code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=SCREAMING_SNAKE_CASE__ ) class A ( SCREAMING_SNAKE_CASE__ ): snake_case__ :str = field(default='automatic-speech-recognition' , metadata={'include_in_asdict_even_if_is_default': True} ) snake_case__ :ClassVar[Features] = Features({'audio': Audio()} ) snake_case__ :ClassVar[Features] = Features({'transcription': Value('string' )} ) snake_case__ :str = "audio" snake_case__ :str = "transcription" def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : Union[str, Any] ): """simple docstring""" if self.audio_column not in features: raise ValueError(f"""Column {self.audio_column} is not present in features.""" ) if not isinstance(features[self.audio_column] , __magic_name__ ): raise ValueError(f"""Column {self.audio_column} is not an Audio type.""" ) lowerCAmelCase__ = copy.deepcopy(self ) lowerCAmelCase__ = self.input_schema.copy() lowerCAmelCase__ = features[self.audio_column] lowerCAmelCase__ = input_schema return task_template @property def __SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" return {self.audio_column: "audio", self.transcription_column: "transcription"}
48
'''simple docstring''' from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig UpperCAmelCase__ : Tuple = logging.get_logger(__name__) # General docstring UpperCAmelCase__ : int = "RegNetConfig" # Base docstring UpperCAmelCase__ : Optional[int] = "facebook/regnet-y-040" UpperCAmelCase__ : Optional[int] = [1, 10_88, 7, 7] # Image classification docstring UpperCAmelCase__ : Tuple = "facebook/regnet-y-040" UpperCAmelCase__ : Optional[Any] = "tabby, tabby cat" UpperCAmelCase__ : int = [ "facebook/regnet-y-040", # See all regnet models at https://huggingface.co/models?filter=regnet ] class A ( tf.keras.layers.Layer ): def __init__( self : str , __magic_name__ : int , __magic_name__ : int = 3 , __magic_name__ : int = 1 , __magic_name__ : int = 1 , __magic_name__ : Optional[str] = "relu" , **__magic_name__ : int , ): """simple docstring""" super().__init__(**__magic_name__ ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb lowerCAmelCase__ = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) lowerCAmelCase__ = tf.keras.layers.ConvaD( filters=__magic_name__ , kernel_size=__magic_name__ , strides=__magic_name__ , padding="VALID" , groups=__magic_name__ , use_bias=__magic_name__ , name="convolution" , ) lowerCAmelCase__ = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name="normalization" ) lowerCAmelCase__ = ACTaFN[activation] if activation is not None else tf.identity def __SCREAMING_SNAKE_CASE ( self : Any , __magic_name__ : str ): """simple docstring""" lowerCAmelCase__ = self.convolution(self.padding(__magic_name__ ) ) lowerCAmelCase__ = self.normalization(__magic_name__ ) lowerCAmelCase__ = self.activation(__magic_name__ ) return hidden_state class A ( tf.keras.layers.Layer ): def __init__( self : List[Any] , __magic_name__ : RegNetConfig , **__magic_name__ : str ): """simple docstring""" super().__init__(**__magic_name__ ) lowerCAmelCase__ = config.num_channels lowerCAmelCase__ = TFRegNetConvLayer( out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name="embedder" , ) def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : List[Any] ): """simple docstring""" lowerCAmelCase__ = shape_list(__magic_name__ )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) lowerCAmelCase__ = tf.transpose(__magic_name__ , perm=(0, 2, 3, 1) ) lowerCAmelCase__ = self.embedder(__magic_name__ ) return hidden_state class A ( tf.keras.layers.Layer ): def __init__( self : Any , __magic_name__ : int , __magic_name__ : int = 2 , **__magic_name__ : Optional[Any] ): """simple docstring""" super().__init__(**__magic_name__ ) lowerCAmelCase__ = tf.keras.layers.ConvaD( filters=__magic_name__ , kernel_size=1 , strides=__magic_name__ , use_bias=__magic_name__ , name="convolution" ) lowerCAmelCase__ = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name="normalization" ) def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : tf.Tensor , __magic_name__ : bool = False ): """simple docstring""" return self.normalization(self.convolution(__magic_name__ ) , training=__magic_name__ ) class A ( tf.keras.layers.Layer ): def __init__( self : Union[str, Any] , __magic_name__ : int , __magic_name__ : int , **__magic_name__ : List[Any] ): """simple docstring""" super().__init__(**__magic_name__ ) lowerCAmelCase__ = tf.keras.layers.GlobalAveragePoolingaD(keepdims=__magic_name__ , name="pooler" ) lowerCAmelCase__ = [ tf.keras.layers.ConvaD(filters=__magic_name__ , kernel_size=1 , activation="relu" , name="attention.0" ), tf.keras.layers.ConvaD(filters=__magic_name__ , kernel_size=1 , activation="sigmoid" , name="attention.2" ), ] def __SCREAMING_SNAKE_CASE ( self : List[Any] , __magic_name__ : Union[str, Any] ): """simple docstring""" lowerCAmelCase__ = self.pooler(__magic_name__ ) for layer_module in self.attention: lowerCAmelCase__ = layer_module(__magic_name__ ) lowerCAmelCase__ = hidden_state * pooled return hidden_state class A ( tf.keras.layers.Layer ): def __init__( self : int , __magic_name__ : RegNetConfig , __magic_name__ : int , __magic_name__ : int , __magic_name__ : int = 1 , **__magic_name__ : str ): """simple docstring""" super().__init__(**__magic_name__ ) lowerCAmelCase__ = in_channels != out_channels or stride != 1 lowerCAmelCase__ = max(1 , out_channels // config.groups_width ) lowerCAmelCase__ = ( TFRegNetShortCut(__magic_name__ , stride=__magic_name__ , name="shortcut" ) if should_apply_shortcut else tf.keras.layers.Activation("linear" , name="shortcut" ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. lowerCAmelCase__ = [ TFRegNetConvLayer(__magic_name__ , kernel_size=1 , activation=config.hidden_act , name="layer.0" ), TFRegNetConvLayer( __magic_name__ , stride=__magic_name__ , groups=__magic_name__ , activation=config.hidden_act , name="layer.1" ), TFRegNetConvLayer(__magic_name__ , kernel_size=1 , activation=__magic_name__ , name="layer.2" ), ] lowerCAmelCase__ = ACTaFN[config.hidden_act] def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : Any ): """simple docstring""" lowerCAmelCase__ = hidden_state for layer_module in self.layers: lowerCAmelCase__ = layer_module(__magic_name__ ) lowerCAmelCase__ = self.shortcut(__magic_name__ ) hidden_state += residual lowerCAmelCase__ = self.activation(__magic_name__ ) return hidden_state class A ( tf.keras.layers.Layer ): def __init__( self : int , __magic_name__ : RegNetConfig , __magic_name__ : int , __magic_name__ : int , __magic_name__ : int = 1 , **__magic_name__ : str ): """simple docstring""" super().__init__(**__magic_name__ ) lowerCAmelCase__ = in_channels != out_channels or stride != 1 lowerCAmelCase__ = max(1 , out_channels // config.groups_width ) lowerCAmelCase__ = ( TFRegNetShortCut(__magic_name__ , stride=__magic_name__ , name="shortcut" ) if should_apply_shortcut else tf.keras.layers.Activation("linear" , name="shortcut" ) ) lowerCAmelCase__ = [ TFRegNetConvLayer(__magic_name__ , kernel_size=1 , activation=config.hidden_act , name="layer.0" ), TFRegNetConvLayer( __magic_name__ , stride=__magic_name__ , groups=__magic_name__ , activation=config.hidden_act , name="layer.1" ), TFRegNetSELayer(__magic_name__ , reduced_channels=int(round(in_channels / 4 ) ) , name="layer.2" ), TFRegNetConvLayer(__magic_name__ , kernel_size=1 , activation=__magic_name__ , name="layer.3" ), ] lowerCAmelCase__ = ACTaFN[config.hidden_act] def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __magic_name__ : Any ): """simple docstring""" lowerCAmelCase__ = hidden_state for layer_module in self.layers: lowerCAmelCase__ = layer_module(__magic_name__ ) lowerCAmelCase__ = self.shortcut(__magic_name__ ) hidden_state += residual lowerCAmelCase__ = self.activation(__magic_name__ ) return hidden_state class A ( tf.keras.layers.Layer ): def __init__( self : Union[str, Any] , __magic_name__ : RegNetConfig , __magic_name__ : int , __magic_name__ : int , __magic_name__ : int = 2 , __magic_name__ : int = 2 , **__magic_name__ : Optional[int] ): """simple docstring""" super().__init__(**__magic_name__ ) lowerCAmelCase__ = TFRegNetXLayer if config.layer_type == "x" else TFRegNetYLayer lowerCAmelCase__ = [ # downsampling is done in the first layer with stride of 2 layer(__magic_name__ , __magic_name__ , __magic_name__ , stride=__magic_name__ , name="layers.0" ), *[layer(__magic_name__ , __magic_name__ , __magic_name__ , name=f"""layers.{i+1}""" ) for i in range(depth - 1 )], ] def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : List[str] ): """simple docstring""" for layer_module in self.layers: lowerCAmelCase__ = layer_module(__magic_name__ ) return hidden_state class A ( tf.keras.layers.Layer ): def __init__( self : Tuple , __magic_name__ : RegNetConfig , **__magic_name__ : Union[str, Any] ): """simple docstring""" super().__init__(**__magic_name__ ) lowerCAmelCase__ = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( __magic_name__ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name="stages.0" , ) ) lowerCAmelCase__ = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(__magic_name__ , config.depths[1:] ) ): self.stages.append(TFRegNetStage(__magic_name__ , __magic_name__ , __magic_name__ , depth=__magic_name__ , name=f"""stages.{i+1}""" ) ) def __SCREAMING_SNAKE_CASE ( self : List[str] , __magic_name__ : tf.Tensor , __magic_name__ : bool = False , __magic_name__ : bool = True ): """simple docstring""" lowerCAmelCase__ = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: lowerCAmelCase__ = hidden_states + (hidden_state,) lowerCAmelCase__ = stage_module(__magic_name__ ) if output_hidden_states: lowerCAmelCase__ = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=__magic_name__ , hidden_states=__magic_name__ ) @keras_serializable class A ( tf.keras.layers.Layer ): snake_case__ :List[Any] = RegNetConfig def __init__( self : str , __magic_name__ : Union[str, Any] , **__magic_name__ : Union[str, Any] ): """simple docstring""" super().__init__(**__magic_name__ ) lowerCAmelCase__ = config lowerCAmelCase__ = TFRegNetEmbeddings(__magic_name__ , name="embedder" ) lowerCAmelCase__ = TFRegNetEncoder(__magic_name__ , name="encoder" ) lowerCAmelCase__ = tf.keras.layers.GlobalAveragePoolingaD(keepdims=__magic_name__ , name="pooler" ) @unpack_inputs def __SCREAMING_SNAKE_CASE ( self : List[Any] , __magic_name__ : tf.Tensor , __magic_name__ : Optional[bool] = None , __magic_name__ : Optional[bool] = None , __magic_name__ : bool = False , ): """simple docstring""" lowerCAmelCase__ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowerCAmelCase__ = return_dict if return_dict is not None else self.config.use_return_dict lowerCAmelCase__ = self.embedder(__magic_name__ , training=__magic_name__ ) lowerCAmelCase__ = self.encoder( __magic_name__ , output_hidden_states=__magic_name__ , return_dict=__magic_name__ , training=__magic_name__ ) lowerCAmelCase__ = encoder_outputs[0] lowerCAmelCase__ = self.pooler(__magic_name__ ) # Change to NCHW output format have uniformity in the modules lowerCAmelCase__ = tf.transpose(__magic_name__ , perm=(0, 3, 1, 2) ) lowerCAmelCase__ = tf.transpose(__magic_name__ , perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: lowerCAmelCase__ = tuple([tf.transpose(__magic_name__ , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=__magic_name__ , pooler_output=__magic_name__ , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , ) class A ( SCREAMING_SNAKE_CASE__ ): snake_case__ :str = RegNetConfig snake_case__ :Optional[Any] = 'regnet' snake_case__ :Tuple = 'pixel_values' @property def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 224, 224) , dtype=tf.floataa )} UpperCAmelCase__ : List[str] = R"\n Parameters:\n This model is a Tensorflow\n [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a\n regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and\n behavior.\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.\n" UpperCAmelCase__ : Tuple = R"\n Args:\n pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConveNextImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n" @add_start_docstrings( 'The bare RegNet model outputting raw features without any specific head on top.' , SCREAMING_SNAKE_CASE__ , ) class A ( SCREAMING_SNAKE_CASE__ ): def __init__( self : Any , __magic_name__ : RegNetConfig , *__magic_name__ : Optional[int] , **__magic_name__ : Union[str, Any] ): """simple docstring""" super().__init__(__magic_name__ , *__magic_name__ , **__magic_name__ ) lowerCAmelCase__ = TFRegNetMainLayer(__magic_name__ , name="regnet" ) @unpack_inputs @add_start_docstrings_to_model_forward(__magic_name__ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=__magic_name__ , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : tf.Tensor , __magic_name__ : Optional[bool] = None , __magic_name__ : Optional[bool] = None , __magic_name__ : int=False , ): """simple docstring""" lowerCAmelCase__ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowerCAmelCase__ = return_dict if return_dict is not None else self.config.use_return_dict lowerCAmelCase__ = self.regnet( pixel_values=__magic_name__ , output_hidden_states=__magic_name__ , return_dict=__magic_name__ , training=__magic_name__ , ) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , ) @add_start_docstrings( '\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , SCREAMING_SNAKE_CASE__ , ) class A ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): def __init__( self : Tuple , __magic_name__ : RegNetConfig , *__magic_name__ : Tuple , **__magic_name__ : Optional[int] ): """simple docstring""" super().__init__(__magic_name__ , *__magic_name__ , **__magic_name__ ) lowerCAmelCase__ = config.num_labels lowerCAmelCase__ = TFRegNetMainLayer(__magic_name__ , name="regnet" ) # classification head lowerCAmelCase__ = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels , name="classifier.1" ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(__magic_name__ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=__magic_name__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def __SCREAMING_SNAKE_CASE ( self : int , __magic_name__ : tf.Tensor = None , __magic_name__ : tf.Tensor = None , __magic_name__ : bool = None , __magic_name__ : bool = None , __magic_name__ : Dict=False , ): """simple docstring""" lowerCAmelCase__ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowerCAmelCase__ = return_dict if return_dict is not None else self.config.use_return_dict lowerCAmelCase__ = self.regnet( __magic_name__ , output_hidden_states=__magic_name__ , return_dict=__magic_name__ , training=__magic_name__ ) lowerCAmelCase__ = outputs.pooler_output if return_dict else outputs[1] lowerCAmelCase__ = self.classifier[0](__magic_name__ ) lowerCAmelCase__ = self.classifier[1](__magic_name__ ) lowerCAmelCase__ = None if labels is None else self.hf_compute_loss(labels=__magic_name__ , logits=__magic_name__ ) if not return_dict: lowerCAmelCase__ = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=__magic_name__ , logits=__magic_name__ , hidden_states=outputs.hidden_states )
48
1
from __future__ import annotations class UpperCamelCase__ : def __init__( self : Dict ,lowerCamelCase__ : str ,lowerCamelCase__ : str ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = text, pattern SCREAMING_SNAKE_CASE = len(UpperCamelCase_ ), len(UpperCamelCase_ ) def SCREAMING_SNAKE_CASE__ ( self : Dict ,lowerCamelCase__ : str ) -> int: '''simple docstring''' for i in range(self.patLen - 1 ,-1 ,-1 ): if char == self.pattern[i]: return i return -1 def SCREAMING_SNAKE_CASE__ ( self : str ,lowerCamelCase__ : int ) -> int: '''simple docstring''' for i in range(self.patLen - 1 ,-1 ,-1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> list[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = [] for i in range(self.textLen - self.patLen + 1 ): SCREAMING_SNAKE_CASE = self.mismatch_in_text(UpperCamelCase_ ) if mismatch_index == -1: positions.append(UpperCamelCase_ ) else: SCREAMING_SNAKE_CASE = self.match_in_pattern(self.text[mismatch_index] ) SCREAMING_SNAKE_CASE = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions SCREAMING_SNAKE_CASE_ = '''ABAABA''' SCREAMING_SNAKE_CASE_ = '''AB''' SCREAMING_SNAKE_CASE_ = BoyerMooreSearch(text, pattern) SCREAMING_SNAKE_CASE_ = bms.bad_character_heuristic() if len(positions) == 0: print("""No match found""") else: print("""Pattern found in following positions: """) print(positions)
704
# We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation import warnings from .state import AcceleratorState, GradientState warnings.filterwarnings("""ignore""", category=UserWarning, module="""torch.optim.lr_scheduler""") class UpperCamelCase__ : '''simple docstring''' def __init__( self : Optional[Any] ,lowerCamelCase__ : Optional[int] ,lowerCamelCase__ : Tuple ,lowerCamelCase__ : bool = True ,lowerCamelCase__ : bool = False ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = scheduler SCREAMING_SNAKE_CASE = optimizers if isinstance(lowerCamelCase__ ,(list, tuple) ) else [optimizers] SCREAMING_SNAKE_CASE = split_batches SCREAMING_SNAKE_CASE = step_with_optimizer SCREAMING_SNAKE_CASE = GradientState() def SCREAMING_SNAKE_CASE__ ( self : str ,*lowerCamelCase__ : Union[str, Any] ,**lowerCamelCase__ : Optional[int] ) -> Dict: '''simple docstring''' if not self.step_with_optimizer: # No link between scheduler and optimizer -> just step self.scheduler.step(*lowerCamelCase__ ,**lowerCamelCase__ ) return # Otherwise, first make sure the optimizer was stepped. if not self.gradient_state.sync_gradients: if self.gradient_state.adjust_scheduler: self.scheduler._step_count += 1 return for opt in self.optimizers: if opt.step_was_skipped: return if self.split_batches: # Split batches -> the training dataloader batch size is not changed so one step per training step self.scheduler.step(*lowerCamelCase__ ,**lowerCamelCase__ ) else: # Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do # num_processes steps per training step SCREAMING_SNAKE_CASE = AcceleratorState().num_processes for _ in range(lowerCamelCase__ ): # Special case when using OneCycle and `drop_last` was not used if hasattr(self.scheduler ,"""total_steps""" ): if self.scheduler._step_count <= self.scheduler.total_steps: self.scheduler.step(*lowerCamelCase__ ,**lowerCamelCase__ ) else: self.scheduler.step(*lowerCamelCase__ ,**lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : int ) -> Optional[Any]: '''simple docstring''' return self.scheduler.get_last_lr() def SCREAMING_SNAKE_CASE__ ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' return self.scheduler.state_dict() def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ,lowerCamelCase__ : str ) -> int: '''simple docstring''' self.scheduler.load_state_dict(lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' return self.scheduler.get_lr() def SCREAMING_SNAKE_CASE__ ( self : Dict ,*lowerCamelCase__ : int ,**lowerCamelCase__ : Tuple ) -> Optional[int]: '''simple docstring''' return self.scheduler.print_lr(*lowerCamelCase__ ,**lowerCamelCase__ )
116
0
import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) __magic_name__ : Union[str, Any] = [ '''cross_validation.py''', '''gradient_accumulation.py''', '''local_sgd.py''', '''multi_process_metrics.py''', '''memory.py''', '''automatic_gradient_accumulation.py''', '''fsdp_with_peak_mem_tracking.py''', '''deepspeed_with_config_support.py''', '''megatron_lm_gpt_pretraining.py''', ] class SCREAMING_SNAKE_CASE__ (unittest.TestCase ): def A__ ( self : Tuple , __lowerCamelCase : str , __lowerCamelCase : bool , __lowerCamelCase : str = None , __lowerCamelCase : list = None ): """simple docstring""" lowerCAmelCase__ = None lowerCAmelCase__ = os.path.abspath(os.path.join('''examples''' , '''by_feature''' ) ) lowerCAmelCase__ = os.path.abspath('''examples''' ) for item in os.listdir(UpperCamelCase__ ): if item not in EXCLUDE_EXAMPLES: lowerCAmelCase__ = os.path.join(UpperCamelCase__ , UpperCamelCase__ ) if os.path.isfile(UpperCamelCase__ ) and ".py" in item_path: with self.subTest( tested_script=UpperCamelCase__ , feature_script=UpperCamelCase__ , tested_section='''main()''' if parser_only else '''training_function()''' , ): lowerCAmelCase__ = compare_against_test( os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) lowerCAmelCase__ = '''\n'''.join(UpperCamelCase__ ) if special_strings is not None: for string in special_strings: lowerCAmelCase__ = diff.replace(UpperCamelCase__ , '''''' ) self.assertEqual(UpperCamelCase__ , '''''' ) def A__ ( self : str ): """simple docstring""" self.one_complete_example('''complete_nlp_example.py''' , UpperCamelCase__ ) self.one_complete_example('''complete_nlp_example.py''' , UpperCamelCase__ ) def A__ ( self : Any ): """simple docstring""" lowerCAmelCase__ = os.path.abspath(os.path.join('''examples''' , '''cv_example.py''' ) ) lowerCAmelCase__ = [ ''' ''' * 16 + '''{\n\n''', ''' ''' * 20 + '''"accuracy": eval_metric["accuracy"],\n\n''', ''' ''' * 20 + '''"f1": eval_metric["f1"],\n\n''', ''' ''' * 20 + '''"train_loss": total_loss.item() / len(train_dataloader),\n\n''', ''' ''' * 20 + '''"epoch": epoch,\n\n''', ''' ''' * 16 + '''},\n\n''', ''' ''' * 16 + '''step=epoch,\n''', ''' ''' * 12, ''' ''' * 8 + '''for step, batch in enumerate(active_dataloader):\n''', ] self.one_complete_example('''complete_cv_example.py''' , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) self.one_complete_example('''complete_cv_example.py''' , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) @mock.patch.dict(os.environ , {"TESTING_MOCKED_DATALOADERS": "1"} ) class SCREAMING_SNAKE_CASE__ (_UpperCamelCase ): lowercase_ : Dict = False @classmethod def A__ ( cls : Optional[int] ): """simple docstring""" super().setUpClass() lowerCAmelCase__ = tempfile.mkdtemp() lowerCAmelCase__ = os.path.join(cls._tmpdir , '''default_config.yml''' ) write_basic_config(save_location=cls.configPath ) lowerCAmelCase__ = ['''accelerate''', '''launch''', '''--config_file''', cls.configPath] @classmethod def A__ ( cls : List[str] ): """simple docstring""" super().tearDownClass() shutil.rmtree(cls._tmpdir ) def A__ ( self : List[Any] ): """simple docstring""" lowerCAmelCase__ = F"""\n examples/by_feature/checkpointing.py\n --checkpointing_steps epoch\n --output_dir {self.tmpdir}\n """.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , '''epoch_0''' ) ) ) def A__ ( self : Any ): """simple docstring""" lowerCAmelCase__ = F"""\n examples/by_feature/checkpointing.py\n --checkpointing_steps 1\n --output_dir {self.tmpdir}\n """.split() lowerCAmelCase__ = run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , '''step_2''' ) ) ) def A__ ( self : Any ): """simple docstring""" lowerCAmelCase__ = F"""\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , 'epoch_0' )}\n """.split() lowerCAmelCase__ = run_command(self._launch_args + testargs , return_stdout=UpperCamelCase__ ) self.assertNotIn('''epoch 0:''' , UpperCamelCase__ ) self.assertIn('''epoch 1:''' , UpperCamelCase__ ) def A__ ( self : Optional[Any] ): """simple docstring""" lowerCAmelCase__ = F"""\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , 'step_2' )}\n """.split() lowerCAmelCase__ = run_command(self._launch_args + testargs , return_stdout=UpperCamelCase__ ) if torch.cuda.is_available(): lowerCAmelCase__ = torch.cuda.device_count() else: lowerCAmelCase__ = 1 if num_processes > 1: self.assertNotIn('''epoch 0:''' , UpperCamelCase__ ) self.assertIn('''epoch 1:''' , UpperCamelCase__ ) else: self.assertIn('''epoch 0:''' , UpperCamelCase__ ) self.assertIn('''epoch 1:''' , UpperCamelCase__ ) @slow def A__ ( self : List[Any] ): """simple docstring""" lowerCAmelCase__ = '''\n examples/by_feature/cross_validation.py\n --num_folds 2\n '''.split() with mock.patch.dict(os.environ , {'''TESTING_MOCKED_DATALOADERS''': '''0'''} ): lowerCAmelCase__ = run_command(self._launch_args + testargs , return_stdout=UpperCamelCase__ ) lowerCAmelCase__ = re.findall('''({.+})''' , UpperCamelCase__ ) lowerCAmelCase__ = [r for r in results if '''accuracy''' in r][-1] lowerCAmelCase__ = ast.literal_eval(UpperCamelCase__ ) self.assertGreaterEqual(results['''accuracy'''] , 0.75 ) def A__ ( self : Any ): """simple docstring""" lowerCAmelCase__ = ['''examples/by_feature/multi_process_metrics.py'''] run_command(self._launch_args + testargs ) @require_trackers @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def A__ ( self : Tuple ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdir: lowerCAmelCase__ = F"""\n examples/by_feature/tracking.py\n --with_tracking\n --project_dir {tmpdir}\n """.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase__ , '''tracking''' ) ) ) def A__ ( self : Optional[Any] ): """simple docstring""" lowerCAmelCase__ = ['''examples/by_feature/gradient_accumulation.py'''] run_command(self._launch_args + testargs ) def A__ ( self : str ): """simple docstring""" lowerCAmelCase__ = ['''examples/by_feature/local_sgd.py'''] run_command(self._launch_args + testargs )
615
'''simple docstring''' import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def _SCREAMING_SNAKE_CASE ( ): with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(__snake_case ): requests.request('GET' , 'https://huggingface.co' ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request('GET' , 'https://huggingface.co' , timeout=1.0 ) @pytest.mark.integration def _SCREAMING_SNAKE_CASE ( ): with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request('GET' , 'https://huggingface.co' ) def _SCREAMING_SNAKE_CASE ( ): with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(__snake_case ): http_head('https://huggingface.co' )
107
0
_snake_case : dict[str, float] = { "km/h": 1.0, "m/s": 3.6, "mph": 1.60_93_44, "knot": 1.8_52, } _snake_case : dict[str, float] = { "km/h": 1.0, "m/s": 0.2_77_77_77_78, "mph": 0.6_21_37_11_92, "knot": 0.5_39_95_68_03, } def a_ ( lowerCAmelCase_ : float, lowerCAmelCase_ : str, lowerCAmelCase_ : str ): if unit_to not in speed_chart or unit_from not in speed_chart_inverse: __lowerCAmelCase = ( F"""Incorrect 'from_type' or 'to_type' value: {unit_from!r}, {unit_to!r}\n""" F"""Valid values are: {", ".join(lowerCamelCase_ )}""" ) raise ValueError(lowerCamelCase_ ) return round(speed * speed_chart[unit_from] * speed_chart_inverse[unit_to], 3 ) if __name__ == "__main__": import doctest doctest.testmod()
702
import inspect import unittest import warnings from transformers import DeiTConfig from transformers.models.auto import get_values from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_MAPPING, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, ) from transformers.models.deit.modeling_deit import DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class _UpperCAmelCase : """simple docstring""" def __init__( self : Optional[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : int=1_3 , lowerCAmelCase_ : List[str]=3_0 , lowerCAmelCase_ : int=2 , lowerCAmelCase_ : Tuple=3 , lowerCAmelCase_ : int=True , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : Union[str, Any]=3_2 , lowerCAmelCase_ : int=5 , lowerCAmelCase_ : Any=4 , lowerCAmelCase_ : str=3_7 , lowerCAmelCase_ : Any="gelu" , lowerCAmelCase_ : List[str]=0.1 , lowerCAmelCase_ : str=0.1 , lowerCAmelCase_ : Any=1_0 , lowerCAmelCase_ : Any=0.02 , lowerCAmelCase_ : int=3 , lowerCAmelCase_ : Union[str, Any]=None , lowerCAmelCase_ : Any=2 , ) -> Any: __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = image_size __lowerCAmelCase = patch_size __lowerCAmelCase = num_channels __lowerCAmelCase = is_training __lowerCAmelCase = use_labels __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = type_sequence_label_size __lowerCAmelCase = initializer_range __lowerCAmelCase = scope __lowerCAmelCase = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) __lowerCAmelCase = (image_size // patch_size) ** 2 __lowerCAmelCase = num_patches + 2 def lowercase ( self : Union[str, Any] ) -> Any: __lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase = None if self.use_labels: __lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase = self.get_config() return config, pixel_values, labels def lowercase ( self : str ) -> int: return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCAmelCase_ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def lowercase ( self : Optional[int] , lowerCAmelCase_ : str , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Tuple ) -> Any: __lowerCAmelCase = DeiTModel(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase ( self : Union[str, Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Tuple ) -> Union[str, Any]: __lowerCAmelCase = DeiTForMaskedImageModeling(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(lowerCAmelCase_ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images __lowerCAmelCase = 1 __lowerCAmelCase = DeiTForMaskedImageModeling(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __lowerCAmelCase = model(lowerCAmelCase_ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def lowercase ( self : str , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : Any ) -> str: __lowerCAmelCase = self.type_sequence_label_size __lowerCAmelCase = DeiTForImageClassification(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __lowerCAmelCase = 1 __lowerCAmelCase = DeiTForImageClassification(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __lowerCAmelCase = model(lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowercase ( self : List[Any] ) -> List[Any]: __lowerCAmelCase = self.prepare_config_and_inputs() ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) = config_and_inputs __lowerCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class _UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): """simple docstring""" a_ = ( ( DeiTModel, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, ) if is_torch_available() else () ) a_ = ( { """feature-extraction""": DeiTModel, """image-classification""": (DeiTForImageClassification, DeiTForImageClassificationWithTeacher), } if is_torch_available() else {} ) a_ = False a_ = False a_ = False def lowercase ( self : List[str] ) -> Tuple: __lowerCAmelCase = DeiTModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ , hidden_size=3_7 ) def lowercase ( self : Union[str, Any] ) -> Tuple: self.config_tester.run_common_tests() @unittest.skip(reason='DeiT does not use inputs_embeds' ) def lowercase ( self : Union[str, Any] ) -> str: pass def lowercase ( self : Tuple ) -> Union[str, Any]: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(lowerCAmelCase_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __lowerCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase_ , nn.Linear ) ) def lowercase ( self : str ) -> Union[str, Any]: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(lowerCAmelCase_ ) __lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase = [*signature.parameters.keys()] __lowerCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCAmelCase_ ) def lowercase ( self : List[Any] ) -> Optional[Any]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def lowercase ( self : Dict ) -> int: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCAmelCase_ ) def lowercase ( self : List[Any] ) -> Optional[int]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase_ ) def lowercase ( self : Optional[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Tuple=False ) -> int: __lowerCAmelCase = super()._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_ ) if return_labels: if model_class.__name__ == "DeiTForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def lowercase ( self : str ) -> Union[str, Any]: if not self.model_tester.is_training: return __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase = True for model_class in self.all_model_classes: # DeiTForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(lowerCAmelCase_ ) or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue __lowerCAmelCase = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.train() __lowerCAmelCase = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_ ) __lowerCAmelCase = model(**lowerCAmelCase_ ).loss loss.backward() def lowercase ( self : List[str] ) -> List[str]: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return __lowerCAmelCase = False __lowerCAmelCase = True for model_class in self.all_model_classes: if model_class in get_values(lowerCAmelCase_ ) or not model_class.supports_gradient_checkpointing: continue # DeiTForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "DeiTForImageClassificationWithTeacher": continue __lowerCAmelCase = model_class(lowerCAmelCase_ ) model.gradient_checkpointing_enable() model.to(lowerCAmelCase_ ) model.train() __lowerCAmelCase = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_ ) __lowerCAmelCase = model(**lowerCAmelCase_ ).loss loss.backward() def lowercase ( self : Optional[int] ) -> Any: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase = [ {'title': 'multi_label_classification', 'num_labels': 2, 'dtype': torch.float}, {'title': 'single_label_classification', 'num_labels': 1, 'dtype': torch.long}, {'title': 'regression', 'num_labels': 1, 'dtype': torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(lowerCAmelCase_ ), *get_values(lowerCAmelCase_ ), ] or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=f"""Testing {model_class} with {problem_type["title"]}""" ): __lowerCAmelCase = problem_type['title'] __lowerCAmelCase = problem_type['num_labels'] __lowerCAmelCase = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.train() __lowerCAmelCase = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_ ) if problem_type["num_labels"] > 1: __lowerCAmelCase = inputs['labels'].unsqueeze(1 ).repeat(1 , problem_type['num_labels'] ) __lowerCAmelCase = inputs['labels'].to(problem_type['dtype'] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=lowerCAmelCase_ ) as warning_list: __lowerCAmelCase = model(**lowerCAmelCase_ ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( f"""Something is going wrong in the regression problem: intercepted {w.message}""" ) loss.backward() @slow def lowercase ( self : List[str] ) -> List[Any]: for model_name in DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase = DeiTModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) def a_ ( ): __lowerCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def lowercase ( self : str ) -> List[str]: return ( DeiTImageProcessor.from_pretrained('facebook/deit-base-distilled-patch16-224' ) if is_vision_available() else None ) @slow def lowercase ( self : Union[str, Any] ) -> Optional[Any]: __lowerCAmelCase = DeiTForImageClassificationWithTeacher.from_pretrained('facebook/deit-base-distilled-patch16-224' ).to( lowerCAmelCase_ ) __lowerCAmelCase = self.default_image_processor __lowerCAmelCase = prepare_img() __lowerCAmelCase = image_processor(images=lowerCAmelCase_ , return_tensors='pt' ).to(lowerCAmelCase_ ) # forward pass with torch.no_grad(): __lowerCAmelCase = model(**lowerCAmelCase_ ) # verify the logits __lowerCAmelCase = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase_ ) __lowerCAmelCase = torch.tensor([-1.02_66, 0.19_12, -1.28_61] ).to(lowerCAmelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase_ , atol=1e-4 ) ) @slow @require_accelerate @require_torch_gpu def lowercase ( self : Dict ) -> int: __lowerCAmelCase = DeiTModel.from_pretrained( 'facebook/deit-base-distilled-patch16-224' , torch_dtype=torch.floataa , device_map='auto' ) __lowerCAmelCase = self.default_image_processor __lowerCAmelCase = prepare_img() __lowerCAmelCase = image_processor(images=lowerCAmelCase_ , return_tensors='pt' ) __lowerCAmelCase = inputs.pixel_values.to(lowerCAmelCase_ ) # forward pass to make sure inference works in fp16 with torch.no_grad(): __lowerCAmelCase = model(lowerCAmelCase_ )
421
0
import argparse import json import math import os import time import traceback import zipfile from collections import Counter import requests def snake_case__ ( UpperCAmelCase : List[str] , UpperCAmelCase : Tuple=None ): lowerCAmelCase__ :List[str] = None if token is not None: lowerCAmelCase__ :Any = {'''Accept''': '''application/vnd.github+json''', '''Authorization''': F'''Bearer {token}'''} lowerCAmelCase__ :List[Any] = F'''https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100''' lowerCAmelCase__ :str = requests.get(a_ , headers=a_ ).json() lowerCAmelCase__ :Union[str, Any] = {} try: job_links.update({job["name"]: job["html_url"] for job in result["jobs"]} ) lowerCAmelCase__ :Optional[Any] = math.ceil((result["total_count"] - 1_0_0) / 1_0_0 ) for i in range(a_ ): lowerCAmelCase__ :Union[str, Any] = requests.get(url + F'''&page={i + 2}''' , headers=a_ ).json() job_links.update({job["name"]: job["html_url"] for job in result["jobs"]} ) return job_links except Exception: print(F'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' ) return {} def snake_case__ ( UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[str]=None ): lowerCAmelCase__ :Optional[Any] = None if token is not None: lowerCAmelCase__ :str = {'''Accept''': '''application/vnd.github+json''', '''Authorization''': F'''Bearer {token}'''} lowerCAmelCase__ :str = F'''https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100''' lowerCAmelCase__ :Union[str, Any] = requests.get(a_ , headers=a_ ).json() lowerCAmelCase__ :str = {} try: artifacts.update({artifact["name"]: artifact["archive_download_url"] for artifact in result["artifacts"]} ) lowerCAmelCase__ :Tuple = math.ceil((result["total_count"] - 1_0_0) / 1_0_0 ) for i in range(a_ ): lowerCAmelCase__ :int = requests.get(url + F'''&page={i + 2}''' , headers=a_ ).json() artifacts.update({artifact["name"]: artifact["archive_download_url"] for artifact in result["artifacts"]} ) return artifacts except Exception: print(F'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' ) return {} def snake_case__ ( UpperCAmelCase : Tuple , UpperCAmelCase : List[str] , UpperCAmelCase : Dict , UpperCAmelCase : Union[str, Any] ): lowerCAmelCase__ :Any = None if token is not None: lowerCAmelCase__ :int = {'''Accept''': '''application/vnd.github+json''', '''Authorization''': F'''Bearer {token}'''} lowerCAmelCase__ :Any = requests.get(a_ , headers=a_ , allow_redirects=a_ ) lowerCAmelCase__ :str = result.headers['''Location'''] lowerCAmelCase__ :Tuple = requests.get(a_ , allow_redirects=a_ ) lowerCAmelCase__ :Optional[Any] = os.path.join(a_ , F'''{artifact_name}.zip''' ) with open(a_ , "wb" ) as fp: fp.write(response.content ) def snake_case__ ( UpperCAmelCase : Tuple , UpperCAmelCase : Union[str, Any]=None ): lowerCAmelCase__ :Tuple = [] lowerCAmelCase__ :List[Any] = [] lowerCAmelCase__ :List[Any] = None with zipfile.ZipFile(a_ ) as z: for filename in z.namelist(): if not os.path.isdir(a_ ): # read the file if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]: with z.open(a_ ) as f: for line in f: lowerCAmelCase__ :Optional[int] = line.decode("UTF-8" ).strip() if filename == "failures_line.txt": try: # `error_line` is the place where `error` occurs lowerCAmelCase__ :int = line[: line.index(": " )] lowerCAmelCase__ :Tuple = line[line.index(": " ) + len(": " ) :] errors.append([error_line, error] ) except Exception: # skip un-related lines pass elif filename == "summary_short.txt" and line.startswith("FAILED " ): # `test` is the test method that failed lowerCAmelCase__ :Union[str, Any] = line[len("FAILED " ) :] failed_tests.append(a_ ) elif filename == "job_name.txt": lowerCAmelCase__ :Optional[int] = line if len(a_ ) != len(a_ ): raise ValueError( F'''`errors` and `failed_tests` should have the same number of elements. Got {len(a_ )} for `errors` ''' F'''and {len(a_ )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some''' " problem." ) lowerCAmelCase__ :Optional[int] = None if job_name and job_links: lowerCAmelCase__ :Any = job_links.get(a_ , a_ ) # A list with elements of the form (line of error, error, failed test) lowerCAmelCase__ :Optional[Any] = [x + [y] + [job_link] for x, y in zip(a_ , a_ )] return result def snake_case__ ( UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[str]=None ): lowerCAmelCase__ :List[str] = [] lowerCAmelCase__ :Dict = [os.path.join(a_ , a_ ) for p in os.listdir(a_ ) if p.endswith(".zip" )] for p in paths: errors.extend(get_errors_from_single_artifact(a_ , job_links=a_ ) ) return errors def snake_case__ ( UpperCAmelCase : Optional[Any] , UpperCAmelCase : Any=None ): lowerCAmelCase__ :Tuple = Counter() counter.update([x[1] for x in logs] ) lowerCAmelCase__ :int = counter.most_common() lowerCAmelCase__ :Optional[int] = {} for error, count in counts: if error_filter is None or error not in error_filter: lowerCAmelCase__ :List[Any] = {'''count''': count, '''failed_tests''': [(x[2], x[0]) for x in logs if x[1] == error]} lowerCAmelCase__ :Union[str, Any] = dict(sorted(r.items() , key=lambda UpperCAmelCase : item[1]["count"] , reverse=a_ ) ) return r def snake_case__ ( UpperCAmelCase : Optional[int] ): lowerCAmelCase__ :Tuple = test.split("::" )[0] if test.startswith("tests/models/" ): lowerCAmelCase__ :Optional[int] = test.split("/" )[2] else: lowerCAmelCase__ :Optional[Any] = None return test def snake_case__ ( UpperCAmelCase : Tuple , UpperCAmelCase : List[Any]=None ): lowerCAmelCase__ :Tuple = [(x[0], x[1], get_model(x[2] )) for x in logs] lowerCAmelCase__ :Dict = [x for x in logs if x[2] is not None] lowerCAmelCase__ :Any = {x[2] for x in logs} lowerCAmelCase__ :Dict = {} for test in tests: lowerCAmelCase__ :str = Counter() # count by errors in `test` counter.update([x[1] for x in logs if x[2] == test] ) lowerCAmelCase__ :List[str] = counter.most_common() lowerCAmelCase__ :Tuple = {error: count for error, count in counts if (error_filter is None or error not in error_filter)} lowerCAmelCase__ :Dict = sum(error_counts.values() ) if n_errors > 0: lowerCAmelCase__ :List[str] = {'''count''': n_errors, '''errors''': error_counts} lowerCAmelCase__ :List[str] = dict(sorted(r.items() , key=lambda UpperCAmelCase : item[1]["count"] , reverse=a_ ) ) return r def snake_case__ ( UpperCAmelCase : List[Any] ): lowerCAmelCase__ :Optional[int] = '''| no. | error | status |''' lowerCAmelCase__ :Optional[Any] = '''|-:|:-|:-|''' lowerCAmelCase__ :Tuple = [header, sep] for error in reduced_by_error: lowerCAmelCase__ :List[Any] = reduced_by_error[error]['''count'''] lowerCAmelCase__ :Any = F'''| {count} | {error[:1_0_0]} | |''' lines.append(a_ ) return "\n".join(a_ ) def snake_case__ ( UpperCAmelCase : Optional[int] ): lowerCAmelCase__ :List[Any] = '''| model | no. of errors | major error | count |''' lowerCAmelCase__ :str = '''|-:|-:|-:|-:|''' lowerCAmelCase__ :int = [header, sep] for model in reduced_by_model: lowerCAmelCase__ :Dict = reduced_by_model[model]['''count'''] lowerCAmelCase__ :Any = list(reduced_by_model[model]["errors"].items() )[0] lowerCAmelCase__ :List[Any] = F'''| {model} | {count} | {error[:6_0]} | {_count} |''' lines.append(a_ ) return "\n".join(a_ ) if __name__ == "__main__": _a : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument("""--workflow_run_id""", type=str, required=True, help="""A GitHub Actions workflow run id.""") parser.add_argument( """--output_dir""", type=str, required=True, help="""Where to store the downloaded artifacts and other result files.""", ) parser.add_argument("""--token""", default=None, type=str, help="""A token that has actions:read permission.""") _a : List[str] = parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) _a : List[Any] = get_job_links(args.workflow_run_id, token=args.token) _a : Dict = {} # To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee. # For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`. if _job_links: for k, v in _job_links.items(): # This is how GitHub actions combine job names. if " / " in k: _a : Union[str, Any] = k.find(""" / """) _a : Optional[Any] = k[index + len(""" / """) :] _a : Any = v with open(os.path.join(args.output_dir, """job_links.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(job_links, fp, ensure_ascii=False, indent=4) _a : List[str] = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, """artifacts.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) for idx, (name, url) in enumerate(artifacts.items()): download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) _a : List[str] = get_all_errors(args.output_dir, job_links=job_links) # `e[1]` is the error _a : Dict = Counter() counter.update([e[1] for e in errors]) # print the top 30 most common test errors _a : Any = counter.most_common(30) for item in most_common: print(item) with open(os.path.join(args.output_dir, """errors.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(errors, fp, ensure_ascii=False, indent=4) _a : List[Any] = reduce_by_error(errors) _a : Tuple = reduce_by_model(errors) _a : int = make_github_table(reduced_by_error) _a : List[Any] = make_github_table_per_model(reduced_by_model) with open(os.path.join(args.output_dir, """reduced_by_error.txt"""), """w""", encoding="""UTF-8""") as fp: fp.write(sa) with open(os.path.join(args.output_dir, """reduced_by_model.txt"""), """w""", encoding="""UTF-8""") as fp: fp.write(sa)
145
"""simple docstring""" from __future__ import annotations import inspect import unittest import numpy as np from transformers import DeiTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, ) from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class _SCREAMING_SNAKE_CASE: def __init__( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=13 ,SCREAMING_SNAKE_CASE__=30 ,SCREAMING_SNAKE_CASE__=2 ,SCREAMING_SNAKE_CASE__=3 ,SCREAMING_SNAKE_CASE__=True ,SCREAMING_SNAKE_CASE__=True ,SCREAMING_SNAKE_CASE__=32 ,SCREAMING_SNAKE_CASE__=2 ,SCREAMING_SNAKE_CASE__=4 ,SCREAMING_SNAKE_CASE__=37 ,SCREAMING_SNAKE_CASE__="gelu" ,SCREAMING_SNAKE_CASE__=0.1 ,SCREAMING_SNAKE_CASE__=0.1 ,SCREAMING_SNAKE_CASE__=10 ,SCREAMING_SNAKE_CASE__=0.0_2 ,SCREAMING_SNAKE_CASE__=3 ,SCREAMING_SNAKE_CASE__=None ,SCREAMING_SNAKE_CASE__=2 ,) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE :Union[str, Any] = parent __SCREAMING_SNAKE_CASE :str = batch_size __SCREAMING_SNAKE_CASE :Optional[Any] = image_size __SCREAMING_SNAKE_CASE :List[Any] = patch_size __SCREAMING_SNAKE_CASE :Union[str, Any] = num_channels __SCREAMING_SNAKE_CASE :Union[str, Any] = is_training __SCREAMING_SNAKE_CASE :Any = use_labels __SCREAMING_SNAKE_CASE :List[Any] = hidden_size __SCREAMING_SNAKE_CASE :str = num_hidden_layers __SCREAMING_SNAKE_CASE :Tuple = num_attention_heads __SCREAMING_SNAKE_CASE :List[str] = intermediate_size __SCREAMING_SNAKE_CASE :Tuple = hidden_act __SCREAMING_SNAKE_CASE :Any = hidden_dropout_prob __SCREAMING_SNAKE_CASE :List[Any] = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE :Optional[Any] = type_sequence_label_size __SCREAMING_SNAKE_CASE :Any = initializer_range __SCREAMING_SNAKE_CASE :int = scope __SCREAMING_SNAKE_CASE :List[Any] = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) __SCREAMING_SNAKE_CASE :Optional[Any] = (image_size // patch_size) ** 2 __SCREAMING_SNAKE_CASE :Union[str, Any] = num_patches + 2 def _UpperCamelCase ( self ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE :Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __SCREAMING_SNAKE_CASE :Tuple = None if self.use_labels: __SCREAMING_SNAKE_CASE :int = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) __SCREAMING_SNAKE_CASE :Union[str, Any] = self.get_config() return config, pixel_values, labels def _UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" return DeiTConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=SCREAMING_SNAKE_CASE__ ,initializer_range=self.initializer_range ,encoder_stride=self.encoder_stride ,) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE :Optional[Any] = TFDeiTModel(config=SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Optional[Any] = model(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE :Optional[int] = TFDeiTForMaskedImageModeling(config=SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Tuple = model(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual( result.reconstruction.shape ,(self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images __SCREAMING_SNAKE_CASE :Any = 1 __SCREAMING_SNAKE_CASE :List[Any] = TFDeiTForMaskedImageModeling(SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __SCREAMING_SNAKE_CASE :int = model(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.reconstruction.shape ,(self.batch_size, 1, self.image_size, self.image_size) ) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE :Optional[int] = self.type_sequence_label_size __SCREAMING_SNAKE_CASE :Optional[Any] = TFDeiTForImageClassification(SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :List[Any] = model(SCREAMING_SNAKE_CASE__ ,labels=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images __SCREAMING_SNAKE_CASE :List[Any] = 1 __SCREAMING_SNAKE_CASE :Union[str, Any] = TFDeiTForImageClassification(SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :List[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __SCREAMING_SNAKE_CASE :Any = model(SCREAMING_SNAKE_CASE__ ,labels=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def _UpperCamelCase ( self ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE :List[Any] = self.prepare_config_and_inputs() __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE :Any = config_and_inputs __SCREAMING_SNAKE_CASE :Dict = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class _SCREAMING_SNAKE_CASE( A , A , unittest.TestCase ): SCREAMING_SNAKE_CASE_ : List[str] = ( ( TFDeiTModel, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, ) if is_tf_available() else () ) SCREAMING_SNAKE_CASE_ : Tuple = ( { '''feature-extraction''': TFDeiTModel, '''image-classification''': (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher), } if is_tf_available() else {} ) SCREAMING_SNAKE_CASE_ : List[Any] = False SCREAMING_SNAKE_CASE_ : Tuple = False SCREAMING_SNAKE_CASE_ : int = False SCREAMING_SNAKE_CASE_ : Tuple = False def _UpperCamelCase ( self ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE :Optional[Any] = TFDeiTModelTester(self ) __SCREAMING_SNAKE_CASE :str = ConfigTester(self ,config_class=SCREAMING_SNAKE_CASE__ ,has_text_modality=SCREAMING_SNAKE_CASE__ ,hidden_size=37 ) def _UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='''DeiT does not use inputs_embeds''' ) def _UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" pass def _UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE :str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE :str = model_class(SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(model.get_input_embeddings() ,(tf.keras.layers.Layer) ) __SCREAMING_SNAKE_CASE :List[str] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(SCREAMING_SNAKE_CASE__ ,tf.keras.layers.Dense ) ) def _UpperCamelCase ( self ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE :Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE :str = model_class(SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :List[Any] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __SCREAMING_SNAKE_CASE :List[Any] = [*signature.parameters.keys()] __SCREAMING_SNAKE_CASE :Optional[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] ,SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE :str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE :str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE :List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=False ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE :int = super()._prepare_for_class(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,return_labels=SCREAMING_SNAKE_CASE__ ) if return_labels: if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters: del inputs_dict["labels"] return inputs_dict @slow def _UpperCamelCase ( self ) -> Dict: """simple docstring""" for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __SCREAMING_SNAKE_CASE :str = TFDeiTModel.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( ) -> Tuple: __SCREAMING_SNAKE_CASE :Dict = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class _SCREAMING_SNAKE_CASE( unittest.TestCase ): @cached_property def _UpperCamelCase ( self ) -> Tuple: """simple docstring""" return ( DeiTImageProcessor.from_pretrained('''facebook/deit-base-distilled-patch16-224''' ) if is_vision_available() else None ) @slow def _UpperCamelCase ( self ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE :str = TFDeiTForImageClassificationWithTeacher.from_pretrained('''facebook/deit-base-distilled-patch16-224''' ) __SCREAMING_SNAKE_CASE :int = self.default_image_processor __SCREAMING_SNAKE_CASE :str = prepare_img() __SCREAMING_SNAKE_CASE :int = image_processor(images=SCREAMING_SNAKE_CASE__ ,return_tensors='''tf''' ) # forward pass __SCREAMING_SNAKE_CASE :int = model(**SCREAMING_SNAKE_CASE__ ) # verify the logits __SCREAMING_SNAKE_CASE :Any = tf.TensorShape((1, 10_00) ) self.assertEqual(outputs.logits.shape ,SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Optional[int] = tf.constant([-1.0_2_6_6, 0.1_9_1_2, -1.2_8_6_1] ) self.assertTrue(np.allclose(outputs.logits[0, :3] ,SCREAMING_SNAKE_CASE__ ,atol=1E-4 ) )
498
0
from collections.abc import Callable def __UpperCamelCase ( _A , _A , _A ): lowerCAmelCase_ = a lowerCAmelCase_ = b if function(_A ) == 0: # one of the a or b is a root for the function return a elif function(_A ) == 0: return b elif ( function(_A ) * function(_A ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError('''could not find root in given interval.''' ) else: lowerCAmelCase_ = start + (end - start) / 2.0 while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7 if function(_A ) == 0: return mid elif function(_A ) * function(_A ) < 0: lowerCAmelCase_ = mid else: lowerCAmelCase_ = mid lowerCAmelCase_ = start + (end - start) / 2.0 return mid def __UpperCamelCase ( _A ): return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 1_000)) import doctest doctest.testmod()
703
from __future__ import annotations _A = { '''A''': ['''B''', '''C''', '''E'''], '''B''': ['''A''', '''D''', '''E'''], '''C''': ['''A''', '''F''', '''G'''], '''D''': ['''B'''], '''E''': ['''A''', '''B''', '''D'''], '''F''': ['''C'''], '''G''': ['''C'''], } class A : def __init__( self, UpperCamelCase__, UpperCamelCase__ ): """simple docstring""" lowerCAmelCase_ = graph # mapping node to its parent in resulting breadth first tree lowerCAmelCase_ = {} lowerCAmelCase_ = source_vertex def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = {self.source_vertex} lowerCAmelCase_ = None lowerCAmelCase_ = [self.source_vertex] # first in first out queue while queue: lowerCAmelCase_ = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(UpperCamelCase__ ) lowerCAmelCase_ = vertex queue.append(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__ ): """simple docstring""" if target_vertex == self.source_vertex: return self.source_vertex lowerCAmelCase_ = self.parent.get(UpperCamelCase__ ) if target_vertex_parent is None: lowerCAmelCase_ = ( f"No path from vertex: {self.source_vertex} to vertex: {target_vertex}" ) raise ValueError(UpperCamelCase__ ) return self.shortest_path(UpperCamelCase__ ) + f"->{target_vertex}" if __name__ == "__main__": _A = Graph(graph, '''G''') g.breath_first_search() print(g.shortest_path('''D''')) print(g.shortest_path('''G''')) print(g.shortest_path('''Foo'''))
325
0
import argparse import logging import os import datasets import tensorflow as tf from transformers import AutoTokenizer lowerCAmelCase_ = logging.getLogger(__name__) def __SCREAMING_SNAKE_CASE (): snake_case_ = argparse.ArgumentParser( description='''Prepare TFRecord shards from pre-tokenized samples of the wikitext dataset.''' ) parser.add_argument( '''--dataset_name''' , type=SCREAMING_SNAKE_CASE__ , default='''wikitext''' , help='''Name of the training. Explore datasets at: hf.co/datasets.''' , ) parser.add_argument( '''--dataset_config''' , type=SCREAMING_SNAKE_CASE__ , default='''wikitext-103-raw-v1''' , help='''Configuration name of the dataset.''' ) parser.add_argument( '''--tokenizer_name_or_path''' , type=SCREAMING_SNAKE_CASE__ , default='''sayakpaul/unigram-tokenizer-wikitext''' , help='''Tokenizer identifier. Can be a local filepath or a Hub identifier.''' , ) parser.add_argument( '''--shard_size''' , type=SCREAMING_SNAKE_CASE__ , default=1000 , help='''Number of entries to go in a single shard.''' , ) parser.add_argument('''--split''' , type=SCREAMING_SNAKE_CASE__ , default='''train''' , choices=['''train''', '''test''', '''validation'''] ) parser.add_argument( '''--limit''' , default=SCREAMING_SNAKE_CASE__ , type=SCREAMING_SNAKE_CASE__ , help='''Limit the number of shards (used for debugging).''' , ) parser.add_argument( '''--max_length''' , type=SCREAMING_SNAKE_CASE__ , default=512 , help='''Maximum sequence length. For training on TPUs, it helps to have a maximum''' ''' sequence length that is a multiple of 8.''' , ) parser.add_argument( '''--output_dir''' , default='''tf-tpu''' , type=SCREAMING_SNAKE_CASE__ , help='''Output directory where the TFRecord shards will be saved. If the''' ''' path is appended with `gs://` (\'gs://tf-tpu\', for example) then the TFRecord''' ''' shards will be directly saved to a Google Cloud Storage bucket.''' , ) snake_case_ = parser.parse_args() return args def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): def fn(SCREAMING_SNAKE_CASE__ ): return tokenizer(examples['''text'''] ) return fn def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = [] for i in range(len(tokenized_data['''input_ids'''] ) ): snake_case_ = { '''input_ids''': tf.train.Feature(intaa_list=tf.train.IntaaList(value=tokenized_data['''input_ids'''][i] ) ), '''attention_mask''': tf.train.Feature( intaa_list=tf.train.IntaaList(value=tokenized_data['''attention_mask'''][i] ) ), } snake_case_ = tf.train.Features(feature=SCREAMING_SNAKE_CASE__ ) snake_case_ = tf.train.Example(features=SCREAMING_SNAKE_CASE__ ) snake_case_ = example.SerializeToString() records.append(SCREAMING_SNAKE_CASE__ ) return records def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = datasets.load_dataset(args.dataset_name , args.dataset_config , split=args.split ) if args.limit is not None: snake_case_ = min(len(SCREAMING_SNAKE_CASE__ ) , args.limit ) snake_case_ = dataset.select(range(SCREAMING_SNAKE_CASE__ ) ) print(F'''Limiting the dataset to {args.limit} entries.''' ) snake_case_ = AutoTokenizer.from_pretrained(args.tokenizer_name_or_path ) # Handle output directory creation. # For serializing into a Google Cloud Storage Bucket, one needs to first # create a bucket. if "gs" not in args.output_dir: if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) snake_case_ = os.path.join(args.output_dir , args.split ) if not os.path.exists(SCREAMING_SNAKE_CASE__ ): os.makedirs(SCREAMING_SNAKE_CASE__ ) else: snake_case_ = os.path.join(args.output_dir , args.split ) # Tokenize the whole dataset at once. snake_case_ = tokenize_function(SCREAMING_SNAKE_CASE__ ) snake_case_ = dataset.map(SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ , num_proc=4 , remove_columns=['''text'''] ) # We need to concatenate all our texts together, and then split the result # into chunks of a fixed size, which we will call block_size. To do this, we # will use the map method again, with the option batched=True. When we use batched=True, # the function we pass to map() will be passed multiple inputs at once, allowing us # to group them into more or fewer examples than we had in the input. # This allows us to create our new fixed-length samples. The advantage of this # method is that we don't lose a whole lot of content from the dataset compared to the # case where we simply tokenize with a pre-defined max_length. def group_texts(SCREAMING_SNAKE_CASE__ ): # Concatenate all texts. snake_case_ = {k: sum(examples[k] , [] ) for k in examples.keys()} snake_case_ = len(concatenated_examples[list(examples.keys() )[0]] ) # We drop the small remainder, though you could add padding instead if the model supports it # In this, as in all things, we advise you to follow your heart 🫀 snake_case_ = (total_length // args.max_length) * args.max_length # Split by chunks of max_len. snake_case_ = { k: [t[i : i + args.max_length] for i in range(0 , SCREAMING_SNAKE_CASE__ , args.max_length )] for k, t in concatenated_examples.items() } return result snake_case_ = dataset_tokenized.map(SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ , batch_size=1000 , num_proc=4 ) snake_case_ = 0 snake_case_ = 0 for shard in range(0 , len(SCREAMING_SNAKE_CASE__ ) , args.shard_size ): snake_case_ = grouped_dataset[shard : shard + args.shard_size] snake_case_ = len(dataset_snapshot['''input_ids'''] ) snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , F'''dataset-{shard_count}-{records_containing}.tfrecord''' ) snake_case_ = get_serialized_examples(SCREAMING_SNAKE_CASE__ ) with tf.io.TFRecordWriter(SCREAMING_SNAKE_CASE__ ) as out_file: for i in range(len(SCREAMING_SNAKE_CASE__ ) ): snake_case_ = serialized_examples[i] out_file.write(SCREAMING_SNAKE_CASE__ ) print('''Wrote file {} containing {} records'''.format(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) shard_count += 1 total_records += records_containing with open(F'''split-{args.split}-records-count.txt''' , '''w''' ) as f: print(F'''Total {args.split} records: {total_records}''' , file=SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": lowerCAmelCase_ = parse_args() main(args)
39
'''simple docstring''' import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class A__ : """simple docstring""" def __init__( self : str , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Any=1_3 , lowerCAmelCase__ : List[Any]=3_2 , lowerCAmelCase__ : Union[str, Any]=2 , lowerCAmelCase__ : Optional[Any]=3 , lowerCAmelCase__ : Any=1_6 , lowerCAmelCase__ : Optional[int]=[1, 2, 1] , lowerCAmelCase__ : Tuple=[2, 2, 4] , lowerCAmelCase__ : Optional[Any]=2 , lowerCAmelCase__ : Optional[Any]=2.0 , lowerCAmelCase__ : Dict=True , lowerCAmelCase__ : Optional[int]=0.0 , lowerCAmelCase__ : Tuple=0.0 , lowerCAmelCase__ : Union[str, Any]=0.1 , lowerCAmelCase__ : int="gelu" , lowerCAmelCase__ : Any=False , lowerCAmelCase__ : Union[str, Any]=True , lowerCAmelCase__ : Union[str, Any]=0.02 , lowerCAmelCase__ : Tuple=1e-5 , lowerCAmelCase__ : str=True , lowerCAmelCase__ : Any=None , lowerCAmelCase__ : Tuple=True , lowerCAmelCase__ : List[Any]=1_0 , lowerCAmelCase__ : Union[str, Any]=8 , ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : int = parent _UpperCAmelCase : int = batch_size _UpperCAmelCase : Any = image_size _UpperCAmelCase : List[Any] = patch_size _UpperCAmelCase : Optional[int] = num_channels _UpperCAmelCase : Optional[Any] = embed_dim _UpperCAmelCase : int = depths _UpperCAmelCase : Tuple = num_heads _UpperCAmelCase : int = window_size _UpperCAmelCase : Optional[int] = mlp_ratio _UpperCAmelCase : List[Any] = qkv_bias _UpperCAmelCase : List[str] = hidden_dropout_prob _UpperCAmelCase : str = attention_probs_dropout_prob _UpperCAmelCase : Tuple = drop_path_rate _UpperCAmelCase : Tuple = hidden_act _UpperCAmelCase : Dict = use_absolute_embeddings _UpperCAmelCase : Optional[Any] = patch_norm _UpperCAmelCase : List[Any] = layer_norm_eps _UpperCAmelCase : Union[str, Any] = initializer_range _UpperCAmelCase : Union[str, Any] = is_training _UpperCAmelCase : int = scope _UpperCAmelCase : Dict = use_labels _UpperCAmelCase : Union[str, Any] = type_sequence_label_size _UpperCAmelCase : Dict = encoder_stride def _lowerCAmelCase ( self : List[Any] ) -> Tuple: """simple docstring""" _UpperCAmelCase : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCAmelCase : str = None if self.use_labels: _UpperCAmelCase : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase : int = self.get_config() return config, pixel_values, labels def _lowerCAmelCase ( self : List[Any] ) -> List[Any]: """simple docstring""" return SwinvaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def _lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : str ) -> int: """simple docstring""" _UpperCAmelCase : Tuple = SwinvaModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCAmelCase : Any = model(lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) _UpperCAmelCase : int = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def _lowerCAmelCase ( self : Dict , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Tuple ) -> List[Any]: """simple docstring""" _UpperCAmelCase : str = SwinvaForMaskedImageModeling(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCAmelCase : int = model(lowerCAmelCase__ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images _UpperCAmelCase : List[str] = 1 _UpperCAmelCase : Union[str, Any] = SwinvaForMaskedImageModeling(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCAmelCase : Optional[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _UpperCAmelCase : Optional[int] = model(lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def _lowerCAmelCase ( self : str , lowerCAmelCase__ : int , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Union[str, Any] ) -> List[str]: """simple docstring""" _UpperCAmelCase : List[Any] = self.type_sequence_label_size _UpperCAmelCase : Dict = SwinvaForImageClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCAmelCase : int = model(lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _lowerCAmelCase ( self : Any ) -> Tuple: """simple docstring""" _UpperCAmelCase : Any = self.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = config_and_inputs _UpperCAmelCase : Union[str, Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class A__ ( UpperCamelCase , UpperCamelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : Tuple = ( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) UpperCamelCase_ : Dict = ( {'''feature-extraction''': SwinvaModel, '''image-classification''': SwinvaForImageClassification} if is_torch_available() else {} ) UpperCamelCase_ : int = False UpperCamelCase_ : Tuple = False UpperCamelCase_ : Optional[int] = False UpperCamelCase_ : List[Any] = False def _lowerCAmelCase ( self : int ) -> Any: """simple docstring""" _UpperCAmelCase : Tuple = SwinvaModelTester(self ) _UpperCAmelCase : Any = ConfigTester(self , config_class=lowerCAmelCase__ , embed_dim=3_7 ) def _lowerCAmelCase ( self : List[Any] ) -> int: """simple docstring""" self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _lowerCAmelCase ( self : str ) -> List[Any]: """simple docstring""" _UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) @unittest.skip(reason="Got `CUDA error: misaligned address` with PyTorch 2.0.0." ) def _lowerCAmelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" pass @unittest.skip(reason="Swinv2 does not use inputs_embeds" ) def _lowerCAmelCase ( self : int ) -> List[Any]: """simple docstring""" pass def _lowerCAmelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase : List[Any] = model_class(lowerCAmelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _UpperCAmelCase : Any = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase__ , nn.Linear ) ) def _lowerCAmelCase ( self : Optional[Any] ) -> str: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase : int = model_class(lowerCAmelCase__ ) _UpperCAmelCase : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase : Optional[int] = [*signature.parameters.keys()] _UpperCAmelCase : List[Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCAmelCase__ ) def _lowerCAmelCase ( self : Tuple ) -> List[Any]: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase : int = True for model_class in self.all_model_classes: _UpperCAmelCase : str = True _UpperCAmelCase : Optional[int] = False _UpperCAmelCase : int = True _UpperCAmelCase : List[str] = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): _UpperCAmelCase : Optional[int] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) _UpperCAmelCase : int = outputs.attentions _UpperCAmelCase : Optional[int] = len(self.model_tester.depths ) self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ ) # check that output_attentions also work using config del inputs_dict["output_attentions"] _UpperCAmelCase : Optional[int] = True _UpperCAmelCase : Tuple = config.window_size**2 _UpperCAmelCase : str = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): _UpperCAmelCase : int = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) _UpperCAmelCase : Tuple = outputs.attentions self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) _UpperCAmelCase : Optional[Any] = len(lowerCAmelCase__ ) # Check attention is always last and order is fine _UpperCAmelCase : int = True _UpperCAmelCase : Optional[int] = True _UpperCAmelCase : List[str] = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): _UpperCAmelCase : Any = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) if hasattr(self.model_tester , "num_hidden_states_types" ): _UpperCAmelCase : Optional[int] = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states _UpperCAmelCase : Dict = 2 self.assertEqual(out_len + added_hidden_states , len(lowerCAmelCase__ ) ) _UpperCAmelCase : List[Any] = outputs.attentions self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) def _lowerCAmelCase ( self : Dict , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[int] ) -> List[str]: """simple docstring""" _UpperCAmelCase : List[str] = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): _UpperCAmelCase : Tuple = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) _UpperCAmelCase : str = outputs.hidden_states _UpperCAmelCase : Union[str, Any] = getattr( self.model_tester , "expected_num_hidden_layers" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ ) # Swinv2 has a different seq_length _UpperCAmelCase : Optional[Any] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _UpperCAmelCase : Any = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) _UpperCAmelCase : Dict = outputs.reshaped_hidden_states self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Any = reshaped_hidden_states[0].shape _UpperCAmelCase : List[Any] = ( reshaped_hidden_states[0].view(lowerCAmelCase__ , lowerCAmelCase__ , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def _lowerCAmelCase ( self : int ) -> Any: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase : str = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: _UpperCAmelCase : Union[str, Any] = True self.check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCAmelCase : int = True self.check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def _lowerCAmelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase : str = 3 _UpperCAmelCase : List[Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) _UpperCAmelCase : List[str] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _UpperCAmelCase : int = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) _UpperCAmelCase : Dict = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: _UpperCAmelCase : Union[str, Any] = True self.check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCAmelCase : Tuple = True self.check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , (padded_height, padded_width) ) def _lowerCAmelCase ( self : int ) -> List[Any]: """simple docstring""" _UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCAmelCase__ ) def _lowerCAmelCase ( self : List[str] ) -> List[str]: """simple docstring""" _UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase__ ) @slow def _lowerCAmelCase ( self : Optional[Any] ) -> Any: """simple docstring""" for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase : Dict = SwinvaModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) def _lowerCAmelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase : Tuple = _config_zero_init(lowerCAmelCase__ ) for model_class in self.all_model_classes: _UpperCAmelCase : List[Any] = model_class(config=lowerCAmelCase__ ) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @require_vision @require_torch class A__ ( unittest.TestCase ): """simple docstring""" @cached_property def _lowerCAmelCase ( self : Optional[int] ) -> List[Any]: """simple docstring""" return ( AutoImageProcessor.from_pretrained("microsoft/swinv2-tiny-patch4-window8-256" ) if is_vision_available() else None ) @slow def _lowerCAmelCase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Dict = SwinvaForImageClassification.from_pretrained("microsoft/swinv2-tiny-patch4-window8-256" ).to( lowerCAmelCase__ ) _UpperCAmelCase : List[Any] = self.default_image_processor _UpperCAmelCase : Tuple = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) _UpperCAmelCase : Any = image_processor(images=lowerCAmelCase__ , return_tensors="pt" ).to(lowerCAmelCase__ ) # forward pass with torch.no_grad(): _UpperCAmelCase : Dict = model(**lowerCAmelCase__ ) # verify the logits _UpperCAmelCase : Union[str, Any] = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = torch.tensor([-0.3947, -0.4306, 0.0026] ).to(lowerCAmelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1e-4 ) )
494
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __A =logging.get_logger(__name__) __A ={ 'andreasmadsen/efficient_mlm_m0.40': ( 'https://huggingface.co/andreasmadsen/efficient_mlm_m0.40/resolve/main/config.json' ), } class _snake_case ( a__ ): lowerCAmelCase :Dict = '''roberta-prelayernorm''' def __init__( self , _lowerCamelCase=5_0265 , _lowerCamelCase=768 , _lowerCamelCase=12 , _lowerCamelCase=12 , _lowerCamelCase=3072 , _lowerCamelCase="gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=512 , _lowerCamelCase=2 , _lowerCamelCase=0.02 , _lowerCamelCase=1e-1_2 , _lowerCamelCase=1 , _lowerCamelCase=0 , _lowerCamelCase=2 , _lowerCamelCase="absolute" , _lowerCamelCase=True , _lowerCamelCase=None , **_lowerCamelCase , ): super().__init__(pad_token_id=_lowerCamelCase , bos_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase , **_lowerCamelCase) UpperCAmelCase__ : Any = vocab_size UpperCAmelCase__ : Union[str, Any] = hidden_size UpperCAmelCase__ : int = num_hidden_layers UpperCAmelCase__ : Optional[int] = num_attention_heads UpperCAmelCase__ : Tuple = hidden_act UpperCAmelCase__ : Optional[Any] = intermediate_size UpperCAmelCase__ : Tuple = hidden_dropout_prob UpperCAmelCase__ : str = attention_probs_dropout_prob UpperCAmelCase__ : Tuple = max_position_embeddings UpperCAmelCase__ : List[str] = type_vocab_size UpperCAmelCase__ : List[str] = initializer_range UpperCAmelCase__ : Tuple = layer_norm_eps UpperCAmelCase__ : Dict = position_embedding_type UpperCAmelCase__ : List[str] = use_cache UpperCAmelCase__ : Optional[int] = classifier_dropout class _snake_case ( a__ ): @property def snake_case__ ( self): if self.task == "multiple-choice": UpperCAmelCase__ : Optional[Any] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: UpperCAmelCase__ : int = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ])
113
'''simple docstring''' from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class _snake_case ( a__ , a__ , unittest.TestCase ): lowerCAmelCase :Optional[int] = ( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) lowerCAmelCase :Union[str, Any] = ( { '''feature-extraction''': TFMobileBertModel, '''fill-mask''': TFMobileBertForMaskedLM, '''question-answering''': TFMobileBertForQuestionAnswering, '''text-classification''': TFMobileBertForSequenceClassification, '''token-classification''': TFMobileBertForTokenClassification, '''zero-shot''': TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) lowerCAmelCase :Optional[Any] = False lowerCAmelCase :Dict = False def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False): UpperCAmelCase__ : int = super()._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase) if return_labels: if model_class in get_values(_lowerCamelCase): UpperCAmelCase__ : Tuple = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa) return inputs_dict class _snake_case ( a__ ): def __init__( self , _lowerCamelCase , _lowerCamelCase=13 , _lowerCamelCase=7 , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=99 , _lowerCamelCase=32 , _lowerCamelCase=32 , _lowerCamelCase=2 , _lowerCamelCase=4 , _lowerCamelCase=37 , _lowerCamelCase="gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=512 , _lowerCamelCase=16 , _lowerCamelCase=2 , _lowerCamelCase=0.02 , _lowerCamelCase=3 , _lowerCamelCase=4 , _lowerCamelCase=None , ): UpperCAmelCase__ : Optional[Any] = parent UpperCAmelCase__ : List[str] = batch_size UpperCAmelCase__ : Any = seq_length UpperCAmelCase__ : Dict = is_training UpperCAmelCase__ : str = use_input_mask UpperCAmelCase__ : int = use_token_type_ids UpperCAmelCase__ : Optional[Any] = use_labels UpperCAmelCase__ : Any = vocab_size UpperCAmelCase__ : Optional[Any] = hidden_size UpperCAmelCase__ : Optional[int] = num_hidden_layers UpperCAmelCase__ : List[Any] = num_attention_heads UpperCAmelCase__ : Dict = intermediate_size UpperCAmelCase__ : str = hidden_act UpperCAmelCase__ : int = hidden_dropout_prob UpperCAmelCase__ : Union[str, Any] = attention_probs_dropout_prob UpperCAmelCase__ : Optional[int] = max_position_embeddings UpperCAmelCase__ : Union[str, Any] = type_vocab_size UpperCAmelCase__ : Optional[int] = type_sequence_label_size UpperCAmelCase__ : Optional[int] = initializer_range UpperCAmelCase__ : Union[str, Any] = num_labels UpperCAmelCase__ : List[str] = num_choices UpperCAmelCase__ : str = scope UpperCAmelCase__ : Optional[int] = embedding_size def snake_case__ ( self): UpperCAmelCase__ : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) UpperCAmelCase__ : Optional[Any] = None if self.use_input_mask: UpperCAmelCase__ : Tuple = random_attention_mask([self.batch_size, self.seq_length]) UpperCAmelCase__ : Union[str, Any] = None if self.use_token_type_ids: UpperCAmelCase__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) UpperCAmelCase__ : int = None UpperCAmelCase__ : List[Any] = None UpperCAmelCase__ : Any = None if self.use_labels: UpperCAmelCase__ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size) UpperCAmelCase__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) UpperCAmelCase__ : Optional[int] = ids_tensor([self.batch_size] , self.num_choices) UpperCAmelCase__ : str = MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , embedding_size=self.embedding_size , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase): UpperCAmelCase__ : str = TFMobileBertModel(config=_lowerCamelCase) UpperCAmelCase__ : Dict = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} UpperCAmelCase__ : int = model(_lowerCamelCase) UpperCAmelCase__ : Dict = [input_ids, input_mask] UpperCAmelCase__ : List[Any] = model(_lowerCamelCase) UpperCAmelCase__ : Optional[int] = model(_lowerCamelCase) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size)) def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase): UpperCAmelCase__ : List[str] = TFMobileBertForMaskedLM(config=_lowerCamelCase) UpperCAmelCase__ : List[str] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} UpperCAmelCase__ : Dict = model(_lowerCamelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase): UpperCAmelCase__ : Union[str, Any] = TFMobileBertForNextSentencePrediction(config=_lowerCamelCase) UpperCAmelCase__ : str = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} UpperCAmelCase__ : List[str] = model(_lowerCamelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2)) def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase): UpperCAmelCase__ : List[str] = TFMobileBertForPreTraining(config=_lowerCamelCase) UpperCAmelCase__ : Optional[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} UpperCAmelCase__ : Any = model(_lowerCamelCase) self.parent.assertEqual( result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2)) def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase): UpperCAmelCase__ : Any = self.num_labels UpperCAmelCase__ : Optional[Any] = TFMobileBertForSequenceClassification(config=_lowerCamelCase) UpperCAmelCase__ : Optional[int] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} UpperCAmelCase__ : Tuple = model(_lowerCamelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase): UpperCAmelCase__ : Tuple = self.num_choices UpperCAmelCase__ : Dict = TFMobileBertForMultipleChoice(config=_lowerCamelCase) UpperCAmelCase__ : int = tf.tile(tf.expand_dims(_lowerCamelCase , 1) , (1, self.num_choices, 1)) UpperCAmelCase__ : str = tf.tile(tf.expand_dims(_lowerCamelCase , 1) , (1, self.num_choices, 1)) UpperCAmelCase__ : Optional[Any] = tf.tile(tf.expand_dims(_lowerCamelCase , 1) , (1, self.num_choices, 1)) UpperCAmelCase__ : Optional[int] = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } UpperCAmelCase__ : List[str] = model(_lowerCamelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase): UpperCAmelCase__ : List[Any] = self.num_labels UpperCAmelCase__ : Optional[Any] = TFMobileBertForTokenClassification(config=_lowerCamelCase) UpperCAmelCase__ : Dict = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} UpperCAmelCase__ : List[Any] = model(_lowerCamelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase): UpperCAmelCase__ : Any = TFMobileBertForQuestionAnswering(config=_lowerCamelCase) UpperCAmelCase__ : Optional[int] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} UpperCAmelCase__ : List[str] = model(_lowerCamelCase) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def snake_case__ ( self): UpperCAmelCase__ : Any = self.prepare_config_and_inputs() ( ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ) : Any = config_and_inputs UpperCAmelCase__ : Union[str, Any] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict def snake_case__ ( self): UpperCAmelCase__ : str = TFMobileBertModelTest.TFMobileBertModelTester(self) UpperCAmelCase__ : List[Any] = ConfigTester(self , config_class=_lowerCamelCase , hidden_size=37) def snake_case__ ( self): self.config_tester.run_common_tests() def snake_case__ ( self): UpperCAmelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*_lowerCamelCase) def snake_case__ ( self): UpperCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*_lowerCamelCase) def snake_case__ ( self): UpperCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*_lowerCamelCase) def snake_case__ ( self): UpperCAmelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*_lowerCamelCase) def snake_case__ ( self): UpperCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*_lowerCamelCase) def snake_case__ ( self): UpperCAmelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*_lowerCamelCase) def snake_case__ ( self): UpperCAmelCase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*_lowerCamelCase) def snake_case__ ( self): UpperCAmelCase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*_lowerCamelCase) @slow def snake_case__ ( self): # for model_name in TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["google/mobilebert-uncased"]: UpperCAmelCase__ : Optional[Any] = TFMobileBertModel.from_pretrained(_lowerCamelCase) self.assertIsNotNone(_lowerCamelCase) @require_tf class _snake_case ( unittest.TestCase ): @slow def snake_case__ ( self): UpperCAmelCase__ : Any = TFMobileBertForPreTraining.from_pretrained("""google/mobilebert-uncased""") UpperCAmelCase__ : str = tf.constant([[0, 1, 2, 3, 4, 5]]) UpperCAmelCase__ : Optional[int] = model(_lowerCamelCase)[0] UpperCAmelCase__ : List[str] = [1, 6, 3_0522] self.assertEqual(output.shape , _lowerCamelCase) UpperCAmelCase__ : List[Any] = tf.constant( [ [ [-4.5919547, -9.248295, -9.645256], [-6.7306175, -6.440284, -6.6052837], [-7.2743506, -6.7847915, -6.024673], ] ]) tf.debugging.assert_near(output[:, :3, :3] , _lowerCamelCase , atol=1e-4)
113
1
"""simple docstring""" def a ( __UpperCAmelCase : int , __UpperCAmelCase : int , __UpperCAmelCase : int ) -> int: if exponent == 1: return base if exponent % 2 == 0: __magic_name__: List[Any] = _modexpt(__UpperCAmelCase , exponent // 2 , __UpperCAmelCase ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(__UpperCAmelCase , exponent - 1 , __UpperCAmelCase )) % modulo_value def a ( __UpperCAmelCase : int = 1_7_7_7 , __UpperCAmelCase : int = 1_8_5_5 , __UpperCAmelCase : int = 8 ) -> int: __magic_name__: int = base for _ in range(1 , __UpperCAmelCase ): __magic_name__: Optional[Any] = _modexpt(__UpperCAmelCase , __UpperCAmelCase , 1_0**digits ) return result if __name__ == "__main__": print(f'''{solution() = }''')
96
"""simple docstring""" from __future__ import annotations def lowercase__( __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float , ): if (electron_conc, hole_conc, intrinsic_conc).count(0 ) != 1: raise ValueError('You cannot supply more or less than 2 values' ) elif electron_conc < 0: raise ValueError('Electron concentration cannot be negative in a semiconductor' ) elif hole_conc < 0: raise ValueError('Hole concentration cannot be negative in a semiconductor' ) elif intrinsic_conc < 0: raise ValueError( 'Intrinsic concentration cannot be negative in a semiconductor' ) elif electron_conc == 0: return ( "electron_conc", intrinsic_conc**2 / hole_conc, ) elif hole_conc == 0: return ( "hole_conc", intrinsic_conc**2 / electron_conc, ) elif intrinsic_conc == 0: return ( "intrinsic_conc", (electron_conc * hole_conc) ** 0.5, ) else: return (-1, -1) if __name__ == "__main__": import doctest doctest.testmod()
425
0
class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> Optional[int]: '''simple docstring''' __UpperCamelCase = name __UpperCamelCase = value __UpperCamelCase = weight def __repr__( self )-> List[str]: '''simple docstring''' return F"{self.__class__.__name__}({self.name}, {self.value}, {self.weight})" def A__ ( self )-> Optional[Any]: '''simple docstring''' return self.value def A__ ( self )-> str: '''simple docstring''' return self.name def A__ ( self )-> Optional[int]: '''simple docstring''' return self.weight def A__ ( self )-> Optional[int]: '''simple docstring''' return self.value / self.weight def A_ ( snake_case : Union[str, Any] , snake_case : Dict , snake_case : Tuple ) -> Optional[int]: '''simple docstring''' __UpperCamelCase = [] for i in range(len(__lowerCAmelCase ) ): menu.append(Things(name[i] , value[i] , weight[i] ) ) return menu def A_ ( snake_case : Tuple , snake_case : List[Any] , snake_case : Any ) -> Any: '''simple docstring''' __UpperCamelCase = sorted(__lowerCAmelCase , key=__lowerCAmelCase , reverse=__lowerCAmelCase ) __UpperCamelCase = [] __UpperCamelCase , __UpperCamelCase = 0.0, 0.0 for i in range(len(__lowerCAmelCase ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def A_ ( ) -> List[str]: '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
712
