code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process UpperCamelCase_ : str = logging.getLogger(__name__) UpperCamelCase_ : List[str] = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) UpperCamelCase_ : Optional[Any] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class _a : SCREAMING_SNAKE_CASE_ : Optional[str] = field( default=__lowerCAmelCase , metadata={ """help""": ( """The model checkpoint for weights initialization. Leave None if you want to train a model from""" """ scratch.""" ) } , ) SCREAMING_SNAKE_CASE_ : Optional[str] = field( default=__lowerCAmelCase , metadata={"""help""": """If training from scratch, pass a model type from the list: """ + """, """.join(__lowerCAmelCase )} , ) SCREAMING_SNAKE_CASE_ : Optional[str] = field( default=__lowerCAmelCase , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) SCREAMING_SNAKE_CASE_ : Optional[str] = field( default=__lowerCAmelCase , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) SCREAMING_SNAKE_CASE_ : Optional[str] = field( default=__lowerCAmelCase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) @dataclass class _a : SCREAMING_SNAKE_CASE_ : Optional[str] = field( default=__lowerCAmelCase , metadata={"""help""": """The input training data file (a text file)."""} ) SCREAMING_SNAKE_CASE_ : Optional[str] = field( default=__lowerCAmelCase , metadata={ """help""": ( """The input training data files (multiple files in glob format). """ """Very often splitting large files to smaller files can prevent tokenizer going out of memory""" ) } , ) SCREAMING_SNAKE_CASE_ : Optional[str] = field( default=__lowerCAmelCase , metadata={"""help""": """An optional input evaluation data file to evaluate the perplexity on (a text file)."""} , ) SCREAMING_SNAKE_CASE_ : Optional[str] = field( default=__lowerCAmelCase , metadata={"""help""": """An optional input train ref data file for whole word mask in Chinese."""} , ) SCREAMING_SNAKE_CASE_ : Optional[str] = field( default=__lowerCAmelCase , metadata={"""help""": """An optional input eval ref data file for whole word mask in Chinese."""} , ) SCREAMING_SNAKE_CASE_ : bool = field( default=__lowerCAmelCase , metadata={"""help""": """Whether distinct lines of text in the dataset are to be handled as distinct sequences."""} , ) SCREAMING_SNAKE_CASE_ : bool = field( default=__lowerCAmelCase , metadata={"""help""": """Train with masked-language modeling loss instead of language modeling."""} ) SCREAMING_SNAKE_CASE_ : bool = field(default=__lowerCAmelCase , metadata={"""help""": """Whether ot not to use whole word mask."""} ) SCREAMING_SNAKE_CASE_ : float = field( default=0.15 , metadata={"""help""": """Ratio of tokens to mask for masked language modeling loss"""} ) SCREAMING_SNAKE_CASE_ : float = field( default=1 / 6 , metadata={ """help""": ( """Ratio of length of a span of masked tokens to surrounding context length for permutation language""" """ modeling.""" ) } , ) SCREAMING_SNAKE_CASE_ : int = field( default=5 , metadata={"""help""": """Maximum length of a span of masked tokens for permutation language modeling."""} ) SCREAMING_SNAKE_CASE_ : int = field( default=-1 , metadata={ """help""": ( """Optional input sequence length after tokenization.""" """The training dataset will be truncated in block of this size for training.""" """Default to the model max input length for single sentence inputs (take into account special tokens).""" ) } , ) SCREAMING_SNAKE_CASE_ : bool = field( default=__lowerCAmelCase , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) def __a ( _UpperCamelCase: DataTrainingArguments , _UpperCamelCase: PreTrainedTokenizer , _UpperCamelCase: bool = False , _UpperCamelCase: Optional[str] = None , ) -> List[str]: """simple docstring""" def _dataset(_UpperCamelCase: Dict , _UpperCamelCase: Any=None ): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError("You need to set world whole masking and mlm to True for Chinese Whole Word Mask" ) return LineByLineWithRefDataset( tokenizer=_UpperCamelCase , file_path=_UpperCamelCase , block_size=args.block_size , ref_path=_UpperCamelCase , ) return LineByLineTextDataset(tokenizer=_UpperCamelCase , file_path=_UpperCamelCase , block_size=args.block_size ) else: return TextDataset( tokenizer=_UpperCamelCase , file_path=_UpperCamelCase , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=_UpperCamelCase , ) if evaluate: return _dataset(args.eval_data_file , args.eval_ref_file ) elif args.train_data_files: return ConcatDataset([_dataset(_UpperCamelCase ) for f in glob(args.train_data_files )] ) else: return _dataset(args.train_data_file , args.train_ref_file ) def __a ( ) -> Any: """simple docstring""" _snake_case = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) _snake_case , _snake_case , _snake_case = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( "Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file " "or remove the --do_eval argument." ) if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" " --overwrite_output_dir to overcome." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("Training/evaluation parameters %s" , _UpperCamelCase ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: _snake_case = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: _snake_case = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: _snake_case = CONFIG_MAPPING[model_args.model_type]() logger.warning("You are instantiating a new config instance from scratch." ) if model_args.tokenizer_name: _snake_case = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: _snake_case = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: raise ValueError( "You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another" " script, save it,and load it from here, using --tokenizer_name" ) if model_args.model_name_or_path: _snake_case = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=_UpperCamelCase , cache_dir=model_args.cache_dir , ) else: logger.info("Training new model from scratch" ) _snake_case = AutoModelWithLMHead.from_config(_UpperCamelCase ) model.resize_token_embeddings(len(_UpperCamelCase ) ) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( "BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the" "--mlm flag (masked language modeling)." ) if data_args.block_size <= 0: _snake_case = tokenizer.max_len # Our input block size will be the max possible for the model else: _snake_case = min(data_args.block_size , tokenizer.max_len ) # Get datasets _snake_case = ( get_dataset(_UpperCamelCase , tokenizer=_UpperCamelCase , cache_dir=model_args.cache_dir ) if training_args.do_train else None ) _snake_case = ( get_dataset(_UpperCamelCase , tokenizer=_UpperCamelCase , evaluate=_UpperCamelCase , cache_dir=model_args.cache_dir ) if training_args.do_eval else None ) if config.model_type == "xlnet": _snake_case = DataCollatorForPermutationLanguageModeling( tokenizer=_UpperCamelCase , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , ) else: if data_args.mlm and data_args.whole_word_mask: _snake_case = DataCollatorForWholeWordMask( tokenizer=_UpperCamelCase , mlm_probability=data_args.mlm_probability ) else: _snake_case = DataCollatorForLanguageModeling( tokenizer=_UpperCamelCase , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer _snake_case = Trainer( model=_UpperCamelCase , args=_UpperCamelCase , data_collator=_UpperCamelCase , train_dataset=_UpperCamelCase , eval_dataset=_UpperCamelCase , prediction_loss_only=_UpperCamelCase , ) # Training if training_args.do_train: _snake_case = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ) else None ) trainer.train(model_path=_UpperCamelCase ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation _snake_case = {} if training_args.do_eval: logger.info("*** Evaluate ***" ) _snake_case = trainer.evaluate() _snake_case = math.exp(eval_output["eval_loss"] ) _snake_case = {"perplexity": perplexity} _snake_case = os.path.join(training_args.output_dir , "eval_results_lm.txt" ) if trainer.is_world_master(): with open(_UpperCamelCase , "w" ) as writer: logger.info("***** Eval results *****" ) for key in sorted(result.keys() ): logger.info(" %s = %s" , _UpperCamelCase , str(result[key] ) ) writer.write("%s = %s\n" % (key, str(result[key] )) ) results.update(_UpperCamelCase ) return results def __a ( _UpperCamelCase: Optional[Any] ) -> Optional[int]: """simple docstring""" main() if __name__ == "__main__": main()
185
'''simple docstring''' from math import factorial def __a ( _UpperCamelCase: int = 100 ) -> int: """simple docstring""" return sum(map(_UpperCamelCase , str(factorial(_UpperCamelCase ) ) ) ) if __name__ == "__main__": print(solution(int(input('''Enter the Number: ''').strip())))
185
1
import json import re from typing import TYPE_CHECKING, List, Optional, Tuple, Union import numpy as np from ...utils import is_tf_available, is_torch_available, logging if TYPE_CHECKING: if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_codegen import CodeGenTokenizer UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} UpperCamelCase = { '''vocab_file''': { '''Salesforce/codegen-350M-mono''': '''https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/vocab.json''', }, '''merges_file''': { '''Salesforce/codegen-350M-mono''': '''https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''Salesforce/codegen-350M-mono''': ( '''https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/tokenizer.json''' ), }, } UpperCamelCase = { '''Salesforce/codegen-350M-mono''': 2_048, } class __UpperCAmelCase (_UpperCAmelCase ): __snake_case : Any = VOCAB_FILES_NAMES __snake_case : Dict = PRETRAINED_VOCAB_FILES_MAP __snake_case : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __snake_case : Optional[int] = ["input_ids", "attention_mask"] __snake_case : str = CodeGenTokenizer def __init__( self: Dict , UpperCAmelCase_: Optional[Any]=None , UpperCAmelCase_: int=None , UpperCAmelCase_: List[str]=None , UpperCAmelCase_: Optional[int]="<|endoftext|>" , UpperCAmelCase_: int="<|endoftext|>" , UpperCAmelCase_: List[str]="<|endoftext|>" , UpperCAmelCase_: Tuple=False , **UpperCAmelCase_: int , ): '''simple docstring''' super().__init__( UpperCAmelCase_ , UpperCAmelCase_ , tokenizer_file=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ , **UpperCAmelCase_ , ) if kwargs.pop("""add_bos_token""" , UpperCAmelCase_ ): _SCREAMING_SNAKE_CASE = kwargs.pop("""name_or_path""" , """""" ) raise ValueError( """Currenty GPT2's fast tokenizer does NOT support adding a BOS token.""" """Instead you should use GPT2's slow tokenizer class `CodeGenTokenizer` as follows: \n""" F'`CodeGenTokenizer.from_pretrained(\'{model_id}\')`\nor\n' F'`AutoTokenizer.from_pretrained(\'{model_id}\', use_fast=False)`\n' """This issue will be fixed soon, see: https://github.com/huggingface/tokenizers/pull/1005.""" """ so that the fast tokenizer works correctly.""" ) _SCREAMING_SNAKE_CASE = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , UpperCAmelCase_ ) != add_prefix_space: _SCREAMING_SNAKE_CASE = getattr(UpperCAmelCase_ , pre_tok_state.pop("""type""" ) ) _SCREAMING_SNAKE_CASE = add_prefix_space _SCREAMING_SNAKE_CASE = pre_tok_class(**UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = add_prefix_space def UpperCamelCase ( self: List[Any] , *UpperCAmelCase_: int , **UpperCAmelCase_: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = kwargs.get("""is_split_into_words""" , UpperCAmelCase_ ) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*UpperCAmelCase_ , **UpperCAmelCase_ ) def UpperCamelCase ( self: List[str] , *UpperCAmelCase_: Union[str, Any] , **UpperCAmelCase_: Tuple ): '''simple docstring''' _SCREAMING_SNAKE_CASE = kwargs.get("""is_split_into_words""" , UpperCAmelCase_ ) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*UpperCAmelCase_ , **UpperCAmelCase_ ) def UpperCamelCase ( self: List[Any] , UpperCAmelCase_: str , UpperCAmelCase_: Optional[str] = None ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self._tokenizer.model.save(UpperCAmelCase_ , name=UpperCAmelCase_ ) return tuple(UpperCAmelCase_ ) def UpperCamelCase ( self: Any , UpperCAmelCase_: Union[int, List[int], "np.ndarray", "torch.Tensor", "tf.Tensor"] , UpperCAmelCase_: bool = False , UpperCAmelCase_: bool = None , UpperCAmelCase_: Optional[List[str]] = None , **UpperCAmelCase_: Optional[int] , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = super().decode( token_ids=UpperCAmelCase_ , skip_special_tokens=UpperCAmelCase_ , clean_up_tokenization_spaces=UpperCAmelCase_ , **UpperCAmelCase_ , ) if truncate_before_pattern is not None and len(UpperCAmelCase_ ) > 0: _SCREAMING_SNAKE_CASE = self.truncate(UpperCAmelCase_ , UpperCAmelCase_ ) return decoded_text def UpperCamelCase ( self: Optional[Any] , UpperCAmelCase_: List[Any] , UpperCAmelCase_: List[str] ): '''simple docstring''' def find_re(UpperCAmelCase_: Dict , UpperCAmelCase_: str , UpperCAmelCase_: Optional[Any] ): _SCREAMING_SNAKE_CASE = pattern.search(UpperCAmelCase_ , UpperCAmelCase_ ) return m.start() if m else -1 _SCREAMING_SNAKE_CASE = [re.compile(UpperCAmelCase_ , re.MULTILINE ) for pattern in truncate_before_pattern] _SCREAMING_SNAKE_CASE = list(re.finditer("""^print""" , UpperCAmelCase_ , re.MULTILINE ) ) if len(UpperCAmelCase_ ) > 1: _SCREAMING_SNAKE_CASE = completion[: prints[1].start()] _SCREAMING_SNAKE_CASE = list(re.finditer("""^def""" , UpperCAmelCase_ , re.MULTILINE ) ) if len(UpperCAmelCase_ ) > 1: _SCREAMING_SNAKE_CASE = completion[: defs[1].start()] _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = [ pos for pos in [find_re(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) for terminal in terminals] if pos != -1 ] if len(UpperCAmelCase_ ) > 0: return completion[: min(UpperCAmelCase_ )] else: return completion
569
import argparse import json import os import torch from transformers import LukeConfig, LukeModel, LukeTokenizer, RobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) -> List[str]: """simple docstring""" with open(snake_case__ ) as metadata_file: _SCREAMING_SNAKE_CASE = json.load(snake_case__ ) _SCREAMING_SNAKE_CASE = LukeConfig(use_entity_aware_attention=snake_case__ ,**metadata["""model_config"""] ) # Load in the weights from the checkpoint_path _SCREAMING_SNAKE_CASE = torch.load(snake_case__ ,map_location="""cpu""" ) # Load the entity vocab file _SCREAMING_SNAKE_CASE = load_entity_vocab(snake_case__ ) _SCREAMING_SNAKE_CASE = RobertaTokenizer.from_pretrained(metadata["""model_config"""]["""bert_model_name"""] ) # Add special tokens to the token vocabulary for downstream tasks _SCREAMING_SNAKE_CASE = AddedToken("""<ent>""" ,lstrip=snake_case__ ,rstrip=snake_case__ ) _SCREAMING_SNAKE_CASE = AddedToken("""<ent2>""" ,lstrip=snake_case__ ,rstrip=snake_case__ ) tokenizer.add_special_tokens({"""additional_special_tokens""": [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F'Saving tokenizer to {pytorch_dump_folder_path}' ) tokenizer.save_pretrained(snake_case__ ) with open(os.path.join(snake_case__ ,LukeTokenizer.vocab_files_names["""entity_vocab_file"""] ) ,"""w""" ) as f: json.dump(snake_case__ ,snake_case__ ) _SCREAMING_SNAKE_CASE = LukeTokenizer.from_pretrained(snake_case__ ) # Initialize the embeddings of the special tokens _SCREAMING_SNAKE_CASE = state_dict["""embeddings.word_embeddings.weight"""] _SCREAMING_SNAKE_CASE = word_emb[tokenizer.convert_tokens_to_ids(["""@"""] )[0]].unsqueeze(0 ) _SCREAMING_SNAKE_CASE = word_emb[tokenizer.convert_tokens_to_ids(["""#"""] )[0]].unsqueeze(0 ) _SCREAMING_SNAKE_CASE = torch.cat([word_emb, ent_emb, enta_emb] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: _SCREAMING_SNAKE_CASE = F'encoder.layer.{layer_index}.attention.self.' _SCREAMING_SNAKE_CASE = state_dict[prefix + matrix_name] _SCREAMING_SNAKE_CASE = state_dict[prefix + matrix_name] _SCREAMING_SNAKE_CASE = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks _SCREAMING_SNAKE_CASE = state_dict["""entity_embeddings.entity_embeddings.weight"""] _SCREAMING_SNAKE_CASE = entity_emb[entity_vocab["""[MASK]"""]] _SCREAMING_SNAKE_CASE = LukeModel(config=snake_case__ ).eval() _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = model.load_state_dict(snake_case__ ,strict=snake_case__ ) if not (len(snake_case__ ) == 1 and missing_keys[0] == "embeddings.position_ids"): raise ValueError(F'Missing keys {", ".join(snake_case__ )}. Expected only missing embeddings.position_ids' ) if not (all(key.startswith("""entity_predictions""" ) or key.startswith("""lm_head""" ) for key in unexpected_keys )): raise ValueError( """Unexpected keys""" F' {", ".join([key for key in unexpected_keys if not (key.startswith("entity_predictions" ) or key.startswith("lm_head" ))] )}' ) # Check outputs _SCREAMING_SNAKE_CASE = LukeTokenizer.from_pretrained(snake_case__ ,task="""entity_classification""" ) _SCREAMING_SNAKE_CASE = ( """Top seed Ana Ivanovic said on Thursday she could hardly believe her luck as a fortuitous netcord helped the""" """ new world number one avoid a humiliating second- round exit at Wimbledon .""" ) _SCREAMING_SNAKE_CASE = (39, 42) _SCREAMING_SNAKE_CASE = tokenizer(snake_case__ ,entity_spans=[span] ,add_prefix_space=snake_case__ ,return_tensors="""pt""" ) _SCREAMING_SNAKE_CASE = model(**snake_case__ ) # Verify word hidden states if model_size == "large": _SCREAMING_SNAKE_CASE = torch.Size((1, 42, 10_24) ) _SCREAMING_SNAKE_CASE = torch.tensor( [[0.0_133, 0.0_865, 0.0_095], [0.3_093, -0.2_576, -0.7_418], [-0.1_720, -0.2_117, -0.2_869]] ) else: # base _SCREAMING_SNAKE_CASE = torch.Size((1, 42, 7_68) ) _SCREAMING_SNAKE_CASE = torch.tensor([[0.0_037, 0.1_368, -0.0_091], [0.1_099, 0.3_329, -0.1_095], [0.0_765, 0.5_335, 0.1_179]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F'Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] ,snake_case__ ,atol=1e-4 ): raise ValueError # Verify entity hidden states if model_size == "large": _SCREAMING_SNAKE_CASE = torch.Size((1, 1, 10_24) ) _SCREAMING_SNAKE_CASE = torch.tensor([[0.0_466, -0.0_106, -0.0_179]] ) else: # base _SCREAMING_SNAKE_CASE = torch.Size((1, 1, 7_68) ) _SCREAMING_SNAKE_CASE = torch.tensor([[0.1_457, 0.1_044, 0.0_174]] ) if not (outputs.entity_last_hidden_state.shape != expected_shape): raise ValueError( F'Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is' F' {expected_shape}' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] ,snake_case__ ,atol=1e-4 ): raise ValueError # Finally, save our PyTorch model and tokenizer print("""Saving PyTorch model to {}""".format(snake_case__ ) ) model.save_pretrained(snake_case__ ) def __lowerCamelCase ( snake_case__ ) -> Optional[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = {} with open(snake_case__ ,"""r""" ,encoding="""utf-8""" ) as f: for index, line in enumerate(snake_case__ ): _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = line.rstrip().split("""\t""" ) _SCREAMING_SNAKE_CASE = index return entity_vocab if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument('''--checkpoint_path''', type=str, help='''Path to a pytorch_model.bin file.''') parser.add_argument( '''--metadata_path''', default=None, type=str, help='''Path to a metadata.json file, defining the configuration.''' ) parser.add_argument( '''--entity_vocab_path''', default=None, type=str, help='''Path to an entity_vocab.tsv file, containing the entity vocabulary.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to where to dump the output PyTorch model.''' ) parser.add_argument( '''--model_size''', default='''base''', type=str, choices=['''base''', '''large'''], help='''Size of the model to be converted.''' ) UpperCamelCase = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
569
1
import argparse import os import gluonnlp as nlp import mxnet as mx import numpy as np import torch from gluonnlp.base import get_home_dir from gluonnlp.model.bert import BERTEncoder from gluonnlp.model.utils import _load_vocab from gluonnlp.vocab import Vocab from packaging import version from torch import nn from transformers import BertConfig, BertForMaskedLM, BertModel, RobertaTokenizer from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging if version.parse(nlp.__version__) != version.parse("""0.8.3"""): raise Exception("""requires gluonnlp == 0.8.3""") if version.parse(mx.__version__) != version.parse("""1.5.0"""): raise Exception("""requires mxnet == 1.5.0""") logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = """The Nymphenburg Palace is a beautiful palace in Munich!""" def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: str , SCREAMING_SNAKE_CASE_: str ) -> int: '''simple docstring''' A__ = { "attention_cell": "multi_head", "num_layers": 4, "units": 1_0_2_4, "hidden_size": 7_6_8, "max_length": 5_1_2, "num_heads": 8, "scaled": True, "dropout": 0.1, "use_residual": True, "embed_size": 1_0_2_4, "embed_dropout": 0.1, "word_embed": None, "layer_norm_eps": 1e-5, "token_type_vocab_size": 2, } A__ = bort_4_8_768_1024_hparams # Let's construct the original Bort model here # Taken from official BERT implementation, see: # https://github.com/alexa/bort/blob/master/bort/bort.py A__ = BERTEncoder( attention_cell=predefined_args["attention_cell"] , num_layers=predefined_args["num_layers"] , units=predefined_args["units"] , hidden_size=predefined_args["hidden_size"] , max_length=predefined_args["max_length"] , num_heads=predefined_args["num_heads"] , scaled=predefined_args["scaled"] , dropout=predefined_args["dropout"] , output_attention=SCREAMING_SNAKE_CASE_ , output_all_encodings=SCREAMING_SNAKE_CASE_ , use_residual=predefined_args["use_residual"] , activation=predefined_args.get("activation" , "gelu" ) , layer_norm_eps=predefined_args.get("layer_norm_eps" , SCREAMING_SNAKE_CASE_ ) , ) # Vocab information needs to be fetched first # It's the same as RoBERTa, so RobertaTokenizer can be used later A__ = "openwebtext_ccnews_stories_books_cased" # Specify download folder to Gluonnlp's vocab A__ = os.path.join(get_home_dir() , "models" ) A__ = _load_vocab(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , cls=SCREAMING_SNAKE_CASE_ ) A__ = nlp.model.BERTModel( SCREAMING_SNAKE_CASE_ , len(SCREAMING_SNAKE_CASE_ ) , units=predefined_args["units"] , embed_size=predefined_args["embed_size"] , embed_dropout=predefined_args["embed_dropout"] , word_embed=predefined_args["word_embed"] , use_pooler=SCREAMING_SNAKE_CASE_ , use_token_type_embed=SCREAMING_SNAKE_CASE_ , token_type_vocab_size=predefined_args["token_type_vocab_size"] , use_classifier=SCREAMING_SNAKE_CASE_ , use_decoder=SCREAMING_SNAKE_CASE_ , ) original_bort.load_parameters(SCREAMING_SNAKE_CASE_ , cast_dtype=SCREAMING_SNAKE_CASE_ , ignore_extra=SCREAMING_SNAKE_CASE_ ) A__ = original_bort._collect_params_with_prefix() # Build our config 🤗 A__ = { "architectures": ["BertForMaskedLM"], "attention_probs_dropout_prob": predefined_args["dropout"], "hidden_act": "gelu", "hidden_dropout_prob": predefined_args["dropout"], "hidden_size": predefined_args["embed_size"], "initializer_range": 0.02, "intermediate_size": predefined_args["hidden_size"], "layer_norm_eps": predefined_args["layer_norm_eps"], "max_position_embeddings": predefined_args["max_length"], "model_type": "bort", "num_attention_heads": predefined_args["num_heads"], "num_hidden_layers": predefined_args["num_layers"], "pad_token_id": 1, # 2 = BERT, 1 = RoBERTa "type_vocab_size": 1, # 2 = BERT, 1 = RoBERTa "vocab_size": len(SCREAMING_SNAKE_CASE_ ), } A__ = BertConfig.from_dict(SCREAMING_SNAKE_CASE_ ) A__ = BertForMaskedLM(SCREAMING_SNAKE_CASE_ ) hf_bort_model.eval() # Parameter mapping table (Gluonnlp to Transformers) # * denotes layer index # # | Gluon Parameter | Transformers Parameter # | -------------------------------------------------------------- | ---------------------- # | `encoder.layer_norm.beta` | `bert.embeddings.LayerNorm.bias` # | `encoder.layer_norm.gamma` | `bert.embeddings.LayerNorm.weight` # | `encoder.position_weight` | `bert.embeddings.position_embeddings.weight` # | `word_embed.0.weight` | `bert.embeddings.word_embeddings.weight` # | `encoder.transformer_cells.*.attention_cell.proj_key.bias` | `bert.encoder.layer.*.attention.self.key.bias` # | `encoder.transformer_cells.*.attention_cell.proj_key.weight` | `bert.encoder.layer.*.attention.self.key.weight` # | `encoder.transformer_cells.*.attention_cell.proj_query.bias` | `bert.encoder.layer.*.attention.self.query.bias` # | `encoder.transformer_cells.*.attention_cell.proj_query.weight` | `bert.encoder.layer.*.attention.self.query.weight` # | `encoder.transformer_cells.*.attention_cell.proj_value.bias` | `bert.encoder.layer.*.attention.self.value.bias` # | `encoder.transformer_cells.*.attention_cell.proj_value.weight` | `bert.encoder.layer.*.attention.self.value.weight` # | `encoder.transformer_cells.*.ffn.ffn_2.bias` | `bert.encoder.layer.*.attention.output.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_2.weight` | `bert.encoder.layer.*.attention.output.dense.weight` # | `encoder.transformer_cells.*.layer_norm.beta` | `bert.encoder.layer.*.attention.output.LayerNorm.bias` # | `encoder.transformer_cells.*.layer_norm.gamma` | `bert.encoder.layer.*.attention.output.LayerNorm.weight` # | `encoder.transformer_cells.*.ffn.ffn_1.bias` | `bert.encoder.layer.*.intermediate.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_1.weight` | `bert.encoder.layer.*.intermediate.dense.weight` # | `encoder.transformer_cells.*.ffn.layer_norm.beta` | `bert.encoder.layer.*.output.LayerNorm.bias` # | `encoder.transformer_cells.*.ffn.layer_norm.gamma` | `bert.encoder.layer.*.output.LayerNorm.weight` # | `encoder.transformer_cells.*.proj.bias` | `bert.encoder.layer.*.output.dense.bias` # | `encoder.transformer_cells.*.proj.weight` | `bert.encoder.layer.*.output.dense.weight` # Helper function to convert MXNET Arrays to PyTorch def to_torch(SCREAMING_SNAKE_CASE_: List[Any] ) -> nn.Parameter: return nn.Parameter(torch.FloatTensor(mx_array.data().asnumpy() ) ) # Check param shapes and map new HF param back def check_and_map_params(SCREAMING_SNAKE_CASE_: int , SCREAMING_SNAKE_CASE_: int ): A__ = hf_param.shape A__ = to_torch(params[gluon_param] ) A__ = gluon_param.shape assert ( shape_hf == shape_gluon ), F'The gluon parameter {gluon_param} has shape {shape_gluon}, but expects shape {shape_hf} for Transformers' return gluon_param A__ = check_and_map_params( hf_bort_model.bert.embeddings.word_embeddings.weight , "word_embed.0.weight" ) A__ = check_and_map_params( hf_bort_model.bert.embeddings.position_embeddings.weight , "encoder.position_weight" ) A__ = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.bias , "encoder.layer_norm.beta" ) A__ = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.weight , "encoder.layer_norm.gamma" ) # Inspired by RoBERTa conversion script, we just zero them out (Bort does not use them) A__ = torch.zeros_like( hf_bort_model.bert.embeddings.token_type_embeddings.weight.data ) for i in range(hf_bort_config.num_hidden_layers ): A__ = hf_bort_model.bert.encoder.layer[i] # self attention A__ = layer.attention.self A__ = check_and_map_params( self_attn.key.bias.data , F'encoder.transformer_cells.{i}.attention_cell.proj_key.bias' ) A__ = check_and_map_params( self_attn.key.weight.data , F'encoder.transformer_cells.{i}.attention_cell.proj_key.weight' ) A__ = check_and_map_params( self_attn.query.bias.data , F'encoder.transformer_cells.{i}.attention_cell.proj_query.bias' ) A__ = check_and_map_params( self_attn.query.weight.data , F'encoder.transformer_cells.{i}.attention_cell.proj_query.weight' ) A__ = check_and_map_params( self_attn.value.bias.data , F'encoder.transformer_cells.{i}.attention_cell.proj_value.bias' ) A__ = check_and_map_params( self_attn.value.weight.data , F'encoder.transformer_cells.{i}.attention_cell.proj_value.weight' ) # self attention output A__ = layer.attention.output A__ = check_and_map_params( self_output.dense.bias , F'encoder.transformer_cells.{i}.proj.bias' ) A__ = check_and_map_params( self_output.dense.weight , F'encoder.transformer_cells.{i}.proj.weight' ) A__ = check_and_map_params( self_output.LayerNorm.bias , F'encoder.transformer_cells.{i}.layer_norm.beta' ) A__ = check_and_map_params( self_output.LayerNorm.weight , F'encoder.transformer_cells.{i}.layer_norm.gamma' ) # intermediate A__ = layer.intermediate A__ = check_and_map_params( intermediate.dense.bias , F'encoder.transformer_cells.{i}.ffn.ffn_1.bias' ) A__ = check_and_map_params( intermediate.dense.weight , F'encoder.transformer_cells.{i}.ffn.ffn_1.weight' ) # output A__ = layer.output A__ = check_and_map_params( bert_output.dense.bias , F'encoder.transformer_cells.{i}.ffn.ffn_2.bias' ) A__ = check_and_map_params( bert_output.dense.weight , F'encoder.transformer_cells.{i}.ffn.ffn_2.weight' ) A__ = check_and_map_params( bert_output.LayerNorm.bias , F'encoder.transformer_cells.{i}.ffn.layer_norm.beta' ) A__ = check_and_map_params( bert_output.LayerNorm.weight , F'encoder.transformer_cells.{i}.ffn.layer_norm.gamma' ) # Save space and energy 🎄 hf_bort_model.half() # Compare output of both models A__ = RobertaTokenizer.from_pretrained("roberta-base" ) A__ = tokenizer.encode_plus(SCREAMING_SNAKE_CASE_ )["input_ids"] # Get gluon output A__ = mx.nd.array([input_ids] ) A__ = original_bort(inputs=SCREAMING_SNAKE_CASE_ , token_types=[] ) # Get Transformer output (save and reload model again) hf_bort_model.save_pretrained(SCREAMING_SNAKE_CASE_ ) A__ = BertModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) hf_bort_model.eval() A__ = tokenizer.encode_plus(SCREAMING_SNAKE_CASE_ , return_tensors="pt" ) A__ = hf_bort_model(**SCREAMING_SNAKE_CASE_ )[0] A__ = output_gluon[0].asnumpy() A__ = output_hf[0].detach().numpy() A__ = np.max(np.abs(hf_layer - gluon_layer ) ).item() A__ = np.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1e-3 ) if success: print("✔️ Both model do output the same tensors" ) else: print("❌ Both model do **NOT** output the same tensors" ) print("Absolute difference is:" , SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--bort_checkpoint_path""", default=None, type=str, required=True, help="""Path the official Bort params file.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) lowerCAmelCase__ = parser.parse_args() convert_bort_checkpoint_to_pytorch(args.bort_checkpoint_path, args.pytorch_dump_folder_path)
514
from ...configuration_utils import PretrainedConfig lowerCAmelCase__ = { """google/tapas-base-finetuned-sqa""": ( """https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json""" ), """google/tapas-base-finetuned-wtq""": ( """https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json""" ), """google/tapas-base-finetuned-wikisql-supervised""": ( """https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json""" ), """google/tapas-base-finetuned-tabfact""": ( """https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json""" ), } class a__ ( snake_case ): """simple docstring""" __lowerCamelCase = 'tapas' def __init__( self , lowercase=30522 , lowercase=768 , lowercase=12 , lowercase=12 , lowercase=3072 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=1024 , lowercase=[3, 256, 256, 2, 256, 256, 10] , lowercase=0.02 , lowercase=1e-12 , lowercase=0 , lowercase=10.0 , lowercase=0 , lowercase=1.0 , lowercase=None , lowercase=1.0 , lowercase=False , lowercase=None , lowercase=1.0 , lowercase=1.0 , lowercase=False , lowercase=False , lowercase="ratio" , lowercase=None , lowercase=None , lowercase=64 , lowercase=32 , lowercase=False , lowercase=True , lowercase=False , lowercase=False , lowercase=True , lowercase=False , lowercase=None , lowercase=None , **lowercase , ) -> str: '''simple docstring''' super().__init__(pad_token_id=lowercase , **lowercase ) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = hidden_act A__ = intermediate_size A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = type_vocab_sizes A__ = initializer_range A__ = layer_norm_eps # Fine-tuning task hyperparameters A__ = positive_label_weight A__ = num_aggregation_labels A__ = aggregation_loss_weight A__ = use_answer_as_supervision A__ = answer_loss_importance A__ = use_normalized_answer_loss A__ = huber_loss_delta A__ = temperature A__ = aggregation_temperature A__ = use_gumbel_for_cells A__ = use_gumbel_for_aggregation A__ = average_approximation_function A__ = cell_selection_preference A__ = answer_loss_cutoff A__ = max_num_rows A__ = max_num_columns A__ = average_logits_per_cell A__ = select_one_column A__ = allow_empty_column_selection A__ = init_cell_selection_weights_to_zero A__ = reset_position_index_per_cell A__ = disable_per_token_loss # Aggregation hyperparameters A__ = aggregation_labels A__ = no_aggregation_label_index if isinstance(self.aggregation_labels , lowercase ): A__ = {int(lowercase ): v for k, v in aggregation_labels.items()}
514
1
def _lowerCAmelCase ( _a : int , _a : int , _a : list[list[int]] ) -> int: def update_area_of_max_square(_a : int , _a : int ) -> int: # BASE CASE if row >= rows or col >= cols: return 0 lowerCAmelCase_ : Optional[int] = update_area_of_max_square(_a , col + 1 ) lowerCAmelCase_ : List[Any] = update_area_of_max_square(row + 1 , col + 1 ) lowerCAmelCase_ : Any = update_area_of_max_square(row + 1 , _a ) if mat[row][col]: lowerCAmelCase_ : Optional[Any] = 1 + min([right, diagonal, down] ) lowerCAmelCase_ : Optional[Any] = max(largest_square_area[0] , _a ) return sub_problem_sol else: return 0 lowerCAmelCase_ : Optional[int] = [0] update_area_of_max_square(0 , 0 ) return largest_square_area[0] def _lowerCAmelCase ( _a : int , _a : int , _a : list[list[int]] ) -> int: def update_area_of_max_square_using_dp_array( _a : int , _a : int , _a : list[list[int]] ) -> int: if row >= rows or col >= cols: return 0 if dp_array[row][col] != -1: return dp_array[row][col] lowerCAmelCase_ : Optional[Any] = update_area_of_max_square_using_dp_array(_a , col + 1 , _a ) lowerCAmelCase_ : Optional[Any] = update_area_of_max_square_using_dp_array(row + 1 , col + 1 , _a ) lowerCAmelCase_ : int = update_area_of_max_square_using_dp_array(row + 1 , _a , _a ) if mat[row][col]: lowerCAmelCase_ : Tuple = 1 + min([right, diagonal, down] ) lowerCAmelCase_ : List[Any] = max(largest_square_area[0] , _a ) lowerCAmelCase_ : Tuple = sub_problem_sol return sub_problem_sol else: return 0 lowerCAmelCase_ : Tuple = [0] lowerCAmelCase_ : str = [[-1] * cols for _ in range(_a )] update_area_of_max_square_using_dp_array(0 , 0 , _a ) return largest_square_area[0] def _lowerCAmelCase ( _a : int , _a : int , _a : list[list[int]] ) -> int: lowerCAmelCase_ : Any = [[0] * (cols + 1) for _ in range(rows + 1 )] lowerCAmelCase_ : int = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): lowerCAmelCase_ : Optional[int] = dp_array[row][col + 1] lowerCAmelCase_ : int = dp_array[row + 1][col + 1] lowerCAmelCase_ : List[str] = dp_array[row + 1][col] if mat[row][col] == 1: lowerCAmelCase_ : int = 1 + min(_a , _a , _a ) lowerCAmelCase_ : Tuple = max(dp_array[row][col] , _a ) else: lowerCAmelCase_ : Union[str, Any] = 0 return largest_square_area def _lowerCAmelCase ( _a : int , _a : int , _a : list[list[int]] ) -> int: lowerCAmelCase_ : Dict = [0] * (cols + 1) lowerCAmelCase_ : int = [0] * (cols + 1) lowerCAmelCase_ : Optional[int] = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): lowerCAmelCase_ : List[str] = current_row[col + 1] lowerCAmelCase_ : Any = next_row[col + 1] lowerCAmelCase_ : Dict = next_row[col] if mat[row][col] == 1: lowerCAmelCase_ : str = 1 + min(_a , _a , _a ) lowerCAmelCase_ : Optional[Any] = max(current_row[col] , _a ) else: lowerCAmelCase_ : Optional[int] = 0 lowerCAmelCase_ : Tuple = current_row return largest_square_area if __name__ == "__main__": import doctest doctest.testmod() print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
440
from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass class lowercase__ ( __A ): __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = None class lowercase__ ( __A , __A ): __UpperCamelCase = 2 @register_to_config def __init__( self , _lowercase = 0.02 , _lowercase = 100 , _lowercase = 1.007 , _lowercase = 80 , _lowercase = 0.05 , _lowercase = 50 , ): # standard deviation of the initial noise distribution lowerCAmelCase_ : int = sigma_max # setable values lowerCAmelCase_ : int = None lowerCAmelCase_ : np.IntTensor = None lowerCAmelCase_ : torch.FloatTensor = None # sigma(t_i) def UpperCAmelCase__ ( self , _lowercase , _lowercase = None ): return sample def UpperCAmelCase__ ( self , _lowercase , _lowercase = None ): lowerCAmelCase_ : int = num_inference_steps lowerCAmelCase_ : int = np.arange(0 , self.num_inference_steps )[::-1].copy() lowerCAmelCase_ : List[Any] = torch.from_numpy(_lowercase ).to(_lowercase ) lowerCAmelCase_ : List[str] = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in self.timesteps ] lowerCAmelCase_ : Optional[int] = torch.tensor(_lowercase , dtype=torch.floataa , device=_lowercase ) def UpperCAmelCase__ ( self , _lowercase , _lowercase , _lowercase = None ): if self.config.s_min <= sigma <= self.config.s_max: lowerCAmelCase_ : List[Any] = min(self.config.s_churn / self.num_inference_steps , 2**0.5 - 1 ) else: lowerCAmelCase_ : List[str] = 0 # sample eps ~ N(0, S_noise^2 * I) lowerCAmelCase_ : List[Any] = self.config.s_noise * randn_tensor(sample.shape , generator=_lowercase ).to(sample.device ) lowerCAmelCase_ : Optional[int] = sigma + gamma * sigma lowerCAmelCase_ : int = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def UpperCAmelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase = True , ): lowerCAmelCase_ : Union[str, Any] = sample_hat + sigma_hat * model_output lowerCAmelCase_ : Dict = (sample_hat - pred_original_sample) / sigma_hat lowerCAmelCase_ : List[Any] = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=_lowercase , derivative=_lowercase , pred_original_sample=_lowercase ) def UpperCAmelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase = True , ): lowerCAmelCase_ : str = sample_prev + sigma_prev * model_output lowerCAmelCase_ : List[Any] = (sample_prev - pred_original_sample) / sigma_prev lowerCAmelCase_ : Tuple = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=_lowercase , derivative=_lowercase , pred_original_sample=_lowercase ) def UpperCAmelCase__ ( self , _lowercase , _lowercase , _lowercase ): raise NotImplementedError()
440
1
"""simple docstring""" import copy from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging lowercase_ = logging.get_logger(__name__) class UpperCAmelCase_ (__snake_case ): """simple docstring""" UpperCamelCase_ : Union[str, Any] = ["""input_features"""] def __init__( self : List[str] , a_ : Tuple=80 , a_ : Tuple=1_60_00 , a_ : Any=1_60 , a_ : Optional[Any]=30 , a_ : Optional[int]=4_00 , a_ : int=0.0 , a_ : Dict=False , **a_ : Optional[Any] , )-> List[Any]: """simple docstring""" super().__init__( feature_size=lowerCAmelCase_ , sampling_rate=lowerCAmelCase_ , padding_value=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , **lowerCAmelCase_ , ) UpperCAmelCase_ : Any = n_fft UpperCAmelCase_ : Union[str, Any] = hop_length UpperCAmelCase_ : Optional[Any] = chunk_length UpperCAmelCase_ : Optional[int] = chunk_length * sampling_rate UpperCAmelCase_ : Tuple = self.n_samples // hop_length UpperCAmelCase_ : List[str] = sampling_rate UpperCAmelCase_ : Union[str, Any] = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=lowerCAmelCase_ , min_frequency=0.0 , max_frequency=80_00.0 , sampling_rate=lowerCAmelCase_ , norm="""slaney""" , mel_scale="""slaney""" , ) def a ( self : Optional[int] , a_ : int )-> Optional[Any]: """simple docstring""" UpperCAmelCase_ : Optional[Any] = spectrogram( lowerCAmelCase_ , window_function(self.n_fft , """hann""" ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters , log_mel="""log10""" , ) UpperCAmelCase_ : Optional[Any] = log_spec[:, :-1] UpperCAmelCase_ : Any = np.maximum(lowerCAmelCase_ , log_spec.max() - 8.0 ) UpperCAmelCase_ : Tuple = (log_spec + 4.0) / 4.0 return log_spec @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def a ( a_ : Union[str, Any] , a_ : int , a_ : int = 0.0 )-> Dict: """simple docstring""" if attention_mask is not None: UpperCAmelCase_ : Tuple = np.array(lowerCAmelCase_ , np.intaa ) UpperCAmelCase_ : Dict = [] for vector, length in zip(lowerCAmelCase_ , attention_mask.sum(-1 ) ): UpperCAmelCase_ : str = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1E-7 ) if length < normed_slice.shape[0]: UpperCAmelCase_ : Union[str, Any] = padding_value normed_input_values.append(lowerCAmelCase_ ) else: UpperCAmelCase_ : List[str] = [(x - x.mean()) / np.sqrt(x.var() + 1E-7 ) for x in input_values] return normed_input_values def __call__( self : Union[str, Any] , a_ : Any , a_ : Tuple = True , a_ : Dict = None , a_ : List[Any] = None , a_ : List[Any] = None , a_ : Union[str, Any] = "max_length" , a_ : Union[str, Any] = None , a_ : Optional[int] = None , a_ : Optional[int] = None , **a_ : Tuple , )-> str: """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'''The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a''' f''' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input''' f''' was sampled with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) UpperCAmelCase_ : Optional[int] = isinstance(lowerCAmelCase_ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'''Only mono-channel audio is supported for input to {self}''' ) UpperCAmelCase_ : Any = is_batched_numpy or ( isinstance(lowerCAmelCase_ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: UpperCAmelCase_ : int = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(lowerCAmelCase_ , np.ndarray ): UpperCAmelCase_ : List[Any] = np.asarray(lowerCAmelCase_ , dtype=np.floataa ) elif isinstance(lowerCAmelCase_ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): UpperCAmelCase_ : str = raw_speech.astype(np.floataa ) # always return batch if not is_batched: UpperCAmelCase_ : Optional[Any] = [np.asarray([raw_speech] ).T] UpperCAmelCase_ : str = BatchFeature({"""input_features""": raw_speech} ) # convert into correct format for padding UpperCAmelCase_ : Union[str, Any] = self.pad( lowerCAmelCase_ , padding=lowerCAmelCase_ , max_length=max_length if max_length else self.n_samples , truncation=lowerCAmelCase_ , pad_to_multiple_of=lowerCAmelCase_ , return_attention_mask=return_attention_mask or do_normalize , ) # zero-mean and unit-variance normalization if do_normalize: UpperCAmelCase_ : Tuple = self.zero_mean_unit_var_norm( padded_inputs["""input_features"""] , attention_mask=padded_inputs["""attention_mask"""] , padding_value=self.padding_value , ) UpperCAmelCase_ : List[Any] = np.stack(padded_inputs["""input_features"""] , axis=0 ) # make sure list is in array format UpperCAmelCase_ : Dict = padded_inputs.get("""input_features""" ).transpose(2 , 0 , 1 ) UpperCAmelCase_ : Union[str, Any] = [self._np_extract_fbank_features(lowerCAmelCase_ ) for waveform in input_features[0]] if isinstance(input_features[0] , lowerCAmelCase_ ): UpperCAmelCase_ : int = [np.asarray(lowerCAmelCase_ , dtype=np.floataa ) for feature in input_features] else: UpperCAmelCase_ : Tuple = input_features if return_attention_mask: # rescale from sample (48000) to feature (3000) UpperCAmelCase_ : Optional[Any] = padded_inputs["""attention_mask"""][:, :: self.hop_length] if return_tensors is not None: UpperCAmelCase_ : Optional[Any] = padded_inputs.convert_to_tensors(lowerCAmelCase_ ) return padded_inputs def a ( self : Optional[int] )-> Union[str, Any]: """simple docstring""" UpperCAmelCase_ : str = copy.deepcopy(self.__dict__ ) UpperCAmelCase_ : int = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] return output
470
import warnings from .generation import TFGenerationMixin class snake_case ( __snake_case ): """simple docstring""" warnings.warn( """Importing `TFGenerationMixin` from `src/transformers/generation_tf_utils.py` is deprecated and will """ """be removed in Transformers v5. Import as `from transformers import TFGenerationMixin` instead.""" ,__snake_case ,)
321
0
"""simple docstring""" from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def A ( snake_case__ , snake_case__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = [] for part_id in partition_order: SCREAMING_SNAKE_CASE__ = df.where(f"""SPARK_PARTITION_ID() = {part_id}""" ).collect() for row_idx, row in enumerate(snake_case__ ): expected_row_ids_and_row_dicts.append((f"""{part_id}_{row_idx}""", row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def A ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() SCREAMING_SNAKE_CASE__ = spark.range(1_00 ).repartition(1 ) SCREAMING_SNAKE_CASE__ = Spark(snake_case__ ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def A ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() SCREAMING_SNAKE_CASE__ = spark.range(10 ).repartition(2 ) SCREAMING_SNAKE_CASE__ = [1, 0] SCREAMING_SNAKE_CASE__ = _generate_iterable_examples(snake_case__ , snake_case__ ) # Reverse the partitions. SCREAMING_SNAKE_CASE__ = _get_expected_row_ids_and_row_dicts_for_partition_order(snake_case__ , snake_case__ ) for i, (row_id, row_dict) in enumerate(generate_fn() ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def A ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() SCREAMING_SNAKE_CASE__ = spark.range(10 ).repartition(1 ) SCREAMING_SNAKE_CASE__ = SparkExamplesIterable(snake_case__ ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(snake_case__ ): assert row_id == f"""0_{i}""" assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def A ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() SCREAMING_SNAKE_CASE__ = spark.range(30 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch("""numpy.random.Generator""" ) as generator_mock: SCREAMING_SNAKE_CASE__ = lambda snake_case__ : x.reverse() SCREAMING_SNAKE_CASE__ = _get_expected_row_ids_and_row_dicts_for_partition_order(snake_case__ , [2, 1, 0] ) SCREAMING_SNAKE_CASE__ = SparkExamplesIterable(snake_case__ ).shuffle_data_sources(snake_case__ ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(snake_case__ ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def A ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() SCREAMING_SNAKE_CASE__ = spark.range(20 ).repartition(4 ) # Partitions 0 and 2 SCREAMING_SNAKE_CASE__ = SparkExamplesIterable(snake_case__ ).shard_data_sources(worker_id=0 , num_workers=2 ) assert shard_it_a.n_shards == 2 SCREAMING_SNAKE_CASE__ = _get_expected_row_ids_and_row_dicts_for_partition_order(snake_case__ , [0, 2] ) for i, (row_id, row_dict) in enumerate(snake_case__ ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 SCREAMING_SNAKE_CASE__ = SparkExamplesIterable(snake_case__ ).shard_data_sources(worker_id=1 , num_workers=2 ) assert shard_it_a.n_shards == 2 SCREAMING_SNAKE_CASE__ = _get_expected_row_ids_and_row_dicts_for_partition_order(snake_case__ , [1, 3] ) for i, (row_id, row_dict) in enumerate(snake_case__ ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def A ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() SCREAMING_SNAKE_CASE__ = spark.range(1_00 ).repartition(1 ) SCREAMING_SNAKE_CASE__ = Spark(snake_case__ ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 1_00
616
"""simple docstring""" import itertools import random import unittest import numpy as np from transformers import BatchFeature, SpeechTaFeatureExtractor from transformers.testing_utils import require_torch from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch A_ : List[str] = random.Random() def A ( snake_case__ , snake_case__=1.0 , snake_case__=None , snake_case__=None ): '''simple docstring''' if rng is None: SCREAMING_SNAKE_CASE__ = global_rng SCREAMING_SNAKE_CASE__ = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch class lowerCamelCase (unittest.TestCase ): def __init__( self : Tuple , __UpperCAmelCase : int , __UpperCAmelCase : List[str]=7 , __UpperCAmelCase : List[str]=4_0_0 , __UpperCAmelCase : Tuple=2_0_0_0 , __UpperCAmelCase : Any=1 , __UpperCAmelCase : str=0.0 , __UpperCAmelCase : int=1_6_0_0_0 , __UpperCAmelCase : str=True , __UpperCAmelCase : List[str]=8_0 , __UpperCAmelCase : Dict=1_6 , __UpperCAmelCase : int=6_4 , __UpperCAmelCase : Any="hann_window" , __UpperCAmelCase : Tuple=8_0 , __UpperCAmelCase : Tuple=7_6_0_0 , __UpperCAmelCase : List[Any]=1e-10 , __UpperCAmelCase : Tuple=True , ) -> int: SCREAMING_SNAKE_CASE__ = parent SCREAMING_SNAKE_CASE__ = batch_size SCREAMING_SNAKE_CASE__ = min_seq_length SCREAMING_SNAKE_CASE__ = max_seq_length SCREAMING_SNAKE_CASE__ = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) SCREAMING_SNAKE_CASE__ = feature_size SCREAMING_SNAKE_CASE__ = padding_value SCREAMING_SNAKE_CASE__ = sampling_rate SCREAMING_SNAKE_CASE__ = do_normalize SCREAMING_SNAKE_CASE__ = num_mel_bins SCREAMING_SNAKE_CASE__ = hop_length SCREAMING_SNAKE_CASE__ = win_length SCREAMING_SNAKE_CASE__ = win_function SCREAMING_SNAKE_CASE__ = fmin SCREAMING_SNAKE_CASE__ = fmax SCREAMING_SNAKE_CASE__ = mel_floor SCREAMING_SNAKE_CASE__ = return_attention_mask def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Any: return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "do_normalize": self.do_normalize, "num_mel_bins": self.num_mel_bins, "hop_length": self.hop_length, "win_length": self.win_length, "win_function": self.win_function, "fmin": self.fmin, "fmax": self.fmax, "mel_floor": self.mel_floor, "return_attention_mask": self.return_attention_mask, } def SCREAMING_SNAKE_CASE ( self : Optional[int] , __UpperCAmelCase : Dict=False , __UpperCAmelCase : List[str]=False ) -> Optional[Any]: def _flatten(__UpperCAmelCase : List[Any] ): return list(itertools.chain(*__UpperCAmelCase ) ) if equal_length: SCREAMING_SNAKE_CASE__ = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size SCREAMING_SNAKE_CASE__ = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: SCREAMING_SNAKE_CASE__ = [np.asarray(__UpperCAmelCase ) for x in speech_inputs] return speech_inputs def SCREAMING_SNAKE_CASE ( self : Optional[Any] , __UpperCAmelCase : Union[str, Any]=False , __UpperCAmelCase : Optional[int]=False ) -> str: if equal_length: SCREAMING_SNAKE_CASE__ = [floats_list((self.max_seq_length, self.num_mel_bins) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size SCREAMING_SNAKE_CASE__ = [ floats_list((x, self.num_mel_bins) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: SCREAMING_SNAKE_CASE__ = [np.asarray(__UpperCAmelCase ) for x in speech_inputs] return speech_inputs @require_torch class lowerCamelCase (A__ ,unittest.TestCase ): lowerCamelCase__ : Any = SpeechTaFeatureExtractor def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Any: SCREAMING_SNAKE_CASE__ = SpeechTaFeatureExtractionTester(self ) def SCREAMING_SNAKE_CASE ( self : List[Any] , __UpperCAmelCase : Any ) -> Tuple: self.assertTrue(np.all(np.mean(__UpperCAmelCase , axis=0 ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(__UpperCAmelCase , axis=0 ) - 1 ) < 1e-3 ) ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[int]: # Tests that all call wrap to encode_plus and batch_encode_plus SCREAMING_SNAKE_CASE__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 SCREAMING_SNAKE_CASE__ = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] SCREAMING_SNAKE_CASE__ = [np.asarray(__UpperCAmelCase ) for speech_input in speech_inputs] # Test not batched input SCREAMING_SNAKE_CASE__ = feat_extract(speech_inputs[0] , return_tensors="""np""" ).input_values SCREAMING_SNAKE_CASE__ = feat_extract(np_speech_inputs[0] , return_tensors="""np""" ).input_values self.assertTrue(np.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1e-3 ) ) # Test batched SCREAMING_SNAKE_CASE__ = feat_extract(__UpperCAmelCase , return_tensors="""np""" ).input_values SCREAMING_SNAKE_CASE__ = feat_extract(__UpperCAmelCase , return_tensors="""np""" ).input_values for enc_seq_a, enc_seq_a in zip(__UpperCAmelCase , __UpperCAmelCase ): self.assertTrue(np.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1e-3 ) ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) SCREAMING_SNAKE_CASE__ = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] SCREAMING_SNAKE_CASE__ = ["""longest""", """max_length""", """do_not_pad"""] SCREAMING_SNAKE_CASE__ = [None, 1_6_0_0, None] for max_length, padding in zip(__UpperCAmelCase , __UpperCAmelCase ): SCREAMING_SNAKE_CASE__ = feat_extract(__UpperCAmelCase , padding=__UpperCAmelCase , max_length=__UpperCAmelCase , return_tensors="""np""" ) SCREAMING_SNAKE_CASE__ = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:8_0_0] ) self.assertTrue(input_values[0][8_0_0:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[1][:1_0_0_0] ) self.assertTrue(input_values[0][1_0_0_0:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[2][:1_2_0_0] ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) SCREAMING_SNAKE_CASE__ = range(8_0_0 , 1_4_0_0 , 2_0_0 ) SCREAMING_SNAKE_CASE__ = [floats_list((1, x) )[0] for x in lengths] SCREAMING_SNAKE_CASE__ = ["""longest""", """max_length""", """do_not_pad"""] SCREAMING_SNAKE_CASE__ = [None, 1_6_0_0, None] for max_length, padding in zip(__UpperCAmelCase , __UpperCAmelCase ): SCREAMING_SNAKE_CASE__ = feat_extract(__UpperCAmelCase , max_length=__UpperCAmelCase , padding=__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:8_0_0] ) self._check_zero_mean_unit_variance(input_values[1][:1_0_0_0] ) self._check_zero_mean_unit_variance(input_values[2][:1_2_0_0] ) def SCREAMING_SNAKE_CASE ( self : int ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) SCREAMING_SNAKE_CASE__ = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] SCREAMING_SNAKE_CASE__ = feat_extract( __UpperCAmelCase , truncation=__UpperCAmelCase , max_length=1_0_0_0 , padding="""max_length""" , return_tensors="""np""" ) SCREAMING_SNAKE_CASE__ = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_0_0] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def SCREAMING_SNAKE_CASE ( self : int ) -> Tuple: SCREAMING_SNAKE_CASE__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) SCREAMING_SNAKE_CASE__ = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] SCREAMING_SNAKE_CASE__ = feat_extract( __UpperCAmelCase , truncation=__UpperCAmelCase , max_length=1_0_0_0 , padding="""longest""" , return_tensors="""np""" ) SCREAMING_SNAKE_CASE__ = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_0_0] ) self._check_zero_mean_unit_variance(input_values[1, :1_0_0_0] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1_0_0_0) ) SCREAMING_SNAKE_CASE__ = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] SCREAMING_SNAKE_CASE__ = feat_extract( __UpperCAmelCase , truncation=__UpperCAmelCase , max_length=2_0_0_0 , padding="""longest""" , return_tensors="""np""" ) SCREAMING_SNAKE_CASE__ = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_0_0] ) self._check_zero_mean_unit_variance(input_values[1, :1_0_0_0] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1_2_0_0) ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> List[str]: SCREAMING_SNAKE_CASE__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) SCREAMING_SNAKE_CASE__ = np.random.rand(1_0_0 ).astype(np.floataa ) SCREAMING_SNAKE_CASE__ = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: SCREAMING_SNAKE_CASE__ = feature_extractor.pad([{"""input_values""": inputs}] , return_tensors="""np""" ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) SCREAMING_SNAKE_CASE__ = feature_extractor.pad([{"""input_values""": inputs}] , return_tensors="""pt""" ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> str: # Tests that all call wrap to encode_plus and batch_encode_plus SCREAMING_SNAKE_CASE__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 SCREAMING_SNAKE_CASE__ = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] SCREAMING_SNAKE_CASE__ = [np.asarray(__UpperCAmelCase ) for speech_input in speech_inputs] # Test feature size SCREAMING_SNAKE_CASE__ = feature_extractor(audio_target=__UpperCAmelCase , padding=__UpperCAmelCase , return_tensors="""np""" ).input_values self.assertTrue(input_values.ndim == 3 ) self.assertTrue(input_values.shape[-1] == feature_extractor.num_mel_bins ) # Test not batched input SCREAMING_SNAKE_CASE__ = feature_extractor(speech_inputs[0] , return_tensors="""np""" ).input_values SCREAMING_SNAKE_CASE__ = feature_extractor(np_speech_inputs[0] , return_tensors="""np""" ).input_values self.assertTrue(np.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1e-3 ) ) # Test batched SCREAMING_SNAKE_CASE__ = feature_extractor(__UpperCAmelCase , return_tensors="""np""" ).input_values SCREAMING_SNAKE_CASE__ = feature_extractor(__UpperCAmelCase , return_tensors="""np""" ).input_values for enc_seq_a, enc_seq_a in zip(__UpperCAmelCase , __UpperCAmelCase ): self.assertTrue(np.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. SCREAMING_SNAKE_CASE__ = [floats_list((1, x) )[0] for x in (8_0_0, 8_0_0, 8_0_0)] SCREAMING_SNAKE_CASE__ = np.asarray(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = feature_extractor(__UpperCAmelCase , return_tensors="""np""" ).input_values SCREAMING_SNAKE_CASE__ = feature_extractor(__UpperCAmelCase , return_tensors="""np""" ).input_values for enc_seq_a, enc_seq_a in zip(__UpperCAmelCase , __UpperCAmelCase ): self.assertTrue(np.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1e-3 ) ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> Any: SCREAMING_SNAKE_CASE__ = self.feat_extract_tester.prepare_inputs_for_target() SCREAMING_SNAKE_CASE__ = self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE__ = feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE__ = BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(__UpperCAmelCase ) == len(__UpperCAmelCase ) for x, y in zip(__UpperCAmelCase , processed_features[input_name] ) ) ) SCREAMING_SNAKE_CASE__ = self.feat_extract_tester.prepare_inputs_for_target(equal_length=__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = BatchFeature({input_name: speech_inputs} , tensor_type="""np""" ) SCREAMING_SNAKE_CASE__ = processed_features[input_name] if len(batch_features_input.shape ) < 3: SCREAMING_SNAKE_CASE__ = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def SCREAMING_SNAKE_CASE ( self : Dict ) -> List[str]: SCREAMING_SNAKE_CASE__ = self.feat_extract_tester.prepare_inputs_for_target(equal_length=__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE__ = feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE__ = BatchFeature({input_name: speech_inputs} , tensor_type="""pt""" ) SCREAMING_SNAKE_CASE__ = processed_features[input_name] if len(batch_features_input.shape ) < 3: SCREAMING_SNAKE_CASE__ = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE__ = self.feat_extract_tester.prepare_inputs_for_target() SCREAMING_SNAKE_CASE__ = feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE__ = BatchFeature({input_name: speech_inputs} ) SCREAMING_SNAKE_CASE__ = feat_extract.num_mel_bins # hack! SCREAMING_SNAKE_CASE__ = feat_extract.pad(__UpperCAmelCase , padding="""longest""" , return_tensors="""np""" )[input_name] SCREAMING_SNAKE_CASE__ = feat_extract.pad(__UpperCAmelCase , padding="""longest""" , return_tensors="""pt""" )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1e-2 ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> str: SCREAMING_SNAKE_CASE__ = self.feat_extract_dict SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = self.feature_extraction_class(**__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = self.feat_extract_tester.prepare_inputs_for_target() SCREAMING_SNAKE_CASE__ = [len(__UpperCAmelCase ) for x in speech_inputs] SCREAMING_SNAKE_CASE__ = feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE__ = BatchFeature({input_name: speech_inputs} ) SCREAMING_SNAKE_CASE__ = feat_extract.num_mel_bins # hack! SCREAMING_SNAKE_CASE__ = feat_extract.pad(__UpperCAmelCase , padding="""longest""" , return_tensors="""np""" ) self.assertIn("""attention_mask""" , __UpperCAmelCase ) self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , __UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = self.feat_extract_dict SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = self.feature_extraction_class(**__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = self.feat_extract_tester.prepare_inputs_for_target() SCREAMING_SNAKE_CASE__ = [len(__UpperCAmelCase ) for x in speech_inputs] SCREAMING_SNAKE_CASE__ = feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE__ = BatchFeature({input_name: speech_inputs} ) SCREAMING_SNAKE_CASE__ = min(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = feat_extract.num_mel_bins # hack! SCREAMING_SNAKE_CASE__ = feat_extract.pad( __UpperCAmelCase , padding="""max_length""" , max_length=__UpperCAmelCase , truncation=__UpperCAmelCase , return_tensors="""np""" ) self.assertIn("""attention_mask""" , __UpperCAmelCase ) self.assertListEqual( list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] ) def SCREAMING_SNAKE_CASE ( self : List[Any] , __UpperCAmelCase : int ) -> str: from datasets import load_dataset SCREAMING_SNAKE_CASE__ = load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" ) # automatic decoding with librispeech SCREAMING_SNAKE_CASE__ = ds.sort("""id""" ).select(range(__UpperCAmelCase ) )[:num_samples]["""audio"""] return [x["array"] for x in speech_samples] def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Any: # fmt: off SCREAMING_SNAKE_CASE__ = torch.tensor( [2.3804e-03, 2.0752e-03, 1.9836e-03, 2.1057e-03, 1.6174e-03, 3.0518e-04, 9.1553e-05, 3.3569e-04, 9.7656e-04, 1.8311e-03, 2.0142e-03, 2.1057e-03, 1.7395e-03, 4.5776e-04, -3.9673e-04, 4.5776e-04, 1.0071e-03, 9.1553e-05, 4.8828e-04, 1.1597e-03, 7.3242e-04, 9.4604e-04, 1.8005e-03, 1.8311e-03, 8.8501e-04, 4.2725e-04, 4.8828e-04, 7.3242e-04, 1.0986e-03, 2.1057e-03] ) # fmt: on SCREAMING_SNAKE_CASE__ = self._load_datasamples(1 ) SCREAMING_SNAKE_CASE__ = SpeechTaFeatureExtractor() SCREAMING_SNAKE_CASE__ = feature_extractor(__UpperCAmelCase , return_tensors="""pt""" ).input_values self.assertEquals(input_values.shape , (1, 9_3_6_8_0) ) self.assertTrue(torch.allclose(input_values[0, :3_0] , __UpperCAmelCase , atol=1e-6 ) ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Union[str, Any]: # fmt: off SCREAMING_SNAKE_CASE__ = torch.tensor( [-2.6_870, -3.0_104, -3.1_356, -3.5_352, -3.0_044, -3.0_353, -3.4_719, -3.6_777, -3.1_520, -2.9_435, -2.6_553, -2.8_795, -2.9_944, -2.5_921, -3.0_279, -3.0_386, -3.0_864, -3.1_291, -3.2_353, -2.7_444, -2.6_831, -2.7_287, -3.1_761, -3.1_571, -3.2_726, -3.0_582, -3.1_007, -3.4_533, -3.4_695, -3.0_998] ) # fmt: on SCREAMING_SNAKE_CASE__ = self._load_datasamples(1 ) SCREAMING_SNAKE_CASE__ = SpeechTaFeatureExtractor() SCREAMING_SNAKE_CASE__ = feature_extractor(audio_target=__UpperCAmelCase , return_tensors="""pt""" ).input_values self.assertEquals(input_values.shape , (1, 3_6_6, 8_0) ) self.assertTrue(torch.allclose(input_values[0, 0, :3_0] , __UpperCAmelCase , atol=1e-4 ) )
616
1
# Function to print upper half of diamond (pyramid) def snake_case (UpperCamelCase : Any ): '''simple docstring''' for i in range(0 , _lowerCamelCase ): for _ in range(0 , n - i - 1 ): # printing spaces print(""" """ , end="""""" ) for _ in range(0 , i + 1 ): # printing stars print("""* """ , end="""""" ) print() def snake_case (UpperCamelCase : Union[str, Any] ): '''simple docstring''' for i in range(_lowerCamelCase , 0 , -1 ): for _ in range(_lowerCamelCase , 0 , -1 ): # printing stars print("""* """ , end="""""" ) print() for _ in range(n - i + 1 , 0 , -1 ): # printing spaces print(""" """ , end="""""" ) def snake_case (UpperCamelCase : Optional[Any] ): '''simple docstring''' if n <= 0: print(""" ... .... nothing printing :(""" ) return floyd(_lowerCamelCase ) # upper half reverse_floyd(_lowerCamelCase ) # lower half if __name__ == "__main__": print(r"""| /\ | |- | |- |--| |\ /| |-""") print(r"""|/ \| |- |_ |_ |__| | \/ | |_""") a__ : Union[str, Any] = 1 while K: a__ : List[Any] = int(input("""enter the number and , and see the magic : """)) print() pretty_print(user_number) a__ : str = int(input("""press 0 to exit... and 1 to continue...""")) print("""Good Bye...""")
