTaFeatureExtractor def __lowercase( self : List[Any] )-> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = SpeechTaFeatureExtractionTester(self ) def __lowercase( self : Any , a_ : Optional[int] )-> List[str]: """simple docstring""" self.assertTrue(np.all(np.mean(a_ , axis=0 ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(a_ , axis=0 ) - 1 ) < 1e-3 ) ) def __lowercase( self : Tuple )-> Dict: """simple docstring""" # Tests that all call wrap to encode_plus and batch_encode_plus SCREAMING_SNAKE_CASE__ : Optional[int] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 SCREAMING_SNAKE_CASE__ : str = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] SCREAMING_SNAKE_CASE__ : Optional[int] = [np.asarray(a_ ) for speech_input in speech_inputs] # Test not batched input SCREAMING_SNAKE_CASE__ : Union[str, Any] = feat_extract(speech_inputs[0] , return_tensors='np' ).input_values SCREAMING_SNAKE_CASE__ : Union[str, Any] = feat_extract(np_speech_inputs[0] , return_tensors='np' ).input_values self.assertTrue(np.allclose(a_ , a_ , atol=1e-3 ) ) # Test batched SCREAMING_SNAKE_CASE__ : List[Any] = feat_extract(a_ , return_tensors='np' ).input_values SCREAMING_SNAKE_CASE__ : List[str] = feat_extract(a_ , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(a_ , a_ ): self.assertTrue(np.allclose(a_ , a_ , atol=1e-3 ) ) def __lowercase( self : List[Any] )-> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) SCREAMING_SNAKE_CASE__ : Dict = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] SCREAMING_SNAKE_CASE__ : int = ['longest', 'max_length', 'do_not_pad'] SCREAMING_SNAKE_CASE__ : Tuple = [None, 1600, None] for max_length, padding in zip(a_ , a_ ): SCREAMING_SNAKE_CASE__ : str = feat_extract(a_ , padding=a_ , max_length=a_ , return_tensors='np' ) SCREAMING_SNAKE_CASE__ : Optional[int] = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self.assertTrue(input_values[0][800:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[1][:1000] ) self.assertTrue(input_values[0][1000:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[2][:1200] ) def __lowercase( self : List[Any] )-> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) SCREAMING_SNAKE_CASE__ : List[Any] = range(800 , 1400 , 200 ) SCREAMING_SNAKE_CASE__ : int = [floats_list((1, x) )[0] for x in lengths] SCREAMING_SNAKE_CASE__ : int = ['longest', 'max_length', 'do_not_pad'] SCREAMING_SNAKE_CASE__ : Union[str, Any] = [None, 1600, None] for max_length, padding in zip(a_ , a_ ): SCREAMING_SNAKE_CASE__ : List[str] = feat_extract(a_ , max_length=a_ , padding=a_ ) SCREAMING_SNAKE_CASE__ : int = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self._check_zero_mean_unit_variance(input_values[1][:1000] ) self._check_zero_mean_unit_variance(input_values[2][:1200] ) def __lowercase( self : int )-> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) SCREAMING_SNAKE_CASE__ : Tuple = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] SCREAMING_SNAKE_CASE__ : Optional[int] = feat_extract( a_ , truncation=a_ , max_length=1000 , padding='max_length' , return_tensors='np' ) SCREAMING_SNAKE_CASE__ : Optional[int] = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def __lowercase( self : Optional[Any] )-> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) SCREAMING_SNAKE_CASE__ : Optional[int] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] SCREAMING_SNAKE_CASE__ : List[str] = feat_extract( a_ , truncation=a_ , max_length=1000 , padding='longest' , return_tensors='np' ) SCREAMING_SNAKE_CASE__ : int = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1000) ) SCREAMING_SNAKE_CASE__ : Optional[int] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] SCREAMING_SNAKE_CASE__ : str = feat_extract( a_ , truncation=a_ , max_length=2000 , padding='longest' , return_tensors='np' ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1200) ) def __lowercase( self : Any )-> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) SCREAMING_SNAKE_CASE__ : Optional[int] = np.random.rand(100 ).astype(np.floataa ) SCREAMING_SNAKE_CASE__ : int = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: SCREAMING_SNAKE_CASE__ : Any = feature_extractor.pad([{'input_values': inputs}] , return_tensors='np' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) SCREAMING_SNAKE_CASE__ : Tuple = feature_extractor.pad([{'input_values': inputs}] , return_tensors='pt' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def __lowercase( self : Any )-> Optional[int]: """simple docstring""" # Tests that all call wrap to encode_plus and batch_encode_plus SCREAMING_SNAKE_CASE__ : List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 SCREAMING_SNAKE_CASE__ : List[Any] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] SCREAMING_SNAKE_CASE__ : Dict = [np.asarray(a_ ) for speech_input in speech_inputs] # Test feature size SCREAMING_SNAKE_CASE__ : Optional[int] = feature_extractor(audio_target=a_ , padding=a_ , return_tensors='np' ).input_values self.assertTrue(input_values.ndim == 3 ) self.assertTrue(input_values.shape[-1] == feature_extractor.num_mel_bins ) # Test not batched input SCREAMING_SNAKE_CASE__ : Tuple = feature_extractor(speech_inputs[0] , return_tensors='np' ).input_values SCREAMING_SNAKE_CASE__ : int = feature_extractor(np_speech_inputs[0] , return_tensors='np' ).input_values self.assertTrue(np.allclose(a_ , a_ , atol=1e-3 ) ) # Test batched SCREAMING_SNAKE_CASE__ : Optional[Any] = feature_extractor(a_ , return_tensors='np' ).input_values SCREAMING_SNAKE_CASE__ : Optional[Any] = feature_extractor(a_ , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(a_ , a_ ): self.assertTrue(np.allclose(a_ , a_ , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. SCREAMING_SNAKE_CASE__ : List[str] = [floats_list((1, x) )[0] for x in (800, 800, 800)] SCREAMING_SNAKE_CASE__ : List[str] = np.asarray(a_ ) SCREAMING_SNAKE_CASE__ : Optional[int] = feature_extractor(a_ , return_tensors='np' ).input_values SCREAMING_SNAKE_CASE__ : str = feature_extractor(a_ , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(a_ , a_ ): self.assertTrue(np.allclose(a_ , a_ , atol=1e-3 ) ) def __lowercase( self : Dict )-> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = self.feat_extract_tester.prepare_inputs_for_target() SCREAMING_SNAKE_CASE__ : List[Any] = self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE__ : Any = BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(a_ ) == len(a_ ) for x, y in zip(a_ , processed_features[input_name] ) ) ) SCREAMING_SNAKE_CASE__ : str = self.feat_extract_tester.prepare_inputs_for_target(equal_length=a_ ) SCREAMING_SNAKE_CASE__ : Dict = BatchFeature({input_name: speech_inputs} , tensor_type='np' ) SCREAMING_SNAKE_CASE__ : List[Any] = processed_features[input_name] if len(batch_features_input.shape ) < 3: SCREAMING_SNAKE_CASE__ : int = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def __lowercase( self : List[Any] )-> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = self.feat_extract_tester.prepare_inputs_for_target(equal_length=a_ ) SCREAMING_SNAKE_CASE__ : Dict = self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE__ : Optional[int] = feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE__ : Any = BatchFeature({input_name: speech_inputs} , tensor_type='pt' ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = processed_features[input_name] if len(batch_features_input.shape ) < 3: SCREAMING_SNAKE_CASE__ : Optional[Any] = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def __lowercase( self : Tuple )-> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE__ : Dict = self.feat_extract_tester.prepare_inputs_for_target() SCREAMING_SNAKE_CASE__ : str = feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE__ : List[Any] = BatchFeature({input_name: speech_inputs} ) SCREAMING_SNAKE_CASE__ : Optional[int] = feat_extract.num_mel_bins # hack! SCREAMING_SNAKE_CASE__ : Optional[int] = feat_extract.pad(a_ , padding='longest' , return_tensors='np' )[input_name] SCREAMING_SNAKE_CASE__ : Any = feat_extract.pad(a_ , padding='longest' , return_tensors='pt' )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1e-2 ) def __lowercase( self : Any )-> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = self.feat_extract_dict SCREAMING_SNAKE_CASE__ : Optional[Any] = True SCREAMING_SNAKE_CASE__ : Optional[Any] = self.feature_extraction_class(**a_ ) SCREAMING_SNAKE_CASE__ : Optional[Any] = self.feat_extract_tester.prepare_inputs_for_target() SCREAMING_SNAKE_CASE__ : Any = [len(a_ ) for x in speech_inputs] SCREAMING_SNAKE_CASE__ : Optional[int] = feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE__ : Union[str, Any] = BatchFeature({input_name: speech_inputs} ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = feat_extract.num_mel_bins # hack! SCREAMING_SNAKE_CASE__ : Any = feat_extract.pad(a_ , padding='longest' , return_tensors='np' ) self.assertIn('attention_mask' , a_ ) self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , a_ ) def __lowercase( self : str )-> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = self.feat_extract_dict SCREAMING_SNAKE_CASE__ : Union[str, Any] = True SCREAMING_SNAKE_CASE__ : Optional[Any] = self.feature_extraction_class(**a_ ) SCREAMING_SNAKE_CASE__ : Optional[int] = self.feat_extract_tester.prepare_inputs_for_target() SCREAMING_SNAKE_CASE__ : Tuple = [len(a_ ) for x in speech_inputs] SCREAMING_SNAKE_CASE__ : Union[str, Any] = feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE__ : Dict = BatchFeature({input_name: speech_inputs} ) SCREAMING_SNAKE_CASE__ : str = min(a_ ) SCREAMING_SNAKE_CASE__ : Any = feat_extract.num_mel_bins # hack! SCREAMING_SNAKE_CASE__ : int = feat_extract.pad( a_ , padding='max_length' , max_length=a_ , truncation=a_ , return_tensors='np' ) self.assertIn('attention_mask' , a_ ) self.assertListEqual( list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] ) def __lowercase( self : Optional[int] , a_ : List[str] )-> Any: """simple docstring""" from datasets import load_dataset SCREAMING_SNAKE_CASE__ : int = load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' ) # automatic decoding with librispeech SCREAMING_SNAKE_CASE__ : List[Any] = ds.sort('id' ).select(range(a_ ) )[:num_samples]['audio'] return [x["array"] for x in speech_samples] def __lowercase( self : List[str] )-> List[Any]: """simple docstring""" # fmt: off SCREAMING_SNAKE_CASE__ : List[Any] = torch.tensor( [2.3_8_0_4e-0_3, 2.0_7_5_2e-0_3, 1.9_8_3_6e-0_3, 2.1_0_5_7e-0_3, 1.6_1_7_4e-0_3, 3.0_5_1_8e-0_4, 9.1_5_5_3e-0_5, 3.3_5_6_9e-0_4, 9.7_6_5_6e-0_4, 1.8_3_1_1e-0_3, 2.0_1_4_2e-0_3, 2.1_0_5_7e-0_3, 1.7_3_9_5e-0_3, 4.5_7_7_6e-0_4, -3.9_6_7_3e-0_4, 4.5_7_7_6e-0_4, 1.0_0_7_1e-0_3, 9.1_5_5_3e-0_5, 4.8_8_2_8e-0_4, 1.1_5_9_7e-0_3, 7.3_2_4_2e-0_4, 9.4_6_0_4e-0_4, 1.8_0_0_5e-0_3, 1.8_3_1_1e-0_3, 8.8_5_0_1e-0_4, 4.2_7_2_5e-0_4, 4.8_8_2_8e-0_4, 7.3_2_4_2e-0_4, 1.0_9_8_6e-0_3, 2.1_0_5_7e-0_3] ) # fmt: on SCREAMING_SNAKE_CASE__ : List[str] = self._load_datasamples(1 ) SCREAMING_SNAKE_CASE__ : Optional[Any] = SpeechTaFeatureExtractor() SCREAMING_SNAKE_CASE__ : List[str] = feature_extractor(a_ , return_tensors='pt' ).input_values self.assertEquals(input_values.shape , (1, 9_3680) ) self.assertTrue(torch.allclose(input_values[0, :30] , a_ , atol=1e-6 ) ) def __lowercase( self : Tuple )-> List[Any]: """simple docstring""" # fmt: off SCREAMING_SNAKE_CASE__ : Union[str, Any] = torch.tensor( [-2.6870, -3.0104, -3.1356, -3.5352, -3.0044, -3.0353, -3.4719, -3.6777, -3.1520, -2.9435, -2.6553, -2.8795, -2.9944, -2.5921, -3.0279, -3.0386, -3.0864, -3.1291, -3.2353, -2.7444, -2.6831, -2.7287, -3.1761, -3.1571, -3.2726, -3.0582, -3.1007, -3.4533, -3.4695, -3.0998] ) # fmt: on SCREAMING_SNAKE_CASE__ : Optional[Any] = self._load_datasamples(1 ) SCREAMING_SNAKE_CASE__ : int = SpeechTaFeatureExtractor() SCREAMING_SNAKE_CASE__ : str = feature_extractor(audio_target=a_ , return_tensors='pt' ).input_values self.assertEquals(input_values.shape , (1, 366, 80) ) self.assertTrue(torch.allclose(input_values[0, 0, :30] , a_ , atol=1e-4 ) )
636
1
class A__ : def __init__( self : List[str] ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE =0 _SCREAMING_SNAKE_CASE =0 _SCREAMING_SNAKE_CASE ={} def __UpperCamelCase ( self : Any , _a : Union[str, Any] ) -> Optional[Any]: """simple docstring""" if vertex not in self.adjacency: _SCREAMING_SNAKE_CASE ={} self.num_vertices += 1 def __UpperCamelCase ( self : Optional[int] , _a : Tuple , _a : Tuple , _a : Dict ) -> Union[str, Any]: """simple docstring""" self.add_vertex(_a ) self.add_vertex(_a ) if head == tail: return _SCREAMING_SNAKE_CASE =weight _SCREAMING_SNAKE_CASE =weight def __UpperCamelCase ( self : Dict ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE =self.get_edges() for edge in edges: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =edge edges.remove((tail, head, weight) ) for i in range(len(_a ) ): _SCREAMING_SNAKE_CASE =list(edges[i] ) edges.sort(key=lambda _a : e[2] ) for i in range(len(_a ) - 1 ): if edges[i][2] >= edges[i + 1][2]: _SCREAMING_SNAKE_CASE =edges[i][2] + 1 for edge in edges: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =edge _SCREAMING_SNAKE_CASE =weight _SCREAMING_SNAKE_CASE =weight def __str__( self : str ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE ='''''' for tail in self.adjacency: for head in self.adjacency[tail]: _SCREAMING_SNAKE_CASE =self.adjacency[head][tail] string += f"{head} -> {tail} == {weight}\n" return string.rstrip('''\n''' ) def __UpperCamelCase ( self : int ) -> Optional[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =[] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def __UpperCamelCase ( self : Any ) -> Any: """simple docstring""" return self.adjacency.keys() @staticmethod def __UpperCamelCase ( _a : List[str]=None , _a : Optional[int]=None ) -> Optional[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =Graph() if vertices is None: _SCREAMING_SNAKE_CASE =[] if edges is None: _SCREAMING_SNAKE_CASE =[] for vertex in vertices: g.add_vertex(_a ) for edge in edges: g.add_edge(*_a ) return g class A__ : def __init__( self : List[Any] ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE ={} _SCREAMING_SNAKE_CASE ={} def __len__( self : Optional[int] ) -> Tuple: """simple docstring""" return len(self.parent ) def __UpperCamelCase ( self : Dict , _a : Optional[Any] ) -> int: """simple docstring""" if item in self.parent: return self.find(_a ) _SCREAMING_SNAKE_CASE =item _SCREAMING_SNAKE_CASE =0 return item def __UpperCamelCase ( self : str , _a : Tuple ) -> Union[str, Any]: """simple docstring""" if item not in self.parent: return self.make_set(_a ) if item != self.parent[item]: _SCREAMING_SNAKE_CASE =self.find(self.parent[item] ) return self.parent[item] def __UpperCamelCase ( self : Dict , _a : Optional[int] , _a : List[Any] ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE =self.find(_a ) _SCREAMING_SNAKE_CASE =self.find(_a ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: _SCREAMING_SNAKE_CASE =roota return roota if self.rank[roota] < self.rank[roota]: _SCREAMING_SNAKE_CASE =roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 _SCREAMING_SNAKE_CASE =roota return roota return None @staticmethod def __UpperCamelCase ( _a : int ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =graph.num_vertices _SCREAMING_SNAKE_CASE =Graph.UnionFind() _SCREAMING_SNAKE_CASE =[] while num_components > 1: _SCREAMING_SNAKE_CASE ={} for vertex in graph.get_vertices(): _SCREAMING_SNAKE_CASE =-1 _SCREAMING_SNAKE_CASE =graph.get_edges() for edge in edges: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =edge edges.remove((tail, head, weight) ) for edge in edges: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =edge _SCREAMING_SNAKE_CASE =union_find.find(_a ) _SCREAMING_SNAKE_CASE =union_find.find(_a ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: _SCREAMING_SNAKE_CASE =[head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: _SCREAMING_SNAKE_CASE =[head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =cheap_edge[vertex] if union_find.find(_a ) != union_find.find(_a ): union_find.union(_a , _a ) mst_edges.append(cheap_edge[vertex] ) _SCREAMING_SNAKE_CASE =num_components - 1 _SCREAMING_SNAKE_CASE =Graph.build(edges=_a ) return mst
691
import requests from bsa import BeautifulSoup def lowerCamelCase( a__ = "https://www.worldometers.info/coronavirus"): _SCREAMING_SNAKE_CASE =BeautifulSoup(requests.get(a__).text ,'''html.parser''') _SCREAMING_SNAKE_CASE =soup.findAll('''h1''') _SCREAMING_SNAKE_CASE =soup.findAll('''div''' ,{'''class''': '''maincounter-number'''}) keys += soup.findAll('''span''' ,{'''class''': '''panel-title'''}) values += soup.findAll('''div''' ,{'''class''': '''number-table-main'''}) return {key.text.strip(): value.text.strip() for key, value in zip(a__ ,a__)} if __name__ == "__main__": print('''\033[1m''' + '''COVID-19 Status of the World''' + '''\033[0m\n''') for key, value in world_covidaa_stats().items(): print(f"""{key}\n{value}\n""")
691
1
"""simple docstring""" import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() lowercase__ : Dict = logging.get_logger(__name__) lowercase__ : List[str] = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''encoder.layer_norm_for_extract''': '''layer_norm_for_extract''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''lm_head''', '''label_embs_concat''': '''label_embeddings_concat''', '''mask_emb''': '''masked_spec_embed''', '''spk_proj''': '''speaker_proj''', } lowercase__ : Dict = [ '''lm_head''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', '''label_embeddings_concat''', '''speaker_proj''', '''layer_norm_for_extract''', ] def __lowercase ( _a , _a , _a , _a , _a ): for attribute in key.split('''.''' ): snake_case_ : Optional[Any] = getattr(_a , _a ) if weight_type is not None: snake_case_ : Optional[int] = getattr(_a , _a ).shape else: snake_case_ : Optional[int] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" f" {value.shape} for {full_name}" ) if weight_type == "weight": snake_case_ : Dict = value elif weight_type == "weight_g": snake_case_ : Tuple = value elif weight_type == "weight_v": snake_case_ : Tuple = value elif weight_type == "bias": snake_case_ : int = value else: snake_case_ : Optional[Any] = value logger.info(f"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def __lowercase ( _a , _a ): snake_case_ : Optional[int] = [] snake_case_ : Optional[Any] = fairseq_model.state_dict() snake_case_ : Optional[int] = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): snake_case_ : int = False if "conv_layers" in name: load_conv_layer( _a , _a , _a , _a , hf_model.config.feat_extract_norm == '''group''' , ) snake_case_ : Any = True else: for key, mapped_key in MAPPING.items(): snake_case_ : Tuple = '''unispeech_sat.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: if "layer_norm_for_extract" in name and (".".join(name.split('''.''' )[:-1] ) != key): # special case since naming is very similar continue snake_case_ : List[str] = True if "*" in mapped_key: snake_case_ : List[Any] = name.split(_a )[0].split('''.''' )[-2] snake_case_ : Dict = mapped_key.replace('''*''' , _a ) if "weight_g" in name: snake_case_ : Any = '''weight_g''' elif "weight_v" in name: snake_case_ : List[str] = '''weight_v''' elif "bias" in name: snake_case_ : List[str] = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj snake_case_ : Optional[int] = '''weight''' else: snake_case_ : List[Any] = None set_recursively(_a , _a , _a , _a , _a ) continue if not is_used: unused_weights.append(_a ) logger.warning(f"Unused weights: {unused_weights}" ) def __lowercase ( _a , _a , _a , _a , _a ): snake_case_ : Tuple = full_name.split('''conv_layers.''' )[-1] snake_case_ : int = name.split('''.''' ) snake_case_ : int = int(items[0] ) snake_case_ : int = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) snake_case_ : int = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) snake_case_ : str = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor[layer_id].layer_norm.bias.data.shape} was found." ) snake_case_ : Dict = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found." ) snake_case_ : Optional[Any] = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(_a ) @torch.no_grad() def __lowercase ( _a , _a , _a=None , _a=None , _a=True ): if config_path is not None: snake_case_ : int = UniSpeechSatConfig.from_pretrained(_a ) else: snake_case_ : Tuple = UniSpeechSatConfig() snake_case_ : List[Any] = '''''' if is_finetuned: snake_case_ : str = UniSpeechSatForCTC(_a ) else: snake_case_ : Dict = UniSpeechSatForPreTraining(_a ) snake_case_ : str = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) snake_case_ : Dict = model[0].eval() recursively_load_weights(_a , _a ) hf_wavavec.save_pretrained(_a ) if __name__ == "__main__": lowercase__ : List[Any] = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) lowercase__ : Optional[int] = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
706