import os import re import shutil import sys import tempfile import unittest import black lowercase__ : Optional[Any] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. lowercase__ : Dict = " \"\"\"\n Output class for the scheduler's step function output.\n\n Args:\n prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the\n denoising loop.\n pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n The predicted denoised sample (x_{0}) based on the model output from the current timestep.\n `pred_original_sample` can be used to preview progress or for guidance.\n \"\"\"\n\n prev_sample: torch.FloatTensor\n pred_original_sample: Optional[torch.FloatTensor] = None\n" class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def A__ ( self )-> Dict: '''simple docstring''' __UpperCamelCase = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , '''schedulers/''' ) ) __UpperCamelCase = self.diffusers_dir shutil.copy( os.path.join(SCREAMING_SNAKE_CASE_ , '''src/diffusers/schedulers/scheduling_ddpm.py''' ) , os.path.join(self.diffusers_dir , '''schedulers/scheduling_ddpm.py''' ) , ) def A__ ( self )-> Optional[int]: '''simple docstring''' __UpperCamelCase = '''src/diffusers''' shutil.rmtree(self.diffusers_dir ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None )-> Optional[Any]: '''simple docstring''' __UpperCamelCase = comment + F"\nclass {class_name}(nn.Module):\n" + class_code if overwrite_result is not None: __UpperCamelCase = comment + F"\nclass {class_name}(nn.Module):\n" + overwrite_result __UpperCamelCase = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) __UpperCamelCase = black.format_str(SCREAMING_SNAKE_CASE_ , mode=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = os.path.join(self.diffusers_dir , '''new_code.py''' ) with open(SCREAMING_SNAKE_CASE_ , '''w''' , newline='''\n''' ) as f: f.write(SCREAMING_SNAKE_CASE_ ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(SCREAMING_SNAKE_CASE_ ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=SCREAMING_SNAKE_CASE_ ) with open(SCREAMING_SNAKE_CASE_ , '''r''' ) as f: self.assertTrue(f.read() , SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> List[Any]: '''simple docstring''' __UpperCamelCase = check_copies.find_code_in_diffusers('''schedulers.scheduling_ddpm.DDPMSchedulerOutput''' ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> List[str]: '''simple docstring''' self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput''' , '''DDPMSchedulerOutput''' , REFERENCE_CODE + '''\n''' , ) # With no empty line at the end self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput''' , '''DDPMSchedulerOutput''' , SCREAMING_SNAKE_CASE_ , ) # Copy consistency with rename self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test''' , '''TestSchedulerOutput''' , re.sub('''DDPM''' , '''Test''' , SCREAMING_SNAKE_CASE_ ) , ) # Copy consistency with a really long name __UpperCamelCase = '''TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason''' self.check_copy_consistency( F"# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}" , F"{long_class_name}SchedulerOutput" , re.sub('''Bert''' , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , ) # Copy consistency with overwrite self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test''' , '''TestSchedulerOutput''' , SCREAMING_SNAKE_CASE_ , overwrite_result=re.sub('''DDPM''' , '''Test''' , SCREAMING_SNAKE_CASE_ ) , )
451
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { """microsoft/biogpt""": """https://huggingface.co/microsoft/biogpt/resolve/main/config.json""", # See all BioGPT models at https://huggingface.co/models?filter=biogpt } class _lowerCAmelCase ( a ): """simple docstring""" __magic_name__ :List[Any] = """biogpt""" def __init__( self , __UpperCAmelCase=4_2_3_8_4 , __UpperCAmelCase=1_0_2_4 , __UpperCAmelCase=2_4 , __UpperCAmelCase=1_6 , __UpperCAmelCase=4_0_9_6 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=1_0_2_4 , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-12 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=1 , __UpperCAmelCase=0 , __UpperCAmelCase=2 , **__UpperCAmelCase , ): '''simple docstring''' lowerCAmelCase__ :List[Any] = vocab_size lowerCAmelCase__ :str = max_position_embeddings lowerCAmelCase__ :List[str] = hidden_size lowerCAmelCase__ :Any = num_hidden_layers lowerCAmelCase__ :int = num_attention_heads lowerCAmelCase__ :Optional[int] = intermediate_size lowerCAmelCase__ :Union[str, Any] = hidden_act lowerCAmelCase__ :Any = hidden_dropout_prob lowerCAmelCase__ :Union[str, Any] = attention_probs_dropout_prob lowerCAmelCase__ :Union[str, Any] = initializer_range lowerCAmelCase__ :Optional[Any] = layer_norm_eps lowerCAmelCase__ :int = scale_embedding lowerCAmelCase__ :List[str] = use_cache lowerCAmelCase__ :int = layerdrop lowerCAmelCase__ :Union[str, Any] = activation_dropout super().__init__(pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase )
93
'''simple docstring''' import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed lowercase__ = '''true''' def __snake_case ( lowercase : Optional[int] , lowercase : Tuple=82 , lowercase : int=16 ): set_seed(42 ) snake_case_ = RegressionModel() snake_case_ = deepcopy(lowercase ) snake_case_ = RegressionDataset(length=lowercase ) snake_case_ = DataLoader(lowercase , batch_size=lowercase ) model.to(accelerator.device ) snake_case_ , snake_case_ = accelerator.prepare(lowercase , lowercase ) return model, ddp_model, dataloader def __snake_case ( lowercase : Accelerator , lowercase : int=False ): snake_case_ = AutoTokenizer.from_pretrained("hf-internal-testing/mrpc-bert-base-cased" ) snake_case_ = load_dataset("glue" , "mrpc" , split="validation" ) def tokenize_function(lowercase : Optional[Any] ): snake_case_ = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=lowercase , max_length=lowercase ) return outputs with accelerator.main_process_first(): snake_case_ = dataset.map( lowercase , batched=lowercase , remove_columns=["idx", "sentence1", "sentence2"] , ) snake_case_ = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(lowercase : List[Any] ): if use_longest: return tokenizer.pad(lowercase , padding="longest" , return_tensors="pt" ) return tokenizer.pad(lowercase , padding="max_length" , max_length=128 , return_tensors="pt" ) return DataLoader(lowercase , shuffle=lowercase , collate_fn=lowercase , batch_size=16 ) def __snake_case ( lowercase : List[Any] , lowercase : str ): snake_case_ = Accelerator(dispatch_batches=lowercase , split_batches=lowercase ) snake_case_ = get_dataloader(lowercase , not dispatch_batches ) snake_case_ = AutoModelForSequenceClassification.from_pretrained( "hf-internal-testing/mrpc-bert-base-cased" , return_dict=lowercase ) snake_case_ , snake_case_ = accelerator.prepare(lowercase , lowercase ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def __snake_case ( lowercase : List[Any] , lowercase : str , lowercase : Tuple ): snake_case_ = [] for batch in dataloader: snake_case_ , snake_case_ = batch.values() with torch.no_grad(): snake_case_ = model(lowercase ) snake_case_ , snake_case_ = accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) snake_case_ , snake_case_ = [], [] for logit, targ in logits_and_targets: logits.append(lowercase ) targs.append(lowercase ) snake_case_ , snake_case_ = torch.cat(lowercase ), torch.cat(lowercase ) return logits, targs def __snake_case ( lowercase : Accelerator , lowercase : Union[str, Any]=82 , lowercase : str=False , lowercase : List[Any]=False , lowercase : int=16 ): snake_case_ , snake_case_ , snake_case_ = get_basic_setup(lowercase , lowercase , lowercase ) snake_case_ , snake_case_ = generate_predictions(lowercase , lowercase , lowercase ) assert ( len(lowercase ) == num_samples ), f'''Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(lowercase )}''' def __snake_case ( lowercase : bool = False , lowercase : bool = False ): snake_case_ = evaluate.load("glue" , "mrpc" ) snake_case_ , snake_case_ = get_mrpc_setup(lowercase , lowercase ) # First do baseline snake_case_ , snake_case_ , snake_case_ = setup["no"] model.to(lowercase ) model.eval() for batch in dataloader: batch.to(lowercase ) with torch.inference_mode(): snake_case_ = model(**lowercase ) snake_case_ = outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=lowercase , references=batch["labels"] ) snake_case_ = metric.compute() # Then do distributed snake_case_ , snake_case_ , snake_case_ = setup["ddp"] model.eval() for batch in dataloader: with torch.inference_mode(): snake_case_ = model(**lowercase ) snake_case_ = outputs.logits.argmax(dim=-1 ) snake_case_ = batch["labels"] snake_case_ , snake_case_ = accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=lowercase , references=lowercase ) snake_case_ = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] , distributed[key] ), f'''Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n''' def __snake_case ( ): snake_case_ = Accelerator(split_batches=lowercase , dispatch_batches=lowercase ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print("**Testing gather_for_metrics**" ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(f'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`''' ) test_mrpc(lowercase , lowercase ) accelerator.state._reset_state() if accelerator.is_local_main_process: print("**Test torch metrics**" ) for split_batches in [True, False]: for dispatch_batches in [True, False]: snake_case_ = Accelerator(split_batches=lowercase , dispatch_batches=lowercase ) if accelerator.is_local_main_process: print(f'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99''' ) test_torch_metrics(lowercase , 99 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print("**Test last batch is not dropped when perfectly divisible**" ) snake_case_ = Accelerator() test_torch_metrics(lowercase , 512 ) accelerator.state._reset_state() def __snake_case ( lowercase : int ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
508
0
from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def __UpperCAmelCase ( lowerCamelCase_ : Union[str, Any] ) -> Any: """simple docstring""" return getitem, k def __UpperCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : Optional[Any] ) -> Optional[Any]: """simple docstring""" return setitem, k, v def __UpperCAmelCase ( lowerCamelCase_ : List[Any] ) -> List[str]: """simple docstring""" return delitem, k def __UpperCAmelCase ( lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Tuple , *lowerCamelCase_ : List[Any] ) -> Optional[Any]: """simple docstring""" try: return fun(lowerCamelCase_ , *lowerCamelCase_ ), None except Exception as e: return None, e UpperCamelCase__ : Any = ( _set('''key_a''', '''val_a'''), _set('''key_b''', '''val_b'''), ) UpperCamelCase__ : Any = [ _set('''key_a''', '''val_a'''), _set('''key_a''', '''val_b'''), ] UpperCamelCase__ : Union[str, Any] = [ _set('''key_a''', '''val_a'''), _set('''key_b''', '''val_b'''), _del('''key_a'''), _del('''key_b'''), _set('''key_a''', '''val_a'''), _del('''key_a'''), ] UpperCamelCase__ : Union[str, Any] = [ _get('''key_a'''), _del('''key_a'''), _set('''key_a''', '''val_a'''), _del('''key_a'''), _del('''key_a'''), _get('''key_a'''), ] UpperCamelCase__ : Optional[int] = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] UpperCamelCase__ : str = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set('''key_a''', '''val_b'''), ] @pytest.mark.parametrize( 'operations' , ( pytest.param(_add_items , id='add items' ), pytest.param(_overwrite_items , id='overwrite items' ), pytest.param(_delete_items , id='delete items' ), pytest.param(_access_absent_items , id='access absent items' ), pytest.param(_add_with_resize_up , id='add with resize up' ), pytest.param(_add_with_resize_down , id='add with resize down' ), ) , ) def __UpperCAmelCase ( lowerCamelCase_ : Tuple ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = HashMap(initial_block_size=4 ) SCREAMING_SNAKE_CASE_ : Any = {} for _, (fun, *args) in enumerate(lowerCamelCase_ ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[Any] = _run_operation(lowerCamelCase_ , lowerCamelCase_ , *lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : str = _run_operation(lowerCamelCase_ , lowerCamelCase_ , *lowerCamelCase_ ) assert my_res == py_res assert str(lowerCamelCase_ ) == str(lowerCamelCase_ ) assert set(lowerCamelCase_ ) == set(lowerCamelCase_ ) assert len(lowerCamelCase_ ) == len(lowerCamelCase_ ) assert set(my.items() ) == set(py.items() ) def __UpperCAmelCase ( ) -> List[str]: """simple docstring""" def is_public(lowerCamelCase_ : str ) -> bool: return not name.startswith('_' ) SCREAMING_SNAKE_CASE_ : int = {name for name in dir({} ) if is_public(lowerCamelCase_ )} SCREAMING_SNAKE_CASE_ : Union[str, Any] = {name for name in dir(HashMap() ) if is_public(lowerCamelCase_ )} assert dict_public_names > hash_public_names
702
from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def __UpperCAmelCase ( lowerCamelCase_ : int ) -> Union[str, Any]: """simple docstring""" def is_in_circle(lowerCamelCase_ : float , lowerCamelCase_ : float ) -> bool: SCREAMING_SNAKE_CASE_ : Any = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle SCREAMING_SNAKE_CASE_ : Optional[int] = mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(lowerCamelCase_ ) ) # The ratio of the area for circle to square is pi/4. SCREAMING_SNAKE_CASE_ : Tuple = proportion * 4 print(F'The estimated value of pi is {pi_estimate}' ) print(F'The numpy value of pi is {pi}' ) print(F'The total error is {abs(pi - pi_estimate )}' ) def __UpperCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : Callable[[float], float] , lowerCamelCase_ : float = 0.0 , lowerCamelCase_ : float = 1.0 , ) -> float: """simple docstring""" return mean( function_to_integrate(uniform(lowerCamelCase_ , lowerCamelCase_ ) ) for _ in range(lowerCamelCase_ ) ) * (max_value - min_value) def __UpperCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : float = 0.0 , lowerCamelCase_ : float = 1.0 ) -> None: """simple docstring""" def identity_function(lowerCamelCase_ : float ) -> float: return x SCREAMING_SNAKE_CASE_ : str = area_under_curve_estimator( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = (max_value * max_value - min_value * min_value) / 2 print('******************' ) print(F'Estimating area under y=x where x varies from {min_value} to {max_value}' ) print(F'Estimated value is {estimated_value}' ) print(F'Expected value is {expected_value}' ) print(F'Total error is {abs(estimated_value - expected_value )}' ) print('******************' ) def __UpperCAmelCase ( lowerCamelCase_ : int ) -> None: """simple docstring""" def function_to_integrate(lowerCamelCase_ : float ) -> float: return sqrt(4.0 - x * x ) SCREAMING_SNAKE_CASE_ : Dict = area_under_curve_estimator( lowerCamelCase_ , lowerCamelCase_ , 0.0 , 2.0 ) print('******************' ) print('Estimating pi using area_under_curve_estimator' ) print(F'Estimated value is {estimated_value}' ) print(F'Expected value is {pi}' ) print(F'Total error is {abs(estimated_value - pi )}' ) print('******************' ) if __name__ == "__main__": import doctest doctest.testmod()
685
0
"""simple docstring""" def __A (_SCREAMING_SNAKE_CASE ) ->int: """simple docstring""" if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or number < 0: raise ValueError('Input must be a non-negative integer' ) lowerCAmelCase__ :Dict = 0 while number: # This way we arrive at next set bit (next 1) instead of looping # through each bit and checking for 1s hence the # loop won't run 32 times it will only run the number of `1` times number &= number - 1 count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
93
'''simple docstring''' from dataclasses import dataclass from typing import Optional import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .modeling_utils import ModelMixin @dataclass class _UpperCAmelCase ( lowerCAmelCase__ ): """simple docstring""" a_ = 42 class _UpperCAmelCase ( lowerCAmelCase__ ,lowerCAmelCase__ ): """simple docstring""" @register_to_config def __init__( self , lowerCAmelCase_ = 16 , lowerCAmelCase_ = 88 , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = 1 , lowerCAmelCase_ = 0.0 , lowerCAmelCase_ = 32 , lowerCAmelCase_ = None , lowerCAmelCase_ = False , lowerCAmelCase_ = None , lowerCAmelCase_ = "geglu" , lowerCAmelCase_ = True , lowerCAmelCase_ = True , ): '''simple docstring''' super().__init__() a_ : List[Any] = num_attention_heads a_ : Optional[int] = attention_head_dim a_ : Union[str, Any] = num_attention_heads * attention_head_dim a_ : Any = in_channels a_ : List[str] = torch.nn.GroupNorm(num_groups=lowerCAmelCase_ , num_channels=lowerCAmelCase_ , eps=1E-6 , affine=lowerCAmelCase_ ) a_ : List[Any] = nn.Linear(lowerCAmelCase_ , lowerCAmelCase_ ) # 3. Define transformers blocks a_ : Any = nn.ModuleList( [ BasicTransformerBlock( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , dropout=lowerCAmelCase_ , cross_attention_dim=lowerCAmelCase_ , activation_fn=lowerCAmelCase_ , attention_bias=lowerCAmelCase_ , double_self_attention=lowerCAmelCase_ , norm_elementwise_affine=lowerCAmelCase_ , ) for d in range(lowerCAmelCase_ ) ] ) a_ : List[str] = nn.Linear(lowerCAmelCase_ , lowerCAmelCase_ ) def _lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=1 , lowerCAmelCase_=None , lowerCAmelCase_ = True , ): '''simple docstring''' a_ , a_ , a_ , a_ : Optional[Any] = hidden_states.shape a_ : List[Any] = batch_frames // num_frames a_ : Tuple = hidden_states a_ : str = hidden_states[None, :].reshape(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) a_ : Union[str, Any] = hidden_states.permute(0 , 2 , 1 , 3 , 4 ) a_ : Optional[Any] = self.norm(lowerCAmelCase_ ) a_ : str = hidden_states.permute(0 , 3 , 4 , 2 , 1 ).reshape(batch_size * height * width , lowerCAmelCase_ , lowerCAmelCase_ ) a_ : Union[str, Any] = self.proj_in(lowerCAmelCase_ ) # 2. Blocks for block in self.transformer_blocks: a_ : List[str] = block( lowerCAmelCase_ , encoder_hidden_states=lowerCAmelCase_ , timestep=lowerCAmelCase_ , cross_attention_kwargs=lowerCAmelCase_ , class_labels=lowerCAmelCase_ , ) # 3. Output a_ : Tuple = self.proj_out(lowerCAmelCase_ ) a_ : int = ( hidden_states[None, None, :] .reshape(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) .permute(0 , 3 , 4 , 1 , 2 ) .contiguous() ) a_ : Tuple = hidden_states.reshape(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) a_ : Optional[Any] = hidden_states + residual if not return_dict: return (output,) return TransformerTemporalModelOutput(sample=lowerCAmelCase_ )
577
0
import fire from transformers import AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer def _UpperCAmelCase ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str , **_SCREAMING_SNAKE_CASE : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ = AutoModelForSeqaSeqLM.from_config(_SCREAMING_SNAKE_CASE ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ).save_pretrained(_SCREAMING_SNAKE_CASE ) return model if __name__ == "__main__": fire.Fire(save_randomly_initialized_version)
620
import inspect import os import unittest from pathlib import Path import torch import accelerate from accelerate.test_utils import execute_subprocess_async from accelerate.test_utils.testing import run_command class __snake_case ( unittest.TestCase ): __lowerCAmelCase : Dict = inspect.getfile(accelerate.test_utils ) __lowerCAmelCase : Optional[Any] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_cli.py'] ) __lowerCAmelCase : Tuple = ['accelerate', 'launch'] __lowerCAmelCase : Union[str, Any] = Path.home() / '.cache/huggingface/accelerate' __lowerCAmelCase : List[str] = 'default_config.yaml' __lowerCAmelCase : List[Any] = config_folder / config_file __lowerCAmelCase : str = config_folder / '_default_config.yaml' __lowerCAmelCase : Optional[int] = Path('tests/test_configs' ) @classmethod def lowerCAmelCase__ ( cls): if cls.config_path.is_file(): cls.config_path.rename(cls.changed_path) @classmethod def lowerCAmelCase__ ( cls): if cls.changed_path.is_file(): cls.changed_path.rename(cls.config_path) def lowerCAmelCase__ ( self): SCREAMING_SNAKE_CASE_ = self.base_cmd if torch.cuda.is_available() and (torch.cuda.device_count() > 1): cmd += ["--multi_gpu"] execute_subprocess_async(cmd + [self.test_file_path] , env=os.environ.copy()) def lowerCAmelCase__ ( self): for config in sorted(self.test_config_path.glob('**/*.yaml')): with self.subTest(config_file=_A): execute_subprocess_async( self.base_cmd + ['--config_file', str(_A), self.test_file_path] , env=os.environ.copy()) def lowerCAmelCase__ ( self): execute_subprocess_async(['accelerate', 'test'] , env=os.environ.copy()) class __snake_case ( unittest.TestCase ): __lowerCAmelCase : Optional[Any] = 'test-tpu' __lowerCAmelCase : str = 'us-central1-a' __lowerCAmelCase : Union[str, Any] = 'ls' __lowerCAmelCase : Union[str, Any] = ['accelerate', 'tpu-config'] __lowerCAmelCase : Union[str, Any] = 'cd /usr/share' __lowerCAmelCase : List[Any] = 'tests/test_samples/test_command_file.sh' __lowerCAmelCase : Dict = 'Running gcloud compute tpus tpu-vm ssh' def lowerCAmelCase__ ( self): SCREAMING_SNAKE_CASE_ = run_command( self.cmd + ['--command', self.command, '--tpu_zone', self.tpu_zone, '--tpu_name', self.tpu_name, '--debug'] , return_stdout=_A , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all""" , _A , ) def lowerCAmelCase__ ( self): SCREAMING_SNAKE_CASE_ = run_command( self.cmd + [ '--config_file', 'tests/test_configs/0_12_0.yaml', '--command', self.command, '--tpu_zone', self.tpu_zone, '--tpu_name', self.tpu_name, '--debug', ] , return_stdout=_A , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all""" , _A , ) def lowerCAmelCase__ ( self): SCREAMING_SNAKE_CASE_ = run_command( self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--debug'] , return_stdout=_A) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all""" , _A , ) def lowerCAmelCase__ ( self): SCREAMING_SNAKE_CASE_ = run_command( self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--command', self.command, '--debug'] , return_stdout=_A , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all""" , _A , ) def lowerCAmelCase__ ( self): SCREAMING_SNAKE_CASE_ = run_command( self.cmd + [ '--config_file', 'tests/test_configs/latest.yaml', '--command', self.command, '--command', 'echo "Hello World"', '--debug', ] , return_stdout=_A , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls; echo \"Hello World\" --worker all""" , _A , ) def lowerCAmelCase__ ( self): SCREAMING_SNAKE_CASE_ = run_command( self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--command_file', self.command_file, '--debug'] , return_stdout=_A , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all""" , _A , ) def lowerCAmelCase__ ( self): SCREAMING_SNAKE_CASE_ = run_command( self.cmd + [ '--config_file', 'tests/test_configs/0_12_0.yaml', '--command_file', self.command_file, '--tpu_zone', self.tpu_zone, '--tpu_name', self.tpu_name, '--debug', ] , return_stdout=_A , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all""" , _A , ) def lowerCAmelCase__ ( self): SCREAMING_SNAKE_CASE_ = run_command( self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--install_accelerate', '--debug'] , return_stdout=_A , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate -U; echo \"hello world\"; echo \"this is a second command\" --worker all""" , _A , ) def lowerCAmelCase__ ( self): SCREAMING_SNAKE_CASE_ = run_command( self.cmd + [ '--config_file', 'tests/test_configs/latest.yaml', '--install_accelerate', '--accelerate_version', '12.0.0', '--debug', ] , return_stdout=_A , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate==12.0.0; echo \"hello world\"; echo \"this is a second command\" --worker all""" , _A , )
620
1
'''simple docstring''' from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) snake_case = logging.get_logger(__name__) # pylint: disable=invalid-name snake_case = '''\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline\n >>> from diffusers.utils import load_image\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16\n ... )\n >>> pipe_prior.to("cuda")\n\n >>> prompt = "A red cartoon frog, 4k"\n >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False)\n\n >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16\n ... )\n >>> pipe.to("cuda")\n\n >>> init_image = load_image(\n ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"\n ... "/kandinsky/frog.png"\n ... )\n\n >>> image = pipe(\n ... image=init_image,\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... strength=0.2,\n ... ).images\n\n >>> image[0].save("red_frog.png")\n ```\n''' def A_ ( _lowerCamelCase : List[str] , _lowerCamelCase : int , _lowerCamelCase : List[str]=8 ): _lowerCAmelCase = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 _lowerCAmelCase = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def A_ ( _lowerCamelCase : Any , _lowerCamelCase : Any=512 , _lowerCamelCase : Any=512 ): _lowerCAmelCase = pil_image.resize((w, h) , resample=Image.BICUBIC , reducing_gap=1 ) _lowerCAmelCase = np.array(pil_image.convert('RGB' ) ) _lowerCAmelCase = arr.astype(np.floataa ) / 127.5 - 1 _lowerCAmelCase = np.transpose(__A , [2, 0, 1] ) _lowerCAmelCase = torch.from_numpy(__A ).unsqueeze(0 ) return image class SCREAMING_SNAKE_CASE ( __lowercase ): """simple docstring""" def __init__( self : Tuple , __lowerCAmelCase : List[str] , __lowerCAmelCase : Tuple , __lowerCAmelCase : List[Any] , ): """simple docstring""" super().__init__() self.register_modules( unet=_A , scheduler=_A , movq=_A , ) _lowerCAmelCase = 2 ** (len(self.movq.config.block_out_channels ) - 1) def a ( self : Any , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : str , __lowerCAmelCase : Dict ): """simple docstring""" _lowerCAmelCase = min(int(num_inference_steps * strength ) , _A ) _lowerCAmelCase = max(num_inference_steps - init_timestep , 0 ) _lowerCAmelCase = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def a ( self : Optional[int] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Any , __lowerCAmelCase : List[str] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[Any]=None ): """simple docstring""" if not isinstance(_A , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( F"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(_A )}" ) _lowerCAmelCase = image.to(device=_A , dtype=_A ) _lowerCAmelCase = batch_size * num_images_per_prompt if image.shape[1] == 4: _lowerCAmelCase = image else: if isinstance(_A , _A ) and len(_A ) != batch_size: raise ValueError( F"You have passed a list of generators of length {len(_A )}, but requested an effective batch" F" size of {batch_size}. Make sure the batch size matches the length of the generators." ) elif isinstance(_A , _A ): _lowerCAmelCase = [ self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(_A ) ] _lowerCAmelCase = torch.cat(_A , dim=0 ) else: _lowerCAmelCase = self.movq.encode(_A ).latent_dist.sample(_A ) _lowerCAmelCase = self.movq.config.scaling_factor * init_latents _lowerCAmelCase = torch.cat([init_latents] , dim=0 ) _lowerCAmelCase = init_latents.shape _lowerCAmelCase = randn_tensor(_A , generator=_A , device=_A , dtype=_A ) # get latents _lowerCAmelCase = self.scheduler.add_noise(_A , _A , _A ) _lowerCAmelCase = init_latents return latents def a ( self : Dict , __lowerCAmelCase : Any=0 ): """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) _lowerCAmelCase = torch.device(F"cuda:{gpu_id}" ) _lowerCAmelCase = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(_A , _A ) def a ( self : Tuple , __lowerCAmelCase : Dict=0 ): """simple docstring""" if is_accelerate_available() and is_accelerate_version('>=' , '0.17.0.dev0' ): from accelerate import cpu_offload_with_hook else: raise ImportError('`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.' ) _lowerCAmelCase = torch.device(F"cuda:{gpu_id}" ) if self.device.type != "cpu": self.to('cpu' , silence_dtype_warnings=_A ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) _lowerCAmelCase = None for cpu_offloaded_model in [self.unet, self.movq]: _lowerCAmelCase = cpu_offload_with_hook(_A , _A , prev_module_hook=_A ) # We'll offload the last model manually. _lowerCAmelCase = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def a ( self : Any ): """simple docstring""" if not hasattr(self.unet , '_hf_hook' ): return self.device for module in self.unet.modules(): if ( hasattr(_A , '_hf_hook' ) and hasattr(module._hf_hook , 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(_A ) def __call__( self : str , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Dict = 512 , __lowerCAmelCase : Any = 512 , __lowerCAmelCase : Optional[int] = 100 , __lowerCAmelCase : Optional[Any] = 4.0 , __lowerCAmelCase : Tuple = 0.3 , __lowerCAmelCase : str = 1 , __lowerCAmelCase : Tuple = None , __lowerCAmelCase : Dict = "pil" , __lowerCAmelCase : List[str] = True , ): """simple docstring""" _lowerCAmelCase = self._execution_device _lowerCAmelCase = guidance_scale > 1.0 if isinstance(_A , _A ): _lowerCAmelCase = torch.cat(_A , dim=0 ) _lowerCAmelCase = image_embeds.shape[0] if isinstance(_A , _A ): _lowerCAmelCase = torch.cat(_A , dim=0 ) if do_classifier_free_guidance: _lowerCAmelCase = image_embeds.repeat_interleave(_A , dim=0 ) _lowerCAmelCase = negative_image_embeds.repeat_interleave(_A , dim=0 ) _lowerCAmelCase = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=_A ) if not isinstance(_A , _A ): _lowerCAmelCase = [image] if not all(isinstance(_A , (PIL.Image.Image, torch.Tensor) ) for i in image ): raise ValueError( F"Input is in incorrect format: {[type(_A ) for i in image]}. Currently, we only support PIL image and pytorch tensor" ) _lowerCAmelCase = torch.cat([prepare_image(_A , _A , _A ) for i in image] , dim=0 ) _lowerCAmelCase = image.to(dtype=image_embeds.dtype , device=_A ) _lowerCAmelCase = self.movq.encode(_A )['''latents'''] _lowerCAmelCase = latents.repeat_interleave(_A , dim=0 ) self.scheduler.set_timesteps(_A , device=_A ) _lowerCAmelCase = self.get_timesteps(_A , _A , _A ) _lowerCAmelCase = timesteps[:1].repeat(batch_size * num_images_per_prompt ) _lowerCAmelCase = downscale_height_and_width(_A , _A , self.movq_scale_factor ) _lowerCAmelCase = self.prepare_latents( _A , _A , _A , _A , image_embeds.dtype , _A , _A ) for i, t in enumerate(self.progress_bar(_A ) ): # expand the latents if we are doing classifier free guidance _lowerCAmelCase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _lowerCAmelCase = {'''image_embeds''': image_embeds} _lowerCAmelCase = self.unet( sample=_A , timestep=_A , encoder_hidden_states=_A , added_cond_kwargs=_A , return_dict=_A , )[0] if do_classifier_free_guidance: _lowerCAmelCase = noise_pred.split(latents.shape[1] , dim=1 ) _lowerCAmelCase = noise_pred.chunk(2 ) _lowerCAmelCase = variance_pred.chunk(2 ) _lowerCAmelCase = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) _lowerCAmelCase = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , 'variance_type' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): _lowerCAmelCase = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 _lowerCAmelCase = self.scheduler.step( _A , _A , _A , generator=_A , )[0] # post-processing _lowerCAmelCase = self.movq.decode(_A , force_not_quantize=_A )['''sample'''] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}" ) if output_type in ["np", "pil"]: _lowerCAmelCase = image * 0.5 + 0.5 _lowerCAmelCase = image.clamp(0 , 1 ) _lowerCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": _lowerCAmelCase = self.numpy_to_pil(_A ) if not return_dict: return (image,) return ImagePipelineOutput(images=_A )
309
from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = { 'google/switch-base-8': 'https://huggingface.co/google/switch-base-8/blob/main/config.json', } class A_ ( __lowercase ): '''simple docstring''' _SCREAMING_SNAKE_CASE : Any = "switch_transformers" _SCREAMING_SNAKE_CASE : int = ["past_key_values"] _SCREAMING_SNAKE_CASE : Optional[Any] = {"hidden_size": "d_model", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers"} def __init__( self , _A=32128 , _A=768 , _A=64 , _A=2048 , _A=64 , _A=12 , _A=3 , _A=12 , _A=3 , _A=12 , _A=8 , _A=False , _A=0.01 , _A="float32" , _A=False , _A=32 , _A=128 , _A=0.1 , _A=1e-6 , _A=0.001 , _A=0.001 , _A=1.0 , _A="relu" , _A=True , _A=False , _A=True , _A=0 , _A=1 , **_A , ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : str = vocab_size _UpperCAmelCase : Tuple = d_model _UpperCAmelCase : Dict = d_kv _UpperCAmelCase : str = d_ff _UpperCAmelCase : int = num_sparse_encoder_layers _UpperCAmelCase : Dict = num_layers _UpperCAmelCase : int = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry _UpperCAmelCase : Dict = num_sparse_decoder_layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_encoder_layers > 0: _UpperCAmelCase : int = self.num_layers // self.num_sparse_encoder_layers else: _UpperCAmelCase : Optional[int] = self.num_layers # HACK: this will create 0 sparse layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_decoder_layers > 0: _UpperCAmelCase : Optional[Any] = self.num_decoder_layers // self.num_sparse_decoder_layers else: _UpperCAmelCase : Dict = self.num_decoder_layers # HACK: this will create 0 sparse layers _UpperCAmelCase : Any = num_heads _UpperCAmelCase : List[Any] = num_experts _UpperCAmelCase : List[str] = expert_capacity _UpperCAmelCase : List[str] = router_bias _UpperCAmelCase : Optional[Any] = router_jitter_noise if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(f'''`router_dtype` must be one of \'float32\', \'float16\' or \'bfloat16\', got {router_dtype}''') _UpperCAmelCase : List[str] = router_dtype _UpperCAmelCase : Any = router_ignore_padding_tokens _UpperCAmelCase : Optional[Any] = relative_attention_num_buckets _UpperCAmelCase : Optional[int] = relative_attention_max_distance _UpperCAmelCase : List[Any] = dropout_rate _UpperCAmelCase : Optional[int] = layer_norm_epsilon _UpperCAmelCase : Union[str, Any] = initializer_factor _UpperCAmelCase : int = feed_forward_proj _UpperCAmelCase : List[str] = use_cache _UpperCAmelCase : Optional[int] = add_router_probs _UpperCAmelCase : Optional[int] = router_z_loss_coef _UpperCAmelCase : List[str] = router_aux_loss_coef _UpperCAmelCase : Union[str, Any] = self.feed_forward_proj.split('''-''') _UpperCAmelCase : int = act_info[-1] _UpperCAmelCase : int = act_info[0] == '''gated''' if len(_A) > 1 and act_info[0] != "gated" or len(_A) > 2: raise ValueError( f'''`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.''' '''Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ''' '''\'gated-gelu\' or \'relu\'''') # for backwards compatibility if feed_forward_proj == "gated-gelu": _UpperCAmelCase : Optional[Any] = '''gelu_new''' super().__init__( pad_token_id=_A , eos_token_id=_A , is_encoder_decoder=_A , **_A , )
485
0
'''simple docstring''' import os from tempfile import TemporaryDirectory from unittest import TestCase import pytest from absl.testing import parameterized from datasets import config from datasets.arrow_reader import HF_GCP_BASE_URL from datasets.builder import DatasetBuilder from datasets.dataset_dict import IterableDatasetDict from datasets.iterable_dataset import IterableDataset from datasets.load import dataset_module_factory, import_main_class from datasets.utils.file_utils import cached_path lowerCamelCase = [ {"""dataset""": """wikipedia""", """config_name""": """20220301.de"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.en"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.fr"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.frr"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.it"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.simple"""}, {"""dataset""": """snli""", """config_name""": """plain_text"""}, {"""dataset""": """eli5""", """config_name""": """LFQA_reddit"""}, {"""dataset""": """wiki40b""", """config_name""": """en"""}, {"""dataset""": """wiki_dpr""", """config_name""": """psgs_w100.nq.compressed"""}, {"""dataset""": """wiki_dpr""", """config_name""": """psgs_w100.nq.no_index"""}, {"""dataset""": """wiki_dpr""", """config_name""": """psgs_w100.multiset.no_index"""}, {"""dataset""": """natural_questions""", """config_name""": """default"""}, ] def _A ( _lowerCAmelCase=True ): """simple docstring""" if with_config: return [ { "testcase_name": d["dataset"] + "/" + d["config_name"], "dataset": d["dataset"], "config_name": d["config_name"], } for d in DATASETS_ON_HF_GCP ] else: return [ {"testcase_name": dataset, "dataset": dataset} for dataset in {d["dataset"] for d in DATASETS_ON_HF_GCP} ] @parameterized.named_parameters(list_datasets_on_hf_gcp_parameters(with_config=A ) ) class _UpperCamelCase ( A ): '''simple docstring''' lowerCAmelCase__ = None lowerCAmelCase__ = None def __lowerCamelCase ( self : List[str] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Dict): '''simple docstring''' with TemporaryDirectory() as tmp_dir: __lowercase =dataset_module_factory(_lowerCAmelCase , cache_dir=_lowerCAmelCase) __lowercase =import_main_class(dataset_module.module_path , dataset=_lowerCAmelCase) __lowercase =builder_cls( cache_dir=_lowerCAmelCase , config_name=_lowerCAmelCase , hash=dataset_module.hash , ) __lowercase ='/'.join( [ HF_GCP_BASE_URL, builder_instance._relative_data_dir(with_hash=_lowerCAmelCase).replace(os.sep , '/'), config.DATASET_INFO_FILENAME, ]) __lowercase =cached_path(_lowerCAmelCase , cache_dir=_lowerCAmelCase) self.assertTrue(os.path.exists(_lowerCAmelCase)) @pytest.mark.integration def _A ( _lowerCAmelCase ): """simple docstring""" __lowercase =tmp_path_factory.mktemp('test_hf_gcp' ) / 'test_wikipedia_simple' __lowercase =dataset_module_factory('wikipedia' , cache_dir=_lowerCAmelCase ) __lowercase =import_main_class(dataset_module.module_path ) __lowercase =builder_cls( cache_dir=_lowerCAmelCase , config_name='20220301.frr' , hash=dataset_module.hash , ) # use the HF cloud storage, not the original download_and_prepare that uses apache-beam __lowercase =None builder_instance.download_and_prepare() __lowercase =builder_instance.as_dataset() assert ds @pytest.mark.integration def _A ( _lowerCAmelCase ): """simple docstring""" __lowercase =dataset_module_factory('wikipedia' , cache_dir=_lowerCAmelCase ) __lowercase =import_main_class(dataset_module.module_path , dataset=_lowerCAmelCase ) __lowercase =builder_cls( cache_dir=_lowerCAmelCase , config_name='20220301.frr' , hash=dataset_module.hash , ) __lowercase =builder_instance.as_streaming_dataset() assert ds assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) assert "train" in ds assert isinstance(ds['train'] , _lowerCAmelCase ) assert next(iter(ds['train'] ) )
454
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input lowerCamelCase = """Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine""" def _A ( ): """simple docstring""" __lowercase =_ask_options( 'In which compute environment are you running?' , ['This machine', 'AWS (Amazon SageMaker)'] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: __lowercase =get_sagemaker_input() else: __lowercase =get_cluster_input() return config def _A ( _lowerCAmelCase=None ): """simple docstring""" if subparsers is not None: __lowercase =subparsers.add_parser('config' , description=_lowerCAmelCase ) else: __lowercase =argparse.ArgumentParser('Accelerate config command' , description=_lowerCAmelCase ) parser.add_argument( '--config_file' , default=_lowerCAmelCase , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , ) if subparsers is not None: parser.set_defaults(func=_lowerCAmelCase ) return parser def _A ( _lowerCAmelCase ): """simple docstring""" __lowercase =get_user_input() if args.config_file is not None: __lowercase =args.config_file else: if not os.path.isdir(_lowerCAmelCase ): os.makedirs(_lowerCAmelCase ) __lowercase =default_yaml_config_file if config_file.endswith('.json' ): config.to_json_file(_lowerCAmelCase ) else: config.to_yaml_file(_lowerCAmelCase ) print(f"""accelerate configuration saved at {config_file}""" ) def _A ( ): """simple docstring""" __lowercase =config_command_parser() __lowercase =parser.parse_args() config_command(_lowerCAmelCase ) if __name__ == "__main__": main()
454
1
import os # Precomputes a list of the 100 first triangular numbers A_: str = [int(0.5 * n * (n + 1)) for n in range(1, 101)] def __lowerCAmelCase ( ): """simple docstring""" _lowercase = os.path.dirname(os.path.realpath(_A ) ) _lowercase = os.path.join(_A ,"""words.txt""" ) _lowercase = """""" with open(_A ) as f: _lowercase = f.readline() _lowercase = [word.strip("""\"""" ) for word in words.strip("""\r\n""" ).split(""",""" )] _lowercase = [ word for word in [sum(ord(_A ) - 64 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(_A ) if __name__ == "__main__": print(solution())
398
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING A_: Optional[Any] = logging.get_logger(__name__) A_: Union[str, Any] = { 'SenseTime/deformable-detr': 'https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json', # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class _lowercase ( _UpperCAmelCase ): """simple docstring""" lowerCAmelCase__ = 'deformable_detr' lowerCAmelCase__ = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self , UpperCAmelCase=True , UpperCAmelCase=None , UpperCAmelCase=3 , UpperCAmelCase=300 , UpperCAmelCase=1024 , UpperCAmelCase=6 , UpperCAmelCase=1024 , UpperCAmelCase=8 , UpperCAmelCase=6 , UpperCAmelCase=1024 , UpperCAmelCase=8 , UpperCAmelCase=0.0 , UpperCAmelCase=True , UpperCAmelCase="relu" , UpperCAmelCase=256 , UpperCAmelCase=0.1 , UpperCAmelCase=0.0 , UpperCAmelCase=0.0 , UpperCAmelCase=0.02 , UpperCAmelCase=1.0 , UpperCAmelCase=True , UpperCAmelCase=False , UpperCAmelCase="sine" , UpperCAmelCase="resnet50" , UpperCAmelCase=True , UpperCAmelCase=False , UpperCAmelCase=4 , UpperCAmelCase=4 , UpperCAmelCase=4 , UpperCAmelCase=False , UpperCAmelCase=300 , UpperCAmelCase=False , UpperCAmelCase=1 , UpperCAmelCase=5 , UpperCAmelCase=2 , UpperCAmelCase=1 , UpperCAmelCase=1 , UpperCAmelCase=5 , UpperCAmelCase=2 , UpperCAmelCase=0.1 , UpperCAmelCase=0.25 , UpperCAmelCase=False , **UpperCAmelCase , ): '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) _lowercase = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(UpperCAmelCase , UpperCAmelCase ): _lowercase = backbone_config.get("""model_type""" ) _lowercase = CONFIG_MAPPING[backbone_model_type] _lowercase = config_class.from_dict(UpperCAmelCase ) _lowercase = use_timm_backbone _lowercase = backbone_config _lowercase = num_channels _lowercase = num_queries _lowercase = max_position_embeddings _lowercase = d_model _lowercase = encoder_ffn_dim _lowercase = encoder_layers _lowercase = encoder_attention_heads _lowercase = decoder_ffn_dim _lowercase = decoder_layers _lowercase = decoder_attention_heads _lowercase = dropout _lowercase = attention_dropout _lowercase = activation_dropout _lowercase = activation_function _lowercase = init_std _lowercase = init_xavier_std _lowercase = encoder_layerdrop _lowercase = auxiliary_loss _lowercase = position_embedding_type _lowercase = backbone _lowercase = use_pretrained_backbone _lowercase = dilation # deformable attributes _lowercase = num_feature_levels _lowercase = encoder_n_points _lowercase = decoder_n_points _lowercase = two_stage _lowercase = two_stage_num_proposals _lowercase = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError("""If two_stage is True, with_box_refine must be True.""" ) # Hungarian matcher _lowercase = class_cost _lowercase = bbox_cost _lowercase = giou_cost # Loss coefficients _lowercase = mask_loss_coefficient _lowercase = dice_loss_coefficient _lowercase = bbox_loss_coefficient _lowercase = giou_loss_coefficient _lowercase = eos_coefficient _lowercase = focal_alpha _lowercase = disable_custom_kernels super().__init__(is_encoder_decoder=UpperCAmelCase , **UpperCAmelCase ) @property def _UpperCAmelCase ( self ): '''simple docstring''' return self.encoder_attention_heads @property def _UpperCAmelCase ( self ): '''simple docstring''' return self.d_model def _UpperCAmelCase ( self ): '''simple docstring''' _lowercase = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: _lowercase = self.backbone_config.to_dict() _lowercase = self.__class__.model_type return output
398
1
'''simple docstring''' import argparse import shutil import time from json import JSONDecodeError from logging import getLogger from pathlib import Path from typing import Dict, List import torch from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import ( SeqaSeqDataset, calculate_bleu, calculate_rouge, chunks, lmap, load_json, parse_numeric_n_bool_cl_kwargs, save_json, use_task_specific_params, write_txt_file, ) __SCREAMING_SNAKE_CASE = getLogger(__name__) def __a ( lowerCAmelCase__ : int , lowerCAmelCase__ : str , lowerCAmelCase__ : str , lowerCAmelCase__ : int = 8 , lowerCAmelCase__ : int = 1024 , lowerCAmelCase__ : Dict="val" , lowerCAmelCase__ : Optional[int]=None , lowerCAmelCase__ : str=False , lowerCAmelCase__ : str="summarization" , lowerCAmelCase__ : Union[str, Any]=None , lowerCAmelCase__ : List[str]=1 , lowerCAmelCase__ : Dict = None , lowerCAmelCase__ : List[str]="" , **lowerCAmelCase__ : int , ): a__ : List[Any] = str(lowerCAmelCase__ ) assert local_rank is not None torch.distributed.init_process_group(backend='''nccl''' , rank=lowerCAmelCase__ ) a__ : Dict = Path(lowerCAmelCase__ ) a__ : Any = save_dir.joinpath(F'rank_{local_rank}_output.json' ) torch.cuda.set_device(lowerCAmelCase__ ) a__ : Optional[int] = AutoModelForSeqaSeqLM.from_pretrained(lowerCAmelCase__ ).cuda() if fpaa: a__ : List[Any] = model.half() # determine if we need to increase num_beams use_task_specific_params(lowerCAmelCase__ , lowerCAmelCase__ ) # update config with task specific params a__ : Dict = generate_kwargs.pop('''num_beams''' , model.config.num_beams ) # AttributeError risk? if num_return_sequences > num_beams: a__ : List[str] = num_return_sequences a__ : Any = AutoTokenizer.from_pretrained(lowerCAmelCase__ ) logger.info(F'Inferred tokenizer type: {tokenizer.__class__}' ) # if this is wrong, check config.model_type. if max_source_length is None: a__ : Tuple = tokenizer.model_max_length if prefix is None: a__ : Tuple = prefix or getattr(model.config , '''prefix''' , '''''' ) or '''''' a__ : str = SeqaSeqDataset( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , max_target_length=1024 , type_path=lowerCAmelCase__ , n_obs=lowerCAmelCase__ , prefix=lowerCAmelCase__ , **lowerCAmelCase__ , ) # I set shuffle=True for a more accurate progress bar. # If all the longest samples are first, the prog bar estimate is too high at the beginning. a__ : Dict = ds.make_sortish_sampler(lowerCAmelCase__ , distributed=lowerCAmelCase__ , add_extra_examples=lowerCAmelCase__ , shuffle=lowerCAmelCase__ ) a__ : Optional[int] = DataLoader(lowerCAmelCase__ , sampler=lowerCAmelCase__ , batch_size=lowerCAmelCase__ , collate_fn=ds.collate_fn ) a__ : Optional[int] = [] for batch in tqdm(lowerCAmelCase__ ): a__ : str = model.generate( input_ids=batch['''input_ids'''].to(model.device ) , attention_mask=batch['''attention_mask'''].to(model.device ) , num_return_sequences=lowerCAmelCase__ , num_beams=lowerCAmelCase__ , **lowerCAmelCase__ , ) a__ : int = tokenizer.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ , clean_up_tokenization_spaces=lowerCAmelCase__ ) a__ : Union[str, Any] = batch['''ids'''] if num_return_sequences > 1: a__ : Any = chunks(lowerCAmelCase__ , lowerCAmelCase__ ) # batch size chunks, each of size num_return_seq for i, pred in enumerate(lowerCAmelCase__ ): results.append({'''pred''': pred, '''id''': ids[i].item()} ) save_json(lowerCAmelCase__ , lowerCAmelCase__ ) return results, sampler.num_replicas def __a ( ): a__ : int = argparse.ArgumentParser( epilog='''Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate''' ) parser.add_argument('''--data_dir''' , type=lowerCAmelCase__ , help='''like cnn_dm/test.source''' ) parser.add_argument( '''--model_name''' , type=lowerCAmelCase__ , help='''like facebook/bart-large-cnn,t5-base, etc.''' , default='''sshleifer/distilbart-xsum-12-3''' , ) parser.add_argument('''--save_dir''' , type=lowerCAmelCase__ , help='''where to save''' , default='''tmp_gen''' ) parser.add_argument('''--max_source_length''' , type=lowerCAmelCase__ , default=lowerCAmelCase__ ) parser.add_argument( '''--type_path''' , type=lowerCAmelCase__ , default='''test''' , help='''which subset to evaluate typically train/val/test''' ) parser.add_argument('''--task''' , type=lowerCAmelCase__ , default='''summarization''' , help='''used for task_specific_params + metrics''' ) parser.add_argument('''--bs''' , type=lowerCAmelCase__ , default=8 , required=lowerCAmelCase__ , help='''batch size''' ) parser.add_argument( '''--local_rank''' , type=lowerCAmelCase__ , default=-1 , required=lowerCAmelCase__ , help='''should be passed by distributed.launch''' ) parser.add_argument( '''--n_obs''' , type=lowerCAmelCase__ , default=lowerCAmelCase__ , required=lowerCAmelCase__ , help='''How many observations. Defaults to all.''' ) parser.add_argument( '''--num_return_sequences''' , type=lowerCAmelCase__ , default=1 , required=lowerCAmelCase__ , help='''How many sequences to return''' ) parser.add_argument( '''--sync_timeout''' , type=lowerCAmelCase__ , default=600 , required=lowerCAmelCase__ , help='''How long should master process wait for other processes to finish.''' , ) parser.add_argument('''--src_lang''' , type=lowerCAmelCase__ , default=lowerCAmelCase__ , required=lowerCAmelCase__ ) parser.add_argument('''--tgt_lang''' , type=lowerCAmelCase__ , default=lowerCAmelCase__ , required=lowerCAmelCase__ ) parser.add_argument( '''--prefix''' , type=lowerCAmelCase__ , required=lowerCAmelCase__ , default=lowerCAmelCase__ , help='''will be added to the begininng of src examples''' ) parser.add_argument('''--fp16''' , action='''store_true''' ) parser.add_argument('''--debug''' , action='''store_true''' ) a__ : Tuple = time.time() a__ : List[str] = parser.parse_known_args() a__ : List[str] = parse_numeric_n_bool_cl_kwargs(lowerCAmelCase__ ) if generate_kwargs and args.local_rank <= 0: print(F'parsed the following generate kwargs: {generate_kwargs}' ) a__ : Dict = Path(args.save_dir + '''_tmp''' ) Path(lowerCAmelCase__ ).mkdir(exist_ok=lowerCAmelCase__ ) # this handles locking. a__ : Dict = list(json_save_dir.glob('''rank_*.json''' ) ) if intermediate_files: raise ValueError(F'Found files at {json_save_dir} please move or remove them.' ) # In theory, a node could finish and save before another node hits this. If this happens, we can address later. a__ : Tuple = {} if args.src_lang is not None: a__ : Dict = args.src_lang if args.tgt_lang is not None: a__ : Optional[int] = args.tgt_lang Path(args.save_dir ).mkdir(exist_ok=lowerCAmelCase__ ) a__ : Union[str, Any] = eval_data_dir( args.data_dir , lowerCAmelCase__ , args.model_name , type_path=args.type_path , bs=args.bs , fpaa=args.fpaa , task=args.task , local_rank=args.local_rank , n_obs=args.n_obs , max_source_length=args.max_source_length , num_return_sequences=args.num_return_sequences , prefix=args.prefix , dataset_kwargs=lowerCAmelCase__ , **lowerCAmelCase__ , ) if args.local_rank <= 0: a__ : Any = Path(args.save_dir ) save_dir.mkdir(exist_ok=lowerCAmelCase__ ) a__ : Optional[Any] = gather_results_from_each_node(lowerCAmelCase__ , lowerCAmelCase__ , args.sync_timeout ) a__ : List[Any] = combine_partial_results(lowerCAmelCase__ ) if args.num_return_sequences > 1: a__ : Union[str, Any] = save_dir.joinpath('''pseudolabel_results.json''' ) print(F'Saving aggregated results at {save_path}, intermediate in {json_save_dir}/' ) save_json(lowerCAmelCase__ , lowerCAmelCase__ ) return a__ : Any = Path(args.data_dir ).joinpath(args.type_path + '''.target''' ) with open(lowerCAmelCase__ ) as f: a__ : int = [x.rstrip() for x in f.readlines()][: len(lowerCAmelCase__ )] # Calculate metrics, save metrics, and save _generations.txt a__ : Optional[Any] = '''translation''' in args.task a__ : List[str] = calculate_bleu if calc_bleu else calculate_rouge a__ : List[str] = '''bleu''' if calc_bleu else '''rouge''' a__ : Dict = score_fn(lowerCAmelCase__ , lowerCAmelCase__ ) a__ : str = len(lowerCAmelCase__ ) a__ : Optional[int] = time.time() - start_time a__ : List[Any] = round(runtime / metrics['''n_obs'''] , 4 ) a__ : List[Any] = num_replicas # TODO(@stas00): add whatever metadata to metrics a__ : Any = save_dir.joinpath(F'{args.type_path}_{metric_name}.json' ) save_json(lowerCAmelCase__ , lowerCAmelCase__ , indent=lowerCAmelCase__ ) print(lowerCAmelCase__ ) write_txt_file(lowerCAmelCase__ , save_dir.joinpath(F'{args.type_path}_generations.txt' ) ) if args.debug: write_txt_file(lowerCAmelCase__ , save_dir.joinpath(F'{args.type_path}.target' ) ) else: shutil.rmtree(lowerCAmelCase__ ) def __a ( lowerCAmelCase__ : List[Any] ): a__ : str = [] for partial_result in partial_results: records.extend(lowerCAmelCase__ ) a__ : Tuple = sorted(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : x["id"] ) a__ : Union[str, Any] = [x['''pred'''] for x in records] return preds def __a ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : int , lowerCAmelCase__ : Union[str, Any] ): # WAIT FOR lots of .json files a__ : Optional[int] = time.time() logger.info('''waiting for all nodes to finish''' ) a__ : Union[str, Any] = None while (time.time() - start_wait) < timeout: a__ : str = list(save_dir.glob('''rank_*.json''' ) ) if len(lowerCAmelCase__ ) < num_replicas: continue try: # make sure all json files are fully saved a__ : Any = lmap(lowerCAmelCase__ , lowerCAmelCase__ ) return json_data except JSONDecodeError: continue else: raise TimeoutError('''Rank 0 gave up on waiting for other processes''' ) # Unreachable if __name__ == "__main__": # Usage for MT: run_generate()
715
'''simple docstring''' from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class lowerCAmelCase__ : """simple docstring""" __UpperCamelCase = 42 __UpperCamelCase = 42 class lowerCAmelCase__ : """simple docstring""" def __init__( self : Union[str, Any] , A__ : int ) -> Optional[Any]: '''simple docstring''' a__ : list[list[Edge]] = [[] for _ in range(A__ )] a__ : int = size def __getitem__( self : Any , A__ : int ) -> Iterator[Edge]: '''simple docstring''' return iter(self._graph[vertex] ) @property def __lowerCAmelCase ( self : int ) -> Any: '''simple docstring''' return self._size def __lowerCAmelCase ( self : int , A__ : int , A__ : int , A__ : int ) -> Optional[int]: '''simple docstring''' if weight not in (0, 1): raise ValueError('''Edge weight must be either 0 or 1.''' ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError('''Vertex indexes must be in [0; size).''' ) self._graph[from_vertex].append(Edge(A__ , A__ ) ) def __lowerCAmelCase ( self : int , A__ : int , A__ : int ) -> int | None: '''simple docstring''' a__ : Tuple = deque([start_vertex] ) a__ : list[int | None] = [None] * self.size a__ : Optional[int] = 0 while queue: a__ : Union[str, Any] = queue.popleft() a__ : Optional[Any] = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: a__ : Dict = current_distance + edge.weight a__ : Optional[int] = distances[edge.destination_vertex] if ( isinstance(A__ , A__ ) and new_distance >= dest_vertex_distance ): continue a__ : List[str] = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError('''No path from start_vertex to finish_vertex.''' ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
340
0
'''simple docstring''' import math import numpy as np import qiskit from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute def __A ( lowerCamelCase_ = 3 ): """simple docstring""" if isinstance(lowerCamelCase_ , lowerCamelCase_ ): raise TypeError("""number of qubits must be a integer.""" ) if number_of_qubits <= 0: raise ValueError("""number of qubits must be > 0.""" ) if math.floor(lowerCamelCase_ ) != number_of_qubits: raise ValueError("""number of qubits must be exact integer.""" ) if number_of_qubits > 10: raise ValueError("""number of qubits too large to simulate(>10).""" ) SCREAMING_SNAKE_CASE : str = QuantumRegister(lowerCamelCase_ , """qr""" ) SCREAMING_SNAKE_CASE : Union[str, Any] = ClassicalRegister(lowerCamelCase_ , """cr""" ) SCREAMING_SNAKE_CASE : Dict = QuantumCircuit(lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = number_of_qubits for i in range(lowerCamelCase_ ): quantum_circuit.h(number_of_qubits - i - 1 ) counter -= 1 for j in range(lowerCamelCase_ ): quantum_circuit.cp(np.pi / 2 ** (counter - j) , lowerCamelCase_ , lowerCamelCase_ ) for k in range(number_of_qubits // 2 ): quantum_circuit.swap(lowerCamelCase_ , number_of_qubits - k - 1 ) # measure all the qubits quantum_circuit.measure(lowerCamelCase_ , lowerCamelCase_ ) # simulate with 10000 shots SCREAMING_SNAKE_CASE : List[str] = Aer.get_backend("""qasm_simulator""" ) SCREAMING_SNAKE_CASE : int = execute(lowerCamelCase_ , lowerCamelCase_ , shots=1_00_00 ) return job.result().get_counts(lowerCamelCase_ ) if __name__ == "__main__": print( f'''Total count for quantum fourier transform state is: \ {quantum_fourier_transform(3)}''' )
379
'''simple docstring''' from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable __UpperCAmelCase = {"""configuration_gpt_neox""": ["""GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTNeoXConfig"""]} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ["""GPTNeoXTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ """GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST""", """GPTNeoXForCausalLM""", """GPTNeoXForQuestionAnswering""", """GPTNeoXForSequenceClassification""", """GPTNeoXForTokenClassification""", """GPTNeoXLayer""", """GPTNeoXModel""", """GPTNeoXPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_gpt_neox import GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_neox_fast import GPTNeoXTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox import ( GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXLayer, GPTNeoXModel, GPTNeoXPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
379
1
"""simple docstring""" from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, flip_channel_order, get_resize_output_image_size, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, is_vision_available, logging if is_vision_available(): import PIL if is_torch_available(): import torch _UpperCAmelCase = logging.get_logger(__name__) class a ( UpperCAmelCase__ ): UpperCamelCase : Tuple = ['pixel_values'] def __init__( self : Any , lowerCAmelCase : bool = True , lowerCAmelCase : Dict[str, int] = None , lowerCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , lowerCAmelCase : bool = True , lowerCAmelCase : Union[int, float] = 1 / 255 , lowerCAmelCase : bool = True , lowerCAmelCase : Dict[str, int] = None , lowerCAmelCase : bool = True , **lowerCAmelCase : str , ) -> None: '''simple docstring''' super().__init__(**lowerCAmelCase ) SCREAMING_SNAKE_CASE_: List[str] =size if size is not None else {"""shortest_edge""": 224} SCREAMING_SNAKE_CASE_: List[str] =get_size_dict(lowerCAmelCase , default_to_square=lowerCAmelCase ) SCREAMING_SNAKE_CASE_: str =crop_size if crop_size is not None else {"""height""": 256, """width""": 256} SCREAMING_SNAKE_CASE_: Any =get_size_dict(lowerCAmelCase , param_name="""crop_size""" ) SCREAMING_SNAKE_CASE_: Any =do_resize SCREAMING_SNAKE_CASE_: List[Any] =size SCREAMING_SNAKE_CASE_: str =resample SCREAMING_SNAKE_CASE_: Tuple =do_rescale SCREAMING_SNAKE_CASE_: Tuple =rescale_factor SCREAMING_SNAKE_CASE_: Optional[Any] =do_center_crop SCREAMING_SNAKE_CASE_: Any =crop_size SCREAMING_SNAKE_CASE_: List[Any] =do_flip_channel_order def lowerCamelCase__ ( self : int , lowerCAmelCase : np.ndarray , lowerCAmelCase : Dict[str, int] , lowerCAmelCase : PILImageResampling = PIL.Image.BILINEAR , lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase : str , ) -> np.ndarray: '''simple docstring''' SCREAMING_SNAKE_CASE_: Optional[Any] =get_size_dict(lowerCAmelCase , default_to_square=lowerCAmelCase ) if "shortest_edge" not in size: raise ValueError(f'''The `size` dictionary must contain the key `shortest_edge`. Got {size.keys()}''' ) SCREAMING_SNAKE_CASE_: Any =get_resize_output_image_size(lowerCAmelCase , size=size["""shortest_edge"""] , default_to_square=lowerCAmelCase ) return resize(lowerCAmelCase , size=lowerCAmelCase , resample=lowerCAmelCase , data_format=lowerCAmelCase , **lowerCAmelCase ) def lowerCamelCase__ ( self : List[Any] , lowerCAmelCase : np.ndarray , lowerCAmelCase : Dict[str, int] , lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase : Any , ) -> np.ndarray: '''simple docstring''' SCREAMING_SNAKE_CASE_: Tuple =get_size_dict(lowerCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f'''The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}''' ) return center_crop(lowerCAmelCase , size=(size["""height"""], size["""width"""]) , data_format=lowerCAmelCase , **lowerCAmelCase ) def lowerCamelCase__ ( self : int , lowerCAmelCase : np.ndarray , lowerCAmelCase : Union[int, float] , lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase : Union[str, Any] , ) -> Optional[Any]: '''simple docstring''' return rescale(lowerCAmelCase , scale=lowerCAmelCase , data_format=lowerCAmelCase , **lowerCAmelCase ) def lowerCamelCase__ ( self : str , lowerCAmelCase : np.ndarray , lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None ) -> np.ndarray: '''simple docstring''' return flip_channel_order(lowerCAmelCase , data_format=lowerCAmelCase ) def lowerCamelCase__ ( self : List[str] , lowerCAmelCase : ImageInput , lowerCAmelCase : bool = None , lowerCAmelCase : Dict[str, int] = None , lowerCAmelCase : PILImageResampling = None , lowerCAmelCase : bool = None , lowerCAmelCase : float = None , lowerCAmelCase : bool = None , lowerCAmelCase : Dict[str, int] = None , lowerCAmelCase : bool = None , lowerCAmelCase : Optional[Union[str, TensorType]] = None , lowerCAmelCase : ChannelDimension = ChannelDimension.FIRST , **lowerCAmelCase : Dict , ) -> PIL.Image.Image: '''simple docstring''' SCREAMING_SNAKE_CASE_: List[Any] =do_resize if do_resize is not None else self.do_resize SCREAMING_SNAKE_CASE_: List[str] =resample if resample is not None else self.resample SCREAMING_SNAKE_CASE_: str =do_rescale if do_rescale is not None else self.do_rescale SCREAMING_SNAKE_CASE_: Optional[Any] =rescale_factor if rescale_factor is not None else self.rescale_factor SCREAMING_SNAKE_CASE_: Tuple =do_center_crop if do_center_crop is not None else self.do_center_crop SCREAMING_SNAKE_CASE_: Union[str, Any] =( do_flip_channel_order if do_flip_channel_order is not None else self.do_flip_channel_order ) SCREAMING_SNAKE_CASE_: List[str] =size if size is not None else self.size SCREAMING_SNAKE_CASE_: Dict =get_size_dict(lowerCAmelCase , default_to_square=lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Dict =crop_size if crop_size is not None else self.crop_size SCREAMING_SNAKE_CASE_: Optional[Any] =get_size_dict(lowerCAmelCase , param_name="""crop_size""" ) SCREAMING_SNAKE_CASE_: Tuple =make_list_of_images(lowerCAmelCase ) if not valid_images(lowerCAmelCase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) # All transformations expect numpy arrays. SCREAMING_SNAKE_CASE_: Dict =[to_numpy_array(lowerCAmelCase ) for image in images] if do_resize: SCREAMING_SNAKE_CASE_: Any =[self.resize(image=lowerCAmelCase , size=lowerCAmelCase , resample=lowerCAmelCase ) for image in images] if do_center_crop: SCREAMING_SNAKE_CASE_: Union[str, Any] =[self.center_crop(image=lowerCAmelCase , size=lowerCAmelCase ) for image in images] if do_rescale: SCREAMING_SNAKE_CASE_: str =[self.rescale(image=lowerCAmelCase , scale=lowerCAmelCase ) for image in images] # the pretrained checkpoints assume images are BGR, not RGB if do_flip_channel_order: SCREAMING_SNAKE_CASE_: Optional[Any] =[self.flip_channel_order(image=lowerCAmelCase ) for image in images] SCREAMING_SNAKE_CASE_: int =[to_channel_dimension_format(lowerCAmelCase , lowerCAmelCase ) for image in images] SCREAMING_SNAKE_CASE_: Optional[Any] ={"""pixel_values""": images} return BatchFeature(data=lowerCAmelCase , tensor_type=lowerCAmelCase ) def lowerCamelCase__ ( self : int , lowerCAmelCase : Optional[Any] , lowerCAmelCase : List[Tuple] = None ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Dict =outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(lowerCAmelCase ) != len(lowerCAmelCase ): raise ValueError( """Make sure that you pass in as many target sizes as the batch dimension of the logits""" ) if is_torch_tensor(lowerCAmelCase ): SCREAMING_SNAKE_CASE_: List[str] =target_sizes.numpy() SCREAMING_SNAKE_CASE_: int =[] for idx in range(len(lowerCAmelCase ) ): SCREAMING_SNAKE_CASE_: Optional[int] =torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="""bilinear""" , align_corners=lowerCAmelCase ) SCREAMING_SNAKE_CASE_: str =resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(lowerCAmelCase ) else: SCREAMING_SNAKE_CASE_: Any =logits.argmax(dim=1 ) SCREAMING_SNAKE_CASE_: Optional[int] =[semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
36
"""simple docstring""" from __future__ import annotations def __magic_name__ ( lowercase , lowercase ): SCREAMING_SNAKE_CASE_: List[Any] =sorted(numsa + numsa ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple =divmod(len(lowercase ) , 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() _UpperCAmelCase = [float(x) for x in input("""Enter the elements of first array: """).split()] _UpperCAmelCase = [float(x) for x in input("""Enter the elements of second array: """).split()] print(f"""The median of two arrays is: {median_of_two_arrays(array_a, array_a)}""")
36
1
'''simple docstring''' import math def _a ( __lowerCAmelCase : int ): """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__lowerCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def _a ( __lowerCAmelCase : int = 1_00_01 ): """simple docstring""" try: snake_case__ : List[Any] = int(__lowerCAmelCase ) except (TypeError, ValueError): raise TypeError('''Parameter nth must be int or castable to int.''' ) from None if nth <= 0: raise ValueError('''Parameter nth must be greater than or equal to one.''' ) snake_case__ : list[int] = [] snake_case__ : Dict = 2 while len(__lowerCAmelCase ) < nth: if is_prime(__lowerCAmelCase ): primes.append(__lowerCAmelCase ) num += 1 else: num += 1 return primes[len(__lowerCAmelCase ) - 1] if __name__ == "__main__": print(f"""{solution() = }""")
347
'''simple docstring''' from collections import defaultdict from typing import Optional from ..image_utils import load_image from ..utils import ( add_end_docstrings, is_torch_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING lowerCAmelCase__ : str = logging.get_logger(__name__) @add_end_docstrings(SCREAMING_SNAKE_CASE ) class a ( SCREAMING_SNAKE_CASE ): """simple docstring""" def __init__( self : Union[str, Any] , **snake_case_ : Union[str, Any] ): '''simple docstring''' super().__init__(**snake_case_ ) requires_backends(self , '''vision''' ) requires_backends(self , '''torch''' ) if self.framework != "pt": raise ValueError(F"""The {self.__class__} is only available in PyTorch.""" ) self.check_model_type(snake_case_ ) def __magic_name__ ( self : Dict , **snake_case_ : Dict ): '''simple docstring''' snake_case__ : Tuple = {} snake_case__ : Dict = {} snake_case__ : Union[str, Any] = {} # preprocess args if "points_per_batch" in kwargs: snake_case__ : Any = kwargs['''points_per_batch'''] if "points_per_crop" in kwargs: snake_case__ : List[str] = kwargs['''points_per_crop'''] if "crops_n_layers" in kwargs: snake_case__ : int = kwargs['''crops_n_layers'''] if "crop_overlap_ratio" in kwargs: snake_case__ : int = kwargs['''crop_overlap_ratio'''] if "crop_n_points_downscale_factor" in kwargs: snake_case__ : List[str] = kwargs['''crop_n_points_downscale_factor'''] # postprocess args if "pred_iou_thresh" in kwargs: snake_case__ : Union[str, Any] = kwargs['''pred_iou_thresh'''] if "stability_score_offset" in kwargs: snake_case__ : int = kwargs['''stability_score_offset'''] if "mask_threshold" in kwargs: snake_case__ : Optional[Any] = kwargs['''mask_threshold'''] if "stability_score_thresh" in kwargs: snake_case__ : List[str] = kwargs['''stability_score_thresh'''] if "crops_nms_thresh" in kwargs: snake_case__ : int = kwargs['''crops_nms_thresh'''] if "output_rle_mask" in kwargs: snake_case__ : str = kwargs['''output_rle_mask'''] if "output_bboxes_mask" in kwargs: snake_case__ : Union[str, Any] = kwargs['''output_bboxes_mask'''] return preprocess_kwargs, forward_params, postprocess_kwargs def __call__( self : str , snake_case_ : Optional[int] , *snake_case_ : Any , snake_case_ : str=None , snake_case_ : List[Any]=None , **snake_case_ : List[Any] ): '''simple docstring''' return super().__call__(snake_case_ , *snake_case_ , num_workers=snake_case_ , batch_size=snake_case_ , **snake_case_ ) def __magic_name__ ( self : List[str] , snake_case_ : Any , snake_case_ : Optional[Any]=6_4 , snake_case_ : int = 0 , snake_case_ : float = 5_1_2 / 1_5_0_0 , snake_case_ : Optional[int] = 3_2 , snake_case_ : Optional[int] = 1 , ): '''simple docstring''' snake_case__ : Dict = load_image(snake_case_ ) snake_case__ : Optional[int] = self.image_processor.size['''longest_edge'''] snake_case__ , snake_case__ , snake_case__ , snake_case__ : int = self.image_processor.generate_crop_boxes( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) snake_case__ : Union[str, Any] = self.image_processor(images=snake_case_ , return_tensors='''pt''' ) with self.device_placement(): if self.framework == "pt": snake_case__ : List[str] = self.get_inference_context() with inference_context(): snake_case__ : Dict = self._ensure_tensor_on_device(snake_case_ , device=self.device ) snake_case__ : Tuple = self.model.get_image_embeddings(model_inputs.pop('''pixel_values''' ) ) snake_case__ : str = image_embeddings snake_case__ : Dict = grid_points.shape[1] snake_case__ : int = points_per_batch if points_per_batch is not None else n_points if points_per_batch <= 0: raise ValueError( '''Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. ''' '''To return all points at once, set points_per_batch to None''' ) for i in range(0 , snake_case_ , snake_case_ ): snake_case__ : str = grid_points[:, i : i + points_per_batch, :, :] snake_case__ : Optional[Any] = input_labels[:, i : i + points_per_batch] snake_case__ : List[str] = i == n_points - points_per_batch yield { "input_points": batched_points, "input_labels": labels, "input_boxes": crop_boxes, "is_last": is_last, **model_inputs, } def __magic_name__ ( self : List[str] , snake_case_ : List[str] , snake_case_ : Optional[Any]=0.8_8 , snake_case_ : Dict=0.9_5 , snake_case_ : List[str]=0 , snake_case_ : Dict=1 , ): '''simple docstring''' snake_case__ : Union[str, Any] = model_inputs.pop('''input_boxes''' ) snake_case__ : Union[str, Any] = model_inputs.pop('''is_last''' ) snake_case__ : List[str] = model_inputs.pop('''original_sizes''' ).tolist() snake_case__ : int = model_inputs.pop('''reshaped_input_sizes''' ).tolist() snake_case__ : List[Any] = self.model(**snake_case_ ) # post processing happens here in order to avoid CPU GPU copies of ALL the masks snake_case__ : Optional[int] = model_outputs['''pred_masks'''] snake_case__ : Optional[Any] = self.image_processor.post_process_masks( snake_case_ , snake_case_ , snake_case_ , snake_case_ , binarize=snake_case_ ) snake_case__ : str = model_outputs['''iou_scores'''] snake_case__ , snake_case__ , snake_case__ : Any = self.image_processor.filter_masks( masks[0] , iou_scores[0] , original_sizes[0] , input_boxes[0] , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ) return { "masks": masks, "is_last": is_last, "boxes": boxes, "iou_scores": iou_scores, } def __magic_name__ ( self : List[str] , snake_case_ : Optional[int] , snake_case_ : List[str]=False , snake_case_ : int=False , snake_case_ : Tuple=0.7 , ): '''simple docstring''' snake_case__ : Tuple = [] snake_case__ : str = [] snake_case__ : Optional[int] = [] for model_output in model_outputs: all_scores.append(model_output.pop('''iou_scores''' ) ) all_masks.extend(model_output.pop('''masks''' ) ) all_boxes.append(model_output.pop('''boxes''' ) ) snake_case__ : Union[str, Any] = torch.cat(snake_case_ ) snake_case__ : Dict = torch.cat(snake_case_ ) snake_case__ , snake_case__ , snake_case__ , snake_case__ : Union[str, Any] = self.image_processor.post_process_for_mask_generation( snake_case_ , snake_case_ , snake_case_ , snake_case_ ) snake_case__ : Tuple = defaultdict(snake_case_ ) for output in model_outputs: for k, v in output.items(): extra[k].append(snake_case_ ) snake_case__ : str = {} if output_rle_mask: snake_case__ : Union[str, Any] = rle_mask if output_bboxes_mask: snake_case__ : Union[str, Any] = bounding_boxes return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
347
1
"""simple docstring""" import numpy as np def lowerCAmelCase_ ( UpperCamelCase__ : np.ndarray , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : float = 1E-12 , UpperCamelCase__ : int = 100 , ): """simple docstring""" assert np.shape(UpperCamelCase__ )[0] == np.shape(UpperCamelCase__ )[1] # Ensure proper dimensionality. assert np.shape(UpperCamelCase__ )[0] == np.shape(UpperCamelCase__ )[0] # Ensure inputs are either both complex or both real assert np.iscomplexobj(UpperCamelCase__ ) == np.iscomplexobj(UpperCamelCase__ ) __lowercase = np.iscomplexobj(UpperCamelCase__ ) if is_complex: # Ensure complex input_matrix is Hermitian assert np.array_equal(UpperCamelCase__ , input_matrix.conj().T ) # Set convergence to False. Will define convergence when we exceed max_iterations # or when we have small changes from one iteration to next. __lowercase = False __lowercase = 0 __lowercase = 0 __lowercase = 1E12 while not convergence: # Multiple matrix by the vector. __lowercase = np.dot(UpperCamelCase__ , UpperCamelCase__ ) # Normalize the resulting output vector. __lowercase = w / np.linalg.norm(UpperCamelCase__ ) # Find rayleigh quotient # (faster than usual b/c we know vector is normalized already) __lowercase = vector.conj().T if is_complex else vector.T __lowercase = np.dot(UpperCamelCase__ , np.dot(UpperCamelCase__ , UpperCamelCase__ ) ) # Check convergence. __lowercase = np.abs(lambda_ - lambda_previous ) / lambda_ iterations += 1 if error <= error_tol or iterations >= max_iterations: __lowercase = True __lowercase = lambda_ if is_complex: __lowercase = np.real(lambda_ ) return lambda_, vector def lowerCAmelCase_ ( ): """simple docstring""" __lowercase = np.array([[41, 4, 20], [4, 26, 30], [20, 30, 50]] ) __lowercase = np.array([41, 4, 20] ) __lowercase = real_input_matrix.astype(np.complexaaa ) __lowercase = np.triu(1J * complex_input_matrix , 1 ) complex_input_matrix += imag_matrix complex_input_matrix += -1 * imag_matrix.T __lowercase = np.array([41, 4, 20] ).astype(np.complexaaa ) for problem_type in ["real", "complex"]: if problem_type == "real": __lowercase = real_input_matrix __lowercase = real_vector elif problem_type == "complex": __lowercase = complex_input_matrix __lowercase = complex_vector # Our implementation. __lowercase , __lowercase = power_iteration(UpperCamelCase__ , UpperCamelCase__ ) # Numpy implementation. # Get eigenvalues and eigenvectors using built-in numpy # eigh (eigh used for symmetric or hermetian matrices). __lowercase , __lowercase = np.linalg.eigh(UpperCamelCase__ ) # Last eigenvalue is the maximum one. __lowercase = eigen_values[-1] # Last column in this matrix is eigenvector corresponding to largest eigenvalue. __lowercase = eigen_vectors[:, -1] # Check our implementation and numpy gives close answers. assert np.abs(eigen_value - eigen_value_max ) <= 1E-6 # Take absolute values element wise of each eigenvector. # as they are only unique to a minus sign. assert np.linalg.norm(np.abs(UpperCamelCase__ ) - np.abs(UpperCamelCase__ ) ) <= 1E-6 if __name__ == "__main__": import doctest doctest.testmod() test_power_iteration()
442
"""simple docstring""" def lowerCAmelCase_ ( UpperCamelCase__ : str , UpperCamelCase__ : str ): """simple docstring""" def get_matched_characters(UpperCamelCase__ : str , UpperCamelCase__ : str ) -> str: __lowercase = [] __lowercase = min(len(_stra ) , len(_stra ) ) // 2 for i, l in enumerate(_stra ): __lowercase = int(max(0 , i - limit ) ) __lowercase = int(min(i + limit + 1 , len(_stra ) ) ) if l in _stra[left:right]: matched.append(UpperCamelCase__ ) __lowercase = f'''{_stra[0:_stra.index(UpperCamelCase__ )]} {_stra[_stra.index(UpperCamelCase__ ) + 1:]}''' return "".join(UpperCamelCase__ ) # matching characters __lowercase = get_matched_characters(UpperCamelCase__ , UpperCamelCase__ ) __lowercase = get_matched_characters(UpperCamelCase__ , UpperCamelCase__ ) __lowercase = len(UpperCamelCase__ ) # transposition __lowercase = ( len([(ca, ca) for ca, ca in zip(UpperCamelCase__ , UpperCamelCase__ ) if ca != ca] ) // 2 ) if not match_count: __lowercase = 0.0 else: __lowercase = ( 1 / 3 * ( match_count / len(UpperCamelCase__ ) + match_count / len(UpperCamelCase__ ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters __lowercase = 0 for ca, ca in zip(stra[:4] , stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler("hello", "world"))
442
1
import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { "vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_config_file": "tokenizer_config.json", } __lowerCAmelCase = { "vocab_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"}, "merges_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"}, "tokenizer_config_file": { "facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json" }, } __lowerCAmelCase = {"facebook/blenderbot-3B": 1_2_8} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def __lowerCamelCase ( ) -> int: _UpperCAmelCase = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) _UpperCAmelCase = bs[:] _UpperCAmelCase = 0 for b in range(2**8 ): if b not in bs: bs.append(_lowerCAmelCase ) cs.append(2**8 + n ) n += 1 _UpperCAmelCase = [chr(_lowerCAmelCase ) for n in cs] return dict(zip(_lowerCAmelCase , _lowerCAmelCase ) ) def __lowerCamelCase ( _lowerCAmelCase ) -> Union[str, Any]: _UpperCAmelCase = set() _UpperCAmelCase = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _UpperCAmelCase = char return pairs class __SCREAMING_SNAKE_CASE ( lowercase): __SCREAMING_SNAKE_CASE : Any = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : Dict = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : str = ["""input_ids""", """attention_mask"""] def __init__( self : Tuple , __UpperCamelCase : Tuple , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Union[str, Any]="replace" , __UpperCamelCase : Union[str, Any]="<s>" , __UpperCamelCase : int="</s>" , __UpperCamelCase : Optional[int]="</s>" , __UpperCamelCase : str="<s>" , __UpperCamelCase : Tuple="<unk>" , __UpperCamelCase : int="<pad>" , __UpperCamelCase : Union[str, Any]="<mask>" , __UpperCamelCase : List[Any]=False , **__UpperCamelCase : Optional[Any] , ): _UpperCAmelCase = AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else bos_token _UpperCAmelCase = AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else eos_token _UpperCAmelCase = AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else sep_token _UpperCAmelCase = AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else cls_token _UpperCAmelCase = AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else unk_token _UpperCAmelCase = AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it _UpperCAmelCase = AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else mask_token super().__init__( errors=__UpperCamelCase , bos_token=__UpperCamelCase , eos_token=__UpperCamelCase , unk_token=__UpperCamelCase , sep_token=__UpperCamelCase , cls_token=__UpperCamelCase , pad_token=__UpperCamelCase , mask_token=__UpperCamelCase , add_prefix_space=__UpperCamelCase , **__UpperCamelCase , ) with open(__UpperCamelCase , encoding="utf-8" ) as vocab_handle: _UpperCAmelCase = json.load(__UpperCamelCase ) _UpperCAmelCase = {v: k for k, v in self.encoder.items()} _UpperCAmelCase = errors # how to handle errors in decoding _UpperCAmelCase = bytes_to_unicode() _UpperCAmelCase = {v: k for k, v in self.byte_encoder.items()} with open(__UpperCamelCase , encoding="utf-8" ) as merges_handle: _UpperCAmelCase = merges_handle.read().split("\n" )[1:-1] _UpperCAmelCase = [tuple(merge.split() ) for merge in bpe_merges] _UpperCAmelCase = dict(zip(__UpperCamelCase , range(len(__UpperCamelCase ) ) ) ) _UpperCAmelCase = {} _UpperCAmelCase = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions _UpperCAmelCase = re.compile(r"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def UpperCAmelCase__ ( self : Optional[int] ): return len(self.encoder ) def UpperCAmelCase__ ( self : str ): return dict(self.encoder , **self.added_tokens_encoder ) def UpperCAmelCase__ ( self : Optional[int] , __UpperCamelCase : Optional[Any] ): if token in self.cache: return self.cache[token] _UpperCAmelCase = tuple(__UpperCamelCase ) _UpperCAmelCase = get_pairs(__UpperCamelCase ) if not pairs: return token while True: _UpperCAmelCase = min(__UpperCamelCase , key=lambda __UpperCamelCase : self.bpe_ranks.get(__UpperCamelCase , float("inf" ) ) ) if bigram not in self.bpe_ranks: break _UpperCAmelCase , _UpperCAmelCase = bigram _UpperCAmelCase = [] _UpperCAmelCase = 0 while i < len(__UpperCamelCase ): try: _UpperCAmelCase = word.index(__UpperCamelCase , __UpperCamelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _UpperCAmelCase = j if word[i] == first and i < len(__UpperCamelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _UpperCAmelCase = tuple(__UpperCamelCase ) _UpperCAmelCase = new_word if len(__UpperCamelCase ) == 1: break else: _UpperCAmelCase = get_pairs(__UpperCamelCase ) _UpperCAmelCase = " ".join(__UpperCamelCase ) _UpperCAmelCase = word return word def UpperCAmelCase__ ( self : Optional[int] , __UpperCamelCase : str ): _UpperCAmelCase = [] for token in re.findall(self.pat , __UpperCamelCase ): _UpperCAmelCase = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__UpperCamelCase ).split(" " ) ) return bpe_tokens def UpperCAmelCase__ ( self : Union[str, Any] , __UpperCamelCase : List[str] ): return self.encoder.get(__UpperCamelCase , self.encoder.get(self.unk_token ) ) def UpperCAmelCase__ ( self : List[str] , __UpperCamelCase : Optional[Any] ): return self.decoder.get(__UpperCamelCase ) def UpperCAmelCase__ ( self : List[Any] , __UpperCamelCase : List[Any] ): _UpperCAmelCase = "".join(__UpperCamelCase ) _UpperCAmelCase = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def UpperCAmelCase__ ( self : Optional[Any] , __UpperCamelCase : str , __UpperCamelCase : Optional[str] = None ): if not os.path.isdir(__UpperCamelCase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return _UpperCAmelCase = os.path.join( __UpperCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) _UpperCAmelCase = os.path.join( __UpperCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(__UpperCamelCase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__UpperCamelCase , ensure_ascii=__UpperCamelCase ) + "\n" ) _UpperCAmelCase = 0 with open(__UpperCamelCase , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __UpperCamelCase : kv[1] ): if index != token_index: logger.warning( F'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' " Please check that the tokenizer is not corrupted!" ) _UpperCAmelCase = token_index writer.write(" ".join(__UpperCamelCase ) + "\n" ) index += 1 return vocab_file, merge_file def UpperCAmelCase__ ( self : Dict , __UpperCamelCase : List[int] , __UpperCamelCase : Optional[List[int]] = None , __UpperCamelCase : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCamelCase , token_ids_a=__UpperCamelCase , already_has_special_tokens=__UpperCamelCase ) if token_ids_a is None: return [1] + ([0] * len(__UpperCamelCase )) + [1] return [1] + ([0] * len(__UpperCamelCase )) + [1, 1] + ([0] * len(__UpperCamelCase )) + [1] def UpperCAmelCase__ ( self : str , __UpperCamelCase : List[int] , __UpperCamelCase : Optional[List[int]] = None ): _UpperCAmelCase = [self.sep_token_id] _UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCAmelCase__ ( self : Union[str, Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : str=False , **__UpperCamelCase : Optional[int] ): _UpperCAmelCase = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(__UpperCamelCase ) > 0 and not text[0].isspace()): _UpperCAmelCase = " " + text return (text, kwargs) def UpperCAmelCase__ ( self : str , __UpperCamelCase : List[int] , __UpperCamelCase : Optional[List[int]] = None ): return token_ids_a + [self.eos_token_id] def UpperCAmelCase__ ( self : List[Any] , __UpperCamelCase : "Conversation" ): _UpperCAmelCase = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(" " + text ) else: # Generated responses should contain them already. inputs.append(__UpperCamelCase ) _UpperCAmelCase = " ".join(__UpperCamelCase ) _UpperCAmelCase = self.encode(__UpperCamelCase ) if len(__UpperCamelCase ) > self.model_max_length: _UpperCAmelCase = input_ids[-self.model_max_length :] logger.warning(F'''Trimmed input from conversation as it was longer than {self.model_max_length} tokens.''' ) return input_ids
684