165
def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : int) -> int: '''simple docstring''' __UpperCamelCase : Tuple = 1 for i in range(1 , num + 1): fact *= i return fact def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : int) -> int: '''simple docstring''' __UpperCamelCase : Dict = 0 while number > 0: __UpperCamelCase : List[Any] = number % 10 sum_of_digits += last_digit __UpperCamelCase : List[Any] = number // 10 # Removing the last_digit from the given number return sum_of_digits def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : int = 100) -> int: '''simple docstring''' __UpperCamelCase : Optional[Any] = factorial(_lowerCamelCase) __UpperCamelCase : Tuple = split_and_add(_lowerCamelCase) return result if __name__ == "__main__": print(solution(int(input('Enter the Number: ').strip())))
557
0
from ..utils import DummyObject, requires_backends class _SCREAMING_SNAKE_CASE ( metaclass=_lowerCAmelCase ): a_ : Tuple = ['''speech'''] def __init__(self , *UpperCAmelCase , **UpperCAmelCase): '''simple docstring''' requires_backends(self , ['''speech''']) class _SCREAMING_SNAKE_CASE ( metaclass=_lowerCAmelCase ): a_ : Dict = ['''speech'''] def __init__(self , *UpperCAmelCase , **UpperCAmelCase): '''simple docstring''' requires_backends(self , ['''speech'''])
708
import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging UpperCamelCase_ = logging.get_logger(__name__) logging.set_verbosity_info() def SCREAMING_SNAKE_CASE ( snake_case__ , snake_case__ ) -> List[Any]: if "xprophetnet" in prophetnet_checkpoint_path: __UpperCAmelCase =XLMProphetNetForConditionalGenerationOld.from_pretrained(snake_case__ ) __UpperCAmelCase , __UpperCAmelCase =XLMProphetNetForConditionalGeneration.from_pretrained( snake_case__ , output_loading_info=snake_case__ ) else: __UpperCAmelCase =ProphetNetForConditionalGenerationOld.from_pretrained(snake_case__ ) __UpperCAmelCase , __UpperCAmelCase =ProphetNetForConditionalGeneration.from_pretrained( snake_case__ , output_loading_info=snake_case__ ) __UpperCAmelCase =['''key_proj''', '''value_proj''', '''query_proj'''] __UpperCAmelCase ={ '''self_attn''': '''ngram_self_attn''', '''cross_attn''': '''encoder_attn''', '''cross_attn_layer_norm''': '''encoder_attn_layer_norm''', '''feed_forward_layer_norm''': '''final_layer_norm''', '''feed_forward''': '''''', '''intermediate''': '''fc1''', '''output''': '''fc2''', '''key_proj''': '''k_proj''', '''query_proj''': '''q_proj''', '''value_proj''': '''v_proj''', '''word_embeddings''': '''embed_tokens''', '''embeddings_layer_norm''': '''emb_layer_norm''', '''relative_pos_embeddings''': '''relative_linear''', '''ngram_embeddings''': '''ngram_input_embed''', '''position_embeddings''': '''embed_positions''', } for key in loading_info["missing_keys"]: __UpperCAmelCase =key.split('''.''' ) if attributes[0] == "lm_head": __UpperCAmelCase =prophet __UpperCAmelCase =prophet_old else: __UpperCAmelCase =prophet.prophetnet __UpperCAmelCase =prophet_old.model __UpperCAmelCase =False for attribute in attributes: if attribute in mapping: __UpperCAmelCase =mapping[attribute] if not hasattr(snake_case__ , snake_case__ ) and len(snake_case__ ) > 0: __UpperCAmelCase =attribute elif hasattr(snake_case__ , snake_case__ ): __UpperCAmelCase =attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" __UpperCAmelCase =old_model.weight logger.info(f"""{attribute} is initialized.""" ) __UpperCAmelCase =True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" __UpperCAmelCase =old_model.bias logger.info(f"""{attribute} is initialized""" ) __UpperCAmelCase =True break elif attribute in special_keys and hasattr(snake_case__ , '''in_proj_weight''' ): __UpperCAmelCase =old_model.in_proj_weight.shape[0] // 3 __UpperCAmelCase =getattr(snake_case__ , snake_case__ ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": __UpperCAmelCase =nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) __UpperCAmelCase =nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": __UpperCAmelCase =nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) __UpperCAmelCase =nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": __UpperCAmelCase =nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) __UpperCAmelCase =nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) __UpperCAmelCase =True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 512, "We want 512 position_embeddings." __UpperCAmelCase =nn.Parameter(old_model.embed_positions.weight[:512, :] ) __UpperCAmelCase =True break if attribute.isdigit(): __UpperCAmelCase =model[int(snake_case__ )] __UpperCAmelCase =old_model[int(snake_case__ )] else: __UpperCAmelCase =getattr(snake_case__ , snake_case__ ) if old_attribute == "": __UpperCAmelCase =old_model else: if not hasattr(snake_case__ , snake_case__ ): raise ValueError(f"""{old_model} does not have {old_attribute}""" ) __UpperCAmelCase =getattr(snake_case__ , snake_case__ ) if not is_key_init: raise ValueError(f"""{key} was not correctly initialized!""" ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) prophet.save_pretrained(snake_case__ ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--prophetnet_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) UpperCamelCase_ = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
142
0
'''simple docstring''' from abc import ABC, abstractmethod from typing import List, Optional class _SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" def __init__( self ): """simple docstring""" self.test() def _lowerCamelCase ( self ): """simple docstring""" __lowerCamelCase = 0 __lowerCamelCase = False while not completed: if counter == 1: self.reset() __lowerCamelCase = self.advance() if not self.does_advance(_snake_case ): raise Exception( '''Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true.''' ) __lowerCamelCase = self.update(_snake_case ) counter += 1 if counter > 1_00_00: raise Exception('''update() does not fulfill the constraint.''' ) if self.remaining() != 0: raise Exception('''Custom Constraint is not defined correctly.''' ) @abstractmethod def _lowerCamelCase ( self ): """simple docstring""" raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def _lowerCamelCase ( self , _snake_case ): """simple docstring""" raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def _lowerCamelCase ( self , _snake_case ): """simple docstring""" raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def _lowerCamelCase ( self ): """simple docstring""" raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def _lowerCamelCase ( self ): """simple docstring""" raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def _lowerCamelCase ( self , _snake_case=False ): """simple docstring""" raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) class _SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" def __init__( self , _snake_case ): """simple docstring""" super(_snake_case , self ).__init__() if not isinstance(_snake_case , _snake_case ) or len(_snake_case ) == 0: raise ValueError(F'''`token_ids` has to be a non-empty list, but is {token_ids}.''' ) if any((not isinstance(_snake_case , _snake_case ) or token_id < 0) for token_id in token_ids ): raise ValueError(F'''Each list in `token_ids` has to be a list of positive integers, but is {token_ids}.''' ) __lowerCamelCase = token_ids __lowerCamelCase = len(self.token_ids ) __lowerCamelCase = -1 # the index of the currently fulfilled step __lowerCamelCase = False def _lowerCamelCase ( self ): """simple docstring""" if self.completed: return None return self.token_ids[self.fulfilled_idx + 1] def _lowerCamelCase ( self , _snake_case ): """simple docstring""" if not isinstance(_snake_case , _snake_case ): raise ValueError(F'''`token_id` has to be an `int`, but is {token_id} of type {type(_snake_case )}''' ) if self.completed: return False return token_id == self.token_ids[self.fulfilled_idx + 1] def _lowerCamelCase ( self , _snake_case ): """simple docstring""" if not isinstance(_snake_case , _snake_case ): raise ValueError(F'''`token_id` has to be an `int`, but is {token_id} of type {type(_snake_case )}''' ) __lowerCamelCase = False __lowerCamelCase = False __lowerCamelCase = False if self.does_advance(_snake_case ): self.fulfilled_idx += 1 __lowerCamelCase = True if self.fulfilled_idx == (self.seqlen - 1): __lowerCamelCase = True __lowerCamelCase = completed else: # failed to make progress. __lowerCamelCase = True self.reset() return stepped, completed, reset def _lowerCamelCase ( self ): """simple docstring""" __lowerCamelCase = False __lowerCamelCase = 0 def _lowerCamelCase ( self ): """simple docstring""" return self.seqlen - (self.fulfilled_idx + 1) def _lowerCamelCase ( self , _snake_case=False ): """simple docstring""" __lowerCamelCase = PhrasalConstraint(self.token_ids ) if stateful: __lowerCamelCase = self.seqlen __lowerCamelCase = self.fulfilled_idx __lowerCamelCase = self.completed return new_constraint class _SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , _snake_case , _snake_case=True ): """simple docstring""" __lowerCamelCase = max([len(_snake_case ) for one in nested_token_ids] ) __lowerCamelCase = {} for token_ids in nested_token_ids: __lowerCamelCase = root for tidx, token_id in enumerate(_snake_case ): if token_id not in level: __lowerCamelCase = {} __lowerCamelCase = level[token_id] if no_subsets and self.has_subsets(_snake_case , _snake_case ): raise ValueError( '''Each list in `nested_token_ids` can\'t be a complete subset of another list, but is''' F''' {nested_token_ids}.''' ) __lowerCamelCase = root def _lowerCamelCase ( self , _snake_case ): """simple docstring""" __lowerCamelCase = self.trie for current_token in current_seq: __lowerCamelCase = start[current_token] __lowerCamelCase = list(start.keys() ) return next_tokens def _lowerCamelCase ( self , _snake_case ): """simple docstring""" __lowerCamelCase = self.next_tokens(_snake_case ) return len(_snake_case ) == 0 def _lowerCamelCase ( self , _snake_case ): """simple docstring""" __lowerCamelCase = list(root.values() ) if len(_snake_case ) == 0: return 1 else: return sum([self.count_leaves(_snake_case ) for nn in next_nodes] ) def _lowerCamelCase ( self , _snake_case , _snake_case ): """simple docstring""" __lowerCamelCase = self.count_leaves(_snake_case ) return len(_snake_case ) != leaf_count class _SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" def __init__( self , _snake_case ): """simple docstring""" super(_snake_case , self ).__init__() if not isinstance(_snake_case , _snake_case ) or len(_snake_case ) == 0: raise ValueError(F'''`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}.''' ) if any(not isinstance(_snake_case , _snake_case ) for token_ids in nested_token_ids ): raise ValueError(F'''`nested_token_ids` has to be a list of lists, but is {nested_token_ids}.''' ) if any( any((not isinstance(_snake_case , _snake_case ) or token_id < 0) for token_id in token_ids ) for token_ids in nested_token_ids ): raise ValueError( F'''Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}.''' ) __lowerCamelCase = DisjunctiveTrie(_snake_case ) __lowerCamelCase = nested_token_ids __lowerCamelCase = self.trie.max_height __lowerCamelCase = [] __lowerCamelCase = False def _lowerCamelCase ( self ): """simple docstring""" __lowerCamelCase = self.trie.next_tokens(self.current_seq ) if len(_snake_case ) == 0: return None else: return token_list def _lowerCamelCase ( self , _snake_case ): """simple docstring""" if not isinstance(_snake_case , _snake_case ): raise ValueError(F'''`token_id` is supposed to be type `int`, but is {token_id} of type {type(_snake_case )}''' ) __lowerCamelCase = self.trie.next_tokens(self.current_seq ) return token_id in next_tokens def _lowerCamelCase ( self , _snake_case ): """simple docstring""" if not isinstance(_snake_case , _snake_case ): raise ValueError(F'''`token_id` is supposed to be type `int`, but is {token_id} of type {type(_snake_case )}''' ) __lowerCamelCase = False __lowerCamelCase = False __lowerCamelCase = False if self.does_advance(_snake_case ): self.current_seq.append(_snake_case ) __lowerCamelCase = True else: __lowerCamelCase = True self.reset() __lowerCamelCase = self.trie.reached_leaf(self.current_seq ) __lowerCamelCase = completed return stepped, completed, reset def _lowerCamelCase ( self ): """simple docstring""" __lowerCamelCase = False __lowerCamelCase = [] def _lowerCamelCase ( self ): """simple docstring""" if self.completed: # since this can be completed without reaching max height return 0 else: return self.seqlen - len(self.current_seq ) def _lowerCamelCase ( self , _snake_case=False ): """simple docstring""" __lowerCamelCase = DisjunctiveConstraint(self.token_ids ) if stateful: __lowerCamelCase = self.seqlen __lowerCamelCase = self.current_seq __lowerCamelCase = self.completed return new_constraint class _SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , _snake_case ): """simple docstring""" __lowerCamelCase = constraints # max # of steps required to fulfill a given constraint __lowerCamelCase = max([c.seqlen for c in constraints] ) __lowerCamelCase = len(_snake_case ) __lowerCamelCase = False self.init_state() def _lowerCamelCase ( self ): """simple docstring""" __lowerCamelCase = [] __lowerCamelCase = None __lowerCamelCase = [constraint.copy(stateful=_snake_case ) for constraint in self.constraints] def _lowerCamelCase ( self ): """simple docstring""" __lowerCamelCase = 0 if self.inprogress_constraint: # extra points for having a constraint mid-fulfilled add += self.max_seqlen - self.inprogress_constraint.remaining() return (len(self.complete_constraints ) * self.max_seqlen) + add def _lowerCamelCase ( self ): """simple docstring""" __lowerCamelCase = [] if self.inprogress_constraint is None: for constraint in self.pending_constraints: # "pending" == "unfulfilled yet" __lowerCamelCase = constraint.advance() if isinstance(_snake_case , _snake_case ): token_list.append(_snake_case ) elif isinstance(_snake_case , _snake_case ): token_list.extend(_snake_case ) else: __lowerCamelCase = self.inprogress_constraint.advance() if isinstance(_snake_case , _snake_case ): token_list.append(_snake_case ) elif isinstance(_snake_case , _snake_case ): token_list.extend(_snake_case ) if len(_snake_case ) == 0: return None else: return token_list def _lowerCamelCase ( self , _snake_case ): """simple docstring""" self.init_state() if token_ids is not None: for token in token_ids: # completes or steps **one** constraint __lowerCamelCase = self.add(_snake_case ) # the entire list of constraints are fulfilled if self.completed: break def _lowerCamelCase ( self , _snake_case ): """simple docstring""" if not isinstance(_snake_case , _snake_case ): raise ValueError(F'''`token_id` should be an `int`, but is `{token_id}`.''' ) __lowerCamelCase = False, False if self.completed: __lowerCamelCase = True __lowerCamelCase = False return complete, stepped if self.inprogress_constraint is not None: # In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current # job, simply update the state __lowerCamelCase = self.inprogress_constraint.update(_snake_case ) if reset: # 1. If the next token breaks the progress, then we must restart. # e.g. constraint = "I love pies" and sequence so far is "I love" but `token_id` == "books". # But that doesn't mean we self.init_state(), since we only reset the state for this particular # constraint, not the full list of constraints. self.pending_constraints.append(self.inprogress_constraint.copy(stateful=_snake_case ) ) __lowerCamelCase = None if complete: # 2. If the next token completes the constraint, move it to completed list, set # inprogress to None. If there are no pending constraints either, then this full list of constraints # is complete. self.complete_constraints.append(self.inprogress_constraint ) __lowerCamelCase = None if len(self.pending_constraints ) == 0: # we're done! __lowerCamelCase = True else: # Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list # of constraints? for cidx, pending_constraint in enumerate(self.pending_constraints ): if pending_constraint.does_advance(_snake_case ): __lowerCamelCase = pending_constraint.update(_snake_case ) if not stepped: raise Exception( '''`constraint.update(token_id)` is not yielding incremental progress, ''' '''even though `constraint.does_advance(token_id)` is true.''' ) if complete: self.complete_constraints.append(_snake_case ) __lowerCamelCase = None if not complete and stepped: __lowerCamelCase = pending_constraint if complete or stepped: # If we made any progress at all, then it's at least not a "pending constraint". __lowerCamelCase = ( self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :] ) if len(self.pending_constraints ) == 0 and self.inprogress_constraint is None: # If there's no longer any pending after this and no inprogress either, then we must be # complete. __lowerCamelCase = True break # prevent accidentally stepping through multiple constraints with just one token. return complete, stepped def _lowerCamelCase ( self , _snake_case=True ): """simple docstring""" __lowerCamelCase = ConstraintListState(self.constraints ) # we actually never though self.constraints objects # throughout this process. So it's at initialization state. if stateful: __lowerCamelCase = [ constraint.copy(stateful=_snake_case ) for constraint in self.complete_constraints ] if self.inprogress_constraint is not None: __lowerCamelCase = self.inprogress_constraint.copy(stateful=_snake_case ) __lowerCamelCase = [constraint.copy() for constraint in self.pending_constraints] return new_state
316
'''simple docstring''' import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() A : Dict = logging.get_logger(__name__) def _a ( lowerCamelCase_ , lowerCamelCase_=False ): snake_case : Dict =[] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'''blocks.{i}.norm1.weight''', F'''vit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''blocks.{i}.norm1.bias''', F'''vit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append((F'''blocks.{i}.attn.proj.weight''', F'''vit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.attn.proj.bias''', F'''vit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((F'''blocks.{i}.norm2.weight''', F'''vit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''blocks.{i}.norm2.bias''', F'''vit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.weight''', F'''vit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.bias''', F'''vit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.weight''', F'''vit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.bias''', F'''vit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ ('''cls_token''', '''vit.embeddings.cls_token'''), ('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight'''), ('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias'''), ('''pos_embed''', '''vit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ('''pre_logits.fc.weight''', '''pooler.dense.weight'''), ('''pre_logits.fc.bias''', '''pooler.dense.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" snake_case : Union[str, Any] =[(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def _a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=False ): for i in range(config.num_hidden_layers ): if base_model: snake_case : str ='''''' else: snake_case : List[Any] ='''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) snake_case : List[str] =state_dict.pop(F'''blocks.{i}.attn.qkv.weight''' ) snake_case : List[Any] =state_dict.pop(F'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict snake_case : Tuple =in_proj_weight[ : config.hidden_size, : ] snake_case : Union[str, Any] =in_proj_bias[: config.hidden_size] snake_case : Any =in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] snake_case : str =in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] snake_case : Optional[int] =in_proj_weight[ -config.hidden_size :, : ] snake_case : Tuple =in_proj_bias[-config.hidden_size :] def _a ( lowerCamelCase_ ): snake_case : Optional[int] =['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(lowerCamelCase_ , lowerCamelCase_ ) def _a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): snake_case : Optional[Any] =dct.pop(lowerCamelCase_ ) snake_case : Any =val def _a ( ): snake_case : Tuple ='''http://images.cocodataset.org/val2017/000000039769.jpg''' snake_case : int =Image.open(requests.get(lowerCamelCase_ , stream=lowerCamelCase_ ).raw ) return im @torch.no_grad() def _a ( lowerCamelCase_ , lowerCamelCase_ ): snake_case : List[Any] =ViTConfig() snake_case : str =False # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size if vit_name[-5:] == "in21k": snake_case : List[str] =True snake_case : Tuple =int(vit_name[-12:-10] ) snake_case : str =int(vit_name[-9:-6] ) else: snake_case : List[Any] =10_00 snake_case : int ='''huggingface/label-files''' snake_case : Union[str, Any] ='''imagenet-1k-id2label.json''' snake_case : int =json.load(open(hf_hub_download(lowerCamelCase_ , lowerCamelCase_ , repo_type='''dataset''' ) , '''r''' ) ) snake_case : List[Any] ={int(lowerCamelCase_ ): v for k, v in idalabel.items()} snake_case : Optional[int] =idalabel snake_case : str ={v: k for k, v in idalabel.items()} snake_case : Union[str, Any] =int(vit_name[-6:-4] ) snake_case : Optional[int] =int(vit_name[-3:] ) # size of the architecture if "deit" in vit_name: if vit_name[9:].startswith('''tiny''' ): snake_case : List[str] =1_92 snake_case : Dict =7_68 snake_case : str =12 snake_case : Any =3 elif vit_name[9:].startswith('''small''' ): snake_case : List[Any] =3_84 snake_case : List[Any] =15_36 snake_case : Optional[Any] =12 snake_case : Union[str, Any] =6 else: pass else: if vit_name[4:].startswith('''small''' ): snake_case : List[str] =7_68 snake_case : Any =23_04 snake_case : Union[str, Any] =8 snake_case : Union[str, Any] =8 elif vit_name[4:].startswith('''base''' ): pass elif vit_name[4:].startswith('''large''' ): snake_case : int =10_24 snake_case : Tuple =40_96 snake_case : List[Any] =24 snake_case : Union[str, Any] =16 elif vit_name[4:].startswith('''huge''' ): snake_case : Any =12_80 snake_case : int =51_20 snake_case : List[str] =32 snake_case : Any =16 # load original model from timm snake_case : Optional[int] =timm.create_model(lowerCamelCase_ , pretrained=lowerCamelCase_ ) timm_model.eval() # load state_dict of original model, remove and rename some keys snake_case : Union[str, Any] =timm_model.state_dict() if base_model: remove_classification_head_(lowerCamelCase_ ) snake_case : Dict =create_rename_keys(lowerCamelCase_ , lowerCamelCase_ ) for src, dest in rename_keys: rename_key(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) read_in_q_k_v(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # load HuggingFace model if vit_name[-5:] == "in21k": snake_case : Any =ViTModel(lowerCamelCase_ ).eval() else: snake_case : Union[str, Any] =ViTForImageClassification(lowerCamelCase_ ).eval() model.load_state_dict(lowerCamelCase_ ) # Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor if "deit" in vit_name: snake_case : int =DeiTImageProcessor(size=config.image_size ) else: snake_case : Tuple =ViTImageProcessor(size=config.image_size ) snake_case : Union[str, Any] =image_processor(images=prepare_img() , return_tensors='''pt''' ) snake_case : List[str] =encoding['''pixel_values'''] snake_case : Optional[Any] =model(lowerCamelCase_ ) if base_model: snake_case : Tuple =timm_model.forward_features(lowerCamelCase_ ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(lowerCamelCase_ , outputs.pooler_output , atol=1e-3 ) else: snake_case : Dict =timm_model(lowerCamelCase_ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(lowerCamelCase_ , outputs.logits , atol=1e-3 ) Path(lowerCamelCase_ ).mkdir(exist_ok=lowerCamelCase_ ) print(F'''Saving model {vit_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowerCamelCase_ ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(lowerCamelCase_ ) if __name__ == "__main__": A : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--vit_name""", default="""vit_base_patch16_224""", type=str, help="""Name of the ViT timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) A : Optional[int] = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
349
0
'''simple docstring''' def lowercase_ ( _lowercase = 50 ) -> int: '''simple docstring''' lowerCamelCase_ : Optional[int] = [1] * (length + 1) for row_length in range(3 , length + 1 ): for block_length in range(3 , row_length + 1 ): for block_start in range(row_length - block_length ): ways_number[row_length] += ways_number[ row_length - block_start - block_length - 1 ] ways_number[row_length] += 1 return ways_number[length] if __name__ == "__main__": print(f'{solution() = }')
701
'''simple docstring''' from __future__ import annotations from math import pi, sqrt def lowercase_ ( _lowercase , _lowercase ) -> tuple: '''simple docstring''' if inductance <= 0: raise ValueError('''Inductance cannot be 0 or negative''' ) elif capacitance <= 0: raise ValueError('''Capacitance cannot be 0 or negative''' ) else: return ( "Resonant frequency", float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ), ) if __name__ == "__main__": import doctest doctest.testmod()
357
0
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL SCREAMING_SNAKE_CASE = logging.get_logger(__name__) def lowercase_ ( __A : Union[str, Any] ) -> List[List[ImageInput]]: """simple docstring""" if isinstance(__A , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(__A , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(__A ): return [[videos]] raise ValueError(F'Could not make batched video from {videos}' ) class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = ['''pixel_values'''] def __init__( self : Dict , UpperCAmelCase : bool = True , UpperCAmelCase : Dict[str, int] = None , UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , UpperCAmelCase : bool = True , UpperCAmelCase : Dict[str, int] = None , UpperCAmelCase : bool = True , UpperCAmelCase : Union[int, float] = 1 / 255 , UpperCAmelCase : bool = True , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[Union[float, List[float]]] = None , UpperCAmelCase : Optional[Union[float, List[float]]] = None , **UpperCAmelCase : List[Any] , ) -> None: '''simple docstring''' super().__init__(**UpperCAmelCase ) lowercase : Optional[Any] =size if size is not None else {'''shortest_edge''': 256} lowercase : Dict =get_size_dict(UpperCAmelCase , default_to_square=UpperCAmelCase ) lowercase : int =crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} lowercase : str =get_size_dict(UpperCAmelCase , param_name='''crop_size''' ) lowercase : Tuple =do_resize lowercase : Optional[int] =size lowercase : Union[str, Any] =do_center_crop lowercase : str =crop_size lowercase : Optional[int] =resample lowercase : Optional[Any] =do_rescale lowercase : Tuple =rescale_factor lowercase : Optional[int] =offset lowercase : Tuple =do_normalize lowercase : Optional[Any] =image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowercase : Optional[int] =image_std if image_std is not None else IMAGENET_STANDARD_STD def A__ ( self : Union[str, Any] , UpperCAmelCase : np.ndarray , UpperCAmelCase : Dict[str, int] , UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : Optional[int] , ) -> np.ndarray: '''simple docstring''' lowercase : Optional[int] =get_size_dict(UpperCAmelCase , default_to_square=UpperCAmelCase ) if "shortest_edge" in size: lowercase : Union[str, Any] =get_resize_output_image_size(UpperCAmelCase , size['''shortest_edge'''] , default_to_square=UpperCAmelCase ) elif "height" in size and "width" in size: lowercase : List[Any] =(size['''height'''], size['''width''']) else: raise ValueError(f'Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}' ) return resize(UpperCAmelCase , size=UpperCAmelCase , resample=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def A__ ( self : List[str] , UpperCAmelCase : np.ndarray , UpperCAmelCase : Dict[str, int] , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : List[Any] , ) -> np.ndarray: '''simple docstring''' lowercase : Dict =get_size_dict(UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f'Size must have \'height\' and \'width\' as keys. Got {size.keys()}' ) return center_crop(UpperCAmelCase , size=(size['''height'''], size['''width''']) , data_format=UpperCAmelCase , **UpperCAmelCase ) def A__ ( self : Any , UpperCAmelCase : np.ndarray , UpperCAmelCase : Union[int, float] , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : Any , ) -> str: '''simple docstring''' lowercase : Dict =image.astype(np.floataa ) if offset: lowercase : List[str] =image - (scale / 2) return rescale(UpperCAmelCase , scale=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def A__ ( self : Optional[int] , UpperCAmelCase : np.ndarray , UpperCAmelCase : Union[float, List[float]] , UpperCAmelCase : Union[float, List[float]] , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : List[Any] , ) -> np.ndarray: '''simple docstring''' return normalize(UpperCAmelCase , mean=UpperCAmelCase , std=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def A__ ( self : Optional[int] , UpperCAmelCase : ImageInput , UpperCAmelCase : bool = None , UpperCAmelCase : Dict[str, int] = None , UpperCAmelCase : PILImageResampling = None , UpperCAmelCase : bool = None , UpperCAmelCase : Dict[str, int] = None , UpperCAmelCase : bool = None , UpperCAmelCase : float = None , UpperCAmelCase : bool = None , UpperCAmelCase : bool = None , UpperCAmelCase : Optional[Union[float, List[float]]] = None , UpperCAmelCase : Optional[Union[float, List[float]]] = None , UpperCAmelCase : Optional[ChannelDimension] = ChannelDimension.FIRST , ) -> np.ndarray: '''simple docstring''' if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) if offset and not do_rescale: raise ValueError('''For offset, do_rescale must also be set to True.''' ) # All transformations expect numpy arrays. lowercase : Optional[int] =to_numpy_array(UpperCAmelCase ) if do_resize: lowercase : Optional[int] =self.resize(image=UpperCAmelCase , size=UpperCAmelCase , resample=UpperCAmelCase ) if do_center_crop: lowercase : List[str] =self.center_crop(UpperCAmelCase , size=UpperCAmelCase ) if do_rescale: lowercase : Dict =self.rescale(image=UpperCAmelCase , scale=UpperCAmelCase , offset=UpperCAmelCase ) if do_normalize: lowercase : str =self.normalize(image=UpperCAmelCase , mean=UpperCAmelCase , std=UpperCAmelCase ) lowercase : Dict =to_channel_dimension_format(UpperCAmelCase , UpperCAmelCase ) return image def A__ ( self : int , UpperCAmelCase : ImageInput , UpperCAmelCase : bool = None , UpperCAmelCase : Dict[str, int] = None , UpperCAmelCase : PILImageResampling = None , UpperCAmelCase : bool = None , UpperCAmelCase : Dict[str, int] = None , UpperCAmelCase : bool = None , UpperCAmelCase : float = None , UpperCAmelCase : bool = None , UpperCAmelCase : bool = None , UpperCAmelCase : Optional[Union[float, List[float]]] = None , UpperCAmelCase : Optional[Union[float, List[float]]] = None , UpperCAmelCase : Optional[Union[str, TensorType]] = None , UpperCAmelCase : ChannelDimension = ChannelDimension.FIRST , **UpperCAmelCase : List[Any] , ) -> PIL.Image.Image: '''simple docstring''' lowercase : str =do_resize if do_resize is not None else self.do_resize lowercase : int =resample if resample is not None else self.resample lowercase : List[str] =do_center_crop if do_center_crop is not None else self.do_center_crop lowercase : Tuple =do_rescale if do_rescale is not None else self.do_rescale lowercase : Optional[Any] =rescale_factor if rescale_factor is not None else self.rescale_factor lowercase : Any =offset if offset is not None else self.offset lowercase : str =do_normalize if do_normalize is not None else self.do_normalize lowercase : Optional[int] =image_mean if image_mean is not None else self.image_mean lowercase : Optional[Any] =image_std if image_std is not None else self.image_std lowercase : str =size if size is not None else self.size lowercase : str =get_size_dict(UpperCAmelCase , default_to_square=UpperCAmelCase ) lowercase : Union[str, Any] =crop_size if crop_size is not None else self.crop_size lowercase : str =get_size_dict(UpperCAmelCase , param_name='''crop_size''' ) if not valid_images(UpperCAmelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) lowercase : Optional[Any] =make_batched(UpperCAmelCase ) lowercase : Optional[Any] =[ [ self._preprocess_image( image=UpperCAmelCase , do_resize=UpperCAmelCase , size=UpperCAmelCase , resample=UpperCAmelCase , do_center_crop=UpperCAmelCase , crop_size=UpperCAmelCase , do_rescale=UpperCAmelCase , rescale_factor=UpperCAmelCase , offset=UpperCAmelCase , do_normalize=UpperCAmelCase , image_mean=UpperCAmelCase , image_std=UpperCAmelCase , data_format=UpperCAmelCase , ) for img in video ] for video in videos ] lowercase : Dict ={'''pixel_values''': videos} return BatchFeature(data=UpperCAmelCase , tensor_type=UpperCAmelCase )
94
'''simple docstring''' from math import isqrt def lowercase_ ( __A : int ) -> list[int]: """simple docstring""" lowercase : Dict =[True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , __A , __A ): lowercase : str =False return [i for i in range(2 , __A ) if is_prime[i]] def lowercase_ ( __A : int = 1_0**8 ) -> int: """simple docstring""" lowercase : Dict =calculate_prime_numbers(max_number // 2 ) lowercase : str =0 lowercase : Optional[Any] =0 lowercase : Union[str, Any] =len(__A ) - 1 while left <= right: while prime_numbers[left] * prime_numbers[right] >= max_number: right -= 1 semiprimes_count += right - left + 1 left += 1 return semiprimes_count if __name__ == "__main__": print(f"""{solution() = }""")
94
1
"""simple docstring""" import argparse import re from pathlib import Path import requests import torch from PIL import Image from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor from transformers import ( EfficientFormerConfig, EfficientFormerForImageClassificationWithTeacher, EfficientFormerImageProcessor, ) from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def UpperCAmelCase ( snake_case : int , snake_case : Any ): _lowerCAmelCase:Optional[int] = old_name if "patch_embed" in old_name: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase:int = old_name.split('''.''' ) if layer == "0": _lowerCAmelCase:Optional[Any] = old_name.replace('''0''' , '''convolution1''' ) elif layer == "1": _lowerCAmelCase:int = old_name.replace('''1''' , '''batchnorm_before''' ) elif layer == "3": _lowerCAmelCase:Optional[Any] = old_name.replace('''3''' , '''convolution2''' ) else: _lowerCAmelCase:str = old_name.replace('''4''' , '''batchnorm_after''' ) if "network" in old_name and re.search(R'''\d\.\d''' , snake_case ): _lowerCAmelCase:Tuple = R'''\b\d{2}\b''' if bool(re.search(snake_case , snake_case ) ): _lowerCAmelCase:Union[str, Any] = re.search(R'''\d\.\d\d.''' , snake_case ).group() else: _lowerCAmelCase:Dict = re.search(R'''\d\.\d.''' , snake_case ).group() if int(match[0] ) < 6: _lowerCAmelCase:str = old_name.replace(snake_case , '''''' ) _lowerCAmelCase:str = trimmed_name.replace('''network''' , match[0] + '''.meta4D_layers.blocks.''' + match[2:-1] ) _lowerCAmelCase:Any = '''intermediate_stages.''' + trimmed_name else: _lowerCAmelCase:List[str] = old_name.replace(snake_case , '''''' ) if int(match[2] ) < num_meta4D_last_stage: _lowerCAmelCase:Tuple = trimmed_name.replace('''network''' , '''meta4D_layers.blocks.''' + match[2] ) else: _lowerCAmelCase:Dict = str(int(match[2] ) - num_meta4D_last_stage ) _lowerCAmelCase:List[Any] = trimmed_name.replace('''network''' , '''meta3D_layers.blocks.''' + layer_index ) if "norm1" in old_name: _lowerCAmelCase:Dict = trimmed_name.replace('''norm1''' , '''layernorm1''' ) elif "norm2" in old_name: _lowerCAmelCase:Optional[Any] = trimmed_name.replace('''norm2''' , '''layernorm2''' ) elif "fc1" in old_name: _lowerCAmelCase:Any = trimmed_name.replace('''fc1''' , '''linear_in''' ) elif "fc2" in old_name: _lowerCAmelCase:Any = trimmed_name.replace('''fc2''' , '''linear_out''' ) _lowerCAmelCase:Tuple = '''last_stage.''' + trimmed_name elif "network" in old_name and re.search(R'''.\d.''' , snake_case ): _lowerCAmelCase:List[Any] = old_name.replace('''network''' , '''intermediate_stages''' ) if "fc" in new_name: _lowerCAmelCase:Optional[Any] = new_name.replace('''fc''' , '''convolution''' ) elif ("norm1" in new_name) and ("layernorm1" not in new_name): _lowerCAmelCase:Tuple = new_name.replace('''norm1''' , '''batchnorm_before''' ) elif ("norm2" in new_name) and ("layernorm2" not in new_name): _lowerCAmelCase:Optional[int] = new_name.replace('''norm2''' , '''batchnorm_after''' ) if "proj" in new_name: _lowerCAmelCase:List[str] = new_name.replace('''proj''' , '''projection''' ) if "dist_head" in new_name: _lowerCAmelCase:List[Any] = new_name.replace('''dist_head''' , '''distillation_classifier''' ) elif "head" in new_name: _lowerCAmelCase:List[Any] = new_name.replace('''head''' , '''classifier''' ) elif "patch_embed" in new_name: _lowerCAmelCase:Union[str, Any] = '''efficientformer.''' + new_name elif new_name == "norm.weight" or new_name == "norm.bias": _lowerCAmelCase:int = new_name.replace('''norm''' , '''layernorm''' ) _lowerCAmelCase:List[str] = '''efficientformer.''' + new_name else: _lowerCAmelCase:int = '''efficientformer.encoder.''' + new_name return new_name def UpperCAmelCase ( snake_case : Optional[Any] , snake_case : List[str] ): for key in checkpoint.copy().keys(): _lowerCAmelCase:Any = checkpoint.pop(snake_case ) _lowerCAmelCase:int = val return checkpoint def UpperCAmelCase ( ): _lowerCAmelCase:Union[str, Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' _lowerCAmelCase:Union[str, Any] = Image.open(requests.get(snake_case , stream=snake_case ).raw ) return image def UpperCAmelCase ( snake_case : Path , snake_case : Path , snake_case : Path , snake_case : bool ): _lowerCAmelCase:List[Any] = torch.load(snake_case , map_location='''cpu''' )['''model'''] _lowerCAmelCase:Dict = EfficientFormerConfig.from_json_file(snake_case ) _lowerCAmelCase:Optional[Any] = EfficientFormerForImageClassificationWithTeacher(snake_case ) _lowerCAmelCase:int = '''_'''.join(checkpoint_path.split('''/''' )[-1].split('''.''' )[0].split('''_''' )[:-1] ) _lowerCAmelCase:Union[str, Any] = config.depths[-1] - config.num_metaad_blocks + 1 _lowerCAmelCase:Optional[int] = convert_torch_checkpoint(snake_case , snake_case ) model.load_state_dict(snake_case ) model.eval() _lowerCAmelCase:Any = { '''bilinear''': PILImageResampling.BILINEAR, '''bicubic''': PILImageResampling.BICUBIC, '''nearest''': PILImageResampling.NEAREST, } # prepare image _lowerCAmelCase:Any = prepare_img() _lowerCAmelCase:Tuple = 256 _lowerCAmelCase:int = 224 _lowerCAmelCase:str = EfficientFormerImageProcessor( size={'''shortest_edge''': image_size} , crop_size={'''height''': crop_size, '''width''': crop_size} , resample=pillow_resamplings['''bicubic'''] , ) _lowerCAmelCase:Tuple = processor(images=snake_case , return_tensors='''pt''' ).pixel_values # original processing pipeline _lowerCAmelCase:Dict = Compose( [ Resize(snake_case , interpolation=pillow_resamplings['''bicubic'''] ), CenterCrop(snake_case ), ToTensor(), Normalize(snake_case , snake_case ), ] ) _lowerCAmelCase:str = image_transforms(snake_case ).unsqueeze(0 ) assert torch.allclose(snake_case , snake_case ) _lowerCAmelCase:Optional[int] = model(snake_case ) _lowerCAmelCase:Union[str, Any] = outputs.logits _lowerCAmelCase:Optional[Any] = (1, 1000) if "l1" in model_name: _lowerCAmelCase:Optional[Any] = torch.Tensor( [-0.13_12, 0.43_53, -1.04_99, -0.51_24, 0.41_83, -0.67_93, -1.37_77, -0.08_93, -0.73_58, -2.43_28] ) assert torch.allclose(logits[0, :10] , snake_case , atol=1e-3 ) assert logits.shape == expected_shape elif "l3" in model_name: _lowerCAmelCase:str = torch.Tensor( [-1.31_50, -1.54_56, -1.25_56, -0.84_96, -0.71_27, -0.78_97, -0.97_28, -0.30_52, 0.37_51, -0.31_27] ) assert torch.allclose(logits[0, :10] , snake_case , atol=1e-3 ) assert logits.shape == expected_shape elif "l7" in model_name: _lowerCAmelCase:List[str] = torch.Tensor( [-1.02_83, -1.41_31, -0.56_44, -1.31_15, -0.57_85, -1.20_49, -0.75_28, 0.19_92, -0.38_22, -0.08_78] ) assert logits.shape == expected_shape else: raise ValueError( F'Unknown model checkpoint: {checkpoint_path}. Supported version of efficientformer are l1, l3 and l7' ) # Save Checkpoints Path(snake_case ).mkdir(exist_ok=snake_case ) model.save_pretrained(snake_case ) print(F'Checkpoint successfuly converted. Model saved at {pytorch_dump_path}' ) processor.save_pretrained(snake_case ) print(F'Processor successfuly saved at {pytorch_dump_path}' ) if push_to_hub: print('''Pushing model to the hub...''' ) model.push_to_hub( repo_id=F'Bearnardd/{pytorch_dump_path}' , commit_message='''Add model''' , use_temp_dir=snake_case , ) processor.push_to_hub( repo_id=F'Bearnardd/{pytorch_dump_path}' , commit_message='''Add image processor''' , use_temp_dir=snake_case , ) if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--pytorch_model_path''', default=None, type=str, required=True, help='''Path to EfficientFormer pytorch checkpoint.''', ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The json file for EfficientFormer model config.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Push model and image processor to the hub''') parser.add_argument( '''--no-push_to_hub''', dest='''push_to_hub''', action='''store_false''', help='''Do not push model and image processor to the hub''', ) parser.set_defaults(push_to_hub=True) UpperCamelCase__ = parser.parse_args() convert_efficientformer_checkpoint( checkpoint_path=args.pytorch_model_path, efficientformer_config_file=args.config_file, pytorch_dump_path=args.pytorch_dump_path, push_to_hub=args.push_to_hub, )
439
"""simple docstring""" import warnings from ...utils import logging from .image_processing_poolformer import PoolFormerImageProcessor UpperCamelCase__ = logging.get_logger(__name__) class a__ ( UpperCamelCase_ ): def __init__( self : Dict ,*a__ : List[str] ,**a__ : str) -> None: """simple docstring""" warnings.warn( '''The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use PoolFormerImageProcessor instead.''' ,a__ ,) super().__init__(*a__ ,**a__)
439
1
'''simple docstring''' import string import numpy def _lowercase ( __A ,__A ): '''simple docstring''' return b if a == 0 else greatest_common_divisor(b % a ,__A ) class UpperCAmelCase__ : __SCREAMING_SNAKE_CASE = string.ascii_uppercase + string.digits # This cipher takes alphanumerics into account # i.e. a total of 36 characters # take x and return x % len(key_string) __SCREAMING_SNAKE_CASE = numpy.vectorize(lambda UpperCAmelCase_: x % 3_6) __SCREAMING_SNAKE_CASE = numpy.vectorize(UpperCAmelCase_) def __init__( self , lowercase ) -> None: __UpperCamelCase = self.modulus(lowercase ) # mod36 calc's on the encrypt key self.check_determinant() # validate the determinant of the encryption key __UpperCamelCase = encrypt_key.shape[0] def __lowerCamelCase ( self , lowercase ) -> int: return self.key_string.index(lowercase ) def __lowerCamelCase ( self , lowercase ) -> str: return self.key_string[round(lowercase )] def __lowerCamelCase ( self ) -> None: __UpperCamelCase = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: __UpperCamelCase = det % len(self.key_string ) __UpperCamelCase = len(self.key_string ) if greatest_common_divisor(lowercase , len(self.key_string ) ) != 1: __UpperCamelCase = ( f"determinant modular {req_l} of encryption key({det}) " f"is not co prime w.r.t {req_l}.\nTry another key." ) raise ValueError(lowercase ) def __lowerCamelCase ( self , lowercase ) -> str: __UpperCamelCase = [char for char in text.upper() if char in self.key_string] __UpperCamelCase = chars[-1] while len(lowercase ) % self.break_key != 0: chars.append(lowercase ) return "".join(lowercase ) def __lowerCamelCase ( self , lowercase ) -> str: __UpperCamelCase = self.process_text(text.upper() ) __UpperCamelCase = """""" for i in range(0 , len(lowercase ) - self.break_key + 1 , self.break_key ): __UpperCamelCase = text[i : i + self.break_key] __UpperCamelCase = [self.replace_letters(lowercase ) for char in batch] __UpperCamelCase = numpy.array([vec] ).T __UpperCamelCase = self.modulus(self.encrypt_key.dot(lowercase ) ).T.tolist()[ 0 ] __UpperCamelCase = """""".join( self.replace_digits(lowercase ) for num in batch_encrypted ) encrypted += encrypted_batch return encrypted def __lowerCamelCase ( self ) -> numpy.ndarray: __UpperCamelCase = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: __UpperCamelCase = det % len(self.key_string ) __UpperCamelCase = None for i in range(len(self.key_string ) ): if (det * i) % len(self.key_string ) == 1: __UpperCamelCase = i break __UpperCamelCase = ( det_inv * numpy.linalg.det(self.encrypt_key ) * numpy.linalg.inv(self.encrypt_key ) ) return self.to_int(self.modulus(lowercase ) ) def __lowerCamelCase ( self , lowercase ) -> str: __UpperCamelCase = self.make_decrypt_key() __UpperCamelCase = self.process_text(text.upper() ) __UpperCamelCase = """""" for i in range(0 , len(lowercase ) - self.break_key + 1 , self.break_key ): __UpperCamelCase = text[i : i + self.break_key] __UpperCamelCase = [self.replace_letters(lowercase ) for char in batch] __UpperCamelCase = numpy.array([vec] ).T __UpperCamelCase = self.modulus(decrypt_key.dot(lowercase ) ).T.tolist()[0] __UpperCamelCase = """""".join( self.replace_digits(lowercase ) for num in batch_decrypted ) decrypted += decrypted_batch return decrypted def _lowercase ( ): '''simple docstring''' __UpperCamelCase = int(input("""Enter the order of the encryption key: """ ) ) __UpperCamelCase = [] print("""Enter each row of the encryption key with space separated integers""" ) for _ in range(__A ): __UpperCamelCase = [int(__A ) for x in input().split()] hill_matrix.append(__A ) __UpperCamelCase = HillCipher(numpy.array(__A ) ) print("""Would you like to encrypt or decrypt some text? (1 or 2)""" ) __UpperCamelCase = input("""\n1. Encrypt\n2. Decrypt\n""" ) if option == "1": __UpperCamelCase = input("""What text would you like to encrypt?: """ ) print("""Your encrypted text is:""" ) print(hc.encrypt(__A ) ) elif option == "2": __UpperCamelCase = input("""What text would you like to decrypt?: """ ) print("""Your decrypted text is:""" ) print(hc.decrypt(__A ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
601
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNetaDConditionModel from diffusers.utils.testing_utils import ( enable_full_determinism, load_numpy, nightly, require_torch_gpu, slow, torch_device, ) from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class UpperCAmelCase__ ( UpperCAmelCase_ , unittest.TestCase): __SCREAMING_SNAKE_CASE = LDMTextToImagePipeline __SCREAMING_SNAKE_CASE = TEXT_TO_IMAGE_PARAMS - { '''negative_prompt''', '''negative_prompt_embeds''', '''cross_attention_kwargs''', '''prompt_embeds''', } __SCREAMING_SNAKE_CASE = PipelineTesterMixin.required_optional_params - { '''num_images_per_prompt''', '''callback''', '''callback_steps''', } __SCREAMING_SNAKE_CASE = TEXT_TO_IMAGE_BATCH_PARAMS __SCREAMING_SNAKE_CASE = False def __lowerCamelCase ( self ) -> Union[str, Any]: torch.manual_seed(0 ) __UpperCamelCase = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=3_2 , ) __UpperCamelCase = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=lowercase , set_alpha_to_one=lowercase , ) torch.manual_seed(0 ) __UpperCamelCase = AutoencoderKL( block_out_channels=(3_2, 6_4) , in_channels=3 , out_channels=3 , down_block_types=("""DownEncoderBlock2D""", """DownEncoderBlock2D""") , up_block_types=("""UpDecoderBlock2D""", """UpDecoderBlock2D""") , latent_channels=4 , ) torch.manual_seed(0 ) __UpperCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) __UpperCamelCase = CLIPTextModel(lowercase ) __UpperCamelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) __UpperCamelCase = { """unet""": unet, """scheduler""": scheduler, """vqvae""": vae, """bert""": text_encoder, """tokenizer""": tokenizer, } return components def __lowerCamelCase ( self , lowercase , lowercase=0 ) -> Optional[Any]: if str(lowercase ).startswith("""mps""" ): __UpperCamelCase = torch.manual_seed(lowercase ) else: __UpperCamelCase = torch.Generator(device=lowercase ).manual_seed(lowercase ) __UpperCamelCase = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def __lowerCamelCase ( self ) -> List[str]: __UpperCamelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator __UpperCamelCase = self.get_dummy_components() __UpperCamelCase = LDMTextToImagePipeline(**lowercase ) pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) __UpperCamelCase = self.get_dummy_inputs(lowercase ) __UpperCamelCase = pipe(**lowercase ).images __UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 1_6, 1_6, 3) __UpperCamelCase = np.array([0.6_101, 0.6_156, 0.5_622, 0.4_895, 0.6_661, 0.3_804, 0.5_748, 0.6_136, 0.5_014] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 @slow @require_torch_gpu class UpperCAmelCase__ ( unittest.TestCase): def __lowerCamelCase ( self ) -> List[str]: super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCamelCase ( self , lowercase , lowercase=torch.floataa , lowercase=0 ) -> List[Any]: __UpperCamelCase = torch.manual_seed(lowercase ) __UpperCamelCase = np.random.RandomState(lowercase ).standard_normal((1, 4, 3_2, 3_2) ) __UpperCamelCase = torch.from_numpy(lowercase ).to(device=lowercase , dtype=lowercase ) __UpperCamelCase = { """prompt""": """A painting of a squirrel eating a burger""", """latents""": latents, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def __lowerCamelCase ( self ) -> str: __UpperCamelCase = LDMTextToImagePipeline.from_pretrained("""CompVis/ldm-text2im-large-256""" ).to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) __UpperCamelCase = self.get_inputs(lowercase ) __UpperCamelCase = pipe(**lowercase ).images __UpperCamelCase = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 2_5_6, 2_5_6, 3) __UpperCamelCase = np.array([0.51_825, 0.52_850, 0.52_543, 0.54_258, 0.52_304, 0.52_569, 0.54_363, 0.55_276, 0.56_878] ) __UpperCamelCase = np.abs(expected_slice - image_slice ).max() assert max_diff < 1E-3 @nightly @require_torch_gpu class UpperCAmelCase__ ( unittest.TestCase): def __lowerCamelCase ( self ) -> Union[str, Any]: super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCamelCase ( self , lowercase , lowercase=torch.floataa , lowercase=0 ) -> List[str]: __UpperCamelCase = torch.manual_seed(lowercase ) __UpperCamelCase = np.random.RandomState(lowercase ).standard_normal((1, 4, 3_2, 3_2) ) __UpperCamelCase = torch.from_numpy(lowercase ).to(device=lowercase , dtype=lowercase ) __UpperCamelCase = { """prompt""": """A painting of a squirrel eating a burger""", """latents""": latents, """generator""": generator, """num_inference_steps""": 5_0, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def __lowerCamelCase ( self ) -> Union[str, Any]: __UpperCamelCase = LDMTextToImagePipeline.from_pretrained("""CompVis/ldm-text2im-large-256""" ).to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) __UpperCamelCase = self.get_inputs(lowercase ) __UpperCamelCase = pipe(**lowercase ).images[0] __UpperCamelCase = load_numpy( """https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy""" ) __UpperCamelCase = np.abs(expected_image - image ).max() assert max_diff < 1E-3
601
1
import unittest import numpy as np import torch from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class snake_case_ (lowerCamelCase_ , unittest.TestCase ): UpperCAmelCase__ : Union[str, Any] = DDIMPipeline UpperCAmelCase__ : Dict = UNCONDITIONAL_IMAGE_GENERATION_PARAMS UpperCAmelCase__ : Any = PipelineTesterMixin.required_optional_params - { '''num_images_per_prompt''', '''latents''', '''callback''', '''callback_steps''', } UpperCAmelCase__ : List[str] = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS UpperCAmelCase__ : Any = False def lowerCamelCase__( self :List[Any] ) -> Any: torch.manual_seed(0 ) a__ = UNetaDModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=3 ,out_channels=3 ,down_block_types=('DownBlock2D', 'AttnDownBlock2D') ,up_block_types=('AttnUpBlock2D', 'UpBlock2D') ,) a__ = DDIMScheduler() a__ = {'unet': unet, 'scheduler': scheduler} return components def lowerCamelCase__( self :str ,__snake_case :int ,__snake_case :List[Any]=0 ) -> List[str]: if str(__snake_case ).startswith('mps' ): a__ = torch.manual_seed(__snake_case ) else: a__ = torch.Generator(device=__snake_case ).manual_seed(__snake_case ) a__ = { 'batch_size': 1, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def lowerCamelCase__( self :List[Any] ) -> Any: a__ = 'cpu' a__ = self.get_dummy_components() a__ = self.pipeline_class(**__snake_case ) pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) a__ = self.get_dummy_inputs(__snake_case ) a__ = pipe(**__snake_case ).images a__ = image[0, -3:, -3:, -1] self.assertEqual(image.shape ,(1, 32, 32, 3) ) a__ = np.array( [1.000E00, 5.717E-01, 4.717E-01, 1.000E00, 0.000E00, 1.000E00, 3.000E-04, 0.000E00, 9.000E-04] ) a__ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(__snake_case ,1E-3 ) def lowerCamelCase__( self :List[Any] ) -> Optional[int]: super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def lowerCamelCase__( self :Union[str, Any] ) -> Tuple: super().test_save_load_local(expected_max_difference=3E-3 ) def lowerCamelCase__( self :List[Any] ) -> List[str]: super().test_save_load_optional_components(expected_max_difference=3E-3 ) def lowerCamelCase__( self :str ) -> Optional[int]: super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class snake_case_ (unittest.TestCase ): def lowerCamelCase__( self :Optional[int] ) -> Any: a__ = 'google/ddpm-cifar10-32' a__ = UNetaDModel.from_pretrained(__snake_case ) a__ = DDIMScheduler() a__ = DDIMPipeline(unet=__snake_case ,scheduler=__snake_case ) ddim.to(__snake_case ) ddim.set_progress_bar_config(disable=__snake_case ) a__ = torch.manual_seed(0 ) a__ = ddim(generator=__snake_case ,eta=0.0 ,output_type='numpy' ).images a__ = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) a__ = np.array([0.17_23, 0.16_17, 0.16_00, 0.16_26, 0.14_97, 0.15_13, 0.15_05, 0.14_42, 0.14_53] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCamelCase__( self :Tuple ) -> int: a__ = 'google/ddpm-ema-bedroom-256' a__ = UNetaDModel.from_pretrained(__snake_case ) a__ = DDIMScheduler.from_pretrained(__snake_case ) a__ = DDIMPipeline(unet=__snake_case ,scheduler=__snake_case ) ddpm.to(__snake_case ) ddpm.set_progress_bar_config(disable=__snake_case ) a__ = torch.manual_seed(0 ) a__ = ddpm(generator=__snake_case ,output_type='numpy' ).images a__ = image[0, -3:, -3:, -1] assert image.shape == (1, 2_56, 2_56, 3) a__ = np.array([0.00_60, 0.02_01, 0.03_44, 0.00_24, 0.00_18, 0.00_02, 0.00_22, 0.00_00, 0.00_69] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
657
def __lowercase ( __lowerCAmelCase : int ): a__ = generate_pascal_triangle(__lowerCAmelCase ) for row_idx in range(__lowerCAmelCase ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=' ' ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] , end=' ' ) else: print(triangle[row_idx][col_idx] , end='' ) print() def __lowercase ( __lowerCAmelCase : int ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise TypeError('The input value of \'num_rows\' should be \'int\'' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( 'The input value of \'num_rows\' should be greater than or equal to 0' ) a__ = [] for current_row_idx in range(__lowerCAmelCase ): a__ = populate_current_row(__lowerCAmelCase , __lowerCAmelCase ) triangle.append(__lowerCAmelCase ) return triangle def __lowercase ( __lowerCAmelCase : list[list[int]] , __lowerCAmelCase : int ): a__ = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 a__ , a__ = 1, 1 for current_col_idx in range(1 , __lowerCAmelCase ): calculate_current_element( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) return current_row def __lowercase ( __lowerCAmelCase : list[list[int]] , __lowerCAmelCase : list[int] , __lowerCAmelCase : int , __lowerCAmelCase : int , ): a__ = triangle[current_row_idx - 1][current_col_idx - 1] a__ = triangle[current_row_idx - 1][current_col_idx] a__ = above_to_left_elt + above_to_right_elt def __lowercase ( __lowerCAmelCase : int ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise TypeError('The input value of \'num_rows\' should be \'int\'' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( 'The input value of \'num_rows\' should be greater than or equal to 0' ) a__ = [[1]] for row_index in range(1 , __lowerCAmelCase ): a__ = [0] + result[-1] + [0] a__ = row_index + 1 # Calculate the number of distinct elements in a row a__ = sum(divmod(__lowerCAmelCase , 2 ) ) a__ = [ temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 ) ] a__ = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() a__ = row_first_half + row_second_half result.append(__lowerCAmelCase ) return result def __lowercase ( ): from collections.abc import Callable from timeit import timeit def benchmark_a_function(__lowerCAmelCase : Callable , __lowerCAmelCase : int ) -> None: a__ = F'{func.__name__}({value})' a__ = timeit(F'__main__.{call}' , setup='import __main__' ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(F'{call:38} -- {timing:.4f} seconds' ) for value in range(1_5 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(__lowerCAmelCase , __lowerCAmelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
657
1
import os from tempfile import TemporaryDirectory from unittest import TestCase import pytest from absl.testing import parameterized from datasets import config from datasets.arrow_reader import HF_GCP_BASE_URL from datasets.builder import DatasetBuilder from datasets.dataset_dict import IterableDatasetDict from datasets.iterable_dataset import IterableDataset from datasets.load import dataset_module_factory, import_main_class from datasets.utils.file_utils import cached_path _lowerCamelCase : str = [ {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.de'''}, {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.en'''}, {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.fr'''}, {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.frr'''}, {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.it'''}, {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.simple'''}, {'''dataset''': '''snli''', '''config_name''': '''plain_text'''}, {'''dataset''': '''eli5''', '''config_name''': '''LFQA_reddit'''}, {'''dataset''': '''wiki40b''', '''config_name''': '''en'''}, {'''dataset''': '''wiki_dpr''', '''config_name''': '''psgs_w100.nq.compressed'''}, {'''dataset''': '''wiki_dpr''', '''config_name''': '''psgs_w100.nq.no_index'''}, {'''dataset''': '''wiki_dpr''', '''config_name''': '''psgs_w100.multiset.no_index'''}, {'''dataset''': '''natural_questions''', '''config_name''': '''default'''}, ] def a_ ( __lowercase : Any=True ) -> List[Any]: if with_config: return [ { "testcase_name": d["dataset"] + "/" + d["config_name"], "dataset": d["dataset"], "config_name": d["config_name"], } for d in DATASETS_ON_HF_GCP ] else: return [ {"testcase_name": dataset, "dataset": dataset} for dataset in {d["dataset"] for d in DATASETS_ON_HF_GCP} ] @parameterized.named_parameters(list_datasets_on_hf_gcp_parameters(with_config=UpperCAmelCase ) ) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : Tuple = None _UpperCAmelCase : List[Any] = None def A ( self : List[str] , lowercase : Optional[Any] , lowercase : Union[str, Any] ): '''simple docstring''' with TemporaryDirectory() as tmp_dir: _snake_case = dataset_module_factory(lowercase , cache_dir=lowercase ) _snake_case = import_main_class(dataset_module.module_path , dataset=lowercase ) _snake_case = builder_cls( cache_dir=lowercase , config_name=lowercase , hash=dataset_module.hash , ) _snake_case = '/'.join( [ HF_GCP_BASE_URL, builder_instance._relative_data_dir(with_hash=lowercase ).replace(os.sep , '/' ), config.DATASET_INFO_FILENAME, ] ) _snake_case = cached_path(lowercase , cache_dir=lowercase ) self.assertTrue(os.path.exists(lowercase ) ) @pytest.mark.integration def a_ ( __lowercase : List[Any] ) -> List[str]: _snake_case = tmp_path_factory.mktemp('test_hf_gcp' ) / 'test_wikipedia_simple' _snake_case = dataset_module_factory('wikipedia' , cache_dir=__lowercase ) _snake_case = import_main_class(dataset_module.module_path ) _snake_case = builder_cls( cache_dir=__lowercase , config_name='20220301.frr' , hash=dataset_module.hash , ) # use the HF cloud storage, not the original download_and_prepare that uses apache-beam _snake_case = None builder_instance.download_and_prepare() _snake_case = builder_instance.as_dataset() assert ds @pytest.mark.integration def a_ ( __lowercase : int ) -> int: _snake_case = dataset_module_factory('wikipedia' , cache_dir=__lowercase ) _snake_case = import_main_class(dataset_module.module_path , dataset=__lowercase ) _snake_case = builder_cls( cache_dir=__lowercase , config_name='20220301.frr' , hash=dataset_module.hash , ) _snake_case = builder_instance.as_streaming_dataset() assert ds assert isinstance(__lowercase , __lowercase ) assert "train" in ds assert isinstance(ds['train'] , __lowercase ) assert next(iter(ds['train'] ) )
686
import random def a_ ( __lowercase : str , __lowercase : Any , __lowercase : Any ) -> Optional[Any]: _snake_case = a[left_index] _snake_case = left_index + 1 for j in range(left_index + 1 , __lowercase ): if a[j] < pivot: _snake_case , _snake_case = a[i], a[j] i += 1 _snake_case , _snake_case = a[i - 1], a[left_index] return i - 1 def a_ ( __lowercase : Union[str, Any] , __lowercase : str , __lowercase : Optional[int] ) -> Tuple: if left < right: _snake_case = random.randint(__lowercase , right - 1 ) _snake_case , _snake_case = ( a[left], a[pivot], ) # switches the pivot with the left most bound _snake_case = partition(__lowercase , __lowercase , __lowercase ) quick_sort_random( __lowercase , __lowercase , __lowercase ) # recursive quicksort to the left of the pivot point quick_sort_random( __lowercase , pivot_index + 1 , __lowercase ) # recursive quicksort to the right of the pivot point def a_ ( ) -> str: _snake_case = input('Enter numbers separated by a comma:\n' ).strip() _snake_case = [int(__lowercase ) for item in user_input.split(',' )] quick_sort_random(__lowercase , 0 , len(__lowercase ) ) print(__lowercase ) if __name__ == "__main__": main()
686
1
import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device snake_case = False class __A ( unittest.TestCase ): '''simple docstring''' pass @nightly @require_torch_gpu class __A ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE__ ( self ): _lowerCAmelCase : Union[str, Any] = VersatileDiffusionPipeline.from_pretrained("shi-labs/versatile-diffusion" , torch_dtype=torch.floataa ) pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) _lowerCAmelCase : int = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg" ) _lowerCAmelCase : List[str] = torch.manual_seed(0 ) _lowerCAmelCase : Optional[Any] = pipe.dual_guided( prompt="first prompt" , image=_snake_case , text_to_image_strength=0.75 , generator=_snake_case , guidance_scale=7.5 , num_inference_steps=2 , output_type="numpy" , ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(_snake_case ) _lowerCAmelCase : int = VersatileDiffusionPipeline.from_pretrained(_snake_case , torch_dtype=torch.floataa ) pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) _lowerCAmelCase : Any = generator.manual_seed(0 ) _lowerCAmelCase : Any = pipe.dual_guided( prompt="first prompt" , image=_snake_case , text_to_image_strength=0.75 , generator=_snake_case , guidance_scale=7.5 , num_inference_steps=2 , output_type="numpy" , ).images assert np.abs(image - new_image ).sum() < 1E-5, "Models don't have the same forward pass" def SCREAMING_SNAKE_CASE__ ( self ): _lowerCAmelCase : Dict = VersatileDiffusionPipeline.from_pretrained("shi-labs/versatile-diffusion" , torch_dtype=torch.floataa ) pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) _lowerCAmelCase : Optional[int] = "cyberpunk 2077" _lowerCAmelCase : int = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg" ) _lowerCAmelCase : Dict = torch.manual_seed(0 ) _lowerCAmelCase : int = pipe.dual_guided( prompt=_snake_case , image=_snake_case , text_to_image_strength=0.75 , generator=_snake_case , guidance_scale=7.5 , num_inference_steps=50 , output_type="numpy" , ).images _lowerCAmelCase : Tuple = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) _lowerCAmelCase : Tuple = np.array([0.1448, 0.1619, 0.1741, 0.1086, 0.1147, 0.1128, 0.1199, 0.1165, 0.1001] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 _lowerCAmelCase : Union[str, Any] = "A painting of a squirrel eating a burger " _lowerCAmelCase : Tuple = torch.manual_seed(0 ) _lowerCAmelCase : Dict = pipe.text_to_image( prompt=_snake_case , generator=_snake_case , guidance_scale=7.5 , num_inference_steps=50 , output_type="numpy" ).images _lowerCAmelCase : Any = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) _lowerCAmelCase : Any = np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 _lowerCAmelCase : Optional[int] = pipe.image_variation(_snake_case , generator=_snake_case , output_type="numpy" ).images _lowerCAmelCase : List[Any] = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) _lowerCAmelCase : Dict = np.array([0.3076, 0.3123, 0.3284, 0.3782, 0.3770, 0.3894, 0.4297, 0.4331, 0.4456] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
587
def UpperCamelCase_ ( lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" _lowerCAmelCase : Optional[Any] = word.split() def justify(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> str: _lowerCAmelCase : Union[str, Any] = max_width - width _lowerCAmelCase : Optional[Any] = len(lowerCAmelCase__ ) if len(lowerCAmelCase__ ) == 1: # if there is only word in line # just insert overall_spaces_count for the remainder of line return line[0] + " " * overall_spaces_count else: _lowerCAmelCase : Dict = words_count - 1 # num_spaces_between_words_list[i] : tells you to insert # num_spaces_between_words_list[i] spaces # after word on line[i] _lowerCAmelCase : Any = spaces_to_insert_between_words * [ overall_spaces_count // spaces_to_insert_between_words ] _lowerCAmelCase : str = ( overall_spaces_count % spaces_to_insert_between_words ) # distribute spaces via round robin to the left words for i in range(lowerCAmelCase__ ): num_spaces_between_words_list[i] += 1 _lowerCAmelCase : Dict = [] for i in range(lowerCAmelCase__ ): # add the word aligned_words_list.append(line[i] ) # add the spaces to insert aligned_words_list.append(num_spaces_between_words_list[i] * " " ) # just add the last word to the sentence aligned_words_list.append(line[-1] ) # join the aligned words list to form a justified line return "".join(lowerCAmelCase__ ) _lowerCAmelCase : Optional[Any] = [] _lowerCAmelCase : list[str] = [] _lowerCAmelCase : Optional[int] = 0 for word in words: if width + len(lowerCAmelCase__ ) + len(lowerCAmelCase__ ) <= max_width: # keep adding words until we can fill out max_width # width = sum of length of all words (without overall_spaces_count) # len(word) = length of current word # len(line) = number of overall_spaces_count to insert between words line.append(lowerCAmelCase__ ) width += len(lowerCAmelCase__ ) else: # justify the line and add it to result answer.append(justify(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) ) # reset new line and new width _lowerCAmelCase , _lowerCAmelCase : int = [word], len(lowerCAmelCase__ ) _lowerCAmelCase : Optional[int] = max_width - width - len(lowerCAmelCase__ ) answer.append(" ".join(lowerCAmelCase__ ) + (remaining_spaces + 1) * " " ) return answer if __name__ == "__main__": from doctest import testmod testmod()
587
1
'''simple docstring''' from abc import ABC, abstractmethod from typing import Optional, Union from .. import Dataset, DatasetDict, Features, IterableDataset, IterableDatasetDict, NamedSplit from ..utils.typing import NestedDataStructureLike, PathLike class __A ( UpperCamelCase__ ): def __init__(self : int , __a : Optional[NestedDataStructureLike[PathLike]] = None , __a : Optional[NamedSplit] = None , __a : Optional[Features] = None , __a : str = None , __a : bool = False , __a : bool = False , __a : Optional[int] = None , **__a : Optional[Any] , ): UpperCAmelCase_ = path_or_paths UpperCAmelCase_ = split if split or isinstance(__a , __a ) else "train" UpperCAmelCase_ = features UpperCAmelCase_ = cache_dir UpperCAmelCase_ = keep_in_memory UpperCAmelCase_ = streaming UpperCAmelCase_ = num_proc UpperCAmelCase_ = kwargs @abstractmethod def _lowercase (self : Tuple ): pass class __A ( UpperCamelCase__ ): def __init__(self : Union[str, Any] , __a : Optional[Features] = None , __a : str = None , __a : bool = False , __a : bool = False , __a : Optional[int] = None , **__a : Any , ): UpperCAmelCase_ = features UpperCAmelCase_ = cache_dir UpperCAmelCase_ = keep_in_memory UpperCAmelCase_ = streaming UpperCAmelCase_ = num_proc UpperCAmelCase_ = kwargs @abstractmethod def _lowercase (self : List[str] ): pass
78
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNetaDConditionModel from diffusers.utils.testing_utils import ( enable_full_determinism, load_numpy, nightly, require_torch_gpu, slow, torch_device, ) from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class UpperCAmelCase__ ( UpperCAmelCase_ , unittest.TestCase): __SCREAMING_SNAKE_CASE = LDMTextToImagePipeline __SCREAMING_SNAKE_CASE = TEXT_TO_IMAGE_PARAMS - { '''negative_prompt''', '''negative_prompt_embeds''', '''cross_attention_kwargs''', '''prompt_embeds''', } __SCREAMING_SNAKE_CASE = PipelineTesterMixin.required_optional_params - { '''num_images_per_prompt''', '''callback''', '''callback_steps''', } __SCREAMING_SNAKE_CASE = TEXT_TO_IMAGE_BATCH_PARAMS __SCREAMING_SNAKE_CASE = False def __lowerCamelCase ( self ) -> Union[str, Any]: torch.manual_seed(0 ) __UpperCamelCase = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=3_2 , ) __UpperCamelCase = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=lowercase , set_alpha_to_one=lowercase , ) torch.manual_seed(0 ) __UpperCamelCase = AutoencoderKL( block_out_channels=(3_2, 6_4) , in_channels=3 , out_channels=3 , down_block_types=("""DownEncoderBlock2D""", """DownEncoderBlock2D""") , up_block_types=("""UpDecoderBlock2D""", """UpDecoderBlock2D""") , latent_channels=4 , ) torch.manual_seed(0 ) __UpperCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) __UpperCamelCase = CLIPTextModel(lowercase ) __UpperCamelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) __UpperCamelCase = { """unet""": unet, """scheduler""": scheduler, """vqvae""": vae, """bert""": text_encoder, """tokenizer""": tokenizer, } return components def __lowerCamelCase ( self , lowercase , lowercase=0 ) -> Optional[Any]: if str(lowercase ).startswith("""mps""" ): __UpperCamelCase = torch.manual_seed(lowercase ) else: __UpperCamelCase = torch.Generator(device=lowercase ).manual_seed(lowercase ) __UpperCamelCase = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def __lowerCamelCase ( self ) -> List[str]: __UpperCamelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator __UpperCamelCase = self.get_dummy_components() __UpperCamelCase = LDMTextToImagePipeline(**lowercase ) pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) __UpperCamelCase = self.get_dummy_inputs(lowercase ) __UpperCamelCase = pipe(**lowercase ).images __UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 1_6, 1_6, 3) __UpperCamelCase = np.array([0.6_101, 0.6_156, 0.5_622, 0.4_895, 0.6_661, 0.3_804, 0.5_748, 0.6_136, 0.5_014] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 @slow @require_torch_gpu class UpperCAmelCase__ ( unittest.TestCase): def __lowerCamelCase ( self ) -> List[str]: super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCamelCase ( self , lowercase , lowercase=torch.floataa , lowercase=0 ) -> List[Any]: __UpperCamelCase = torch.manual_seed(lowercase ) __UpperCamelCase = np.random.RandomState(lowercase ).standard_normal((1, 4, 3_2, 3_2) ) __UpperCamelCase = torch.from_numpy(lowercase ).to(device=lowercase , dtype=lowercase ) __UpperCamelCase = { """prompt""": """A painting of a squirrel eating a burger""", """latents""": latents, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def __lowerCamelCase ( self ) -> str: __UpperCamelCase = LDMTextToImagePipeline.from_pretrained("""CompVis/ldm-text2im-large-256""" ).to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) __UpperCamelCase = self.get_inputs(lowercase ) __UpperCamelCase = pipe(**lowercase ).images __UpperCamelCase = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 2_5_6, 2_5_6, 3) __UpperCamelCase = np.array([0.51_825, 0.52_850, 0.52_543, 0.54_258, 0.52_304, 0.52_569, 0.54_363, 0.55_276, 0.56_878] ) __UpperCamelCase = np.abs(expected_slice - image_slice ).max() assert max_diff < 1E-3 @nightly @require_torch_gpu class UpperCAmelCase__ ( unittest.TestCase): def __lowerCamelCase ( self ) -> Union[str, Any]: super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCamelCase ( self , lowercase , lowercase=torch.floataa , lowercase=0 ) -> List[str]: __UpperCamelCase = torch.manual_seed(lowercase ) __UpperCamelCase = np.random.RandomState(lowercase ).standard_normal((1, 4, 3_2, 3_2) ) __UpperCamelCase = torch.from_numpy(lowercase ).to(device=lowercase , dtype=lowercase ) __UpperCamelCase = { """prompt""": """A painting of a squirrel eating a burger""", """latents""": latents, """generator""": generator, """num_inference_steps""": 5_0, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def __lowerCamelCase ( self ) -> Union[str, Any]: __UpperCamelCase = LDMTextToImagePipeline.from_pretrained("""CompVis/ldm-text2im-large-256""" ).to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) __UpperCamelCase = self.get_inputs(lowercase ) __UpperCamelCase = pipe(**lowercase ).images[0] __UpperCamelCase = load_numpy( """https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy""" ) __UpperCamelCase = np.abs(expected_image - image ).max() assert max_diff < 1E-3
601
0
import math from typing import Optional import numpy as np from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { """facebook/encodec_24khz""": """https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json""", """facebook/encodec_48khz""": """https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json""", } class lowerCamelCase_ ( lowercase ): __lowercase : Union[str, Any] = "encodec" def __init__( self , lowerCamelCase_=[1.5, 3.0, 6.0, 12.0, 24.0] , lowerCamelCase_=2_40_00 , lowerCamelCase_=1 , lowerCamelCase_=False , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=1_28 , lowerCamelCase_=32 , lowerCamelCase_=1 , lowerCamelCase_=[8, 5, 4, 2] , lowerCamelCase_="weight_norm" , lowerCamelCase_=7 , lowerCamelCase_=7 , lowerCamelCase_=3 , lowerCamelCase_=2 , lowerCamelCase_=True , lowerCamelCase_="reflect" , lowerCamelCase_=2 , lowerCamelCase_=2 , lowerCamelCase_=1.0 , lowerCamelCase_=10_24 , lowerCamelCase_=None , lowerCamelCase_=True , **lowerCamelCase_ , ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = target_bandwidths _UpperCamelCase = sampling_rate _UpperCamelCase = audio_channels _UpperCamelCase = normalize _UpperCamelCase = chunk_length_s _UpperCamelCase = overlap _UpperCamelCase = hidden_size _UpperCamelCase = num_filters _UpperCamelCase = num_residual_layers _UpperCamelCase = upsampling_ratios _UpperCamelCase = norm_type _UpperCamelCase = kernel_size _UpperCamelCase = last_kernel_size _UpperCamelCase = residual_kernel_size _UpperCamelCase = dilation_growth_rate _UpperCamelCase = use_causal_conv _UpperCamelCase = pad_mode _UpperCamelCase = compress _UpperCamelCase = num_lstm_layers _UpperCamelCase = trim_right_ratio _UpperCamelCase = codebook_size _UpperCamelCase = codebook_dim if codebook_dim is not None else hidden_size _UpperCamelCase = use_conv_shortcut if self.norm_type not in ["weight_norm", "time_group_norm"]: raise ValueError( f'''self.norm_type must be one of `"weight_norm"`, `"time_group_norm"`), got {self.norm_type}''' ) super().__init__(**lowerCamelCase_ ) @property def lowercase ( self ) -> Optional[int]: """simple docstring""" if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def lowercase ( self ) -> Optional[int]: """simple docstring""" if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) @property def lowercase ( self ) -> int: """simple docstring""" _UpperCamelCase = np.prod(self.upsampling_ratios ) return math.ceil(self.sampling_rate / hop_length ) @property def lowercase ( self ) -> int: """simple docstring""" return int(10_00 * self.target_bandwidths[-1] // (self.frame_rate * 10) )
589
import unittest from transformers import SqueezeBertConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, ) class lowerCamelCase_ ( lowercase ): def __init__( self , lowerCamelCase_ , lowerCamelCase_=13 , lowerCamelCase_=7 , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_=False , lowerCamelCase_=True , lowerCamelCase_=99 , lowerCamelCase_=32 , lowerCamelCase_=5 , lowerCamelCase_=4 , lowerCamelCase_=64 , lowerCamelCase_="gelu" , lowerCamelCase_=0.1 , lowerCamelCase_=0.1 , lowerCamelCase_=5_12 , lowerCamelCase_=16 , lowerCamelCase_=2 , lowerCamelCase_=0.02 , lowerCamelCase_=3 , lowerCamelCase_=4 , lowerCamelCase_=None , lowerCamelCase_=2 , lowerCamelCase_=2 , lowerCamelCase_=2 , lowerCamelCase_=2 , lowerCamelCase_=4 , lowerCamelCase_=1 , ) -> Tuple: """simple docstring""" _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = seq_length _UpperCamelCase = is_training _UpperCamelCase = use_input_mask _UpperCamelCase = use_token_type_ids _UpperCamelCase = use_labels _UpperCamelCase = vocab_size _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = max_position_embeddings _UpperCamelCase = type_vocab_size _UpperCamelCase = type_sequence_label_size _UpperCamelCase = initializer_range _UpperCamelCase = num_labels _UpperCamelCase = num_choices _UpperCamelCase = scope _UpperCamelCase = q_groups _UpperCamelCase = k_groups _UpperCamelCase = v_groups _UpperCamelCase = post_attention_groups _UpperCamelCase = intermediate_groups _UpperCamelCase = output_groups def lowercase ( self ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCamelCase = None if self.use_input_mask: _UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None if self.use_labels: _UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices ) _UpperCamelCase = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase ( self ) -> List[Any]: """simple docstring""" return SqueezeBertConfig( embedding_size=self.hidden_size , vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , attention_probs_dropout_prob=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , q_groups=self.q_groups , k_groups=self.k_groups , v_groups=self.v_groups , post_attention_groups=self.post_attention_groups , intermediate_groups=self.intermediate_groups , output_groups=self.output_groups , ) def lowercase ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> Optional[Any]: """simple docstring""" _UpperCamelCase = SqueezeBertModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() _UpperCamelCase = model(lowerCamelCase_ , lowerCamelCase_ ) _UpperCamelCase = model(lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> str: """simple docstring""" _UpperCamelCase = SqueezeBertForMaskedLM(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() _UpperCamelCase = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ , labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> Optional[Any]: """simple docstring""" _UpperCamelCase = SqueezeBertForQuestionAnswering(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() _UpperCamelCase = model( lowerCamelCase_ , attention_mask=lowerCamelCase_ , start_positions=lowerCamelCase_ , end_positions=lowerCamelCase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> Optional[int]: """simple docstring""" _UpperCamelCase = self.num_labels _UpperCamelCase = SqueezeBertForSequenceClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() _UpperCamelCase = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ , labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> Any: """simple docstring""" _UpperCamelCase = self.num_labels _UpperCamelCase = SqueezeBertForTokenClassification(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() _UpperCamelCase = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ , labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> int: """simple docstring""" _UpperCamelCase = self.num_choices _UpperCamelCase = SqueezeBertForMultipleChoice(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() _UpperCamelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCamelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCamelCase = model( lowerCamelCase_ , attention_mask=lowerCamelCase_ , labels=lowerCamelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase ( self ) -> Optional[Any]: """simple docstring""" _UpperCamelCase = self.prepare_config_and_inputs() ((_UpperCamelCase) , (_UpperCamelCase) , (_UpperCamelCase) , (_UpperCamelCase) , (_UpperCamelCase) , (_UpperCamelCase)) = config_and_inputs _UpperCamelCase = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class lowerCamelCase_ ( lowercase , lowercase , unittest.TestCase ): __lowercase : Any = ( ( SqueezeBertModel, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, ) if is_torch_available() else None ) __lowercase : Dict = ( { "feature-extraction": SqueezeBertModel, "fill-mask": SqueezeBertForMaskedLM, "question-answering": SqueezeBertForQuestionAnswering, "text-classification": SqueezeBertForSequenceClassification, "token-classification": SqueezeBertForTokenClassification, "zero-shot": SqueezeBertForSequenceClassification, } if is_torch_available() else {} ) __lowercase : Tuple = False __lowercase : List[str] = True __lowercase : Any = False def lowercase ( self ) -> Any: """simple docstring""" _UpperCamelCase = SqueezeBertModelTester(self ) _UpperCamelCase = ConfigTester(self , config_class=lowerCamelCase_ , dim=37 ) def lowercase ( self ) -> Optional[int]: """simple docstring""" self.config_tester.run_common_tests() def lowercase ( self ) -> List[str]: """simple docstring""" _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_model(*lowerCamelCase_ ) def lowercase ( self ) -> Optional[Any]: """simple docstring""" _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_masked_lm(*lowerCamelCase_ ) def lowercase ( self ) -> int: """simple docstring""" _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_question_answering(*lowerCamelCase_ ) def lowercase ( self ) -> Optional[int]: """simple docstring""" _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_sequence_classification(*lowerCamelCase_ ) def lowercase ( self ) -> Any: """simple docstring""" _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_token_classification(*lowerCamelCase_ ) def lowercase ( self ) -> Tuple: """simple docstring""" _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_multiple_choice(*lowerCamelCase_ ) @slow def lowercase ( self ) -> Any: """simple docstring""" for model_name in SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = SqueezeBertModel.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) @require_sentencepiece @require_tokenizers @require_torch class lowerCamelCase_ ( unittest.TestCase ): @slow def lowercase ( self ) -> Any: """simple docstring""" _UpperCamelCase = SqueezeBertForSequenceClassification.from_pretrained("squeezebert/squeezebert-mnli" ) _UpperCamelCase = torch.tensor([[1, 2_94_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 13, 15_88, 2]] ) _UpperCamelCase = model(lowerCamelCase_ )[0] _UpperCamelCase = torch.Size((1, 3) ) self.assertEqual(output.shape , lowerCamelCase_ ) _UpperCamelCase = torch.tensor([[0.64_01, -0.03_49, -0.60_41]] ) self.assertTrue(torch.allclose(lowerCamelCase_ , lowerCamelCase_ , atol=1E-4 ) )
589
1
'''simple docstring''' def __snake_case ( _UpperCAmelCase : int): UpperCamelCase = n ** (1 / 3) return (val * val * val) == n if __name__ == "__main__": print(perfect_cube(27)) print(perfect_cube(4))
212
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_squeezebert import SqueezeBertTokenizer snake_case_ : Tuple = logging.get_logger(__name__) snake_case_ : str = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} snake_case_ : List[Any] = { 'vocab_file': { 'squeezebert/squeezebert-uncased': ( 'https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt' ), 'squeezebert/squeezebert-mnli': 'https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt', 'squeezebert/squeezebert-mnli-headless': ( 'https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'squeezebert/squeezebert-uncased': ( 'https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json' ), 'squeezebert/squeezebert-mnli': ( 'https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json' ), 'squeezebert/squeezebert-mnli-headless': ( 'https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json' ), }, } snake_case_ : Optional[int] = { 'squeezebert/squeezebert-uncased': 512, 'squeezebert/squeezebert-mnli': 512, 'squeezebert/squeezebert-mnli-headless': 512, } snake_case_ : Tuple = { 'squeezebert/squeezebert-uncased': {'do_lower_case': True}, 'squeezebert/squeezebert-mnli': {'do_lower_case': True}, 'squeezebert/squeezebert-mnli-headless': {'do_lower_case': True}, } class lowercase__ ( snake_case_ ): '''simple docstring''' _snake_case = VOCAB_FILES_NAMES _snake_case = PRETRAINED_VOCAB_FILES_MAP _snake_case = PRETRAINED_INIT_CONFIGURATION _snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case = SqueezeBertTokenizer def __init__( self , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=True , lowerCamelCase__="[UNK]" , lowerCamelCase__="[SEP]" , lowerCamelCase__="[PAD]" , lowerCamelCase__="[CLS]" , lowerCamelCase__="[MASK]" , lowerCamelCase__=True , lowerCamelCase__=None , **lowerCamelCase__ , ): '''simple docstring''' super().__init__( lowerCamelCase__ , tokenizer_file=lowerCamelCase__ , do_lower_case=lowerCamelCase__ , unk_token=lowerCamelCase__ , sep_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , cls_token=lowerCamelCase__ , mask_token=lowerCamelCase__ , tokenize_chinese_chars=lowerCamelCase__ , strip_accents=lowerCamelCase__ , **lowerCamelCase__ , ) UpperCamelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , lowerCamelCase__ ) != do_lower_case or normalizer_state.get('''strip_accents''' , lowerCamelCase__ ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , lowerCamelCase__ ) != tokenize_chinese_chars ): UpperCamelCase = getattr(lowerCamelCase__ , normalizer_state.pop('''type''' ) ) UpperCamelCase = do_lower_case UpperCamelCase = strip_accents UpperCamelCase = tokenize_chinese_chars UpperCamelCase = normalizer_class(**lowerCamelCase__ ) UpperCamelCase = do_lower_case def UpperCAmelCase ( self , lowerCamelCase__ , lowerCamelCase__=None ): '''simple docstring''' UpperCamelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCAmelCase ( self , lowerCamelCase__ , lowerCamelCase__ = None ): '''simple docstring''' UpperCamelCase = [self.sep_token_id] UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase ( self , lowerCamelCase__ , lowerCamelCase__ = None ): '''simple docstring''' UpperCamelCase = self._tokenizer.model.save(lowerCamelCase__ , name=lowerCamelCase__ ) return tuple(lowerCamelCase__ )
212
1
'''simple docstring''' import operator as op def _lowercase ( a__ : Any ) -> Optional[Any]: """simple docstring""" _UpperCamelCase = [] _UpperCamelCase = lambda a__ , a__ : int(x / y ) # noqa: E731 integer division operation _UpperCamelCase = { "^": op.pow, "*": op.mul, "/": div, "+": op.add, "-": op.sub, } # operators & their respective operation # print table header print("Symbol".center(8 ) , "Action".center(12 ) , "Stack" , sep=" | " ) print("-" * (30 + len(__lowerCAmelCase )) ) for x in post_fix: if x.isdigit(): # if x in digit stack.append(__lowerCAmelCase ) # append x to stack # output in tabular format print(x.rjust(8 ) , ("push(" + x + ")").ljust(12 ) , ",".join(__lowerCAmelCase ) , sep=" | " ) else: _UpperCamelCase = stack.pop() # pop stack # output in tabular format print("".rjust(8 ) , ("pop(" + b + ")").ljust(12 ) , ",".join(__lowerCAmelCase ) , sep=" | " ) _UpperCamelCase = stack.pop() # pop stack # output in tabular format print("".rjust(8 ) , ("pop(" + a + ")").ljust(12 ) , ",".join(__lowerCAmelCase ) , sep=" | " ) stack.append( str(opr[x](int(__lowerCAmelCase ) , int(__lowerCAmelCase ) ) ) ) # evaluate the 2 values popped from stack & push result to stack # output in tabular format print( x.rjust(8 ) , ("push(" + a + x + b + ")").ljust(12 ) , ",".join(__lowerCAmelCase ) , sep=" | " , ) return int(stack[0] ) if __name__ == "__main__": __lowerCAmelCase = input("""\n\nEnter a Postfix Equation (space separated) = """).split(""" """) print("""\n\tResult = """, solve(Postfix))
712
import unittest from transformers.testing_utils import require_bsa from transformers.utils import is_bsa_available from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin if is_bsa_available(): from transformers import MarkupLMFeatureExtractor class lowerCamelCase_ ( unittest.TestCase ): def __init__( self , lowerCamelCase_ ) -> List[str]: """simple docstring""" _UpperCamelCase = parent def lowercase ( self ) -> Any: """simple docstring""" return {} def _lowercase ( ) -> List[Any]: """simple docstring""" _UpperCamelCase = "<HTML>\n\n <HEAD>\n <TITLE>sample document</TITLE>\n </HEAD>\n\n <BODY BGCOLOR=\"FFFFFF\">\n <HR>\n <a href=\"http://google.com\">Goog</a>\n <H1>This is one header</H1>\n <H2>This is a another Header</H2>\n <P>Travel from\n <P>\n <B>SFO to JFK</B>\n <BR>\n <B><I>on May 2, 2015 at 2:00 pm. For details go to confirm.com </I></B>\n <HR>\n <div style=\"color:#0000FF\">\n <h3>Traveler <b> name </b> is\n <p> John Doe </p>\n </div>" _UpperCamelCase = "\n <!DOCTYPE html>\n <html>\n <body>\n\n <h1>My First Heading</h1>\n <p>My first paragraph.</p>\n\n </body>\n </html>\n " return [html_string_a, html_string_a] @require_bsa class lowerCamelCase_ ( lowercase , unittest.TestCase ): __lowercase : List[Any] = MarkupLMFeatureExtractor if is_bsa_available() else None def lowercase ( self ) -> List[str]: """simple docstring""" _UpperCamelCase = MarkupLMFeatureExtractionTester(self ) @property def lowercase ( self ) -> Optional[int]: """simple docstring""" return self.feature_extract_tester.prepare_feat_extract_dict() def lowercase ( self ) -> Tuple: """simple docstring""" _UpperCamelCase = self.feature_extraction_class() # Test not batched input _UpperCamelCase = get_html_strings()[0] _UpperCamelCase = feature_extractor(lowerCamelCase_ ) # fmt: off _UpperCamelCase = [["sample document", "Goog", "This is one header", "This is a another Header", "Travel from", "SFO to JFK", "on May 2, 2015 at 2:00 pm. For details go to confirm.com", "Traveler", "name", "is", "John Doe"]] _UpperCamelCase = [["/html/head/title", "/html/body/a", "/html/body/h1", "/html/body/h2", "/html/body/p", "/html/body/p/p/b[1]", "/html/body/p/p/b[2]/i", "/html/body/p/p/div/h3", "/html/body/p/p/div/h3/b", "/html/body/p/p/div/h3", "/html/body/p/p/div/h3/p"]] # fmt: on self.assertEqual(encoding.nodes , lowerCamelCase_ ) self.assertEqual(encoding.xpaths , lowerCamelCase_ ) # Test batched _UpperCamelCase = get_html_strings() _UpperCamelCase = feature_extractor(lowerCamelCase_ ) # fmt: off _UpperCamelCase = expected_nodes + [["My First Heading", "My first paragraph."]] _UpperCamelCase = expected_xpaths + [["/html/body/h1", "/html/body/p"]] self.assertEqual(len(encoding.nodes ) , 2 ) self.assertEqual(len(encoding.xpaths ) , 2 ) self.assertEqual(encoding.nodes , lowerCamelCase_ ) self.assertEqual(encoding.xpaths , lowerCamelCase_ )
589
0
'''simple docstring''' import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = ['''image_processor''', '''tokenizer'''] lowerCAmelCase = '''LayoutLMv2ImageProcessor''' lowerCAmelCase = ('''LayoutXLMTokenizer''', '''LayoutXLMTokenizerFast''') def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , **_UpperCAmelCase): '''simple docstring''' if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , _UpperCAmelCase , ) __A : str = kwargs.pop('feature_extractor') __A : Dict = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.') if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.') super().__init__(_UpperCAmelCase , _UpperCAmelCase) def __call__( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = True , _UpperCAmelCase = False , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = 0 , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = False , _UpperCAmelCase = False , _UpperCAmelCase = False , _UpperCAmelCase = False , _UpperCAmelCase = True , _UpperCAmelCase = None , **_UpperCAmelCase , ): '''simple docstring''' if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( 'You cannot provide bounding boxes ' 'if you initialized the image processor with apply_ocr set to True.') if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( 'You cannot provide word labels if you initialized the image processor with apply_ocr set to True.') if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError('You cannot return overflowing tokens without returning the offsets mapping.') # first, apply the image processor __A : Dict = self.image_processor(images=_UpperCAmelCase , return_tensors=_UpperCAmelCase) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(_UpperCAmelCase , _UpperCAmelCase): __A : Optional[int] = [text] # add batch dimension (as the image processor always adds a batch dimension) __A : Dict = features['words'] __A : Any = self.tokenizer( text=text if text is not None else features['words'] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['boxes'] , word_labels=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase , stride=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , return_overflowing_tokens=_UpperCAmelCase , return_special_tokens_mask=_UpperCAmelCase , return_offsets_mapping=_UpperCAmelCase , return_length=_UpperCAmelCase , verbose=_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase , ) # add pixel values __A : Dict = features.pop('pixel_values') if return_overflowing_tokens is True: __A : str = self.get_overflowing_images(_UpperCAmelCase , encoded_inputs['overflow_to_sample_mapping']) __A : str = images return encoded_inputs def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Tuple = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx]) if len(_UpperCAmelCase) != len(_UpperCAmelCase): raise ValueError( 'Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got' F' {len(_UpperCAmelCase)} and {len(_UpperCAmelCase)}') return images_with_overflow def SCREAMING_SNAKE_CASE ( self , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' return self.tokenizer.batch_decode(*_UpperCAmelCase , **_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' return self.tokenizer.decode(*_UpperCAmelCase , **_UpperCAmelCase) @property def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return ["input_ids", "bbox", "attention_mask", "image"] @property def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , _UpperCAmelCase , ) return self.image_processor_class @property def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , _UpperCAmelCase , ) return self.image_processor
8
import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def a_ ( ) -> Optional[Any]: with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(__lowercase ): requests.request('GET' , 'https://huggingface.co' ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request('GET' , 'https://huggingface.co' , timeout=1.0 ) @pytest.mark.integration def a_ ( ) -> Optional[int]: with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request('GET' , 'https://huggingface.co' ) def a_ ( ) -> Dict: with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(__lowercase ): http_head('https://huggingface.co' )
686
0
import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def SCREAMING_SNAKE_CASE__ ( lowercase ) -> str: # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0X4_E00 and cp <= 0X9_FFF) or (cp >= 0X3_400 and cp <= 0X4_DBF) # or (cp >= 0X20_000 and cp <= 0X2A_6DF) # or (cp >= 0X2A_700 and cp <= 0X2B_73F) # or (cp >= 0X2B_740 and cp <= 0X2B_81F) # or (cp >= 0X2B_820 and cp <= 0X2C_EAF) # or (cp >= 0XF_900 and cp <= 0XF_AFF) or (cp >= 0X2F_800 and cp <= 0X2F_A1F) # ): # return True return False def SCREAMING_SNAKE_CASE__ ( lowercase ) -> int: # word like '180' or '身高' or '神' for char in word: snake_case : str = ord(lowercase ) if not _is_chinese_char(lowercase ): return 0 return 1 def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Any: snake_case : Any = set() for token in tokens: snake_case : int = len(lowercase ) > 1 and is_chinese(lowercase ) if chinese_word: word_set.add(lowercase ) snake_case : str = list(lowercase ) return word_list def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> int: if not chinese_word_set: return bert_tokens snake_case : Dict = max([len(lowercase ) for w in chinese_word_set] ) snake_case : Union[str, Any] = bert_tokens snake_case , snake_case : Optional[int] = 0, len(lowercase ) while start < end: snake_case : Optional[int] = True if is_chinese(bert_word[start] ): snake_case : str = min(end - start ,lowercase ) for i in range(lowercase ,1 ,-1 ): snake_case : Dict = """""".join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 ,start + i ): snake_case : List[Any] = """##""" + bert_word[j] snake_case : List[str] = start + i snake_case : Optional[Any] = False break if single_word: start += 1 return bert_word def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> str: snake_case : List[Any] = [] for i in range(0 ,len(lowercase ) ,100 ): snake_case : Union[str, Any] = ltp_tokenizer.seg(lines[i : i + 100] )[0] snake_case : Optional[Any] = [get_chinese_word(lowercase ) for r in res] ltp_res.extend(lowercase ) assert len(lowercase ) == len(lowercase ) snake_case : int = [] for i in range(0 ,len(lowercase ) ,100 ): snake_case : Dict = bert_tokenizer(lines[i : i + 100] ,add_special_tokens=lowercase ,truncation=lowercase ,max_length=512 ) bert_res.extend(res["""input_ids"""] ) assert len(lowercase ) == len(lowercase ) snake_case : Any = [] for input_ids, chinese_word in zip(lowercase ,lowercase ): snake_case : Union[str, Any] = [] for id in input_ids: snake_case : Dict = bert_tokenizer._convert_id_to_token(lowercase ) input_tokens.append(lowercase ) snake_case : int = add_sub_symbol(lowercase ,lowercase ) snake_case : List[Any] = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(lowercase ): if token[:2] == "##": snake_case : Dict = token[2:] # save chinese tokens' pos if len(lowercase ) == 1 and _is_chinese_char(ord(lowercase ) ): ref_id.append(lowercase ) ref_ids.append(lowercase ) assert len(lowercase ) == len(lowercase ) return ref_ids def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Union[str, Any]: # For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm) # If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp) with open(args.file_name ,"""r""" ,encoding="""utf-8""" ) as f: snake_case : Tuple = f.readlines() snake_case : Dict = [line.strip() for line in data if len(lowercase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' snake_case : List[Any] = LTP(args.ltp ) # faster in GPU device snake_case : Any = BertTokenizer.from_pretrained(args.bert ) snake_case : int = prepare_ref(lowercase ,lowercase ,lowercase ) with open(args.save_path ,"""w""" ,encoding="""utf-8""" ) as f: snake_case : str = [json.dumps(lowercase ) + """\n""" for ref in ref_ids] f.writelines(lowercase ) if __name__ == "__main__": lowerCamelCase : List[Any] = argparse.ArgumentParser(description='prepare_chinese_ref') parser.add_argument( '--file_name', type=str, default='./resources/chinese-demo.txt', help='file need process, same as training data in lm', ) parser.add_argument( '--ltp', type=str, default='./resources/ltp', help='resources for LTP tokenizer, usually a path' ) parser.add_argument('--bert', type=str, default='./resources/robert', help='resources for Bert tokenizer') parser.add_argument('--save_path', type=str, default='./resources/ref.txt', help='path to save res') lowerCamelCase : List[Any] = parser.parse_args() main(args)
684
import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> Tuple: # Initialise PyTorch model snake_case : int = RemBertConfig.from_json_file(lowercase ) print("""Building PyTorch model from configuration: {}""".format(str(lowercase ) ) ) snake_case : Tuple = RemBertModel(lowercase ) # Load weights from tf checkpoint load_tf_weights_in_rembert(lowercase ,lowercase ,lowercase ) # Save pytorch-model print("""Save PyTorch model to {}""".format(lowercase ) ) torch.save(model.state_dict() ,lowercase ) if __name__ == "__main__": lowerCamelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--rembert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained RemBERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) lowerCamelCase : Dict = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
684
1
'''simple docstring''' import unittest from transformers import SqueezeBertConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, ) class snake_case__ ( UpperCamelCase): def __init__( self : Optional[int] , _A : Tuple , _A : Tuple=13 , _A : Optional[int]=7 , _A : int=True , _A : List[Any]=True , _A : List[str]=False , _A : List[str]=True , _A : str=99 , _A : Tuple=32 , _A : Optional[Any]=5 , _A : str=4 , _A : int=64 , _A : Union[str, Any]="gelu" , _A : Union[str, Any]=0.1 , _A : List[str]=0.1 , _A : Optional[int]=5_12 , _A : Optional[Any]=16 , _A : List[str]=2 , _A : Optional[int]=0.02 , _A : Optional[Any]=3 , _A : int=4 , _A : Optional[int]=None , _A : List[Any]=2 , _A : List[Any]=2 , _A : Dict=2 , _A : Optional[Any]=2 , _A : Optional[Any]=4 , _A : Union[str, Any]=1 , ) -> Tuple: UpperCAmelCase_ : Tuple = parent UpperCAmelCase_ : List[Any] = batch_size UpperCAmelCase_ : Any = seq_length UpperCAmelCase_ : int = is_training UpperCAmelCase_ : List[Any] = use_input_mask UpperCAmelCase_ : Tuple = use_token_type_ids UpperCAmelCase_ : Dict = use_labels UpperCAmelCase_ : str = vocab_size UpperCAmelCase_ : Optional[Any] = hidden_size UpperCAmelCase_ : Any = num_hidden_layers UpperCAmelCase_ : Optional[int] = num_attention_heads UpperCAmelCase_ : List[Any] = intermediate_size UpperCAmelCase_ : str = hidden_act UpperCAmelCase_ : Any = hidden_dropout_prob UpperCAmelCase_ : str = attention_probs_dropout_prob UpperCAmelCase_ : List[Any] = max_position_embeddings UpperCAmelCase_ : Optional[Any] = type_vocab_size UpperCAmelCase_ : Union[str, Any] = type_sequence_label_size UpperCAmelCase_ : Tuple = initializer_range UpperCAmelCase_ : Any = num_labels UpperCAmelCase_ : int = num_choices UpperCAmelCase_ : Any = scope UpperCAmelCase_ : Dict = q_groups UpperCAmelCase_ : str = k_groups UpperCAmelCase_ : Optional[int] = v_groups UpperCAmelCase_ : int = post_attention_groups UpperCAmelCase_ : Union[str, Any] = intermediate_groups UpperCAmelCase_ : List[str] = output_groups def A ( self : Any ) -> int: UpperCAmelCase_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ : int = None if self.use_input_mask: UpperCAmelCase_ : Dict = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : int = None UpperCAmelCase_ : Optional[Any] = None if self.use_labels: UpperCAmelCase_ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase_ : List[Any] = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase_ : str = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def A ( self : Tuple ) -> Union[str, Any]: return SqueezeBertConfig( embedding_size=self.hidden_size , vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , attention_probs_dropout_prob=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , q_groups=self.q_groups , k_groups=self.k_groups , v_groups=self.v_groups , post_attention_groups=self.post_attention_groups , intermediate_groups=self.intermediate_groups , output_groups=self.output_groups , ) def A ( self : Optional[int] , _A : Union[str, Any] , _A : List[Any] , _A : Optional[int] , _A : str , _A : List[Any] , _A : Union[str, Any] ) -> Dict: UpperCAmelCase_ : List[str] = SqueezeBertModel(config=_A ) model.to(_A ) model.eval() UpperCAmelCase_ : Optional[int] = model(_A , _A ) UpperCAmelCase_ : Any = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A ( self : List[Any] , _A : str , _A : int , _A : Tuple , _A : Dict , _A : Optional[Any] , _A : Tuple ) -> Optional[int]: UpperCAmelCase_ : Tuple = SqueezeBertForMaskedLM(config=_A ) model.to(_A ) model.eval() UpperCAmelCase_ : Dict = model(_A , attention_mask=_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A ( self : Tuple , _A : Tuple , _A : Optional[Any] , _A : Tuple , _A : Any , _A : Any , _A : Optional[Any] ) -> int: UpperCAmelCase_ : Optional[Any] = SqueezeBertForQuestionAnswering(config=_A ) model.to(_A ) model.eval() UpperCAmelCase_ : List[str] = model( _A , attention_mask=_A , start_positions=_A , end_positions=_A ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A ( self : Any , _A : Optional[int] , _A : List[Any] , _A : Tuple , _A : List[Any] , _A : Optional[Any] , _A : Dict ) -> List[str]: UpperCAmelCase_ : List[Any] = self.num_labels UpperCAmelCase_ : Optional[int] = SqueezeBertForSequenceClassification(_A ) model.to(_A ) model.eval() UpperCAmelCase_ : List[str] = model(_A , attention_mask=_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A ( self : Any , _A : Tuple , _A : Optional[int] , _A : Dict , _A : Any , _A : str , _A : List[Any] ) -> List[Any]: UpperCAmelCase_ : Any = self.num_labels UpperCAmelCase_ : List[Any] = SqueezeBertForTokenClassification(config=_A ) model.to(_A ) model.eval() UpperCAmelCase_ : Tuple = model(_A , attention_mask=_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A ( self : Tuple , _A : Any , _A : Tuple , _A : Tuple , _A : Dict , _A : Tuple , _A : Optional[Any] ) -> Optional[int]: UpperCAmelCase_ : Union[str, Any] = self.num_choices UpperCAmelCase_ : str = SqueezeBertForMultipleChoice(config=_A ) model.to(_A ) model.eval() UpperCAmelCase_ : Dict = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase_ : Tuple = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase_ : str = model( _A , attention_mask=_A , labels=_A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A ( self : Optional[Any] ) -> List[Any]: UpperCAmelCase_ : Tuple = self.prepare_config_and_inputs() ((UpperCAmelCase_) , (UpperCAmelCase_) , (UpperCAmelCase_) , (UpperCAmelCase_) , (UpperCAmelCase_) , (UpperCAmelCase_)) : Any = config_and_inputs UpperCAmelCase_ : Tuple = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class snake_case__ ( UpperCamelCase , UpperCamelCase , unittest.TestCase): a_ = ( ( SqueezeBertModel, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, ) if is_torch_available() else None ) a_ = ( { "feature-extraction": SqueezeBertModel, "fill-mask": SqueezeBertForMaskedLM, "question-answering": SqueezeBertForQuestionAnswering, "text-classification": SqueezeBertForSequenceClassification, "token-classification": SqueezeBertForTokenClassification, "zero-shot": SqueezeBertForSequenceClassification, } if is_torch_available() else {} ) a_ = False a_ = True a_ = False def A ( self : Union[str, Any] ) -> int: UpperCAmelCase_ : Any = SqueezeBertModelTester(self ) UpperCAmelCase_ : str = ConfigTester(self , config_class=_A , dim=37 ) def A ( self : Tuple ) -> Dict: self.config_tester.run_common_tests() def A ( self : Any ) -> Union[str, Any]: UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_model(*_A ) def A ( self : Any ) -> int: UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_masked_lm(*_A ) def A ( self : List[Any] ) -> List[Any]: UpperCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_question_answering(*_A ) def A ( self : int ) -> Union[str, Any]: UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_sequence_classification(*_A ) def A ( self : int ) -> List[Any]: UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_token_classification(*_A ) def A ( self : Dict ) -> Any: UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_multiple_choice(*_A ) @slow def A ( self : str ) -> Union[str, Any]: for model_name in SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : List[Any] = SqueezeBertModel.from_pretrained(_A ) self.assertIsNotNone(_A ) @require_sentencepiece @require_tokenizers @require_torch class snake_case__ ( unittest.TestCase): @slow def A ( self : Any ) -> Union[str, Any]: UpperCAmelCase_ : int = SqueezeBertForSequenceClassification.from_pretrained('''squeezebert/squeezebert-mnli''' ) UpperCAmelCase_ : List[Any] = torch.tensor([[1, 2_94_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 13, 15_88, 2]] ) UpperCAmelCase_ : List[Any] = model(_A )[0] UpperCAmelCase_ : Any = torch.Size((1, 3) ) self.assertEqual(output.shape , _A ) UpperCAmelCase_ : int = torch.tensor([[0.6_401, -0.0_349, -0.6_041]] ) self.assertTrue(torch.allclose(_A , _A , atol=1e-4 ) )
541
'''simple docstring''' import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class snake_case__ : def __init__( self : Union[str, Any] , _A : Optional[Any] , _A : Dict=2 , _A : Optional[Any]=32 , _A : List[str]=16 , _A : str=3 , _A : List[Any]=True , _A : Optional[int]=True , _A : Optional[int]=32 , _A : Optional[Any]=4 , _A : Optional[int]=[0, 1, 2, 3] , _A : List[Any]=4 , _A : Optional[int]=37 , _A : Optional[Any]="gelu" , _A : Optional[Any]=0.1 , _A : Union[str, Any]=0.1 , _A : Dict=0.02 , _A : Optional[Any]=3 , _A : Union[str, Any]=[1, 3_84, 24, 24] , _A : int=True , _A : int=None , ) -> Tuple: UpperCAmelCase_ : Tuple = parent UpperCAmelCase_ : List[str] = batch_size UpperCAmelCase_ : Union[str, Any] = image_size UpperCAmelCase_ : List[Any] = patch_size UpperCAmelCase_ : Dict = num_channels UpperCAmelCase_ : str = is_training UpperCAmelCase_ : List[str] = use_labels UpperCAmelCase_ : Optional[Any] = hidden_size UpperCAmelCase_ : str = num_hidden_layers UpperCAmelCase_ : int = backbone_out_indices UpperCAmelCase_ : str = num_attention_heads UpperCAmelCase_ : List[Any] = intermediate_size UpperCAmelCase_ : Union[str, Any] = hidden_act UpperCAmelCase_ : Dict = hidden_dropout_prob UpperCAmelCase_ : Union[str, Any] = attention_probs_dropout_prob UpperCAmelCase_ : List[str] = initializer_range UpperCAmelCase_ : int = num_labels UpperCAmelCase_ : Union[str, Any] = backbone_featmap_shape UpperCAmelCase_ : List[str] = scope UpperCAmelCase_ : List[str] = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) UpperCAmelCase_ : List[Any] = (image_size // patch_size) ** 2 UpperCAmelCase_ : List[str] = num_patches + 1 def A ( self : Dict ) -> Optional[int]: UpperCAmelCase_ : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ : List[str] = None if self.use_labels: UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) UpperCAmelCase_ : Dict = self.get_config() return config, pixel_values, labels def A ( self : int ) -> Optional[Any]: UpperCAmelCase_ : Optional[Any] = { '''global_padding''': '''same''', '''layer_type''': '''bottleneck''', '''depths''': [3, 4, 9], '''out_features''': ['''stage1''', '''stage2''', '''stage3'''], '''embedding_dynamic_padding''': True, '''hidden_sizes''': [96, 1_92, 3_84, 7_68], '''num_groups''': 2, } return DPTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_A , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=_A , backbone_featmap_shape=self.backbone_featmap_shape , ) def A ( self : Union[str, Any] , _A : List[Any] , _A : Optional[int] , _A : Optional[int] ) -> Union[str, Any]: UpperCAmelCase_ : Optional[int] = DPTModel(config=_A ) model.to(_A ) model.eval() UpperCAmelCase_ : List[str] = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A ( self : Tuple , _A : str , _A : Tuple , _A : Union[str, Any] ) -> List[str]: UpperCAmelCase_ : List[Any] = self.num_labels UpperCAmelCase_ : Any = DPTForDepthEstimation(_A ) model.to(_A ) model.eval() UpperCAmelCase_ : int = model(_A ) self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size) ) def A ( self : List[str] , _A : str , _A : Union[str, Any] , _A : int ) -> Dict: UpperCAmelCase_ : int = self.num_labels UpperCAmelCase_ : Optional[Any] = DPTForSemanticSegmentation(_A ) model.to(_A ) model.eval() UpperCAmelCase_ : Tuple = model(_A , labels=_A ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def A ( self : Dict ) -> Any: UpperCAmelCase_ : Optional[int] = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[str] = config_and_inputs UpperCAmelCase_ : Tuple = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class snake_case__ ( UpperCamelCase , UpperCamelCase , unittest.TestCase): a_ = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () a_ = ( { "depth-estimation": DPTForDepthEstimation, "feature-extraction": DPTModel, "image-segmentation": DPTForSemanticSegmentation, } if is_torch_available() else {} ) a_ = False a_ = False a_ = False def A ( self : Tuple ) -> Tuple: UpperCAmelCase_ : Any = DPTModelTester(self ) UpperCAmelCase_ : Dict = ConfigTester(self , config_class=_A , has_text_modality=_A , hidden_size=37 ) def A ( self : Optional[int] ) -> int: self.config_tester.run_common_tests() @unittest.skip(reason='''DPT does not use inputs_embeds''' ) def A ( self : Union[str, Any] ) -> str: pass def A ( self : str ) -> Dict: UpperCAmelCase_ , UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : Union[str, Any] = model_class(_A ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCAmelCase_ : Dict = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_A , nn.Linear ) ) def A ( self : List[Any] ) -> Tuple: UpperCAmelCase_ , UpperCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : Dict = model_class(_A ) UpperCAmelCase_ : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ : int = [*signature.parameters.keys()] UpperCAmelCase_ : Any = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _A ) def A ( self : List[str] ) -> str: UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def A ( self : str ) -> List[str]: UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*_A ) def A ( self : str ) -> List[Any]: UpperCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_A ) def A ( self : Tuple ) -> str: for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue UpperCAmelCase_ , UpperCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : Union[str, Any] = True if model_class in get_values(_A ): continue UpperCAmelCase_ : Optional[int] = model_class(_A ) model.to(_A ) model.train() UpperCAmelCase_ : Any = self._prepare_for_class(_A , _A , return_labels=_A ) UpperCAmelCase_ : Tuple = model(**_A ).loss loss.backward() def A ( self : Union[str, Any] ) -> Tuple: for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue UpperCAmelCase_ , UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : List[Any] = False UpperCAmelCase_ : Optional[Any] = True if model_class in get_values(_A ) or not model_class.supports_gradient_checkpointing: continue UpperCAmelCase_ : int = model_class(_A ) model.to(_A ) model.gradient_checkpointing_enable() model.train() UpperCAmelCase_ : int = self._prepare_for_class(_A , _A , return_labels=_A ) UpperCAmelCase_ : List[str] = model(**_A ).loss loss.backward() def A ( self : Optional[Any] ) -> Any: UpperCAmelCase_ , UpperCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : List[str] = _config_zero_init(_A ) for model_class in self.all_model_classes: UpperCAmelCase_ : int = model_class(config=_A ) # Skip the check for the backbone UpperCAmelCase_ : List[str] = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": UpperCAmelCase_ : Union[str, Any] = [F"{name}.{key}" for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F"Parameter {name} of model {model_class} seems not properly initialized" , ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def A ( self : Tuple ) -> Optional[Any]: pass @slow def A ( self : Any ) -> int: for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: UpperCAmelCase_ : Any = DPTModel.from_pretrained(_A ) self.assertIsNotNone(_A ) def A ( self : Union[str, Any] ) -> str: # We do this test only for DPTForDepthEstimation since it is the only model that uses readout_type UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : Optional[int] = '''add''' with self.assertRaises(_A ): UpperCAmelCase_ : Optional[Any] = DPTForDepthEstimation(_A ) def __UpperCAmelCase ( ) -> List[Any]: UpperCAmelCase_ : List[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision @slow class snake_case__ ( unittest.TestCase): def A ( self : Union[str, Any] ) -> List[Any]: UpperCAmelCase_ : List[Any] = DPTImageProcessor.from_pretrained('''Intel/dpt-hybrid-midas''' ) UpperCAmelCase_ : Any = DPTForDepthEstimation.from_pretrained('''Intel/dpt-hybrid-midas''' ).to(_A ) UpperCAmelCase_ : Tuple = prepare_img() UpperCAmelCase_ : Union[str, Any] = image_processor(images=_A , return_tensors='''pt''' ).to(_A ) # forward pass with torch.no_grad(): UpperCAmelCase_ : str = model(**_A ) UpperCAmelCase_ : List[Any] = outputs.predicted_depth # verify the predicted depth UpperCAmelCase_ : str = torch.Size((1, 3_84, 3_84) ) self.assertEqual(predicted_depth.shape , _A ) UpperCAmelCase_ : Tuple = torch.tensor( [[[5.6_437, 5.6_146, 5.6_511], [5.4_371, 5.5_649, 5.5_958], [5.5_215, 5.5_184, 5.5_293]]] ).to(_A ) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 1_00 , _A , atol=1e-4 ) )
541
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __lowercase : Any ={ """configuration_xlm_roberta""": [ """XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XLMRobertaConfig""", """XLMRobertaOnnxConfig""", ], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Optional[Any] =["""XLMRobertaTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Tuple =["""XLMRobertaTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Optional[Any] =[ """XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""", """XLMRobertaForCausalLM""", """XLMRobertaForMaskedLM""", """XLMRobertaForMultipleChoice""", """XLMRobertaForQuestionAnswering""", """XLMRobertaForSequenceClassification""", """XLMRobertaForTokenClassification""", """XLMRobertaModel""", """XLMRobertaPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : List[str] =[ """TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFXLMRobertaForCausalLM""", """TFXLMRobertaForMaskedLM""", """TFXLMRobertaForMultipleChoice""", """TFXLMRobertaForQuestionAnswering""", """TFXLMRobertaForSequenceClassification""", """TFXLMRobertaForTokenClassification""", """TFXLMRobertaModel""", """TFXLMRobertaPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : List[str] =[ """FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""", """FlaxXLMRobertaForMaskedLM""", """FlaxXLMRobertaForCausalLM""", """FlaxXLMRobertaForMultipleChoice""", """FlaxXLMRobertaForQuestionAnswering""", """FlaxXLMRobertaForSequenceClassification""", """FlaxXLMRobertaForTokenClassification""", """FlaxXLMRobertaModel""", """FlaxXLMRobertaPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaConfig, XLMRobertaOnnxConfig, ) try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta import XLMRobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta_fast import XLMRobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaForCausalLM, XLMRobertaForMaskedLM, XLMRobertaForMultipleChoice, XLMRobertaForQuestionAnswering, XLMRobertaForSequenceClassification, XLMRobertaForTokenClassification, XLMRobertaModel, XLMRobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm_roberta import ( TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMRobertaForCausalLM, TFXLMRobertaForMaskedLM, TFXLMRobertaForMultipleChoice, TFXLMRobertaForQuestionAnswering, TFXLMRobertaForSequenceClassification, TFXLMRobertaForTokenClassification, TFXLMRobertaModel, TFXLMRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xlm_roberta import ( FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxXLMRobertaForCausalLM, FlaxXLMRobertaForMaskedLM, FlaxXLMRobertaForMultipleChoice, FlaxXLMRobertaForQuestionAnswering, FlaxXLMRobertaForSequenceClassification, FlaxXLMRobertaForTokenClassification, FlaxXLMRobertaModel, FlaxXLMRobertaPreTrainedModel, ) else: import sys __lowercase : Optional[int] =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
550
import math_equivalence # From: git+https://github.com/hendrycks/math.git import datasets __lowercase : int ="""\ @article{hendrycksmath2021, title={Measuring Mathematical Problem Solving With the MATH Dataset}, author={Dan Hendrycks and Collin Burns and Saurav Kadavath and Akul Arora and Steven Basart and Eric Tang and Dawn Song and Jacob Steinhardt}, journal={arXiv preprint arXiv:2103.03874}, year={2021} } """ __lowercase : List[Any] ="""\ This metric is used to assess performance on the Mathematics Aptitude Test of Heuristics (MATH) dataset. It first canonicalizes the inputs (e.g., converting \"1/2\" to \"\\frac{1}{2}\") and then computes accuracy. """ __lowercase : str =R""" Calculates accuracy after canonicalizing inputs. Args: predictions: list of predictions to score. Each prediction is a string that contains natural language and LaTex. references: list of reference for each prediction. Each reference is a string that contains natural language and LaTex. Returns: accuracy: accuracy after canonicalizing inputs (e.g., converting \"1/2\" to \"\\frac{1}{2}\") Examples: >>> metric = datasets.load_metric(\"competition_math\") >>> results = metric.compute(references=[\"\\frac{1}{2}\"], predictions=[\"1/2\"]) >>> print(results) {'accuracy': 1.0} """ @datasets.utils.file_utils.add_end_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A ( datasets.Metric ): def lowerCAmelCase__ ( self: Any ) -> Optional[Any]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" ), "references": datasets.Value("string" ), } ) , homepage="https://github.com/hendrycks/math" , codebase_urls=["https://github.com/hendrycks/math"] , ) def lowerCAmelCase__ ( self: Any , _lowerCAmelCase: Tuple , _lowerCAmelCase: Union[str, Any] ) -> Dict: '''simple docstring''' UpperCAmelCase_ =0.0 for i, j in zip(_lowerCAmelCase , _lowerCAmelCase ): n_correct += 1.0 if math_equivalence.is_equiv(_lowerCAmelCase , _lowerCAmelCase ) else 0.0 UpperCAmelCase_ =n_correct / len(_lowerCAmelCase ) return { "accuracy": accuracy, }
550
1
def a ( a , a ) ->float: '''simple docstring''' if digit_amount > 0: return round(number - int(a ) , a ) return number - int(a ) if __name__ == "__main__": print(decimal_isolate(1.53, 0)) print(decimal_isolate(35.345, 1)) print(decimal_isolate(35.345, 2)) print(decimal_isolate(35.345, 3)) print(decimal_isolate(-14.789, 3)) print(decimal_isolate(0, 2)) print(decimal_isolate(-14.123, 1)) print(decimal_isolate(-14.123, 2)) print(decimal_isolate(-14.123, 3))
201
import os def a ( a = "matrix.txt" ) ->int: '''simple docstring''' with open(os.path.join(os.path.dirname(a ) , a ) ) as in_file: SCREAMING_SNAKE_CASE = in_file.read() SCREAMING_SNAKE_CASE = [[int(a ) for cell in row.split(''',''' )] for row in data.strip().splitlines()] SCREAMING_SNAKE_CASE = [[0 for cell in row] for row in grid] SCREAMING_SNAKE_CASE = len(grid[0] ) SCREAMING_SNAKE_CASE = [[0 for i in range(a )] for j in range(a )] SCREAMING_SNAKE_CASE = grid[0][0] for i in range(1 , a ): SCREAMING_SNAKE_CASE = grid[0][i] + dp[0][i - 1] for i in range(1 , a ): SCREAMING_SNAKE_CASE = grid[i][0] + dp[i - 1][0] for i in range(1 , a ): for j in range(1 , a ): SCREAMING_SNAKE_CASE = grid[i][j] + min(dp[i - 1][j] , dp[i][j - 1] ) return dp[-1][-1] if __name__ == "__main__": print(F'''{solution() = }''')
201
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging A = logging.get_logger(__name__) A = { 'google/vivit-b-16x2-kinetics400': ( 'https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json' ), # See all Vivit models at https://huggingface.co/models?filter=vivit } class __snake_case ( a__): _lowerCAmelCase = '''vivit''' def __init__( self, A=224, A=32, A=[2, 16, 16], A=3, A=768, A=12, A=12, A=3072, A="gelu_fast", A=0.0, A=0.0, A=0.02, A=1e-06, A=True, **A, ): """simple docstring""" lowerCamelCase : str = hidden_size lowerCamelCase : int = num_hidden_layers lowerCamelCase : int = num_attention_heads lowerCamelCase : Union[str, Any] = intermediate_size lowerCamelCase : Any = hidden_act lowerCamelCase : int = hidden_dropout_prob lowerCamelCase : List[str] = attention_probs_dropout_prob lowerCamelCase : Dict = initializer_range lowerCamelCase : List[Any] = layer_norm_eps lowerCamelCase : List[str] = image_size lowerCamelCase : Any = num_frames lowerCamelCase : Any = tubelet_size lowerCamelCase : Any = num_channels lowerCamelCase : List[Any] = qkv_bias super().__init__(**A )
449
'''simple docstring''' import importlib.metadata import operator import re import sys from typing import Optional from packaging import version A = { '<': operator.lt, '<=': operator.le, '==': operator.eq, '!=': operator.ne, '>=': operator.ge, '>': operator.gt, } def UpperCAmelCase ( UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Optional[int]): if got_ver is None or want_ver is None: raise ValueError( F'''Unable to compare versions for {requirement}: need={want_ver} found={got_ver}. This is unusual. Consider''' F''' reinstalling {pkg}.''') if not ops[op](version.parse(UpperCAmelCase__) , version.parse(UpperCAmelCase__)): raise ImportError( F'''{requirement} is required for a normal functioning of this module, but found {pkg}=={got_ver}.{hint}''') def UpperCAmelCase ( UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[str] = None): lowerCamelCase : List[Any] = F'''\n{hint}''' if hint is not None else '' # non-versioned check if re.match(R'^[\w_\-\d]+$' , UpperCAmelCase__): lowerCamelCase , lowerCamelCase , lowerCamelCase : Optional[Any] = requirement, None, None else: lowerCamelCase : Optional[Any] = re.findall(R'^([^!=<>\s]+)([\s!=<>]{1,2}.+)' , UpperCAmelCase__) if not match: raise ValueError( 'requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23, but' F''' got {requirement}''') lowerCamelCase , lowerCamelCase : Dict = match[0] lowerCamelCase : Dict = want_full.split(',') # there could be multiple requirements lowerCamelCase : Union[str, Any] = {} for w in want_range: lowerCamelCase : int = re.findall(R'^([\s!=<>]{1,2})(.+)' , UpperCAmelCase__) if not match: raise ValueError( 'requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23,' F''' but got {requirement}''') lowerCamelCase , lowerCamelCase : List[Any] = match[0] lowerCamelCase : Optional[int] = want_ver if op not in ops: raise ValueError(F'''{requirement}: need one of {list(ops.keys())}, but got {op}''') # special case if pkg == "python": lowerCamelCase : Optional[int] = '.'.join([str(UpperCAmelCase__) for x in sys.version_info[:3]]) for op, want_ver in wanted.items(): _compare_versions(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__) return # check if any version is installed try: lowerCamelCase : Any = importlib.metadata.version(UpperCAmelCase__) except importlib.metadata.PackageNotFoundError: raise importlib.metadata.PackageNotFoundError( F'''The \'{requirement}\' distribution was not found and is required by this application. {hint}''') # check that the right version is installed if version number or a range was provided if want_ver is not None: for op, want_ver in wanted.items(): _compare_versions(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__) def UpperCAmelCase ( UpperCAmelCase__ : str): lowerCamelCase : List[str] = 'Try: pip install transformers -U or pip install -e \'.[dev]\' if you\'re working with git main' return require_version(UpperCAmelCase__ , UpperCAmelCase__)
449
1
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: a : Any = None a : List[str] = logging.get_logger(__name__) a : Union[str, Any] = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} a : int = { "vocab_file": { "facebook/mbart-large-en-ro": ( "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model" ), "facebook/mbart-large-cc25": ( "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model" ), }, "tokenizer_file": { "facebook/mbart-large-en-ro": "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json", "facebook/mbart-large-cc25": "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json", }, } a : Optional[Any] = { "facebook/mbart-large-en-ro": 10_24, "facebook/mbart-large-cc25": 10_24, } # fmt: off a : Optional[Any] = ["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN"] class UpperCamelCase__ ( lowercase__ ): """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE__ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ : List[Any] = ["input_ids", "attention_mask"] SCREAMING_SNAKE_CASE__ : Optional[int] = MBartTokenizer SCREAMING_SNAKE_CASE__ : List[int] = [] SCREAMING_SNAKE_CASE__ : List[int] = [] def __init__( self , snake_case=None , snake_case=None , snake_case="<s>" , snake_case="</s>" , snake_case="</s>" , snake_case="<s>" , snake_case="<unk>" , snake_case="<pad>" , snake_case="<mask>" , snake_case=None , snake_case=None , snake_case=None , **snake_case , ): '''simple docstring''' UpperCAmelCase : List[Any] = AddedToken(snake_case , lstrip=snake_case , rstrip=snake_case ) if isinstance(snake_case , snake_case ) else mask_token super().__init__( vocab_file=snake_case , tokenizer_file=snake_case , bos_token=snake_case , eos_token=snake_case , sep_token=snake_case , cls_token=snake_case , unk_token=snake_case , pad_token=snake_case , mask_token=snake_case , src_lang=snake_case , tgt_lang=snake_case , additional_special_tokens=snake_case , **snake_case , ) UpperCAmelCase : List[Any] = vocab_file UpperCAmelCase : int = False if not self.vocab_file else True UpperCAmelCase : Optional[Any] = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({"additional_special_tokens": _additional_special_tokens} ) UpperCAmelCase : List[str] = { lang_code: self.convert_tokens_to_ids(snake_case ) for lang_code in FAIRSEQ_LANGUAGE_CODES } UpperCAmelCase : Dict = src_lang if src_lang is not None else "en_XX" UpperCAmelCase : List[str] = self.convert_tokens_to_ids(self._src_lang ) UpperCAmelCase : Optional[int] = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def A_ ( self ): '''simple docstring''' return self._src_lang @src_lang.setter def A_ ( self , snake_case ): '''simple docstring''' UpperCAmelCase : Dict = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def A_ ( self , snake_case , snake_case = None ): '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def A_ ( self , snake_case , snake_case = None ): '''simple docstring''' UpperCAmelCase : str = [self.sep_token_id] UpperCAmelCase : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def A_ ( self , snake_case , snake_case , snake_case , snake_case , **snake_case ): '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model" ) UpperCAmelCase : int = src_lang UpperCAmelCase : List[str] = self(snake_case , add_special_tokens=snake_case , return_tensors=snake_case , **snake_case ) UpperCAmelCase : List[str] = self.convert_tokens_to_ids(snake_case ) UpperCAmelCase : List[Any] = tgt_lang_id return inputs def A_ ( self , snake_case , snake_case = "en_XX" , snake_case = None , snake_case = "ro_RO" , **snake_case , ): '''simple docstring''' UpperCAmelCase : List[Any] = src_lang UpperCAmelCase : Dict = tgt_lang return super().prepare_seqaseq_batch(snake_case , snake_case , **snake_case ) def A_ ( self ): '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def A_ ( self ): '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def A_ ( self , snake_case ): '''simple docstring''' UpperCAmelCase : List[str] = self.convert_tokens_to_ids(snake_case ) UpperCAmelCase : Optional[int] = [] UpperCAmelCase : str = [self.eos_token_id, self.cur_lang_code] UpperCAmelCase : Dict = self.convert_ids_to_tokens(self.prefix_tokens ) UpperCAmelCase : Any = self.convert_ids_to_tokens(self.suffix_tokens ) UpperCAmelCase : str = processors.TemplateProcessing( single=prefix_tokens_str + ["$A"] + suffix_tokens_str , pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def A_ ( self , snake_case ): '''simple docstring''' UpperCAmelCase : Tuple = self.convert_tokens_to_ids(snake_case ) UpperCAmelCase : str = [] UpperCAmelCase : str = [self.eos_token_id, self.cur_lang_code] UpperCAmelCase : Union[str, Any] = self.convert_ids_to_tokens(self.prefix_tokens ) UpperCAmelCase : Any = self.convert_ids_to_tokens(self.suffix_tokens ) UpperCAmelCase : Optional[int] = processors.TemplateProcessing( single=prefix_tokens_str + ["$A"] + suffix_tokens_str , pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def A_ ( self , snake_case , snake_case = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(snake_case ): logger.error(f"Vocabulary path ({save_directory}) should be a directory." ) return UpperCAmelCase : Optional[Any] = os.path.join( snake_case , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case ): copyfile(self.vocab_file , snake_case ) return (out_vocab_file,)
679
'''simple docstring''' from __future__ import annotations class UpperCamelCase__ : """simple docstring""" def __init__( self , snake_case ): '''simple docstring''' UpperCAmelCase : str = order # a_{0} ... a_{k} UpperCAmelCase : Optional[int] = [1.0] + [0.0] * order # b_{0} ... b_{k} UpperCAmelCase : List[Any] = [1.0] + [0.0] * order # x[n-1] ... x[n-k] UpperCAmelCase : Dict = [0.0] * self.order # y[n-1] ... y[n-k] UpperCAmelCase : Optional[Any] = [0.0] * self.order def A_ ( self , snake_case , snake_case ): '''simple docstring''' if len(snake_case ) < self.order: UpperCAmelCase : Dict = [1.0, *a_coeffs] if len(snake_case ) != self.order + 1: UpperCAmelCase : Optional[Any] = ( f"Expected a_coeffs to have {self.order + 1} elements " f"for {self.order}-order filter, got {len(snake_case )}" ) raise ValueError(snake_case ) if len(snake_case ) != self.order + 1: UpperCAmelCase : Optional[Any] = ( f"Expected b_coeffs to have {self.order + 1} elements " f"for {self.order}-order filter, got {len(snake_case )}" ) raise ValueError(snake_case ) UpperCAmelCase : Optional[int] = a_coeffs UpperCAmelCase : Optional[Any] = b_coeffs def A_ ( self , snake_case ): '''simple docstring''' UpperCAmelCase : Optional[Any] = 0.0 # Start at index 1 and do index 0 at the end. for i in range(1 , self.order + 1 ): result += ( self.b_coeffs[i] * self.input_history[i - 1] - self.a_coeffs[i] * self.output_history[i - 1] ) UpperCAmelCase : Optional[int] = (result + self.b_coeffs[0] * sample) / self.a_coeffs[0] UpperCAmelCase : List[str] = self.input_history[:-1] UpperCAmelCase : List[Any] = self.output_history[:-1] UpperCAmelCase : str = sample UpperCAmelCase : str = result return result
679
1
from math import pi, sqrt def _UpperCAmelCase ( UpperCAmelCase : float ): """simple docstring""" if num <= 0: raise ValueError("""math domain error""" ) if num > 1_7_1.5: raise OverflowError("""math range error""" ) elif num - int(snake_case__ ) not in (0, 0.5): raise NotImplementedError("""num must be an integer or a half-integer""" ) elif num == 0.5: return sqrt(snake_case__ ) else: return 1.0 if num == 1 else (num - 1) * gamma(num - 1 ) def _UpperCAmelCase ( ): """simple docstring""" assert gamma(0.5 ) == sqrt(snake_case__ ) assert gamma(1 ) == 1.0 assert gamma(2 ) == 1.0 if __name__ == "__main__": from doctest import testmod testmod() __UpperCamelCase : int = 1.0 while num: __UpperCamelCase : List[Any] = float(input('Gamma of: ')) print(F'''gamma({num}) = {gamma(num)}''') print('\nEnter 0 to exit...')