"""simple docstring""" import argparse import re import numpy as np import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SamConfig, SamImageProcessor, SamModel, SamProcessor, SamVisionConfig, ) lowercase__ : List[str] = { '''iou_prediction_head.layers.0''': '''iou_prediction_head.proj_in''', '''iou_prediction_head.layers.1''': '''iou_prediction_head.layers.0''', '''iou_prediction_head.layers.2''': '''iou_prediction_head.proj_out''', '''mask_decoder.output_upscaling.0''': '''mask_decoder.upscale_conv1''', '''mask_decoder.output_upscaling.1''': '''mask_decoder.upscale_layer_norm''', '''mask_decoder.output_upscaling.3''': '''mask_decoder.upscale_conv2''', '''mask_downscaling.0''': '''mask_embed.conv1''', '''mask_downscaling.1''': '''mask_embed.layer_norm1''', '''mask_downscaling.3''': '''mask_embed.conv2''', '''mask_downscaling.4''': '''mask_embed.layer_norm2''', '''mask_downscaling.6''': '''mask_embed.conv3''', '''point_embeddings''': '''point_embed''', '''pe_layer.positional_encoding_gaussian_matrix''': '''shared_embedding.positional_embedding''', '''image_encoder''': '''vision_encoder''', '''neck.0''': '''neck.conv1''', '''neck.1''': '''neck.layer_norm1''', '''neck.2''': '''neck.conv2''', '''neck.3''': '''neck.layer_norm2''', '''patch_embed.proj''': '''patch_embed.projection''', '''.norm''': '''.layer_norm''', '''blocks''': '''layers''', } def __lowercase ( _a ): snake_case_ : List[str] = {} state_dict.pop('''pixel_mean''' , _a ) state_dict.pop('''pixel_std''' , _a ) snake_case_ : Union[str, Any] = r'''.*.output_hypernetworks_mlps.(\d+).layers.(\d+).*''' for key, value in state_dict.items(): for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: snake_case_ : Optional[int] = key.replace(_a , _a ) if re.match(_a , _a ): snake_case_ : Union[str, Any] = int(re.match(_a , _a ).group(2 ) ) if layer_nb == 0: snake_case_ : Optional[int] = key.replace('''layers.0''' , '''proj_in''' ) elif layer_nb == 1: snake_case_ : Union[str, Any] = key.replace('''layers.1''' , '''layers.0''' ) elif layer_nb == 2: snake_case_ : List[Any] = key.replace('''layers.2''' , '''proj_out''' ) snake_case_ : Optional[Any] = value snake_case_ : Tuple = model_state_dict[ '''prompt_encoder.shared_embedding.positional_embedding''' ] return model_state_dict def __lowercase ( _a , _a , _a , _a="ybelkada/segment-anything" ): snake_case_ : Optional[Any] = hf_hub_download(_a , f"checkpoints/{model_name}.pth" ) if "sam_vit_b" in model_name: snake_case_ : Tuple = SamConfig() elif "sam_vit_l" in model_name: snake_case_ : Optional[Any] = SamVisionConfig( hidden_size=1_024 , num_hidden_layers=24 , num_attention_heads=16 , global_attn_indexes=[5, 11, 17, 23] , ) snake_case_ : Union[str, Any] = SamConfig( vision_config=_a , ) elif "sam_vit_h" in model_name: snake_case_ : Tuple = SamVisionConfig( hidden_size=1_280 , num_hidden_layers=32 , num_attention_heads=16 , global_attn_indexes=[7, 15, 23, 31] , ) snake_case_ : List[str] = SamConfig( vision_config=_a , ) snake_case_ : Tuple = torch.load(_a , map_location='''cpu''' ) snake_case_ : Optional[Any] = replace_keys(_a ) snake_case_ : Any = SamImageProcessor() snake_case_ : Optional[Any] = SamProcessor(image_processor=_a ) snake_case_ : Tuple = SamModel(_a ) hf_model.load_state_dict(_a ) snake_case_ : Tuple = hf_model.to('''cuda''' ) snake_case_ : Union[str, Any] = '''https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png''' snake_case_ : Union[str, Any] = Image.open(requests.get(_a , stream=_a ).raw ).convert('''RGB''' ) snake_case_ : Tuple = [[[400, 650]]] snake_case_ : List[str] = [[1]] snake_case_ : Optional[int] = processor(images=np.array(_a ) , return_tensors='''pt''' ).to('''cuda''' ) with torch.no_grad(): snake_case_ : Optional[Any] = hf_model(**_a ) snake_case_ : Any = output.iou_scores.squeeze() if model_name == "sam_vit_h_4b8939": assert scores[-1].item() == 0.579_8902_5115_9668 snake_case_ : Optional[Any] = processor( images=np.array(_a ) , input_points=_a , input_labels=_a , return_tensors='''pt''' ).to('''cuda''' ) with torch.no_grad(): snake_case_ : Optional[Any] = hf_model(**_a ) snake_case_ : Tuple = output.iou_scores.squeeze() assert scores[-1].item() == 0.9712_6030_9219_3604 snake_case_ : Tuple = ((75, 275, 1_725, 850),) snake_case_ : Optional[Any] = processor(images=np.array(_a ) , input_boxes=_a , return_tensors='''pt''' ).to('''cuda''' ) with torch.no_grad(): snake_case_ : Dict = hf_model(**_a ) snake_case_ : Any = output.iou_scores.squeeze() assert scores[-1].item() == 0.8686_0156_0592_6514 # Test with 2 points and 1 image. snake_case_ : Union[str, Any] = [[[400, 650], [800, 650]]] snake_case_ : Optional[int] = [[1, 1]] snake_case_ : Tuple = processor( images=np.array(_a ) , input_points=_a , input_labels=_a , return_tensors='''pt''' ).to('''cuda''' ) with torch.no_grad(): snake_case_ : Dict = hf_model(**_a ) snake_case_ : Dict = output.iou_scores.squeeze() assert scores[-1].item() == 0.9936_0477_9243_4692 if __name__ == "__main__": lowercase__ : Optional[int] = argparse.ArgumentParser() lowercase__ : Any = ['''sam_vit_b_01ec64''', '''sam_vit_h_4b8939''', '''sam_vit_l_0b3195'''] parser.add_argument( '''--model_name''', default='''sam_vit_h_4b8939''', choices=choices, type=str, help='''Path to hf config.json of model to convert''', ) parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to push the model and processor to the hub after converting''', ) parser.add_argument( '''--model_hub_id''', default='''ybelkada/segment-anything''', choices=choices, type=str, help='''Path to hf config.json of model to convert''', ) lowercase__ : Tuple = parser.parse_args() convert_sam_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub, args.model_hub_id)
485
0
from __future__ import annotations from random import choice def __lowerCAmelCase ( a__ ) -> str: return choice(a__ ) def __lowerCAmelCase ( a__ , a__ ) -> int: __a = random_pivot(a__ ) # partition based on pivot # linear time __a = [e for e in lst if e < pivot] __a = [e for e in lst if e > pivot] # if we get lucky, pivot might be the element we want. # we can easily see this: # small (elements smaller than k) # + pivot (kth element) # + big (elements larger than k) if len(a__ ) == k - 1: return pivot # pivot is in elements bigger than k elif len(a__ ) < k - 1: return kth_number(a__ , k - len(a__ ) - 1 ) # pivot is in elements smaller than k else: return kth_number(a__ , a__ ) if __name__ == "__main__": import doctest doctest.testmod()
219
import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig A : Any = logging.get_logger(__name__) class __A: def __init__( self , _snake_case , _snake_case ) -> int: '''simple docstring''' __a = question_encoder __a = generator __a = self.question_encoder def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> List[str]: '''simple docstring''' if os.path.isfile(_snake_case ): raise ValueError(F"""Provided path ({save_directory}) should be a directory, not a file""" ) os.makedirs(_snake_case , exist_ok=_snake_case ) __a = os.path.join(_snake_case , '''question_encoder_tokenizer''' ) __a = os.path.join(_snake_case , '''generator_tokenizer''' ) self.question_encoder.save_pretrained(_snake_case ) self.generator.save_pretrained(_snake_case ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls , _snake_case , **_snake_case ) -> List[Any]: '''simple docstring''' from ..auto.tokenization_auto import AutoTokenizer __a = kwargs.pop('''config''' , _snake_case ) if config is None: __a = RagConfig.from_pretrained(_snake_case ) __a = AutoTokenizer.from_pretrained( _snake_case , config=config.question_encoder , subfolder='''question_encoder_tokenizer''' ) __a = AutoTokenizer.from_pretrained( _snake_case , config=config.generator , subfolder='''generator_tokenizer''' ) return cls(question_encoder=_snake_case , generator=_snake_case ) def __call__( self , *_snake_case , **_snake_case ) -> int: '''simple docstring''' return self.current_tokenizer(*_snake_case , **_snake_case ) def SCREAMING_SNAKE_CASE_ ( self , *_snake_case , **_snake_case ) -> str: '''simple docstring''' return self.generator.batch_decode(*_snake_case , **_snake_case ) def SCREAMING_SNAKE_CASE_ ( self , *_snake_case , **_snake_case ) -> Any: '''simple docstring''' return self.generator.decode(*_snake_case , **_snake_case ) def SCREAMING_SNAKE_CASE_ ( self ) -> Tuple: '''simple docstring''' __a = self.question_encoder def SCREAMING_SNAKE_CASE_ ( self ) -> Dict: '''simple docstring''' __a = self.generator def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = "longest" , _snake_case = None , _snake_case = True , **_snake_case , ) -> BatchEncoding: '''simple docstring''' warnings.warn( '''`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the ''' '''regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` ''' '''context manager to prepare your targets. See the documentation of your specific tokenizer for more ''' '''details''' , _snake_case , ) if max_length is None: __a = self.current_tokenizer.model_max_length __a = self( _snake_case , add_special_tokens=_snake_case , return_tensors=_snake_case , max_length=_snake_case , padding=_snake_case , truncation=_snake_case , **_snake_case , ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: __a = self.current_tokenizer.model_max_length __a = self( text_target=_snake_case , add_special_tokens=_snake_case , return_tensors=_snake_case , padding=_snake_case , max_length=_snake_case , truncation=_snake_case , **_snake_case , ) __a = labels['''input_ids'''] return model_inputs
219
1
import argparse import torch from torch import nn from transformers import SpeechaTextConfig, SpeechaTextForConditionalGeneration def UpperCamelCase_ ( lowerCAmelCase__ ): """simple docstring""" _lowerCAmelCase : int = [ "encoder.version", "decoder.version", "model.encoder.version", "model.decoder.version", "decoder.output_projection.weight", "_float_tensor", "encoder.embed_positions._float_tensor", "decoder.embed_positions._float_tensor", ] for k in ignore_keys: state_dict.pop(lowerCAmelCase__ , lowerCAmelCase__ ) def UpperCamelCase_ ( lowerCAmelCase__ ): """simple docstring""" _lowerCAmelCase : Optional[int] = list(s_dict.keys() ) for key in keys: if "transformer_layers" in key: _lowerCAmelCase : str = s_dict.pop(lowerCAmelCase__ ) elif "subsample" in key: _lowerCAmelCase : Optional[Any] = s_dict.pop(lowerCAmelCase__ ) def UpperCamelCase_ ( lowerCAmelCase__ ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase : Tuple = emb.weight.shape _lowerCAmelCase : List[Any] = nn.Linear(lowerCAmelCase__ , lowerCAmelCase__ , bias=lowerCAmelCase__ ) _lowerCAmelCase : Union[str, Any] = emb.weight.data return lin_layer def UpperCamelCase_ ( lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" _lowerCAmelCase : Tuple = torch.load(lowerCAmelCase__ , map_location="cpu" ) _lowerCAmelCase : Dict = mam_aaa["args"] _lowerCAmelCase : Optional[Any] = mam_aaa["model"] _lowerCAmelCase : Optional[Any] = state_dict["decoder.output_projection.weight"] remove_ignore_keys_(lowerCAmelCase__ ) rename_keys(lowerCAmelCase__ ) _lowerCAmelCase : Union[str, Any] = state_dict["decoder.embed_tokens.weight"].shape[0] _lowerCAmelCase : Dict = args.share_decoder_input_output_embed _lowerCAmelCase : str = [int(lowerCAmelCase__ ) for i in args.conv_kernel_sizes.split("," )] _lowerCAmelCase : Any = SpeechaTextConfig( vocab_size=lowerCAmelCase__ , max_source_positions=args.max_source_positions , max_target_positions=args.max_target_positions , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="relu" , num_conv_layers=len(lowerCAmelCase__ ) , conv_channels=args.conv_channels , conv_kernel_sizes=lowerCAmelCase__ , input_feat_per_channel=args.input_feat_per_channel , input_channels=args.input_channels , tie_word_embeddings=lowerCAmelCase__ , num_beams=5 , max_length=2_00 , use_cache=lowerCAmelCase__ , decoder_start_token_id=2 , early_stopping=lowerCAmelCase__ , ) _lowerCAmelCase : Union[str, Any] = SpeechaTextForConditionalGeneration(lowerCAmelCase__ ) _lowerCAmelCase , _lowerCAmelCase : List[str] = model.model.load_state_dict(lowerCAmelCase__ , strict=lowerCAmelCase__ ) if len(lowerCAmelCase__ ) > 0 and not set(lowerCAmelCase__ ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( "Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing," f""" but all the following weights are missing {missing}""" ) if tie_embeds: _lowerCAmelCase : Union[str, Any] = make_linear_from_emb(model.model.decoder.embed_tokens ) else: _lowerCAmelCase : Dict = lm_head_weights model.save_pretrained(lowerCAmelCase__ ) if __name__ == "__main__": snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument("--fairseq_path", type=str, help="Path to the fairseq model (.pt) file.") parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") snake_case = parser.parse_args() convert_fairseq_sat_checkpoint_to_tfms(args.fairseq_path, args.pytorch_dump_folder_path)
587
import io import math from typing import Dict, Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import convert_to_rgb, normalize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, get_image_size, infer_channel_dimension_format, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_vision_available, logging from ...utils.import_utils import requires_backends if is_vision_available(): import textwrap from PIL import Image, ImageDraw, ImageFont if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: snake_case = False snake_case = logging.get_logger(__name__) snake_case = "ybelkada/fonts" def UpperCamelCase_ ( ): """simple docstring""" if is_torch_available() and not is_torch_greater_or_equal_than_1_11: raise ImportError( f"""You are using torch=={torch.__version__}, but torch>=1.11.0 is required to use """ "Pix2StructImageProcessor. Please upgrade torch." ) def UpperCamelCase_ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" requires_backends(lowerCAmelCase__ , ["torch"] ) _check_torch_version() _lowerCAmelCase : int = image_tensor.unsqueeze(0 ) _lowerCAmelCase : List[str] = torch.nn.functional.unfold(lowerCAmelCase__ , (patch_height, patch_width) , stride=(patch_height, patch_width) ) _lowerCAmelCase : Any = patches.reshape(image_tensor.size(0 ) , image_tensor.size(1 ) , lowerCAmelCase__ , lowerCAmelCase__ , -1 ) _lowerCAmelCase : int = patches.permute(0 , 4 , 2 , 3 , 1 ).reshape( image_tensor.size(2 ) // patch_height , image_tensor.size(3 ) // patch_width , image_tensor.size(1 ) * patch_height * patch_width , ) return patches.unsqueeze(0 ) def UpperCamelCase_ ( lowerCAmelCase__ , lowerCAmelCase__ = 36 , lowerCAmelCase__ = "black" , lowerCAmelCase__ = "white" , lowerCAmelCase__ = 5 , lowerCAmelCase__ = 5 , lowerCAmelCase__ = 5 , lowerCAmelCase__ = 5 , lowerCAmelCase__ = None , lowerCAmelCase__ = None , ): """simple docstring""" requires_backends(lowerCAmelCase__ , "vision" ) # Add new lines so that each line is no more than 80 characters. _lowerCAmelCase : List[Any] = textwrap.TextWrapper(width=80 ) _lowerCAmelCase : Optional[Any] = wrapper.wrap(text=lowerCAmelCase__ ) _lowerCAmelCase : int = "\n".join(lowerCAmelCase__ ) if font_bytes is not None and font_path is None: _lowerCAmelCase : Optional[int] = io.BytesIO(lowerCAmelCase__ ) elif font_path is not None: _lowerCAmelCase : Dict = font_path else: _lowerCAmelCase : int = hf_hub_download(lowerCAmelCase__ , "Arial.TTF" ) _lowerCAmelCase : str = ImageFont.truetype(lowerCAmelCase__ , encoding="UTF-8" , size=lowerCAmelCase__ ) # Use a temporary canvas to determine the width and height in pixels when # rendering the text. _lowerCAmelCase : Union[str, Any] = ImageDraw.Draw(Image.new("RGB" , (1, 1) , lowerCAmelCase__ ) ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Any = temp_draw.textbbox((0, 0) , lowerCAmelCase__ , lowerCAmelCase__ ) # Create the actual image with a bit of padding around the text. _lowerCAmelCase : List[str] = text_width + left_padding + right_padding _lowerCAmelCase : Union[str, Any] = text_height + top_padding + bottom_padding _lowerCAmelCase : Any = Image.new("RGB" , (image_width, image_height) , lowerCAmelCase__ ) _lowerCAmelCase : List[Any] = ImageDraw.Draw(lowerCAmelCase__ ) draw.text(xy=(left_padding, top_padding) , text=lowerCAmelCase__ , fill=lowerCAmelCase__ , font=lowerCAmelCase__ ) return image def UpperCamelCase_ ( lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ): """simple docstring""" requires_backends(lowerCAmelCase__ , "vision" ) # Convert to PIL image if necessary _lowerCAmelCase : Union[str, Any] = to_pil_image(lowerCAmelCase__ ) _lowerCAmelCase : Union[str, Any] = render_text(lowerCAmelCase__ , **lowerCAmelCase__ ) _lowerCAmelCase : str = max(header_image.width , image.width ) _lowerCAmelCase : Optional[Any] = int(image.height * (new_width / image.width) ) _lowerCAmelCase : Dict = int(header_image.height * (new_width / header_image.width) ) _lowerCAmelCase : int = Image.new("RGB" , (new_width, new_height + new_header_height) , "white" ) new_image.paste(header_image.resize((new_width, new_header_height) ) , (0, 0) ) new_image.paste(image.resize((new_width, new_height) ) , (0, new_header_height) ) # Convert back to the original framework if necessary _lowerCAmelCase : Union[str, Any] = to_numpy_array(lowerCAmelCase__ ) if infer_channel_dimension_format(lowerCAmelCase__ ) == ChannelDimension.LAST: _lowerCAmelCase : Union[str, Any] = to_channel_dimension_format(lowerCAmelCase__ , ChannelDimension.LAST ) return new_image class __A ( snake_case__ ): '''simple docstring''' a_ = ['''flattened_patches'''] def __init__( self , _snake_case = True , _snake_case = True , _snake_case = None , _snake_case = 2048 , _snake_case = False , **_snake_case , ): super().__init__(**_snake_case ) _lowerCAmelCase : List[Any] = patch_size if patch_size is not None else {"height": 16, "width": 16} _lowerCAmelCase : Any = do_normalize _lowerCAmelCase : Tuple = do_convert_rgb _lowerCAmelCase : Tuple = max_patches _lowerCAmelCase : Optional[int] = is_vqa def SCREAMING_SNAKE_CASE__ ( self , _snake_case , _snake_case , _snake_case , **_snake_case ): requires_backends(self.extract_flattened_patches , "torch" ) _check_torch_version() # convert to torch _lowerCAmelCase : Dict = to_channel_dimension_format(_snake_case , ChannelDimension.FIRST ) _lowerCAmelCase : Dict = torch.from_numpy(_snake_case ) _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = patch_size["height"], patch_size["width"] _lowerCAmelCase , _lowerCAmelCase : Dict = get_image_size(_snake_case ) # maximize scale s.t. _lowerCAmelCase : Any = math.sqrt(max_patches * (patch_height / image_height) * (patch_width / image_width) ) _lowerCAmelCase : str = max(min(math.floor(scale * image_height / patch_height ) , _snake_case ) , 1 ) _lowerCAmelCase : Any = max(min(math.floor(scale * image_width / patch_width ) , _snake_case ) , 1 ) _lowerCAmelCase : Any = max(num_feasible_rows * patch_height , 1 ) _lowerCAmelCase : Optional[int] = max(num_feasible_cols * patch_width , 1 ) _lowerCAmelCase : Tuple = torch.nn.functional.interpolate( image.unsqueeze(0 ) , size=(resized_height, resized_width) , mode="bilinear" , align_corners=_snake_case , antialias=_snake_case , ).squeeze(0 ) # [1, rows, columns, patch_height * patch_width * image_channels] _lowerCAmelCase : str = torch_extract_patches(_snake_case , _snake_case , _snake_case ) _lowerCAmelCase : Optional[Any] = patches.shape _lowerCAmelCase : List[Any] = patches_shape[1] _lowerCAmelCase : str = patches_shape[2] _lowerCAmelCase : int = patches_shape[3] # [rows * columns, patch_height * patch_width * image_channels] _lowerCAmelCase : List[Any] = patches.reshape([rows * columns, depth] ) # [rows * columns, 1] _lowerCAmelCase : Tuple = torch.arange(_snake_case ).reshape([rows, 1] ).repeat(1 , _snake_case ).reshape([rows * columns, 1] ) _lowerCAmelCase : List[str] = torch.arange(_snake_case ).reshape([1, columns] ).repeat(_snake_case , 1 ).reshape([rows * columns, 1] ) # Offset by 1 so the ids do not contain zeros, which represent padding. row_ids += 1 col_ids += 1 # Prepare additional patch features. # [rows * columns, 1] _lowerCAmelCase : Tuple = row_ids.to(torch.floataa ) _lowerCAmelCase : Optional[int] = col_ids.to(torch.floataa ) # [rows * columns, 2 + patch_height * patch_width * image_channels] _lowerCAmelCase : int = torch.cat([row_ids, col_ids, patches] , -1 ) # [max_patches, 2 + patch_height * patch_width * image_channels] _lowerCAmelCase : List[Any] = torch.nn.functional.pad(_snake_case , [0, 0, 0, max_patches - (rows * columns)] ).float() _lowerCAmelCase : List[Any] = to_numpy_array(_snake_case ) return result def SCREAMING_SNAKE_CASE__ ( self , _snake_case , _snake_case = None , **_snake_case ): if image.dtype == np.uinta: _lowerCAmelCase : Any = image.astype(np.floataa ) # take mean across the whole `image` _lowerCAmelCase : str = np.mean(_snake_case ) _lowerCAmelCase : List[Any] = np.std(_snake_case ) _lowerCAmelCase : int = max(_snake_case , 1.0 / math.sqrt(np.prod(image.shape ) ) ) return normalize(_snake_case , mean=_snake_case , std=_snake_case , **_snake_case ) def SCREAMING_SNAKE_CASE__ ( self , _snake_case , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = ChannelDimension.FIRST , **_snake_case , ): _lowerCAmelCase : Tuple = do_normalize if do_normalize is not None else self.do_normalize _lowerCAmelCase : List[Any] = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb _lowerCAmelCase : Tuple = patch_size if patch_size is not None else self.patch_size _lowerCAmelCase : Optional[int] = max_patches if max_patches is not None else self.max_patches _lowerCAmelCase : List[str] = self.is_vqa if kwargs.get("data_format" , _snake_case ) is not None: raise ValueError("data_format is not an accepted input as the outputs are " ) _lowerCAmelCase : Union[str, Any] = make_list_of_images(_snake_case ) if not valid_images(_snake_case ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) # PIL RGBA images are converted to RGB if do_convert_rgb: _lowerCAmelCase : Dict = [convert_to_rgb(_snake_case ) for image in images] # All transformations expect numpy arrays. _lowerCAmelCase : Tuple = [to_numpy_array(_snake_case ) for image in images] if is_vqa: if header_text is None: raise ValueError("A header text must be provided for VQA models." ) _lowerCAmelCase : Tuple = kwargs.pop("font_bytes" , _snake_case ) _lowerCAmelCase : List[Any] = kwargs.pop("font_path" , _snake_case ) if isinstance(_snake_case , _snake_case ): _lowerCAmelCase : str = [header_text] * len(_snake_case ) _lowerCAmelCase : Union[str, Any] = [ render_header(_snake_case , header_text[i] , font_bytes=_snake_case , font_path=_snake_case ) for i, image in enumerate(_snake_case ) ] if do_normalize: _lowerCAmelCase : Tuple = [self.normalize(image=_snake_case ) for image in images] # convert to torch tensor and permute _lowerCAmelCase : Dict = [ self.extract_flattened_patches(image=_snake_case , max_patches=_snake_case , patch_size=_snake_case ) for image in images ] # create attention mask in numpy _lowerCAmelCase : Optional[Any] = [(image.sum(axis=-1 ) != 0).astype(np.floataa ) for image in images] _lowerCAmelCase : int = BatchFeature( data={"flattened_patches": images, "attention_mask": attention_masks} , tensor_type=_snake_case ) return encoded_outputs