import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch __lowerCAmelCase = random.Random() def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase=1.0 , _lowerCAmelCase=None , _lowerCAmelCase=None ) -> List[str]: if rng is None: _UpperCAmelCase = global_rng _UpperCAmelCase = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class __SCREAMING_SNAKE_CASE ( unittest.TestCase): def __init__( self : Optional[Any] , __UpperCamelCase : List[str] , __UpperCamelCase : List[Any]=7 , __UpperCamelCase : Union[str, Any]=400 , __UpperCamelCase : List[Any]=2_000 , __UpperCamelCase : Optional[Any]=10 , __UpperCamelCase : Optional[int]=160 , __UpperCamelCase : Any=8 , __UpperCamelCase : List[Any]=0.0 , __UpperCamelCase : Dict=4_000 , __UpperCamelCase : Optional[int]=False , __UpperCamelCase : Tuple=True , ): _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = min_seq_length _UpperCAmelCase = max_seq_length _UpperCAmelCase = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _UpperCAmelCase = padding_value _UpperCAmelCase = sampling_rate _UpperCAmelCase = return_attention_mask _UpperCAmelCase = do_normalize _UpperCAmelCase = feature_size _UpperCAmelCase = chunk_length _UpperCAmelCase = hop_length def UpperCAmelCase__ ( self : Optional[Any] ): return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def UpperCAmelCase__ ( self : Dict , __UpperCamelCase : Tuple=False , __UpperCamelCase : Dict=False ): def _flatten(__UpperCamelCase : Any ): return list(itertools.chain(*__UpperCamelCase ) ) if equal_length: _UpperCAmelCase = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size _UpperCAmelCase = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _UpperCAmelCase = [np.asarray(__UpperCamelCase ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class __SCREAMING_SNAKE_CASE ( lowercase , unittest.TestCase): __SCREAMING_SNAKE_CASE : str = WhisperFeatureExtractor if is_speech_available() else None def UpperCAmelCase__ ( self : str ): _UpperCAmelCase = WhisperFeatureExtractionTester(self ) def UpperCAmelCase__ ( self : str ): _UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _UpperCAmelCase = feat_extract_first.save_pretrained(__UpperCamelCase )[0] check_json_file_has_correct_format(__UpperCamelCase ) _UpperCAmelCase = self.feature_extraction_class.from_pretrained(__UpperCamelCase ) _UpperCAmelCase = feat_extract_first.to_dict() _UpperCAmelCase = feat_extract_second.to_dict() _UpperCAmelCase = feat_extract_first.mel_filters _UpperCAmelCase = feat_extract_second.mel_filters self.assertTrue(np.allclose(__UpperCamelCase , __UpperCamelCase ) ) self.assertEqual(__UpperCamelCase , __UpperCamelCase ) def UpperCAmelCase__ ( self : Union[str, Any] ): _UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _UpperCAmelCase = os.path.join(__UpperCamelCase , "feat_extract.json" ) feat_extract_first.to_json_file(__UpperCamelCase ) _UpperCAmelCase = self.feature_extraction_class.from_json_file(__UpperCamelCase ) _UpperCAmelCase = feat_extract_first.to_dict() _UpperCAmelCase = feat_extract_second.to_dict() _UpperCAmelCase = feat_extract_first.mel_filters _UpperCAmelCase = feat_extract_second.mel_filters self.assertTrue(np.allclose(__UpperCamelCase , __UpperCamelCase ) ) self.assertEqual(__UpperCamelCase , __UpperCamelCase ) def UpperCAmelCase__ ( self : int ): # Tests that all call wrap to encode_plus and batch_encode_plus _UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 _UpperCAmelCase = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] _UpperCAmelCase = [np.asarray(__UpperCamelCase ) for speech_input in speech_inputs] # Test feature size _UpperCAmelCase = feature_extractor(__UpperCamelCase , padding="max_length" , return_tensors="np" ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input _UpperCAmelCase = feature_extractor(speech_inputs[0] , return_tensors="np" ).input_features _UpperCAmelCase = feature_extractor(np_speech_inputs[0] , return_tensors="np" ).input_features self.assertTrue(np.allclose(__UpperCamelCase , __UpperCamelCase , atol=1e-3 ) ) # Test batched _UpperCAmelCase = feature_extractor(__UpperCamelCase , return_tensors="np" ).input_features _UpperCAmelCase = feature_extractor(__UpperCamelCase , return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(__UpperCamelCase , __UpperCamelCase ): self.assertTrue(np.allclose(__UpperCamelCase , __UpperCamelCase , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. _UpperCAmelCase = [floats_list((1, x) )[0] for x in (800, 800, 800)] _UpperCAmelCase = np.asarray(__UpperCamelCase ) _UpperCAmelCase = feature_extractor(__UpperCamelCase , return_tensors="np" ).input_features _UpperCAmelCase = feature_extractor(__UpperCamelCase , return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(__UpperCamelCase , __UpperCamelCase ): self.assertTrue(np.allclose(__UpperCamelCase , __UpperCamelCase , atol=1e-3 ) ) # Test truncation required _UpperCAmelCase = [floats_list((1, x) )[0] for x in range(200 , (feature_extractor.n_samples + 500) , 200 )] _UpperCAmelCase = [np.asarray(__UpperCamelCase ) for speech_input in speech_inputs] _UpperCAmelCase = [x[: feature_extractor.n_samples] for x in speech_inputs] _UpperCAmelCase = [np.asarray(__UpperCamelCase ) for speech_input in speech_inputs_truncated] _UpperCAmelCase = feature_extractor(__UpperCamelCase , return_tensors="np" ).input_features _UpperCAmelCase = feature_extractor(__UpperCamelCase , return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(__UpperCamelCase , __UpperCamelCase ): self.assertTrue(np.allclose(__UpperCamelCase , __UpperCamelCase , atol=1e-3 ) ) def UpperCAmelCase__ ( self : Union[str, Any] ): import torch _UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _UpperCAmelCase = np.random.rand(100 , 32 ).astype(np.floataa ) _UpperCAmelCase = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: _UpperCAmelCase = feature_extractor.pad([{"input_features": inputs}] , return_tensors="np" ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) _UpperCAmelCase = feature_extractor.pad([{"input_features": inputs}] , return_tensors="pt" ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def UpperCAmelCase__ ( self : Tuple , __UpperCamelCase : Tuple ): _UpperCAmelCase = load_dataset("hf-internal-testing/librispeech_asr_dummy" , "clean" , split="validation" ) # automatic decoding with librispeech _UpperCAmelCase = ds.sort("id" ).select(range(__UpperCamelCase ) )[:num_samples]["audio"] return [x["array"] for x in speech_samples] def UpperCAmelCase__ ( self : Tuple ): # fmt: off _UpperCAmelCase = torch.tensor( [ 0.1193, -0.0946, -0.1098, -0.0196, 0.0225, -0.0690, -0.1736, 0.0951, 0.0971, -0.0817, -0.0702, 0.0162, 0.0260, 0.0017, -0.0192, -0.1678, 0.0709, -0.1867, -0.0655, -0.0274, -0.0234, -0.1884, -0.0516, -0.0554, -0.0274, -0.1425, -0.1423, 0.0837, 0.0377, -0.0854 ] ) # fmt: on _UpperCAmelCase = self._load_datasamples(1 ) _UpperCAmelCase = WhisperFeatureExtractor() _UpperCAmelCase = feature_extractor(__UpperCamelCase , return_tensors="pt" ).input_features self.assertEqual(input_features.shape , (1, 80, 3_000) ) self.assertTrue(torch.allclose(input_features[0, 0, :30] , __UpperCamelCase , atol=1e-4 ) ) def UpperCAmelCase__ ( self : Optional[Any] ): _UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _UpperCAmelCase = self._load_datasamples(1 )[0] _UpperCAmelCase = ((audio - audio.min()) / (audio.max() - audio.min())) * 65_535 # Rescale to [0, 65535] to show issue _UpperCAmelCase = feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=__UpperCamelCase )[0] self.assertTrue(np.all(np.mean(__UpperCamelCase ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(__UpperCamelCase ) - 1 ) < 1e-3 ) )
684
1
"""simple docstring""" from ..utils import DummyObject, requires_backends class _SCREAMING_SNAKE_CASE ( metaclass=A__ ): UpperCAmelCase_ :Optional[int] = ["flax"] def __init__( self , *__A , **__A ) -> Optional[Any]: requires_backends(self , ["""flax"""] ) @classmethod def __lowerCAmelCase ( cls , *__A , **__A ) -> Union[str, Any]: requires_backends(cls , ["""flax"""] ) @classmethod def __lowerCAmelCase ( cls , *__A , **__A ) -> List[Any]: requires_backends(cls , ["""flax"""] ) class _SCREAMING_SNAKE_CASE ( metaclass=A__ ): UpperCAmelCase_ :Optional[int] = ["flax"] def __init__( self , *__A , **__A ) -> int: requires_backends(self , ["""flax"""] ) @classmethod def __lowerCAmelCase ( cls , *__A , **__A ) -> Tuple: requires_backends(cls , ["""flax"""] ) @classmethod def __lowerCAmelCase ( cls , *__A , **__A ) -> int: requires_backends(cls , ["""flax"""] ) class _SCREAMING_SNAKE_CASE ( metaclass=A__ ): UpperCAmelCase_ :str = ["flax"] def __init__( self , *__A , **__A ) -> List[str]: requires_backends(self , ["""flax"""] ) @classmethod def __lowerCAmelCase ( cls , *__A , **__A ) -> Any: requires_backends(cls , ["""flax"""] ) @classmethod def __lowerCAmelCase ( cls , *__A , **__A ) -> str: requires_backends(cls , ["""flax"""] ) class _SCREAMING_SNAKE_CASE ( metaclass=A__ ): UpperCAmelCase_ :str = ["flax"] def __init__( self , *__A , **__A ) -> Dict: requires_backends(self , ["""flax"""] ) @classmethod def __lowerCAmelCase ( cls , *__A , **__A ) -> Dict: requires_backends(cls , ["""flax"""] ) @classmethod def __lowerCAmelCase ( cls , *__A , **__A ) -> Optional[int]: requires_backends(cls , ["""flax"""] ) class _SCREAMING_SNAKE_CASE ( metaclass=A__ ): UpperCAmelCase_ :str = ["flax"] def __init__( self , *__A , **__A ) -> Any: requires_backends(self , ["""flax"""] ) @classmethod def __lowerCAmelCase ( cls , *__A , **__A ) -> Optional[int]: requires_backends(cls , ["""flax"""] ) @classmethod def __lowerCAmelCase ( cls , *__A , **__A ) -> Any: requires_backends(cls , ["""flax"""] ) class _SCREAMING_SNAKE_CASE ( metaclass=A__ ): UpperCAmelCase_ :List[Any] = ["flax"] def __init__( self , *__A , **__A ) -> str: requires_backends(self , ["""flax"""] ) @classmethod def __lowerCAmelCase ( cls , *__A , **__A ) -> Union[str, Any]: requires_backends(cls , ["""flax"""] ) @classmethod def __lowerCAmelCase ( cls , *__A , **__A ) -> Union[str, Any]: requires_backends(cls , ["""flax"""] ) class _SCREAMING_SNAKE_CASE ( metaclass=A__ ): UpperCAmelCase_ :Dict = ["flax"] def __init__( self , *__A , **__A ) -> Tuple: requires_backends(self , ["""flax"""] ) @classmethod def __lowerCAmelCase ( cls , *__A , **__A ) -> Any: requires_backends(cls , ["""flax"""] ) @classmethod def __lowerCAmelCase ( cls , *__A , **__A ) -> str: requires_backends(cls , ["""flax"""] ) class _SCREAMING_SNAKE_CASE ( metaclass=A__ ): UpperCAmelCase_ :int = ["flax"] def __init__( self , *__A , **__A ) -> Dict: requires_backends(self , ["""flax"""] ) @classmethod def __lowerCAmelCase ( cls , *__A , **__A ) -> Optional[Any]: requires_backends(cls , ["""flax"""] ) @classmethod def __lowerCAmelCase ( cls , *__A , **__A ) -> Dict: requires_backends(cls , ["""flax"""] ) class _SCREAMING_SNAKE_CASE ( metaclass=A__ ): UpperCAmelCase_ :List[Any] = ["flax"] def __init__( self , *__A , **__A ) -> Dict: requires_backends(self , ["""flax"""] ) @classmethod def __lowerCAmelCase ( cls , *__A , **__A ) -> Union[str, Any]: requires_backends(cls , ["""flax"""] ) @classmethod def __lowerCAmelCase ( cls , *__A , **__A ) -> Optional[int]: requires_backends(cls , ["""flax"""] ) class _SCREAMING_SNAKE_CASE ( metaclass=A__ ): UpperCAmelCase_ :Union[str, Any] = ["flax"] def __init__( self , *__A , **__A ) -> List[str]: requires_backends(self , ["""flax"""] ) @classmethod def __lowerCAmelCase ( cls , *__A , **__A ) -> Dict: requires_backends(cls , ["""flax"""] ) @classmethod def __lowerCAmelCase ( cls , *__A , **__A ) -> List[str]: requires_backends(cls , ["""flax"""] ) class _SCREAMING_SNAKE_CASE ( metaclass=A__ ): UpperCAmelCase_ :int = ["flax"] def __init__( self , *__A , **__A ) -> str: requires_backends(self , ["""flax"""] ) @classmethod def __lowerCAmelCase ( cls , *__A , **__A ) -> str: requires_backends(cls , ["""flax"""] ) @classmethod def __lowerCAmelCase ( cls , *__A , **__A ) -> int: requires_backends(cls , ["""flax"""] ) class _SCREAMING_SNAKE_CASE ( metaclass=A__ ): UpperCAmelCase_ :Optional[int] = ["flax"] def __init__( self , *__A , **__A ) -> Tuple: requires_backends(self , ["""flax"""] ) @classmethod def __lowerCAmelCase ( cls , *__A , **__A ) -> Union[str, Any]: requires_backends(cls , ["""flax"""] ) @classmethod def __lowerCAmelCase ( cls , *__A , **__A ) -> Union[str, Any]: requires_backends(cls , ["""flax"""] ) class _SCREAMING_SNAKE_CASE ( metaclass=A__ ): UpperCAmelCase_ :Dict = ["flax"] def __init__( self , *__A , **__A ) -> Any: requires_backends(self , ["""flax"""] ) @classmethod def __lowerCAmelCase ( cls , *__A , **__A ) -> Any: requires_backends(cls , ["""flax"""] ) @classmethod def __lowerCAmelCase ( cls , *__A , **__A ) -> List[Any]: requires_backends(cls , ["""flax"""] )
256
"""simple docstring""" import math def _snake_case ( ) -> None: '''simple docstring''' lowerCAmelCase_ :List[str] = input("""Enter message: """ ) lowerCAmelCase_ :Any = int(input(f"""Enter key [2-{len(lowercase__ ) - 1}]: """ ) ) lowerCAmelCase_ :str = input("""Encryption/Decryption [e/d]: """ ) if mode.lower().startswith("""e""" ): lowerCAmelCase_ :int = encrypt_message(lowercase__ , lowercase__ ) elif mode.lower().startswith("""d""" ): lowerCAmelCase_ :List[str] = decrypt_message(lowercase__ , lowercase__ ) # Append pipe symbol (vertical bar) to identify spaces at the end. print(f"""Output:\n{text + "|"}""" ) def _snake_case ( lowercase__ : int , lowercase__ : str ) -> str: '''simple docstring''' lowerCAmelCase_ :int = [""""""] * key for col in range(lowercase__ ): lowerCAmelCase_ :str = col while pointer < len(lowercase__ ): cipher_text[col] += message[pointer] pointer += key return "".join(lowercase__ ) def _snake_case ( lowercase__ : int , lowercase__ : str ) -> str: '''simple docstring''' lowerCAmelCase_ :List[Any] = math.ceil(len(lowercase__ ) / key ) lowerCAmelCase_ :int = key lowerCAmelCase_ :Tuple = (num_cols * num_rows) - len(lowercase__ ) lowerCAmelCase_ :Any = [""""""] * num_cols lowerCAmelCase_ :Tuple = 0 lowerCAmelCase_ :Any = 0 for symbol in message: plain_text[col] += symbol col += 1 if ( (col == num_cols) or (col == num_cols - 1) and (row >= num_rows - num_shaded_boxes) ): lowerCAmelCase_ :List[Any] = 0 row += 1 return "".join(lowercase__ ) if __name__ == "__main__": import doctest doctest.testmod() main()
256
1
from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case = logging.get_logger(__name__) snake_case = { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json""" ), """google/realm-orqa-nq-openqa""": """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json""", """google/realm-orqa-nq-reader""": """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json""", """google/realm-orqa-wq-openqa""": """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json""", """google/realm-orqa-wq-reader""": """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json""", # See all REALM models at https://huggingface.co/models?filter=realm } class A_ ( UpperCAmelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = '''realm''' def __init__( self : Tuple ,__A : List[str]=3_0522 ,__A : Any=768 ,__A : Dict=128 ,__A : List[Any]=12 ,__A : Dict=12 ,__A : Union[str, Any]=8 ,__A : Optional[Any]=3072 ,__A : Optional[Any]="gelu_new" ,__A : str=0.1 ,__A : Dict=0.1 ,__A : Optional[int]=512 ,__A : Any=2 ,__A : List[Any]=0.02 ,__A : Any=1e-12 ,__A : List[str]=256 ,__A : Any=10 ,__A : int=1e-3 ,__A : Union[str, Any]=5 ,__A : List[Any]=320 ,__A : List[Any]=1335_3718 ,__A : Tuple=5000 ,__A : str=1 ,__A : Dict=0 ,__A : int=2 ,**__A : Dict ,) -> Optional[int]: super().__init__(pad_token_id=__A ,bos_token_id=__A ,eos_token_id=__A ,**__A ) # Common config _lowercase = vocab_size _lowercase = max_position_embeddings _lowercase = hidden_size _lowercase = retriever_proj_size _lowercase = num_hidden_layers _lowercase = num_attention_heads _lowercase = num_candidates _lowercase = intermediate_size _lowercase = hidden_act _lowercase = hidden_dropout_prob _lowercase = attention_probs_dropout_prob _lowercase = initializer_range _lowercase = type_vocab_size _lowercase = layer_norm_eps # Reader config _lowercase = span_hidden_size _lowercase = max_span_width _lowercase = reader_layer_norm_eps _lowercase = reader_beam_size _lowercase = reader_seq_len # Retrieval config _lowercase = num_block_records _lowercase = searcher_beam_size
67
"""simple docstring""" def __SCREAMING_SNAKE_CASE ( A_ ): for i in range(len(A_ ) - 1 , 0 , -1 ): lowerCAmelCase__ : Optional[Any] = False for j in range(A_ , 0 , -1 ): if unsorted[j] < unsorted[j - 1]: lowerCAmelCase__ ,lowerCAmelCase__ : Union[str, Any] = unsorted[j - 1], unsorted[j] lowerCAmelCase__ : Dict = True for j in range(A_ ): if unsorted[j] > unsorted[j + 1]: lowerCAmelCase__ ,lowerCAmelCase__ : Union[str, Any] = unsorted[j + 1], unsorted[j] lowerCAmelCase__ : Any = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() __UpperCamelCase : int = input('''Enter numbers separated by a comma:\n''').strip() __UpperCamelCase : Optional[Any] = [int(item) for item in user_input.split(''',''')] print(F'''{cocktail_shaker_sort(unsorted) = }''')
450
0
import colorsys from PIL import Image # type: ignore def UpperCamelCase( lowercase_ , lowercase_ , lowercase_ ) -> float: '''simple docstring''' snake_case_ = x snake_case_ = y for step in range(lowercase_ ): # noqa: B007 snake_case_ = a * a - b * b + x snake_case_ = 2 * a * b + y snake_case_ = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def UpperCamelCase( lowercase_ ) -> tuple: '''simple docstring''' if distance == 1: return (0, 0, 0) else: return (255, 255, 255) def UpperCamelCase( lowercase_ ) -> tuple: '''simple docstring''' if distance == 1: return (0, 0, 0) else: return tuple(round(i * 255 ) for i in colorsys.hsv_to_rgb(lowercase_ , 1 , 1 ) ) def UpperCamelCase( lowercase_ = 800 , lowercase_ = 600 , lowercase_ = -0.6 , lowercase_ = 0 , lowercase_ = 3.2 , lowercase_ = 50 , lowercase_ = True , ) -> Image.Image: '''simple docstring''' snake_case_ = Image.new("""RGB""" , (image_width, image_height) ) snake_case_ = img.load() # loop through the image-coordinates for image_x in range(lowercase_ ): for image_y in range(lowercase_ ): # determine the figure-coordinates based on the image-coordinates snake_case_ = figure_width / image_width * image_height snake_case_ = figure_center_x + (image_x / image_width - 0.5) * figure_width snake_case_ = figure_center_y + (image_y / image_height - 0.5) * figure_height snake_case_ = get_distance(lowercase_ , lowercase_ , lowercase_ ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: snake_case_ = get_color_coded_rgb(lowercase_ ) else: snake_case_ = get_black_and_white_rgb(lowercase_ ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure lowerCamelCase_ = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
712
from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging lowerCamelCase_ = logging.get_logger(__name__) class __lowerCamelCase ( __snake_case ): lowerCamelCase_ : Tuple = ['audio_values', 'audio_mask'] def __init__( self , lowerCamelCase=2048 , lowerCamelCase=1 , lowerCamelCase=[16, 16] , lowerCamelCase=128 , lowerCamelCase=44100 , lowerCamelCase=86 , lowerCamelCase=2048 , lowerCamelCase=0.0 , **lowerCamelCase , ) -> List[Any]: super().__init__( feature_size=lowerCamelCase , sampling_rate=lowerCamelCase , padding_value=lowerCamelCase , **lowerCamelCase , ) snake_case_ = spectrogram_length snake_case_ = num_channels snake_case_ = patch_size snake_case_ = feature_size // self.patch_size[1] snake_case_ = n_fft snake_case_ = sampling_rate // hop_length_to_sampling_rate snake_case_ = sampling_rate snake_case_ = padding_value snake_case_ = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=lowerCamelCase , min_frequency=0.0 , max_frequency=2_2050.0 , sampling_rate=lowerCamelCase , norm="""slaney""" , mel_scale="""slaney""" , ).T def lowerCAmelCase_ ( self , lowerCamelCase ) -> np.ndarray: snake_case_ = spectrogram( lowerCamelCase , window_function(self.n_fft , """hann""" ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters.T , log_mel="""dB""" , db_range=80.0 , ) snake_case_ = log_spec[:, :-1] snake_case_ = log_spec - 20.0 snake_case_ = np.clip(log_spec / 40.0 , -2.0 , 0.0 ) + 1.0 return log_spec def __call__( self , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = True , lowerCamelCase = None , lowerCamelCase = False , lowerCamelCase = False , **lowerCamelCase , ) -> BatchFeature: if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( """This feature extractor is set to support sampling rate""" f''' of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled''' f''' with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) snake_case_ = isinstance(lowerCamelCase , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'''Only mono-channel audio is supported for input to {self}''' ) snake_case_ = is_batched_numpy or ( isinstance(lowerCamelCase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: snake_case_ = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(lowerCamelCase , np.ndarray ): snake_case_ = np.asarray(lowerCamelCase , dtype=np.floataa ) elif isinstance(lowerCamelCase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): snake_case_ = raw_speech.astype(np.floataa ) # always return batch if not is_batched: snake_case_ = [np.asarray([raw_speech] ).T] # Convert audio signals to log mel spectrograms, truncate by time axis snake_case_ = [ self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0] , lowerCamelCase ): snake_case_ = [np.asarray(lowerCamelCase , dtype=np.floataa ) for feature in audio_features] # Create audio attention mask snake_case_ = max( [ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch if return_attention_mask: snake_case_ = [ (ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0] for feature in audio_features ] snake_case_ = np.array(lowerCamelCase ).astype(np.floataa ) # convert into correct format for padding snake_case_ = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch snake_case_ = np.ones([len(lowerCamelCase ), 1, max_time_len, self.feature_size] ).astype(np.floataa ) snake_case_ = padded_audio_features * self.padding_value for i in range(len(lowerCamelCase ) ): snake_case_ = audio_features[i] snake_case_ = feature # return as BatchFeature if return_attention_mask: snake_case_ = {"""audio_values""": padded_audio_features, """audio_mask""": audio_mask} else: snake_case_ = {"""audio_values""": padded_audio_features} snake_case_ = BatchFeature(data=lowerCamelCase , tensor_type=lowerCamelCase ) return encoded_inputs
161
0
"""simple docstring""" import os def a ( __UpperCAmelCase : Optional[int] ) -> str: __magic_name__: List[str] = len(grid[0] ) __magic_name__: List[str] = len(__UpperCAmelCase ) __magic_name__: List[Any] = 0 __magic_name__: Union[str, Any] = 0 __magic_name__: List[str] = 0 # Check vertically, horizontally, diagonally at the same time (only works # for nxn grid) for i in range(__UpperCAmelCase ): for j in range(n_rows - 3 ): __magic_name__: List[str] = grid[j][i] * grid[j + 1][i] * grid[j + 2][i] * grid[j + 3][i] __magic_name__: str = grid[i][j] * grid[i][j + 1] * grid[i][j + 2] * grid[i][j + 3] # Left-to-right diagonal (\) product if i < n_columns - 3: __magic_name__: List[str] = ( grid[i][j] * grid[i + 1][j + 1] * grid[i + 2][j + 2] * grid[i + 3][j + 3] ) # Right-to-left diagonal(/) product if i > 2: __magic_name__: Union[str, Any] = ( grid[i][j] * grid[i - 1][j + 1] * grid[i - 2][j + 2] * grid[i - 3][j + 3] ) __magic_name__: str = max( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) if max_product > largest: __magic_name__: Optional[Any] = max_product return largest def a ( ) -> str: __magic_name__: List[str] = [] with open(os.path.dirname(__UpperCAmelCase ) + """/grid.txt""" ) as file: for line in file: grid.append(line.strip("""\n""" ).split(""" """ ) ) __magic_name__: Tuple = [[int(__UpperCAmelCase ) for i in grid[j]] for j in range(len(__UpperCAmelCase ) )] return largest_product(__UpperCAmelCase ) if __name__ == "__main__": print(solution())
96
"""simple docstring""" import json import os import unittest from transformers import OpenAIGPTTokenizer, OpenAIGPTTokenizerFast from transformers.models.openai.tokenization_openai import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_spacy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __A ( SCREAMING_SNAKE_CASE_ ,unittest.TestCase ): UpperCAmelCase__ = OpenAIGPTTokenizer UpperCAmelCase__ = OpenAIGPTTokenizerFast UpperCAmelCase__ = True UpperCAmelCase__ = False def lowerCamelCase__ ( self : Dict ) -> Optional[Any]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __magic_name__: str = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """w</w>""", """r</w>""", """t</w>""", """lo""", """low""", """er</w>""", """low</w>""", """lowest</w>""", """newer</w>""", """wider</w>""", """<unk>""", ] __magic_name__: Any = dict(zip(__snake_case , range(len(__snake_case ) ) ) ) __magic_name__: List[str] = ["""#version: 0.2""", """l o""", """lo w""", """e r</w>""", """"""] __magic_name__: Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __magic_name__: Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" ) as fp: fp.write(json.dumps(__snake_case ) ) with open(self.merges_file , """w""" ) as fp: fp.write("""\n""".join(__snake_case ) ) def lowerCamelCase__ ( self : List[Any] , __snake_case : Optional[Any] ) -> Optional[int]: return "lower newer", "lower newer" def lowerCamelCase__ ( self : List[Any] ) -> Union[str, Any]: __magic_name__: Optional[Any] = OpenAIGPTTokenizer(self.vocab_file , self.merges_file ) __magic_name__: Union[str, Any] = """lower""" __magic_name__: Optional[int] = ["""low""", """er</w>"""] __magic_name__: List[Any] = tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) __magic_name__: Optional[int] = tokens + ["""<unk>"""] __magic_name__: List[str] = [1_4, 1_5, 2_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(__snake_case ) , __snake_case ) def lowerCamelCase__ ( self : Optional[Any] , __snake_case : Any=1_5 ) -> Tuple: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): __magic_name__: str = self.rust_tokenizer_class.from_pretrained(__snake_case , **__snake_case ) # Simple input __magic_name__: Dict = """This is a simple input""" __magic_name__: Any = ["""This is a simple input 1""", """This is a simple input 2"""] __magic_name__: int = ("""This is a simple input""", """This is a pair""") __magic_name__: int = [ ("""This is a simple input 1""", """This is a simple input 2"""), ("""This is a simple pair 1""", """This is a simple pair 2"""), ] # Simple input tests self.assertRaises(__snake_case , tokenizer_r.encode , __snake_case , max_length=__snake_case , padding="""max_length""" ) # Simple input self.assertRaises(__snake_case , tokenizer_r.encode_plus , __snake_case , max_length=__snake_case , padding="""max_length""" ) # Simple input self.assertRaises( __snake_case , tokenizer_r.batch_encode_plus , __snake_case , max_length=__snake_case , padding="""max_length""" , ) # Pair input self.assertRaises(__snake_case , tokenizer_r.encode , __snake_case , max_length=__snake_case , padding="""max_length""" ) # Pair input self.assertRaises(__snake_case , tokenizer_r.encode_plus , __snake_case , max_length=__snake_case , padding="""max_length""" ) # Pair input self.assertRaises( __snake_case , tokenizer_r.batch_encode_plus , __snake_case , max_length=__snake_case , padding="""max_length""" , ) def lowerCamelCase__ ( self : Dict ) -> Any: pass @require_ftfy @require_spacy @require_tokenizers class __A ( SCREAMING_SNAKE_CASE_ ): pass
96
1
'''simple docstring''' def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : int = (boundary[1] - boundary[0]) / steps _snake_case : Optional[Any] = boundary[0] _snake_case : List[Any] = boundary[1] _snake_case : List[str] = make_points(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case : Optional[int] = 0.0 y += (h / 2.0) * f(lowerCAmelCase_ ) for i in x_i: # print(i) y += h * f(lowerCAmelCase_ ) y += (h / 2.0) * f(lowerCAmelCase_ ) return y def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : Optional[int] = a + h while x < (b - h): yield x _snake_case : str = x + h def _a ( lowerCAmelCase_ ): # enter your function here """simple docstring""" _snake_case : Tuple = (x - 0) * (x - 0) return y def _a ( ): """simple docstring""" _snake_case : str = 0.0 # Lower bound of integration _snake_case : Optional[int] = 1.0 # Upper bound of integration _snake_case : str = 10.0 # define number of steps or resolution _snake_case : int = [a, b] # define boundary of integration _snake_case : Any = method_a(lowerCAmelCase_ , lowerCAmelCase_ ) print(f'''y = {y}''' ) if __name__ == "__main__": main()
716
'''simple docstring''' from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class lowerCamelCase : _lowercase : Any = LEDConfig _lowercase : Any = {} _lowercase : Optional[Any] = """gelu""" def __init__( self , lowercase__ , lowercase__=13 , lowercase__=7 , lowercase__=True , lowercase__=False , lowercase__=99 , lowercase__=32 , lowercase__=2 , lowercase__=4 , lowercase__=37 , lowercase__=0.1 , lowercase__=0.1 , lowercase__=20 , lowercase__=2 , lowercase__=1 , lowercase__=0 , lowercase__=4 , ) -> Any: """simple docstring""" _snake_case : Dict = parent _snake_case : Any = batch_size _snake_case : List[str] = seq_length _snake_case : Union[str, Any] = is_training _snake_case : Tuple = use_labels _snake_case : int = vocab_size _snake_case : str = hidden_size _snake_case : Optional[Any] = num_hidden_layers _snake_case : List[Any] = num_attention_heads _snake_case : Optional[int] = intermediate_size _snake_case : List[Any] = hidden_dropout_prob _snake_case : List[str] = attention_probs_dropout_prob _snake_case : Optional[int] = max_position_embeddings _snake_case : Any = eos_token_id _snake_case : List[Any] = pad_token_id _snake_case : Optional[int] = bos_token_id _snake_case : Any = attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after _snake_case : Any = self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests _snake_case : Tuple = ( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def UpperCAmelCase_ ( self ) -> Optional[int]: """simple docstring""" _snake_case : Optional[int] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _snake_case : Tuple = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _snake_case : Optional[int] = tf.concat([input_ids, eos_tensor] , axis=1 ) _snake_case : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _snake_case : List[Any] = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , ) _snake_case : Dict = prepare_led_inputs_dict(lowercase__ , lowercase__ , lowercase__ ) _snake_case : Dict = tf.concat( [tf.zeros_like(lowercase__ )[:, :-1], tf.ones_like(lowercase__ )[:, -1:]] , axis=-1 , ) _snake_case : Dict = global_attention_mask return config, inputs_dict def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> int: """simple docstring""" _snake_case : int = TFLEDModel(config=lowercase__ ).get_decoder() _snake_case : Union[str, Any] = inputs_dict['''input_ids'''] _snake_case : List[str] = input_ids[:1, :] _snake_case : Tuple = inputs_dict['''attention_mask'''][:1, :] _snake_case : Dict = 1 # first forward pass _snake_case : Optional[int] = model(lowercase__ , attention_mask=lowercase__ , use_cache=lowercase__ ) _snake_case , _snake_case : Dict = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _snake_case : Optional[int] = ids_tensor((self.batch_size, 3) , config.vocab_size ) _snake_case : Any = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and _snake_case : Tuple = tf.concat([input_ids, next_tokens] , axis=-1 ) _snake_case : List[Any] = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) _snake_case : List[Any] = model(lowercase__ , attention_mask=lowercase__ )[0] _snake_case : Tuple = model(lowercase__ , attention_mask=lowercase__ , past_key_values=lowercase__ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice _snake_case : Tuple = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) _snake_case : int = output_from_no_past[:, -3:, random_slice_idx] _snake_case : Optional[Any] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowercase__ , lowercase__ , rtol=1E-3 ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , ): """simple docstring""" if attention_mask is None: _snake_case : Union[str, Any] = tf.cast(tf.math.not_equal(lowerCAmelCase_ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: _snake_case : str = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: _snake_case : int = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _snake_case : List[str] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class lowerCamelCase (a__ , a__ , unittest.TestCase ): _lowercase : Optional[int] = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () _lowercase : int = (TFLEDForConditionalGeneration,) if is_tf_available() else () _lowercase : Dict = ( { """conversational""": TFLEDForConditionalGeneration, """feature-extraction""": TFLEDModel, """summarization""": TFLEDForConditionalGeneration, """text2text-generation""": TFLEDForConditionalGeneration, """translation""": TFLEDForConditionalGeneration, } if is_tf_available() else {} ) _lowercase : int = True _lowercase : List[Any] = False _lowercase : str = False _lowercase : Union[str, Any] = False def UpperCAmelCase_ ( self ) -> Optional[Any]: """simple docstring""" _snake_case : str = TFLEDModelTester(self ) _snake_case : Union[str, Any] = ConfigTester(self , config_class=lowercase__ ) def UpperCAmelCase_ ( self ) -> Tuple: """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase_ ( self ) -> List[str]: """simple docstring""" _snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowercase__ ) def UpperCAmelCase_ ( self ) -> int: """simple docstring""" _snake_case , _snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() _snake_case : Any = tf.zeros_like(inputs_dict['''attention_mask'''] ) _snake_case : Optional[Any] = 2 _snake_case : Any = tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict['''global_attention_mask'''] , ) _snake_case : Dict = True _snake_case : str = self.model_tester.seq_length _snake_case : Dict = self.model_tester.encoder_seq_length def check_decoder_attentions_output(lowercase__ ): _snake_case : Optional[int] = outputs.decoder_attentions self.assertEqual(len(lowercase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) def check_encoder_attentions_output(lowercase__ ): _snake_case : int = [t.numpy() for t in outputs.encoder_attentions] _snake_case : Tuple = [t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(lowercase__ ) , self.model_tester.num_hidden_layers ) self.assertEqual(len(lowercase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) self.assertListEqual( list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , ) for model_class in self.all_model_classes: _snake_case : Union[str, Any] = True _snake_case : Dict = False _snake_case : Union[str, Any] = False _snake_case : List[Any] = model_class(lowercase__ ) _snake_case : Optional[Any] = model(self._prepare_for_class(lowercase__ , lowercase__ ) ) _snake_case : List[Any] = len(lowercase__ ) self.assertEqual(config.output_hidden_states , lowercase__ ) check_encoder_attentions_output(lowercase__ ) if self.is_encoder_decoder: _snake_case : Union[str, Any] = model_class(lowercase__ ) _snake_case : List[Any] = model(self._prepare_for_class(lowercase__ , lowercase__ ) ) self.assertEqual(config.output_hidden_states , lowercase__ ) check_decoder_attentions_output(lowercase__ ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] _snake_case : str = True _snake_case : Tuple = model_class(lowercase__ ) _snake_case : int = model(self._prepare_for_class(lowercase__ , lowercase__ ) ) self.assertEqual(config.output_hidden_states , lowercase__ ) check_encoder_attentions_output(lowercase__ ) # Check attention is always last and order is fine _snake_case : int = True _snake_case : List[str] = True _snake_case : Tuple = model_class(lowercase__ ) _snake_case : Optional[Any] = model(self._prepare_for_class(lowercase__ , lowercase__ ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(lowercase__ ) ) self.assertEqual(model.config.output_hidden_states , lowercase__ ) check_encoder_attentions_output(lowercase__ ) @unittest.skip('''LED keeps using potentially symbolic tensors in conditionals and breaks tracing.''' ) def UpperCAmelCase_ ( self ) -> int: """simple docstring""" pass def UpperCAmelCase_ ( self ) -> str: """simple docstring""" pass def _a ( lowerCAmelCase_ ): """simple docstring""" return tf.constant(lowerCAmelCase_ , dtype=tf.intaa ) UpperCAmelCase : Dict = 1E-4 @slow @require_tf class lowerCamelCase (unittest.TestCase ): def UpperCAmelCase_ ( self ) -> Dict: """simple docstring""" _snake_case : List[str] = TFLEDForConditionalGeneration.from_pretrained('''allenai/led-base-16384''' ).led # change to intended input here _snake_case : List[str] = _long_tensor([512 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _snake_case : Tuple = _long_tensor([128 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _snake_case : Tuple = prepare_led_inputs_dict(model.config , lowercase__ , lowercase__ ) _snake_case : int = model(**lowercase__ )[0] _snake_case : Dict = (1, 1_024, 768) self.assertEqual(output.shape , lowercase__ ) # change to expected output here _snake_case : List[Any] = tf.convert_to_tensor( [[2.3_050, 2.8_279, 0.6_531], [-1.8_457, -0.1_455, -3.5_661], [-1.0_186, 0.4_586, -2.2_043]] , ) tf.debugging.assert_near(output[:, :3, :3] , lowercase__ , atol=1E-3 ) def UpperCAmelCase_ ( self ) -> List[Any]: """simple docstring""" _snake_case : Any = TFLEDForConditionalGeneration.from_pretrained('''allenai/led-base-16384''' ) # change to intended input here _snake_case : Dict = _long_tensor([512 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _snake_case : Dict = _long_tensor([128 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _snake_case : List[str] = prepare_led_inputs_dict(model.config , lowercase__ , lowercase__ ) _snake_case : Tuple = model(**lowercase__ )[0] _snake_case : Any = (1, 1_024, model.config.vocab_size) self.assertEqual(output.shape , lowercase__ ) # change to expected output here _snake_case : Dict = tf.convert_to_tensor( [[33.6_507, 6.4_572, 16.8_089], [5.8_739, -2.4_238, 11.2_902], [-3.2_139, -4.3_149, 4.2_783]] , ) tf.debugging.assert_near(output[:, :3, :3] , lowercase__ , atol=1E-3 , rtol=1E-3 )
47
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __lowercase : Optional[Any] = logging.get_logger(__name__) __lowercase : Union[str, Any] = { 'facebook/s2t-wav2vec2-large-en-de': ( 'https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json' ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class __UpperCamelCase ( lowerCAmelCase_ ): A_ = "speech_to_text_2" A_ = ["past_key_values"] A_ = {"num_attention_heads": "decoder_attention_heads", "hidden_size": "d_model"} def __init__( self , __a=1_0000 , __a=6 , __a=2048 , __a=4 , __a=0.0 , __a=True , __a="relu" , __a=256 , __a=0.1 , __a=0.0 , __a=0.0 , __a=0.02 , __a=2 , __a=True , __a=1 , __a=0 , __a=2 , __a=1024 , **__a , ): '''simple docstring''' __a : str = vocab_size __a : List[Any] = d_model __a : Optional[int] = decoder_ffn_dim __a : Optional[int] = decoder_layers __a : str = decoder_attention_heads __a : Any = dropout __a : int = attention_dropout __a : int = activation_dropout __a : str = activation_function __a : List[str] = init_std __a : Union[str, Any] = decoder_layerdrop __a : Optional[Any] = use_cache __a : Dict = decoder_layers __a : Union[str, Any] = scale_embedding # scale factor will be sqrt(d_model) if True __a : List[Any] = max_target_positions super().__init__( pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , decoder_start_token_id=__a , **__a , )
476
'''simple docstring''' from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING __lowercase : Dict = logging.get_logger(__name__) @add_end_docstrings(lowerCAmelCase_ ) class __UpperCamelCase ( lowerCAmelCase_ ): def __init__( self , *__a , **__a ): '''simple docstring''' super().__init__(*__a , **__a ) requires_backends(self , 'vision' ) self.check_model_type( TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING if self.framework == 'tf' else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING ) def __UpperCAmelCase ( self , __a=None ): '''simple docstring''' __a : Optional[int] = {} if top_k is not None: __a : List[str] = top_k return {}, {}, postprocess_params def __call__( self , __a , **__a ): '''simple docstring''' return super().__call__(__a , **__a ) def __UpperCAmelCase ( self , __a ): '''simple docstring''' __a : Any = load_image(__a ) __a : Optional[int] = self.image_processor(images=__a , return_tensors=self.framework ) return model_inputs def __UpperCAmelCase ( self , __a ): '''simple docstring''' __a : List[Any] = self.model(**__a ) return model_outputs def __UpperCAmelCase ( self , __a , __a=5 ): '''simple docstring''' if top_k > self.model.config.num_labels: __a : Union[str, Any] = self.model.config.num_labels if self.framework == "pt": __a : Optional[int] = model_outputs.logits.softmax(-1 )[0] __a , __a : List[Any] = probs.topk(__a ) elif self.framework == "tf": __a : Tuple = stable_softmax(model_outputs.logits , axis=-1 )[0] __a : Tuple = tf.math.top_k(__a , k=__a ) __a , __a : List[Any] = topk.values.numpy(), topk.indices.numpy() else: raise ValueError(f"""Unsupported framework: {self.framework}""" ) __a : List[str] = scores.tolist() __a : Any = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(__a , __a )]
476
1
"""simple docstring""" # A Bipartite Graph is a graph whose vertices can be divided into two independent sets, # U and V such that every edge (u, v) either connects a vertex from U to V or a vertex # from V to U. In other words, for every edge (u, v), either u belongs to U and v to V, # or u belongs to V and v to U. We can also say that there is no edge that connects # vertices of same set. def _lowerCamelCase( a ): __a = [False] * len(_UpperCAmelCase ) __a = [-1] * len(_UpperCAmelCase ) def dfs(a , a ): __a = True __a = c for u in graph[v]: if not visited[u]: dfs(_UpperCAmelCase , 1 - c ) for i in range(len(_UpperCAmelCase ) ): if not visited[i]: dfs(_UpperCAmelCase , 0 ) for i in range(len(_UpperCAmelCase ) ): for j in graph[i]: if color[i] == color[j]: return False return True # Adjacency list of graph SCREAMING_SNAKE_CASE__:int = {0: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2], 4: []} print(check_bipartite_dfs(graph))
716
"""simple docstring""" import argparse import logging import sys from unittest.mock import patch import run_glue_deebert from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow logging.basicConfig(level=logging.DEBUG) SCREAMING_SNAKE_CASE__:Dict = logging.getLogger() def _lowerCamelCase( ): __a = argparse.ArgumentParser() parser.add_argument("-f" ) __a = parser.parse_args() return args.f class snake_case__ ( snake_case_ ): def a__ ( self ): __a = logging.StreamHandler(sys.stdout ) logger.addHandler(lowerCamelCase ) def a__ ( self , lowerCamelCase ): __a = get_gpu_count() if n_gpu > 1: pass # XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560 # script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py" # distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split() # cmd = [sys.executable] + distributed_args + args # execute_subprocess_async(cmd, env=self.get_env()) # XXX: test the results - need to save them first into .json file else: args.insert(0 , "run_glue_deebert.py" ) with patch.object(lowerCamelCase , "argv" , lowerCamelCase ): __a = run_glue_deebert.main() for value in result.values(): self.assertGreaterEqual(lowerCamelCase , 0.666 ) @slow @require_torch_non_multi_gpu def a__ ( self ): __a = "\n --model_type roberta\n --model_name_or_path roberta-base\n --task_name MRPC\n --do_train\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --max_seq_length 128\n --per_gpu_eval_batch_size=1\n --per_gpu_train_batch_size=8\n --learning_rate 2e-4\n --num_train_epochs 3\n --overwrite_output_dir\n --seed 42\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --save_steps 0\n --overwrite_cache\n --eval_after_first_stage\n ".split() self.run_and_check(lowerCamelCase ) __a = "\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --eval_each_highway\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n ".split() self.run_and_check(lowerCamelCase ) __a = "\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --early_exit_entropy 0.1\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n ".split() self.run_and_check(lowerCamelCase )
67
0
from __future__ import annotations __a = tuple[int, int, int] __a = tuple[str, str, str] # used alphabet -------------------------- # from string.ascii_uppercase __a = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' # -------------------------- default selection -------------------------- # rotors -------------------------- __a = 'EGZWVONAHDCLFQMSIPJBYUKXTR' __a = 'FOBHMDKEXQNRAULPGSJVTYICZW' __a = 'ZJXESIUQLHAVRMDOYGTNFWPBKC' # reflector -------------------------- __a = { 'A': 'N', 'N': 'A', 'B': 'O', 'O': 'B', 'C': 'P', 'P': 'C', 'D': 'Q', 'Q': 'D', 'E': 'R', 'R': 'E', 'F': 'S', 'S': 'F', 'G': 'T', 'T': 'G', 'H': 'U', 'U': 'H', 'I': 'V', 'V': 'I', 'J': 'W', 'W': 'J', 'K': 'X', 'X': 'K', 'L': 'Y', 'Y': 'L', 'M': 'Z', 'Z': 'M', } # -------------------------- extra rotors -------------------------- __a = 'RMDJXFUWGISLHVTCQNKYPBEZOA' __a = 'SGLCPQWZHKXAREONTFBVIYJUDM' __a = 'HVSICLTYKQUBXDWAJZOMFGPREN' __a = 'RZWQHFMVDBKICJLNTUXAGYPSOE' __a = 'LFKIJODBEGAMQPXVUHYSTCZRWN' __a = 'KOAEGVDHXPQZMLFTYWJNBRCIUS' def a ( snake_case__: RotorPositionT , snake_case__: RotorSelectionT , snake_case__: str ): '''simple docstring''' # Checks if there are 3 unique rotors if (unique_rotsel := len(set(snake_case__ ) )) < 3: lowercase_ = F'''Please use 3 unique rotors (not {unique_rotsel})''' raise Exception(snake_case__ ) # Checks if rotor positions are valid lowercase_ , lowercase_ , lowercase_ = rotpos if not 0 < rotorposa <= len(snake_case__ ): lowercase_ = F'''First rotor position is not within range of 1..26 ({rotorposa}''' raise ValueError(snake_case__ ) if not 0 < rotorposa <= len(snake_case__ ): lowercase_ = F'''Second rotor position is not within range of 1..26 ({rotorposa})''' raise ValueError(snake_case__ ) if not 0 < rotorposa <= len(snake_case__ ): lowercase_ = F'''Third rotor position is not within range of 1..26 ({rotorposa})''' raise ValueError(snake_case__ ) # Validates string and returns dict lowercase_ = _plugboard(snake_case__ ) return rotpos, rotsel, pbdict def a ( snake_case__: str ): '''simple docstring''' # tests the input string if it # a) is type string # b) has even length (so pairs can be made) if not isinstance(snake_case__ , snake_case__ ): lowercase_ = F'''Plugboard setting isn\'t type string ({type(snake_case__ )})''' raise TypeError(snake_case__ ) elif len(snake_case__ ) % 2 != 0: lowercase_ = F'''Odd number of symbols ({len(snake_case__ )})''' raise Exception(snake_case__ ) elif pbstring == "": return {} pbstring.replace(''' ''' , '''''' ) # Checks if all characters are unique lowercase_ = set() for i in pbstring: if i not in abc: lowercase_ = F'''\'{i}\' not in list of symbols''' raise Exception(snake_case__ ) elif i in tmppbl: lowercase_ = F'''Duplicate symbol ({i})''' raise Exception(snake_case__ ) else: tmppbl.add(snake_case__ ) del tmppbl # Created the dictionary lowercase_ = {} for j in range(0 , len(snake_case__ ) - 1 , 2 ): lowercase_ = pbstring[j + 1] lowercase_ = pbstring[j] return pb def a ( snake_case__: str , snake_case__: RotorPositionT , snake_case__: RotorSelectionT = (rotora, rotora, rotora) , snake_case__: str = "" , ): '''simple docstring''' lowercase_ = text.upper() lowercase_ , lowercase_ , lowercase_ = _validator( snake_case__ , snake_case__ , plugb.upper() ) lowercase_ , lowercase_ , lowercase_ = rotor_position lowercase_ , lowercase_ , lowercase_ = rotor_selection rotorposa -= 1 rotorposa -= 1 rotorposa -= 1 lowercase_ = [] # encryption/decryption process -------------------------- for symbol in text: if symbol in abc: # 1st plugboard -------------------------- if symbol in plugboard: lowercase_ = plugboard[symbol] # rotor ra -------------------------- lowercase_ = abc.index(snake_case__ ) + rotorposa lowercase_ = rotora[index % len(snake_case__ )] # rotor rb -------------------------- lowercase_ = abc.index(snake_case__ ) + rotorposa lowercase_ = rotora[index % len(snake_case__ )] # rotor rc -------------------------- lowercase_ = abc.index(snake_case__ ) + rotorposa lowercase_ = rotora[index % len(snake_case__ )] # reflector -------------------------- # this is the reason you don't need another machine to decipher lowercase_ = reflector[symbol] # 2nd rotors lowercase_ = abc[rotora.index(snake_case__ ) - rotorposa] lowercase_ = abc[rotora.index(snake_case__ ) - rotorposa] lowercase_ = abc[rotora.index(snake_case__ ) - rotorposa] # 2nd plugboard if symbol in plugboard: lowercase_ = plugboard[symbol] # moves/resets rotor positions rotorposa += 1 if rotorposa >= len(snake_case__ ): lowercase_ = 0 rotorposa += 1 if rotorposa >= len(snake_case__ ): lowercase_ = 0 rotorposa += 1 if rotorposa >= len(snake_case__ ): lowercase_ = 0 # else: # pass # Error could be also raised # raise ValueError( # 'Invalid symbol('+repr(symbol)+')') result.append(snake_case__ ) return "".join(snake_case__ ) if __name__ == "__main__": __a = 'This is my Python script that emulates the Enigma machine from WWII.' __a = (1, 1, 1) __a = 'pictures' __a = (rotora, rotora, rotora) __a = enigma(message, rotor_pos, rotor_sel, pb) print('Encrypted message:', en) print('Decrypted message:', enigma(en, rotor_pos, rotor_sel, pb))
97
import os from collections import namedtuple import pytest from datasets import ClassLabel, Features, Sequence, Value from datasets.commands.test import TestCommand from datasets.info import DatasetInfo, DatasetInfosDict __a = namedtuple( '_TestCommandArgs', [ 'dataset', 'name', 'cache_dir', 'data_dir', 'all_configs', 'save_infos', 'ignore_verifications', 'force_redownload', 'clear_cache', ], defaults=[None, None, None, False, False, False, False, False], ) def a ( snake_case__: Dict , snake_case__: List[str] ): '''simple docstring''' return (abs(source - target ) / target) < 0.0_1 @pytest.mark.integration def a ( snake_case__: int ): '''simple docstring''' lowercase_ = _TestCommandArgs(dataset=snake_case__ , all_configs=snake_case__ , save_infos=snake_case__ ) lowercase_ = TestCommand(*snake_case__ ) test_command.run() lowercase_ = os.path.join(snake_case__ , '''README.md''' ) assert os.path.exists(snake_case__ ) lowercase_ = DatasetInfosDict.from_directory(snake_case__ ) lowercase_ = DatasetInfosDict( { '''default''': DatasetInfo( features=Features( { '''tokens''': Sequence(Value('''string''' ) ), '''ner_tags''': Sequence( ClassLabel(names=['''O''', '''B-PER''', '''I-PER''', '''B-ORG''', '''I-ORG''', '''B-LOC''', '''I-LOC'''] ) ), '''langs''': Sequence(Value('''string''' ) ), '''spans''': Sequence(Value('''string''' ) ), } ) , splits=[ { '''name''': '''train''', '''num_bytes''': 2_351_563, '''num_examples''': 10_000, }, { '''name''': '''validation''', '''num_bytes''': 238_418, '''num_examples''': 1_000, }, ] , download_size=3_940_680 , dataset_size=2_589_981 , ) } ) assert dataset_infos.keys() == expected_dataset_infos.keys() for key in DatasetInfo._INCLUDED_INFO_IN_YAML: lowercase_ , lowercase_ = getattr(dataset_infos['''default'''] , snake_case__ ), getattr(expected_dataset_infos['''default'''] , snake_case__ ) if key == "num_bytes": assert is_apercent_close(snake_case__ , snake_case__ ) elif key == "splits": assert list(snake_case__ ) == list(snake_case__ ) for split in result: assert result[split].name == expected[split].name assert result[split].num_examples == expected[split].num_examples assert is_apercent_close(result[split].num_bytes , expected[split].num_bytes ) else: result == expected
97
1
"""simple docstring""" import argparse import logging import os import sys import numpy as np import onnxruntime import torch from bart_onnx.generation_onnx import BARTBeamSearchGenerator from bart_onnx.reduce_onnx_size import remove_dup_initializers import transformers from transformers import BartForConditionalGeneration, BartTokenizer logging.basicConfig( format="%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=os.environ.get("LOGLEVEL", "INFO").upper(), stream=sys.stdout, ) a :Dict = logging.getLogger(__name__) a :int = {"facebook/bart-base": BartForConditionalGeneration} a :List[str] = {"facebook/bart-base": BartTokenizer} def _lowercase ( ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ : Optional[int] = argparse.ArgumentParser(description="""Export Bart model + Beam Search to ONNX graph.""" ) parser.add_argument( """--validation_file""" , type=__lowerCAmelCase , default=__lowerCAmelCase , help="""A csv or a json file containing the validation data.""" ) parser.add_argument( """--max_length""" , type=__lowerCAmelCase , default=5 , help="""The maximum total input sequence length after tokenization.""" , ) parser.add_argument( """--num_beams""" , type=__lowerCAmelCase , default=__lowerCAmelCase , help=( """Number of beams to use for evaluation. This argument will be """ """passed to ``model.generate``, which is used during ``evaluate`` and ``predict``.""" ) , ) parser.add_argument( """--model_name_or_path""" , type=__lowerCAmelCase , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , required=__lowerCAmelCase , ) parser.add_argument( """--config_name""" , type=__lowerCAmelCase , default=__lowerCAmelCase , help="""Pretrained config name or path if not the same as model_name""" , ) parser.add_argument( """--device""" , type=__lowerCAmelCase , default="""cpu""" , help="""Device where the model will be run""" , ) parser.add_argument("""--output_file_path""" , type=__lowerCAmelCase , default=__lowerCAmelCase , help="""Where to store the final ONNX file.""" ) SCREAMING_SNAKE_CASE__ : Optional[Any] = parser.parse_args() return args def _lowercase ( __lowerCAmelCase , __lowerCAmelCase="cpu" ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ : List[Any] = model_dict[model_name].from_pretrained(__lowerCAmelCase ).to(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = tokenizer_dict[model_name].from_pretrained(__lowerCAmelCase ) if model_name in ["facebook/bart-base"]: SCREAMING_SNAKE_CASE__ : Optional[Any] = 0 SCREAMING_SNAKE_CASE__ : Optional[Any] = None SCREAMING_SNAKE_CASE__ : Optional[int] = 0 return huggingface_model, tokenizer def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Optional[Any]: model.eval() SCREAMING_SNAKE_CASE__ : Dict = None SCREAMING_SNAKE_CASE__ : str = torch.jit.script(BARTBeamSearchGenerator(__lowerCAmelCase ) ) with torch.no_grad(): SCREAMING_SNAKE_CASE__ : Optional[int] = """My friends are cool but they eat too many carbs.""" SCREAMING_SNAKE_CASE__ : List[str] = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=1024 , return_tensors="""pt""" ).to(model.device ) SCREAMING_SNAKE_CASE__ : int = model.generate( inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , num_beams=__lowerCAmelCase , max_length=__lowerCAmelCase , early_stopping=__lowerCAmelCase , decoder_start_token_id=model.config.decoder_start_token_id , ) torch.onnx.export( __lowerCAmelCase , ( inputs["""input_ids"""], inputs["""attention_mask"""], num_beams, max_length, model.config.decoder_start_token_id, ) , __lowerCAmelCase , opset_version=14 , input_names=["""input_ids""", """attention_mask""", """num_beams""", """max_length""", """decoder_start_token_id"""] , output_names=["""output_ids"""] , dynamic_axes={ """input_ids""": {0: """batch""", 1: """seq"""}, """output_ids""": {0: """batch""", 1: """seq_out"""}, } , example_outputs=__lowerCAmelCase , ) logger.info("""Model exported to {}""".format(__lowerCAmelCase ) ) SCREAMING_SNAKE_CASE__ : Optional[int] = remove_dup_initializers(os.path.abspath(__lowerCAmelCase ) ) logger.info("""Deduplicated and optimized model written to {}""".format(__lowerCAmelCase ) ) SCREAMING_SNAKE_CASE__ : Dict = onnxruntime.InferenceSession(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : str = ort_sess.run( __lowerCAmelCase , { """input_ids""": inputs["""input_ids"""].cpu().numpy(), """attention_mask""": inputs["""attention_mask"""].cpu().numpy(), """num_beams""": np.array(__lowerCAmelCase ), """max_length""": np.array(__lowerCAmelCase ), """decoder_start_token_id""": np.array(model.config.decoder_start_token_id ), } , ) np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1E-3 , atol=1E-3 ) logger.info("""Model outputs from torch and ONNX Runtime are similar.""" ) logger.info("""Success.""" ) def _lowercase ( ) -> Tuple: SCREAMING_SNAKE_CASE__ : Union[str, Any] = parse_args() SCREAMING_SNAKE_CASE__ : List[Any] = 5 SCREAMING_SNAKE_CASE__ : Dict = 4 # Make one log on every process with the configuration for debugging. logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO , ) logger.setLevel(logging.INFO ) transformers.utils.logging.set_verbosity_error() SCREAMING_SNAKE_CASE__ : Tuple = torch.device(args.device ) SCREAMING_SNAKE_CASE__ : List[str] = load_model_tokenizer(args.model_name_or_path , __lowerCAmelCase ) if model.config.decoder_start_token_id is None: raise ValueError("""Make sure that `config.decoder_start_token_id` is correctly defined""" ) model.to(__lowerCAmelCase ) if args.max_length: SCREAMING_SNAKE_CASE__ : Dict = args.max_length if args.num_beams: SCREAMING_SNAKE_CASE__ : Union[str, Any] = args.num_beams if args.output_file_path: SCREAMING_SNAKE_CASE__ : List[Any] = args.output_file_path else: SCREAMING_SNAKE_CASE__ : Optional[Any] = """BART.onnx""" logger.info("""Exporting model to ONNX""" ) export_and_validate_model(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if __name__ == "__main__": main()
716
"""simple docstring""" # Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #################################################################################################### # # Note: If when running this conversion script you're getting an exception: # ModuleNotFoundError: No module named 'megatron.model.enums' # you need to tell python where to find the clone of Megatron-LM, e.g.: # # cd /tmp # git clone https://github.com/NVIDIA/Megatron-LM # PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ... # # if you already have it cloned elsewhere, simply adjust the path to the existing path # # If the training was done using a Megatron-LM fork, e.g., # https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one # in your path, i.e., /path/to/Megatron-DeepSpeed/ # import argparse import os import re import zipfile import torch from transformers import AutoTokenizer, GPTaConfig def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=0 ) -> Any: # Format the message. if name is None: SCREAMING_SNAKE_CASE__ : Union[str, Any] = None else: SCREAMING_SNAKE_CASE__ : str = """.""" * max(0 , spaces - 2 ) + """# {:""" + str(50 - spaces ) + """s}""" SCREAMING_SNAKE_CASE__ : Dict = fmt.format(__lowerCAmelCase ) # Print and recurse (if needed). if isinstance(__lowerCAmelCase , __lowerCAmelCase ): if msg is not None: print(__lowerCAmelCase ) for k in val.keys(): recursive_print(__lowerCAmelCase , val[k] , spaces + 2 ) elif isinstance(__lowerCAmelCase , torch.Tensor ): print(__lowerCAmelCase , """:""" , val.size() ) else: print(__lowerCAmelCase , """:""" , __lowerCAmelCase ) def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> List[Any]: # Permutes layout of param tensor to [num_splits * num_heads * hidden_size, :] # for compatibility with later versions of NVIDIA Megatron-LM. # The inverse operation is performed inside Megatron-LM to read checkpoints: # https://github.com/NVIDIA/Megatron-LM/blob/v2.4/megatron/checkpointing.py#L209 # If param is the weight tensor of the self-attention block, the returned tensor # will have to be transposed one more time to be read by HuggingFace GPT2. SCREAMING_SNAKE_CASE__ : Tuple = param.size() if checkpoint_version == 1.0: # version 1.0 stores [num_heads * hidden_size * num_splits, :] SCREAMING_SNAKE_CASE__ : int = (num_heads, hidden_size, num_splits) + input_shape[1:] SCREAMING_SNAKE_CASE__ : List[str] = param.view(*__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : List[str] = param.transpose(0 , 2 ) SCREAMING_SNAKE_CASE__ : List[Any] = param.transpose(1 , 2 ).contiguous() elif checkpoint_version >= 2.0: # other versions store [num_heads * num_splits * hidden_size, :] SCREAMING_SNAKE_CASE__ : List[str] = (num_heads, num_splits, hidden_size) + input_shape[1:] SCREAMING_SNAKE_CASE__ : Dict = param.view(*__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : int = param.transpose(0 , 1 ).contiguous() SCREAMING_SNAKE_CASE__ : Any = param.view(*__lowerCAmelCase ) return param def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Tuple: # The converted output model. SCREAMING_SNAKE_CASE__ : List[str] = {} # old versions did not store training args SCREAMING_SNAKE_CASE__ : List[str] = input_state_dict.get("""args""" , __lowerCAmelCase ) if ds_args is not None: # do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint # from pprint import pprint # pprint(vars(ds_args)) SCREAMING_SNAKE_CASE__ : List[Any] = ds_args.padded_vocab_size SCREAMING_SNAKE_CASE__ : Optional[int] = ds_args.max_position_embeddings SCREAMING_SNAKE_CASE__ : List[Any] = ds_args.hidden_size SCREAMING_SNAKE_CASE__ : Optional[Any] = ds_args.num_layers SCREAMING_SNAKE_CASE__ : Dict = ds_args.num_attention_heads SCREAMING_SNAKE_CASE__ : List[str] = ds_args.ffn_hidden_size # pprint(config) # The number of heads. SCREAMING_SNAKE_CASE__ : List[str] = config.n_head # The hidden_size per head. SCREAMING_SNAKE_CASE__ : str = config.n_embd // config.n_head # Megatron-LM checkpoint version if "checkpoint_version" in input_state_dict.keys(): SCREAMING_SNAKE_CASE__ : Union[str, Any] = input_state_dict["""checkpoint_version"""] else: SCREAMING_SNAKE_CASE__ : Tuple = 0.0 # The model. SCREAMING_SNAKE_CASE__ : Any = input_state_dict["""model"""] # The language model. SCREAMING_SNAKE_CASE__ : Any = model["""language_model"""] # The embeddings. SCREAMING_SNAKE_CASE__ : str = lm["""embedding"""] # The word embeddings. SCREAMING_SNAKE_CASE__ : int = embeddings["""word_embeddings"""]["""weight"""] # Truncate the embedding table to vocab_size rows. SCREAMING_SNAKE_CASE__ : Any = word_embeddings[: config.vocab_size, :] SCREAMING_SNAKE_CASE__ : Optional[int] = word_embeddings # The position embeddings. SCREAMING_SNAKE_CASE__ : Any = embeddings["""position_embeddings"""]["""weight"""] # Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size] SCREAMING_SNAKE_CASE__ : Tuple = pos_embeddings.size(0 ) if n_positions != config.n_positions: raise ValueError( F'''pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don\'t match''' ) # Store the position embeddings. SCREAMING_SNAKE_CASE__ : List[Any] = pos_embeddings # The transformer. SCREAMING_SNAKE_CASE__ : Union[str, Any] = lm["""transformer"""] if """transformer""" in lm.keys() else lm["""encoder"""] # The regex to extract layer names. SCREAMING_SNAKE_CASE__ : str = re.compile(r"""layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)""" ) # The simple map of names for "automated" rules. SCREAMING_SNAKE_CASE__ : Optional[int] = { """attention.dense""": """.attn.c_proj.""", """self_attention.dense""": """.attn.c_proj.""", """mlp.dense_h_to_4h""": """.mlp.c_fc.""", """mlp.dense_4h_to_h""": """.mlp.c_proj.""", } # Extract the layers. for key, val in transformer.items(): # Match the name. SCREAMING_SNAKE_CASE__ : str = layer_re.match(__lowerCAmelCase ) # Stop if that's not a layer if m is None: break # The index of the layer. SCREAMING_SNAKE_CASE__ : Dict = int(m.group(1 ) ) # The name of the operation. SCREAMING_SNAKE_CASE__ : Optional[Any] = m.group(2 ) # Is it a weight or a bias? SCREAMING_SNAKE_CASE__ : str = m.group(3 ) # The name of the layer. SCREAMING_SNAKE_CASE__ : List[Any] = F'''transformer.h.{layer_idx}''' # For layernorm(s), simply store the layer norm. if op_name.endswith("""layernorm""" ): SCREAMING_SNAKE_CASE__ : Dict = """ln_1""" if op_name.startswith("""input""" ) else """ln_2""" SCREAMING_SNAKE_CASE__ : List[Any] = val # Transpose the QKV matrix. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "weight": # Insert a tensor of 1x1xDxD bias. SCREAMING_SNAKE_CASE__ : Any = torch.tril(torch.ones((n_positions, n_positions) , dtype=torch.floataa ) ).view( 1 , 1 , __lowerCAmelCase , __lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : str = causal_mask # Insert a "dummy" tensor for masked_bias. SCREAMING_SNAKE_CASE__ : List[Any] = torch.tensor(-1E4 , dtype=torch.floataa ) SCREAMING_SNAKE_CASE__ : List[str] = masked_bias SCREAMING_SNAKE_CASE__ : List[str] = fix_query_key_value_ordering(__lowerCAmelCase , __lowerCAmelCase , 3 , __lowerCAmelCase , __lowerCAmelCase ) # Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D. SCREAMING_SNAKE_CASE__ : str = out_val.transpose(0 , 1 ).contiguous() # Store. SCREAMING_SNAKE_CASE__ : Dict = out_val # Transpose the bias. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "bias": SCREAMING_SNAKE_CASE__ : Any = fix_query_key_value_ordering(__lowerCAmelCase , __lowerCAmelCase , 3 , __lowerCAmelCase , __lowerCAmelCase ) # Store. No change of shape. SCREAMING_SNAKE_CASE__ : str = out_val # Transpose the weights. elif weight_or_bias == "weight": SCREAMING_SNAKE_CASE__ : str = megatron_to_transformers[op_name] SCREAMING_SNAKE_CASE__ : int = val.transpose(0 , 1 ) # Copy the bias. elif weight_or_bias == "bias": SCREAMING_SNAKE_CASE__ : int = megatron_to_transformers[op_name] SCREAMING_SNAKE_CASE__ : Dict = val # DEBUG. assert config.n_layer == layer_idx + 1 # The final layernorm. SCREAMING_SNAKE_CASE__ : Union[str, Any] = transformer["""final_layernorm.weight"""] SCREAMING_SNAKE_CASE__ : str = transformer["""final_layernorm.bias"""] # For LM head, transformers' wants the matrix to weight embeddings. SCREAMING_SNAKE_CASE__ : Tuple = word_embeddings # It should be done! return output_state_dict def _lowercase ( ) -> List[Any]: # Create the argument parser. SCREAMING_SNAKE_CASE__ : str = argparse.ArgumentParser() parser.add_argument("""--print-checkpoint-structure""" , action="""store_true""" ) parser.add_argument( """path_to_checkpoint""" , type=__lowerCAmelCase , help="""Path to the checkpoint file (.zip archive or direct .pt file)""" , ) parser.add_argument( """--config_file""" , default="""""" , type=__lowerCAmelCase , help="""An optional config json file describing the pre-trained model.""" , ) SCREAMING_SNAKE_CASE__ : Dict = parser.parse_args() # Extract the basename. SCREAMING_SNAKE_CASE__ : Optional[int] = os.path.dirname(args.path_to_checkpoint ) # Load the model. # the .zip is very optional, let's keep it for backward compatibility print(F'''Extracting PyTorch state dictionary from {args.path_to_checkpoint}''' ) if args.path_to_checkpoint.endswith(""".zip""" ): with zipfile.ZipFile(args.path_to_checkpoint , """r""" ) as checkpoint: with checkpoint.open("""release/mp_rank_00/model_optim_rng.pt""" ) as pytorch_dict: SCREAMING_SNAKE_CASE__ : List[Any] = torch.load(__lowerCAmelCase , map_location="""cpu""" ) else: SCREAMING_SNAKE_CASE__ : str = torch.load(args.path_to_checkpoint , map_location="""cpu""" ) SCREAMING_SNAKE_CASE__ : int = input_state_dict.get("""args""" , __lowerCAmelCase ) # Read the config, or default to the model released by NVIDIA. if args.config_file == "": if ds_args is not None: if ds_args.bias_gelu_fusion: SCREAMING_SNAKE_CASE__ : Dict = """gelu_fast""" elif ds_args.openai_gelu: SCREAMING_SNAKE_CASE__ : Optional[Any] = """gelu_new""" else: SCREAMING_SNAKE_CASE__ : Optional[Any] = """gelu""" else: # in the very early days this used to be "gelu_new" SCREAMING_SNAKE_CASE__ : Any = """gelu_new""" # Spell out all parameters in case the defaults change. SCREAMING_SNAKE_CASE__ : Union[str, Any] = GPTaConfig( vocab_size=5_0257 , n_positions=1024 , n_embd=1024 , n_layer=24 , n_head=16 , n_inner=4096 , activation_function=__lowerCAmelCase , resid_pdrop=0.1 , embd_pdrop=0.1 , attn_pdrop=0.1 , layer_norm_epsilon=1E-5 , initializer_range=0.02 , summary_type="""cls_index""" , summary_use_proj=__lowerCAmelCase , summary_activation=__lowerCAmelCase , summary_proj_to_labels=__lowerCAmelCase , summary_first_dropout=0.1 , scale_attn_weights=__lowerCAmelCase , use_cache=__lowerCAmelCase , bos_token_id=5_0256 , eos_token_id=5_0256 , ) else: SCREAMING_SNAKE_CASE__ : List[Any] = GPTaConfig.from_json_file(args.config_file ) SCREAMING_SNAKE_CASE__ : Tuple = ["""GPT2LMHeadModel"""] # Convert. print("""Converting""" ) SCREAMING_SNAKE_CASE__ : Optional[Any] = convert_megatron_checkpoint(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # Print the structure of converted state dict. if args.print_checkpoint_structure: recursive_print(__lowerCAmelCase , __lowerCAmelCase ) # Add tokenizer class info to config # see https://github.com/huggingface/transformers/issues/13906) if ds_args is not None: SCREAMING_SNAKE_CASE__ : Tuple = ds_args.tokenizer_type if tokenizer_type == "GPT2BPETokenizer": SCREAMING_SNAKE_CASE__ : Any = """gpt2""" elif tokenizer_type == "PretrainedFromHF": SCREAMING_SNAKE_CASE__ : Any = ds_args.tokenizer_name_or_path else: raise ValueError(F'''Unrecognized tokenizer_type {tokenizer_type}''' ) else: SCREAMING_SNAKE_CASE__ : Union[str, Any] = """gpt2""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = AutoTokenizer.from_pretrained(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = type(__lowerCAmelCase ).__name__ SCREAMING_SNAKE_CASE__ : Dict = tokenizer_class # Store the config to file. print("""Saving config""" ) config.save_pretrained(__lowerCAmelCase ) # Save tokenizer based on args print(F'''Adding {tokenizer_class} tokenizer files''' ) tokenizer.save_pretrained(__lowerCAmelCase ) # Store the state_dict to file. SCREAMING_SNAKE_CASE__ : Any = os.path.join(__lowerCAmelCase , """pytorch_model.bin""" ) print(F'''Saving checkpoint to "{output_checkpoint_file}"''' ) torch.save(__lowerCAmelCase , __lowerCAmelCase ) #################################################################################################### if __name__ == "__main__": main() ####################################################################################################
12
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = {"openai-gpt": "https://huggingface.co/openai-gpt/resolve/main/config.json"} class snake_case (UpperCamelCase ): lowerCAmelCase__ :Union[str, Any] = "openai-gpt" lowerCAmelCase__ :List[str] = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self ,UpperCAmelCase_=40_478 ,UpperCAmelCase_=512 ,UpperCAmelCase_=768 ,UpperCAmelCase_=12 ,UpperCAmelCase_=12 ,UpperCAmelCase_="gelu" ,UpperCAmelCase_=0.1 ,UpperCAmelCase_=0.1 ,UpperCAmelCase_=0.1 ,UpperCAmelCase_=1E-5 ,UpperCAmelCase_=0.02 ,UpperCAmelCase_="cls_index" ,UpperCAmelCase_=True ,UpperCAmelCase_=None ,UpperCAmelCase_=True ,UpperCAmelCase_=0.1 ,**UpperCAmelCase_ ,) -> Optional[int]: lowercase__ = vocab_size lowercase__ = n_positions lowercase__ = n_embd lowercase__ = n_layer lowercase__ = n_head lowercase__ = afn lowercase__ = resid_pdrop lowercase__ = embd_pdrop lowercase__ = attn_pdrop lowercase__ = layer_norm_epsilon lowercase__ = initializer_range lowercase__ = summary_type lowercase__ = summary_use_proj lowercase__ = summary_activation lowercase__ = summary_first_dropout lowercase__ = summary_proj_to_labels super().__init__(**UpperCAmelCase_ )
267
'''simple docstring''' from __future__ import annotations import time import numpy as np SCREAMING_SNAKE_CASE__ = [8, 5, 9, 7] SCREAMING_SNAKE_CASE__ = [ [2, 0, 1, 1], [0, 1, 2, 1], [4, 0, 0, 3], [0, 2, 1, 0], [1, 0, 3, 0], ] SCREAMING_SNAKE_CASE__ = [ [3, 2, 1, 4], [0, 2, 5, 2], [5, 1, 0, 5], [1, 5, 3, 0], [3, 0, 3, 3], ] class snake_case : def __init__( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,) -> None: lowercase__ = claim_vector lowercase__ = allocated_resources_table lowercase__ = maximum_claim_table def _a ( self ) -> list[int]: return [ sum(p_item[i] for p_item in self.__allocated_resources_table ) for i in range(len(self.__allocated_resources_table[0] ) ) ] def _a ( self ) -> list[int]: return np.array(self.__claim_vector ) - np.array( self.__processes_resource_summation() ) def _a ( self ) -> list[list[int]]: return [ list(np.array(self.__maximum_claim_table[i] ) - np.array(UpperCAmelCase_ ) ) for i, allocated_resource in enumerate(self.__allocated_resources_table ) ] def _a ( self ) -> dict[int, list[int]]: return {self.__need().index(UpperCAmelCase_ ): i for i in self.__need()} def _a ( self ,**UpperCAmelCase_ ) -> None: lowercase__ = self.__need() lowercase__ = self.__allocated_resources_table lowercase__ = self.__available_resources() lowercase__ = self.__need_index_manager() for kw, val in kwargs.items(): if kw and val is True: self.__pretty_data() print("_" * 50 + "\n" ) while need_list: lowercase__ = False for each_need in need_list: lowercase__ = True for index, need in enumerate(UpperCAmelCase_ ): if need > available_resources[index]: lowercase__ = False break if execution: lowercase__ = True # get the original index of the process from ind_ctrl db for original_need_index, need_clone in need_index_manager.items(): if each_need == need_clone: lowercase__ = original_need_index print(F'''Process {process_number + 1} is executing.''' ) # remove the process run from stack need_list.remove(UpperCAmelCase_ ) # update available/freed resources stack lowercase__ = np.array(UpperCAmelCase_ ) + np.array( alloc_resources_table[process_number] ) print( "Updated available resource stack for processes: " + " ".join([str(UpperCAmelCase_ ) for x in available_resources] ) ) break if safe: print("The process is in a safe state.\n" ) else: print("System in unsafe state. Aborting...\n" ) break def _a ( self ) -> List[Any]: print(" " * 9 + "Allocated Resource Table" ) for item in self.__allocated_resources_table: print( F'''P{self.__allocated_resources_table.index(UpperCAmelCase_ ) + 1}''' + " ".join(F'''{it:>8}''' for it in item ) + "\n" ) print(" " * 9 + "System Resource Table" ) for item in self.__maximum_claim_table: print( F'''P{self.__maximum_claim_table.index(UpperCAmelCase_ ) + 1}''' + " ".join(F'''{it:>8}''' for it in item ) + "\n" ) print( "Current Usage by Active Processes: " + " ".join(str(UpperCAmelCase_ ) for x in self.__claim_vector ) ) print( "Initial Available Resources: " + " ".join(str(UpperCAmelCase_ ) for x in self.__available_resources() ) ) time.sleep(1 ) if __name__ == "__main__": import doctest doctest.testmod()
267
1
import random def snake_case_ ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) -> Dict: lowercase__ : Union[str, Any] = a[left_index] lowercase__ : Optional[int] = left_index + 1 for j in range(left_index + 1 ,SCREAMING_SNAKE_CASE_ ): if a[j] < pivot: lowercase__ : int = a[i], a[j] i += 1 lowercase__ : List[Any] = a[i - 1], a[left_index] return i - 1 def snake_case_ ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) -> Dict: if left < right: lowercase__ : int = random.randint(SCREAMING_SNAKE_CASE_ ,right - 1 ) lowercase__ : str = ( a[left], a[pivot], ) # switches the pivot with the left most bound lowercase__ : int = partition(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) quick_sort_random( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) # recursive quicksort to the left of the pivot point quick_sort_random( SCREAMING_SNAKE_CASE_ ,pivot_index + 1 ,SCREAMING_SNAKE_CASE_ ) # recursive quicksort to the right of the pivot point def snake_case_ ( ) -> Optional[int]: lowercase__ : Union[str, Any] = input("Enter numbers separated by a comma:\n" ).strip() lowercase__ : str = [int(SCREAMING_SNAKE_CASE_ ) for item in user_input.split("," )] quick_sort_random(SCREAMING_SNAKE_CASE_ ,0 ,len(SCREAMING_SNAKE_CASE_ ) ) print(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": main()
713
import asyncio import os import re import sys import tempfile import unittest from contextlib import contextmanager from copy import deepcopy from distutils.util import strtobool from enum import Enum from importlib.util import find_spec from pathlib import Path from unittest.mock import patch import pyarrow as pa import pytest import requests from packaging import version from datasets import config if config.PY_VERSION < version.parse('''3.8'''): import importlib_metadata else: import importlib.metadata as importlib_metadata def snake_case_ ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_=False ) -> Tuple: try: lowercase__ : Dict = os.environ[key] except KeyError: # KEY isn't set, default to `default`. lowercase__ : Dict = default else: # KEY is set, convert it to True or False. try: lowercase__ : List[Any] = strtobool(SCREAMING_SNAKE_CASE_ ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(F"""If set, {key} must be yes or no.""" ) return _value __a : Union[str, Any] = parse_flag_from_env('''RUN_SLOW''', default=False) __a : Optional[int] = parse_flag_from_env('''RUN_REMOTE''', default=False) __a : List[Any] = parse_flag_from_env('''RUN_LOCAL''', default=True) __a : Tuple = parse_flag_from_env('''RUN_PACKAGED''', default=True) # Compression __a : Optional[int] = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason='''test requires lz4''') __a : Union[str, Any] = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason='''test requires py7zr''') __a : str = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason='''test requires zstandard''') # Audio __a : List[Any] = pytest.mark.skipif( # On Windows and OS X, soundfile installs sndfile find_spec('''soundfile''') is None or version.parse(importlib_metadata.version('''soundfile''')) < version.parse('''0.12.0'''), reason='''test requires sndfile>=0.12.1: \'pip install \"soundfile>=0.12.1\"\'; ''', ) # Beam __a : str = pytest.mark.skipif( not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse('''0.3.2'''), reason='''test requires apache-beam and a compatible dill version''', ) # Dill-cloudpickle compatibility __a : int = pytest.mark.skipif( config.DILL_VERSION <= version.parse('''0.3.2'''), reason='''test requires dill>0.3.2 for cloudpickle compatibility''', ) # Windows __a : str = pytest.mark.skipif( sys.platform == '''win32''', reason='''test should not be run on Windows''', ) def snake_case_ ( SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: try: import faiss # noqa except ImportError: lowercase__ : List[str] = unittest.skip("test requires faiss" )(SCREAMING_SNAKE_CASE_ ) return test_case def snake_case_ ( SCREAMING_SNAKE_CASE_ ) -> Optional[int]: try: import regex # noqa except ImportError: lowercase__ : Any = unittest.skip("test requires regex" )(SCREAMING_SNAKE_CASE_ ) return test_case def snake_case_ ( SCREAMING_SNAKE_CASE_ ) -> List[Any]: try: import elasticsearch # noqa except ImportError: lowercase__ : List[Any] = unittest.skip("test requires elasticsearch" )(SCREAMING_SNAKE_CASE_ ) return test_case def snake_case_ ( SCREAMING_SNAKE_CASE_ ) -> List[str]: try: import sqlalchemy # noqa except ImportError: lowercase__ : Any = unittest.skip("test requires sqlalchemy" )(SCREAMING_SNAKE_CASE_ ) return test_case def snake_case_ ( SCREAMING_SNAKE_CASE_ ) -> Dict: if not config.TORCH_AVAILABLE: lowercase__ : List[str] = unittest.skip("test requires PyTorch" )(SCREAMING_SNAKE_CASE_ ) return test_case def snake_case_ ( SCREAMING_SNAKE_CASE_ ) -> str: if not config.TF_AVAILABLE: lowercase__ : Dict = unittest.skip("test requires TensorFlow" )(SCREAMING_SNAKE_CASE_ ) return test_case def snake_case_ ( SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: if not config.JAX_AVAILABLE: lowercase__ : List[str] = unittest.skip("test requires JAX" )(SCREAMING_SNAKE_CASE_ ) return test_case def snake_case_ ( SCREAMING_SNAKE_CASE_ ) -> int: if not config.PIL_AVAILABLE: lowercase__ : Optional[int] = unittest.skip("test requires Pillow" )(SCREAMING_SNAKE_CASE_ ) return test_case def snake_case_ ( SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: try: import transformers # noqa F401 except ImportError: return unittest.skip("test requires transformers" )(SCREAMING_SNAKE_CASE_ ) else: return test_case def snake_case_ ( SCREAMING_SNAKE_CASE_ ) -> Tuple: try: import tiktoken # noqa F401 except ImportError: return unittest.skip("test requires tiktoken" )(SCREAMING_SNAKE_CASE_ ) else: return test_case def snake_case_ ( SCREAMING_SNAKE_CASE_ ) -> Any: try: import spacy # noqa F401 except ImportError: return unittest.skip("test requires spacy" )(SCREAMING_SNAKE_CASE_ ) else: return test_case def snake_case_ ( SCREAMING_SNAKE_CASE_ ) -> List[str]: def _require_spacy_model(SCREAMING_SNAKE_CASE_ ): try: import spacy # noqa F401 spacy.load(SCREAMING_SNAKE_CASE_ ) except ImportError: return unittest.skip("test requires spacy" )(SCREAMING_SNAKE_CASE_ ) except OSError: return unittest.skip("test requires spacy model '{}'".format(SCREAMING_SNAKE_CASE_ ) )(SCREAMING_SNAKE_CASE_ ) else: return test_case return _require_spacy_model def snake_case_ ( SCREAMING_SNAKE_CASE_ ) -> Tuple: try: import pyspark # noqa F401 except ImportError: return unittest.skip("test requires pyspark" )(SCREAMING_SNAKE_CASE_ ) else: return test_case def snake_case_ ( SCREAMING_SNAKE_CASE_ ) -> Optional[int]: try: import joblibspark # noqa F401 except ImportError: return unittest.skip("test requires joblibspark" )(SCREAMING_SNAKE_CASE_ ) else: return test_case def snake_case_ ( SCREAMING_SNAKE_CASE_ ) -> str: if not _run_slow_tests or _run_slow_tests == 0: lowercase__ : Tuple = unittest.skip("test is slow" )(SCREAMING_SNAKE_CASE_ ) return test_case def snake_case_ ( SCREAMING_SNAKE_CASE_ ) -> Optional[int]: if not _run_local_tests or _run_local_tests == 0: lowercase__ : str = unittest.skip("test is local" )(SCREAMING_SNAKE_CASE_ ) return test_case def snake_case_ ( SCREAMING_SNAKE_CASE_ ) -> Optional[int]: if not _run_packaged_tests or _run_packaged_tests == 0: lowercase__ : Union[str, Any] = unittest.skip("test is packaged" )(SCREAMING_SNAKE_CASE_ ) return test_case def snake_case_ ( SCREAMING_SNAKE_CASE_ ) -> Dict: if not _run_remote_tests or _run_remote_tests == 0: lowercase__ : str = unittest.skip("test requires remote" )(SCREAMING_SNAKE_CASE_ ) return test_case def snake_case_ ( *SCREAMING_SNAKE_CASE_ ) -> int: def decorate(cls ): for name, fn in cls.__dict__.items(): if callable(SCREAMING_SNAKE_CASE_ ) and name.startswith("test" ): for decorator in decorators: lowercase__ : List[Any] = decorator(SCREAMING_SNAKE_CASE_ ) setattr(cls ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) return cls return decorate class UpperCAmelCase( snake_case_ ): """simple docstring""" pass class UpperCAmelCase( snake_case_ ): """simple docstring""" a : Optional[Any] = 0 a : Optional[Any] = 1 a : Union[str, Any] = 2 @contextmanager def snake_case_ ( SCREAMING_SNAKE_CASE_=OfflineSimulationMode.CONNECTION_FAILS ,SCREAMING_SNAKE_CASE_=1E-16 ) -> List[str]: lowercase__ : Dict = requests.Session().request def timeout_request(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,**SCREAMING_SNAKE_CASE_ ): # Change the url to an invalid url so that the connection hangs lowercase__ : Optional[Any] = "https://10.255.255.1" if kwargs.get("timeout" ) is None: raise RequestWouldHangIndefinitelyError( F"""Tried a call to {url} in offline mode with no timeout set. Please set a timeout.""" ) lowercase__ : Union[str, Any] = timeout try: return online_request(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,**SCREAMING_SNAKE_CASE_ ) except Exception as e: # The following changes in the error are just here to make the offline timeout error prettier lowercase__ : List[str] = url lowercase__ : List[Any] = e.args[0] lowercase__ : Optional[int] = (max_retry_error.args[0].replace("10.255.255.1" ,F"""OfflineMock[{url}]""" ),) lowercase__ : Dict = (max_retry_error,) raise def raise_connection_error(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,**SCREAMING_SNAKE_CASE_ ): raise requests.ConnectionError("Offline mode is enabled." ,request=SCREAMING_SNAKE_CASE_ ) if mode is OfflineSimulationMode.CONNECTION_FAILS: with patch("requests.Session.send" ,SCREAMING_SNAKE_CASE_ ): yield elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT: # inspired from https://stackoverflow.com/a/904609 with patch("requests.Session.request" ,SCREAMING_SNAKE_CASE_ ): yield elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1: with patch("datasets.config.HF_DATASETS_OFFLINE" ,SCREAMING_SNAKE_CASE_ ): yield else: raise ValueError("Please use a value from the OfflineSimulationMode enum." ) @contextmanager def snake_case_ ( *SCREAMING_SNAKE_CASE_ ,**SCREAMING_SNAKE_CASE_ ) -> str: lowercase__ : Any = str(Path().resolve() ) with tempfile.TemporaryDirectory(*SCREAMING_SNAKE_CASE_ ,**SCREAMING_SNAKE_CASE_ ) as tmp_dir: try: os.chdir(SCREAMING_SNAKE_CASE_ ) yield finally: os.chdir(SCREAMING_SNAKE_CASE_ ) @contextmanager def snake_case_ ( ) -> int: import gc gc.collect() lowercase__ : Dict = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase." @contextmanager def snake_case_ ( ) -> List[str]: import gc gc.collect() lowercase__ : Optional[int] = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase." def snake_case_ ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) -> List[str]: return deepcopy(SCREAMING_SNAKE_CASE_ ).integers(0 ,1_00 ,10 ).tolist() == deepcopy(SCREAMING_SNAKE_CASE_ ).integers(0 ,1_00 ,10 ).tolist() def snake_case_ ( SCREAMING_SNAKE_CASE_ ) -> str: import decorator from requests.exceptions import HTTPError def _wrapper(SCREAMING_SNAKE_CASE_ ,*SCREAMING_SNAKE_CASE_ ,**SCREAMING_SNAKE_CASE_ ): try: return func(*SCREAMING_SNAKE_CASE_ ,**SCREAMING_SNAKE_CASE_ ) except HTTPError as err: if str(SCREAMING_SNAKE_CASE_ ).startswith("500" ) or str(SCREAMING_SNAKE_CASE_ ).startswith("502" ): pytest.xfail(str(SCREAMING_SNAKE_CASE_ ) ) raise err return decorator.decorator(_wrapper ,SCREAMING_SNAKE_CASE_ ) class UpperCAmelCase: """simple docstring""" def __init__( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Tuple: """simple docstring""" lowercase__ : Optional[Any] = returncode lowercase__ : str = stdout lowercase__ : Any = stderr async def snake_case_ ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) -> Any: while True: lowercase__ : List[str] = await stream.readline() if line: callback(SCREAMING_SNAKE_CASE_ ) else: break async def snake_case_ ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_=None ,SCREAMING_SNAKE_CASE_=None ,SCREAMING_SNAKE_CASE_=None ,SCREAMING_SNAKE_CASE_=False ,SCREAMING_SNAKE_CASE_=False ) -> _RunOutput: if echo: print("\nRunning: " ," ".join(SCREAMING_SNAKE_CASE_ ) ) lowercase__ : str = await asyncio.create_subprocess_exec( cmd[0] ,*cmd[1:] ,stdin=SCREAMING_SNAKE_CASE_ ,stdout=asyncio.subprocess.PIPE ,stderr=asyncio.subprocess.PIPE ,env=SCREAMING_SNAKE_CASE_ ,) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) lowercase__ : Dict = [] lowercase__ : Optional[int] = [] def tee(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_="" ): lowercase__ : str = line.decode("utf-8" ).rstrip() sink.append(SCREAMING_SNAKE_CASE_ ) if not quiet: print(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,file=SCREAMING_SNAKE_CASE_ ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ _read_stream(p.stdout ,lambda SCREAMING_SNAKE_CASE_ : tee(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,sys.stdout ,label="stdout:" ) ), _read_stream(p.stderr ,lambda SCREAMING_SNAKE_CASE_ : tee(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,sys.stderr ,label="stderr:" ) ), ] ,timeout=SCREAMING_SNAKE_CASE_ ,) return _RunOutput(await p.wait() ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) def snake_case_ ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_=None ,SCREAMING_SNAKE_CASE_=None ,SCREAMING_SNAKE_CASE_=1_80 ,SCREAMING_SNAKE_CASE_=False ,SCREAMING_SNAKE_CASE_=True ) -> _RunOutput: lowercase__ : Any = asyncio.get_event_loop() lowercase__ : int = loop.run_until_complete( _stream_subprocess(SCREAMING_SNAKE_CASE_ ,env=SCREAMING_SNAKE_CASE_ ,stdin=SCREAMING_SNAKE_CASE_ ,timeout=SCREAMING_SNAKE_CASE_ ,quiet=SCREAMING_SNAKE_CASE_ ,echo=SCREAMING_SNAKE_CASE_ ) ) lowercase__ : Any = " ".join(SCREAMING_SNAKE_CASE_ ) if result.returncode > 0: lowercase__ : int = "\n".join(result.stderr ) raise RuntimeError( F"""'{cmd_str}' failed with returncode {result.returncode}\n\n""" F"""The combined stderr from workers follows:\n{stderr}""" ) # check that the subprocess actually did run and produced some output, should the test rely on # the remote side to do the testing if not result.stdout and not result.stderr: raise RuntimeError(F"""'{cmd_str}' produced no output.""" ) return result def snake_case_ ( ) -> List[Any]: lowercase__ : List[str] = os.environ.get("PYTEST_XDIST_WORKER" ,"gw0" ) lowercase__ : Union[str, Any] = re.sub(r"^gw" ,"" ,SCREAMING_SNAKE_CASE_ ,0 ,re.M ) return int(SCREAMING_SNAKE_CASE_ ) def snake_case_ ( ) -> Tuple: lowercase__ : List[str] = 2_95_00 lowercase__ : Union[str, Any] = pytest_xdist_worker_id() return port + uniq_delta
298
0