700
import argparse import fairseq import torch from torch import nn from transformers import ( MBartaaTokenizer, MBartConfig, MBartForCausalLM, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() __UpperCamelCase : Optional[Any] = logging.get_logger(__name__) __UpperCamelCase : List[str] = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', } __UpperCamelCase : Dict = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def _UpperCAmelCase ( UpperCAmelCase : Optional[int] , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Any ): """simple docstring""" for attribute in key.split(""".""" ): __lowerCamelCase : Any = getattr(UpperCAmelCase , UpperCAmelCase ) if weight_type is not None: __lowerCamelCase : List[Any] = getattr(UpperCAmelCase , UpperCAmelCase ).shape else: __lowerCamelCase : Optional[int] = hf_pointer.shape assert hf_shape == value.shape, ( f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": __lowerCamelCase : List[Any] = value elif weight_type == "weight_g": __lowerCamelCase : Tuple = value elif weight_type == "weight_v": __lowerCamelCase : List[Any] = value elif weight_type == "bias": __lowerCamelCase : Optional[int] = value else: __lowerCamelCase : Dict = value logger.info(f"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def _UpperCAmelCase ( UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[Any] ): """simple docstring""" __lowerCamelCase : Tuple = [] __lowerCamelCase : Union[str, Any] = fairseq_model.state_dict() __lowerCamelCase : Optional[Any] = hf_model.feature_extractor __lowerCamelCase : List[str] = hf_model.adapter for name, value in fairseq_dict.items(): __lowerCamelCase : List[str] = False if "conv_layers" in name: load_conv_layer( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , hf_model.config.feat_extract_norm == """group""" , ) __lowerCamelCase : Any = True elif any(x in name for x in ["""adaptor""", """w2v_encoder.proj.""", """w2v_proj_ln."""] ): load_adapter(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) __lowerCamelCase : Dict = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: __lowerCamelCase : Union[str, Any] = True if "*" in mapped_key: __lowerCamelCase : int = name.split(UpperCAmelCase )[0].split(""".""" )[-2] __lowerCamelCase : Dict = mapped_key.replace("""*""" , UpperCAmelCase ) if "weight_g" in name: __lowerCamelCase : int = """weight_g""" elif "weight_v" in name: __lowerCamelCase : List[str] = """weight_v""" elif "bias" in name: __lowerCamelCase : str = """bias""" elif "weight" in name: __lowerCamelCase : List[str] = """weight""" else: __lowerCamelCase : int = None set_recursively(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) continue if not is_used: unused_weights.append(UpperCAmelCase ) logger.warning(f"""Unused weights: {unused_weights}""" ) def _UpperCAmelCase ( UpperCAmelCase : Dict , UpperCAmelCase : Optional[int] , UpperCAmelCase : Any , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Union[str, Any] ): """simple docstring""" __lowerCamelCase : List[str] = full_name.split("""conv_layers.""" )[-1] __lowerCamelCase : Tuple = name.split(""".""" ) __lowerCamelCase : Tuple = int(items[0] ) __lowerCamelCase : str = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) __lowerCamelCase : Dict = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) __lowerCamelCase : List[str] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) __lowerCamelCase : Any = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) __lowerCamelCase : str = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(UpperCAmelCase ) def _UpperCAmelCase ( UpperCAmelCase : str , UpperCAmelCase : int , UpperCAmelCase : List[Any] , UpperCAmelCase : List[Any] ): """simple docstring""" __lowerCamelCase : Union[str, Any] = full_name.split("""adaptor.""" )[-1] __lowerCamelCase : Any = name.split(""".""" ) if items[1].isdigit(): __lowerCamelCase : Dict = int(items[1] ) else: __lowerCamelCase : List[str] = None if "adaptor" not in full_name: if "proj_ln" in full_name: # has to be layer norm if "bias" in name: assert ( value.shape == adapter.proj_layer_norm.bias.data.shape ), f"""{full_name} has size {value.shape}, but {adapter.proj_layer_norm.bias.data.shape} was found.""" __lowerCamelCase : str = value logger.info(f"""Adapter proj layer norm bias was initialized from {full_name}.""" ) if "weight" in name: assert ( value.shape == adapter.proj_layer_norm.weight.data.shape ), f"""{full_name} has size {value.shape}, but {adapter.proj_layer_norm.weight.data.shape} was found.""" __lowerCamelCase : str = value else: # has to be projection layer if "bias" in name: assert ( value.shape == adapter.proj.bias.data.shape ), f"""{full_name} has size {value.shape}, but {adapter.proj.bias.data.shape} was found.""" __lowerCamelCase : Optional[int] = value logger.info(f"""Adapter proj layer bias was initialized from {full_name}.""" ) if "weight" in name: assert ( value.shape == adapter.proj.weight.data.shape ), f"""{full_name} has size {value.shape}, but {adapter.proj.weight.data.shape} was found.""" __lowerCamelCase : List[str] = value logger.info(f"""Adapter proj layer weight was initialized from {full_name}.""" ) elif isinstance(UpperCAmelCase , UpperCAmelCase ): if "bias" in name: assert ( value.shape == adapter.layers[layer_id].conv.bias.data.shape ), f"""{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.bias.data.shape} was found.""" __lowerCamelCase : int = value logger.info(f"""Adapter layer {layer_id} bias was initialized from {full_name}.""" ) elif "weight" in name: assert ( value.shape == adapter.layers[layer_id].conv.weight.data.shape ), f"""{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.weight.data.shape} was found.""" __lowerCamelCase : Tuple = value logger.info(f"""Adapter layer {layer_id} bias was initialized from {full_name}.""" ) else: unused_weights.append(UpperCAmelCase ) def _UpperCAmelCase ( UpperCAmelCase : List[Any] ): """simple docstring""" __lowerCamelCase , __lowerCamelCase : Tuple = emb.weight.shape __lowerCamelCase : Any = nn.Linear(UpperCAmelCase , UpperCAmelCase , bias=UpperCAmelCase ) __lowerCamelCase : List[Any] = emb.weight.data return lin_layer @torch.no_grad() def _UpperCAmelCase ( UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] , UpperCAmelCase : str , UpperCAmelCase : int , UpperCAmelCase : Dict , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : Optional[Any] , ): """simple docstring""" __lowerCamelCase : int = WavaVecaConfig.from_pretrained( UpperCAmelCase , add_adapter=UpperCAmelCase , adapter_stride=UpperCAmelCase , adapter_kernel_size=UpperCAmelCase , use_auth_token=UpperCAmelCase , output_hidden_size=UpperCAmelCase , ) __lowerCamelCase : Optional[int] = MBartConfig.from_pretrained(UpperCAmelCase ) # load model __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Dict = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={ """config_yaml""": config_yaml_path, """data""": """/""".join(dict_path.split("""/""" )[:-1] ), """w2v_path""": checkpoint_path, """load_pretrained_decoder_from""": None, } , ) __lowerCamelCase : Union[str, Any] = model[0].eval() # load feature extractor __lowerCamelCase : Any = WavaVecaFeatureExtractor.from_pretrained(UpperCAmelCase , use_auth_token=UpperCAmelCase ) # set weights for wav2vec2 encoder __lowerCamelCase : Tuple = WavaVecaModel(UpperCAmelCase ) recursively_load_weights_wavaveca(model.encoder , UpperCAmelCase ) # load decoder weights __lowerCamelCase : Dict = MBartForCausalLM(UpperCAmelCase ) __lowerCamelCase , __lowerCamelCase : int = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=UpperCAmelCase ) logger.warning(f"""The following keys are missing when loading the decoder weights: {missing_keys}""" ) logger.warning(f"""The following keys are unexpected when loading the decoder weights: {unexpected_keys}""" ) __lowerCamelCase : List[Any] = SpeechEncoderDecoderModel(encoder=UpperCAmelCase , decoder=UpperCAmelCase ) __lowerCamelCase : Union[str, Any] = False __lowerCamelCase : List[str] = MBartaaTokenizer(UpperCAmelCase ) tokenizer.save_pretrained(UpperCAmelCase ) __lowerCamelCase : int = hf_wavavec.config.to_dict() __lowerCamelCase : str = tokenizer.pad_token_id __lowerCamelCase : Optional[Any] = tokenizer.bos_token_id __lowerCamelCase : Dict = tokenizer.eos_token_id __lowerCamelCase : Tuple = """mbart50""" __lowerCamelCase : List[str] = """wav2vec2""" __lowerCamelCase : List[str] = tokenizer.eos_token_id __lowerCamelCase : Optional[int] = 250_004 __lowerCamelCase : Dict = tokenizer.eos_token_id __lowerCamelCase : Optional[Any] = SpeechEncoderDecoderConfig.from_dict(UpperCAmelCase ) hf_wavavec.save_pretrained(UpperCAmelCase ) feature_extractor.save_pretrained(UpperCAmelCase ) if __name__ == "__main__": __UpperCamelCase : Dict = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_yaml_path', default=None, type=str, help='Path to yaml file of fine-tuned model') parser.add_argument( '--encoder_config_path', default='facebook/wav2vec2-xls-r-1b', type=str, help='Path to hf encoder wav2vec2 checkpoint config', ) parser.add_argument( '--decoder_config_path', default='facebook/mbart-large-50-one-to-many-mmt', type=str, help='Path to hf decoder checkpoint config', ) parser.add_argument('--add_adapter', default=True, type=bool, help='whethere to add model adapter layers') parser.add_argument('--adapter_stride', default=2, type=int, help='stride of adapter layers') parser.add_argument('--adapter_kernel_size', default=3, type=int, help='kernel size of adapter layers') parser.add_argument('--encoder_output_dim', default=1024, type=int, help='encoder output dim') parser.add_argument('--start_token_id', default=250004, type=int, help='`decoder_start_token_id` of model config') __UpperCamelCase : int = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, args.config_yaml_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, add_adapter=args.add_adapter, adapter_kernel_size=args.adapter_kernel_size, adapter_stride=args.adapter_stride, decoder_start_token_id=args.start_token_id, encoder_output_dim=args.encoder_output_dim, )
458
0
"""simple docstring""" from queue import PriorityQueue from typing import Any import numpy as np def _snake_case ( snake_case__ : dict , snake_case__ : str , snake_case__ : set , snake_case__ : set , snake_case__ : dict , snake_case__ : dict , snake_case__ : PriorityQueue , snake_case__ : dict , snake_case__ : float | int , ): for nxt, d in graph[v]: if nxt in visited_forward: continue A = cst_fwd.get(snake_case__ , np.inf ) A = cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) A = new_cost_f A = v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: A = cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def _snake_case ( snake_case__ : str , snake_case__ : str , snake_case__ : dict , snake_case__ : dict ): A = -1 A = set() A = set() A = {source: 0} A = {destination: 0} A = {source: None} A = {destination: None} A = PriorityQueue() A = PriorityQueue() A = np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): A , A = queue_forward.get() visited_forward.add(snake_case__ ) A , A = queue_backward.get() visited_backward.add(snake_case__ ) A = pass_and_relaxation( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ) A = pass_and_relaxation( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: A = shortest_distance return shortest_path_distance _lowercase = { '''B''': [['''C''', 1]], '''C''': [['''D''', 1]], '''D''': [['''F''', 1]], '''E''': [['''B''', 1], ['''G''', 2]], '''F''': [], '''G''': [['''F''', 1]], } _lowercase = { '''B''': [['''E''', 1]], '''C''': [['''B''', 1]], '''D''': [['''C''', 1]], '''F''': [['''D''', 1], ['''G''', 1]], '''E''': [[None, np.inf]], '''G''': [['''E''', 2]], } if __name__ == "__main__": import doctest doctest.testmod()
91
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input _lowercase = '''Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine''' def _snake_case ( ): A = _ask_options( 'In which compute environment are you running?' , ['This machine', 'AWS (Amazon SageMaker)'] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: A = get_sagemaker_input() else: A = get_cluster_input() return config def _snake_case ( snake_case__ : Any=None ): if subparsers is not None: A = subparsers.add_parser('config' , description=snake_case__ ) else: A = argparse.ArgumentParser('Accelerate config command' , description=snake_case__ ) parser.add_argument( '--config_file' , default=snake_case__ , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , ) if subparsers is not None: parser.set_defaults(func=snake_case__ ) return parser def _snake_case ( snake_case__ : Tuple ): A = get_user_input() if args.config_file is not None: A = args.config_file else: if not os.path.isdir(snake_case__ ): os.makedirs(snake_case__ ) A = default_yaml_config_file if config_file.endswith('.json' ): config.to_json_file(snake_case__ ) else: config.to_yaml_file(snake_case__ ) print(F'accelerate configuration saved at {config_file}' ) def _snake_case ( ): A = config_command_parser() A = parser.parse_args() config_command(snake_case__ ) if __name__ == "__main__": main()
91
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _A : Optional[Any] = { '''configuration_luke''': ['''LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LukeConfig'''], '''tokenization_luke''': ['''LukeTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : int = [ '''LUKE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LukeForEntityClassification''', '''LukeForEntityPairClassification''', '''LukeForEntitySpanClassification''', '''LukeForMultipleChoice''', '''LukeForQuestionAnswering''', '''LukeForSequenceClassification''', '''LukeForTokenClassification''', '''LukeForMaskedLM''', '''LukeModel''', '''LukePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_luke import LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP, LukeConfig from .tokenization_luke import LukeTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_luke import ( LUKE_PRETRAINED_MODEL_ARCHIVE_LIST, LukeForEntityClassification, LukeForEntityPairClassification, LukeForEntitySpanClassification, LukeForMaskedLM, LukeForMultipleChoice, LukeForQuestionAnswering, LukeForSequenceClassification, LukeForTokenClassification, LukeModel, LukePreTrainedModel, ) else: import sys _A : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
189
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) _A : List[Any] = { '''configuration_convbert''': ['''CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ConvBertConfig''', '''ConvBertOnnxConfig'''], '''tokenization_convbert''': ['''ConvBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : int = ['''ConvBertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : List[Any] = [ '''CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ConvBertForMaskedLM''', '''ConvBertForMultipleChoice''', '''ConvBertForQuestionAnswering''', '''ConvBertForSequenceClassification''', '''ConvBertForTokenClassification''', '''ConvBertLayer''', '''ConvBertModel''', '''ConvBertPreTrainedModel''', '''load_tf_weights_in_convbert''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : List[Any] = [ '''TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFConvBertForMaskedLM''', '''TFConvBertForMultipleChoice''', '''TFConvBertForQuestionAnswering''', '''TFConvBertForSequenceClassification''', '''TFConvBertForTokenClassification''', '''TFConvBertLayer''', '''TFConvBertModel''', '''TFConvBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys _A : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
189
1
import numpy as np def a__ ( A__, A__ ): return np.where(vector > 0, A__, (alpha * (np.exp(A__ ) - 1)) ) if __name__ == "__main__": import doctest doctest.testmod()
101
from manim import * class a__ ( __snake_case ): def __SCREAMING_SNAKE_CASE ( self ) -> Dict: __a = Rectangle(height=0.5 , width=0.5 ) __a = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) __a = Rectangle(height=0.25 , width=0.25 ) __a = [mem.copy() for i in range(6 )] __a = [mem.copy() for i in range(6 )] __a = VGroup(*UpperCAmelCase ).arrange(UpperCAmelCase , buff=0 ) __a = VGroup(*UpperCAmelCase ).arrange(UpperCAmelCase , buff=0 ) __a = VGroup(UpperCAmelCase , UpperCAmelCase ).arrange(UpperCAmelCase , buff=0 ) __a = Text('CPU' , font_size=2_4 ) __a = Group(UpperCAmelCase , UpperCAmelCase ).arrange(UpperCAmelCase , buff=0.5 , aligned_edge=UpperCAmelCase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(UpperCAmelCase ) __a = [mem.copy() for i in range(4 )] __a = VGroup(*UpperCAmelCase ).arrange(UpperCAmelCase , buff=0 ) __a = Text('GPU' , font_size=2_4 ) __a = Group(UpperCAmelCase , UpperCAmelCase ).arrange(UpperCAmelCase , buff=0.5 , aligned_edge=UpperCAmelCase ) gpu.move_to([-1, -1, 0] ) self.add(UpperCAmelCase ) __a = [mem.copy() for i in range(6 )] __a = VGroup(*UpperCAmelCase ).arrange(UpperCAmelCase , buff=0 ) __a = Text('Model' , font_size=2_4 ) __a = Group(UpperCAmelCase , UpperCAmelCase ).arrange(UpperCAmelCase , buff=0.5 , aligned_edge=UpperCAmelCase ) model.move_to([3, -1.0, 0] ) self.add(UpperCAmelCase ) __a = [] __a = [] for i, rect in enumerate(UpperCAmelCase ): __a = fill.copy().set_fill(UpperCAmelCase , opacity=0.8 ) target.move_to(UpperCAmelCase ) model_arr.append(UpperCAmelCase ) __a = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(UpperCAmelCase , opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(UpperCAmelCase ) self.add(*UpperCAmelCase , *UpperCAmelCase ) __a = [meta_mem.copy() for i in range(6 )] __a = [meta_mem.copy() for i in range(6 )] __a = VGroup(*UpperCAmelCase ).arrange(UpperCAmelCase , buff=0 ) __a = VGroup(*UpperCAmelCase ).arrange(UpperCAmelCase , buff=0 ) __a = VGroup(UpperCAmelCase , UpperCAmelCase ).arrange(UpperCAmelCase , buff=0 ) __a = Text('Disk' , font_size=2_4 ) __a = Group(UpperCAmelCase , UpperCAmelCase ).arrange(UpperCAmelCase , buff=0.5 , aligned_edge=UpperCAmelCase ) disk.move_to([-4, -1.25, 0] ) self.add(UpperCAmelCase , UpperCAmelCase ) __a = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) __a = MarkupText( f'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=1_8 , ) key_text.move_to([-5, 2.4, 0] ) self.add(UpperCAmelCase , UpperCAmelCase ) __a = MarkupText( f'''<span fgcolor=\'{BLUE}\'>●</span> Checkpoint''' , font_size=1_8 , ) blue_text.next_to(UpperCAmelCase , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(UpperCAmelCase ) __a = MarkupText( f'''Now watch as an input is passed through the model\nand how the memory is utilized and handled.''' , font_size=2_4 , ) step_a.move_to([2, 2, 0] ) self.play(Write(UpperCAmelCase ) ) __a = Square(0.3 ) input.set_fill(UpperCAmelCase , opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] , UpperCAmelCase , buff=0.5 ) self.play(Write(UpperCAmelCase ) ) input.generate_target() input.target.next_to(model_arr[0] , direction=UpperCAmelCase , buff=0.02 ) self.play(MoveToTarget(UpperCAmelCase ) ) self.play(FadeOut(UpperCAmelCase ) ) __a = Arrow(start=UpperCAmelCase , end=UpperCAmelCase , color=UpperCAmelCase , buff=0.5 ) a.next_to(model_arr[0].get_left() , UpperCAmelCase , buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) __a = MarkupText( f'''As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.''' , font_size=2_4 , ) step_a.move_to([2, 2, 0] ) self.play(Write(UpperCAmelCase , run_time=3 ) ) __a = {'run_time': 1, 'fade_in': True, 'fade_out': True, 'buff': 0.02} self.play( Write(UpperCAmelCase ) , Circumscribe(model_arr[0] , color=UpperCAmelCase , **UpperCAmelCase ) , Circumscribe(model_cpu_arr[0] , color=UpperCAmelCase , **UpperCAmelCase ) , Circumscribe(gpu_rect[0] , color=UpperCAmelCase , **UpperCAmelCase ) , ) self.play(MoveToTarget(model_cpu_arr[0] ) ) __a = a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.02 , UpperCAmelCase , buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.02 ) __a = AnimationGroup( FadeOut(UpperCAmelCase , run_time=0.5 ) , MoveToTarget(UpperCAmelCase , run_time=0.5 ) , FadeIn(UpperCAmelCase , run_time=0.5 ) , lag_ratio=0.2 ) self.play(UpperCAmelCase ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: __a = 0.7 self.play( Circumscribe(model_arr[i] , **UpperCAmelCase ) , Circumscribe(cpu_left_col_base[i] , **UpperCAmelCase ) , Circumscribe(cpu_left_col_base[i + 1] , color=UpperCAmelCase , **UpperCAmelCase ) , Circumscribe(gpu_rect[0] , color=UpperCAmelCase , **UpperCAmelCase ) , Circumscribe(model_arr[i + 1] , color=UpperCAmelCase , **UpperCAmelCase ) , ) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , ) else: self.play( MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , ) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.02 , buff=0.2 ) self.play( Circumscribe(model_arr[-1] , color=UpperCAmelCase , **UpperCAmelCase ) , Circumscribe(cpu_left_col_base[-1] , color=UpperCAmelCase , **UpperCAmelCase ) , Circumscribe(gpu_rect[0] , color=UpperCAmelCase , **UpperCAmelCase ) , ) self.play(MoveToTarget(model_cpu_arr[i] ) ) __a = a_c __a = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] , RIGHT + 0.02 , buff=0.5 ) self.play( FadeOut(UpperCAmelCase ) , FadeOut(UpperCAmelCase , run_time=0.5 ) , ) __a = MarkupText(f'''Inference on a model too large for GPU memory\nis successfully completed.''' , font_size=2_4 ) step_a.move_to([2, 2, 0] ) self.play(Write(UpperCAmelCase , run_time=3 ) , MoveToTarget(UpperCAmelCase ) ) self.wait()
559
0
from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def _lowerCAmelCase (_lowerCAmelCase): UpperCamelCase_ = int(number**0.5) return number == sq * sq def _lowerCAmelCase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase): UpperCamelCase_ = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den UpperCamelCase_ = x_den * y_den * z_den UpperCamelCase_ = gcd(_lowerCAmelCase , _lowerCAmelCase) top //= hcf bottom //= hcf return top, bottom def _lowerCAmelCase (_lowerCAmelCase = 35): UpperCamelCase_ = set() UpperCamelCase_ = 42 UpperCamelCase_ = Fraction(0) UpperCamelCase_ = 42 for x_num in range(1 , order + 1): for x_den in range(x_num + 1 , order + 1): for y_num in range(1 , order + 1): for y_den in range(y_num + 1 , order + 1): # n=1 UpperCamelCase_ = x_num * y_den + x_den * y_num UpperCamelCase_ = x_den * y_den UpperCamelCase_ = gcd(_lowerCAmelCase , _lowerCAmelCase) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: UpperCamelCase_ = add_three( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase) unique_s.add(_lowerCAmelCase) # n=2 UpperCamelCase_ = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) UpperCamelCase_ = x_den * x_den * y_den * y_den if is_sq(_lowerCAmelCase) and is_sq(_lowerCAmelCase): UpperCamelCase_ = int(sqrt(_lowerCAmelCase)) UpperCamelCase_ = int(sqrt(_lowerCAmelCase)) UpperCamelCase_ = gcd(_lowerCAmelCase , _lowerCAmelCase) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: UpperCamelCase_ = add_three( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase) unique_s.add(_lowerCAmelCase) # n=-1 UpperCamelCase_ = x_num * y_num UpperCamelCase_ = x_den * y_num + x_num * y_den UpperCamelCase_ = gcd(_lowerCAmelCase , _lowerCAmelCase) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: UpperCamelCase_ = add_three( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase) unique_s.add(_lowerCAmelCase) # n=2 UpperCamelCase_ = x_num * x_num * y_num * y_num UpperCamelCase_ = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(_lowerCAmelCase) and is_sq(_lowerCAmelCase): UpperCamelCase_ = int(sqrt(_lowerCAmelCase)) UpperCamelCase_ = int(sqrt(_lowerCAmelCase)) UpperCamelCase_ = gcd(_lowerCAmelCase , _lowerCAmelCase) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: UpperCamelCase_ = add_three( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase) unique_s.add(_lowerCAmelCase) for num, den in unique_s: total += Fraction(_lowerCAmelCase , _lowerCAmelCase) return total.denominator + total.numerator if __name__ == "__main__": print(F"{solution() = }")
712
import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py UpperCAmelCase : Any ="""src/diffusers""" UpperCAmelCase : Union[str, Any] =""".""" # This is to make sure the diffusers module imported is the one in the repo. UpperCAmelCase : int =importlib.util.spec_from_file_location( """diffusers""", os.path.join(DIFFUSERS_PATH, """__init__.py"""), submodule_search_locations=[DIFFUSERS_PATH], ) UpperCAmelCase : Optional[Any] =spec.loader.load_module() def _lowerCAmelCase (_lowerCAmelCase , _lowerCAmelCase): return line.startswith(_lowerCAmelCase) or len(_lowerCAmelCase) <= 1 or re.search(r"^\s*\)(\s*->.*:|:)\s*$" , _lowerCAmelCase) is not None def _lowerCAmelCase (_lowerCAmelCase): UpperCamelCase_ = object_name.split(".") UpperCamelCase_ = 0 # First let's find the module where our object lives. UpperCamelCase_ = parts[i] while i < len(_lowerCAmelCase) and not os.path.isfile(os.path.join(_lowerCAmelCase , f"""{module}.py""")): i += 1 if i < len(_lowerCAmelCase): UpperCamelCase_ = os.path.join(_lowerCAmelCase , parts[i]) if i >= len(_lowerCAmelCase): raise ValueError(f"""`object_name` should begin with the name of a module of diffusers but got {object_name}.""") with open(os.path.join(_lowerCAmelCase , f"""{module}.py""") , "r" , encoding="utf-8" , newline="\n") as f: UpperCamelCase_ = f.readlines() # Now let's find the class / func in the code! UpperCamelCase_ = "" UpperCamelCase_ = 0 for name in parts[i + 1 :]: while ( line_index < len(_lowerCAmelCase) and re.search(rf"""^{indent}(class|def)\s+{name}(\(|\:)""" , lines[line_index]) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(_lowerCAmelCase): raise ValueError(f""" {object_name} does not match any function or class in {module}.""") # We found the beginning of the class / func, now let's find the end (when the indent diminishes). UpperCamelCase_ = line_index while line_index < len(_lowerCAmelCase) and _should_continue(lines[line_index] , _lowerCAmelCase): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1]) <= 1: line_index -= 1 UpperCamelCase_ = lines[start_index:line_index] return "".join(_lowerCAmelCase) UpperCAmelCase : Any =re.compile(r"""^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)""") UpperCAmelCase : Any =re.compile(r"""^\s*(\S+)->(\S+)(\s+.*|$)""") UpperCAmelCase : Dict =re.compile(r"""<FILL\s+[^>]*>""") def _lowerCAmelCase (_lowerCAmelCase): UpperCamelCase_ = code.split("\n") UpperCamelCase_ = 0 while idx < len(_lowerCAmelCase) and len(lines[idx]) == 0: idx += 1 if idx < len(_lowerCAmelCase): return re.search(r"^(\s*)\S" , lines[idx]).groups()[0] return "" def _lowerCAmelCase (_lowerCAmelCase): UpperCamelCase_ = len(get_indent(_lowerCAmelCase)) > 0 if has_indent: UpperCamelCase_ = f"""class Bla:\n{code}""" UpperCamelCase_ = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_19 , preview=_lowerCAmelCase) UpperCamelCase_ = black.format_str(_lowerCAmelCase , mode=_lowerCAmelCase) UpperCamelCase_ , UpperCamelCase_ = style_docstrings_in_code(_lowerCAmelCase) return result[len("class Bla:\n") :] if has_indent else result def _lowerCAmelCase (_lowerCAmelCase , _lowerCAmelCase=False): with open(_lowerCAmelCase , "r" , encoding="utf-8" , newline="\n") as f: UpperCamelCase_ = f.readlines() UpperCamelCase_ = [] UpperCamelCase_ = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(_lowerCAmelCase): UpperCamelCase_ = _re_copy_warning.search(lines[line_index]) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = search.groups() UpperCamelCase_ = find_code_in_diffusers(_lowerCAmelCase) UpperCamelCase_ = get_indent(_lowerCAmelCase) UpperCamelCase_ = line_index + 1 if indent == theoretical_indent else line_index + 2 UpperCamelCase_ = theoretical_indent UpperCamelCase_ = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. UpperCamelCase_ = True while line_index < len(_lowerCAmelCase) and should_continue: line_index += 1 if line_index >= len(_lowerCAmelCase): break UpperCamelCase_ = lines[line_index] UpperCamelCase_ = _should_continue(_lowerCAmelCase , _lowerCAmelCase) and re.search(f"""^{indent}# End copy""" , _lowerCAmelCase) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1]) <= 1: line_index -= 1 UpperCamelCase_ = lines[start_index:line_index] UpperCamelCase_ = "".join(_lowerCAmelCase) # Remove any nested `Copied from` comments to avoid circular copies UpperCamelCase_ = [line for line in theoretical_code.split("\n") if _re_copy_warning.search(_lowerCAmelCase) is None] UpperCamelCase_ = "\n".join(_lowerCAmelCase) # Before comparing, use the `replace_pattern` on the original code. if len(_lowerCAmelCase) > 0: UpperCamelCase_ = replace_pattern.replace("with" , "").split(",") UpperCamelCase_ = [_re_replace_pattern.search(_lowerCAmelCase) for p in patterns] for pattern in patterns: if pattern is None: continue UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = pattern.groups() UpperCamelCase_ = re.sub(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase) if option.strip() == "all-casing": UpperCamelCase_ = re.sub(obja.lower() , obja.lower() , _lowerCAmelCase) UpperCamelCase_ = re.sub(obja.upper() , obja.upper() , _lowerCAmelCase) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line UpperCamelCase_ = blackify(lines[start_index - 1] + theoretical_code) UpperCamelCase_ = theoretical_code[len(lines[start_index - 1]) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index]) if overwrite: UpperCamelCase_ = lines[:start_index] + [theoretical_code] + lines[line_index:] UpperCamelCase_ = start_index + 1 if overwrite and len(_lowerCAmelCase) > 0: # Warn the user a file has been modified. print(f"""Detected changes, rewriting {filename}.""") with open(_lowerCAmelCase , "w" , encoding="utf-8" , newline="\n") as f: f.writelines(_lowerCAmelCase) return diffs def _lowerCAmelCase (_lowerCAmelCase = False): UpperCamelCase_ = glob.glob(os.path.join(_lowerCAmelCase , "**/*.py") , recursive=_lowerCAmelCase) UpperCamelCase_ = [] for filename in all_files: UpperCamelCase_ = is_copy_consistent(_lowerCAmelCase , _lowerCAmelCase) diffs += [f"""- {filename}: copy does not match {d[0]} at line {d[1]}""" for d in new_diffs] if not overwrite and len(_lowerCAmelCase) > 0: UpperCamelCase_ = "\n".join(_lowerCAmelCase) raise Exception( "Found the following copy inconsistencies:\n" + diff + "\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them.") if __name__ == "__main__": UpperCAmelCase : List[str] =argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") UpperCAmelCase : Tuple =parser.parse_args() check_copies(args.fix_and_overwrite)
504
0
from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_tf_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_tf_available(): import tensorflow as tf __UpperCamelCase : List[str] = logging.get_logger(__name__) @dataclass class __SCREAMING_SNAKE_CASE( snake_case_ ): _UpperCAmelCase = [ """no_inference""", """no_cuda""", """no_tpu""", """no_speed""", """no_memory""", """no_env_print""", """no_multi_process""", ] def __init__( self: Optional[int] , **UpperCamelCase: Dict ) -> Dict: for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: snake_case__ = deprecated_arg[3:] snake_case__ = not kwargs.pop(UpperCamelCase ) logger.warning( F'''{deprecated_arg} is depreciated. Please use --no-{positive_arg} or''' F''' {positive_arg}={kwargs[positive_arg]}''' ) snake_case__ = kwargs.pop('tpu_name' , self.tpu_name ) snake_case__ = kwargs.pop('device_idx' , self.device_idx ) snake_case__ = kwargs.pop('eager_mode' , self.eager_mode ) snake_case__ = kwargs.pop('use_xla' , self.use_xla ) super().__init__(**UpperCamelCase ) _UpperCAmelCase = field( default=snake_case_ , metadata={"help": "Name of TPU"} , ) _UpperCAmelCase = field( default=0 , metadata={"help": "CPU / GPU device index. Defaults to 0."} , ) _UpperCAmelCase = field(default=snake_case_ , metadata={"help": "Benchmark models in eager model."} ) _UpperCAmelCase = field( default=snake_case_ , metadata={ "help": "Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`." } , ) @cached_property def lowerCAmelCase_ ( self: Optional[Any] ) -> Tuple["tf.distribute.cluster_resolver.TPUClusterResolver"]: requires_backends(self , ['tf'] ) snake_case__ = None if self.tpu: try: if self.tpu_name: snake_case__ = tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name ) else: snake_case__ = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: snake_case__ = None return tpu @cached_property def lowerCAmelCase_ ( self: int ) -> Tuple["tf.distribute.Strategy", "tf.distribute.cluster_resolver.TPUClusterResolver"]: requires_backends(self , ['tf'] ) if self.is_tpu: tf.config.experimental_connect_to_cluster(self._setup_tpu ) tf.tpu.experimental.initialize_tpu_system(self._setup_tpu ) snake_case__ = tf.distribute.TPUStrategy(self._setup_tpu ) else: # currently no multi gpu is allowed if self.is_gpu: # TODO: Currently only single GPU is supported tf.config.set_visible_devices(self.gpu_list[self.device_idx] , 'GPU' ) snake_case__ = tf.distribute.OneDeviceStrategy(device=F'''/gpu:{self.device_idx}''' ) else: tf.config.set_visible_devices([] , 'GPU' ) # disable GPU snake_case__ = tf.distribute.OneDeviceStrategy(device=F'''/cpu:{self.device_idx}''' ) return strategy @property def lowerCAmelCase_ ( self: Tuple ) -> bool: requires_backends(self , ['tf'] ) return self._setup_tpu is not None @property def lowerCAmelCase_ ( self: Union[str, Any] ) -> "tf.distribute.Strategy": requires_backends(self , ['tf'] ) return self._setup_strategy @property def lowerCAmelCase_ ( self: Optional[Any] ) -> int: requires_backends(self , ['tf'] ) return tf.config.list_physical_devices('GPU' ) @property def lowerCAmelCase_ ( self: int ) -> int: requires_backends(self , ['tf'] ) if self.cuda: return len(self.gpu_list ) return 0 @property def lowerCAmelCase_ ( self: Dict ) -> bool: return self.n_gpu > 0
328
from dataclasses import dataclass from typing import Dict, Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .attention_processor import AttentionProcessor, AttnProcessor from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, DiagonalGaussianDistribution, Encoder @dataclass class UpperCAmelCase( snake_case_ ): """simple docstring""" a : "DiagonalGaussianDistribution" class UpperCAmelCase( snake_case_ , snake_case_ ): """simple docstring""" a : str = True @register_to_config def __init__( self , lowerCamelCase = 3 , lowerCamelCase = 3 , lowerCamelCase = ("DownEncoderBlock2D",) , lowerCamelCase = ("UpDecoderBlock2D",) , lowerCamelCase = (64,) , lowerCamelCase = 1 , lowerCamelCase = "silu" , lowerCamelCase = 4 , lowerCamelCase = 32 , lowerCamelCase = 32 , lowerCamelCase = 0.1_82_15 , ) -> Tuple: """simple docstring""" super().__init__() # pass init params to Encoder lowercase__ : List[Any] = Encoder( in_channels=lowerCamelCase , out_channels=lowerCamelCase , down_block_types=lowerCamelCase , block_out_channels=lowerCamelCase , layers_per_block=lowerCamelCase , act_fn=lowerCamelCase , norm_num_groups=lowerCamelCase , double_z=lowerCamelCase , ) # pass init params to Decoder lowercase__ : Union[str, Any] = Decoder( in_channels=lowerCamelCase , out_channels=lowerCamelCase , up_block_types=lowerCamelCase , block_out_channels=lowerCamelCase , layers_per_block=lowerCamelCase , norm_num_groups=lowerCamelCase , act_fn=lowerCamelCase , ) lowercase__ : Optional[Any] = nn.Convad(2 * latent_channels , 2 * latent_channels , 1 ) lowercase__ : Optional[int] = nn.Convad(lowerCamelCase , lowerCamelCase , 1 ) lowercase__ : List[Any] = False lowercase__ : str = False # only relevant if vae tiling is enabled lowercase__ : int = self.config.sample_size lowercase__ : Dict = ( self.config.sample_size[0] if isinstance(self.config.sample_size , (list, tuple) ) else self.config.sample_size ) lowercase__ : Any = int(sample_size / (2 ** (len(self.config.block_out_channels ) - 1)) ) lowercase__ : str = 0.25 def __a ( self , lowerCamelCase , lowerCamelCase=False ) -> Optional[Any]: """simple docstring""" if isinstance(lowerCamelCase , (Encoder, Decoder) ): lowercase__ : int = value def __a ( self , lowerCamelCase = True ) -> List[str]: """simple docstring""" lowercase__ : Any = use_tiling def __a ( self ) -> Any: """simple docstring""" self.enable_tiling(lowerCamelCase ) def __a ( self ) -> str: """simple docstring""" lowercase__ : str = True def __a ( self ) -> List[Any]: """simple docstring""" lowercase__ : Dict = False @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def __a ( self ) -> Dict[str, AttentionProcessor]: """simple docstring""" lowercase__ : Any = {} def fn_recursive_add_processors(lowerCamelCase , lowerCamelCase , lowerCamelCase ): if hasattr(lowerCamelCase , "set_processor" ): lowercase__ : Dict = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f"""{name}.{sub_name}""" , lowerCamelCase , lowerCamelCase ) return processors for name, module in self.named_children(): fn_recursive_add_processors(lowerCamelCase , lowerCamelCase , lowerCamelCase ) return processors def __a ( self , lowerCamelCase ) -> Tuple: """simple docstring""" lowercase__ : List[str] = len(self.attn_processors.keys() ) if isinstance(lowerCamelCase , lowerCamelCase ) and len(lowerCamelCase ) != count: raise ValueError( f"""A dict of processors was passed, but the number of processors {len(lowerCamelCase )} does not match the""" f""" number of attention layers: {count}. Please make sure to pass {count} processor classes.""" ) def fn_recursive_attn_processor(lowerCamelCase , lowerCamelCase , lowerCamelCase ): if hasattr(lowerCamelCase , "set_processor" ): if not isinstance(lowerCamelCase , lowerCamelCase ): module.set_processor(lowerCamelCase ) else: module.set_processor(processor.pop(f"""{name}.processor""" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f"""{name}.{sub_name}""" , lowerCamelCase , lowerCamelCase ) for name, module in self.named_children(): fn_recursive_attn_processor(lowerCamelCase , lowerCamelCase , lowerCamelCase ) def __a ( self ) -> Union[str, Any]: """simple docstring""" self.set_attn_processor(AttnProcessor() ) @apply_forward_hook def __a ( self , lowerCamelCase , lowerCamelCase = True ) -> AutoencoderKLOutput: """simple docstring""" if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size): return self.tiled_encode(lowerCamelCase , return_dict=lowerCamelCase ) if self.use_slicing and x.shape[0] > 1: lowercase__ : int = [self.encoder(lowerCamelCase ) for x_slice in x.split(1 )] lowercase__ : Any = torch.cat(lowerCamelCase ) else: lowercase__ : Optional[int] = self.encoder(lowerCamelCase ) lowercase__ : Optional[Any] = self.quant_conv(lowerCamelCase ) lowercase__ : str = DiagonalGaussianDistribution(lowerCamelCase ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=lowerCamelCase ) def __a ( self , lowerCamelCase , lowerCamelCase = True ) -> Union[DecoderOutput, torch.FloatTensor]: """simple docstring""" if self.use_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size): return self.tiled_decode(lowerCamelCase , return_dict=lowerCamelCase ) lowercase__ : Tuple = self.post_quant_conv(lowerCamelCase ) lowercase__ : List[Any] = self.decoder(lowerCamelCase ) if not return_dict: return (dec,) return DecoderOutput(sample=lowerCamelCase ) @apply_forward_hook def __a ( self , lowerCamelCase , lowerCamelCase = True ) -> Union[DecoderOutput, torch.FloatTensor]: """simple docstring""" if self.use_slicing and z.shape[0] > 1: lowercase__ : Optional[Any] = [self._decode(lowerCamelCase ).sample for z_slice in z.split(1 )] lowercase__ : Dict = torch.cat(lowerCamelCase ) else: lowercase__ : Dict = self._decode(lowerCamelCase ).sample if not return_dict: return (decoded,) return DecoderOutput(sample=lowerCamelCase ) def __a ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> List[str]: """simple docstring""" lowercase__ : Optional[Any] = min(a.shape[2] , b.shape[2] , lowerCamelCase ) for y in range(lowerCamelCase ): lowercase__ : Union[str, Any] = a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent) return b def __a ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> List[str]: """simple docstring""" lowercase__ : str = min(a.shape[3] , b.shape[3] , lowerCamelCase ) for x in range(lowerCamelCase ): lowercase__ : List[Any] = a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent) return b def __a ( self , lowerCamelCase , lowerCamelCase = True ) -> AutoencoderKLOutput: """simple docstring""" lowercase__ : List[str] = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor) ) lowercase__ : Optional[int] = int(self.tile_latent_min_size * self.tile_overlap_factor ) lowercase__ : Dict = self.tile_latent_min_size - blend_extent # Split the image into 512x512 tiles and encode them separately. lowercase__ : Optional[int] = [] for i in range(0 , x.shape[2] , lowerCamelCase ): lowercase__ : int = [] for j in range(0 , x.shape[3] , lowerCamelCase ): lowercase__ : Optional[Any] = x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size] lowercase__ : Any = self.encoder(lowerCamelCase ) lowercase__ : Optional[int] = self.quant_conv(lowerCamelCase ) row.append(lowerCamelCase ) rows.append(lowerCamelCase ) lowercase__ : List[str] = [] for i, row in enumerate(lowerCamelCase ): lowercase__ : Optional[int] = [] for j, tile in enumerate(lowerCamelCase ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: lowercase__ : Dict = self.blend_v(rows[i - 1][j] , lowerCamelCase , lowerCamelCase ) if j > 0: lowercase__ : Any = self.blend_h(row[j - 1] , lowerCamelCase , lowerCamelCase ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(lowerCamelCase , dim=3 ) ) lowercase__ : Dict = torch.cat(lowerCamelCase , dim=2 ) lowercase__ : List[str] = DiagonalGaussianDistribution(lowerCamelCase ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=lowerCamelCase ) def __a ( self , lowerCamelCase , lowerCamelCase = True ) -> Union[DecoderOutput, torch.FloatTensor]: """simple docstring""" lowercase__ : Union[str, Any] = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor) ) lowercase__ : List[str] = int(self.tile_sample_min_size * self.tile_overlap_factor ) lowercase__ : Union[str, Any] = self.tile_sample_min_size - blend_extent # Split z into overlapping 64x64 tiles and decode them separately. # The tiles have an overlap to avoid seams between tiles. lowercase__ : List[Any] = [] for i in range(0 , z.shape[2] , lowerCamelCase ): lowercase__ : Dict = [] for j in range(0 , z.shape[3] , lowerCamelCase ): lowercase__ : Optional[int] = z[:, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size] lowercase__ : int = self.post_quant_conv(lowerCamelCase ) lowercase__ : Optional[Any] = self.decoder(lowerCamelCase ) row.append(lowerCamelCase ) rows.append(lowerCamelCase ) lowercase__ : List[str] = [] for i, row in enumerate(lowerCamelCase ): lowercase__ : str = [] for j, tile in enumerate(lowerCamelCase ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: lowercase__ : Tuple = self.blend_v(rows[i - 1][j] , lowerCamelCase , lowerCamelCase ) if j > 0: lowercase__ : Optional[int] = self.blend_h(row[j - 1] , lowerCamelCase , lowerCamelCase ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(lowerCamelCase , dim=3 ) ) lowercase__ : str = torch.cat(lowerCamelCase , dim=2 ) if not return_dict: return (dec,) return DecoderOutput(sample=lowerCamelCase ) def __a ( self , lowerCamelCase , lowerCamelCase = False , lowerCamelCase = True , lowerCamelCase = None , ) -> Union[DecoderOutput, torch.FloatTensor]: """simple docstring""" lowercase__ : Optional[int] = sample lowercase__ : List[Any] = self.encode(lowerCamelCase ).latent_dist if sample_posterior: lowercase__ : Union[str, Any] = posterior.sample(generator=lowerCamelCase ) else: lowercase__ : int = posterior.mode() lowercase__ : Tuple = self.decode(lowerCamelCase ).sample if not return_dict: return (dec,) return DecoderOutput(sample=lowerCamelCase )
397
0
'''simple docstring''' from typing import List, Optional, Tuple, Union import torch from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" def __init__( self : List[Any] , __a : Union[str, Any] , __a : str ): super().__init__() # make sure scheduler can always be converted to DDIM _a = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=__a , scheduler=__a ) @torch.no_grad() def __call__( self : int , __a : int = 1 , __a : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __a : float = 0.0 , __a : int = 50 , __a : Optional[bool] = None , __a : Optional[str] = "pil" , __a : bool = True , ): # Sample gaussian noise to begin loop if isinstance(self.unet.config.sample_size , __a ): _a = ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size, ) else: _a = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size) if isinstance(__a , __a ) and len(__a ) != batch_size: raise ValueError( f'You have passed a list of generators of length {len(__a )}, but requested an effective batch' f' size of {batch_size}. Make sure the batch size matches the length of the generators.' ) _a = randn_tensor(__a , generator=__a , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(__a ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output _a = self.unet(__a , __a ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 _a = self.scheduler.step( __a , __a , __a , eta=__a , use_clipped_model_output=__a , generator=__a ).prev_sample _a = (image / 2 + 0.5).clamp(0 , 1 ) _a = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _a = self.numpy_to_pil(__a ) if not return_dict: return (image,) return ImagePipelineOutput(images=__a )
521
'''simple docstring''' from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, flip_channel_order, get_resize_output_image_size, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, is_vision_available, logging if is_vision_available(): import PIL if is_torch_available(): import torch lowerCAmelCase_ : List[Any] = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a =['pixel_values'] def __init__( self : Optional[int] , __a : bool = True , __a : Dict[str, int] = None , __a : PILImageResampling = PILImageResampling.BILINEAR , __a : bool = True , __a : Union[int, float] = 1 / 2_55 , __a : bool = True , __a : Dict[str, int] = None , __a : bool = True , **__a : Any , ): super().__init__(**__a ) _a = size if size is not None else {"shortest_edge": 2_24} _a = get_size_dict(__a , default_to_square=__a ) _a = crop_size if crop_size is not None else {"height": 2_56, "width": 2_56} _a = get_size_dict(__a , param_name="crop_size" ) _a = do_resize _a = size _a = resample _a = do_rescale _a = rescale_factor _a = do_center_crop _a = crop_size _a = do_flip_channel_order def UpperCamelCase__ ( self : Dict , __a : np.ndarray , __a : Dict[str, int] , __a : PILImageResampling = PIL.Image.BILINEAR , __a : Optional[Union[str, ChannelDimension]] = None , **__a : Dict , ): _a = get_size_dict(__a , default_to_square=__a ) if "shortest_edge" not in size: raise ValueError(f'The `size` dictionary must contain the key `shortest_edge`. Got {size.keys()}' ) _a = get_resize_output_image_size(__a , size=size["shortest_edge"] , default_to_square=__a ) return resize(__a , size=__a , resample=__a , data_format=__a , **__a ) def UpperCamelCase__ ( self : Optional[Any] , __a : np.ndarray , __a : Dict[str, int] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : str , ): _a = get_size_dict(__a ) if "height" not in size or "width" not in size: raise ValueError(f'The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}' ) return center_crop(__a , size=(size["height"], size["width"]) , data_format=__a , **__a ) def UpperCamelCase__ ( self : str , __a : np.ndarray , __a : Union[int, float] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : str , ): return rescale(__a , scale=__a , data_format=__a , **__a ) def UpperCamelCase__ ( self : List[Any] , __a : np.ndarray , __a : Optional[Union[str, ChannelDimension]] = None ): return flip_channel_order(__a , data_format=__a ) def UpperCamelCase__ ( self : Union[str, Any] , __a : ImageInput , __a : bool = None , __a : Dict[str, int] = None , __a : PILImageResampling = None , __a : bool = None , __a : float = None , __a : bool = None , __a : Dict[str, int] = None , __a : bool = None , __a : Optional[Union[str, TensorType]] = None , __a : ChannelDimension = ChannelDimension.FIRST , **__a : int , ): _a = do_resize if do_resize is not None else self.do_resize _a = resample if resample is not None else self.resample _a = do_rescale if do_rescale is not None else self.do_rescale _a = rescale_factor if rescale_factor is not None else self.rescale_factor _a = do_center_crop if do_center_crop is not None else self.do_center_crop _a = ( do_flip_channel_order if do_flip_channel_order is not None else self.do_flip_channel_order ) _a = size if size is not None else self.size _a = get_size_dict(__a , default_to_square=__a ) _a = crop_size if crop_size is not None else self.crop_size _a = get_size_dict(__a , param_name="crop_size" ) _a = make_list_of_images(__a ) if not valid_images(__a ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) # All transformations expect numpy arrays. _a = [to_numpy_array(__a ) for image in images] if do_resize: _a = [self.resize(image=__a , size=__a , resample=__a ) for image in images] if do_center_crop: _a = [self.center_crop(image=__a , size=__a ) for image in images] if do_rescale: _a = [self.rescale(image=__a , scale=__a ) for image in images] # the pretrained checkpoints assume images are BGR, not RGB if do_flip_channel_order: _a = [self.flip_channel_order(image=__a ) for image in images] _a = [to_channel_dimension_format(__a , __a ) for image in images] _a = {"pixel_values": images} return BatchFeature(data=__a , tensor_type=__a ) def UpperCamelCase__ ( self : Dict , __a : List[str] , __a : List[Tuple] = None ): _a = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(__a ) != len(__a ): raise ValueError( "Make sure that you pass in as many target sizes as the batch dimension of the logits" ) if is_torch_tensor(__a ): _a = target_sizes.numpy() _a = [] for idx in range(len(__a ) ): _a = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="bilinear" , align_corners=__a ) _a = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(__a ) else: _a = logits.argmax(dim=1 ) _a = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
521
1
'''simple docstring''' from PIL import Image def lowercase__ ( __UpperCamelCase : Image ): '''simple docstring''' __lowercase , __lowercase = image.size __lowercase = 0 __lowercase = image.load() for i in range(__UpperCamelCase ): for j in range(__UpperCamelCase ): __lowercase = pixels[j, i] mean += pixel mean //= width * height for j in range(__UpperCamelCase ): for i in range(__UpperCamelCase ): __lowercase = 255 if pixels[i, j] > mean else 0 return image if __name__ == "__main__": snake_case : Optional[Any] = mean_threshold(Image.open('path_to_image').convert('L')) image.save('output_image_path')
566
'''simple docstring''' import functools import gc import inspect import torch from .imports import is_npu_available, is_xpu_available def lowercase__ ( *__UpperCamelCase : Optional[Any] ): '''simple docstring''' if not isinstance(__UpperCamelCase , __UpperCamelCase ): __lowercase = list(__UpperCamelCase ) for i in range(len(__UpperCamelCase ) ): __lowercase = None gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() return objects def lowercase__ ( __UpperCamelCase : Exception ): '''simple docstring''' __lowercase = [ """CUDA out of memory.""", # CUDA OOM """cuDNN error: CUDNN_STATUS_NOT_SUPPORTED.""", # CUDNN SNAFU """DefaultCPUAllocator: can't allocate memory""", # CPU OOM ] if isinstance(__UpperCamelCase , __UpperCamelCase ) and len(exception.args ) == 1: return any(err in exception.args[0] for err in _statements ) return False def lowercase__ ( __UpperCamelCase : callable = None , __UpperCamelCase : int = 128 ): '''simple docstring''' if function is None: return functools.partial(__UpperCamelCase , starting_batch_size=__UpperCamelCase ) __lowercase = starting_batch_size def decorator(*__UpperCamelCase : List[Any] , **__UpperCamelCase : Optional[Any] ): nonlocal batch_size gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() __lowercase = list(inspect.signature(__UpperCamelCase ).parameters.keys() ) # Guard against user error if len(__UpperCamelCase ) < (len(__UpperCamelCase ) + 1): __lowercase = """, """.join([F'''{arg}={value}''' for arg, value in zip(params[1:] , args[1:] )] ) raise TypeError( F'''Batch size was passed into `{function.__name__}` as the first argument when called.''' F'''Remove this as the decorator already does so: `{function.__name__}({arg_str})`''' ) while True: if batch_size == 0: raise RuntimeError("""No executable batch size found, reached zero.""" ) try: return function(__UpperCamelCase , *__UpperCamelCase , **__UpperCamelCase ) except Exception as e: if should_reduce_batch_size(__UpperCamelCase ): gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() batch_size //= 2 else: raise return decorator
566
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) A__ : Union[str, Any] = { '''configuration_longformer''': [ '''LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LongformerConfig''', '''LongformerOnnxConfig''', ], '''tokenization_longformer''': ['''LongformerTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Optional[Any] = ['''LongformerTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : List[Any] = [ '''LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LongformerForMaskedLM''', '''LongformerForMultipleChoice''', '''LongformerForQuestionAnswering''', '''LongformerForSequenceClassification''', '''LongformerForTokenClassification''', '''LongformerModel''', '''LongformerPreTrainedModel''', '''LongformerSelfAttention''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : int = [ '''TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFLongformerForMaskedLM''', '''TFLongformerForMultipleChoice''', '''TFLongformerForQuestionAnswering''', '''TFLongformerForSequenceClassification''', '''TFLongformerForTokenClassification''', '''TFLongformerModel''', '''TFLongformerPreTrainedModel''', '''TFLongformerSelfAttention''', ] if TYPE_CHECKING: from .configuration_longformer import ( LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, LongformerConfig, LongformerOnnxConfig, ) from .tokenization_longformer import LongformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_longformer_fast import LongformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longformer import ( LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, LongformerForMaskedLM, LongformerForMultipleChoice, LongformerForQuestionAnswering, LongformerForSequenceClassification, LongformerForTokenClassification, LongformerModel, LongformerPreTrainedModel, LongformerSelfAttention, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_longformer import ( TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFLongformerForMaskedLM, TFLongformerForMultipleChoice, TFLongformerForQuestionAnswering, TFLongformerForSequenceClassification, TFLongformerForTokenClassification, TFLongformerModel, TFLongformerPreTrainedModel, TFLongformerSelfAttention, ) else: import sys A__ : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
706
from scipy.stats import spearmanr import datasets A__ = ''' The Spearman rank-order correlation coefficient is a measure of the relationship between two datasets. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Positive correlations imply that as data in dataset x increases, so does data in dataset y. Negative correlations imply that as x increases, y decreases. Correlations of -1 or +1 imply an exact monotonic relationship. Unlike the Pearson correlation, the Spearman correlation does not assume that both datasets are normally distributed. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Spearman correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable but are probably reasonable for datasets larger than 500 or so. ''' A__ = ''' Args: predictions (`List[float]`): Predicted labels, as returned by a model. references (`List[float]`): Ground truth labels. return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns only the spearmanr score. Defaults to `False`. Returns: spearmanr (`float`): Spearman correlation coefficient. p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input. Examples: Example 1: >>> spearmanr_metric = datasets.load_metric("spearmanr") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4]) >>> print(results) {\'spearmanr\': -0.7} Example 2: >>> spearmanr_metric = datasets.load_metric("spearmanr") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], ... predictions=[10, 9, 2.5, 6, 4], ... return_pvalue=True) >>> print(results[\'spearmanr\']) -0.7 >>> print(round(results[\'spearmanr_pvalue\'], 2)) 0.19 ''' A__ = r'''\ @book{kokoska2000crc, title={CRC standard probability and statistics tables and formulae}, author={Kokoska, Stephen and Zwillinger, Daniel}, year={2000}, publisher={Crc Press} } @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a ( datasets.Metric ): def __lowerCamelCase ( self :Union[str, Any] ): return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { '''predictions''': datasets.Value('''float''' ), '''references''': datasets.Value('''float''' ), } ) ,reference_urls=['''https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html'''] ,) def __lowerCamelCase ( self :Union[str, Any] ,__lowercase :Union[str, Any] ,__lowercase :Dict ,__lowercase :Dict=False ): snake_case__ : str = spearmanr(__lowercase ,__lowercase ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
219
0
'''simple docstring''' import os import re import warnings from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer if TYPE_CHECKING: from ...tokenization_utils_base import TextInput from ...utils import logging _a : Dict = logging.get_logger(__name__) _a : Optional[Any] = {"vocab_file": "spiece.model"} _a : Tuple = { "vocab_file": { "t5-small": "https://huggingface.co/t5-small/resolve/main/spiece.model", "t5-base": "https://huggingface.co/t5-base/resolve/main/spiece.model", "t5-large": "https://huggingface.co/t5-large/resolve/main/spiece.model", "t5-3b": "https://huggingface.co/t5-3b/resolve/main/spiece.model", "t5-11b": "https://huggingface.co/t5-11b/resolve/main/spiece.model", } } # TODO(PVP) - this should be removed in Transformers v5 _a : Union[str, Any] = { "t5-small": 512, "t5-base": 512, "t5-large": 512, "t5-3b": 512, "t5-11b": 512, } _a : Any = "▁" class __A (__magic_name__ ): snake_case :Union[str, Any] = VOCAB_FILES_NAMES snake_case :Optional[int] = PRETRAINED_VOCAB_FILES_MAP snake_case :Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case :Any = ["input_ids", "attention_mask"] def __init__( self , UpperCamelCase_ , UpperCamelCase_="</s>" , UpperCamelCase_="<unk>" , UpperCamelCase_="<pad>" , UpperCamelCase_=1_00 , UpperCamelCase_=None , UpperCamelCase_ = None , UpperCamelCase_=True , **UpperCamelCase_ , ): # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: __UpperCAmelCase : List[str] = [f"""<extra_id_{i}>""" for i in range(UpperCamelCase_ )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens __UpperCAmelCase : List[str] = len(set(filter(lambda UpperCamelCase_ : bool("extra_id" in str(UpperCamelCase_ ) ) , UpperCamelCase_ ) ) ) if extra_tokens != extra_ids: raise ValueError( f"""Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are""" " provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids" " tokens" ) if legacy: logger.warning_once( f"""You are using the legacy behaviour of the {self.__class__}. This means that tokens that come after special tokens will not be properly handled. We recommend you to""" " read the related pull request available at https://github.com/huggingface/transformers/pull/24565" ) __UpperCAmelCase : Dict = legacy __UpperCAmelCase : Optional[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , extra_ids=UpperCamelCase_ , additional_special_tokens=UpperCamelCase_ , sp_model_kwargs=self.sp_model_kwargs , legacy=UpperCamelCase_ , **UpperCamelCase_ , ) __UpperCAmelCase : Tuple = vocab_file __UpperCAmelCase : Tuple = extra_ids __UpperCAmelCase : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(UpperCamelCase_ ) @staticmethod def _snake_case ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): if pretrained_model_name_or_path in TaTokenizer.max_model_input_sizes: __UpperCAmelCase : Dict = TaTokenizer.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( "This tokenizer was incorrectly instantiated with a model max length of" f""" {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this""" " behavior is kept to avoid breaking backwards compatibility when padding/encoding with" " `truncation is True`.\n- Be aware that you SHOULD NOT rely on" f""" {pretrained_model_name_or_path} automatically truncating your input to""" f""" {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences""" f""" longer than {deprecated_max_model_length} you can either instantiate this tokenizer with""" " `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please" " instantiate this tokenizer with `model_max_length` set to your preferred value." , UpperCamelCase_ , ) return max_model_length @property def _snake_case ( self ): return self.sp_model.get_piece_size() + self._extra_ids def _snake_case ( self ): __UpperCAmelCase : Tuple = {self.convert_ids_to_tokens(UpperCamelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase_ , token_ids_a=UpperCamelCase_ , already_has_special_tokens=UpperCamelCase_ ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(UpperCamelCase_ )) + [1] return ([0] * len(UpperCamelCase_ )) + [1] + ([0] * len(UpperCamelCase_ )) + [1] def _snake_case ( self ): return list( set(filter(lambda UpperCamelCase_ : bool(re.search(r"<extra_id_\d+>" , UpperCamelCase_ ) ) is not None , self.additional_special_tokens ) ) ) def _snake_case ( self ): return [self._convert_token_to_id(UpperCamelCase_ ) for token in self.get_sentinel_tokens()] def _snake_case ( self , UpperCamelCase_ ): if len(UpperCamelCase_ ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( f"""This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated""" " eos tokens being added." ) return token_ids else: return token_ids + [self.eos_token_id] def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): __UpperCAmelCase : Union[str, Any] = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): __UpperCAmelCase : List[Any] = self._add_eos_if_not_present(UpperCamelCase_ ) if token_ids_a is None: return token_ids_a else: __UpperCAmelCase : Union[str, Any] = self._add_eos_if_not_present(UpperCamelCase_ ) return token_ids_a + token_ids_a def __getstate__( self ): __UpperCAmelCase : Optional[int] = self.__dict__.copy() __UpperCAmelCase : Any = None return state def __setstate__( self , UpperCamelCase_ ): __UpperCAmelCase : int = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): __UpperCAmelCase : Optional[int] = {} __UpperCAmelCase : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _snake_case ( self , UpperCamelCase_ , **UpperCamelCase_ ): # Replace the SPIECE_UNDERLINE with a space to make sure SPIECE_UNDERLINE is only used at # the beginning of the text if not self.legacy: __UpperCAmelCase : Optional[Any] = SPIECE_UNDERLINE + text.replace(UpperCamelCase_ , " " ) return super().tokenize(UpperCamelCase_ , **UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ , **UpperCamelCase_ ): if not self.legacy: __UpperCAmelCase : Optional[Any] = text.startswith(UpperCamelCase_ ) if is_first: __UpperCAmelCase : str = text[1:] __UpperCAmelCase : Tuple = self.sp_model.encode(UpperCamelCase_ , out_type=UpperCamelCase_ ) if not self.legacy and not is_first and not text.startswith(" " ) and tokens[0].startswith(UpperCamelCase_ ): __UpperCAmelCase : Dict = ([tokens[0][1:]] if len(tokens[0] ) > 1 else []) + tokens[1:] return tokens def _snake_case ( self , UpperCamelCase_ ): if token.startswith("<extra_id_" ): __UpperCAmelCase : int = re.match(r"<extra_id_(\d+)>" , UpperCamelCase_ ) __UpperCAmelCase : Any = int(match.group(1 ) ) return self.vocab_size - num - 1 return self.sp_model.piece_to_id(UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ ): if index < self.sp_model.get_piece_size(): __UpperCAmelCase : str = self.sp_model.IdToPiece(UpperCamelCase_ ) else: __UpperCAmelCase : Union[str, Any] = f"""<extra_id_{self.vocab_size - 1 - index}>""" return token def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : int = [] __UpperCAmelCase : Dict = "" __UpperCAmelCase : int = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(UpperCamelCase_ ) + token __UpperCAmelCase : str = True __UpperCAmelCase : Optional[Any] = [] else: current_sub_tokens.append(UpperCamelCase_ ) __UpperCAmelCase : Optional[int] = False out_string += self.sp_model.decode(UpperCamelCase_ ) return out_string.strip() def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): if not os.path.isdir(UpperCamelCase_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __UpperCAmelCase : int = os.path.join( UpperCamelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCamelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCamelCase_ , "wb" ) as fi: __UpperCAmelCase : Optional[Any] = self.sp_model.serialized_model_proto() fi.write(UpperCamelCase_ ) return (out_vocab_file,)
168
'''simple docstring''' from __future__ import annotations def _lowercase ( lowerCamelCase__ ) -> bool: """simple docstring""" __UpperCAmelCase : int = len(lowerCamelCase__ ) # We need to create solution object to save path. __UpperCAmelCase : List[str] = [[0 for _ in range(lowerCamelCase__ )] for _ in range(lowerCamelCase__ )] __UpperCAmelCase : Optional[Any] = run_maze(lowerCamelCase__ , 0 , 0 , lowerCamelCase__ ) if solved: print("\n".join(str(lowerCamelCase__ ) for row in solutions ) ) else: print("No solution exists!" ) return solved def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> bool: """simple docstring""" __UpperCAmelCase : str = len(lowerCamelCase__ ) # Final check point. if i == j == (size - 1): __UpperCAmelCase : str = 1 return True __UpperCAmelCase : Any = (not i < 0) and (not j < 0) # Check lower bounds __UpperCAmelCase : Union[str, Any] = (i < size) and (j < size) # Check upper bounds if lower_flag and upper_flag: # check for already visited and block points. __UpperCAmelCase : Tuple = (not solutions[i][j]) and (not maze[i][j]) if block_flag: # check visited __UpperCAmelCase : Optional[int] = 1 # check for directions if ( run_maze(lowerCamelCase__ , i + 1 , lowerCamelCase__ , lowerCamelCase__ ) or run_maze(lowerCamelCase__ , lowerCamelCase__ , j + 1 , lowerCamelCase__ ) or run_maze(lowerCamelCase__ , i - 1 , lowerCamelCase__ , lowerCamelCase__ ) or run_maze(lowerCamelCase__ , lowerCamelCase__ , j - 1 , lowerCamelCase__ ) ): return True __UpperCAmelCase : Dict = 0 return False return False if __name__ == "__main__": import doctest doctest.testmod()
168
1
import numpy as np class lowerCAmelCase_ : '''simple docstring''' def __init__( self ): SCREAMING_SNAKE_CASE_ : List[str] =(0, 0) SCREAMING_SNAKE_CASE_ : Optional[int] =None SCREAMING_SNAKE_CASE_ : Optional[int] =0 SCREAMING_SNAKE_CASE_ : List[str] =0 SCREAMING_SNAKE_CASE_ : Tuple =0 def __eq__( self , __UpperCAmelCase ): return self.position == cell.position def __lowerCamelCase ( self ): print(self.position ) class lowerCAmelCase_ : '''simple docstring''' def __init__( self , __UpperCAmelCase=(5, 5) ): SCREAMING_SNAKE_CASE_ : List[Any] =np.zeros(__UpperCamelCase ) SCREAMING_SNAKE_CASE_ : List[str] =world_size[0] SCREAMING_SNAKE_CASE_ : List[str] =world_size[1] def __lowerCamelCase ( self ): print(self.w ) def __lowerCamelCase ( self , __UpperCAmelCase ): SCREAMING_SNAKE_CASE_ : Union[str, Any] =[ (-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1), (1, 0), (1, 1), ] SCREAMING_SNAKE_CASE_ : Optional[Any] =cell.position[0] SCREAMING_SNAKE_CASE_ : Tuple =cell.position[1] SCREAMING_SNAKE_CASE_ : List[str] =[] for n in neughbour_cord: SCREAMING_SNAKE_CASE_ : Union[str, Any] =current_x + n[0] SCREAMING_SNAKE_CASE_ : Optional[int] =current_y + n[1] if 0 <= x < self.world_x_limit and 0 <= y < self.world_y_limit: SCREAMING_SNAKE_CASE_ : List[Any] =Cell() SCREAMING_SNAKE_CASE_ : int =(x, y) SCREAMING_SNAKE_CASE_ : Optional[Any] =cell neighbours.append(__UpperCamelCase ) return neighbours def SCREAMING_SNAKE_CASE__ ( lowerCAmelCase_ : Any ,lowerCAmelCase_ : List[Any] ,lowerCAmelCase_ : Tuple ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] =[] SCREAMING_SNAKE_CASE_ : List[Any] =[] _open.append(UpperCAmelCase__ ) while _open: SCREAMING_SNAKE_CASE_ : Dict =np.argmin([n.f for n in _open] ) SCREAMING_SNAKE_CASE_ : Optional[Any] =_open[min_f] _closed.append(_open.pop(UpperCAmelCase__ ) ) if current == goal: break for n in world.get_neigbours(UpperCAmelCase__ ): for c in _closed: if c == n: continue SCREAMING_SNAKE_CASE_ : Tuple =current.g + 1 SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int =n.position SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : str =goal.position SCREAMING_SNAKE_CASE_ : List[str] =(ya - ya) ** 2 + (xa - xa) ** 2 SCREAMING_SNAKE_CASE_ : List[str] =n.h + n.g for c in _open: if c == n and c.f < n.f: continue _open.append(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Optional[int] =[] while current.parent is not None: path.append(current.position ) SCREAMING_SNAKE_CASE_ : Dict =current.parent path.append(current.position ) return path[::-1] if __name__ == "__main__": __SCREAMING_SNAKE_CASE = Gridworld() # Start position and goal __SCREAMING_SNAKE_CASE = Cell() __SCREAMING_SNAKE_CASE = (0, 0) __SCREAMING_SNAKE_CASE = Cell() __SCREAMING_SNAKE_CASE = (4, 4) print(f"""path from {start.position} to {goal.position}""") __SCREAMING_SNAKE_CASE = astar(world, start, goal) # Just for visual reasons. for i in s: __SCREAMING_SNAKE_CASE = 1 print(world.w)
715
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Value from .base import TaskTemplate @dataclass(frozen=__A ) class lowerCAmelCase_ ( __A ): '''simple docstring''' _lowercase = field(default='text-classification' , metadata={'include_in_asdict_even_if_is_default': True} ) _lowercase = Features({'text': Value('string' )} ) _lowercase = Features({'labels': ClassLabel} ) _lowercase = "text" _lowercase = "labels" def __lowerCamelCase ( self , __UpperCAmelCase ): if self.label_column not in features: raise ValueError(F"""Column {self.label_column} is not present in features.""" ) if not isinstance(features[self.label_column] , __UpperCAmelCase ): raise ValueError(F"""Column {self.label_column} is not a ClassLabel.""" ) SCREAMING_SNAKE_CASE_ : Union[str, Any] =copy.deepcopy(self ) SCREAMING_SNAKE_CASE_ : List[str] =self.label_schema.copy() SCREAMING_SNAKE_CASE_ : Tuple =features[self.label_column] SCREAMING_SNAKE_CASE_ : str =label_schema return task_template @property def __lowerCamelCase ( self ): return { self.text_column: "text", self.label_column: "labels", }
153
0
from __future__ import annotations from PIL import Image # Define glider example __A = [ [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], ] # Define blinker example __A = [[0, 1, 0], [0, 1, 0], [0, 1, 0]] def lowercase__ ( A_: list[list[int]] ) -> list[list[int]]: """simple docstring""" __UpperCAmelCase =[] for i in range(len(A_ ) ): __UpperCAmelCase =[] for j in range(len(cells[i] ) ): # Get the number of live neighbours __UpperCAmelCase =0 if i > 0 and j > 0: neighbour_count += cells[i - 1][j - 1] if i > 0: neighbour_count += cells[i - 1][j] if i > 0 and j < len(cells[i] ) - 1: neighbour_count += cells[i - 1][j + 1] if j > 0: neighbour_count += cells[i][j - 1] if j < len(cells[i] ) - 1: neighbour_count += cells[i][j + 1] if i < len(A_ ) - 1 and j > 0: neighbour_count += cells[i + 1][j - 1] if i < len(A_ ) - 1: neighbour_count += cells[i + 1][j] if i < len(A_ ) - 1 and j < len(cells[i] ) - 1: neighbour_count += cells[i + 1][j + 1] # Rules of the game of life (excerpt from Wikipedia): # 1. Any live cell with two or three live neighbours survives. # 2. Any dead cell with three live neighbours becomes a live cell. # 3. All other live cells die in the next generation. # Similarly, all other dead cells stay dead. __UpperCAmelCase =cells[i][j] == 1 if ( (alive and 2 <= neighbour_count <= 3) or not alive and neighbour_count == 3 ): next_generation_row.append(1 ) else: next_generation_row.append(0 ) next_generation.append(A_ ) return next_generation def lowercase__ ( A_: list[list[int]] , A_: int ) -> list[Image.Image]: """simple docstring""" __UpperCAmelCase =[] for _ in range(A_ ): # Create output image __UpperCAmelCase =Image.new("""RGB""" , (len(cells[0] ), len(A_ )) ) __UpperCAmelCase =img.load() # Save cells to image for x in range(len(A_ ) ): for y in range(len(cells[0] ) ): __UpperCAmelCase =255 - cells[y][x] * 255 __UpperCAmelCase =(colour, colour, colour) # Save image images.append(A_ ) __UpperCAmelCase =new_generation(A_ ) return images if __name__ == "__main__": __A = generate_images(GLIDER, 16) images[0].save("out.gif", save_all=True, append_images=images[1:])
68
import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope="session" ) def __A ( ): """simple docstring""" __a = 10 __a = datasets.Features( { "tokens": datasets.Sequence(datasets.Value("string" ) ), "labels": datasets.Sequence(datasets.ClassLabel(names=["negative", "positive"] ) ), "answers": datasets.Sequence( { "text": datasets.Value("string" ), "answer_start": datasets.Value("int32" ), } ), "id": datasets.Value("int64" ), } ) __a = datasets.Dataset.from_dict( { "tokens": [["foo"] * 5] * n, "labels": [[1] * 5] * n, "answers": [{"answer_start": [97], "text": ["1976"]}] * 10, "id": list(range(_A ) ), } , features=_A , ) return dataset @pytest.fixture(scope="session" ) def __A ( _A , _A ): """simple docstring""" __a = str(tmp_path_factory.mktemp("data" ) / "file.arrow" ) dataset.map(cache_file_name=_A ) return filename # FILE_CONTENT + files SCREAMING_SNAKE_CASE : Tuple = """\ Text data. Second line of data.""" @pytest.fixture(scope="session" ) def __A ( _A ): """simple docstring""" __a = tmp_path_factory.mktemp("data" ) / "file.txt" __a = FILE_CONTENT with open(_A , "w" ) as f: f.write(_A ) return filename @pytest.fixture(scope="session" ) def __A ( _A ): """simple docstring""" import bza __a = tmp_path_factory.mktemp("data" ) / "file.txt.bz2" __a = bytes(_A , "utf-8" ) with bza.open(_A , "wb" ) as f: f.write(_A ) return path @pytest.fixture(scope="session" ) def __A ( _A ): """simple docstring""" import gzip __a = str(tmp_path_factory.mktemp("data" ) / "file.txt.gz" ) __a = bytes(_A , "utf-8" ) with gzip.open(_A , "wb" ) as f: f.write(_A ) return path @pytest.fixture(scope="session" ) def __A ( _A ): """simple docstring""" if datasets.config.LZ4_AVAILABLE: import lza.frame __a = tmp_path_factory.mktemp("data" ) / "file.txt.lz4" __a = bytes(_A , "utf-8" ) with lza.frame.open(_A , "wb" ) as f: f.write(_A ) return path @pytest.fixture(scope="session" ) def __A ( _A , _A ): """simple docstring""" if datasets.config.PY7ZR_AVAILABLE: import pyazr __a = tmp_path_factory.mktemp("data" ) / "file.txt.7z" with pyazr.SevenZipFile(_A , "w" ) as archive: archive.write(_A , arcname=os.path.basename(_A ) ) return path @pytest.fixture(scope="session" ) def __A ( _A , _A ): """simple docstring""" import tarfile __a = tmp_path_factory.mktemp("data" ) / "file.txt.tar" with tarfile.TarFile(_A , "w" ) as f: f.add(_A , arcname=os.path.basename(_A ) ) return path @pytest.fixture(scope="session" ) def __A ( _A ): """simple docstring""" import lzma __a = tmp_path_factory.mktemp("data" ) / "file.txt.xz" __a = bytes(_A , "utf-8" ) with lzma.open(_A , "wb" ) as f: f.write(_A ) return path @pytest.fixture(scope="session" ) def __A ( _A , _A ): """simple docstring""" import zipfile __a = tmp_path_factory.mktemp("data" ) / "file.txt.zip" with zipfile.ZipFile(_A , "w" ) as f: f.write(_A , arcname=os.path.basename(_A ) ) return path @pytest.fixture(scope="session" ) def __A ( _A ): """simple docstring""" if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd __a = tmp_path_factory.mktemp("data" ) / "file.txt.zst" __a = bytes(_A , "utf-8" ) with zstd.open(_A , "wb" ) as f: f.write(_A ) return path @pytest.fixture(scope="session" ) def __A ( _A ): """simple docstring""" __a = tmp_path_factory.mktemp("data" ) / "file.xml" __a = textwrap.dedent( "\\n <?xml version=\"1.0\" encoding=\"UTF-8\" ?>\n <tmx version=\"1.4\">\n <header segtype=\"sentence\" srclang=\"ca\" />\n <body>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 1</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 1</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 2</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 2</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 3</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 3</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 4</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 4</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 5</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 5</seg></tuv>\n </tu>\n </body>\n </tmx>" ) with open(_A , "w" ) as f: f.write(_A ) return filename SCREAMING_SNAKE_CASE : Any = [ {"""col_1""": """0""", """col_2""": 0, """col_3""": 0.0}, {"""col_1""": """1""", """col_2""": 1, """col_3""": 1.0}, {"""col_1""": """2""", """col_2""": 2, """col_3""": 2.0}, {"""col_1""": """3""", """col_2""": 3, """col_3""": 3.0}, ] SCREAMING_SNAKE_CASE : Optional[int] = [ {"""col_1""": """4""", """col_2""": 4, """col_3""": 4.0}, {"""col_1""": """5""", """col_2""": 5, """col_3""": 5.0}, ] SCREAMING_SNAKE_CASE : Any = { """col_1""": ["""0""", """1""", """2""", """3"""], """col_2""": [0, 1, 2, 3], """col_3""": [0.0, 1.0, 2.0, 3.0], } SCREAMING_SNAKE_CASE : int = [ {"""col_3""": 0.0, """col_1""": """0""", """col_2""": 0}, {"""col_3""": 1.0, """col_1""": """1""", """col_2""": 1}, ] SCREAMING_SNAKE_CASE : List[Any] = [ {"""col_1""": """s0""", """col_2""": 0, """col_3""": 0.0}, {"""col_1""": """s1""", """col_2""": 1, """col_3""": 1.0}, {"""col_1""": """s2""", """col_2""": 2, """col_3""": 2.0}, {"""col_1""": """s3""", """col_2""": 3, """col_3""": 3.0}, ] @pytest.fixture(scope="session" ) def __A ( ): """simple docstring""" return DATA_DICT_OF_LISTS @pytest.fixture(scope="session" ) def __A ( _A ): """simple docstring""" __a = datasets.Dataset.from_dict(_A ) __a = str(tmp_path_factory.mktemp("data" ) / "dataset.arrow" ) dataset.map(cache_file_name=_A ) return path @pytest.fixture(scope="session" ) def __A ( _A ): """simple docstring""" __a = str(tmp_path_factory.mktemp("data" ) / "dataset.sqlite" ) with contextlib.closing(sqlitea.connect(_A ) ) as con: __a = con.cursor() cur.execute("CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)" ) for item in DATA: cur.execute("INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)" , tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope="session" ) def __A ( _A ): """simple docstring""" __a = str(tmp_path_factory.mktemp("data" ) / "dataset.csv" ) with open(_A , "w" , newline="" ) as f: __a = csv.DictWriter(_A , fieldnames=["col_1", "col_2", "col_3"] ) writer.writeheader() for item in DATA: writer.writerow(_A ) return path @pytest.fixture(scope="session" ) def __A ( _A ): """simple docstring""" __a = str(tmp_path_factory.mktemp("data" ) / "dataset2.csv" ) with open(_A , "w" , newline="" ) as f: __a = csv.DictWriter(_A , fieldnames=["col_1", "col_2", "col_3"] ) writer.writeheader() for item in DATA: writer.writerow(_A ) return path @pytest.fixture(scope="session" ) def __A ( _A , _A ): """simple docstring""" import bza __a = tmp_path_factory.mktemp("data" ) / "dataset.csv.bz2" with open(_A , "rb" ) as f: __a = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(_A , "wb" ) as f: f.write(_A ) return path @pytest.fixture(scope="session" ) def __A ( _A , _A , _A ): """simple docstring""" __a = tmp_path_factory.mktemp("data" ) / "dataset.csv.zip" with zipfile.ZipFile(_A , "w" ) as f: f.write(_A , arcname=os.path.basename(_A ) ) f.write(_A , arcname=os.path.basename(_A ) ) return path @pytest.fixture(scope="session" ) def __A ( _A , _A , _A ): """simple docstring""" __a = tmp_path_factory.mktemp("data" ) / "dataset.csv.zip" with zipfile.ZipFile(_A , "w" ) as f: f.write(_A , arcname=os.path.basename(csv_path.replace(".csv" , ".CSV" ) ) ) f.write(_A , arcname=os.path.basename(csva_path.replace(".csv" , ".CSV" ) ) ) return path @pytest.fixture(scope="session" ) def __A ( _A , _A , _A ): """simple docstring""" __a = tmp_path_factory.mktemp("data" ) / "dataset_with_dir.csv.zip" with zipfile.ZipFile(_A , "w" ) as f: f.write(_A , arcname=os.path.join("main_dir" , os.path.basename(_A ) ) ) f.write(_A , arcname=os.path.join("main_dir" , os.path.basename(_A ) ) ) return path @pytest.fixture(scope="session" ) def __A ( _A ): """simple docstring""" __a = str(tmp_path_factory.mktemp("data" ) / "dataset.parquet" ) __a = pa.schema( { "col_1": pa.string(), "col_2": pa.intaa(), "col_3": pa.floataa(), } ) with open(_A , "wb" ) as f: __a = pq.ParquetWriter(_A , schema=_A ) __a = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(_A ) )] for k in DATA[0]} , schema=_A ) writer.write_table(_A ) writer.close() return path @pytest.fixture(scope="session" ) def __A ( _A ): """simple docstring""" __a = str(tmp_path_factory.mktemp("data" ) / "dataset.json" ) __a = {"data": DATA} with open(_A , "w" ) as f: json.dump(_A , _A ) return path @pytest.fixture(scope="session" ) def __A ( _A ): """simple docstring""" __a = str(tmp_path_factory.mktemp("data" ) / "dataset.json" ) __a = {"data": DATA_DICT_OF_LISTS} with open(_A , "w" ) as f: json.dump(_A , _A ) return path @pytest.fixture(scope="session" ) def __A ( _A ): """simple docstring""" __a = str(tmp_path_factory.mktemp("data" ) / "dataset.jsonl" ) with open(_A , "w" ) as f: for item in DATA: f.write(json.dumps(_A ) + "\n" ) return path @pytest.fixture(scope="session" ) def __A ( _A ): """simple docstring""" __a = str(tmp_path_factory.mktemp("data" ) / "dataset2.jsonl" ) with open(_A , "w" ) as f: for item in DATA: f.write(json.dumps(_A ) + "\n" ) return path @pytest.fixture(scope="session" ) def __A ( _A ): """simple docstring""" __a = str(tmp_path_factory.mktemp("data" ) / "dataset_312.jsonl" ) with open(_A , "w" ) as f: for item in DATA_312: f.write(json.dumps(_A ) + "\n" ) return path @pytest.fixture(scope="session" ) def __A ( _A ): """simple docstring""" __a = str(tmp_path_factory.mktemp("data" ) / "dataset-str.jsonl" ) with open(_A , "w" ) as f: for item in DATA_STR: f.write(json.dumps(_A ) + "\n" ) return path @pytest.fixture(scope="session" ) def __A ( _A , _A ): """simple docstring""" import gzip __a = str(tmp_path_factory.mktemp("data" ) / "dataset.txt.gz" ) with open(_A , "rb" ) as orig_file: with gzip.open(_A , "wb" ) as zipped_file: zipped_file.writelines(_A ) return path @pytest.fixture(scope="session" ) def __A ( _A , _A ): """simple docstring""" import gzip __a = str(tmp_path_factory.mktemp("data" ) / "dataset.jsonl.gz" ) with open(_A , "rb" ) as orig_file: with gzip.open(_A , "wb" ) as zipped_file: zipped_file.writelines(_A ) return path @pytest.fixture(scope="session" ) def __A ( _A , _A , _A ): """simple docstring""" __a = tmp_path_factory.mktemp("data" ) / "dataset.jsonl.zip" with zipfile.ZipFile(_A , "w" ) as f: f.write(_A , arcname=os.path.basename(_A ) ) f.write(_A , arcname=os.path.basename(_A ) ) return path @pytest.fixture(scope="session" ) def __A ( _A , _A , _A , _A ): """simple docstring""" __a = tmp_path_factory.mktemp("data" ) / "dataset_nested.jsonl.zip" with zipfile.ZipFile(_A , "w" ) as f: f.write(_A , arcname=os.path.join("nested" , os.path.basename(_A ) ) ) return path @pytest.fixture(scope="session" ) def __A ( _A , _A , _A ): """simple docstring""" __a = tmp_path_factory.mktemp("data" ) / "dataset_with_dir.jsonl.zip" with zipfile.ZipFile(_A , "w" ) as f: f.write(_A , arcname=os.path.join("main_dir" , os.path.basename(_A ) ) ) f.write(_A , arcname=os.path.join("main_dir" , os.path.basename(_A ) ) ) return path @pytest.fixture(scope="session" ) def __A ( _A , _A , _A ): """simple docstring""" __a = tmp_path_factory.mktemp("data" ) / "dataset.jsonl.tar" with tarfile.TarFile(_A , "w" ) as f: f.add(_A , arcname=os.path.basename(_A ) ) f.add(_A , arcname=os.path.basename(_A ) ) return path @pytest.fixture(scope="session" ) def __A ( _A , _A , _A , _A ): """simple docstring""" __a = tmp_path_factory.mktemp("data" ) / "dataset_nested.jsonl.tar" with tarfile.TarFile(_A , "w" ) as f: f.add(_A , arcname=os.path.join("nested" , os.path.basename(_A ) ) ) return path @pytest.fixture(scope="session" ) def __A ( _A ): """simple docstring""" __a = ["0", "1", "2", "3"] __a = str(tmp_path_factory.mktemp("data" ) / "dataset.txt" ) with open(_A , "w" ) as f: for item in data: f.write(item + "\n" ) return path @pytest.fixture(scope="session" ) def __A ( _A ): """simple docstring""" __a = ["0", "1", "2", "3"] __a = str(tmp_path_factory.mktemp("data" ) / "dataset2.txt" ) with open(_A , "w" ) as f: for item in data: f.write(item + "\n" ) return path @pytest.fixture(scope="session" ) def __A ( _A ): """simple docstring""" __a = ["0", "1", "2", "3"] __a = tmp_path_factory.mktemp("data" ) / "dataset.abc" with open(_A , "w" ) as f: for item in data: f.write(item + "\n" ) return path @pytest.fixture(scope="session" ) def __A ( _A , _A , _A ): """simple docstring""" __a = tmp_path_factory.mktemp("data" ) / "dataset.text.zip" with zipfile.ZipFile(_A , "w" ) as f: f.write(_A , arcname=os.path.basename(_A ) ) f.write(_A , arcname=os.path.basename(_A ) ) return path @pytest.fixture(scope="session" ) def __A ( _A , _A , _A ): """simple docstring""" __a = tmp_path_factory.mktemp("data" ) / "dataset_with_dir.text.zip" with zipfile.ZipFile(_A , "w" ) as f: f.write(_A , arcname=os.path.join("main_dir" , os.path.basename(_A ) ) ) f.write(_A , arcname=os.path.join("main_dir" , os.path.basename(_A ) ) ) return path @pytest.fixture(scope="session" ) def __A ( _A , _A , _A ): """simple docstring""" __a = tmp_path_factory.mktemp("data" ) / "dataset.ext.zip" with zipfile.ZipFile(_A , "w" ) as f: f.write(_A , arcname=os.path.basename("unsupported.ext" ) ) f.write(_A , arcname=os.path.basename("unsupported_2.ext" ) ) return path @pytest.fixture(scope="session" ) def __A ( _A ): """simple docstring""" __a = "\n".join(["First", "Second\u2029with Unicode new line", "Third"] ) __a = str(tmp_path_factory.mktemp("data" ) / "dataset_with_unicode_new_lines.txt" ) with open(_A , "w" , encoding="utf-8" ) as f: f.write(_A ) return path @pytest.fixture(scope="session" ) def __A ( ): """simple docstring""" return os.path.join("tests" , "features" , "data" , "test_image_rgb.jpg" ) @pytest.fixture(scope="session" ) def __A ( ): """simple docstring""" return os.path.join("tests" , "features" , "data" , "test_audio_44100.wav" ) @pytest.fixture(scope="session" ) def __A ( _A , _A ): """simple docstring""" __a = tmp_path_factory.mktemp("data" ) / "dataset.img.zip" with zipfile.ZipFile(_A , "w" ) as f: f.write(_A , arcname=os.path.basename(_A ) ) f.write(_A , arcname=os.path.basename(_A ).replace(".jpg" , "2.jpg" ) ) return path @pytest.fixture(scope="session" ) def __A ( _A ): """simple docstring""" __a = tmp_path_factory.mktemp("data_dir" ) (data_dir / "subdir").mkdir() with open(data_dir / "subdir" / "train.txt" , "w" ) as f: f.write("foo\n" * 10 ) with open(data_dir / "subdir" / "test.txt" , "w" ) as f: f.write("bar\n" * 10 ) # hidden file with open(data_dir / "subdir" / ".test.txt" , "w" ) as f: f.write("bar\n" * 10 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / ".subdir" / "train.txt" , "w" ) as f: f.write("foo\n" * 10 ) with open(data_dir / ".subdir" / "test.txt" , "w" ) as f: f.write("bar\n" * 10 ) return data_dir