587
1
# Usage: # ./gen-card-allenai-wmt16.py import os from pathlib import Path def A ( lowercase__ : List[str] , lowercase__ : List[str] , lowercase__ : Dict , lowercase__ : Optional[Any] ) -> Optional[Any]: UpperCamelCase__ :Optional[Any] = { """en""": """Machine learning is great, isn't it?""", """ru""": """Машинное обучение - это здорово, не так ли?""", """de""": """Maschinelles Lernen ist großartig, nicht wahr?""", } # BLUE scores as follows: # "pair": [fairseq, transformers] UpperCamelCase__ :List[str] = { """wmt16-en-de-dist-12-1""": [28.3, 27.52], """wmt16-en-de-dist-6-1""": [27.4, 27.11], """wmt16-en-de-12-1""": [26.9, 25.75], } UpperCamelCase__ :List[str] = f"""{src_lang}-{tgt_lang}""" UpperCamelCase__ :Tuple = f""" --- language: - {src_lang} - {tgt_lang} thumbnail: tags: - translation - wmt16 - allenai license: apache-2.0 datasets: - wmt16 metrics: - bleu --- # FSMT ## Model description This is a ported version of fairseq-based [wmt16 transformer](https://github.com/jungokasai/deep-shallow/) for {src_lang}-{tgt_lang}. For more details, please, see [Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation](https://arxiv.org/abs/2006.10369). All 3 models are available: * [wmt16-en-de-dist-12-1](https://huggingface.co/allenai/wmt16-en-de-dist-12-1) * [wmt16-en-de-dist-6-1](https://huggingface.co/allenai/wmt16-en-de-dist-6-1) * [wmt16-en-de-12-1](https://huggingface.co/allenai/wmt16-en-de-12-1) ## Intended uses & limitations #### How to use ```python from transformers import FSMTForConditionalGeneration, FSMTTokenizer mname = \"allenai/{model_name}\" tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) input = \"{texts[src_lang]}\" input_ids = tokenizer.encode(input, return_tensors=\"pt\") outputs = model.generate(input_ids) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) print(decoded) # {texts[tgt_lang]} ``` #### Limitations and bias ## Training data Pretrained weights were left identical to the original model released by allenai. For more details, please, see the [paper](https://arxiv.org/abs/2006.10369). ## Eval results Here are the BLEU scores: model | fairseq | transformers -------|---------|---------- {model_name} | {scores[model_name][0]} | {scores[model_name][1]} The score is slightly below the score reported in the paper, as the researchers don\'t use `sacrebleu` and measure the score on tokenized outputs. `transformers` score was measured using `sacrebleu` on detokenized outputs. The score was calculated using this code: ```bash git clone https://github.com/huggingface/transformers cd transformers export PAIR={pair} export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=8 export NUM_BEAMS=5 mkdir -p $DATA_DIR sacrebleu -t wmt16 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt16 -l $PAIR --echo ref > $DATA_DIR/val.target echo $PAIR PYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py allenai/{model_name} $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS ``` ## Data Sources - [training, etc.](http://www.statmt.org/wmt16/) - [test set](http://matrix.statmt.org/test_sets/newstest2016.tgz?1504722372) ### BibTeX entry and citation info ``` @misc{{kasai2020deep, title={{Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation}}, author={{Jungo Kasai and Nikolaos Pappas and Hao Peng and James Cross and Noah A. Smith}}, year={{2020}}, eprint={{2006.10369}}, archivePrefix={{arXiv}}, primaryClass={{cs.CL}} }} ``` """ model_card_dir.mkdir(parents=_UpperCAmelCase , exist_ok=_UpperCAmelCase ) UpperCamelCase__ :Dict = os.path.join(_UpperCAmelCase , """README.md""" ) print(f"""Generating {path}""" ) with open(_UpperCAmelCase , """w""" , encoding="""utf-8""" ) as f: f.write(_UpperCAmelCase ) # make sure we are under the root of the project UpperCamelCase = Path(__file__).resolve().parent.parent.parent UpperCamelCase = repo_dir / "model_cards" for model_name in ["wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1"]: UpperCamelCase = model_cards_dir / "allenai" / model_name write_model_card(model_card_dir, src_lang="en", tgt_lang="de", model_name=model_name)
45
import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class snake_case ( __snake_case ): """simple docstring""" __lowerCAmelCase = (UnCLIPScheduler,) def snake_case__ ( self , **lowerCAmelCase_ ): __lowercase = { "num_train_timesteps": 1000, "variance_type": "fixed_small_log", "clip_sample": True, "clip_sample_range": 1.0, "prediction_type": "epsilon", } config.update(**lowerCAmelCase_ ) return config def snake_case__ ( self ): for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=lowerCAmelCase_ ) def snake_case__ ( self ): for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=lowerCAmelCase_ ) def snake_case__ ( self ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=lowerCAmelCase_ ) def snake_case__ ( self ): for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=lowerCAmelCase_ ) def snake_case__ ( self ): for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=lowerCAmelCase_ ) def snake_case__ ( self ): for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=lowerCAmelCase_ , prev_timestep=lowerCAmelCase_ ) def snake_case__ ( self ): __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config(variance_type="fixed_small_log" ) __lowercase = scheduler_class(**lowerCAmelCase_ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0_0_0_0E-1_0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_54_96_25 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.9_99_49_87 ) ) < 1E-5 def snake_case__ ( self ): __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config(variance_type="learned_range" ) __lowercase = scheduler_class(**lowerCAmelCase_ ) __lowercase = 0.5 assert scheduler._get_variance(1 , predicted_variance=lowerCAmelCase_ ) - -10.1_71_27_90 < 1E-5 assert scheduler._get_variance(487 , predicted_variance=lowerCAmelCase_ ) - -5.7_99_80_52 < 1E-5 assert scheduler._get_variance(999 , predicted_variance=lowerCAmelCase_ ) - -0.0_01_00_11 < 1E-5 def snake_case__ ( self ): __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config() __lowercase = scheduler_class(**lowerCAmelCase_ ) __lowercase = scheduler.timesteps __lowercase = self.dummy_model() __lowercase = self.dummy_sample_deter __lowercase = torch.manual_seed(0 ) for i, t in enumerate(lowerCAmelCase_ ): # 1. predict noise residual __lowercase = model(lowerCAmelCase_ , lowerCAmelCase_ ) # 2. predict previous mean of sample x_t-1 __lowercase = scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , generator=lowerCAmelCase_ ).prev_sample __lowercase = pred_prev_sample __lowercase = torch.sum(torch.abs(lowerCAmelCase_ ) ) __lowercase = torch.mean(torch.abs(lowerCAmelCase_ ) ) assert abs(result_sum.item() - 2_52.2_68_24_95 ) < 1E-2 assert abs(result_mean.item() - 0.3_28_47_43 ) < 1E-3 def snake_case__ ( self ): __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config() __lowercase = scheduler_class(**lowerCAmelCase_ ) scheduler.set_timesteps(25 ) __lowercase = scheduler.timesteps __lowercase = self.dummy_model() __lowercase = self.dummy_sample_deter __lowercase = torch.manual_seed(0 ) for i, t in enumerate(lowerCAmelCase_ ): # 1. predict noise residual __lowercase = model(lowerCAmelCase_ , lowerCAmelCase_ ) if i + 1 == timesteps.shape[0]: __lowercase = None else: __lowercase = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 __lowercase = scheduler.step( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , prev_timestep=lowerCAmelCase_ , generator=lowerCAmelCase_ ).prev_sample __lowercase = pred_prev_sample __lowercase = torch.sum(torch.abs(lowerCAmelCase_ ) ) __lowercase = torch.mean(torch.abs(lowerCAmelCase_ ) ) assert abs(result_sum.item() - 2_58.2_04_49_83 ) < 1E-2 assert abs(result_mean.item() - 0.3_36_20_38 ) < 1E-3 def snake_case__ ( self ): pass def snake_case__ ( self ): pass