"""simple docstring""" from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class A_ ( A__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = 42 class A_ ( A__ , A__ ): """simple docstring""" @register_to_config def __init__( self :List[str] , lowerCamelCase_ :int = 32 , lowerCamelCase_ :int = 64 , lowerCamelCase_ :int = 20 , lowerCamelCase_ :int = 768 , lowerCamelCase_ :Optional[int]=77 , lowerCamelCase_ :Optional[int]=4 , lowerCamelCase_ :float = 0.0 , lowerCamelCase_ :str = "silu" , lowerCamelCase_ :Optional[str] = None , lowerCamelCase_ :Optional[str] = None , lowerCamelCase_ :Optional[str] = "linear" , lowerCamelCase_ :Optional[str] = "prd" , lowerCamelCase_ :Optional[int] = None , lowerCamelCase_ :Optional[int] = None , lowerCamelCase_ :Optional[int] = None , ): """simple docstring""" super().__init__() lowerCamelCase__ : Optional[Any] =num_attention_heads lowerCamelCase__ : List[Any] =attention_head_dim lowerCamelCase__ : Dict =num_attention_heads * attention_head_dim lowerCamelCase__ : Tuple =additional_embeddings lowerCamelCase__ : Union[str, Any] =time_embed_dim or inner_dim lowerCamelCase__ : Tuple =embedding_proj_dim or embedding_dim lowerCamelCase__ : Dict =clip_embed_dim or embedding_dim lowerCamelCase__ : Optional[Any] =Timesteps(lowerCamelCase_ , lowerCamelCase_ , 0 ) lowerCamelCase__ : Tuple =TimestepEmbedding(lowerCamelCase_ , lowerCamelCase_ , out_dim=lowerCamelCase_ , act_fn=lowerCamelCase_ ) lowerCamelCase__ : Optional[int] =nn.Linear(lowerCamelCase_ , lowerCamelCase_ ) if embedding_proj_norm_type is None: lowerCamelCase__ : Union[str, Any] =None elif embedding_proj_norm_type == "layer": lowerCamelCase__ : Union[str, Any] =nn.LayerNorm(lowerCamelCase_ ) else: raise ValueError(f"""unsupported embedding_proj_norm_type: {embedding_proj_norm_type}""" ) lowerCamelCase__ : List[str] =nn.Linear(lowerCamelCase_ , lowerCamelCase_ ) if encoder_hid_proj_type is None: lowerCamelCase__ : Optional[int] =None elif encoder_hid_proj_type == "linear": lowerCamelCase__ : List[str] =nn.Linear(lowerCamelCase_ , lowerCamelCase_ ) else: raise ValueError(f"""unsupported encoder_hid_proj_type: {encoder_hid_proj_type}""" ) lowerCamelCase__ : str =nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , lowerCamelCase_ ) ) if added_emb_type == "prd": lowerCamelCase__ : str =nn.Parameter(torch.zeros(1 , 1 , lowerCamelCase_ ) ) elif added_emb_type is None: lowerCamelCase__ : List[Any] =None else: raise ValueError( f"""`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `'prd'` or `None`.""" ) lowerCamelCase__ : Dict =nn.ModuleList( [ BasicTransformerBlock( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , dropout=lowerCamelCase_ , activation_fn='gelu' , attention_bias=lowerCamelCase_ , ) for d in range(lowerCamelCase_ ) ] ) if norm_in_type == "layer": lowerCamelCase__ : str =nn.LayerNorm(lowerCamelCase_ ) elif norm_in_type is None: lowerCamelCase__ : Tuple =None else: raise ValueError(f"""Unsupported norm_in_type: {norm_in_type}.""" ) lowerCamelCase__ : List[Any] =nn.LayerNorm(lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] =nn.Linear(lowerCamelCase_ , lowerCamelCase_ ) lowerCamelCase__ : Tuple =torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -1_00_00.0 ) causal_attention_mask.triu_(1 ) lowerCamelCase__ : Optional[Any] =causal_attention_mask[None, ...] self.register_buffer('causal_attention_mask' , lowerCamelCase_ , persistent=lowerCamelCase_ ) lowerCamelCase__ : List[Any] =nn.Parameter(torch.zeros(1 , lowerCamelCase_ ) ) lowerCamelCase__ : Optional[int] =nn.Parameter(torch.zeros(1 , lowerCamelCase_ ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def UpperCAmelCase__ ( self :Optional[Any] ): """simple docstring""" lowerCamelCase__ : str ={} def fn_recursive_add_processors(lowerCamelCase_ :str , lowerCamelCase_ :torch.nn.Module , lowerCamelCase_ :Dict[str, AttentionProcessor] ): if hasattr(lowerCamelCase_ , 'set_processor' ): lowerCamelCase__ : Optional[int] =module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f"""{name}.{sub_name}""" , lowerCamelCase_ , lowerCamelCase_ ) return processors for name, module in self.named_children(): fn_recursive_add_processors(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) return processors def UpperCAmelCase__ ( self :Dict , lowerCamelCase_ :Union[AttentionProcessor, Dict[str, AttentionProcessor]] ): """simple docstring""" lowerCamelCase__ : Optional[int] =len(self.attn_processors.keys() ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) and len(lowerCamelCase_ ) != count: raise ValueError( f"""A dict of processors was passed, but the number of processors {len(lowerCamelCase_ )} does not match the""" f""" number of attention layers: {count}. Please make sure to pass {count} processor classes.""" ) def fn_recursive_attn_processor(lowerCamelCase_ :str , lowerCamelCase_ :torch.nn.Module , lowerCamelCase_ :Any ): if hasattr(lowerCamelCase_ , 'set_processor' ): if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): module.set_processor(lowerCamelCase_ ) else: module.set_processor(processor.pop(f"""{name}.processor""" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f"""{name}.{sub_name}""" , lowerCamelCase_ , lowerCamelCase_ ) for name, module in self.named_children(): fn_recursive_attn_processor(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) def UpperCAmelCase__ ( self :List[Any] ): """simple docstring""" self.set_attn_processor(AttnProcessor() ) def UpperCAmelCase__ ( self :Any , lowerCamelCase_ :Tuple , lowerCamelCase_ :Union[torch.Tensor, float, int] , lowerCamelCase_ :torch.FloatTensor , lowerCamelCase_ :Optional[torch.FloatTensor] = None , lowerCamelCase_ :Optional[torch.BoolTensor] = None , lowerCamelCase_ :bool = True , ): """simple docstring""" lowerCamelCase__ : int =hidden_states.shape[0] lowerCamelCase__ : Optional[Any] =timestep if not torch.is_tensor(lowerCamelCase_ ): lowerCamelCase__ : Any =torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device ) elif torch.is_tensor(lowerCamelCase_ ) and len(timesteps.shape ) == 0: lowerCamelCase__ : Dict =timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML lowerCamelCase__ : Any =timesteps * torch.ones(lowerCamelCase_ , dtype=timesteps.dtype , device=timesteps.device ) lowerCamelCase__ : int =self.time_proj(lowerCamelCase_ ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. lowerCamelCase__ : str =timesteps_projected.to(dtype=self.dtype ) lowerCamelCase__ : Union[str, Any] =self.time_embedding(lowerCamelCase_ ) if self.embedding_proj_norm is not None: lowerCamelCase__ : Union[str, Any] =self.embedding_proj_norm(lowerCamelCase_ ) lowerCamelCase__ : Optional[int] =self.embedding_proj(lowerCamelCase_ ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: lowerCamelCase__ : List[Any] =self.encoder_hidden_states_proj(lowerCamelCase_ ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError('`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set' ) lowerCamelCase__ : str =self.proj_in(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] =self.positional_embedding.to(hidden_states.dtype ) lowerCamelCase__ : List[Any] =[] lowerCamelCase__ : str =0 if encoder_hidden_states is not None: additional_embeds.append(lowerCamelCase_ ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: lowerCamelCase__ : Dict =proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: lowerCamelCase__ : Dict =hidden_states[:, None, :] lowerCamelCase__ : Optional[Any] =additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: lowerCamelCase__ : List[str] =self.prd_embedding.to(hidden_states.dtype ).expand(lowerCamelCase_ , -1 , -1 ) additional_embeds.append(lowerCamelCase_ ) lowerCamelCase__ : int =torch.cat( lowerCamelCase_ , dim=1 , ) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens lowerCamelCase__ : int =additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: lowerCamelCase__ : Optional[Any] =F.pad( lowerCamelCase_ , ( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) , value=0.0 , ) lowerCamelCase__ : Optional[Any] =hidden_states + positional_embeddings if attention_mask is not None: lowerCamelCase__ : List[Any] =(1 - attention_mask.to(hidden_states.dtype )) * -1_00_00.0 lowerCamelCase__ : Any =F.pad(lowerCamelCase_ , (0, self.additional_embeddings) , value=0.0 ) lowerCamelCase__ : Dict =(attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) lowerCamelCase__ : int =attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 ) if self.norm_in is not None: lowerCamelCase__ : str =self.norm_in(lowerCamelCase_ ) for block in self.transformer_blocks: lowerCamelCase__ : Union[str, Any] =block(lowerCamelCase_ , attention_mask=lowerCamelCase_ ) lowerCamelCase__ : str =self.norm_out(lowerCamelCase_ ) if self.prd_embedding is not None: lowerCamelCase__ : Tuple =hidden_states[:, -1] else: lowerCamelCase__ : List[str] =hidden_states[:, additional_embeddings_len:] lowerCamelCase__ : List[str] =self.proj_to_clip_embeddings(lowerCamelCase_ ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=lowerCamelCase_ ) def UpperCAmelCase__ ( self :Optional[Any] , lowerCamelCase_ :str ): """simple docstring""" lowerCamelCase__ : int =(prior_latents * self.clip_std) + self.clip_mean return prior_latents
174
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPanoramaPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() @skip_mps class A_ ( A__ , A__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ = StableDiffusionPanoramaPipeline SCREAMING_SNAKE_CASE_ = TEXT_TO_IMAGE_PARAMS SCREAMING_SNAKE_CASE_ = TEXT_TO_IMAGE_BATCH_PARAMS SCREAMING_SNAKE_CASE_ = TEXT_TO_IMAGE_IMAGE_PARAMS SCREAMING_SNAKE_CASE_ = TEXT_TO_IMAGE_IMAGE_PARAMS def UpperCAmelCase__ ( self :int ): """simple docstring""" torch.manual_seed(0 ) lowerCamelCase__ : int =UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) lowerCamelCase__ : Optional[int] =DDIMScheduler() torch.manual_seed(0 ) lowerCamelCase__ : Any =AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) lowerCamelCase__ : Union[str, Any] =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) lowerCamelCase__ : Union[str, Any] =CLIPTextModel(lowerCamelCase_ ) lowerCamelCase__ : Optional[int] =CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) lowerCamelCase__ : Optional[int] ={ 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def UpperCAmelCase__ ( self :Dict , lowerCamelCase_ :List[str] , lowerCamelCase_ :List[str]=0 ): """simple docstring""" lowerCamelCase__ : Optional[int] =torch.manual_seed(lowerCamelCase_ ) lowerCamelCase__ : int ={ 'prompt': 'a photo of the dolomites', 'generator': generator, # Setting height and width to None to prevent OOMs on CPU. 'height': None, 'width': None, 'num_inference_steps': 1, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def UpperCAmelCase__ ( self :int ): """simple docstring""" lowerCamelCase__ : List[Any] ='cpu' # ensure determinism for the device-dependent torch.Generator lowerCamelCase__ : Optional[Any] =self.get_dummy_components() lowerCamelCase__ : int =StableDiffusionPanoramaPipeline(**lowerCamelCase_ ) lowerCamelCase__ : List[str] =sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) lowerCamelCase__ : Optional[int] =self.get_dummy_inputs(lowerCamelCase_ ) lowerCamelCase__ : Tuple =sd_pipe(**lowerCamelCase_ ).images lowerCamelCase__ : Optional[Any] =image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCamelCase__ : List[str] =np.array([0.61_86, 0.53_74, 0.49_15, 0.41_35, 0.41_14, 0.45_63, 0.51_28, 0.49_77, 0.47_57] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCAmelCase__ ( self :Union[str, Any] ): """simple docstring""" super().test_inference_batch_consistent(batch_sizes=[1, 2] ) def UpperCAmelCase__ ( self :str ): """simple docstring""" super().test_inference_batch_single_identical(batch_size=2 , expected_max_diff=3.25e-3 ) def UpperCAmelCase__ ( self :Optional[int] ): """simple docstring""" lowerCamelCase__ : Union[str, Any] ='cpu' # ensure determinism for the device-dependent torch.Generator lowerCamelCase__ : str =self.get_dummy_components() lowerCamelCase__ : int =StableDiffusionPanoramaPipeline(**lowerCamelCase_ ) lowerCamelCase__ : int =sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] =self.get_dummy_inputs(lowerCamelCase_ ) lowerCamelCase__ : Optional[int] ='french fries' lowerCamelCase__ : Optional[Any] =sd_pipe(**lowerCamelCase_ , negative_prompt=lowerCamelCase_ ) lowerCamelCase__ : Any =output.images lowerCamelCase__ : Optional[Any] =image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCamelCase__ : List[str] =np.array([0.61_87, 0.53_75, 0.49_15, 0.41_36, 0.41_14, 0.45_63, 0.51_28, 0.49_76, 0.47_57] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCAmelCase__ ( self :Optional[Any] ): """simple docstring""" lowerCamelCase__ : Optional[int] ='cpu' # ensure determinism for the device-dependent torch.Generator lowerCamelCase__ : int =self.get_dummy_components() lowerCamelCase__ : Any =StableDiffusionPanoramaPipeline(**lowerCamelCase_ ) lowerCamelCase__ : int =sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) lowerCamelCase__ : Any =self.get_dummy_inputs(lowerCamelCase_ ) lowerCamelCase__ : int =sd_pipe(**lowerCamelCase_ , view_batch_size=2 ) lowerCamelCase__ : Dict =output.images lowerCamelCase__ : List[str] =image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCamelCase__ : List[str] =np.array([0.61_87, 0.53_75, 0.49_15, 0.41_36, 0.41_14, 0.45_63, 0.51_28, 0.49_76, 0.47_57] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCAmelCase__ ( self :Union[str, Any] ): """simple docstring""" lowerCamelCase__ : Optional[Any] ='cpu' # ensure determinism for the device-dependent torch.Generator lowerCamelCase__ : List[Any] =self.get_dummy_components() lowerCamelCase__ : Any =EulerAncestralDiscreteScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='scaled_linear' ) lowerCamelCase__ : Optional[Any] =StableDiffusionPanoramaPipeline(**lowerCamelCase_ ) lowerCamelCase__ : Tuple =sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) lowerCamelCase__ : Dict =self.get_dummy_inputs(lowerCamelCase_ ) lowerCamelCase__ : Optional[int] =sd_pipe(**lowerCamelCase_ ).images lowerCamelCase__ : Any =image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCamelCase__ : Optional[int] =np.array([0.40_24, 0.65_10, 0.49_01, 0.53_78, 0.58_13, 0.56_22, 0.47_95, 0.44_67, 0.49_52] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCAmelCase__ ( self :List[Any] ): """simple docstring""" lowerCamelCase__ : Optional[Any] ='cpu' # ensure determinism for the device-dependent torch.Generator lowerCamelCase__ : List[Any] =self.get_dummy_components() lowerCamelCase__ : Union[str, Any] =PNDMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='scaled_linear' , skip_prk_steps=lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] =StableDiffusionPanoramaPipeline(**lowerCamelCase_ ) lowerCamelCase__ : int =sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) lowerCamelCase__ : Dict =self.get_dummy_inputs(lowerCamelCase_ ) lowerCamelCase__ : Any =sd_pipe(**lowerCamelCase_ ).images lowerCamelCase__ : List[Any] =image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCamelCase__ : str =np.array([0.63_91, 0.62_91, 0.48_61, 0.51_34, 0.55_52, 0.45_78, 0.50_32, 0.50_23, 0.45_39] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class A_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self :Tuple ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self :List[Any] , lowerCamelCase_ :Tuple=0 ): """simple docstring""" lowerCamelCase__ : Any =torch.manual_seed(lowerCamelCase_ ) lowerCamelCase__ : Dict ={ 'prompt': 'a photo of the dolomites', 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def UpperCAmelCase__ ( self :str ): """simple docstring""" lowerCamelCase__ : Optional[Any] ='stabilityai/stable-diffusion-2-base' lowerCamelCase__ : Tuple =DDIMScheduler.from_pretrained(lowerCamelCase_ , subfolder='scheduler' ) lowerCamelCase__ : Dict =StableDiffusionPanoramaPipeline.from_pretrained(lowerCamelCase_ , scheduler=lowerCamelCase_ , safety_checker=lowerCamelCase_ ) pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) pipe.enable_attention_slicing() lowerCamelCase__ : List[Any] =self.get_inputs() lowerCamelCase__ : List[Any] =pipe(**lowerCamelCase_ ).images lowerCamelCase__ : int =image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2_048, 3) lowerCamelCase__ : Dict =np.array( [ 0.36_96_83_92, 0.27_02_53_72, 0.32_44_67_66, 0.28_37_93_87, 0.36_36_32_74, 0.30_73_33_47, 0.27_10_00_27, 0.27_05_41_25, 0.25_53_60_96, ] ) assert np.abs(expected_slice - image_slice ).max() < 1e-2 def UpperCAmelCase__ ( self :Dict ): """simple docstring""" lowerCamelCase__ : Tuple =StableDiffusionPanoramaPipeline.from_pretrained( 'stabilityai/stable-diffusion-2-base' , safety_checker=lowerCamelCase_ ) lowerCamelCase__ : Dict =LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) pipe.enable_attention_slicing() lowerCamelCase__ : Optional[int] =self.get_inputs() lowerCamelCase__ : Optional[Any] =pipe(**lowerCamelCase_ ).images lowerCamelCase__ : Optional[Any] =image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2_048, 3) lowerCamelCase__ : int =np.array( [ [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ] ] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def UpperCAmelCase__ ( self :List[str] ): """simple docstring""" lowerCamelCase__ : str =0 def callback_fn(lowerCamelCase_ :int , lowerCamelCase_ :int , lowerCamelCase_ :torch.FloatTensor ) -> None: lowerCamelCase__ : int =True nonlocal number_of_steps number_of_steps += 1 if step == 1: lowerCamelCase__ : Any =latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) lowerCamelCase__ : Optional[Any] =latents[0, -3:, -3:, -1] lowerCamelCase__ : Union[str, Any] =np.array( [ 0.18_68_18_69, 0.33_90_78_16, 0.5_36_12_76, 0.14_43_28_65, -0.02_85_66_11, -0.73_94_11_23, 0.23_39_79_87, 0.47_32_26_82, -0.37_82_31_64, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 elif step == 2: lowerCamelCase__ : Union[str, Any] =latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) lowerCamelCase__ : int =latents[0, -3:, -3:, -1] lowerCamelCase__ : List[Any] =np.array( [ 0.18_53_96_45, 0.33_98_72_48, 0.5_37_85_59, 0.14_43_71_42, -0.02_45_52_61, -0.7_33_83_17, 0.23_99_07_55, 0.47_35_62_72, -0.3_78_65_05, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 lowerCamelCase__ : Optional[int] =False lowerCamelCase__ : Optional[int] ='stabilityai/stable-diffusion-2-base' lowerCamelCase__ : Union[str, Any] =DDIMScheduler.from_pretrained(lowerCamelCase_ , subfolder='scheduler' ) lowerCamelCase__ : int =StableDiffusionPanoramaPipeline.from_pretrained(lowerCamelCase_ , scheduler=lowerCamelCase_ , safety_checker=lowerCamelCase_ ) lowerCamelCase__ : Any =pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) pipe.enable_attention_slicing() lowerCamelCase__ : Optional[int] =self.get_inputs() pipe(**lowerCamelCase_ , callback=lowerCamelCase_ , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def UpperCAmelCase__ ( self :Dict ): """simple docstring""" torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowerCamelCase__ : Dict ='stabilityai/stable-diffusion-2-base' lowerCamelCase__ : Optional[int] =DDIMScheduler.from_pretrained(lowerCamelCase_ , subfolder='scheduler' ) lowerCamelCase__ : str =StableDiffusionPanoramaPipeline.from_pretrained(lowerCamelCase_ , scheduler=lowerCamelCase_ , safety_checker=lowerCamelCase_ ) lowerCamelCase__ : Dict =pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() lowerCamelCase__ : Any =self.get_inputs() lowerCamelCase__ : Optional[Any] =pipe(**lowerCamelCase_ ) lowerCamelCase__ : int =torch.cuda.max_memory_allocated() # make sure that less than 5.2 GB is allocated assert mem_bytes < 5.5 * 10**9
174
1
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING A__ : str = logging.get_logger(__name__) A__ : Dict = { '''Salesforce/instruct-blip-flan-t5''': '''https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json''', } class _lowercase ( _UpperCAmelCase ): '''simple docstring''' _A = 'instructblip_vision_model' def __init__( self , __UpperCamelCase=14_08 , __UpperCamelCase=61_44 , __UpperCamelCase=39 , __UpperCamelCase=16 , __UpperCamelCase=2_24 , __UpperCamelCase=14 , __UpperCamelCase="gelu" , __UpperCamelCase=1E-6 , __UpperCamelCase=0.0 , __UpperCamelCase=1E-10 , __UpperCamelCase=True , **__UpperCamelCase , )-> int: super().__init__(**__UpperCamelCase ) UpperCAmelCase__ : Tuple = hidden_size UpperCAmelCase__ : Dict = intermediate_size UpperCAmelCase__ : List[Any] = num_hidden_layers UpperCAmelCase__ : Optional[Any] = num_attention_heads UpperCAmelCase__ : str = patch_size UpperCAmelCase__ : Dict = image_size UpperCAmelCase__ : Union[str, Any] = initializer_range UpperCAmelCase__ : Any = attention_dropout UpperCAmelCase__ : str = layer_norm_eps UpperCAmelCase__ : Dict = hidden_act UpperCAmelCase__ : Optional[int] = qkv_bias @classmethod def lowerCAmelCase__ ( cls , __UpperCamelCase , **__UpperCamelCase )-> "PretrainedConfig": cls._set_token_in_kwargs(__UpperCamelCase ) UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = cls.get_config_dict(__UpperCamelCase , **__UpperCamelCase ) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get("model_type" ) == "instructblip": UpperCAmelCase__ : Tuple = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"You are using a model of type {config_dict['model_type']} to instantiate a model of type " F"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(__UpperCamelCase , **__UpperCamelCase ) class _lowercase ( _UpperCAmelCase ): '''simple docstring''' _A = 'instructblip_qformer' def __init__( self , __UpperCamelCase=3_05_22 , __UpperCamelCase=7_68 , __UpperCamelCase=12 , __UpperCamelCase=12 , __UpperCamelCase=30_72 , __UpperCamelCase="gelu" , __UpperCamelCase=0.1 , __UpperCamelCase=0.1 , __UpperCamelCase=5_12 , __UpperCamelCase=0.02 , __UpperCamelCase=1E-12 , __UpperCamelCase=0 , __UpperCamelCase="absolute" , __UpperCamelCase=2 , __UpperCamelCase=14_08 , **__UpperCamelCase , )-> Union[str, Any]: super().__init__(pad_token_id=__UpperCamelCase , **__UpperCamelCase ) UpperCAmelCase__ : Dict = vocab_size UpperCAmelCase__ : List[str] = hidden_size UpperCAmelCase__ : List[str] = num_hidden_layers UpperCAmelCase__ : List[str] = num_attention_heads UpperCAmelCase__ : Optional[Any] = hidden_act UpperCAmelCase__ : str = intermediate_size UpperCAmelCase__ : List[Any] = hidden_dropout_prob UpperCAmelCase__ : Any = attention_probs_dropout_prob UpperCAmelCase__ : int = max_position_embeddings UpperCAmelCase__ : str = initializer_range UpperCAmelCase__ : Union[str, Any] = layer_norm_eps UpperCAmelCase__ : str = position_embedding_type UpperCAmelCase__ : List[Any] = cross_attention_frequency UpperCAmelCase__ : Union[str, Any] = encoder_hidden_size @classmethod def lowerCAmelCase__ ( cls , __UpperCamelCase , **__UpperCamelCase )-> "PretrainedConfig": cls._set_token_in_kwargs(__UpperCamelCase ) UpperCAmelCase__ , UpperCAmelCase__ : str = cls.get_config_dict(__UpperCamelCase , **__UpperCamelCase ) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get("model_type" ) == "instructblip": UpperCAmelCase__ : str = config_dict["qformer_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"You are using a model of type {config_dict['model_type']} to instantiate a model of type " F"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(__UpperCamelCase , **__UpperCamelCase ) class _lowercase ( _UpperCAmelCase ): '''simple docstring''' _A = 'instructblip' _A = True def __init__( self , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=32 , **__UpperCamelCase )-> Union[str, Any]: super().__init__(**__UpperCamelCase ) if vision_config is None: UpperCAmelCase__ : List[Any] = {} logger.info("vision_config is None. initializing the InstructBlipVisionConfig with default values." ) if qformer_config is None: UpperCAmelCase__ : Tuple = {} logger.info("qformer_config is None. Initializing the InstructBlipQFormerConfig with default values." ) if text_config is None: UpperCAmelCase__ : List[str] = {} logger.info("text_config is None. Initializing the text config with default values (`OPTConfig`)." ) UpperCAmelCase__ : Tuple = InstructBlipVisionConfig(**__UpperCamelCase ) UpperCAmelCase__ : str = InstructBlipQFormerConfig(**__UpperCamelCase ) UpperCAmelCase__ : Any = text_config["model_type"] if "model_type" in text_config else "opt" UpperCAmelCase__ : Dict = CONFIG_MAPPING[text_model_type](**__UpperCamelCase ) UpperCAmelCase__ : Any = self.text_config.tie_word_embeddings UpperCAmelCase__ : Union[str, Any] = self.text_config.is_encoder_decoder UpperCAmelCase__ : Any = num_query_tokens UpperCAmelCase__ : List[str] = self.vision_config.hidden_size UpperCAmelCase__ : Tuple = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES UpperCAmelCase__ : List[Any] = 1.0 UpperCAmelCase__ : Optional[int] = 0.02 @classmethod def lowerCAmelCase__ ( cls , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase , )-> Dict: return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **__UpperCamelCase , ) def lowerCAmelCase__ ( self )-> List[str]: UpperCAmelCase__ : str = copy.deepcopy(self.__dict__ ) UpperCAmelCase__ : Optional[Any] = self.vision_config.to_dict() UpperCAmelCase__ : str = self.qformer_config.to_dict() UpperCAmelCase__ : str = self.text_config.to_dict() UpperCAmelCase__ : Tuple = self.__class__.model_type return output
719
"""simple docstring""" import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class _lowercase ( lowerCAmelCase_ , unittest.TestCase ): '''simple docstring''' pass @nightly @require_onnxruntime @require_torch_gpu class _lowercase ( unittest.TestCase ): '''simple docstring''' @property def lowerCAmelCase__ ( self )-> int: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def lowerCAmelCase__ ( self )-> Any: UpperCAmelCase__ : Tuple = ort.SessionOptions() UpperCAmelCase__ : List[str] = False return options def lowerCAmelCase__ ( self )-> List[str]: UpperCAmelCase__ : Union[str, Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo.png" ) UpperCAmelCase__ : int = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo_mask.png" ) UpperCAmelCase__ : str = OnnxStableDiffusionInpaintPipeline.from_pretrained( "runwayml/stable-diffusion-inpainting" , revision="onnx" , safety_checker=__UpperCamelCase , feature_extractor=__UpperCamelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) UpperCAmelCase__ : int = "A red cat sitting on a park bench" UpperCAmelCase__ : Tuple = np.random.RandomState(0 ) UpperCAmelCase__ : Any = pipe( prompt=__UpperCamelCase , image=__UpperCamelCase , mask_image=__UpperCamelCase , guidance_scale=7.5 , num_inference_steps=10 , generator=__UpperCamelCase , output_type="np" , ) UpperCAmelCase__ : Tuple = output.images UpperCAmelCase__ : Dict = images[0, 2_55:2_58, 2_55:2_58, -1] assert images.shape == (1, 5_12, 5_12, 3) UpperCAmelCase__ : Union[str, Any] = np.array([0.2514, 0.3007, 0.3517, 0.1790, 0.2382, 0.3167, 0.1944, 0.2273, 0.2464] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def lowerCAmelCase__ ( self )-> Tuple: UpperCAmelCase__ : Tuple = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo.png" ) UpperCAmelCase__ : Tuple = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo_mask.png" ) UpperCAmelCase__ : Optional[Any] = LMSDiscreteScheduler.from_pretrained( "runwayml/stable-diffusion-inpainting" , subfolder="scheduler" , revision="onnx" ) UpperCAmelCase__ : Optional[Any] = OnnxStableDiffusionInpaintPipeline.from_pretrained( "runwayml/stable-diffusion-inpainting" , revision="onnx" , scheduler=__UpperCamelCase , safety_checker=__UpperCamelCase , feature_extractor=__UpperCamelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) UpperCAmelCase__ : int = "A red cat sitting on a park bench" UpperCAmelCase__ : List[str] = np.random.RandomState(0 ) UpperCAmelCase__ : str = pipe( prompt=__UpperCamelCase , image=__UpperCamelCase , mask_image=__UpperCamelCase , guidance_scale=7.5 , num_inference_steps=20 , generator=__UpperCamelCase , output_type="np" , ) UpperCAmelCase__ : List[str] = output.images UpperCAmelCase__ : List[Any] = images[0, 2_55:2_58, 2_55:2_58, -1] assert images.shape == (1, 5_12, 5_12, 3) UpperCAmelCase__ : int = np.array([0.0086, 0.0077, 0.0083, 0.0093, 0.0107, 0.0139, 0.0094, 0.0097, 0.0125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
660
0
'''simple docstring''' def __snake_case (__UpperCAmelCase ): """simple docstring""" return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print("""Program to check whether a number is a Perfect number or not...""") __lowerCamelCase : Any = int(input("""Enter number: """).strip()) print(f"""{number} is {'' if perfect(number) else 'not '}a Perfect Number.""")
501
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DetrConfig, DetrForObjectDetection, DetrForSegmentation, DetrImageProcessor, ResNetConfig from transformers.utils import logging logging.set_verbosity_info() __lowerCamelCase : Tuple = logging.get_logger(__name__) def __snake_case (__UpperCAmelCase ): """simple docstring""" # initialize config if "resnet-50" in model_name: lowerCamelCase_ : Union[str, Any] = ResNetConfig.from_pretrained('''microsoft/resnet-50''' ) elif "resnet-101" in model_name: lowerCamelCase_ : str = ResNetConfig.from_pretrained('''microsoft/resnet-101''' ) else: raise ValueError('''Model name should include either resnet50 or resnet101''' ) lowerCamelCase_ : Optional[int] = DetrConfig(use_timm_backbone=__UpperCAmelCase , backbone_config=__UpperCAmelCase ) # set label attributes lowerCamelCase_ : str = '''panoptic''' in model_name if is_panoptic: lowerCamelCase_ : Tuple = 250 else: lowerCamelCase_ : Any = 91 lowerCamelCase_ : Optional[int] = '''huggingface/label-files''' lowerCamelCase_ : Tuple = '''coco-detection-id2label.json''' lowerCamelCase_ : Union[str, Any] = json.load(open(hf_hub_download(__UpperCAmelCase , __UpperCAmelCase , repo_type='''dataset''' ) , '''r''' ) ) lowerCamelCase_ : Dict = {int(__UpperCAmelCase ): v for k, v in idalabel.items()} lowerCamelCase_ : List[Any] = idalabel lowerCamelCase_ : List[Any] = {v: k for k, v in idalabel.items()} return config, is_panoptic def __snake_case (__UpperCAmelCase ): """simple docstring""" # here we list all keys to be renamed (original name on the left, our name on the right) lowerCamelCase_ : List[Any] = [] # stem # fmt: off rename_keys.append(('''backbone.0.body.conv1.weight''', '''backbone.conv_encoder.model.embedder.embedder.convolution.weight''') ) rename_keys.append(('''backbone.0.body.bn1.weight''', '''backbone.conv_encoder.model.embedder.embedder.normalization.weight''') ) rename_keys.append(('''backbone.0.body.bn1.bias''', '''backbone.conv_encoder.model.embedder.embedder.normalization.bias''') ) rename_keys.append(('''backbone.0.body.bn1.running_mean''', '''backbone.conv_encoder.model.embedder.embedder.normalization.running_mean''') ) rename_keys.append(('''backbone.0.body.bn1.running_var''', '''backbone.conv_encoder.model.embedder.embedder.normalization.running_var''') ) # stages for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): # shortcut if layer_idx == 0: rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.0.weight""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.convolution.weight""", ) ) rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.weight""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.weight""", ) ) rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.bias""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.bias""", ) ) rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_mean""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_mean""", ) ) rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_var""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_var""", ) ) # 3 convs for i in range(3 ): rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.conv{i+1}.weight""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.convolution.weight""", ) ) rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.weight""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.weight""", ) ) rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.bias""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.bias""", ) ) rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_mean""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_mean""", ) ) rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_var""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_var""", ) ) # fmt: on for i in range(config.encoder_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( ( F"""transformer.encoder.layers.{i}.self_attn.out_proj.weight""", F"""encoder.layers.{i}.self_attn.out_proj.weight""", ) ) rename_keys.append( (F"""transformer.encoder.layers.{i}.self_attn.out_proj.bias""", F"""encoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.linear1.weight""", F"""encoder.layers.{i}.fc1.weight""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.linear1.bias""", F"""encoder.layers.{i}.fc1.bias""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.linear2.weight""", F"""encoder.layers.{i}.fc2.weight""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.linear2.bias""", F"""encoder.layers.{i}.fc2.bias""") ) rename_keys.append( (F"""transformer.encoder.layers.{i}.norm1.weight""", F"""encoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append( (F"""transformer.encoder.layers.{i}.norm1.bias""", F"""encoder.layers.{i}.self_attn_layer_norm.bias""") ) rename_keys.append( (F"""transformer.encoder.layers.{i}.norm2.weight""", F"""encoder.layers.{i}.final_layer_norm.weight""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.norm2.bias""", F"""encoder.layers.{i}.final_layer_norm.bias""") ) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( ( F"""transformer.decoder.layers.{i}.self_attn.out_proj.weight""", F"""decoder.layers.{i}.self_attn.out_proj.weight""", ) ) rename_keys.append( (F"""transformer.decoder.layers.{i}.self_attn.out_proj.bias""", F"""decoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append( ( F"""transformer.decoder.layers.{i}.multihead_attn.out_proj.weight""", F"""decoder.layers.{i}.encoder_attn.out_proj.weight""", ) ) rename_keys.append( ( F"""transformer.decoder.layers.{i}.multihead_attn.out_proj.bias""", F"""decoder.layers.{i}.encoder_attn.out_proj.bias""", ) ) rename_keys.append((F"""transformer.decoder.layers.{i}.linear1.weight""", F"""decoder.layers.{i}.fc1.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.linear1.bias""", F"""decoder.layers.{i}.fc1.bias""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.linear2.weight""", F"""decoder.layers.{i}.fc2.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.linear2.bias""", F"""decoder.layers.{i}.fc2.bias""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm1.weight""", F"""decoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm1.bias""", F"""decoder.layers.{i}.self_attn_layer_norm.bias""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm2.weight""", F"""decoder.layers.{i}.encoder_attn_layer_norm.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm2.bias""", F"""decoder.layers.{i}.encoder_attn_layer_norm.bias""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm3.weight""", F"""decoder.layers.{i}.final_layer_norm.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.norm3.bias""", F"""decoder.layers.{i}.final_layer_norm.bias""") ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ('''input_proj.weight''', '''input_projection.weight'''), ('''input_proj.bias''', '''input_projection.bias'''), ('''query_embed.weight''', '''query_position_embeddings.weight'''), ('''transformer.decoder.norm.weight''', '''decoder.layernorm.weight'''), ('''transformer.decoder.norm.bias''', '''decoder.layernorm.bias'''), ('''class_embed.weight''', '''class_labels_classifier.weight'''), ('''class_embed.bias''', '''class_labels_classifier.bias'''), ('''bbox_embed.layers.0.weight''', '''bbox_predictor.layers.0.weight'''), ('''bbox_embed.layers.0.bias''', '''bbox_predictor.layers.0.bias'''), ('''bbox_embed.layers.1.weight''', '''bbox_predictor.layers.1.weight'''), ('''bbox_embed.layers.1.bias''', '''bbox_predictor.layers.1.bias'''), ('''bbox_embed.layers.2.weight''', '''bbox_predictor.layers.2.weight'''), ('''bbox_embed.layers.2.bias''', '''bbox_predictor.layers.2.bias'''), ] ) return rename_keys def __snake_case (__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): """simple docstring""" lowerCamelCase_ : Optional[Any] = state_dict.pop(__UpperCAmelCase ) lowerCamelCase_ : List[Any] = val def __snake_case (__UpperCAmelCase , __UpperCAmelCase=False ): """simple docstring""" lowerCamelCase_ : Any = '''''' if is_panoptic: lowerCamelCase_ : Tuple = '''detr.''' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) lowerCamelCase_ : str = state_dict.pop(F"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight""" ) lowerCamelCase_ : str = state_dict.pop(F"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict lowerCamelCase_ : Dict = in_proj_weight[:256, :] lowerCamelCase_ : Any = in_proj_bias[:256] lowerCamelCase_ : Optional[Any] = in_proj_weight[256:512, :] lowerCamelCase_ : Optional[Any] = in_proj_bias[256:512] lowerCamelCase_ : List[Any] = in_proj_weight[-256:, :] lowerCamelCase_ : Optional[int] = in_proj_bias[-256:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention lowerCamelCase_ : int = state_dict.pop(F"""{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight""" ) lowerCamelCase_ : Optional[int] = state_dict.pop(F"""{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict lowerCamelCase_ : Optional[int] = in_proj_weight[:256, :] lowerCamelCase_ : int = in_proj_bias[:256] lowerCamelCase_ : int = in_proj_weight[256:512, :] lowerCamelCase_ : Optional[int] = in_proj_bias[256:512] lowerCamelCase_ : List[str] = in_proj_weight[-256:, :] lowerCamelCase_ : Optional[Any] = in_proj_bias[-256:] # read in weights + bias of input projection layer of cross-attention lowerCamelCase_ : List[str] = state_dict.pop( F"""{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight""" ) lowerCamelCase_ : Optional[Any] = state_dict.pop(F"""{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) of cross-attention to the state dict lowerCamelCase_ : Tuple = in_proj_weight_cross_attn[:256, :] lowerCamelCase_ : int = in_proj_bias_cross_attn[:256] lowerCamelCase_ : int = in_proj_weight_cross_attn[256:512, :] lowerCamelCase_ : List[str] = in_proj_bias_cross_attn[256:512] lowerCamelCase_ : List[Any] = in_proj_weight_cross_attn[-256:, :] lowerCamelCase_ : str = in_proj_bias_cross_attn[-256:] def __snake_case (): """simple docstring""" lowerCamelCase_ : str = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCamelCase_ : Tuple = Image.open(requests.get(__UpperCAmelCase , stream=__UpperCAmelCase ).raw ) return im @torch.no_grad() def __snake_case (__UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=False ): """simple docstring""" lowerCamelCase_ , lowerCamelCase_ : Optional[Any] = get_detr_config(__UpperCAmelCase ) # load original model from torch hub lowerCamelCase_ : str = { '''detr-resnet-50''': '''detr_resnet50''', '''detr-resnet-101''': '''detr_resnet101''', } logger.info(F"""Converting model {model_name}...""" ) lowerCamelCase_ : Any = torch.hub.load('''facebookresearch/detr''' , model_name_to_original_name[model_name] , pretrained=__UpperCAmelCase ).eval() lowerCamelCase_ : List[str] = detr.state_dict() # rename keys for src, dest in create_rename_keys(__UpperCAmelCase ): if is_panoptic: lowerCamelCase_ : str = '''detr.''' + src rename_key(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # query, key and value matrices need special treatment read_in_q_k_v(__UpperCAmelCase , is_panoptic=__UpperCAmelCase ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them lowerCamelCase_ : str = '''detr.model.''' if is_panoptic else '''model.''' for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith('''detr''' ) and not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ) ): lowerCamelCase_ : Union[str, Any] = state_dict.pop(__UpperCAmelCase ) lowerCamelCase_ : int = val elif "class_labels_classifier" in key or "bbox_predictor" in key: lowerCamelCase_ : Any = state_dict.pop(__UpperCAmelCase ) lowerCamelCase_ : int = val elif key.startswith('''bbox_attention''' ) or key.startswith('''mask_head''' ): continue else: lowerCamelCase_ : Any = state_dict.pop(__UpperCAmelCase ) lowerCamelCase_ : List[str] = val else: if not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ): lowerCamelCase_ : Tuple = state_dict.pop(__UpperCAmelCase ) lowerCamelCase_ : Tuple = val # finally, create HuggingFace model and load state dict lowerCamelCase_ : Union[str, Any] = DetrForSegmentation(__UpperCAmelCase ) if is_panoptic else DetrForObjectDetection(__UpperCAmelCase ) model.load_state_dict(__UpperCAmelCase ) model.eval() # verify our conversion on an image lowerCamelCase_ : str = '''coco_panoptic''' if is_panoptic else '''coco_detection''' lowerCamelCase_ : Tuple = DetrImageProcessor(format=__UpperCAmelCase ) lowerCamelCase_ : List[Any] = processor(images=prepare_img() , return_tensors='''pt''' ) lowerCamelCase_ : Optional[int] = encoding['''pixel_values'''] lowerCamelCase_ : List[Any] = detr(__UpperCAmelCase ) lowerCamelCase_ : Dict = model(__UpperCAmelCase ) assert torch.allclose(outputs.logits , original_outputs['''pred_logits'''] , atol=1E-3 ) assert torch.allclose(outputs.pred_boxes , original_outputs['''pred_boxes'''] , atol=1E-3 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs['''pred_masks'''] , atol=1E-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(F"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(__UpperCAmelCase ).mkdir(exist_ok=__UpperCAmelCase ) model.save_pretrained(__UpperCAmelCase ) processor.save_pretrained(__UpperCAmelCase ) if push_to_hub: # Upload model and image processor to the hub logger.info('''Uploading PyTorch model and image processor to the hub...''' ) model.push_to_hub(F"""nielsr/{model_name}""" ) processor.push_to_hub(F"""nielsr/{model_name}""" ) if __name__ == "__main__": __lowerCamelCase : Dict = argparse.ArgumentParser() parser.add_argument( """--model_name""", default="""detr-resnet-50""", type=str, choices=["""detr-resnet-50""", """detr-resnet-101"""], help="""Name of the DETR model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Whether to push the model to the hub or not.""") __lowerCamelCase : Dict = parser.parse_args() convert_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
501
1
'''simple docstring''' # this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys lowerCamelCase__ = subprocess.check_output('git merge-base main HEAD'.split()).decode('utf-8') lowerCamelCase__ = ( subprocess.check_output(F'''git diff --diff-filter=d --name-only {fork_point_sha}'''.split()).decode('utf-8').split() ) lowerCamelCase__ = '|'.join(sys.argv[1:]) lowerCamelCase__ = re.compile(rF'''^({joined_dirs}).*?\.py$''') lowerCamelCase__ = [x for x in modified_files if regex.match(x)] print(' '.join(relevant_modified_files), end='')
40
'''simple docstring''' from __future__ import annotations lowerCamelCase__ = { 'A': ['B', 'C', 'E'], 'B': ['A', 'D', 'E'], 'C': ['A', 'F', 'G'], 'D': ['B'], 'E': ['A', 'B', 'D'], 'F': ['C'], 'G': ['C'], } class lowerCAmelCase__ : def __init__( self : int , lowerCamelCase__ : dict[str, list[str]] , lowerCamelCase__ : str ) ->None: '''simple docstring''' _UpperCAmelCase : Dict = graph # mapping node to its parent in resulting breadth first tree _UpperCAmelCase : dict[str, str | None] = {} _UpperCAmelCase : List[Any] = source_vertex def lowerCAmelCase__ ( self : Optional[int] ) ->None: '''simple docstring''' _UpperCAmelCase : List[Any] = {self.source_vertex} _UpperCAmelCase : List[Any] = None _UpperCAmelCase : List[str] = [self.source_vertex] # first in first out queue while queue: _UpperCAmelCase : int = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(lowerCamelCase__ ) _UpperCAmelCase : List[Any] = vertex queue.append(lowerCamelCase__ ) def lowerCAmelCase__ ( self : Tuple , lowerCamelCase__ : str ) ->str: '''simple docstring''' if target_vertex == self.source_vertex: return self.source_vertex _UpperCAmelCase : int = self.parent.get(lowerCamelCase__ ) if target_vertex_parent is None: _UpperCAmelCase : Tuple = ( F"""No path from vertex: {self.source_vertex} to vertex: {target_vertex}""" ) raise ValueError(lowerCamelCase__ ) return self.shortest_path(lowerCamelCase__ ) + F"""->{target_vertex}""" if __name__ == "__main__": lowerCamelCase__ = Graph(graph, 'G') g.breath_first_search() print(g.shortest_path('D')) print(g.shortest_path('G')) print(g.shortest_path('Foo'))
40
1
"""simple docstring""" def _lowerCamelCase( ): return 1 def _lowerCamelCase( a ): return 0 if x < 0 else two_pence(x - 2 ) + one_pence() def _lowerCamelCase( a ): return 0 if x < 0 else five_pence(x - 5 ) + two_pence(UpperCamelCase__ ) def _lowerCamelCase( a ): return 0 if x < 0 else ten_pence(x - 1_0 ) + five_pence(UpperCamelCase__ ) def _lowerCamelCase( a ): return 0 if x < 0 else twenty_pence(x - 2_0 ) + ten_pence(UpperCamelCase__ ) def _lowerCamelCase( a ): return 0 if x < 0 else fifty_pence(x - 5_0 ) + twenty_pence(UpperCamelCase__ ) def _lowerCamelCase( a ): return 0 if x < 0 else one_pound(x - 1_0_0 ) + fifty_pence(UpperCamelCase__ ) def _lowerCamelCase( a ): return 0 if x < 0 else two_pound(x - 2_0_0 ) + one_pound(UpperCamelCase__ ) def _lowerCamelCase( a = 2_0_0 ): return two_pound(UpperCamelCase__ ) if __name__ == "__main__": print(solution(int(input().strip())))
528
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING lowerCamelCase =logging.get_logger(__name__) @add_end_docstrings(UpperCamelCase_ ) class _lowerCamelCase ( UpperCamelCase_ ): """simple docstring""" def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" super().__init__(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) requires_backends(self , '''vision''' ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == '''tf''' else MODEL_FOR_VISION_2_SEQ_MAPPING ) def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None ) -> List[Any]: """simple docstring""" UpperCamelCase__ : Tuple = {} UpperCamelCase__ : int = {} if prompt is not None: UpperCamelCase__ : int = prompt if generate_kwargs is not None: UpperCamelCase__ : int = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: UpperCamelCase__ : Union[str, Any] = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( '''\'max_new_tokens\' is defined twice, once in \'generate_kwargs\' and once as a direct parameter,''' ''' please use only one''' ) UpperCamelCase__ : Dict = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" return super().__call__(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None ) -> List[Any]: """simple docstring""" UpperCamelCase__ : List[Any] = load_image(__SCREAMING_SNAKE_CASE ) if prompt is not None: if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): raise ValueError( F'''Received an invalid text input, got - {type(__SCREAMING_SNAKE_CASE )} - but expected a single string. ''' '''Note also that one single text can be provided for conditional image to text generation.''' ) UpperCamelCase__ : Optional[int] = self.model.config.model_type if model_type == "git": UpperCamelCase__ : Optional[int] = self.image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors=self.framework ) UpperCamelCase__ : str = self.tokenizer(text=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ).input_ids UpperCamelCase__ : Dict = [self.tokenizer.cls_token_id] + input_ids UpperCamelCase__ : int = torch.tensor(__SCREAMING_SNAKE_CASE ).unsqueeze(0 ) model_inputs.update({'''input_ids''': input_ids} ) elif model_type == "pix2struct": UpperCamelCase__ : Tuple = self.image_processor(images=__SCREAMING_SNAKE_CASE , header_text=__SCREAMING_SNAKE_CASE , return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation UpperCamelCase__ : int = self.image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors=self.framework ) UpperCamelCase__ : int = self.tokenizer(__SCREAMING_SNAKE_CASE , return_tensors=self.framework ) model_inputs.update(__SCREAMING_SNAKE_CASE ) else: raise ValueError(F'''Model type {model_type} does not support conditional text generation''' ) else: UpperCamelCase__ : str = self.image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: UpperCamelCase__ : Optional[Any] = None return model_inputs def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None ) -> Optional[Any]: """simple docstring""" if ( "input_ids" in model_inputs and isinstance(model_inputs['''input_ids'''] , __SCREAMING_SNAKE_CASE ) and all(x is None for x in model_inputs['''input_ids'''] ) ): UpperCamelCase__ : Union[str, Any] = None if generate_kwargs is None: UpperCamelCase__ : Optional[Any] = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. UpperCamelCase__ : Any = model_inputs.pop(self.model.main_input_name ) UpperCamelCase__ : Any = self.model.generate(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) return model_outputs def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" UpperCamelCase__ : Union[str, Any] = [] for output_ids in model_outputs: UpperCamelCase__ : str = { '''generated_text''': self.tokenizer.decode( __SCREAMING_SNAKE_CASE , skip_special_tokens=__SCREAMING_SNAKE_CASE , ) } records.append(__SCREAMING_SNAKE_CASE ) return records
285
0
'''simple docstring''' from transformers import DistilBertTokenizer, DistilBertTokenizerFast from transformers.testing_utils import require_tokenizers, slow from ..bert.test_tokenization_bert import BertTokenizationTest @require_tokenizers class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : Tuple = DistilBertTokenizer __lowerCamelCase : Union[str, Any] = DistilBertTokenizerFast __lowerCamelCase : Optional[int] = True @slow def _snake_case ( self ) -> Union[str, Any]: _lowerCAmelCase = DistilBertTokenizer.from_pretrained("distilbert-base-uncased" ) _lowerCAmelCase = tokenizer.encode("sequence builders" , add_special_tokens=_lowerCAmelCase ) _lowerCAmelCase = tokenizer.encode("multi-sequence build" , add_special_tokens=_lowerCAmelCase ) _lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(_lowerCAmelCase ) _lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(_lowerCAmelCase , _lowerCAmelCase ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ]
489
'''simple docstring''' import math def __a(SCREAMING_SNAKE_CASE_ : int = 100 ): '''simple docstring''' _lowerCAmelCase = sum(i * i for i in range(1 , n + 1 ) ) _lowerCAmelCase = int(math.pow(sum(range(1 , n + 1 ) ) , 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(f'''{solution() = }''')
489
1
'''simple docstring''' def __a(SCREAMING_SNAKE_CASE_ : str ): '''simple docstring''' if not all(x.isalpha() for x in string ): raise ValueError("String must only contain alphabetic characters." ) _lowerCAmelCase = sorted(string.lower() ) return len(SCREAMING_SNAKE_CASE_ ) == len(set(SCREAMING_SNAKE_CASE_ ) ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = input("Enter a string ").strip() _SCREAMING_SNAKE_CASE = is_isogram(input_str) print(f'''{input_str} is {'an' if isogram else 'not an'} isogram.''')
18
'''simple docstring''' # Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import subprocess from packaging.version import Version, parse from accelerate.commands.config.config_args import default_config_file, load_config_from_file __lowerCamelCase = '''Run commands across TPU VMs for initial setup before running `accelerate launch`.''' def UpperCAmelCase__ ( UpperCAmelCase__=None ) -> List[str]: if subparsers is not None: A_ = subparsers.add_parser("""tpu-config""", description=_description ) else: A_ = argparse.ArgumentParser("""Accelerate tpu-config command""", description=_description ) # Core arguments A_ = parser.add_argument_group( """Config Arguments""", """Arguments that can be configured through `accelerate config`.""" ) config_args.add_argument( """--config_file""", type=UpperCAmelCase__, default=UpperCAmelCase__, help="""Path to the config file to use for accelerate.""", ) config_args.add_argument( """--tpu_name""", default=UpperCAmelCase__, help="""The name of the TPU to use. If not specified, will use the TPU specified in the config file.""", ) config_args.add_argument( """--tpu_zone""", default=UpperCAmelCase__, help="""The zone of the TPU to use. If not specified, will use the zone specified in the config file.""", ) A_ = parser.add_argument_group("""TPU Arguments""", """Arguments for options ran inside the TPU.""" ) pod_args.add_argument( """--use_alpha""", action="""store_true""", help="""Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`.""", ) pod_args.add_argument( """--command_file""", default=UpperCAmelCase__, help="""The path to the file containing the commands to run on the pod on startup.""", ) pod_args.add_argument( """--command""", action="""append""", nargs="""+""", help="""A command to run on the pod. Can be passed multiple times.""", ) pod_args.add_argument( """--install_accelerate""", action="""store_true""", help="""Whether to install accelerate on the pod. Defaults to False.""", ) pod_args.add_argument( """--accelerate_version""", default="""latest""", help="""The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify 'dev' to install from GitHub.""", ) pod_args.add_argument( """--debug""", action="""store_true""", help="""If set, will print the command that would be run instead of running it.""" ) if subparsers is not None: parser.set_defaults(func=UpperCAmelCase__ ) return parser def UpperCAmelCase__ ( UpperCAmelCase__ ) -> List[Any]: A_ = None # Get the default from the config file if it exists. if args.config_file is not None or os.path.isfile(UpperCAmelCase__ ): A_ = load_config_from_file(args.config_file ) if not args.command_file and defaults.command_file is not None and not args.command: A_ = defaults.command_file if not args.command and defaults.commands is not None: A_ = defaults.commands if not args.tpu_name: A_ = defaults.tpu_name if not args.tpu_zone: A_ = defaults.tpu_zone if args.accelerate_version == "dev": A_ = """git+https://github.com/huggingface/accelerate.git""" elif args.accelerate_version == "latest": A_ = """accelerate -U""" elif isinstance(parse(args.accelerate_version ), UpperCAmelCase__ ): A_ = F'''accelerate=={args.accelerate_version}''' if not args.command_file and not args.command: raise ValueError("""You must specify either a command file or a command to run on the pod.""" ) if args.command_file: with open(args.command_file, """r""" ) as f: A_ = [f.read().splitlines()] # To turn list of lists into list of strings if isinstance(args.command[0], UpperCAmelCase__ ): A_ = [line for cmd in args.command for line in cmd] # Default to the shared folder and install accelerate A_ = ["""cd /usr/share"""] if args.install_accelerate: new_cmd += [F'''pip install {args.accelerate_version}'''] new_cmd += args.command A_ = """; """.join(UpperCAmelCase__ ) # Then send it to gcloud # Eventually try to use google-api-core to do this instead of subprocess A_ = ["""gcloud"""] if args.use_alpha: cmd += ["alpha"] cmd += [ "compute", "tpus", "tpu-vm", "ssh", args.tpu_name, "--zone", args.tpu_zone, "--command", args.command, "--worker", "all", ] if args.debug: print(F'''Running {" ".join(UpperCAmelCase__ )}''' ) return subprocess.run(UpperCAmelCase__ ) print("""Successfully setup pod.""" ) def UpperCAmelCase__ ( ) -> int: A_ = tpu_command_parser() A_ = parser.parse_args() tpu_command_launcher(UpperCAmelCase__ )
288
0
"""simple docstring""" def __A ( a_ :list[list[int]] , a_ :int , a_ :int , a_ :set) -> int: __a , __a : List[Any] = len(a_), len(grid[0]) if ( min(a_ , a_) < 0 or row == row_length or col == col_length or (row, col) in visit or grid[row][col] == 1 ): return 0 if row == row_length - 1 and col == col_length - 1: return 1 visit.add((row, col)) __a : Optional[Any] = 0 count += depth_first_search(a_ , row + 1 , a_ , a_) count += depth_first_search(a_ , row - 1 , a_ , a_) count += depth_first_search(a_ , a_ , col + 1 , a_) count += depth_first_search(a_ , a_ , col - 1 , a_) visit.remove((row, col)) return count if __name__ == "__main__": import doctest doctest.testmod()
101
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionInstructPixaPixPipeline, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.utils import floats_tensor, load_image, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __lowercase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = StableDiffusionInstructPixaPixPipeline __lowerCAmelCase = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width''', '''cross_attention_kwargs'''} __lowerCAmelCase = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS __lowerCAmelCase = IMAGE_TO_IMAGE_IMAGE_PARAMS __lowerCAmelCase = IMAGE_TO_IMAGE_IMAGE_PARAMS def _lowerCamelCase ( self ): torch.manual_seed(0 ) __a : Optional[Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=8 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) __a : List[str] = PNDMScheduler(skip_prk_steps=_UpperCAmelCase ) torch.manual_seed(0 ) __a : int = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) __a : str = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) __a : Optional[int] = CLIPTextModel(_UpperCAmelCase ) __a : str = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) __a : Union[str, Any] = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase=0 ): __a : Any = floats_tensor((1, 3, 32, 32) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) __a : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] __a : Tuple = Image.fromarray(np.uinta(_UpperCAmelCase ) ).convert('''RGB''' ) if str(_UpperCAmelCase ).startswith('''mps''' ): __a : Union[str, Any] = torch.manual_seed(_UpperCAmelCase ) else: __a : Union[str, Any] = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) __a : Union[str, Any] = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''image_guidance_scale''': 1, '''output_type''': '''numpy''', } return inputs def _lowerCamelCase ( self ): __a : List[Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator __a : Dict = self.get_dummy_components() __a : Any = StableDiffusionInstructPixaPixPipeline(**_UpperCAmelCase ) __a : int = sd_pipe.to(_UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __a : Union[str, Any] = self.get_dummy_inputs(_UpperCAmelCase ) __a : str = sd_pipe(**_UpperCAmelCase ).images __a : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __a : Optional[int] = np.array([0.7_5_2_6, 0.3_7_5_0, 0.4_5_4_7, 0.6_1_1_7, 0.5_8_6_6, 0.5_0_1_6, 0.4_3_2_7, 0.5_6_4_2, 0.4_8_1_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _lowerCamelCase ( self ): __a : Dict = '''cpu''' # ensure determinism for the device-dependent torch.Generator __a : Optional[Any] = self.get_dummy_components() __a : Dict = StableDiffusionInstructPixaPixPipeline(**_UpperCAmelCase ) __a : List[Any] = sd_pipe.to(_UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __a : Dict = self.get_dummy_inputs(_UpperCAmelCase ) __a : Union[str, Any] = '''french fries''' __a : str = sd_pipe(**_UpperCAmelCase , negative_prompt=_UpperCAmelCase ) __a : Dict = output.images __a : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __a : Tuple = np.array([0.7_5_1_1, 0.3_6_4_2, 0.4_5_5_3, 0.6_2_3_6, 0.5_7_9_7, 0.5_0_1_3, 0.4_3_4_3, 0.5_6_1_1, 0.4_8_3_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _lowerCamelCase ( self ): __a : Union[str, Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator __a : Dict = self.get_dummy_components() __a : str = StableDiffusionInstructPixaPixPipeline(**_UpperCAmelCase ) __a : Optional[int] = sd_pipe.to(_UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __a : Union[str, Any] = self.get_dummy_inputs(_UpperCAmelCase ) __a : List[str] = [inputs['''prompt''']] * 2 __a : Optional[Any] = np.array(inputs['''image'''] ).astype(np.floataa ) / 2_5_5.0 __a : Optional[Any] = torch.from_numpy(_UpperCAmelCase ).unsqueeze(0 ).to(_UpperCAmelCase ) __a : Tuple = image / 2 + 0.5 __a : str = image.permute(0 , 3 , 1 , 2 ) __a : List[str] = image.repeat(2 , 1 , 1 , 1 ) __a : int = sd_pipe(**_UpperCAmelCase ).images __a : Optional[Any] = image[-1, -3:, -3:, -1] assert image.shape == (2, 32, 32, 3) __a : List[str] = np.array([0.5_8_1_2, 0.5_7_4_8, 0.5_2_2_2, 0.5_9_0_8, 0.5_6_9_5, 0.7_1_7_4, 0.6_8_0_4, 0.5_5_2_3, 0.5_5_7_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _lowerCamelCase ( self ): __a : Dict = '''cpu''' # ensure determinism for the device-dependent torch.Generator __a : List[str] = self.get_dummy_components() __a : Union[str, Any] = EulerAncestralDiscreteScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='''scaled_linear''' ) __a : str = StableDiffusionInstructPixaPixPipeline(**_UpperCAmelCase ) __a : List[str] = sd_pipe.to(_UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __a : Dict = self.get_dummy_inputs(_UpperCAmelCase ) __a : Any = sd_pipe(**_UpperCAmelCase ).images __a : Dict = image[0, -3:, -3:, -1] __a : Optional[int] = [round(_UpperCAmelCase , 4 ) for x in image_slice.flatten().tolist()] print(''','''.join([str(_UpperCAmelCase ) for x in slice] ) ) assert image.shape == (1, 32, 32, 3) __a : int = np.array([0.7_4_1_7, 0.3_8_4_2, 0.4_7_3_2, 0.5_7_7_6, 0.5_8_9_1, 0.5_1_3_9, 0.4_0_5_2, 0.5_6_7_3, 0.4_9_8_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _lowerCamelCase ( self ): super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def _lowerCamelCase ( self ): __a : Any = self.get_dummy_components() __a : Optional[Any] = StableDiffusionInstructPixaPixPipeline(**_UpperCAmelCase ) __a : Any = VaeImageProcessor(do_resize=_UpperCAmelCase , do_normalize=_UpperCAmelCase ) __a : Dict = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __a : str = pipe(**self.get_dummy_inputs_by_type(_UpperCAmelCase , input_image_type='''pt''' ) )[0] __a : List[Any] = components['''vae'''] __a : List[Any] = self.get_dummy_inputs_by_type(_UpperCAmelCase , input_image_type='''pt''' ) for image_param in self.image_latents_params: if image_param in inputs.keys(): __a : Optional[Any] = vae.encode(inputs[image_param] ).latent_dist.mode() __a : str = pipe(**_UpperCAmelCase )[0] __a : Union[str, Any] = np.abs(out - out_latents_inputs ).max() self.assertLess(_UpperCAmelCase , 1e-4 , '''passing latents as image input generate different result from passing image''' ) @slow @require_torch_gpu class __lowercase ( unittest.TestCase ): '''simple docstring''' def _lowerCamelCase ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self , _UpperCAmelCase=0 ): __a : List[str] = torch.manual_seed(_UpperCAmelCase ) __a : str = load_image( '''https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_pix2pix/example.jpg''' ) __a : List[str] = { '''prompt''': '''turn him into a cyborg''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 7.5, '''image_guidance_scale''': 1.0, '''output_type''': '''numpy''', } return inputs def _lowerCamelCase ( self ): __a : List[str] = StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''' , safety_checker=_UpperCAmelCase ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) pipe.enable_attention_slicing() __a : str = self.get_inputs() __a : Optional[Any] = pipe(**_UpperCAmelCase ).images __a : List[str] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) __a : Tuple = np.array([0.5_9_0_2, 0.6_0_1_5, 0.6_0_2_7, 0.5_9_8_3, 0.6_0_9_2, 0.6_0_6_1, 0.5_7_6_5, 0.5_7_8_5, 0.5_5_5_5] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def _lowerCamelCase ( self ): __a : Tuple = StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''' , safety_checker=_UpperCAmelCase ) __a : Optional[int] = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) pipe.enable_attention_slicing() __a : List[str] = self.get_inputs() __a : Optional[int] = pipe(**_UpperCAmelCase ).images __a : Optional[Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) __a : Tuple = np.array([0.6_5_7_8, 0.6_8_1_7, 0.6_9_7_2, 0.6_7_6_1, 0.6_8_5_6, 0.6_9_1_6, 0.6_4_2_8, 0.6_5_1_6, 0.6_3_0_1] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def _lowerCamelCase ( self ): __a : List[Any] = StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''' , safety_checker=_UpperCAmelCase ) __a : Optional[int] = DDIMScheduler.from_config(pipe.scheduler.config ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) pipe.enable_attention_slicing() __a : List[str] = self.get_inputs() __a : str = pipe(**_UpperCAmelCase ).images __a : Optional[int] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) __a : Any = np.array([0.3_8_2_8, 0.3_8_3_4, 0.3_8_1_8, 0.3_7_9_2, 0.3_8_6_5, 0.3_7_5_2, 0.3_7_9_2, 0.3_8_4_7, 0.3_7_5_3] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def _lowerCamelCase ( self ): __a : Dict = 0 def callback_fn(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> None: __a : Optional[Any] = True nonlocal number_of_steps number_of_steps += 1 if step == 1: __a : Optional[int] = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) __a : int = latents[0, -3:, -3:, -1] __a : int = np.array([-0.2_4_6_3, -0.4_6_4_4, -0.9_7_5_6, 1.5_1_7_6, 1.4_4_1_4, 0.7_8_6_6, 0.9_8_9_7, 0.8_5_2_1, 0.7_9_8_3] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 elif step == 2: __a : Union[str, Any] = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) __a : List[str] = latents[0, -3:, -3:, -1] __a : Tuple = np.array([-0.2_6_4_4, -0.4_6_2_6, -0.9_6_5_3, 1.5_1_7_6, 1.4_5_5_1, 0.7_6_8_6, 0.9_8_0_5, 0.8_4_5_2, 0.8_1_1_5] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 __a : Union[str, Any] = False __a : Optional[int] = StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''' , safety_checker=_UpperCAmelCase , torch_dtype=torch.floataa ) __a : Optional[int] = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) pipe.enable_attention_slicing() __a : str = self.get_inputs() pipe(**_UpperCAmelCase , callback=_UpperCAmelCase , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def _lowerCamelCase ( self ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __a : Any = StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''' , safety_checker=_UpperCAmelCase , torch_dtype=torch.floataa ) __a : Optional[int] = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() __a : List[Any] = self.get_inputs() __a : Tuple = pipe(**_UpperCAmelCase ) __a : List[str] = torch.cuda.max_memory_allocated() # make sure that less than 2.2 GB is allocated assert mem_bytes < 2.2 * 10**9 def _lowerCamelCase ( self ): __a : List[Any] = self.get_inputs() # resize to resolution that is divisible by 8 but not 16 or 32 __a : str = inputs['''image'''].resize((504, 504) ) __a : Tuple = '''timbrooks/instruct-pix2pix''' __a : Any = StableDiffusionInstructPixaPixPipeline.from_pretrained( _UpperCAmelCase , safety_checker=_UpperCAmelCase , ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) pipe.enable_attention_slicing() __a : List[Any] = pipe(**_UpperCAmelCase ) __a : int = output.images[0] __a : Optional[int] = image[255:258, 383:386, -1] assert image.shape == (504, 504, 3) __a : Union[str, Any] = np.array([0.2_7_2_6, 0.2_5_2_9, 0.2_6_6_4, 0.2_6_5_5, 0.2_6_4_1, 0.2_6_4_2, 0.2_5_9_1, 0.2_6_4_9, 0.2_5_9_0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3
101
1
'''simple docstring''' from math import factorial _a : dict[str, int] = {str(digit): factorial(digit) for digit in range(10)} def _a (lowercase__ : int ) -> int: """simple docstring""" if not isinstance(lowercase__ , lowercase__ ): raise TypeError('Parameter number must be int' ) if number < 0: raise ValueError('Parameter number must be greater than or equal to 0' ) # Converts number in string to iterate on its digits and adds its factorial. return sum(DIGIT_FACTORIAL[digit] for digit in str(lowercase__ ) ) def _a (lowercase__ : int = 6_0 , lowercase__ : int = 1_0_0_0_0_0_0 ) -> int: """simple docstring""" if not isinstance(lowercase__ , lowercase__ ) or not isinstance(lowercase__ , lowercase__ ): raise TypeError('Parameters chain_length and number_limit must be int' ) if chain_length <= 0 or number_limit <= 0: raise ValueError( 'Parameters chain_length and number_limit must be greater than 0' ) # the counter for the chains with the exact desired length __snake_case = 0 # the cached sizes of the previous chains __snake_case = {} for start_chain_element in range(1 , lowercase__ ): # The temporary set will contain the elements of the chain __snake_case = set() __snake_case = 0 # Stop computing the chain when you find a cached size, a repeating item or the # length is greater then the desired one. __snake_case = start_chain_element while ( chain_element not in chain_sets_lengths and chain_element not in chain_set and chain_set_length <= chain_length ): chain_set.add(lowercase__ ) chain_set_length += 1 __snake_case = digit_factorial_sum(lowercase__ ) if chain_element in chain_sets_lengths: chain_set_length += chain_sets_lengths[chain_element] __snake_case = chain_set_length # If chain contains the exact amount of elements increase the counter if chain_set_length == chain_length: chains_counter += 1 return chains_counter if __name__ == "__main__": import doctest doctest.testmod() print(f'''{solution()}''')
56
'''simple docstring''' from __future__ import annotations import math def _a (lowercase__ : int ) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowercase__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True _a : Dict = [num for num in range(3, 100_001, 2) if not is_prime(num)] def _a (lowercase__ : int ) -> list[int]: """simple docstring""" if not isinstance(lowercase__ , lowercase__ ): raise ValueError('n must be an integer' ) if n <= 0: raise ValueError('n must be >= 0' ) __snake_case = [] for num in range(len(lowercase__ ) ): __snake_case = 0 while 2 * i * i <= odd_composites[num]: __snake_case = odd_composites[num] - 2 * i * i if is_prime(lowercase__ ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(lowercase__ ) == n: return list_nums return [] def _a () -> int: """simple docstring""" return compute_nums(1 )[0] if __name__ == "__main__": print(f'''{solution() = }''')
56
1
'''simple docstring''' import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __A ( A , A , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : List[Any] = IFInpaintingPipeline __lowerCamelCase : Tuple = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'width', 'height'} __lowerCamelCase : Tuple = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS __lowerCamelCase : Optional[int] = PipelineTesterMixin.required_optional_params - {'latents'} def a__ (self ) -> Optional[int]: """simple docstring""" return self._get_dummy_components() def a__ (self , A , A=0 ) -> Optional[Any]: """simple docstring""" if str(A ).startswith('''mps''' ): _a = torch.manual_seed(A ) else: _a = torch.Generator(device=A ).manual_seed(A ) _a = floats_tensor((1, 3, 32, 32) , rng=random.Random(A ) ).to(A ) _a = floats_tensor((1, 3, 32, 32) , rng=random.Random(A ) ).to(A ) _a = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def a__ (self ) -> List[Any]: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def a__ (self ) -> str: """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''' ) def a__ (self ) -> Any: """simple docstring""" super().test_save_load_floataa(expected_max_diff=1E-1 ) def a__ (self ) -> Optional[int]: """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def a__ (self ) -> Union[str, Any]: """simple docstring""" self._test_save_load_local() def a__ (self ) -> Dict: """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
352
'''simple docstring''' from __future__ import annotations import typing from collections.abc import Iterable import numpy as np lowercase_ = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 lowercase_ = typing.Union[np.floataa, int, float] # noqa: UP007 def lowerCAmelCase (__A , __A): """simple docstring""" return np.sqrt(np.sum((np.asarray(__A) - np.asarray(__A)) ** 2)) def lowerCAmelCase (__A , __A): """simple docstring""" return sum((va - va) ** 2 for va, va in zip(__A , __A)) ** (1 / 2) if __name__ == "__main__": def lowerCAmelCase (): """simple docstring""" from timeit import timeit print('''Without Numpy''') print( timeit( '''euclidean_distance_no_np([1, 2, 3], [4, 5, 6])''' , number=10_000 , globals=globals() , )) print('''With Numpy''') print( timeit( '''euclidean_distance([1, 2, 3], [4, 5, 6])''' , number=10_000 , globals=globals() , )) benchmark()
352
1
import os import time import warnings from dataclasses import dataclass, field from enum import Enum from typing import List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import logging from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors from ..processors.utils import InputFeatures lowercase : Optional[Any] = logging.get_logger(__name__) @dataclass class __snake_case : _a : str= field(metadata={"help": "The name of the task to train on: " + ", ".join(glue_processors.keys() )} ) _a : str= field( metadata={"help": "The input data dir. Should contain the .tsv files (or other data files) for the task."} ) _a : int= field( default=128 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) _a : bool= field( default=lowerCAmelCase , metadata={"help": "Overwrite the cached training and evaluation sets"} ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[int] = self.task_name.lower() class __snake_case ( lowerCAmelCase ): _a : Any= "train" _a : Optional[int]= "dev" _a : Union[str, Any]= "test" class __snake_case ( lowerCAmelCase ): _a : GlueDataTrainingArguments _a : str _a : List[InputFeatures] def __init__( self ,snake_case ,snake_case ,snake_case = None ,snake_case = Split.train ,snake_case = None ,): '''simple docstring''' warnings.warn( """This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets """ """library. You can have a look at this example script for pointers: """ """https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py""" ,snake_case ,) lowercase : Optional[int] = args lowercase : Union[str, Any] = glue_processors[args.task_name]() lowercase : Tuple = glue_output_modes[args.task_name] if isinstance(snake_case ,snake_case ): try: lowercase : int = Split[mode] except KeyError: raise KeyError("""mode is not a valid split name""" ) # Load data features from cache or dataset file lowercase : str = os.path.join( cache_dir if cache_dir is not None else args.data_dir ,f"cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}" ,) lowercase : Optional[Any] = self.processor.get_labels() if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in ( "RobertaTokenizer", "RobertaTokenizerFast", "XLMRobertaTokenizer", "BartTokenizer", "BartTokenizerFast", ): # HACK(label indices are swapped in RoBERTa pretrained model) lowercase , lowercase : Any = label_list[2], label_list[1] lowercase : str = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. lowercase : List[str] = cached_features_file + """.lock""" with FileLock(snake_case ): if os.path.exists(snake_case ) and not args.overwrite_cache: lowercase : Tuple = time.time() lowercase : Union[str, Any] = torch.load(snake_case ) logger.info( f"Loading features from cached file {cached_features_file} [took %.3f s]" ,time.time() - start ) else: logger.info(f"Creating features from dataset file at {args.data_dir}" ) if mode == Split.dev: lowercase : Optional[int] = self.processor.get_dev_examples(args.data_dir ) elif mode == Split.test: lowercase : int = self.processor.get_test_examples(args.data_dir ) else: lowercase : Dict = self.processor.get_train_examples(args.data_dir ) if limit_length is not None: lowercase : Any = examples[:limit_length] lowercase : Optional[int] = glue_convert_examples_to_features( snake_case ,snake_case ,max_length=args.max_seq_length ,label_list=snake_case ,output_mode=self.output_mode ,) lowercase : List[Any] = time.time() torch.save(self.features ,snake_case ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f"Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]" ) def __len__( self ): '''simple docstring''' return len(self.features ) def __getitem__( self ,snake_case ): '''simple docstring''' return self.features[i] def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return self.label_list
336
import json import os from pathlib import Path import pytest from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.utils.file_utils import hash_url_to_filename lowercase : Optional[Any] = """http://www.mocksite.com/file1.txt""" lowercase : str = """\"text\": [\"foo\", \"foo\"]""" lowercase : Tuple = """6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8""" class __snake_case : _a : Tuple= 200 _a : int= {"Content-Length": "100"} _a : Tuple= {} def _SCREAMING_SNAKE_CASE ( self ,**snake_case ): '''simple docstring''' return [bytes(snake_case ,"""utf-8""" )] def _snake_case( *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: return MockResponse() @pytest.mark.parametrize("""urls_type""" , [str, list, dict] ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Optional[int]: import requests monkeypatch.setattr(SCREAMING_SNAKE_CASE__ , """request""" , SCREAMING_SNAKE_CASE__ ) lowercase : Optional[int] = URL if issubclass(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): lowercase : Union[str, Any] = url elif issubclass(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): lowercase : str = [url] elif issubclass(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): lowercase : int = {"""train""": url} lowercase : Union[str, Any] = """dummy""" lowercase : List[Any] = """downloads""" lowercase : Optional[Any] = tmp_path lowercase : Dict = DownloadConfig( cache_dir=os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , use_etag=SCREAMING_SNAKE_CASE__ , ) lowercase : Union[str, Any] = DownloadManager(dataset_name=SCREAMING_SNAKE_CASE__ , download_config=SCREAMING_SNAKE_CASE__ ) lowercase : Optional[Any] = dl_manager.download(SCREAMING_SNAKE_CASE__ ) lowercase : str = urls for downloaded_paths in [downloaded_paths]: if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): lowercase : int = [downloaded_paths] lowercase : Any = [urls] elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): assert "train" in downloaded_paths.keys() lowercase : Tuple = downloaded_paths.values() lowercase : List[str] = urls.values() assert downloaded_paths for downloaded_path, input_url in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): assert downloaded_path == dl_manager.downloaded_paths[input_url] lowercase : Optional[Any] = Path(SCREAMING_SNAKE_CASE__ ) lowercase : str = downloaded_path.parts assert parts[-1] == HASH assert parts[-2] == cache_subdir assert downloaded_path.exists() lowercase : Optional[Any] = downloaded_path.read_text() assert content == CONTENT lowercase : Tuple = downloaded_path.with_suffix(""".json""" ) assert metadata_downloaded_path.exists() lowercase : Dict = json.loads(metadata_downloaded_path.read_text() ) assert metadata_content == {"url": URL, "etag": None} @pytest.mark.parametrize("""paths_type""" , [str, list, dict] ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[str]: lowercase : Union[str, Any] = str(SCREAMING_SNAKE_CASE__ ) if issubclass(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): lowercase : List[Any] = filename elif issubclass(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): lowercase : List[str] = [filename] elif issubclass(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): lowercase : List[str] = {"""train""": filename} lowercase : int = """dummy""" lowercase : List[Any] = xz_file.parent lowercase : Union[str, Any] = """extracted""" lowercase : List[str] = DownloadConfig( cache_dir=SCREAMING_SNAKE_CASE__ , use_etag=SCREAMING_SNAKE_CASE__ , ) lowercase : List[Any] = DownloadManager(dataset_name=SCREAMING_SNAKE_CASE__ , download_config=SCREAMING_SNAKE_CASE__ ) lowercase : Optional[int] = dl_manager.extract(SCREAMING_SNAKE_CASE__ ) lowercase : List[Any] = paths for extracted_paths in [extracted_paths]: if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): lowercase : int = [extracted_paths] lowercase : Optional[Any] = [paths] elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): assert "train" in extracted_paths.keys() lowercase : Optional[Any] = extracted_paths.values() lowercase : Optional[int] = paths.values() assert extracted_paths for extracted_path, input_path in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): assert extracted_path == dl_manager.extracted_paths[input_path] lowercase : List[Any] = Path(SCREAMING_SNAKE_CASE__ ) lowercase : str = extracted_path.parts assert parts[-1] == hash_url_to_filename(SCREAMING_SNAKE_CASE__ , etag=SCREAMING_SNAKE_CASE__ ) assert parts[-2] == extracted_subdir assert extracted_path.exists() lowercase : Optional[int] = extracted_path.read_text() lowercase : str = text_file.read_text() assert extracted_file_content == expected_file_content def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Dict: assert path.endswith(""".jsonl""" ) for num_items, line in enumerate(SCREAMING_SNAKE_CASE__ , start=1 ): lowercase : Optional[Any] = json.loads(line.decode("""utf-8""" ) ) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize("""archive_jsonl""" , ["""tar_jsonl_path""", """zip_jsonl_path"""] ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> int: lowercase : str = request.getfixturevalue(SCREAMING_SNAKE_CASE__ ) lowercase : List[Any] = DownloadManager() for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(SCREAMING_SNAKE_CASE__ ) , start=1 ): _test_jsonl(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) assert num_jsonl == 2 @pytest.mark.parametrize("""archive_nested_jsonl""" , ["""tar_nested_jsonl_path""", """zip_nested_jsonl_path"""] ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: lowercase : Optional[Any] = request.getfixturevalue(SCREAMING_SNAKE_CASE__ ) lowercase : List[str] = DownloadManager() for num_tar, (path, file) in enumerate(dl_manager.iter_archive(SCREAMING_SNAKE_CASE__ ) , start=1 ): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(SCREAMING_SNAKE_CASE__ ) , start=1 ): _test_jsonl(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) assert num_tar == 1 assert num_jsonl == 2 def _snake_case( SCREAMING_SNAKE_CASE__ ) -> List[str]: lowercase : Dict = DownloadManager() for num_file, file in enumerate(dl_manager.iter_files(SCREAMING_SNAKE_CASE__ ) , start=1 ): assert os.path.basename(SCREAMING_SNAKE_CASE__ ) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2
336
1
"""simple docstring""" from functools import lru_cache @lru_cache def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE__ ) -> int: if num < 0: raise ValueError("Number should not be negative." ) return 1 if num in (0, 1) else num * factorial(num - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
370
"""simple docstring""" import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE__ ) -> Tuple: a_ : List[Any] = SwinConfig.from_pretrained( "microsoft/swin-tiny-patch4-window7-224", out_features=["stage1", "stage2", "stage3", "stage4"] ) a_ : List[str] = MaskFormerConfig(backbone_config=SCREAMING_SNAKE_CASE__ ) a_ : Dict = "huggingface/label-files" if "ade20k-full" in model_name: # this should be ok a_ : List[str] = 847 a_ : Optional[Any] = "maskformer-ade20k-full-id2label.json" elif "ade" in model_name: # this should be ok a_ : List[str] = 150 a_ : Tuple = "ade20k-id2label.json" elif "coco-stuff" in model_name: # this should be ok a_ : Union[str, Any] = 171 a_ : Union[str, Any] = "maskformer-coco-stuff-id2label.json" elif "coco" in model_name: # TODO a_ : Optional[Any] = 133 a_ : List[str] = "coco-panoptic-id2label.json" elif "cityscapes" in model_name: # this should be ok a_ : Union[str, Any] = 19 a_ : Any = "cityscapes-id2label.json" elif "vistas" in model_name: # this should be ok a_ : int = 65 a_ : Any = "mapillary-vistas-id2label.json" a_ : List[str] = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, repo_type="dataset" ), "r" ) ) a_ : Optional[Any] = {int(SCREAMING_SNAKE_CASE__ ): v for k, v in idalabel.items()} return config def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE__ ) -> List[Any]: a_ : str = [] # stem # fmt: off rename_keys.append(("backbone.patch_embed.proj.weight", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight") ) rename_keys.append(("backbone.patch_embed.proj.bias", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias") ) rename_keys.append(("backbone.patch_embed.norm.weight", "model.pixel_level_module.encoder.model.embeddings.norm.weight") ) rename_keys.append(("backbone.patch_embed.norm.bias", "model.pixel_level_module.encoder.model.embeddings.norm.bias") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm1.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm1.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.relative_position_index""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.proj.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.proj.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm2.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm2.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc1.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc1.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc2.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc2.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias""") ) if i < 3: rename_keys.append((F"""backbone.layers.{i}.downsample.reduction.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight""") ) rename_keys.append((F"""backbone.layers.{i}.downsample.norm.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight""") ) rename_keys.append((F"""backbone.layers.{i}.downsample.norm.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias""") ) rename_keys.append((F"""backbone.norm{i}.weight""", F"""model.pixel_level_module.encoder.hidden_states_norms.{i}.weight""") ) rename_keys.append((F"""backbone.norm{i}.bias""", F"""model.pixel_level_module.encoder.hidden_states_norms.{i}.bias""") ) # FPN rename_keys.append(("sem_seg_head.layer_4.weight", "model.pixel_level_module.decoder.fpn.stem.0.weight") ) rename_keys.append(("sem_seg_head.layer_4.norm.weight", "model.pixel_level_module.decoder.fpn.stem.1.weight") ) rename_keys.append(("sem_seg_head.layer_4.norm.bias", "model.pixel_level_module.decoder.fpn.stem.1.bias") ) for source_index, target_index in zip(range(3, 0, -1 ), range(0, 3 ) ): rename_keys.append((F"""sem_seg_head.adapter_{source_index}.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight""") ) rename_keys.append((F"""sem_seg_head.adapter_{source_index}.norm.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight""") ) rename_keys.append((F"""sem_seg_head.adapter_{source_index}.norm.bias""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias""") ) rename_keys.append((F"""sem_seg_head.layer_{source_index}.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight""") ) rename_keys.append((F"""sem_seg_head.layer_{source_index}.norm.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight""") ) rename_keys.append((F"""sem_seg_head.layer_{source_index}.norm.bias""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias""") ) rename_keys.append(("sem_seg_head.mask_features.weight", "model.pixel_level_module.decoder.mask_projection.weight") ) rename_keys.append(("sem_seg_head.mask_features.bias", "model.pixel_level_module.decoder.mask_projection.bias") ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight""", F"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias""", F"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias""") ) # cross-attention out projection rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias""") ) # MLP 1 rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight""", F"""model.transformer_module.decoder.layers.{idx}.fc1.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias""", F"""model.transformer_module.decoder.layers.{idx}.fc1.bias""") ) # MLP 2 rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight""", F"""model.transformer_module.decoder.layers.{idx}.fc2.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias""", F"""model.transformer_module.decoder.layers.{idx}.fc2.bias""") ) # layernorm 1 (self-attention layernorm) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight""", F"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias""", F"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias""") ) # layernorm 2 (cross-attention layernorm) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias""") ) # layernorm 3 (final layernorm) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight""", F"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias""", F"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias""") ) rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.weight", "model.transformer_module.decoder.layernorm.weight") ) rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.bias", "model.transformer_module.decoder.layernorm.bias") ) # heads on top rename_keys.append(("sem_seg_head.predictor.query_embed.weight", "model.transformer_module.queries_embedder.weight") ) rename_keys.append(("sem_seg_head.predictor.input_proj.weight", "model.transformer_module.input_projection.weight") ) rename_keys.append(("sem_seg_head.predictor.input_proj.bias", "model.transformer_module.input_projection.bias") ) rename_keys.append(("sem_seg_head.predictor.class_embed.weight", "class_predictor.weight") ) rename_keys.append(("sem_seg_head.predictor.class_embed.bias", "class_predictor.bias") ) for i in range(3 ): rename_keys.append((F"""sem_seg_head.predictor.mask_embed.layers.{i}.weight""", F"""mask_embedder.{i}.0.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.mask_embed.layers.{i}.bias""", F"""mask_embedder.{i}.0.bias""") ) # fmt: on return rename_keys def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) -> int: a_ : Optional[int] = dct.pop(SCREAMING_SNAKE_CASE__ ) a_ : List[Any] = val def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) -> List[Any]: a_ : int = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): a_ : Optional[int] = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) a_ : List[str] = state_dict.pop(F"""backbone.layers.{i}.blocks.{j}.attn.qkv.weight""" ) a_ : str = state_dict.pop(F"""backbone.layers.{i}.blocks.{j}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict a_ : Tuple = in_proj_weight[:dim, :] a_ : Union[str, Any] = in_proj_bias[: dim] a_ : Dict = in_proj_weight[ dim : dim * 2, : ] a_ : Tuple = in_proj_bias[ dim : dim * 2 ] a_ : Optional[int] = in_proj_weight[ -dim :, : ] a_ : str = in_proj_bias[-dim :] # fmt: on def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) -> Dict: # fmt: off a_ : List[str] = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) a_ : Optional[int] = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight""" ) a_ : int = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict a_ : int = in_proj_weight[: hidden_size, :] a_ : Tuple = in_proj_bias[:config.hidden_size] a_ : List[Any] = in_proj_weight[hidden_size : hidden_size * 2, :] a_ : Dict = in_proj_bias[hidden_size : hidden_size * 2] a_ : Optional[int] = in_proj_weight[-hidden_size :, :] a_ : List[str] = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) a_ : Union[str, Any] = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight""" ) a_ : str = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict a_ : Dict = in_proj_weight[: hidden_size, :] a_ : Optional[Any] = in_proj_bias[:config.hidden_size] a_ : List[Any] = in_proj_weight[hidden_size : hidden_size * 2, :] a_ : str = in_proj_bias[hidden_size : hidden_size * 2] a_ : List[Any] = in_proj_weight[-hidden_size :, :] a_ : Dict = in_proj_bias[-hidden_size :] # fmt: on def lowerCAmelCase_ ( ) -> torch.Tensor: a_ : Any = "http://images.cocodataset.org/val2017/000000039769.jpg" a_ : Optional[Any] = Image.open(requests.get(SCREAMING_SNAKE_CASE__, stream=SCREAMING_SNAKE_CASE__ ).raw ) return im @torch.no_grad() def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ = False ) -> Optional[int]: a_ : List[Any] = get_maskformer_config(SCREAMING_SNAKE_CASE__ ) # load original state_dict with open(SCREAMING_SNAKE_CASE__, "rb" ) as f: a_ : int = pickle.load(SCREAMING_SNAKE_CASE__ ) a_ : Optional[int] = data["model"] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys a_ : List[Any] = create_rename_keys(SCREAMING_SNAKE_CASE__ ) for src, dest in rename_keys: rename_key(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) read_in_swin_q_k_v(SCREAMING_SNAKE_CASE__, config.backbone_config ) read_in_decoder_q_k_v(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) # update to torch tensors for key, value in state_dict.items(): a_ : Tuple = torch.from_numpy(SCREAMING_SNAKE_CASE__ ) # load 🤗 model a_ : Tuple = MaskFormerForInstanceSegmentation(SCREAMING_SNAKE_CASE__ ) model.eval() for name, param in model.named_parameters(): print(SCREAMING_SNAKE_CASE__, param.shape ) a_ , a_ : int = model.load_state_dict(SCREAMING_SNAKE_CASE__, strict=SCREAMING_SNAKE_CASE__ ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(SCREAMING_SNAKE_CASE__ ) == 0, F"""Unexpected keys: {unexpected_keys}""" # verify results a_ : List[Any] = prepare_img() if "vistas" in model_name: a_ : int = 65 elif "cityscapes" in model_name: a_ : str = 65_535 else: a_ : int = 255 a_ : List[str] = True if "ade" in model_name else False a_ : Any = MaskFormerImageProcessor(ignore_index=SCREAMING_SNAKE_CASE__, reduce_labels=SCREAMING_SNAKE_CASE__ ) a_ : int = image_processor(SCREAMING_SNAKE_CASE__, return_tensors="pt" ) a_ : Optional[int] = model(**SCREAMING_SNAKE_CASE__ ) print("Logits:", outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": a_ : Union[str, Any] = torch.tensor( [[3.63_53, -4.47_70, -2.60_65], [0.50_81, -4.23_94, -3.53_43], [2.19_09, -5.03_53, -1.93_23]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3], SCREAMING_SNAKE_CASE__, atol=1e-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(F"""Saving model and image processor to {pytorch_dump_folder_path}""" ) Path(SCREAMING_SNAKE_CASE__ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE__ ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) if push_to_hub: print("Pushing model and image processor to the hub..." ) model.push_to_hub(F"""nielsr/{model_name}""" ) image_processor.push_to_hub(F"""nielsr/{model_name}""" ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""maskformer-swin-tiny-ade""", type=str, help=("""Name of the MaskFormer model you'd like to convert""",), ) parser.add_argument( """--checkpoint_path""", default="""/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl""", type=str, help="""Path to the original state dict (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) SCREAMING_SNAKE_CASE_ = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