197
0
"""simple docstring""" import random def lowercase ( lowerCAmelCase__ : list , lowerCAmelCase__ : List[Any] ) -> tuple: __a , __a , __a = [], [], [] for element in data: if element < pivot: less.append(lowerCAmelCase__ ) elif element > pivot: greater.append(lowerCAmelCase__ ) else: equal.append(lowerCAmelCase__ ) return less, equal, greater def lowercase ( lowerCAmelCase__ : list , lowerCAmelCase__ : int ) -> Union[str, Any]: # index = len(items) // 2 when trying to find the median # (value of index when items is sorted) # invalid input if index >= len(lowerCAmelCase__ ) or index < 0: return None __a = items[random.randint(0 , len(lowerCAmelCase__ ) - 1 )] __a = 0 __a , __a , __a = _partition(lowerCAmelCase__ , lowerCAmelCase__ ) __a = len(lowerCAmelCase__ ) __a = len(lowerCAmelCase__ ) # index is the pivot if m <= index < m + count: return pivot # must be in smaller elif m > index: return quick_select(lowerCAmelCase__ , lowerCAmelCase__ ) # must be in larger else: return quick_select(lowerCAmelCase__ , index - (m + count) )
65
"""simple docstring""" from sklearn.metrics import fa_score import datasets lowercase_ = "\nThe F1 score is the harmonic mean of the precision and recall. It can be computed with the equation:\nF1 = 2 * (precision * recall) / (precision + recall)\n" lowercase_ = "\nArgs:\n predictions (`list` of `int`): Predicted labels.\n references (`list` of `int`): Ground truth labels.\n labels (`list` of `int`): The set of labels to include when `average` is not set to `'binary'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None.\n pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1.\n average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`.\n\n - 'binary': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary.\n - 'micro': Calculate metrics globally by counting the total true positives, false negatives and false positives.\n - 'macro': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - 'weighted': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. This option can result in an F-score that is not between precision and recall.\n - 'samples': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n sample_weight (`list` of `float`): Sample weights Defaults to None.\n\nReturns:\n f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better.\n\nExamples:\n\n Example 1-A simple binary example\n >>> f1_metric = datasets.load_metric(\"f1\")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0])\n >>> print(results)\n {'f1': 0.5}\n\n Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`.\n >>> f1_metric = datasets.load_metric(\"f1\")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0)\n >>> print(round(results['f1'], 2))\n 0.67\n\n Example 3-The same simple binary example as in Example 1, but with `sample_weight` included.\n >>> f1_metric = datasets.load_metric(\"f1\")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3])\n >>> print(round(results['f1'], 2))\n 0.35\n\n Example 4-A multiclass example, with different values for the `average` input.\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"macro\")\n >>> print(round(results['f1'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"micro\")\n >>> print(round(results['f1'], 2))\n 0.33\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"weighted\")\n >>> print(round(results['f1'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {'f1': array([0.8, 0. , 0. ])}\n" lowercase_ = "\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCAmelCase ( datasets.Metric ): '''simple docstring''' def __UpperCAmelCase ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''int32''' ) ), '''references''': datasets.Sequence(datasets.Value('''int32''' ) ), } if self.config_name == '''multilabel''' else { '''predictions''': datasets.Value('''int32''' ), '''references''': datasets.Value('''int32''' ), } ) , reference_urls=['''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html'''] , ) def __UpperCAmelCase ( self , _a , _a , _a=None , _a=1 , _a="binary" , _a=None ): __a = fa_score( _a , _a , labels=_a , pos_label=_a , average=_a , sample_weight=_a ) return {"f1": float(_a ) if score.size == 1 else score}
65
1
import re from filelock import FileLock try: import nltk __A = True except (ImportError, ModuleNotFoundError): __A = False if NLTK_AVAILABLE: with FileLock(".lock") as lock: nltk.download("punkt", quiet=True) def lowerCAmelCase_ ( __a ) -> str: """simple docstring""" re.sub("<n>" , "" , __a ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(__a ) )
59
'''simple docstring''' from typing import Union import fire import torch from tqdm import tqdm def SCREAMING_SNAKE_CASE_ ( __A : str , __A : str = "cpu" , __A : Union[str, None] = None ) -> None: _SCREAMING_SNAKE_CASE = torch.load(__A , map_location=__A ) for k, v in tqdm(state_dict.items() ): if not isinstance(__A , torch.Tensor ): raise TypeError("FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin" ) _SCREAMING_SNAKE_CASE = v.half() if save_path is None: # overwrite src_path _SCREAMING_SNAKE_CASE = src_path torch.save(__A , __A ) if __name__ == "__main__": fire.Fire(convert)
418
0
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __A =logging.get_logger(__name__) __A ={"vocab_file": "spiece.model"} __A ={ "vocab_file": { "bert_for_seq_generation": ( "https://huggingface.co/google/bert_for_seq_generation_L-24_bbc_encoder/resolve/main/spiece.model" ), } } __A ={"bert_for_seq_generation": 5_1_2} class UpperCAmelCase__ ( __UpperCamelCase ): '''simple docstring''' UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = [] UpperCamelCase = ["""input_ids""", """attention_mask"""] def __init__( self : Tuple , a_ : str , a_ : List[Any]="<s>" , a_ : List[str]="</s>" , a_ : Dict="<unk>" , a_ : Dict="<pad>" , a_ : Optional[Any]="<::::>" , a_ : Optional[Dict[str, Any]] = None , **a_ : Union[str, Any] , ): '''simple docstring''' __UpperCAmelCase : str = {} if sp_model_kwargs is None else sp_model_kwargs # Add extra_ids to the special token list super().__init__( bos_token=a_ , eos_token=a_ , unk_token=a_ , pad_token=a_ , sep_token=a_ , sp_model_kwargs=self.sp_model_kwargs , **a_ , ) __UpperCAmelCase : Optional[Any] = vocab_file __UpperCAmelCase : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(a_ ) @property def snake_case__ ( self : Tuple ): '''simple docstring''' return self.sp_model.get_piece_size() def snake_case__ ( self : List[str] ): '''simple docstring''' __UpperCAmelCase : List[str] = {self.convert_ids_to_tokens(a_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Optional[int] ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = self.__dict__.copy() __UpperCAmelCase : Dict = None return state def __setstate__( self : Optional[Any] , a_ : str ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): __UpperCAmelCase : Optional[Any] = {} __UpperCAmelCase : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def snake_case__ ( self : int , a_ : str ): '''simple docstring''' return self.sp_model.encode(a_ , out_type=a_ ) def snake_case__ ( self : Optional[int] , a_ : Optional[Any] ): '''simple docstring''' return self.sp_model.piece_to_id(a_ ) def snake_case__ ( self : Any , a_ : Union[str, Any] ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = self.sp_model.IdToPiece(a_ ) return token def snake_case__ ( self : str , a_ : Optional[Any] ): '''simple docstring''' __UpperCAmelCase : str = [] __UpperCAmelCase : Dict = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(a_ ) + token __UpperCAmelCase : Any = [] else: current_sub_tokens.append(a_ ) out_string += self.sp_model.decode(a_ ) return out_string.strip() def snake_case__ ( self : Optional[Any] , a_ : str , a_ : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(a_ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return __UpperCAmelCase : Dict = os.path.join( a_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , a_ ) elif not os.path.isfile(self.vocab_file ): with open(a_ , '''wb''' ) as fi: __UpperCAmelCase : Dict = self.sp_model.serialized_model_proto() fi.write(a_ ) return (out_vocab_file,)
706
import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoFeatureExtractor, WavaVecaFeatureExtractor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 __A =get_tests_dir("fixtures") class UpperCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def snake_case__ ( self : int ): '''simple docstring''' __UpperCAmelCase : List[Any] = mock.Mock() __UpperCAmelCase : int = 5_00 __UpperCAmelCase : Optional[int] = {} __UpperCAmelCase : List[Any] = HTTPError __UpperCAmelCase : Any = {} # Download this model to make sure it's in the cache. __UpperCAmelCase : int = WavaVecaFeatureExtractor.from_pretrained('''hf-internal-testing/tiny-random-wav2vec2''' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('''requests.Session.request''' , return_value=a_ ) as mock_head: __UpperCAmelCase : Any = WavaVecaFeatureExtractor.from_pretrained('''hf-internal-testing/tiny-random-wav2vec2''' ) # This check we did call the fake head request mock_head.assert_called() def snake_case__ ( self : Optional[Any] ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = WavaVecaFeatureExtractor.from_pretrained( '''https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json''' ) @is_staging_test class UpperCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @classmethod def snake_case__ ( cls : int ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = TOKEN HfFolder.save_token(a_ ) @classmethod def snake_case__ ( cls : List[Any] ): '''simple docstring''' try: delete_repo(token=cls._token , repo_id='''test-feature-extractor''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-feature-extractor-org''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-feature-extractor''' ) except HTTPError: pass def snake_case__ ( self : Union[str, Any] ): '''simple docstring''' __UpperCAmelCase : List[Any] = WavaVecaFeatureExtractor.from_pretrained(a_ ) feature_extractor.push_to_hub('''test-feature-extractor''' , use_auth_token=self._token ) __UpperCAmelCase : str = WavaVecaFeatureExtractor.from_pretrained(F'{USER}/test-feature-extractor' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(a_ , getattr(a_ , a_ ) ) # Reset repo delete_repo(token=self._token , repo_id='''test-feature-extractor''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( a_ , repo_id='''test-feature-extractor''' , push_to_hub=a_ , use_auth_token=self._token ) __UpperCAmelCase : List[str] = WavaVecaFeatureExtractor.from_pretrained(F'{USER}/test-feature-extractor' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(a_ , getattr(a_ , a_ ) ) def snake_case__ ( self : int ): '''simple docstring''' __UpperCAmelCase : Dict = WavaVecaFeatureExtractor.from_pretrained(a_ ) feature_extractor.push_to_hub('''valid_org/test-feature-extractor''' , use_auth_token=self._token ) __UpperCAmelCase : Any = WavaVecaFeatureExtractor.from_pretrained('''valid_org/test-feature-extractor''' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(a_ , getattr(a_ , a_ ) ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-feature-extractor''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( a_ , repo_id='''valid_org/test-feature-extractor-org''' , push_to_hub=a_ , use_auth_token=self._token ) __UpperCAmelCase : Optional[int] = WavaVecaFeatureExtractor.from_pretrained('''valid_org/test-feature-extractor-org''' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(a_ , getattr(a_ , a_ ) ) def snake_case__ ( self : List[str] ): '''simple docstring''' CustomFeatureExtractor.register_for_auto_class() __UpperCAmelCase : List[Any] = CustomFeatureExtractor.from_pretrained(a_ ) feature_extractor.push_to_hub('''test-dynamic-feature-extractor''' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( feature_extractor.auto_map , {'''AutoFeatureExtractor''': '''custom_feature_extraction.CustomFeatureExtractor'''} , ) __UpperCAmelCase : Union[str, Any] = AutoFeatureExtractor.from_pretrained( F'{USER}/test-dynamic-feature-extractor' , trust_remote_code=a_ ) # Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module self.assertEqual(new_feature_extractor.__class__.__name__ , '''CustomFeatureExtractor''' )
241
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCAmelCase =logging.get_logger(__name__) __UpperCAmelCase ={ "facebook/xlm-roberta-xl": "https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json", "facebook/xlm-roberta-xxl": "https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json", # See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl } class a__ ( UpperCAmelCase__ ): lowerCamelCase : Optional[int] ="xlm-roberta-xl" def __init__( self : Any , a : Union[str, Any]=25_08_80 , a : int=25_60 , a : List[Any]=36 , a : Optional[int]=32 , a : Any=1_02_40 , a : List[str]="gelu" , a : Tuple=0.1 , a : List[str]=0.1 , a : Optional[int]=5_14 , a : List[Any]=1 , a : int=0.02 , a : Any=1e-0_5 , a : List[Any]=1 , a : Any=0 , a : str=2 , a : Optional[int]="absolute" , a : str=True , a : Tuple=None , **a : Tuple , ): """simple docstring""" super().__init__(pad_token_id=a , bos_token_id=a , eos_token_id=a , **a ) __lowerCamelCase = vocab_size __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = hidden_act __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = max_position_embeddings __lowerCamelCase = type_vocab_size __lowerCamelCase = initializer_range __lowerCamelCase = layer_norm_eps __lowerCamelCase = position_embedding_type __lowerCamelCase = use_cache __lowerCamelCase = classifier_dropout class a__ ( UpperCAmelCase__ ): @property def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): """simple docstring""" if self.task == "multiple-choice": __lowerCamelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __lowerCamelCase = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
546
'''simple docstring''' def __lowerCAmelCase ( UpperCamelCase__ ) -> float: __lowerCamelCase = 0 while len(UpperCamelCase__ ) > 1: __lowerCamelCase = 0 # Consider two files with minimum cost to be merged for _ in range(2 ): __lowerCamelCase = files.index(min(UpperCamelCase__ ) ) temp += files[min_index] files.pop(UpperCamelCase__ ) files.append(UpperCamelCase__ ) optimal_merge_cost += temp return optimal_merge_cost if __name__ == "__main__": import doctest doctest.testmod()
546
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) a__ = { """configuration_wav2vec2""": ["""WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Wav2Vec2Config"""], """feature_extraction_wav2vec2""": ["""Wav2Vec2FeatureExtractor"""], """processing_wav2vec2""": ["""Wav2Vec2Processor"""], """tokenization_wav2vec2""": ["""Wav2Vec2CTCTokenizer""", """Wav2Vec2Tokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ """WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST""", """Wav2Vec2ForAudioFrameClassification""", """Wav2Vec2ForCTC""", """Wav2Vec2ForMaskedLM""", """Wav2Vec2ForPreTraining""", """Wav2Vec2ForSequenceClassification""", """Wav2Vec2ForXVector""", """Wav2Vec2Model""", """Wav2Vec2PreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ """TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFWav2Vec2ForCTC""", """TFWav2Vec2Model""", """TFWav2Vec2PreTrainedModel""", """TFWav2Vec2ForSequenceClassification""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ """FlaxWav2Vec2ForCTC""", """FlaxWav2Vec2ForPreTraining""", """FlaxWav2Vec2Model""", """FlaxWav2Vec2PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .processing_wavaveca import WavaVecaProcessor from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavaveca import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaForAudioFrameClassification, WavaVecaForCTC, WavaVecaForMaskedLM, WavaVecaForPreTraining, WavaVecaForSequenceClassification, WavaVecaForXVector, WavaVecaModel, WavaVecaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWavaVecaForCTC, TFWavaVecaForSequenceClassification, TFWavaVecaModel, TFWavaVecaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( FlaxWavaVecaForCTC, FlaxWavaVecaForPreTraining, FlaxWavaVecaModel, FlaxWavaVecaPreTrainedModel, ) else: import sys a__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
99
from __future__ import annotations import time a__ = list[tuple[int, int]] a__ = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] a__ = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right class _lowerCAmelCase : """simple docstring""" def __init__( self : Dict , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : Node | None): '''simple docstring''' snake_case__ = pos_x snake_case__ = pos_y snake_case__ = (pos_y, pos_x) snake_case__ = goal_x snake_case__ = goal_y snake_case__ = parent class _lowerCAmelCase : """simple docstring""" def __init__( self : Optional[int] , UpperCamelCase__ : tuple[int, int] , UpperCamelCase__ : tuple[int, int]): '''simple docstring''' snake_case__ = Node(start[1] , start[0] , goal[1] , goal[0] , UpperCamelCase__) snake_case__ = Node(goal[1] , goal[0] , goal[1] , goal[0] , UpperCamelCase__) snake_case__ = [self.start] snake_case__ = False def __magic_name__ ( self : List[Any]): '''simple docstring''' while self.node_queue: snake_case__ = self.node_queue.pop(0) if current_node.pos == self.target.pos: snake_case__ = True return self.retrace_path(UpperCamelCase__) snake_case__ = self.get_successors(UpperCamelCase__) for node in successors: self.node_queue.append(UpperCamelCase__) if not self.reached: return [self.start.pos] return None def __magic_name__ ( self : Any , UpperCamelCase__ : Node): '''simple docstring''' snake_case__ = [] for action in delta: snake_case__ = parent.pos_x + action[1] snake_case__ = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0]) - 1 and 0 <= pos_y <= len(UpperCamelCase__) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node(UpperCamelCase__ , UpperCamelCase__ , self.target.pos_y , self.target.pos_x , UpperCamelCase__)) return successors def __magic_name__ ( self : str , UpperCamelCase__ : Node | None): '''simple docstring''' snake_case__ = node snake_case__ = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x)) snake_case__ = current_node.parent path.reverse() return path class _lowerCAmelCase : """simple docstring""" def __init__( self : str , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Any): '''simple docstring''' snake_case__ = BreadthFirstSearch(UpperCamelCase__ , UpperCamelCase__) snake_case__ = BreadthFirstSearch(UpperCamelCase__ , UpperCamelCase__) snake_case__ = False def __magic_name__ ( self : Any): '''simple docstring''' while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue: snake_case__ = self.fwd_bfs.node_queue.pop(0) snake_case__ = self.bwd_bfs.node_queue.pop(0) if current_bwd_node.pos == current_fwd_node.pos: snake_case__ = True return self.retrace_bidirectional_path( UpperCamelCase__ , UpperCamelCase__) snake_case__ = current_bwd_node snake_case__ = current_fwd_node snake_case__ = { self.fwd_bfs: self.fwd_bfs.get_successors(UpperCamelCase__), self.bwd_bfs: self.bwd_bfs.get_successors(UpperCamelCase__), } for bfs in [self.fwd_bfs, self.bwd_bfs]: for node in successors[bfs]: bfs.node_queue.append(UpperCamelCase__) if not self.reached: return [self.fwd_bfs.start.pos] return None def __magic_name__ ( self : Union[str, Any] , UpperCamelCase__ : Node , UpperCamelCase__ : Node): '''simple docstring''' snake_case__ = self.fwd_bfs.retrace_path(UpperCamelCase__) snake_case__ = self.bwd_bfs.retrace_path(UpperCamelCase__) bwd_path.pop() bwd_path.reverse() snake_case__ = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] import doctest doctest.testmod() a__ = (0, 0) a__ = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) a__ = time.time() a__ = BreadthFirstSearch(init, goal) a__ = bfs.search() a__ = time.time() - start_bfs_time print("""Unidirectional BFS computation time : """, bfs_time) a__ = time.time() a__ = BidirectionalBreadthFirstSearch(init, goal) a__ = bd_bfs.search() a__ = time.time() - start_bd_bfs_time print("""Bidirectional BFS computation time : """, bd_bfs_time)
99
1
import argparse import os import re import torch from flax.traverse_util import flatten_dict from tax import checkpoints from transformers import ( AutoTokenizer, PixaStructConfig, PixaStructForConditionalGeneration, PixaStructImageProcessor, PixaStructProcessor, PixaStructTextConfig, PixaStructVisionConfig, ) def __lowercase ( a__ ) -> List[Any]: __SCREAMING_SNAKE_CASE = checkpoints.load_tax_checkpoint(UpperCamelCase__ ) __SCREAMING_SNAKE_CASE = flatten_dict(UpperCamelCase__ ) return flax_params def __lowercase ( a__ ) -> int: __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = { 'token_embedder': 'embeddings', 'encoder_norm': 'layernorm', 'kernel': 'weight', '.out': '.output', 'scale': 'weight', 'embedders_0.pos_embedding': 'row_embedder.weight', 'embedders_1.pos_embedding': 'column_embedder.weight', } __SCREAMING_SNAKE_CASE = { 'query': 'attention.query', 'key': 'attention.key', 'value': 'attention.value', 'output.dense': 'output', 'encoder_decoder_attention.o': 'encoder_decoder_attention.attention.o', 'pre_self_attention_layer_norm': 'self_attention.layer_norm', 'pre_cross_attention_layer_norm': 'encoder_decoder_attention.layer_norm', 'mlp.': 'mlp.DenseReluDense.', 'pre_mlp_layer_norm': 'mlp.layer_norm', 'self_attention.o': 'self_attention.attention.o', 'decoder.embeddings.embedding': 'decoder.embed_tokens.weight', 'decoder.relpos_bias.rel_embedding': 'decoder.layer.0.self_attention.attention.relative_attention_bias.weight', 'decoder.decoder_norm.weight': 'decoder.final_layer_norm.weight', 'decoder.logits_dense.weight': 'decoder.lm_head.weight', } for key in flax_dict.keys(): if "target" in key: # remove the first prefix from the key __SCREAMING_SNAKE_CASE = '.'.join(key[1:] ) # rename the key for old, new in CONVERSION_MAPPING.items(): __SCREAMING_SNAKE_CASE = new_key.replace(UpperCamelCase__ , UpperCamelCase__ ) if "decoder" in new_key: for old, new in DECODER_CONVERSION_MAPPING.items(): __SCREAMING_SNAKE_CASE = new_key.replace(UpperCamelCase__ , UpperCamelCase__ ) if "layers" in new_key and "decoder" not in new_key: # use regex to replace the layer number __SCREAMING_SNAKE_CASE = re.sub(R'layers_(\d+)' , R'layer.\1' , UpperCamelCase__ ) __SCREAMING_SNAKE_CASE = new_key.replace('encoder' , 'encoder.encoder' ) elif "layers" in new_key and "decoder" in new_key: # use regex to replace the layer number __SCREAMING_SNAKE_CASE = re.sub(R'layers_(\d+)' , R'layer.\1' , UpperCamelCase__ ) __SCREAMING_SNAKE_CASE = flax_dict[key] __SCREAMING_SNAKE_CASE = {} # convert converted_dict into torch format for key in converted_dict.keys(): if ("embed_tokens" not in key) and ("embedder" not in key): __SCREAMING_SNAKE_CASE = torch.from_numpy(converted_dict[key].T ) else: __SCREAMING_SNAKE_CASE = torch.from_numpy(converted_dict[key] ) return converted_torch_dict def __lowercase ( a__ , a__ , a__=False , a__=False ) -> str: __SCREAMING_SNAKE_CASE = get_flax_param(UpperCamelCase__ ) if not use_large: __SCREAMING_SNAKE_CASE = PixaStructVisionConfig() __SCREAMING_SNAKE_CASE = PixaStructTextConfig() else: __SCREAMING_SNAKE_CASE = PixaStructVisionConfig( hidden_size=15_36 , d_ff=39_68 , num_attention_heads=24 , num_hidden_layers=18 ) __SCREAMING_SNAKE_CASE = PixaStructTextConfig(hidden_size=15_36 , d_ff=39_68 , num_heads=24 , num_layers=18 ) __SCREAMING_SNAKE_CASE = PixaStructConfig( vision_config=encoder_config.to_dict() , text_config=decoder_config.to_dict() , is_vqa=UpperCamelCase__ ) __SCREAMING_SNAKE_CASE = PixaStructForConditionalGeneration(UpperCamelCase__ ) __SCREAMING_SNAKE_CASE = rename_and_convert_flax_params(UpperCamelCase__ ) model.load_state_dict(UpperCamelCase__ ) __SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained('ybelkada/test-pix2struct-tokenizer' ) __SCREAMING_SNAKE_CASE = PixaStructImageProcessor() __SCREAMING_SNAKE_CASE = PixaStructProcessor(image_processor=UpperCamelCase__ , tokenizer=UpperCamelCase__ ) if use_large: __SCREAMING_SNAKE_CASE = 40_96 __SCREAMING_SNAKE_CASE = True # mkdir if needed os.makedirs(UpperCamelCase__ , exist_ok=UpperCamelCase__ ) model.save_pretrained(UpperCamelCase__ ) processor.save_pretrained(UpperCamelCase__ ) print('Model saved in {}'.format(UpperCamelCase__ ) ) if __name__ == "__main__": lowerCAmelCase__ : Dict =argparse.ArgumentParser() parser.add_argument('''--t5x_checkpoint_path''', default=None, type=str, help='''Path to the original T5x checkpoint.''') parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--use_large''', action='''store_true''', help='''Use large model.''') parser.add_argument('''--is_vqa''', action='''store_true''', help='''Use large model.''') lowerCAmelCase__ : Any =parser.parse_args() convert_pixastruct_original_pytorch_checkpoint_to_hf( args.tax_checkpoint_path, args.pytorch_dump_folder_path, args.use_large )
148
from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "facebook/vit-mae-base": "https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json", # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = '''vit_mae''' def __init__( self , lowerCamelCase__=768 , lowerCamelCase__=12 , lowerCamelCase__=12 , lowerCamelCase__=3_072 , lowerCamelCase__="gelu" , lowerCamelCase__=0.0 , lowerCamelCase__=0.0 , lowerCamelCase__=0.02 , lowerCamelCase__=1e-12 , lowerCamelCase__=224 , lowerCamelCase__=16 , lowerCamelCase__=3 , lowerCamelCase__=True , lowerCamelCase__=16 , lowerCamelCase__=512 , lowerCamelCase__=8 , lowerCamelCase__=2_048 , lowerCamelCase__=0.75 , lowerCamelCase__=False , **lowerCamelCase__ , ) -> Optional[int]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_act __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = initializer_range __lowerCamelCase = layer_norm_eps __lowerCamelCase = image_size __lowerCamelCase = patch_size __lowerCamelCase = num_channels __lowerCamelCase = qkv_bias __lowerCamelCase = decoder_num_attention_heads __lowerCamelCase = decoder_hidden_size __lowerCamelCase = decoder_num_hidden_layers __lowerCamelCase = decoder_intermediate_size __lowerCamelCase = mask_ratio __lowerCamelCase = norm_pix_loss
469
0
from argparse import ArgumentParser, Namespace from ..utils import logging from . import BaseTransformersCLICommand def lowerCamelCase__ (_UpperCAmelCase): return ConvertCommand( args.model_type , args.tf_checkpoint , args.pytorch_dump_output , args.config , args.finetuning_task_name) a_ : Dict = '\ntransformers can only be used from the commandline to convert TensorFlow models in PyTorch, In that case, it requires\nTensorFlow to be installed. Please see https://www.tensorflow.org/install/ for installation instructions.\n' class __A ( A__ ): @staticmethod def SCREAMING_SNAKE_CASE__ ( a) -> Any: SCREAMING_SNAKE_CASE = parser.add_parser( 'convert' , help='CLI tool to run convert model from original author checkpoints to Transformers PyTorch checkpoints.' , ) train_parser.add_argument('--model_type' , type=a , required=a , help='Model\'s type.') train_parser.add_argument( '--tf_checkpoint' , type=a , required=a , help='TensorFlow checkpoint path or folder.') train_parser.add_argument( '--pytorch_dump_output' , type=a , required=a , help='Path to the PyTorch saved model output.') train_parser.add_argument('--config' , type=a , default='' , help='Configuration file path or folder.') train_parser.add_argument( '--finetuning_task_name' , type=a , default=a , help='Optional fine-tuning task name if the TF model was a finetuned model.' , ) train_parser.set_defaults(func=a) def __init__( self , a , a , a , a , a , *a , ) -> Union[str, Any]: SCREAMING_SNAKE_CASE = logging.get_logger('transformers-cli/converting') self._logger.info(f'''Loading model {model_type}''') SCREAMING_SNAKE_CASE = model_type SCREAMING_SNAKE_CASE = tf_checkpoint SCREAMING_SNAKE_CASE = pytorch_dump_output SCREAMING_SNAKE_CASE = config SCREAMING_SNAKE_CASE = finetuning_task_name def SCREAMING_SNAKE_CASE__ ( self) -> List[Any]: if self._model_type == "albert": try: from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(a) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output) elif self._model_type == "bert": try: from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(a) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output) elif self._model_type == "funnel": try: from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(a) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output) elif self._model_type == "t5": try: from ..models.ta.convert_ta_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch except ImportError: raise ImportError(a) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output) elif self._model_type == "gpt": from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import ( convert_openai_checkpoint_to_pytorch, ) convert_openai_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output) elif self._model_type == "transfo_xl": try: from ..models.transfo_xl.convert_transfo_xl_original_tf_checkpoint_to_pytorch import ( convert_transfo_xl_checkpoint_to_pytorch, ) except ImportError: raise ImportError(a) if "ckpt" in self._tf_checkpoint.lower(): SCREAMING_SNAKE_CASE = self._tf_checkpoint SCREAMING_SNAKE_CASE = '' else: SCREAMING_SNAKE_CASE = self._tf_checkpoint SCREAMING_SNAKE_CASE = '' convert_transfo_xl_checkpoint_to_pytorch( a , self._config , self._pytorch_dump_output , a) elif self._model_type == "gpt2": try: from ..models.gpta.convert_gpta_original_tf_checkpoint_to_pytorch import ( convert_gpta_checkpoint_to_pytorch, ) except ImportError: raise ImportError(a) convert_gpta_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output) elif self._model_type == "xlnet": try: from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import ( convert_xlnet_checkpoint_to_pytorch, ) except ImportError: raise ImportError(a) convert_xlnet_checkpoint_to_pytorch( self._tf_checkpoint , self._config , self._pytorch_dump_output , self._finetuning_task_name) elif self._model_type == "xlm": from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import ( convert_xlm_checkpoint_to_pytorch, ) convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output) elif self._model_type == "lxmert": from ..models.lxmert.convert_lxmert_original_tf_checkpoint_to_pytorch import ( convert_lxmert_checkpoint_to_pytorch, ) convert_lxmert_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output) elif self._model_type == "rembert": from ..models.rembert.convert_rembert_tf_checkpoint_to_pytorch import ( convert_rembert_tf_checkpoint_to_pytorch, ) convert_rembert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output) else: raise ValueError( '--model_type should be selected in the list [bert, gpt, gpt2, t5, transfo_xl, xlnet, xlm, lxmert]')
712
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_OBJECT_DETECTION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING a_ : str = logging.get_logger(__name__) a_ : List[Any] = Dict[str, Any] a_ : Optional[int] = List[Prediction] @add_end_docstrings(A__ ) class _snake_case ( A__ ): def __init__( self , *a , **a) -> int: super().__init__(*a , **a) if self.framework == "tf": raise ValueError(f'''The {self.__class__} is only available in PyTorch.''') requires_backends(self , 'vision') self.check_model_type( dict(MODEL_FOR_OBJECT_DETECTION_MAPPING.items() + MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.items())) def SCREAMING_SNAKE_CASE__ ( self , **a) -> int: SCREAMING_SNAKE_CASE = {} if "threshold" in kwargs: SCREAMING_SNAKE_CASE = kwargs['threshold'] return {}, {}, postprocess_kwargs def __call__( self , *a , **a) -> Union[Predictions, List[Prediction]]: return super().__call__(*a , **a) def SCREAMING_SNAKE_CASE__ ( self , a) -> List[str]: SCREAMING_SNAKE_CASE = load_image(a) SCREAMING_SNAKE_CASE = torch.IntTensor([[image.height, image.width]]) SCREAMING_SNAKE_CASE = self.image_processor(images=[image] , return_tensors='pt') if self.tokenizer is not None: SCREAMING_SNAKE_CASE = self.tokenizer(text=inputs['words'] , boxes=inputs['boxes'] , return_tensors='pt') SCREAMING_SNAKE_CASE = target_size return inputs def SCREAMING_SNAKE_CASE__ ( self , a) -> int: SCREAMING_SNAKE_CASE = model_inputs.pop('target_size') SCREAMING_SNAKE_CASE = self.model(**a) SCREAMING_SNAKE_CASE = outputs.__class__({'target_size': target_size, **outputs}) if self.tokenizer is not None: SCREAMING_SNAKE_CASE = model_inputs['bbox'] return model_outputs def SCREAMING_SNAKE_CASE__ ( self , a , a=0.9) -> Dict: SCREAMING_SNAKE_CASE = model_outputs['target_size'] if self.tokenizer is not None: # This is a LayoutLMForTokenClassification variant. # The OCR got the boxes and the model classified the words. SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = target_size[0].tolist() def unnormalize(a): return self._get_bounding_box( torch.Tensor( [ (width * bbox[0] / 1000), (height * bbox[1] / 1000), (width * bbox[2] / 1000), (height * bbox[3] / 1000), ])) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = model_outputs['logits'].squeeze(0).softmax(dim=-1).max(dim=-1) SCREAMING_SNAKE_CASE = [self.model.config.idalabel[prediction] for prediction in classes.tolist()] SCREAMING_SNAKE_CASE = [unnormalize(a) for bbox in model_outputs['bbox'].squeeze(0)] SCREAMING_SNAKE_CASE = ['score', 'label', 'box'] SCREAMING_SNAKE_CASE = [dict(zip(a , a)) for vals in zip(scores.tolist() , a , a) if vals[0] > threshold] else: # This is a regular ForObjectDetectionModel SCREAMING_SNAKE_CASE = self.image_processor.post_process_object_detection(a , a , a) SCREAMING_SNAKE_CASE = raw_annotations[0] SCREAMING_SNAKE_CASE = raw_annotation['scores'] SCREAMING_SNAKE_CASE = raw_annotation['labels'] SCREAMING_SNAKE_CASE = raw_annotation['boxes'] SCREAMING_SNAKE_CASE = scores.tolist() SCREAMING_SNAKE_CASE = [self.model.config.idalabel[label.item()] for label in labels] SCREAMING_SNAKE_CASE = [self._get_bounding_box(a) for box in boxes] # {"scores": [...], ...} --> [{"score":x, ...}, ...] SCREAMING_SNAKE_CASE = ['score', 'label', 'box'] SCREAMING_SNAKE_CASE = [ dict(zip(a , a)) for vals in zip(raw_annotation['scores'] , raw_annotation['labels'] , raw_annotation['boxes']) ] return annotation def SCREAMING_SNAKE_CASE__ ( self , a) -> Dict[str, int]: if self.framework != "pt": raise ValueError('The ObjectDetectionPipeline is only available in PyTorch.') SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = box.int().tolist() SCREAMING_SNAKE_CASE = { 'xmin': xmin, 'ymin': ymin, 'xmax': xmax, 'ymax': ymax, } return bbox
444
0
'''simple docstring''' import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class UpperCamelCase__ ( _lowercase ): """simple docstring""" def __init__( self , snake_case , snake_case , snake_case = None , snake_case = None , snake_case = False , **snake_case , ): '''simple docstring''' super().__init__(features=__lowerCamelCase , cache_dir=__lowerCamelCase , keep_in_memory=__lowerCamelCase , **__lowerCamelCase ) UpperCAmelCase : Tuple = Sql( cache_dir=__lowerCamelCase , features=__lowerCamelCase , sql=__lowerCamelCase , con=__lowerCamelCase , **__lowerCamelCase , ) def A_ ( self ): '''simple docstring''' UpperCAmelCase : Any = None UpperCAmelCase : Optional[Any] = None UpperCAmelCase : str = None UpperCAmelCase : List[str] = None self.builder.download_and_prepare( download_config=__lowerCamelCase , download_mode=__lowerCamelCase , verification_mode=__lowerCamelCase , base_path=__lowerCamelCase , ) # Build dataset for splits UpperCAmelCase : int = self.builder.as_dataset( split="train" , verification_mode=__lowerCamelCase , in_memory=self.keep_in_memory ) return dataset class UpperCamelCase__ : """simple docstring""" def __init__( self , snake_case , snake_case , snake_case , snake_case = None , snake_case = None , **snake_case , ): '''simple docstring''' if num_proc is not None and num_proc <= 0: raise ValueError(f"num_proc {num_proc} must be an integer > 0." ) UpperCAmelCase : Any = dataset UpperCAmelCase : int = name UpperCAmelCase : Optional[Any] = con UpperCAmelCase : List[str] = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE UpperCAmelCase : int = num_proc UpperCAmelCase : List[str] = to_sql_kwargs def A_ ( self ): '''simple docstring''' UpperCAmelCase : Any = self.to_sql_kwargs.pop("sql" , __lowerCamelCase ) UpperCAmelCase : Union[str, Any] = self.to_sql_kwargs.pop("con" , __lowerCamelCase ) UpperCAmelCase : str = self.to_sql_kwargs.pop("index" , __lowerCamelCase ) UpperCAmelCase : List[Any] = self._write(index=__lowerCamelCase , **self.to_sql_kwargs ) return written def A_ ( self , snake_case ): '''simple docstring''' UpperCAmelCase : Union[str, Any] = args UpperCAmelCase : Optional[int] = {**to_sql_kwargs, "if_exists": "append"} if offset > 0 else to_sql_kwargs UpperCAmelCase : Tuple = query_table( table=self.dataset.data , key=slice(__lowerCamelCase , offset + self.batch_size ) , indices=self.dataset._indices , ) UpperCAmelCase : Optional[Any] = batch.to_pandas() UpperCAmelCase : Optional[Any] = df.to_sql(self.name , self.con , index=__lowerCamelCase , **__lowerCamelCase ) return num_rows or len(__lowerCamelCase ) def A_ ( self , snake_case , **snake_case ): '''simple docstring''' UpperCAmelCase : Optional[Any] = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating SQL from Arrow format" , ): written += self._batch_sql((offset, index, to_sql_kwargs) ) else: UpperCAmelCase : str = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , __lowerCamelCase , __lowerCamelCase )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating SQL from Arrow format" , ): written += num_rows return written
679
import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 _snake_case = sys.version_info >= (3, 10) def _UpperCamelCase ( snake_case__=None, snake_case__=None ) -> str: return field(default_factory=lambda: default, metadata=snake_case__ ) @dataclass class _snake_case : lowerCamelCase__: int lowerCamelCase__: float lowerCamelCase__: str lowerCamelCase__: bool @dataclass class _snake_case : lowerCamelCase__: int = 42 lowerCamelCase__: str = field(default="toto" , metadata={"help": "help message"} ) @dataclass class _snake_case : lowerCamelCase__: bool = False lowerCamelCase__: bool = True lowerCamelCase__: Optional[bool] = None class _snake_case ( _lowercase ): lowerCamelCase__: Optional[Any] = "titi" lowerCamelCase__: Union[str, Any] = "toto" class _snake_case ( _lowercase ): lowerCamelCase__: List[str] = "titi" lowerCamelCase__: int = "toto" lowerCamelCase__: Optional[Any] = 42 @dataclass class _snake_case : lowerCamelCase__: BasicEnum = "toto" def _lowerCamelCase ( self: List[str] ) -> Any: __UpperCAmelCase : List[Any] = BasicEnum(self.foo ) @dataclass class _snake_case : lowerCamelCase__: MixedTypeEnum = "toto" def _lowerCamelCase ( self: List[Any] ) -> Optional[Any]: __UpperCAmelCase : Union[str, Any] = MixedTypeEnum(self.foo ) @dataclass class _snake_case : lowerCamelCase__: Optional[int] = None lowerCamelCase__: Optional[float] = field(default=_lowercase , metadata={"help": "help message"} ) lowerCamelCase__: Optional[str] = None lowerCamelCase__: Optional[List[str]] = list_field(default=[] ) lowerCamelCase__: Optional[List[int]] = list_field(default=[] ) @dataclass class _snake_case : lowerCamelCase__: List[int] = list_field(default=[] ) lowerCamelCase__: List[int] = list_field(default=[1, 2, 3] ) lowerCamelCase__: List[str] = list_field(default=["Hallo", "Bonjour", "Hello"] ) lowerCamelCase__: List[float] = list_field(default=[0.1, 0.2, 0.3] ) @dataclass class _snake_case : lowerCamelCase__: List[int] = field() lowerCamelCase__: str = field() lowerCamelCase__: BasicEnum = field() def _lowerCamelCase ( self: str ) -> str: __UpperCAmelCase : Union[str, Any] = BasicEnum(self.required_enum ) @dataclass class _snake_case : lowerCamelCase__: int lowerCamelCase__: "BasicEnum" = field() lowerCamelCase__: "Optional[bool]" = None lowerCamelCase__: "str" = field(default="toto" , metadata={"help": "help message"} ) lowerCamelCase__: "List[str]" = list_field(default=["Hallo", "Bonjour", "Hello"] ) if is_python_no_less_than_3_10: @dataclass class _snake_case : lowerCamelCase__: bool = False lowerCamelCase__: bool = True lowerCamelCase__: bool | None = None @dataclass class _snake_case : lowerCamelCase__: int | None = None lowerCamelCase__: float | None = field(default=_lowercase , metadata={"help": "help message"} ) lowerCamelCase__: str | None = None lowerCamelCase__: list[str] | None = list_field(default=[] ) lowerCamelCase__: list[int] | None = list_field(default=[] ) class _snake_case ( unittest.TestCase ): def _lowerCamelCase ( self: str , __lowerCamelCase: argparse.ArgumentParser , __lowerCamelCase: argparse.ArgumentParser ) -> Optional[Any]: self.assertEqual(len(a._actions ) , len(b._actions ) ) for x, y in zip(a._actions , b._actions ): __UpperCAmelCase : Union[str, Any] = {k: v for k, v in vars(__lowerCamelCase ).items() if k != "container"} __UpperCAmelCase : Union[str, Any] = {k: v for k, v in vars(__lowerCamelCase ).items() if k != "container"} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get("choices" , __lowerCamelCase ) and yy.get("choices" , __lowerCamelCase ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx["type"](__lowerCamelCase ) , yy["type"](__lowerCamelCase ) ) del xx["type"], yy["type"] self.assertEqual(__lowerCamelCase , __lowerCamelCase ) def _lowerCamelCase ( self: Optional[Any] ) -> Union[str, Any]: __UpperCAmelCase : Dict = HfArgumentParser(__lowerCamelCase ) __UpperCAmelCase : str = argparse.ArgumentParser() expected.add_argument("--foo" , type=__lowerCamelCase , required=__lowerCamelCase ) expected.add_argument("--bar" , type=__lowerCamelCase , required=__lowerCamelCase ) expected.add_argument("--baz" , type=__lowerCamelCase , required=__lowerCamelCase ) expected.add_argument("--flag" , type=__lowerCamelCase , default=__lowerCamelCase , const=__lowerCamelCase , nargs="?" ) self.argparsersEqual(__lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase : Optional[int] = ["--foo", "1", "--baz", "quux", "--bar", "0.5"] ((__UpperCAmelCase) , ) : int = parser.parse_args_into_dataclasses(__lowerCamelCase , look_for_args_file=__lowerCamelCase ) self.assertFalse(example.flag ) def _lowerCamelCase ( self: Optional[Any] ) -> Optional[Any]: __UpperCAmelCase : Optional[int] = HfArgumentParser(__lowerCamelCase ) __UpperCAmelCase : Any = argparse.ArgumentParser() expected.add_argument("--foo" , default=42 , type=__lowerCamelCase ) expected.add_argument("--baz" , default="toto" , type=__lowerCamelCase , help="help message" ) self.argparsersEqual(__lowerCamelCase , __lowerCamelCase ) def _lowerCamelCase ( self: Optional[int] ) -> Optional[int]: __UpperCAmelCase : Union[str, Any] = argparse.ArgumentParser() expected.add_argument("--foo" , type=__lowerCamelCase , default=__lowerCamelCase , const=__lowerCamelCase , nargs="?" ) expected.add_argument("--baz" , type=__lowerCamelCase , default=__lowerCamelCase , const=__lowerCamelCase , nargs="?" ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument("--no_baz" , action="store_false" , default=__lowerCamelCase , dest="baz" ) expected.add_argument("--opt" , type=__lowerCamelCase , default=__lowerCamelCase ) __UpperCAmelCase : int = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(__lowerCamelCase ) for dataclass_type in dataclass_types: __UpperCAmelCase : Union[str, Any] = HfArgumentParser(__lowerCamelCase ) self.argparsersEqual(__lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase : Optional[Any] = parser.parse_args([] ) self.assertEqual(__lowerCamelCase , Namespace(foo=__lowerCamelCase , baz=__lowerCamelCase , opt=__lowerCamelCase ) ) __UpperCAmelCase : Optional[int] = parser.parse_args(["--foo", "--no_baz"] ) self.assertEqual(__lowerCamelCase , Namespace(foo=__lowerCamelCase , baz=__lowerCamelCase , opt=__lowerCamelCase ) ) __UpperCAmelCase : Union[str, Any] = parser.parse_args(["--foo", "--baz"] ) self.assertEqual(__lowerCamelCase , Namespace(foo=__lowerCamelCase , baz=__lowerCamelCase , opt=__lowerCamelCase ) ) __UpperCAmelCase : Tuple = parser.parse_args(["--foo", "True", "--baz", "True", "--opt", "True"] ) self.assertEqual(__lowerCamelCase , Namespace(foo=__lowerCamelCase , baz=__lowerCamelCase , opt=__lowerCamelCase ) ) __UpperCAmelCase : List[str] = parser.parse_args(["--foo", "False", "--baz", "False", "--opt", "False"] ) self.assertEqual(__lowerCamelCase , Namespace(foo=__lowerCamelCase , baz=__lowerCamelCase , opt=__lowerCamelCase ) ) def _lowerCamelCase ( self: Optional[int] ) -> Union[str, Any]: __UpperCAmelCase : Optional[int] = HfArgumentParser(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = argparse.ArgumentParser() expected.add_argument( "--foo" , default="toto" , choices=["titi", "toto", 42] , type=make_choice_type_function(["titi", "toto", 42] ) , ) self.argparsersEqual(__lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase : List[Any] = parser.parse_args([] ) self.assertEqual(args.foo , "toto" ) __UpperCAmelCase : int = parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto ) __UpperCAmelCase : Tuple = parser.parse_args(["--foo", "titi"] ) self.assertEqual(args.foo , "titi" ) __UpperCAmelCase : Optional[Any] = parser.parse_args_into_dataclasses(["--foo", "titi"] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi ) __UpperCAmelCase : List[Any] = parser.parse_args(["--foo", "42"] ) self.assertEqual(args.foo , 42 ) __UpperCAmelCase : str = parser.parse_args_into_dataclasses(["--foo", "42"] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo ) def _lowerCamelCase ( self: Optional[Any] ) -> List[Any]: @dataclass class _snake_case : lowerCamelCase__: Literal["titi", "toto", 42] = "toto" __UpperCAmelCase : Any = HfArgumentParser(__lowerCamelCase ) __UpperCAmelCase : Any = argparse.ArgumentParser() expected.add_argument( "--foo" , default="toto" , choices=("titi", "toto", 42) , type=make_choice_type_function(["titi", "toto", 42] ) , ) self.argparsersEqual(__lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase : Tuple = parser.parse_args([] ) self.assertEqual(args.foo , "toto" ) __UpperCAmelCase : Any = parser.parse_args(["--foo", "titi"] ) self.assertEqual(args.foo , "titi" ) __UpperCAmelCase : Any = parser.parse_args(["--foo", "42"] ) self.assertEqual(args.foo , 42 ) def _lowerCamelCase ( self: Union[str, Any] ) -> Optional[int]: __UpperCAmelCase : str = HfArgumentParser(__lowerCamelCase ) __UpperCAmelCase : Optional[int] = argparse.ArgumentParser() expected.add_argument("--foo_int" , nargs="+" , default=[] , type=__lowerCamelCase ) expected.add_argument("--bar_int" , nargs="+" , default=[1, 2, 3] , type=__lowerCamelCase ) expected.add_argument("--foo_str" , nargs="+" , default=["Hallo", "Bonjour", "Hello"] , type=__lowerCamelCase ) expected.add_argument("--foo_float" , nargs="+" , default=[0.1, 0.2, 0.3] , type=__lowerCamelCase ) self.argparsersEqual(__lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase : Union[str, Any] = parser.parse_args([] ) self.assertEqual( __lowerCamelCase , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=["Hallo", "Bonjour", "Hello"] , foo_float=[0.1, 0.2, 0.3] ) , ) __UpperCAmelCase : Dict = parser.parse_args("--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7".split() ) self.assertEqual(__lowerCamelCase , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=["a", "b", "c"] , foo_float=[0.1, 0.7] ) ) def _lowerCamelCase ( self: List[str] ) -> Optional[Any]: __UpperCAmelCase : Any = argparse.ArgumentParser() expected.add_argument("--foo" , default=__lowerCamelCase , type=__lowerCamelCase ) expected.add_argument("--bar" , default=__lowerCamelCase , type=__lowerCamelCase , help="help message" ) expected.add_argument("--baz" , default=__lowerCamelCase , type=__lowerCamelCase ) expected.add_argument("--ces" , nargs="+" , default=[] , type=__lowerCamelCase ) expected.add_argument("--des" , nargs="+" , default=[] , type=__lowerCamelCase ) __UpperCAmelCase : Dict = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(__lowerCamelCase ) for dataclass_type in dataclass_types: __UpperCAmelCase : Union[str, Any] = HfArgumentParser(__lowerCamelCase ) self.argparsersEqual(__lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase : List[str] = parser.parse_args([] ) self.assertEqual(__lowerCamelCase , Namespace(foo=__lowerCamelCase , bar=__lowerCamelCase , baz=__lowerCamelCase , ces=[] , des=[] ) ) __UpperCAmelCase : List[str] = parser.parse_args("--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3".split() ) self.assertEqual(__lowerCamelCase , Namespace(foo=12 , bar=3.14 , baz="42" , ces=["a", "b", "c"] , des=[1, 2, 3] ) ) def _lowerCamelCase ( self: str ) -> str: __UpperCAmelCase : Union[str, Any] = HfArgumentParser(__lowerCamelCase ) __UpperCAmelCase : Union[str, Any] = argparse.ArgumentParser() expected.add_argument("--required_list" , nargs="+" , type=__lowerCamelCase , required=__lowerCamelCase ) expected.add_argument("--required_str" , type=__lowerCamelCase , required=__lowerCamelCase ) expected.add_argument( "--required_enum" , type=make_choice_type_function(["titi", "toto"] ) , choices=["titi", "toto"] , required=__lowerCamelCase , ) self.argparsersEqual(__lowerCamelCase , __lowerCamelCase ) def _lowerCamelCase ( self: Optional[int] ) -> Optional[int]: __UpperCAmelCase : Optional[int] = HfArgumentParser(__lowerCamelCase ) __UpperCAmelCase : Dict = argparse.ArgumentParser() expected.add_argument("--foo" , type=__lowerCamelCase , required=__lowerCamelCase ) expected.add_argument( "--required_enum" , type=make_choice_type_function(["titi", "toto"] ) , choices=["titi", "toto"] , required=__lowerCamelCase , ) expected.add_argument("--opt" , type=__lowerCamelCase , default=__lowerCamelCase ) expected.add_argument("--baz" , default="toto" , type=__lowerCamelCase , help="help message" ) expected.add_argument("--foo_str" , nargs="+" , default=["Hallo", "Bonjour", "Hello"] , type=__lowerCamelCase ) self.argparsersEqual(__lowerCamelCase , __lowerCamelCase ) def _lowerCamelCase ( self: Any ) -> int: __UpperCAmelCase : Tuple = HfArgumentParser(__lowerCamelCase ) __UpperCAmelCase : Tuple = { "foo": 12, "bar": 3.14, "baz": "42", "flag": True, } __UpperCAmelCase : str = parser.parse_dict(__lowerCamelCase )[0] __UpperCAmelCase : Tuple = BasicExample(**__lowerCamelCase ) self.assertEqual(__lowerCamelCase , __lowerCamelCase ) def _lowerCamelCase ( self: List[Any] ) -> List[Any]: __UpperCAmelCase : Optional[Any] = HfArgumentParser(__lowerCamelCase ) __UpperCAmelCase : List[Any] = { "foo": 12, "bar": 3.14, "baz": "42", "flag": True, "extra": 42, } self.assertRaises(__lowerCamelCase , parser.parse_dict , __lowerCamelCase , allow_extra_keys=__lowerCamelCase ) def _lowerCamelCase ( self: Any ) -> List[Any]: __UpperCAmelCase : List[str] = HfArgumentParser(__lowerCamelCase ) __UpperCAmelCase : Dict = { "foo": 12, "bar": 3.14, "baz": "42", "flag": True, } with tempfile.TemporaryDirectory() as tmp_dir: __UpperCAmelCase : Any = os.path.join(__lowerCamelCase , "temp_json" ) os.mkdir(__lowerCamelCase ) with open(temp_local_path + ".json" , "w+" ) as f: json.dump(__lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase : Tuple = parser.parse_yaml_file(Path(temp_local_path + ".json" ) )[0] __UpperCAmelCase : Optional[Any] = BasicExample(**__lowerCamelCase ) self.assertEqual(__lowerCamelCase , __lowerCamelCase ) def _lowerCamelCase ( self: Dict ) -> Union[str, Any]: __UpperCAmelCase : Optional[Any] = HfArgumentParser(__lowerCamelCase ) __UpperCAmelCase : List[str] = { "foo": 12, "bar": 3.14, "baz": "42", "flag": True, } with tempfile.TemporaryDirectory() as tmp_dir: __UpperCAmelCase : List[Any] = os.path.join(__lowerCamelCase , "temp_yaml" ) os.mkdir(__lowerCamelCase ) with open(temp_local_path + ".yaml" , "w+" ) as f: yaml.dump(__lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase : Dict = parser.parse_yaml_file(Path(temp_local_path + ".yaml" ) )[0] __UpperCAmelCase : List[str] = BasicExample(**__lowerCamelCase ) self.assertEqual(__lowerCamelCase , __lowerCamelCase ) def _lowerCamelCase ( self: int ) -> List[str]: __UpperCAmelCase : Any = HfArgumentParser(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase )
382
0
"""simple docstring""" from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING A : List[str] = logging.get_logger(__name__) @add_end_docstrings(__A ) class _UpperCamelCase ( __A ): '''simple docstring''' def __init__( self , *__a , **__a ): super().__init__(*__a , **__a ) requires_backends(self , "vision" ) self.check_model_type( TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING if self.framework == "tf" else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING ) def snake_case ( self , __a=None ): __lowerCAmelCase = {} if top_k is not None: __lowerCAmelCase = top_k return {}, {}, postprocess_params def __call__( self , __a , **__a ): return super().__call__(__a , **__a ) def snake_case ( self , __a ): __lowerCAmelCase = load_image(__a ) __lowerCAmelCase = self.image_processor(images=__a , return_tensors=self.framework ) return model_inputs def snake_case ( self , __a ): __lowerCAmelCase = self.model(**__a ) return model_outputs def snake_case ( self , __a , __a=5 ): if top_k > self.model.config.num_labels: __lowerCAmelCase = self.model.config.num_labels if self.framework == "pt": __lowerCAmelCase = model_outputs.logits.softmax(-1 )[0] __lowerCAmelCase = probs.topk(__a ) elif self.framework == "tf": __lowerCAmelCase = stable_softmax(model_outputs.logits , axis=-1 )[0] __lowerCAmelCase = tf.math.top_k(__a , k=__a ) __lowerCAmelCase = topk.values.numpy(), topk.indices.numpy() else: raise ValueError(f"Unsupported framework: {self.framework}" ) __lowerCAmelCase = scores.tolist() __lowerCAmelCase = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(__a , __a )]
708
"""simple docstring""" import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def snake_case ( self , __a ): for model_result in results.values(): for batch_size, sequence_length in zip(model_result["bs"] , model_result["ss"] ): __lowerCAmelCase = model_result["result"][batch_size][sequence_length] self.assertIsNotNone(__a ) def snake_case ( self ): __lowerCAmelCase = "sshleifer/tiny-gpt2" __lowerCAmelCase = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=__a , multi_process=__a , ) __lowerCAmelCase = TensorFlowBenchmark(__a ) __lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def snake_case ( self ): __lowerCAmelCase = "sgugger/tiny-distilbert-classification" __lowerCAmelCase = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , only_pretrain_model=__a , ) __lowerCAmelCase = TensorFlowBenchmark(__a ) __lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def snake_case ( self ): __lowerCAmelCase = "sshleifer/tiny-gpt2" __lowerCAmelCase = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , ) __lowerCAmelCase = TensorFlowBenchmark(__a ) __lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def snake_case ( self ): __lowerCAmelCase = "sshleifer/tiny-gpt2" __lowerCAmelCase = AutoConfig.from_pretrained(__a ) __lowerCAmelCase = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=__a , multi_process=__a , ) __lowerCAmelCase = TensorFlowBenchmark(__a , [config] ) __lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def snake_case ( self ): __lowerCAmelCase = "sshleifer/tiny-gpt2" __lowerCAmelCase = AutoConfig.from_pretrained(__a ) __lowerCAmelCase = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , ) __lowerCAmelCase = TensorFlowBenchmark(__a , [config] ) __lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def snake_case ( self ): __lowerCAmelCase = "sshleifer/tiny-gpt2" __lowerCAmelCase = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , ) __lowerCAmelCase = TensorFlowBenchmark(__a ) __lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def snake_case ( self ): __lowerCAmelCase = "sshleifer/tiny-gpt2" __lowerCAmelCase = AutoConfig.from_pretrained(__a ) __lowerCAmelCase = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , ) __lowerCAmelCase = TensorFlowBenchmark(__a , [config] ) __lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def snake_case ( self ): __lowerCAmelCase = "patrickvonplaten/t5-tiny-random" __lowerCAmelCase = AutoConfig.from_pretrained(__a ) __lowerCAmelCase = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , ) __lowerCAmelCase = TensorFlowBenchmark(__a , configs=[config] ) __lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices("GPU" ) ) == 0 , "Cannot do xla on CPU." ) def snake_case ( self ): __lowerCAmelCase = "sshleifer/tiny-gpt2" __lowerCAmelCase = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , use_xla=__a , multi_process=__a , ) __lowerCAmelCase = TensorFlowBenchmark(__a ) __lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def snake_case ( self ): __lowerCAmelCase = "sshleifer/tiny-gpt2" with tempfile.TemporaryDirectory() as tmp_dir: __lowerCAmelCase = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=__a , save_to_csv=__a , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(__a , "inf_time.csv" ) , inference_memory_csv_file=os.path.join(__a , "inf_mem.csv" ) , env_info_csv_file=os.path.join(__a , "env.csv" ) , multi_process=__a , ) __lowerCAmelCase = TensorFlowBenchmark(__a ) benchmark.run() self.assertTrue(Path(os.path.join(__a , "inf_time.csv" ) ).exists() ) self.assertTrue(Path(os.path.join(__a , "inf_mem.csv" ) ).exists() ) self.assertTrue(Path(os.path.join(__a , "env.csv" ) ).exists() ) def snake_case ( self ): __lowerCAmelCase = "sshleifer/tiny-gpt2" def _check_summary_is_not_empty(__a ): self.assertTrue(hasattr(__a , "sequential" ) ) self.assertTrue(hasattr(__a , "cumulative" ) ) self.assertTrue(hasattr(__a , "current" ) ) self.assertTrue(hasattr(__a , "total" ) ) with tempfile.TemporaryDirectory() as tmp_dir: __lowerCAmelCase = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(__a , "log.txt" ) , log_print=__a , trace_memory_line_by_line=__a , eager_mode=__a , multi_process=__a , ) __lowerCAmelCase = TensorFlowBenchmark(__a ) __lowerCAmelCase = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) self.assertTrue(Path(os.path.join(__a , "log.txt" ) ).exists() )
282
0
"""simple docstring""" import logging import os import sys import warnings from dataclasses import dataclass, field from random import randint from typing import Optional import datasets import evaluate import numpy as np from datasets import DatasetDict, load_dataset import transformers from transformers import ( AutoConfig, AutoFeatureExtractor, AutoModelForAudioClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version A = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.31.0""") require_version("""datasets>=1.14.0""", """To fix: pip install -r examples/pytorch/audio-classification/requirements.txt""") def _UpperCamelCase ( UpperCamelCase , UpperCamelCase , UpperCamelCase = 1_6000 ) -> List[Any]: """simple docstring""" __UpperCAmelCase : int = int(round(sample_rate * max_length ) ) if len(UpperCamelCase ) <= sample_length: return wav __UpperCAmelCase : int = randint(0 , len(UpperCamelCase ) - sample_length - 1 ) return wav[random_offset : random_offset + sample_length] @dataclass class a__ : lowercase_ = field(default=__magic_name__ , metadata={"help": "Name of a dataset from the datasets package"} ) lowercase_ = field( default=__magic_name__ , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) lowercase_ = field( default=__magic_name__ , metadata={"help": "A file containing the training audio paths and labels."} ) lowercase_ = field( default=__magic_name__ , metadata={"help": "A file containing the validation audio paths and labels."} ) lowercase_ = field( default="train" , metadata={ "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'" } , ) lowercase_ = field( default="validation" , metadata={ "help": ( "The name of the training data set split to use (via the datasets library). Defaults to 'validation'" ) } , ) lowercase_ = field( default="audio" , metadata={"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"} , ) lowercase_ = field( default="label" , metadata={"help": "The name of the dataset column containing the labels. Defaults to 'label'"} ) lowercase_ = field( default=__magic_name__ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) lowercase_ = field( default=__magic_name__ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) lowercase_ = field( default=2_0 , metadata={"help": "Audio clips will be randomly cut to this length during training if the value is set."} , ) @dataclass class a__ : lowercase_ = field( default="facebook/wav2vec2-base" , metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} , ) lowercase_ = field( default=__magic_name__ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) lowercase_ = field( default=__magic_name__ , metadata={"help": "Where do you want to store the pretrained models downloaded from the Hub"} ) lowercase_ = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) lowercase_ = field( default=__magic_name__ , metadata={"help": "Name or path of preprocessor config."} ) lowercase_ = field( default=__magic_name__ , metadata={"help": "Whether to freeze the feature encoder layers of the model."} ) lowercase_ = field( default=__magic_name__ , metadata={"help": "Whether to generate an attention mask in the feature extractor."} ) lowercase_ = field( default=__magic_name__ , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) lowercase_ = field( default=__magic_name__ , metadata={"help": "Whether to freeze the feature extractor layers of the model."} ) lowercase_ = field( default=__magic_name__ , metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."} , ) def a_ ( self : Optional[int]): """simple docstring""" if not self.freeze_feature_extractor and self.freeze_feature_encoder: warnings.warn( "The argument `--freeze_feature_extractor` is deprecated and " "will be removed in a future version. Use `--freeze_feature_encoder`" "instead. Setting `freeze_feature_encoder==True`." , UpperCamelCase_ , ) if self.freeze_feature_extractor and not self.freeze_feature_encoder: raise ValueError( "The argument `--freeze_feature_extractor` is deprecated and " "should not be used in combination with `--freeze_feature_encoder`." "Only make use of `--freeze_feature_encoder`.") def _UpperCamelCase ( ) -> Any: """simple docstring""" # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __UpperCAmelCase : Tuple = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Any = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : int = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_audio_classification" , UpperCamelCase , UpperCamelCase ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() __UpperCAmelCase : List[str] = training_args.get_process_log_level() logger.setLevel(UpperCamelCase ) transformers.utils.logging.set_verbosity(UpperCamelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu} " + f"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) logger.info(f"Training/evaluation parameters {training_args}" ) # Set seed before initializing model. set_seed(training_args.seed ) # Detecting last checkpoint. __UpperCAmelCase : str = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __UpperCAmelCase : Dict = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " "Use --overwrite_output_dir to train from scratch." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Initialize our dataset and prepare it for the audio classification task. __UpperCAmelCase : Optional[int] = DatasetDict() __UpperCAmelCase : Union[str, Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.train_split_name , use_auth_token=True if model_args.use_auth_token else None , ) __UpperCAmelCase : Tuple = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.eval_split_name , use_auth_token=True if model_args.use_auth_token else None , ) if data_args.audio_column_name not in raw_datasets["train"].column_names: raise ValueError( f"--audio_column_name {data_args.audio_column_name} not found in dataset '{data_args.dataset_name}'. " "Make sure to set `--audio_column_name` to the correct audio column - one of " f"{', '.join(raw_datasets['train'].column_names )}." ) if data_args.label_column_name not in raw_datasets["train"].column_names: raise ValueError( f"--label_column_name {data_args.label_column_name} not found in dataset '{data_args.dataset_name}'. " "Make sure to set `--label_column_name` to the correct text column - one of " f"{', '.join(raw_datasets['train'].column_names )}." ) # Setting `return_attention_mask=True` is the way to get a correctly masked mean-pooling over # transformer outputs in the classifier, but it doesn't always lead to better accuracy __UpperCAmelCase : Optional[Any] = AutoFeatureExtractor.from_pretrained( model_args.feature_extractor_name or model_args.model_name_or_path , return_attention_mask=model_args.attention_mask , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # `datasets` takes care of automatically loading and resampling the audio, # so we just need to set the correct target sampling rate. __UpperCAmelCase : List[str] = raw_datasets.cast_column( data_args.audio_column_name , datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate ) ) __UpperCAmelCase : Tuple = feature_extractor.model_input_names[0] def train_transforms(UpperCamelCase ): __UpperCAmelCase : Optional[int] = [] for audio in batch[data_args.audio_column_name]: __UpperCAmelCase : int = random_subsample( audio["array"] , max_length=data_args.max_length_seconds , sample_rate=feature_extractor.sampling_rate ) subsampled_wavs.append(UpperCamelCase ) __UpperCAmelCase : Any = feature_extractor(UpperCamelCase , sampling_rate=feature_extractor.sampling_rate ) __UpperCAmelCase : Any = {model_input_name: inputs.get(UpperCamelCase )} __UpperCAmelCase : int = list(batch[data_args.label_column_name] ) return output_batch def val_transforms(UpperCamelCase ): __UpperCAmelCase : Any = [audio["array"] for audio in batch[data_args.audio_column_name]] __UpperCAmelCase : List[Any] = feature_extractor(UpperCamelCase , sampling_rate=feature_extractor.sampling_rate ) __UpperCAmelCase : Union[str, Any] = {model_input_name: inputs.get(UpperCamelCase )} __UpperCAmelCase : List[Any] = list(batch[data_args.label_column_name] ) return output_batch # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. __UpperCAmelCase : Tuple = raw_datasets["train"].features[data_args.label_column_name].names __UpperCAmelCase , __UpperCAmelCase : List[Any] = {}, {} for i, label in enumerate(UpperCamelCase ): __UpperCAmelCase : List[str] = str(UpperCamelCase ) __UpperCAmelCase : str = label # Load the accuracy metric from the datasets package __UpperCAmelCase : Union[str, Any] = evaluate.load("accuracy" ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with # `predictions` and `label_ids` fields) and has to return a dictionary string to float. def compute_metrics(UpperCamelCase ): __UpperCAmelCase : str = np.argmax(eval_pred.predictions , axis=1 ) return metric.compute(predictions=UpperCamelCase , references=eval_pred.label_ids ) __UpperCAmelCase : Dict = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(UpperCamelCase ) , labelaid=UpperCamelCase , idalabel=UpperCamelCase , finetuning_task="audio-classification" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) __UpperCAmelCase : Tuple = AutoModelForAudioClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=UpperCamelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # freeze the convolutional waveform encoder if model_args.freeze_feature_encoder: model.freeze_feature_encoder() if training_args.do_train: if data_args.max_train_samples is not None: __UpperCAmelCase : Any = ( raw_datasets["train"].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms raw_datasets["train"].set_transform(UpperCamelCase , output_all_columns=UpperCamelCase ) if training_args.do_eval: if data_args.max_eval_samples is not None: __UpperCAmelCase : Union[str, Any] = ( raw_datasets["eval"].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms raw_datasets["eval"].set_transform(UpperCamelCase , output_all_columns=UpperCamelCase ) # Initialize our trainer __UpperCAmelCase : Optional[int] = Trainer( model=UpperCamelCase , args=UpperCamelCase , train_dataset=raw_datasets["train"] if training_args.do_train else None , eval_dataset=raw_datasets["eval"] if training_args.do_eval else None , compute_metrics=UpperCamelCase , tokenizer=UpperCamelCase , ) # Training if training_args.do_train: __UpperCAmelCase : List[Any] = None if training_args.resume_from_checkpoint is not None: __UpperCAmelCase : Any = training_args.resume_from_checkpoint elif last_checkpoint is not None: __UpperCAmelCase : Tuple = last_checkpoint __UpperCAmelCase : Optional[Any] = trainer.train(resume_from_checkpoint=UpperCamelCase ) trainer.save_model() trainer.log_metrics("train" , train_result.metrics ) trainer.save_metrics("train" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: __UpperCAmelCase : Union[str, Any] = trainer.evaluate() trainer.log_metrics("eval" , UpperCamelCase ) trainer.save_metrics("eval" , UpperCamelCase ) # Write model card and (optionally) push to hub __UpperCAmelCase : Any = { "finetuned_from": model_args.model_name_or_path, "tasks": "audio-classification", "dataset": data_args.dataset_name, "tags": ["audio-classification"], } if training_args.push_to_hub: trainer.push_to_hub(**UpperCamelCase ) else: trainer.create_model_card(**UpperCamelCase ) if __name__ == "__main__": main()
77
"""simple docstring""" import logging import math from functools import partial from typing import Any, Callable, Dict, Iterable, List, Optional, Sequence, Tuple, Union import torch from .tensor_utils import tensor_tree_map, tree_map def a_ ( lowercase__ :Union[dict, list, tuple, torch.Tensor] ): __lowerCamelCase = [] if isinstance(lowercase__, lowercase__ ): for v in tree.values(): shapes.extend(_fetch_dims(lowercase__ ) ) elif isinstance(lowercase__, (list, tuple) ): for t in tree: shapes.extend(_fetch_dims(lowercase__ ) ) elif isinstance(lowercase__, torch.Tensor ): shapes.append(tree.shape ) else: raise ValueError("""Not supported""" ) return shapes @torch.jit.ignore def a_ ( lowercase__ :int, lowercase__ :Tuple[int, ...] ): __lowerCamelCase = [] for d in reversed(lowercase__ ): idx.append(flat_idx % d ) __lowerCamelCase = flat_idx // d return tuple(reversed(lowercase__ ) ) @torch.jit.ignore def a_ ( lowercase__ :Sequence[int], lowercase__ :Sequence[int], lowercase__ :Sequence[int], lowercase__ :Optional[Sequence[bool]] = None, lowercase__ :Optional[Sequence[bool]] = None, ): # start_edges and end_edges both indicate whether, starting from any given # dimension, the start/end index is at the top/bottom edge of the # corresponding tensor, modeled as a tree def reduce_edge_list(lowercase__ :List[bool] ) -> None: __lowerCamelCase = True for i in range(len(lowercase__ ) ): __lowerCamelCase = -1 * (i + 1) l[reversed_idx] &= tally __lowerCamelCase = l[reversed_idx] if start_edges is None: __lowerCamelCase = [s == 0 for s in start] reduce_edge_list(lowercase__ ) if end_edges is None: __lowerCamelCase = [e == (d - 1) for e, d in zip(lowercase__, lowercase__ )] reduce_edge_list(lowercase__ ) # Base cases. Either start/end are empty and we're done, or the final, # one-dimensional tensor can be simply sliced if len(lowercase__ ) == 0: return [()] elif len(lowercase__ ) == 1: return [(slice(start[0], end[0] + 1 ),)] __lowerCamelCase = [] __lowerCamelCase = [] # Dimensions common to start and end can be selected directly for s, e in zip(lowercase__, lowercase__ ): if s == e: path_list.append(slice(lowercase__, s + 1 ) ) else: break __lowerCamelCase = tuple(lowercase__ ) __lowerCamelCase = len(lowercase__ ) # start == end, and we're done if divergence_idx == len(lowercase__ ): return [path] def upper() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None __lowerCamelCase = start[divergence_idx] return tuple( path + (slice(lowercase__, sdi + 1 ),) + s for s in _get_minimal_slice_set( start[divergence_idx + 1 :], [d - 1 for d in dims[divergence_idx + 1 :]], dims[divergence_idx + 1 :], start_edges=start_edges[divergence_idx + 1 :], end_edges=[True for _ in end_edges[divergence_idx + 1 :]], ) ) def lower() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None __lowerCamelCase = end[divergence_idx] return tuple( path + (slice(lowercase__, edi + 1 ),) + s for s in _get_minimal_slice_set( [0 for _ in start[divergence_idx + 1 :]], end[divergence_idx + 1 :], dims[divergence_idx + 1 :], start_edges=[True for _ in start_edges[divergence_idx + 1 :]], end_edges=end_edges[divergence_idx + 1 :], ) ) # If both start and end are at the edges of the subtree rooted at # divergence_idx, we can just select the whole subtree at once if start_edges[divergence_idx] and end_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx], end[divergence_idx] + 1 ),) ) # If just start is at the edge, we can grab almost all of the subtree, # treating only the ragged bottom edge as an edge case elif start_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx], end[divergence_idx] ),) ) slices.extend(lower() ) # Analogous to the previous case, but the top is ragged this time elif end_edges[divergence_idx]: slices.extend(upper() ) slices.append(path + (slice(start[divergence_idx] + 1, end[divergence_idx] + 1 ),) ) # If both sides of the range are ragged, we need to handle both sides # separately. If there's contiguous meat in between them, we can index it # in one big chunk else: slices.extend(upper() ) __lowerCamelCase = end[divergence_idx] - start[divergence_idx] if middle_ground > 1: slices.append(path + (slice(start[divergence_idx] + 1, end[divergence_idx] ),) ) slices.extend(lower() ) return slices @torch.jit.ignore def a_ ( lowercase__ :torch.Tensor, lowercase__ :int, lowercase__ :int, lowercase__ :int ): __lowerCamelCase = t.shape[:no_batch_dims] __lowerCamelCase = list(_flat_idx_to_idx(lowercase__, lowercase__ ) ) # _get_minimal_slice_set is inclusive __lowerCamelCase = list(_flat_idx_to_idx(flat_end - 1, lowercase__ ) ) # Get an ordered list of slices to perform __lowerCamelCase = _get_minimal_slice_set( lowercase__, lowercase__, lowercase__, ) __lowerCamelCase = [t[s] for s in slices] return torch.cat([s.view((-1,) + t.shape[no_batch_dims:] ) for s in sliced_tensors] ) def a_ ( lowercase__ :Callable, lowercase__ :Dict[str, Any], lowercase__ :int, lowercase__ :int, lowercase__ :bool = False, lowercase__ :Any = None, lowercase__ :bool = False, ): if not (len(lowercase__ ) > 0): raise ValueError("""Must provide at least one input""" ) __lowerCamelCase = [shape[:no_batch_dims] for shape in _fetch_dims(lowercase__ )] __lowerCamelCase = tuple([max(lowercase__ ) for s in zip(*lowercase__ )] ) def _prep_inputs(lowercase__ :torch.Tensor ) -> torch.Tensor: if not low_mem: if not sum(t.shape[:no_batch_dims] ) == no_batch_dims: __lowerCamelCase = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) __lowerCamelCase = t.reshape(-1, *t.shape[no_batch_dims:] ) else: __lowerCamelCase = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) return t __lowerCamelCase = tensor_tree_map(_prep_inputs, lowercase__ ) __lowerCamelCase = None if _out is not None: __lowerCamelCase = tensor_tree_map(lambda lowercase__ : t.view([-1] + list(t.shape[no_batch_dims:] ) ), _out ) __lowerCamelCase = 1 for d in orig_batch_dims: flat_batch_dim *= d __lowerCamelCase = flat_batch_dim // chunk_size + (flat_batch_dim % chunk_size != 0) def _select_chunk(lowercase__ :torch.Tensor ) -> torch.Tensor: return t[i : i + chunk_size] if t.shape[0] != 1 else t __lowerCamelCase = 0 __lowerCamelCase = prepped_outputs for _ in range(lowercase__ ): # Chunk the input if not low_mem: __lowerCamelCase = _select_chunk else: __lowerCamelCase = partial( _chunk_slice, flat_start=lowercase__, flat_end=min(lowercase__, i + chunk_size ), no_batch_dims=len(lowercase__ ), ) __lowerCamelCase = tensor_tree_map(lowercase__, lowercase__ ) # Run the layer on the chunk __lowerCamelCase = layer(**lowercase__ ) # Allocate space for the output if out is None: __lowerCamelCase = tensor_tree_map(lambda lowercase__ : t.new_zeros((flat_batch_dim,) + t.shape[1:] ), lowercase__ ) # Put the chunk in its pre-allocated space if isinstance(lowercase__, lowercase__ ): def assign(lowercase__ :dict, lowercase__ :dict ) -> None: for k, v in da.items(): if isinstance(lowercase__, lowercase__ ): assign(lowercase__, da[k] ) else: if _add_into_out: v[i : i + chunk_size] += da[k] else: __lowerCamelCase = da[k] assign(lowercase__, lowercase__ ) elif isinstance(lowercase__, lowercase__ ): for xa, xa in zip(lowercase__, lowercase__ ): if _add_into_out: xa[i : i + chunk_size] += xa else: __lowerCamelCase = xa elif isinstance(lowercase__, torch.Tensor ): if _add_into_out: out[i : i + chunk_size] += output_chunk else: __lowerCamelCase = output_chunk else: raise ValueError("""Not supported""" ) i += chunk_size __lowerCamelCase = tensor_tree_map(lambda lowercase__ : t.view(orig_batch_dims + t.shape[1:] ), lowercase__ ) return out class __snake_case : def __init__( self: Union[str, Any] , A_: int = 5_12 , ): __lowerCamelCase = max_chunk_size __lowerCamelCase = None __lowerCamelCase = None def __a ( self: Tuple , A_: Callable , A_: tuple , A_: int ): logging.info("""Tuning chunk size...""" ) if min_chunk_size >= self.max_chunk_size: return min_chunk_size __lowerCamelCase = [2**l for l in range(int(math.log(self.max_chunk_size , 2 ) ) + 1 )] __lowerCamelCase = [c for c in candidates if c > min_chunk_size] __lowerCamelCase = [min_chunk_size] + candidates candidates[-1] += 4 def test_chunk_size(A_: int ) -> bool: try: with torch.no_grad(): fn(*A_ , chunk_size=A_ ) return True except RuntimeError: return False __lowerCamelCase = 0 __lowerCamelCase = len(A_ ) - 1 while i > min_viable_chunk_size_index: __lowerCamelCase = test_chunk_size(candidates[i] ) if not viable: __lowerCamelCase = (min_viable_chunk_size_index + i) // 2 else: __lowerCamelCase = i __lowerCamelCase = (i + len(A_ ) - 1) // 2 return candidates[min_viable_chunk_size_index] def __a ( self: Tuple , A_: Iterable , A_: Iterable ): __lowerCamelCase = True for aa, aa in zip(A_ , A_ ): assert type(A_ ) == type(A_ ) if isinstance(A_ , (list, tuple) ): consistent &= self._compare_arg_caches(A_ , A_ ) elif isinstance(A_ , A_ ): __lowerCamelCase = [v for _, v in sorted(aa.items() , key=lambda A_ : x[0] )] __lowerCamelCase = [v for _, v in sorted(aa.items() , key=lambda A_ : x[0] )] consistent &= self._compare_arg_caches(A_ , A_ ) else: consistent &= aa == aa return consistent def __a ( self: str , A_: Callable , A_: tuple , A_: int , ): __lowerCamelCase = True __lowerCamelCase = tree_map(lambda A_ : a.shape if isinstance(A_ , torch.Tensor ) else a , A_ , A_ ) if self.cached_arg_data is not None: # If args have changed shape/value, we need to re-tune assert len(self.cached_arg_data ) == len(A_ ) __lowerCamelCase = self._compare_arg_caches(self.cached_arg_data , A_ ) else: # Otherwise, we can reuse the precomputed value __lowerCamelCase = False if not consistent: __lowerCamelCase = self._determine_favorable_chunk_size( A_ , A_ , A_ , ) __lowerCamelCase = arg_data assert self.cached_chunk_size is not None return self.cached_chunk_size
281
0
"""simple docstring""" def A__ ( UpperCamelCase ): if not grid or not grid[0]: raise TypeError("The grid does not contain the appropriate information" ) for cell_n in range(1 , len(grid[0] ) ): grid[0][cell_n] += grid[0][cell_n - 1] A = grid[0] for row_n in range(1 , len(UpperCamelCase ) ): A = grid[row_n] A = fill_row(UpperCamelCase , UpperCamelCase ) A = grid[row_n] return grid[-1][-1] def A__ ( UpperCamelCase , UpperCamelCase ): current_row[0] += row_above[0] for cell_n in range(1 , len(UpperCamelCase ) ): current_row[cell_n] += min(current_row[cell_n - 1] , row_above[cell_n] ) return current_row if __name__ == "__main__": import doctest doctest.testmod()
524
"""simple docstring""" from ....configuration_utils import PretrainedConfig from ....utils import logging _snake_case : Optional[Any] = logging.get_logger(__name__) _snake_case : Optional[Any] = { 'Visual-Attention-Network/van-base': ( 'https://huggingface.co/Visual-Attention-Network/van-base/blob/main/config.json' ), } class _UpperCAmelCase ( lowercase_ ): UpperCamelCase = '''van''' def __init__( self :Optional[int] , __UpperCamelCase :Tuple=2_24 , __UpperCamelCase :Tuple=3 , __UpperCamelCase :int=[7, 3, 3, 3] , __UpperCamelCase :List[str]=[4, 2, 2, 2] , __UpperCamelCase :str=[64, 1_28, 3_20, 5_12] , __UpperCamelCase :Union[str, Any]=[3, 3, 12, 3] , __UpperCamelCase :Dict=[8, 8, 4, 4] , __UpperCamelCase :List[Any]="gelu" , __UpperCamelCase :str=0.02 , __UpperCamelCase :str=1e-6 , __UpperCamelCase :Tuple=1e-2 , __UpperCamelCase :Optional[Any]=0.0 , __UpperCamelCase :List[Any]=0.0 , **__UpperCamelCase :List[str] , ): super().__init__(**__UpperCamelCase ) A = image_size A = num_channels A = patch_sizes A = strides A = hidden_sizes A = depths A = mlp_ratios A = hidden_act A = initializer_range A = layer_norm_eps A = layer_scale_init_value A = drop_path_rate A = dropout_rate
524
1
from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case__ : List[str] = logging.get_logger(__name__) snake_case__ : Optional[Any] = { '''weiweishi/roc-bert-base-zh''': '''https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json''', } class snake_case ( _snake_case ): '''simple docstring''' UpperCamelCase__ : Tuple = "roc_bert" def __init__( self : int , lowerCamelCase_ : str=3_0522 , lowerCamelCase_ : int=768 , lowerCamelCase_ : Tuple=12 , lowerCamelCase_ : Any=12 , lowerCamelCase_ : List[Any]=3072 , lowerCamelCase_ : int="gelu" , lowerCamelCase_ : List[str]=0.1 , lowerCamelCase_ : Any=0.1 , lowerCamelCase_ : List[Any]=512 , lowerCamelCase_ : int=2 , lowerCamelCase_ : Optional[Any]=0.02 , lowerCamelCase_ : Dict=1E-12 , lowerCamelCase_ : Union[str, Any]=True , lowerCamelCase_ : Dict=0 , lowerCamelCase_ : int="absolute" , lowerCamelCase_ : str=None , lowerCamelCase_ : Union[str, Any]=True , lowerCamelCase_ : Optional[int]=True , lowerCamelCase_ : str=768 , lowerCamelCase_ : List[Any]=910 , lowerCamelCase_ : Any=512 , lowerCamelCase_ : List[Any]=2_4858 , lowerCamelCase_ : Dict=True , **lowerCamelCase_ : List[str] , ) ->Tuple: '''simple docstring''' UpperCAmelCase__ = vocab_size UpperCAmelCase__ = max_position_embeddings UpperCAmelCase__ = hidden_size UpperCAmelCase__ = num_hidden_layers UpperCAmelCase__ = num_attention_heads UpperCAmelCase__ = intermediate_size UpperCAmelCase__ = hidden_act UpperCAmelCase__ = hidden_dropout_prob UpperCAmelCase__ = attention_probs_dropout_prob UpperCAmelCase__ = initializer_range UpperCAmelCase__ = type_vocab_size UpperCAmelCase__ = layer_norm_eps UpperCAmelCase__ = use_cache UpperCAmelCase__ = enable_pronunciation UpperCAmelCase__ = enable_shape UpperCAmelCase__ = pronunciation_embed_dim UpperCAmelCase__ = pronunciation_vocab_size UpperCAmelCase__ = shape_embed_dim UpperCAmelCase__ = shape_vocab_size UpperCAmelCase__ = concat_input UpperCAmelCase__ = position_embedding_type UpperCAmelCase__ = classifier_dropout super().__init__(pad_token_id=lowerCamelCase_ , **lowerCamelCase_ )
392
def lowercase ( _lowerCAmelCase , _lowerCAmelCase ): UpperCAmelCase__ = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def lowercase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): UpperCAmelCase__ = 0 while b > 0: if b & 1: UpperCAmelCase__ = ((res % c) + (a % c)) % c a += a b >>= 1 return res
392
1