321
0
from ..utils import DummyObject, requires_backends class UpperCamelCase ( metaclass=__a ): a__ :int = ['''flax'''] def __init__(self , *__UpperCamelCase , **__UpperCamelCase ) -> str: requires_backends(self , ["""flax"""] ) @classmethod def A_ (cls , *__UpperCamelCase , **__UpperCamelCase ) -> Dict: requires_backends(cls , ["""flax"""] ) @classmethod def A_ (cls , *__UpperCamelCase , **__UpperCamelCase ) -> Optional[Any]: requires_backends(cls , ["""flax"""] ) class UpperCamelCase ( metaclass=__a ): a__ :int = ['''flax'''] def __init__(self , *__UpperCamelCase , **__UpperCamelCase ) -> Union[str, Any]: requires_backends(self , ["""flax"""] ) @classmethod def A_ (cls , *__UpperCamelCase , **__UpperCamelCase ) -> int: requires_backends(cls , ["""flax"""] ) @classmethod def A_ (cls , *__UpperCamelCase , **__UpperCamelCase ) -> Optional[int]: requires_backends(cls , ["""flax"""] ) class UpperCamelCase ( metaclass=__a ): a__ :str = ['''flax'''] def __init__(self , *__UpperCamelCase , **__UpperCamelCase ) -> Any: requires_backends(self , ["""flax"""] ) @classmethod def A_ (cls , *__UpperCamelCase , **__UpperCamelCase ) -> str: requires_backends(cls , ["""flax"""] ) @classmethod def A_ (cls , *__UpperCamelCase , **__UpperCamelCase ) -> List[Any]: requires_backends(cls , ["""flax"""] ) class UpperCamelCase ( metaclass=__a ): a__ :int = ['''flax'''] def __init__(self , *__UpperCamelCase , **__UpperCamelCase ) -> Tuple: requires_backends(self , ["""flax"""] ) @classmethod def A_ (cls , *__UpperCamelCase , **__UpperCamelCase ) -> List[str]: requires_backends(cls , ["""flax"""] ) @classmethod def A_ (cls , *__UpperCamelCase , **__UpperCamelCase ) -> List[Any]: requires_backends(cls , ["""flax"""] ) class UpperCamelCase ( metaclass=__a ): a__ :Union[str, Any] = ['''flax'''] def __init__(self , *__UpperCamelCase , **__UpperCamelCase ) -> Optional[Any]: requires_backends(self , ["""flax"""] ) @classmethod def A_ (cls , *__UpperCamelCase , **__UpperCamelCase ) -> Any: requires_backends(cls , ["""flax"""] ) @classmethod def A_ (cls , *__UpperCamelCase , **__UpperCamelCase ) -> Any: requires_backends(cls , ["""flax"""] ) class UpperCamelCase ( metaclass=__a ): a__ :List[Any] = ['''flax'''] def __init__(self , *__UpperCamelCase , **__UpperCamelCase ) -> Optional[int]: requires_backends(self , ["""flax"""] ) @classmethod def A_ (cls , *__UpperCamelCase , **__UpperCamelCase ) -> Optional[Any]: requires_backends(cls , ["""flax"""] ) @classmethod def A_ (cls , *__UpperCamelCase , **__UpperCamelCase ) -> List[str]: requires_backends(cls , ["""flax"""] ) class UpperCamelCase ( metaclass=__a ): a__ :Optional[Any] = ['''flax'''] def __init__(self , *__UpperCamelCase , **__UpperCamelCase ) -> Optional[Any]: requires_backends(self , ["""flax"""] ) @classmethod def A_ (cls , *__UpperCamelCase , **__UpperCamelCase ) -> int: requires_backends(cls , ["""flax"""] ) @classmethod def A_ (cls , *__UpperCamelCase , **__UpperCamelCase ) -> int: requires_backends(cls , ["""flax"""] ) class UpperCamelCase ( metaclass=__a ): a__ :Any = ['''flax'''] def __init__(self , *__UpperCamelCase , **__UpperCamelCase ) -> int: requires_backends(self , ["""flax"""] ) @classmethod def A_ (cls , *__UpperCamelCase , **__UpperCamelCase ) -> Dict: requires_backends(cls , ["""flax"""] ) @classmethod def A_ (cls , *__UpperCamelCase , **__UpperCamelCase ) -> List[str]: requires_backends(cls , ["""flax"""] ) class UpperCamelCase ( metaclass=__a ): a__ :int = ['''flax'''] def __init__(self , *__UpperCamelCase , **__UpperCamelCase ) -> Optional[int]: requires_backends(self , ["""flax"""] ) @classmethod def A_ (cls , *__UpperCamelCase , **__UpperCamelCase ) -> Union[str, Any]: requires_backends(cls , ["""flax"""] ) @classmethod def A_ (cls , *__UpperCamelCase , **__UpperCamelCase ) -> Dict: requires_backends(cls , ["""flax"""] ) class UpperCamelCase ( metaclass=__a ): a__ :str = ['''flax'''] def __init__(self , *__UpperCamelCase , **__UpperCamelCase ) -> int: requires_backends(self , ["""flax"""] ) @classmethod def A_ (cls , *__UpperCamelCase , **__UpperCamelCase ) -> Union[str, Any]: requires_backends(cls , ["""flax"""] ) @classmethod def A_ (cls , *__UpperCamelCase , **__UpperCamelCase ) -> List[Any]: requires_backends(cls , ["""flax"""] ) class UpperCamelCase ( metaclass=__a ): a__ :Dict = ['''flax'''] def __init__(self , *__UpperCamelCase , **__UpperCamelCase ) -> List[Any]: requires_backends(self , ["""flax"""] ) @classmethod def A_ (cls , *__UpperCamelCase , **__UpperCamelCase ) -> Dict: requires_backends(cls , ["""flax"""] ) @classmethod def A_ (cls , *__UpperCamelCase , **__UpperCamelCase ) -> Optional[int]: requires_backends(cls , ["""flax"""] ) class UpperCamelCase ( metaclass=__a ): a__ :str = ['''flax'''] def __init__(self , *__UpperCamelCase , **__UpperCamelCase ) -> int: requires_backends(self , ["""flax"""] ) @classmethod def A_ (cls , *__UpperCamelCase , **__UpperCamelCase ) -> Union[str, Any]: requires_backends(cls , ["""flax"""] ) @classmethod def A_ (cls , *__UpperCamelCase , **__UpperCamelCase ) -> List[Any]: requires_backends(cls , ["""flax"""] ) class UpperCamelCase ( metaclass=__a ): a__ :List[Any] = ['''flax'''] def __init__(self , *__UpperCamelCase , **__UpperCamelCase ) -> Tuple: requires_backends(self , ["""flax"""] ) @classmethod def A_ (cls , *__UpperCamelCase , **__UpperCamelCase ) -> int: requires_backends(cls , ["""flax"""] ) @classmethod def A_ (cls , *__UpperCamelCase , **__UpperCamelCase ) -> str: requires_backends(cls , ["""flax"""] )
138
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE : int = {"configuration_reformer": ["REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "ReformerConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Any = ["ReformerTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Union[str, Any] = ["ReformerTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : List[str] = [ "REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "ReformerAttention", "ReformerForMaskedLM", "ReformerForQuestionAnswering", "ReformerForSequenceClassification", "ReformerLayer", "ReformerModel", "ReformerModelWithLMHead", "ReformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
138
1