370
1
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging __UpperCamelCase : Optional[Any] = logging.get_logger(__name__) if is_vision_available(): import PIL class a ( a__ ): snake_case__ = ['''pixel_values'''] def __init__( self , _snake_case = True , _snake_case = None , _snake_case = PILImageResampling.BICUBIC , _snake_case = True , _snake_case = None , _snake_case = True , _snake_case = 1 / 2_55 , _snake_case = True , _snake_case = None , _snake_case = None , _snake_case = True , **_snake_case , ): """simple docstring""" super().__init__(**_snake_case ) lowerCAmelCase = size if size is not None else {'shortest_edge': 2_24} lowerCAmelCase = get_size_dict(_snake_case , default_to_square=_snake_case ) lowerCAmelCase = crop_size if crop_size is not None else {'height': 2_24, 'width': 2_24} lowerCAmelCase = get_size_dict(_snake_case , default_to_square=_snake_case , param_name='crop_size' ) lowerCAmelCase = do_resize lowerCAmelCase = size lowerCAmelCase = resample lowerCAmelCase = do_center_crop lowerCAmelCase = crop_size lowerCAmelCase = do_rescale lowerCAmelCase = rescale_factor lowerCAmelCase = do_normalize lowerCAmelCase = image_mean if image_mean is not None else OPENAI_CLIP_MEAN lowerCAmelCase = image_std if image_std is not None else OPENAI_CLIP_STD lowerCAmelCase = do_convert_rgb def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case = PILImageResampling.BICUBIC , _snake_case = None , **_snake_case , ): """simple docstring""" lowerCAmelCase = get_size_dict(_snake_case , default_to_square=_snake_case ) if "shortest_edge" not in size: raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) lowerCAmelCase = get_resize_output_image_size(_snake_case , size=size['shortest_edge'] , default_to_square=_snake_case ) return resize(_snake_case , size=_snake_case , resample=_snake_case , data_format=_snake_case , **_snake_case ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case = None , **_snake_case , ): """simple docstring""" lowerCAmelCase = get_size_dict(_snake_case ) if "height" not in size or "width" not in size: raise ValueError(F'The `size` parameter must contain the keys (height, width). Got {size.keys()}' ) return center_crop(_snake_case , size=(size['height'], size['width']) , data_format=_snake_case , **_snake_case ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case = None , **_snake_case , ): """simple docstring""" return rescale(_snake_case , scale=_snake_case , data_format=_snake_case , **_snake_case ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case = None , **_snake_case , ): """simple docstring""" return normalize(_snake_case , mean=_snake_case , std=_snake_case , data_format=_snake_case , **_snake_case ) def UpperCamelCase__ ( self , _snake_case , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = ChannelDimension.FIRST , **_snake_case , ): """simple docstring""" lowerCAmelCase = do_resize if do_resize is not None else self.do_resize lowerCAmelCase = size if size is not None else self.size lowerCAmelCase = get_size_dict(_snake_case , param_name='size' , default_to_square=_snake_case ) lowerCAmelCase = resample if resample is not None else self.resample lowerCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop lowerCAmelCase = crop_size if crop_size is not None else self.crop_size lowerCAmelCase = get_size_dict(_snake_case , param_name='crop_size' , default_to_square=_snake_case ) lowerCAmelCase = do_rescale if do_rescale is not None else self.do_rescale lowerCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCAmelCase = do_normalize if do_normalize is not None else self.do_normalize lowerCAmelCase = image_mean if image_mean is not None else self.image_mean lowerCAmelCase = image_std if image_std is not None else self.image_std lowerCAmelCase = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb lowerCAmelCase = make_list_of_images(_snake_case ) if not valid_images(_snake_case ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # PIL RGBA images are converted to RGB if do_convert_rgb: lowerCAmelCase = [convert_to_rgb(_snake_case ) for image in images] # All transformations expect numpy arrays. lowerCAmelCase = [to_numpy_array(_snake_case ) for image in images] if do_resize: lowerCAmelCase = [self.resize(image=_snake_case , size=_snake_case , resample=_snake_case ) for image in images] if do_center_crop: lowerCAmelCase = [self.center_crop(image=_snake_case , size=_snake_case ) for image in images] if do_rescale: lowerCAmelCase = [self.rescale(image=_snake_case , scale=_snake_case ) for image in images] if do_normalize: lowerCAmelCase = [self.normalize(image=_snake_case , mean=_snake_case , std=_snake_case ) for image in images] lowerCAmelCase = [to_channel_dimension_format(_snake_case , _snake_case ) for image in images] lowerCAmelCase = {'pixel_values': images} return BatchFeature(data=_snake_case , tensor_type=_snake_case )
4
"""simple docstring""" from typing import Any class a : def __init__( self , _snake_case ): """simple docstring""" lowerCAmelCase = data lowerCAmelCase = None def __repr__( self ): """simple docstring""" return F'Node({self.data})' class a : def __init__( self ): """simple docstring""" lowerCAmelCase = None def __iter__( self ): """simple docstring""" lowerCAmelCase = self.head while node: yield node.data lowerCAmelCase = node.next def __len__( self ): """simple docstring""" return sum(1 for _ in self ) def __repr__( self ): """simple docstring""" return "->".join([str(_snake_case ) for item in self] ) def __getitem__( self , _snake_case ): """simple docstring""" if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__( self , _snake_case , _snake_case ): """simple docstring""" if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) lowerCAmelCase = self.head for _ in range(_snake_case ): lowerCAmelCase = current.next lowerCAmelCase = data def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" self.insert_nth(len(self ) , _snake_case ) def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" self.insert_nth(0 , _snake_case ) def UpperCamelCase__ ( self , _snake_case , _snake_case ): """simple docstring""" if not 0 <= index <= len(self ): raise IndexError('list index out of range' ) lowerCAmelCase = Node(_snake_case ) if self.head is None: lowerCAmelCase = new_node elif index == 0: lowerCAmelCase = self.head # link new_node to head lowerCAmelCase = new_node else: lowerCAmelCase = self.head for _ in range(index - 1 ): lowerCAmelCase = temp.next lowerCAmelCase = temp.next lowerCAmelCase = new_node def UpperCamelCase__ ( self ): # print every node data """simple docstring""" print(self ) def UpperCamelCase__ ( self ): """simple docstring""" return self.delete_nth(0 ) def UpperCamelCase__ ( self ): # delete from tail """simple docstring""" return self.delete_nth(len(self ) - 1 ) def UpperCamelCase__ ( self , _snake_case = 0 ): """simple docstring""" if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError('List index out of range.' ) lowerCAmelCase = self.head # default first node if index == 0: lowerCAmelCase = self.head.next else: lowerCAmelCase = self.head for _ in range(index - 1 ): lowerCAmelCase = temp.next lowerCAmelCase = temp.next lowerCAmelCase = temp.next.next return delete_node.data def UpperCamelCase__ ( self ): """simple docstring""" return self.head is None def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = None lowerCAmelCase = self.head while current: # Store the current node's next node. lowerCAmelCase = current.next # Make the current node's next point backwards lowerCAmelCase = prev # Make the previous node be the current node lowerCAmelCase = current # Make the current node the next node (to progress iteration) lowerCAmelCase = next_node # Return prev in order to put the head at the end lowerCAmelCase = prev def _SCREAMING_SNAKE_CASE (): lowerCAmelCase = LinkedList() assert linked_list.is_empty() is True assert str(_UpperCAmelCase ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(10 ): assert len(_UpperCAmelCase ) == i linked_list.insert_nth(_UpperCAmelCase , i + 1 ) assert str(_UpperCAmelCase ) == "->".join(str(_UpperCAmelCase ) for i in range(1 , 11 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(11 ) assert str(_UpperCAmelCase ) == "->".join(str(_UpperCAmelCase ) for i in range(0 , 12 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 10 assert linked_list.delete_tail() == 11 assert len(_UpperCAmelCase ) == 9 assert str(_UpperCAmelCase ) == "->".join(str(_UpperCAmelCase ) for i in range(1 , 10 ) ) assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True for i in range(0 , 9 ): lowerCAmelCase = -i assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True linked_list.reverse() assert str(_UpperCAmelCase ) == "->".join(str(_UpperCAmelCase ) for i in range(-8 , 1 ) ) def _SCREAMING_SNAKE_CASE (): lowerCAmelCase = [ -9, 100, Node(7734_5112 ), 'dlrow olleH', 7, 5555, 0, -192.5_5555, 'Hello, world!', 77.9, Node(10 ), None, None, 12.20, ] lowerCAmelCase = LinkedList() for i in test_input: linked_list.insert_tail(_UpperCAmelCase ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(_UpperCAmelCase ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head lowerCAmelCase = linked_list.delete_head() assert result == -9 assert ( str(_UpperCAmelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail lowerCAmelCase = linked_list.delete_tail() assert result == 12.2 assert ( str(_UpperCAmelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list lowerCAmelCase = linked_list.delete_nth(10 ) assert result is None assert ( str(_UpperCAmelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node('Hello again, world!' ) ) assert ( str(_UpperCAmelCase ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(_UpperCAmelCase ) assert ( str(_UpperCAmelCase ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(_UpperCAmelCase ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def _SCREAMING_SNAKE_CASE (): from doctest import testmod testmod() lowerCAmelCase = LinkedList() linked_list.insert_head(input('Inserting 1st at head ' ).strip() ) linked_list.insert_head(input('Inserting 2nd at head ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() linked_list.insert_tail(input('\nInserting 1st at tail ' ).strip() ) linked_list.insert_tail(input('Inserting 2nd at tail ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() print('\nDelete head' ) linked_list.delete_head() print('Delete tail' ) linked_list.delete_tail() print('\nPrint list:' ) linked_list.print_list() print('\nReverse linked list' ) linked_list.reverse() print('\nPrint list:' ) linked_list.print_list() print('\nString representation of linked list:' ) print(_UpperCAmelCase ) print('\nReading/changing Node data using indexing:' ) print(F'Element at Position 1: {linked_list[1]}' ) lowerCAmelCase = input('Enter New Value: ' ).strip() print('New list:' ) print(_UpperCAmelCase ) print(F'length of linked_list is : {len(_UpperCAmelCase )}' ) if __name__ == "__main__": main()
4
1
import argparse import ast import logging import os import sys import pandas as pd import torch from tqdm import tqdm from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration from transformers import logging as transformers_logging sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip __UpperCamelCase : Optional[int] = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) transformers_logging.set_verbosity_info() def a_ ( _A ) -> List[Any]: """simple docstring""" if "token" in model_name_or_path: return "rag_token" if "sequence" in model_name_or_path: return "rag_sequence" if "bart" in model_name_or_path: return "bart" return None def a_ ( _A , _A , _A ) -> Optional[Any]: """simple docstring""" return max(metric_fn(_A , _A ) for gt in ground_truths ) def a_ ( _A , _A , _A ) -> Union[str, Any]: """simple docstring""" snake_case__ = [line.strip() for line in open(_A , 'r' ).readlines()] snake_case__ = [] if args.gold_data_mode == "qa": snake_case__ = pd.read_csv(_A , sep='\t' , header=_A ) for answer_list in data[1]: snake_case__ = ast.literal_eval(_A ) answers.append(_A ) else: snake_case__ = [line.strip() for line in open(_A , 'r' ).readlines()] snake_case__ = [[reference] for reference in references] snake_case__ = snake_case__ = snake_case__ = 0 for prediction, ground_truths in zip(_A , _A ): total += 1 em += metric_max_over_ground_truths(_A , _A , _A ) fa += metric_max_over_ground_truths(_A , _A , _A ) snake_case__ = 100.0 * em / total snake_case__ = 100.0 * fa / total logger.info(f'''F1: {fa:.2f}''' ) logger.info(f'''EM: {em:.2f}''' ) def a_ ( _A , _A , _A ) -> Optional[int]: """simple docstring""" snake_case__ = args.k snake_case__ = [line.strip() for line in open(_A , 'r' ).readlines()] snake_case__ = [line.strip() for line in open(_A , 'r' ).readlines()] snake_case__ = snake_case__ = 0 for hypo, reference in zip(_A , _A ): snake_case__ = set(hypo.split('\t' )[:k] ) snake_case__ = set(reference.split('\t' ) ) total += 1 em += len(hypo_provenance & ref_provenance ) / k snake_case__ = 100.0 * em / total logger.info(f'''Precision@{k}: {em: .2f}''' ) def a_ ( _A , _A , _A ) -> List[Any]: """simple docstring""" def strip_title(_A ): if title.startswith('"' ): snake_case__ = title[1:] if title.endswith('"' ): snake_case__ = title[:-1] return title snake_case__ = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( _A , return_tensors='pt' , padding=_A , truncation=_A , )['input_ids'].to(args.device ) snake_case__ = rag_model.rag.question_encoder(_A ) snake_case__ = question_enc_outputs[0] snake_case__ = rag_model.retriever( _A , question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors='pt' , ) snake_case__ = rag_model.retriever.index.get_doc_dicts(result.doc_ids ) snake_case__ = [] for docs in all_docs: snake_case__ = [strip_title(_A ) for title in docs['title']] provenance_strings.append('\t'.join(_A ) ) return provenance_strings def a_ ( _A , _A , _A ) -> Dict: """simple docstring""" with torch.no_grad(): snake_case__ = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( _A , return_tensors='pt' , padding=_A , truncation=_A ) snake_case__ = inputs_dict.input_ids.to(args.device ) snake_case__ = inputs_dict.attention_mask.to(args.device ) snake_case__ = rag_model.generate( # rag_model overwrites generate _A , attention_mask=_A , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=_A , num_return_sequences=1 , bad_words_ids=[[0, 0]] , ) snake_case__ = rag_model.retriever.generator_tokenizer.batch_decode(_A , skip_special_tokens=_A ) if args.print_predictions: for q, a in zip(_A , _A ): logger.info('Q: {} - A: {}'.format(_A , _A ) ) return answers def a_ ( ) -> List[Any]: """simple docstring""" snake_case__ = argparse.ArgumentParser() parser.add_argument( '--model_type' , choices=['rag_sequence', 'rag_token', 'bart'] , type=_A , help=( 'RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the' ' model_name_or_path' ) , ) parser.add_argument( '--index_name' , default=_A , choices=['exact', 'compressed', 'legacy'] , type=_A , help='RAG model retriever type' , ) parser.add_argument( '--index_path' , default=_A , type=_A , help='Path to the retrieval index' , ) parser.add_argument('--n_docs' , default=5 , type=_A , help='Number of retrieved docs' ) parser.add_argument( '--model_name_or_path' , default=_A , type=_A , required=_A , help='Path to pretrained checkpoints or model identifier from huggingface.co/models' , ) parser.add_argument( '--eval_mode' , choices=['e2e', 'retrieval'] , default='e2e' , type=_A , help=( 'Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates' ' precision@k.' ) , ) parser.add_argument('--k' , default=1 , type=_A , help='k for the precision@k calculation' ) parser.add_argument( '--evaluation_set' , default=_A , type=_A , required=_A , help='Path to a file containing evaluation samples' , ) parser.add_argument( '--gold_data_path' , default=_A , type=_A , required=_A , help='Path to a tab-separated file with gold samples' , ) parser.add_argument( '--gold_data_mode' , default='qa' , type=_A , choices=['qa', 'ans'] , help=( 'Format of the gold data file' 'qa - a single line in the following format: question [tab] answer_list' 'ans - a single line of the gold file contains the expected answer string' ) , ) parser.add_argument( '--predictions_path' , type=_A , default='predictions.txt' , help='Name of the predictions file, to be stored in the checkpoints directory' , ) parser.add_argument( '--eval_all_checkpoints' , action='store_true' , help='Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number' , ) parser.add_argument( '--eval_batch_size' , default=8 , type=_A , help='Batch size per GPU/CPU for evaluation.' , ) parser.add_argument( '--recalculate' , help='Recalculate predictions even if the prediction file exists' , action='store_true' , ) parser.add_argument( '--num_beams' , default=4 , type=_A , help='Number of beams to be used when generating answers' , ) parser.add_argument('--min_length' , default=1 , type=_A , help='Min length of the generated answers' ) parser.add_argument('--max_length' , default=50 , type=_A , help='Max length of the generated answers' ) parser.add_argument( '--print_predictions' , action='store_true' , help='If True, prints predictions while evaluating.' , ) parser.add_argument( '--print_docs' , action='store_true' , help='If True, prints docs retried while generating.' , ) snake_case__ = parser.parse_args() snake_case__ = torch.device('cuda' if torch.cuda.is_available() else 'cpu' ) return args def a_ ( _A ) -> Optional[Any]: """simple docstring""" snake_case__ = {} if args.model_type is None: snake_case__ = infer_model_type(args.model_name_or_path ) assert args.model_type is not None if args.model_type.startswith('rag' ): snake_case__ = RagTokenForGeneration if args.model_type == 'rag_token' else RagSequenceForGeneration snake_case__ = args.n_docs if args.index_name is not None: snake_case__ = args.index_name if args.index_path is not None: snake_case__ = args.index_path else: snake_case__ = BartForConditionalGeneration snake_case__ = ( [f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()] if args.eval_all_checkpoints else [args.model_name_or_path] ) logger.info('Evaluate the following checkpoints: %s' , _A ) snake_case__ = get_scores if args.eval_mode == 'e2e' else get_precision_at_k snake_case__ = evaluate_batch_eae if args.eval_mode == 'e2e' else evaluate_batch_retrieval for checkpoint in checkpoints: if os.path.exists(args.predictions_path ) and (not args.recalculate): logger.info('Calculating metrics based on an existing predictions file: {}'.format(args.predictions_path ) ) score_fn(_A , args.predictions_path , args.gold_data_path ) continue logger.info('***** Running evaluation for {} *****'.format(_A ) ) logger.info(' Batch size = %d' , args.eval_batch_size ) logger.info(' Predictions will be stored under {}'.format(args.predictions_path ) ) if args.model_type.startswith('rag' ): snake_case__ = RagRetriever.from_pretrained(_A , **_A ) snake_case__ = model_class.from_pretrained(_A , retriever=_A , **_A ) model.retriever.init_retrieval() else: snake_case__ = model_class.from_pretrained(_A , **_A ) model.to(args.device ) with open(args.evaluation_set , 'r' ) as eval_file, open(args.predictions_path , 'w' ) as preds_file: snake_case__ = [] for line in tqdm(_A ): questions.append(line.strip() ) if len(_A ) == args.eval_batch_size: snake_case__ = evaluate_batch_fn(_A , _A , _A ) preds_file.write('\n'.join(_A ) + '\n' ) preds_file.flush() snake_case__ = [] if len(_A ) > 0: snake_case__ = evaluate_batch_fn(_A , _A , _A ) preds_file.write('\n'.join(_A ) ) preds_file.flush() score_fn(_A , args.predictions_path , args.gold_data_path ) if __name__ == "__main__": __UpperCamelCase : Optional[Any] = get_args() main(args)
372
import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow __UpperCamelCase : Optional[Any] = logging.getLogger() @unittest.skip("Temporarily disable the doc tests." ) @require_torch @require_tf @slow class __SCREAMING_SNAKE_CASE( unittest.TestCase ): def lowerCAmelCase_ ( self: Dict , UpperCamelCase: Path , UpperCamelCase: Union[str, None] = None , UpperCamelCase: Union[List[str], None] = None , UpperCamelCase: Union[str, List[str], None] = None , UpperCamelCase: bool = True , ) -> int: snake_case__ = [file for file in os.listdir(UpperCamelCase ) if os.path.isfile(os.path.join(UpperCamelCase , UpperCamelCase ) )] if identifier is not None: snake_case__ = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(UpperCamelCase , UpperCamelCase ): for n_ in n_identifier: snake_case__ = [file for file in files if n_ not in file] else: snake_case__ = [file for file in files if n_identifier not in file] snake_case__ = ignore_files or [] ignore_files.append('__init__.py' ) snake_case__ = [file for file in files if file not in ignore_files] for file in files: # Open all files print('Testing' , UpperCamelCase ) if only_modules: snake_case__ = file.split('.' )[0] try: snake_case__ = getattr(UpperCamelCase , UpperCamelCase ) snake_case__ = doctest.DocTestSuite(UpperCamelCase ) snake_case__ = unittest.TextTestRunner().run(UpperCamelCase ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(F'''{module_identifier} is not a module.''' ) else: snake_case__ = doctest.testfile(str('..' / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def lowerCAmelCase_ ( self: Tuple ) -> int: snake_case__ = Path('src/transformers' ) snake_case__ = 'modeling' snake_case__ = [ 'modeling_ctrl.py', 'modeling_tf_ctrl.py', ] self.analyze_directory(UpperCamelCase , identifier=UpperCamelCase , ignore_files=UpperCamelCase ) def lowerCAmelCase_ ( self: Optional[int] ) -> str: snake_case__ = Path('src/transformers' ) snake_case__ = 'tokenization' self.analyze_directory(UpperCamelCase , identifier=UpperCamelCase ) def lowerCAmelCase_ ( self: Optional[Any] ) -> int: snake_case__ = Path('src/transformers' ) snake_case__ = 'configuration' self.analyze_directory(UpperCamelCase , identifier=UpperCamelCase ) def lowerCAmelCase_ ( self: Dict ) -> List[Any]: snake_case__ = Path('src/transformers' ) snake_case__ = ['configuration', 'modeling', 'tokenization'] self.analyze_directory(UpperCamelCase , n_identifier=UpperCamelCase ) def lowerCAmelCase_ ( self: Tuple ) -> Union[str, Any]: snake_case__ = Path('docs/source' ) snake_case__ = ['favicon.ico'] self.analyze_directory(UpperCamelCase , ignore_files=UpperCamelCase , only_modules=UpperCamelCase )
372
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase__ :List[str] = { '''configuration_deberta''': ['''DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''DebertaConfig''', '''DebertaOnnxConfig'''], '''tokenization_deberta''': ['''DebertaTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ :Any = ['''DebertaTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ :List[str] = [ '''DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''DebertaForMaskedLM''', '''DebertaForQuestionAnswering''', '''DebertaForSequenceClassification''', '''DebertaForTokenClassification''', '''DebertaModel''', '''DebertaPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ :str = [ '''TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFDebertaForMaskedLM''', '''TFDebertaForQuestionAnswering''', '''TFDebertaForSequenceClassification''', '''TFDebertaForTokenClassification''', '''TFDebertaModel''', '''TFDebertaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_deberta import DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, DebertaConfig, DebertaOnnxConfig from .tokenization_deberta import DebertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_deberta_fast import DebertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deberta import ( DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, DebertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deberta import ( TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFDebertaForMaskedLM, TFDebertaForQuestionAnswering, TFDebertaForSequenceClassification, TFDebertaForTokenClassification, TFDebertaModel, TFDebertaPreTrainedModel, ) else: import sys lowerCAmelCase__ :Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
618
from .imports import is_rich_available if is_rich_available(): from rich.traceback import install install(show_locals=False) else: raise ModuleNotFoundError('''To use the rich extension, install rich with `pip install rich`''')
618
1
'''simple docstring''' import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel _lowerCAmelCase : Tuple = { "text_branch": "text_model", "audio_branch": "audio_model.audio_encoder", "attn": "attention.self", "self.proj": "output.dense", "attention.self_mask": "attn_mask", "mlp.fc1": "intermediate.dense", "mlp.fc2": "output.dense", "norm1": "layernorm_before", "norm2": "layernorm_after", "bn0": "batch_norm", } _lowerCAmelCase : Dict = AutoFeatureExtractor.from_pretrained("laion/clap-htsat-unfused", truncation="rand_trunc") def _A ( snake_case__ : List[Any] , snake_case__ : Optional[Any]=False ): snake_case__ ,snake_case__ : Optional[int] = create_model( '''HTSAT-tiny''' , '''roberta''' , A__ , precision='''fp32''' , device='''cuda:0''' if torch.cuda.is_available() else '''cpu''' , enable_fusion=A__ , fusion_type='''aff_2d''' if enable_fusion else None , ) return model, model_cfg def _A ( snake_case__ : List[Any] ): snake_case__ : str = {} snake_case__ : Optional[int] = R'''.*sequential.(\d+).*''' snake_case__ : Any = R'''.*_projection.(\d+).*''' for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: snake_case__ : Optional[Any] = key.replace(A__ , A__ ) if re.match(A__ , A__ ): # replace sequential layers with list snake_case__ : List[Any] = re.match(A__ , A__ ).group(1 ) snake_case__ : Any = key.replace(f'''sequential.{sequential_layer}.''' , f'''layers.{int(A__ )//3}.linear.''' ) elif re.match(A__ , A__ ): snake_case__ : Optional[int] = int(re.match(A__ , A__ ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... snake_case__ : List[str] = 1 if projecton_layer == 0 else 2 snake_case__ : str = key.replace(f'''_projection.{projecton_layer}.''' , f'''_projection.linear{transformers_projection_layer}.''' ) if "audio" and "qkv" in key: # split qkv into query key and value snake_case__ : Union[str, Any] = value snake_case__ : Dict = mixed_qkv.size(0 ) // 3 snake_case__ : List[Any] = mixed_qkv[:qkv_dim] snake_case__ : Optional[Any] = mixed_qkv[qkv_dim : qkv_dim * 2] snake_case__ : Dict = mixed_qkv[qkv_dim * 2 :] snake_case__ : str = query_layer snake_case__ : int = key_layer snake_case__ : Optional[Any] = value_layer else: snake_case__ : Dict = value return model_state_dict def _A ( snake_case__ : Tuple , snake_case__ : str , snake_case__ : Union[str, Any] , snake_case__ : Union[str, Any]=False ): snake_case__ ,snake_case__ : Dict = init_clap(A__ , enable_fusion=A__ ) clap_model.eval() snake_case__ : Any = clap_model.state_dict() snake_case__ : Union[str, Any] = rename_state_dict(A__ ) snake_case__ : str = ClapConfig() snake_case__ : Union[str, Any] = enable_fusion snake_case__ : Any = ClapModel(A__ ) # ignore the spectrogram embedding layer model.load_state_dict(A__ , strict=A__ ) model.save_pretrained(A__ ) transformers_config.save_pretrained(A__ ) if __name__ == "__main__": _lowerCAmelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument("--enable_fusion", action="store_true", help="Whether to enable fusion or not") _lowerCAmelCase : List[Any] = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
714
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : List[Any] = logging.get_logger(__name__) class snake_case ( __lowerCamelCase ): """simple docstring""" _lowerCAmelCase = 'encoder-decoder' _lowerCAmelCase = True def __init__( self , **lowerCamelCase ) -> Optional[Any]: """simple docstring""" super().__init__(**lowerCamelCase ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" snake_case__ : List[str] = kwargs.pop('''encoder''' ) snake_case__ : Any = encoder_config.pop('''model_type''' ) snake_case__ : List[str] = kwargs.pop('''decoder''' ) snake_case__ : str = decoder_config.pop('''model_type''' ) from ..auto.configuration_auto import AutoConfig snake_case__ : Tuple = AutoConfig.for_model(lowerCamelCase , **lowerCamelCase ) snake_case__ : Optional[Any] = AutoConfig.for_model(lowerCamelCase , **lowerCamelCase ) snake_case__ : str = True @classmethod def lowercase__ ( cls , lowerCamelCase , lowerCamelCase , **lowerCamelCase ) -> PretrainedConfig: """simple docstring""" logger.info('''Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config''' ) snake_case__ : Optional[int] = True snake_case__ : str = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **lowerCamelCase ) def lowercase__ ( self ) -> Union[str, Any]: """simple docstring""" snake_case__ : List[Any] = copy.deepcopy(self.__dict__ ) snake_case__ : List[Any] = self.encoder.to_dict() snake_case__ : str = self.decoder.to_dict() snake_case__ : Any = self.__class__.model_type return output
694
0
"""simple docstring""" from ..utils import ( OptionalDependencyNotAvailable, is_flax_available, is_scipy_available, is_torch_available, is_torchsde_available, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_pt_objects import * # noqa F403 else: from .scheduling_consistency_models import CMStochasticIterativeScheduler from .scheduling_ddim import DDIMScheduler from .scheduling_ddim_inverse import DDIMInverseScheduler from .scheduling_ddim_parallel import DDIMParallelScheduler from .scheduling_ddpm import DDPMScheduler from .scheduling_ddpm_parallel import DDPMParallelScheduler from .scheduling_deis_multistep import DEISMultistepScheduler from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler from .scheduling_euler_discrete import EulerDiscreteScheduler from .scheduling_heun_discrete import HeunDiscreteScheduler from .scheduling_ipndm import IPNDMScheduler from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler from .scheduling_karras_ve import KarrasVeScheduler from .scheduling_pndm import PNDMScheduler from .scheduling_repaint import RePaintScheduler from .scheduling_sde_ve import ScoreSdeVeScheduler from .scheduling_sde_vp import ScoreSdeVpScheduler from .scheduling_unclip import UnCLIPScheduler from .scheduling_unipc_multistep import UniPCMultistepScheduler from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin from .scheduling_vq_diffusion import VQDiffusionScheduler try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_flax_objects import * # noqa F403 else: from .scheduling_ddim_flax import FlaxDDIMScheduler from .scheduling_ddpm_flax import FlaxDDPMScheduler from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler from .scheduling_pndm_flax import FlaxPNDMScheduler from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler from .scheduling_utils_flax import ( FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, broadcast_to_shape_from_left, ) try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .scheduling_lms_discrete import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
572
from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) _snake_case = logging.get_logger(__name__) # pylint: disable=invalid-name _snake_case = """ Examples: ```py >>> from diffusers import KandinskyV22Pipeline, KandinskyV22PriorPipeline >>> import torch >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\"kandinsky-community/kandinsky-2-2-prior\") >>> pipe_prior.to(\"cuda\") >>> prompt = \"red cat, 4k photo\" >>> out = pipe_prior(prompt) >>> image_emb = out.image_embeds >>> zero_image_emb = out.negative_image_embeds >>> pipe = KandinskyV22Pipeline.from_pretrained(\"kandinsky-community/kandinsky-2-2-decoder\") >>> pipe.to(\"cuda\") >>> image = pipe( ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... height=768, ... width=768, ... num_inference_steps=50, ... ).images >>> image[0].save(\"cat.png\") ``` """ def _A ( __magic_name__ , __magic_name__ , __magic_name__=8 ): lowercase__ = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 lowercase__ = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class lowerCAmelCase ( lowercase_ ): def __init__( self :List[str] , _lowercase :UNetaDConditionModel , _lowercase :DDPMScheduler , _lowercase :VQModel , ): '''simple docstring''' super().__init__() self.register_modules( unet=_lowercase , scheduler=_lowercase , movq=_lowercase , ) lowercase__ = 2 ** (len(self.movq.config.block_out_channels ) - 1) def UpperCAmelCase ( self :Union[str, Any] , _lowercase :Tuple , _lowercase :List[str] , _lowercase :Tuple , _lowercase :Optional[Any] , _lowercase :int , _lowercase :str ): '''simple docstring''' if latents is None: lowercase__ = randn_tensor(_lowercase , generator=_lowercase , device=_lowercase , dtype=_lowercase ) else: if latents.shape != shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {shape}''' ) lowercase__ = latents.to(_lowercase ) lowercase__ = latents * scheduler.init_noise_sigma return latents def UpperCAmelCase ( self :int , _lowercase :int=0 ): '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) lowercase__ = torch.device(f'''cuda:{gpu_id}''' ) lowercase__ = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(_lowercase , _lowercase ) def UpperCAmelCase ( self :Optional[int] , _lowercase :Tuple=0 ): '''simple docstring''' if is_accelerate_available() and is_accelerate_version(">=" , "0.17.0.dev0" ): from accelerate import cpu_offload_with_hook else: raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher." ) lowercase__ = torch.device(f'''cuda:{gpu_id}''' ) if self.device.type != "cpu": self.to("cpu" , silence_dtype_warnings=_lowercase ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) lowercase__ = None for cpu_offloaded_model in [self.unet, self.movq]: lowercase__ , lowercase__ = cpu_offload_with_hook(_lowercase , _lowercase , prev_module_hook=_lowercase ) # We'll offload the last model manually. lowercase__ = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def UpperCAmelCase ( self :Optional[int] ): '''simple docstring''' if not hasattr(self.unet , "_hf_hook" ): return self.device for module in self.unet.modules(): if ( hasattr(_lowercase , "_hf_hook" ) and hasattr(module._hf_hook , "execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(_lowercase ) def __call__( self :int , _lowercase :Union[torch.FloatTensor, List[torch.FloatTensor]] , _lowercase :Union[torch.FloatTensor, List[torch.FloatTensor]] , _lowercase :int = 5_12 , _lowercase :int = 5_12 , _lowercase :int = 1_00 , _lowercase :float = 4.0 , _lowercase :int = 1 , _lowercase :Optional[Union[torch.Generator, List[torch.Generator]]] = None , _lowercase :Optional[torch.FloatTensor] = None , _lowercase :Optional[str] = "pil" , _lowercase :bool = True , ): '''simple docstring''' lowercase__ = self._execution_device lowercase__ = guidance_scale > 1.0 if isinstance(_lowercase , _lowercase ): lowercase__ = torch.cat(_lowercase , dim=0 ) lowercase__ = image_embeds.shape[0] * num_images_per_prompt if isinstance(_lowercase , _lowercase ): lowercase__ = torch.cat(_lowercase , dim=0 ) if do_classifier_free_guidance: lowercase__ = image_embeds.repeat_interleave(_lowercase , dim=0 ) lowercase__ = negative_image_embeds.repeat_interleave(_lowercase , dim=0 ) lowercase__ = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=_lowercase ) self.scheduler.set_timesteps(_lowercase , device=_lowercase ) lowercase__ = self.scheduler.timesteps lowercase__ = self.unet.config.in_channels lowercase__ , lowercase__ = downscale_height_and_width(_lowercase , _lowercase , self.movq_scale_factor ) # create initial latent lowercase__ = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , _lowercase , _lowercase , _lowercase , self.scheduler , ) for i, t in enumerate(self.progress_bar(_lowercase ) ): # expand the latents if we are doing classifier free guidance lowercase__ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowercase__ = {"image_embeds": image_embeds} lowercase__ = self.unet( sample=_lowercase , timestep=_lowercase , encoder_hidden_states=_lowercase , added_cond_kwargs=_lowercase , return_dict=_lowercase , )[0] if do_classifier_free_guidance: lowercase__ , lowercase__ = noise_pred.split(latents.shape[1] , dim=1 ) lowercase__ , lowercase__ = noise_pred.chunk(2 ) lowercase__ , lowercase__ = variance_pred.chunk(2 ) lowercase__ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) lowercase__ = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , "variance_type" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): lowercase__ , lowercase__ = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 lowercase__ = self.scheduler.step( _lowercase , _lowercase , _lowercase , generator=_lowercase , )[0] # post-processing lowercase__ = self.movq.decode(_lowercase , force_not_quantize=_lowercase )["sample"] if output_type not in ["pt", "np", "pil"]: raise ValueError(f'''Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}''' ) if output_type in ["np", "pil"]: lowercase__ = image * 0.5 + 0.5 lowercase__ = image.clamp(0 , 1 ) lowercase__ = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": lowercase__ = self.numpy_to_pil(_lowercase ) if not return_dict: return (image,) return ImagePipelineOutput(images=_lowercase )
655
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) a_ = { """configuration_vision_text_dual_encoder""": ["""VisionTextDualEncoderConfig"""], """processing_vision_text_dual_encoder""": ["""VisionTextDualEncoderProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ["""VisionTextDualEncoderModel"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ["""FlaxVisionTextDualEncoderModel"""] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ["""TFVisionTextDualEncoderModel"""] if TYPE_CHECKING: from .configuration_vision_text_dual_encoder import VisionTextDualEncoderConfig from .processing_vision_text_dual_encoder import VisionTextDualEncoderProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_text_dual_encoder import VisionTextDualEncoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_text_dual_encoder import FlaxVisionTextDualEncoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_text_dual_encoder import TFVisionTextDualEncoderModel else: import sys a_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
705
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a_ = { """configuration_squeezebert""": [ """SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SqueezeBertConfig""", """SqueezeBertOnnxConfig""", ], """tokenization_squeezebert""": ["""SqueezeBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ["""SqueezeBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ """SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """SqueezeBertForMaskedLM""", """SqueezeBertForMultipleChoice""", """SqueezeBertForQuestionAnswering""", """SqueezeBertForSequenceClassification""", """SqueezeBertForTokenClassification""", """SqueezeBertModel""", """SqueezeBertModule""", """SqueezeBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
286
0
'''simple docstring''' import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class UpperCAmelCase ( unittest.TestCase): """simple docstring""" @slow def UpperCamelCase__ ( self : Optional[int] ) -> Any: _UpperCamelCase =FlaxMTaForConditionalGeneration.from_pretrained('''google/mt5-small''' ) _UpperCamelCase =AutoTokenizer.from_pretrained('''google/mt5-small''' ) _UpperCamelCase =tokenizer('''Hello there''' , return_tensors='''np''' ).input_ids _UpperCamelCase =tokenizer('''Hi I am''' , return_tensors='''np''' ).input_ids _UpperCamelCase =shift_tokens_right(__lowerCAmelCase , model.config.pad_token_id , model.config.decoder_start_token_id ) _UpperCamelCase =model(__lowerCAmelCase , decoder_input_ids=__lowerCAmelCase ).logits _UpperCamelCase =optax.softmax_cross_entropy(__lowerCAmelCase , onehot(__lowerCAmelCase , logits.shape[-1] ) ).mean() _UpperCamelCase =-(labels.shape[-1] * loss.item()) _UpperCamelCase =-84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
404
"""simple docstring""" import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( '''files''', [ ['''full:README.md''', '''dataset_infos.json'''], ['''empty:README.md''', '''dataset_infos.json'''], ['''dataset_infos.json'''], ['''full:README.md'''], ], ) def snake_case_ ( A_ : Dict, A_ : List[str] ): '''simple docstring''' _lowerCamelCase : int = tmp_path_factory.mktemp('''dset_infos_dir''' ) if "full:README.md" in files: with open(dataset_infos_dir / '''README.md''', '''w''' ) as f: f.write('''---\ndataset_info:\n dataset_size: 42\n---''' ) if "empty:README.md" in files: with open(dataset_infos_dir / '''README.md''', '''w''' ) as f: f.write('''''' ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / '''dataset_infos.json''', '''w''' ) as f: f.write('''{"default": {"dataset_size": 42}}''' ) _lowerCamelCase : str = DatasetInfosDict.from_directory(A_ ) assert dataset_infos assert dataset_infos["default"].dataset_size == 42 @pytest.mark.parametrize( '''dataset_info''', [ DatasetInfo(), DatasetInfo( description='''foo''', features=Features({'''a''': Value('''int32''' )} ), builder_name='''builder''', config_name='''config''', version='''1.0.0''', splits=[{'''name''': '''train'''}], download_size=42, ), ], ) def snake_case_ ( A_ : str, A_ : DatasetInfo ): '''simple docstring''' _lowerCamelCase : Optional[Any] = str(A_ ) dataset_info.write_to_directory(A_ ) _lowerCamelCase : str = DatasetInfo.from_directory(A_ ) assert dataset_info == reloaded assert os.path.exists(os.path.join(A_, '''dataset_info.json''' ) ) def snake_case_ ( ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = DatasetInfo( description='''foo''', citation='''bar''', homepage='''https://foo.bar''', license='''CC0''', features=Features({'''a''': Value('''int32''' )} ), post_processed={}, supervised_keys=(), task_templates=[], builder_name='''builder''', config_name='''config''', version='''1.0.0''', splits=[{'''name''': '''train''', '''num_examples''': 42}], download_checksums={}, download_size=13_37, post_processing_size=4_42, dataset_size=12_34, size_in_bytes=13_37 + 4_42 + 12_34, ) _lowerCamelCase : Optional[Any] = dataset_info._to_yaml_dict() assert sorted(A_ ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key], (list, dict, int, str) ) _lowerCamelCase : str = yaml.safe_dump(A_ ) _lowerCamelCase : Tuple = yaml.safe_load(A_ ) assert dataset_info_yaml_dict == reloaded def snake_case_ ( ): '''simple docstring''' _lowerCamelCase : int = DatasetInfo() _lowerCamelCase : Dict = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( '''dataset_infos_dict''', [ DatasetInfosDict(), DatasetInfosDict({'''default''': DatasetInfo()} ), DatasetInfosDict({'''my_config_name''': DatasetInfo()} ), DatasetInfosDict( { '''default''': DatasetInfo( description='''foo''', features=Features({'''a''': Value('''int32''' )} ), builder_name='''builder''', config_name='''config''', version='''1.0.0''', splits=[{'''name''': '''train'''}], download_size=42, ) } ), DatasetInfosDict( { '''v1''': DatasetInfo(dataset_size=42 ), '''v2''': DatasetInfo(dataset_size=13_37 ), } ), ], ) def snake_case_ ( A_ : Optional[Any], A_ : DatasetInfosDict ): '''simple docstring''' _lowerCamelCase : List[str] = str(A_ ) dataset_infos_dict.write_to_directory(A_ ) _lowerCamelCase : List[Any] = DatasetInfosDict.from_directory(A_ ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): _lowerCamelCase : str = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml _lowerCamelCase : Any = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(A_, '''README.md''' ) )
83
0
import functools def __lowercase ( __lowerCAmelCase : str , __lowerCAmelCase : str ): a__ = len(__lowerCAmelCase ) a__ = len(__lowerCAmelCase ) @functools.cache def min_distance(__lowerCAmelCase : int , __lowerCAmelCase : int ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa a__ = int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 , __lowerCAmelCase ) , 1 + min_distance(__lowerCAmelCase , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , ) return min_distance(0 , 0 ) if __name__ == "__main__": import doctest doctest.testmod()
703
import gc import unittest from transformers import CTRLConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, ) class snake_case_ : def __init__( self :Optional[Any] ,__snake_case :str ,__snake_case :Optional[Any]=14 ,__snake_case :Dict=7 ,__snake_case :Optional[int]=True ,__snake_case :Optional[int]=True ,__snake_case :Dict=True ,__snake_case :List[Any]=True ,__snake_case :Optional[int]=True ,__snake_case :Any=99 ,__snake_case :List[str]=32 ,__snake_case :List[str]=5 ,__snake_case :Tuple=4 ,__snake_case :Optional[int]=37 ,__snake_case :Optional[int]="gelu" ,__snake_case :Tuple=0.1 ,__snake_case :Tuple=0.1 ,__snake_case :Dict=5_12 ,__snake_case :Union[str, Any]=16 ,__snake_case :str=2 ,__snake_case :Optional[Any]=0.02 ,__snake_case :Dict=3 ,__snake_case :Optional[Any]=4 ,__snake_case :Optional[Any]=None ,) -> Tuple: a__ = parent a__ = batch_size a__ = seq_length a__ = is_training a__ = use_token_type_ids a__ = use_input_mask a__ = use_labels a__ = use_mc_token_ids a__ = vocab_size a__ = hidden_size a__ = num_hidden_layers a__ = num_attention_heads a__ = intermediate_size a__ = hidden_act a__ = hidden_dropout_prob a__ = attention_probs_dropout_prob a__ = max_position_embeddings a__ = type_vocab_size a__ = type_sequence_label_size a__ = initializer_range a__ = num_labels a__ = num_choices a__ = scope a__ = self.vocab_size - 1 def lowerCamelCase__( self :Optional[int] ) -> Union[str, Any]: a__ = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) a__ = None if self.use_input_mask: a__ = random_attention_mask([self.batch_size, self.seq_length] ) a__ = None if self.use_token_type_ids: a__ = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) a__ = None if self.use_mc_token_ids: a__ = ids_tensor([self.batch_size, self.num_choices] ,self.seq_length ) a__ = None a__ = None a__ = None if self.use_labels: a__ = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) a__ = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) a__ = ids_tensor([self.batch_size] ,self.num_choices ) a__ = self.get_config() a__ = ids_tensor([self.num_hidden_layers, self.num_attention_heads] ,2 ) return ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) def lowerCamelCase__( self :Optional[Any] ) -> Tuple: return CTRLConfig( vocab_size=self.vocab_size ,n_embd=self.hidden_size ,n_layer=self.num_hidden_layers ,n_head=self.num_attention_heads ,n_positions=self.max_position_embeddings ,pad_token_id=self.pad_token_id ,) def lowerCamelCase__( self :str ,__snake_case :List[str] ,__snake_case :Any ,__snake_case :Dict ,__snake_case :int ,__snake_case :Optional[Any] ,*__snake_case :List[str] ) -> List[Any]: a__ = CTRLModel(config=__snake_case ) model.to(__snake_case ) model.eval() model(__snake_case ,token_type_ids=__snake_case ,head_mask=__snake_case ) model(__snake_case ,token_type_ids=__snake_case ) a__ = model(__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(len(result.past_key_values ) ,config.n_layer ) def lowerCamelCase__( self :Optional[int] ,__snake_case :List[str] ,__snake_case :Union[str, Any] ,__snake_case :str ,__snake_case :str ,__snake_case :Dict ,*__snake_case :Dict ) -> Dict: a__ = CTRLLMHeadModel(__snake_case ) model.to(__snake_case ) model.eval() a__ = model(__snake_case ,token_type_ids=__snake_case ,labels=__snake_case ) self.parent.assertEqual(result.loss.shape ,() ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase__( self :Optional[Any] ) -> Optional[Any]: a__ = self.prepare_config_and_inputs() ( ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ) = config_and_inputs a__ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'head_mask': head_mask} return config, inputs_dict def lowerCamelCase__( self :Optional[int] ,__snake_case :Tuple ,__snake_case :str ,__snake_case :str ,__snake_case :List[str] ,*__snake_case :Optional[int] ) -> List[Any]: a__ = self.num_labels a__ = CTRLForSequenceClassification(__snake_case ) model.to(__snake_case ) model.eval() a__ = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) a__ = model(__snake_case ,token_type_ids=__snake_case ,labels=__snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) @require_torch class snake_case_ (lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): UpperCAmelCase__ : Union[str, Any] = (CTRLModel, CTRLLMHeadModel, CTRLForSequenceClassification) if is_torch_available() else () UpperCAmelCase__ : Any = (CTRLLMHeadModel,) if is_torch_available() else () UpperCAmelCase__ : Any = ( { '''feature-extraction''': CTRLModel, '''text-classification''': CTRLForSequenceClassification, '''text-generation''': CTRLLMHeadModel, '''zero-shot''': CTRLForSequenceClassification, } if is_torch_available() else {} ) UpperCAmelCase__ : Tuple = True UpperCAmelCase__ : List[Any] = False UpperCAmelCase__ : List[str] = False def lowerCamelCase__( self :Union[str, Any] ,__snake_case :Optional[int] ,__snake_case :int ,__snake_case :Any ,__snake_case :List[str] ,__snake_case :Dict ) -> Union[str, Any]: if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `CTRLConfig` was never used in pipeline tests, either because of a missing checkpoint or because a tiny # config could not be created. return True return False def lowerCamelCase__( self :int ) -> List[str]: a__ = CTRLModelTester(self ) a__ = ConfigTester(self ,config_class=__snake_case ,n_embd=37 ) def lowerCamelCase__( self :str ) -> str: super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() def lowerCamelCase__( self :Tuple ) -> List[Any]: self.config_tester.run_common_tests() def lowerCamelCase__( self :str ) -> str: a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_ctrl_model(*__snake_case ) def lowerCamelCase__( self :List[Any] ) -> Any: a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*__snake_case ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowerCamelCase__( self :Union[str, Any] ) -> Tuple: pass @slow def lowerCamelCase__( self :int ) -> List[Any]: for model_name in CTRL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a__ = CTRLModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) @unittest.skip('The model doesn\'t support left padding' ) # and it's not used enough to be worth fixing :) def lowerCamelCase__( self :Dict ) -> List[str]: pass @require_torch class snake_case_ (unittest.TestCase ): def lowerCamelCase__( self :Union[str, Any] ) -> str: super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() @slow def lowerCamelCase__( self :Any ) -> Dict: a__ = CTRLLMHeadModel.from_pretrained('ctrl' ) model.to(__snake_case ) a__ = torch.tensor( [[1_18_59, 0, 16_11, 8]] ,dtype=torch.long ,device=__snake_case ) # Legal the president is a__ = [ 1_18_59, 0, 16_11, 8, 5, 1_50, 2_64_49, 2, 19, 3_48, 4_69, 3, 25_95, 48, 2_07_40, 24_65_33, 24_65_33, 19, 30, 5, ] # Legal the president is a good guy and I don't want to lose my job. \n \n I have a a__ = model.generate(__snake_case ,do_sample=__snake_case ) self.assertListEqual(output_ids[0].tolist() ,__snake_case )
657
0
import json import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from transformers import OneFormerImageProcessor from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput if is_vision_available(): from PIL import Image def __snake_case ( __magic_name__ , __magic_name__="shi-labs/oneformer_demo" ): '''simple docstring''' with open(hf_hub_download(__magic_name__ , __magic_name__ , repo_type="dataset" ) , "r" ) as f: lowercase = json.load(__magic_name__ ) lowercase = {} lowercase = [] lowercase = [] for key, info in class_info.items(): lowercase = info["name"] class_names.append(info["name"] ) if info["isthing"]: thing_ids.append(int(__magic_name__ ) ) lowercase = thing_ids lowercase = class_names return metadata class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' def __init__( self :str , lowerCAmelCase__ :int , lowerCAmelCase__ :str=7 , lowerCAmelCase__ :str=3 , lowerCAmelCase__ :Tuple=30 , lowerCAmelCase__ :int=400 , lowerCAmelCase__ :List[Any]=None , lowerCAmelCase__ :List[Any]=True , lowerCAmelCase__ :List[str]=True , lowerCAmelCase__ :Union[str, Any]=[0.5, 0.5, 0.5] , lowerCAmelCase__ :Optional[Any]=[0.5, 0.5, 0.5] , lowerCAmelCase__ :Any=10 , lowerCAmelCase__ :List[str]=False , lowerCAmelCase__ :Dict=255 , lowerCAmelCase__ :List[Any]="shi-labs/oneformer_demo" , lowerCAmelCase__ :List[str]="ade20k_panoptic.json" , lowerCAmelCase__ :List[str]=10 , ) ->Dict: lowercase = parent lowercase = batch_size lowercase = num_channels lowercase = min_resolution lowercase = max_resolution lowercase = do_resize lowercase = {"shortest_edge": 32, "longest_edge": 1333} if size is None else size lowercase = do_normalize lowercase = image_mean lowercase = image_std lowercase = class_info_file lowercase = prepare_metadata(lowerCAmelCase__ , lowerCAmelCase__ ) lowercase = num_text lowercase = repo_path # for the post_process_functions lowercase = 2 lowercase = 10 lowercase = 10 lowercase = 3 lowercase = 4 lowercase = num_labels lowercase = do_reduce_labels lowercase = ignore_index def SCREAMING_SNAKE_CASE( self :Tuple ) ->Tuple: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "num_labels": self.num_labels, "do_reduce_labels": self.do_reduce_labels, "ignore_index": self.ignore_index, "class_info_file": self.class_info_file, "metadata": self.metadata, "num_text": self.num_text, } def SCREAMING_SNAKE_CASE( self :int , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :List[str]=False ) ->List[Any]: if not batched: lowercase = image_inputs[0] if isinstance(lowerCAmelCase__ , Image.Image ): lowercase , lowercase = image.size else: lowercase , lowercase = image.shape[1], image.shape[2] if w < h: lowercase = int(self.size["shortest_edge"] * h / w ) lowercase = self.size["shortest_edge"] elif w > h: lowercase = self.size["shortest_edge"] lowercase = int(self.size["shortest_edge"] * w / h ) else: lowercase = self.size["shortest_edge"] lowercase = self.size["shortest_edge"] else: lowercase = [] for image in image_inputs: lowercase , lowercase = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) lowercase = max(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : item[0] )[0] lowercase = max(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : item[1] )[1] return expected_height, expected_width def SCREAMING_SNAKE_CASE( self :Tuple ) ->List[Any]: return OneFormerForUniversalSegmentationOutput( # +1 for null class class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1) ) , masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width) ) , ) @require_torch @require_vision class UpperCamelCase_ ( __a , unittest.TestCase ): '''simple docstring''' UpperCamelCase : Optional[int] = OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None # only for test_image_processing_common.test_image_proc_to_json_string UpperCamelCase : Tuple = image_processing_class def SCREAMING_SNAKE_CASE( self :List[str] ) ->Optional[int]: lowercase = OneFormerImageProcessorTester(self ) @property def SCREAMING_SNAKE_CASE( self :str ) ->List[str]: return self.image_processing_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE( self :Dict ) ->Optional[Any]: lowercase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase__ , "image_mean" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , "image_std" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , "do_normalize" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , "do_resize" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , "size" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , "ignore_index" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , "class_info_file" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , "num_text" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , "repo_path" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , "metadata" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , "do_reduce_labels" ) ) def SCREAMING_SNAKE_CASE( self :Optional[Any] ) ->Union[str, Any]: pass def SCREAMING_SNAKE_CASE( self :str ) ->Optional[Any]: # Initialize image_processor lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase = prepare_image_inputs(self.image_processing_tester , equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input lowercase = image_processor(image_inputs[0] , ["semantic"] , return_tensors="pt" ).pixel_values lowercase , lowercase = self.image_processing_tester.get_expected_values(lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched lowercase , lowercase = self.image_processing_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ ) lowercase = image_processor( lowerCAmelCase__ , ["semantic"] * len(lowerCAmelCase__ ) , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def SCREAMING_SNAKE_CASE( self :Union[str, Any] ) ->int: # Initialize image_processor lowercase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase = prepare_image_inputs(self.image_processing_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , np.ndarray ) # Test not batched input lowercase = image_processor(image_inputs[0] , ["semantic"] , return_tensors="pt" ).pixel_values lowercase , lowercase = self.image_processing_tester.get_expected_values(lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched lowercase , lowercase = self.image_processing_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ ) lowercase = image_processor( lowerCAmelCase__ , ["semantic"] * len(lowerCAmelCase__ ) , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def SCREAMING_SNAKE_CASE( self :List[Any] ) ->int: # Initialize image_processor lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase = prepare_image_inputs(self.image_processing_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , torch.Tensor ) # Test not batched input lowercase = image_processor(image_inputs[0] , ["semantic"] , return_tensors="pt" ).pixel_values lowercase , lowercase = self.image_processing_tester.get_expected_values(lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched lowercase , lowercase = self.image_processing_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ ) lowercase = image_processor( lowerCAmelCase__ , ["semantic"] * len(lowerCAmelCase__ ) , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def SCREAMING_SNAKE_CASE( self :Tuple , lowerCAmelCase__ :Tuple=False , lowerCAmelCase__ :Optional[int]=False , lowerCAmelCase__ :Union[str, Any]="np" ) ->Optional[Any]: lowercase = self.image_processing_class(**self.image_processor_dict ) # prepare image and target lowercase = self.image_processing_tester.num_labels lowercase = None lowercase = None lowercase = prepare_image_inputs(self.image_processing_tester , equal_resolution=lowerCAmelCase__ ) if with_segmentation_maps: lowercase = num_labels if is_instance_map: lowercase = list(range(lowerCAmelCase__ ) ) * 2 lowercase = dict(enumerate(lowerCAmelCase__ ) ) lowercase = [ np.random.randint(0 , high * 2 , (img.size[1], img.size[0]) ).astype(np.uinta ) for img in image_inputs ] if segmentation_type == "pil": lowercase = [Image.fromarray(lowerCAmelCase__ ) for annotation in annotations] lowercase = image_processor( lowerCAmelCase__ , ["semantic"] * len(lowerCAmelCase__ ) , lowerCAmelCase__ , return_tensors="pt" , instance_id_to_semantic_id=lowerCAmelCase__ , pad_and_return_pixel_mask=lowerCAmelCase__ , ) return inputs def SCREAMING_SNAKE_CASE( self :Optional[Any] ) ->List[str]: pass def SCREAMING_SNAKE_CASE( self :List[Any] ) ->Optional[Any]: def common(lowerCAmelCase__ :str=False , lowerCAmelCase__ :Dict=None ): lowercase = self.comm_get_image_processor_inputs( with_segmentation_maps=lowerCAmelCase__ , is_instance_map=lowerCAmelCase__ , segmentation_type=lowerCAmelCase__ ) lowercase = inputs["mask_labels"] lowercase = inputs["class_labels"] lowercase = inputs["pixel_values"] lowercase = inputs["text_inputs"] # check the batch_size for mask_label, class_label, text_input in zip(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): self.assertEqual(mask_label.shape[0] , class_label.shape[0] ) # this ensure padding has happened self.assertEqual(mask_label.shape[1:] , pixel_values.shape[2:] ) self.assertEqual(len(lowerCAmelCase__ ) , self.image_processing_tester.num_text ) common() common(is_instance_map=lowerCAmelCase__ ) common(is_instance_map=lowerCAmelCase__ , segmentation_type="pil" ) common(is_instance_map=lowerCAmelCase__ , segmentation_type="pil" ) def SCREAMING_SNAKE_CASE( self :Dict ) ->Union[str, Any]: lowercase = np.zeros((20, 50) ) lowercase = 1 lowercase = 1 lowercase = 1 lowercase = binary_mask_to_rle(lowerCAmelCase__ ) self.assertEqual(len(lowerCAmelCase__ ) , 4 ) self.assertEqual(rle[0] , 21 ) self.assertEqual(rle[1] , 45 ) def SCREAMING_SNAKE_CASE( self :Union[str, Any] ) ->List[Any]: lowercase = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="ade20k_panoptic.json" , num_text=self.image_processing_tester.num_text , repo_path="shi-labs/oneformer_demo" , ) lowercase = self.image_processing_tester.get_fake_oneformer_outputs() lowercase = fature_extractor.post_process_semantic_segmentation(lowerCAmelCase__ ) self.assertEqual(len(lowerCAmelCase__ ) , self.image_processing_tester.batch_size ) self.assertEqual( segmentation[0].shape , ( self.image_processing_tester.height, self.image_processing_tester.width, ) , ) lowercase = [(1, 4) for i in range(self.image_processing_tester.batch_size )] lowercase = fature_extractor.post_process_semantic_segmentation(lowerCAmelCase__ , target_sizes=lowerCAmelCase__ ) self.assertEqual(segmentation[0].shape , target_sizes[0] ) def SCREAMING_SNAKE_CASE( self :Tuple ) ->Union[str, Any]: lowercase = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="ade20k_panoptic.json" , num_text=self.image_processing_tester.num_text , repo_path="shi-labs/oneformer_demo" , ) lowercase = self.image_processing_tester.get_fake_oneformer_outputs() lowercase = image_processor.post_process_instance_segmentation(lowerCAmelCase__ , threshold=0 ) self.assertTrue(len(lowerCAmelCase__ ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue("segmentation" in el ) self.assertTrue("segments_info" in el ) self.assertEqual(type(el["segments_info"] ) , lowerCAmelCase__ ) self.assertEqual( el["segmentation"].shape , (self.image_processing_tester.height, self.image_processing_tester.width) ) def SCREAMING_SNAKE_CASE( self :str ) ->Optional[Any]: lowercase = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="ade20k_panoptic.json" , num_text=self.image_processing_tester.num_text , repo_path="shi-labs/oneformer_demo" , ) lowercase = self.image_processing_tester.get_fake_oneformer_outputs() lowercase = image_processor.post_process_panoptic_segmentation(lowerCAmelCase__ , threshold=0 ) self.assertTrue(len(lowerCAmelCase__ ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue("segmentation" in el ) self.assertTrue("segments_info" in el ) self.assertEqual(type(el["segments_info"] ) , lowerCAmelCase__ ) self.assertEqual( el["segmentation"].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
441
import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class UpperCamelCase_ ( __a ): '''simple docstring''' def SCREAMING_SNAKE_CASE( self :Tuple ) ->Optional[int]: lowercase = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(lowerCAmelCase__ , "tf_padding" ) ) self.parent.assertTrue(hasattr(lowerCAmelCase__ , "depth_multiplier" ) ) class UpperCamelCase_ : '''simple docstring''' def __init__( self :Dict , lowerCAmelCase__ :Any , lowerCAmelCase__ :Union[str, Any]=13 , lowerCAmelCase__ :Tuple=3 , lowerCAmelCase__ :Optional[int]=32 , lowerCAmelCase__ :Any=0.25 , lowerCAmelCase__ :Dict=8 , lowerCAmelCase__ :Optional[int]=8 , lowerCAmelCase__ :List[str]=6 , lowerCAmelCase__ :List[Any]=32 , lowerCAmelCase__ :Optional[Any]=True , lowerCAmelCase__ :str=True , lowerCAmelCase__ :Optional[int]=True , lowerCAmelCase__ :Dict="relu6" , lowerCAmelCase__ :Tuple=1280 , lowerCAmelCase__ :Dict=0.1 , lowerCAmelCase__ :List[str]=0.02 , lowerCAmelCase__ :Dict=True , lowerCAmelCase__ :List[Any]=True , lowerCAmelCase__ :Tuple=10 , lowerCAmelCase__ :int=None , ) ->List[str]: lowercase = parent lowercase = batch_size lowercase = num_channels lowercase = image_size lowercase = depth_multiplier lowercase = depth_divisible_by lowercase = min_depth lowercase = expand_ratio lowercase = tf_padding lowercase = output_stride lowercase = first_layer_is_expansion lowercase = finegrained_output lowercase = hidden_act lowercase = last_hidden_size if finegrained_output else int(last_hidden_size * depth_multiplier ) lowercase = classifier_dropout_prob lowercase = use_labels lowercase = is_training lowercase = num_labels lowercase = initializer_range lowercase = scope def SCREAMING_SNAKE_CASE( self :str ) ->Dict: lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase = None lowercase = None if self.use_labels: lowercase = ids_tensor([self.batch_size] , self.num_labels ) lowercase = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) lowercase = self.get_config() return config, pixel_values, labels, pixel_labels def SCREAMING_SNAKE_CASE( self :Optional[int] ) ->List[Any]: return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , depth_divisible_by=self.depth_divisible_by , min_depth=self.min_depth , expand_ratio=self.expand_ratio , output_stride=self.output_stride , first_layer_is_expansion=self.first_layer_is_expansion , finegrained_output=self.finegrained_output , hidden_act=self.hidden_act , tf_padding=self.tf_padding , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE( self :Dict , lowerCAmelCase__ :Dict , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Tuple ) ->Any: lowercase = MobileNetVaModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() lowercase = model(lowerCAmelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) self.parent.assertEqual( result.pooler_output.shape , (self.batch_size, self.last_hidden_size) , ) def SCREAMING_SNAKE_CASE( self :Tuple , lowerCAmelCase__ :int , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :str , lowerCAmelCase__ :Optional[Any] ) ->Union[str, Any]: lowercase = self.num_labels lowercase = MobileNetVaForImageClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() lowercase = model(lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE( self :Tuple , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :Any , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Optional[int] ) ->Union[str, Any]: lowercase = self.num_labels lowercase = MobileNetVaForSemanticSegmentation(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() lowercase = model(lowerCAmelCase__ ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) lowercase = model(lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def SCREAMING_SNAKE_CASE( self :Any ) ->int: lowercase = self.prepare_config_and_inputs() lowercase , lowercase , lowercase , lowercase = config_and_inputs lowercase = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class UpperCamelCase_ ( __a , __a , unittest.TestCase ): '''simple docstring''' UpperCamelCase : Optional[int] = ( (MobileNetVaModel, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation) if is_torch_available() else () ) UpperCamelCase : List[Any] = ( { '''feature-extraction''': MobileNetVaModel, '''image-classification''': MobileNetVaForImageClassification, '''image-segmentation''': MobileNetVaForSemanticSegmentation, } if is_torch_available() else {} ) UpperCamelCase : Union[str, Any] = False UpperCamelCase : int = False UpperCamelCase : str = False UpperCamelCase : Dict = False def SCREAMING_SNAKE_CASE( self :Optional[int] ) ->Dict: lowercase = MobileNetVaModelTester(self ) lowercase = MobileNetVaConfigTester(self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE( self :Dict ) ->Any: self.config_tester.run_common_tests() @unittest.skip(reason="MobileNetV2 does not use inputs_embeds" ) def SCREAMING_SNAKE_CASE( self :Tuple ) ->Optional[int]: pass @unittest.skip(reason="MobileNetV2 does not support input and output embeddings" ) def SCREAMING_SNAKE_CASE( self :Any ) ->str: pass @unittest.skip(reason="MobileNetV2 does not output attentions" ) def SCREAMING_SNAKE_CASE( self :List[Any] ) ->str: pass def SCREAMING_SNAKE_CASE( self :Union[str, Any] ) ->Dict: lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase = model_class(lowerCAmelCase__ ) lowercase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase = [*signature.parameters.keys()] lowercase = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE( self :int ) ->List[str]: lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE( self :int ) ->Optional[int]: def check_hidden_states_output(lowerCAmelCase__ :str , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :int ): lowercase = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): lowercase = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) lowercase = outputs.hidden_states lowercase = 16 self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ ) lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE( self :Any ) ->Tuple: lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE( self :int ) ->str: lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*lowerCAmelCase__ ) @slow def SCREAMING_SNAKE_CASE( self :Union[str, Any] ) ->str: for model_name in MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase = MobileNetVaModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) def __snake_case ( ): '''simple docstring''' lowercase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def SCREAMING_SNAKE_CASE( self :str ) ->Any: return ( MobileNetVaImageProcessor.from_pretrained("google/mobilenet_v2_1.0_224" ) if is_vision_available() else None ) @slow def SCREAMING_SNAKE_CASE( self :Tuple ) ->Union[str, Any]: lowercase = MobileNetVaForImageClassification.from_pretrained("google/mobilenet_v2_1.0_224" ).to(lowerCAmelCase__ ) lowercase = self.default_image_processor lowercase = prepare_img() lowercase = image_processor(images=lowerCAmelCase__ , return_tensors="pt" ).to(lowerCAmelCase__ ) # forward pass with torch.no_grad(): lowercase = model(**lowerCAmelCase__ ) # verify the logits lowercase = torch.Size((1, 1001) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase__ ) lowercase = torch.tensor([0.24_45, -1.19_93, 0.19_05] ).to(lowerCAmelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1E-4 ) ) @slow def SCREAMING_SNAKE_CASE( self :Tuple ) ->List[Any]: lowercase = MobileNetVaForSemanticSegmentation.from_pretrained("google/deeplabv3_mobilenet_v2_1.0_513" ) lowercase = model.to(lowerCAmelCase__ ) lowercase = MobileNetVaImageProcessor.from_pretrained("google/deeplabv3_mobilenet_v2_1.0_513" ) lowercase = prepare_img() lowercase = image_processor(images=lowerCAmelCase__ , return_tensors="pt" ).to(lowerCAmelCase__ ) # forward pass with torch.no_grad(): lowercase = model(**lowerCAmelCase__ ) lowercase = outputs.logits # verify the logits lowercase = torch.Size((1, 21, 65, 65) ) self.assertEqual(logits.shape , lowerCAmelCase__ ) lowercase = torch.tensor( [ [[17.57_90, 17.75_81, 18.33_55], [18.32_57, 18.42_30, 18.89_73], [18.61_69, 18.86_50, 19.21_87]], [[-2.15_95, -2.09_77, -2.37_41], [-2.42_26, -2.30_28, -2.68_35], [-2.78_19, -2.59_91, -2.77_06]], [[4.20_58, 4.83_17, 4.76_38], [4.41_36, 5.03_61, 4.93_83], [4.50_28, 4.96_44, 4.87_34]], ] , device=lowerCAmelCase__ , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , lowerCAmelCase__ , atol=1E-4 ) )
441
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) A_ = { 'configuration_blenderbot_small': [ 'BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BlenderbotSmallConfig', 'BlenderbotSmallOnnxConfig', ], 'tokenization_blenderbot_small': ['BlenderbotSmallTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = ['BlenderbotSmallTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ 'BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST', 'BlenderbotSmallForCausalLM', 'BlenderbotSmallForConditionalGeneration', 'BlenderbotSmallModel', 'BlenderbotSmallPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ 'TFBlenderbotSmallForConditionalGeneration', 'TFBlenderbotSmallModel', 'TFBlenderbotSmallPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ 'FlaxBlenderbotSmallForConditionalGeneration', 'FlaxBlenderbotSmallModel', 'FlaxBlenderbotSmallPreTrainedModel', ] if TYPE_CHECKING: from .configuration_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotSmallConfig, BlenderbotSmallOnnxConfig, ) from .tokenization_blenderbot_small import BlenderbotSmallTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_small_fast import BlenderbotSmallTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotSmallForCausalLM, BlenderbotSmallForConditionalGeneration, BlenderbotSmallModel, BlenderbotSmallPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot_small import ( TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel, TFBlenderbotSmallPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, FlaxBlenderbotSmallPreTrainedModel, ) else: import sys A_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
721
import io import itertools import json from dataclasses import dataclass from typing import Optional import pyarrow as pa import pyarrow.json as paj import datasets from datasets.table import table_cast from datasets.utils.file_utils import readline A_ : Tuple = datasets.utils.logging.get_logger(__name__) @dataclass class _a (datasets.BuilderConfig ): '''simple docstring''' UpperCAmelCase__: Optional[datasets.Features] = None UpperCAmelCase__: str = "utf-8" UpperCAmelCase__: Optional[str] = None UpperCAmelCase__: Optional[str] = None UpperCAmelCase__: bool = True # deprecated UpperCAmelCase__: Optional[int] = None # deprecated UpperCAmelCase__: int = 10 << 20 # 10MB UpperCAmelCase__: Optional[bool] = None class _a (datasets.ArrowBasedBuilder ): '''simple docstring''' UpperCAmelCase__: List[str] = JsonConfig def __A ( self ): if self.config.block_size is not None: logger.warning("""The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead""" ) A__ : Union[str, Any] = self.config.block_size if self.config.use_threads is not True: logger.warning( """The JSON loader parameter `use_threads` is deprecated and doesn't have any effect anymore.""" ) if self.config.newlines_in_values is not None: raise ValueError("""The JSON loader parameter `newlines_in_values` is no longer supported""" ) return datasets.DatasetInfo(features=self.config.features ) def __A ( self , A__ ): if not self.config.data_files: raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) A__ : int = dl_manager.download_and_extract(self.config.data_files ) if isinstance(A__ , (str, list, tuple) ): A__ : Optional[Any] = data_files if isinstance(A__ , A__ ): A__ : List[str] = [files] A__ : int = [dl_manager.iter_files(A__ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files} )] A__ : List[str] = [] for split_name, files in data_files.items(): if isinstance(A__ , A__ ): A__ : Optional[int] = [files] A__ : Optional[int] = [dl_manager.iter_files(A__ ) for file in files] splits.append(datasets.SplitGenerator(name=A__ , gen_kwargs={"""files""": files} ) ) return splits def __A ( self , A__ ): if self.config.features is not None: # adding missing columns for column_name in set(self.config.features ) - set(pa_table.column_names ): A__ : Optional[Any] = self.config.features.arrow_schema.field(A__ ).type A__ : str = pa_table.append_column(A__ , pa.array([None] * len(A__ ) , type=A__ ) ) # more expensive cast to support nested structures with keys in a different order # allows str <-> int/float or str to Audio for example A__ : Optional[int] = table_cast(A__ , self.config.features.arrow_schema ) return pa_table def __A ( self , A__ ): for file_idx, file in enumerate(itertools.chain.from_iterable(A__ ) ): # If the file is one json object and if we need to look at the list of items in one specific field if self.config.field is not None: with open(A__ , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: A__ : Optional[Any] = json.load(A__ ) # We keep only the field we are interested in A__ : Optional[int] = dataset[self.config.field] # We accept two format: a list of dicts or a dict of lists if isinstance(A__ , (list, tuple) ): A__ : Union[str, Any] = set().union(*[row.keys() for row in dataset] ) A__ : Any = {col: [row.get(A__ ) for row in dataset] for col in keys} else: A__ : Any = dataset A__ : Any = pa.Table.from_pydict(A__ ) yield file_idx, self._cast_table(A__ ) # If the file has one json object per line else: with open(A__ , """rb""" ) as f: A__ : List[str] = 0 # Use block_size equal to the chunk size divided by 32 to leverage multithreading # Set a default minimum value of 16kB if the chunk size is really small A__ : List[str] = max(self.config.chunksize // 32 , 16 << 10 ) A__ : Any = ( self.config.encoding_errors if self.config.encoding_errors is not None else """strict""" ) while True: A__ : Dict = f.read(self.config.chunksize ) if not batch: break # Finish current line try: batch += f.readline() except (AttributeError, io.UnsupportedOperation): batch += readline(A__ ) # PyArrow only accepts utf-8 encoded bytes if self.config.encoding != "utf-8": A__ : List[Any] = batch.decode(self.config.encoding , errors=A__ ).encode("""utf-8""" ) try: while True: try: A__ : str = paj.read_json( io.BytesIO(A__ ) , read_options=paj.ReadOptions(block_size=A__ ) ) break except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e: if ( isinstance(A__ , pa.ArrowInvalid ) and "straddling" not in str(A__ ) or block_size > len(A__ ) ): raise else: # Increase the block size in case it was too small. # The block size will be reset for the next file. logger.debug( F"""Batch of {len(A__ )} bytes couldn't be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.""" ) block_size *= 2 except pa.ArrowInvalid as e: try: with open( A__ , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: A__ : Optional[Any] = json.load(A__ ) except json.JSONDecodeError: logger.error(F"""Failed to read file '{file}' with error {type(A__ )}: {e}""" ) raise e # If possible, parse the file as a list of json objects and exit the loop if isinstance(A__ , A__ ): # list is the only sequence type supported in JSON try: A__ : str = set().union(*[row.keys() for row in dataset] ) A__ : List[str] = {col: [row.get(A__ ) for row in dataset] for col in keys} A__ : int = pa.Table.from_pydict(A__ ) except (pa.ArrowInvalid, AttributeError) as e: logger.error(F"""Failed to read file '{file}' with error {type(A__ )}: {e}""" ) raise ValueError(F"""Not able to read records in the JSON file at {file}.""" ) from None yield file_idx, self._cast_table(A__ ) break else: logger.error(F"""Failed to read file '{file}' with error {type(A__ )}: {e}""" ) raise ValueError( F"""Not able to read records in the JSON file at {file}. """ F"""You should probably indicate the field of the JSON file containing your records. """ F"""This JSON file contain the following fields: {str(list(dataset.keys() ) )}. """ F"""Select the correct one and provide it as `field='XXX'` to the dataset loading method. """ ) from None # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(A__ ) batch_idx += 1
64
0
import unittest from knapsack import greedy_knapsack as kp class __snake_case (unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Any: '''simple docstring''' _lowerCAmelCase : Optional[Any] = [10, 20, 30, 40, 50, 60] _lowerCAmelCase : List[str] = [2, 4, 6, 8, 10, 12] _lowerCAmelCase : int = 100 self.assertEqual(kp.calc_profit(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) , 210 ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Tuple: '''simple docstring''' self.assertRaisesRegex(_UpperCAmelCase , """max_weight must greater than zero.""" ) def SCREAMING_SNAKE_CASE ( self : str ) -> List[str]: '''simple docstring''' self.assertRaisesRegex(_UpperCAmelCase , """Weight can not be negative.""" ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int: '''simple docstring''' self.assertRaisesRegex(_UpperCAmelCase , """Profit can not be negative.""" ) def SCREAMING_SNAKE_CASE ( self : Any ) -> List[str]: '''simple docstring''' self.assertRaisesRegex(_UpperCAmelCase , """max_weight must greater than zero.""" ) def SCREAMING_SNAKE_CASE ( self : Any ) -> List[Any]: '''simple docstring''' self.assertRaisesRegex( _UpperCAmelCase , """The length of profit and weight must be same.""" ) if __name__ == "__main__": unittest.main()
429
import os from collections.abc import Iterator def _UpperCAmelCase (UpperCamelCase_ : str = "." ): '''simple docstring''' for dir_path, dir_names, filenames in os.walk(UpperCamelCase_ ): _lowerCAmelCase : int = [d for d in dir_names if d != """scripts""" and d[0] not in """._"""] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(UpperCamelCase_ )[1] in (".py", ".ipynb"): yield os.path.join(UpperCamelCase_ , UpperCamelCase_ ).lstrip("""./""" ) def _UpperCAmelCase (UpperCamelCase_ : Dict ): '''simple docstring''' return F"{i * ' '}*" if i else "\n##" def _UpperCAmelCase (UpperCamelCase_ : str , UpperCamelCase_ : str ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = old_path.split(os.sep ) for i, new_part in enumerate(new_path.split(os.sep ) ): if (i + 1 > len(UpperCamelCase_ ) or old_parts[i] != new_part) and new_part: print(F"{md_prefix(UpperCamelCase_ )} {new_part.replace('_' , ' ' ).title()}" ) return new_path def _UpperCAmelCase (UpperCamelCase_ : str = "." ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = """""" for filepath in sorted(good_file_paths(UpperCamelCase_ ) ): _lowerCAmelCase , _lowerCAmelCase : Optional[int] = os.path.split(UpperCamelCase_ ) if filepath != old_path: _lowerCAmelCase : Dict = print_path(UpperCamelCase_ , UpperCamelCase_ ) _lowerCAmelCase : Dict = (filepath.count(os.sep ) + 1) if filepath else 0 _lowerCAmelCase : Dict = F"{filepath}/{filename}".replace(""" """ , """%20""" ) _lowerCAmelCase : int = os.path.splitext(filename.replace("""_""" , """ """ ).title() )[0] print(F"{md_prefix(UpperCamelCase_ )} [{filename}]({url})" ) if __name__ == "__main__": print_directory_md(".")