import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class UpperCAmelCase_ ( lowercase__ , unittest.TestCase ): '''simple docstring''' a__ = BarthezTokenizer a__ = BarthezTokenizerFast a__ = True a__ = True def _UpperCAmelCase ( self : int ) -> str: super().setUp() SCREAMING_SNAKE_CASE = BarthezTokenizerFast.from_pretrained("""moussaKam/mbarthez""" ) tokenizer.save_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname , legacy_format=__lowerCamelCase ) SCREAMING_SNAKE_CASE = tokenizer def _UpperCAmelCase ( self : Dict ) -> List[Any]: SCREAMING_SNAKE_CASE = "<pad>" SCREAMING_SNAKE_CASE = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowerCamelCase ) , __lowerCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowerCamelCase ) , __lowerCamelCase ) def _UpperCAmelCase ( self : Dict ) -> str: SCREAMING_SNAKE_CASE = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-1] , """<mask>""" ) self.assertEqual(len(__lowerCamelCase ) , 101_122 ) def _UpperCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: self.assertEqual(self.get_tokenizer().vocab_size , 101_122 ) @require_torch def _UpperCAmelCase ( self : int ) -> Tuple: SCREAMING_SNAKE_CASE = ["A long paragraph for summarization.", "Another paragraph for summarization."] SCREAMING_SNAKE_CASE = [0, 57, 3_018, 70_307, 91, 2] SCREAMING_SNAKE_CASE = self.tokenizer( __lowerCamelCase , max_length=len(__lowerCamelCase ) , padding=__lowerCamelCase , truncation=__lowerCamelCase , return_tensors="""pt""" ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) self.assertEqual((2, 6) , batch.input_ids.shape ) self.assertEqual((2, 6) , batch.attention_mask.shape ) SCREAMING_SNAKE_CASE = batch.input_ids.tolist()[0] self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) def _UpperCAmelCase ( self : Any ) -> int: if not self.test_rust_tokenizer: return SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE = "I was born in 92000, and this is falsé." SCREAMING_SNAKE_CASE = tokenizer.tokenize(__lowerCamelCase ) SCREAMING_SNAKE_CASE = rust_tokenizer.tokenize(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) SCREAMING_SNAKE_CASE = rust_tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE = tokenizer.encode(__lowerCamelCase ) SCREAMING_SNAKE_CASE = rust_tokenizer.encode(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) @slow def _UpperCAmelCase ( self : Dict ) -> Dict: SCREAMING_SNAKE_CASE = {"input_ids": [[0, 490, 14_328, 4_507, 354, 47, 43_669, 95, 25, 78_117, 20_215, 19_779, 190, 22, 400, 4, 35_343, 80_310, 603, 86, 24_937, 105, 33_438, 94_762, 196, 39_642, 7, 15, 15_933, 173, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 10_534, 87, 25, 66, 3_358, 196, 55_289, 8, 82_961, 81, 2_204, 75_203, 7, 15, 763, 12_956, 216, 178, 14_328, 9_595, 1_377, 69_693, 7, 448, 71_021, 196, 18_106, 1_437, 13_974, 108, 9_083, 4, 49_315, 7, 39, 86, 1_326, 2_793, 46_333, 4, 448, 196, 74_588, 7, 49_315, 7, 39, 21, 822, 38_470, 74, 21, 66_723, 62_480, 8, 22_050, 5, 2]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. SCREAMING_SNAKE_CASE = [ "Le transformeur est un modèle d'apprentissage profond introduit en 2017, " "utilisé principalement dans le domaine du traitement automatique des langues (TAL).", "À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus " "pour gérer des données séquentielles, telles que le langage naturel, pour des tâches " "telles que la traduction et la synthèse de texte.", ] self.tokenizer_integration_test_util( expected_encoding=__lowerCamelCase , model_name="""moussaKam/mbarthez""" , revision="""c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6""" , sequences=__lowerCamelCase , )
705
from __future__ import annotations import math def lowerCamelCase_ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' if num <= 0: SCREAMING_SNAKE_CASE = f"""{num}: Invalid input, please enter a positive integer.""" raise ValueError(SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = [True] * (num + 1) SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = 2 SCREAMING_SNAKE_CASE = int(math.sqrt(SCREAMING_SNAKE_CASE ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(SCREAMING_SNAKE_CASE ) # Set multiples of start be False for i in range(start * start , num + 1 , SCREAMING_SNAKE_CASE ): if sieve[i] is True: SCREAMING_SNAKE_CASE = False start += 1 for j in range(end + 1 , num + 1 ): if sieve[j] is True: prime.append(SCREAMING_SNAKE_CASE ) return prime if __name__ == "__main__": print(prime_sieve(int(input("""Enter a positive integer: """).strip())))
450
0
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class snake_case__ ( unittest.TestCase): def __init__( self : Dict , _A : Optional[Any] , _A : Any=7 , _A : Optional[int]=3 , _A : Optional[int]=18 , _A : Optional[Any]=30 , _A : Tuple=4_00 , _A : Any=True , _A : int=None , _A : List[str]=True , _A : Optional[Any]=None , _A : List[Any]=True , _A : Dict=[0.5, 0.5, 0.5] , _A : Optional[int]=[0.5, 0.5, 0.5] , ) -> Dict: UpperCAmelCase_ : str = size if size is not None else {"shortest_edge": 18} UpperCAmelCase_ : Tuple = crop_size if crop_size is not None else {"height": 18, "width": 18} UpperCAmelCase_ : int = parent UpperCAmelCase_ : str = batch_size UpperCAmelCase_ : Dict = num_channels UpperCAmelCase_ : Optional[int] = image_size UpperCAmelCase_ : Union[str, Any] = min_resolution UpperCAmelCase_ : str = max_resolution UpperCAmelCase_ : Tuple = do_resize UpperCAmelCase_ : Optional[Any] = size UpperCAmelCase_ : Tuple = do_center_crop UpperCAmelCase_ : Tuple = crop_size UpperCAmelCase_ : Optional[int] = do_normalize UpperCAmelCase_ : Any = image_mean UpperCAmelCase_ : Tuple = image_std def A ( self : List[str] ) -> Any: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "do_center_crop": self.do_center_crop, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class snake_case__ ( __A , unittest.TestCase): a_ = LevitImageProcessor if is_vision_available() else None def A ( self : Dict ) -> Optional[int]: UpperCAmelCase_ : str = LevitImageProcessingTester(self ) @property def A ( self : Optional[Any] ) -> int: return self.image_processor_tester.prepare_image_processor_dict() def A ( self : List[str] ) -> Tuple: UpperCAmelCase_ : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_A , '''image_mean''' ) ) self.assertTrue(hasattr(_A , '''image_std''' ) ) self.assertTrue(hasattr(_A , '''do_normalize''' ) ) self.assertTrue(hasattr(_A , '''do_resize''' ) ) self.assertTrue(hasattr(_A , '''do_center_crop''' ) ) self.assertTrue(hasattr(_A , '''size''' ) ) def A ( self : List[str] ) -> Any: UpperCAmelCase_ : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) UpperCAmelCase_ : Dict = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) def A ( self : List[str] ) -> Any: pass def A ( self : Any ) -> int: # Initialize image_processing UpperCAmelCase_ : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase_ : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A ) for image in image_inputs: self.assertIsInstance(_A , Image.Image ) # Test not batched input UpperCAmelCase_ : int = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched UpperCAmelCase_ : str = image_processing(_A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def A ( self : Optional[int] ) -> Optional[Any]: # Initialize image_processing UpperCAmelCase_ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase_ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , numpify=_A ) for image in image_inputs: self.assertIsInstance(_A , np.ndarray ) # Test not batched input UpperCAmelCase_ : str = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched UpperCAmelCase_ : int = image_processing(_A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def A ( self : int ) -> Any: # Initialize image_processing UpperCAmelCase_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase_ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , torchify=_A ) for image in image_inputs: self.assertIsInstance(_A , torch.Tensor ) # Test not batched input UpperCAmelCase_ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched UpperCAmelCase_ : Union[str, Any] = image_processing(_A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
541
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) snake_case_ : Tuple = { "configuration_albert": ["ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "AlbertConfig", "AlbertOnnxConfig"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Dict = ["AlbertTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Union[str, Any] = ["AlbertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Union[str, Any] = [ "ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "AlbertForMaskedLM", "AlbertForMultipleChoice", "AlbertForPreTraining", "AlbertForQuestionAnswering", "AlbertForSequenceClassification", "AlbertForTokenClassification", "AlbertModel", "AlbertPreTrainedModel", "load_tf_weights_in_albert", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : List[Any] = [ "TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFAlbertForMaskedLM", "TFAlbertForMultipleChoice", "TFAlbertForPreTraining", "TFAlbertForQuestionAnswering", "TFAlbertForSequenceClassification", "TFAlbertForTokenClassification", "TFAlbertMainLayer", "TFAlbertModel", "TFAlbertPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Optional[Any] = [ "FlaxAlbertForMaskedLM", "FlaxAlbertForMultipleChoice", "FlaxAlbertForPreTraining", "FlaxAlbertForQuestionAnswering", "FlaxAlbertForSequenceClassification", "FlaxAlbertForTokenClassification", "FlaxAlbertModel", "FlaxAlbertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_albert import ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, AlbertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_albert import AlbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_albert_fast import AlbertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_albert import ( ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, AlbertPreTrainedModel, load_tf_weights_in_albert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_albert import ( TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFAlbertForMaskedLM, TFAlbertForMultipleChoice, TFAlbertForPreTraining, TFAlbertForQuestionAnswering, TFAlbertForSequenceClassification, TFAlbertForTokenClassification, TFAlbertMainLayer, TFAlbertModel, TFAlbertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, FlaxAlbertPreTrainedModel, ) else: import sys snake_case_ : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
488
0
'''simple docstring''' import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class A ( SCREAMING_SNAKE_CASE__, unittest.TestCase ): """simple docstring""" __a : List[str] = DiTPipeline __a : int = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS __a : Union[str, Any] = PipelineTesterMixin.required_optional_params - { '''latents''', '''num_images_per_prompt''', '''callback''', '''callback_steps''', } __a : Tuple = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS __a : int = False def _UpperCAmelCase ( self ): torch.manual_seed(0 ) UpperCamelCase_ : Union[str, Any] = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=__lowerCAmelCase , activation_fn="""gelu-approximate""" , num_embeds_ada_norm=10_00 , norm_type="""ada_norm_zero""" , norm_elementwise_affine=__lowerCAmelCase , ) UpperCamelCase_ : Optional[Any] = AutoencoderKL() UpperCamelCase_ : Optional[int] = DDIMScheduler() UpperCamelCase_ : str = {"""transformer""": transformer.eval(), """vae""": vae.eval(), """scheduler""": scheduler} return components def _UpperCAmelCase ( self , __lowerCAmelCase , __lowerCAmelCase=0 ): if str(__lowerCAmelCase ).startswith("""mps""" ): UpperCamelCase_ : Union[str, Any] = torch.manual_seed(__lowerCAmelCase ) else: UpperCamelCase_ : Tuple = torch.Generator(device=__lowerCAmelCase ).manual_seed(__lowerCAmelCase ) UpperCamelCase_ : Optional[int] = { """class_labels""": [1], """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def _UpperCAmelCase ( self ): UpperCamelCase_ : List[str] = """cpu""" UpperCamelCase_ : Dict = self.get_dummy_components() UpperCamelCase_ : Optional[Any] = self.pipeline_class(**__lowerCAmelCase ) pipe.to(__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) UpperCamelCase_ : List[str] = self.get_dummy_inputs(__lowerCAmelCase ) UpperCamelCase_ : List[str] = pipe(**__lowerCAmelCase ).images UpperCamelCase_ : Dict = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) UpperCamelCase_ : Dict = np.array([0.29_46, 0.66_01, 0.43_29, 0.32_96, 0.41_44, 0.53_19, 0.72_73, 0.50_13, 0.44_57] ) UpperCamelCase_ : int = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(__lowerCAmelCase , 1E-3 ) def _UpperCAmelCase ( self ): self._test_inference_batch_single_identical(relax_max_difference=__lowerCAmelCase , expected_max_diff=1E-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def _UpperCAmelCase ( self ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) @require_torch_gpu @slow class A ( unittest.TestCase ): """simple docstring""" def _UpperCAmelCase ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCAmelCase ( self ): UpperCamelCase_ : Tuple = torch.manual_seed(0 ) UpperCamelCase_ : Union[str, Any] = DiTPipeline.from_pretrained("""facebook/DiT-XL-2-256""" ) pipe.to("""cuda""" ) UpperCamelCase_ : str = ["""vase""", """umbrella""", """white shark""", """white wolf"""] UpperCamelCase_ : Any = pipe.get_label_ids(__lowerCAmelCase ) UpperCamelCase_ : List[str] = pipe(__lowerCAmelCase , generator=__lowerCAmelCase , num_inference_steps=40 , output_type="""np""" ).images for word, image in zip(__lowerCAmelCase , __lowerCAmelCase ): UpperCamelCase_ : Any = load_numpy( F"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy" ) assert np.abs((expected_image - image).max() ) < 1E-2 def _UpperCAmelCase ( self ): UpperCamelCase_ : str = DiTPipeline.from_pretrained("""facebook/DiT-XL-2-512""" ) UpperCamelCase_ : Any = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to("""cuda""" ) UpperCamelCase_ : Union[str, Any] = ["""vase""", """umbrella"""] UpperCamelCase_ : Union[str, Any] = pipe.get_label_ids(__lowerCAmelCase ) UpperCamelCase_ : Tuple = torch.manual_seed(0 ) UpperCamelCase_ : str = pipe(__lowerCAmelCase , generator=__lowerCAmelCase , num_inference_steps=25 , output_type="""np""" ).images for word, image in zip(__lowerCAmelCase , __lowerCAmelCase ): UpperCamelCase_ : Optional[int] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" F"/dit/{word}_512.npy" ) assert np.abs((expected_image - image).max() ) < 1E-1
543
'''simple docstring''' import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): UpperCamelCase ="pt" elif is_tf_available(): UpperCamelCase ="tf" else: UpperCamelCase ="jax" class A ( SCREAMING_SNAKE_CASE__, unittest.TestCase ): """simple docstring""" __a : int = PerceiverTokenizer __a : List[str] = False def _UpperCAmelCase ( self ): super().setUp() UpperCamelCase_ : Optional[int] = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _UpperCAmelCase ( self ): return PerceiverTokenizer.from_pretrained("""deepmind/language-perceiver""" ) def _UpperCAmelCase ( self , **__lowerCAmelCase ): return self.tokenizer_class.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def _UpperCAmelCase ( self , __lowerCAmelCase , __lowerCAmelCase=False , __lowerCAmelCase=20 , __lowerCAmelCase=5 ): # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for Perceiver because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. UpperCamelCase_ : str = [] for i in range(len(__lowerCAmelCase ) ): try: UpperCamelCase_ : Tuple = tokenizer.decode([i] , clean_up_tokenization_spaces=__lowerCAmelCase ) except UnicodeDecodeError: pass toks.append((i, tok) ) UpperCamelCase_ : Optional[Any] = list(filter(lambda __lowerCAmelCase : re.match(R"""^[ a-zA-Z]+$""" , t[1] ) , __lowerCAmelCase ) ) UpperCamelCase_ : int = list(filter(lambda __lowerCAmelCase : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=__lowerCAmelCase ) , __lowerCAmelCase ) ) if max_length is not None and len(__lowerCAmelCase ) > max_length: UpperCamelCase_ : List[Any] = toks[:max_length] if min_length is not None and len(__lowerCAmelCase ) < min_length and len(__lowerCAmelCase ) > 0: while len(__lowerCAmelCase ) < min_length: UpperCamelCase_ : Tuple = toks + toks # toks_str = [t[1] for t in toks] UpperCamelCase_ : List[Any] = [t[0] for t in toks] # Ensure consistency UpperCamelCase_ : str = tokenizer.decode(__lowerCAmelCase , clean_up_tokenization_spaces=__lowerCAmelCase ) if " " not in output_txt and len(__lowerCAmelCase ) > 1: UpperCamelCase_ : Tuple = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=__lowerCAmelCase ) + """ """ + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=__lowerCAmelCase ) ) if with_prefix_space: UpperCamelCase_ : Tuple = """ """ + output_txt UpperCamelCase_ : List[str] = tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) return output_txt, output_ids def _UpperCAmelCase ( self ): UpperCamelCase_ : Dict = self.perceiver_tokenizer UpperCamelCase_ : Optional[int] = """Unicode €.""" UpperCamelCase_ : Dict = tokenizer(__lowerCAmelCase ) UpperCamelCase_ : Tuple = [4, 91, 1_16, 1_11, 1_05, 1_17, 1_06, 1_07, 38, 2_32, 1_36, 1_78, 52, 5] self.assertEqual(encoded["""input_ids"""] , __lowerCAmelCase ) # decoding UpperCamelCase_ : str = tokenizer.decode(__lowerCAmelCase ) self.assertEqual(__lowerCAmelCase , """[CLS]Unicode €.[SEP]""" ) UpperCamelCase_ : str = tokenizer("""e è é ê ë""" ) UpperCamelCase_ : List[str] = [4, 1_07, 38, 2_01, 1_74, 38, 2_01, 1_75, 38, 2_01, 1_76, 38, 2_01, 1_77, 5] self.assertEqual(encoded["""input_ids"""] , __lowerCAmelCase ) # decoding UpperCamelCase_ : List[str] = tokenizer.decode(__lowerCAmelCase ) self.assertEqual(__lowerCAmelCase , """[CLS]e è é ê ë[SEP]""" ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode("""e è é ê ë""" ) ) , """[CLS]e è é ê ë[SEP]""" ) def _UpperCAmelCase ( self ): UpperCamelCase_ : Union[str, Any] = self.perceiver_tokenizer UpperCamelCase_ : Optional[Any] = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] # fmt: off UpperCamelCase_ : int = [4, 71, 38, 1_14, 1_17, 1_16, 1_09, 38, 1_18, 1_03, 1_20, 1_03, 1_09, 1_20, 1_03, 1_18, 1_10, 38, 1_08, 1_17, 1_20, 38, 1_21, 1_23, 1_15, 1_15, 1_03, 1_20, 1_11, 1_28, 1_03, 1_22, 1_11, 1_17, 1_16, 52, 5, 0] # fmt: on UpperCamelCase_ : Any = tokenizer(__lowerCAmelCase , padding=__lowerCAmelCase , return_tensors=__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) if FRAMEWORK != "jax": UpperCamelCase_ : Optional[Any] = list(batch.input_ids.numpy()[0] ) else: UpperCamelCase_ : Optional[int] = list(batch.input_ids.tolist()[0] ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) self.assertEqual((2, 38) , batch.input_ids.shape ) self.assertEqual((2, 38) , batch.attention_mask.shape ) def _UpperCAmelCase ( self ): UpperCamelCase_ : Optional[int] = self.perceiver_tokenizer UpperCamelCase_ : Union[str, Any] = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] UpperCamelCase_ : int = tokenizer(__lowerCAmelCase , padding=__lowerCAmelCase , return_tensors=__lowerCAmelCase ) # check if input_ids are returned and no decoder_input_ids self.assertIn("""input_ids""" , __lowerCAmelCase ) self.assertIn("""attention_mask""" , __lowerCAmelCase ) self.assertNotIn("""decoder_input_ids""" , __lowerCAmelCase ) self.assertNotIn("""decoder_attention_mask""" , __lowerCAmelCase ) def _UpperCAmelCase ( self ): UpperCamelCase_ : int = self.perceiver_tokenizer UpperCamelCase_ : List[str] = [ """Summary of the text.""", """Another summary.""", ] UpperCamelCase_ : Dict = tokenizer( text_target=__lowerCAmelCase , max_length=32 , padding="""max_length""" , truncation=__lowerCAmelCase , return_tensors=__lowerCAmelCase ) self.assertEqual(32 , targets["""input_ids"""].shape[1] ) def _UpperCAmelCase ( self ): # safety check on max_len default value so we are sure the test works UpperCamelCase_ : Tuple = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}" ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test UpperCamelCase_ : Tuple = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}" ): # Isolate this from the other tests because we save additional tokens/etc UpperCamelCase_ : Tuple = tempfile.mkdtemp() UpperCamelCase_ : Optional[int] = """ He is very happy, UNwant\u00E9d,running""" UpperCamelCase_ : Dict = tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) tokenizer.save_pretrained(__lowerCAmelCase ) UpperCamelCase_ : Tuple = tokenizer.__class__.from_pretrained(__lowerCAmelCase ) UpperCamelCase_ : Union[str, Any] = after_tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) shutil.rmtree(__lowerCAmelCase ) UpperCamelCase_ : Union[str, Any] = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}" ): # Isolate this from the other tests because we save additional tokens/etc UpperCamelCase_ : Tuple = tempfile.mkdtemp() UpperCamelCase_ : List[str] = """ He is very happy, UNwant\u00E9d,running""" tokenizer.add_tokens(["""bim""", """bambam"""] ) UpperCamelCase_ : Any = tokenizer.additional_special_tokens additional_special_tokens.append("""new_additional_special_token""" ) tokenizer.add_special_tokens({"""additional_special_tokens""": additional_special_tokens} ) UpperCamelCase_ : Union[str, Any] = tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) tokenizer.save_pretrained(__lowerCAmelCase ) UpperCamelCase_ : Tuple = tokenizer.__class__.from_pretrained(__lowerCAmelCase ) UpperCamelCase_ : List[Any] = after_tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) self.assertIn("""new_additional_special_token""" , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) UpperCamelCase_ : int = tokenizer.__class__.from_pretrained(__lowerCAmelCase , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(__lowerCAmelCase ) def _UpperCAmelCase ( self ): UpperCamelCase_ : str = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(__lowerCAmelCase ) with open(os.path.join(__lowerCAmelCase , """special_tokens_map.json""" ) , encoding="""utf-8""" ) as json_file: UpperCamelCase_ : Union[str, Any] = json.load(__lowerCAmelCase ) with open(os.path.join(__lowerCAmelCase , """tokenizer_config.json""" ) , encoding="""utf-8""" ) as json_file: UpperCamelCase_ : List[str] = json.load(__lowerCAmelCase ) UpperCamelCase_ : Tuple = [F"<extra_id_{i}>" for i in range(1_25 )] UpperCamelCase_ : Union[str, Any] = added_tokens_extra_ids + [ """an_additional_special_token""" ] UpperCamelCase_ : List[Any] = added_tokens_extra_ids + [ """an_additional_special_token""" ] with open(os.path.join(__lowerCAmelCase , """special_tokens_map.json""" ) , """w""" , encoding="""utf-8""" ) as outfile: json.dump(__lowerCAmelCase , __lowerCAmelCase ) with open(os.path.join(__lowerCAmelCase , """tokenizer_config.json""" ) , """w""" , encoding="""utf-8""" ) as outfile: json.dump(__lowerCAmelCase , __lowerCAmelCase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files UpperCamelCase_ : Optional[int] = tokenizer_class.from_pretrained( __lowerCAmelCase , ) self.assertIn( """an_additional_special_token""" , tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ["""an_additional_special_token"""] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(["""an_additional_special_token"""] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained UpperCamelCase_ : Optional[Any] = added_tokens_extra_ids + [AddedToken("""a_new_additional_special_token""" , lstrip=__lowerCAmelCase )] UpperCamelCase_ : Union[str, Any] = tokenizer_class.from_pretrained( __lowerCAmelCase , additional_special_tokens=__lowerCAmelCase , ) self.assertIn("""a_new_additional_special_token""" , tokenizer.additional_special_tokens ) self.assertEqual( ["""a_new_additional_special_token"""] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(["""a_new_additional_special_token"""] ) ) , ) def _UpperCAmelCase ( self ): UpperCamelCase_ : List[Any] = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([1_78] ) , """�""" ) def _UpperCAmelCase ( self ): pass def _UpperCAmelCase ( self ): pass def _UpperCAmelCase ( self ): pass def _UpperCAmelCase ( self ): pass def _UpperCAmelCase ( self ): # The default common tokenizer tests uses invalid tokens for Perceiver that can only accept one-character # strings and special added tokens as tokens UpperCamelCase_ : Dict = self.get_tokenizers(fast=__lowerCAmelCase , do_lower_case=__lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}" ): UpperCamelCase_ : str = ["""[CLS]""", """t""", """h""", """i""", """s""", """ """, """i""", """s""", """ """, """a""", """ """, """t""", """e""", """s""", """t""", """[SEP]"""] UpperCamelCase_ : Optional[Any] = tokenizer.convert_tokens_to_string(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase )
543
1
def lowerCAmelCase_ ( ) -> str: """simple docstring""" lowerCamelCase__: str =[31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31] lowerCamelCase__: List[str] =6 lowerCamelCase__: int =1 lowerCamelCase__: int =1901 lowerCamelCase__: List[str] =0 while year < 2001: day += 7 if (year % 4 == 0 and year % 100 != 0) or (year % 400 == 0): if day > days_per_month[month - 1] and month != 2: month += 1 lowerCamelCase__: int =day - days_per_month[month - 2] elif day > 29 and month == 2: month += 1 lowerCamelCase__: Dict =day - 29 else: if day > days_per_month[month - 1]: month += 1 lowerCamelCase__: Tuple =day - days_per_month[month - 2] if month > 12: year += 1 lowerCamelCase__: Union[str, Any] =1 if year < 2001 and day == 1: sundays += 1 return sundays if __name__ == "__main__": print(solution())
59
'''simple docstring''' def snake_case ( a_ : str , a_ : Optional[int] ) -> Any: """simple docstring""" UpperCamelCase_ : Tuple = (boundary[1] - boundary[0]) / steps UpperCamelCase_ : Dict = boundary[0] UpperCamelCase_ : Any = boundary[1] UpperCamelCase_ : Union[str, Any] = make_points(a_ , a_ , a_ ) UpperCamelCase_ : Any = 0.0 y += (h / 2.0) * f(a_ ) for i in x_i: # print(i) y += h * f(a_ ) y += (h / 2.0) * f(a_ ) return y def snake_case ( a_ : Tuple , a_ : Any , a_ : Tuple ) -> Tuple: """simple docstring""" UpperCamelCase_ : Optional[int] = a + h while x < (b - h): yield x UpperCamelCase_ : List[str] = x + h def snake_case ( a_ : List[str] ) -> Tuple: # enter your function here """simple docstring""" UpperCamelCase_ : int = (x - 0) * (x - 0) return y def snake_case ( ) -> Dict: """simple docstring""" UpperCamelCase_ : Optional[Any] = 0.0 # Lower bound of integration UpperCamelCase_ : Optional[int] = 1.0 # Upper bound of integration UpperCamelCase_ : Optional[Any] = 10.0 # define number of steps or resolution UpperCamelCase_ : Optional[Any] = [a, b] # define boundary of integration UpperCamelCase_ : Any = method_a(a_ , a_ ) print(f"y = {y}" ) if __name__ == "__main__": main()
208
0
'''simple docstring''' def SCREAMING_SNAKE_CASE__ ( lowercase ) -> int: assert column_title.isupper() snake_case : List[str] = 0 snake_case : Tuple = len(lowercase ) - 1 snake_case : Any = 0 while index >= 0: snake_case : Optional[int] = (ord(column_title[index] ) - 64) * pow(26 ,lowercase ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
712
import inspect import re from hashlib import shaaaa from typing import Dict, List from .arrow import arrow from .audiofolder import audiofolder from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql # noqa F401 from .text import text def SCREAMING_SNAKE_CASE__ ( lowercase ) -> str: snake_case : int = [] for line in lines: snake_case : Dict = re.sub(R"""#.*""" ,"""""" ,lowercase ) # remove comments if line: filtered_lines.append(lowercase ) snake_case : Optional[int] = """\n""".join(lowercase ) # Make a hash from all this code snake_case : List[str] = full_str.encode("""utf-8""" ) return shaaaa(lowercase ).hexdigest() # get importable module names and hash for caching lowerCamelCase : Any = { 'csv': (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), 'json': (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), 'pandas': (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), 'parquet': (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), 'arrow': (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())), 'text': (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), 'imagefolder': (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), 'audiofolder': (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), } # Used to infer the module to use based on the data files extensions lowerCamelCase : Optional[int] = { '.csv': ('csv', {}), '.tsv': ('csv', {'sep': '\t'}), '.json': ('json', {}), '.jsonl': ('json', {}), '.parquet': ('parquet', {}), '.arrow': ('arrow', {}), '.txt': ('text', {}), } _EXTENSION_TO_MODULE.update({ext: ('imagefolder', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('imagefolder', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ('audiofolder', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('audiofolder', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) lowerCamelCase : Tuple = {'imagefolder', 'audiofolder'} # Used to filter data files based on extensions given a module name lowerCamelCase : Dict[str, List[str]] = {} for _ext, (_module, _) in _EXTENSION_TO_MODULE.items(): _MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext) _MODULE_TO_EXTENSIONS["imagefolder"].append('.zip') _MODULE_TO_EXTENSIONS["audiofolder"].append('.zip')
684
0
from __future__ import annotations def lowerCAmelCase_ ( lowerCamelCase ): create_state_space_tree(_SCREAMING_SNAKE_CASE , [] , 0 , [0 for i in range(len(_SCREAMING_SNAKE_CASE ) )] ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ): if index == len(_SCREAMING_SNAKE_CASE ): print(_SCREAMING_SNAKE_CASE ) return for i in range(len(_SCREAMING_SNAKE_CASE ) ): if not index_used[i]: current_sequence.append(sequence[i] ) __magic_name__ : List[Any] =True create_state_space_tree(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , index + 1 , _SCREAMING_SNAKE_CASE ) current_sequence.pop() __magic_name__ : List[Any] =False UpperCAmelCase_ : list[int | str] = [3, 1, 2, 4] generate_all_permutations(sequence) UpperCAmelCase_ : list[int | str] = ["A", "B", "C"] generate_all_permutations(sequence_a)
21
from __future__ import annotations from collections.abc import MutableSequence class UpperCamelCase__ : '''simple docstring''' def __init__( self , UpperCamelCase__ , UpperCamelCase__ ) -> None: if len(UpperCamelCase__ ) != degree + 1: raise ValueError( "The number of coefficients should be equal to the degree + 1." ) lowerCamelCase : list[float] = list(UpperCamelCase__ ) lowerCamelCase : List[str] = degree def __add__( self , UpperCamelCase__ ) -> Polynomial: if self.degree > polynomial_a.degree: lowerCamelCase : Union[str, Any] = self.coefficients[:] for i in range(polynomial_a.degree + 1 ): coefficients[i] += polynomial_a.coefficients[i] return Polynomial(self.degree , UpperCamelCase__ ) else: lowerCamelCase : Dict = polynomial_a.coefficients[:] for i in range(self.degree + 1 ): coefficients[i] += self.coefficients[i] return Polynomial(polynomial_a.degree , UpperCamelCase__ ) def __sub__( self , UpperCamelCase__ ) -> Polynomial: return self + polynomial_a * Polynomial(0 , [-1] ) def __neg__( self ) -> Polynomial: return Polynomial(self.degree , [-c for c in self.coefficients] ) def __mul__( self , UpperCamelCase__ ) -> Polynomial: lowerCamelCase : list[float] = [0] * (self.degree + polynomial_a.degree + 1) for i in range(self.degree + 1 ): for j in range(polynomial_a.degree + 1 ): coefficients[i + j] += ( self.coefficients[i] * polynomial_a.coefficients[j] ) return Polynomial(self.degree + polynomial_a.degree , UpperCamelCase__ ) def _lowercase ( self , UpperCamelCase__ ) -> int | float: lowerCamelCase : int | float = 0 for i in range(self.degree + 1 ): result += self.coefficients[i] * (substitution**i) return result def __str__( self ) -> str: lowerCamelCase : Any = "" for i in range(self.degree , -1 , -1 ): if self.coefficients[i] == 0: continue elif self.coefficients[i] > 0: if polynomial: polynomial += " + " else: polynomial += " - " if i == 0: polynomial += str(abs(self.coefficients[i] ) ) elif i == 1: polynomial += str(abs(self.coefficients[i] ) ) + "x" else: polynomial += str(abs(self.coefficients[i] ) ) + "x^" + str(UpperCamelCase__ ) return polynomial def __repr__( self ) -> str: return self.__str__() def _lowercase ( self ) -> Polynomial: lowerCamelCase : list[float] = [0] * self.degree for i in range(self.degree ): lowerCamelCase : Any = self.coefficients[i + 1] * (i + 1) return Polynomial(self.degree - 1 , UpperCamelCase__ ) def _lowercase ( self , UpperCamelCase__ = 0 ) -> Polynomial: lowerCamelCase : list[float] = [0] * (self.degree + 2) lowerCamelCase : Optional[int] = constant for i in range(self.degree + 1 ): lowerCamelCase : List[Any] = self.coefficients[i] / (i + 1) return Polynomial(self.degree + 1 , UpperCamelCase__ ) def __eq__( self , UpperCamelCase__ ) -> bool: if not isinstance(UpperCamelCase__ , UpperCamelCase__ ): return False if self.degree != polynomial_a.degree: return False for i in range(self.degree + 1 ): if self.coefficients[i] != polynomial_a.coefficients[i]: return False return True def __ne__( self , UpperCamelCase__ ) -> bool: return not self.__eq__(UpperCamelCase__ )
311
0
"""simple docstring""" import collections import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = """▁""" SCREAMING_SNAKE_CASE_ = {"""vocab_file""": """prophetnet.tokenizer"""} SCREAMING_SNAKE_CASE_ = { """vocab_file""": { """microsoft/xprophetnet-large-wiki100-cased""": ( """https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/prophetnet.tokenizer""" ), } } SCREAMING_SNAKE_CASE_ = { """microsoft/xprophetnet-large-wiki100-cased""": {"""do_lower_case""": False}, } SCREAMING_SNAKE_CASE_ = { """microsoft/xprophetnet-large-wiki100-cased""": 5_12, } def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: a_ : Optional[int] = collections.OrderedDict() with open(SCREAMING_SNAKE_CASE__, "r", encoding="utf-8" ) as reader: a_ : Optional[Any] = reader.readlines() for index, token in enumerate(SCREAMING_SNAKE_CASE__ ): a_ : Union[str, Any] = token.rstrip("\n" ) a_ : Tuple = index return vocab class snake_case_ ( a_ ): __lowerCAmelCase = VOCAB_FILES_NAMES __lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase = ["input_ids", "attention_mask"] def __init__( self , a_ , a_="[SEP]" , a_="[SEP]" , a_="[SEP]" , a_="[UNK]" , a_="[PAD]" , a_="[CLS]" , a_="[MASK]" , a_ = None , **a_ , ): a_ : Optional[int] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=a_ , eos_token=a_ , sep_token=a_ , unk_token=a_ , pad_token=a_ , cls_token=a_ , mask_token=a_ , sp_model_kwargs=self.sp_model_kwargs , **a_ , ) try: import sentencepiece as spm except ImportError: logger.warning( "You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece" " pip install sentencepiece" ) raise a_ : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(a_ ) ) a_ : Dict = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # put special tokens and [unused] tokens into the vocab a_ : Tuple = {"[PAD]": 0, "[CLS]": 1, "[SEP]": 2, "[UNK]": 3, "[MASK]": 4} for i in range(1_0 ): a_ : Tuple = F"""[unused{i}]""" a_ : str = 5 + i # The first "real" token "," has position 15 in the embedding vocab and position 3 in the spm vocab a_ : Dict = 1_2 a_ : Any = {v: k for k, v in self.fairseq_tokens_to_ids.items()} for k in self.fairseq_tokens_to_ids.keys(): self.unique_no_split_tokens.append(a_ ) def __getstate__( self ): a_ : Tuple = self.__dict__.copy() a_ : str = None return state def __setstate__( self , a_ ): a_ : List[str] = d try: import sentencepiece as spm except ImportError: logger.warning( "You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece" " pip install sentencepiece" ) raise # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): a_ : Optional[int] = {} a_ : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def snake_case_ ( self , a_ , a_ = None , a_ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a_ , token_ids_a=a_ , already_has_special_tokens=a_ ) if token_ids_a is None: return ([0] * len(a_ )) + [1] return ([0] * len(a_ )) + [1] + ([0] * len(a_ )) + [1] def snake_case_ ( self , a_ , a_ = None ): a_ : Any = [self.sep_token_id] if token_ids_a is None: return len(token_ids_a + sep ) * [0] return len(token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def snake_case_ ( self ): return len(self.sp_model ) + self.fairseq_offset def snake_case_ ( self ): a_ : Any = {self.convert_ids_to_tokens(a_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def snake_case_ ( self , a_ ): return self.sp_model.encode(a_ , out_type=a_ ) def snake_case_ ( self , a_ ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] a_ : Any = self.sp_model.PieceToId(a_ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def snake_case_ ( self , a_ ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def snake_case_ ( self , a_ ): a_ : List[Any] = "".join(a_ ).replace(a_ , " " ).strip() return out_string def snake_case_ ( self , a_ , a_ = None ): if not os.path.isdir(a_ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return a_ : str = os.path.join( a_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , a_ ) elif not os.path.isfile(self.vocab_file ): with open(a_ , "wb" ) as fi: a_ : List[str] = self.sp_model.serialized_model_proto() fi.write(a_ ) return (out_vocab_file,) def snake_case_ ( self , a_ , a_ = None ): if token_ids_a is None: return token_ids_a + [self.sep_token_id] a_ : int = [self.sep_token_id] return token_ids_a + sep + token_ids_a + sep
370
"""simple docstring""" from typing import TYPE_CHECKING from ..utils import _LazyModule SCREAMING_SNAKE_CASE_ = { """config""": [ """EXTERNAL_DATA_FORMAT_SIZE_LIMIT""", """OnnxConfig""", """OnnxConfigWithPast""", """OnnxSeq2SeqConfigWithPast""", """PatchingSpec""", ], """convert""": ["""export""", """validate_model_outputs"""], """features""": ["""FeaturesManager"""], """utils""": ["""ParameterFormat""", """compute_serialized_parameters_size"""], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys SCREAMING_SNAKE_CASE_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
370
1
'''simple docstring''' import json import re from typing import TYPE_CHECKING, List, Optional, Tuple, Union import numpy as np from ...utils import is_tf_available, is_torch_available, logging if TYPE_CHECKING: if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_codegen import CodeGenTokenizer _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} _SCREAMING_SNAKE_CASE = { "vocab_file": { "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/vocab.json", }, "merges_file": { "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/merges.txt", }, "tokenizer_file": { "Salesforce/codegen-350M-mono": ( "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/tokenizer.json" ), }, } _SCREAMING_SNAKE_CASE = { "Salesforce/codegen-350M-mono": 2048, } class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = ["input_ids", "attention_mask"] snake_case_ = CodeGenTokenizer def __init__( self : Union[str, Any] , __snake_case : Any=None , __snake_case : List[Any]=None , __snake_case : str=None , __snake_case : Union[str, Any]="<|endoftext|>" , __snake_case : List[Any]="<|endoftext|>" , __snake_case : Tuple="<|endoftext|>" , __snake_case : List[Any]=False , **__snake_case : List[str] , )-> Optional[Any]: super().__init__( __snake_case , __snake_case , tokenizer_file=__snake_case , unk_token=__snake_case , bos_token=__snake_case , eos_token=__snake_case , add_prefix_space=__snake_case , **__snake_case , ) if kwargs.pop("""add_bos_token""" , __snake_case ): snake_case = kwargs.pop("""name_or_path""" , """""" ) raise ValueError( """Currenty GPT2's fast tokenizer does NOT support adding a BOS token.""" """Instead you should use GPT2's slow tokenizer class `CodeGenTokenizer` as follows: \n""" f'''`CodeGenTokenizer.from_pretrained(\'{model_id}\')`\nor\n''' f'''`AutoTokenizer.from_pretrained(\'{model_id}\', use_fast=False)`\n''' """This issue will be fixed soon, see: https://github.com/huggingface/tokenizers/pull/1005.""" """ so that the fast tokenizer works correctly.""" ) snake_case = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , __snake_case ) != add_prefix_space: snake_case = getattr(__snake_case , pre_tok_state.pop("""type""" ) ) snake_case = add_prefix_space snake_case = pre_tok_class(**__snake_case ) snake_case = add_prefix_space def lowerCAmelCase ( self : List[str] , *__snake_case : List[Any] , **__snake_case : Optional[Any] )-> BatchEncoding: snake_case = kwargs.get("""is_split_into_words""" , __snake_case ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__snake_case , **__snake_case ) def lowerCAmelCase ( self : List[str] , *__snake_case : Optional[Any] , **__snake_case : List[Any] )-> BatchEncoding: snake_case = kwargs.get("""is_split_into_words""" , __snake_case ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*__snake_case , **__snake_case ) def lowerCAmelCase ( self : Optional[Any] , __snake_case : str , __snake_case : Optional[str] = None )-> Tuple[str]: snake_case = self._tokenizer.model.save(__snake_case , name=__snake_case ) return tuple(__snake_case ) def lowerCAmelCase ( self : List[Any] , __snake_case : Union[int, List[int], "np.ndarray", "torch.Tensor", "tf.Tensor"] , __snake_case : bool = False , __snake_case : bool = None , __snake_case : Optional[List[str]] = None , **__snake_case : List[Any] , )-> str: snake_case = super().decode( token_ids=__snake_case , skip_special_tokens=__snake_case , clean_up_tokenization_spaces=__snake_case , **__snake_case , ) if truncate_before_pattern is not None and len(__snake_case ) > 0: snake_case = self.truncate(__snake_case , __snake_case ) return decoded_text def lowerCAmelCase ( self : int , __snake_case : Any , __snake_case : Any )-> List[Any]: def find_re(__snake_case : str , __snake_case : Any , __snake_case : List[str] ): snake_case = pattern.search(__snake_case , __snake_case ) return m.start() if m else -1 snake_case = [re.compile(__snake_case , re.MULTILINE ) for pattern in truncate_before_pattern] snake_case = list(re.finditer("""^print""" , __snake_case , re.MULTILINE ) ) if len(__snake_case ) > 1: snake_case = completion[: prints[1].start()] snake_case = list(re.finditer("""^def""" , __snake_case , re.MULTILINE ) ) if len(__snake_case ) > 1: snake_case = completion[: defs[1].start()] snake_case = 0 snake_case = [ pos for pos in [find_re(__snake_case , __snake_case , __snake_case ) for terminal in terminals] if pos != -1 ] if len(__snake_case ) > 0: return completion[: min(__snake_case )] else: return completion
369
'''simple docstring''' import os from collections.abc import Iterator def __lowerCamelCase ( __lowerCAmelCase : str = "." ) -> Iterator[str]: for dir_path, dir_names, filenames in os.walk(__lowerCAmelCase ): snake_case = [d for d in dir_names if d != """scripts""" and d[0] not in """._"""] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(__lowerCAmelCase )[1] in (".py", ".ipynb"): yield os.path.join(__lowerCAmelCase , __lowerCAmelCase ).lstrip("""./""" ) def __lowerCamelCase ( __lowerCAmelCase : List[str] ) -> Any: return F'''{i * " "}*''' if i else "\n##" def __lowerCamelCase ( __lowerCAmelCase : str , __lowerCAmelCase : str ) -> str: snake_case = old_path.split(os.sep ) for i, new_part in enumerate(new_path.split(os.sep ) ): if (i + 1 > len(__lowerCAmelCase ) or old_parts[i] != new_part) and new_part: print(F'''{md_prefix(__lowerCAmelCase )} {new_part.replace("_" , " " ).title()}''' ) return new_path def __lowerCamelCase ( __lowerCAmelCase : str = "." ) -> None: snake_case = """""" for filepath in sorted(good_file_paths(__lowerCAmelCase ) ): snake_case , snake_case = os.path.split(__lowerCAmelCase ) if filepath != old_path: snake_case = print_path(__lowerCAmelCase , __lowerCAmelCase ) snake_case = (filepath.count(os.sep ) + 1) if filepath else 0 snake_case = F'''{filepath}/{filename}'''.replace(""" """ , """%20""" ) snake_case = os.path.splitext(filename.replace("""_""" , """ """ ).title() )[0] print(F'''{md_prefix(__lowerCAmelCase )} [{filename}]({url})''' ) if __name__ == "__main__": print_directory_md(".")
369
1
'''simple docstring''' def __magic_name__( _A , _A ): '''simple docstring''' return (pointa[0] - pointa[0]) ** 2 + (pointa[1] - pointa[1]) ** 2 def __magic_name__( _A , _A=0 ): '''simple docstring''' return sorted(_A , key=lambda _A : x[column] ) def __magic_name__( _A , _A , _A=float("""inf""" ) ): '''simple docstring''' for i in range(points_counts - 1 ): for j in range(i + 1 , _A ): UpperCamelCase__ = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: UpperCamelCase__ = current_dis return min_dis def __magic_name__( _A , _A , _A=float("""inf""" ) ): '''simple docstring''' for i in range(min(6 , points_counts - 1 ) , _A ): for j in range(max(0 , i - 6 ) , _A ): UpperCamelCase__ = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: UpperCamelCase__ = current_dis return min_dis def __magic_name__( _A , _A , _A ): '''simple docstring''' if points_counts <= 3: return dis_between_closest_pair(_A , _A ) # recursion UpperCamelCase__ = points_counts // 2 UpperCamelCase__ = closest_pair_of_points_sqr( _A , points_sorted_on_y[:mid] , _A ) UpperCamelCase__ = closest_pair_of_points_sqr( _A , points_sorted_on_y[mid:] , points_counts - mid ) UpperCamelCase__ = min(_A , _A ) UpperCamelCase__ = [] for point in points_sorted_on_x: if abs(point[0] - points_sorted_on_x[mid][0] ) < closest_pair_dis: cross_strip.append(_A ) UpperCamelCase__ = dis_between_closest_in_strip( _A , len(_A ) , _A ) return min(_A , _A ) def __magic_name__( _A , _A ): '''simple docstring''' UpperCamelCase__ = column_based_sort(_A , column=0 ) UpperCamelCase__ = column_based_sort(_A , column=1 ) return ( closest_pair_of_points_sqr( _A , _A , _A ) ) ** 0.5 if __name__ == "__main__": lowerCamelCase_ : Any = [(2, 3), (12, 30), (40, 50), (5, 1), (12, 10), (3, 4)] print('''Distance:''', closest_pair_of_points(points, len(points)))
718
'''simple docstring''' import logging import os from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional from tqdm import auto as tqdm_lib lowerCamelCase_ : Any = { '''debug''': logging.DEBUG, '''info''': logging.INFO, '''warning''': logging.WARNING, '''error''': logging.ERROR, '''critical''': logging.CRITICAL, } lowerCamelCase_ : Optional[int] = logging.WARNING def __magic_name__( ): '''simple docstring''' UpperCamelCase__ = os.getenv("""DATASETS_VERBOSITY""" , _A ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( f"Unknown option DATASETS_VERBOSITY={env_level_str}, " f"has to be one of: { ', '.join(log_levels.keys() ) }" ) return _default_log_level def __magic_name__( ): '''simple docstring''' return __name__.split(""".""" )[0] def __magic_name__( ): '''simple docstring''' return logging.getLogger(_get_library_name() ) def __magic_name__( ): '''simple docstring''' UpperCamelCase__ = _get_library_root_logger() library_root_logger.setLevel(_get_default_logging_level() ) def __magic_name__( ): '''simple docstring''' UpperCamelCase__ = _get_library_root_logger() library_root_logger.setLevel(logging.NOTSET ) def __magic_name__( _A = None ): '''simple docstring''' if name is None: UpperCamelCase__ = _get_library_name() return logging.getLogger(_A ) def __magic_name__( ): '''simple docstring''' return _get_library_root_logger().getEffectiveLevel() def __magic_name__( _A ): '''simple docstring''' _get_library_root_logger().setLevel(_A ) def __magic_name__( ): '''simple docstring''' return set_verbosity(_A ) def __magic_name__( ): '''simple docstring''' return set_verbosity(_A ) def __magic_name__( ): '''simple docstring''' return set_verbosity(_A ) def __magic_name__( ): '''simple docstring''' return set_verbosity(_A ) def __magic_name__( ): '''simple docstring''' UpperCamelCase__ = False def __magic_name__( ): '''simple docstring''' UpperCamelCase__ = True # Configure the library root logger at the module level (singleton-like) _configure_library_root_logger() class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : int , *lowercase : Any , **lowercase : int ) -> List[Any]: # pylint: disable=unused-argument '''simple docstring''' UpperCamelCase__ = args[0] if args else None def __iter__( self : str ) -> List[str]: '''simple docstring''' return iter(self._iterator ) def __getattr__( self : Optional[int] , lowercase : Tuple ) -> int: '''simple docstring''' def empty_fn(*lowercase : List[Any] , **lowercase : Dict ): # pylint: disable=unused-argument return return empty_fn def __enter__( self : Dict ) -> Tuple: '''simple docstring''' return self def __exit__( self : Tuple , lowercase : Optional[Any] , lowercase : Any , lowercase : int ) -> Any: '''simple docstring''' return lowerCamelCase_ : str = True class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __call__( self : List[Any] , *lowercase : str , lowercase : Optional[int]=False , **lowercase : Optional[int] ) -> Optional[int]: '''simple docstring''' if _tqdm_active and not disable: return tqdm_lib.tqdm(*lowercase , **lowercase ) else: return EmptyTqdm(*lowercase , **lowercase ) def A ( self : Optional[Any] , *lowercase : Tuple , **lowercase : Any ) -> Any: '''simple docstring''' UpperCamelCase__ = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*lowercase , **lowercase ) def A ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' if _tqdm_active: return tqdm_lib.tqdm.get_lock() lowerCamelCase_ : int = _tqdm_cls() def __magic_name__( ): '''simple docstring''' global _tqdm_active return bool(_tqdm_active ) def __magic_name__( ): '''simple docstring''' global _tqdm_active UpperCamelCase__ = True def __magic_name__( ): '''simple docstring''' global _tqdm_active UpperCamelCase__ = False
265
0
'''simple docstring''' import unittest from transformers import AlbertTokenizer, AlbertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin __SCREAMING_SNAKE_CASE : Any = get_tests_dir("""fixtures/spiece.model""") @require_sentencepiece @require_tokenizers class lowerCamelCase_ (snake_case__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase: Tuple = AlbertTokenizer __UpperCamelCase: List[str] = AlbertTokenizerFast __UpperCamelCase: List[str] = True __UpperCamelCase: List[Any] = True __UpperCamelCase: Optional[Any] = True def _A ( self : Union[str, Any] ): super().setUp() # We have a SentencePiece fixture for testing _UpperCAmelCase : int = AlbertTokenizer(A ) tokenizer.save_pretrained(self.tmpdirname ) def _A ( self : Dict , A : Tuple ): _UpperCAmelCase : Union[str, Any] = "this is a test" _UpperCAmelCase : Optional[int] = "this is a test" return input_text, output_text def _A ( self : Optional[int] ): _UpperCAmelCase : Any = "<pad>" _UpperCAmelCase : Dict = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(A ) , A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(A ) , A ) def _A ( self : Optional[Any] ): _UpperCAmelCase : Tuple = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<pad>" ) self.assertEqual(vocab_keys[1] , "<unk>" ) self.assertEqual(vocab_keys[-1] , "▁eloquent" ) self.assertEqual(len(A ) , 30000 ) def _A ( self : Tuple ): self.assertEqual(self.get_tokenizer().vocab_size , 30000 ) def _A ( self : Tuple ): if not self.test_rust_tokenizer: return _UpperCAmelCase : Optional[int] = self.get_tokenizer() _UpperCAmelCase : str = self.get_rust_tokenizer() _UpperCAmelCase : Tuple = "I was born in 92000, and this is falsé." _UpperCAmelCase : Optional[Any] = tokenizer.tokenize(A ) _UpperCAmelCase : List[Any] = rust_tokenizer.tokenize(A ) self.assertListEqual(A , A ) _UpperCAmelCase : Optional[int] = tokenizer.encode(A , add_special_tokens=A ) _UpperCAmelCase : Union[str, Any] = rust_tokenizer.encode(A , add_special_tokens=A ) self.assertListEqual(A , A ) _UpperCAmelCase : Optional[Any] = self.get_rust_tokenizer() _UpperCAmelCase : Tuple = tokenizer.encode(A ) _UpperCAmelCase : Any = rust_tokenizer.encode(A ) self.assertListEqual(A , A ) def _A ( self : List[Any] ): _UpperCAmelCase : str = AlbertTokenizer(A , keep_accents=A ) _UpperCAmelCase : Dict = tokenizer.tokenize("This is a test" ) self.assertListEqual(A , ["▁this", "▁is", "▁a", "▁test"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) , [48, 25, 21, 1289] ) _UpperCAmelCase : Tuple = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( A , ["▁i", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "é", "."] ) _UpperCAmelCase : List[str] = tokenizer.convert_tokens_to_ids(A ) self.assertListEqual(A , [31, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] ) _UpperCAmelCase : List[Any] = tokenizer.convert_ids_to_tokens(A ) self.assertListEqual( A , ["▁i", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", "."] , ) def _A ( self : List[Any] ): _UpperCAmelCase : Union[str, Any] = AlbertTokenizer(A ) _UpperCAmelCase : Dict = tokenizer.encode("sequence builders" ) _UpperCAmelCase : Optional[int] = tokenizer.encode("multi-sequence build" ) _UpperCAmelCase : Optional[Any] = tokenizer.build_inputs_with_special_tokens(A ) _UpperCAmelCase : int = tokenizer.build_inputs_with_special_tokens(A , A ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ] @slow def _A ( self : Optional[int] ): # fmt: off _UpperCAmelCase : List[Any] = {"attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "input_ids": [[2, 21970, 13, 5, 6092, 167, 28, 7103, 2153, 673, 8, 7028, 12051, 18, 17, 7103, 2153, 673, 8, 3515, 18684, 8, 4461, 6, 1927, 297, 8, 12060, 2607, 18, 13, 5, 4461, 15, 10538, 38, 8, 135, 15, 822, 58, 15, 993, 10363, 15, 1460, 8005, 4461, 15, 993, 255, 2328, 9, 9, 9, 6, 26, 1112, 816, 3260, 13, 5, 103, 2377, 6, 17, 1112, 816, 2782, 13, 5, 103, 10641, 6, 29, 84, 2512, 2430, 782, 18684, 2761, 19, 808, 2430, 2556, 17, 855, 1480, 9477, 4091, 128, 11712, 15, 7103, 2153, 673, 17, 24883, 9990, 9, 3], [2, 11502, 25, 1006, 20, 782, 8, 11809, 855, 1732, 19393, 18667, 37, 367, 21018, 69, 1854, 34, 11860, 19124, 27, 156, 225, 17, 193, 4141, 19, 65, 9124, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 14, 2231, 886, 2385, 17659, 84, 14, 16792, 1952, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "token_type_ids": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=A , model_name="albert-base-v2" , revision="6b6560eaf5ff2e250b00c50f380c5389a9c2d82e" , )
244
'''simple docstring''' def UpperCamelCase_ ( _UpperCAmelCase : int ) -> int: """simple docstring""" if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError("Input must be an integer" ) if input_num <= 0: raise ValueError("Input must be positive" ) return sum( divisor for divisor in range(1 , input_num // 2 + 1 ) if input_num % divisor == 0 ) if __name__ == "__main__": import doctest doctest.testmod()
244
1
"""simple docstring""" import copy import os import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np import pyarrow as pa import pyarrow.parquet as pq import pytest from datasets.arrow_writer import ArrowWriter, OptimizedTypedSequence, ParquetWriter, TypedSequence from datasets.features import ArrayaD, ClassLabel, Features, Image, Value from datasets.features.features import ArrayaDExtensionType, cast_to_python_objects from datasets.keyhash import DuplicatedKeysError, InvalidKeyError from .utils import require_pil class __magic_name__ ( UpperCAmelCase__ ): '''simple docstring''' def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = pa.array(TypedSequence([1, 2, 3] ) ) self.assertEqual(arr.type , pa.intaa() ) def _lowerCAmelCase ( self ): """simple docstring""" with self.assertRaises(_a ): lowerCamelCase = pa.array(TypedSequence([1, 2, 3] ) , type=pa.intaa() ) def _lowerCAmelCase ( self ): """simple docstring""" with self.assertRaises(_a ): lowerCamelCase = pa.array(TypedSequence([1, 2, 3] , try_type=Value("""bool""" ) , type=Value("""int64""" ) ) ) def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = pa.array(TypedSequence([1, 2, 3] , type=Value("""int32""" ) ) ) self.assertEqual(arr.type , pa.intaa() ) def _lowerCAmelCase ( self ): """simple docstring""" with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): lowerCamelCase = pa.array(TypedSequence(["""foo""", """bar"""] , type=Value("""int64""" ) ) ) def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = pa.array(TypedSequence([1, 2, 3] , try_type=Value("""int32""" ) ) ) self.assertEqual(arr.type , pa.intaa() ) def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = pa.array(TypedSequence(["""foo""", """bar"""] , try_type=Value("""int64""" ) ) ) self.assertEqual(arr.type , pa.string() ) def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = pa.array(TypedSequence([[[1, 2, 3]]] , type=ArrayaD((1, 3) , """int64""" ) ) ) self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , """int64""" ) ) def _lowerCAmelCase ( self ): """simple docstring""" with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): lowerCamelCase = pa.array(TypedSequence(["""foo""", """bar"""] , type=ArrayaD((1, 3) , """int64""" ) ) ) def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = pa.array(TypedSequence([[[1, 2, 3]]] , try_type=ArrayaD((1, 3) , """int64""" ) ) ) self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , """int64""" ) ) def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = pa.array(TypedSequence(["""foo""", """bar"""] , try_type=ArrayaD((1, 3) , """int64""" ) ) ) self.assertEqual(arr.type , pa.string() ) @require_pil def _lowerCAmelCase ( self ): """simple docstring""" import PIL.Image lowerCamelCase = PIL.Image.fromarray(np.arange(10 , dtype=np.uinta ).reshape(2 , 5 ) ) with patch( """datasets.arrow_writer.cast_to_python_objects""" , side_effect=_a ) as mock_cast_to_python_objects: lowerCamelCase = pa.array(TypedSequence([{"""path""": None, """bytes""": B"""image_bytes"""}, pil_image] , type=Image() ) ) lowerCamelCase , lowerCamelCase = mock_cast_to_python_objects.call_args_list[-1] self.assertIn("""optimize_list_casting""" , _a ) self.assertFalse(kwargs["""optimize_list_casting"""] ) def a__ ( snake_case__ , snake_case__ ) -> List[str]: lowerCamelCase = pa.BufferReader(snake_case__ ) if isinstance(snake_case__ , pa.Buffer ) else pa.memory_map(snake_case__ ) lowerCamelCase = pa.ipc.open_stream(snake_case__ ) lowerCamelCase = f.read_all() assert len(pa_table.to_batches() ) == expected_num_chunks assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} del pa_table @pytest.mark.parametrize("""writer_batch_size""" , [None, 1, 10] ) @pytest.mark.parametrize( """fields""" , [None, {"""col_1""": pa.string(), """col_2""": pa.intaa()}, {"""col_1""": pa.string(), """col_2""": pa.intaa()}] ) def a__ ( snake_case__ , snake_case__ ) -> Optional[Any]: lowerCamelCase = pa.BufferOutputStream() lowerCamelCase = pa.schema(snake_case__ ) if fields else None with ArrowWriter(stream=snake_case__ , schema=snake_case__ , writer_batch_size=snake_case__ ) as writer: writer.write({"""col_1""": """foo""", """col_2""": 1} ) writer.write({"""col_1""": """bar""", """col_2""": 2} ) lowerCamelCase , lowerCamelCase = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: lowerCamelCase = {"""col_1""": pa.string(), """col_2""": pa.intaa()} assert writer._schema == pa.schema(snake_case__ , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def a__ ( ) -> Optional[Any]: lowerCamelCase = pa.BufferOutputStream() lowerCamelCase = Features({"""labels""": ClassLabel(names=["""neg""", """pos"""] )} ) with ArrowWriter(stream=snake_case__ , features=snake_case__ ) as writer: writer.write({"""labels""": 0} ) writer.write({"""labels""": 1} ) lowerCamelCase , lowerCamelCase = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == features.arrow_schema assert writer._schema.metadata == features.arrow_schema.metadata lowerCamelCase = pa.BufferReader(output.getvalue() ) lowerCamelCase = pa.ipc.open_stream(snake_case__ ) lowerCamelCase = f.read_all() lowerCamelCase = pa_table.schema assert pa_table.num_rows == 2 assert schema == features.arrow_schema assert schema.metadata == features.arrow_schema.metadata assert features == Features.from_arrow_schema(snake_case__ ) @pytest.mark.parametrize("""writer_batch_size""" , [None, 1, 10] ) def a__ ( snake_case__ ) -> Any: lowerCamelCase = pa.BufferOutputStream() with ArrowWriter( stream=snake_case__ , writer_batch_size=snake_case__ , hash_salt="""split_name""" , check_duplicates=snake_case__ , ) as writer: with pytest.raises(snake_case__ ): writer.write({"""col_1""": """foo""", """col_2""": 1} , key=[1, 2] ) lowerCamelCase , lowerCamelCase = writer.finalize() @pytest.mark.parametrize("""writer_batch_size""" , [None, 2, 10] ) def a__ ( snake_case__ ) -> str: lowerCamelCase = pa.BufferOutputStream() with ArrowWriter( stream=snake_case__ , writer_batch_size=snake_case__ , hash_salt="""split_name""" , check_duplicates=snake_case__ , ) as writer: with pytest.raises(snake_case__ ): writer.write({"""col_1""": """foo""", """col_2""": 1} , key=10 ) writer.write({"""col_1""": """bar""", """col_2""": 2} , key=10 ) lowerCamelCase , lowerCamelCase = writer.finalize() @pytest.mark.parametrize("""writer_batch_size""" , [None, 2, 10] ) def a__ ( snake_case__ ) -> Dict: lowerCamelCase = pa.BufferOutputStream() with ArrowWriter( stream=snake_case__ , writer_batch_size=snake_case__ , hash_salt="""split_name""" , check_duplicates=snake_case__ , ) as writer: writer.write({"""col_1""": """foo""", """col_2""": 1} , key=1 ) writer.write({"""col_1""": """bar""", """col_2""": 2} , key=2 ) lowerCamelCase , lowerCamelCase = writer.finalize() assert num_examples == 2 assert num_bytes > 0 _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize("""writer_batch_size""" , [None, 1, 10] ) @pytest.mark.parametrize( """fields""" , [None, {"""col_1""": pa.string(), """col_2""": pa.intaa()}, {"""col_1""": pa.string(), """col_2""": pa.intaa()}] ) def a__ ( snake_case__ , snake_case__ ) -> Dict: lowerCamelCase = pa.BufferOutputStream() lowerCamelCase = pa.schema(snake_case__ ) if fields else None with ArrowWriter(stream=snake_case__ , schema=snake_case__ , writer_batch_size=snake_case__ ) as writer: writer.write_batch({"""col_1""": ["""foo""", """bar"""], """col_2""": [1, 2]} ) writer.write_batch({"""col_1""": [], """col_2""": []} ) lowerCamelCase , lowerCamelCase = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: lowerCamelCase = {"""col_1""": pa.string(), """col_2""": pa.intaa()} assert writer._schema == pa.schema(snake_case__ , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize("""writer_batch_size""" , [None, 1, 10] ) @pytest.mark.parametrize( """fields""" , [None, {"""col_1""": pa.string(), """col_2""": pa.intaa()}, {"""col_1""": pa.string(), """col_2""": pa.intaa()}] ) def a__ ( snake_case__ , snake_case__ ) -> List[Any]: lowerCamelCase = pa.BufferOutputStream() lowerCamelCase = pa.schema(snake_case__ ) if fields else None with ArrowWriter(stream=snake_case__ , schema=snake_case__ , writer_batch_size=snake_case__ ) as writer: writer.write_table(pa.Table.from_pydict({"""col_1""": ["""foo""", """bar"""], """col_2""": [1, 2]} ) ) lowerCamelCase , lowerCamelCase = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: lowerCamelCase = {"""col_1""": pa.string(), """col_2""": pa.intaa()} assert writer._schema == pa.schema(snake_case__ , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize("""writer_batch_size""" , [None, 1, 10] ) @pytest.mark.parametrize( """fields""" , [None, {"""col_1""": pa.string(), """col_2""": pa.intaa()}, {"""col_1""": pa.string(), """col_2""": pa.intaa()}] ) def a__ ( snake_case__ , snake_case__ ) -> List[Any]: lowerCamelCase = pa.BufferOutputStream() lowerCamelCase = pa.schema(snake_case__ ) if fields else None with ArrowWriter(stream=snake_case__ , schema=snake_case__ , writer_batch_size=snake_case__ ) as writer: writer.write_row(pa.Table.from_pydict({"""col_1""": ["""foo"""], """col_2""": [1]} ) ) writer.write_row(pa.Table.from_pydict({"""col_1""": ["""bar"""], """col_2""": [2]} ) ) lowerCamelCase , lowerCamelCase = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: lowerCamelCase = {"""col_1""": pa.string(), """col_2""": pa.intaa()} assert writer._schema == pa.schema(snake_case__ , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def a__ ( ) -> Tuple: with tempfile.TemporaryDirectory() as tmp_dir: lowerCamelCase = {"""col_1""": pa.string(), """col_2""": pa.intaa()} lowerCamelCase = os.path.join(snake_case__ , """test.arrow""" ) with ArrowWriter(path=snake_case__ , schema=pa.schema(snake_case__ ) ) as writer: writer.write_batch({"""col_1""": ["""foo""", """bar"""], """col_2""": [1, 2]} ) lowerCamelCase , lowerCamelCase = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == pa.schema(snake_case__ , metadata=writer._schema.metadata ) _check_output(snake_case__ , 1 ) def a__ ( snake_case__ ) -> Dict: if pa.types.is_list(snake_case__ ): return get_base_dtype(arr_type.value_type ) else: return arr_type def a__ ( snake_case__ , snake_case__ ) -> Union[str, Any]: if isinstance(lst[0] , snake_case__ ): change_first_primitive_element_in_list(lst[0] , snake_case__ ) else: lowerCamelCase = value @pytest.mark.parametrize("""optimized_int_type, expected_dtype""" , [(None, pa.intaa()), (Value("""int32""" ), pa.intaa())] ) @pytest.mark.parametrize("""sequence""" , [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def a__ ( snake_case__ , snake_case__ , snake_case__ ) -> Tuple: lowerCamelCase = pa.array(TypedSequence(snake_case__ , optimized_int_type=snake_case__ ) ) assert get_base_dtype(arr.type ) == expected_dtype @pytest.mark.parametrize( """col, expected_dtype""" , [ ("""attention_mask""", pa.inta()), ("""special_tokens_mask""", pa.inta()), ("""token_type_ids""", pa.inta()), ("""input_ids""", pa.intaa()), ("""other""", pa.intaa()), ] , ) @pytest.mark.parametrize("""sequence""" , [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def a__ ( snake_case__ , snake_case__ , snake_case__ ) -> List[str]: # in range lowerCamelCase = pa.array(OptimizedTypedSequence(snake_case__ , col=snake_case__ ) ) assert get_base_dtype(arr.type ) == expected_dtype # not in range if col != "other": # avoids errors due to in-place modifications lowerCamelCase = copy.deepcopy(snake_case__ ) lowerCamelCase = np.iinfo(expected_dtype.to_pandas_dtype() ).max + 1 change_first_primitive_element_in_list(snake_case__ , snake_case__ ) lowerCamelCase = pa.array(OptimizedTypedSequence(snake_case__ , col=snake_case__ ) ) assert get_base_dtype(arr.type ) == pa.intaa() @pytest.mark.parametrize("""raise_exception""" , [False, True] ) def a__ ( snake_case__ , snake_case__ ) -> Tuple: lowerCamelCase = str(tmp_path / """dataset-train.arrow""" ) try: with ArrowWriter(path=snake_case__ ) as writer: if raise_exception: raise pa.lib.ArrowInvalid() else: writer.stream.close() except pa.lib.ArrowInvalid: pass finally: assert writer.stream.closed def a__ ( snake_case__ ) -> List[str]: lowerCamelCase = """mock://dataset-train.arrow""" with ArrowWriter(path=snake_case__ , storage_options=mockfs.storage_options ) as writer: assert isinstance(writer._fs , type(snake_case__ ) ) assert writer._fs.storage_options == mockfs.storage_options writer.write({"""col_1""": """foo""", """col_2""": 1} ) writer.write({"""col_1""": """bar""", """col_2""": 2} ) lowerCamelCase , lowerCamelCase = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert mockfs.exists(snake_case__ ) def a__ ( ) -> Any: lowerCamelCase = pa.BufferOutputStream() with ParquetWriter(stream=snake_case__ ) as writer: writer.write({"""col_1""": """foo""", """col_2""": 1} ) writer.write({"""col_1""": """bar""", """col_2""": 2} ) lowerCamelCase , lowerCamelCase = writer.finalize() assert num_examples == 2 assert num_bytes > 0 lowerCamelCase = pa.BufferReader(output.getvalue() ) lowerCamelCase = pq.read_table(snake_case__ ) assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} @require_pil @pytest.mark.parametrize("""embed_local_files""" , [False, True] ) def a__ ( snake_case__ , snake_case__ ) -> List[Any]: import PIL.Image lowerCamelCase = str(tmp_path / """test_image_rgb.jpg""" ) PIL.Image.fromarray(np.zeros((5, 5) , dtype=np.uinta ) ).save(snake_case__ , format="""png""" ) lowerCamelCase = pa.BufferOutputStream() with ParquetWriter( stream=snake_case__ , features=Features({"""image""": Image()} ) , embed_local_files=snake_case__ ) as writer: writer.write({"""image""": image_path} ) writer.finalize() lowerCamelCase = pa.BufferReader(output.getvalue() ) lowerCamelCase = pq.read_table(snake_case__ ) lowerCamelCase = pa_table.to_pydict() if embed_local_files: assert isinstance(out["""image"""][0]["""path"""] , snake_case__ ) with open(snake_case__ , """rb""" ) as f: assert out["image"][0]["bytes"] == f.read() else: assert out["image"][0]["path"] == image_path assert out["image"][0]["bytes"] is None def a__ ( ) -> Dict: lowerCamelCase = pa.schema([pa.field("""col_1""" , pa.string() , nullable=snake_case__ )] ) lowerCamelCase = pa.BufferOutputStream() with ArrowWriter(stream=snake_case__ ) as writer: writer._build_writer(inferred_schema=snake_case__ ) assert writer._schema == pa.schema([pa.field("""col_1""" , pa.string() )] )
533
"""simple docstring""" import sacrebleu as scb from packaging import version from sacrebleu import CHRF import datasets lowerCAmelCase : List[Any] = """\ @inproceedings{popovic-2015-chrf, title = \"chr{F}: character n-gram {F}-score for automatic {MT} evaluation\", author = \"Popovi{\'c}, Maja\", booktitle = \"Proceedings of the Tenth Workshop on Statistical Machine Translation\", month = sep, year = \"2015\", address = \"Lisbon, Portugal\", publisher = \"Association for Computational Linguistics\", url = \"https://aclanthology.org/W15-3049\", doi = \"10.18653/v1/W15-3049\", pages = \"392--395\", } @inproceedings{popovic-2017-chrf, title = \"chr{F}++: words helping character n-grams\", author = \"Popovi{\'c}, Maja\", booktitle = \"Proceedings of the Second Conference on Machine Translation\", month = sep, year = \"2017\", address = \"Copenhagen, Denmark\", publisher = \"Association for Computational Linguistics\", url = \"https://aclanthology.org/W17-4770\", doi = \"10.18653/v1/W17-4770\", pages = \"612--618\", } @inproceedings{post-2018-call, title = \"A Call for Clarity in Reporting {BLEU} Scores\", author = \"Post, Matt\", booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\", month = oct, year = \"2018\", address = \"Belgium, Brussels\", publisher = \"Association for Computational Linguistics\", url = \"https://www.aclweb.org/anthology/W18-6319\", pages = \"186--191\", } """ lowerCAmelCase : List[str] = """\ ChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches, and ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation that is already present in sacrebleu. The implementation here is slightly different from sacrebleu in terms of the required input format. The length of the references and hypotheses lists need to be the same, so you may need to transpose your references compared to sacrebleu's required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534 See the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information. """ lowerCAmelCase : str = """ Produces ChrF(++) scores for hypotheses given reference translations. Args: predictions (list of str): The predicted sentences. references (list of list of str): The references. There should be one reference sub-list for each prediction sentence. char_order (int): Character n-gram order. Defaults to `6`. word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`. beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`. lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`. whitespace (bool): If `True`, include whitespaces when extracting character n-grams. eps_smoothing (bool): If `True`, applies epsilon smoothing similar to reference chrF++.py, NLTK and Moses implementations. If `False`, it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`. Returns: 'score' (float): The chrF (chrF++) score, 'char_order' (int): The character n-gram order, 'word_order' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++, 'beta' (int): Determine the importance of recall w.r.t precision Examples: Example 1--a simple example of calculating chrF: >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"] >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]] >>> chrf = datasets.load_metric(\"chrf\") >>> results = chrf.compute(predictions=prediction, references=reference) >>> print(results) {'score': 84.64214891738334, 'char_order': 6, 'word_order': 0, 'beta': 2} Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF: >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"] >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]] >>> chrf = datasets.load_metric(\"chrf\") >>> results = chrf.compute(predictions=prediction, ... references=reference, ... word_order=2) >>> print(results) {'score': 82.87263732906315, 'char_order': 6, 'word_order': 2, 'beta': 2} Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case: >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"] >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]] >>> chrf = datasets.load_metric(\"chrf\") >>> results = chrf.compute(predictions=prediction, ... references=reference, ... word_order=2, ... lowercase=True) >>> print(results) {'score': 92.12853119829202, 'char_order': 6, 'word_order': 2, 'beta': 2} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __magic_name__ ( datasets.Metric ): '''simple docstring''' def _lowerCAmelCase ( self ): """simple docstring""" if version.parse(scb.__version__ ) < version.parse("""1.4.12""" ): raise ImportWarning( """To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n""" """You can install it with `pip install \"sacrebleu>=1.4.12\"`.""" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="""https://github.com/mjpost/sacreBLEU#chrf--chrf""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Sequence(datasets.Value("""string""" , id="""sequence""" ) , id="""references""" ), } ) , codebase_urls=["""https://github.com/mjpost/sacreBLEU#chrf--chrf"""] , reference_urls=[ """https://github.com/m-popovic/chrF""", ] , ) def _lowerCAmelCase ( self , _a , _a , _a = CHRF.CHAR_ORDER , _a = CHRF.WORD_ORDER , _a = CHRF.BETA , _a = False , _a = False , _a = False , ): """simple docstring""" lowerCamelCase = len(references[0] ) if any(len(_a ) != references_per_prediction for refs in references ): raise ValueError("""Sacrebleu requires the same number of references for each prediction""" ) lowerCamelCase = [[refs[i] for refs in references] for i in range(_a )] lowerCamelCase = CHRF(_a , _a , _a , _a , _a , _a ) lowerCamelCase = sb_chrf.corpus_score(_a , _a ) return { "score": output.score, "char_order": output.char_order, "word_order": output.word_order, "beta": output.beta, }
533
1
from ..utils import DummyObject, requires_backends class __A ( metaclass=A_ ): UpperCamelCase :Union[str, Any] = ['''torch''', '''torchsde'''] def __init__(self , *__magic_name__ , **__magic_name__ ): requires_backends(self , ["""torch""", """torchsde"""] ) @classmethod def _snake_case (cls , *__magic_name__ , **__magic_name__ ): requires_backends(cls , ["""torch""", """torchsde"""] ) @classmethod def _snake_case (cls , *__magic_name__ , **__magic_name__ ): requires_backends(cls , ["""torch""", """torchsde"""] )
157
# Lint as: python3 import itertools import os import re _lowercase = re.compile(r'''([A-Z]+)([A-Z][a-z])''') _lowercase = re.compile(r'''([a-z\d])([A-Z])''') _lowercase = re.compile(r'''(?<!_)_(?!_)''') _lowercase = re.compile(r'''(_{2,})''') _lowercase = r'''^\w+(\.\w+)*$''' _lowercase = r'''<>:/\|?*''' def _A (UpperCamelCase : str ) ->str: '''simple docstring''' lowerCamelCase__ : List[str] = _uppercase_uppercase_re.sub(r"""\1_\2""" , UpperCamelCase ) lowerCamelCase__ : Optional[int] = _lowercase_uppercase_re.sub(r"""\1_\2""" , UpperCamelCase ) return name.lower() def _A (UpperCamelCase : Union[str, Any] ) ->int: '''simple docstring''' lowerCamelCase__ : Optional[int] = _single_underscore_re.split(UpperCamelCase ) lowerCamelCase__ : int = [_multiple_underscores_re.split(UpperCamelCase ) for n in name] return "".join(n.capitalize() for n in itertools.chain.from_iterable(UpperCamelCase ) if n != """""" ) def _A (UpperCamelCase : Any ) ->Optional[Any]: '''simple docstring''' if os.path.basename(UpperCamelCase ) != name: raise ValueError(f"Should be a dataset name, not a path: {name}" ) return camelcase_to_snakecase(UpperCamelCase ) def _A (UpperCamelCase : int , UpperCamelCase : Dict ) ->List[Any]: '''simple docstring''' if os.path.basename(UpperCamelCase ) != name: raise ValueError(f"Should be a dataset name, not a path: {name}" ) if not re.match(_split_re , UpperCamelCase ): raise ValueError(f"Split name should match '{_split_re}'' but got '{split}'." ) return f"{filename_prefix_for_name(UpperCamelCase )}-{split}" def _A (UpperCamelCase : int , UpperCamelCase : Tuple , UpperCamelCase : List[str] , UpperCamelCase : Optional[int]=None ) ->List[Any]: '''simple docstring''' lowerCamelCase__ : Any = filename_prefix_for_split(UpperCamelCase , UpperCamelCase ) if filetype_suffix: prefix += f".{filetype_suffix}" lowerCamelCase__ : List[Any] = os.path.join(UpperCamelCase , UpperCamelCase ) return f"{filepath}*" def _A (UpperCamelCase : Optional[Any] , UpperCamelCase : Optional[int] , UpperCamelCase : Optional[int] , UpperCamelCase : Optional[int]=None , UpperCamelCase : Dict=None ) ->Optional[int]: '''simple docstring''' lowerCamelCase__ : List[Any] = filename_prefix_for_split(UpperCamelCase , UpperCamelCase ) lowerCamelCase__ : Tuple = os.path.join(UpperCamelCase , UpperCamelCase ) if shard_lengths: lowerCamelCase__ : Optional[int] = len(UpperCamelCase ) lowerCamelCase__ : List[Any] = [f"{prefix}-{shard_id:05d}-of-{num_shards:05d}" for shard_id in range(UpperCamelCase )] if filetype_suffix: lowerCamelCase__ : Tuple = [filename + f".{filetype_suffix}" for filename in filenames] return filenames else: lowerCamelCase__ : List[str] = prefix if filetype_suffix: filename += f".{filetype_suffix}" return [filename]
157
1
'''simple docstring''' import argparse import requests import torch from PIL import Image from transformers import ViTMAEConfig, ViTMAEForPreTraining, ViTMAEImageProcessor def _lowercase ( UpperCamelCase__ : Optional[Any] ): if "cls_token" in name: __A : Union[str, Any] = name.replace('cls_token', 'vit.embeddings.cls_token' ) if "mask_token" in name: __A : Tuple = name.replace('mask_token', 'decoder.mask_token' ) if "decoder_pos_embed" in name: __A : int = name.replace('decoder_pos_embed', 'decoder.decoder_pos_embed' ) if "pos_embed" in name and "decoder" not in name: __A : Optional[Any] = name.replace('pos_embed', 'vit.embeddings.position_embeddings' ) if "patch_embed.proj" in name: __A : Optional[int] = name.replace('patch_embed.proj', 'vit.embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: __A : str = name.replace('patch_embed.norm', 'vit.embeddings.norm' ) if "decoder_blocks" in name: __A : Dict = name.replace('decoder_blocks', 'decoder.decoder_layers' ) if "blocks" in name: __A : Union[str, Any] = name.replace('blocks', 'vit.encoder.layer' ) if "attn.proj" in name: __A : int = name.replace('attn.proj', 'attention.output.dense' ) if "attn" in name: __A : Tuple = name.replace('attn', 'attention.self' ) if "norm1" in name: __A : List[Any] = name.replace('norm1', 'layernorm_before' ) if "norm2" in name: __A : Optional[Any] = name.replace('norm2', 'layernorm_after' ) if "mlp.fc1" in name: __A : Optional[Any] = name.replace('mlp.fc1', 'intermediate.dense' ) if "mlp.fc2" in name: __A : Tuple = name.replace('mlp.fc2', 'output.dense' ) if "decoder_embed" in name: __A : Optional[int] = name.replace('decoder_embed', 'decoder.decoder_embed' ) if "decoder_norm" in name: __A : str = name.replace('decoder_norm', 'decoder.decoder_norm' ) if "decoder_pred" in name: __A : Tuple = name.replace('decoder_pred', 'decoder.decoder_pred' ) if "norm.weight" in name and "decoder" not in name: __A : Union[str, Any] = name.replace('norm.weight', 'vit.layernorm.weight' ) if "norm.bias" in name and "decoder" not in name: __A : List[str] = name.replace('norm.bias', 'vit.layernorm.bias' ) return name def _lowercase ( UpperCamelCase__ : Dict, UpperCamelCase__ : Optional[Any] ): for key in orig_state_dict.copy().keys(): __A : str = orig_state_dict.pop(UpperCamelCase__ ) if "qkv" in key: __A : Union[str, Any] = key.split('.' ) __A : int = int(key_split[1] ) if "decoder_blocks" in key: __A : str = config.decoder_hidden_size __A : Union[str, Any] = 'decoder.decoder_layers.' if "weight" in key: __A : Dict = val[:dim, :] __A : Optional[int] = val[dim : dim * 2, :] __A : int = val[-dim:, :] elif "bias" in key: __A : Optional[Any] = val[:dim] __A : Tuple = val[dim : dim * 2] __A : str = val[-dim:] else: __A : Tuple = config.hidden_size __A : Tuple = 'vit.encoder.layer.' if "weight" in key: __A : Optional[int] = val[:dim, :] __A : str = val[dim : dim * 2, :] __A : List[Any] = val[-dim:, :] elif "bias" in key: __A : Dict = val[:dim] __A : str = val[dim : dim * 2] __A : int = val[-dim:] else: __A : Tuple = val return orig_state_dict def _lowercase ( UpperCamelCase__ : Dict, UpperCamelCase__ : Tuple ): __A : str = ViTMAEConfig() if "large" in checkpoint_url: __A : int = 1024 __A : Union[str, Any] = 4096 __A : str = 24 __A : List[Any] = 16 elif "huge" in checkpoint_url: __A : Dict = 14 __A : Tuple = 1280 __A : int = 5120 __A : Union[str, Any] = 32 __A : List[str] = 16 __A : Optional[int] = ViTMAEForPreTraining(UpperCamelCase__ ) __A : str = torch.hub.load_state_dict_from_url(UpperCamelCase__, map_location='cpu' )['model'] __A : Optional[int] = ViTMAEImageProcessor(size=config.image_size ) __A : Tuple = convert_state_dict(UpperCamelCase__, UpperCamelCase__ ) model.load_state_dict(UpperCamelCase__ ) model.eval() __A : Any = 'https://user-images.githubusercontent.com/11435359/147738734-196fd92f-9260-48d5-ba7e-bf103d29364d.jpg' __A : Union[str, Any] = Image.open(requests.get(UpperCamelCase__, stream=UpperCamelCase__ ).raw ) __A : Optional[Any] = ViTMAEImageProcessor(size=config.image_size ) __A : Union[str, Any] = image_processor(images=UpperCamelCase__, return_tensors='pt' ) # forward pass torch.manual_seed(2 ) __A : Optional[Any] = model(**UpperCamelCase__ ) __A : Union[str, Any] = outputs.logits if "large" in checkpoint_url: __A : Optional[int] = torch.tensor( [[-0.7309, -0.7128, -1.0169], [-1.0161, -0.9058, -1.1878], [-1.0478, -0.9411, -1.1911]] ) elif "huge" in checkpoint_url: __A : List[Any] = torch.tensor( [[-1.1599, -0.9199, -1.2221], [-1.1952, -0.9269, -1.2307], [-1.2143, -0.9337, -1.2262]] ) else: __A : Optional[int] = torch.tensor( [[-0.9192, -0.8481, -1.1259], [-1.1349, -1.0034, -1.2599], [-1.1757, -1.0429, -1.2726]] ) # verify logits assert torch.allclose(logits[0, :3, :3], UpperCamelCase__, atol=1E-4 ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(UpperCamelCase__ ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(UpperCamelCase__ ) if __name__ == "__main__": UpperCAmelCase_ : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://dl.fbaipublicfiles.com/mae/visualize/mae_visualize_vit_base.pth', type=str, help='URL of the checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) UpperCAmelCase_ : str = parser.parse_args() convert_vit_mae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
540
'''simple docstring''' import argparse import logging import pickle import random import time import numpy as np from transformers import BertTokenizer, GPTaTokenizer, RobertaTokenizer logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) UpperCAmelCase_ : Any = logging.getLogger(__name__) def _lowercase ( ): __A : Tuple = argparse.ArgumentParser( description='Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids).' ) parser.add_argument('--file_path', type=UpperCamelCase__, default='data/dump.txt', help='The path to the data.' ) parser.add_argument('--tokenizer_type', type=UpperCamelCase__, default='bert', choices=['bert', 'roberta', 'gpt2'] ) parser.add_argument('--tokenizer_name', type=UpperCamelCase__, default='bert-base-uncased', help='The tokenizer to use.' ) parser.add_argument('--dump_file', type=UpperCamelCase__, default='data/dump', help='The dump file prefix.' ) __A : Tuple = parser.parse_args() logger.info(f"""Loading Tokenizer ({args.tokenizer_name})""" ) if args.tokenizer_type == "bert": __A : Any = BertTokenizer.from_pretrained(args.tokenizer_name ) __A : Any = tokenizer.special_tokens_map['cls_token'] # `[CLS]` __A : List[Any] = tokenizer.special_tokens_map['sep_token'] # `[SEP]` elif args.tokenizer_type == "roberta": __A : Any = RobertaTokenizer.from_pretrained(args.tokenizer_name ) __A : List[Any] = tokenizer.special_tokens_map['cls_token'] # `<s>` __A : Dict = tokenizer.special_tokens_map['sep_token'] # `</s>` elif args.tokenizer_type == "gpt2": __A : List[str] = GPTaTokenizer.from_pretrained(args.tokenizer_name ) __A : Any = tokenizer.special_tokens_map['bos_token'] # `<|endoftext|>` __A : Union[str, Any] = tokenizer.special_tokens_map['eos_token'] # `<|endoftext|>` logger.info(f"""Loading text from {args.file_path}""" ) with open(args.file_path, 'r', encoding='utf8' ) as fp: __A : Optional[int] = fp.readlines() logger.info('Start encoding' ) logger.info(f"""{len(UpperCamelCase__ )} examples to process.""" ) __A : int = [] __A : List[str] = 0 __A : Tuple = 10000 __A : List[str] = time.time() for text in data: __A : int = f"""{bos} {text.strip()} {sep}""" __A : List[Any] = tokenizer.encode(UpperCamelCase__, add_special_tokens=UpperCamelCase__ ) rslt.append(UpperCamelCase__ ) iter += 1 if iter % interval == 0: __A : Any = time.time() logger.info(f"""{iter} examples processed. - {(end-start):.2f}s/{interval}expl""" ) __A : Any = time.time() logger.info('Finished binarization' ) logger.info(f"""{len(UpperCamelCase__ )} examples processed.""" ) __A : List[str] = f"""{args.dump_file}.{args.tokenizer_name}.pickle""" __A : str = tokenizer.vocab_size if vocab_size < (1 << 16): __A : Optional[int] = [np.uintaa(UpperCamelCase__ ) for d in rslt] else: __A : int = [np.intaa(UpperCamelCase__ ) for d in rslt] random.shuffle(rslt_ ) logger.info(f"""Dump to {dp_file}""" ) with open(UpperCamelCase__, 'wb' ) as handle: pickle.dump(rslt_, UpperCamelCase__, protocol=pickle.HIGHEST_PROTOCOL ) if __name__ == "__main__": main()
540
1