429
1
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ : Any = logging.get_logger(__name__) UpperCAmelCase__ : Dict = { '''uw-madison/mra-base-512-4''': '''https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json''', } class _A( snake_case__ ): """simple docstring""" UpperCamelCase : List[Any] = '''mra''' def __init__( self , _A=50265 , _A=768 , _A=12 , _A=12 , _A=3072 , _A="gelu" , _A=0.1 , _A=0.1 , _A=512 , _A=1 , _A=0.0_2 , _A=1e-5 , _A="absolute" , _A=4 , _A="full" , _A=0 , _A=0 , _A=1 , _A=0 , _A=2 , **_A , ): super().__init__(pad_token_id=_A , bos_token_id=_A , eos_token_id=_A , **_A ) __A : List[str] = vocab_size __A : str = max_position_embeddings __A : Optional[Any] = hidden_size __A : List[Any] = num_hidden_layers __A : str = num_attention_heads __A : Optional[Any] = intermediate_size __A : List[str] = hidden_act __A : List[str] = hidden_dropout_prob __A : Optional[int] = attention_probs_dropout_prob __A : Dict = initializer_range __A : List[str] = type_vocab_size __A : Dict = layer_norm_eps __A : int = position_embedding_type __A : Optional[Any] = block_per_row __A : int = approx_mode __A : str = initial_prior_first_n_blocks __A : Tuple = initial_prior_diagonal_n_blocks
710
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bert import BertTokenizer UpperCAmelCase : List[str] = logging.get_logger(__name__) UpperCAmelCase : int = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} UpperCAmelCase : Any = { '''vocab_file''': { '''bert-base-uncased''': '''https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt''', '''bert-large-uncased''': '''https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt''', '''bert-base-cased''': '''https://huggingface.co/bert-base-cased/resolve/main/vocab.txt''', '''bert-large-cased''': '''https://huggingface.co/bert-large-cased/resolve/main/vocab.txt''', '''bert-base-multilingual-uncased''': ( '''https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt''' ), '''bert-base-multilingual-cased''': '''https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt''', '''bert-base-chinese''': '''https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt''', '''bert-base-german-cased''': '''https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt''', '''bert-large-uncased-whole-word-masking''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt''' ), '''bert-large-cased-whole-word-masking''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt''' ), '''bert-large-uncased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt''' ), '''bert-large-cased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt''' ), '''bert-base-cased-finetuned-mrpc''': ( '''https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt''' ), '''bert-base-german-dbmdz-cased''': '''https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt''', '''bert-base-german-dbmdz-uncased''': ( '''https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt''' ), '''TurkuNLP/bert-base-finnish-cased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt''' ), '''TurkuNLP/bert-base-finnish-uncased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt''' ), '''wietsedv/bert-base-dutch-cased''': ( '''https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''bert-base-uncased''': '''https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json''', '''bert-large-uncased''': '''https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json''', '''bert-base-cased''': '''https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json''', '''bert-large-cased''': '''https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json''', '''bert-base-multilingual-uncased''': ( '''https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json''' ), '''bert-base-multilingual-cased''': ( '''https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json''' ), '''bert-base-chinese''': '''https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json''', '''bert-base-german-cased''': '''https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json''', '''bert-large-uncased-whole-word-masking''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json''' ), '''bert-large-cased-whole-word-masking''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json''' ), '''bert-large-uncased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json''' ), '''bert-large-cased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json''' ), '''bert-base-cased-finetuned-mrpc''': ( '''https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json''' ), '''bert-base-german-dbmdz-cased''': ( '''https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json''' ), '''bert-base-german-dbmdz-uncased''': ( '''https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json''' ), '''TurkuNLP/bert-base-finnish-cased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json''' ), '''TurkuNLP/bert-base-finnish-uncased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json''' ), '''wietsedv/bert-base-dutch-cased''': ( '''https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json''' ), }, } UpperCAmelCase : Optional[int] = { '''bert-base-uncased''': 5_12, '''bert-large-uncased''': 5_12, '''bert-base-cased''': 5_12, '''bert-large-cased''': 5_12, '''bert-base-multilingual-uncased''': 5_12, '''bert-base-multilingual-cased''': 5_12, '''bert-base-chinese''': 5_12, '''bert-base-german-cased''': 5_12, '''bert-large-uncased-whole-word-masking''': 5_12, '''bert-large-cased-whole-word-masking''': 5_12, '''bert-large-uncased-whole-word-masking-finetuned-squad''': 5_12, '''bert-large-cased-whole-word-masking-finetuned-squad''': 5_12, '''bert-base-cased-finetuned-mrpc''': 5_12, '''bert-base-german-dbmdz-cased''': 5_12, '''bert-base-german-dbmdz-uncased''': 5_12, '''TurkuNLP/bert-base-finnish-cased-v1''': 5_12, '''TurkuNLP/bert-base-finnish-uncased-v1''': 5_12, '''wietsedv/bert-base-dutch-cased''': 5_12, } UpperCAmelCase : List[Any] = { '''bert-base-uncased''': {'''do_lower_case''': True}, '''bert-large-uncased''': {'''do_lower_case''': True}, '''bert-base-cased''': {'''do_lower_case''': False}, '''bert-large-cased''': {'''do_lower_case''': False}, '''bert-base-multilingual-uncased''': {'''do_lower_case''': True}, '''bert-base-multilingual-cased''': {'''do_lower_case''': False}, '''bert-base-chinese''': {'''do_lower_case''': False}, '''bert-base-german-cased''': {'''do_lower_case''': False}, '''bert-large-uncased-whole-word-masking''': {'''do_lower_case''': True}, '''bert-large-cased-whole-word-masking''': {'''do_lower_case''': False}, '''bert-large-uncased-whole-word-masking-finetuned-squad''': {'''do_lower_case''': True}, '''bert-large-cased-whole-word-masking-finetuned-squad''': {'''do_lower_case''': False}, '''bert-base-cased-finetuned-mrpc''': {'''do_lower_case''': False}, '''bert-base-german-dbmdz-cased''': {'''do_lower_case''': False}, '''bert-base-german-dbmdz-uncased''': {'''do_lower_case''': True}, '''TurkuNLP/bert-base-finnish-cased-v1''': {'''do_lower_case''': False}, '''TurkuNLP/bert-base-finnish-uncased-v1''': {'''do_lower_case''': True}, '''wietsedv/bert-base-dutch-cased''': {'''do_lower_case''': False}, } class _A( snake_case__ ): """simple docstring""" UpperCamelCase : List[str] = VOCAB_FILES_NAMES UpperCamelCase : Any = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase : Dict = PRETRAINED_INIT_CONFIGURATION UpperCamelCase : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase : List[str] = BertTokenizer def __init__( self , _A=None , _A=None , _A=True , _A="[UNK]" , _A="[SEP]" , _A="[PAD]" , _A="[CLS]" , _A="[MASK]" , _A=True , _A=None , **_A , ): super().__init__( _A , tokenizer_file=_A , do_lower_case=_A , unk_token=_A , sep_token=_A , pad_token=_A , cls_token=_A , mask_token=_A , tokenize_chinese_chars=_A , strip_accents=_A , **_A , ) __A : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , _A ) != do_lower_case or normalizer_state.get('strip_accents' , _A ) != strip_accents or normalizer_state.get('handle_chinese_chars' , _A ) != tokenize_chinese_chars ): __A : Any = getattr(_A , normalizer_state.pop('type' ) ) __A : Union[str, Any] = do_lower_case __A : Optional[int] = strip_accents __A : List[Any] = tokenize_chinese_chars __A : int = normalizer_class(**_A ) __A : Union[str, Any] = do_lower_case def UpperCAmelCase_ ( self , _A , _A=None ): __A : Tuple = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCAmelCase_ ( self , _A , _A = None ): __A : Optional[Any] = [self.sep_token_id] __A : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase_ ( self , _A , _A = None ): __A : int = self._tokenizer.model.save(_A , name=_A ) return tuple(_A )
77
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE__ = { '''configuration_time_series_transformer''': [ '''TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TimeSeriesTransformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ '''TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TimeSeriesTransformerForPrediction''', '''TimeSeriesTransformerModel''', '''TimeSeriesTransformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
47
"""simple docstring""" from math import sqrt def snake_case ( lowerCAmelCase_ = 1000000 ) -> int: _snake_case = 0 _snake_case = 0 _snake_case = 42 while num_cuboids <= limit: max_cuboid_size += 1 for sum_shortest_sides in range(2 , 2 * max_cuboid_size + 1 ): if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer(): num_cuboids += ( min(lowerCAmelCase_ , sum_shortest_sides // 2 ) - max(1 , sum_shortest_sides - max_cuboid_size ) + 1 ) return max_cuboid_size if __name__ == "__main__": print(F"{solution() = }")
103
0
import json import os import tempfile from unittest.mock import patch import torch from torch.utils.data import DataLoader, TensorDataset from accelerate import DistributedType, infer_auto_device_map, init_empty_weights from accelerate.accelerator import Accelerator from accelerate.state import GradientState, PartialState from accelerate.test_utils import require_bnb, require_multi_gpu, slow from accelerate.test_utils.testing import AccelerateTestCase, require_cuda from accelerate.utils import patch_environment def _lowerCAmelCase ( ) -> List[str]: lowerCAmelCase_ : Union[str, Any] = torch.nn.Linear(2 , 4 ) lowerCAmelCase_ : Optional[Any] = torch.optim.AdamW(model.parameters() , lr=1.0 ) lowerCAmelCase_ : int = torch.optim.lr_scheduler.OneCycleLR(_a , max_lr=0.01 , steps_per_epoch=2 , epochs=1 ) lowerCAmelCase_ : str = DataLoader(TensorDataset(torch.tensor([1, 2, 3] ) ) ) lowerCAmelCase_ : Dict = DataLoader(TensorDataset(torch.tensor([4, 5, 6] ) ) ) return model, optimizer, scheduler, train_dl, valid_dl def _lowerCAmelCase ( _a : Any ) -> Tuple: return (model.weight.abs().sum() + model.bias.abs().sum()).item() def _lowerCAmelCase ( _a : Optional[int] ) -> Any: lowerCAmelCase_ : Optional[Any] = torch.nn.Linear(*tuple(model.weight.T.shape ) ).state_dict() model.load_state_dict(_a ) class lowercase__ ( __A ): @require_cuda def UpperCAmelCase__ ( self ): lowerCAmelCase_ : List[Any] = Accelerator() assert PartialState._shared_state["_cpu"] is False assert PartialState._shared_state["device"].type == "cuda" with self.assertRaises(_lowercase ): lowerCAmelCase_ : Union[str, Any] = Accelerator(cpu=_lowercase ) def UpperCAmelCase__ ( self ): lowerCAmelCase_ : List[Any] = Accelerator() lowerCAmelCase_ : int = GradientState() assert state.num_steps == 1 lowerCAmelCase_ : Dict = 4 assert state.num_steps == 4 assert state.sync_gradients is True lowerCAmelCase_ : str = False assert state.sync_gradients is False GradientState._reset_state() def UpperCAmelCase__ ( self ): lowerCAmelCase_ : Optional[Any] = Accelerator() lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Optional[Any] = create_components() ( ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ) : Optional[Any] = accelerator.prepare(_lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) self.assertTrue(prepared_model in accelerator._models ) self.assertTrue(prepared_optimizer in accelerator._optimizers ) self.assertTrue(prepared_scheduler in accelerator._schedulers ) self.assertTrue(prepared_train_dl in accelerator._dataloaders ) self.assertTrue(prepared_valid_dl in accelerator._dataloaders ) def UpperCAmelCase__ ( self ): lowerCAmelCase_ : Union[str, Any] = Accelerator() lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Tuple = create_components() accelerator.prepare(_lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) accelerator.free_memory() self.assertTrue(len(accelerator._models ) == 0 ) self.assertTrue(len(accelerator._optimizers ) == 0 ) self.assertTrue(len(accelerator._schedulers ) == 0 ) self.assertTrue(len(accelerator._dataloaders ) == 0 ) def UpperCAmelCase__ ( self ): PartialState._reset_state() # Mock torch.cuda.set_device to avoid an exception as the device doesn't exist def noop(*_lowercase , **_lowercase ): pass with patch("""torch.cuda.set_device""" , _lowercase ), patch_environment(ACCELERATE_TORCH_DEVICE="""cuda:64""" ): lowerCAmelCase_ : List[str] = Accelerator() self.assertEqual(str(accelerator.state.device ) , """cuda:64""" ) def UpperCAmelCase__ ( self ): lowerCAmelCase_ : Dict = Accelerator() lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : str = create_components() accelerator.prepare(_lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) lowerCAmelCase_ : List[Any] = get_signature(_lowercase ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(_lowercase ) # make sure random weights don't match load_random_weights(_lowercase ) self.assertTrue(abs(model_signature - get_signature(_lowercase ) ) > 1e-3 ) # make sure loaded weights match accelerator.load_state(_lowercase ) self.assertTrue(abs(model_signature - get_signature(_lowercase ) ) < 1e-3 ) def UpperCAmelCase__ ( self ): lowerCAmelCase_ : Tuple = Accelerator() lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Any = create_components() accelerator.prepare(_lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) lowerCAmelCase_ : Tuple = get_signature(_lowercase ) # saving hook def save_config(_lowercase , _lowercase , _lowercase ): lowerCAmelCase_ : int = {"""class_name""": models[0].__class__.__name__} with open(os.path.join(_lowercase , """data.json""" ) , """w""" ) as f: json.dump(_lowercase , _lowercase ) # loading hook def load_config(_lowercase , _lowercase ): with open(os.path.join(_lowercase , """data.json""" ) , """r""" ) as f: lowerCAmelCase_ : Dict = json.load(_lowercase ) lowerCAmelCase_ : Dict = config["""class_name"""] lowerCAmelCase_ : Optional[Any] = accelerator.register_save_state_pre_hook(_lowercase ) lowerCAmelCase_ : Tuple = accelerator.register_load_state_pre_hook(_lowercase ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(_lowercase ) # make sure random weights don't match with hooks load_random_weights(_lowercase ) self.assertTrue(abs(model_signature - get_signature(_lowercase ) ) > 1e-3 ) # random class name to verify correct one is loaded lowerCAmelCase_ : List[str] = """random""" # make sure loaded weights match with hooks accelerator.load_state(_lowercase ) self.assertTrue(abs(model_signature - get_signature(_lowercase ) ) < 1e-3 ) # mode.class_name is loaded from config self.assertTrue(model.class_name == model.__class__.__name__ ) # remove hooks save_hook.remove() load_hook.remove() with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(_lowercase ) # make sure random weights don't match with hooks removed load_random_weights(_lowercase ) self.assertTrue(abs(model_signature - get_signature(_lowercase ) ) > 1e-3 ) # random class name to verify correct one is loaded lowerCAmelCase_ : Dict = """random""" # make sure loaded weights match with hooks removed accelerator.load_state(_lowercase ) self.assertTrue(abs(model_signature - get_signature(_lowercase ) ) < 1e-3 ) # mode.class_name is NOT loaded from config self.assertTrue(model.class_name != model.__class__.__name__ ) def UpperCAmelCase__ ( self ): lowerCAmelCase_ : List[str] = Accelerator() lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : str = create_components() lowerCAmelCase_ : Tuple = None # This should work lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : List[str] = accelerator.prepare( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) self.assertTrue(dummy_obj is None ) def UpperCAmelCase__ ( self ): lowerCAmelCase_ : Any = Accelerator() lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Optional[Any] = create_components() lowerCAmelCase_ : int = [1, 2, 3] # This should work lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Tuple = accelerator.prepare( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) self.assertEqual( getattr(_lowercase , """_is_accelerate_prepared""" , _lowercase ) , _lowercase , """Dummy object should have `_is_accelerate_prepared` set to `True`""" , ) self.assertEqual( getattr(_lowercase , """_is_accelerate_prepared""" , _lowercase ) , _lowercase , """Model is missing `_is_accelerator_prepared` or is set to `False`""" , ) self.assertEqual( getattr(_lowercase , """_is_accelerate_prepared""" , _lowercase ) , _lowercase , """Optimizer is missing `_is_accelerator_prepared` or is set to `False`""" , ) self.assertEqual( getattr(_lowercase , """_is_accelerate_prepared""" , _lowercase ) , _lowercase , """Scheduler is missing `_is_accelerator_prepared` or is set to `False`""" , ) self.assertEqual( getattr(_lowercase , """_is_accelerate_prepared""" , _lowercase ) , _lowercase , """Train Dataloader is missing `_is_accelerator_prepared` or is set to `False`""" , ) self.assertEqual( getattr(_lowercase , """_is_accelerate_prepared""" , _lowercase ) , _lowercase , """Valid Dataloader is missing `_is_accelerator_prepared` or is set to `False`""" , ) @slow @require_bnb def UpperCAmelCase__ ( self ): from transformers import AutoModelForCausalLM lowerCAmelCase_ : str = AutoModelForCausalLM.from_pretrained( """EleutherAI/gpt-neo-125m""" , load_in_abit=_lowercase , device_map={"""""": 0} , ) lowerCAmelCase_ : Optional[int] = Accelerator() # This should work lowerCAmelCase_ : List[Any] = accelerator.prepare(_lowercase ) @slow @require_bnb def UpperCAmelCase__ ( self ): from transformers import AutoModelForCausalLM lowerCAmelCase_ : Optional[int] = Accelerator() with init_empty_weights(): lowerCAmelCase_ : Optional[Any] = AutoModelForCausalLM.from_pretrained( """EleutherAI/gpt-neo-125m""" , ) model.tie_weights() lowerCAmelCase_ : Dict = infer_auto_device_map(_lowercase ) lowerCAmelCase_ : Any = """cpu""" lowerCAmelCase_ : Any = AutoModelForCausalLM.from_pretrained( """EleutherAI/gpt-neo-125m""" , device_map=_lowercase , load_in_abit=_lowercase , llm_inta_enable_fpaa_cpu_offload=_lowercase ) # This should not work and get value error with self.assertRaises(_lowercase ): lowerCAmelCase_ : Optional[Any] = accelerator.prepare(_lowercase ) @slow @require_bnb @require_multi_gpu def UpperCAmelCase__ ( self ): from transformers import AutoModelForCausalLM lowerCAmelCase_ : Any = {"""distributed_type""": DistributedType.MULTI_GPU} with init_empty_weights(): lowerCAmelCase_ : Optional[Any] = AutoModelForCausalLM.from_pretrained( """EleutherAI/gpt-neo-125m""" , ) model.tie_weights() lowerCAmelCase_ : Dict = infer_auto_device_map(_lowercase ) lowerCAmelCase_ : Optional[Any] = 1 lowerCAmelCase_ : List[Any] = AutoModelForCausalLM.from_pretrained( """EleutherAI/gpt-neo-125m""" , load_in_abit=_lowercase , device_map=_lowercase , ) lowerCAmelCase_ : Optional[Any] = Accelerator() # This should not work and get value error with self.assertRaises(_lowercase ): lowerCAmelCase_ : Dict = accelerator.prepare(_lowercase ) PartialState._reset_state() @slow @require_bnb @require_multi_gpu def UpperCAmelCase__ ( self ): from transformers import AutoModelForCausalLM with init_empty_weights(): lowerCAmelCase_ : Optional[int] = AutoModelForCausalLM.from_pretrained( """EleutherAI/gpt-neo-125m""" , ) lowerCAmelCase_ : Any = infer_auto_device_map(_lowercase ) lowerCAmelCase_ : Optional[int] = 1 lowerCAmelCase_ : List[str] = AutoModelForCausalLM.from_pretrained( """EleutherAI/gpt-neo-125m""" , load_in_abit=_lowercase , device_map=_lowercase , ) lowerCAmelCase_ : int = Accelerator() # This should work lowerCAmelCase_ : Union[str, Any] = accelerator.prepare(_lowercase ) @require_cuda def UpperCAmelCase__ ( self ): lowerCAmelCase_ : List[str] = torch.nn.Linear(10 , 10 ) lowerCAmelCase_ : Union[str, Any] = torch.optim.SGD(model.parameters() , lr=0.01 ) lowerCAmelCase_ : List[Any] = Accelerator(cpu=_lowercase ) lowerCAmelCase_ : Union[str, Any] = accelerator.prepare(_lowercase )
440
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices UpperCAmelCase_ : List[str] = logging.get_logger(__name__) UpperCAmelCase_ : int = { """google/bit-50""": """https://huggingface.co/google/bit-50/resolve/main/config.json""", } class lowercase__ ( __A , __A ): __UpperCamelCase = """bit""" __UpperCamelCase = ["""preactivation""", """bottleneck"""] __UpperCamelCase = ["""SAME""", """VALID"""] def __init__( self , _lowercase=3 , _lowercase=64 , _lowercase=[256, 512, 1_024, 2_048] , _lowercase=[3, 4, 6, 3] , _lowercase="preactivation" , _lowercase="relu" , _lowercase=None , _lowercase=32 , _lowercase=0.0 , _lowercase=False , _lowercase=32 , _lowercase=1 , _lowercase=None , _lowercase=None , **_lowercase , ): super().__init__(**_lowercase ) if layer_type not in self.layer_types: raise ValueError(F'layer_type={layer_type} is not one of {",".join(self.layer_types )}' ) if global_padding is not None: if global_padding.upper() in self.supported_padding: lowerCAmelCase_ : int = global_padding.upper() else: raise ValueError(F'Padding strategy {global_padding} not supported' ) lowerCAmelCase_ : Optional[Any] = num_channels lowerCAmelCase_ : List[str] = embedding_size lowerCAmelCase_ : Dict = hidden_sizes lowerCAmelCase_ : Optional[int] = depths lowerCAmelCase_ : List[Any] = layer_type lowerCAmelCase_ : Union[str, Any] = hidden_act lowerCAmelCase_ : Optional[int] = global_padding lowerCAmelCase_ : Optional[Any] = num_groups lowerCAmelCase_ : Optional[Any] = drop_path_rate lowerCAmelCase_ : Tuple = embedding_dynamic_padding lowerCAmelCase_ : Any = output_stride lowerCAmelCase_ : List[Any] = width_factor lowerCAmelCase_ : Union[str, Any] = ["""stem"""] + [F'stage{idx}' for idx in range(1 , len(_lowercase ) + 1 )] lowerCAmelCase_ , lowerCAmelCase_ : Tuple = get_aligned_output_features_output_indices( out_features=_lowercase , out_indices=_lowercase , stage_names=self.stage_names )
440
1
import math snake_case__ = 10 snake_case__ = 7 snake_case__ = BALLS_PER_COLOUR * NUM_COLOURS def lowerCamelCase__ ( a : int = 20 ) -> str: """simple docstring""" a__ :List[str] = math.comb(a , a ) a__ :Optional[int] = math.comb(NUM_BALLS - BALLS_PER_COLOUR , a ) a__ :Union[str, Any] = NUM_COLOURS * (1 - missing_colour / total) return F'''{result:.9f}''' if __name__ == "__main__": print(solution(20))
395
import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class lowerCAmelCase_ : def __init__( self : Any , __A : Optional[int] , __A : Optional[int]=2 , __A : int=3 , __A : Union[str, Any]=4 , __A : Tuple=2 , __A : Union[str, Any]=7 , __A : Any=True , __A : List[str]=True , __A : Tuple=True , __A : Tuple=True , __A : List[str]=99 , __A : Tuple=36 , __A : Union[str, Any]=3 , __A : str=4 , __A : str=37 , __A : int="gelu" , __A : Union[str, Any]=0.1 , __A : str=0.1 , __A : List[Any]=512 , __A : Optional[int]=16 , __A : int=2 , __A : List[Any]=0.02 , __A : Optional[Any]=6 , __A : int=6 , __A : str=3 , __A : Optional[int]=4 , __A : Union[str, Any]=None , __A : Tuple=1000 , ) ->Any: """simple docstring""" a__ :Any = parent a__ :Optional[int] = batch_size a__ :Union[str, Any] = num_channels a__ :Any = image_size a__ :Optional[Any] = patch_size a__ :Optional[Any] = text_seq_length a__ :int = is_training a__ :Tuple = use_input_mask a__ :Any = use_token_type_ids a__ :int = use_labels a__ :str = vocab_size a__ :List[str] = hidden_size a__ :Optional[int] = num_hidden_layers a__ :List[str] = num_attention_heads a__ :List[str] = intermediate_size a__ :int = hidden_act a__ :Optional[Any] = hidden_dropout_prob a__ :Union[str, Any] = attention_probs_dropout_prob a__ :int = max_position_embeddings a__ :Tuple = type_vocab_size a__ :Union[str, Any] = type_sequence_label_size a__ :List[Any] = initializer_range a__ :str = coordinate_size a__ :Union[str, Any] = shape_size a__ :int = num_labels a__ :Optional[int] = num_choices a__ :str = scope a__ :int = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) a__ :str = text_seq_length a__ :Tuple = (image_size // patch_size) ** 2 + 1 a__ :Optional[int] = self.text_seq_length + self.image_seq_length def _snake_case ( self : Optional[Any] ) ->Dict: """simple docstring""" a__ :str = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) a__ :Optional[Any] = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: a__ :Optional[Any] = bbox[i, j, 3] a__ :List[str] = bbox[i, j, 1] a__ :str = t if bbox[i, j, 2] < bbox[i, j, 0]: a__ :Any = bbox[i, j, 2] a__ :int = bbox[i, j, 0] a__ :Optional[Any] = t a__ :int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a__ :List[Any] = None if self.use_input_mask: a__ :str = random_attention_mask([self.batch_size, self.text_seq_length] ) a__ :Optional[Any] = None if self.use_token_type_ids: a__ :str = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) a__ :List[str] = None a__ :List[str] = None if self.use_labels: a__ :str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a__ :List[str] = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) a__ :Tuple = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def _snake_case ( self : Tuple , __A : Any , __A : Union[str, Any] , __A : List[str] , __A : Dict , __A : int , __A : Union[str, Any] , __A : Union[str, Any] , __A : Any ) ->Dict: """simple docstring""" a__ :Optional[int] = LayoutLMvaModel(config=__A ) model.to(__A ) model.eval() # text + image a__ :List[Any] = model(__A , pixel_values=__A ) a__ :int = model( __A , bbox=__A , pixel_values=__A , attention_mask=__A , token_type_ids=__A ) a__ :Union[str, Any] = model(__A , bbox=__A , pixel_values=__A , token_type_ids=__A ) a__ :Optional[Any] = model(__A , bbox=__A , pixel_values=__A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only a__ :Dict = model(__A ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only a__ :Dict = model(pixel_values=__A ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def _snake_case ( self : Tuple , __A : List[str] , __A : str , __A : Union[str, Any] , __A : str , __A : Any , __A : List[Any] , __A : str , __A : Tuple ) ->Tuple: """simple docstring""" a__ :Optional[Any] = self.num_labels a__ :Tuple = LayoutLMvaForSequenceClassification(__A ) model.to(__A ) model.eval() a__ :str = model( __A , bbox=__A , pixel_values=__A , attention_mask=__A , token_type_ids=__A , labels=__A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _snake_case ( self : Optional[int] , __A : str , __A : Tuple , __A : Union[str, Any] , __A : Union[str, Any] , __A : Dict , __A : int , __A : Optional[int] , __A : int ) ->List[str]: """simple docstring""" a__ :Dict = self.num_labels a__ :Dict = LayoutLMvaForTokenClassification(config=__A ) model.to(__A ) model.eval() a__ :Tuple = model( __A , bbox=__A , pixel_values=__A , attention_mask=__A , token_type_ids=__A , labels=__A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def _snake_case ( self : str , __A : Optional[Any] , __A : Optional[Any] , __A : List[str] , __A : Union[str, Any] , __A : int , __A : Optional[int] , __A : Union[str, Any] , __A : str ) ->Dict: """simple docstring""" a__ :List[str] = LayoutLMvaForQuestionAnswering(config=__A ) model.to(__A ) model.eval() a__ :List[str] = model( __A , bbox=__A , pixel_values=__A , attention_mask=__A , token_type_ids=__A , start_positions=__A , end_positions=__A , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _snake_case ( self : List[Any] ) ->Dict: """simple docstring""" a__ :str = self.prepare_config_and_inputs() ( ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ) :str = config_and_inputs a__ :Tuple = { "input_ids": input_ids, "bbox": bbox, "pixel_values": pixel_values, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_torch class lowerCAmelCase_ ( _a ,_a ,unittest.TestCase): lowerCamelCase_ = False lowerCamelCase_ = False lowerCamelCase_ = False lowerCamelCase_ = ( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) lowerCamelCase_ = ( {'document-question-answering': LayoutLMvaForQuestionAnswering, 'feature-extraction': LayoutLMvaModel} if is_torch_available() else {} ) def _snake_case ( self : List[str] , __A : Union[str, Any] , __A : Optional[Any] , __A : Optional[int] , __A : List[str] , __A : Dict ) ->Dict: """simple docstring""" return True def _snake_case ( self : Optional[int] ) ->Optional[Any]: """simple docstring""" a__ :int = LayoutLMvaModelTester(self ) a__ :Union[str, Any] = ConfigTester(self , config_class=__A , hidden_size=37 ) def _snake_case ( self : int , __A : int , __A : List[Any] , __A : Optional[int]=False ) ->Optional[Any]: """simple docstring""" a__ :Union[str, Any] = copy.deepcopy(__A ) if model_class in get_values(__A ): a__ :Dict = { k: v.unsqueeze(1 ).expand(-1 , self.model_tester.num_choices , -1 ).contiguous() if isinstance(__A , torch.Tensor ) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(__A ): a__ :List[str] = torch.ones(self.model_tester.batch_size , dtype=torch.long , device=__A ) elif model_class in get_values(__A ): a__ :int = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__A ) a__ :Any = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__A ) elif model_class in [ *get_values(__A ), ]: a__ :List[str] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__A ) elif model_class in [ *get_values(__A ), ]: a__ :List[Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=torch.long , device=__A , ) return inputs_dict def _snake_case ( self : Optional[Any] ) ->List[Any]: """simple docstring""" self.config_tester.run_common_tests() def _snake_case ( self : List[Any] ) ->List[Any]: """simple docstring""" a__ :Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def _snake_case ( self : int ) ->Optional[Any]: """simple docstring""" a__ :str = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: a__ :List[Any] = type self.model_tester.create_and_check_model(*__A ) def _snake_case ( self : Tuple ) ->str: """simple docstring""" a__ :Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__A ) def _snake_case ( self : List[Any] ) ->List[str]: """simple docstring""" a__ :Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__A ) def _snake_case ( self : Optional[int] ) ->Dict: """simple docstring""" a__ :Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__A ) @slow def _snake_case ( self : Union[str, Any] ) ->str: """simple docstring""" for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a__ :int = LayoutLMvaModel.from_pretrained(__A ) self.assertIsNotNone(__A ) def lowerCamelCase__ ( ) -> Optional[Any]: """simple docstring""" a__ :List[str] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch class lowerCAmelCase_ ( unittest.TestCase): @cached_property def _snake_case ( self : Union[str, Any] ) ->Dict: """simple docstring""" return LayoutLMvaImageProcessor(apply_ocr=__A ) if is_vision_available() else None @slow def _snake_case ( self : List[Any] ) ->Union[str, Any]: """simple docstring""" a__ :Optional[Any] = LayoutLMvaModel.from_pretrained("microsoft/layoutlmv3-base" ).to(__A ) a__ :str = self.default_image_processor a__ :List[str] = prepare_img() a__ :Tuple = image_processor(images=__A , return_tensors="pt" ).pixel_values.to(__A ) a__ :Dict = torch.tensor([[1, 2]] ) a__ :Optional[Any] = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 ) # forward pass a__ :int = model( input_ids=input_ids.to(__A ) , bbox=bbox.to(__A ) , pixel_values=pixel_values.to(__A ) , ) # verify the logits a__ :int = torch.Size((1, 199, 768) ) self.assertEqual(outputs.last_hidden_state.shape , __A ) a__ :Any = torch.tensor( [[-0.0_529, 0.3_618, 0.1_632], [-0.1_587, -0.1_667, -0.0_400], [-0.1_557, -0.1_671, -0.0_505]] ).to(__A ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , __A , atol=1E-4 ) )
395
1
'''simple docstring''' from . import ( albert, align, altclip, audio_spectrogram_transformer, auto, autoformer, bark, bart, barthez, bartpho, beit, bert, bert_generation, bert_japanese, bertweet, big_bird, bigbird_pegasus, biogpt, bit, blenderbot, blenderbot_small, blip, blip_a, bloom, bridgetower, byta, camembert, canine, chinese_clip, clap, clip, clipseg, codegen, conditional_detr, convbert, convnext, convnextva, cpm, cpmant, ctrl, cvt, dataavec, deberta, deberta_va, decision_transformer, deformable_detr, deit, deprecated, deta, detr, dialogpt, dinat, distilbert, dit, donut, dpr, dpt, efficientformer, efficientnet, electra, encodec, encoder_decoder, ernie, ernie_m, esm, falcon, flaubert, flava, fnet, focalnet, fsmt, funnel, git, glpn, gpta, gpt_bigcode, gpt_neo, gpt_neox, gpt_neox_japanese, gpt_swa, gptj, gptsan_japanese, graphormer, groupvit, herbert, hubert, ibert, imagegpt, informer, instructblip, jukebox, layoutlm, layoutlmva, layoutlmva, layoutxlm, led, levit, lilt, llama, longformer, longta, luke, lxmert, mam_aaa, marian, markuplm, maskaformer, maskformer, mbart, mbartaa, mega, megatron_bert, megatron_gpta, mgp_str, mluke, mobilebert, mobilenet_va, mobilenet_va, mobilevit, mobilevitva, mpnet, mra, mta, musicgen, mvp, nat, nezha, nllb, nllb_moe, nystromformer, oneformer, open_llama, openai, opt, owlvit, pegasus, pegasus_x, perceiver, phobert, pixastruct, plbart, poolformer, prophetnet, qdqbert, rag, realm, reformer, regnet, rembert, resnet, roberta, roberta_prelayernorm, roc_bert, roformer, rwkv, sam, segformer, sew, sew_d, speech_encoder_decoder, speech_to_text, speech_to_text_a, speechta, splinter, squeezebert, swiftformer, swin, swinasr, swinva, switch_transformers, ta, table_transformer, tapas, time_series_transformer, timesformer, timm_backbone, transfo_xl, trocr, tvlt, umta, unispeech, unispeech_sat, upernet, videomae, vilt, vision_encoder_decoder, vision_text_dual_encoder, visual_bert, vit, vit_hybrid, vit_mae, vit_msn, vivit, wavaveca, wavaveca_conformer, wavaveca_phoneme, wavaveca_with_lm, wavlm, whisper, x_clip, xglm, xlm, xlm_prophetnet, xlm_roberta, xlm_roberta_xl, xlnet, xmod, yolos, yoso, )
707
'''simple docstring''' from pathlib import Path import fire from tqdm import tqdm def __A ( _SCREAMING_SNAKE_CASE : List[str]="ro" , _SCREAMING_SNAKE_CASE : Dict="en" , _SCREAMING_SNAKE_CASE : int="wmt16" , _SCREAMING_SNAKE_CASE : str=None ): """simple docstring""" try: import datasets except (ModuleNotFoundError, ImportError): raise ImportError("run pip install datasets" ) __SCREAMING_SNAKE_CASE : List[Any] = f'{src_lang}-{tgt_lang}' print(f'Converting {dataset}-{pair}' ) __SCREAMING_SNAKE_CASE : str = datasets.load_dataset(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if save_dir is None: __SCREAMING_SNAKE_CASE : Optional[Any] = f'{dataset}-{pair}' __SCREAMING_SNAKE_CASE : Dict = Path(_SCREAMING_SNAKE_CASE ) save_dir.mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) for split in ds.keys(): print(f'Splitting {split} with {ds[split].num_rows} records' ) # to save to val.source, val.target like summary datasets __SCREAMING_SNAKE_CASE : Optional[Any] = "val" if split == "validation" else split __SCREAMING_SNAKE_CASE : Optional[int] = save_dir.joinpath(f'{fn}.source' ) __SCREAMING_SNAKE_CASE : Optional[int] = save_dir.joinpath(f'{fn}.target' ) __SCREAMING_SNAKE_CASE : Optional[Any] = src_path.open("w+" ) __SCREAMING_SNAKE_CASE : Union[str, Any] = tgt_path.open("w+" ) # reader is the bottleneck so writing one record at a time doesn't slow things down for x in tqdm(ds[split] ): __SCREAMING_SNAKE_CASE : int = x["translation"] src_fp.write(ex[src_lang] + "\n" ) tgt_fp.write(ex[tgt_lang] + "\n" ) print(f'Saved {dataset} dataset to {save_dir}' ) if __name__ == "__main__": fire.Fire(download_wmt_dataset)
564
0
"""simple docstring""" from string import ascii_uppercase UpperCAmelCase_ : int = {char: i for i, char in enumerate(ascii_uppercase)} UpperCAmelCase_ : Optional[Any] = dict(enumerate(ascii_uppercase)) def _A (__a , __a ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = len(__a ) SCREAMING_SNAKE_CASE_ : Optional[Any] = 0 while True: if x == i: SCREAMING_SNAKE_CASE_ : Any = 0 if len(__a ) == len(__a ): break key += key[i] i += 1 return key def _A (__a , __a ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = '''''' SCREAMING_SNAKE_CASE_ : Dict = 0 for letter in message: if letter == " ": cipher_text += " " else: SCREAMING_SNAKE_CASE_ : List[Any] = (dicta[letter] - dicta[key_new[i]]) % 26 i += 1 cipher_text += dicta[x] return cipher_text def _A (__a , __a ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = '''''' SCREAMING_SNAKE_CASE_ : Tuple = 0 for letter in cipher_text: if letter == " ": or_txt += " " else: SCREAMING_SNAKE_CASE_ : Union[str, Any] = (dicta[letter] + dicta[key_new[i]] + 26) % 26 i += 1 or_txt += dicta[x] return or_txt def _A () -> None: """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = '''THE GERMAN ATTACK''' SCREAMING_SNAKE_CASE_ : str = '''SECRET''' SCREAMING_SNAKE_CASE_ : Optional[int] = generate_key(__a , __a ) SCREAMING_SNAKE_CASE_ : str = cipher_text(__a , __a ) print(f'Encrypted Text = {s}' ) print(f'Original Text = {original_text(__a , __a )}' ) if __name__ == "__main__": import doctest doctest.testmod() main()
512
"""simple docstring""" from ..utils import DummyObject, requires_backends class lowerCAmelCase__ ( metaclass=UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = ["torch", "torchsde"] def __init__( self : Dict , *lowercase_ : Tuple , **lowercase_ : Dict): '''simple docstring''' requires_backends(self , ['''torch''', '''torchsde''']) @classmethod def _SCREAMING_SNAKE_CASE ( cls : List[str] , *lowercase_ : int , **lowercase_ : Optional[Any]): '''simple docstring''' requires_backends(cls , ['''torch''', '''torchsde''']) @classmethod def _SCREAMING_SNAKE_CASE ( cls : List[Any] , *lowercase_ : List[Any] , **lowercase_ : Tuple): '''simple docstring''' requires_backends(cls , ['''torch''', '''torchsde'''])
512
1
from ..utils import DummyObject, requires_backends class a_ ( metaclass=lowerCamelCase_ ): """simple docstring""" __UpperCAmelCase = ['torch', 'scipy'] def __init__( self : Any ,*snake_case : Any ,**snake_case : str ): requires_backends(self ,['torch', 'scipy'] ) @classmethod def _lowerCAmelCase ( cls : Tuple ,*snake_case : Optional[Any] ,**snake_case : int ): requires_backends(cls ,['torch', 'scipy'] ) @classmethod def _lowerCAmelCase ( cls : Optional[int] ,*snake_case : int ,**snake_case : Dict ): requires_backends(cls ,['torch', 'scipy'] )
252
import builtins import sys from ...utils.imports import _is_package_available from . import cursor, input from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor from .keymap import KEYMAP _lowerCamelCase =False try: _lowerCamelCase =_is_package_available("google.colab") except ModuleNotFoundError: pass @input.register class a_ : """simple docstring""" def __init__( self : Optional[int] ,snake_case : str = None ,snake_case : list = [] ): SCREAMING_SNAKE_CASE =0 SCREAMING_SNAKE_CASE =choices SCREAMING_SNAKE_CASE =prompt if sys.platform == "win32": SCREAMING_SNAKE_CASE ='*' else: SCREAMING_SNAKE_CASE ='➔ ' def _lowerCAmelCase ( self : Tuple ,snake_case : Any ,snake_case : str = "" ): if sys.platform != "win32": writeColor(self.choices[index] ,32 ,snake_case ) else: forceWrite(self.choices[index] ,snake_case ) def _lowerCAmelCase ( self : str ,snake_case : int ): if index == self.position: forceWrite(f' {self.arrow_char} ' ) self.write_choice(snake_case ) else: forceWrite(f' {self.choices[index]}' ) reset_cursor() def _lowerCAmelCase ( self : Union[str, Any] ,snake_case : Direction ,snake_case : int = 1 ): SCREAMING_SNAKE_CASE =self.position if direction == Direction.DOWN: if self.position + 1 >= len(self.choices ): return self.position += num_spaces else: if self.position - 1 < 0: return self.position -= num_spaces clear_line() self.print_choice(snake_case ) move_cursor(snake_case ,direction.name ) self.print_choice(self.position ) @input.mark(KEYMAP['up'] ) def _lowerCAmelCase ( self : Optional[int] ): self.move_direction(Direction.UP ) @input.mark(KEYMAP['down'] ) def _lowerCAmelCase ( self : List[str] ): self.move_direction(Direction.DOWN ) @input.mark(KEYMAP['newline'] ) def _lowerCAmelCase ( self : Optional[int] ): move_cursor(len(self.choices ) - self.position ,'DOWN' ) return self.position @input.mark(KEYMAP['interrupt'] ) def _lowerCAmelCase ( self : Tuple ): move_cursor(len(self.choices ) - self.position ,'DOWN' ) raise KeyboardInterrupt @input.mark_multiple(*[KEYMAP[str(snake_case )] for number in range(10 )] ) def _lowerCAmelCase ( self : Tuple ): SCREAMING_SNAKE_CASE =int(chr(self.current_selection ) ) SCREAMING_SNAKE_CASE =index - self.position if index == self.position: return if index < len(self.choices ): if self.position > index: self.move_direction(Direction.UP ,-movement ) elif self.position < index: self.move_direction(Direction.DOWN ,snake_case ) else: return else: return def _lowerCAmelCase ( self : Any ,snake_case : int = 0 ): if self.prompt: linebreak() forceWrite(self.prompt ,'\n' ) if in_colab: forceWrite('Please input a choice index (starting from 0), and press enter' ,'\n' ) else: forceWrite('Please select a choice using the arrow or number keys, and selecting with enter' ,'\n' ) SCREAMING_SNAKE_CASE =default_choice for i in range(len(self.choices ) ): self.print_choice(snake_case ) forceWrite('\n' ) move_cursor(len(self.choices ) - self.position ,'UP' ) with cursor.hide(): while True: if in_colab: try: SCREAMING_SNAKE_CASE =int(builtins.input() ) except ValueError: SCREAMING_SNAKE_CASE =default_choice else: SCREAMING_SNAKE_CASE =self.handle_input() if choice is not None: reset_cursor() for _ in range(len(self.choices ) + 1 ): move_cursor(1 ,'UP' ) clear_line() self.write_choice(snake_case ,'\n' ) return choice
252
1
"""simple docstring""" from pathlib import Path import fire from tqdm import tqdm def lowercase__ ( lowerCAmelCase : Dict="ro" , lowerCAmelCase : Any="en" , lowerCAmelCase : Any="wmt16" , lowerCAmelCase : str=None ) -> Optional[Any]: """simple docstring""" try: import datasets except (ModuleNotFoundError, ImportError): raise ImportError('run pip install datasets' ) UpperCAmelCase = F"{src_lang}-{tgt_lang}" print(F"Converting {dataset}-{pair}" ) UpperCAmelCase = datasets.load_dataset(__UpperCamelCase , __UpperCamelCase ) if save_dir is None: UpperCAmelCase = F"{dataset}-{pair}" UpperCAmelCase = Path(__UpperCamelCase ) save_dir.mkdir(exist_ok=__UpperCamelCase ) for split in ds.keys(): print(F"Splitting {split} with {ds[split].num_rows} records" ) # to save to val.source, val.target like summary datasets UpperCAmelCase = 'val' if split == 'validation' else split UpperCAmelCase = save_dir.joinpath(F"{fn}.source" ) UpperCAmelCase = save_dir.joinpath(F"{fn}.target" ) UpperCAmelCase = src_path.open('w+' ) UpperCAmelCase = tgt_path.open('w+' ) # reader is the bottleneck so writing one record at a time doesn't slow things down for x in tqdm(ds[split] ): UpperCAmelCase = x['translation'] src_fp.write(ex[src_lang] + '\n' ) tgt_fp.write(ex[tgt_lang] + '\n' ) print(F"Saved {dataset} dataset to {save_dir}" ) if __name__ == "__main__": fire.Fire(download_wmt_dataset)
373
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowerCAmelCase : Dict = { '''configuration_mobilevit''': ['''MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MobileViTConfig''', '''MobileViTOnnxConfig'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Optional[Any] = ['''MobileViTFeatureExtractor'''] lowerCAmelCase : Optional[Any] = ['''MobileViTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Union[str, Any] = [ '''MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MobileViTForImageClassification''', '''MobileViTForSemanticSegmentation''', '''MobileViTModel''', '''MobileViTPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : List[str] = [ '''TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFMobileViTForImageClassification''', '''TFMobileViTForSemanticSegmentation''', '''TFMobileViTModel''', '''TFMobileViTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilevit import MobileViTFeatureExtractor from .image_processing_mobilevit import MobileViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilevit import ( MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel, MobileViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilevit import ( TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileViTForImageClassification, TFMobileViTForSemanticSegmentation, TFMobileViTModel, TFMobileViTPreTrainedModel, ) else: import sys lowerCAmelCase : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
214
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { '''google/vit-base-patch16-224''': '''https://huggingface.co/vit-base-patch16-224/resolve/main/config.json''', # See all ViT models at https://huggingface.co/models?filter=vit } class __lowerCamelCase ( a__ ): '''simple docstring''' A_ : Optional[int] = 'vit' def __init__( self , __UpperCAmelCase=768 , __UpperCAmelCase=12 , __UpperCAmelCase=12 , __UpperCAmelCase=3072 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.02 , __UpperCAmelCase=1e-1_2 , __UpperCAmelCase=224 , __UpperCAmelCase=16 , __UpperCAmelCase=3 , __UpperCAmelCase=True , __UpperCAmelCase=16 , **__UpperCAmelCase , ) -> str: super().__init__(**__UpperCAmelCase ) _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = intermediate_size _a = hidden_act _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = initializer_range _a = layer_norm_eps _a = image_size _a = patch_size _a = num_channels _a = qkv_bias _a = encoder_stride class __lowerCamelCase ( a__ ): '''simple docstring''' A_ : Dict = version.parse('1.11' ) @property def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def _UpperCAmelCase ( self ) -> float: return 1e-4
285
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __snake_case = { '''configuration_pix2struct''': [ '''PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Pix2StructConfig''', '''Pix2StructTextConfig''', '''Pix2StructVisionConfig''', ], '''processing_pix2struct''': ['''Pix2StructProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ['''Pix2StructImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Pix2StructPreTrainedModel''', '''Pix2StructForConditionalGeneration''', '''Pix2StructVisionModel''', '''Pix2StructTextModel''', ] if TYPE_CHECKING: from .configuration_pixastruct import ( PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP, PixaStructConfig, PixaStructTextConfig, PixaStructVisionConfig, ) from .processing_pixastruct import PixaStructProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_pixastruct import PixaStructImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pixastruct import ( PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST, PixaStructForConditionalGeneration, PixaStructPreTrainedModel, PixaStructTextModel, PixaStructVisionModel, ) else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
285
1
'''simple docstring''' from ....configuration_utils import PretrainedConfig from ....utils import logging __a: Dict = logging.get_logger(__name__) __a: List[Any] = { "CarlCochet/trajectory-transformer-halfcheetah-medium-v2": ( "https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json" ), # See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer } class UpperCAmelCase ( __lowerCAmelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE = "trajectory_transformer" SCREAMING_SNAKE_CASE = ["past_key_values"] SCREAMING_SNAKE_CASE = { "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self , __lowerCAmelCase=100 , __lowerCAmelCase=5 , __lowerCAmelCase=1 , __lowerCAmelCase=1 , __lowerCAmelCase=249 , __lowerCAmelCase=6 , __lowerCAmelCase=17 , __lowerCAmelCase=25 , __lowerCAmelCase=4 , __lowerCAmelCase=4 , __lowerCAmelCase=128 , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.0_0_0_6 , __lowerCAmelCase=512 , __lowerCAmelCase=0.0_2 , __lowerCAmelCase=1E-12 , __lowerCAmelCase=1 , __lowerCAmelCase=True , __lowerCAmelCase=1 , __lowerCAmelCase=50256 , __lowerCAmelCase=50256 , **__lowerCAmelCase , ) -> Optional[Any]: lowercase__ : int = vocab_size lowercase__ : Tuple = action_weight lowercase__ : Tuple = reward_weight lowercase__ : Dict = value_weight lowercase__ : Tuple = max_position_embeddings lowercase__ : Union[str, Any] = block_size lowercase__ : Tuple = action_dim lowercase__ : Dict = observation_dim lowercase__ : Optional[Any] = transition_dim lowercase__ : List[Any] = learning_rate lowercase__ : int = n_layer lowercase__ : Union[str, Any] = n_head lowercase__ : Optional[int] = n_embd lowercase__ : Optional[Any] = embd_pdrop lowercase__ : List[Any] = attn_pdrop lowercase__ : Union[str, Any] = resid_pdrop lowercase__ : Any = initializer_range lowercase__ : int = layer_norm_eps lowercase__ : List[Any] = kaiming_initializer_range lowercase__ : int = use_cache super().__init__(pad_token_id=__lowerCAmelCase , bos_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase , **__lowerCAmelCase )
152
'''simple docstring''' def _lowerCamelCase (__lowerCamelCase : list[int] , __lowerCamelCase : list[int] , __lowerCamelCase : int ) -> bool: return not any( neighbour == 1 and colored_vertices[i] == color for i, neighbour in enumerate(__lowerCamelCase ) ) def _lowerCamelCase (__lowerCamelCase : list[list[int]] , __lowerCamelCase : int , __lowerCamelCase : list[int] , __lowerCamelCase : int ) -> bool: # Base Case if index == len(__lowerCamelCase ): return True # Recursive Step for i in range(__lowerCamelCase ): if valid_coloring(graph[index] , __lowerCamelCase , __lowerCamelCase ): # Color current vertex a__ = i # Validate coloring if util_color(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , index + 1 ): return True # Backtrack a__ = -1 return False def _lowerCamelCase (__lowerCamelCase : list[list[int]] , __lowerCamelCase : int ) -> list[int]: a__ = [-1] * len(__lowerCamelCase ) if util_color(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , 0 ): return colored_vertices return []
489
0
import os import shutil from pathlib import Path from typing import Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging if is_onnx_available(): import onnxruntime as ort _a: Dict = logging.get_logger(__name__) _a: Optional[Any] = { """tensor(bool)""": np.bool_, """tensor(int8)""": np.inta, """tensor(uint8)""": np.uinta, """tensor(int16)""": np.intaa, """tensor(uint16)""": np.uintaa, """tensor(int32)""": np.intaa, """tensor(uint32)""": np.uintaa, """tensor(int64)""": np.intaa, """tensor(uint64)""": np.uintaa, """tensor(float16)""": np.floataa, """tensor(float)""": np.floataa, """tensor(double)""": np.floataa, } class __UpperCamelCase : def __init__( self : Union[str, Any] , lowerCAmelCase : Union[str, Any]=None , **lowerCAmelCase : Optional[Any] ): '''simple docstring''' logger.info("`diffusers.OnnxRuntimeModel` is experimental and might change in the future." ) UpperCAmelCase_ = model UpperCAmelCase_ = kwargs.get("model_save_dir" , lowerCAmelCase ) UpperCAmelCase_ = kwargs.get("latest_model_name" , lowerCAmelCase ) def __call__( self : Union[str, Any] , **lowerCAmelCase : int ): '''simple docstring''' UpperCAmelCase_ = {k: np.array(lowerCAmelCase ) for k, v in kwargs.items()} return self.model.run(lowerCAmelCase , lowerCAmelCase ) @staticmethod def __A ( lowerCAmelCase : Union[str, Path] , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : int=None ): '''simple docstring''' if provider is None: logger.info("No onnxruntime provider specified, using CPUExecutionProvider" ) UpperCAmelCase_ = "CPUExecutionProvider" return ort.InferenceSession(lowerCAmelCase , providers=[provider] , sess_options=lowerCAmelCase ) def __A ( self : Union[str, Any] , lowerCAmelCase : Union[str, Path] , lowerCAmelCase : Optional[str] = None , **lowerCAmelCase : Optional[int] ): '''simple docstring''' UpperCAmelCase_ = file_name if file_name is not None else ONNX_WEIGHTS_NAME UpperCAmelCase_ = self.model_save_dir.joinpath(self.latest_model_name ) UpperCAmelCase_ = Path(lowerCAmelCase ).joinpath(lowerCAmelCase ) try: shutil.copyfile(lowerCAmelCase , lowerCAmelCase ) except shutil.SameFileError: pass # copy external weights (for models >2GB) UpperCAmelCase_ = self.model_save_dir.joinpath(lowerCAmelCase ) if src_path.exists(): UpperCAmelCase_ = Path(lowerCAmelCase ).joinpath(lowerCAmelCase ) try: shutil.copyfile(lowerCAmelCase , lowerCAmelCase ) except shutil.SameFileError: pass def __A ( self : List[str] , lowerCAmelCase : Union[str, os.PathLike] , **lowerCAmelCase : int , ): '''simple docstring''' if os.path.isfile(lowerCAmelCase ): logger.error(F"Provided path ({save_directory}) should be a directory, not a file" ) return os.makedirs(lowerCAmelCase , exist_ok=lowerCAmelCase ) # saving model weights/files self._save_pretrained(lowerCAmelCase , **lowerCAmelCase ) @classmethod def __A ( cls : List[str] , lowerCAmelCase : Union[str, Path] , lowerCAmelCase : Optional[Union[bool, str, None]] = None , lowerCAmelCase : Optional[Union[str, None]] = None , lowerCAmelCase : bool = False , lowerCAmelCase : Optional[str] = None , lowerCAmelCase : Optional[str] = None , lowerCAmelCase : Optional[str] = None , lowerCAmelCase : Optional["ort.SessionOptions"] = None , **lowerCAmelCase : List[str] , ): '''simple docstring''' UpperCAmelCase_ = file_name if file_name is not None else ONNX_WEIGHTS_NAME # load model from local directory if os.path.isdir(lowerCAmelCase ): UpperCAmelCase_ = OnnxRuntimeModel.load_model( os.path.join(lowerCAmelCase , lowerCAmelCase ) , provider=lowerCAmelCase , sess_options=lowerCAmelCase ) UpperCAmelCase_ = Path(lowerCAmelCase ) # load model from hub else: # download model UpperCAmelCase_ = hf_hub_download( repo_id=lowerCAmelCase , filename=lowerCAmelCase , use_auth_token=lowerCAmelCase , revision=lowerCAmelCase , cache_dir=lowerCAmelCase , force_download=lowerCAmelCase , ) UpperCAmelCase_ = Path(lowerCAmelCase ).parent UpperCAmelCase_ = Path(lowerCAmelCase ).name UpperCAmelCase_ = OnnxRuntimeModel.load_model(lowerCAmelCase , provider=lowerCAmelCase , sess_options=lowerCAmelCase ) return cls(model=lowerCAmelCase , **lowerCAmelCase ) @classmethod def __A ( cls : Optional[int] , lowerCAmelCase : Union[str, Path] , lowerCAmelCase : bool = True , lowerCAmelCase : Optional[str] = None , lowerCAmelCase : Optional[str] = None , **lowerCAmelCase : Optional[int] , ): '''simple docstring''' UpperCAmelCase_ = None if len(str(lowerCAmelCase ).split("@" ) ) == 2: UpperCAmelCase_ , UpperCAmelCase_ = model_id.split("@" ) return cls._from_pretrained( model_id=lowerCAmelCase , revision=lowerCAmelCase , cache_dir=lowerCAmelCase , force_download=lowerCAmelCase , use_auth_token=lowerCAmelCase , **lowerCAmelCase , )
718
from collections.abc import Sequence def __lowerCAmelCase ( A , A = False ): if not arr: return 0 UpperCAmelCase_ = 0 if allow_empty_subarrays else float("-inf" ) UpperCAmelCase_ = 0.0 for num in arr: UpperCAmelCase_ = max(0 if allow_empty_subarrays else num , curr_sum + num ) UpperCAmelCase_ = max(A , A ) return max_sum if __name__ == "__main__": from doctest import testmod testmod() _a: Any = [-2, 1, -3, 4, -1, 2, 1, -5, 4] print(F'{max_subarray_sum(nums) = }')
268
0
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_xlnet import XLNetTokenizer else: _lowerCAmelCase : int = None _lowerCAmelCase : Any = logging.get_logger(__name__) _lowerCAmelCase : List[str] = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} _lowerCAmelCase : str = { "vocab_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model", }, "tokenizer_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/tokenizer.json", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/tokenizer.json", }, } _lowerCAmelCase : Union[str, Any] = { "xlnet-base-cased": None, "xlnet-large-cased": None, } _lowerCAmelCase : str = "▁" # Segments (not really needed) _lowerCAmelCase : List[Any] = 0 _lowerCAmelCase : Optional[int] = 1 _lowerCAmelCase : Optional[int] = 2 _lowerCAmelCase : Optional[int] = 3 _lowerCAmelCase : int = 4 class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE = 'left' SCREAMING_SNAKE_CASE = XLNetTokenizer def __init__( self , __snake_case=None , __snake_case=None , __snake_case=False , __snake_case=True , __snake_case=False , __snake_case="<s>" , __snake_case="</s>" , __snake_case="<unk>" , __snake_case="<sep>" , __snake_case="<pad>" , __snake_case="<cls>" , __snake_case="<mask>" , __snake_case=["<eop>", "<eod>"] , **__snake_case , ) -> Union[str, Any]: '''simple docstring''' # Mask token behave like a normal word, i.e. include the space before it __a =AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else mask_token super().__init__( vocab_file=__snake_case , tokenizer_file=__snake_case , do_lower_case=__snake_case , remove_space=__snake_case , keep_accents=__snake_case , bos_token=__snake_case , eos_token=__snake_case , unk_token=__snake_case , sep_token=__snake_case , pad_token=__snake_case , cls_token=__snake_case , mask_token=__snake_case , additional_special_tokens=__snake_case , **__snake_case , ) __a =3 __a =do_lower_case __a =remove_space __a =keep_accents __a =vocab_file __a =False if not self.vocab_file else True def __magic_name__ ( self , __snake_case , __snake_case = None ) -> List[int]: '''simple docstring''' __a =[self.sep_token_id] __a =[self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def __magic_name__ ( self , __snake_case , __snake_case = None ) -> List[int]: '''simple docstring''' __a =[self.sep_token_id] __a =[2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def __magic_name__ ( self , __snake_case , __snake_case = None ) -> Tuple[str]: '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(__snake_case ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return __a =os.path.join( __snake_case , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__snake_case ): copyfile(self.vocab_file , __snake_case ) return (out_vocab_file,)
242
import argparse import logging import os from pathlib import Path from typing import Any, Dict import pytorch_lightning as pl from pytorch_lightning.utilities import rank_zero_info from transformers import ( AdamW, AutoConfig, AutoModel, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelWithLMHead, AutoTokenizer, PretrainedConfig, PreTrainedTokenizer, ) from transformers.optimization import ( Adafactor, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.utils.versions import require_version _lowerCAmelCase : Union[str, Any] = logging.getLogger(__name__) require_version("pytorch_lightning>=1.0.4") _lowerCAmelCase : List[str] = { "base": AutoModel, "sequence-classification": AutoModelForSequenceClassification, "question-answering": AutoModelForQuestionAnswering, "pretraining": AutoModelForPreTraining, "token-classification": AutoModelForTokenClassification, "language-modeling": AutoModelWithLMHead, "summarization": AutoModelForSeqaSeqLM, "translation": AutoModelForSeqaSeqLM, } # update this and the import above to support new schedulers from transformers.optimization _lowerCAmelCase : Tuple = { "linear": get_linear_schedule_with_warmup, "cosine": get_cosine_schedule_with_warmup, "cosine_w_restarts": get_cosine_with_hard_restarts_schedule_with_warmup, "polynomial": get_polynomial_decay_schedule_with_warmup, # '': get_constant_schedule, # not supported for now # '': get_constant_schedule_with_warmup, # not supported for now } _lowerCAmelCase : Optional[Any] = sorted(arg_to_scheduler.keys()) _lowerCAmelCase : Optional[Any] = "{" + ", ".join(arg_to_scheduler_choices) + "}" class __magic_name__ ( pl.LightningModule ): def __init__( self , __snake_case , __snake_case=None , __snake_case="base" , __snake_case=None , __snake_case=None , __snake_case=None , **__snake_case , ) -> Union[str, Any]: '''simple docstring''' super().__init__() # TODO: move to self.save_hyperparameters() # self.save_hyperparameters() # can also expand arguments into trainer signature for easier reading self.save_hyperparameters(__snake_case ) __a =0 __a =Path(self.hparams.output_dir ) __a =self.hparams.cache_dir if self.hparams.cache_dir else None if config is None: __a =AutoConfig.from_pretrained( self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({'num_labels': num_labels} if num_labels is not None else {}) , cache_dir=__snake_case , **__snake_case , ) else: __a =config __a =('encoder_layerdrop', 'decoder_layerdrop', 'dropout', 'attention_dropout') for p in extra_model_params: if getattr(self.hparams , __snake_case , __snake_case ): assert hasattr(self.config , __snake_case ), f'model config doesn\'t have a `{p}` attribute' setattr(self.config , __snake_case , getattr(self.hparams , __snake_case ) ) if tokenizer is None: __a =AutoTokenizer.from_pretrained( self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=__snake_case , ) else: __a =tokenizer __a =MODEL_MODES[mode] if model is None: __a =self.model_type.from_pretrained( self.hparams.model_name_or_path , from_tf=bool('.ckpt' in self.hparams.model_name_or_path ) , config=self.config , cache_dir=__snake_case , ) else: __a =model def __magic_name__ ( self , *__snake_case , **__snake_case ) -> int: '''simple docstring''' __a =self.model_type.from_pretrained(*__snake_case , **__snake_case ) def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' __a =arg_to_scheduler[self.hparams.lr_scheduler] __a =get_schedule_func( self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() ) __a ={'scheduler': scheduler, 'interval': 'step', 'frequency': 1} return scheduler def __magic_name__ ( self ) -> int: '''simple docstring''' __a =self.model __a =['bias', 'LayerNorm.weight'] __a =[ { 'params': [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay ) ], # check this named paramters 'weight_decay': self.hparams.weight_decay, }, { 'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )], 'weight_decay': 0.0, }, ] if self.hparams.adafactor: __a =Adafactor( __snake_case , lr=self.hparams.learning_rate , scale_parameter=__snake_case , relative_step=__snake_case ) else: __a =AdamW( __snake_case , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon ) __a =optimizer __a =self.get_lr_scheduler() return [optimizer], [scheduler] def __magic_name__ ( self , __snake_case , __snake_case ) -> List[str]: '''simple docstring''' return self.validation_step(__snake_case , __snake_case ) def __magic_name__ ( self , __snake_case ) -> str: '''simple docstring''' return self.validation_end(__snake_case ) def __magic_name__ ( self ) -> int: '''simple docstring''' __a =max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores __a =self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs def __magic_name__ ( self , __snake_case ) -> int: '''simple docstring''' if stage == "test": __a =len(self.test_dataloader().dataset ) else: __a =self.get_dataloader('train' , self.hparams.train_batch_size , shuffle=__snake_case ) __a =len(self.train_dataloader().dataset ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case = False ) -> Optional[Any]: '''simple docstring''' raise NotImplementedError('You must implement this for your task' ) def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' return self.train_loader def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' return self.get_dataloader('dev' , self.hparams.eval_batch_size , shuffle=__snake_case ) def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' return self.get_dataloader('test' , self.hparams.eval_batch_size , shuffle=__snake_case ) def __magic_name__ ( self , __snake_case ) -> List[Any]: '''simple docstring''' return os.path.join( self.hparams.data_dir , 'cached_{}_{}_{}'.format( __snake_case , list(filter(__snake_case , self.hparams.model_name_or_path.split('/' ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , ) @pl.utilities.rank_zero_only def __magic_name__ ( self , __snake_case ) -> None: '''simple docstring''' __a =self.output_dir.joinpath('best_tfmr' ) __a =self.step_count self.model.save_pretrained(__snake_case ) self.tokenizer.save_pretrained(__snake_case ) @staticmethod def __magic_name__ ( __snake_case , __snake_case ) -> Union[str, Any]: '''simple docstring''' parser.add_argument( '--model_name_or_path' , default=__snake_case , type=__snake_case , required=__snake_case , help='Path to pretrained model or model identifier from huggingface.co/models' , ) parser.add_argument( '--config_name' , default='' , type=__snake_case , help='Pretrained config name or path if not the same as model_name' ) parser.add_argument( '--tokenizer_name' , default=__snake_case , type=__snake_case , help='Pretrained tokenizer name or path if not the same as model_name' , ) parser.add_argument( '--cache_dir' , default=str(Path(__snake_case ).parent / 'test_run' / 'cache' ) , type=__snake_case , help='Where do you want to store the pre-trained models downloaded from huggingface.co' , ) parser.add_argument( '--encoder_layerdrop' , type=__snake_case , help='Encoder layer dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--decoder_layerdrop' , type=__snake_case , help='Decoder layer dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--dropout' , type=__snake_case , help='Dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--attention_dropout' , type=__snake_case , help='Attention dropout probability (Optional). Goes into model.config' , ) parser.add_argument('--learning_rate' , default=5e-5 , type=__snake_case , help='The initial learning rate for Adam.' ) parser.add_argument( '--lr_scheduler' , default='linear' , choices=__snake_case , metavar=__snake_case , type=__snake_case , help='Learning rate scheduler' , ) parser.add_argument('--weight_decay' , default=0.0 , type=__snake_case , help='Weight decay if we apply some.' ) parser.add_argument('--adam_epsilon' , default=1e-8 , type=__snake_case , help='Epsilon for Adam optimizer.' ) parser.add_argument('--warmup_steps' , default=0 , type=__snake_case , help='Linear warmup over warmup_steps.' ) parser.add_argument('--num_workers' , default=4 , type=__snake_case , help='kwarg passed to DataLoader' ) parser.add_argument('--num_train_epochs' , dest='max_epochs' , default=3 , type=__snake_case ) parser.add_argument('--train_batch_size' , default=32 , type=__snake_case ) parser.add_argument('--eval_batch_size' , default=32 , type=__snake_case ) parser.add_argument('--adafactor' , action='store_true' ) class __magic_name__ ( pl.Callback ): def __magic_name__ ( self , __snake_case , __snake_case ) -> str: '''simple docstring''' if ( trainer.is_global_zero and trainer.global_rank == 0 ): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed. pl_module.model.rag.retriever.init_retrieval() # better to use hook functions. class __magic_name__ ( pl.Callback ): def __magic_name__ ( self , __snake_case , __snake_case ) -> Any: '''simple docstring''' # print(pl_module.model.rag) for name, param in pl_module.model.rag.named_parameters(): if param.grad is None: print(__snake_case ) class __magic_name__ ( pl.Callback ): def __magic_name__ ( self , __snake_case , __snake_case ) -> int: '''simple docstring''' __a =trainer.lr_schedulers[0]['scheduler'] __a ={f'lr_group_{i}': lr for i, lr in enumerate(lr_scheduler.get_lr() )} pl_module.logger.log_metrics(__snake_case ) def __magic_name__ ( self , __snake_case , __snake_case ) -> List[str]: '''simple docstring''' rank_zero_info('***** Validation results *****' ) __a =trainer.callback_metrics # Log results for key in sorted(__snake_case ): if key not in ["log", "progress_bar"]: rank_zero_info('{} = {}\n'.format(__snake_case , str(metrics[key] ) ) ) def __magic_name__ ( self , __snake_case , __snake_case ) -> List[str]: '''simple docstring''' rank_zero_info('***** Test results *****' ) __a =trainer.callback_metrics # Log and save results to file __a =os.path.join(pl_module.hparams.output_dir , 'test_results.txt' ) with open(__snake_case , 'w' ) as writer: for key in sorted(__snake_case ): if key not in ["log", "progress_bar"]: rank_zero_info('{} = {}\n'.format(__snake_case , str(metrics[key] ) ) ) writer.write('{} = {}\n'.format(__snake_case , str(metrics[key] ) ) ) def UpperCamelCase_( _snake_case : str , _snake_case : int ): """simple docstring""" parser.add_argument( '--output_dir' , default=str(Path(_snake_case ).parent / 'test_run' / 'model_checkpoints' ) , type=_snake_case , help='The output directory where the model predictions and checkpoints will be written.' , ) parser.add_argument( '--fp16' , action='store_true' , help='Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit' , ) parser.add_argument( '--fp16_opt_level' , type=_snake_case , default='O2' , help=( 'For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].' 'See details at https://nvidia.github.io/apex/amp.html' ) , ) parser.add_argument('--n_tpu_cores' , dest='tpu_cores' , type=_snake_case ) parser.add_argument('--max_grad_norm' , dest='gradient_clip_val' , default=1.0 , type=_snake_case , help='Max gradient norm' ) parser.add_argument('--do_train' , action='store_true' , help='Whether to run training.' ) parser.add_argument('--do_predict' , action='store_true' , help='Whether to run predictions on the test set.' ) parser.add_argument( '--gradient_accumulation_steps' , dest='accumulate_grad_batches' , type=_snake_case , default=1 , help='Number of updates steps to accumulate before performing a backward/update pass.' , ) parser.add_argument('--seed' , type=_snake_case , default=42 , help='random seed for initialization' ) parser.add_argument( '--data_dir' , default=str(Path(_snake_case ).parent / 'test_run' / 'dummy-train-data' ) , type=_snake_case , help='The input data dir. Should contain the training files for the CoNLL-2003 NER task.' , ) def UpperCamelCase_( _snake_case : BaseTransformer , _snake_case : argparse.Namespace , _snake_case : Union[str, Any]=None , _snake_case : List[Any]=True , _snake_case : Dict=[] , _snake_case : List[str]=None , _snake_case : Any=None , **_snake_case : str , ): """simple docstring""" pl.seed_everything(args.seed ) # init model __a =Path(model.hparams.output_dir ) odir.mkdir(exist_ok=_snake_case ) # add custom checkpoints if checkpoint_callback is None: __a =pl.callbacks.ModelCheckpoint( filepath=args.output_dir , prefix='checkpoint' , monitor='val_loss' , mode='min' , save_top_k=1 ) if early_stopping_callback: extra_callbacks.append(_snake_case ) if logging_callback is None: __a =LoggingCallback() __a ={} if args.fpaa: __a =16 if args.gpus > 1: __a ='auto' __a ='ddp' __a =args.accumulate_grad_batches __a =None __a ='auto' __a =pl.Trainer.from_argparse_args( _snake_case , weights_summary=_snake_case , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=_snake_case , val_check_interval=1 , num_sanity_val_steps=2 , **_snake_case , ) if args.do_train: trainer.fit(_snake_case ) else: print('RAG modeling tests with new set functions successfuly executed!' ) return trainer
242
1
"""simple docstring""" from __future__ import annotations import pandas as pd def _lowerCAmelCase ( __lowerCamelCase:list[int] , __lowerCamelCase:list[int] , __lowerCamelCase:int ): '''simple docstring''' __magic_name__ = [0] * no_of_processes __magic_name__ = [0] * no_of_processes # Copy the burst time into remaining_time[] for i in range(__lowerCamelCase ): __magic_name__ = burst_time[i] __magic_name__ = 0 __magic_name__ = 0 __magic_name__ = 9_9_9_9_9_9_9_9_9 __magic_name__ = 0 __magic_name__ = False # Process until all processes are completed while complete != no_of_processes: for j in range(__lowerCamelCase ): if arrival_time[j] <= increment_time and remaining_time[j] > 0: if remaining_time[j] < minm: __magic_name__ = remaining_time[j] __magic_name__ = j __magic_name__ = True if not check: increment_time += 1 continue remaining_time[short] -= 1 __magic_name__ = remaining_time[short] if minm == 0: __magic_name__ = 9_9_9_9_9_9_9_9_9 if remaining_time[short] == 0: complete += 1 __magic_name__ = False # Find finish time of current process __magic_name__ = increment_time + 1 # Calculate waiting time __magic_name__ = finish_time - arrival_time[short] __magic_name__ = finar - burst_time[short] if waiting_time[short] < 0: __magic_name__ = 0 # Increment time increment_time += 1 return waiting_time def _lowerCAmelCase ( __lowerCamelCase:list[int] , __lowerCamelCase:int , __lowerCamelCase:list[int] ): '''simple docstring''' __magic_name__ = [0] * no_of_processes for i in range(__lowerCamelCase ): __magic_name__ = burst_time[i] + waiting_time[i] return turn_around_time def _lowerCAmelCase ( __lowerCamelCase:list[int] , __lowerCamelCase:list[int] , __lowerCamelCase:int ): '''simple docstring''' __magic_name__ = 0 __magic_name__ = 0 for i in range(__lowerCamelCase ): __magic_name__ = total_waiting_time + waiting_time[i] __magic_name__ = total_turn_around_time + turn_around_time[i] print(f'''Average waiting time = {total_waiting_time / no_of_processes:.5f}''' ) print("Average turn around time =" , total_turn_around_time / no_of_processes ) if __name__ == "__main__": print('''Enter how many process you want to analyze''') lowercase = int(input()) lowercase = [0] * no_of_processes lowercase = [0] * no_of_processes lowercase = list(range(1, no_of_processes + 1)) for i in range(no_of_processes): print('''Enter the arrival time and burst time for process:--''' + str(i + 1)) lowercase , lowercase = map(int, input().split()) lowercase = calculate_waitingtime(arrival_time, burst_time, no_of_processes) lowercase = burst_time lowercase = no_of_processes lowercase = waiting_time lowercase = calculate_turnaroundtime(bt, n, wt) calculate_average_times(waiting_time, turn_around_time, no_of_processes) lowercase = pd.DataFrame( list(zip(processes, burst_time, arrival_time, waiting_time, turn_around_time)), columns=[ '''Process''', '''BurstTime''', '''ArrivalTime''', '''WaitingTime''', '''TurnAroundTime''', ], ) # Printing the dataFrame pd.set_option('''display.max_rows''', fcfs.shape[0] + 1) print(fcfs)
715
"""simple docstring""" import argparse import os import gluonnlp as nlp import mxnet as mx import numpy as np import torch from gluonnlp.base import get_home_dir from gluonnlp.model.bert import BERTEncoder from gluonnlp.model.utils import _load_vocab from gluonnlp.vocab import Vocab from packaging import version from torch import nn from transformers import BertConfig, BertForMaskedLM, BertModel, RobertaTokenizer from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging if version.parse(nlp.__version__) != version.parse('''0.8.3'''): raise Exception('''requires gluonnlp == 0.8.3''') if version.parse(mx.__version__) != version.parse('''1.5.0'''): raise Exception('''requires mxnet == 1.5.0''') logging.set_verbosity_info() lowercase = logging.get_logger(__name__) lowercase = '''The Nymphenburg Palace is a beautiful palace in Munich!''' def _lowerCAmelCase ( __lowerCamelCase:str , __lowerCamelCase:str ): '''simple docstring''' __magic_name__ = { "attention_cell": "multi_head", "num_layers": 4, "units": 1_0_2_4, "hidden_size": 7_6_8, "max_length": 5_1_2, "num_heads": 8, "scaled": True, "dropout": 0.1, "use_residual": True, "embed_size": 1_0_2_4, "embed_dropout": 0.1, "word_embed": None, "layer_norm_eps": 1E-5, "token_type_vocab_size": 2, } __magic_name__ = bort_4_8_768_1024_hparams # Let's construct the original Bort model here # Taken from official BERT implementation, see: # https://github.com/alexa/bort/blob/master/bort/bort.py __magic_name__ = BERTEncoder( attention_cell=predefined_args["attention_cell"] , num_layers=predefined_args["num_layers"] , units=predefined_args["units"] , hidden_size=predefined_args["hidden_size"] , max_length=predefined_args["max_length"] , num_heads=predefined_args["num_heads"] , scaled=predefined_args["scaled"] , dropout=predefined_args["dropout"] , output_attention=__lowerCamelCase , output_all_encodings=__lowerCamelCase , use_residual=predefined_args["use_residual"] , activation=predefined_args.get("activation" , "gelu" ) , layer_norm_eps=predefined_args.get("layer_norm_eps" , __lowerCamelCase ) , ) # Vocab information needs to be fetched first # It's the same as RoBERTa, so RobertaTokenizer can be used later __magic_name__ = "openwebtext_ccnews_stories_books_cased" # Specify download folder to Gluonnlp's vocab __magic_name__ = os.path.join(get_home_dir() , "models" ) __magic_name__ = _load_vocab(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , cls=__lowerCamelCase ) __magic_name__ = nlp.model.BERTModel( __lowerCamelCase , len(__lowerCamelCase ) , units=predefined_args["units"] , embed_size=predefined_args["embed_size"] , embed_dropout=predefined_args["embed_dropout"] , word_embed=predefined_args["word_embed"] , use_pooler=__lowerCamelCase , use_token_type_embed=__lowerCamelCase , token_type_vocab_size=predefined_args["token_type_vocab_size"] , use_classifier=__lowerCamelCase , use_decoder=__lowerCamelCase , ) original_bort.load_parameters(__lowerCamelCase , cast_dtype=__lowerCamelCase , ignore_extra=__lowerCamelCase ) __magic_name__ = original_bort._collect_params_with_prefix() # Build our config 🤗 __magic_name__ = { "architectures": ["BertForMaskedLM"], "attention_probs_dropout_prob": predefined_args["dropout"], "hidden_act": "gelu", "hidden_dropout_prob": predefined_args["dropout"], "hidden_size": predefined_args["embed_size"], "initializer_range": 0.0_2, "intermediate_size": predefined_args["hidden_size"], "layer_norm_eps": predefined_args["layer_norm_eps"], "max_position_embeddings": predefined_args["max_length"], "model_type": "bort", "num_attention_heads": predefined_args["num_heads"], "num_hidden_layers": predefined_args["num_layers"], "pad_token_id": 1, # 2 = BERT, 1 = RoBERTa "type_vocab_size": 1, # 2 = BERT, 1 = RoBERTa "vocab_size": len(__lowerCamelCase ), } __magic_name__ = BertConfig.from_dict(__lowerCamelCase ) __magic_name__ = BertForMaskedLM(__lowerCamelCase ) hf_bort_model.eval() # Parameter mapping table (Gluonnlp to Transformers) # * denotes layer index # # | Gluon Parameter | Transformers Parameter # | -------------------------------------------------------------- | ---------------------- # | `encoder.layer_norm.beta` | `bert.embeddings.LayerNorm.bias` # | `encoder.layer_norm.gamma` | `bert.embeddings.LayerNorm.weight` # | `encoder.position_weight` | `bert.embeddings.position_embeddings.weight` # | `word_embed.0.weight` | `bert.embeddings.word_embeddings.weight` # | `encoder.transformer_cells.*.attention_cell.proj_key.bias` | `bert.encoder.layer.*.attention.self.key.bias` # | `encoder.transformer_cells.*.attention_cell.proj_key.weight` | `bert.encoder.layer.*.attention.self.key.weight` # | `encoder.transformer_cells.*.attention_cell.proj_query.bias` | `bert.encoder.layer.*.attention.self.query.bias` # | `encoder.transformer_cells.*.attention_cell.proj_query.weight` | `bert.encoder.layer.*.attention.self.query.weight` # | `encoder.transformer_cells.*.attention_cell.proj_value.bias` | `bert.encoder.layer.*.attention.self.value.bias` # | `encoder.transformer_cells.*.attention_cell.proj_value.weight` | `bert.encoder.layer.*.attention.self.value.weight` # | `encoder.transformer_cells.*.ffn.ffn_2.bias` | `bert.encoder.layer.*.attention.output.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_2.weight` | `bert.encoder.layer.*.attention.output.dense.weight` # | `encoder.transformer_cells.*.layer_norm.beta` | `bert.encoder.layer.*.attention.output.LayerNorm.bias` # | `encoder.transformer_cells.*.layer_norm.gamma` | `bert.encoder.layer.*.attention.output.LayerNorm.weight` # | `encoder.transformer_cells.*.ffn.ffn_1.bias` | `bert.encoder.layer.*.intermediate.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_1.weight` | `bert.encoder.layer.*.intermediate.dense.weight` # | `encoder.transformer_cells.*.ffn.layer_norm.beta` | `bert.encoder.layer.*.output.LayerNorm.bias` # | `encoder.transformer_cells.*.ffn.layer_norm.gamma` | `bert.encoder.layer.*.output.LayerNorm.weight` # | `encoder.transformer_cells.*.proj.bias` | `bert.encoder.layer.*.output.dense.bias` # | `encoder.transformer_cells.*.proj.weight` | `bert.encoder.layer.*.output.dense.weight` # Helper function to convert MXNET Arrays to PyTorch def to_torch(__lowerCamelCase:Tuple ) -> nn.Parameter: return nn.Parameter(torch.FloatTensor(mx_array.data().asnumpy() ) ) # Check param shapes and map new HF param back def check_and_map_params(__lowerCamelCase:str , __lowerCamelCase:Union[str, Any] ): __magic_name__ = hf_param.shape __magic_name__ = to_torch(params[gluon_param] ) __magic_name__ = gluon_param.shape assert ( shape_hf == shape_gluon ), f'''The gluon parameter {gluon_param} has shape {shape_gluon}, but expects shape {shape_hf} for Transformers''' return gluon_param __magic_name__ = check_and_map_params( hf_bort_model.bert.embeddings.word_embeddings.weight , "word_embed.0.weight" ) __magic_name__ = check_and_map_params( hf_bort_model.bert.embeddings.position_embeddings.weight , "encoder.position_weight" ) __magic_name__ = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.bias , "encoder.layer_norm.beta" ) __magic_name__ = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.weight , "encoder.layer_norm.gamma" ) # Inspired by RoBERTa conversion script, we just zero them out (Bort does not use them) __magic_name__ = torch.zeros_like( hf_bort_model.bert.embeddings.token_type_embeddings.weight.data ) for i in range(hf_bort_config.num_hidden_layers ): __magic_name__ = hf_bort_model.bert.encoder.layer[i] # self attention __magic_name__ = layer.attention.self __magic_name__ = check_and_map_params( self_attn.key.bias.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_key.bias''' ) __magic_name__ = check_and_map_params( self_attn.key.weight.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_key.weight''' ) __magic_name__ = check_and_map_params( self_attn.query.bias.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_query.bias''' ) __magic_name__ = check_and_map_params( self_attn.query.weight.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_query.weight''' ) __magic_name__ = check_and_map_params( self_attn.value.bias.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_value.bias''' ) __magic_name__ = check_and_map_params( self_attn.value.weight.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_value.weight''' ) # self attention output __magic_name__ = layer.attention.output __magic_name__ = check_and_map_params( self_output.dense.bias , f'''encoder.transformer_cells.{i}.proj.bias''' ) __magic_name__ = check_and_map_params( self_output.dense.weight , f'''encoder.transformer_cells.{i}.proj.weight''' ) __magic_name__ = check_and_map_params( self_output.LayerNorm.bias , f'''encoder.transformer_cells.{i}.layer_norm.beta''' ) __magic_name__ = check_and_map_params( self_output.LayerNorm.weight , f'''encoder.transformer_cells.{i}.layer_norm.gamma''' ) # intermediate __magic_name__ = layer.intermediate __magic_name__ = check_and_map_params( intermediate.dense.bias , f'''encoder.transformer_cells.{i}.ffn.ffn_1.bias''' ) __magic_name__ = check_and_map_params( intermediate.dense.weight , f'''encoder.transformer_cells.{i}.ffn.ffn_1.weight''' ) # output __magic_name__ = layer.output __magic_name__ = check_and_map_params( bert_output.dense.bias , f'''encoder.transformer_cells.{i}.ffn.ffn_2.bias''' ) __magic_name__ = check_and_map_params( bert_output.dense.weight , f'''encoder.transformer_cells.{i}.ffn.ffn_2.weight''' ) __magic_name__ = check_and_map_params( bert_output.LayerNorm.bias , f'''encoder.transformer_cells.{i}.ffn.layer_norm.beta''' ) __magic_name__ = check_and_map_params( bert_output.LayerNorm.weight , f'''encoder.transformer_cells.{i}.ffn.layer_norm.gamma''' ) # Save space and energy 🎄 hf_bort_model.half() # Compare output of both models __magic_name__ = RobertaTokenizer.from_pretrained("roberta-base" ) __magic_name__ = tokenizer.encode_plus(__lowerCamelCase )["input_ids"] # Get gluon output __magic_name__ = mx.nd.array([input_ids] ) __magic_name__ = original_bort(inputs=__lowerCamelCase , token_types=[] ) # Get Transformer output (save and reload model again) hf_bort_model.save_pretrained(__lowerCamelCase ) __magic_name__ = BertModel.from_pretrained(__lowerCamelCase ) hf_bort_model.eval() __magic_name__ = tokenizer.encode_plus(__lowerCamelCase , return_tensors="pt" ) __magic_name__ = hf_bort_model(**__lowerCamelCase )[0] __magic_name__ = output_gluon[0].asnumpy() __magic_name__ = output_hf[0].detach().numpy() __magic_name__ = np.max(np.abs(hf_layer - gluon_layer ) ).item() __magic_name__ = np.allclose(__lowerCamelCase , __lowerCamelCase , atol=1E-3 ) if success: print("✔️ Both model do output the same tensors" ) else: print("❌ Both model do **NOT** output the same tensors" ) print("Absolute difference is:" , __lowerCamelCase ) if __name__ == "__main__": lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--bort_checkpoint_path''', default=None, type=str, required=True, help='''Path the official Bort params file.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) lowercase = parser.parse_args() convert_bort_checkpoint_to_pytorch(args.bort_checkpoint_path, args.pytorch_dump_folder_path)