from __future__ import annotations import random import unittest from transformers import TransfoXLConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLModel, ) class _snake_case : def __init__( self , SCREAMING_SNAKE_CASE_ , ): '''simple docstring''' lowercase__ : Any = parent lowercase__ : Optional[Any] = 13 lowercase__ : Any = 7 lowercase__ : Optional[Any] = 30 lowercase__ : int = self.seq_length + self.mem_len lowercase__ : str = 15 lowercase__ : int = True lowercase__ : Union[str, Any] = True lowercase__ : Optional[Any] = 99 lowercase__ : Any = [10, 50, 80] lowercase__ : str = 32 lowercase__ : Tuple = 32 lowercase__ : int = 4 lowercase__ : Tuple = 8 lowercase__ : Optional[int] = 1_28 lowercase__ : Any = 2 lowercase__ : Optional[int] = 2 lowercase__ : List[Any] = None lowercase__ : Union[str, Any] = 1 lowercase__ : List[Any] = 0 lowercase__ : Union[str, Any] = 3 lowercase__ : Tuple = self.vocab_size - 1 lowercase__ : Union[str, Any] = 0.0_1 def lowercase__ ( self): '''simple docstring''' lowercase__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) lowercase__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) lowercase__ : List[str] = None if self.use_labels: lowercase__ : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) lowercase__ : int = TransfoXLConfig( vocab_size=self.vocab_size , mem_len=self.mem_len , clamp_len=self.clamp_len , cutoffs=self.cutoffs , d_model=self.hidden_size , d_embed=self.d_embed , n_head=self.num_attention_heads , d_head=self.d_head , d_inner=self.d_inner , div_val=self.div_val , n_layer=self.num_hidden_layers , eos_token_id=self.eos_token_id , pad_token_id=self.vocab_size - 1 , init_range=self.init_range , num_labels=self.num_labels , ) return (config, input_ids_a, input_ids_a, lm_labels) def lowercase__ ( self): '''simple docstring''' random.seed(self.seed) tf.random.set_seed(self.seed) def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : List[str] = TFTransfoXLModel(SCREAMING_SNAKE_CASE_) lowercase__ , lowercase__ : Optional[Any] = model(SCREAMING_SNAKE_CASE_).to_tuple() lowercase__ : List[Any] = {"""input_ids""": input_ids_a, """mems""": mems_a} lowercase__ , lowercase__ : Tuple = model(SCREAMING_SNAKE_CASE_).to_tuple() self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Union[str, Any] = TFTransfoXLLMHeadModel(SCREAMING_SNAKE_CASE_) lowercase__ , lowercase__ : Dict = model(SCREAMING_SNAKE_CASE_).to_tuple() lowercase__ : int = {"""input_ids""": input_ids_a, """labels""": lm_labels} lowercase__ , lowercase__ : str = model(SCREAMING_SNAKE_CASE_).to_tuple() lowercase__ , lowercase__ : Dict = model([input_ids_a, mems_a]).to_tuple() lowercase__ : Tuple = {"""input_ids""": input_ids_a, """mems""": mems_a, """labels""": lm_labels} lowercase__ , lowercase__ : Dict = model(SCREAMING_SNAKE_CASE_).to_tuple() self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : str = TFTransfoXLForSequenceClassification(SCREAMING_SNAKE_CASE_) lowercase__ : Optional[Any] = model(SCREAMING_SNAKE_CASE_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def lowercase__ ( self): '''simple docstring''' lowercase__ : Union[str, Any] = self.prepare_config_and_inputs() ((lowercase__) , (lowercase__) , (lowercase__) , (lowercase__)) : Any = config_and_inputs lowercase__ : Any = {"""input_ids""": input_ids_a} return config, inputs_dict @require_tf class _snake_case ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): __lowerCAmelCase : List[Any] = ( (TFTransfoXLModel, TFTransfoXLLMHeadModel, TFTransfoXLForSequenceClassification) if is_tf_available() else () ) __lowerCAmelCase : Union[str, Any] = () if is_tf_available() else () __lowerCAmelCase : Optional[int] = ( { 'feature-extraction': TFTransfoXLModel, 'text-classification': TFTransfoXLForSequenceClassification, 'text-generation': TFTransfoXLLMHeadModel, 'zero-shot': TFTransfoXLForSequenceClassification, } if is_tf_available() else {} ) # TODO: add this test when TFTransfoXLLMHead has a linear output layer implemented __lowerCAmelCase : Any = False __lowerCAmelCase : Dict = False __lowerCAmelCase : Union[str, Any] = False __lowerCAmelCase : List[Any] = False def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' if pipeline_test_casse_name == "TextGenerationPipelineTests": # Get `ValueError: AttributeError: 'NoneType' object has no attribute 'new_ones'` or `AssertionError`. # `TransfoXLConfig` was never used in pipeline tests: cannot create a simple # tokenizer. return True return False def lowercase__ ( self): '''simple docstring''' lowercase__ : Any = TFTransfoXLModelTester(self) lowercase__ : int = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , d_embed=37) def lowercase__ ( self): '''simple docstring''' self.config_tester.run_common_tests() def lowercase__ ( self): '''simple docstring''' self.model_tester.set_seed() lowercase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_model(*SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' self.model_tester.set_seed() lowercase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_lm_head(*SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' lowercase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_for_sequence_classification(*SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' lowercase__ , lowercase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : List[str] = [TFTransfoXLForSequenceClassification] for model_class in self.all_model_classes: lowercase__ : Optional[Any] = model_class(SCREAMING_SNAKE_CASE_) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer) if model_class in list_other_models_with_output_ebd: lowercase__ : Tuple = model.get_output_embeddings() assert isinstance(SCREAMING_SNAKE_CASE_ , tf.keras.layers.Layer) lowercase__ : List[Any] = model.get_bias() assert name is None else: lowercase__ : Union[str, Any] = model.get_output_embeddings() assert x is None lowercase__ : Optional[Any] = model.get_bias() assert name is None def lowercase__ ( self): '''simple docstring''' pass @slow def lowercase__ ( self): '''simple docstring''' for model_name in TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : Union[str, Any] = TFTransfoXLModel.from_pretrained(SCREAMING_SNAKE_CASE_) self.assertIsNotNone(SCREAMING_SNAKE_CASE_) @unittest.skip(reason="""This model doesn't play well with fit() due to not returning a single loss.""") def lowercase__ ( self): '''simple docstring''' pass @require_tf class _snake_case ( unittest.TestCase ): @unittest.skip("""Skip test until #12651 is resolved.""") @slow def lowercase__ ( self): '''simple docstring''' lowercase__ : List[str] = TFTransfoXLLMHeadModel.from_pretrained("""transfo-xl-wt103""") # fmt: off lowercase__ : int = tf.convert_to_tensor([[33,12_97,2,1,10_09,4,11_09,1_17_39,47_62,3_58,5,25,2_45,22,17_06,17,2_00_98,5,32_15,21,37,11_10,3,13,10_41,4,24,6_03,4_90,2,7_14_77,2_00_98,10_44_47,2,2_09_61,1,26_04,4,1,3_29,3,62_24,8_31,1_60_02,2,8,6_03,7_89_67,2_95_46,23,8_03,20,25,4_16,5,8,2_32,4,2_77,6,18_55,46_01,3,2_95_46,54,8,36_09,5,5_72_11,49,4,1,2_77,18,8,17_55,1_56_91,3,3_41,25,4_16,6_93,4_25_73,71,17,4_01,94,31,1_79_19,2,2_95_46,78_73,18,1,4_35,23,1_10_11,7_55,5,51_67,3,79_83,98,84,2,2_95_46,32_67,8,36_09,4,1,48_65,10_75,2,60_87,71,6,3_46,8,58_54,3,2_95_46,8_24,14_00,18_68,2,19,1_60,2,3_11,8,54_96,2,2_09_20,17,25,1_50_97,3,24,24,0]] , dtype=tf.intaa) # noqa: E231 # fmt: on # In 1991 , the remains of Russian Tsar Nicholas II and his family # ( except for Alexei and Maria ) are discovered . # The voice of Nicholas's young son , Tsarevich Alexei Nikolaevich , narrates the # remainder of the story . 1883 Western Siberia , # a young Grigori Rasputin is asked by his father and a group of men to perform magic . # Rasputin has a vision and denounces one of the men as a horse thief . Although his # father initially slaps him for making such an accusation , Rasputin watches as the # man is chased outside and beaten . Twenty years later , Rasputin sees a vision of # the Virgin Mary , prompting him to become a priest . Rasputin quickly becomes famous , # with people , even a bishop , begging for his blessing . <eod> </s> <eos> # fmt: off lowercase__ : Optional[int] = [33,12_97,2,1,10_09,4,11_09,1_17_39,47_62,3_58,5,25,2_45,22,17_06,17,2_00_98,5,32_15,21,37,11_10,3,13,10_41,4,24,6_03,4_90,2,7_14_77,2_00_98,10_44_47,2,2_09_61,1,26_04,4,1,3_29,3,62_24,8_31,1_60_02,2,8,6_03,7_89_67,2_95_46,23,8_03,20,25,4_16,5,8,2_32,4,2_77,6,18_55,46_01,3,2_95_46,54,8,36_09,5,5_72_11,49,4,1,2_77,18,8,17_55,1_56_91,3,3_41,25,4_16,6_93,4_25_73,71,17,4_01,94,31,1_79_19,2,2_95_46,78_73,18,1,4_35,23,1_10_11,7_55,5,51_67,3,79_83,98,84,2,2_95_46,32_67,8,36_09,4,1,48_65,10_75,2,60_87,71,6,3_46,8,58_54,3,2_95_46,8_24,14_00,18_68,2,19,1_60,2,3_11,8,54_96,2,2_09_20,17,25,1_50_97,3,24,24,0,33,1,18_57,2,1,10_09,4,11_09,1_17_39,47_62,3_58,5,25,2_45,28,11_10,3,13,10_41,4,24,6_03,4_90,2,7_14_77,2_00_98,10_44_47,2,2_09_61,1,26_04,4,1,3_29,3,0] # noqa: E231 # fmt: on # In 1991, the remains of Russian Tsar Nicholas II and his family ( # except for Alexei and Maria ) are discovered. The voice of young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story. # 1883 Western Siberia, a young Grigori Rasputin is asked by his father # and a group of men to perform magic. Rasputin has a vision and # denounces one of the men as a horse thief. Although his father initially # slaps him for making such an accusation, Rasputin watches as the man # is chased outside and beaten. Twenty years later, Rasputin sees a vision # of the Virgin Mary, prompting him to become a priest. # Rasputin quickly becomes famous, with people, even a bishop, begging for # his blessing. <unk> <unk> <eos> In the 1990s, the remains of Russian Tsar # Nicholas II and his family were discovered. The voice of <unk> young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story.<eos> lowercase__ : List[Any] = model.generate(SCREAMING_SNAKE_CASE_ , max_length=2_00 , do_sample=SCREAMING_SNAKE_CASE_) self.assertListEqual(output_ids[0].numpy().tolist() , SCREAMING_SNAKE_CASE_)
12
"""simple docstring""" import pytest from datasets.utils.sharding import _distribute_shards, _number_of_shards_in_gen_kwargs, _split_gen_kwargs @pytest.mark.parametrize( """kwargs, expected""" ,[ ({"""num_shards""": 0, """max_num_jobs""": 1}, []), ({"""num_shards""": 10, """max_num_jobs""": 1}, [range(10 )]), ({"""num_shards""": 10, """max_num_jobs""": 10}, [range(lowercase ,i + 1 ) for i in range(10 )]), ({"""num_shards""": 1, """max_num_jobs""": 10}, [range(1 )]), ({"""num_shards""": 10, """max_num_jobs""": 3}, [range(0 ,4 ), range(4 ,7 ), range(7 ,10 )]), ({"""num_shards""": 3, """max_num_jobs""": 10}, [range(0 ,1 ), range(1 ,2 ), range(2 ,3 )]), ] ,) def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = _distribute_shards(**lowercase ) assert out == expected @pytest.mark.parametrize( """gen_kwargs, max_num_jobs, expected""" ,[ ({"""foo""": 0}, 10, [{"""foo""": 0}]), ({"""shards""": [0, 1, 2, 3]}, 1, [{"""shards""": [0, 1, 2, 3]}]), ({"""shards""": [0, 1, 2, 3]}, 4, [{"""shards""": [0]}, {"""shards""": [1]}, {"""shards""": [2]}, {"""shards""": [3]}]), ({"""shards""": [0, 1]}, 4, [{"""shards""": [0]}, {"""shards""": [1]}]), ({"""shards""": [0, 1, 2, 3]}, 2, [{"""shards""": [0, 1]}, {"""shards""": [2, 3]}]), ] ,) def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = _split_gen_kwargs(lowercase ,lowercase ) assert out == expected @pytest.mark.parametrize( """gen_kwargs, expected""" ,[ ({"""foo""": 0}, 1), ({"""shards""": [0]}, 1), ({"""shards""": [0, 1, 2, 3]}, 4), ({"""shards""": [0, 1, 2, 3], """foo""": 0}, 4), ({"""shards""": [0, 1, 2, 3], """other""": (0, 1)}, 4), ({"""shards""": [0, 1, 2, 3], """shards2""": [0, 1]}, RuntimeError), ] ,) def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" if expected is RuntimeError: with pytest.raises(lowercase ): _number_of_shards_in_gen_kwargs(lowercase ) else: _UpperCAmelCase = _number_of_shards_in_gen_kwargs(lowercase ) assert out == expected
277
0
def _A ( lowerCamelCase ): return " ".join( "".join(word[::-1] ) if len(lowerCamelCase ) > 4 else word for word in sentence.split() ) if __name__ == "__main__": import doctest doctest.testmod() print(reverse_long_words("""Hey wollef sroirraw"""))
629
from typing import Any, Callable, Dict, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker SCREAMING_SNAKE_CASE__ : Dict = """CompVis/stable-diffusion-v1-1""" SCREAMING_SNAKE_CASE__ : Dict = """CompVis/stable-diffusion-v1-2""" SCREAMING_SNAKE_CASE__ : Tuple = """CompVis/stable-diffusion-v1-3""" SCREAMING_SNAKE_CASE__ : str = """CompVis/stable-diffusion-v1-4""" class __lowerCAmelCase ( _UpperCamelCase ): def __init__( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case = True , ) -> Any: """simple docstring""" super()._init_() a__ : Union[str, Any] = StableDiffusionPipeline.from_pretrained(snake_case ) a__ : Optional[Any] = StableDiffusionPipeline.from_pretrained(snake_case ) a__ : Optional[Any] = StableDiffusionPipeline.from_pretrained(snake_case ) a__ : int = StableDiffusionPipeline( vae=snake_case , text_encoder=snake_case , tokenizer=snake_case , unet=snake_case , scheduler=snake_case , safety_checker=snake_case , feature_extractor=snake_case , requires_safety_checker=snake_case , ) self.register_modules(pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea ) @property def _snake_case ( self ) -> Dict[str, Any]: """simple docstring""" return {k: getattr(self , snake_case ) for k in self.config.keys() if not k.startswith("_" )} def _snake_case ( self , snake_case = "auto" ) -> Optional[Any]: """simple docstring""" if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory a__ : List[Any] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(snake_case ) def _snake_case ( self ) -> Tuple: """simple docstring""" self.enable_attention_slicing(snake_case ) @torch.no_grad() def _snake_case ( self , snake_case , snake_case = 512 , snake_case = 512 , snake_case = 50 , snake_case = 7.5 , snake_case = None , snake_case = 1 , snake_case = 0.0 , snake_case = None , snake_case = None , snake_case = "pil" , snake_case = True , snake_case = None , snake_case = 1 , **snake_case , ) -> Optional[int]: """simple docstring""" return self.pipea( prompt=snake_case , height=snake_case , width=snake_case , num_inference_steps=snake_case , guidance_scale=snake_case , negative_prompt=snake_case , num_images_per_prompt=snake_case , eta=snake_case , generator=snake_case , latents=snake_case , output_type=snake_case , return_dict=snake_case , callback=snake_case , callback_steps=snake_case , **snake_case , ) @torch.no_grad() def _snake_case ( self , snake_case , snake_case = 512 , snake_case = 512 , snake_case = 50 , snake_case = 7.5 , snake_case = None , snake_case = 1 , snake_case = 0.0 , snake_case = None , snake_case = None , snake_case = "pil" , snake_case = True , snake_case = None , snake_case = 1 , **snake_case , ) -> Dict: """simple docstring""" return self.pipea( prompt=snake_case , height=snake_case , width=snake_case , num_inference_steps=snake_case , guidance_scale=snake_case , negative_prompt=snake_case , num_images_per_prompt=snake_case , eta=snake_case , generator=snake_case , latents=snake_case , output_type=snake_case , return_dict=snake_case , callback=snake_case , callback_steps=snake_case , **snake_case , ) @torch.no_grad() def _snake_case ( self , snake_case , snake_case = 512 , snake_case = 512 , snake_case = 50 , snake_case = 7.5 , snake_case = None , snake_case = 1 , snake_case = 0.0 , snake_case = None , snake_case = None , snake_case = "pil" , snake_case = True , snake_case = None , snake_case = 1 , **snake_case , ) -> Union[str, Any]: """simple docstring""" return self.pipea( prompt=snake_case , height=snake_case , width=snake_case , num_inference_steps=snake_case , guidance_scale=snake_case , negative_prompt=snake_case , num_images_per_prompt=snake_case , eta=snake_case , generator=snake_case , latents=snake_case , output_type=snake_case , return_dict=snake_case , callback=snake_case , callback_steps=snake_case , **snake_case , ) @torch.no_grad() def _snake_case ( self , snake_case , snake_case = 512 , snake_case = 512 , snake_case = 50 , snake_case = 7.5 , snake_case = None , snake_case = 1 , snake_case = 0.0 , snake_case = None , snake_case = None , snake_case = "pil" , snake_case = True , snake_case = None , snake_case = 1 , **snake_case , ) -> Dict: """simple docstring""" return self.pipea( prompt=snake_case , height=snake_case , width=snake_case , num_inference_steps=snake_case , guidance_scale=snake_case , negative_prompt=snake_case , num_images_per_prompt=snake_case , eta=snake_case , generator=snake_case , latents=snake_case , output_type=snake_case , return_dict=snake_case , callback=snake_case , callback_steps=snake_case , **snake_case , ) @torch.no_grad() def _snake_case ( self , snake_case , snake_case = 512 , snake_case = 512 , snake_case = 50 , snake_case = 7.5 , snake_case = None , snake_case = 1 , snake_case = 0.0 , snake_case = None , snake_case = None , snake_case = "pil" , snake_case = True , snake_case = None , snake_case = 1 , **snake_case , ) -> Dict: """simple docstring""" a__ : Any = "cuda" if torch.cuda.is_available() else "cpu" self.to(snake_case ) # Checks if the height and width are divisible by 8 or not if height % 8 != 0 or width % 8 != 0: raise ValueError(F"""`height` and `width` must be divisible by 8 but are {height} and {width}.""" ) # Get first result from Stable Diffusion Checkpoint v1.1 a__ : Any = self.textaimg_sda_a( prompt=snake_case , height=snake_case , width=snake_case , num_inference_steps=snake_case , guidance_scale=snake_case , negative_prompt=snake_case , num_images_per_prompt=snake_case , eta=snake_case , generator=snake_case , latents=snake_case , output_type=snake_case , return_dict=snake_case , callback=snake_case , callback_steps=snake_case , **snake_case , ) # Get first result from Stable Diffusion Checkpoint v1.2 a__ : List[Any] = self.textaimg_sda_a( prompt=snake_case , height=snake_case , width=snake_case , num_inference_steps=snake_case , guidance_scale=snake_case , negative_prompt=snake_case , num_images_per_prompt=snake_case , eta=snake_case , generator=snake_case , latents=snake_case , output_type=snake_case , return_dict=snake_case , callback=snake_case , callback_steps=snake_case , **snake_case , ) # Get first result from Stable Diffusion Checkpoint v1.3 a__ : Optional[Any] = self.textaimg_sda_a( prompt=snake_case , height=snake_case , width=snake_case , num_inference_steps=snake_case , guidance_scale=snake_case , negative_prompt=snake_case , num_images_per_prompt=snake_case , eta=snake_case , generator=snake_case , latents=snake_case , output_type=snake_case , return_dict=snake_case , callback=snake_case , callback_steps=snake_case , **snake_case , ) # Get first result from Stable Diffusion Checkpoint v1.4 a__ : Dict = self.textaimg_sda_a( prompt=snake_case , height=snake_case , width=snake_case , num_inference_steps=snake_case , guidance_scale=snake_case , negative_prompt=snake_case , num_images_per_prompt=snake_case , eta=snake_case , generator=snake_case , latents=snake_case , output_type=snake_case , return_dict=snake_case , callback=snake_case , callback_steps=snake_case , **snake_case , ) # Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]] )
629
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCamelCase : Tuple = logging.get_logger(__name__) __UpperCamelCase : Union[str, Any] = { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/config.json""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/config.json""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/config.json""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/config.json""", """bert-base-multilingual-uncased""": """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json""", """bert-base-multilingual-cased""": """https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json""", """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/config.json""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/config.json""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-base-cased-finetuned-mrpc""": """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json""", """bert-base-german-dbmdz-cased""": """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json""", """bert-base-german-dbmdz-uncased""": """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json""", """cl-tohoku/bert-base-japanese""": """https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json""", """cl-tohoku/bert-base-japanese-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json""" ), """wietsedv/bert-base-dutch-cased""": """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json""", # See all BERT models at https://huggingface.co/models?filter=bert } class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :int = 'bert' def __init__( self : Union[str, Any] , _lowerCAmelCase : Union[str, Any]=3_0522 , _lowerCAmelCase : List[str]=768 , _lowerCAmelCase : List[Any]=12 , _lowerCAmelCase : Union[str, Any]=12 , _lowerCAmelCase : List[str]=3072 , _lowerCAmelCase : List[Any]="gelu" , _lowerCAmelCase : str=0.1 , _lowerCAmelCase : str=0.1 , _lowerCAmelCase : Optional[Any]=512 , _lowerCAmelCase : Dict=2 , _lowerCAmelCase : Optional[Any]=0.02 , _lowerCAmelCase : Dict=1e-12 , _lowerCAmelCase : Optional[int]=0 , _lowerCAmelCase : Optional[Any]="absolute" , _lowerCAmelCase : str=True , _lowerCAmelCase : Dict=None , **_lowerCAmelCase : Optional[Any] , ) -> Optional[int]: """simple docstring""" super().__init__(pad_token_id=_lowerCAmelCase , **_lowerCAmelCase ) __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = hidden_act __lowercase = intermediate_size __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = initializer_range __lowercase = layer_norm_eps __lowercase = position_embedding_type __lowercase = use_cache __lowercase = classifier_dropout class __UpperCamelCase ( _lowerCAmelCase ): @property def _a ( self : Union[str, Any] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": __lowercase = {0: """batch""", 1: """choice""", 2: """sequence"""} else: __lowercase = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
80
import argparse import logging import pickle from collections import Counter logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) lowerCAmelCase_ = logging.getLogger(__name__) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser( description='''Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)''' ) parser.add_argument( '''--data_file''', type=str, default='''data/dump.bert-base-uncased.pickle''', help='''The binarized dataset.''' ) parser.add_argument( '''--token_counts_dump''', type=str, default='''data/token_counts.bert-base-uncased.pickle''', help='''The dump file.''' ) parser.add_argument('''--vocab_size''', default=3_0_5_2_2, type=int) lowerCAmelCase_ = parser.parse_args() logger.info(F'''Loading data from {args.data_file}''') with open(args.data_file, '''rb''') as fp: lowerCAmelCase_ = pickle.load(fp) logger.info('''Counting occurrences for MLM.''') lowerCAmelCase_ = Counter() for tk_ids in data: counter.update(tk_ids) lowerCAmelCase_ = [0] * args.vocab_size for k, v in counter.items(): lowerCAmelCase_ = v logger.info(F'''Dump to {args.token_counts_dump}''') with open(args.token_counts_dump, '''wb''') as handle: pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
60
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import _LazyModule _SCREAMING_SNAKE_CASE = {"""tokenization_byt5""": ["""ByT5Tokenizer"""]} if TYPE_CHECKING: from .tokenization_byta import ByTaTokenizer else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
614
"""simple docstring""" import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation def __UpperCamelCase ( SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" __snake_case = 3_84 if "tiny" in model_name: __snake_case = [3, 3, 9, 3] __snake_case = [96, 1_92, 3_84, 7_68] if "small" in model_name: __snake_case = [3, 3, 27, 3] __snake_case = [96, 1_92, 3_84, 7_68] if "base" in model_name: __snake_case = [3, 3, 27, 3] __snake_case = [1_28, 2_56, 5_12, 10_24] __snake_case = 5_12 if "large" in model_name: __snake_case = [3, 3, 27, 3] __snake_case = [1_92, 3_84, 7_68, 15_36] __snake_case = 7_68 if "xlarge" in model_name: __snake_case = [3, 3, 27, 3] __snake_case = [2_56, 5_12, 10_24, 20_48] __snake_case = 10_24 # set label information __snake_case = 1_50 __snake_case = "huggingface/label-files" __snake_case = "ade20k-id2label.json" __snake_case = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , repo_type="dataset" ) , "r" ) ) __snake_case = {int(SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} __snake_case = {v: k for k, v in idalabel.items()} __snake_case = ConvNextConfig( depths=SCREAMING_SNAKE_CASE , hidden_sizes=SCREAMING_SNAKE_CASE , out_features=["stage1", "stage2", "stage3", "stage4"] ) __snake_case = UperNetConfig( backbone_config=SCREAMING_SNAKE_CASE , auxiliary_in_channels=SCREAMING_SNAKE_CASE , num_labels=SCREAMING_SNAKE_CASE , idalabel=SCREAMING_SNAKE_CASE , labelaid=SCREAMING_SNAKE_CASE , ) return config def __UpperCamelCase ( SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" __snake_case = [] # fmt: off # stem rename_keys.append(("backbone.downsample_layers.0.0.weight", "backbone.embeddings.patch_embeddings.weight") ) rename_keys.append(("backbone.downsample_layers.0.0.bias", "backbone.embeddings.patch_embeddings.bias") ) rename_keys.append(("backbone.downsample_layers.0.1.weight", "backbone.embeddings.layernorm.weight") ) rename_keys.append(("backbone.downsample_layers.0.1.bias", "backbone.embeddings.layernorm.bias") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'''backbone.stages.{i}.{j}.gamma''', F'''backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.depthwise_conv.weight''', F'''backbone.encoder.stages.{i}.layers.{j}.dwconv.weight''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.depthwise_conv.bias''', F'''backbone.encoder.stages.{i}.layers.{j}.dwconv.bias''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.norm.weight''', F'''backbone.encoder.stages.{i}.layers.{j}.layernorm.weight''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.norm.bias''', F'''backbone.encoder.stages.{i}.layers.{j}.layernorm.bias''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.pointwise_conv1.weight''', F'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.pointwise_conv1.bias''', F'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.pointwise_conv2.weight''', F'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.pointwise_conv2.bias''', F'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias''') ) if i > 0: rename_keys.append((F'''backbone.downsample_layers.{i}.0.weight''', F'''backbone.encoder.stages.{i}.downsampling_layer.0.weight''') ) rename_keys.append((F'''backbone.downsample_layers.{i}.0.bias''', F'''backbone.encoder.stages.{i}.downsampling_layer.0.bias''') ) rename_keys.append((F'''backbone.downsample_layers.{i}.1.weight''', F'''backbone.encoder.stages.{i}.downsampling_layer.1.weight''') ) rename_keys.append((F'''backbone.downsample_layers.{i}.1.bias''', F'''backbone.encoder.stages.{i}.downsampling_layer.1.bias''') ) rename_keys.append((F'''backbone.norm{i}.weight''', F'''backbone.hidden_states_norms.stage{i+1}.weight''') ) rename_keys.append((F'''backbone.norm{i}.bias''', F'''backbone.hidden_states_norms.stage{i+1}.bias''') ) # decode head rename_keys.extend( [ ("decode_head.conv_seg.weight", "decode_head.classifier.weight"), ("decode_head.conv_seg.bias", "decode_head.classifier.bias"), ("auxiliary_head.conv_seg.weight", "auxiliary_head.classifier.weight"), ("auxiliary_head.conv_seg.bias", "auxiliary_head.classifier.bias"), ] ) # fmt: on return rename_keys def __UpperCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" __snake_case = dct.pop(SCREAMING_SNAKE_CASE ) __snake_case = val def __UpperCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" __snake_case = { "upernet-convnext-tiny": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth", "upernet-convnext-small": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth", "upernet-convnext-base": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth", "upernet-convnext-large": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth", "upernet-convnext-xlarge": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth", } __snake_case = model_name_to_url[model_name] __snake_case = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE , map_location="cpu" )["state_dict"] __snake_case = get_upernet_config(SCREAMING_SNAKE_CASE ) __snake_case = UperNetForSemanticSegmentation(SCREAMING_SNAKE_CASE ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): __snake_case = state_dict.pop(SCREAMING_SNAKE_CASE ) if "bn" in key: __snake_case = key.replace("bn" , "batch_norm" ) __snake_case = val # rename keys __snake_case = create_rename_keys(SCREAMING_SNAKE_CASE ) for src, dest in rename_keys: rename_key(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) model.load_state_dict(SCREAMING_SNAKE_CASE ) # verify on image __snake_case = "https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg" __snake_case = Image.open(requests.get(SCREAMING_SNAKE_CASE , stream=SCREAMING_SNAKE_CASE ).raw ).convert("RGB" ) __snake_case = SegformerImageProcessor() __snake_case = processor(SCREAMING_SNAKE_CASE , return_tensors="pt" ).pixel_values with torch.no_grad(): __snake_case = model(SCREAMING_SNAKE_CASE ) if model_name == "upernet-convnext-tiny": __snake_case = torch.tensor( [[-8.8_110, -8.8_110, -8.6_521], [-8.8_110, -8.8_110, -8.6_521], [-8.7_746, -8.7_746, -8.6_130]] ) elif model_name == "upernet-convnext-small": __snake_case = torch.tensor( [[-8.8_236, -8.8_236, -8.6_771], [-8.8_236, -8.8_236, -8.6_771], [-8.7_638, -8.7_638, -8.6_240]] ) elif model_name == "upernet-convnext-base": __snake_case = torch.tensor( [[-8.8_558, -8.8_558, -8.6_905], [-8.8_558, -8.8_558, -8.6_905], [-8.7_669, -8.7_669, -8.6_021]] ) elif model_name == "upernet-convnext-large": __snake_case = torch.tensor( [[-8.6_660, -8.6_660, -8.6_210], [-8.6_660, -8.6_660, -8.6_210], [-8.6_310, -8.6_310, -8.5_964]] ) elif model_name == "upernet-convnext-xlarge": __snake_case = torch.tensor( [[-8.4_980, -8.4_980, -8.3_977], [-8.4_980, -8.4_980, -8.3_977], [-8.4_379, -8.4_379, -8.3_412]] ) print("Logits:" , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , SCREAMING_SNAKE_CASE , atol=1e-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(SCREAMING_SNAKE_CASE ) print(F'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(SCREAMING_SNAKE_CASE ) if push_to_hub: print(F'''Pushing model and processor for {model_name} to hub''' ) model.push_to_hub(F'''openmmlab/{model_name}''' ) processor.push_to_hub(F'''openmmlab/{model_name}''' ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""upernet-convnext-tiny""", type=str, choices=[F"""upernet-convnext-{size}""" for size in ["""tiny""", """small""", """base""", """large""", """xlarge"""]], help="""Name of the ConvNext UperNet model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) _SCREAMING_SNAKE_CASE = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
614
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case = logging.get_logger(__name__) snake_case = { '''unc-nlp/lxmert-base-uncased''': '''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json''', } class SCREAMING_SNAKE_CASE ( __a ): """simple docstring""" __A = "lxmert" __A = {} def __init__( self : Optional[int] , __lowerCAmelCase : int=3_0522 , __lowerCAmelCase : Tuple=768 , __lowerCAmelCase : Optional[Any]=12 , __lowerCAmelCase : Optional[Any]=9500 , __lowerCAmelCase : Tuple=1600 , __lowerCAmelCase : Union[str, Any]=400 , __lowerCAmelCase : int=3072 , __lowerCAmelCase : List[str]="gelu" , __lowerCAmelCase : List[Any]=0.1 , __lowerCAmelCase : List[Any]=0.1 , __lowerCAmelCase : Tuple=512 , __lowerCAmelCase : int=2 , __lowerCAmelCase : Dict=0.0_2 , __lowerCAmelCase : Tuple=1e-12 , __lowerCAmelCase : Union[str, Any]=9 , __lowerCAmelCase : Union[str, Any]=5 , __lowerCAmelCase : List[Any]=5 , __lowerCAmelCase : Dict=2048 , __lowerCAmelCase : Tuple=4 , __lowerCAmelCase : List[str]=6.6_7 , __lowerCAmelCase : Optional[Any]=True , __lowerCAmelCase : Optional[int]=True , __lowerCAmelCase : List[str]=True , __lowerCAmelCase : Optional[int]=True , __lowerCAmelCase : List[Any]=True , __lowerCAmelCase : str=True , __lowerCAmelCase : int=True , **__lowerCAmelCase : int , ): """simple docstring""" _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = num_attention_heads _lowerCAmelCase = hidden_act _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = type_vocab_size _lowerCAmelCase = initializer_range _lowerCAmelCase = layer_norm_eps _lowerCAmelCase = num_qa_labels _lowerCAmelCase = num_object_labels _lowerCAmelCase = num_attr_labels _lowerCAmelCase = l_layers _lowerCAmelCase = x_layers _lowerCAmelCase = r_layers _lowerCAmelCase = visual_feat_dim _lowerCAmelCase = visual_pos_dim _lowerCAmelCase = visual_loss_normalizer _lowerCAmelCase = task_matched _lowerCAmelCase = task_mask_lm _lowerCAmelCase = task_obj_predict _lowerCAmelCase = task_qa _lowerCAmelCase = visual_obj_loss _lowerCAmelCase = visual_attr_loss _lowerCAmelCase = visual_feat_loss _lowerCAmelCase = {'vision': r_layers, 'cross_encoder': x_layers, 'language': l_layers} super().__init__(**__lowerCAmelCase )
309
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING import torch from ..models.auto import AutoModelForVisualQuestionAnswering, AutoProcessor from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class SCREAMING_SNAKE_CASE ( __a ): """simple docstring""" __A = "dandelin/vilt-b32-finetuned-vqa" __A = ( "This is a tool that answers a question about an image. It takes an input named `image` which should be the " "image containing the information, as well as a `question` which should be the question in English. It " "returns a text that is the answer to the question." ) __A = "image_qa" __A = AutoProcessor __A = AutoModelForVisualQuestionAnswering __A = ["image", "text"] __A = ["text"] def __init__( self : List[Any] , *__lowerCAmelCase : List[Any] , **__lowerCAmelCase : str ): """simple docstring""" requires_backends(self , ['vision'] ) super().__init__(*__lowerCAmelCase , **__lowerCAmelCase ) def a ( self : int , __lowerCAmelCase : "Image" , __lowerCAmelCase : str ): """simple docstring""" return self.pre_processor(__lowerCAmelCase , __lowerCAmelCase , return_tensors='pt' ) def a ( self : Dict , __lowerCAmelCase : Tuple ): """simple docstring""" with torch.no_grad(): return self.model(**__lowerCAmelCase ).logits def a ( self : Tuple , __lowerCAmelCase : str ): """simple docstring""" _lowerCAmelCase = outputs.argmax(-1 ).item() return self.model.config.idalabel[idx]
309
1
from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE : Optional[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Optional[Any] = { """abeja/gpt-neox-japanese-2.7b""": """https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/config.json""", } class A_ ( a_ ): _SCREAMING_SNAKE_CASE = """gpt_neox_japanese""" def __init__( self : int , __SCREAMING_SNAKE_CASE : List[Any]=3_20_00 , __SCREAMING_SNAKE_CASE : Optional[int]=25_60 , __SCREAMING_SNAKE_CASE : Optional[Any]=32 , __SCREAMING_SNAKE_CASE : int=32 , __SCREAMING_SNAKE_CASE : Union[str, Any]=4 , __SCREAMING_SNAKE_CASE : Optional[int]="gelu" , __SCREAMING_SNAKE_CASE : Union[str, Any]=1.00 , __SCREAMING_SNAKE_CASE : Union[str, Any]=1_00_00 , __SCREAMING_SNAKE_CASE : str=20_48 , __SCREAMING_SNAKE_CASE : Any=0.02 , __SCREAMING_SNAKE_CASE : Optional[Any]=1E-5 , __SCREAMING_SNAKE_CASE : str=True , __SCREAMING_SNAKE_CASE : Optional[int]=3_19_96 , __SCREAMING_SNAKE_CASE : Union[str, Any]=3_19_99 , __SCREAMING_SNAKE_CASE : List[str]=0.1 , __SCREAMING_SNAKE_CASE : List[str]=0.0 , **__SCREAMING_SNAKE_CASE : Union[str, Any] , ): super().__init__(bos_token_id=__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) __a = vocab_size __a = max_position_embeddings __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = intermediate_multiple_size __a = hidden_act __a = rotary_pct __a = rotary_emb_base __a = initializer_range __a = layer_norm_eps __a = use_cache __a = attention_dropout __a = hidden_dropout
710
from __future__ import annotations def __A ( _A ): """simple docstring""" __a = [True] * limit __a = False __a = False __a = True for i in range(3 , int(limit**0.5 + 1 ) , 2 ): __a = i * 2 while index < limit: __a = False __a = index + i __a = [2] for i in range(3 , _A , 2 ): if is_prime[i]: primes.append(_A ) return primes def __A ( _A = 100_0000 ): """simple docstring""" __a = prime_sieve(_A ) __a = 0 __a = 0 for i in range(len(_A ) ): for j in range(i + length , len(_A ) ): __a = sum(primes[i:j] ) if sol >= ceiling: break if sol in primes: __a = j - i __a = sol return largest if __name__ == "__main__": print(f'''{solution() = }''')
525
0
'''simple docstring''' from collections import deque from math import floor from random import random from time import time class lowerCamelCase_ : def __init__( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : Dict = {} def lowercase_ ( self : Optional[int] , _A : Optional[int] , _A : str , _A : List[str]=1 ): '''simple docstring''' if self.graph.get(_A ): if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: UpperCAmelCase__ : Tuple = [[w, v]] if not self.graph.get(_A ): UpperCAmelCase__ : List[Any] = [] def lowercase_ ( self : Dict ): '''simple docstring''' return list(self.graph ) def lowercase_ ( self : int , _A : List[str] , _A : str ): '''simple docstring''' if self.graph.get(_A ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(_A ) def lowercase_ ( self : Dict , _A : List[Any]=-2 , _A : Optional[int]=-1 ): '''simple docstring''' if s == d: return [] UpperCAmelCase__ : Union[str, Any] = [] UpperCAmelCase__ : int = [] if s == -2: UpperCAmelCase__ : Tuple = list(self.graph )[0] stack.append(_A ) visited.append(_A ) UpperCAmelCase__ : List[Any] = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: UpperCAmelCase__ : Optional[int] = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(_A ) return visited else: stack.append(node[1] ) visited.append(node[1] ) UpperCAmelCase__ : str = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(_A ) != 0: UpperCAmelCase__ : Dict = stack[len(_A ) - 1] else: UpperCAmelCase__ : str = ss # check if se have reached the starting point if len(_A ) == 0: return visited def lowercase_ ( self : Tuple , _A : int=-1 ): '''simple docstring''' if c == -1: UpperCAmelCase__ : Tuple = floor(random() * 10_000 ) + 10 for i in range(_A ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): UpperCAmelCase__ : Union[str, Any] = floor(random() * c ) + 1 if n != i: self.add_pair(_A , _A , 1 ) def lowercase_ ( self : Tuple , _A : List[str]=-2 ): '''simple docstring''' UpperCAmelCase__ : int = deque() UpperCAmelCase__ : Optional[int] = [] if s == -2: UpperCAmelCase__ : Union[str, Any] = list(self.graph )[0] d.append(_A ) visited.append(_A ) while d: UpperCAmelCase__ : Dict = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def lowercase_ ( self : int , _A : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : List[str] = 0 for x in self.graph: for y in self.graph[x]: if y[1] == u: count += 1 return count def lowercase_ ( self : Dict , _A : Union[str, Any] ): '''simple docstring''' return len(self.graph[u] ) def lowercase_ ( self : Dict , _A : Optional[Any]=-2 ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = [] UpperCAmelCase__ : List[Any] = [] if s == -2: UpperCAmelCase__ : List[str] = list(self.graph )[0] stack.append(_A ) visited.append(_A ) UpperCAmelCase__ : Any = s UpperCAmelCase__ : Any = [] while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: UpperCAmelCase__ : Dict = s for node in self.graph[s]: if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) UpperCAmelCase__ : Optional[int] = node[1] break # check if all the children are visited if s == ss: sorted_nodes.append(stack.pop() ) if len(_A ) != 0: UpperCAmelCase__ : Union[str, Any] = stack[len(_A ) - 1] else: UpperCAmelCase__ : Union[str, Any] = ss # check if se have reached the starting point if len(_A ) == 0: return sorted_nodes def lowercase_ ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Any = [] UpperCAmelCase__ : List[str] = [] UpperCAmelCase__ : Union[str, Any] = list(self.graph )[0] stack.append(_A ) visited.append(_A ) UpperCAmelCase__ : int = -2 UpperCAmelCase__ : List[str] = [] UpperCAmelCase__ : Optional[int] = s UpperCAmelCase__ : Any = False UpperCAmelCase__ : int = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: UpperCAmelCase__ : Tuple = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): UpperCAmelCase__ : Dict = len(_A ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) UpperCAmelCase__ : Optional[int] = node[1] break # check if all the children are visited if s == ss: stack.pop() UpperCAmelCase__ : Union[str, Any] = True if len(_A ) != 0: UpperCAmelCase__ : List[str] = stack[len(_A ) - 1] else: UpperCAmelCase__ : Optional[Any] = False indirect_parents.append(_A ) UpperCAmelCase__ : Tuple = s UpperCAmelCase__ : Tuple = ss # check if se have reached the starting point if len(_A ) == 0: return list(_A ) def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = [] UpperCAmelCase__ : Tuple = [] UpperCAmelCase__ : Dict = list(self.graph )[0] stack.append(_A ) visited.append(_A ) UpperCAmelCase__ : Union[str, Any] = -2 UpperCAmelCase__ : Optional[Any] = [] UpperCAmelCase__ : List[Any] = s UpperCAmelCase__ : str = False UpperCAmelCase__ : str = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: UpperCAmelCase__ : str = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): UpperCAmelCase__ : List[str] = len(_A ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) UpperCAmelCase__ : Optional[int] = node[1] break # check if all the children are visited if s == ss: stack.pop() UpperCAmelCase__ : Union[str, Any] = True if len(_A ) != 0: UpperCAmelCase__ : int = stack[len(_A ) - 1] else: UpperCAmelCase__ : Dict = False indirect_parents.append(_A ) UpperCAmelCase__ : int = s UpperCAmelCase__ : Optional[int] = ss # check if se have reached the starting point if len(_A ) == 0: return False def lowercase_ ( self : Dict , _A : Any=-2 , _A : List[str]=-1 ): '''simple docstring''' UpperCAmelCase__ : Any = time() self.dfs(_A , _A ) UpperCAmelCase__ : Union[str, Any] = time() return end - begin def lowercase_ ( self : Union[str, Any] , _A : Optional[int]=-2 ): '''simple docstring''' UpperCAmelCase__ : Dict = time() self.bfs(_A ) UpperCAmelCase__ : Any = time() return end - begin class lowerCamelCase_ : def __init__( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = {} def lowercase_ ( self : List[Any] , _A : List[str] , _A : Optional[int] , _A : Any=1 ): '''simple docstring''' if self.graph.get(_A ): # if there already is a edge if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: # if u does not exist UpperCAmelCase__ : Any = [[w, v]] # add the other way if self.graph.get(_A ): # if there already is a edge if self.graph[v].count([w, u] ) == 0: self.graph[v].append([w, u] ) else: # if u does not exist UpperCAmelCase__ : List[str] = [[w, u]] def lowercase_ ( self : Optional[Any] , _A : Optional[int] , _A : Dict ): '''simple docstring''' if self.graph.get(_A ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(_A ) # the other way round if self.graph.get(_A ): for _ in self.graph[v]: if _[1] == u: self.graph[v].remove(_A ) def lowercase_ ( self : Optional[Any] , _A : int=-2 , _A : Optional[int]=-1 ): '''simple docstring''' if s == d: return [] UpperCAmelCase__ : int = [] UpperCAmelCase__ : Dict = [] if s == -2: UpperCAmelCase__ : Optional[Any] = list(self.graph )[0] stack.append(_A ) visited.append(_A ) UpperCAmelCase__ : Optional[Any] = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: UpperCAmelCase__ : Tuple = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(_A ) return visited else: stack.append(node[1] ) visited.append(node[1] ) UpperCAmelCase__ : List[Any] = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(_A ) != 0: UpperCAmelCase__ : str = stack[len(_A ) - 1] else: UpperCAmelCase__ : Optional[Any] = ss # check if se have reached the starting point if len(_A ) == 0: return visited def lowercase_ ( self : str , _A : Tuple=-1 ): '''simple docstring''' if c == -1: UpperCAmelCase__ : str = floor(random() * 10_000 ) + 10 for i in range(_A ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): UpperCAmelCase__ : List[str] = floor(random() * c ) + 1 if n != i: self.add_pair(_A , _A , 1 ) def lowercase_ ( self : Tuple , _A : List[str]=-2 ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = deque() UpperCAmelCase__ : Optional[int] = [] if s == -2: UpperCAmelCase__ : int = list(self.graph )[0] d.append(_A ) visited.append(_A ) while d: UpperCAmelCase__ : Dict = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def lowercase_ ( self : Tuple , _A : int ): '''simple docstring''' return len(self.graph[u] ) def lowercase_ ( self : str ): '''simple docstring''' UpperCAmelCase__ : Dict = [] UpperCAmelCase__ : str = [] UpperCAmelCase__ : Any = list(self.graph )[0] stack.append(_A ) visited.append(_A ) UpperCAmelCase__ : Union[str, Any] = -2 UpperCAmelCase__ : Union[str, Any] = [] UpperCAmelCase__ : List[Any] = s UpperCAmelCase__ : Any = False UpperCAmelCase__ : Any = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: UpperCAmelCase__ : int = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): UpperCAmelCase__ : Tuple = len(_A ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) UpperCAmelCase__ : Any = node[1] break # check if all the children are visited if s == ss: stack.pop() UpperCAmelCase__ : Dict = True if len(_A ) != 0: UpperCAmelCase__ : Optional[int] = stack[len(_A ) - 1] else: UpperCAmelCase__ : Optional[int] = False indirect_parents.append(_A ) UpperCAmelCase__ : Optional[int] = s UpperCAmelCase__ : Dict = ss # check if se have reached the starting point if len(_A ) == 0: return list(_A ) def lowercase_ ( self : str ): '''simple docstring''' UpperCAmelCase__ : List[Any] = [] UpperCAmelCase__ : str = [] UpperCAmelCase__ : Any = list(self.graph )[0] stack.append(_A ) visited.append(_A ) UpperCAmelCase__ : Dict = -2 UpperCAmelCase__ : Optional[int] = [] UpperCAmelCase__ : Optional[Any] = s UpperCAmelCase__ : Optional[Any] = False UpperCAmelCase__ : Union[str, Any] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: UpperCAmelCase__ : List[str] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): UpperCAmelCase__ : Union[str, Any] = len(_A ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) UpperCAmelCase__ : Any = node[1] break # check if all the children are visited if s == ss: stack.pop() UpperCAmelCase__ : List[str] = True if len(_A ) != 0: UpperCAmelCase__ : Any = stack[len(_A ) - 1] else: UpperCAmelCase__ : Optional[Any] = False indirect_parents.append(_A ) UpperCAmelCase__ : List[str] = s UpperCAmelCase__ : Optional[Any] = ss # check if se have reached the starting point if len(_A ) == 0: return False def lowercase_ ( self : int ): '''simple docstring''' return list(self.graph ) def lowercase_ ( self : List[Any] , _A : Any=-2 , _A : List[str]=-1 ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = time() self.dfs(_A , _A ) UpperCAmelCase__ : Tuple = time() return end - begin def lowercase_ ( self : int , _A : str=-2 ): '''simple docstring''' UpperCAmelCase__ : Tuple = time() self.bfs(_A ) UpperCAmelCase__ : int = time() return end - begin
75
'''simple docstring''' import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def a__ ( self , A ) -> Union[str, Any]: A: Any = 3 A: str = 2_50 A: Tuple = ids_tensor((batch_size, length) , A ) A: Any = torch.ones((batch_size, length) , device=A , dtype=torch.float ) / length return input_ids, scores def a__ ( self ) -> str: A , A: Tuple = self._get_tensors(5 ) A: Dict = StoppingCriteriaList( [ MaxLengthCriteria(max_length=10 ), MaxTimeCriteria(max_time=0.1 ), ] ) self.assertFalse(criteria(A , A ) ) A , A: int = self._get_tensors(9 ) self.assertFalse(criteria(A , A ) ) A , A: Optional[int] = self._get_tensors(10 ) self.assertTrue(criteria(A , A ) ) def a__ ( self ) -> Optional[int]: A: List[Any] = MaxLengthCriteria(max_length=10 ) A , A: List[str] = self._get_tensors(5 ) self.assertFalse(criteria(A , A ) ) A , A: int = self._get_tensors(9 ) self.assertFalse(criteria(A , A ) ) A , A: Optional[Any] = self._get_tensors(10 ) self.assertTrue(criteria(A , A ) ) def a__ ( self ) -> Any: A: Tuple = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 ) A , A: Optional[Any] = self._get_tensors(5 ) self.assertFalse(criteria(A , A ) ) A , A: Any = self._get_tensors(9 ) self.assertFalse(criteria(A , A ) ) A , A: Union[str, Any] = self._get_tensors(10 ) self.assertTrue(criteria(A , A ) ) A: str = StoppingCriteriaList([criteria] ) self.assertEqual(criteria_list.max_length , 10 ) def a__ ( self ) -> Tuple: A , A: Optional[Any] = self._get_tensors(5 ) A: Dict = MaxTimeCriteria(max_time=0.1 ) self.assertFalse(criteria(A , A ) ) A: Any = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 ) self.assertTrue(criteria(A , A ) ) def a__ ( self ) -> int: validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 10 ) with self.assertWarns(A ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 11 ) A: List[Any] = validate_stopping_criteria(StoppingCriteriaList() , 11 ) self.assertEqual(len(A ) , 1 )
135
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCamelCase__ : Any = {'''configuration_unispeech''': ['''UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''UniSpeechConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Any = [ '''UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST''', '''UniSpeechForCTC''', '''UniSpeechForPreTraining''', '''UniSpeechForSequenceClassification''', '''UniSpeechModel''', '''UniSpeechPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_unispeech import ( UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST, UniSpeechForCTC, UniSpeechForPreTraining, UniSpeechForSequenceClassification, UniSpeechModel, UniSpeechPreTrainedModel, ) else: import sys UpperCamelCase__ : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
711
'''simple docstring''' from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging UpperCamelCase__ : Tuple = logging.get_logger(__name__) UpperCamelCase__ : List[str] = { '''t5-small''': '''https://huggingface.co/t5-small/resolve/main/config.json''', '''t5-base''': '''https://huggingface.co/t5-base/resolve/main/config.json''', '''t5-large''': '''https://huggingface.co/t5-large/resolve/main/config.json''', '''t5-3b''': '''https://huggingface.co/t5-3b/resolve/main/config.json''', '''t5-11b''': '''https://huggingface.co/t5-11b/resolve/main/config.json''', } class _UpperCamelCase ( lowerCamelCase__ ): '''simple docstring''' _A : Union[str, Any] = '''t5''' _A : Optional[Any] = ['''past_key_values'''] _A : Any = {'''hidden_size''': '''d_model''', '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers'''} def __init__( self : Union[str, Any] , lowerCAmelCase__ : List[str]=3_2_1_2_8 , lowerCAmelCase__ : Dict=5_1_2 , lowerCAmelCase__ : str=6_4 , lowerCAmelCase__ : Tuple=2_0_4_8 , lowerCAmelCase__ : Optional[Any]=6 , lowerCAmelCase__ : Any=None , lowerCAmelCase__ : Any=8 , lowerCAmelCase__ : Dict=3_2 , lowerCAmelCase__ : Dict=1_2_8 , lowerCAmelCase__ : Any=0.1 , lowerCAmelCase__ : str=1E-6 , lowerCAmelCase__ : str=1.0 , lowerCAmelCase__ : Optional[Any]="relu" , lowerCAmelCase__ : List[str]=True , lowerCAmelCase__ : Union[str, Any]=True , lowerCAmelCase__ : Optional[Any]=0 , lowerCAmelCase__ : List[Any]=1 , **lowerCAmelCase__ : Dict , ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = vocab_size __SCREAMING_SNAKE_CASE : str = d_model __SCREAMING_SNAKE_CASE : str = d_kv __SCREAMING_SNAKE_CASE : Optional[Any] = d_ff __SCREAMING_SNAKE_CASE : Optional[Any] = num_layers __SCREAMING_SNAKE_CASE : List[str] = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry __SCREAMING_SNAKE_CASE : Optional[int] = num_heads __SCREAMING_SNAKE_CASE : Any = relative_attention_num_buckets __SCREAMING_SNAKE_CASE : int = relative_attention_max_distance __SCREAMING_SNAKE_CASE : Optional[int] = dropout_rate __SCREAMING_SNAKE_CASE : Optional[int] = layer_norm_epsilon __SCREAMING_SNAKE_CASE : Optional[int] = initializer_factor __SCREAMING_SNAKE_CASE : Any = feed_forward_proj __SCREAMING_SNAKE_CASE : str = use_cache __SCREAMING_SNAKE_CASE : List[str] = self.feed_forward_proj.split("""-""" ) __SCREAMING_SNAKE_CASE : Tuple = act_info[-1] __SCREAMING_SNAKE_CASE : int = act_info[0] == """gated""" if len(lowerCAmelCase__ ) > 1 and act_info[0] != "gated" or len(lowerCAmelCase__ ) > 2: raise ValueError( F"`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer." """Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. """ """'gated-gelu' or 'relu'""" ) # for backwards compatibility if feed_forward_proj == "gated-gelu": __SCREAMING_SNAKE_CASE : List[Any] = """gelu_new""" super().__init__( pad_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , is_encoder_decoder=lowerCAmelCase__ , **lowerCAmelCase__ , ) class _UpperCamelCase ( lowerCamelCase__ ): '''simple docstring''' @property def UpperCamelCase__ ( self : Tuple ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = { """input_ids""": {0: """batch""", 1: """encoder_sequence"""}, """attention_mask""": {0: """batch""", 1: """encoder_sequence"""}, } if self.use_past: __SCREAMING_SNAKE_CASE : Optional[Any] = """past_encoder_sequence + sequence""" __SCREAMING_SNAKE_CASE : Optional[Any] = {0: """batch"""} __SCREAMING_SNAKE_CASE : Optional[int] = {0: """batch""", 1: """past_decoder_sequence + sequence"""} else: __SCREAMING_SNAKE_CASE : List[Any] = {0: """batch""", 1: """decoder_sequence"""} __SCREAMING_SNAKE_CASE : Optional[Any] = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(lowerCAmelCase__ , direction="""inputs""" ) return common_inputs @property def UpperCamelCase__ ( self : List[str] ): """simple docstring""" return 1_3
178
0
'''simple docstring''' from collections import UserDict from typing import Union import numpy as np import requests from ..utils import ( add_end_docstrings, logging, ) from .audio_classification import ffmpeg_read from .base import PIPELINE_INIT_ARGS, Pipeline _lowercase = logging.get_logger(__name__) @add_end_docstrings(_SCREAMING_SNAKE_CASE ) class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , **_lowercase ): """simple docstring""" super().__init__(**_lowercase ) if self.framework != "pt": raise ValueError(F'The {self.__class__} is only available in PyTorch.' ) # No specific FOR_XXX available yet def __call__( self , _lowercase , **_lowercase ): """simple docstring""" return super().__call__(_lowercase , **_lowercase ) def _lowercase ( self , **_lowercase ): """simple docstring""" _lowerCAmelCase = {} if "candidate_labels" in kwargs: _lowerCAmelCase = kwargs["""candidate_labels"""] if "hypothesis_template" in kwargs: _lowerCAmelCase = kwargs["""hypothesis_template"""] return preprocess_params, {}, {} def _lowercase ( self , _lowercase , _lowercase=None , _lowercase="This is a sound of {}." ): """simple docstring""" if isinstance(_lowercase , _lowercase ): if audio.startswith("""http://""" ) or audio.startswith("""https://""" ): # We need to actually check for a real protocol, otherwise it's impossible to use a local file # like http_huggingface_co.png _lowerCAmelCase = requests.get(_lowercase ).content else: with open(_lowercase , """rb""" ) as f: _lowerCAmelCase = f.read() if isinstance(_lowercase , _lowercase ): _lowerCAmelCase = ffmpeg_read(_lowercase , self.feature_extractor.sampling_rate ) if not isinstance(_lowercase , np.ndarray ): raise ValueError("""We expect a numpy ndarray as input""" ) if len(audio.shape ) != 1: raise ValueError("""We expect a single channel audio input for ZeroShotAudioClassificationPipeline""" ) _lowerCAmelCase = self.feature_extractor( [audio] , sampling_rate=self.feature_extractor.sampling_rate , return_tensors="""pt""" ) _lowerCAmelCase = candidate_labels _lowerCAmelCase = [hypothesis_template.format(_lowercase ) for x in candidate_labels] _lowerCAmelCase = self.tokenizer(_lowercase , return_tensors=self.framework , padding=_lowercase ) _lowerCAmelCase = [text_inputs] return inputs def _lowercase ( self , _lowercase ): """simple docstring""" _lowerCAmelCase = model_inputs.pop("""candidate_labels""" ) _lowerCAmelCase = model_inputs.pop("""text_inputs""" ) if isinstance(text_inputs[0] , _lowercase ): _lowerCAmelCase = text_inputs[0] else: # Batching case. _lowerCAmelCase = text_inputs[0][0] _lowerCAmelCase = self.model(**_lowercase , **_lowercase ) _lowerCAmelCase = { """candidate_labels""": candidate_labels, """logits""": outputs.logits_per_audio, } return model_outputs def _lowercase ( self , _lowercase ): """simple docstring""" _lowerCAmelCase = model_outputs.pop("""candidate_labels""" ) _lowerCAmelCase = model_outputs["""logits"""][0] if self.framework == "pt": _lowerCAmelCase = logits.softmax(dim=0 ) _lowerCAmelCase = probs.tolist() else: raise ValueError("""`tf` framework not supported.""" ) _lowerCAmelCase = [ {"""score""": score, """label""": candidate_label} for score, candidate_label in sorted(zip(_lowercase , _lowercase ) , key=lambda _lowercase : -x[0] ) ] return result
5
"""simple docstring""" from argparse import ArgumentParser from .env import EnvironmentCommand def lowerCAmelCase ( ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = ArgumentParser("""Diffusers CLI tool""" , usage="""diffusers-cli <command> [<args>]""" ) UpperCAmelCase__ : List[Any] = parser.add_subparsers(help="""diffusers-cli command helpers""" ) # Register commands EnvironmentCommand.register_subcommand(__UpperCamelCase ) # Let's go UpperCAmelCase__ : int = parser.parse_args() if not hasattr(__UpperCamelCase , """func""" ): parser.print_help() exit(1 ) # Run UpperCAmelCase__ : Union[str, Any] = args.func(__UpperCamelCase ) service.run() if __name__ == "__main__": main()
65
0
import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = IFInpaintingPipeline lowercase_ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"width", "height"} lowercase_ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS lowercase_ = PipelineTesterMixin.required_optional_params - {"latents"} def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Dict: '''simple docstring''' return self._get_dummy_components() def SCREAMING_SNAKE_CASE_ (self : int , UpperCAmelCase_ : int , UpperCAmelCase_ : Union[str, Any]=0) ->Optional[Any]: '''simple docstring''' if str(UpperCAmelCase_).startswith("mps"): lowerCamelCase__: Tuple =torch.manual_seed(UpperCAmelCase_) else: lowerCamelCase__: Optional[int] =torch.Generator(device=UpperCAmelCase_).manual_seed(UpperCAmelCase_) lowerCamelCase__: int =floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCAmelCase_)).to(UpperCAmelCase_) lowerCamelCase__: int =floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCAmelCase_)).to(UpperCAmelCase_) lowerCamelCase__: List[Any] ={ "prompt": "A painting of a squirrel eating a burger", "image": image, "mask_image": mask_image, "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def SCREAMING_SNAKE_CASE_ (self : int) ->Optional[int]: '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3) def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->List[str]: '''simple docstring''' self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA") def SCREAMING_SNAKE_CASE_ (self : int) ->Any: '''simple docstring''' super().test_save_load_floataa(expected_max_diff=1E-1) def SCREAMING_SNAKE_CASE_ (self : Tuple) ->int: '''simple docstring''' self._test_attention_slicing_forward_pass(expected_max_diff=1E-2) def SCREAMING_SNAKE_CASE_ (self : Any) ->Optional[Any]: '''simple docstring''' self._test_save_load_local() def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->Optional[int]: '''simple docstring''' self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
437
import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("0.12.2"): raise Exception("requires fairseq >= 0.12.2") if version.parse(fairseq.__version__) > version.parse("2"): raise Exception("requires fairseq < v2") logging.set_verbosity_info() __A = logging.get_logger(__name__) __A = "Hello, World!" __A = "en_XX" def lowerCAmelCase_ ( __a , __a , __a ) -> List[Any]: """simple docstring""" lowerCamelCase__: Any =Path("data_bin" ) lowerCamelCase__: int =FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(__a ).parent ) , checkpoint_file=Path(__a ).name , _name="xmod_base" , arch="xmod_base" , task="multilingual_masked_lm" , data_name_or_path=str(__a ) , bpe="sentencepiece" , sentencepiece_model=str(Path(__a ).parent / "sentencepiece.bpe.model" ) , src_dict=str(data_dir / "dict.txt" ) , ) xmod.eval() # disable dropout print(__a ) lowerCamelCase__: Optional[int] =xmod.model.encoder.sentence_encoder lowerCamelCase__: Tuple =XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1e-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , "bottleneck" , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: lowerCamelCase__: Optional[Any] =xmod.model.classification_heads["mnli"].out_proj.weight.shape[0] print("Our X-MOD config:" , __a ) lowerCamelCase__: Tuple =XmodForSequenceClassification(__a ) if classification_head else XmodForMaskedLM(__a ) model.eval() # Now let's copy all the weights. # Embeddings lowerCamelCase__: Any =xmod_sent_encoder.embed_tokens.weight lowerCamelCase__: List[Any] =xmod_sent_encoder.embed_positions.weight lowerCamelCase__: Any =torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. lowerCamelCase__: List[Any] =xmod_sent_encoder.layernorm_embedding.weight lowerCamelCase__: Union[str, Any] =xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer lowerCamelCase__: List[Any] =model.roberta.encoder.layer[i] lowerCamelCase__: Union[str, Any] =xmod_sent_encoder.layers[i] # self attention lowerCamelCase__: Any =layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError("Dimensions of self-attention weights do not match." ) lowerCamelCase__: List[str] =xmod_layer.self_attn.q_proj.weight lowerCamelCase__: Any =xmod_layer.self_attn.q_proj.bias lowerCamelCase__: Any =xmod_layer.self_attn.k_proj.weight lowerCamelCase__: Tuple =xmod_layer.self_attn.k_proj.bias lowerCamelCase__: Optional[int] =xmod_layer.self_attn.v_proj.weight lowerCamelCase__: List[str] =xmod_layer.self_attn.v_proj.bias # self-attention output lowerCamelCase__: Optional[int] =layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError("Dimensions of self-attention output weights do not match." ) lowerCamelCase__: Dict =xmod_layer.self_attn.out_proj.weight lowerCamelCase__: Optional[Any] =xmod_layer.self_attn.out_proj.bias lowerCamelCase__: List[Any] =xmod_layer.self_attn_layer_norm.weight lowerCamelCase__: Dict =xmod_layer.self_attn_layer_norm.bias # intermediate lowerCamelCase__: Optional[Any] =layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("Dimensions of intermediate weights do not match." ) lowerCamelCase__: int =xmod_layer.fca.weight lowerCamelCase__: List[str] =xmod_layer.fca.bias # output lowerCamelCase__: str =layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("Dimensions of feed-forward weights do not match." ) lowerCamelCase__: Optional[Any] =xmod_layer.fca.weight lowerCamelCase__: int =xmod_layer.fca.bias lowerCamelCase__: List[str] =xmod_layer.final_layer_norm.weight lowerCamelCase__: List[Any] =xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: lowerCamelCase__: Tuple =xmod_layer.adapter_layer_norm.weight lowerCamelCase__: List[str] =xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError("Lists of language adapters do not match." ) for lang_code, adapter in xmod_layer.adapter_modules.items(): lowerCamelCase__: Optional[int] =bert_output.adapter_modules[lang_code] lowerCamelCase__: Optional[int] =xmod_layer.adapter_modules[lang_code] lowerCamelCase__: Any =from_adapter.fca.weight lowerCamelCase__: Tuple =from_adapter.fca.bias lowerCamelCase__: Optional[Any] =from_adapter.fca.weight lowerCamelCase__: Optional[int] =from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: lowerCamelCase__: Tuple =xmod_sent_encoder.layer_norm.weight lowerCamelCase__: Dict =xmod_sent_encoder.layer_norm.bias if classification_head: lowerCamelCase__: List[Any] =xmod.model.classification_heads["mnli"].dense.weight lowerCamelCase__: int =xmod.model.classification_heads["mnli"].dense.bias lowerCamelCase__: List[str] =xmod.model.classification_heads["mnli"].out_proj.weight lowerCamelCase__: Dict =xmod.model.classification_heads["mnli"].out_proj.bias else: # LM Head lowerCamelCase__: Tuple =xmod.model.encoder.lm_head.dense.weight lowerCamelCase__: int =xmod.model.encoder.lm_head.dense.bias lowerCamelCase__: List[Any] =xmod.model.encoder.lm_head.layer_norm.weight lowerCamelCase__: str =xmod.model.encoder.lm_head.layer_norm.bias lowerCamelCase__: str =xmod.model.encoder.lm_head.weight lowerCamelCase__: str =xmod.model.encoder.lm_head.bias # Let's check that we get the same results. lowerCamelCase__: List[str] =xmod.encode(__a ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(__a ) lowerCamelCase__: List[Any] =model(__a )[0] if classification_head: lowerCamelCase__: Union[str, Any] =xmod.model.classification_heads["mnli"](xmod.extract_features(__a ) ) else: lowerCamelCase__: Dict =xmod.model(__a , lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape , their_output.shape ) lowerCamelCase__: Optional[int] =torch.max(torch.abs(our_output - their_output ) ).item() print(F"""max_absolute_diff = {max_absolute_diff}""" ) # ~ 1e-7 lowerCamelCase__: Tuple =torch.allclose(__a , __a , atol=1e-3 ) print("Do both models output the same tensors?" , "🔥" if success else "💩" ) if not success: raise Exception("Something went wRoNg" ) Path(__a ).mkdir(parents=__a , exist_ok=__a ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(__a ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( "--xmod_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--classification_head", action="store_true", help="Whether to convert a final classification head." ) __A = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
437
1
"""simple docstring""" from __future__ import annotations from collections.abc import Iterator from typing import Any class __magic_name__ : def __init__( self : int , snake_case_ : Any ): __snake_case = data __snake_case = None class __magic_name__ : def __init__( self : Optional[int] ): __snake_case = None __snake_case = None def __iter__( self : Optional[int] ): __snake_case = self.head while self.head: yield node.data __snake_case = node.next if node == self.head: break def __len__( self : str ): return sum(1 for _ in self ) def __repr__( self : Union[str, Any] ): return "->".join(str(snake_case_ ) for item in iter(self ) ) def lowerCAmelCase ( self : Optional[Any] , snake_case_ : Any ): self.insert_nth(len(self ) , snake_case_ ) def lowerCAmelCase ( self : Tuple , snake_case_ : Any ): self.insert_nth(0 , snake_case_ ) def lowerCAmelCase ( self : List[Any] , snake_case_ : int , snake_case_ : Any ): if index < 0 or index > len(self ): raise IndexError("list index out of range." ) __snake_case = Node(snake_case_ ) if self.head is None: __snake_case = new_node # first node points itself __snake_case = __snake_case = new_node elif index == 0: # insert at head __snake_case = self.head __snake_case = __snake_case = new_node else: __snake_case = self.head for _ in range(index - 1 ): __snake_case = temp.next __snake_case = temp.next __snake_case = new_node if index == len(self ) - 1: # insert at tail __snake_case = new_node def lowerCAmelCase ( self : List[Any] ): return self.delete_nth(0 ) def lowerCAmelCase ( self : Dict ): return self.delete_nth(len(self ) - 1 ) def lowerCAmelCase ( self : str , snake_case_ : int = 0 ): if not 0 <= index < len(self ): raise IndexError("list index out of range." ) __snake_case = self.head if self.head == self.tail: # just one node __snake_case = __snake_case = None elif index == 0: # delete head node __snake_case = self.tail.next.next __snake_case = self.head.next else: __snake_case = self.head for _ in range(index - 1 ): __snake_case = temp.next __snake_case = temp.next __snake_case = temp.next.next if index == len(self ) - 1: # delete at tail __snake_case = temp return delete_node.data def lowerCAmelCase ( self : Dict ): return len(self ) == 0 def __UpperCamelCase ( ) -> None: """simple docstring""" __snake_case = CircularLinkedList() assert len(SCREAMING_SNAKE_CASE ) == 0 assert circular_linked_list.is_empty() is True assert str(SCREAMING_SNAKE_CASE ) == "" try: circular_linked_list.delete_front() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_tail() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_nth(-1 ) raise AssertionError except IndexError: assert True try: circular_linked_list.delete_nth(0 ) raise AssertionError except IndexError: assert True assert circular_linked_list.is_empty() is True for i in range(5 ): assert len(SCREAMING_SNAKE_CASE ) == i circular_linked_list.insert_nth(SCREAMING_SNAKE_CASE , i + 1 ) assert str(SCREAMING_SNAKE_CASE ) == "->".join(str(SCREAMING_SNAKE_CASE ) for i in range(1 , 6 ) ) circular_linked_list.insert_tail(6 ) assert str(SCREAMING_SNAKE_CASE ) == "->".join(str(SCREAMING_SNAKE_CASE ) for i in range(1 , 7 ) ) circular_linked_list.insert_head(0 ) assert str(SCREAMING_SNAKE_CASE ) == "->".join(str(SCREAMING_SNAKE_CASE ) for i in range(0 , 7 ) ) assert circular_linked_list.delete_front() == 0 assert circular_linked_list.delete_tail() == 6 assert str(SCREAMING_SNAKE_CASE ) == "->".join(str(SCREAMING_SNAKE_CASE ) for i in range(1 , 6 ) ) assert circular_linked_list.delete_nth(2 ) == 3 circular_linked_list.insert_nth(2 , 3 ) assert str(SCREAMING_SNAKE_CASE ) == "->".join(str(SCREAMING_SNAKE_CASE ) for i in range(1 , 6 ) ) assert circular_linked_list.is_empty() is False if __name__ == "__main__": import doctest doctest.testmod()
163
"""simple docstring""" def __UpperCamelCase ( SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" __snake_case = "" for ch in key: if ch == " " or ch not in key_no_dups and ch.isalpha(): key_no_dups += ch return key_no_dups def __UpperCamelCase ( SCREAMING_SNAKE_CASE ) -> dict[str, str]: """simple docstring""" __snake_case = [chr(i + 65 ) for i in range(26 )] # Remove duplicate characters from key __snake_case = remove_duplicates(key.upper() ) __snake_case = len(SCREAMING_SNAKE_CASE ) # First fill cipher with key characters __snake_case = {alphabet[i]: char for i, char in enumerate(SCREAMING_SNAKE_CASE )} # Then map remaining characters in alphabet to # the alphabet from the beginning for i in range(len(SCREAMING_SNAKE_CASE ) , 26 ): __snake_case = alphabet[i - offset] # Ensure we are not mapping letters to letters previously mapped while char in key: offset -= 1 __snake_case = alphabet[i - offset] __snake_case = char return cipher_alphabet def __UpperCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" return "".join(cipher_map.get(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for ch in message.upper() ) def __UpperCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" __snake_case = {v: k for k, v in cipher_map.items()} return "".join(rev_cipher_map.get(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for ch in message.upper() ) def __UpperCamelCase ( ) -> None: """simple docstring""" __snake_case = input("Enter message to encode or decode: " ).strip() __snake_case = input("Enter keyword: " ).strip() __snake_case = input("Encipher or decipher? E/D:" ).strip()[0].lower() try: __snake_case = {"e": encipher, "d": decipher}[option] except KeyError: raise KeyError("invalid input option" ) __snake_case = create_cipher_map(SCREAMING_SNAKE_CASE ) print(func(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
163
1
import itertools import os from collections import Counter, defaultdict from concurrent.futures import ThreadPoolExecutor, as_completed import numpy as np import datasets from .execute import check_correctness __magic_name__ = '''\ @misc{chen2021evaluating, title={Evaluating Large Language Models Trained on Code}, author={Mark Chen and Jerry Tworek and Heewoo Jun and Qiming Yuan \ and Henrique Ponde de Oliveira Pinto and Jared Kaplan and Harri Edwards \ and Yuri Burda and Nicholas Joseph and Greg Brockman and Alex Ray \ and Raul Puri and Gretchen Krueger and Michael Petrov and Heidy Khlaaf \ and Girish Sastry and Pamela Mishkin and Brooke Chan and Scott Gray \ and Nick Ryder and Mikhail Pavlov and Alethea Power and Lukasz Kaiser \ and Mohammad Bavarian and Clemens Winter and Philippe Tillet \ and Felipe Petroski Such and Dave Cummings and Matthias Plappert \ and Fotios Chantzis and Elizabeth Barnes and Ariel Herbert-Voss \ and William Hebgen Guss and Alex Nichol and Alex Paino and Nikolas Tezak \ and Jie Tang and Igor Babuschkin and Suchir Balaji and Shantanu Jain \ and William Saunders and Christopher Hesse and Andrew N. Carr \ and Jan Leike and Josh Achiam and Vedant Misra and Evan Morikawa \ and Alec Radford and Matthew Knight and Miles Brundage and Mira Murati \ and Katie Mayer and Peter Welinder and Bob McGrew and Dario Amodei \ and Sam McCandlish and Ilya Sutskever and Wojciech Zaremba}, year={2021}, eprint={2107.03374}, archivePrefix={arXiv}, primaryClass={cs.LG} } ''' __magic_name__ = '''\ This metric implements the evaluation harness for the HumanEval problem solving dataset described in the paper "Evaluating Large Language Models Trained on Code" (https://arxiv.org/abs/2107.03374). ''' __magic_name__ = ''' Calculates how good are predictions given some references, using certain scores Args: predictions: list of candidates to evaluate. Each candidates should be a list of strings with several code candidates to solve the problem. references: a list with a test for each prediction. Each test should evaluate the correctness of a code candidate. k: number of code candidates to consider in the evaluation (Default: [1, 10, 100]) num_workers: number of workers used to evaluate the canidate programs (Default: 4). timeout: Returns: pass_at_k: dict with pass rates for each k results: dict with granular results of each unittest Examples: >>> code_eval = datasets.load_metric("code_eval") >>> test_cases = ["assert add(2,3)==5"] >>> candidates = [["def add(a,b): return a*b", "def add(a, b): return a+b"]] >>> pass_at_k, results = code_eval.compute(references=test_cases, predictions=candidates, k=[1, 2]) >>> print(pass_at_k) {\'pass@1\': 0.5, \'pass@2\': 1.0} ''' __magic_name__ = ''' ################################################################################ !!!WARNING!!! ################################################################################ The "code_eval" metric executes untrusted model-generated code in Python. Although it is highly unlikely that model-generated code will do something overtly malicious in response to this test suite, model-generated code may act destructively due to a lack of model capability or alignment. Users are strongly encouraged to sandbox this evaluation suite so that it does not perform destructive actions on their host or network. For more information on how OpenAI sandboxes its code, see the paper "Evaluating Large Language Models Trained on Code" (https://arxiv.org/abs/2107.03374). Once you have read this disclaimer and taken appropriate precautions, set the environment variable HF_ALLOW_CODE_EVAL="1". Within Python you can to this with: >>> import os >>> os.environ["HF_ALLOW_CODE_EVAL"] = "1" ################################################################################\ ''' __magic_name__ = '''The MIT License Copyright (c) OpenAI (https://openai.com) Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class lowerCAmelCase__ ( datasets.Metric ): """simple docstring""" def _UpperCamelCase ( self ): return datasets.MetricInfo( # This is the description that will appear on the metrics page. description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" ) ), "references": datasets.Value("string" ), } ) , homepage="https://github.com/openai/human-eval" , codebase_urls=["https://github.com/openai/human-eval"] , reference_urls=["https://github.com/openai/human-eval"] , license=_LICENSE , ) def _UpperCamelCase ( self , a_ , a_ , a_=[1, 10, 100] , a_=4 , a_=3.0 ): if os.getenv("HF_ALLOW_CODE_EVAL" , 0 ) != "1": raise ValueError(_WARNING ) if os.name == "nt": raise NotImplementedError("This metric is currently not supported on Windows." ) with ThreadPoolExecutor(max_workers=a_ ) as executor: lowerCamelCase_ : List[Any] = [] lowerCamelCase_ : List[str] = Counter() lowerCamelCase_ : str = 0 lowerCamelCase_ : int = defaultdict(a_ ) for task_id, (candidates, test_case) in enumerate(zip(a_ , a_ ) ): for candidate in candidates: lowerCamelCase_ : str = candidate + "\n" + test_case lowerCamelCase_ : Tuple = (test_program, timeout, task_id, completion_id[task_id]) lowerCamelCase_ : Optional[Any] = executor.submit(a_ , *a_ ) futures.append(a_ ) completion_id[task_id] += 1 n_samples += 1 for future in as_completed(a_ ): lowerCamelCase_ : Dict = future.result() results[result["task_id"]].append((result["completion_id"], result) ) lowerCamelCase_ : Optional[Any] = [], [] for result in results.values(): result.sort() lowerCamelCase_ : Optional[Any] = [r[1]["passed"] for r in result] total.append(len(a_ ) ) correct.append(sum(a_ ) ) lowerCamelCase_ : int = np.array(a_ ) lowerCamelCase_ : List[str] = np.array(a_ ) lowerCamelCase_ : List[str] = k lowerCamelCase_ : List[Any] = {F"""pass@{k}""": estimate_pass_at_k(a_ , a_ , a_ ).mean() for k in ks if (total >= k).all()} return pass_at_k, results def __magic_name__ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_): '''simple docstring''' def estimator(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) -> float: if n - c < k: return 1.0 return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1 , n + 1)) if isinstance(lowerCAmelCase_ , lowerCAmelCase_): lowerCamelCase_ : Optional[int] = itertools.repeat(lowerCAmelCase_ , len(lowerCAmelCase_)) else: assert len(lowerCAmelCase_) == len(lowerCAmelCase_) lowerCamelCase_ : Any = iter(lowerCAmelCase_) return np.array([estimator(int(lowerCAmelCase_) , int(lowerCAmelCase_) , lowerCAmelCase_) for n, c in zip(lowerCAmelCase_ , lowerCAmelCase_)])
716
from ...configuration_utils import PretrainedConfig from ...utils import logging __magic_name__ = logging.get_logger(__name__) __magic_name__ = { '''studio-ousia/luke-base''': '''https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json''', '''studio-ousia/luke-large''': '''https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json''', } class lowerCAmelCase__ ( __lowerCamelCase ): """simple docstring""" __UpperCAmelCase : List[Any] = '''luke''' def __init__( self , a_=5_0267 , a_=50_0000 , a_=768 , a_=256 , a_=12 , a_=12 , a_=3072 , a_="gelu" , a_=0.1 , a_=0.1 , a_=512 , a_=2 , a_=0.02 , a_=1E-12 , a_=True , a_=None , a_=1 , a_=0 , a_=2 , **a_ , ): super().__init__(pad_token_id=a_ , bos_token_id=a_ , eos_token_id=a_ , **a_ ) lowerCamelCase_ : Tuple = vocab_size lowerCamelCase_ : Optional[int] = entity_vocab_size lowerCamelCase_ : Any = hidden_size lowerCamelCase_ : Dict = entity_emb_size lowerCamelCase_ : List[Any] = num_hidden_layers lowerCamelCase_ : int = num_attention_heads lowerCamelCase_ : Union[str, Any] = hidden_act lowerCamelCase_ : Tuple = intermediate_size lowerCamelCase_ : Optional[Any] = hidden_dropout_prob lowerCamelCase_ : Any = attention_probs_dropout_prob lowerCamelCase_ : Optional[Any] = max_position_embeddings lowerCamelCase_ : str = type_vocab_size lowerCamelCase_ : int = initializer_range lowerCamelCase_ : List[Any] = layer_norm_eps lowerCamelCase_ : Optional[int] = use_entity_aware_attention lowerCamelCase_ : str = classifier_dropout
73
0
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging A_ : Dict = logging.get_logger(__name__) A_ : Optional[int] = "▁" A_ : Optional[int] = {"vocab_file": "sentencepiece.bpe.model"} A_ : int = { "vocab_file": { "facebook/mbart-large-50-one-to-many-mmt": ( "https://huggingface.co/facebook/mbart-large-50-one-to-many-mmt/resolve/main/sentencepiece.bpe.model" ), } } A_ : Any = { "facebook/mbart-large-50-one-to-many-mmt": 1_024, } # fmt: off A_ : int = ["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN", "af_ZA", "az_AZ", "bn_IN", "fa_IR", "he_IL", "hr_HR", "id_ID", "ka_GE", "km_KH", "mk_MK", "ml_IN", "mn_MN", "mr_IN", "pl_PL", "ps_AF", "pt_XX", "sv_SE", "sw_KE", "ta_IN", "te_IN", "th_TH", "tl_XX", "uk_UA", "ur_PK", "xh_ZA", "gl_ES", "sl_SI"] class lowerCamelCase (A__ ): lowerCamelCase__ : List[Any] = VOCAB_FILES_NAMES lowerCamelCase__ : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ : Dict = ['input_ids', 'attention_mask'] lowerCamelCase__ : int = [] lowerCamelCase__ : str = [] def __init__( self : Optional[int] , __UpperCAmelCase : Dict , __UpperCAmelCase : Union[str, Any]=None , __UpperCAmelCase : Dict=None , __UpperCAmelCase : int="</s>" , __UpperCAmelCase : Optional[int]="</s>" , __UpperCAmelCase : List[str]="<s>" , __UpperCAmelCase : Optional[Any]="<unk>" , __UpperCAmelCase : Tuple="<pad>" , __UpperCAmelCase : List[Any]="<mask>" , __UpperCAmelCase : List[Any] = None , **__UpperCAmelCase : Dict , ) -> Dict: SCREAMING_SNAKE_CASE__ = AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else mask_token SCREAMING_SNAKE_CASE__ = {} if sp_model_kwargs is None else sp_model_kwargs SCREAMING_SNAKE_CASE__ = kwargs.get("""additional_special_tokens""" , [] ) kwargs["additional_special_tokens"] += [ code for code in FAIRSEQ_LANGUAGE_CODES if code not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=SCREAMING_SNAKE_CASE__ , tgt_lang=SCREAMING_SNAKE_CASE__ , eos_token=SCREAMING_SNAKE_CASE__ , unk_token=SCREAMING_SNAKE_CASE__ , sep_token=SCREAMING_SNAKE_CASE__ , cls_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , mask_token=SCREAMING_SNAKE_CASE__ , sp_model_kwargs=self.sp_model_kwargs , **SCREAMING_SNAKE_CASE__ , ) SCREAMING_SNAKE_CASE__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(SCREAMING_SNAKE_CASE__ ) ) SCREAMING_SNAKE_CASE__ = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token SCREAMING_SNAKE_CASE__ = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ = len(self.sp_model ) SCREAMING_SNAKE_CASE__ = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(SCREAMING_SNAKE_CASE__ ) } SCREAMING_SNAKE_CASE__ = {v: k for k, v in self.lang_code_to_id.items()} SCREAMING_SNAKE_CASE__ = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) SCREAMING_SNAKE_CASE__ = {v: k for k, v in self.fairseq_tokens_to_ids.items()} SCREAMING_SNAKE_CASE__ = src_lang if src_lang is not None else 'en_XX' SCREAMING_SNAKE_CASE__ = self.lang_code_to_id[self._src_lang] SCREAMING_SNAKE_CASE__ = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def SCREAMING_SNAKE_CASE ( self : str ) -> Union[str, Any]: return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Union[str, Any]: return self._src_lang @src_lang.setter def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __UpperCAmelCase : str ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self : Union[str, Any] ) -> Tuple: SCREAMING_SNAKE_CASE__ = self.__dict__.copy() SCREAMING_SNAKE_CASE__ = None return state def __setstate__( self : List[str] , __UpperCAmelCase : Any ) -> Tuple: SCREAMING_SNAKE_CASE__ = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): SCREAMING_SNAKE_CASE__ = {} SCREAMING_SNAKE_CASE__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = {self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def SCREAMING_SNAKE_CASE ( self : Dict , __UpperCAmelCase : str ) -> Optional[int]: return self.sp_model.encode(SCREAMING_SNAKE_CASE__ , out_type=SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : Any , __UpperCAmelCase : Tuple ) -> List[Any]: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] SCREAMING_SNAKE_CASE__ = self.sp_model.PieceToId(SCREAMING_SNAKE_CASE__ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def SCREAMING_SNAKE_CASE ( self : List[str] , __UpperCAmelCase : Any ) -> List[Any]: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def SCREAMING_SNAKE_CASE ( self : List[str] , __UpperCAmelCase : Optional[int] ) -> Dict: SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = '' SCREAMING_SNAKE_CASE__ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE__ ) + token SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = [] else: current_sub_tokens.append(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ = False out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE__ ) return out_string.strip() def SCREAMING_SNAKE_CASE ( self : List[Any] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : List[str] = None ) -> List[Any]: if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return SCREAMING_SNAKE_CASE__ = os.path.join( SCREAMING_SNAKE_CASE__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , SCREAMING_SNAKE_CASE__ ) elif not os.path.isfile(self.vocab_file ): with open(SCREAMING_SNAKE_CASE__ , """wb""" ) as fi: SCREAMING_SNAKE_CASE__ = self.sp_model.serialized_model_proto() fi.write(SCREAMING_SNAKE_CASE__ ) return (out_vocab_file,) def SCREAMING_SNAKE_CASE ( self : int , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Dict = None , __UpperCAmelCase : Dict = False ) -> Dict: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=SCREAMING_SNAKE_CASE__ , token_ids_a=SCREAMING_SNAKE_CASE__ , already_has_special_tokens=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ = [1] * len(self.prefix_tokens ) SCREAMING_SNAKE_CASE__ = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(SCREAMING_SNAKE_CASE__ )) + suffix_ones return prefix_ones + ([0] * len(SCREAMING_SNAKE_CASE__ )) + ([0] * len(SCREAMING_SNAKE_CASE__ )) + suffix_ones def SCREAMING_SNAKE_CASE ( self : int , __UpperCAmelCase : Tuple , __UpperCAmelCase : str = None ) -> List[str]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def SCREAMING_SNAKE_CASE ( self : List[Any] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : str , __UpperCAmelCase : Tuple , **__UpperCAmelCase : Optional[int] ) -> Tuple: if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) SCREAMING_SNAKE_CASE__ = src_lang SCREAMING_SNAKE_CASE__ = self(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ = self.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ = tgt_lang_id return inputs def SCREAMING_SNAKE_CASE ( self : Dict , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Union[str, Any] = "en_XX" , __UpperCAmelCase : Dict = None , __UpperCAmelCase : str = "ro_RO" , **__UpperCAmelCase : str , ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = src_lang SCREAMING_SNAKE_CASE__ = tgt_lang return super().prepare_seqaseq_batch(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Union[str, Any]: return self.set_src_lang_special_tokens(self.src_lang ) def SCREAMING_SNAKE_CASE ( self : Any ) -> int: return self.set_tgt_lang_special_tokens(self.tgt_lang ) def SCREAMING_SNAKE_CASE ( self : Any , __UpperCAmelCase : List[Any] ) -> int: SCREAMING_SNAKE_CASE__ = self.lang_code_to_id[src_lang] SCREAMING_SNAKE_CASE__ = [self.cur_lang_code_id] SCREAMING_SNAKE_CASE__ = [self.eos_token_id] def SCREAMING_SNAKE_CASE ( self : Optional[Any] , __UpperCAmelCase : Any ) -> str: SCREAMING_SNAKE_CASE__ = self.lang_code_to_id[tgt_lang] SCREAMING_SNAKE_CASE__ = [self.cur_lang_code_id] SCREAMING_SNAKE_CASE__ = [self.eos_token_id]
196