468
0
"""simple docstring""" import argparse import intel_extension_for_pytorch as ipex import torch from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline __lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser('''Stable Diffusion script with intel optimization''', add_help=False) parser.add_argument('''--dpm''', action='''store_true''', help='''Enable DPMSolver or not''') parser.add_argument('''--steps''', default=None, type=int, help='''Num inference steps''') __lowerCAmelCase : List[Any] = parser.parse_args() __lowerCAmelCase : Tuple = 'cpu' __lowerCAmelCase : Any = 'a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings' __lowerCAmelCase : Optional[int] = 'path-to-your-trained-model' __lowerCAmelCase : Union[str, Any] = StableDiffusionPipeline.from_pretrained(model_id) if args.dpm: __lowerCAmelCase : Optional[int] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) __lowerCAmelCase : List[str] = pipe.to(device) # to channels last __lowerCAmelCase : List[Any] = pipe.unet.to(memory_format=torch.channels_last) __lowerCAmelCase : Dict = pipe.vae.to(memory_format=torch.channels_last) __lowerCAmelCase : str = pipe.text_encoder.to(memory_format=torch.channels_last) if pipe.requires_safety_checker: __lowerCAmelCase : Tuple = pipe.safety_checker.to(memory_format=torch.channels_last) # optimize with ipex __lowerCAmelCase : Optional[int] = torch.randn(2, 4, 64, 64) __lowerCAmelCase : str = torch.rand(1) * 999 __lowerCAmelCase : Optional[int] = torch.randn(2, 77, 768) __lowerCAmelCase : str = (sample, timestep, encoder_hidden_status) try: __lowerCAmelCase : Dict = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example) except Exception: __lowerCAmelCase : Optional[int] = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True) __lowerCAmelCase : Optional[int] = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True) __lowerCAmelCase : Any = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True) if pipe.requires_safety_checker: __lowerCAmelCase : Tuple = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True) # compute __lowerCAmelCase : Any = 666 __lowerCAmelCase : Tuple = torch.Generator(device).manual_seed(seed) __lowerCAmelCase : Tuple = {'generator': generator} if args.steps is not None: __lowerCAmelCase : List[str] = args.steps with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa): __lowerCAmelCase : List[Any] = pipe(prompt, **generate_kwargs).images[0] # save image image.save('''generated.png''')
58
"""simple docstring""" from __future__ import annotations lowercase__ :Dict = 'Muhammad Umer Farooq' lowercase__ :Any = 'MIT' lowercase__ :List[str] = '1.0.0' lowercase__ :str = 'Muhammad Umer Farooq' lowercase__ :List[str] = 'contact@muhammadumerfarooq.me' lowercase__ :Dict = 'Alpha' import re from html.parser import HTMLParser from urllib import parse import requests class snake_case ( __UpperCAmelCase ): '''simple docstring''' def __init__( self : str , __lowercase : str ): '''simple docstring''' super().__init__() __UpperCAmelCase : list[str] = [] __UpperCAmelCase : Tuple = domain def A_ ( self : Any , __lowercase : str , __lowercase : list[tuple[str, str | None]] ): '''simple docstring''' if tag == "a": # Check the list of defined attributes. for name, value in attrs: # If href is defined, and not empty nor # print it. if name == "href" and value != "#" and value != "": # If not already in urls. if value not in self.urls: __UpperCAmelCase : List[Any] = parse.urljoin(self.domain , __lowercase ) self.urls.append(__lowercase ) def lowerCamelCase_ ( UpperCAmelCase_ ) ->str: """simple docstring""" return ".".join(get_sub_domain_name(UpperCAmelCase_ ).split('''.''' )[-2:] ) def lowerCamelCase_ ( UpperCAmelCase_ ) ->str: """simple docstring""" return parse.urlparse(UpperCAmelCase_ ).netloc def lowerCamelCase_ ( UpperCAmelCase_ = "https://github.com" ) ->list[str]: """simple docstring""" __UpperCAmelCase : Union[str, Any] = get_domain_name(UpperCAmelCase_ ) # Initialize the parser __UpperCAmelCase : int = Parser(UpperCAmelCase_ ) try: # Open URL __UpperCAmelCase : Union[str, Any] = requests.get(UpperCAmelCase_ ) # pass the raw HTML to the parser to get links parser.feed(r.text ) # Get links and loop through __UpperCAmelCase : str = set() for link in parser.urls: # open URL. # read = requests.get(link) try: __UpperCAmelCase : Optional[int] = requests.get(UpperCAmelCase_ ) # Get the valid email. __UpperCAmelCase : Tuple = re.findall('''[a-zA-Z0-9]+@''' + domain , read.text ) # If not in list then append it. for email in emails: valid_emails.add(UpperCAmelCase_ ) except ValueError: pass except ValueError: raise SystemExit(1 ) # Finally return a sorted list of email addresses with no duplicates. return sorted(UpperCAmelCase_ ) if __name__ == "__main__": lowercase__ :List[str] = emails_from_url('https://github.com') print(f"""{len(emails)} emails found:""") print('\n'.join(sorted(emails)))
522
0
import requests def __snake_case ( _UpperCAmelCase , _UpperCAmelCase ): __a = {'''Content-Type''': '''application/json'''} __a = requests.post(_UpperCAmelCase , json={'''text''': message_body} , headers=_UpperCAmelCase ) if response.status_code != 200: __a = ( '''Request to slack returned an error ''' f'{response.status_code}, the response is:\n{response.text}' ) raise ValueError(_UpperCAmelCase ) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message('''<YOUR MESSAGE BODY>''', '''<SLACK CHANNEL URL>''')
60
from __future__ import annotations from random import random from typing import Generic, TypeVar __snake_case :Any = TypeVar('''KT''') __snake_case :List[str] = TypeVar('''VT''') class _A ( Generic[KT, VT] ): def __init__( self : Dict , __SCREAMING_SNAKE_CASE : KT | str = "root" , __SCREAMING_SNAKE_CASE : VT | None = None): '''simple docstring''' __a = key __a = value __a = [] def __repr__( self : Dict): '''simple docstring''' return F'Node({self.key}: {self.value})' @property def _lowerCamelCase ( self : Tuple): '''simple docstring''' return len(self.forward) class _A ( Generic[KT, VT] ): def __init__( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : float = 0.5 , __SCREAMING_SNAKE_CASE : int = 16): '''simple docstring''' __a = Node[KT, VT]() __a = 0 __a = p __a = max_level def __str__( self : Union[str, Any]): '''simple docstring''' __a = list(self) if len(__SCREAMING_SNAKE_CASE) == 0: return F'SkipList(level={self.level})' __a = max((len(str(__SCREAMING_SNAKE_CASE)) for item in items) , default=4) __a = max(__SCREAMING_SNAKE_CASE , 4) + 4 __a = self.head __a = [] __a = node.forward.copy() lines.append(F'[{node.key}]'.ljust(__SCREAMING_SNAKE_CASE , '''-''') + '''* ''' * len(__SCREAMING_SNAKE_CASE)) lines.append(''' ''' * label_size + '''| ''' * len(__SCREAMING_SNAKE_CASE)) while len(node.forward) != 0: __a = node.forward[0] lines.append( F'[{node.key}]'.ljust(__SCREAMING_SNAKE_CASE , '''-''') + ''' '''.join(str(n.key) if n.key == node.key else '''|''' for n in forwards)) lines.append(''' ''' * label_size + '''| ''' * len(__SCREAMING_SNAKE_CASE)) __a = node.forward lines.append('''None'''.ljust(__SCREAMING_SNAKE_CASE) + '''* ''' * len(__SCREAMING_SNAKE_CASE)) return F'SkipList(level={self.level})\n' + "\n".join(__SCREAMING_SNAKE_CASE) def __iter__( self : int): '''simple docstring''' __a = self.head while len(node.forward) != 0: yield node.forward[0].key __a = node.forward[0] def _lowerCamelCase ( self : List[Any]): '''simple docstring''' __a = 1 while random() < self.p and level < self.max_level: level += 1 return level def _lowerCamelCase ( self : Tuple , __SCREAMING_SNAKE_CASE : Union[str, Any]): '''simple docstring''' __a = [] __a = self.head for i in reversed(range(self.level)): # i < node.level - When node level is lesser than `i` decrement `i`. # node.forward[i].key < key - Jumping to node with key value higher # or equal to searched key would result # in skipping searched key. while i < node.level and node.forward[i].key < key: __a = node.forward[i] # Each leftmost node (relative to searched node) will potentially have to # be updated. update_vector.append(__SCREAMING_SNAKE_CASE) update_vector.reverse() # Note that we were inserting values in reverse order. # len(node.forward) != 0 - If current node doesn't contain any further # references then searched key is not present. # node.forward[0].key == key - Next node key should be equal to search key # if key is present. if len(node.forward) != 0 and node.forward[0].key == key: return node.forward[0], update_vector else: return None, update_vector def _lowerCamelCase ( self : Dict , __SCREAMING_SNAKE_CASE : KT): '''simple docstring''' __a , __a = self._locate_node(__SCREAMING_SNAKE_CASE) if node is not None: for i, update_node in enumerate(__SCREAMING_SNAKE_CASE): # Remove or replace all references to removed node. if update_node.level > i and update_node.forward[i].key == key: if node.level > i: __a = node.forward[i] else: __a = update_node.forward[:i] def _lowerCamelCase ( self : List[str] , __SCREAMING_SNAKE_CASE : KT , __SCREAMING_SNAKE_CASE : VT): '''simple docstring''' __a , __a = self._locate_node(__SCREAMING_SNAKE_CASE) if node is not None: __a = value else: __a = self.random_level() if level > self.level: # After level increase we have to add additional nodes to head. for _ in range(self.level - 1 , __SCREAMING_SNAKE_CASE): update_vector.append(self.head) __a = level __a = Node(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) for i, update_node in enumerate(update_vector[:level]): # Change references to pass through new node. if update_node.level > i: new_node.forward.append(update_node.forward[i]) if update_node.level < i + 1: update_node.forward.append(__SCREAMING_SNAKE_CASE) else: __a = new_node def _lowerCamelCase ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : VT): '''simple docstring''' __a , __a = self._locate_node(__SCREAMING_SNAKE_CASE) if node is not None: return node.value return None def __snake_case ( ): __a = SkipList() skip_list.insert('''Key1''' , 3 ) skip_list.insert('''Key2''' , 12 ) skip_list.insert('''Key3''' , 41 ) skip_list.insert('''Key4''' , -19 ) __a = skip_list.head __a = {} while node.level != 0: __a = node.forward[0] __a = node.value assert len(_UpperCAmelCase ) == 4 assert all_values["Key1"] == 3 assert all_values["Key2"] == 12 assert all_values["Key3"] == 41 assert all_values["Key4"] == -19 def __snake_case ( ): __a = SkipList() skip_list.insert('''Key1''' , 10 ) skip_list.insert('''Key1''' , 12 ) skip_list.insert('''Key5''' , 7 ) skip_list.insert('''Key7''' , 10 ) skip_list.insert('''Key10''' , 5 ) skip_list.insert('''Key7''' , 7 ) skip_list.insert('''Key5''' , 5 ) skip_list.insert('''Key10''' , 10 ) __a = skip_list.head __a = {} while node.level != 0: __a = node.forward[0] __a = node.value if len(_UpperCAmelCase ) != 4: print() assert len(_UpperCAmelCase ) == 4 assert all_values["Key1"] == 12 assert all_values["Key7"] == 7 assert all_values["Key5"] == 5 assert all_values["Key10"] == 10 def __snake_case ( ): __a = SkipList() assert skip_list.find('''Some key''' ) is None def __snake_case ( ): __a = SkipList() skip_list.insert('''Key2''' , 20 ) assert skip_list.find('''Key2''' ) == 20 skip_list.insert('''Some Key''' , 10 ) skip_list.insert('''Key2''' , 8 ) skip_list.insert('''V''' , 13 ) assert skip_list.find('''Y''' ) is None assert skip_list.find('''Key2''' ) == 8 assert skip_list.find('''Some Key''' ) == 10 assert skip_list.find('''V''' ) == 13 def __snake_case ( ): __a = SkipList() skip_list.delete('''Some key''' ) assert len(skip_list.head.forward ) == 0 def __snake_case ( ): __a = SkipList() skip_list.insert('''Key1''' , 12 ) skip_list.insert('''V''' , 13 ) skip_list.insert('''X''' , 14 ) skip_list.insert('''Key2''' , 15 ) skip_list.delete('''V''' ) skip_list.delete('''Key2''' ) assert skip_list.find('''V''' ) is None assert skip_list.find('''Key2''' ) is None def __snake_case ( ): __a = SkipList() skip_list.insert('''Key1''' , 12 ) skip_list.insert('''V''' , 13 ) skip_list.insert('''X''' , 14 ) skip_list.insert('''Key2''' , 15 ) skip_list.delete('''V''' ) assert skip_list.find('''V''' ) is None assert skip_list.find('''X''' ) == 14 assert skip_list.find('''Key1''' ) == 12 assert skip_list.find('''Key2''' ) == 15 skip_list.delete('''X''' ) assert skip_list.find('''V''' ) is None assert skip_list.find('''X''' ) is None assert skip_list.find('''Key1''' ) == 12 assert skip_list.find('''Key2''' ) == 15 skip_list.delete('''Key1''' ) assert skip_list.find('''V''' ) is None assert skip_list.find('''X''' ) is None assert skip_list.find('''Key1''' ) is None assert skip_list.find('''Key2''' ) == 15 skip_list.delete('''Key2''' ) assert skip_list.find('''V''' ) is None assert skip_list.find('''X''' ) is None assert skip_list.find('''Key1''' ) is None assert skip_list.find('''Key2''' ) is None def __snake_case ( ): __a = SkipList() skip_list.insert('''Key1''' , 12 ) skip_list.insert('''V''' , 13 ) skip_list.insert('''X''' , 142 ) skip_list.insert('''Key2''' , 15 ) skip_list.delete('''X''' ) def traverse_keys(_UpperCAmelCase ): yield node.key for forward_node in node.forward: yield from traverse_keys(_UpperCAmelCase ) assert len(set(traverse_keys(skip_list.head ) ) ) == 4 def __snake_case ( ): def is_sorted(_UpperCAmelCase ): return all(next_item >= item for item, next_item in zip(_UpperCAmelCase , lst[1:] ) ) __a = SkipList() for i in range(10 ): skip_list.insert(_UpperCAmelCase , _UpperCAmelCase ) assert is_sorted(list(_UpperCAmelCase ) ) skip_list.delete(5 ) skip_list.delete(8 ) skip_list.delete(2 ) assert is_sorted(list(_UpperCAmelCase ) ) skip_list.insert(-12 , -12 ) skip_list.insert(77 , 77 ) assert is_sorted(list(_UpperCAmelCase ) ) def __snake_case ( ): for _ in range(100 ): # Repeat test 100 times due to the probabilistic nature of skip list # random values == random bugs test_insert() test_insert_overrides_existing_value() test_searching_empty_list_returns_none() test_search() test_deleting_item_from_empty_list_do_nothing() test_deleted_items_are_not_founded_by_find_method() test_delete_removes_only_given_key() test_delete_doesnt_leave_dead_nodes() test_iter_always_yields_sorted_values() def __snake_case ( ): __a = SkipList() skip_list.insert(2 , '''2''' ) skip_list.insert(4 , '''4''' ) skip_list.insert(6 , '''4''' ) skip_list.insert(4 , '''5''' ) skip_list.insert(8 , '''4''' ) skip_list.insert(9 , '''4''' ) skip_list.delete(4 ) print(_UpperCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod() main()
60
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A_ : Any = logging.get_logger(__name__) A_ : Optional[int] = { "camembert-base": "https://huggingface.co/camembert-base/resolve/main/config.json", "umberto-commoncrawl-cased-v1": ( "https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json" ), "umberto-wikipedia-uncased-v1": ( "https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json" ), } class lowerCamelCase (A__ ): lowerCamelCase__ : int = 'camembert' def __init__( self : Union[str, Any] , __UpperCAmelCase : str=3_0_5_2_2 , __UpperCAmelCase : Tuple=7_6_8 , __UpperCAmelCase : Any=1_2 , __UpperCAmelCase : Optional[Any]=1_2 , __UpperCAmelCase : Dict=3_0_7_2 , __UpperCAmelCase : Optional[int]="gelu" , __UpperCAmelCase : Any=0.1 , __UpperCAmelCase : Optional[Any]=0.1 , __UpperCAmelCase : Optional[int]=5_1_2 , __UpperCAmelCase : List[str]=2 , __UpperCAmelCase : Union[str, Any]=0.02 , __UpperCAmelCase : List[str]=1e-12 , __UpperCAmelCase : str=1 , __UpperCAmelCase : Any=0 , __UpperCAmelCase : int=2 , __UpperCAmelCase : Union[str, Any]="absolute" , __UpperCAmelCase : Any=True , __UpperCAmelCase : List[str]=None , **__UpperCAmelCase : Dict , ) -> Optional[int]: super().__init__(pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = intermediate_size SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = type_vocab_size SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = layer_norm_eps SCREAMING_SNAKE_CASE__ = position_embedding_type SCREAMING_SNAKE_CASE__ = use_cache SCREAMING_SNAKE_CASE__ = classifier_dropout class lowerCamelCase (A__ ): @property def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": SCREAMING_SNAKE_CASE__ = {0: """batch""", 1: """choice""", 2: """sequence"""} else: SCREAMING_SNAKE_CASE__ = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
196
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class lowerCamelCase (unittest.TestCase ): def __init__( self : Tuple , __UpperCAmelCase : str , __UpperCAmelCase : Any=7 , __UpperCAmelCase : Union[str, Any]=3 , __UpperCAmelCase : Any=1_8 , __UpperCAmelCase : Tuple=3_0 , __UpperCAmelCase : List[Any]=4_0_0 , __UpperCAmelCase : Dict=True , __UpperCAmelCase : int=None , __UpperCAmelCase : List[Any]=True , __UpperCAmelCase : Any=None , __UpperCAmelCase : Any=True , ) -> Tuple: SCREAMING_SNAKE_CASE__ = size if size is not None else {"""shortest_edge""": 2_0} SCREAMING_SNAKE_CASE__ = crop_size if crop_size is not None else {"""height""": 1_8, """width""": 1_8} SCREAMING_SNAKE_CASE__ = parent SCREAMING_SNAKE_CASE__ = batch_size SCREAMING_SNAKE_CASE__ = num_channels SCREAMING_SNAKE_CASE__ = image_size SCREAMING_SNAKE_CASE__ = min_resolution SCREAMING_SNAKE_CASE__ = max_resolution SCREAMING_SNAKE_CASE__ = do_resize SCREAMING_SNAKE_CASE__ = size SCREAMING_SNAKE_CASE__ = do_center_crop SCREAMING_SNAKE_CASE__ = crop_size SCREAMING_SNAKE_CASE__ = do_flip_channel_order def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Any: return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class lowerCamelCase (A__ ,unittest.TestCase ): lowerCamelCase__ : Tuple = MobileViTImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE ( self : Dict ) -> Any: SCREAMING_SNAKE_CASE__ = MobileViTImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE ( self : List[str] ) -> int: return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__UpperCAmelCase , """do_resize""" ) ) self.assertTrue(hasattr(__UpperCAmelCase , """size""" ) ) self.assertTrue(hasattr(__UpperCAmelCase , """do_center_crop""" ) ) self.assertTrue(hasattr(__UpperCAmelCase , """center_crop""" ) ) self.assertTrue(hasattr(__UpperCAmelCase , """do_flip_channel_order""" ) ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[str]: SCREAMING_SNAKE_CASE__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 2_0} ) self.assertEqual(image_processor.crop_size , {"""height""": 1_8, """width""": 1_8} ) SCREAMING_SNAKE_CASE__ = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 , crop_size=8_4 ) self.assertEqual(image_processor.size , {"""shortest_edge""": 4_2} ) self.assertEqual(image_processor.crop_size , {"""height""": 8_4, """width""": 8_4} ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> Dict: pass def SCREAMING_SNAKE_CASE ( self : Any ) -> List[str]: # Initialize image_processing SCREAMING_SNAKE_CASE__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase , Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE__ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched SCREAMING_SNAKE_CASE__ = image_processing(__UpperCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[int]: # Initialize image_processing SCREAMING_SNAKE_CASE__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase , numpify=__UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase , np.ndarray ) # Test not batched input SCREAMING_SNAKE_CASE__ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched SCREAMING_SNAKE_CASE__ = image_processing(__UpperCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> str: # Initialize image_processing SCREAMING_SNAKE_CASE__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase , torchify=__UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase , torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE__ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched SCREAMING_SNAKE_CASE__ = image_processing(__UpperCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
196
1
'''simple docstring''' from __future__ import annotations class lowerCamelCase_ : def __init__( self : Tuple , _A : int ): '''simple docstring''' UpperCAmelCase__ : int = order # a_{0} ... a_{k} UpperCAmelCase__ : Any = [1.0] + [0.0] * order # b_{0} ... b_{k} UpperCAmelCase__ : Tuple = [1.0] + [0.0] * order # x[n-1] ... x[n-k] UpperCAmelCase__ : Union[str, Any] = [0.0] * self.order # y[n-1] ... y[n-k] UpperCAmelCase__ : Optional[int] = [0.0] * self.order def lowercase_ ( self : Any , _A : list[float] , _A : list[float] ): '''simple docstring''' if len(_A ) < self.order: UpperCAmelCase__ : Any = [1.0, *a_coeffs] if len(_A ) != self.order + 1: UpperCAmelCase__ : int = ( f"""Expected a_coeffs to have {self.order + 1} elements """ f"""for {self.order}-order filter, got {len(_A )}""" ) raise ValueError(_A ) if len(_A ) != self.order + 1: UpperCAmelCase__ : Tuple = ( f"""Expected b_coeffs to have {self.order + 1} elements """ f"""for {self.order}-order filter, got {len(_A )}""" ) raise ValueError(_A ) UpperCAmelCase__ : List[Any] = a_coeffs UpperCAmelCase__ : List[Any] = b_coeffs def lowercase_ ( self : int , _A : float ): '''simple docstring''' UpperCAmelCase__ : List[Any] = 0.0 # Start at index 1 and do index 0 at the end. for i in range(1 , self.order + 1 ): result += ( self.b_coeffs[i] * self.input_history[i - 1] - self.a_coeffs[i] * self.output_history[i - 1] ) UpperCAmelCase__ : List[str] = (result + self.b_coeffs[0] * sample) / self.a_coeffs[0] UpperCAmelCase__ : List[str] = self.input_history[:-1] UpperCAmelCase__ : Tuple = self.output_history[:-1] UpperCAmelCase__ : List[Any] = sample UpperCAmelCase__ : Union[str, Any] = result return result
708
'''simple docstring''' import argparse import os import shutil import torch from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer def a__ ( lowerCAmelCase__ ) -> Optional[Any]: UpperCAmelCase__ : Optional[Any] = args.pruning_method UpperCAmelCase__ : List[str] = args.threshold UpperCAmelCase__ : str = args.model_name_or_path.rstrip('''/''' ) UpperCAmelCase__ : List[str] = args.target_model_path print(F"""Load fine-pruned model from {model_name_or_path}""" ) UpperCAmelCase__ : str = torch.load(os.path.join(lowerCAmelCase__ , '''pytorch_model.bin''' ) ) UpperCAmelCase__ : Optional[Any] = {} for name, tensor in model.items(): if "embeddings" in name or "LayerNorm" in name or "pooler" in name: UpperCAmelCase__ : Dict = tensor print(F"""Copied layer {name}""" ) elif "classifier" in name or "qa_output" in name: UpperCAmelCase__ : Union[str, Any] = tensor print(F"""Copied layer {name}""" ) elif "bias" in name: UpperCAmelCase__ : Dict = tensor print(F"""Copied layer {name}""" ) else: if pruning_method == "magnitude": UpperCAmelCase__ : str = MagnitudeBinarizer.apply(inputs=lowerCAmelCase__ , threshold=lowerCAmelCase__ ) UpperCAmelCase__ : List[Any] = tensor * mask print(F"""Pruned layer {name}""" ) elif pruning_method == "topK": if "mask_scores" in name: continue UpperCAmelCase__ : Optional[Any] = name[:-6] UpperCAmelCase__ : Tuple = model[F"""{prefix_}mask_scores"""] UpperCAmelCase__ : Optional[Any] = TopKBinarizer.apply(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase__ : Any = tensor * mask print(F"""Pruned layer {name}""" ) elif pruning_method == "sigmoied_threshold": if "mask_scores" in name: continue UpperCAmelCase__ : Dict = name[:-6] UpperCAmelCase__ : Union[str, Any] = model[F"""{prefix_}mask_scores"""] UpperCAmelCase__ : Optional[Any] = ThresholdBinarizer.apply(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase__ : List[str] = tensor * mask print(F"""Pruned layer {name}""" ) elif pruning_method == "l0": if "mask_scores" in name: continue UpperCAmelCase__ : int = name[:-6] UpperCAmelCase__ : Dict = model[F"""{prefix_}mask_scores"""] UpperCAmelCase__ , UpperCAmelCase__ : Any = -0.1, 1.1 UpperCAmelCase__ : List[str] = torch.sigmoid(lowerCAmelCase__ ) UpperCAmelCase__ : Any = s * (r - l) + l UpperCAmelCase__ : Tuple = s_bar.clamp(min=0.0 , max=1.0 ) UpperCAmelCase__ : Union[str, Any] = tensor * mask print(F"""Pruned layer {name}""" ) else: raise ValueError('''Unknown pruning method''' ) if target_model_path is None: UpperCAmelCase__ : List[str] = os.path.join( os.path.dirname(lowerCAmelCase__ ) , F"""bertarized_{os.path.basename(lowerCAmelCase__ )}""" ) if not os.path.isdir(lowerCAmelCase__ ): shutil.copytree(lowerCAmelCase__ , lowerCAmelCase__ ) print(F"""\nCreated folder {target_model_path}""" ) torch.save(lowerCAmelCase__ , os.path.join(lowerCAmelCase__ , '''pytorch_model.bin''' ) ) print('''\nPruned model saved! See you later!''' ) if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() parser.add_argument( '''--pruning_method''', choices=['''l0''', '''magnitude''', '''topK''', '''sigmoied_threshold'''], type=str, required=True, help=( '''Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning,''' ''' sigmoied_threshold = Soft movement pruning)''' ), ) parser.add_argument( '''--threshold''', type=float, required=False, help=( '''For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model.''' '''For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared.''' '''Not needed for `l0`''' ), ) parser.add_argument( '''--model_name_or_path''', type=str, required=True, help='''Folder containing the model that was previously fine-pruned''', ) parser.add_argument( '''--target_model_path''', default=None, type=str, required=False, help='''Folder containing the model that was previously fine-pruned''', ) UpperCamelCase__ = parser.parse_args() main(args)
312
0
import os __a: int = {'''I''': 1, '''V''': 5, '''X''': 10, '''L''': 50, '''C''': 100, '''D''': 500, '''M''': 1000} def _SCREAMING_SNAKE_CASE ( __snake_case ) -> int: _UpperCAmelCase = 0 _UpperCAmelCase = 0 while index < len(UpperCamelCase_ ) - 1: _UpperCAmelCase = SYMBOLS[numerals[index]] _UpperCAmelCase = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def _SCREAMING_SNAKE_CASE ( __snake_case ) -> str: _UpperCAmelCase = """""" _UpperCAmelCase = num // 1_0_0_0 numerals += m_count * "M" num %= 1_0_0_0 _UpperCAmelCase = num // 1_0_0 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 1_0_0 _UpperCAmelCase = num // 1_0 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 1_0 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def _SCREAMING_SNAKE_CASE ( __snake_case = "/p089_roman.txt" ) -> int: _UpperCAmelCase = 0 with open(os.path.dirname(UpperCamelCase_ ) + roman_numerals_filename ) as filea: _UpperCAmelCase = filea.readlines() for line in lines: _UpperCAmelCase = line.strip() _UpperCAmelCase = parse_roman_numerals(UpperCamelCase_ ) _UpperCAmelCase = generate_roman_numerals(UpperCamelCase_ ) savings += len(UpperCamelCase_ ) - len(UpperCamelCase_ ) return savings if __name__ == "__main__": print(F"{solution() = }")
108
import random import unittest import numpy as np import transformers from transformers import is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax if is_flax_available(): import os import jax.numpy as jnp from jax import jit from transformers import AutoTokenizer, FlaxAutoModelForCausalLM from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model _SCREAMING_SNAKE_CASE = """0.12""" # assumed parallelism: 8 if is_torch_available(): import torch def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=None ) -> int: '''simple docstring''' if rng is None: UpperCamelCase = random.Random() UpperCamelCase = 1 for dim in shape: total_dims *= dim UpperCamelCase = [] for _ in range(UpperCamelCase_ ): values.append(rng.randint(0 , vocab_size - 1 ) ) UpperCamelCase = np.array(UpperCamelCase_ , dtype=jnp.intaa ).reshape(UpperCamelCase_ ) return output def lowercase( UpperCamelCase_ , UpperCamelCase_=None ) -> List[str]: '''simple docstring''' UpperCamelCase = ids_tensor(UpperCamelCase_ , vocab_size=2 , rng=UpperCamelCase_ ) # make sure that at least one token is attended to for each batch UpperCamelCase = 1 return attn_mask @require_flax class SCREAMING_SNAKE_CASE_ : __lowerCAmelCase = None __lowerCAmelCase = () def lowerCamelCase_ ( self : Tuple ): """simple docstring""" UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() # cut to half length & take max batch_size 3 UpperCamelCase = 2 UpperCamelCase = inputs["""input_ids"""].shape[-1] // 2 UpperCamelCase = inputs["""input_ids"""][:max_batch_size, :sequence_length] UpperCamelCase = jnp.ones_like(lowerCamelCase_ ) UpperCamelCase = attention_mask[:max_batch_size, :sequence_length] # generate max 5 tokens UpperCamelCase = input_ids.shape[-1] + 5 if config.eos_token_id is not None and config.pad_token_id is None: # hack to allow generate for models such as GPT2 as is done in `generate()` UpperCamelCase = config.eos_token_id return config, input_ids, attention_mask, max_length @is_pt_flax_cross_test def lowerCamelCase_ ( self : Dict ): """simple docstring""" UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = self._get_input_ids_and_config() UpperCamelCase = False UpperCamelCase = max_length UpperCamelCase = 0 for model_class in self.all_generative_model_classes: UpperCamelCase = model_class(lowerCamelCase_ ) UpperCamelCase = model_class.__name__[4:] # Skip the "Flax" at the beginning UpperCamelCase = getattr(lowerCamelCase_ , lowerCamelCase_ ) UpperCamelCase = pt_model_class(lowerCamelCase_ ).eval() UpperCamelCase = load_flax_weights_in_pytorch_model(lowerCamelCase_ , flax_model.params ) UpperCamelCase = flax_model.generate(lowerCamelCase_ ).sequences UpperCamelCase = pt_model.generate(torch.tensor(lowerCamelCase_ , dtype=torch.long ) ) if flax_generation_outputs.shape[-1] > pt_generation_outputs.shape[-1]: UpperCamelCase = flax_generation_outputs[:, : pt_generation_outputs.shape[-1]] self.assertListEqual(pt_generation_outputs.numpy().tolist() , flax_generation_outputs.tolist() ) def lowerCamelCase_ ( self : List[str] ): """simple docstring""" UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = self._get_input_ids_and_config() UpperCamelCase = False UpperCamelCase = max_length for model_class in self.all_generative_model_classes: UpperCamelCase = model_class(lowerCamelCase_ ) UpperCamelCase = model.generate(lowerCamelCase_ ).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCamelCase_ ) UpperCamelCase = jit(model.generate ) UpperCamelCase = jit_generate(lowerCamelCase_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = self._get_input_ids_and_config() UpperCamelCase = True UpperCamelCase = max_length for model_class in self.all_generative_model_classes: UpperCamelCase = model_class(lowerCamelCase_ ) UpperCamelCase = model.generate(lowerCamelCase_ ).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCamelCase_ ) UpperCamelCase = jit(model.generate ) UpperCamelCase = jit_generate(lowerCamelCase_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def lowerCamelCase_ ( self : Any ): """simple docstring""" UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = self._get_input_ids_and_config() UpperCamelCase = False UpperCamelCase = max_length UpperCamelCase = 2 for model_class in self.all_generative_model_classes: UpperCamelCase = model_class(lowerCamelCase_ ) UpperCamelCase = model.generate(lowerCamelCase_ ).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCamelCase_ ) UpperCamelCase = jit(model.generate ) UpperCamelCase = jit_generate(lowerCamelCase_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def lowerCamelCase_ ( self : int ): """simple docstring""" UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = self._get_input_ids_and_config() UpperCamelCase = False UpperCamelCase = max_length UpperCamelCase = 2 UpperCamelCase = 2 for model_class in self.all_generative_model_classes: UpperCamelCase = model_class(lowerCamelCase_ ) UpperCamelCase = model.generate(lowerCamelCase_ ).sequences self.assertEqual(generation_outputs.shape[0] , input_ids.shape[0] * config.num_return_sequences ) def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = self._get_input_ids_and_config() UpperCamelCase = True UpperCamelCase = max_length UpperCamelCase = 0.8 UpperCamelCase = 10 UpperCamelCase = 0.3 UpperCamelCase = 1 UpperCamelCase = 8 UpperCamelCase = 9 for model_class in self.all_generative_model_classes: UpperCamelCase = model_class(lowerCamelCase_ ) UpperCamelCase = model.generate(lowerCamelCase_ ).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCamelCase_ ) UpperCamelCase = jit(model.generate ) UpperCamelCase = jit_generate(lowerCamelCase_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = self._get_input_ids_and_config() UpperCamelCase = max_length UpperCamelCase = 1 UpperCamelCase = 8 UpperCamelCase = 9 for model_class in self.all_generative_model_classes: UpperCamelCase = model_class(lowerCamelCase_ ) UpperCamelCase = model.generate(lowerCamelCase_ ).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCamelCase_ ) UpperCamelCase = jit(model.generate ) UpperCamelCase = jit_generate(lowerCamelCase_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def lowerCamelCase_ ( self : Any ): """simple docstring""" UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = self._get_input_ids_and_config() UpperCamelCase = max_length UpperCamelCase = 2 UpperCamelCase = 1 UpperCamelCase = 8 UpperCamelCase = 9 for model_class in self.all_generative_model_classes: UpperCamelCase = model_class(lowerCamelCase_ ) UpperCamelCase = model.generate(lowerCamelCase_ ).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCamelCase_ ) UpperCamelCase = jit(model.generate ) UpperCamelCase = jit_generate(lowerCamelCase_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def lowerCamelCase_ ( self : int ): """simple docstring""" UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = self._get_input_ids_and_config() # pad attention mask on the left UpperCamelCase = attention_mask.at[(0, 0)].set(0 ) UpperCamelCase = False UpperCamelCase = max_length for model_class in self.all_generative_model_classes: UpperCamelCase = model_class(lowerCamelCase_ ) UpperCamelCase = model.generate(lowerCamelCase_ , attention_mask=lowerCamelCase_ ).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCamelCase_ ) UpperCamelCase = jit(model.generate ) UpperCamelCase = jit_generate(lowerCamelCase_ , attention_mask=lowerCamelCase_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = self._get_input_ids_and_config() # pad attention mask on the left UpperCamelCase = attention_mask.at[(0, 0)].set(0 ) UpperCamelCase = True UpperCamelCase = max_length for model_class in self.all_generative_model_classes: UpperCamelCase = model_class(lowerCamelCase_ ) UpperCamelCase = model.generate(lowerCamelCase_ , attention_mask=lowerCamelCase_ ).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCamelCase_ ) UpperCamelCase = jit(model.generate ) UpperCamelCase = jit_generate(lowerCamelCase_ , attention_mask=lowerCamelCase_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def lowerCamelCase_ ( self : Any ): """simple docstring""" UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = self._get_input_ids_and_config() # pad attention mask on the left UpperCamelCase = attention_mask.at[(0, 0)].set(0 ) UpperCamelCase = 2 UpperCamelCase = max_length for model_class in self.all_generative_model_classes: UpperCamelCase = model_class(lowerCamelCase_ ) UpperCamelCase = model.generate(lowerCamelCase_ , attention_mask=lowerCamelCase_ ).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCamelCase_ ) UpperCamelCase = jit(model.generate ) UpperCamelCase = jit_generate(lowerCamelCase_ , attention_mask=lowerCamelCase_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) @require_flax class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-bert""" ) UpperCamelCase = FlaxAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-bert-flax-only""" ) UpperCamelCase = """Hello world""" UpperCamelCase = tokenizer(lowerCamelCase_ , return_tensors="""np""" ).input_ids # typos are quickly detected (the correct argument is `do_sample`) with self.assertRaisesRegex(lowerCamelCase_ , """do_samples""" ): model.generate(lowerCamelCase_ , do_samples=lowerCamelCase_ ) # arbitrary arguments that will not be used anywhere are also not accepted with self.assertRaisesRegex(lowerCamelCase_ , """foo""" ): UpperCamelCase = {"""foo""": """bar"""} model.generate(lowerCamelCase_ , **lowerCamelCase_ )
537
0
import inspect import logging import os import random import shutil import tempfile import unittest import pytest import torch from torch import nn from torch.utils.data import DataLoader, TensorDataset from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_cuda from accelerate.utils import ProjectConfiguration, set_seed UpperCamelCase = logging.getLogger(__name__) def lowerCamelCase_ ( _lowercase=2 , _lowercase=3 , _lowercase=16 , _lowercase = 10 , _lowercase = 2 ) -> Any: def get_dataset(_lowercase ): __A : int = torch.randn(batch_size * n_batches , 1 ) return TensorDataset(_lowercase , a * x + b + 0.1 * torch.randn(batch_size * n_batches , 1 ) ) __A : Union[str, Any] = get_dataset(_lowercase ) __A : Union[str, Any] = get_dataset(_lowercase ) __A : Any = DataLoader(_lowercase , shuffle=_lowercase , batch_size=_lowercase , num_workers=4 ) __A : Optional[Any] = DataLoader(_lowercase , shuffle=_lowercase , batch_size=_lowercase , num_workers=4 ) return (train_dataloader, valid_dataloader) def lowerCamelCase_ ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase=None ) -> Any: __A : Any = [] for epoch in range(_lowercase ): # Train quickly model.train() for batch in dataloader: __A , __A : Tuple = batch __A : int = model(_lowercase ) __A : Optional[int] = torch.nn.functional.mse_loss(_lowercase , _lowercase ) accelerator.backward(_lowercase ) optimizer.step() optimizer.zero_grad() rands.append(random.random() ) # Introduce some randomness if scheduler is not None: scheduler.step() return rands class _a ( nn.Module ): '''simple docstring''' def __init__( self ): super().__init__() __A : Optional[int] = nn.Parameter(torch.randn(1 ) ) __A : Union[str, Any] = nn.Parameter(torch.randn(1 ) ) def __UpperCAmelCase( self , __UpperCAmelCase ): return x * self.a + self.b class _a ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase( self ): with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __A : Tuple = DummyModel() __A : Tuple = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) __A , __A : str = dummy_dataloaders() __A : List[Any] = ProjectConfiguration(total_limit=1 , project_dir=__UpperCAmelCase , automatic_checkpoint_naming=__UpperCAmelCase ) # Train baseline __A : Dict = Accelerator(project_config=__UpperCAmelCase ) __A , __A , __A , __A : Optional[int] = accelerator.prepare( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # Save initial accelerator.save_state() # Save second state accelerator.save_state() self.assertEqual(len(os.listdir(accelerator.project_dir ) ) , 1 ) def __UpperCAmelCase( self ): with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __A : Optional[int] = DummyModel() __A : List[Any] = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) __A , __A : Dict = dummy_dataloaders() # Train baseline __A : List[str] = Accelerator() __A , __A , __A , __A : List[str] = accelerator.prepare( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # Save initial __A : Dict = os.path.join(__UpperCAmelCase , "initial" ) accelerator.save_state(__UpperCAmelCase ) ((__A) , (__A)) : int = model.a.item(), model.b.item() __A : Any = optimizer.state_dict() __A : List[Any] = train(3 , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) ((__A) , (__A)) : List[Any] = model.a.item(), model.b.item() __A : int = optimizer.state_dict() # Train partially set_seed(42 ) __A : Optional[Any] = DummyModel() __A : Dict = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) __A , __A : int = dummy_dataloaders() __A : Optional[Any] = Accelerator() __A , __A , __A , __A : Dict = accelerator.prepare( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) accelerator.load_state(__UpperCAmelCase ) ((__A) , (__A)) : List[Any] = model.a.item(), model.b.item() __A : Any = optimizer.state_dict() self.assertEqual(__UpperCAmelCase , __UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , __UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , __UpperCAmelCase ) __A : Any = train(2 , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # Save everything __A : Dict = os.path.join(__UpperCAmelCase , "checkpoint" ) accelerator.save_state(__UpperCAmelCase ) # Load everything back in and make sure all states work accelerator.load_state(__UpperCAmelCase ) test_rands += train(1 , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) ((__A) , (__A)) : Union[str, Any] = model.a.item(), model.b.item() __A : Optional[int] = optimizer.state_dict() self.assertEqual(__UpperCAmelCase , __UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , __UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , __UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , __UpperCAmelCase ) def __UpperCAmelCase( self ): with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __A : Any = DummyModel() __A : Tuple = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) __A , __A : List[Any] = dummy_dataloaders() __A : List[str] = ProjectConfiguration(automatic_checkpoint_naming=__UpperCAmelCase ) # Train baseline __A : Any = Accelerator(project_dir=__UpperCAmelCase , project_config=__UpperCAmelCase ) __A , __A , __A , __A : int = accelerator.prepare( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # Save initial accelerator.save_state() ((__A) , (__A)) : Tuple = model.a.item(), model.b.item() __A : Union[str, Any] = optimizer.state_dict() __A : Union[str, Any] = train(3 , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) ((__A) , (__A)) : Optional[int] = model.a.item(), model.b.item() __A : Optional[int] = optimizer.state_dict() # Train partially set_seed(42 ) __A : Optional[Any] = DummyModel() __A : Optional[int] = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) __A , __A : Tuple = dummy_dataloaders() __A : Union[str, Any] = ProjectConfiguration(iteration=1 , automatic_checkpoint_naming=__UpperCAmelCase ) __A : List[str] = Accelerator(project_dir=__UpperCAmelCase , project_config=__UpperCAmelCase ) __A , __A , __A , __A : str = accelerator.prepare( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) accelerator.load_state(os.path.join(__UpperCAmelCase , "checkpoints" , "checkpoint_0" ) ) ((__A) , (__A)) : Optional[Any] = model.a.item(), model.b.item() __A : Optional[Any] = optimizer.state_dict() self.assertEqual(__UpperCAmelCase , __UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , __UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , __UpperCAmelCase ) __A : Tuple = train(2 , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # Save everything accelerator.save_state() # Load everything back in and make sure all states work accelerator.load_state(os.path.join(__UpperCAmelCase , "checkpoints" , "checkpoint_1" ) ) test_rands += train(1 , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) ((__A) , (__A)) : List[str] = model.a.item(), model.b.item() __A : str = optimizer.state_dict() self.assertEqual(__UpperCAmelCase , __UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , __UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , __UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , __UpperCAmelCase ) def __UpperCAmelCase( self ): __A : Optional[int] = torch.tensor([1, 2, 3] ) __A : List[Any] = torch.tensor([2, 3, 4] ) __A : List[str] = DummyModel() __A : List[str] = torch.optim.Adam(net.parameters() ) __A : Union[str, Any] = Accelerator() with self.assertRaises(__UpperCAmelCase ) as ve: accelerator.register_for_checkpointing(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) __A : Tuple = str(ve.exception ) self.assertTrue("Item at index 0" in message ) self.assertTrue("Item at index 1" in message ) self.assertFalse("Item at index 2" in message ) self.assertFalse("Item at index 3" in message ) def __UpperCAmelCase( self ): with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __A : Any = DummyModel() __A : List[str] = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) __A : Tuple = torch.optim.lr_scheduler.StepLR(__UpperCAmelCase , step_size=1 , gamma=0.99 ) __A , __A : str = dummy_dataloaders() __A : List[str] = ProjectConfiguration(automatic_checkpoint_naming=__UpperCAmelCase ) # Train baseline __A : Optional[int] = Accelerator(project_dir=__UpperCAmelCase , project_config=__UpperCAmelCase ) __A , __A , __A , __A , __A : Any = accelerator.prepare( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # Save initial accelerator.save_state() __A : List[str] = scheduler.state_dict() train(3 , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) self.assertNotEqual(__UpperCAmelCase , scheduler.state_dict() ) # Load everything back in and make sure all states work accelerator.load_state(os.path.join(__UpperCAmelCase , "checkpoints" , "checkpoint_0" ) ) self.assertEqual(__UpperCAmelCase , scheduler.state_dict() ) def __UpperCAmelCase( self ): with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __A : Any = DummyModel() __A : Union[str, Any] = ProjectConfiguration(automatic_checkpoint_naming=__UpperCAmelCase , total_limit=2 ) # Train baseline __A : int = Accelerator(project_dir=__UpperCAmelCase , project_config=__UpperCAmelCase ) __A : List[Any] = accelerator.prepare(__UpperCAmelCase ) # Save 3 states: for _ in range(11 ): accelerator.save_state() self.assertTrue(not os.path.exists(os.path.join(__UpperCAmelCase , "checkpoints" , "checkpoint_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , "checkpoints" , "checkpoint_9" ) ) ) self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , "checkpoints" , "checkpoint_10" ) ) ) @require_cuda def __UpperCAmelCase( self ): __A : Union[str, Any] = ["torchrun", F"--nproc_per_node={torch.cuda.device_count()}", inspect.getfile(self.__class__ )] execute_subprocess_async(__UpperCAmelCase , env=os.environ.copy() ) if __name__ == "__main__": UpperCamelCase = '/tmp/accelerate/state_checkpointing' UpperCamelCase = DummyModel() UpperCamelCase = torch.optim.Adam(params=model.parameters(), lr=1E-3) UpperCamelCase = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.99) UpperCamelCase , UpperCamelCase = dummy_dataloaders() UpperCamelCase = ProjectConfiguration(automatic_checkpoint_naming=True) # Train baseline UpperCamelCase = Accelerator(project_dir=savedir, project_config=project_config, mixed_precision='no') if accelerator.process_index == 0: if os.path.exists(savedir): shutil.rmtree(savedir) os.makedirs(savedir) UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = accelerator.prepare( model, optimizer, train_dataloader, valid_dataloader, scheduler ) UpperCamelCase , UpperCamelCase = accelerator.prepare(model, optimizer) train(3, model, train_dataloader, optimizer, accelerator, scheduler) # Check that the intial optimizer is loaded on the GPU for group in optimizer.param_groups: UpperCamelCase = group['params'][0].device break assert param_device.type == accelerator.device.type UpperCamelCase = model.cpu() accelerator.wait_for_everyone() accelerator.save_state() accelerator.wait_for_everyone() # Check CPU state accelerator.load_state(os.path.join(savedir, 'checkpoints', 'checkpoint_0'), map_location='cpu') for group in optimizer.param_groups: UpperCamelCase = group['params'][0].device break assert ( param_device.type == torch.device('cpu').type ), F"Loaded optimizer states did not match, expected to be loaded on the CPU but got {param_device}" # Check device state model.to(accelerator.device) accelerator.load_state(os.path.join(savedir, 'checkpoints', 'checkpoint_0'), map_location='on_device') for group in optimizer.param_groups: UpperCamelCase = group['params'][0].device break assert ( param_device.type == accelerator.device.type ), F"Loaded optimizer states did not match, expected to be loaded on {accelerator.device} but got {param_device}" # Check error with pytest.raises(TypeError, match='Unsupported optimizer map location passed'): accelerator.load_state(os.path.join(savedir, 'checkpoints', 'checkpoint_0'), map_location='invalid') accelerator.wait_for_everyone() if accelerator.process_index == 0: shutil.rmtree(savedir) accelerator.wait_for_everyone()
387
import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class _a ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase( self ): __A : List[Any] = "| <pad> <unk> <s> </s> a b c d e f g h i j k".split() __A : Any = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase ) ) ) ) __A : Optional[Any] = { "unk_token": "<unk>", "bos_token": "<s>", "eos_token": "</s>", } __A : List[Any] = { "feature_size": 1, "padding_value": 0.0, "sampling_rate": 16_000, "return_attention_mask": False, "do_normalize": True, } __A : int = tempfile.mkdtemp() __A : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) __A : List[str] = os.path.join(self.tmpdirname , __UpperCAmelCase ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(__UpperCAmelCase ) + "\n" ) with open(self.feature_extraction_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(__UpperCAmelCase ) + "\n" ) # load decoder from hub __A : Dict = "hf-internal-testing/ngram-beam-search-decoder" def __UpperCAmelCase( self , **__UpperCAmelCase ): __A : Tuple = self.add_kwargs_tokens_map.copy() kwargs.update(__UpperCAmelCase ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def __UpperCAmelCase( self , **__UpperCAmelCase ): return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def __UpperCAmelCase( self , **__UpperCAmelCase ): return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **__UpperCAmelCase ) def __UpperCAmelCase( self ): shutil.rmtree(self.tmpdirname ) def __UpperCAmelCase( self ): __A : Optional[Any] = self.get_tokenizer() __A : Optional[int] = self.get_feature_extractor() __A : Union[str, Any] = self.get_decoder() __A : int = WavaVecaProcessorWithLM(tokenizer=__UpperCAmelCase , feature_extractor=__UpperCAmelCase , decoder=__UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) __A : Union[str, Any] = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , __UpperCAmelCase ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , __UpperCAmelCase ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , __UpperCAmelCase ) def __UpperCAmelCase( self ): __A : List[str] = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match __A : Union[str, Any] = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def __UpperCAmelCase( self ): __A : Dict = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(["xx"] ) with self.assertRaisesRegex(__UpperCAmelCase , "include" ): WavaVecaProcessorWithLM( tokenizer=__UpperCAmelCase , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def __UpperCAmelCase( self ): __A : Any = self.get_feature_extractor() __A : List[Any] = self.get_tokenizer() __A : Any = self.get_decoder() __A : Dict = WavaVecaProcessorWithLM(tokenizer=__UpperCAmelCase , feature_extractor=__UpperCAmelCase , decoder=__UpperCAmelCase ) __A : Optional[int] = floats_list((3, 1_000) ) __A : List[Any] = feature_extractor(__UpperCAmelCase , return_tensors="np" ) __A : int = processor(__UpperCAmelCase , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __UpperCAmelCase( self ): __A : Tuple = self.get_feature_extractor() __A : Tuple = self.get_tokenizer() __A : Dict = self.get_decoder() __A : int = WavaVecaProcessorWithLM(tokenizer=__UpperCAmelCase , feature_extractor=__UpperCAmelCase , decoder=__UpperCAmelCase ) __A : Tuple = "This is a test string" __A : Union[str, Any] = processor(text=__UpperCAmelCase ) __A : Union[str, Any] = tokenizer(__UpperCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __UpperCAmelCase( self , __UpperCAmelCase=(2, 10, 16) , __UpperCAmelCase=77 ): np.random.seed(__UpperCAmelCase ) return np.random.rand(*__UpperCAmelCase ) def __UpperCAmelCase( self ): __A : Dict = self.get_feature_extractor() __A : Dict = self.get_tokenizer() __A : Tuple = self.get_decoder() __A : Any = WavaVecaProcessorWithLM(tokenizer=__UpperCAmelCase , feature_extractor=__UpperCAmelCase , decoder=__UpperCAmelCase ) __A : List[str] = self._get_dummy_logits(shape=(10, 16) , seed=13 ) __A : str = processor.decode(__UpperCAmelCase ) __A : Dict = decoder.decode_beams(__UpperCAmelCase )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual("</s> <s> </s>" , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ["fork"], ["spawn"]] ) def __UpperCAmelCase( self , __UpperCAmelCase ): __A : int = self.get_feature_extractor() __A : Optional[Any] = self.get_tokenizer() __A : Union[str, Any] = self.get_decoder() __A : List[Any] = WavaVecaProcessorWithLM(tokenizer=__UpperCAmelCase , feature_extractor=__UpperCAmelCase , decoder=__UpperCAmelCase ) __A : List[str] = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: __A : List[Any] = processor.batch_decode(__UpperCAmelCase ) else: with get_context(__UpperCAmelCase ).Pool() as pool: __A : Tuple = processor.batch_decode(__UpperCAmelCase , __UpperCAmelCase ) __A : List[str] = list(__UpperCAmelCase ) with get_context("fork" ).Pool() as p: __A : int = decoder.decode_beams_batch(__UpperCAmelCase , __UpperCAmelCase ) __A , __A , __A : int = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(__UpperCAmelCase , decoded_processor.text ) self.assertListEqual(["<s> <s> </s>", "<s> <s> <s>"] , decoded_processor.text ) self.assertListEqual(__UpperCAmelCase , decoded_processor.logit_score ) self.assertListEqual(__UpperCAmelCase , decoded_processor.lm_score ) def __UpperCAmelCase( self ): __A : List[Any] = self.get_feature_extractor() __A : int = self.get_tokenizer() __A : List[Any] = self.get_decoder() __A : int = WavaVecaProcessorWithLM(tokenizer=__UpperCAmelCase , feature_extractor=__UpperCAmelCase , decoder=__UpperCAmelCase ) __A : Union[str, Any] = self._get_dummy_logits() __A : Dict = 15 __A : Any = -20.0 __A : Optional[Any] = -4.0 __A : str = processor.batch_decode( __UpperCAmelCase , beam_width=__UpperCAmelCase , beam_prune_logp=__UpperCAmelCase , token_min_logp=__UpperCAmelCase , ) __A : Any = decoded_processor_out.text __A : Dict = list(__UpperCAmelCase ) with get_context("fork" ).Pool() as pool: __A : Optional[int] = decoder.decode_beams_batch( __UpperCAmelCase , __UpperCAmelCase , beam_width=__UpperCAmelCase , beam_prune_logp=__UpperCAmelCase , token_min_logp=__UpperCAmelCase , ) __A : List[Any] = [d[0][0] for d in decoded_decoder_out] __A : Optional[Any] = [d[0][2] for d in decoded_decoder_out] __A : Dict = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) self.assertListEqual(["</s> <s> <s>", "<s> <s> <s>"] , __UpperCAmelCase ) self.assertTrue(np.array_equal(__UpperCAmelCase , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-20.0_54, -18.4_47] , __UpperCAmelCase , atol=1e-3 ) ) self.assertTrue(np.array_equal(__UpperCAmelCase , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-15.5_54, -13.94_74] , __UpperCAmelCase , atol=1e-3 ) ) def __UpperCAmelCase( self ): __A : Dict = self.get_feature_extractor() __A : int = self.get_tokenizer() __A : Tuple = self.get_decoder() __A : Tuple = WavaVecaProcessorWithLM(tokenizer=__UpperCAmelCase , feature_extractor=__UpperCAmelCase , decoder=__UpperCAmelCase ) __A : Any = self._get_dummy_logits() __A : List[Any] = 2.0 __A : Any = 5.0 __A : List[str] = -20.0 __A : Tuple = True __A : str = processor.batch_decode( __UpperCAmelCase , alpha=__UpperCAmelCase , beta=__UpperCAmelCase , unk_score_offset=__UpperCAmelCase , lm_score_boundary=__UpperCAmelCase , ) __A : Optional[int] = decoded_processor_out.text __A : Any = list(__UpperCAmelCase ) decoder.reset_params( alpha=__UpperCAmelCase , beta=__UpperCAmelCase , unk_score_offset=__UpperCAmelCase , lm_score_boundary=__UpperCAmelCase , ) with get_context("fork" ).Pool() as pool: __A : Any = decoder.decode_beams_batch( __UpperCAmelCase , __UpperCAmelCase , ) __A : Any = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) self.assertListEqual(["<s> </s> <s> </s> </s>", "</s> </s> <s> </s> </s>"] , __UpperCAmelCase ) __A : List[Any] = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -20.0 ) self.assertEqual(lm_model.score_boundary , __UpperCAmelCase ) def __UpperCAmelCase( self ): __A : Any = WavaVecaProcessorWithLM.from_pretrained("hf-internal-testing/processor_with_lm" ) __A : Optional[Any] = processor.decoder.model_container[processor.decoder._model_key] __A : Union[str, Any] = Path(language_model._kenlm_model.path.decode("utf-8" ) ).parent.parent.absolute() __A : Union[str, Any] = os.listdir(__UpperCAmelCase ) __A : str = ["alphabet.json", "language_model"] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) def __UpperCAmelCase( self ): __A : Union[str, Any] = snapshot_download("hf-internal-testing/processor_with_lm" ) __A : str = WavaVecaProcessorWithLM.from_pretrained(__UpperCAmelCase ) __A : Dict = processor.decoder.model_container[processor.decoder._model_key] __A : int = Path(language_model._kenlm_model.path.decode("utf-8" ) ).parent.parent.absolute() __A : List[str] = os.listdir(__UpperCAmelCase ) __A : Optional[int] = os.listdir(__UpperCAmelCase ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) def __UpperCAmelCase( self ): __A : int = WavaVecaProcessorWithLM.from_pretrained("hf-internal-testing/processor_with_lm" ) __A : Tuple = AutoProcessor.from_pretrained("hf-internal-testing/processor_with_lm" ) __A : Tuple = floats_list((3, 1_000) ) __A : Union[str, Any] = processor_wavaveca(__UpperCAmelCase , return_tensors="np" ) __A : Tuple = processor_auto(__UpperCAmelCase , return_tensors="np" ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1e-2 ) __A : Any = self._get_dummy_logits() __A : List[str] = processor_wavaveca.batch_decode(__UpperCAmelCase ) __A : str = processor_auto.batch_decode(__UpperCAmelCase ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def __UpperCAmelCase( self ): __A : Tuple = self.get_feature_extractor() __A : str = self.get_tokenizer() __A : Union[str, Any] = self.get_decoder() __A : Dict = WavaVecaProcessorWithLM(tokenizer=__UpperCAmelCase , feature_extractor=__UpperCAmelCase , decoder=__UpperCAmelCase ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg="`processor` and `feature_extractor` model input names do not match" , ) @staticmethod def __UpperCAmelCase( __UpperCAmelCase , __UpperCAmelCase ): __A : int = [d[key] for d in offsets] return retrieved_list def __UpperCAmelCase( self ): __A : Any = WavaVecaProcessorWithLM.from_pretrained("hf-internal-testing/processor_with_lm" ) __A : List[str] = self._get_dummy_logits()[0] __A : List[str] = processor.decode(__UpperCAmelCase , output_word_offsets=__UpperCAmelCase ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue("text" in outputs ) self.assertTrue("word_offsets" in outputs ) self.assertTrue(isinstance(__UpperCAmelCase , __UpperCAmelCase ) ) self.assertEqual(" ".join(self.get_from_offsets(outputs["word_offsets"] , "word" ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["word_offsets"] , "word" ) , ["<s>", "<s>", "</s>"] ) self.assertListEqual(self.get_from_offsets(outputs["word_offsets"] , "start_offset" ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["word_offsets"] , "end_offset" ) , [1, 3, 5] ) def __UpperCAmelCase( self ): __A : str = WavaVecaProcessorWithLM.from_pretrained("hf-internal-testing/processor_with_lm" ) __A : Tuple = self._get_dummy_logits() __A : Any = processor.batch_decode(__UpperCAmelCase , output_word_offsets=__UpperCAmelCase ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue("text" in outputs ) self.assertTrue("word_offsets" in outputs ) self.assertTrue(isinstance(__UpperCAmelCase , __UpperCAmelCase ) ) self.assertListEqual( [" ".join(self.get_from_offsets(__UpperCAmelCase , "word" ) ) for o in outputs["word_offsets"]] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["word_offsets"][0] , "word" ) , ["<s>", "<s>", "</s>"] ) self.assertListEqual(self.get_from_offsets(outputs["word_offsets"][0] , "start_offset" ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["word_offsets"][0] , "end_offset" ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def __UpperCAmelCase( self ): import torch __A : int = load_dataset("common_voice" , "en" , split="train" , streaming=__UpperCAmelCase ) __A : Optional[int] = ds.cast_column("audio" , datasets.Audio(sampling_rate=16_000 ) ) __A : int = iter(__UpperCAmelCase ) __A : List[Any] = next(__UpperCAmelCase ) __A : int = AutoProcessor.from_pretrained("patrickvonplaten/wav2vec2-base-100h-with-lm" ) __A : Tuple = WavaVecaForCTC.from_pretrained("patrickvonplaten/wav2vec2-base-100h-with-lm" ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train __A : Dict = processor(sample["audio"]["array"] , return_tensors="pt" ).input_values with torch.no_grad(): __A : Optional[Any] = model(__UpperCAmelCase ).logits.cpu().numpy() __A : Union[str, Any] = processor.decode(logits[0] , output_word_offsets=__UpperCAmelCase ) __A : List[Any] = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate __A : Union[str, Any] = [ { "start_time": d["start_offset"] * time_offset, "end_time": d["end_offset"] * time_offset, "word": d["word"], } for d in output["word_offsets"] ] __A : Union[str, Any] = "WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL" # output words self.assertEqual(" ".join(self.get_from_offsets(__UpperCAmelCase , "word" ) ) , __UpperCAmelCase ) self.assertEqual(" ".join(self.get_from_offsets(__UpperCAmelCase , "word" ) ) , output.text ) # output times __A : Optional[int] = torch.tensor(self.get_from_offsets(__UpperCAmelCase , "start_time" ) ) __A : Optional[Any] = torch.tensor(self.get_from_offsets(__UpperCAmelCase , "end_time" ) ) # fmt: off __A : Union[str, Any] = torch.tensor([1.41_99, 1.65_99, 2.25_99, 3.0, 3.24, 3.59_99, 3.79_99, 4.09_99, 4.26, 4.94, 5.28, 5.65_99, 5.78, 5.94, 6.32, 6.53_99, 6.65_99] ) __A : List[Any] = torch.tensor([1.53_99, 1.89_99, 2.9, 3.16, 3.53_99, 3.72, 4.01_99, 4.17_99, 4.76, 5.15_99, 5.55_99, 5.69_99, 5.86, 6.19_99, 6.38, 6.61_99, 6.94] ) # fmt: on self.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=0.01 ) ) self.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=0.01 ) )
387
1
from typing import Tuple, Union from ...modeling_outputs import BackboneOutput from ...modeling_utils import PreTrainedModel from ...utils import is_timm_available, is_torch_available, requires_backends from ...utils.backbone_utils import BackboneMixin from .configuration_timm_backbone import TimmBackboneConfig if is_timm_available(): import timm if is_torch_available(): from torch import Tensor class _lowercase ( lowerCAmelCase__ , lowerCAmelCase__ ): _a : int = 'pixel_values' _a : Optional[Any] = False _a : List[str] = TimmBackboneConfig def __init__( self , a , **a ): requires_backends(self , """timm""" ) super().__init__(__UpperCAmelCase ) snake_case__ : Dict =config if config.backbone is None: raise ValueError("""backbone is not set in the config. Please set it to a timm model name.""" ) if config.backbone not in timm.list_models(): raise ValueError(F"backbone {config.backbone} is not supported by timm." ) if hasattr(__UpperCAmelCase , """out_features""" ) and config.out_features is not None: raise ValueError("""out_features is not supported by TimmBackbone. Please use out_indices instead.""" ) snake_case__ : Union[str, Any] =getattr(__UpperCAmelCase , """use_pretrained_backbone""" , __UpperCAmelCase ) if pretrained is None: raise ValueError("""use_pretrained_backbone is not set in the config. Please set it to True or False.""" ) # We just take the final layer by default. This matches the default for the transformers models. snake_case__ : Dict =config.out_indices if getattr(__UpperCAmelCase , """out_indices""" , __UpperCAmelCase ) is not None else (-1,) snake_case__ : List[Any] =timm.create_model( config.backbone , pretrained=__UpperCAmelCase , features_only=config.features_only , in_chans=config.num_channels , out_indices=__UpperCAmelCase , **__UpperCAmelCase , ) # These are used to control the output of the model when called. If output_hidden_states is True, then # return_layers is modified to include all layers. snake_case__ : Union[str, Any] =self._backbone.return_layers snake_case__ : Dict ={layer["""module"""]: str(__UpperCAmelCase ) for i, layer in enumerate(self._backbone.feature_info.info )} super()._init_backbone(__UpperCAmelCase ) @classmethod def lowercase__ ( cls , a , *a , **a ): requires_backends(cls , ["""vision""", """timm"""] ) from ...models.timm_backbone import TimmBackboneConfig snake_case__ : Any =kwargs.pop("""config""" , TimmBackboneConfig() ) snake_case__ : Optional[Any] =kwargs.pop("""use_timm_backbone""" , __UpperCAmelCase ) if not use_timm: raise ValueError("""use_timm_backbone must be True for timm backbones""" ) snake_case__ : int =kwargs.pop("""num_channels""" , config.num_channels ) snake_case__ : Optional[Any] =kwargs.pop("""features_only""" , config.features_only ) snake_case__ : List[str] =kwargs.pop("""use_pretrained_backbone""" , config.use_pretrained_backbone ) snake_case__ : Union[str, Any] =kwargs.pop("""out_indices""" , config.out_indices ) snake_case__ : Union[str, Any] =TimmBackboneConfig( backbone=__UpperCAmelCase , num_channels=__UpperCAmelCase , features_only=__UpperCAmelCase , use_pretrained_backbone=__UpperCAmelCase , out_indices=__UpperCAmelCase , ) return super()._from_config(__UpperCAmelCase , **__UpperCAmelCase ) def lowercase__ ( self , a ): pass def lowercase__ ( self , a , a=None , a=None , a=None , **a ): snake_case__ : str =return_dict if return_dict is not None else self.config.use_return_dict snake_case__ : int =( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) snake_case__ : List[Any] =output_attentions if output_attentions is not None else self.config.output_attentions if output_attentions: raise ValueError("""Cannot output attentions for timm backbones at the moment""" ) if output_hidden_states: # We modify the return layers to include all the stages of the backbone snake_case__ : Optional[Any] =self._all_layers snake_case__ : Any =self._backbone(__UpperCAmelCase , **__UpperCAmelCase ) snake_case__ : Tuple =self._return_layers snake_case__ : List[str] =tuple(hidden_states[i] for i in self.out_indices ) else: snake_case__ : Tuple =self._backbone(__UpperCAmelCase , **__UpperCAmelCase ) snake_case__ : List[Any] =None snake_case__ : Any =tuple(__UpperCAmelCase ) snake_case__ : Optional[int] =tuple(__UpperCAmelCase ) if hidden_states is not None else None if not return_dict: snake_case__ : List[Any] =(feature_maps,) if output_hidden_states: snake_case__ : Dict =output + (hidden_states,) return output return BackboneOutput(feature_maps=__UpperCAmelCase , hidden_states=__UpperCAmelCase , attentions=__UpperCAmelCase )
385
def a__ ( _UpperCamelCase : str ): if not all(x.isalpha() for x in string ): raise ValueError('''String must only contain alphabetic characters.''' ) __lowerCamelCase = sorted(string.lower() ) return len(_UpperCamelCase ) == len(set(_UpperCamelCase ) ) if __name__ == "__main__": a_ = input("""Enter a string """).strip() a_ = is_isogram(input_str) print(f"{input_str} is {'an' if isogram else 'not an'} isogram.")
175
0
from typing import TYPE_CHECKING from ...utils import _LazyModule UpperCAmelCase__ : str = {"""processing_wav2vec2_with_lm""": ["""Wav2Vec2ProcessorWithLM"""]} if TYPE_CHECKING: from .processing_wavaveca_with_lm import WavaVecaProcessorWithLM else: import sys UpperCAmelCase__ : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
446
import json import os import pickle import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers import is_faiss_available from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bart.tokenization_bart import BartTokenizer from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.dpr.tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.retrieval_rag import CustomHFIndex, RagRetriever from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_sentencepiece, require_tokenizers, require_torch if is_faiss_available(): import faiss @require_faiss class a__ ( UpperCAmelCase ): """simple docstring""" def _lowercase ( self : Optional[int] ) ->Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = tempfile.mkdtemp() SCREAMING_SNAKE_CASE : Optional[Any] = 8 # DPR tok SCREAMING_SNAKE_CASE : List[str] = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] SCREAMING_SNAKE_CASE : Any = os.path.join(self.tmpdirname , """dpr_tokenizer""" ) os.makedirs(UpperCAmelCase__ , exist_ok=UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : Any = os.path.join(UpperCAmelCase__ , DPR_VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) # BART tok SCREAMING_SNAKE_CASE : List[str] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] SCREAMING_SNAKE_CASE : List[Any] = dict(zip(UpperCAmelCase__ , range(len(UpperCAmelCase__ ) ) ) ) SCREAMING_SNAKE_CASE : Dict = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] SCREAMING_SNAKE_CASE : List[Any] = {"""unk_token""": """<unk>"""} SCREAMING_SNAKE_CASE : int = os.path.join(self.tmpdirname , """bart_tokenizer""" ) os.makedirs(UpperCAmelCase__ , exist_ok=UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : Optional[Any] = os.path.join(UpperCAmelCase__ , BART_VOCAB_FILES_NAMES["""vocab_file"""] ) SCREAMING_SNAKE_CASE : Optional[int] = os.path.join(UpperCAmelCase__ , BART_VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(UpperCAmelCase__ ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(UpperCAmelCase__ ) ) def _lowercase ( self : Optional[Any] ) ->DPRQuestionEncoderTokenizer: """simple docstring""" return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , """dpr_tokenizer""" ) ) def _lowercase ( self : Optional[Any] ) ->DPRContextEncoderTokenizer: """simple docstring""" return DPRContextEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , """dpr_tokenizer""" ) ) def _lowercase ( self : Optional[int] ) ->BartTokenizer: """simple docstring""" return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , """bart_tokenizer""" ) ) def _lowercase ( self : Any ) ->List[str]: """simple docstring""" shutil.rmtree(self.tmpdirname ) def _lowercase ( self : Tuple ) ->Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE : str = Dataset.from_dict( { """id""": ["""0""", """1"""], """text""": ["""foo""", """bar"""], """title""": ["""Foo""", """Bar"""], """embeddings""": [np.ones(self.retrieval_vector_size ), 2 * np.ones(self.retrieval_vector_size )], } ) dataset.add_faiss_index("""embeddings""" , string_factory="""Flat""" , metric_type=faiss.METRIC_INNER_PRODUCT ) return dataset def _lowercase ( self : Union[str, Any] ) ->Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : int = self.get_dummy_dataset() SCREAMING_SNAKE_CASE : str = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , ) with patch("""transformers.models.rag.retrieval_rag.load_dataset""" ) as mock_load_dataset: SCREAMING_SNAKE_CASE : Tuple = dataset SCREAMING_SNAKE_CASE : Union[str, Any] = RagRetriever( UpperCAmelCase__ , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) return retriever def _lowercase ( self : List[Any] , UpperCAmelCase__ : bool ) ->Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Any = self.get_dummy_dataset() SCREAMING_SNAKE_CASE : Dict = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name="""custom""" , ) if from_disk: SCREAMING_SNAKE_CASE : List[str] = os.path.join(self.tmpdirname , """dataset""" ) SCREAMING_SNAKE_CASE : Any = os.path.join(self.tmpdirname , """index.faiss""" ) dataset.get_index("""embeddings""" ).save(os.path.join(self.tmpdirname , """index.faiss""" ) ) dataset.drop_index("""embeddings""" ) dataset.save_to_disk(os.path.join(self.tmpdirname , """dataset""" ) ) del dataset SCREAMING_SNAKE_CASE : Any = RagRetriever( UpperCAmelCase__ , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) else: SCREAMING_SNAKE_CASE : Union[str, Any] = RagRetriever( UpperCAmelCase__ , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , index=CustomHFIndex(config.retrieval_vector_size , UpperCAmelCase__ ) , ) return retriever def _lowercase ( self : int ) ->int: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = Dataset.from_dict( { """id""": ["""0""", """1"""], """text""": ["""foo""", """bar"""], """title""": ["""Foo""", """Bar"""], """embeddings""": [np.ones(self.retrieval_vector_size + 1 ), 2 * np.ones(self.retrieval_vector_size + 1 )], } ) dataset.add_faiss_index("""embeddings""" , string_factory="""Flat""" , metric_type=faiss.METRIC_INNER_PRODUCT ) SCREAMING_SNAKE_CASE : Any = os.path.join(self.tmpdirname , """hf_bert_base.hnswSQ8_correct_phi_128.c_index""" ) dataset.save_faiss_index("""embeddings""" , index_file_name + """.index.dpr""" ) pickle.dump(dataset["""id"""] , open(index_file_name + """.index_meta.dpr""" , """wb""" ) ) SCREAMING_SNAKE_CASE : Optional[Any] = os.path.join(self.tmpdirname , """psgs_w100.tsv.pkl""" ) SCREAMING_SNAKE_CASE : Optional[Any] = {sample["""id"""]: [sample["""text"""], sample["""title"""]] for sample in dataset} pickle.dump(UpperCAmelCase__ , open(UpperCAmelCase__ , """wb""" ) ) SCREAMING_SNAKE_CASE : str = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name="""legacy""" , index_path=self.tmpdirname , ) SCREAMING_SNAKE_CASE : Any = RagRetriever( UpperCAmelCase__ , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() ) return retriever def _lowercase ( self : Dict ) ->Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : Any = 1 SCREAMING_SNAKE_CASE : str = self.get_dummy_canonical_hf_index_retriever() SCREAMING_SNAKE_CASE : Union[str, Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = retriever.retrieve(UpperCAmelCase__ , n_docs=UpperCAmelCase__ ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(UpperCAmelCase__ ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ["""embeddings""", """id""", """text""", """title"""] ) self.assertEqual(len(doc_dicts[0]["""id"""] ) , UpperCAmelCase__ ) self.assertEqual(doc_dicts[0]["""id"""][0] , """1""" ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["""id"""][0] , """0""" ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def _lowercase ( self : List[str] ) ->int: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = self.get_dummy_canonical_hf_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: with patch("""transformers.models.rag.retrieval_rag.load_dataset""" ) as mock_load_dataset: SCREAMING_SNAKE_CASE : Optional[int] = self.get_dummy_dataset() retriever.save_pretrained(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : List[Any] = RagRetriever.from_pretrained(UpperCAmelCase__ ) self.assertIsInstance(UpperCAmelCase__ , UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) SCREAMING_SNAKE_CASE : Dict = retriever.retrieve(UpperCAmelCase__ , n_docs=1 ) self.assertTrue(out is not None ) def _lowercase ( self : List[Any] ) ->List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = 1 SCREAMING_SNAKE_CASE : str = self.get_dummy_custom_hf_index_retriever(from_disk=UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : str = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = retriever.retrieve(UpperCAmelCase__ , n_docs=UpperCAmelCase__ ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(UpperCAmelCase__ ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ["""embeddings""", """id""", """text""", """title"""] ) self.assertEqual(len(doc_dicts[0]["""id"""] ) , UpperCAmelCase__ ) self.assertEqual(doc_dicts[0]["""id"""][0] , """1""" ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["""id"""][0] , """0""" ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def _lowercase ( self : Optional[int] ) ->Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = self.get_dummy_custom_hf_index_retriever(from_disk=UpperCAmelCase__ ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : Optional[Any] = RagRetriever.from_pretrained(UpperCAmelCase__ ) self.assertIsInstance(UpperCAmelCase__ , UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) SCREAMING_SNAKE_CASE : int = retriever.retrieve(UpperCAmelCase__ , n_docs=1 ) self.assertTrue(out is not None ) def _lowercase ( self : Dict ) ->Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Any = 1 SCREAMING_SNAKE_CASE : List[str] = self.get_dummy_custom_hf_index_retriever(from_disk=UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : Optional[Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = retriever.retrieve(UpperCAmelCase__ , n_docs=UpperCAmelCase__ ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(UpperCAmelCase__ ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ["""embeddings""", """id""", """text""", """title"""] ) self.assertEqual(len(doc_dicts[0]["""id"""] ) , UpperCAmelCase__ ) self.assertEqual(doc_dicts[0]["""id"""][0] , """1""" ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["""id"""][0] , """0""" ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def _lowercase ( self : Union[str, Any] ) ->Any: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = self.get_dummy_custom_hf_index_retriever(from_disk=UpperCAmelCase__ ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : str = RagRetriever.from_pretrained(UpperCAmelCase__ ) self.assertIsInstance(UpperCAmelCase__ , UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : Optional[int] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) SCREAMING_SNAKE_CASE : Optional[Any] = retriever.retrieve(UpperCAmelCase__ , n_docs=1 ) self.assertTrue(out is not None ) def _lowercase ( self : Tuple ) ->str: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = 1 SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_dummy_legacy_index_retriever() SCREAMING_SNAKE_CASE : int = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = retriever.retrieve(UpperCAmelCase__ , n_docs=UpperCAmelCase__ ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(UpperCAmelCase__ ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ["""text""", """title"""] ) self.assertEqual(len(doc_dicts[0]["""text"""] ) , UpperCAmelCase__ ) self.assertEqual(doc_dicts[0]["""text"""][0] , """bar""" ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["""text"""][0] , """foo""" ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def _lowercase ( self : Any ) ->str: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = self.get_dummy_legacy_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = RagRetriever.from_pretrained(UpperCAmelCase__ ) self.assertIsInstance(UpperCAmelCase__ , UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : str = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) SCREAMING_SNAKE_CASE : Dict = retriever.retrieve(UpperCAmelCase__ , n_docs=1 ) self.assertTrue(out is not None ) @require_torch @require_tokenizers @require_sentencepiece def _lowercase ( self : Tuple ) ->Tuple: """simple docstring""" import torch SCREAMING_SNAKE_CASE : int = 1 SCREAMING_SNAKE_CASE : Optional[Any] = self.get_dummy_canonical_hf_index_retriever() SCREAMING_SNAKE_CASE : str = [[5, 7], [1_0, 1_1]] SCREAMING_SNAKE_CASE : Tuple = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) SCREAMING_SNAKE_CASE : int = retriever(UpperCAmelCase__ , UpperCAmelCase__ , prefix=retriever.config.generator.prefix , n_docs=UpperCAmelCase__ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = ( out["""context_input_ids"""], out["""context_attention_mask"""], out["""retrieved_doc_embeds"""], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(UpperCAmelCase__ , UpperCAmelCase__ ) self.assertIsInstance(UpperCAmelCase__ , UpperCAmelCase__ ) self.assertIsInstance(UpperCAmelCase__ , np.ndarray ) SCREAMING_SNAKE_CASE : Union[str, Any] = retriever( UpperCAmelCase__ , UpperCAmelCase__ , prefix=retriever.config.generator.prefix , n_docs=UpperCAmelCase__ , return_tensors="""pt""" , ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = ( # noqa: F841 out["""context_input_ids"""], out["""context_attention_mask"""], out["""retrieved_doc_embeds"""], out["""doc_ids"""], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(UpperCAmelCase__ , torch.Tensor ) self.assertIsInstance(UpperCAmelCase__ , torch.Tensor ) self.assertIsInstance(UpperCAmelCase__ , torch.Tensor ) @require_torch @require_tokenizers @require_sentencepiece def _lowercase ( self : Union[str, Any] ) ->Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = self.get_dpr_ctx_encoder_tokenizer() SCREAMING_SNAKE_CASE : Optional[int] = 1 SCREAMING_SNAKE_CASE : List[Any] = self.get_dummy_custom_hf_index_retriever(from_disk=UpperCAmelCase__ ) retriever.set_ctx_encoder_tokenizer(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : List[str] = [[5, 7], [1_0, 1_1]] SCREAMING_SNAKE_CASE : Optional[int] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) SCREAMING_SNAKE_CASE : Union[str, Any] = retriever(UpperCAmelCase__ , UpperCAmelCase__ , prefix=retriever.config.generator.prefix , n_docs=UpperCAmelCase__ ) self.assertEqual( len(UpperCAmelCase__ ) , 6 ) # check whether the retriever output consist of 6 attributes including tokenized docs self.assertEqual( all(k in out for k in ("""tokenized_doc_ids""", """tokenized_doc_attention_mask""") ) , UpperCAmelCase__ ) # check for doc token related keys in dictionary.