'''simple docstring''' import torch from torch import nn class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=1 , SCREAMING_SNAKE_CASE__=False ): '''simple docstring''' super().__init__() snake_case: str = n_token snake_case: Optional[Any] = d_embed snake_case: List[str] = d_proj snake_case: List[Any] = cutoffs + [n_token] snake_case: Any = [0] + self.cutoffs snake_case: Union[str, Any] = div_val snake_case: Optional[int] = self.cutoffs[0] snake_case: List[Any] = len(self.cutoffs ) - 1 snake_case: Tuple = self.shortlist_size + self.n_clusters if self.n_clusters > 0: snake_case: Optional[Any] = nn.Parameter(torch.zeros(self.n_clusters , self.d_embed ) ) snake_case: Optional[Any] = nn.Parameter(torch.zeros(self.n_clusters ) ) snake_case: Union[str, Any] = nn.ModuleList() snake_case: List[str] = nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs ) ): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) ) else: self.out_projs.append(SCREAMING_SNAKE_CASE__ ) self.out_layers.append(nn.Linear(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) else: for i in range(len(self.cutoffs ) ): snake_case , snake_case: Union[str, Any] = self.cutoff_ends[i], self.cutoff_ends[i + 1] snake_case: Tuple = d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) ) self.out_layers.append(nn.Linear(SCREAMING_SNAKE_CASE__ , r_idx - l_idx ) ) snake_case: str = keep_order def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if proj is None: snake_case: str = nn.functional.linear(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , bias=SCREAMING_SNAKE_CASE__ ) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: snake_case: List[Any] = nn.functional.linear(SCREAMING_SNAKE_CASE__ , proj.t().contiguous() ) snake_case: Any = nn.functional.linear(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , bias=SCREAMING_SNAKE_CASE__ ) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=False ): '''simple docstring''' if labels is not None: # Shift so that tokens < n predict n snake_case: List[Any] = hidden[..., :-1, :].contiguous() snake_case: Tuple = labels[..., 1:].contiguous() snake_case: List[Any] = hidden.view(-1 , hidden.size(-1 ) ) snake_case: Dict = labels.view(-1 ) if hidden.size(0 ) != labels.size(0 ): raise RuntimeError('Input and labels should have the same size in the batch dimension.' ) else: snake_case: int = hidden.view(-1 , hidden.size(-1 ) ) if self.n_clusters == 0: snake_case: List[Any] = self._compute_logit(SCREAMING_SNAKE_CASE__ , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) if labels is not None: snake_case: str = labels != -1_00 snake_case: List[str] = torch.zeros_like(SCREAMING_SNAKE_CASE__ , dtype=hidden.dtype , device=hidden.device ) snake_case: Tuple = ( -nn.functional.log_softmax(SCREAMING_SNAKE_CASE__ , dim=-1 )[mask].gather(1 , labels[mask].unsqueeze(1 ) ).squeeze(1 ) ) else: snake_case: Optional[int] = nn.functional.log_softmax(SCREAMING_SNAKE_CASE__ , dim=-1 ) else: # construct weights and biases snake_case , snake_case: Tuple = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: snake_case , snake_case: List[str] = self.cutoff_ends[i], self.cutoff_ends[i + 1] snake_case: List[Any] = self.out_layers[0].weight[l_idx:r_idx] snake_case: Optional[int] = self.out_layers[0].bias[l_idx:r_idx] else: snake_case: Any = self.out_layers[i].weight snake_case: List[str] = self.out_layers[i].bias if i == 0: snake_case: Optional[Any] = torch.cat([weight_i, self.cluster_weight] , dim=0 ) snake_case: List[Any] = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(SCREAMING_SNAKE_CASE__ ) biases.append(SCREAMING_SNAKE_CASE__ ) snake_case , snake_case , snake_case: int = weights[0], biases[0], self.out_projs[0] snake_case: List[str] = self._compute_logit(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case: Tuple = nn.functional.log_softmax(SCREAMING_SNAKE_CASE__ , dim=1 ) if labels is None: snake_case: str = hidden.new_empty((head_logit.size(0 ), self.n_token) ) else: snake_case: int = torch.zeros_like(SCREAMING_SNAKE_CASE__ , dtype=hidden.dtype , device=hidden.device ) snake_case: Dict = 0 snake_case: List[str] = [0] + self.cutoffs for i in range(len(SCREAMING_SNAKE_CASE__ ) - 1 ): snake_case , snake_case: str = cutoff_values[i], cutoff_values[i + 1] if labels is not None: snake_case: Optional[Any] = (labels >= l_idx) & (labels < r_idx) snake_case: Tuple = mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue snake_case: List[Any] = labels.index_select(0 , SCREAMING_SNAKE_CASE__ ) - l_idx snake_case: Dict = head_logprob.index_select(0 , SCREAMING_SNAKE_CASE__ ) snake_case: str = hidden.index_select(0 , SCREAMING_SNAKE_CASE__ ) else: snake_case: int = hidden if i == 0: if labels is not None: snake_case: List[Any] = head_logprob_i.gather(1 , target_i[:, None] ).squeeze(1 ) else: snake_case: Dict = head_logprob[:, : self.cutoffs[0]] else: snake_case , snake_case , snake_case: Union[str, Any] = weights[i], biases[i], self.out_projs[i] snake_case: List[str] = self._compute_logit(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case: Union[str, Any] = nn.functional.log_softmax(SCREAMING_SNAKE_CASE__ , dim=1 ) snake_case: Any = self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: snake_case: List[Any] = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1 , target_i[:, None] ).squeeze(1 ) else: snake_case: Dict = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i snake_case: Optional[int] = logprob_i if labels is not None: if (hasattr(self , 'keep_order' ) and self.keep_order) or keep_order: out.index_copy_(0 , SCREAMING_SNAKE_CASE__ , -logprob_i ) else: out[offset : offset + logprob_i.size(0 )].copy_(-logprob_i ) offset += logprob_i.size(0 ) return out def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if self.n_clusters == 0: snake_case: List[Any] = self._compute_logit(SCREAMING_SNAKE_CASE__ , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) return nn.functional.log_softmax(SCREAMING_SNAKE_CASE__ , dim=-1 ) else: # construct weights and biases snake_case , snake_case: Tuple = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: snake_case , snake_case: Tuple = self.cutoff_ends[i], self.cutoff_ends[i + 1] snake_case: List[Any] = self.out_layers[0].weight[l_idx:r_idx] snake_case: Dict = self.out_layers[0].bias[l_idx:r_idx] else: snake_case: Optional[int] = self.out_layers[i].weight snake_case: Optional[Any] = self.out_layers[i].bias if i == 0: snake_case: Any = torch.cat([weight_i, self.cluster_weight] , dim=0 ) snake_case: Any = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(SCREAMING_SNAKE_CASE__ ) biases.append(SCREAMING_SNAKE_CASE__ ) snake_case , snake_case , snake_case: List[Any] = weights[0], biases[0], self.out_projs[0] snake_case: Optional[Any] = self._compute_logit(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case: List[str] = hidden.new_empty((head_logit.size(0 ), self.n_token) ) snake_case: Tuple = nn.functional.log_softmax(SCREAMING_SNAKE_CASE__ , dim=1 ) snake_case: Any = [0] + self.cutoffs for i in range(len(SCREAMING_SNAKE_CASE__ ) - 1 ): snake_case , snake_case: Optional[int] = cutoff_values[i], cutoff_values[i + 1] if i == 0: snake_case: Dict = head_logprob[:, : self.cutoffs[0]] else: snake_case , snake_case , snake_case: Optional[Any] = weights[i], biases[i], self.out_projs[i] snake_case: List[str] = self._compute_logit(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case: List[Any] = nn.functional.log_softmax(SCREAMING_SNAKE_CASE__ , dim=1 ) snake_case: Tuple = head_logprob[:, -i] + tail_logprob_i snake_case: Union[str, Any] = logprob_i return out
329
0
import timeit import numpy as np import datasets from datasets.arrow_writer import ArrowWriter from datasets.features.features import _ArrayXD def UpperCamelCase__ ( _A: Union[str, Any] ): '''simple docstring''' def wrapper(*_A: Optional[Any] , **_A: List[Any] ): __lowerCamelCase = timeit.default_timer() __lowerCamelCase = func(*_A , **_A ) __lowerCamelCase = timeit.default_timer() - starttime return delta __lowerCamelCase = func.__name__ return wrapper def UpperCamelCase__ ( _A: dict , _A: Any=100 , _A: List[str]=None ): '''simple docstring''' __lowerCamelCase = [] __lowerCamelCase = seq_shapes or {} for i in range(_A ): __lowerCamelCase = {} for col_id, (k, v) in enumerate(features.items() ): if isinstance(_A , _ArrayXD ): __lowerCamelCase = np.random.rand(*v.shape ).astype(v.dtype ) elif isinstance(_A , datasets.Value ): if v.dtype == "string": __lowerCamelCase = """The small grey turtle was surprisingly fast when challenged.""" else: __lowerCamelCase = np.random.randint(10 , size=1 ).astype(v.dtype ).item() elif isinstance(_A , datasets.Sequence ): while isinstance(_A , datasets.Sequence ): __lowerCamelCase = v.feature __lowerCamelCase = seq_shapes[k] __lowerCamelCase = np.random.rand(*_A ).astype(v.dtype ) __lowerCamelCase = data dummy_data.append((i, example) ) return dummy_data def UpperCamelCase__ ( _A: Tuple , _A: Union[str, Any] , _A: Union[str, Any]=100 , _A: List[str]=None ): '''simple docstring''' __lowerCamelCase = generate_examples(_A , num_examples=_A , seq_shapes=_A ) with ArrowWriter(features=_A , path=_A ) as writer: for key, record in dummy_data: __lowerCamelCase = features.encode_example(_A ) writer.write(_A ) __lowerCamelCase , __lowerCamelCase = writer.finalize() if not num_final_examples == num_examples: raise ValueError( f'''Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}.''' ) __lowerCamelCase = datasets.Dataset.from_file(filename=_A , info=datasets.DatasetInfo(features=_A ) ) return dataset
571
import importlib.util import os import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import ( is_accelerate_available, is_flax_available, is_safetensors_available, is_tf_available, is_torch_available, ) from . import BaseTransformersCLICommand def UpperCamelCase__ ( _A: Tuple ): '''simple docstring''' return EnvironmentCommand() def UpperCamelCase__ ( _A: Union[str, Any] ): '''simple docstring''' return EnvironmentCommand(args.accelerate_config_file ) class UpperCamelCase_ ( __UpperCamelCase ): """simple docstring""" @staticmethod def lowerCamelCase_ ( UpperCAmelCase ): __lowerCamelCase = parser.add_parser("""env""" ) download_parser.set_defaults(func=UpperCAmelCase ) download_parser.add_argument( """--accelerate-config_file""" , default=UpperCAmelCase , help="""The accelerate config file to use for the default values in the launching script.""" , ) download_parser.set_defaults(func=UpperCAmelCase ) def __init__( self , UpperCAmelCase , *UpperCAmelCase ): __lowerCamelCase = accelerate_config_file def lowerCamelCase_ ( self ): __lowerCamelCase = """not installed""" if is_safetensors_available(): import safetensors __lowerCamelCase = safetensors.__version__ elif importlib.util.find_spec("""safetensors""" ) is not None: import safetensors __lowerCamelCase = f'''{safetensors.__version__} but is ignored because of PyTorch version too old.''' __lowerCamelCase = """not installed""" __lowerCamelCase = __lowerCamelCase = """not found""" if is_accelerate_available(): import accelerate from accelerate.commands.config import default_config_file, load_config_from_file __lowerCamelCase = accelerate.__version__ # Get the default from the config file. if self._accelerate_config_file is not None or os.path.isfile(UpperCAmelCase ): __lowerCamelCase = load_config_from_file(self._accelerate_config_file ).to_dict() __lowerCamelCase = ( """\n""".join([f'''\t- {prop}: {val}''' for prop, val in accelerate_config.items()] ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else f'''\t{accelerate_config}''' ) __lowerCamelCase = """not installed""" __lowerCamelCase = """NA""" if is_torch_available(): import torch __lowerCamelCase = torch.__version__ __lowerCamelCase = torch.cuda.is_available() __lowerCamelCase = """not installed""" __lowerCamelCase = """NA""" if is_tf_available(): import tensorflow as tf __lowerCamelCase = tf.__version__ try: # deprecated in v2.1 __lowerCamelCase = tf.test.is_gpu_available() except AttributeError: # returns list of devices, convert to bool __lowerCamelCase = bool(tf.config.list_physical_devices("""GPU""" ) ) __lowerCamelCase = """not installed""" __lowerCamelCase = """not installed""" __lowerCamelCase = """not installed""" __lowerCamelCase = """NA""" if is_flax_available(): import flax import jax import jaxlib __lowerCamelCase = flax.__version__ __lowerCamelCase = jax.__version__ __lowerCamelCase = jaxlib.__version__ __lowerCamelCase = jax.lib.xla_bridge.get_backend().platform __lowerCamelCase = { """`transformers` version""": version, """Platform""": platform.platform(), """Python version""": platform.python_version(), """Huggingface_hub version""": huggingface_hub.__version__, """Safetensors version""": f'''{safetensors_version}''', """Accelerate version""": f'''{accelerate_version}''', """Accelerate config""": f'''{accelerate_config_str}''', """PyTorch version (GPU?)""": f'''{pt_version} ({pt_cuda_available})''', """Tensorflow version (GPU?)""": f'''{tf_version} ({tf_cuda_available})''', """Flax version (CPU?/GPU?/TPU?)""": f'''{flax_version} ({jax_backend})''', """Jax version""": f'''{jax_version}''', """JaxLib version""": f'''{jaxlib_version}''', """Using GPU in script?""": """<fill in>""", """Using distributed or parallel set-up in script?""": """<fill in>""", } print("""\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n""" ) print(self.format_dict(UpperCAmelCase ) ) return info @staticmethod def lowerCamelCase_ ( UpperCAmelCase ): return "\n".join([f'''- {prop}: {val}''' for prop, val in d.items()] ) + "\n"
571
1
import math def lowerCamelCase__ ( _lowerCamelCase ) ->str: _UpperCAmelCase =0 _UpperCAmelCase =0 while num > 0: _UpperCAmelCase =num % 8 _UpperCAmelCase =octal + (remainder * math.floor(math.pow(10 , _lowerCamelCase ) )) counter += 1 _UpperCAmelCase =math.floor(num / 8 ) # basically /= 8 without remainder if any # This formatting removes trailing '.0' from `octal`. return F"0o{int(_lowerCamelCase )}" def lowerCamelCase__ ( ) ->None: print("\n2 in octal is:" ) print(decimal_to_octal(2 ) ) # = 2 print("\n8 in octal is:" ) print(decimal_to_octal(8 ) ) # = 10 print("\n65 in octal is:" ) print(decimal_to_octal(65 ) ) # = 101 print("\n216 in octal is:" ) print(decimal_to_octal(216 ) ) # = 330 print("\n512 in octal is:" ) print(decimal_to_octal(512 ) ) # = 1000 print("\n" ) if __name__ == "__main__": main()
408
# This model implementation is heavily inspired by https://github.com/haofanwang/ControlNet-for-Diffusers/ import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, ControlNetModel, DDIMScheduler, StableDiffusionControlNetImgaImgPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet import MultiControlNetModel from diffusers.utils import floats_tensor, load_image, load_numpy, randn_tensor, slow, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, ) enable_full_determinism() class _a ( A__ , A__ , A__ , unittest.TestCase ): """simple docstring""" snake_case =StableDiffusionControlNetImgaImgPipeline snake_case =TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""height""", """width"""} snake_case =TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS snake_case =IMAGE_TO_IMAGE_IMAGE_PARAMS.union({"""control_image"""} ) snake_case =IMAGE_TO_IMAGE_IMAGE_PARAMS def SCREAMING_SNAKE_CASE ( self ): torch.manual_seed(0 ) _UpperCAmelCase =UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) torch.manual_seed(0 ) _UpperCAmelCase =ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) torch.manual_seed(0 ) _UpperCAmelCase =DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=_snake_case , set_alpha_to_one=_snake_case , ) torch.manual_seed(0 ) _UpperCAmelCase =AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) torch.manual_seed(0 ) _UpperCAmelCase =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) _UpperCAmelCase =CLIPTextModel(_snake_case ) _UpperCAmelCase =CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) _UpperCAmelCase ={ "unet": unet, "controlnet": controlnet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def SCREAMING_SNAKE_CASE ( self , _snake_case , _snake_case=0 ): if str(_snake_case ).startswith("mps" ): _UpperCAmelCase =torch.manual_seed(_snake_case ) else: _UpperCAmelCase =torch.Generator(device=_snake_case ).manual_seed(_snake_case ) _UpperCAmelCase =2 _UpperCAmelCase =randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=_snake_case , device=torch.device(_snake_case ) , ) _UpperCAmelCase =floats_tensor(control_image.shape , rng=random.Random(_snake_case ) ).to(_snake_case ) _UpperCAmelCase =image.cpu().permute(0 , 2 , 3 , 1 )[0] _UpperCAmelCase =Image.fromarray(np.uinta(_snake_case ) ).convert("RGB" ).resize((64, 64) ) _UpperCAmelCase ={ "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", "image": image, "control_image": control_image, } return inputs def SCREAMING_SNAKE_CASE ( self ): return self._test_attention_slicing_forward_pass(expected_max_diff=2E-3 ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def SCREAMING_SNAKE_CASE ( self ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2E-3 ) def SCREAMING_SNAKE_CASE ( self ): self._test_inference_batch_single_identical(expected_max_diff=2E-3 ) class _a ( A__ , A__ , unittest.TestCase ): """simple docstring""" snake_case =StableDiffusionControlNetImgaImgPipeline snake_case =TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""height""", """width"""} snake_case =TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS snake_case =frozenset([] ) # TO_DO: add image_params once refactored VaeImageProcessor.preprocess def SCREAMING_SNAKE_CASE ( self ): torch.manual_seed(0 ) _UpperCAmelCase =UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) torch.manual_seed(0 ) def init_weights(_snake_case ): if isinstance(_snake_case , torch.nn.Convad ): torch.nn.init.normal(m.weight ) m.bias.data.fill_(1.0 ) _UpperCAmelCase =ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(_snake_case ) torch.manual_seed(0 ) _UpperCAmelCase =ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(_snake_case ) torch.manual_seed(0 ) _UpperCAmelCase =DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=_snake_case , set_alpha_to_one=_snake_case , ) torch.manual_seed(0 ) _UpperCAmelCase =AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) torch.manual_seed(0 ) _UpperCAmelCase =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) _UpperCAmelCase =CLIPTextModel(_snake_case ) _UpperCAmelCase =CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) _UpperCAmelCase =MultiControlNetModel([controlneta, controlneta] ) _UpperCAmelCase ={ "unet": unet, "controlnet": controlnet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def SCREAMING_SNAKE_CASE ( self , _snake_case , _snake_case=0 ): if str(_snake_case ).startswith("mps" ): _UpperCAmelCase =torch.manual_seed(_snake_case ) else: _UpperCAmelCase =torch.Generator(device=_snake_case ).manual_seed(_snake_case ) _UpperCAmelCase =2 _UpperCAmelCase =[ randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=_snake_case , device=torch.device(_snake_case ) , ), randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=_snake_case , device=torch.device(_snake_case ) , ), ] _UpperCAmelCase =floats_tensor(control_image[0].shape , rng=random.Random(_snake_case ) ).to(_snake_case ) _UpperCAmelCase =image.cpu().permute(0 , 2 , 3 , 1 )[0] _UpperCAmelCase =Image.fromarray(np.uinta(_snake_case ) ).convert("RGB" ).resize((64, 64) ) _UpperCAmelCase ={ "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", "image": image, "control_image": control_image, } return inputs def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase =self.get_dummy_components() _UpperCAmelCase =self.pipeline_class(**_snake_case ) pipe.to(_snake_case ) _UpperCAmelCase =10.0 _UpperCAmelCase =4 _UpperCAmelCase =self.get_dummy_inputs(_snake_case ) _UpperCAmelCase =steps _UpperCAmelCase =scale _UpperCAmelCase =pipe(**_snake_case )[0] _UpperCAmelCase =self.get_dummy_inputs(_snake_case ) _UpperCAmelCase =steps _UpperCAmelCase =scale _UpperCAmelCase =pipe(**_snake_case , control_guidance_start=0.1 , control_guidance_end=0.2 )[0] _UpperCAmelCase =self.get_dummy_inputs(_snake_case ) _UpperCAmelCase =steps _UpperCAmelCase =scale _UpperCAmelCase =pipe(**_snake_case , control_guidance_start=[0.1, 0.3] , control_guidance_end=[0.2, 0.7] )[0] _UpperCAmelCase =self.get_dummy_inputs(_snake_case ) _UpperCAmelCase =steps _UpperCAmelCase =scale _UpperCAmelCase =pipe(**_snake_case , control_guidance_start=0.4 , control_guidance_end=[0.5, 0.8] )[0] # make sure that all outputs are different assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 def SCREAMING_SNAKE_CASE ( self ): return self._test_attention_slicing_forward_pass(expected_max_diff=2E-3 ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def SCREAMING_SNAKE_CASE ( self ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2E-3 ) def SCREAMING_SNAKE_CASE ( self ): self._test_inference_batch_single_identical(expected_max_diff=2E-3 ) def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase =self.get_dummy_components() _UpperCAmelCase =self.pipeline_class(**_snake_case ) pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) with tempfile.TemporaryDirectory() as tmpdir: try: # save_pretrained is not implemented for Multi-ControlNet pipe.save_pretrained(_snake_case ) except NotImplementedError: pass @slow @require_torch_gpu class _a ( unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase =ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny" ) _UpperCAmelCase =StableDiffusionControlNetImgaImgPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , safety_checker=_snake_case , controlnet=_snake_case ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=_snake_case ) _UpperCAmelCase =torch.Generator(device="cpu" ).manual_seed(0 ) _UpperCAmelCase ="evil space-punk bird" _UpperCAmelCase =load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png" ).resize((512, 512) ) _UpperCAmelCase =load_image( "https://huggingface.co/lllyasviel/sd-controlnet-canny/resolve/main/images/bird.png" ).resize((512, 512) ) _UpperCAmelCase =pipe( _snake_case , _snake_case , control_image=_snake_case , generator=_snake_case , output_type="np" , num_inference_steps=50 , strength=0.6 , ) _UpperCAmelCase =output.images[0] assert image.shape == (512, 512, 3) _UpperCAmelCase =load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/img2img.npy" ) assert np.abs(expected_image - image ).max() < 9E-2
408
1
# Function to print upper half of diamond (pyramid) def lowerCamelCase__ ( _lowerCamelCase ) ->Dict: for i in range(0 , _lowerCamelCase ): for _ in range(0 , n - i - 1 ): # printing spaces print(" " , end="" ) for _ in range(0 , i + 1 ): # printing stars print("* " , end="" ) print() def lowerCamelCase__ ( _lowerCamelCase ) ->str: for i in range(_lowerCamelCase , 0 , -1 ): for _ in range(_lowerCamelCase , 0 , -1 ): # printing stars print("* " , end="" ) print() for _ in range(n - i + 1 , 0 , -1 ): # printing spaces print(" " , end="" ) def lowerCamelCase__ ( _lowerCamelCase ) ->Optional[int]: if n <= 0: print(" ... .... nothing printing :(" ) return floyd(_lowerCamelCase ) # upper half reverse_floyd(_lowerCamelCase ) # lower half if __name__ == "__main__": print(r'| /\ | |- | |- |--| |\ /| |-') print(r'|/ \| |- |_ |_ |__| | \/ | |_') snake_case__ : Optional[Any] = 1 while K: snake_case__ : Optional[Any] = int(input('enter the number and , and see the magic : ')) print() pretty_print(user_number) snake_case__ : str = int(input('press 0 to exit... and 1 to continue...')) print('Good Bye...')
592
# NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline # noqa: F401 deprecate( 'stable diffusion controlnet', '0.22.0', 'Importing `FlaxStableDiffusionControlNetPipeline` from diffusers.pipelines.stable_diffusion.flax_pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import FlaxStableDiffusionControlNetPipeline` instead.', standard_warn=False, stacklevel=3, )
592
1
import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ : List[str] = logging.get_logger(__name__) UpperCAmelCase_ : Optional[Any] = ["model.decoder.embed_positions.weights"] def lowerCAmelCase_ ( lowerCamelCase ): if "emb" in name: __magic_name__ : List[str] =name.replace("""emb""" , """model.decoder.embed_tokens""" ) if "transformer" in name: __magic_name__ : Optional[int] =name.replace("""transformer""" , """model.decoder""" ) if "cross_attention" in name: __magic_name__ : List[str] =name.replace("""cross_attention""" , """encoder_attn""" ) if "linear1" in name: __magic_name__ : Tuple =name.replace("""linear1""" , """fc1""" ) if "linear2" in name: __magic_name__ : Tuple =name.replace("""linear2""" , """fc2""" ) if "norm1" in name: __magic_name__ : Optional[int] =name.replace("""norm1""" , """self_attn_layer_norm""" ) if "norm_cross" in name: __magic_name__ : Optional[int] =name.replace("""norm_cross""" , """encoder_attn_layer_norm""" ) if "norm2" in name: __magic_name__ : str =name.replace("""norm2""" , """final_layer_norm""" ) if "out_norm" in name: __magic_name__ : Any =name.replace("""out_norm""" , """model.decoder.layer_norm""" ) if "linears" in name: __magic_name__ : Dict =name.replace("""linears""" , """lm_heads""" ) if "condition_provider.conditioners.description.output_proj" in name: __magic_name__ : List[str] =name.replace("""condition_provider.conditioners.description.output_proj""" , """enc_to_dec_proj""" ) return name def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): __magic_name__ : List[Any] =list(state_dict.keys() ) __magic_name__ : List[Any] ={} for key in keys: __magic_name__ : Union[str, Any] =state_dict.pop(lowerCamelCase ) __magic_name__ : List[Any] =rename_keys(lowerCamelCase ) if "in_proj_weight" in key: # split fused qkv proj __magic_name__ : Optional[Any] =val[:hidden_size, :] __magic_name__ : Optional[int] =val[hidden_size : 2 * hidden_size, :] __magic_name__ : Dict =val[-hidden_size:, :] elif "enc_to_dec_proj" in key: __magic_name__ : List[Any] =val else: __magic_name__ : Dict =val return state_dict, enc_dec_proj_state_dict def lowerCAmelCase_ ( lowerCamelCase ): if checkpoint == "small": # default config values __magic_name__ : int =1024 __magic_name__ : str =24 __magic_name__ : int =16 elif checkpoint == "medium": __magic_name__ : int =1536 __magic_name__ : List[Any] =48 __magic_name__ : List[str] =24 elif checkpoint == "large": __magic_name__ : List[Any] =2048 __magic_name__ : Any =48 __magic_name__ : Union[str, Any] =32 else: raise ValueError(F"Checkpoint should be one of `['small', 'medium', 'large']`, got {checkpoint}." ) __magic_name__ : Tuple =MusicgenDecoderConfig( hidden_size=lowerCamelCase , ffn_dim=hidden_size * 4 , num_hidden_layers=lowerCamelCase , num_attention_heads=lowerCamelCase , ) return config @torch.no_grad() def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase="cpu" ): __magic_name__ : str =MusicGen.get_pretrained(lowerCamelCase , device=lowerCamelCase ) __magic_name__ : List[Any] =decoder_config_from_checkpoint(lowerCamelCase ) __magic_name__ : int =fairseq_model.lm.state_dict() __magic_name__ , __magic_name__ : Optional[int] =rename_state_dict( lowerCamelCase , hidden_size=decoder_config.hidden_size ) __magic_name__ : List[Any] =TaEncoderModel.from_pretrained("""t5-base""" ) __magic_name__ : List[Any] =EncodecModel.from_pretrained("""facebook/encodec_32khz""" ) __magic_name__ : Any =MusicgenForCausalLM(lowerCamelCase ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection __magic_name__ , __magic_name__ : List[str] =decoder.load_state_dict(lowerCamelCase , strict=lowerCamelCase ) for key in missing_keys.copy(): if key.startswith(("""text_encoder""", """audio_encoder""") ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(lowerCamelCase ) if len(lowerCamelCase ) > 0: raise ValueError(F"Missing key(s) in state_dict: {missing_keys}" ) if len(lowerCamelCase ) > 0: raise ValueError(F"Unexpected key(s) in state_dict: {unexpected_keys}" ) # init the composite model __magic_name__ : List[Any] =MusicgenForConditionalGeneration(text_encoder=lowerCamelCase , audio_encoder=lowerCamelCase , decoder=lowerCamelCase ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(lowerCamelCase ) # check we can do a forward pass __magic_name__ : Any =torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 ) __magic_name__ : Dict =input_ids.reshape(2 * 4 , -1 ) with torch.no_grad(): __magic_name__ : int =model(input_ids=lowerCamelCase , decoder_input_ids=lowerCamelCase ).logits if logits.shape != (8, 1, 2048): raise ValueError("""Incorrect shape for logits""" ) # now construct the processor __magic_name__ : Dict =AutoTokenizer.from_pretrained("""t5-base""" ) __magic_name__ : List[Any] =AutoFeatureExtractor.from_pretrained("""facebook/encodec_32khz""" , padding_side="""left""" ) __magic_name__ : Optional[int] =MusicgenProcessor(feature_extractor=lowerCamelCase , tokenizer=lowerCamelCase ) # set the appropriate bos/pad token ids __magic_name__ : List[str] =2048 __magic_name__ : Optional[int] =2048 # set other default generation config params __magic_name__ : str =int(30 * audio_encoder.config.frame_rate ) __magic_name__ : Union[str, Any] =True __magic_name__ : Any =3.0 if pytorch_dump_folder is not None: Path(lowerCamelCase ).mkdir(exist_ok=lowerCamelCase ) logger.info(F"Saving model {checkpoint} to {pytorch_dump_folder}" ) model.save_pretrained(lowerCamelCase ) processor.save_pretrained(lowerCamelCase ) if repo_id: logger.info(F"Pushing model {checkpoint} to {repo_id}" ) model.push_to_hub(lowerCamelCase ) processor.push_to_hub(lowerCamelCase ) if __name__ == "__main__": UpperCAmelCase_ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint", default="small", type=str, help="Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.", ) parser.add_argument( "--pytorch_dump_folder", required=True, default=None, type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) parser.add_argument( "--device", default="cpu", type=str, help="Torch device to run the conversion, either cpu or cuda." ) UpperCAmelCase_ : Tuple = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
21
import argparse import logging import pickle import random import time import numpy as np from transformers import BertTokenizer, GPTaTokenizer, RobertaTokenizer logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) lowerCamelCase_ = logging.getLogger(__name__) def __magic_name__ ( ): '''simple docstring''' UpperCamelCase__ = argparse.ArgumentParser( description="""Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids).""" ) parser.add_argument("""--file_path""" , type=__a , default="""data/dump.txt""" , help="""The path to the data.""" ) parser.add_argument("""--tokenizer_type""" , type=__a , default="""bert""" , choices=["""bert""", """roberta""", """gpt2"""] ) parser.add_argument("""--tokenizer_name""" , type=__a , default="""bert-base-uncased""" , help="""The tokenizer to use.""" ) parser.add_argument("""--dump_file""" , type=__a , default="""data/dump""" , help="""The dump file prefix.""" ) UpperCamelCase__ = parser.parse_args() logger.info(f"Loading Tokenizer ({args.tokenizer_name})" ) if args.tokenizer_type == "bert": UpperCamelCase__ = BertTokenizer.from_pretrained(args.tokenizer_name ) UpperCamelCase__ = tokenizer.special_tokens_map["""cls_token"""] # `[CLS]` UpperCamelCase__ = tokenizer.special_tokens_map["""sep_token"""] # `[SEP]` elif args.tokenizer_type == "roberta": UpperCamelCase__ = RobertaTokenizer.from_pretrained(args.tokenizer_name ) UpperCamelCase__ = tokenizer.special_tokens_map["""cls_token"""] # `<s>` UpperCamelCase__ = tokenizer.special_tokens_map["""sep_token"""] # `</s>` elif args.tokenizer_type == "gpt2": UpperCamelCase__ = GPTaTokenizer.from_pretrained(args.tokenizer_name ) UpperCamelCase__ = tokenizer.special_tokens_map["""bos_token"""] # `<|endoftext|>` UpperCamelCase__ = tokenizer.special_tokens_map["""eos_token"""] # `<|endoftext|>` logger.info(f"Loading text from {args.file_path}" ) with open(args.file_path , """r""" , encoding="""utf8""" ) as fp: UpperCamelCase__ = fp.readlines() logger.info("""Start encoding""" ) logger.info(f"{len(__a )} examples to process." ) UpperCamelCase__ = [] UpperCamelCase__ = 0 UpperCamelCase__ = 10_000 UpperCamelCase__ = time.time() for text in data: UpperCamelCase__ = f"{bos} {text.strip()} {sep}" UpperCamelCase__ = tokenizer.encode(__a , add_special_tokens=__a ) rslt.append(__a ) iter += 1 if iter % interval == 0: UpperCamelCase__ = time.time() logger.info(f"{iter} examples processed. - {(end-start):.2f}s/{interval}expl" ) UpperCamelCase__ = time.time() logger.info("""Finished binarization""" ) logger.info(f"{len(__a )} examples processed." ) UpperCamelCase__ = f"{args.dump_file}.{args.tokenizer_name}.pickle" UpperCamelCase__ = tokenizer.vocab_size if vocab_size < (1 << 16): UpperCamelCase__ = [np.uintaa(__a ) for d in rslt] else: UpperCamelCase__ = [np.intaa(__a ) for d in rslt] random.shuffle(rslt_ ) logger.info(f"Dump to {dp_file}" ) with open(__a , """wb""" ) as handle: pickle.dump(rslt_ , __a , protocol=pickle.HIGHEST_PROTOCOL ) if __name__ == "__main__": main()
513
0
import dataclasses import re import string from typing import Any, Dict, Iterator, List, Mapping, Optional, Sequence, Tuple import numpy as np from . import residue_constants __a = Mapping[str, np.ndarray] __a = Mapping[str, Any] # Is a nested dict. __a = 0.01 @dataclasses.dataclass(frozen=UpperCAmelCase ) class lowercase__: """simple docstring""" a :np.ndarray # [num_res, num_atom_type, 3] # Amino-acid type for each residue represented as an integer between 0 and # 20, where 20 is 'X'. a :np.ndarray # [num_res] # Binary float mask to indicate presence of a particular atom. 1.0 if an atom # is present and 0.0 if not. This should be used for loss masking. a :np.ndarray # [num_res, num_atom_type] # Residue index as used in PDB. It is not necessarily continuous or 0-indexed. a :np.ndarray # [num_res] # B-factors, or temperature factors, of each residue (in sq. angstroms units), # representing the displacement of the residue from its ground truth mean # value. a :np.ndarray # [num_res, num_atom_type] # Chain indices for multi-chain predictions a :Optional[np.ndarray] = None # Optional remark about the protein. Included as a comment in output PDB # files a :Optional[str] = None # Templates used to generate this protein (prediction-only) a :Optional[Sequence[str]] = None # Chain corresponding to each parent a :Optional[Sequence[int]] = None def a ( snake_case__: str ): '''simple docstring''' lowercase_ = r'''(\[[A-Z]+\]\n)''' lowercase_ = [tag.strip() for tag in re.split(snake_case__ , snake_case__ ) if len(snake_case__ ) > 0] lowercase_ = zip(tags[0::2] , [l.split('''\n''' ) for l in tags[1::2]] ) lowercase_ = ['''N''', '''CA''', '''C'''] lowercase_ = None lowercase_ = None lowercase_ = None for g in groups: if "[PRIMARY]" == g[0]: lowercase_ = g[1][0].strip() for i in range(len(snake_case__ ) ): if seq[i] not in residue_constants.restypes: lowercase_ = '''X''' # FIXME: strings are immutable lowercase_ = np.array( [residue_constants.restype_order.get(snake_case__ , residue_constants.restype_num ) for res_symbol in seq] ) elif "[TERTIARY]" == g[0]: lowercase_ = [] for axis in range(3 ): tertiary.append(list(map(snake_case__ , g[1][axis].split() ) ) ) lowercase_ = np.array(snake_case__ ) lowercase_ = np.zeros((len(tertiary[0] ) // 3, residue_constants.atom_type_num, 3) ).astype(np.floataa ) for i, atom in enumerate(snake_case__ ): lowercase_ = np.transpose(tertiary_np[:, i::3] ) atom_positions *= PICO_TO_ANGSTROM elif "[MASK]" == g[0]: lowercase_ = np.array(list(map({'''-''': 0, '''+''': 1}.get , g[1][0].strip() ) ) ) lowercase_ = np.zeros( ( len(snake_case__ ), residue_constants.atom_type_num, ) ).astype(np.floataa ) for i, atom in enumerate(snake_case__ ): lowercase_ = 1 atom_mask *= mask[..., None] assert aatype is not None return Protein( atom_positions=snake_case__ , atom_mask=snake_case__ , aatype=snake_case__ , residue_index=np.arange(len(snake_case__ ) ) , b_factors=snake_case__ , ) def a ( snake_case__: Protein , snake_case__: int = 0 ): '''simple docstring''' lowercase_ = [] lowercase_ = prot.remark if remark is not None: pdb_headers.append(F'''REMARK {remark}''' ) lowercase_ = prot.parents lowercase_ = prot.parents_chain_index if parents is not None and parents_chain_index is not None: lowercase_ = [p for i, p in zip(snake_case__ , snake_case__ ) if i == chain_id] if parents is None or len(snake_case__ ) == 0: lowercase_ = ['''N/A'''] pdb_headers.append(F'''PARENT {' '.join(snake_case__ )}''' ) return pdb_headers def a ( snake_case__: Protein , snake_case__: str ): '''simple docstring''' lowercase_ = [] lowercase_ = pdb_str.split('''\n''' ) lowercase_ = prot.remark if remark is not None: out_pdb_lines.append(F'''REMARK {remark}''' ) lowercase_ = 42 if prot.parents is not None and len(prot.parents ) > 0: lowercase_ = [] if prot.parents_chain_index is not None: lowercase_ = {} for p, i in zip(prot.parents , prot.parents_chain_index ): parent_dict.setdefault(str(snake_case__ ) , [] ) parent_dict[str(snake_case__ )].append(snake_case__ ) lowercase_ = max([int(snake_case__ ) for chain_idx in parent_dict] ) for i in range(max_idx + 1 ): lowercase_ = parent_dict.get(str(snake_case__ ) , ['''N/A'''] ) parents_per_chain.append(snake_case__ ) else: parents_per_chain.append(list(prot.parents ) ) else: lowercase_ = [['''N/A''']] def make_parent_line(snake_case__: Sequence[str] ) -> str: return F'''PARENT {' '.join(snake_case__ )}''' out_pdb_lines.append(make_parent_line(parents_per_chain[0] ) ) lowercase_ = 0 for i, l in enumerate(snake_case__ ): if "PARENT" not in l and "REMARK" not in l: out_pdb_lines.append(snake_case__ ) if "TER" in l and "END" not in lines[i + 1]: chain_counter += 1 if not chain_counter >= len(snake_case__ ): lowercase_ = parents_per_chain[chain_counter] else: lowercase_ = ['''N/A'''] out_pdb_lines.append(make_parent_line(snake_case__ ) ) return "\n".join(snake_case__ ) def a ( snake_case__: Protein ): '''simple docstring''' lowercase_ = residue_constants.restypes + ['''X'''] def res_atoa(snake_case__: int ) -> str: return residue_constants.restype_atoa.get(restypes[r] , '''UNK''' ) lowercase_ = residue_constants.atom_types lowercase_ = [] lowercase_ = prot.atom_mask lowercase_ = prot.aatype lowercase_ = prot.atom_positions lowercase_ = prot.residue_index.astype(np.intaa ) lowercase_ = prot.b_factors lowercase_ = prot.chain_index if np.any(aatype > residue_constants.restype_num ): raise ValueError('''Invalid aatypes.''' ) lowercase_ = get_pdb_headers(snake_case__ ) if len(snake_case__ ) > 0: pdb_lines.extend(snake_case__ ) lowercase_ = aatype.shape[0] lowercase_ = 1 lowercase_ = 0 lowercase_ = string.ascii_uppercase lowercase_ = None # Add all atom sites. for i in range(snake_case__ ): lowercase_ = res_atoa(aatype[i] ) for atom_name, pos, mask, b_factor in zip(snake_case__ , atom_positions[i] , atom_mask[i] , b_factors[i] ): if mask < 0.5: continue lowercase_ = '''ATOM''' lowercase_ = atom_name if len(snake_case__ ) == 4 else F''' {atom_name}''' lowercase_ = '''''' lowercase_ = '''''' lowercase_ = 1.0_0 lowercase_ = atom_name[0] # Protein supports only C, N, O, S, this works. lowercase_ = '''''' lowercase_ = '''A''' if chain_index is not None: lowercase_ = chain_tags[chain_index[i]] # PDB is a columnar format, every space matters here! lowercase_ = ( F'''{record_type:<6}{atom_index:>5} {name:<4}{alt_loc:>1}''' F'''{res_name_a:>3} {chain_tag:>1}''' F'''{residue_index[i]:>4}{insertion_code:>1} ''' F'''{pos[0]:>8.3f}{pos[1]:>8.3f}{pos[2]:>8.3f}''' F'''{occupancy:>6.2f}{b_factor:>6.2f} ''' F'''{element:>2}{charge:>2}''' ) pdb_lines.append(snake_case__ ) atom_index += 1 lowercase_ = i == n - 1 if chain_index is not None: if i != n - 1 and chain_index[i + 1] != prev_chain_index: lowercase_ = True lowercase_ = chain_index[i + 1] if should_terminate: # Close the chain. lowercase_ = '''TER''' lowercase_ = ( F'''{chain_end:<6}{atom_index:>5} {res_atoa(aatype[i] ):>3} {chain_tag:>1}{residue_index[i]:>4}''' ) pdb_lines.append(snake_case__ ) atom_index += 1 if i != n - 1: # "prev" is a misnomer here. This happens at the beginning of # each new chain. pdb_lines.extend(get_pdb_headers(snake_case__ , snake_case__ ) ) pdb_lines.append('''END''' ) pdb_lines.append('''''' ) return "\n".join(snake_case__ ) def a ( snake_case__: Protein ): '''simple docstring''' return residue_constants.STANDARD_ATOM_MASK[prot.aatype] def a ( snake_case__: FeatureDict , snake_case__: ModelOutput , snake_case__: Optional[np.ndarray] = None , snake_case__: Optional[np.ndarray] = None , snake_case__: Optional[str] = None , snake_case__: Optional[Sequence[str]] = None , snake_case__: Optional[Sequence[int]] = None , ): '''simple docstring''' return Protein( aatype=features['''aatype'''] , atom_positions=result['''final_atom_positions'''] , atom_mask=result['''final_atom_mask'''] , residue_index=features['''residue_index'''] + 1 , b_factors=b_factors if b_factors is not None else np.zeros_like(result['''final_atom_mask'''] ) , chain_index=snake_case__ , remark=snake_case__ , parents=snake_case__ , parents_chain_index=snake_case__ , )
721
import json import os import tempfile import datasets from utils import generate_example_dataset, get_duration __a = 5_0_0_0_0 __a = 5_0_0_0 __a , __a = os.path.split(__file__) __a = os.path.join(RESULTS_BASEPATH, 'results', RESULTS_FILENAME.replace('.py', '.json')) @get_duration def a ( snake_case__: datasets.Dataset , snake_case__: Tuple ): '''simple docstring''' for i in range(snake_case__ ): lowercase_ = dataset[i] @get_duration def a ( snake_case__: datasets.Dataset , snake_case__: List[str] , snake_case__: Tuple ): '''simple docstring''' for i in range(0 , len(snake_case__ ) , snake_case__ ): lowercase_ = dataset[i : i + batch_size] @get_duration def a ( snake_case__: datasets.Dataset , snake_case__: Tuple , snake_case__: Optional[Any] ): '''simple docstring''' with dataset.formatted_as(type=snake_case__ ): for i in range(snake_case__ ): lowercase_ = dataset[i] @get_duration def a ( snake_case__: datasets.Dataset , snake_case__: List[Any] , snake_case__: Dict , snake_case__: Any ): '''simple docstring''' with dataset.formatted_as(type=snake_case__ ): for i in range(0 , snake_case__ , snake_case__ ): lowercase_ = dataset[i : i + batch_size] def a ( ): '''simple docstring''' lowercase_ = {'''num examples''': SPEED_TEST_N_EXAMPLES} lowercase_ = [ (read, {'''length''': SMALL_TEST}), (read, {'''length''': SPEED_TEST_N_EXAMPLES}), (read_batch, {'''length''': SPEED_TEST_N_EXAMPLES, '''batch_size''': 10}), (read_batch, {'''length''': SPEED_TEST_N_EXAMPLES, '''batch_size''': 100}), (read_batch, {'''length''': SPEED_TEST_N_EXAMPLES, '''batch_size''': 1_000}), (read_formatted, {'''type''': '''numpy''', '''length''': SMALL_TEST}), (read_formatted, {'''type''': '''pandas''', '''length''': SMALL_TEST}), (read_formatted, {'''type''': '''torch''', '''length''': SMALL_TEST}), (read_formatted, {'''type''': '''tensorflow''', '''length''': SMALL_TEST}), (read_formatted_batch, {'''type''': '''numpy''', '''length''': SMALL_TEST, '''batch_size''': 10}), (read_formatted_batch, {'''type''': '''numpy''', '''length''': SMALL_TEST, '''batch_size''': 1_000}), ] lowercase_ = [ (read, {'''length''': SMALL_TEST}), (read, {'''length''': SPEED_TEST_N_EXAMPLES}), (read_batch, {'''length''': SPEED_TEST_N_EXAMPLES, '''batch_size''': 10}), (read_batch, {'''length''': SPEED_TEST_N_EXAMPLES, '''batch_size''': 100}), (read_batch, {'''length''': SPEED_TEST_N_EXAMPLES, '''batch_size''': 1_000}), (read_formatted, {'''type''': '''numpy''', '''length''': SMALL_TEST}), (read_formatted_batch, {'''type''': '''numpy''', '''length''': SMALL_TEST, '''batch_size''': 10}), (read_formatted_batch, {'''type''': '''numpy''', '''length''': SMALL_TEST, '''batch_size''': 1_000}), ] with tempfile.TemporaryDirectory() as tmp_dir: print('''generating dataset''' ) lowercase_ = datasets.Features( {'''list''': datasets.Sequence(datasets.Value('''float32''' ) ), '''numbers''': datasets.Value('''float32''' )} ) lowercase_ = generate_example_dataset( os.path.join(snake_case__ , '''dataset.arrow''' ) , snake_case__ , num_examples=snake_case__ , seq_shapes={'''list''': (100,)} , ) print('''first set of iterations''' ) for func, kwargs in functions: print(func.__name__ , str(snake_case__ ) ) lowercase_ = func(snake_case__ , **snake_case__ ) print('''shuffling dataset''' ) lowercase_ = dataset.shuffle() print('''Second set of iterations (after shuffling''' ) for func, kwargs in functions_shuffled: print('''shuffled ''' , func.__name__ , str(snake_case__ ) ) lowercase_ = func( snake_case__ , **snake_case__ ) with open(snake_case__ , '''wb''' ) as f: f.write(json.dumps(snake_case__ ).encode('''utf-8''' ) ) if __name__ == "__main__": # useful to run the profiler benchmark_iterating()
409
0
'''simple docstring''' __UpperCAmelCase = { '''meter''': '''m''', '''kilometer''': '''km''', '''megametre''': '''Mm''', '''gigametre''': '''Gm''', '''terametre''': '''Tm''', '''petametre''': '''Pm''', '''exametre''': '''Em''', '''zettametre''': '''Zm''', '''yottametre''': '''Ym''', } # Exponent of the factor(meter) __UpperCAmelCase = { '''m''': 0, '''km''': 3, '''Mm''': 6, '''Gm''': 9, '''Tm''': 12, '''Pm''': 15, '''Em''': 18, '''Zm''': 21, '''Ym''': 24, } def _snake_case ( A , A , A ) -> float: lowerCAmelCase__ = from_type.lower().strip('''s''' ) lowerCAmelCase__ = to_type.lower().strip('''s''' ) lowerCAmelCase__ = UNIT_SYMBOL.get(A , A ) lowerCAmelCase__ = UNIT_SYMBOL.get(A , A ) if from_sanitized not in METRIC_CONVERSION: lowerCAmelCase__ = ( F"""Invalid 'from_type' value: {from_type!r}.\n""" F"""Conversion abbreviations are: {", ".join(A )}""" ) raise ValueError(A ) if to_sanitized not in METRIC_CONVERSION: lowerCAmelCase__ = ( F"""Invalid 'to_type' value: {to_type!r}.\n""" F"""Conversion abbreviations are: {", ".join(A )}""" ) raise ValueError(A ) lowerCAmelCase__ = METRIC_CONVERSION[from_sanitized] lowerCAmelCase__ = METRIC_CONVERSION[to_sanitized] lowerCAmelCase__ = 1 if from_exponent > to_exponent: lowerCAmelCase__ = from_exponent - to_exponent else: lowerCAmelCase__ = -(to_exponent - from_exponent) return value * pow(10 , A ) if __name__ == "__main__": from doctest import testmod testmod()
90
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : int =logging.get_logger(__name__) __lowerCAmelCase : Optional[Any] ={ """uw-madison/mra-base-512-4""": """https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json""", } class _A ( lowerCAmelCase ): snake_case__ : Optional[int] = 'mra' def __init__( self , __lowerCAmelCase=5_0265 , __lowerCAmelCase=768 , __lowerCAmelCase=12 , __lowerCAmelCase=12 , __lowerCAmelCase=3072 , __lowerCAmelCase="gelu" , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.1 , __lowerCAmelCase=512 , __lowerCAmelCase=1 , __lowerCAmelCase=0.0_2 , __lowerCAmelCase=1E-5 , __lowerCAmelCase="absolute" , __lowerCAmelCase=4 , __lowerCAmelCase="full" , __lowerCAmelCase=0 , __lowerCAmelCase=0 , __lowerCAmelCase=1 , __lowerCAmelCase=0 , __lowerCAmelCase=2 , **__lowerCAmelCase , ): """simple docstring""" super().__init__(pad_token_id=__lowerCAmelCase , bos_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase , **__lowerCAmelCase ) lowercase = vocab_size lowercase = max_position_embeddings lowercase = hidden_size lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = intermediate_size lowercase = hidden_act lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = initializer_range lowercase = type_vocab_size lowercase = layer_norm_eps lowercase = position_embedding_type lowercase = block_per_row lowercase = approx_mode lowercase = initial_prior_first_n_blocks lowercase = initial_prior_diagonal_n_blocks
359
0
"""simple docstring""" import shutil import tempfile import unittest from unittest.mock import patch from transformers import ( DefaultFlowCallback, IntervalStrategy, PrinterCallback, ProgressCallback, Trainer, TrainerCallback, TrainingArguments, is_torch_available, ) from transformers.testing_utils import require_torch if is_torch_available(): from transformers.trainer import DEFAULT_CALLBACKS from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel class UpperCAmelCase_ ( _a): def __init__( self ) -> Any: lowercase__ : Tuple = [] def _UpperCAmelCase ( self , a , a , a , **a ) -> Any: self.events.append('on_init_end' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> Optional[int]: self.events.append('on_train_begin' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> List[str]: self.events.append('on_train_end' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> int: self.events.append('on_epoch_begin' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> Optional[Any]: self.events.append('on_epoch_end' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> int: self.events.append('on_step_begin' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> str: self.events.append('on_step_end' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> int: self.events.append('on_evaluate' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> Tuple: self.events.append('on_predict' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> Union[str, Any]: self.events.append('on_save' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> List[str]: self.events.append('on_log' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> Any: self.events.append('on_prediction_step' ) @require_torch class UpperCAmelCase_ ( unittest.TestCase): def _UpperCAmelCase ( self ) -> str: lowercase__ : str = tempfile.mkdtemp() def _UpperCAmelCase ( self ) -> Dict: shutil.rmtree(self.output_dir ) def _UpperCAmelCase ( self , a=0 , a=0 , a=6_4 , a=6_4 , a=None , a=False , **a ) -> int: # disable_tqdm in TrainingArguments has a flaky default since it depends on the level of logging. We make sure # its set to False since the tests later on depend on its value. lowercase__ : str = RegressionDataset(length=a ) lowercase__ : Any = RegressionDataset(length=a ) lowercase__ : Optional[Any] = RegressionModelConfig(a=a , b=a ) lowercase__ : Union[str, Any] = RegressionPreTrainedModel(a ) lowercase__ : Tuple = TrainingArguments(self.output_dir , disable_tqdm=a , report_to=[] , **a ) return Trainer( a , a , train_dataset=a , eval_dataset=a , callbacks=a , ) def _UpperCAmelCase ( self , a , a ) -> Union[str, Any]: self.assertEqual(len(a ) , len(a ) ) # Order doesn't matter lowercase__ : Optional[int] = sorted(a , key=lambda a : cb.__name__ if isinstance(a , a ) else cb.__class__.__name__ ) lowercase__ : Tuple = sorted(a , key=lambda a : cb.__name__ if isinstance(a , a ) else cb.__class__.__name__ ) for cba, cba in zip(a , a ): if isinstance(a , a ) and isinstance(a , a ): self.assertEqual(a , a ) elif isinstance(a , a ) and not isinstance(a , a ): self.assertEqual(a , cba.__class__ ) elif not isinstance(a , a ) and isinstance(a , a ): self.assertEqual(cba.__class__ , a ) else: self.assertEqual(a , a ) def _UpperCAmelCase ( self , a ) -> Optional[Any]: lowercase__ : Dict = ['on_init_end', 'on_train_begin'] lowercase__ : List[Any] = 0 lowercase__ : Optional[int] = len(trainer.get_eval_dataloader() ) lowercase__ : Tuple = ['on_prediction_step'] * len(trainer.get_eval_dataloader() ) + ['on_log', 'on_evaluate'] for _ in range(trainer.state.num_train_epochs ): expected_events.append('on_epoch_begin' ) for _ in range(a ): step += 1 expected_events += ["on_step_begin", "on_step_end"] if step % trainer.args.logging_steps == 0: expected_events.append('on_log' ) if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0: expected_events += evaluation_events.copy() if step % trainer.args.save_steps == 0: expected_events.append('on_save' ) expected_events.append('on_epoch_end' ) if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH: expected_events += evaluation_events.copy() expected_events += ["on_log", "on_train_end"] return expected_events def _UpperCAmelCase ( self ) -> Union[str, Any]: lowercase__ : int = self.get_trainer() lowercase__ : str = DEFAULT_CALLBACKS.copy() + [ProgressCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) # Callbacks passed at init are added to the default callbacks lowercase__ : str = self.get_trainer(callbacks=[MyTestTrainerCallback] ) expected_callbacks.append(a ) self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) # TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback lowercase__ : List[Any] = self.get_trainer(disable_tqdm=a ) lowercase__ : Optional[Any] = DEFAULT_CALLBACKS.copy() + [PrinterCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) def _UpperCAmelCase ( self ) -> Any: lowercase__ : int = DEFAULT_CALLBACKS.copy() + [ProgressCallback] lowercase__ : List[str] = self.get_trainer() # We can add, pop, or remove by class name trainer.remove_callback(a ) expected_callbacks.remove(a ) self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) lowercase__ : Optional[Any] = self.get_trainer() lowercase__ : List[Any] = trainer.pop_callback(a ) self.assertEqual(cb.__class__ , a ) self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) trainer.add_callback(a ) expected_callbacks.insert(0 , a ) self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) # We can also add, pop, or remove by instance lowercase__ : int = self.get_trainer() lowercase__ : List[str] = trainer.callback_handler.callbacks[0] trainer.remove_callback(a ) expected_callbacks.remove(a ) self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) lowercase__ : Tuple = self.get_trainer() lowercase__ : Dict = trainer.callback_handler.callbacks[0] lowercase__ : Union[str, Any] = trainer.pop_callback(a ) self.assertEqual(a , a ) self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) trainer.add_callback(a ) expected_callbacks.insert(0 , a ) self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) def _UpperCAmelCase ( self ) -> Tuple: import warnings # XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested warnings.simplefilter(action='ignore' , category=a ) lowercase__ : Optional[Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] ) trainer.train() lowercase__ : Any = trainer.callback_handler.callbacks[-2].events self.assertEqual(a , self.get_expected_events(a ) ) # Independent log/save/eval lowercase__ : List[str] = self.get_trainer(callbacks=[MyTestTrainerCallback] , logging_steps=5 ) trainer.train() lowercase__ : int = trainer.callback_handler.callbacks[-2].events self.assertEqual(a , self.get_expected_events(a ) ) lowercase__ : Union[str, Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] , save_steps=5 ) trainer.train() lowercase__ : Union[str, Any] = trainer.callback_handler.callbacks[-2].events self.assertEqual(a , self.get_expected_events(a ) ) lowercase__ : List[str] = self.get_trainer(callbacks=[MyTestTrainerCallback] , eval_steps=5 , evaluation_strategy='steps' ) trainer.train() lowercase__ : Optional[int] = trainer.callback_handler.callbacks[-2].events self.assertEqual(a , self.get_expected_events(a ) ) lowercase__ : int = self.get_trainer(callbacks=[MyTestTrainerCallback] , evaluation_strategy='epoch' ) trainer.train() lowercase__ : str = trainer.callback_handler.callbacks[-2].events self.assertEqual(a , self.get_expected_events(a ) ) # A bit of everything lowercase__ : Any = self.get_trainer( callbacks=[MyTestTrainerCallback] , logging_steps=3 , save_steps=1_0 , eval_steps=5 , evaluation_strategy='steps' , ) trainer.train() lowercase__ : Any = trainer.callback_handler.callbacks[-2].events self.assertEqual(a , self.get_expected_events(a ) ) # warning should be emitted for duplicated callbacks with patch('transformers.trainer_callback.logger.warning' ) as warn_mock: lowercase__ : str = self.get_trainer( callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] , ) assert str(a ) in warn_mock.call_args[0][0]
645
"""simple docstring""" import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class UpperCAmelCase_ ( unittest.TestCase): def __init__( self , a , a=1_3 , a=7 , a=True , a=True , a=True , a=True , a=9_9 , a=3_2 , a=5 , a=4 , a=3_7 , a="gelu" , a=0.1 , a=0.1 , a=5_1_2 , a=1_6 , a=2 , a=0.02 , a=4 , ) -> Dict: lowercase__ : Optional[Any] = parent lowercase__ : Dict = batch_size lowercase__ : List[Any] = seq_length lowercase__ : int = is_training lowercase__ : str = use_attention_mask lowercase__ : Dict = use_token_type_ids lowercase__ : Optional[int] = use_labels lowercase__ : Tuple = vocab_size lowercase__ : List[str] = hidden_size lowercase__ : Union[str, Any] = num_hidden_layers lowercase__ : int = num_attention_heads lowercase__ : Dict = intermediate_size lowercase__ : List[str] = hidden_act lowercase__ : Dict = hidden_dropout_prob lowercase__ : Tuple = attention_probs_dropout_prob lowercase__ : List[str] = max_position_embeddings lowercase__ : int = type_vocab_size lowercase__ : List[str] = type_sequence_label_size lowercase__ : Union[str, Any] = initializer_range lowercase__ : Optional[int] = num_choices def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__ : str = None if self.use_attention_mask: lowercase__ : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ : List[str] = None if self.use_token_type_ids: lowercase__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase__ : Any = AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=a , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def _UpperCAmelCase ( self ) -> Any: lowercase__ : Optional[int] = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ , lowercase__ : Tuple = config_and_inputs lowercase__ : Union[str, Any] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict @require_flax class UpperCAmelCase_ ( _a , unittest.TestCase): lowerCamelCase__ : Tuple = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def _UpperCAmelCase ( self ) -> List[Any]: lowercase__ : Union[str, Any] = FlaxAlbertModelTester(self ) @slow def _UpperCAmelCase ( self ) -> str: for model_class_name in self.all_model_classes: lowercase__ : str = model_class_name.from_pretrained('albert-base-v2' ) lowercase__ : Tuple = model(np.ones((1, 1) ) ) self.assertIsNotNone(a ) @require_flax class UpperCAmelCase_ ( unittest.TestCase): @slow def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : str = FlaxAlbertModel.from_pretrained('albert-base-v2' ) lowercase__ : Optional[int] = np.array([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) lowercase__ : Optional[Any] = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) lowercase__ : Any = model(a , attention_mask=a )[0] lowercase__ : Tuple = (1, 1_1, 7_6_8) self.assertEqual(output.shape , a ) lowercase__ : Optional[Any] = np.array( [[[-0.6_513, 1.5_035, -0.2_766], [-0.6_515, 1.5_046, -0.2_780], [-0.6_512, 1.5_049, -0.2_784]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , a , atol=1e-4 ) )
645
1
from __future__ import annotations def _a ( __lowercase , __lowercase ) -> Union[str, Any]: """simple docstring""" __UpperCamelCase = [] create_all_state(1 , lowercase__ , lowercase__ , [] , lowercase__ ) return result def _a ( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , ) -> Tuple: """simple docstring""" if level == 0: total_list.append(current_list[:] ) return for i in range(lowercase__ , total_number - level + 2 ): current_list.append(lowercase__ ) create_all_state(i + 1 , lowercase__ , level - 1 , lowercase__ , lowercase__ ) current_list.pop() def _a ( __lowercase ) -> int: """simple docstring""" for i in total_list: print(*lowercase__ ) if __name__ == "__main__": _snake_case = 4 _snake_case = 2 _snake_case = generate_all_combinations(n, k) print_all_state(total_list)
383
from ...utils import logging from ..ta.modeling_tf_ta import TFTaEncoderModel, TFTaForConditionalGeneration, TFTaModel from .configuration_mta import MTaConfig A = logging.get_logger(__name__) A = 'T5Config' class SCREAMING_SNAKE_CASE ( __snake_case ): """simple docstring""" __A = """mt5""" __A = MTaConfig class SCREAMING_SNAKE_CASE ( __snake_case ): """simple docstring""" __A = """mt5""" __A = MTaConfig class SCREAMING_SNAKE_CASE ( __snake_case ): """simple docstring""" __A = """mt5""" __A = MTaConfig
187
0
import logging import os from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional from tqdm import auto as tqdm_lib _lowerCamelCase : Dict = { "debug": logging.DEBUG, "info": logging.INFO, "warning": logging.WARNING, "error": logging.ERROR, "critical": logging.CRITICAL, } _lowerCamelCase : Tuple = logging.WARNING def _UpperCAmelCase (): '''simple docstring''' _lowerCAmelCase : str = os.getenv("""DATASETS_VERBOSITY""" , UpperCamelCase_ ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( F"Unknown option DATASETS_VERBOSITY={env_level_str}, " F"has to be one of: { ', '.join(log_levels.keys() ) }" ) return _default_log_level def _UpperCAmelCase (): '''simple docstring''' return __name__.split(""".""" )[0] def _UpperCAmelCase (): '''simple docstring''' return logging.getLogger(_get_library_name() ) def _UpperCAmelCase (): '''simple docstring''' # Apply our default configuration to the library root logger. _lowerCAmelCase : str = _get_library_root_logger() library_root_logger.setLevel(_get_default_logging_level() ) def _UpperCAmelCase (): '''simple docstring''' _lowerCAmelCase : List[Any] = _get_library_root_logger() library_root_logger.setLevel(logging.NOTSET ) def _UpperCAmelCase (UpperCamelCase_ : Optional[str] = None ): '''simple docstring''' if name is None: _lowerCAmelCase : Optional[int] = _get_library_name() return logging.getLogger(UpperCamelCase_ ) def _UpperCAmelCase (): '''simple docstring''' return _get_library_root_logger().getEffectiveLevel() def _UpperCAmelCase (UpperCamelCase_ : int ): '''simple docstring''' _get_library_root_logger().setLevel(UpperCamelCase_ ) def _UpperCAmelCase (): '''simple docstring''' return set_verbosity(UpperCamelCase_ ) def _UpperCAmelCase (): '''simple docstring''' return set_verbosity(UpperCamelCase_ ) def _UpperCAmelCase (): '''simple docstring''' return set_verbosity(UpperCamelCase_ ) def _UpperCAmelCase (): '''simple docstring''' return set_verbosity(UpperCamelCase_ ) def _UpperCAmelCase (): '''simple docstring''' _lowerCAmelCase : Tuple = False def _UpperCAmelCase (): '''simple docstring''' _lowerCAmelCase : List[Any] = True # Configure the library root logger at the module level (singleton-like) _configure_library_root_logger() class __snake_case : def __init__( self : List[Any] , *_UpperCAmelCase : Dict , **_UpperCAmelCase : Any ) -> Tuple: # pylint: disable=unused-argument '''simple docstring''' _lowerCAmelCase : Dict = args[0] if args else None def __iter__( self : List[str] ) -> Union[str, Any]: '''simple docstring''' return iter(self._iterator ) def __getattr__( self : Dict , _UpperCAmelCase : str ) -> Dict: '''simple docstring''' def empty_fn(*_UpperCAmelCase : str , **_UpperCAmelCase : Tuple ): # pylint: disable=unused-argument return return empty_fn def __enter__( self : Dict ) -> Tuple: '''simple docstring''' return self def __exit__( self : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : Any , _UpperCAmelCase : Any ) -> List[Any]: '''simple docstring''' return _lowerCamelCase : Any = True class __snake_case : def __call__( self : Any , *_UpperCAmelCase : Optional[int] , _UpperCAmelCase : str=False , **_UpperCAmelCase : Dict ) -> List[str]: '''simple docstring''' if _tqdm_active and not disable: return tqdm_lib.tqdm(*_UpperCAmelCase , **_UpperCAmelCase ) else: return EmptyTqdm(*_UpperCAmelCase , **_UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Dict , *_UpperCAmelCase : Dict , **_UpperCAmelCase : List[Any] ) -> List[str]: '''simple docstring''' _lowerCAmelCase : List[str] = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*_UpperCAmelCase , **_UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Any: '''simple docstring''' if _tqdm_active: return tqdm_lib.tqdm.get_lock() _lowerCamelCase : Any = _tqdm_cls() def _UpperCAmelCase (): '''simple docstring''' global _tqdm_active return bool(_tqdm_active ) def _UpperCAmelCase (): '''simple docstring''' global _tqdm_active _lowerCAmelCase : List[Any] = True def _UpperCAmelCase (): '''simple docstring''' global _tqdm_active _lowerCAmelCase : List[Any] = False
196
import comet # From: unbabel-comet import torch import datasets _lowerCamelCase : List[Any] = datasets.logging.get_logger(__name__) _lowerCamelCase : Optional[Any] = "\\n@inproceedings{rei-EtAl:2020:WMT,\n author = {Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon},\n title = {Unbabel's Participation in the WMT20 Metrics Shared Task},\n booktitle = {Proceedings of the Fifth Conference on Machine Translation},\n month = {November},\n year = {2020},\n address = {Online},\n publisher = {Association for Computational Linguistics},\n pages = {909--918},\n}\n@inproceedings{rei-etal-2020-comet,\n title = \"{COMET}: A Neural Framework for {MT} Evaluation\",\n author = \"Rei, Ricardo and\n Stewart, Craig and\n Farinha, Ana C and\n Lavie, Alon\",\n booktitle = \"Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)\",\n month = nov,\n year = \"2020\",\n address = \"Online\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/2020.emnlp-main.213\",\n pages = \"2685--2702\",\n}\n" _lowerCamelCase : Union[str, Any] = "\\nCrosslingual Optimized Metric for Evaluation of Translation (COMET) is an open-source framework used to train Machine Translation metrics that achieve high levels of correlation with different types of human judgments (HTER, DA's or MQM).\nWith the release of the framework the authors also released fully trained models that were used to compete in the WMT20 Metrics Shared Task achieving SOTA in that years competition.\n\nSee the [README.md] file at https://unbabel.github.io/COMET/html/models.html for more information.\n" _lowerCamelCase : Optional[int] = "\nCOMET score.\n\nArgs:\n\n`sources` (list of str): Source sentences\n`predictions` (list of str): candidate translations\n`references` (list of str): reference translations\n`cuda` (bool): If set to True, runs COMET using GPU\n`show_progress` (bool): Shows progress\n`model`: COMET model to be used. Will default to `wmt-large-da-estimator-1719` if None.\n\nReturns:\n `samples`: List of dictionaries with `src`, `mt`, `ref` and `score`.\n `scores`: List of scores.\n\nExamples:\n\n >>> comet_metric = datasets.load_metric('comet')\n >>> # comet_metric = load_metric('comet', 'wmt20-comet-da') # you can also choose which model to use\n >>> source = [\"Dem Feuer konnte Einhalt geboten werden\", \"Schulen und Kindergärten wurden eröffnet.\"]\n >>> hypothesis = [\"The fire could be stopped\", \"Schools and kindergartens were open\"]\n >>> reference = [\"They were able to control the fire.\", \"Schools and kindergartens opened\"]\n >>> results = comet_metric.compute(predictions=hypothesis, references=reference, sources=source)\n >>> print([round(v, 2) for v in results[\"scores\"]])\n [0.19, 0.92]\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __snake_case (datasets.Metric ): def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Tuple: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="""https://unbabel.github.io/COMET/html/index.html""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """sources""": datasets.Value("""string""" , id="""sequence""" ), """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , codebase_urls=["""https://github.com/Unbabel/COMET"""] , reference_urls=[ """https://github.com/Unbabel/COMET""", """https://www.aclweb.org/anthology/2020.emnlp-main.213/""", """http://www.statmt.org/wmt20/pdf/2020.wmt-1.101.pdf6""", ] , ) def SCREAMING_SNAKE_CASE ( self : Dict , _UpperCAmelCase : List[str] ) -> Dict: '''simple docstring''' if self.config_name == "default": _lowerCAmelCase : Union[str, Any] = comet.load_from_checkpoint(comet.download_model("""wmt20-comet-da""" ) ) else: _lowerCAmelCase : Dict = comet.load_from_checkpoint(comet.download_model(self.config_name ) ) def SCREAMING_SNAKE_CASE ( self : Tuple , _UpperCAmelCase : Dict , _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict=None , _UpperCAmelCase : Tuple=False ) -> int: '''simple docstring''' if gpus is None: _lowerCAmelCase : Tuple = 1 if torch.cuda.is_available() else 0 _lowerCAmelCase : Optional[int] = {"""src""": sources, """mt""": predictions, """ref""": references} _lowerCAmelCase : List[Any] = [dict(zip(_UpperCAmelCase , _UpperCAmelCase ) ) for t in zip(*data.values() )] _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = self.scorer.predict(_UpperCAmelCase , gpus=_UpperCAmelCase , progress_bar=_UpperCAmelCase ) return {"mean_score": mean_score, "scores": scores}
196
1
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPanoramaPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() @skip_mps class _snake_case (__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase): __A : Dict =StableDiffusionPanoramaPipeline __A : Tuple =TEXT_TO_IMAGE_PARAMS __A : Dict =TEXT_TO_IMAGE_BATCH_PARAMS __A : Union[str, Any] =TEXT_TO_IMAGE_IMAGE_PARAMS __A : List[Any] =TEXT_TO_IMAGE_IMAGE_PARAMS def UpperCamelCase__ ( self ): torch.manual_seed(0 ) UpperCAmelCase_ : Any = UNetaDConditionModel( block_out_channels=(32, 64) ,layers_per_block=1 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") ,up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") ,cross_attention_dim=32 ,) UpperCAmelCase_ : Union[str, Any] = DDIMScheduler() torch.manual_seed(0 ) UpperCAmelCase_ : List[Any] = AutoencoderKL( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] ,up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] ,latent_channels=4 ,) torch.manual_seed(0 ) UpperCAmelCase_ : List[Any] = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1E-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=10_00 ,) UpperCAmelCase_ : Union[str, Any] = CLIPTextModel(_snake_case ) UpperCAmelCase_ : Optional[Any] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) UpperCAmelCase_ : Dict = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def UpperCamelCase__ ( self ,_snake_case ,_snake_case=0 ): UpperCAmelCase_ : int = torch.manual_seed(_snake_case ) UpperCAmelCase_ : Optional[Any] = { "prompt": "a photo of the dolomites", "generator": generator, # Setting height and width to None to prevent OOMs on CPU. "height": None, "width": None, "num_inference_steps": 1, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def UpperCamelCase__ ( self ): UpperCAmelCase_ : int = "cpu" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_ : Dict = self.get_dummy_components() UpperCAmelCase_ : Optional[Any] = StableDiffusionPanoramaPipeline(**_snake_case ) UpperCAmelCase_ : Dict = sd_pipe.to(_snake_case ) sd_pipe.set_progress_bar_config(disable=_snake_case ) UpperCAmelCase_ : List[str] = self.get_dummy_inputs(_snake_case ) UpperCAmelCase_ : Any = sd_pipe(**_snake_case ).images UpperCAmelCase_ : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase_ : List[Any] = np.array([0.6186, 0.5374, 0.4915, 0.4135, 0.4114, 0.4563, 0.5128, 0.4977, 0.4757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase__ ( self ): super().test_inference_batch_consistent(batch_sizes=[1, 2] ) def UpperCamelCase__ ( self ): super().test_inference_batch_single_identical(batch_size=2 ,expected_max_diff=3.25E-3 ) def UpperCamelCase__ ( self ): UpperCAmelCase_ : str = "cpu" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_ : Union[str, Any] = self.get_dummy_components() UpperCAmelCase_ : Tuple = StableDiffusionPanoramaPipeline(**_snake_case ) UpperCAmelCase_ : int = sd_pipe.to(_snake_case ) sd_pipe.set_progress_bar_config(disable=_snake_case ) UpperCAmelCase_ : Union[str, Any] = self.get_dummy_inputs(_snake_case ) UpperCAmelCase_ : Optional[int] = "french fries" UpperCAmelCase_ : Tuple = sd_pipe(**_snake_case ,negative_prompt=_snake_case ) UpperCAmelCase_ : Optional[int] = output.images UpperCAmelCase_ : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase_ : Dict = np.array([0.6187, 0.5375, 0.4915, 0.4136, 0.4114, 0.4563, 0.5128, 0.4976, 0.4757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase__ ( self ): UpperCAmelCase_ : List[Any] = "cpu" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_ : Any = self.get_dummy_components() UpperCAmelCase_ : Optional[Any] = StableDiffusionPanoramaPipeline(**_snake_case ) UpperCAmelCase_ : Optional[Any] = sd_pipe.to(_snake_case ) sd_pipe.set_progress_bar_config(disable=_snake_case ) UpperCAmelCase_ : Tuple = self.get_dummy_inputs(_snake_case ) UpperCAmelCase_ : Dict = sd_pipe(**_snake_case ,view_batch_size=2 ) UpperCAmelCase_ : Optional[int] = output.images UpperCAmelCase_ : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase_ : Any = np.array([0.6187, 0.5375, 0.4915, 0.4136, 0.4114, 0.4563, 0.5128, 0.4976, 0.4757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase__ ( self ): UpperCAmelCase_ : Optional[Any] = "cpu" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_ : Optional[int] = self.get_dummy_components() UpperCAmelCase_ : List[Any] = EulerAncestralDiscreteScheduler( beta_start=0.00085 ,beta_end=0.012 ,beta_schedule="scaled_linear" ) UpperCAmelCase_ : str = StableDiffusionPanoramaPipeline(**_snake_case ) UpperCAmelCase_ : Dict = sd_pipe.to(_snake_case ) sd_pipe.set_progress_bar_config(disable=_snake_case ) UpperCAmelCase_ : Optional[Any] = self.get_dummy_inputs(_snake_case ) UpperCAmelCase_ : Union[str, Any] = sd_pipe(**_snake_case ).images UpperCAmelCase_ : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase_ : Union[str, Any] = np.array([0.4024, 0.6510, 0.4901, 0.5378, 0.5813, 0.5622, 0.4795, 0.4467, 0.4952] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase__ ( self ): UpperCAmelCase_ : Optional[int] = "cpu" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_ : List[Any] = self.get_dummy_components() UpperCAmelCase_ : Tuple = PNDMScheduler( beta_start=0.00085 ,beta_end=0.012 ,beta_schedule="scaled_linear" ,skip_prk_steps=_snake_case ) UpperCAmelCase_ : Tuple = StableDiffusionPanoramaPipeline(**_snake_case ) UpperCAmelCase_ : Optional[int] = sd_pipe.to(_snake_case ) sd_pipe.set_progress_bar_config(disable=_snake_case ) UpperCAmelCase_ : str = self.get_dummy_inputs(_snake_case ) UpperCAmelCase_ : Optional[int] = sd_pipe(**_snake_case ).images UpperCAmelCase_ : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase_ : Optional[Any] = np.array([0.6391, 0.6291, 0.4861, 0.5134, 0.5552, 0.4578, 0.5032, 0.5023, 0.4539] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class _snake_case (unittest.TestCase): def UpperCamelCase__ ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self ,_snake_case=0 ): UpperCAmelCase_ : Any = torch.manual_seed(_snake_case ) UpperCAmelCase_ : List[Any] = { "prompt": "a photo of the dolomites", "generator": generator, "num_inference_steps": 3, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def UpperCamelCase__ ( self ): UpperCAmelCase_ : int = "stabilityai/stable-diffusion-2-base" UpperCAmelCase_ : int = DDIMScheduler.from_pretrained(_snake_case ,subfolder="scheduler" ) UpperCAmelCase_ : Optional[Any] = StableDiffusionPanoramaPipeline.from_pretrained(_snake_case ,scheduler=_snake_case ,safety_checker=_snake_case ) pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) pipe.enable_attention_slicing() UpperCAmelCase_ : Any = self.get_inputs() UpperCAmelCase_ : List[str] = pipe(**_snake_case ).images UpperCAmelCase_ : Optional[Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_12, 20_48, 3) UpperCAmelCase_ : Optional[int] = np.array( [ 0.36968392, 0.27025372, 0.32446766, 0.28379387, 0.36363274, 0.30733347, 0.27100027, 0.27054125, 0.25536096, ] ) assert np.abs(expected_slice - image_slice ).max() < 1E-2 def UpperCamelCase__ ( self ): UpperCAmelCase_ : Optional[int] = StableDiffusionPanoramaPipeline.from_pretrained( "stabilityai/stable-diffusion-2-base" ,safety_checker=_snake_case ) UpperCAmelCase_ : List[str] = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) pipe.enable_attention_slicing() UpperCAmelCase_ : str = self.get_inputs() UpperCAmelCase_ : Optional[Any] = pipe(**_snake_case ).images UpperCAmelCase_ : int = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_12, 20_48, 3) UpperCAmelCase_ : str = np.array( [ [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ] ] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def UpperCamelCase__ ( self ): UpperCAmelCase_ : Optional[Any] = 0 def callback_fn(_snake_case ,_snake_case ,_snake_case ) -> None: UpperCAmelCase_ : Tuple = True nonlocal number_of_steps number_of_steps += 1 if step == 1: UpperCAmelCase_ : List[str] = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 2_56) UpperCAmelCase_ : Tuple = latents[0, -3:, -3:, -1] UpperCAmelCase_ : Optional[int] = np.array( [ 0.18681869, 0.33907816, 0.5361276, 0.14432865, -0.02856611, -0.73941123, 0.23397987, 0.47322682, -0.37823164, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 elif step == 2: UpperCAmelCase_ : List[Any] = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 2_56) UpperCAmelCase_ : Optional[int] = latents[0, -3:, -3:, -1] UpperCAmelCase_ : Tuple = np.array( [ 0.18539645, 0.33987248, 0.5378559, 0.14437142, -0.02455261, -0.7338317, 0.23990755, 0.47356272, -0.3786505, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 UpperCAmelCase_ : int = False UpperCAmelCase_ : List[Any] = "stabilityai/stable-diffusion-2-base" UpperCAmelCase_ : Optional[Any] = DDIMScheduler.from_pretrained(_snake_case ,subfolder="scheduler" ) UpperCAmelCase_ : Any = StableDiffusionPanoramaPipeline.from_pretrained(_snake_case ,scheduler=_snake_case ,safety_checker=_snake_case ) UpperCAmelCase_ : int = pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) pipe.enable_attention_slicing() UpperCAmelCase_ : Optional[int] = self.get_inputs() pipe(**_snake_case ,callback=_snake_case ,callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def UpperCamelCase__ ( self ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() UpperCAmelCase_ : Dict = "stabilityai/stable-diffusion-2-base" UpperCAmelCase_ : Union[str, Any] = DDIMScheduler.from_pretrained(_snake_case ,subfolder="scheduler" ) UpperCAmelCase_ : Dict = StableDiffusionPanoramaPipeline.from_pretrained(_snake_case ,scheduler=_snake_case ,safety_checker=_snake_case ) UpperCAmelCase_ : Tuple = pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() UpperCAmelCase_ : Union[str, Any] = self.get_inputs() UpperCAmelCase_ : Dict = pipe(**_snake_case ) UpperCAmelCase_ : Tuple = torch.cuda.max_memory_allocated() # make sure that less than 5.2 GB is allocated assert mem_bytes < 5.5 * 10**9
71
"""simple docstring""" import argparse import collections import os import re import tempfile import pandas as pd from datasets import Dataset from huggingface_hub import hf_hub_download, upload_folder from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/update_metadata.py SCREAMING_SNAKE_CASE__:Union[str, Any] = """src/transformers""" # This is to make sure the transformers module imported is the one in the repo. SCREAMING_SNAKE_CASE__:List[str] = direct_transformers_import(TRANSFORMERS_PATH) # Regexes that match TF/Flax/PT model names. SCREAMING_SNAKE_CASE__:Union[str, Any] = re.compile(R"""TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)""") SCREAMING_SNAKE_CASE__:Optional[int] = re.compile(R"""Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)""") # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. SCREAMING_SNAKE_CASE__:Optional[Any] = re.compile(R"""(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)""") # Fill this with tuples (pipeline_tag, model_mapping, auto_model) SCREAMING_SNAKE_CASE__:int = [ ("""pretraining""", """MODEL_FOR_PRETRAINING_MAPPING_NAMES""", """AutoModelForPreTraining"""), ("""feature-extraction""", """MODEL_MAPPING_NAMES""", """AutoModel"""), ("""audio-classification""", """MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES""", """AutoModelForAudioClassification"""), ("""text-generation""", """MODEL_FOR_CAUSAL_LM_MAPPING_NAMES""", """AutoModelForCausalLM"""), ("""automatic-speech-recognition""", """MODEL_FOR_CTC_MAPPING_NAMES""", """AutoModelForCTC"""), ("""image-classification""", """MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES""", """AutoModelForImageClassification"""), ("""image-segmentation""", """MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES""", """AutoModelForImageSegmentation"""), ("""fill-mask""", """MODEL_FOR_MASKED_LM_MAPPING_NAMES""", """AutoModelForMaskedLM"""), ("""object-detection""", """MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES""", """AutoModelForObjectDetection"""), ( """zero-shot-object-detection""", """MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES""", """AutoModelForZeroShotObjectDetection""", ), ("""question-answering""", """MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES""", """AutoModelForQuestionAnswering"""), ("""text2text-generation""", """MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES""", """AutoModelForSeq2SeqLM"""), ("""text-classification""", """MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES""", """AutoModelForSequenceClassification"""), ("""automatic-speech-recognition""", """MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES""", """AutoModelForSpeechSeq2Seq"""), ( """table-question-answering""", """MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES""", """AutoModelForTableQuestionAnswering""", ), ("""token-classification""", """MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES""", """AutoModelForTokenClassification"""), ("""multiple-choice""", """MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES""", """AutoModelForMultipleChoice"""), ( """next-sentence-prediction""", """MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES""", """AutoModelForNextSentencePrediction""", ), ( """audio-frame-classification""", """MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES""", """AutoModelForAudioFrameClassification""", ), ("""audio-xvector""", """MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES""", """AutoModelForAudioXVector"""), ( """document-question-answering""", """MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES""", """AutoModelForDocumentQuestionAnswering""", ), ( """visual-question-answering""", """MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES""", """AutoModelForVisualQuestionAnswering""", ), ("""image-to-text""", """MODEL_FOR_FOR_VISION_2_SEQ_MAPPING_NAMES""", """AutoModelForVision2Seq"""), ( """zero-shot-image-classification""", """MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES""", """AutoModelForZeroShotImageClassification""", ), ("""depth-estimation""", """MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES""", """AutoModelForDepthEstimation"""), ("""video-classification""", """MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES""", """AutoModelForVideoClassification"""), ("""mask-generation""", """MODEL_FOR_MASK_GENERATION_MAPPING_NAMES""", """AutoModelForMaskGeneration"""), ] def _lowerCamelCase( a ): __a = re.finditer(".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)" , a ) return [m.group(0 ) for m in matches] def _lowerCamelCase( ): __a = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES __a = { config.replace("Config" , "" ): model_type for model_type, config in config_maping_names.items() } # Dictionaries flagging if each model prefix has a backend in PT/TF/Flax. __a = collections.defaultdict(a ) __a = collections.defaultdict(a ) __a = collections.defaultdict(a ) # Let's lookup through all transformers object (once) and find if models are supported by a given backend. for attr_name in dir(a ): __a = None if _re_tf_models.match(a ) is not None: __a = tf_models __a = _re_tf_models.match(a ).groups()[0] elif _re_flax_models.match(a ) is not None: __a = flax_models __a = _re_flax_models.match(a ).groups()[0] elif _re_pt_models.match(a ) is not None: __a = pt_models __a = _re_pt_models.match(a ).groups()[0] if lookup_dict is not None: while len(a ) > 0: if attr_name in model_prefix_to_model_type: __a = True break # Try again after removing the last word in the name __a = "".join(camel_case_split(a )[:-1] ) __a = set(list(pt_models.keys() ) + list(tf_models.keys() ) + list(flax_models.keys() ) ) __a = list(a ) all_models.sort() __a = {"model_type": all_models} __a = [pt_models[t] for t in all_models] __a = [tf_models[t] for t in all_models] __a = [flax_models[t] for t in all_models] # Now let's use the auto-mapping names to make sure __a = {} for t in all_models: if t in transformers_module.models.auto.processing_auto.PROCESSOR_MAPPING_NAMES: __a = "AutoProcessor" elif t in transformers_module.models.auto.tokenization_auto.TOKENIZER_MAPPING_NAMES: __a = "AutoTokenizer" elif t in transformers_module.models.auto.feature_extraction_auto.FEATURE_EXTRACTOR_MAPPING_NAMES: __a = "AutoFeatureExtractor" else: # Default to AutoTokenizer if a model has nothing, for backward compatibility. __a = "AutoTokenizer" __a = [processors[t] for t in all_models] return pd.DataFrame(a ) def _lowerCamelCase( a ): __a = [ transformers_module.models.auto.modeling_auto, transformers_module.models.auto.modeling_tf_auto, transformers_module.models.auto.modeling_flax_auto, ] for pipeline_tag, model_mapping, auto_class in PIPELINE_TAGS_AND_AUTO_MODELS: __a = [model_mapping, F"TF_{model_mapping}", F"FLAX_{model_mapping}"] __a = [auto_class, F"TF_{auto_class}", F"Flax_{auto_class}"] # Loop through all three frameworks for module, cls, mapping in zip(a , a , a ): # The type of pipeline may not exist in this framework if not hasattr(a , a ): continue # First extract all model_names __a = [] for name in getattr(a , a ).values(): if isinstance(a , a ): model_names.append(a ) else: model_names.extend(list(a ) ) # Add pipeline tag and auto model class for those models table.update({model_name: (pipeline_tag, cls) for model_name in model_names} ) return table def _lowerCamelCase( a , a ): __a = get_frameworks_table() __a = Dataset.from_pandas(a ) __a = hf_hub_download( "huggingface/transformers-metadata" , "pipeline_tags.json" , repo_type="dataset" , token=a ) __a = Dataset.from_json(a ) __a = { tags_dataset[i]["model_class"]: (tags_dataset[i]["pipeline_tag"], tags_dataset[i]["auto_class"]) for i in range(len(a ) ) } __a = update_pipeline_and_auto_class_table(a ) # Sort the model classes to avoid some nondeterministic updates to create false update commits. __a = sorted(table.keys() ) __a = pd.DataFrame( { "model_class": model_classes, "pipeline_tag": [table[m][0] for m in model_classes], "auto_class": [table[m][1] for m in model_classes], } ) __a = Dataset.from_pandas(a ) with tempfile.TemporaryDirectory() as tmp_dir: frameworks_dataset.to_json(os.path.join(a , "frameworks.json" ) ) tags_dataset.to_json(os.path.join(a , "pipeline_tags.json" ) ) if commit_sha is not None: __a = ( F"Update with commit {commit_sha}\n\nSee: " F"https://github.com/huggingface/transformers/commit/{commit_sha}" ) else: __a = "Update" upload_folder( repo_id="huggingface/transformers-metadata" , folder_path=a , repo_type="dataset" , token=a , commit_message=a , ) def _lowerCamelCase( ): __a = {tag: cls for tag, _, cls in PIPELINE_TAGS_AND_AUTO_MODELS} __a = transformers_module.pipelines.SUPPORTED_TASKS __a = [] for key in pipeline_tasks: if key not in in_table: __a = pipeline_tasks[key]["pt"] if isinstance(a , (list, tuple) ): __a = model[0] __a = model.__name__ if model not in in_table.values(): missing.append(a ) if len(a ) > 0: __a = ", ".join(a ) raise ValueError( "The following pipeline tags are not present in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant inside " F"`utils/update_metadata.py`: {msg}. Please add them!" ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__:List[str] = argparse.ArgumentParser() parser.add_argument("""--token""", type=str, help="""The token to use to push to the transformers-metadata dataset.""") parser.add_argument("""--commit_sha""", type=str, help="""The sha of the commit going with this update.""") parser.add_argument("""--check-only""", action="""store_true""", help="""Activate to just check all pipelines are present.""") SCREAMING_SNAKE_CASE__:Any = parser.parse_args() if args.check_only: check_pipeline_tags() else: update_metadata(args.token, args.commit_sha)
528
0
'''simple docstring''' import importlib.metadata from typing import Union from packaging.version import Version, parse from .constants import STR_OPERATION_TO_FUNC __A : Any = parse(importlib.metadata.version("""torch""")) def lowerCamelCase_ ( lowercase__ , lowercase__ , lowercase__): if operation not in STR_OPERATION_TO_FUNC.keys(): raise ValueError(F'''`operation` must be one of {list(STR_OPERATION_TO_FUNC.keys())}, received {operation}''') lowerCamelCase__ = STR_OPERATION_TO_FUNC[operation] if isinstance(a__ , a__): lowerCamelCase__ = parse(importlib.metadata.version(a__)) return operation(a__ , parse(a__)) def lowerCamelCase_ ( lowercase__ , lowercase__): return compare_versions(a__ , a__ , a__)
716
'''simple docstring''' # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib __A : Any = get_logger() __A : Optional[dict] = None class lowercase ( TensorFormatter[Mapping, "jax.Array", Mapping] ): '''simple docstring''' def __init__( self : str , __lowerCamelCase : Optional[Any]=None , __lowerCamelCase : Dict=None , **__lowerCamelCase : str ) -> List[Any]: '''simple docstring''' super().__init__(features=__lowerCamelCase ) import jax from jaxlib.xla_client import Device if isinstance(__lowerCamelCase , __lowerCamelCase ): raise ValueError( f'''Expected {device} to be a `str` not {type(__lowerCamelCase )}, as `jaxlib.xla_extension.Device` ''' "is not serializable neither with `pickle` nor with `dill`. Instead you can surround " "the device with `str()` to get its string identifier that will be internally mapped " "to the actual `jaxlib.xla_extension.Device`." ) lowerCamelCase__ = device if isinstance(__lowerCamelCase , __lowerCamelCase ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: lowerCamelCase__ = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( f'''Device with string identifier {self.device} not listed among the available ''' f'''devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default ''' f'''device: {str(jax.devices()[0] )}.''' ) lowerCamelCase__ = str(jax.devices()[0] ) lowerCamelCase__ = jnp_array_kwargs @staticmethod def a__ ( ) -> Dict[str, "jaxlib.xla_extension.Device"]: '''simple docstring''' import jax return {str(__lowerCamelCase ): device for device in jax.devices()} def a__ ( self : Optional[Any] , __lowerCamelCase : Optional[int] ) -> List[str]: '''simple docstring''' import jax import jax.numpy as jnp if isinstance(__lowerCamelCase , __lowerCamelCase ) and column: if all( isinstance(__lowerCamelCase , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(__lowerCamelCase , axis=0 ) return column def a__ ( self : List[Any] , __lowerCamelCase : List[Any] ) -> Optional[int]: '''simple docstring''' import jax import jax.numpy as jnp if isinstance(__lowerCamelCase , (str, bytes, type(__lowerCamelCase )) ): return value elif isinstance(__lowerCamelCase , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() lowerCamelCase__ = {} if isinstance(__lowerCamelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: lowerCamelCase__ = {"dtype": jnp.intaa} else: lowerCamelCase__ = {"dtype": jnp.intaa} elif isinstance(__lowerCamelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): lowerCamelCase__ = {"dtype": jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(__lowerCamelCase , PIL.Image.Image ): lowerCamelCase__ = np.asarray(__lowerCamelCase ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: lowerCamelCase__ = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(__lowerCamelCase , **{**default_dtype, **self.jnp_array_kwargs} ) def a__ ( self : List[str] , __lowerCamelCase : Optional[Any] ) -> Dict: '''simple docstring''' import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(__lowerCamelCase , torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(__lowerCamelCase , "__array__" ) and not isinstance(__lowerCamelCase , jax.Array ): lowerCamelCase__ = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(__lowerCamelCase , np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(__lowerCamelCase ) for substruct in data_struct] ) elif isinstance(__lowerCamelCase , (list, tuple) ): return self._consolidate([self.recursive_tensorize(__lowerCamelCase ) for substruct in data_struct] ) return self._tensorize(__lowerCamelCase ) def a__ ( self : Any , __lowerCamelCase : dict ) -> int: '''simple docstring''' return map_nested(self._recursive_tensorize , __lowerCamelCase , map_list=__lowerCamelCase ) def a__ ( self : Union[str, Any] , __lowerCamelCase : pa.Table ) -> Mapping: '''simple docstring''' lowerCamelCase__ = self.numpy_arrow_extractor().extract_row(__lowerCamelCase ) lowerCamelCase__ = self.python_features_decoder.decode_row(__lowerCamelCase ) return self.recursive_tensorize(__lowerCamelCase ) def a__ ( self : List[Any] , __lowerCamelCase : pa.Table ) -> "jax.Array": '''simple docstring''' lowerCamelCase__ = self.numpy_arrow_extractor().extract_column(__lowerCamelCase ) lowerCamelCase__ = self.python_features_decoder.decode_column(__lowerCamelCase , pa_table.column_names[0] ) lowerCamelCase__ = self.recursive_tensorize(__lowerCamelCase ) lowerCamelCase__ = self._consolidate(__lowerCamelCase ) return column def a__ ( self : List[str] , __lowerCamelCase : pa.Table ) -> Mapping: '''simple docstring''' lowerCamelCase__ = self.numpy_arrow_extractor().extract_batch(__lowerCamelCase ) lowerCamelCase__ = self.python_features_decoder.decode_batch(__lowerCamelCase ) lowerCamelCase__ = self.recursive_tensorize(__lowerCamelCase ) for column_name in batch: lowerCamelCase__ = self._consolidate(batch[column_name] ) return batch
187
0
"""simple docstring""" import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger A_ = "<<<<<<< This should probably be modified because it mentions: " A_ = "=======\n>>>>>>>\n" A_ = [ "TextEncoderConfig", "ByteTextEncoder", "SubwordTextEncoder", "encoder_config", "maybe_build_from_corpus", "manual_dir", ] A_ = [ # (pattern, replacement) # Order is important here for some replacements (r"tfds\.core", r"datasets"), (r"tf\.io\.gfile\.GFile", r"open"), (r"tf\.([\w\d]+)", r"datasets.Value('\1')"), (r"tfds\.features\.Text\(\)", r"datasets.Value('string')"), (r"tfds\.features\.Text\(", r"datasets.Value('string'),"), (r"features\s*=\s*tfds.features.FeaturesDict\(", r"features=datasets.Features("), (r"tfds\.features\.FeaturesDict\(", r"dict("), (r"The TensorFlow Datasets Authors", r"The TensorFlow Datasets Authors and the HuggingFace Datasets Authors"), (r"tfds\.", r"datasets."), (r"dl_manager\.manual_dir", r"self.config.data_dir"), (r"self\.builder_config", r"self.config"), ] def _UpperCamelCase ( A ): return ConvertCommand(args.tfds_path , args.datasets_directory ) class __lowerCAmelCase ( UpperCAmelCase ): '''simple docstring''' @staticmethod def UpperCamelCase__ ( UpperCamelCase_: ArgumentParser ): UpperCamelCase_ =parser.add_parser( "convert" , help="Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset." , ) train_parser.add_argument( "--tfds_path" , type=__UpperCamelCase , required=__UpperCamelCase , help="Path to a TensorFlow Datasets folder to convert or a single tfds file to convert." , ) train_parser.add_argument( "--datasets_directory" , type=__UpperCamelCase , required=__UpperCamelCase , help="Path to the HuggingFace Datasets folder." ) train_parser.set_defaults(func=__UpperCamelCase ) def __init__( self: int , UpperCamelCase_: str , UpperCamelCase_: str , *UpperCamelCase_: List[str] ): UpperCamelCase_ =get_logger("datasets-cli/converting" ) UpperCamelCase_ =tfds_path UpperCamelCase_ =datasets_directory def UpperCamelCase__ ( self: str ): if os.path.isdir(self._tfds_path ): UpperCamelCase_ =os.path.abspath(self._tfds_path ) elif os.path.isfile(self._tfds_path ): UpperCamelCase_ =os.path.dirname(self._tfds_path ) else: raise ValueError("--tfds_path is neither a directory nor a file. Please check path." ) UpperCamelCase_ =os.path.abspath(self._datasets_directory ) self._logger.info(f"""Converting datasets from {abs_tfds_path} to {abs_datasets_path}""" ) UpperCamelCase_ =[] UpperCamelCase_ =[] UpperCamelCase_ ={} if os.path.isdir(self._tfds_path ): UpperCamelCase_ =os.listdir(__UpperCamelCase ) else: UpperCamelCase_ =[os.path.basename(self._tfds_path )] for f_name in file_names: self._logger.info(f"""Looking at file {f_name}""" ) UpperCamelCase_ =os.path.join(__UpperCamelCase , __UpperCamelCase ) UpperCamelCase_ =os.path.join(__UpperCamelCase , __UpperCamelCase ) if not os.path.isfile(__UpperCamelCase ) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info("Skipping file" ) continue with open(__UpperCamelCase , encoding="utf-8" ) as f: UpperCamelCase_ =f.readlines() UpperCamelCase_ =[] UpperCamelCase_ =False UpperCamelCase_ =False UpperCamelCase_ =[] for line in lines: UpperCamelCase_ =line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: UpperCamelCase_ ="import datasets\n" elif "import tensorflow" in out_line: # order is important here UpperCamelCase_ ="" continue elif "from absl import logging" in out_line: UpperCamelCase_ ="from datasets import logging\n" elif "getLogger" in out_line: UpperCamelCase_ =out_line.replace("getLogger" , "get_logger" ) elif any(expression in out_line for expression in TO_HIGHLIGHT ): UpperCamelCase_ =True UpperCamelCase_ =list(filter(lambda UpperCamelCase_ : e in out_line , __UpperCamelCase ) ) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(__UpperCamelCase ) + "\n" ) out_lines.append(__UpperCamelCase ) out_lines.append(__UpperCamelCase ) continue else: for pattern, replacement in TO_CONVERT: UpperCamelCase_ =re.sub(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: UpperCamelCase_ =re.match(r"from\stensorflow_datasets.*import\s([^\.\r\n]+)" , __UpperCamelCase ) tfds_imports.extend(imp.strip() for imp in match.group(1 ).split("," ) ) UpperCamelCase_ ="from . import " + match.group(1 ) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(f"""Error converting {out_line.strip()}""" ) if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: UpperCamelCase_ =True out_lines.append(__UpperCamelCase ) if is_builder or "wmt" in f_name: # We create a new directory for each dataset UpperCamelCase_ =f_name.replace(".py" , "" ) UpperCamelCase_ =os.path.join(__UpperCamelCase , __UpperCamelCase ) UpperCamelCase_ =os.path.join(__UpperCamelCase , __UpperCamelCase ) os.makedirs(__UpperCamelCase , exist_ok=__UpperCamelCase ) self._logger.info(f"""Adding directory {output_dir}""" ) imports_to_builder_map.update({imp: output_dir for imp in tfds_imports} ) else: # Utilities will be moved at the end utils_files.append(__UpperCamelCase ) if needs_manual_update: with_manual_update.append(__UpperCamelCase ) with open(__UpperCamelCase , "w" , encoding="utf-8" ) as f: f.writelines(__UpperCamelCase ) self._logger.info(f"""Converted in {output_file}""" ) for utils_file in utils_files: try: UpperCamelCase_ =os.path.basename(__UpperCamelCase ) UpperCamelCase_ =imports_to_builder_map[f_name.replace(".py" , "" )] self._logger.info(f"""Moving {dest_folder} to {utils_file}""" ) shutil.copy(__UpperCamelCase , __UpperCamelCase ) except KeyError: self._logger.error(f"""Cannot find destination folder for {utils_file}. Please copy manually.""" ) if with_manual_update: for file_path in with_manual_update: self._logger.warning( f"""You need to manually update file {file_path} to remove configurations using \'TextEncoderConfig\'.""" )
391
import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[Any]: # Initialise PyTorch model _UpperCAmelCase = RemBertConfig.from_json_file(_lowerCAmelCase ) print("Building PyTorch model from configuration: {}".format(str(_lowerCAmelCase ) ) ) _UpperCAmelCase = RemBertModel(_lowerCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_rembert(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # Save pytorch-model print("Save PyTorch model to {}".format(_lowerCAmelCase ) ) torch.save(model.state_dict() , _lowerCAmelCase ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--rembert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained RemBERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __lowerCAmelCase = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
684
0
import os import re import unicodedata from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import is_torch_available, logging if is_torch_available(): import torch if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __snake_case = logging.get_logger(__name__) __snake_case = {'vocab_file': 'spiece.model'} __snake_case = { 'vocab_file': { 'AI-Sweden/gpt-sw3-126m': 'https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-350m': 'https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-1.6b': 'https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-6.7b': 'https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-20b': 'https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model', } } __snake_case = { 'AI-Sweden/gpt-sw3-126m': 20_48, 'AI-Sweden/gpt-sw3-350m': 20_48, 'AI-Sweden/gpt-sw3-1.6b': 20_48, 'AI-Sweden/gpt-sw3-6.7b': 20_48, 'AI-Sweden/gpt-sw3-20b': 20_48, } class lowercase__ ( UpperCamelCase_ ): A__ : Tuple =VOCAB_FILES_NAMES A__ : Optional[Any] =PRETRAINED_VOCAB_FILES_MAP A__ : List[Any] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ : List[Any] =["""input_ids""", """attention_mask"""] def __init__( self : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Tuple=False , UpperCAmelCase_ : List[str]=False , UpperCAmelCase_ : str=False , UpperCAmelCase_ : List[Any]=None , UpperCAmelCase_ : Optional[Any]=None , UpperCAmelCase_ : str=None , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : Optional[Dict[str, Any]] = None , **UpperCAmelCase_ : Optional[Any] , ): SCREAMING_SNAKE_CASE__ = {} if sp_model_kwargs is None else sp_model_kwargs SCREAMING_SNAKE_CASE__ = kwargs.get('name_or_path' ) if name_or_path is None: logger.warning( 'name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b,' ' you are testing the model, this can safely be ignored' ) SCREAMING_SNAKE_CASE__ = '''None''' # Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing SCREAMING_SNAKE_CASE__ = '''<|endoftext|>''' if eos_token is None else eos_token SCREAMING_SNAKE_CASE__ = '''<unk>''' if unk_token is None else unk_token if "gpt-sw3-7b" in name_or_path: SCREAMING_SNAKE_CASE__ = unk_token if pad_token is None else pad_token SCREAMING_SNAKE_CASE__ = eos_token if bos_token is None else bos_token else: SCREAMING_SNAKE_CASE__ = '''<pad>''' if pad_token is None else pad_token SCREAMING_SNAKE_CASE__ = '''<s>''' if bos_token is None else bos_token super().__init__( do_lower_case=UpperCamelCase__ , remove_space=UpperCamelCase__ , keep_accents=UpperCamelCase__ , bos_token=UpperCamelCase__ , eos_token=UpperCamelCase__ , unk_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , sp_model_kwargs=self.sp_model_kwargs , **UpperCamelCase__ , ) SCREAMING_SNAKE_CASE__ = do_lower_case SCREAMING_SNAKE_CASE__ = remove_space SCREAMING_SNAKE_CASE__ = keep_accents SCREAMING_SNAKE_CASE__ = vocab_file SCREAMING_SNAKE_CASE__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(UpperCamelCase__ ) # Used for whitespace normalization in input texts # fmt : off SCREAMING_SNAKE_CASE__ = {''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', '''''', '''„'''} # fmt : on # Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing SCREAMING_SNAKE_CASE__ = re.compile( F'[{"".join(map(UpperCamelCase__ , list(range(0 , 9 ) ) + list(range(11 , 32 ) ) + list(range(127 , 160 ) ) + [160, 173, 8203] ) )}]' ) def __getstate__( self : Any ): SCREAMING_SNAKE_CASE__ = self.__dict__.copy() SCREAMING_SNAKE_CASE__ = None return state def __setstate__( self : Optional[int] , UpperCAmelCase_ : List[str] ): SCREAMING_SNAKE_CASE__ = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): SCREAMING_SNAKE_CASE__ = {} SCREAMING_SNAKE_CASE__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) @property # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size def A_ ( self : Dict ): return len(self.sp_model ) def A_ ( self : Dict , UpperCAmelCase_ : str ): SCREAMING_SNAKE_CASE__ = self.non_printing_characters_re.sub('' , UpperCamelCase__ ) # Normalize whitespaces SCREAMING_SNAKE_CASE__ = ''''''.join([char if char not in self.whitespaces else ' ' for char in text] ) # NFC Unicode normalization SCREAMING_SNAKE_CASE__ = unicodedata.normalize('NFC' , UpperCamelCase__ ) return text def A_ ( self : str , UpperCAmelCase_ : str , **UpperCAmelCase_ : str ): SCREAMING_SNAKE_CASE__ = self.preprocess_text(UpperCamelCase__ ) return self.sp_model.encode(UpperCamelCase__ , out_type=UpperCamelCase__ ) def A_ ( self : Dict , UpperCAmelCase_ : str ): return self.sp_model.PieceToId(UpperCamelCase__ ) def A_ ( self : str , UpperCAmelCase_ : int ): return self.sp_model.IdToPiece(UpperCamelCase__ ) @staticmethod def A_ ( UpperCAmelCase_ : str ): return out_string def A_ ( self : Optional[int] , UpperCAmelCase_ : List[str] ): SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = '''''' SCREAMING_SNAKE_CASE__ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: # TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document if not prev_is_special: out_string += " " out_string += self.sp_model.decode(UpperCamelCase__ ) + token SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = [] else: current_sub_tokens.append(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = False out_string += self.sp_model.decode(UpperCamelCase__ ) return out_string def A_ ( self : Tuple ): SCREAMING_SNAKE_CASE__ = {self.convert_ids_to_tokens(UpperCamelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def A_ ( self : Optional[int] , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None ): if not os.path.isdir(UpperCamelCase__ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return SCREAMING_SNAKE_CASE__ = os.path.join( UpperCamelCase__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCamelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCamelCase__ , 'wb' ) as fi: SCREAMING_SNAKE_CASE__ = self.sp_model.serialized_model_proto() fi.write(UpperCamelCase__ ) return (out_vocab_file,) def A_ ( self : Union[str, Any] , UpperCAmelCase_ : Union[str, List[str]] , UpperCAmelCase_ : Union[str, bool] = False ): if isinstance(UpperCamelCase__ , UpperCamelCase__ ): SCREAMING_SNAKE_CASE__ = self.preprocess_text(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = self.sp_model.encode(UpperCamelCase__ ) else: SCREAMING_SNAKE_CASE__ = [self.preprocess_text(UpperCamelCase__ ) for t in text] SCREAMING_SNAKE_CASE__ = self.sp_model.encode(UpperCamelCase__ ) if return_tensors is True or return_tensors == "pt": SCREAMING_SNAKE_CASE__ = torch.tensor(UpperCamelCase__ ) return token_ids def A_ ( self : Any , UpperCAmelCase_ : Union[int, List[int]] ): return self.sp_model.decode(UpperCamelCase__ ) def A_ ( self : Tuple , UpperCAmelCase_ : "Conversation" ): SCREAMING_SNAKE_CASE__ = [F'User: {text}' if is_user else F'Bot: {text}' for is_user, text in conversation.iter_texts()] SCREAMING_SNAKE_CASE__ = ( F'{self.eos_token}{self.bos_token}' + F'{self.bos_token}'.join(UpperCamelCase__ ) + F'{self.bos_token}Bot:' ) return self.encode(text=UpperCamelCase__ )
712
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json""", } class lowercase__ ( _UpperCAmelCase ): A__ : Tuple ="""mvp""" A__ : Optional[int] =["""past_key_values"""] A__ : List[str] ={"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self : Dict , UpperCAmelCase_ : List[str]=50267 , UpperCAmelCase_ : Optional[Any]=1024 , UpperCAmelCase_ : Any=12 , UpperCAmelCase_ : Tuple=4096 , UpperCAmelCase_ : Union[str, Any]=16 , UpperCAmelCase_ : Tuple=12 , UpperCAmelCase_ : List[Any]=4096 , UpperCAmelCase_ : Optional[Any]=16 , UpperCAmelCase_ : List[Any]=0.0 , UpperCAmelCase_ : List[Any]=0.0 , UpperCAmelCase_ : Dict="gelu" , UpperCAmelCase_ : List[str]=1024 , UpperCAmelCase_ : str=0.1 , UpperCAmelCase_ : Optional[Any]=0.0 , UpperCAmelCase_ : List[Any]=0.0 , UpperCAmelCase_ : List[str]=0.02 , UpperCAmelCase_ : Union[str, Any]=0.0 , UpperCAmelCase_ : Optional[int]=False , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : str=1 , UpperCAmelCase_ : List[str]=0 , UpperCAmelCase_ : Optional[int]=2 , UpperCAmelCase_ : Optional[Any]=True , UpperCAmelCase_ : List[str]=2 , UpperCAmelCase_ : str=2 , UpperCAmelCase_ : List[Any]=False , UpperCAmelCase_ : Dict=100 , UpperCAmelCase_ : Optional[Any]=800 , **UpperCAmelCase_ : Tuple , ): SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = d_model SCREAMING_SNAKE_CASE__ = encoder_ffn_dim SCREAMING_SNAKE_CASE__ = encoder_layers SCREAMING_SNAKE_CASE__ = encoder_attention_heads SCREAMING_SNAKE_CASE__ = decoder_ffn_dim SCREAMING_SNAKE_CASE__ = decoder_layers SCREAMING_SNAKE_CASE__ = decoder_attention_heads SCREAMING_SNAKE_CASE__ = dropout SCREAMING_SNAKE_CASE__ = attention_dropout SCREAMING_SNAKE_CASE__ = activation_dropout SCREAMING_SNAKE_CASE__ = activation_function SCREAMING_SNAKE_CASE__ = init_std SCREAMING_SNAKE_CASE__ = encoder_layerdrop SCREAMING_SNAKE_CASE__ = decoder_layerdrop SCREAMING_SNAKE_CASE__ = classifier_dropout SCREAMING_SNAKE_CASE__ = use_cache SCREAMING_SNAKE_CASE__ = encoder_layers SCREAMING_SNAKE_CASE__ = scale_embedding # scale factor will be sqrt(d_model) if True SCREAMING_SNAKE_CASE__ = use_prompt SCREAMING_SNAKE_CASE__ = prompt_length SCREAMING_SNAKE_CASE__ = prompt_mid_dim super().__init__( pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ , is_encoder_decoder=UpperCAmelCase_ , decoder_start_token_id=UpperCAmelCase_ , forced_eos_token_id=UpperCAmelCase_ , **UpperCAmelCase_ , ) if self.forced_bos_token_id is None and kwargs.get('force_bos_token_to_be_generated' , UpperCAmelCase_ ): SCREAMING_SNAKE_CASE__ = self.bos_token_id warnings.warn( F'Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. ' 'The config can simply be saved and uploaded again to be fixed.' )
400
0
'''simple docstring''' def snake_case_ (UpperCamelCase : Any , UpperCamelCase : List[Any] , UpperCamelCase : List[Any]=False ): '''simple docstring''' if isinstance(UpperCamelCase , UpperCamelCase ) and isinstance(UpperCamelCase , UpperCamelCase ): _a = len(set_a.intersection(UpperCamelCase ) ) if alternative_union: _a = len(UpperCamelCase ) + len(UpperCamelCase ) else: _a = len(set_a.union(UpperCamelCase ) ) return intersection / union if isinstance(UpperCamelCase , (list, tuple) ) and isinstance(UpperCamelCase , (list, tuple) ): _a = [element for element in set_a if element in set_b] if alternative_union: _a = len(UpperCamelCase ) + len(UpperCamelCase ) return len(UpperCamelCase ) / union else: _a = set_a + [element for element in set_b if element not in set_a] return len(UpperCamelCase ) / len(UpperCamelCase ) return len(UpperCamelCase ) / len(UpperCamelCase ) return None if __name__ == "__main__": _snake_case : Dict = {'a', 'b', 'c', 'd', 'e'} _snake_case : Dict = {'c', 'd', 'e', 'f', 'h', 'i'} print(jaccard_similarity(set_a, set_b))
22
import re from filelock import FileLock try: import nltk UpperCamelCase = True except (ImportError, ModuleNotFoundError): UpperCamelCase = False if NLTK_AVAILABLE: with FileLock('.lock') as lock: nltk.download('punkt', quiet=True) def __lowerCamelCase ( __lowerCAmelCase : str ) -> str: re.sub("""<n>""" , """""" , __lowerCAmelCase ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(__lowerCAmelCase ) )
269
0
from __future__ import annotations def __lowerCAmelCase ( _UpperCamelCase : List[Any] , _UpperCamelCase : Dict , _UpperCamelCase : List[str] ) -> dict[str, float]: '''simple docstring''' if (voltage, current, resistance).count(0 ) != 1: raise ValueError('One and only one argument must be 0' ) if resistance < 0: raise ValueError('Resistance cannot be negative' ) if voltage == 0: return {"voltage": float(current * resistance )} elif current == 0: return {"current": voltage / resistance} elif resistance == 0: return {"resistance": voltage / current} else: raise ValueError('Exactly one argument must be 0' ) if __name__ == "__main__": import doctest doctest.testmod()
713
def __lowerCAmelCase ( _UpperCamelCase : int = 10_00 ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = 2**power SCREAMING_SNAKE_CASE = str(_UpperCamelCase ) SCREAMING_SNAKE_CASE = list(_UpperCamelCase ) SCREAMING_SNAKE_CASE = 0 for i in list_num: sum_of_num += int(_UpperCamelCase ) return sum_of_num if __name__ == "__main__": a_ : List[str] = int(input("Enter the power of 2: ").strip()) print("2 ^ ", power, " = ", 2**power) a_ : int = solution(power) print("Sum of the digits is: ", result)
673
0
import argparse import json import os import re import torch from transformers import BloomConfig, BloomModel from transformers.file_utils import CONFIG_NAME, WEIGHTS_NAME from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase__ = [ '''word_embeddings_layernorm.weight''', '''word_embeddings_layernorm.bias''', '''input_layernorm.weight''', '''input_layernorm.bias''', '''post_attention_layernorm.weight''', '''post_attention_layernorm.bias''', '''self_attention.dense.bias''', '''mlp.dense_4h_to_h.bias''', '''ln_f.weight''', '''ln_f.bias''', ] lowerCamelCase__ = [ '''mlp.dense_4h_to_h.weight''', '''self_attention.dense.weight''', ] def lowercase_ ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Dict ): """simple docstring""" snake_case__ : Dict ={ '''word_embeddings.weight''': '''word_embeddings.weight''', '''word_embeddings.norm.weight''': '''word_embeddings_layernorm.weight''', '''word_embeddings.norm.bias''': '''word_embeddings_layernorm.bias''', '''weight''': '''ln_f.weight''', '''bias''': '''ln_f.bias''', } if key in layer_rename_map: return layer_rename_map[key] # Handle transformer blocks snake_case__ : int =int(re.match(R'''.*layer_(\d*).*''' , SCREAMING_SNAKE_CASE )[1] ) layer_number -= 3 return F'''h.{layer_number}.''' + key def lowercase_ ( SCREAMING_SNAKE_CASE : List[Any] ): """simple docstring""" if dtype == torch.bool: return 1 / 8 snake_case__ : Dict =re.search(R'''[^\d](\d+)$''' , str(SCREAMING_SNAKE_CASE ) ) if bit_search is None: raise ValueError(F'''`dtype` is not a valid dtype: {dtype}.''' ) snake_case__ : Optional[Any] =int(bit_search.groups()[0] ) return bit_size // 8 def lowercase_ ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Dict ): """simple docstring""" # Construct model if bloom_config_file == "": snake_case__ : Tuple =BloomConfig() else: snake_case__ : Any =BloomConfig.from_json_file(SCREAMING_SNAKE_CASE ) if shard_model: snake_case__ : Optional[int] =os.listdir(SCREAMING_SNAKE_CASE ) snake_case__ : List[str] =sorted(filter(lambda SCREAMING_SNAKE_CASE : s.startswith('''layer''' ) and "model_00" in s , SCREAMING_SNAKE_CASE ) ) snake_case__ : int ={'''weight_map''': {}, '''metadata''': {}} snake_case__ : List[str] =0 snake_case__ : int =None snake_case__ : Optional[int] =BloomConfig() for j, file in enumerate(SCREAMING_SNAKE_CASE ): print('''Processing file: {}'''.format(SCREAMING_SNAKE_CASE ) ) snake_case__ : str =None for i in range(SCREAMING_SNAKE_CASE ): # load all TP files snake_case__ : int =file.replace('''model_00''' , F'''model_0{i}''' ) snake_case__ : List[str] =torch.load(os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , map_location='''cpu''' ) # Rename keys in the transformers names snake_case__ : Dict =list(temp.keys() ) for key in keys: snake_case__ : Optional[Any] =temp.pop(SCREAMING_SNAKE_CASE ) if tensors is None: snake_case__ : Optional[int] =temp else: for key in tensors.keys(): if any(key.endswith(SCREAMING_SNAKE_CASE ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel snake_case__ : int =1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks snake_case__ : int =torch.cat([tensors[key], temp[key]] , dim=SCREAMING_SNAKE_CASE ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(SCREAMING_SNAKE_CASE ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): snake_case__ : Any =tensors[key] / pretraining_tp torch.save( SCREAMING_SNAKE_CASE , os.path.join( SCREAMING_SNAKE_CASE , '''pytorch_model_{}-of-{}.bin'''.format(str(j + 1 ).zfill(5 ) , str(len(SCREAMING_SNAKE_CASE ) ).zfill(5 ) ) , ) , ) for key in tensors.keys(): snake_case__ : List[Any] =tensors[key] total_size += value.numel() * get_dtype_size(value.dtype ) if key not in index_dict["weight_map"]: snake_case__ : int ='''pytorch_model_{}-of-{}.bin'''.format( str(j + 1 ).zfill(5 ) , str(len(SCREAMING_SNAKE_CASE ) ).zfill(5 ) ) snake_case__ : Tuple =BloomConfig() snake_case__ : Tuple =pytorch_dump_folder_path + '''/''' + CONFIG_NAME snake_case__ : Optional[int] =total_size with open(SCREAMING_SNAKE_CASE , '''w''' , encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) with open(os.path.join(SCREAMING_SNAKE_CASE , WEIGHTS_NAME + '''.index.json''' ) , '''w''' , encoding='''utf-8''' ) as f: snake_case__ : Tuple =json.dumps(SCREAMING_SNAKE_CASE , indent=2 , sort_keys=SCREAMING_SNAKE_CASE ) + '''\n''' f.write(SCREAMING_SNAKE_CASE ) else: snake_case__ : List[Any] =BloomModel(SCREAMING_SNAKE_CASE ) snake_case__ : Tuple =os.listdir(SCREAMING_SNAKE_CASE ) snake_case__ : Union[str, Any] =sorted(filter(lambda SCREAMING_SNAKE_CASE : s.startswith('''layer''' ) and "model_00" in s , SCREAMING_SNAKE_CASE ) ) snake_case__ : List[str] =None for i, file in enumerate(SCREAMING_SNAKE_CASE ): snake_case__ : List[Any] =None for i in range(SCREAMING_SNAKE_CASE ): # load all TP files snake_case__ : List[Any] =file.replace('''model_00''' , F'''model_0{i}''' ) snake_case__ : Optional[int] =torch.load(os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , map_location='''cpu''' ) # Rename keys in the transformers names snake_case__ : Dict =list(temp.keys() ) for key in keys: snake_case__ : Optional[int] =temp.pop(SCREAMING_SNAKE_CASE ) if tensors is None: snake_case__ : Union[str, Any] =temp else: for key in tensors.keys(): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) if any(key.endswith(SCREAMING_SNAKE_CASE ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel snake_case__ : Any =1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks snake_case__ : Tuple =torch.cat([tensors[key], temp[key]] , dim=SCREAMING_SNAKE_CASE ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(SCREAMING_SNAKE_CASE ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): snake_case__ : List[Any] =tensors[key] / pretraining_tp snake_case__ : List[Any] =model.load_state_dict(SCREAMING_SNAKE_CASE , strict=SCREAMING_SNAKE_CASE ) assert not other_keys.unexpected_keys, F'''The keys {other_keys.unexpected_keys} are unexpected''' if missing_keys is None: snake_case__ : Optional[Any] =set(other_keys.missing_keys ) else: snake_case__ : List[str] =missing_keys.intersection(set(other_keys.missing_keys ) ) assert not missing_keys, F'''The keys {missing_keys} are missing''' # Save pytorch-model os.makedirs(SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE ) snake_case__ : Union[str, Any] =pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME snake_case__ : str =pytorch_dump_folder_path + '''/''' + CONFIG_NAME print(F'''Save PyTorch model to {pytorch_weights_dump_path} with dtype {config.torch_dtype}''' ) if config.torch_dtype is not None: snake_case__ : Any =model.to(config.torch_dtype ) torch.save(model.state_dict() , SCREAMING_SNAKE_CASE ) print(F'''Save configuration file to {pytorch_config_dump_path}''' ) with open(SCREAMING_SNAKE_CASE , '''w''' , encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--bloom_checkpoint_path''', default=None, type=str, required=True, help='''Path to the Megatron-LM checkpoint path.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--bloom_config_file''', default='''''', type=str, help=( '''An optional config json file corresponding to the pre-trained model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--shard_model''', action='''store_true''', help='''An optional setting to shard the output model \nThis enables sharding the converted checkpoint''', ) parser.add_argument( '''--pretraining_tp''', default=4, type=int, help='''Pretraining TP rank that has been used when training the model in Megatron-LM \n''', ) lowerCamelCase__ = parser.parse_args() convert_bloom_checkpoint_to_pytorch( args.bloom_checkpoint_path, args.bloom_config_file, args.pytorch_dump_folder_path, args.shard_model, args.pretraining_tp, )
381
import argparse import re from pathlib import Path import requests import torch from PIL import Image from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor from transformers import ( EfficientFormerConfig, EfficientFormerForImageClassificationWithTeacher, EfficientFormerImageProcessor, ) from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def lowercase_ ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Any ): """simple docstring""" snake_case__ : Union[str, Any] =old_name if "patch_embed" in old_name: snake_case__, snake_case__, snake_case__ : int =old_name.split('''.''' ) if layer == "0": snake_case__ : Tuple =old_name.replace('''0''' , '''convolution1''' ) elif layer == "1": snake_case__ : int =old_name.replace('''1''' , '''batchnorm_before''' ) elif layer == "3": snake_case__ : str =old_name.replace('''3''' , '''convolution2''' ) else: snake_case__ : Tuple =old_name.replace('''4''' , '''batchnorm_after''' ) if "network" in old_name and re.search(R'''\d\.\d''' , SCREAMING_SNAKE_CASE ): snake_case__ : Union[str, Any] =R'''\b\d{2}\b''' if bool(re.search(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ): snake_case__ : Any =re.search(R'''\d\.\d\d.''' , SCREAMING_SNAKE_CASE ).group() else: snake_case__ : List[Any] =re.search(R'''\d\.\d.''' , SCREAMING_SNAKE_CASE ).group() if int(match[0] ) < 6: snake_case__ : int =old_name.replace(SCREAMING_SNAKE_CASE , '''''' ) snake_case__ : Tuple =trimmed_name.replace('''network''' , match[0] + '''.meta4D_layers.blocks.''' + match[2:-1] ) snake_case__ : Union[str, Any] ='''intermediate_stages.''' + trimmed_name else: snake_case__ : Optional[int] =old_name.replace(SCREAMING_SNAKE_CASE , '''''' ) if int(match[2] ) < num_meta4D_last_stage: snake_case__ : List[Any] =trimmed_name.replace('''network''' , '''meta4D_layers.blocks.''' + match[2] ) else: snake_case__ : Optional[Any] =str(int(match[2] ) - num_meta4D_last_stage ) snake_case__ : List[Any] =trimmed_name.replace('''network''' , '''meta3D_layers.blocks.''' + layer_index ) if "norm1" in old_name: snake_case__ : Tuple =trimmed_name.replace('''norm1''' , '''layernorm1''' ) elif "norm2" in old_name: snake_case__ : Union[str, Any] =trimmed_name.replace('''norm2''' , '''layernorm2''' ) elif "fc1" in old_name: snake_case__ : str =trimmed_name.replace('''fc1''' , '''linear_in''' ) elif "fc2" in old_name: snake_case__ : Optional[Any] =trimmed_name.replace('''fc2''' , '''linear_out''' ) snake_case__ : Dict ='''last_stage.''' + trimmed_name elif "network" in old_name and re.search(R'''.\d.''' , SCREAMING_SNAKE_CASE ): snake_case__ : int =old_name.replace('''network''' , '''intermediate_stages''' ) if "fc" in new_name: snake_case__ : Union[str, Any] =new_name.replace('''fc''' , '''convolution''' ) elif ("norm1" in new_name) and ("layernorm1" not in new_name): snake_case__ : Any =new_name.replace('''norm1''' , '''batchnorm_before''' ) elif ("norm2" in new_name) and ("layernorm2" not in new_name): snake_case__ : Dict =new_name.replace('''norm2''' , '''batchnorm_after''' ) if "proj" in new_name: snake_case__ : List[Any] =new_name.replace('''proj''' , '''projection''' ) if "dist_head" in new_name: snake_case__ : Union[str, Any] =new_name.replace('''dist_head''' , '''distillation_classifier''' ) elif "head" in new_name: snake_case__ : List[Any] =new_name.replace('''head''' , '''classifier''' ) elif "patch_embed" in new_name: snake_case__ : Union[str, Any] ='''efficientformer.''' + new_name elif new_name == "norm.weight" or new_name == "norm.bias": snake_case__ : int =new_name.replace('''norm''' , '''layernorm''' ) snake_case__ : Dict ='''efficientformer.''' + new_name else: snake_case__ : List[Any] ='''efficientformer.encoder.''' + new_name return new_name def lowercase_ ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Optional[int] ): """simple docstring""" for key in checkpoint.copy().keys(): snake_case__ : List[Any] =checkpoint.pop(SCREAMING_SNAKE_CASE ) snake_case__ : Any =val return checkpoint def lowercase_ ( ): """simple docstring""" snake_case__ : int ='''http://images.cocodataset.org/val2017/000000039769.jpg''' snake_case__ : Optional[int] =Image.open(requests.get(SCREAMING_SNAKE_CASE , stream=SCREAMING_SNAKE_CASE ).raw ) return image def lowercase_ ( SCREAMING_SNAKE_CASE : Path , SCREAMING_SNAKE_CASE : Path , SCREAMING_SNAKE_CASE : Path , SCREAMING_SNAKE_CASE : bool ): """simple docstring""" snake_case__ : Union[str, Any] =torch.load(SCREAMING_SNAKE_CASE , map_location='''cpu''' )['''model'''] snake_case__ : int =EfficientFormerConfig.from_json_file(SCREAMING_SNAKE_CASE ) snake_case__ : Dict =EfficientFormerForImageClassificationWithTeacher(SCREAMING_SNAKE_CASE ) snake_case__ : Union[str, Any] ='''_'''.join(checkpoint_path.split('''/''' )[-1].split('''.''' )[0].split('''_''' )[:-1] ) snake_case__ : List[Any] =config.depths[-1] - config.num_metaad_blocks + 1 snake_case__ : Dict =convert_torch_checkpoint(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) model.load_state_dict(SCREAMING_SNAKE_CASE ) model.eval() snake_case__ : Optional[int] ={ '''bilinear''': PILImageResampling.BILINEAR, '''bicubic''': PILImageResampling.BICUBIC, '''nearest''': PILImageResampling.NEAREST, } # prepare image snake_case__ : Any =prepare_img() snake_case__ : str =2_56 snake_case__ : List[Any] =2_24 snake_case__ : Any =EfficientFormerImageProcessor( size={'''shortest_edge''': image_size} , crop_size={'''height''': crop_size, '''width''': crop_size} , resample=pillow_resamplings['''bicubic'''] , ) snake_case__ : int =processor(images=SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).pixel_values # original processing pipeline snake_case__ : List[str] =Compose( [ Resize(SCREAMING_SNAKE_CASE , interpolation=pillow_resamplings['''bicubic'''] ), CenterCrop(SCREAMING_SNAKE_CASE ), ToTensor(), Normalize(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ), ] ) snake_case__ : Tuple =image_transforms(SCREAMING_SNAKE_CASE ).unsqueeze(0 ) assert torch.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) snake_case__ : Optional[Any] =model(SCREAMING_SNAKE_CASE ) snake_case__ : List[Any] =outputs.logits snake_case__ : Optional[Any] =(1, 10_00) if "l1" in model_name: snake_case__ : Union[str, Any] =torch.Tensor( [-0.1312, 0.4353, -1.0499, -0.5124, 0.4183, -0.6793, -1.3777, -0.0893, -0.7358, -2.4328] ) assert torch.allclose(logits[0, :10] , SCREAMING_SNAKE_CASE , atol=1E-3 ) assert logits.shape == expected_shape elif "l3" in model_name: snake_case__ : Optional[Any] =torch.Tensor( [-1.3150, -1.5456, -1.2556, -0.8496, -0.7127, -0.7897, -0.9728, -0.3052, 0.3751, -0.3127] ) assert torch.allclose(logits[0, :10] , SCREAMING_SNAKE_CASE , atol=1E-3 ) assert logits.shape == expected_shape elif "l7" in model_name: snake_case__ : Dict =torch.Tensor( [-1.0283, -1.4131, -0.5644, -1.3115, -0.5785, -1.2049, -0.7528, 0.1992, -0.3822, -0.0878] ) assert logits.shape == expected_shape else: raise ValueError( F'''Unknown model checkpoint: {checkpoint_path}. Supported version of efficientformer are l1, l3 and l7''' ) # Save Checkpoints Path(SCREAMING_SNAKE_CASE ).mkdir(exist_ok=SCREAMING_SNAKE_CASE ) model.save_pretrained(SCREAMING_SNAKE_CASE ) print(F'''Checkpoint successfuly converted. Model saved at {pytorch_dump_path}''' ) processor.save_pretrained(SCREAMING_SNAKE_CASE ) print(F'''Processor successfuly saved at {pytorch_dump_path}''' ) if push_to_hub: print('''Pushing model to the hub...''' ) model.push_to_hub( repo_id=F'''Bearnardd/{pytorch_dump_path}''' , commit_message='''Add model''' , use_temp_dir=SCREAMING_SNAKE_CASE , ) processor.push_to_hub( repo_id=F'''Bearnardd/{pytorch_dump_path}''' , commit_message='''Add image processor''' , use_temp_dir=SCREAMING_SNAKE_CASE , ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--pytorch_model_path''', default=None, type=str, required=True, help='''Path to EfficientFormer pytorch checkpoint.''', ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The json file for EfficientFormer model config.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Push model and image processor to the hub''') parser.add_argument( '''--no-push_to_hub''', dest='''push_to_hub''', action='''store_false''', help='''Do not push model and image processor to the hub''', ) parser.set_defaults(push_to_hub=True) lowerCamelCase__ = parser.parse_args() convert_efficientformer_checkpoint( checkpoint_path=args.pytorch_model_path, efficientformer_config_file=args.config_file, pytorch_dump_path=args.pytorch_dump_path, push_to_hub=args.push_to_hub, )
381
1
import argparse import gc import json import os import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler UpperCAmelCase : Any =16 UpperCAmelCase : Dict =32 def _lowerCAmelCase (_lowerCAmelCase): return int(x / 2**20) class _lowercase : '''simple docstring''' def __enter__( self ): '''simple docstring''' gc.collect() torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() # reset the peak gauge to zero UpperCamelCase_ = torch.cuda.memory_allocated() return self def __exit__( self , *snake_case__ ): '''simple docstring''' gc.collect() torch.cuda.empty_cache() UpperCamelCase_ = torch.cuda.memory_allocated() UpperCamelCase_ = torch.cuda.max_memory_allocated() UpperCamelCase_ = bamb(self.end - self.begin ) UpperCamelCase_ = bamb(self.peak - self.begin ) # print(f"delta used/peak {self.used:4d}/{self.peaked:4d}") def _lowerCAmelCase (_lowerCAmelCase , _lowerCAmelCase = 16 , _lowerCAmelCase = "bert-base-cased" , _lowerCAmelCase = 3_20 , _lowerCAmelCase = 1_60 , ): UpperCamelCase_ = AutoTokenizer.from_pretrained(UpperCamelCase__) UpperCamelCase_ = load_dataset( "glue" , "mrpc" , split={"train": f"""train[:{n_train}]""", "validation": f"""validation[:{n_val}]"""}) def tokenize_function(_lowerCAmelCase): # max_length=None => use the model max length (it's actually the default) UpperCamelCase_ = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=UpperCamelCase__ , max_length=UpperCamelCase__) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset UpperCamelCase_ = datasets.map( UpperCamelCase__ , batched=UpperCamelCase__ , remove_columns=["idx", "sentence1", "sentence2"] , load_from_cache_file=UpperCamelCase__) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCamelCase_ = tokenized_datasets.rename_column("label" , "labels") def collate_fn(_lowerCAmelCase): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(UpperCamelCase__ , padding="max_length" , max_length=1_28 , return_tensors="pt") return tokenizer.pad(UpperCamelCase__ , padding="longest" , return_tensors="pt") # Instantiate dataloaders. UpperCamelCase_ = DataLoader( tokenized_datasets["train"] , shuffle=UpperCamelCase__ , collate_fn=UpperCamelCase__ , batch_size=UpperCamelCase__) UpperCamelCase_ = DataLoader( tokenized_datasets["validation"] , shuffle=UpperCamelCase__ , collate_fn=UpperCamelCase__ , batch_size=UpperCamelCase__) return train_dataloader, eval_dataloader def _lowerCAmelCase (_lowerCAmelCase , _lowerCAmelCase): # Initialize accelerator UpperCamelCase_ = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCamelCase_ = config["lr"] UpperCamelCase_ = int(config["num_epochs"]) UpperCamelCase_ = int(config["seed"]) UpperCamelCase_ = int(config["batch_size"]) UpperCamelCase_ = args.model_name_or_path set_seed(UpperCamelCase__) UpperCamelCase_ , UpperCamelCase_ = get_dataloaders(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , args.n_train , args.n_val) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCamelCase_ = AutoModelForSequenceClassification.from_pretrained(UpperCamelCase__ , return_dict=UpperCamelCase__) # Instantiate optimizer UpperCamelCase_ = ( AdamW if accelerator.state.deepspeed_plugin is None or "optimizer" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) UpperCamelCase_ = optimizer_cls(params=model.parameters() , lr=UpperCamelCase__) if accelerator.state.deepspeed_plugin is not None: UpperCamelCase_ = accelerator.state.deepspeed_plugin.deepspeed_config[ "gradient_accumulation_steps" ] else: UpperCamelCase_ = 1 UpperCamelCase_ = (len(UpperCamelCase__) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): UpperCamelCase_ = get_linear_schedule_with_warmup( optimizer=UpperCamelCase__ , num_warmup_steps=0 , num_training_steps=UpperCamelCase__ , ) else: UpperCamelCase_ = DummyScheduler(UpperCamelCase__ , total_num_steps=UpperCamelCase__ , warmup_num_steps=0) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = accelerator.prepare( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__) # We need to keep track of how many total steps we have iterated over UpperCamelCase_ = 0 # We also need to keep track of the stating epoch so files are named properly UpperCamelCase_ = 0 # Now we train the model UpperCamelCase_ = {} for epoch in range(UpperCamelCase__ , UpperCamelCase__): with TorchTracemalloc() as tracemalloc: model.train() for step, batch in enumerate(UpperCamelCase__): UpperCamelCase_ = model(**UpperCamelCase__) UpperCamelCase_ = outputs.loss UpperCamelCase_ = loss / gradient_accumulation_steps accelerator.backward(UpperCamelCase__) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 # Printing the GPU memory usage details such as allocated memory, peak memory, and total memory usage accelerator.print("Memory before entering the train : {}".format(bamb(tracemalloc.begin))) accelerator.print("Memory consumed at the end of the train (end-begin): {}".format(tracemalloc.used)) accelerator.print("Peak Memory consumed during the train (max-begin): {}".format(tracemalloc.peaked)) accelerator.print( "Total Peak Memory consumed during the train (max): {}".format( tracemalloc.peaked + bamb(tracemalloc.begin))) UpperCamelCase_ = tracemalloc.peaked + bamb(tracemalloc.begin) if args.peak_memory_upper_bound is not None: assert ( train_total_peak_memory[f"""epoch-{epoch}"""] <= args.peak_memory_upper_bound ), "Peak memory usage exceeded the upper bound" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , "peak_memory_utilization.json") , "w") as f: json.dump(UpperCamelCase__ , UpperCamelCase__) def _lowerCAmelCase (): UpperCamelCase_ = argparse.ArgumentParser(description="Simple example of training script tracking peak GPU memory usage.") parser.add_argument( "--model_name_or_path" , type=UpperCamelCase__ , default="bert-base-cased" , help="Path to pretrained model or model identifier from huggingface.co/models." , required=UpperCamelCase__ , ) parser.add_argument( "--output_dir" , type=UpperCamelCase__ , default="." , help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory." , ) parser.add_argument( "--peak_memory_upper_bound" , type=UpperCamelCase__ , default=UpperCamelCase__ , help="The upper bound of peak memory usage in MB. If set, the training will throw an error if the peak memory usage exceeds this value." , ) parser.add_argument( "--n_train" , type=UpperCamelCase__ , default=3_20 , help="Number of training examples to use." , ) parser.add_argument( "--n_val" , type=UpperCamelCase__ , default=1_60 , help="Number of validation examples to use." , ) parser.add_argument( "--num_epochs" , type=UpperCamelCase__ , default=1 , help="Number of train epochs." , ) UpperCamelCase_ = parser.parse_args() UpperCamelCase_ = {"lr": 2e-5, "num_epochs": args.num_epochs, "seed": 42, "batch_size": 16} training_function(UpperCamelCase__ , UpperCamelCase__) if __name__ == "__main__": main()
715
UpperCAmelCase : Any =0 # The first color of the flag. UpperCAmelCase : Optional[int] =1 # The second color of the flag. UpperCAmelCase : Optional[Any] =2 # The third color of the flag. UpperCAmelCase : Union[str, Any] =(red, white, blue) def _lowerCAmelCase (_lowerCAmelCase): if not sequence: return [] if len(_lowerCAmelCase) == 1: return list(_lowerCAmelCase) UpperCamelCase_ = 0 UpperCamelCase_ = len(_lowerCAmelCase) - 1 UpperCamelCase_ = 0 while mid <= high: if sequence[mid] == colors[0]: UpperCamelCase_ , UpperCamelCase_ = sequence[mid], sequence[low] low += 1 mid += 1 elif sequence[mid] == colors[1]: mid += 1 elif sequence[mid] == colors[2]: UpperCamelCase_ , UpperCamelCase_ = sequence[high], sequence[mid] high -= 1 else: UpperCamelCase_ = f"""The elements inside the sequence must contains only {colors} values""" raise ValueError(_lowerCAmelCase) return sequence if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase : Tuple =input("""Enter numbers separated by commas:\n""").strip() UpperCAmelCase : Any =[int(item.strip()) for item in user_input.split(""",""")] print(F"{dutch_national_flag_sort(unsorted)}")
504
0
'''simple docstring''' from __future__ import annotations import copy import tempfile import unittest from transformers import CONFIG_MAPPING, AutoConfig, BertConfig, GPTaConfig, TaConfig, TapasConfig, is_tf_available from transformers.testing_utils import ( DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tensorflow_probability, require_tf, slow, ) from ..bert.test_modeling_bert import BertModelTester if is_tf_available(): from transformers import ( TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelForTableQuestionAnswering, TFAutoModelForTokenClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFFunnelBaseModel, TFFunnelModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, TFTapasForQuestionAnswering, ) from transformers.models.auto.modeling_tf_auto import ( TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_MAPPING, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.tapas.modeling_tf_tapas import TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST class _snake_case ( __A ): SCREAMING_SNAKE_CASE : List[Any] = 'new-model' if is_tf_available(): class _snake_case ( __A ): SCREAMING_SNAKE_CASE : Optional[int] = NewModelConfig @require_tf class _snake_case ( unittest.TestCase ): @slow def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = """bert-base-cased""" lowerCAmelCase = AutoConfig.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) lowerCAmelCase = TFAutoModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) @slow def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = """bert-base-cased""" lowerCAmelCase = AutoConfig.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) lowerCAmelCase = TFAutoModelForPreTraining.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) @slow def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase = AutoConfig.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) lowerCAmelCase = TFAutoModelForCausalLM.from_pretrained(snake_case_ ) lowerCAmelCase = TFAutoModelForCausalLM.from_pretrained(snake_case_ , output_loading_info=snake_case_ ) self.assertIsNotNone(snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) @slow def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase = AutoConfig.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) lowerCAmelCase = TFAutoModelWithLMHead.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) @slow def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase = AutoConfig.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) lowerCAmelCase = TFAutoModelForMaskedLM.from_pretrained(snake_case_ ) lowerCAmelCase = TFAutoModelForMaskedLM.from_pretrained(snake_case_ , output_loading_info=snake_case_ ) self.assertIsNotNone(snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) @slow def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase = AutoConfig.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) lowerCAmelCase = TFAutoModelForSeqaSeqLM.from_pretrained(snake_case_ ) lowerCAmelCase = TFAutoModelForSeqaSeqLM.from_pretrained(snake_case_ , output_loading_info=snake_case_ ) self.assertIsNotNone(snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) @slow def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' for model_name in ["bert-base-uncased"]: lowerCAmelCase = AutoConfig.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) lowerCAmelCase = TFAutoModelForSequenceClassification.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) @slow def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' for model_name in ["bert-base-uncased"]: lowerCAmelCase = AutoConfig.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) lowerCAmelCase = TFAutoModelForQuestionAnswering.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) @slow @require_tensorflow_probability def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' for model_name in TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]: lowerCAmelCase = AutoConfig.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) lowerCAmelCase = TFAutoModelForTableQuestionAnswering.from_pretrained(snake_case_ ) lowerCAmelCase = TFAutoModelForTableQuestionAnswering.from_pretrained( snake_case_ , output_loading_info=snake_case_ ) self.assertIsNotNone(snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = TFAutoModelWithLMHead.from_pretrained(snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) self.assertEqual(model.num_parameters() , 1_44_10 ) self.assertEqual(model.num_parameters(only_trainable=snake_case_ ) , 1_44_10 ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = TFAutoModelWithLMHead.from_pretrained(snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) self.assertEqual(model.num_parameters() , 1_44_10 ) self.assertEqual(model.num_parameters(only_trainable=snake_case_ ) , 1_44_10 ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = TFAutoModel.from_pretrained('sgugger/funnel-random-tiny' ) self.assertIsInstance(snake_case_ , snake_case_ ) lowerCAmelCase = copy.deepcopy(model.config ) lowerCAmelCase = ["""FunnelBaseModel"""] lowerCAmelCase = TFAutoModel.from_config(snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(snake_case_ ) lowerCAmelCase = TFAutoModel.from_pretrained(snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' try: AutoConfig.register('new-model' , snake_case_ ) lowerCAmelCase = [ TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSequenceClassification, TFAutoModelForTokenClassification, ] for auto_class in auto_classes: with self.subTest(auto_class.__name__ ): # Wrong config class will raise an error with self.assertRaises(snake_case_ ): auto_class.register(snake_case_ , snake_case_ ) auto_class.register(snake_case_ , snake_case_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(snake_case_ ): auto_class.register(snake_case_ , snake_case_ ) # Now that the config is registered, it can be used as any other config with the auto-API lowerCAmelCase = BertModelTester(self ).get_config() lowerCAmelCase = NewModelConfig(**tiny_config.to_dict() ) lowerCAmelCase = auto_class.from_config(snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(snake_case_ ) lowerCAmelCase = auto_class.from_pretrained(snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"] for mapping in ( TF_MODEL_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, ): if NewModelConfig in mapping._extra_content: del mapping._extra_content[NewModelConfig] def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' with self.assertRaisesRegex( snake_case_ , 'bert-base is not a local folder and is not a valid model identifier' ): lowerCAmelCase = TFAutoModel.from_pretrained('bert-base' ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' with self.assertRaisesRegex( snake_case_ , R'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): lowerCAmelCase = TFAutoModel.from_pretrained(snake_case_ , revision='aaaaaa' ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' with self.assertRaisesRegex( snake_case_ , 'hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin' , ): lowerCAmelCase = TFAutoModel.from_pretrained('hf-internal-testing/config-no-model' ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' with self.assertRaisesRegex(snake_case_ , 'Use `from_pt=True` to load this model' ): lowerCAmelCase = TFAutoModel.from_pretrained('hf-internal-testing/tiny-bert-pt-only' ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = TFAutoModel.from_pretrained('hf-internal-testing/tiny-random-bert' ) with RequestCounter() as counter: lowerCAmelCase = TFAutoModel.from_pretrained('hf-internal-testing/tiny-random-bert' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 ) # With a sharded checkpoint lowerCAmelCase = TFAutoModel.from_pretrained('ArthurZ/tiny-random-bert-sharded' ) with RequestCounter() as counter: lowerCAmelCase = TFAutoModel.from_pretrained('ArthurZ/tiny-random-bert-sharded' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
284
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = { "asapp/sew-tiny-100k": "https://huggingface.co/asapp/sew-tiny-100k/resolve/main/config.json", # See all SEW models at https://huggingface.co/models?filter=sew } class __UpperCAmelCase (__A ): '''simple docstring''' _UpperCamelCase : Dict = 'sew' def __init__( self , snake_case_=32 , snake_case_=768 , snake_case_=12 , snake_case_=12 , snake_case_=3_072 , snake_case_=2 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=0.1 , snake_case_=0.0 , snake_case_=0.1 , snake_case_=0.1 , snake_case_=0.02 , snake_case_=1E-5 , snake_case_="group" , snake_case_="gelu" , snake_case_=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , snake_case_=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , snake_case_=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , snake_case_=False , snake_case_=128 , snake_case_=16 , snake_case_=True , snake_case_=0.05 , snake_case_=10 , snake_case_=2 , snake_case_=0.0 , snake_case_=10 , snake_case_=0 , snake_case_="mean" , snake_case_=False , snake_case_=False , snake_case_=256 , snake_case_=0 , snake_case_=1 , snake_case_=2 , **snake_case_ , ): '''simple docstring''' super().__init__(**snake_case_ , pad_token_id=snake_case_ , bos_token_id=snake_case_ , eos_token_id=snake_case_ ) A__ : Dict = hidden_size A__ : Dict = feat_extract_norm A__ : str = feat_extract_activation A__ : Optional[Any] = list(snake_case_ ) A__ : str = list(snake_case_ ) A__ : Any = list(snake_case_ ) A__ : Any = conv_bias A__ : Any = num_conv_pos_embeddings A__ : Any = num_conv_pos_embedding_groups A__ : str = len(self.conv_dim ) A__ : Tuple = num_hidden_layers A__ : int = intermediate_size A__ : Union[str, Any] = squeeze_factor A__ : Union[str, Any] = hidden_act A__ : List[str] = num_attention_heads A__ : List[str] = hidden_dropout A__ : Dict = attention_dropout A__ : Tuple = activation_dropout A__ : Optional[int] = feat_proj_dropout A__ : Optional[Any] = final_dropout A__ : int = layerdrop A__ : List[Any] = layer_norm_eps A__ : int = initializer_range A__ : Dict = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect.""" """It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,""" F'''but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)''' F'''= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 A__ : Optional[Any] = apply_spec_augment A__ : int = mask_time_prob A__ : Tuple = mask_time_length A__ : Optional[Any] = mask_time_min_masks A__ : Any = mask_feature_prob A__ : List[Any] = mask_feature_length A__ : Any = mask_feature_min_masks # ctc loss A__ : str = ctc_loss_reduction A__ : List[Any] = ctc_zero_infinity # sequence classification A__ : Union[str, Any] = use_weighted_layer_sum A__ : str = classifier_proj_size @property def lowerCamelCase ( self ): '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
363
0
a_ :int = { "A": ".-", "B": "-...", "C": "-.-.", "D": "-..", "E": ".", "F": "..-.", "G": "--.", "H": "....", "I": "..", "J": ".---", "K": "-.-", "L": ".-..", "M": "--", "N": "-.", "O": "---", "P": ".--.", "Q": "--.-", "R": ".-.", "S": "...", "T": "-", "U": "..-", "V": "...-", "W": ".--", "X": "-..-", "Y": "-.--", "Z": "--..", "1": ".----", "2": "..---", "3": "...--", "4": "....-", "5": ".....", "6": "-....", "7": "--...", "8": "---..", "9": "----.", "0": "-----", "&": ".-...", "@": ".--.-.", ":": "---...", ",": "--..--", ".": ".-.-.-", "'": ".----.", "\"": ".-..-.", "?": "..--..", "/": "-..-.", "=": "-...-", "+": ".-.-.", "-": "-....-", "(": "-.--.", ")": "-.--.-", "!": "-.-.--", " ": "/" } # Exclamation mark is not in ITU-R recommendation # fmt: on a_ :Optional[int] = {value: key for key, value in MORSE_CODE_DICT.items()} def lowercase_ (A : str ): return " ".join(MORSE_CODE_DICT[char] for char in message.upper() ) def lowercase_ (A : str ): return "".join(REVERSE_DICT[char] for char in message.split() ) def lowercase_ (): snake_case__ : Optional[Any] = 'Morse code here!' print(A ) snake_case__ : Any = encrypt(A ) print(A ) snake_case__ : Any = decrypt(A ) print(A ) if __name__ == "__main__": main()
243
from ..utils import DummyObject, requires_backends class snake_case__ ( metaclass=lowerCAmelCase_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = ["""note_seq"""] def __init__( self : List[Any], *_snake_case : Dict, **_snake_case : List[Any] ) ->Optional[int]: requires_backends(self, ['note_seq'] ) @classmethod def lowercase_ ( cls : int, *_snake_case : Tuple, **_snake_case : Optional[Any] ) ->int: requires_backends(cls, ['note_seq'] ) @classmethod def lowercase_ ( cls : Optional[int], *_snake_case : str, **_snake_case : Tuple ) ->int: requires_backends(cls, ['note_seq'] )
243
1
from functools import reduce UpperCAmelCase_ = ( """73167176531330624919225119674426574742355349194934""" """96983520312774506326239578318016984801869478851843""" """85861560789112949495459501737958331952853208805511""" """12540698747158523863050715693290963295227443043557""" """66896648950445244523161731856403098711121722383113""" """62229893423380308135336276614282806444486645238749""" """30358907296290491560440772390713810515859307960866""" """70172427121883998797908792274921901699720888093776""" """65727333001053367881220235421809751254540594752243""" """52584907711670556013604839586446706324415722155397""" """53697817977846174064955149290862569321978468622482""" """83972241375657056057490261407972968652414535100474""" """82166370484403199890008895243450658541227588666881""" """16427171479924442928230863465674813919123162824586""" """17866458359124566529476545682848912883142607690042""" """24219022671055626321111109370544217506941658960408""" """07198403850962455444362981230987879927244284909188""" """84580156166097919133875499200524063689912560717606""" """05886116467109405077541002256983155200055935729725""" """71636269561882670428252483600823257530420752963450""" ) def SCREAMING_SNAKE_CASE_ ( _snake_case :str = N ) -> int: return max( # mypy cannot properly interpret reduce int(reduce(lambda _snake_case , _snake_case : str(int(_snake_case ) * int(_snake_case ) ) , n[i : i + 13] ) ) for i in range(len(_snake_case ) - 12 ) ) if __name__ == "__main__": print(f'{solution() = }')
2
import argparse import torch from datasets import load_dataset from donut import DonutModel from transformers import ( DonutImageProcessor, DonutProcessor, DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, VisionEncoderDecoderModel, XLMRobertaTokenizerFast, ) def a_ ( __lowerCAmelCase ): lowerCAmelCase__ = model.config lowerCAmelCase__ = DonutSwinConfig( image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 16, 32] , window_size=original_config.window_size , embed_dim=1_28 , ) lowerCAmelCase__ = MBartConfig( is_decoder=__lowerCAmelCase , is_encoder_decoder=__lowerCAmelCase , add_cross_attention=__lowerCAmelCase , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len( model.decoder.tokenizer ) , scale_embedding=__lowerCAmelCase , add_final_layer_norm=__lowerCAmelCase , ) return encoder_config, decoder_config def a_ ( __lowerCAmelCase ): if "encoder.model" in name: lowerCAmelCase__ = name.replace('''encoder.model''' , '''encoder''' ) if "decoder.model" in name: lowerCAmelCase__ = name.replace('''decoder.model''' , '''decoder''' ) if "patch_embed.proj" in name: lowerCAmelCase__ = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: lowerCAmelCase__ = name.replace('''patch_embed.norm''' , '''embeddings.norm''' ) if name.startswith('''encoder''' ): if "layers" in name: lowerCAmelCase__ = '''encoder.''' + name if "attn.proj" in name: lowerCAmelCase__ = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name and "mask" not in name: lowerCAmelCase__ = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: lowerCAmelCase__ = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: lowerCAmelCase__ = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: lowerCAmelCase__ = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: lowerCAmelCase__ = name.replace('''mlp.fc2''' , '''output.dense''' ) if name == "encoder.norm.weight": lowerCAmelCase__ = '''encoder.layernorm.weight''' if name == "encoder.norm.bias": lowerCAmelCase__ = '''encoder.layernorm.bias''' return name def a_ ( __lowerCAmelCase , __lowerCAmelCase ): for key in orig_state_dict.copy().keys(): lowerCAmelCase__ = orig_state_dict.pop(__lowerCAmelCase ) if "qkv" in key: lowerCAmelCase__ = key.split('''.''' ) lowerCAmelCase__ = int(key_split[3] ) lowerCAmelCase__ = int(key_split[5] ) lowerCAmelCase__ = model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: lowerCAmelCase__ = val[:dim, :] lowerCAmelCase__ = val[dim : dim * 2, :] lowerCAmelCase__ = val[-dim:, :] else: lowerCAmelCase__ = val[:dim] lowerCAmelCase__ = val[dim : dim * 2] lowerCAmelCase__ = val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: lowerCAmelCase__ = val return orig_state_dict def a_ ( __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=False ): # load original model lowerCAmelCase__ = DonutModel.from_pretrained(__lowerCAmelCase ).eval() # load HuggingFace model lowerCAmelCase__ , lowerCAmelCase__ = get_configs(__lowerCAmelCase ) lowerCAmelCase__ = DonutSwinModel(__lowerCAmelCase ) lowerCAmelCase__ = MBartForCausalLM(__lowerCAmelCase ) lowerCAmelCase__ = VisionEncoderDecoderModel(encoder=__lowerCAmelCase , decoder=__lowerCAmelCase ) model.eval() lowerCAmelCase__ = original_model.state_dict() lowerCAmelCase__ = convert_state_dict(__lowerCAmelCase , __lowerCAmelCase ) model.load_state_dict(__lowerCAmelCase ) # verify results on scanned document lowerCAmelCase__ = load_dataset('''hf-internal-testing/example-documents''' ) lowerCAmelCase__ = dataset['''test'''][0]['''image'''].convert('''RGB''' ) lowerCAmelCase__ = XLMRobertaTokenizerFast.from_pretrained(__lowerCAmelCase , from_slow=__lowerCAmelCase ) lowerCAmelCase__ = DonutImageProcessor( do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] ) lowerCAmelCase__ = DonutProcessor(__lowerCAmelCase , __lowerCAmelCase ) lowerCAmelCase__ = processor(__lowerCAmelCase , return_tensors='''pt''' ).pixel_values if model_name == "naver-clova-ix/donut-base-finetuned-docvqa": lowerCAmelCase__ = '''<s_docvqa><s_question>{user_input}</s_question><s_answer>''' lowerCAmelCase__ = '''When is the coffee break?''' lowerCAmelCase__ = task_prompt.replace('''{user_input}''' , __lowerCAmelCase ) elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip": lowerCAmelCase__ = '''<s_rvlcdip>''' elif model_name in [ "naver-clova-ix/donut-base-finetuned-cord-v1", "naver-clova-ix/donut-base-finetuned-cord-v1-2560", ]: lowerCAmelCase__ = '''<s_cord>''' elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2": lowerCAmelCase__ = '''s_cord-v2>''' elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket": lowerCAmelCase__ = '''<s_zhtrainticket>''' elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]: # use a random prompt lowerCAmelCase__ = '''hello world''' else: raise ValueError('''Model name not supported''' ) lowerCAmelCase__ = original_model.decoder.tokenizer(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase , return_tensors='''pt''' )[ '''input_ids''' ] lowerCAmelCase__ = original_model.encoder.model.patch_embed(__lowerCAmelCase ) lowerCAmelCase__ , lowerCAmelCase__ = model.encoder.embeddings(__lowerCAmelCase ) assert torch.allclose(__lowerCAmelCase , __lowerCAmelCase , atol=1E-3 ) # verify encoder hidden states lowerCAmelCase__ = original_model.encoder(__lowerCAmelCase ) lowerCAmelCase__ = model.encoder(__lowerCAmelCase ).last_hidden_state assert torch.allclose(__lowerCAmelCase , __lowerCAmelCase , atol=1E-2 ) # verify decoder hidden states lowerCAmelCase__ = original_model(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ).logits lowerCAmelCase__ = model(__lowerCAmelCase , decoder_input_ids=__lowerCAmelCase ).logits assert torch.allclose(__lowerCAmelCase , __lowerCAmelCase , atol=1E-3 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(F"""Saving model and processor to {pytorch_dump_folder_path}""" ) model.save_pretrained(__lowerCAmelCase ) processor.save_pretrained(__lowerCAmelCase ) if push_to_hub: model.push_to_hub('''nielsr/''' + model_name.split('''/''' )[-1] , commit_message='''Update model''' ) processor.push_to_hub('''nielsr/''' + model_name.split('''/''' )[-1] , commit_message='''Update model''' ) if __name__ == "__main__": __magic_name__ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""naver-clova-ix/donut-base-finetuned-docvqa""", required=False, type=str, help="""Name of the original model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, required=False, type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model and processor to the 🤗 hub.""", ) __magic_name__ : Any = parser.parse_args() convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
615
0
import unittest from pathlib import Path from shutil import copyfile from transformers import SPIECE_UNDERLINE, is_sentencepiece_available from transformers.models.speech_to_text import SpeechaTextTokenizer from transformers.models.speech_to_text.tokenization_speech_to_text import VOCAB_FILES_NAMES, save_json from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin __a : List[str] = get_tests_dir("""fixtures/test_sentencepiece.model""") if is_sentencepiece_available(): import sentencepiece as sp __a : Optional[int] = 5 __a : Tuple = 10 @require_sentencepiece @require_tokenizers class A ( lowerCamelCase_ , unittest.TestCase ): _SCREAMING_SNAKE_CASE : Optional[Any] = SpeechaTextTokenizer _SCREAMING_SNAKE_CASE : Union[str, Any] = False _SCREAMING_SNAKE_CASE : int = True def lowercase__ ( self : Dict ) -> Any: """simple docstring""" super().setUp() UpperCamelCase_ = sp.SentencePieceProcessor() spm_model.Load(__UpperCAmelCase ) UpperCamelCase_ = ['<s>', '<pad>', '</s>', '<unk>'] vocab += [spm_model.IdToPiece(id_ ) for id_ in range(len(__UpperCAmelCase ) )] UpperCamelCase_ = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase ) ) ) ) UpperCamelCase_ = Path(self.tmpdirname ) save_json(__UpperCAmelCase , save_dir / VOCAB_FILES_NAMES['vocab_file'] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(__UpperCAmelCase , save_dir / VOCAB_FILES_NAMES['spm_file'] ) UpperCamelCase_ = SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase__ ( self : List[str] ) -> Tuple: """simple docstring""" UpperCamelCase_ = '<pad>' UpperCamelCase_ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__UpperCAmelCase ) , __UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__UpperCAmelCase ) , __UpperCAmelCase ) def lowercase__ ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-1] , 'j' ) self.assertEqual(len(__UpperCAmelCase ) , 1001 ) def lowercase__ ( self : int ) -> Tuple: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1001 ) def lowercase__ ( self : Dict ) -> Optional[int]: """simple docstring""" UpperCamelCase_ = SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) UpperCamelCase_ = tokenizer.tokenize('This is a test' ) self.assertListEqual(__UpperCAmelCase , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , [289, 50, 14, 174, 386] , ) UpperCamelCase_ = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( __UpperCAmelCase , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.'] , ) UpperCamelCase_ = tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , [12, 25, 88, 59, 28, 23, 11, 4, 606, 351, 351, 351, 7, 16, 70, 50, 76, 84, 10, 4, 8] ) UpperCamelCase_ = tokenizer.convert_ids_to_tokens(__UpperCAmelCase ) self.assertListEqual( __UpperCAmelCase , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.'] , ) @slow def lowercase__ ( self : Optional[int] ) -> Any: """simple docstring""" UpperCamelCase_ = {'input_ids': [[3791, 797, 31, 11, 64, 797, 31, 2429, 433, 12, 1176, 12, 20, 786, 915, 142, 2413, 240, 37, 3238, 797, 31, 11, 35, 93, 915, 142, 2413, 240, 37, 5540, 567, 1276, 93, 37, 610, 40, 62, 455, 657, 1042, 123, 780, 177, 37, 309, 241, 1298, 514, 20, 292, 2737, 114, 2469, 241, 85, 64, 302, 548, 528, 423, 4, 509, 406, 423, 37, 601, 4, 777, 302, 548, 528, 423, 284, 4, 3388, 511, 459, 4, 3555, 40, 321, 302, 705, 4, 3388, 511, 583, 326, 5, 5, 5, 62, 3310, 560, 177, 2680, 217, 1508, 32, 31, 853, 418, 64, 583, 511, 1605, 62, 35, 93, 560, 177, 2680, 217, 1508, 1521, 64, 583, 511, 519, 62, 20, 1515, 764, 20, 149, 261, 5625, 7972, 20, 5540, 567, 1276, 93, 3925, 1675, 11, 15, 802, 7972, 576, 217, 1508, 11, 35, 93, 1253, 2441, 15, 289, 652, 31, 416, 321, 3842, 115, 40, 911, 8, 476, 619, 4, 380, 142, 423, 335, 240, 35, 93, 264, 8, 11, 335, 569, 420, 163, 5, 2], [260, 548, 528, 423, 20, 451, 20, 2681, 1153, 3434, 20, 5540, 37, 567, 126, 1253, 2441, 3376, 449, 210, 431, 1563, 177, 767, 5540, 11, 1203, 472, 11, 2953, 685, 285, 364, 706, 1153, 20, 6799, 20, 2869, 20, 4464, 126, 40, 2429, 20, 1040, 866, 2664, 418, 20, 318, 20, 1726, 186, 20, 265, 522, 35, 93, 2191, 4634, 20, 1040, 12, 6799, 15, 228, 2356, 142, 31, 11, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [2575, 2666, 684, 1582, 1176, 12, 627, 149, 619, 20, 4902, 563, 11, 20, 149, 261, 3420, 2356, 174, 142, 4714, 131, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__UpperCAmelCase , model_name='facebook/s2t-small-mustc-en-de-st' , revision='a14f04cf0776c02f62a8cb800cf7909e15ea23ad' , ) @require_sentencepiece class A ( unittest.TestCase ): _SCREAMING_SNAKE_CASE : List[str] = '''valhalla/s2t_mustc_multilinguial_medium''' _SCREAMING_SNAKE_CASE : Union[str, Any] = '''C\'est trop cool''' _SCREAMING_SNAKE_CASE : int = '''Esto es genial''' @classmethod def lowercase__ ( cls : Optional[Any] ) -> Optional[Any]: """simple docstring""" UpperCamelCase_ = SpeechaTextTokenizer.from_pretrained(cls.checkpoint_name ) return cls def lowercase__ ( self : str ) -> Optional[Any]: """simple docstring""" self.assertEqual(self.tokenizer.lang_code_to_id['pt'] , 4 ) self.assertEqual(self.tokenizer.lang_code_to_id['ru'] , 6 ) self.assertEqual(self.tokenizer.lang_code_to_id['it'] , 9 ) self.assertEqual(self.tokenizer.lang_code_to_id['de'] , 11 ) def lowercase__ ( self : List[str] ) -> Tuple: """simple docstring""" self.assertEqual(self.tokenizer.vocab_size , 10000 ) def lowercase__ ( self : int ) -> Any: """simple docstring""" self.assertIn(__UpperCAmelCase , self.tokenizer.all_special_ids ) UpperCamelCase_ = [ES_CODE, 4, 1601, 47, 7647, 2] UpperCamelCase_ = self.tokenizer.decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase ) UpperCamelCase_ = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , __UpperCAmelCase ) self.assertNotIn(self.tokenizer.eos_token , __UpperCAmelCase ) def lowercase__ ( self : List[str] ) -> List[str]: """simple docstring""" UpperCamelCase_ = 'fr' UpperCamelCase_ = self.tokenizer(self.french_text ).input_ids self.assertEqual(encoded[0] , __UpperCAmelCase ) self.assertEqual(encoded[-1] , self.tokenizer.eos_token_id ) def lowercase__ ( self : str ) -> Tuple: """simple docstring""" UpperCamelCase_ = 'fr' self.assertListEqual(self.tokenizer.prefix_tokens , [FR_CODE] ) UpperCamelCase_ = 'es' self.assertListEqual(self.tokenizer.prefix_tokens , [ES_CODE] )
708
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_big_bird import BigBirdTokenizer else: __a : Optional[int] = None __a : List[Any] = logging.get_logger(__name__) __a : int = {"""vocab_file""": """spiece.model""", """tokenizer_file""": """tokenizer.json"""} __a : Optional[Any] = { """vocab_file""": { """google/bigbird-roberta-base""": """https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model""", """google/bigbird-roberta-large""": ( """https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model""" ), """google/bigbird-base-trivia-itc""": ( """https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model""" ), }, """tokenizer_file""": { """google/bigbird-roberta-base""": ( """https://huggingface.co/google/bigbird-roberta-base/resolve/main/tokenizer.json""" ), """google/bigbird-roberta-large""": ( """https://huggingface.co/google/bigbird-roberta-large/resolve/main/tokenizer.json""" ), """google/bigbird-base-trivia-itc""": ( """https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/tokenizer.json""" ), }, } __a : int = { """google/bigbird-roberta-base""": 40_96, """google/bigbird-roberta-large""": 40_96, """google/bigbird-base-trivia-itc""": 40_96, } __a : Tuple = """▁""" class A ( lowerCamelCase_ ): _SCREAMING_SNAKE_CASE : Union[str, Any] = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE : Dict = PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _SCREAMING_SNAKE_CASE : List[str] = BigBirdTokenizer _SCREAMING_SNAKE_CASE : Optional[int] = ['''input_ids''', '''attention_mask'''] _SCREAMING_SNAKE_CASE : List[int] = [] def __init__( self : Optional[Any] , __UpperCAmelCase : Optional[Any]=None , __UpperCAmelCase : List[str]=None , __UpperCAmelCase : Optional[Any]="<unk>" , __UpperCAmelCase : Optional[int]="<s>" , __UpperCAmelCase : Optional[Any]="</s>" , __UpperCAmelCase : Tuple="<pad>" , __UpperCAmelCase : Dict="[SEP]" , __UpperCAmelCase : Optional[Any]="[MASK]" , __UpperCAmelCase : List[str]="[CLS]" , **__UpperCAmelCase : str , ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else bos_token UpperCamelCase_ = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else eos_token UpperCamelCase_ = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else unk_token UpperCamelCase_ = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else pad_token UpperCamelCase_ = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else cls_token UpperCamelCase_ = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else sep_token # Mask token behave like a normal word, i.e. include the space before it UpperCamelCase_ = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else mask_token super().__init__( __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , **__UpperCAmelCase , ) UpperCamelCase_ = vocab_file UpperCamelCase_ = False if not self.vocab_file else True def lowercase__ ( self : Tuple , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: """simple docstring""" UpperCamelCase_ = [self.sep_token_id] UpperCamelCase_ = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowercase__ ( self : Union[str, Any] , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None , __UpperCAmelCase : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: if token_ids_a is not None: raise ValueError( 'You should not supply a second sequence if the provided sequence of ' 'ids is already formatted with special tokens for the model.' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is None: return [1] + ([0] * len(__UpperCAmelCase )) + [1] return [1] + ([0] * len(__UpperCAmelCase )) + [1] + ([0] * len(__UpperCAmelCase )) + [1] def lowercase__ ( self : Any , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: """simple docstring""" UpperCamelCase_ = [self.sep_token_id] UpperCamelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase__ ( self : Dict , __UpperCAmelCase : str , __UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(__UpperCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCamelCase_ = os.path.join( __UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ): copyfile(self.vocab_file , __UpperCAmelCase ) return (out_vocab_file,)
559
0
from __future__ import annotations import os from collections.abc import Mapping SCREAMING_SNAKE_CASE__ : Dict = tuple[int, int] class snake_case : def __init__( self : Tuple , a_ : set[int] , a_ : Mapping[EdgeT, int] )-> None: """simple docstring""" SCREAMING_SNAKE_CASE__ : set[int] = vertices SCREAMING_SNAKE_CASE__ : dict[EdgeT, int] = { (min(a_ ), max(a_ )): weight for edge, weight in edges.items() } def __lowercase( self : Optional[int] , a_ : EdgeT , a_ : int )-> None: """simple docstring""" self.vertices.add(edge[0] ) self.vertices.add(edge[1] ) SCREAMING_SNAKE_CASE__ : Any = weight def __lowercase( self : Optional[Any] )-> Graph: """simple docstring""" SCREAMING_SNAKE_CASE__ : Graph = Graph({min(self.vertices )} , {} ) SCREAMING_SNAKE_CASE__ : EdgeT SCREAMING_SNAKE_CASE__ : int SCREAMING_SNAKE_CASE__ : EdgeT SCREAMING_SNAKE_CASE__ : int while len(subgraph.vertices ) < len(self.vertices ): SCREAMING_SNAKE_CASE__ : Optional[Any] = max(self.edges.values() ) + 1 for edge, weight in self.edges.items(): if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices): if weight < min_weight: SCREAMING_SNAKE_CASE__ : Any = edge SCREAMING_SNAKE_CASE__ : Tuple = weight subgraph.add_edge(a_ , a_ ) return subgraph def _a ( lowercase__ : str = "p107_network.txt" ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = os.path.abspath(os.path.dirname(lowercase__ ) ) SCREAMING_SNAKE_CASE__ : str = os.path.join(lowercase__ , lowercase__ ) SCREAMING_SNAKE_CASE__ : dict[EdgeT, int] = {} SCREAMING_SNAKE_CASE__ : list[str] SCREAMING_SNAKE_CASE__ : int SCREAMING_SNAKE_CASE__ : int with open(lowercase__ ) as f: SCREAMING_SNAKE_CASE__ : Union[str, Any] = f.read().strip().split('\n' ) SCREAMING_SNAKE_CASE__ : Any = [line.split(',' ) for line in data] for edgea in range(1 , len(lowercase__ ) ): for edgea in range(lowercase__ ): if adjaceny_matrix[edgea][edgea] != "-": SCREAMING_SNAKE_CASE__ : Union[str, Any] = int(adjaceny_matrix[edgea][edgea] ) SCREAMING_SNAKE_CASE__ : Graph = Graph(set(range(len(lowercase__ ) ) ) , lowercase__ ) SCREAMING_SNAKE_CASE__ : Graph = graph.prims_algorithm() SCREAMING_SNAKE_CASE__ : int = sum(graph.edges.values() ) SCREAMING_SNAKE_CASE__ : int = sum(subgraph.edges.values() ) return initial_total - optimal_total if __name__ == "__main__": print(F"""{solution() = }""")
85
def _a ( lowercase__ : int = 60_08_51_47_51_43 ): '''simple docstring''' try: SCREAMING_SNAKE_CASE__ : Dict = int(lowercase__ ) except (TypeError, ValueError): raise TypeError('Parameter n must be int or castable to int.' ) if n <= 0: raise ValueError('Parameter n must be greater than or equal to one.' ) SCREAMING_SNAKE_CASE__ : int = 2 SCREAMING_SNAKE_CASE__ : int = 0 if n == 2: return 2 while n > 2: while n % i != 0: i += 1 SCREAMING_SNAKE_CASE__ : str = i while n % i == 0: SCREAMING_SNAKE_CASE__ : List[Any] = n // i i += 1 return int(lowercase__ ) if __name__ == "__main__": print(F"""{solution() = }""")
85
1
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING a_ : List[str] = logging.get_logger(__name__) @add_end_docstrings(UpperCAmelCase_) class lowerCamelCase__ ( UpperCAmelCase_): """simple docstring""" def __init__(self , *__a , **__a ): '''simple docstring''' super().__init__(*__a , **__a ) requires_backends(self , "vision" ) self.check_model_type( TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING if self.framework == "tf" else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING ) def _a (self , __a=None ): '''simple docstring''' lowerCamelCase = {} if top_k is not None: lowerCamelCase = top_k return {}, {}, postprocess_params def __call__(self , __a , **__a ): '''simple docstring''' return super().__call__(__a , **__a ) def _a (self , __a ): '''simple docstring''' lowerCamelCase = load_image(__a ) lowerCamelCase = self.image_processor(images=__a , return_tensors=self.framework ) return model_inputs def _a (self , __a ): '''simple docstring''' lowerCamelCase = self.model(**__a ) return model_outputs def _a (self , __a , __a=5 ): '''simple docstring''' if top_k > self.model.config.num_labels: lowerCamelCase = self.model.config.num_labels if self.framework == "pt": lowerCamelCase = model_outputs.logits.softmax(-1 )[0] lowerCamelCase , lowerCamelCase = probs.topk(__a ) elif self.framework == "tf": lowerCamelCase = stable_softmax(model_outputs.logits , axis=-1 )[0] lowerCamelCase = tf.math.top_k(__a , k=__a ) lowerCamelCase , lowerCamelCase = topk.values.numpy(), topk.indices.numpy() else: raise ValueError(F"""Unsupported framework: {self.framework}""" ) lowerCamelCase = scores.tolist() lowerCamelCase = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(__a , __a )]
484
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ : List[str] = { 'configuration_clipseg': [ 'CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP', 'CLIPSegConfig', 'CLIPSegTextConfig', 'CLIPSegVisionConfig', ], 'processing_clipseg': ['CLIPSegProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Any = [ 'CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST', 'CLIPSegModel', 'CLIPSegPreTrainedModel', 'CLIPSegTextModel', 'CLIPSegVisionModel', 'CLIPSegForImageSegmentation', ] if TYPE_CHECKING: from .configuration_clipseg import ( CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPSegConfig, CLIPSegTextConfig, CLIPSegVisionConfig, ) from .processing_clipseg import CLIPSegProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clipseg import ( CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPSegForImageSegmentation, CLIPSegModel, CLIPSegPreTrainedModel, CLIPSegTextModel, CLIPSegVisionModel, ) else: import sys a_ : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
484
1