446
1
'''simple docstring''' import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def snake_case_ (UpperCamelCase : str , UpperCamelCase : str , UpperCamelCase : str , UpperCamelCase : PreTrainedTokenizer , UpperCamelCase : int , UpperCamelCase : Optional[int] = None , ): '''simple docstring''' _a = {} if train_file is not None: _a = [train_file] if eval_file is not None: _a = [eval_file] if test_file is not None: _a = [test_file] _a = datasets.load_dataset('''csv''' , data_files=UpperCamelCase ) _a = list(ds[list(files.keys() )[0]].features.keys() ) _a = features_name.pop(UpperCamelCase ) _a = list(set(ds[list(files.keys() )[0]][label_name] ) ) _a = {label: i for i, label in enumerate(UpperCamelCase )} _a = tokenizer.model_input_names _a = {} if len(UpperCamelCase ) == 1: for k in files.keys(): _a = ds[k].map( lambda UpperCamelCase : tokenizer.batch_encode_plus( example[features_name[0]] , truncation=UpperCamelCase , max_length=UpperCamelCase , padding='''max_length''' ) , batched=UpperCamelCase , ) elif len(UpperCamelCase ) == 2: for k in files.keys(): _a = ds[k].map( lambda UpperCamelCase : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]) , truncation=UpperCamelCase , max_length=UpperCamelCase , padding='''max_length''' , ) , batched=UpperCamelCase , ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: _a = {k: v for k, v in ex.items() if k in input_names} _a = labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: _a = {k: v for k, v in ex.items() if k in input_names} _a = labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: _a = {k: v for k, v in ex.items() if k in input_names} _a = labelaid[ex[label_name]] yield (d, label) _a = ( tf.data.Dataset.from_generator( UpperCamelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: _a = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) _a = ( tf.data.Dataset.from_generator( UpperCamelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: _a = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) _a = ( tf.data.Dataset.from_generator( UpperCamelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: _a = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid _snake_case : str = logging.getLogger(__name__) @dataclass class A : lowercase_ = field(metadata={'help': 'Which column contains the label'} ) lowercase_ = field(default=_a ,metadata={'help': 'The path of the training file'} ) lowercase_ = field(default=_a ,metadata={'help': 'The path of the development file'} ) lowercase_ = field(default=_a ,metadata={'help': 'The path of the test file'} ) lowercase_ = field( default=128 ,metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } ,) lowercase_ = field( default=_a ,metadata={'help': 'Overwrite the cached training and evaluation sets'} ) @dataclass class A : lowercase_ = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) lowercase_ = field( default=_a ,metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) lowercase_ = field( default=_a ,metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) lowercase_ = field(default=_a ,metadata={'help': 'Set this flag to use fast tokenization.'} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. lowercase_ = field( default=_a ,metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} ,) def snake_case_ (): '''simple docstring''' _a = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) _a , _a , _a = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f'Output directory ({training_args.output_dir}) already exists and is not empty. Use' ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO , ) logger.info( f'n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, ' f'16-bits training: {training_args.fpaa}' ) logger.info(f'Training/evaluation parameters {training_args}' ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _a = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _a , _a , _a , _a = get_tfds( train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=UpperCamelCase , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , ) _a = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(UpperCamelCase ) , labelaid=UpperCamelCase , idalabel={id: label for label, id in labelaid.items()} , finetuning_task='''text-classification''' , cache_dir=model_args.cache_dir , ) with training_args.strategy.scope(): _a = TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_pt=bool('''.bin''' in model_args.model_name_or_path ) , config=UpperCamelCase , cache_dir=model_args.cache_dir , ) def compute_metrics(UpperCamelCase : EvalPrediction ) -> Dict: _a = np.argmax(p.predictions , axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer _a = TFTrainer( model=UpperCamelCase , args=UpperCamelCase , train_dataset=UpperCamelCase , eval_dataset=UpperCamelCase , compute_metrics=UpperCamelCase , ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation _a = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) _a = trainer.evaluate() _a = os.path.join(training_args.output_dir , '''eval_results.txt''' ) with open(UpperCamelCase , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in result.items(): logger.info(f' {key} = {value}' ) writer.write(f'{key} = {value}\n' ) results.update(UpperCamelCase ) return results if __name__ == "__main__": main()
22
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { '''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/config.json''', '''distilbert-base-uncased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json''' ), '''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/config.json''', '''distilbert-base-cased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json''' ), '''distilbert-base-german-cased''': '''https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json''', '''distilbert-base-multilingual-cased''': ( '''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json''' ), '''distilbert-base-uncased-finetuned-sst-2-english''': ( '''https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json''' ), } class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' a : int = "distilbert" a : Union[str, Any] = { "hidden_size": "dim", "num_attention_heads": "n_heads", "num_hidden_layers": "n_layers", } def __init__(self ,_lowerCamelCase=30522 ,_lowerCamelCase=512 ,_lowerCamelCase=False ,_lowerCamelCase=6 ,_lowerCamelCase=12 ,_lowerCamelCase=768 ,_lowerCamelCase=4 * 768 ,_lowerCamelCase=0.1 ,_lowerCamelCase=0.1 ,_lowerCamelCase="gelu" ,_lowerCamelCase=0.0_2 ,_lowerCamelCase=0.1 ,_lowerCamelCase=0.2 ,_lowerCamelCase=0 ,**_lowerCamelCase ,) -> Tuple: '''simple docstring''' __lowercase = vocab_size __lowercase = max_position_embeddings __lowercase = sinusoidal_pos_embds __lowercase = n_layers __lowercase = n_heads __lowercase = dim __lowercase = hidden_dim __lowercase = dropout __lowercase = attention_dropout __lowercase = activation __lowercase = initializer_range __lowercase = qa_dropout __lowercase = seq_classif_dropout super().__init__(**_lowerCamelCase ,pad_token_id=_lowerCamelCase ) class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' @property def _UpperCAmelCase (self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": __lowercase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __lowercase = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
502
0
"""simple docstring""" from ..utils import DummyObject, requires_backends class a_ ( metaclass=snake_case_ ): '''simple docstring''' lowerCamelCase__ : str = ['onnx'] def __init__(self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' requires_backends(self, ['onnx'] ) @classmethod def a__ (cls, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' requires_backends(cls, ['onnx'] ) @classmethod def a__ (cls, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' requires_backends(cls, ['onnx'] )
714
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if mass < 0: raise ValueError('The mass of a body cannot be negative' ) return 0.5 * mass * abs(_lowerCamelCase ) * abs(_lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
696
0
import json import logging import os import socket import git import numpy as np import torch logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO, ) SCREAMING_SNAKE_CASE = logging.getLogger(__name__) def a (lowerCAmelCase__ ): __a = git.Repo(search_parent_directories=lowerCAmelCase__ ) __a = { """repo_id""": str(lowerCAmelCase__ ), """repo_sha""": str(repo.head.object.hexsha ), """repo_branch""": str(repo.active_branch ), } with open(os.path.join(lowerCAmelCase__ , """git_log.json""" ) , """w""" ) as f: json.dump(lowerCAmelCase__ , lowerCAmelCase__ , indent=4 ) def a (lowerCAmelCase__ ): if params.n_gpu <= 0: __a = 0 __a = -1 __a = True __a = False return assert torch.cuda.is_available() logger.info("""Initializing GPUs""" ) if params.n_gpu > 1: assert params.local_rank != -1 __a = int(os.environ["""WORLD_SIZE"""] ) __a = int(os.environ["""N_GPU_NODE"""] ) __a = int(os.environ["""RANK"""] ) # number of nodes / node ID __a = params.world_size // params.n_gpu_per_node __a = params.global_rank // params.n_gpu_per_node __a = True assert params.n_nodes == int(os.environ["""N_NODES"""] ) assert params.node_id == int(os.environ["""NODE_RANK"""] ) # local job (single GPU) else: assert params.local_rank == -1 __a = 1 __a = 0 __a = 0 __a = 0 __a = 1 __a = 1 __a = False # sanity checks assert params.n_nodes >= 1 assert 0 <= params.node_id < params.n_nodes assert 0 <= params.local_rank <= params.global_rank < params.world_size assert params.world_size == params.n_nodes * params.n_gpu_per_node # define whether this is the master process / if we are in multi-node distributed mode __a = params.node_id == 0 and params.local_rank == 0 __a = params.n_nodes > 1 # summary __a = f'''--- Global rank: {params.global_rank} - ''' logger.info(PREFIX + """Number of nodes: %i""" % params.n_nodes ) logger.info(PREFIX + """Node ID : %i""" % params.node_id ) logger.info(PREFIX + """Local rank : %i""" % params.local_rank ) logger.info(PREFIX + """World size : %i""" % params.world_size ) logger.info(PREFIX + """GPUs per node : %i""" % params.n_gpu_per_node ) logger.info(PREFIX + """Master : %s""" % str(params.is_master ) ) logger.info(PREFIX + """Multi-node : %s""" % str(params.multi_node ) ) logger.info(PREFIX + """Multi-GPU : %s""" % str(params.multi_gpu ) ) logger.info(PREFIX + """Hostname : %s""" % socket.gethostname() ) # set GPU device torch.cuda.set_device(params.local_rank ) # initialize multi-GPU if params.multi_gpu: logger.info("""Initializing PyTorch distributed""" ) torch.distributed.init_process_group( init_method="""env://""" , backend="""nccl""" , ) def a (lowerCAmelCase__ ): np.random.seed(args.seed ) torch.manual_seed(args.seed ) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed )
99
from typing import TYPE_CHECKING from ...utils import _LazyModule a_ :Tuple = {'tokenization_wav2vec2_phoneme': ['Wav2Vec2PhonemeCTCTokenizer']} if TYPE_CHECKING: from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer else: import sys a_ :Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
35
0
from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case : List[Any] = logging.get_logger(__name__) _snake_case : str = { 'edbeeching/decision-transformer-gym-hopper-medium': ( 'https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json' ), # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer } class __SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE__ ="""decision_transformer""" SCREAMING_SNAKE_CASE__ =["""past_key_values"""] SCREAMING_SNAKE_CASE__ ={ """max_position_embeddings""": """n_positions""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self, _a=17, _a=4, _a=1_28, _a=40_96, _a=True, _a=1, _a=10_24, _a=3, _a=1, _a=None, _a="relu", _a=0.1, _a=0.1, _a=0.1, _a=1E-5, _a=0.02, _a=True, _a=True, _a=5_02_56, _a=5_02_56, _a=False, _a=False, **_a, ) -> str: __SCREAMING_SNAKE_CASE = state_dim __SCREAMING_SNAKE_CASE = act_dim __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = max_ep_len __SCREAMING_SNAKE_CASE = action_tanh __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = n_positions __SCREAMING_SNAKE_CASE = n_layer __SCREAMING_SNAKE_CASE = n_head __SCREAMING_SNAKE_CASE = n_inner __SCREAMING_SNAKE_CASE = activation_function __SCREAMING_SNAKE_CASE = resid_pdrop __SCREAMING_SNAKE_CASE = embd_pdrop __SCREAMING_SNAKE_CASE = attn_pdrop __SCREAMING_SNAKE_CASE = layer_norm_epsilon __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = scale_attn_weights __SCREAMING_SNAKE_CASE = use_cache __SCREAMING_SNAKE_CASE = scale_attn_by_inverse_layer_idx __SCREAMING_SNAKE_CASE = reorder_and_upcast_attn __SCREAMING_SNAKE_CASE = bos_token_id __SCREAMING_SNAKE_CASE = eos_token_id super().__init__(bos_token_id=_a, eos_token_id=_a, **_a )
214
import argparse import collections import numpy as np import torch from flax import traverse_util from tax import checkpoints from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def _A ( __snake_case :Union[str, Any] , __snake_case :Tuple , __snake_case :List[str] ) -> str: """simple docstring""" return params[f'''{prefix}/{prefix}/relpos_bias/rel_embedding'''][:, i, :] def _A ( __snake_case :str , __snake_case :List[str] , __snake_case :Any , __snake_case :Optional[int]="attention" ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = __SCREAMING_SNAKE_CASE = np.ascontiguousarray(params[f'''{prefix}/{prefix}/{layer_name}/key/kernel'''][:, i, :, :] ) __SCREAMING_SNAKE_CASE = k_tmp.reshape(k_tmp.shape[0] , k_tmp.shape[1] * k_tmp.shape[2] ) __SCREAMING_SNAKE_CASE = np.ascontiguousarray(params[f'''{prefix}/{prefix}/{layer_name}/out/kernel'''][:, i, :, :] ) __SCREAMING_SNAKE_CASE = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1] , o_tmp.shape[2] ) __SCREAMING_SNAKE_CASE = np.ascontiguousarray(params[f'''{prefix}/{prefix}/{layer_name}/query/kernel'''][:, i, :, :] ) __SCREAMING_SNAKE_CASE = q_tmp.reshape(q_tmp.shape[0] , q_tmp.shape[1] * q_tmp.shape[2] ) __SCREAMING_SNAKE_CASE = np.ascontiguousarray(params[f'''{prefix}/{prefix}/{layer_name}/value/kernel'''][:, i, :, :] ) __SCREAMING_SNAKE_CASE = v_tmp.reshape(v_tmp.shape[0] , v_tmp.shape[1] * v_tmp.shape[2] ) return k, o, q, v def _A ( __snake_case :Optional[int] , __snake_case :int , __snake_case :str , __snake_case :Dict=False ) -> List[Any]: """simple docstring""" if split_mlp_wi: __SCREAMING_SNAKE_CASE = params[f'''{prefix}/{prefix}/mlp/wi_0/kernel'''][:, i, :] __SCREAMING_SNAKE_CASE = params[f'''{prefix}/{prefix}/mlp/wi_1/kernel'''][:, i, :] __SCREAMING_SNAKE_CASE = (wi_a, wi_a) else: __SCREAMING_SNAKE_CASE = params[f'''{prefix}/{prefix}/mlp/wi/kernel'''][:, i, :] __SCREAMING_SNAKE_CASE = params[f'''{prefix}/{prefix}/mlp/wo/kernel'''][:, i, :] return wi, wo def _A ( __snake_case :Optional[Any] , __snake_case :str , __snake_case :Optional[Any] , __snake_case :List[str] ) -> List[str]: """simple docstring""" return params[f'''{prefix}/{prefix}/{layer_name}/scale'''][:, i] def _A ( __snake_case :dict , *, __snake_case :int , __snake_case :bool , __snake_case :bool = False ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = traverse_util.flatten_dict(variables["target"] ) __SCREAMING_SNAKE_CASE = {"/".join(__snake_case ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi __SCREAMING_SNAKE_CASE = "encoder/encoder/mlp/wi_0/kernel" in old print("Split MLP:" , __snake_case ) __SCREAMING_SNAKE_CASE = collections.OrderedDict() # Shared embeddings. __SCREAMING_SNAKE_CASE = old["token_embedder/embedding"] # Encoder. for i in range(__snake_case ): # Block i, layer 0 (Self Attention). __SCREAMING_SNAKE_CASE = tax_layer_norm_lookup(__snake_case , __snake_case , "encoder" , "pre_attention_layer_norm" ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = tax_attention_lookup(__snake_case , __snake_case , "encoder" , "attention" ) __SCREAMING_SNAKE_CASE = layer_norm __SCREAMING_SNAKE_CASE = k.T __SCREAMING_SNAKE_CASE = o.T __SCREAMING_SNAKE_CASE = q.T __SCREAMING_SNAKE_CASE = v.T # Block i, layer 1 (MLP). __SCREAMING_SNAKE_CASE = tax_layer_norm_lookup(__snake_case , __snake_case , "encoder" , "pre_mlp_layer_norm" ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = tax_mlp_lookup(__snake_case , __snake_case , "encoder" , __snake_case ) __SCREAMING_SNAKE_CASE = layer_norm if split_mlp_wi: __SCREAMING_SNAKE_CASE = wi[0].T __SCREAMING_SNAKE_CASE = wi[1].T else: __SCREAMING_SNAKE_CASE = wi.T __SCREAMING_SNAKE_CASE = wo.T if scalable_attention: # convert the rel_embedding of each layer __SCREAMING_SNAKE_CASE = tax_relpos_bias_lookup( __snake_case , __snake_case , "encoder" ).T __SCREAMING_SNAKE_CASE = old["encoder/encoder_norm/scale"] if not scalable_attention: __SCREAMING_SNAKE_CASE = tax_relpos_bias_lookup( __snake_case , 0 , "encoder" ).T __SCREAMING_SNAKE_CASE = tax_relpos_bias_lookup( __snake_case , 0 , "decoder" ).T if not is_encoder_only: # Decoder. for i in range(__snake_case ): # Block i, layer 0 (Self Attention). __SCREAMING_SNAKE_CASE = tax_layer_norm_lookup(__snake_case , __snake_case , "decoder" , "pre_self_attention_layer_norm" ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = tax_attention_lookup(__snake_case , __snake_case , "decoder" , "self_attention" ) __SCREAMING_SNAKE_CASE = layer_norm __SCREAMING_SNAKE_CASE = k.T __SCREAMING_SNAKE_CASE = o.T __SCREAMING_SNAKE_CASE = q.T __SCREAMING_SNAKE_CASE = v.T # Block i, layer 1 (Cross Attention). __SCREAMING_SNAKE_CASE = tax_layer_norm_lookup(__snake_case , __snake_case , "decoder" , "pre_cross_attention_layer_norm" ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = tax_attention_lookup(__snake_case , __snake_case , "decoder" , "encoder_decoder_attention" ) __SCREAMING_SNAKE_CASE = layer_norm __SCREAMING_SNAKE_CASE = k.T __SCREAMING_SNAKE_CASE = o.T __SCREAMING_SNAKE_CASE = q.T __SCREAMING_SNAKE_CASE = v.T # Block i, layer 2 (MLP). __SCREAMING_SNAKE_CASE = tax_layer_norm_lookup(__snake_case , __snake_case , "decoder" , "pre_mlp_layer_norm" ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = tax_mlp_lookup(__snake_case , __snake_case , "decoder" , __snake_case ) __SCREAMING_SNAKE_CASE = layer_norm if split_mlp_wi: __SCREAMING_SNAKE_CASE = wi[0].T __SCREAMING_SNAKE_CASE = wi[1].T else: __SCREAMING_SNAKE_CASE = wi.T __SCREAMING_SNAKE_CASE = wo.T if scalable_attention: # convert the rel_embedding of each layer __SCREAMING_SNAKE_CASE = tax_relpos_bias_lookup(__snake_case , __snake_case , "decoder" ).T __SCREAMING_SNAKE_CASE = old["decoder/decoder_norm/scale"] # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: __SCREAMING_SNAKE_CASE = old["decoder/logits_dense/kernel"].T return new def _A ( __snake_case :List[str] , __snake_case :bool ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: __SCREAMING_SNAKE_CASE = state_dict["shared.weight"] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: __SCREAMING_SNAKE_CASE = state_dict["shared.weight"] if "lm_head.weight" not in state_dict: # For old 1.0 models. print("Using shared word embeddings as lm_head." ) __SCREAMING_SNAKE_CASE = state_dict["shared.weight"] return state_dict def _A ( __snake_case :int , __snake_case :List[Any] , __snake_case :str , __snake_case :Tuple , __snake_case :str ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = checkpoints.load_tax_checkpoint(__snake_case ) __SCREAMING_SNAKE_CASE = convert_tax_to_pytorch( __snake_case , num_layers=config.num_layers , is_encoder_only=__snake_case , scalable_attention=__snake_case ) __SCREAMING_SNAKE_CASE = make_state_dict(__snake_case , __snake_case ) model.load_state_dict(__snake_case , strict=__snake_case ) def _A ( __snake_case :Optional[int] , __snake_case :int , __snake_case :List[Any] , __snake_case :bool = False , __snake_case :bool = False , ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = MTaConfig.from_json_file(__snake_case ) print(f'''Building PyTorch model from configuration: {config}''' ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: __SCREAMING_SNAKE_CASE = UMTaEncoderModel(__snake_case ) else: __SCREAMING_SNAKE_CASE = UMTaForConditionalGeneration(__snake_case ) # Load weights from tf checkpoint load_tax_weights_in_ta(__snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) # Save pytorch-model print(f'''Save PyTorch model to {pytorch_dump_path}''' ) model.save_pretrained(__snake_case ) # Verify that we can load the checkpoint. model.from_pretrained(__snake_case ) print("Done" ) if __name__ == "__main__": _snake_case : Any = argparse.ArgumentParser(description='Converts a native T5X checkpoint into a PyTorch checkpoint.') # Required parameters parser.add_argument( '--t5x_checkpoint_path', default=None, type=str, required=True, help='Path to the T5X checkpoint.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--is_encoder_only', action='store_true', help='Check if the model is encoder-decoder model', default=False ) parser.add_argument( '--scalable_attention', action='store_true', help='Whether the model uses scaled attention (umt5 model)', default=False, ) _snake_case : Any = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only, args.scalable_attention, )
214
1
from math import ceil def __lowerCamelCase ( __a :int = 1_0_0_1 ) -> int: """simple docstring""" A__ = 1 for i in range(1 , int(ceil(n / 2.0 ) ) ): A__ = 2 * i + 1 A__ = 2 * i A__ = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: A : Union[str, Any] = int(sys.argv[1]) print(solution(n)) except ValueError: print('''Invalid entry - please enter a number''')
176
import argparse import collections import os import re import tempfile import pandas as pd from datasets import Dataset from huggingface_hub import hf_hub_download, upload_folder from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/update_metadata.py A : Optional[Any] = '''src/transformers''' # This is to make sure the transformers module imported is the one in the repo. A : Any = direct_transformers_import(TRANSFORMERS_PATH) # Regexes that match TF/Flax/PT model names. A : str = re.compile(R'''TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)''') A : Optional[Any] = re.compile(R'''Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)''') # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. A : Any = re.compile(R'''(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)''') # Fill this with tuples (pipeline_tag, model_mapping, auto_model) A : str = [ ('''pretraining''', '''MODEL_FOR_PRETRAINING_MAPPING_NAMES''', '''AutoModelForPreTraining'''), ('''feature-extraction''', '''MODEL_MAPPING_NAMES''', '''AutoModel'''), ('''audio-classification''', '''MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES''', '''AutoModelForAudioClassification'''), ('''text-generation''', '''MODEL_FOR_CAUSAL_LM_MAPPING_NAMES''', '''AutoModelForCausalLM'''), ('''automatic-speech-recognition''', '''MODEL_FOR_CTC_MAPPING_NAMES''', '''AutoModelForCTC'''), ('''image-classification''', '''MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES''', '''AutoModelForImageClassification'''), ('''image-segmentation''', '''MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES''', '''AutoModelForImageSegmentation'''), ('''fill-mask''', '''MODEL_FOR_MASKED_LM_MAPPING_NAMES''', '''AutoModelForMaskedLM'''), ('''object-detection''', '''MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES''', '''AutoModelForObjectDetection'''), ( '''zero-shot-object-detection''', '''MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES''', '''AutoModelForZeroShotObjectDetection''', ), ('''question-answering''', '''MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES''', '''AutoModelForQuestionAnswering'''), ('''text2text-generation''', '''MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES''', '''AutoModelForSeq2SeqLM'''), ('''text-classification''', '''MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES''', '''AutoModelForSequenceClassification'''), ('''automatic-speech-recognition''', '''MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES''', '''AutoModelForSpeechSeq2Seq'''), ( '''table-question-answering''', '''MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES''', '''AutoModelForTableQuestionAnswering''', ), ('''token-classification''', '''MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES''', '''AutoModelForTokenClassification'''), ('''multiple-choice''', '''MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES''', '''AutoModelForMultipleChoice'''), ( '''next-sentence-prediction''', '''MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES''', '''AutoModelForNextSentencePrediction''', ), ( '''audio-frame-classification''', '''MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES''', '''AutoModelForAudioFrameClassification''', ), ('''audio-xvector''', '''MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES''', '''AutoModelForAudioXVector'''), ( '''document-question-answering''', '''MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES''', '''AutoModelForDocumentQuestionAnswering''', ), ( '''visual-question-answering''', '''MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES''', '''AutoModelForVisualQuestionAnswering''', ), ('''image-to-text''', '''MODEL_FOR_FOR_VISION_2_SEQ_MAPPING_NAMES''', '''AutoModelForVision2Seq'''), ( '''zero-shot-image-classification''', '''MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES''', '''AutoModelForZeroShotImageClassification''', ), ('''depth-estimation''', '''MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES''', '''AutoModelForDepthEstimation'''), ('''video-classification''', '''MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES''', '''AutoModelForVideoClassification'''), ('''mask-generation''', '''MODEL_FOR_MASK_GENERATION_MAPPING_NAMES''', '''AutoModelForMaskGeneration'''), ] def __lowerCamelCase ( __a :List[str] ) -> Optional[int]: """simple docstring""" A__ = re.finditer(""".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)""" , __a ) return [m.group(0 ) for m in matches] def __lowerCamelCase ( ) -> Dict: """simple docstring""" A__ = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES A__ = { config.replace("""Config""" , """""" ): model_type for model_type, config in config_maping_names.items() } # Dictionaries flagging if each model prefix has a backend in PT/TF/Flax. A__ = collections.defaultdict(__a ) A__ = collections.defaultdict(__a ) A__ = collections.defaultdict(__a ) # Let's lookup through all transformers object (once) and find if models are supported by a given backend. for attr_name in dir(__a ): A__ = None if _re_tf_models.match(__a ) is not None: A__ = tf_models A__ = _re_tf_models.match(__a ).groups()[0] elif _re_flax_models.match(__a ) is not None: A__ = flax_models A__ = _re_flax_models.match(__a ).groups()[0] elif _re_pt_models.match(__a ) is not None: A__ = pt_models A__ = _re_pt_models.match(__a ).groups()[0] if lookup_dict is not None: while len(__a ) > 0: if attr_name in model_prefix_to_model_type: A__ = True break # Try again after removing the last word in the name A__ = """""".join(camel_case_split(__a )[:-1] ) A__ = set(list(pt_models.keys() ) + list(tf_models.keys() ) + list(flax_models.keys() ) ) A__ = list(__a ) all_models.sort() A__ = {"""model_type""": all_models} A__ = [pt_models[t] for t in all_models] A__ = [tf_models[t] for t in all_models] A__ = [flax_models[t] for t in all_models] # Now let's use the auto-mapping names to make sure A__ = {} for t in all_models: if t in transformers_module.models.auto.processing_auto.PROCESSOR_MAPPING_NAMES: A__ = """AutoProcessor""" elif t in transformers_module.models.auto.tokenization_auto.TOKENIZER_MAPPING_NAMES: A__ = """AutoTokenizer""" elif t in transformers_module.models.auto.feature_extraction_auto.FEATURE_EXTRACTOR_MAPPING_NAMES: A__ = """AutoFeatureExtractor""" else: # Default to AutoTokenizer if a model has nothing, for backward compatibility. A__ = """AutoTokenizer""" A__ = [processors[t] for t in all_models] return pd.DataFrame(__a ) def __lowerCamelCase ( __a :Union[str, Any] ) -> List[str]: """simple docstring""" A__ = [ transformers_module.models.auto.modeling_auto, transformers_module.models.auto.modeling_tf_auto, transformers_module.models.auto.modeling_flax_auto, ] for pipeline_tag, model_mapping, auto_class in PIPELINE_TAGS_AND_AUTO_MODELS: A__ = [model_mapping, F'TF_{model_mapping}', F'FLAX_{model_mapping}'] A__ = [auto_class, F'TF_{auto_class}', F'Flax_{auto_class}'] # Loop through all three frameworks for module, cls, mapping in zip(__a , __a , __a ): # The type of pipeline may not exist in this framework if not hasattr(__a , __a ): continue # First extract all model_names A__ = [] for name in getattr(__a , __a ).values(): if isinstance(__a , __a ): model_names.append(__a ) else: model_names.extend(list(__a ) ) # Add pipeline tag and auto model class for those models table.update({model_name: (pipeline_tag, cls) for model_name in model_names} ) return table def __lowerCamelCase ( __a :Dict , __a :Optional[Any] ) -> Any: """simple docstring""" A__ = get_frameworks_table() A__ = Dataset.from_pandas(__a ) A__ = hf_hub_download( """huggingface/transformers-metadata""" , """pipeline_tags.json""" , repo_type="""dataset""" , token=__a ) A__ = Dataset.from_json(__a ) A__ = { tags_dataset[i]["""model_class"""]: (tags_dataset[i]["""pipeline_tag"""], tags_dataset[i]["""auto_class"""]) for i in range(len(__a ) ) } A__ = update_pipeline_and_auto_class_table(__a ) # Sort the model classes to avoid some nondeterministic updates to create false update commits. A__ = sorted(table.keys() ) A__ = pd.DataFrame( { """model_class""": model_classes, """pipeline_tag""": [table[m][0] for m in model_classes], """auto_class""": [table[m][1] for m in model_classes], } ) A__ = Dataset.from_pandas(__a ) with tempfile.TemporaryDirectory() as tmp_dir: frameworks_dataset.to_json(os.path.join(__a , """frameworks.json""" ) ) tags_dataset.to_json(os.path.join(__a , """pipeline_tags.json""" ) ) if commit_sha is not None: A__ = ( F'Update with commit {commit_sha}\n\nSee: ' F'https://github.com/huggingface/transformers/commit/{commit_sha}' ) else: A__ = """Update""" upload_folder( repo_id="""huggingface/transformers-metadata""" , folder_path=__a , repo_type="""dataset""" , token=__a , commit_message=__a , ) def __lowerCamelCase ( ) -> Dict: """simple docstring""" A__ = {tag: cls for tag, _, cls in PIPELINE_TAGS_AND_AUTO_MODELS} A__ = transformers_module.pipelines.SUPPORTED_TASKS A__ = [] for key in pipeline_tasks: if key not in in_table: A__ = pipeline_tasks[key]["""pt"""] if isinstance(__a , (list, tuple) ): A__ = model[0] A__ = model.__name__ if model not in in_table.values(): missing.append(__a ) if len(__a ) > 0: A__ = """, """.join(__a ) raise ValueError( """The following pipeline tags are not present in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant inside """ F'`utils/update_metadata.py`: {msg}. Please add them!' ) if __name__ == "__main__": A : Tuple = argparse.ArgumentParser() parser.add_argument('''--token''', type=str, help='''The token to use to push to the transformers-metadata dataset.''') parser.add_argument('''--commit_sha''', type=str, help='''The sha of the commit going with this update.''') parser.add_argument('''--check-only''', action='''store_true''', help='''Activate to just check all pipelines are present.''') A : Optional[int] = parser.parse_args() if args.check_only: check_pipeline_tags() else: update_metadata(args.token, args.commit_sha)
176
1
"""simple docstring""" import pprint import requests UpperCAmelCase ="https://zenquotes.io/api" def _A ( ): """simple docstring""" return requests.get(API_ENDPOINT_URL + """/today""" ).json() def _A ( ): """simple docstring""" return requests.get(API_ENDPOINT_URL + """/random""" ).json() if __name__ == "__main__": UpperCAmelCase =random_quotes() pprint.pprint(response)
255
"""simple docstring""" from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging UpperCAmelCase =logging.get_logger(__name__) UpperCAmelCase ={ "google/umt5-small": "https://huggingface.co/google/umt5-small/resolve/main/config.json", # See all umt5 models at https://huggingface.co/models?filter=umt5 } class lowerCamelCase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowerCamelCase = '''umt5''' _lowerCamelCase = ['''past_key_values'''] def __init__( self ,lowerCamelCase_=2_5_0_1_1_2 ,lowerCamelCase_=5_1_2 ,lowerCamelCase_=6_4 ,lowerCamelCase_=1_0_2_4 ,lowerCamelCase_=8 ,lowerCamelCase_=None ,lowerCamelCase_=6 ,lowerCamelCase_=3_2 ,lowerCamelCase_=1_2_8 ,lowerCamelCase_=0.1 ,lowerCamelCase_=1E-6 ,lowerCamelCase_=1.0 ,lowerCamelCase_="gated-gelu" ,lowerCamelCase_=True ,lowerCamelCase_=True ,lowerCamelCase_="T5Tokenizer" ,lowerCamelCase_=True ,lowerCamelCase_=0 ,lowerCamelCase_=1 ,lowerCamelCase_=0 ,**lowerCamelCase_ ,) -> Dict: super().__init__( is_encoder_decoder=lowerCamelCase_ ,tokenizer_class=lowerCamelCase_ ,tie_word_embeddings=lowerCamelCase_ ,pad_token_id=lowerCamelCase_ ,eos_token_id=lowerCamelCase_ ,decoder_start_token_id=lowerCamelCase_ ,**lowerCamelCase_ ,) A = vocab_size A = d_model A = d_kv A = d_ff A = num_layers A = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry A = num_heads A = relative_attention_num_buckets A = relative_attention_max_distance A = dropout_rate A = layer_norm_epsilon A = initializer_factor A = feed_forward_proj A = use_cache A = self.feed_forward_proj.split("""-""" ) A = act_info[-1] A = act_info[0] == """gated""" if len(lowerCamelCase_ ) > 1 and act_info[0] != "gated" or len(lowerCamelCase_ ) > 2: raise ValueError( f'`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.' """Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. """ """'gated-gelu' or 'relu'""" ) if feed_forward_proj == "gated-gelu": A = """gelu_new""" @property def UpperCamelCase__ ( self ) -> Dict: return self.d_model @property def UpperCamelCase__ ( self ) -> Any: return self.num_heads @property def UpperCamelCase__ ( self ) -> int: return self.num_layers class lowerCamelCase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs def UpperCamelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: A = { """input_ids""": {0: """batch""", 1: """encoder_sequence"""}, """attention_mask""": {0: """batch""", 1: """encoder_sequence"""}, } if self.use_past: A = """past_encoder_sequence + sequence""" A = {0: """batch"""} A = {0: """batch""", 1: """past_decoder_sequence + sequence"""} else: A = {0: """batch""", 1: """decoder_sequence"""} A = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(lowerCamelCase_ ,direction="""inputs""" ) return common_inputs @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset def UpperCamelCase__ ( self ) -> int: return 1_3 @property def UpperCamelCase__ ( self ) -> float: return 5E-4
255
1
import numpy as np def __lowercase ( __lowerCAmelCase : np.ndarray , __lowerCAmelCase : float ): return np.where(vector > 0 , __lowerCAmelCase , (alpha * (np.exp(__lowerCAmelCase ) - 1)) ) if __name__ == "__main__": import doctest doctest.testmod()
335
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING snake_case : str = logging.get_logger(__name__) snake_case : List[str] = { '''SenseTime/deformable-detr''': '''https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json''', # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class snake_case_ (lowerCamelCase_ ): UpperCAmelCase__ : Union[str, Any] = '''deformable_detr''' UpperCAmelCase__ : Tuple = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', } def __init__( self :Optional[int] ,__snake_case :List[Any]=True ,__snake_case :str=None ,__snake_case :Optional[Any]=3 ,__snake_case :int=3_00 ,__snake_case :Optional[int]=10_24 ,__snake_case :Union[str, Any]=6 ,__snake_case :Optional[int]=10_24 ,__snake_case :List[str]=8 ,__snake_case :Optional[Any]=6 ,__snake_case :int=10_24 ,__snake_case :List[str]=8 ,__snake_case :List[str]=0.0 ,__snake_case :Optional[int]=True ,__snake_case :Any="relu" ,__snake_case :List[str]=2_56 ,__snake_case :List[str]=0.1 ,__snake_case :Dict=0.0 ,__snake_case :Optional[int]=0.0 ,__snake_case :List[Any]=0.02 ,__snake_case :Union[str, Any]=1.0 ,__snake_case :List[str]=True ,__snake_case :Union[str, Any]=False ,__snake_case :List[Any]="sine" ,__snake_case :Tuple="resnet50" ,__snake_case :Dict=True ,__snake_case :Tuple=False ,__snake_case :str=4 ,__snake_case :Union[str, Any]=4 ,__snake_case :List[Any]=4 ,__snake_case :Optional[Any]=False ,__snake_case :str=3_00 ,__snake_case :Tuple=False ,__snake_case :Union[str, Any]=1 ,__snake_case :str=5 ,__snake_case :str=2 ,__snake_case :Dict=1 ,__snake_case :Any=1 ,__snake_case :Union[str, Any]=5 ,__snake_case :Tuple=2 ,__snake_case :Any=0.1 ,__snake_case :str=0.25 ,__snake_case :int=False ,**__snake_case :Optional[int] ,) -> Tuple: if backbone_config is not None and use_timm_backbone: raise ValueError('You can\'t specify both `backbone_config` and `use_timm_backbone`.' ) if not use_timm_backbone: if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' ) a__ = CONFIG_MAPPING['resnet'](out_features=['stage4'] ) elif isinstance(__snake_case ,__snake_case ): a__ = backbone_config.get('model_type' ) a__ = CONFIG_MAPPING[backbone_model_type] a__ = config_class.from_dict(__snake_case ) a__ = use_timm_backbone a__ = backbone_config a__ = num_channels a__ = num_queries a__ = max_position_embeddings a__ = d_model a__ = encoder_ffn_dim a__ = encoder_layers a__ = encoder_attention_heads a__ = decoder_ffn_dim a__ = decoder_layers a__ = decoder_attention_heads a__ = dropout a__ = attention_dropout a__ = activation_dropout a__ = activation_function a__ = init_std a__ = init_xavier_std a__ = encoder_layerdrop a__ = auxiliary_loss a__ = position_embedding_type a__ = backbone a__ = use_pretrained_backbone a__ = dilation # deformable attributes a__ = num_feature_levels a__ = encoder_n_points a__ = decoder_n_points a__ = two_stage a__ = two_stage_num_proposals a__ = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError('If two_stage is True, with_box_refine must be True.' ) # Hungarian matcher a__ = class_cost a__ = bbox_cost a__ = giou_cost # Loss coefficients a__ = mask_loss_coefficient a__ = dice_loss_coefficient a__ = bbox_loss_coefficient a__ = giou_loss_coefficient a__ = eos_coefficient a__ = focal_alpha a__ = disable_custom_kernels super().__init__(is_encoder_decoder=__snake_case ,**__snake_case ) @property def lowerCamelCase__( self :Dict ) -> int: return self.encoder_attention_heads @property def lowerCamelCase__( self :int ) -> int: return self.d_model def lowerCamelCase__( self :List[str] ) -> str: a__ = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: a__ = self.backbone_config.to_dict() a__ = self.__class__.model_type return output
335
1
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class UpperCAmelCase ( snake_case_ ): SCREAMING_SNAKE_CASE__ = 4_2 class UpperCAmelCase ( snake_case_ ,snake_case_ ): @register_to_config def __init__( self , _lowerCAmelCase = 3 , _lowerCAmelCase = 3 , _lowerCAmelCase = ("DownEncoderBlock2D",) , _lowerCAmelCase = ("UpDecoderBlock2D",) , _lowerCAmelCase = (64,) , _lowerCAmelCase = 1 , _lowerCAmelCase = "silu" , _lowerCAmelCase = 3 , _lowerCAmelCase = 32 , _lowerCAmelCase = 256 , _lowerCAmelCase = 32 , _lowerCAmelCase = None , _lowerCAmelCase = 0.18_215 , _lowerCAmelCase = "group" , ): super().__init__() # pass init params to Encoder _lowerCAmelCase = Encoder( in_channels=_lowerCAmelCase , out_channels=_lowerCAmelCase , down_block_types=_lowerCAmelCase , block_out_channels=_lowerCAmelCase , layers_per_block=_lowerCAmelCase , act_fn=_lowerCAmelCase , norm_num_groups=_lowerCAmelCase , double_z=_lowerCAmelCase , ) _lowerCAmelCase = vq_embed_dim if vq_embed_dim is not None else latent_channels _lowerCAmelCase = nn.Convad(_lowerCAmelCase , _lowerCAmelCase , 1 ) _lowerCAmelCase = VectorQuantizer(_lowerCAmelCase , _lowerCAmelCase , beta=0.25 , remap=_lowerCAmelCase , sane_index_shape=_lowerCAmelCase ) _lowerCAmelCase = nn.Convad(_lowerCAmelCase , _lowerCAmelCase , 1 ) # pass init params to Decoder _lowerCAmelCase = Decoder( in_channels=_lowerCAmelCase , out_channels=_lowerCAmelCase , up_block_types=_lowerCAmelCase , block_out_channels=_lowerCAmelCase , layers_per_block=_lowerCAmelCase , act_fn=_lowerCAmelCase , norm_num_groups=_lowerCAmelCase , norm_type=_lowerCAmelCase , ) @apply_forward_hook def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase = True ): _lowerCAmelCase = self.encoder(_lowerCAmelCase ) _lowerCAmelCase = self.quant_conv(_lowerCAmelCase ) if not return_dict: return (h,) return VQEncoderOutput(latents=_lowerCAmelCase ) @apply_forward_hook def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase = False , _lowerCAmelCase = True ): # also go through quantization layer if not force_not_quantize: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = self.quantize(_lowerCAmelCase ) else: _lowerCAmelCase = h _lowerCAmelCase = self.post_quant_conv(_lowerCAmelCase ) _lowerCAmelCase = self.decoder(_lowerCAmelCase , quant if self.config.norm_type == '''spatial''' else None ) if not return_dict: return (dec,) return DecoderOutput(sample=_lowerCAmelCase ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase = True ): _lowerCAmelCase = sample _lowerCAmelCase = self.encode(_lowerCAmelCase ).latents _lowerCAmelCase = self.decode(_lowerCAmelCase ).sample if not return_dict: return (dec,) return DecoderOutput(sample=_lowerCAmelCase )
702
import argparse import pathlib import fairseq import torch from fairseq.models.roberta import RobertaModel as FairseqRobertaModel from fairseq.modules import TransformerSentenceEncoderLayer from packaging import version from transformers import XLMRobertaConfig, XLMRobertaXLForMaskedLM, XLMRobertaXLForSequenceClassification from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.models.roberta.modeling_roberta import RobertaAttention from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("1.0.0a"): raise Exception("requires fairseq >= 1.0.0a") logging.set_verbosity_info() UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = "Hello world! cécé herlolip" def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : bool )->List[Any]: _lowerCAmelCase = FairseqRobertaModel.from_pretrained(_SCREAMING_SNAKE_CASE ) roberta.eval() # disable dropout _lowerCAmelCase = roberta.model.encoder.sentence_encoder _lowerCAmelCase = XLMRobertaConfig( vocab_size=roberta_sent_encoder.embed_tokens.num_embeddings , hidden_size=roberta.cfg.model.encoder_embed_dim , num_hidden_layers=roberta.cfg.model.encoder_layers , num_attention_heads=roberta.cfg.model.encoder_attention_heads , intermediate_size=roberta.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=5_1_4 , type_vocab_size=1 , layer_norm_eps=1e-5 , ) if classification_head: _lowerCAmelCase = roberta.model.classification_heads['''mnli'''].out_proj.weight.shape[0] print('''Our RoBERTa config:''' , _SCREAMING_SNAKE_CASE ) _lowerCAmelCase = XLMRobertaXLForSequenceClassification(_SCREAMING_SNAKE_CASE ) if classification_head else XLMRobertaXLForMaskedLM(_SCREAMING_SNAKE_CASE ) model.eval() # Now let's copy all the weights. # Embeddings _lowerCAmelCase = roberta_sent_encoder.embed_tokens.weight _lowerCAmelCase = roberta_sent_encoder.embed_positions.weight _lowerCAmelCase = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c RoBERTa doesn't use them. _lowerCAmelCase = roberta_sent_encoder.layer_norm.weight _lowerCAmelCase = roberta_sent_encoder.layer_norm.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer _lowerCAmelCase = model.roberta.encoder.layer[i] _lowerCAmelCase = roberta_sent_encoder.layers[i] _lowerCAmelCase = layer.attention _lowerCAmelCase = roberta_layer.self_attn_layer_norm.weight _lowerCAmelCase = roberta_layer.self_attn_layer_norm.bias # self attention _lowerCAmelCase = layer.attention.self assert ( roberta_layer.self_attn.k_proj.weight.data.shape == roberta_layer.self_attn.q_proj.weight.data.shape == roberta_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ) _lowerCAmelCase = roberta_layer.self_attn.q_proj.weight _lowerCAmelCase = roberta_layer.self_attn.q_proj.bias _lowerCAmelCase = roberta_layer.self_attn.k_proj.weight _lowerCAmelCase = roberta_layer.self_attn.k_proj.bias _lowerCAmelCase = roberta_layer.self_attn.v_proj.weight _lowerCAmelCase = roberta_layer.self_attn.v_proj.bias # self-attention output _lowerCAmelCase = layer.attention.output assert self_output.dense.weight.shape == roberta_layer.self_attn.out_proj.weight.shape _lowerCAmelCase = roberta_layer.self_attn.out_proj.weight _lowerCAmelCase = roberta_layer.self_attn.out_proj.bias # this one is final layer norm _lowerCAmelCase = roberta_layer.final_layer_norm.weight _lowerCAmelCase = roberta_layer.final_layer_norm.bias # intermediate _lowerCAmelCase = layer.intermediate assert intermediate.dense.weight.shape == roberta_layer.fca.weight.shape _lowerCAmelCase = roberta_layer.fca.weight _lowerCAmelCase = roberta_layer.fca.bias # output _lowerCAmelCase = layer.output assert bert_output.dense.weight.shape == roberta_layer.fca.weight.shape _lowerCAmelCase = roberta_layer.fca.weight _lowerCAmelCase = roberta_layer.fca.bias # end of layer if classification_head: _lowerCAmelCase = roberta.model.classification_heads['''mnli'''].dense.weight _lowerCAmelCase = roberta.model.classification_heads['''mnli'''].dense.bias _lowerCAmelCase = roberta.model.classification_heads['''mnli'''].out_proj.weight _lowerCAmelCase = roberta.model.classification_heads['''mnli'''].out_proj.bias else: # LM Head _lowerCAmelCase = roberta.model.encoder.lm_head.dense.weight _lowerCAmelCase = roberta.model.encoder.lm_head.dense.bias _lowerCAmelCase = roberta.model.encoder.lm_head.layer_norm.weight _lowerCAmelCase = roberta.model.encoder.lm_head.layer_norm.bias _lowerCAmelCase = roberta.model.encoder.lm_head.weight _lowerCAmelCase = roberta.model.encoder.lm_head.bias # Let's check that we get the same results. _lowerCAmelCase = roberta.encode(_SCREAMING_SNAKE_CASE ).unsqueeze(0 ) # batch of size 1 _lowerCAmelCase = model(_SCREAMING_SNAKE_CASE )[0] if classification_head: _lowerCAmelCase = roberta.model.classification_heads['''mnli'''](roberta.extract_features(_SCREAMING_SNAKE_CASE ) ) else: _lowerCAmelCase = roberta.model(_SCREAMING_SNAKE_CASE )[0] print(our_output.shape , their_output.shape ) _lowerCAmelCase = torch.max(torch.abs(our_output - their_output ) ).item() print(f'''max_absolute_diff = {max_absolute_diff}''' ) # ~ 1e-7 _lowerCAmelCase = torch.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1e-3 ) print('''Do both models output the same tensors?''' , '''🔥''' if success else '''💩''' ) if not success: raise Exception('''Something went wRoNg''' ) pathlib.Path(_SCREAMING_SNAKE_CASE ).mkdir(parents=_SCREAMING_SNAKE_CASE , exist_ok=_SCREAMING_SNAKE_CASE ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--roberta_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--classification_head", action="store_true", help="Whether to convert a final classification head." ) UpperCAmelCase_ = parser.parse_args() convert_xlm_roberta_xl_checkpoint_to_pytorch( args.roberta_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
664
0
import os import unittest from tempfile import TemporaryDirectory import torch import torch.nn as nn from accelerate.utils import ( OffloadedWeightsLoader, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, ) class UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self ): """simple docstring""" super().__init__() A_ : List[Any] = nn.Linear(3 , 4 ) A_ : int = nn.BatchNormad(4 ) A_ : List[Any] = nn.Linear(4 , 5 ) def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" return self.lineara(self.batchnorm(self.lineara(lowercase ) ) ) class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self ): """simple docstring""" A_ : Dict = ModelForTest() with TemporaryDirectory() as tmp_dir: offload_state_dict(lowercase , model.state_dict() ) A_ : List[str] = os.path.join(lowercase , 'index.json' ) self.assertTrue(os.path.isfile(lowercase ) ) # TODO: add tests on what is inside the index for key in ["linear1.weight", "linear1.bias", "linear2.weight", "linear2.bias"]: A_ : Any = os.path.join(lowercase , F'''{key}.dat''' ) self.assertTrue(os.path.isfile(lowercase ) ) # TODO: add tests on the fact weights are properly loaded def lowerCAmelCase_ ( self ): """simple docstring""" A_ : Any = [torch.floataa, torch.floataa, torch.bfloataa] for dtype in dtypes: A_ : Tuple = torch.randn(2 , 3 , dtype=lowercase ) with TemporaryDirectory() as tmp_dir: A_ : Any = offload_weight(lowercase , 'weight' , lowercase , {} ) A_ : Any = os.path.join(lowercase , 'weight.dat' ) self.assertTrue(os.path.isfile(lowercase ) ) self.assertDictEqual(lowercase , {'weight': {'shape': [2, 3], 'dtype': str(lowercase ).split('.' )[1]}} ) A_ : Optional[Any] = load_offloaded_weight(lowercase , index['weight'] ) self.assertTrue(torch.equal(lowercase , lowercase ) ) def lowerCAmelCase_ ( self ): """simple docstring""" A_ : Union[str, Any] = ModelForTest() A_ : List[Any] = model.state_dict() A_ : int = {k: v for k, v in state_dict.items() if 'linear2' not in k} A_ : Any = {k: v for k, v in state_dict.items() if 'linear2' in k} with TemporaryDirectory() as tmp_dir: offload_state_dict(lowercase , lowercase ) A_ : Tuple = OffloadedWeightsLoader(state_dict=lowercase , save_folder=lowercase ) # Every key is there with the right value self.assertEqual(sorted(lowercase ) , sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(lowercase , weight_map[key] ) ) A_ : List[Any] = {k: v for k, v in state_dict.items() if 'weight' in k} A_ : List[Any] = {k: v for k, v in state_dict.items() if 'weight' not in k} with TemporaryDirectory() as tmp_dir: offload_state_dict(lowercase , lowercase ) A_ : Any = OffloadedWeightsLoader(state_dict=lowercase , save_folder=lowercase ) # Every key is there with the right value self.assertEqual(sorted(lowercase ) , sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(lowercase , weight_map[key] ) ) with TemporaryDirectory() as tmp_dir: offload_state_dict(lowercase , lowercase ) # Duplicates are removed A_ : Optional[Any] = OffloadedWeightsLoader(state_dict=lowercase , save_folder=lowercase ) # Every key is there with the right value self.assertEqual(sorted(lowercase ) , sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(lowercase , weight_map[key] ) ) def lowerCAmelCase_ ( self ): """simple docstring""" A_ : str = {'a.1': 0, 'a.10': 1, 'a.2': 2} A_ : Any = extract_submodules_state_dict(lowercase , ['a.1', 'a.2'] ) self.assertDictEqual(lowercase , {'a.1': 0, 'a.2': 2} ) A_ : Dict = {'a.1.a': 0, 'a.10.a': 1, 'a.2.a': 2} A_ : Optional[Any] = extract_submodules_state_dict(lowercase , ['a.1', 'a.2'] ) self.assertDictEqual(lowercase , {'a.1.a': 0, 'a.2.a': 2} )
558
from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig _UpperCAmelCase = logging.get_logger(__name__) # General docstring _UpperCAmelCase = """RegNetConfig""" # Base docstring _UpperCAmelCase = """facebook/regnet-y-040""" _UpperCAmelCase = [1, 1088, 7, 7] # Image classification docstring _UpperCAmelCase = """facebook/regnet-y-040""" _UpperCAmelCase = """tabby, tabby cat""" _UpperCAmelCase = [ """facebook/regnet-y-040""", # See all regnet models at https://huggingface.co/models?filter=regnet ] class UpperCAmelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self , lowercase , lowercase = 3 , lowercase = 1 , lowercase = 1 , lowercase = "relu" , **lowercase , ): """simple docstring""" super().__init__(**lowercase ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb A_ : List[str] = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) A_ : Tuple = tf.keras.layers.ConvaD( filters=lowercase , kernel_size=lowercase , strides=lowercase , padding='VALID' , groups=lowercase , use_bias=lowercase , name='convolution' , ) A_ : Dict = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name='normalization' ) A_ : Optional[int] = ACTaFN[activation] if activation is not None else tf.identity def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" A_ : int = self.convolution(self.padding(lowercase ) ) A_ : Optional[Any] = self.normalization(lowercase ) A_ : Union[str, Any] = self.activation(lowercase ) return hidden_state class UpperCAmelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self , lowercase , **lowercase ): """simple docstring""" super().__init__(**lowercase ) A_ : Dict = config.num_channels A_ : Dict = TFRegNetConvLayer( out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name='embedder' , ) def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" A_ : Union[str, Any] = shape_list(lowercase )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( 'Make sure that the channel dimension of the pixel values match with the one set in the configuration.' ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) A_ : Optional[Any] = tf.transpose(lowercase , perm=(0, 2, 3, 1) ) A_ : Dict = self.embedder(lowercase ) return hidden_state class UpperCAmelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self , lowercase , lowercase = 2 , **lowercase ): """simple docstring""" super().__init__(**lowercase ) A_ : Optional[int] = tf.keras.layers.ConvaD( filters=lowercase , kernel_size=1 , strides=lowercase , use_bias=lowercase , name='convolution' ) A_ : Tuple = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name='normalization' ) def lowerCAmelCase_ ( self , lowercase , lowercase = False ): """simple docstring""" return self.normalization(self.convolution(lowercase ) , training=lowercase ) class UpperCAmelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self , lowercase , lowercase , **lowercase ): """simple docstring""" super().__init__(**lowercase ) A_ : List[Any] = tf.keras.layers.GlobalAveragePoolingaD(keepdims=lowercase , name='pooler' ) A_ : Any = [ tf.keras.layers.ConvaD(filters=lowercase , kernel_size=1 , activation='relu' , name='attention.0' ), tf.keras.layers.ConvaD(filters=lowercase , kernel_size=1 , activation='sigmoid' , name='attention.2' ), ] def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" A_ : str = self.pooler(lowercase ) for layer_module in self.attention: A_ : List[str] = layer_module(lowercase ) A_ : str = hidden_state * pooled return hidden_state class UpperCAmelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self , lowercase , lowercase , lowercase , lowercase = 1 , **lowercase ): """simple docstring""" super().__init__(**lowercase ) A_ : Union[str, Any] = in_channels != out_channels or stride != 1 A_ : Optional[Any] = max(1 , out_channels // config.groups_width ) A_ : List[Any] = ( TFRegNetShortCut(lowercase , stride=lowercase , name='shortcut' ) if should_apply_shortcut else tf.keras.layers.Activation('linear' , name='shortcut' ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. A_ : Optional[Any] = [ TFRegNetConvLayer(lowercase , kernel_size=1 , activation=config.hidden_act , name='layer.0' ), TFRegNetConvLayer( lowercase , stride=lowercase , groups=lowercase , activation=config.hidden_act , name='layer.1' ), TFRegNetConvLayer(lowercase , kernel_size=1 , activation=lowercase , name='layer.2' ), ] A_ : int = ACTaFN[config.hidden_act] def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" A_ : Optional[Any] = hidden_state for layer_module in self.layers: A_ : Union[str, Any] = layer_module(lowercase ) A_ : int = self.shortcut(lowercase ) hidden_state += residual A_ : Optional[int] = self.activation(lowercase ) return hidden_state class UpperCAmelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self , lowercase , lowercase , lowercase , lowercase = 1 , **lowercase ): """simple docstring""" super().__init__(**lowercase ) A_ : Any = in_channels != out_channels or stride != 1 A_ : Union[str, Any] = max(1 , out_channels // config.groups_width ) A_ : str = ( TFRegNetShortCut(lowercase , stride=lowercase , name='shortcut' ) if should_apply_shortcut else tf.keras.layers.Activation('linear' , name='shortcut' ) ) A_ : Optional[int] = [ TFRegNetConvLayer(lowercase , kernel_size=1 , activation=config.hidden_act , name='layer.0' ), TFRegNetConvLayer( lowercase , stride=lowercase , groups=lowercase , activation=config.hidden_act , name='layer.1' ), TFRegNetSELayer(lowercase , reduced_channels=int(round(in_channels / 4 ) ) , name='layer.2' ), TFRegNetConvLayer(lowercase , kernel_size=1 , activation=lowercase , name='layer.3' ), ] A_ : str = ACTaFN[config.hidden_act] def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" A_ : Any = hidden_state for layer_module in self.layers: A_ : Optional[Any] = layer_module(lowercase ) A_ : Optional[Any] = self.shortcut(lowercase ) hidden_state += residual A_ : Tuple = self.activation(lowercase ) return hidden_state class UpperCAmelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self , lowercase , lowercase , lowercase , lowercase = 2 , lowercase = 2 , **lowercase ): """simple docstring""" super().__init__(**lowercase ) A_ : List[Any] = TFRegNetXLayer if config.layer_type == 'x' else TFRegNetYLayer A_ : int = [ # downsampling is done in the first layer with stride of 2 layer(lowercase , lowercase , lowercase , stride=lowercase , name='layers.0' ), *[layer(lowercase , lowercase , lowercase , name=F'''layers.{i+1}''' ) for i in range(depth - 1 )], ] def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" for layer_module in self.layers: A_ : List[str] = layer_module(lowercase ) return hidden_state class UpperCAmelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self , lowercase , **lowercase ): """simple docstring""" super().__init__(**lowercase ) A_ : Any = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( lowercase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name='stages.0' , ) ) A_ : int = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(lowercase , config.depths[1:] ) ): self.stages.append(TFRegNetStage(lowercase , lowercase , lowercase , depth=lowercase , name=F'''stages.{i+1}''' ) ) def lowerCAmelCase_ ( self , lowercase , lowercase = False , lowercase = True ): """simple docstring""" A_ : Optional[Any] = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: A_ : Optional[Any] = hidden_states + (hidden_state,) A_ : List[Any] = stage_module(lowercase ) if output_hidden_states: A_ : str = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=lowercase , hidden_states=lowercase ) @keras_serializable class UpperCAmelCase ( tf.keras.layers.Layer ): '''simple docstring''' lowerCamelCase_ = RegNetConfig def __init__( self , lowercase , **lowercase ): """simple docstring""" super().__init__(**lowercase ) A_ : List[Any] = config A_ : List[str] = TFRegNetEmbeddings(lowercase , name='embedder' ) A_ : Dict = TFRegNetEncoder(lowercase , name='encoder' ) A_ : Any = tf.keras.layers.GlobalAveragePoolingaD(keepdims=lowercase , name='pooler' ) @unpack_inputs def lowerCAmelCase_ ( self , lowercase , lowercase = None , lowercase = None , lowercase = False , ): """simple docstring""" A_ : Dict = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) A_ : Any = return_dict if return_dict is not None else self.config.use_return_dict A_ : int = self.embedder(lowercase , training=lowercase ) A_ : int = self.encoder( lowercase , output_hidden_states=lowercase , return_dict=lowercase , training=lowercase ) A_ : List[Any] = encoder_outputs[0] A_ : Any = self.pooler(lowercase ) # Change to NCHW output format have uniformity in the modules A_ : Optional[int] = tf.transpose(lowercase , perm=(0, 3, 1, 2) ) A_ : List[str] = tf.transpose(lowercase , perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: A_ : Dict = tuple([tf.transpose(lowercase , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowercase , pooler_output=lowercase , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , ) class UpperCAmelCase ( __A ): '''simple docstring''' lowerCamelCase_ = RegNetConfig lowerCamelCase_ = '''regnet''' lowerCamelCase_ = '''pixel_values''' @property def lowerCAmelCase_ ( self ): """simple docstring""" return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 2_2_4, 2_2_4) , dtype=tf.floataa )} _UpperCAmelCase = r""" Parameters: This model is a Tensorflow [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and behavior. config ([`RegNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. """ _UpperCAmelCase = r""" Args: pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConveNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( '''The bare RegNet model outputting raw features without any specific head on top.''' , __A , ) class UpperCAmelCase ( __A ): '''simple docstring''' def __init__( self , lowercase , *lowercase , **lowercase ): """simple docstring""" super().__init__(lowercase , *lowercase , **lowercase ) A_ : Union[str, Any] = TFRegNetMainLayer(lowercase , name='regnet' ) @unpack_inputs @add_start_docstrings_to_model_forward(lowercase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowercase , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def lowerCAmelCase_ ( self , lowercase , lowercase = None , lowercase = None , lowercase=False , ): """simple docstring""" A_ : Union[str, Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) A_ : str = return_dict if return_dict is not None else self.config.use_return_dict A_ : int = self.regnet( pixel_values=lowercase , output_hidden_states=lowercase , return_dict=lowercase , training=lowercase , ) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , ) @add_start_docstrings( ''' RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. ''' , __A , ) class UpperCAmelCase ( __A , __A ): '''simple docstring''' def __init__( self , lowercase , *lowercase , **lowercase ): """simple docstring""" super().__init__(lowercase , *lowercase , **lowercase ) A_ : str = config.num_labels A_ : Optional[Any] = TFRegNetMainLayer(lowercase , name='regnet' ) # classification head A_ : int = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels , name='classifier.1' ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(lowercase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowercase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def lowerCAmelCase_ ( self , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase=False , ): """simple docstring""" A_ : Any = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) A_ : Union[str, Any] = return_dict if return_dict is not None else self.config.use_return_dict A_ : Dict = self.regnet( lowercase , output_hidden_states=lowercase , return_dict=lowercase , training=lowercase ) A_ : Any = outputs.pooler_output if return_dict else outputs[1] A_ : Union[str, Any] = self.classifier[0](lowercase ) A_ : Dict = self.classifier[1](lowercase ) A_ : Dict = None if labels is None else self.hf_compute_loss(labels=lowercase , logits=lowercase ) if not return_dict: A_ : List[str] = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=lowercase , logits=lowercase , hidden_states=outputs.hidden_states )
558
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json""" ), """google/realm-orqa-nq-openqa""": """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json""", """google/realm-orqa-nq-reader""": """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json""", """google/realm-orqa-wq-openqa""": """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json""", """google/realm-orqa-wq-reader""": """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json""", # See all REALM models at https://huggingface.co/models?filter=realm } class lowercase__( snake_case__ ): '''simple docstring''' snake_case__ = """realm""" def __init__( self , __SCREAMING_SNAKE_CASE=3_05_22 , __SCREAMING_SNAKE_CASE=7_68 , __SCREAMING_SNAKE_CASE=1_28 , __SCREAMING_SNAKE_CASE=12 , __SCREAMING_SNAKE_CASE=12 , __SCREAMING_SNAKE_CASE=8 , __SCREAMING_SNAKE_CASE=30_72 , __SCREAMING_SNAKE_CASE="gelu_new" , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=5_12 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=1E-12 , __SCREAMING_SNAKE_CASE=2_56 , __SCREAMING_SNAKE_CASE=10 , __SCREAMING_SNAKE_CASE=1E-3 , __SCREAMING_SNAKE_CASE=5 , __SCREAMING_SNAKE_CASE=3_20 , __SCREAMING_SNAKE_CASE=13_35_37_18 , __SCREAMING_SNAKE_CASE=50_00 , __SCREAMING_SNAKE_CASE=1 , __SCREAMING_SNAKE_CASE=0 , __SCREAMING_SNAKE_CASE=2 , **__SCREAMING_SNAKE_CASE , ) -> List[Any]: """simple docstring""" super().__init__(pad_token_id=__SCREAMING_SNAKE_CASE , bos_token_id=__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) # Common config UpperCamelCase__ : Dict =vocab_size UpperCamelCase__ : Dict =max_position_embeddings UpperCamelCase__ : Optional[int] =hidden_size UpperCamelCase__ : Optional[Any] =retriever_proj_size UpperCamelCase__ : Dict =num_hidden_layers UpperCamelCase__ : int =num_attention_heads UpperCamelCase__ : Union[str, Any] =num_candidates UpperCamelCase__ : int =intermediate_size UpperCamelCase__ : Union[str, Any] =hidden_act UpperCamelCase__ : Tuple =hidden_dropout_prob UpperCamelCase__ : List[str] =attention_probs_dropout_prob UpperCamelCase__ : Tuple =initializer_range UpperCamelCase__ : str =type_vocab_size UpperCamelCase__ : str =layer_norm_eps # Reader config UpperCamelCase__ : Union[str, Any] =span_hidden_size UpperCamelCase__ : Optional[int] =max_span_width UpperCamelCase__ : Any =reader_layer_norm_eps UpperCamelCase__ : Dict =reader_beam_size UpperCamelCase__ : Tuple =reader_seq_len # Retrieval config UpperCamelCase__ : Tuple =num_block_records UpperCamelCase__ : Optional[Any] =searcher_beam_size
716
from __future__ import annotations import os import tempfile import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import is_tensorflow_text_available, is_tf_available from transformers.testing_utils import require_tensorflow_text, require_tf, slow from ..test_modeling_tf_common import floats_tensor from .test_framework_agnostic import GenerationIntegrationTestsMixin if is_tf_available(): import tensorflow as tf from transformers import ( AutoTokenizer, TFAutoModelForCausalLM, TFAutoModelForSeqaSeqLM, TFAutoModelForSpeechSeqaSeq, TFAutoModelForVisionaSeq, TFBartForConditionalGeneration, TFLogitsProcessorList, TFMinLengthLogitsProcessor, tf_top_k_top_p_filtering, ) if is_tensorflow_text_available(): import tensorflow_text as text @require_tf class lowercase__( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase ( self) -> Optional[int]: """simple docstring""" UpperCamelCase__ : List[Any] =tf.convert_to_tensor( [ [ 8.2_22_09_91, # 3rd highest value; idx. 0 -0.5_62_00_44, 5.23_22_97_52, 4.0_38_63_93, -6.8_79_83_78, -0.54_78_58_02, -3.2_01_21_53, 2.92_77_71_76, 1.88_17_19_53, 7.35_34_12_76, # 5th highest value; idx. 9 8.43_20_78_33, # 2nd highest value; idx. 10 -9.85_71_18_36, -5.96_20_92_36, -1.13_03_91_61, -7.1_11_52_94, -0.8_36_96_33, -5.3_18_64_08, 7.06_42_74_07, 0.81_36_93_44, -0.82_02_38_17, -5.9_17_97_96, 0.58_81_34_43, -6.99_77_84_38, 4.71_55_11_89, -0.18_77_16_37, 7.44_02_07_59, # 4th highest value; idx. 25 9.38_45_09_87, # 1st highest value; idx. 26 2.12_66_29_41, -9.32_56_20_38, 2.35_65_25_22, ], # cummulative prob of 5 highest values <= 0.6 [ 0.58_42_55_18, 4.53_13_92_38, -5.57_51_04_64, -6.28_03_06_99, -7.19_52_95_03, -4.02_12_25_51, 1.39_33_70_37, -6.06_70_70_57, 1.59_48_05_17, -9.64_31_19, 0.03_90_77_99, 0.67_23_17_62, -8.88_20_67_26, 6.27_11_59_22, # 4th highest value; idx. 13 2.28_52_07_23, 4.82_76_75_06, 4.30_42_13_68, 8.8_27_53_13, # 2nd highest value; idx. 17 5.44_02_99_58, # 5th highest value; idx. 18 -4.4_73_57_94, 7.38_57_95_36, # 3rd highest value; idx. 20 -2.91_05_16_63, 2.61_94_60_77, -2.5_67_47_62, -9.48_95_93_02, -4.02_92_26_45, -1.35_41_69_18, 9.67_70_23_23, # 1st highest value; idx. 27 -5.89_47_85_53, 1.85_37_04_67, ], # cummulative prob of 5 highest values <= 0.6 ] , dtype=tf.floataa , ) UpperCamelCase__ : List[Any] =tf.convert_to_tensor( [[0, 0], [0, 9], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 18], [1, 20], [1, 27]] , dtype=tf.intaa , ) # expected non filtered idx as noted above UpperCamelCase__ : Optional[Any] =tf.convert_to_tensor( [8.22_20_99, 7.3_53_41_26, 8.43_20_78, 7.4_40_20_75, 9.3_84_51, 6.27_11_59, 8.82_75_31, 5.4_40_29_95, 7.3_85_79_56, 9.67_70_23] , dtype=tf.floataa , ) # expected non filtered values as noted above UpperCamelCase__ : int =tf_top_k_top_p_filtering(__SCREAMING_SNAKE_CASE , top_k=10 , top_p=0.6 , min_tokens_to_keep=4) UpperCamelCase__ : List[str] =output[output != -float("inf")] UpperCamelCase__ : str =tf.cast( tf.where(tf.not_equal(__SCREAMING_SNAKE_CASE , tf.constant(-float("inf") , dtype=tf.floataa))) , dtype=tf.intaa , ) tf.debugging.assert_near(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , rtol=1E-12) tf.debugging.assert_equal(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) @require_tf class lowercase__( unittest.TestCase , snake_case__ ): '''simple docstring''' if is_tf_available(): snake_case__ = { '''AutoModelForCausalLM''': TFAutoModelForCausalLM, '''AutoModelForSpeechSeq2Seq''': TFAutoModelForSpeechSeqaSeq, '''AutoModelForSeq2SeqLM''': TFAutoModelForSeqaSeqLM, '''AutoModelForVision2Seq''': TFAutoModelForVisionaSeq, '''LogitsProcessorList''': TFLogitsProcessorList, '''MinLengthLogitsProcessor''': TFMinLengthLogitsProcessor, '''create_tensor_fn''': tf.convert_to_tensor, '''floats_tensor''': floats_tensor, '''return_tensors''': '''tf''', } @slow def UpperCAmelCase ( self) -> Tuple: """simple docstring""" UpperCamelCase__ : List[str] =TFAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2") UpperCamelCase__ : Tuple =2 UpperCamelCase__ : Any =2 class lowercase__( tf.Module ): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE) -> Optional[int]: """simple docstring""" super(__SCREAMING_SNAKE_CASE , self).__init__() UpperCamelCase__ : Any =model @tf.function( input_signature=( tf.TensorSpec((None, input_length) , tf.intaa , name="input_ids"), tf.TensorSpec((None, input_length) , tf.intaa , name="attention_mask"), ) , jit_compile=__SCREAMING_SNAKE_CASE , ) def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) -> str: """simple docstring""" UpperCamelCase__ : int =self.model.generate( input_ids=__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , max_new_tokens=__SCREAMING_SNAKE_CASE , return_dict_in_generate=__SCREAMING_SNAKE_CASE , ) return {"sequences": outputs["sequences"]} UpperCamelCase__ : str =[[2, 0], [1_02, 1_03]] UpperCamelCase__ : int =[[1, 0], [1, 1]] UpperCamelCase__ : Dict =DummyModel(model=__SCREAMING_SNAKE_CASE) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , signatures={"serving_default": dummy_model.serving}) UpperCamelCase__ : Optional[int] =tf.saved_model.load(__SCREAMING_SNAKE_CASE).signatures["serving_default"] for batch_size in range(1 , len(__SCREAMING_SNAKE_CASE) + 1): UpperCamelCase__ : List[str] ={ "input_ids": tf.constant(dummy_input_ids[:batch_size]), "attention_mask": tf.constant(dummy_attention_masks[:batch_size]), } UpperCamelCase__ : str =serving_func(**__SCREAMING_SNAKE_CASE)["sequences"] UpperCamelCase__ : List[str] =test_model.generate(**__SCREAMING_SNAKE_CASE , max_new_tokens=__SCREAMING_SNAKE_CASE) tf.debugging.assert_equal(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) @slow def UpperCAmelCase ( self) -> int: """simple docstring""" UpperCamelCase__ : Optional[int] =TFAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2") UpperCamelCase__ : Optional[Any] =1 UpperCamelCase__ : Optional[Any] =2 class lowercase__( tf.Module ): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE) -> Optional[Any]: """simple docstring""" super(__SCREAMING_SNAKE_CASE , self).__init__() UpperCamelCase__ : int =model @tf.function( input_signature=( tf.TensorSpec((batch_size, None) , tf.intaa , name="input_ids"), tf.TensorSpec((batch_size, None) , tf.intaa , name="attention_mask"), ) , jit_compile=__SCREAMING_SNAKE_CASE , ) def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) -> int: """simple docstring""" UpperCamelCase__ : Union[str, Any] =self.model.generate( input_ids=__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , max_new_tokens=__SCREAMING_SNAKE_CASE , return_dict_in_generate=__SCREAMING_SNAKE_CASE , ) return {"sequences": outputs["sequences"]} UpperCamelCase__ : List[str] =[[2], [1_02, 1_03]] UpperCamelCase__ : Tuple =[[1], [1, 1]] UpperCamelCase__ : int =DummyModel(model=__SCREAMING_SNAKE_CASE) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , signatures={"serving_default": dummy_model.serving}) UpperCamelCase__ : Union[str, Any] =tf.saved_model.load(__SCREAMING_SNAKE_CASE).signatures["serving_default"] for input_row in range(len(__SCREAMING_SNAKE_CASE)): UpperCamelCase__ : Any ={ "input_ids": tf.constant([dummy_input_ids[input_row]]), "attention_mask": tf.constant([dummy_attention_masks[input_row]]), } UpperCamelCase__ : List[Any] =serving_func(**__SCREAMING_SNAKE_CASE)["sequences"] UpperCamelCase__ : Tuple =test_model.generate(**__SCREAMING_SNAKE_CASE , max_new_tokens=__SCREAMING_SNAKE_CASE) tf.debugging.assert_equal(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) @slow @require_tensorflow_text def UpperCAmelCase ( self) -> Optional[Any]: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: # file needed to load the TF tokenizer hf_hub_download(repo_id="google/flan-t5-small" , filename="spiece.model" , local_dir=__SCREAMING_SNAKE_CASE) class lowercase__( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self) -> Optional[Any]: """simple docstring""" super().__init__() UpperCamelCase__ : Optional[int] =text.SentencepieceTokenizer( model=tf.io.gfile.GFile(os.path.join(__SCREAMING_SNAKE_CASE , "spiece.model") , "rb").read()) UpperCamelCase__ : Dict =TFAutoModelForSeqaSeqLM.from_pretrained("hf-internal-testing/tiny-random-t5") def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> Any: """simple docstring""" UpperCamelCase__ : Optional[Any] =self.tokenizer.tokenize(__SCREAMING_SNAKE_CASE) UpperCamelCase__ , UpperCamelCase__ : Tuple =text.pad_model_inputs( __SCREAMING_SNAKE_CASE , max_seq_length=64 , pad_value=self.model.config.pad_token_id) UpperCamelCase__ : Any =self.model.generate(input_ids=__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE) return self.tokenizer.detokenize(__SCREAMING_SNAKE_CASE) UpperCamelCase__ : List[str] =CompleteSentenceTransformer() UpperCamelCase__ : int =tf.keras.layers.Input(shape=(1,) , dtype=tf.string , name="inputs") UpperCamelCase__ : List[str] =complete_model(__SCREAMING_SNAKE_CASE) UpperCamelCase__ : Optional[int] =tf.keras.Model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) keras_model.save(__SCREAMING_SNAKE_CASE) def UpperCAmelCase ( self) -> Dict: """simple docstring""" UpperCamelCase__ : Tuple ={ "do_sample": True, "num_beams": 1, "top_p": 0.7, "top_k": 10, "temperature": 0.7, } UpperCamelCase__ : Union[str, Any] =14 UpperCamelCase__ : Optional[int] =AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2") UpperCamelCase__ : int ="Hello, my dog is cute and" UpperCamelCase__ : Union[str, Any] =tokenizer(__SCREAMING_SNAKE_CASE , return_tensors="tf") UpperCamelCase__ : Optional[int] =TFAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2") UpperCamelCase__ : Optional[int] =6_38 # forces the generation to happen on CPU, to avoid GPU-related quirks with tf.device(":/CPU:0"): tf.random.set_seed(0) UpperCamelCase__ : Optional[Any] =model.generate(**__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) self.assertTrue(expectation == len(generated_tokens[0])) UpperCamelCase__ : Optional[Any] =[6_38, 1_98] with tf.device(":/CPU:0"): tf.random.set_seed(0) UpperCamelCase__ : str =model.generate(**__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) self.assertTrue(expectation == len(generated_tokens[0])) def UpperCAmelCase ( self) -> Optional[Any]: """simple docstring""" UpperCamelCase__ : Any =AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart") UpperCamelCase__ : int ="Hugging Face is a technology company based in New York and Paris." UpperCamelCase__ : str =bart_tokenizer(__SCREAMING_SNAKE_CASE , return_tensors="tf").input_ids UpperCamelCase__ : int =TFBartForConditionalGeneration.from_pretrained("hf-internal-testing/tiny-random-bart") UpperCamelCase__ : int =bart_model.generate(__SCREAMING_SNAKE_CASE).numpy() class lowercase__( snake_case__ ): '''simple docstring''' def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE) -> List[str]: """simple docstring""" return super().call(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) UpperCamelCase__ : List[str] =FakeBart.from_pretrained("hf-internal-testing/tiny-random-bart") UpperCamelCase__ : Dict =bart_model.generate(__SCREAMING_SNAKE_CASE , foo="bar").numpy() self.assertTrue(np.array_equal(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE)) class lowercase__( bart_model.model.encoder.__class__ ): '''simple docstring''' def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> int: """simple docstring""" return super().call(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) UpperCamelCase__ : List[str] =FakeEncoder(bart_model.config , bart_model.model.shared) UpperCamelCase__ : List[Any] =fake_encoder # Normal generation still works (the output will be different because the encoder weights are different) UpperCamelCase__ : Dict =bart_model.generate(__SCREAMING_SNAKE_CASE).numpy() with self.assertRaises(__SCREAMING_SNAKE_CASE): # FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo" bart_model.generate(__SCREAMING_SNAKE_CASE , foo="bar")
582
0
from typing import List, Optional, Tuple, Union import torch from torch import nn from torch.nn import CrossEntropyLoss from ... import AutoBackbone from ...modeling_outputs import SemanticSegmenterOutput from ...modeling_utils import PreTrainedModel from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings from ...utils.backbone_utils import BackboneMixin from .configuration_upernet import UperNetConfig _snake_case : Optional[Any] = [ "openmmlab/upernet-convnext-tiny", # See all UperNet models at https://huggingface.co/models?filter=upernet ] # General docstring _snake_case : Dict = "UperNetConfig" class a (nn.Module ): """simple docstring""" def __init__( self : Tuple , lowerCamelCase : int , lowerCamelCase : int , lowerCamelCase : Union[int, Tuple[int, int]] , lowerCamelCase : Union[int, Tuple[int, int], str] = 0 , lowerCamelCase : bool = False , lowerCamelCase : Union[int, Tuple[int, int]] = 1 , ) -> None: super().__init__() __snake_case : Union[str, Any] = nn.Convad( in_channels=lowerCamelCase , out_channels=lowerCamelCase , kernel_size=lowerCamelCase , padding=lowerCamelCase , bias=lowerCamelCase , dilation=lowerCamelCase , ) __snake_case : Dict = nn.BatchNormad(lowerCamelCase ) __snake_case : List[Any] = nn.ReLU() def __snake_case ( self : List[Any] , lowerCamelCase : torch.Tensor ) -> torch.Tensor: __snake_case : Dict = self.conv(lowerCamelCase ) __snake_case : int = self.batch_norm(lowerCamelCase ) __snake_case : Optional[Any] = self.activation(lowerCamelCase ) return output class a (nn.Module ): """simple docstring""" def __init__( self : str , lowerCamelCase : int , lowerCamelCase : int , lowerCamelCase : int ) -> None: super().__init__() __snake_case : Tuple = [ nn.AdaptiveAvgPoolad(lowerCamelCase ), UperNetConvModule(lowerCamelCase , lowerCamelCase , kernel_size=1 ), ] for i, layer in enumerate(self.layers ): self.add_module(str(lowerCamelCase ) , lowerCamelCase ) def __snake_case ( self : Dict , lowerCamelCase : torch.Tensor ) -> torch.Tensor: __snake_case : List[str] = input for layer in self.layers: __snake_case : Tuple = layer(lowerCamelCase ) return hidden_state class a (nn.Module ): """simple docstring""" def __init__( self : Any , lowerCamelCase : Tuple[int, ...] , lowerCamelCase : int , lowerCamelCase : int , lowerCamelCase : bool ) -> None: super().__init__() __snake_case : Dict = pool_scales __snake_case : List[str] = align_corners __snake_case : List[Any] = in_channels __snake_case : str = channels __snake_case : Optional[Any] = [] for i, pool_scale in enumerate(lowerCamelCase ): __snake_case : Union[str, Any] = UperNetPyramidPoolingBlock(pool_scale=lowerCamelCase , in_channels=lowerCamelCase , channels=lowerCamelCase ) self.blocks.append(lowerCamelCase ) self.add_module(str(lowerCamelCase ) , lowerCamelCase ) def __snake_case ( self : int , lowerCamelCase : torch.Tensor ) -> List[torch.Tensor]: __snake_case : Tuple = [] for ppm in self.blocks: __snake_case : Any = ppm(lowerCamelCase ) __snake_case : List[Any] = nn.functional.interpolate( lowerCamelCase , size=x.size()[2:] , mode="bilinear" , align_corners=self.align_corners ) ppm_outs.append(lowerCamelCase ) return ppm_outs class a (nn.Module ): """simple docstring""" def __init__( self : int , lowerCamelCase : str , lowerCamelCase : str ) -> List[str]: super().__init__() __snake_case : Dict = config __snake_case : List[str] = config.pool_scales # e.g. (1, 2, 3, 6) __snake_case : Tuple = in_channels __snake_case : str = config.hidden_size __snake_case : List[str] = False __snake_case : Any = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) # PSP Module __snake_case : Tuple = UperNetPyramidPoolingModule( self.pool_scales , self.in_channels[-1] , self.channels , align_corners=self.align_corners , ) __snake_case : List[str] = UperNetConvModule( self.in_channels[-1] + len(self.pool_scales ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) # FPN Module __snake_case : List[Any] = nn.ModuleList() __snake_case : Dict = nn.ModuleList() for in_channels in self.in_channels[:-1]: # skip the top layer __snake_case : Union[str, Any] = UperNetConvModule(lowerCamelCase , self.channels , kernel_size=1 ) __snake_case : Optional[int] = UperNetConvModule(self.channels , self.channels , kernel_size=3 , padding=1 ) self.lateral_convs.append(lowerCamelCase ) self.fpn_convs.append(lowerCamelCase ) __snake_case : int = UperNetConvModule( len(self.in_channels ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) def __snake_case ( self : List[str] ) -> Optional[Any]: self.apply(self._init_weights ) def __snake_case ( self : Tuple , lowerCamelCase : List[Any] ) -> str: if isinstance(lowerCamelCase , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def __snake_case ( self : List[Any] , lowerCamelCase : Tuple ) -> Optional[int]: __snake_case : str = inputs[-1] __snake_case : int = [x] psp_outs.extend(self.psp_modules(lowerCamelCase ) ) __snake_case : Tuple = torch.cat(lowerCamelCase , dim=1 ) __snake_case : Union[str, Any] = self.bottleneck(lowerCamelCase ) return output def __snake_case ( self : int , lowerCamelCase : torch.Tensor ) -> torch.Tensor: # build laterals __snake_case : Any = [lateral_conv(encoder_hidden_states[i] ) for i, lateral_conv in enumerate(self.lateral_convs )] laterals.append(self.psp_forward(lowerCamelCase ) ) # build top-down path __snake_case : Dict = len(lowerCamelCase ) for i in range(used_backbone_levels - 1 , 0 , -1 ): __snake_case : Union[str, Any] = laterals[i - 1].shape[2:] __snake_case : Optional[int] = laterals[i - 1] + nn.functional.interpolate( laterals[i] , size=lowerCamelCase , mode="bilinear" , align_corners=self.align_corners ) # build outputs __snake_case : str = [self.fpn_convs[i](laterals[i] ) for i in range(used_backbone_levels - 1 )] # append psp feature fpn_outs.append(laterals[-1] ) for i in range(used_backbone_levels - 1 , 0 , -1 ): __snake_case : Tuple = nn.functional.interpolate( fpn_outs[i] , size=fpn_outs[0].shape[2:] , mode="bilinear" , align_corners=self.align_corners ) __snake_case : str = torch.cat(lowerCamelCase , dim=1 ) __snake_case : Optional[Any] = self.fpn_bottleneck(lowerCamelCase ) __snake_case : Tuple = self.classifier(lowerCamelCase ) return output class a (nn.Module ): """simple docstring""" def __init__( self : Any , lowerCamelCase : Optional[int] , lowerCamelCase : int = 2 , lowerCamelCase : int = 3 , lowerCamelCase : Union[int, Tuple[int, int]] = 1 ) -> None: super().__init__() __snake_case : List[Any] = config __snake_case : List[str] = config.auxiliary_in_channels __snake_case : List[Any] = config.auxiliary_channels __snake_case : Tuple = config.auxiliary_num_convs __snake_case : int = config.auxiliary_concat_input __snake_case : Optional[int] = in_index __snake_case : Tuple = (kernel_size // 2) * dilation __snake_case : Optional[int] = [] convs.append( UperNetConvModule( self.in_channels , self.channels , kernel_size=lowerCamelCase , padding=lowerCamelCase , dilation=lowerCamelCase ) ) for i in range(self.num_convs - 1 ): convs.append( UperNetConvModule( self.channels , self.channels , kernel_size=lowerCamelCase , padding=lowerCamelCase , dilation=lowerCamelCase ) ) if self.num_convs == 0: __snake_case : Union[str, Any] = nn.Identity() else: __snake_case : Any = nn.Sequential(*lowerCamelCase ) if self.concat_input: __snake_case : int = UperNetConvModule( self.in_channels + self.channels , self.channels , kernel_size=lowerCamelCase , padding=kernel_size // 2 ) __snake_case : Optional[Any] = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) def __snake_case ( self : Dict ) -> Optional[Any]: self.apply(self._init_weights ) def __snake_case ( self : Tuple , lowerCamelCase : Tuple ) -> Optional[int]: if isinstance(lowerCamelCase , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def __snake_case ( self : Optional[int] , lowerCamelCase : torch.Tensor ) -> torch.Tensor: # just take the relevant feature maps __snake_case : List[str] = encoder_hidden_states[self.in_index] __snake_case : Optional[Any] = self.convs(lowerCamelCase ) if self.concat_input: __snake_case : Optional[Any] = self.conv_cat(torch.cat([hidden_states, output] , dim=1 ) ) __snake_case : Union[str, Any] = self.classifier(lowerCamelCase ) return output class a (_lowerCAmelCase ): """simple docstring""" __UpperCAmelCase : Optional[Any] = UperNetConfig __UpperCAmelCase : int = "pixel_values" __UpperCAmelCase : str = True def __snake_case ( self : Union[str, Any] , lowerCamelCase : List[Any] ) -> List[Any]: if isinstance(lowerCamelCase , lowerCamelCase ): module.backbone.init_weights() module.decode_head.init_weights() module.auxiliary_head.init_weights() def __snake_case ( self : Optional[Any] ) -> List[str]: self.backbone.init_weights() self.decode_head.init_weights() self.auxiliary_head.init_weights() def __snake_case ( self : List[Any] , lowerCamelCase : Any , lowerCamelCase : Optional[Any]=False ) -> Dict: if isinstance(lowerCamelCase , lowerCamelCase ): __snake_case : Union[str, Any] = value _snake_case : Dict = R"\n Parameters:\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n config ([`UperNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n" _snake_case : Tuple = R"\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using\n [`AutoImageProcessor`]. See [`SegformerImageProcessor.__call__`] for details.\n output_attentions (`bool`, *optional*):\n Whether or not to return the attentions tensors of all attention layers in case the backbone has them. See\n `attentions` under returned tensors for more detail.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers of the backbone. See `hidden_states` under\n returned tensors for more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n" @add_start_docstrings( "UperNet framework leveraging any vision backbone e.g. for ADE20k, CityScapes." , _lowerCAmelCase , ) class a (_lowerCAmelCase ): """simple docstring""" def __init__( self : Dict , lowerCamelCase : int ) -> Optional[int]: super().__init__(lowerCamelCase ) __snake_case : Any = AutoBackbone.from_config(config.backbone_config ) # Semantic segmentation head(s) __snake_case : Union[str, Any] = UperNetHead(lowerCamelCase , in_channels=self.backbone.channels ) __snake_case : Any = UperNetFCNHead(lowerCamelCase ) if config.use_auxiliary_head else None # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UPERNET_INPUTS_DOCSTRING.format("batch_size, sequence_length" ) ) @replace_return_docstrings(output_type=lowerCamelCase , config_class=_CONFIG_FOR_DOC ) def __snake_case ( self : Union[str, Any] , lowerCamelCase : Optional[torch.Tensor] = None , lowerCamelCase : Optional[bool] = None , lowerCamelCase : Optional[bool] = None , lowerCamelCase : Optional[torch.Tensor] = None , lowerCamelCase : Optional[bool] = None , ) -> Union[tuple, SemanticSegmenterOutput]: __snake_case : Any = return_dict if return_dict is not None else self.config.use_return_dict __snake_case : int = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __snake_case : str = output_attentions if output_attentions is not None else self.config.output_attentions __snake_case : Tuple = self.backbone.forward_with_filtered_kwargs( lowerCamelCase , output_hidden_states=lowerCamelCase , output_attentions=lowerCamelCase ) __snake_case : List[Any] = outputs.feature_maps __snake_case : List[Any] = self.decode_head(lowerCamelCase ) __snake_case : List[str] = nn.functional.interpolate(lowerCamelCase , size=pixel_values.shape[2:] , mode="bilinear" , align_corners=lowerCamelCase ) __snake_case : Optional[int] = None if self.auxiliary_head is not None: __snake_case : Dict = self.auxiliary_head(lowerCamelCase ) __snake_case : Dict = nn.functional.interpolate( lowerCamelCase , size=pixel_values.shape[2:] , mode="bilinear" , align_corners=lowerCamelCase ) __snake_case : int = None if labels is not None: if self.config.num_labels == 1: raise ValueError("The number of labels should be greater than one" ) else: # compute weighted loss __snake_case : Any = CrossEntropyLoss(ignore_index=self.config.loss_ignore_index ) __snake_case : Union[str, Any] = loss_fct(lowerCamelCase , lowerCamelCase ) __snake_case : Optional[Any] = loss_fct(lowerCamelCase , lowerCamelCase ) __snake_case : Optional[Any] = main_loss + self.config.auxiliary_loss_weight * auxiliary_loss if not return_dict: if output_hidden_states: __snake_case : Any = (logits,) + outputs[1:] else: __snake_case : str = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SemanticSegmenterOutput( loss=lowerCamelCase , logits=lowerCamelCase , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
81
import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler _lowercase : str =16 _lowercase : int =32 def _SCREAMING_SNAKE_CASE ( lowerCAmelCase__ ,lowerCAmelCase__ = 16 ,lowerCAmelCase__ = "bert-base-cased" ): lowerCamelCase_ : Any = AutoTokenizer.from_pretrained(lowerCAmelCase__ ) lowerCamelCase_ : Tuple = load_dataset('glue' ,'mrpc' ) def tokenize_function(lowerCAmelCase__ ): # max_length=None => use the model max length (it's actually the default) lowerCamelCase_ : Optional[Any] = tokenizer(examples['sentence1'] ,examples['sentence2'] ,truncation=lowerCAmelCase__ ,max_length=lowerCAmelCase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset lowerCamelCase_ : Dict = datasets.map( lowerCAmelCase__ ,batched=lowerCAmelCase__ ,remove_columns=['idx', 'sentence1', 'sentence2'] ,load_from_cache_file=lowerCAmelCase__ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowerCamelCase_ : List[Any] = tokenized_datasets.rename_column('label' ,'labels' ) def collate_fn(lowerCAmelCase__ ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(lowerCAmelCase__ ,padding='max_length' ,max_length=1_28 ,return_tensors='pt' ) return tokenizer.pad(lowerCAmelCase__ ,padding='longest' ,return_tensors='pt' ) # Instantiate dataloaders. lowerCamelCase_ : int = DataLoader( tokenized_datasets['train'] ,shuffle=lowerCAmelCase__ ,collate_fn=lowerCAmelCase__ ,batch_size=lowerCAmelCase__ ) lowerCamelCase_ : str = DataLoader( tokenized_datasets['validation'] ,shuffle=lowerCAmelCase__ ,collate_fn=lowerCAmelCase__ ,batch_size=lowerCAmelCase__ ) return train_dataloader, eval_dataloader def _SCREAMING_SNAKE_CASE ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ): model.eval() lowerCamelCase_ : List[str] = 0 for step, batch in enumerate(lowerCAmelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowerCamelCase_ : Dict = model(**lowerCAmelCase__ ) lowerCamelCase_ : Any = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times lowerCamelCase_ , lowerCamelCase_ : Tuple = accelerator.gather( (predictions, batch['labels']) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(lowerCAmelCase__ ) - 1: lowerCamelCase_ : Union[str, Any] = predictions[: len(eval_dataloader.dataset ) - samples_seen] lowerCamelCase_ : List[str] = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=lowerCAmelCase__ ,references=lowerCAmelCase__ ,) lowerCamelCase_ : Tuple = metric.compute() return eval_metric["accuracy"] def _SCREAMING_SNAKE_CASE ( lowerCAmelCase__ ,lowerCAmelCase__ ): # Initialize accelerator lowerCamelCase_ : List[Any] = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCamelCase_ : Union[str, Any] = config['lr'] lowerCamelCase_ : List[Any] = int(config['num_epochs'] ) lowerCamelCase_ : Optional[int] = int(config['seed'] ) lowerCamelCase_ : Optional[int] = int(config['batch_size'] ) lowerCamelCase_ : Optional[Any] = args.model_name_or_path set_seed(lowerCAmelCase__ ) lowerCamelCase_ , lowerCamelCase_ : List[Any] = get_dataloaders(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCamelCase_ : List[Any] = AutoModelForSequenceClassification.from_pretrained(lowerCAmelCase__ ,return_dict=lowerCAmelCase__ ) # Instantiate optimizer lowerCamelCase_ : List[Any] = ( AdamW if accelerator.state.deepspeed_plugin is None or 'optimizer' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) lowerCamelCase_ : Union[str, Any] = optimizer_cls(params=model.parameters() ,lr=lowerCAmelCase__ ) if accelerator.state.deepspeed_plugin is not None: lowerCamelCase_ : Tuple = accelerator.state.deepspeed_plugin.deepspeed_config[ 'gradient_accumulation_steps' ] else: lowerCamelCase_ : Tuple = 1 lowerCamelCase_ : str = (len(lowerCAmelCase__ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): lowerCamelCase_ : Tuple = get_linear_schedule_with_warmup( optimizer=lowerCAmelCase__ ,num_warmup_steps=0 ,num_training_steps=lowerCAmelCase__ ,) else: lowerCamelCase_ : Optional[int] = DummyScheduler(lowerCAmelCase__ ,total_num_steps=lowerCAmelCase__ ,warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ : Dict = accelerator.prepare( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) # We need to keep track of how many total steps we have iterated over lowerCamelCase_ : List[str] = 0 # We also need to keep track of the stating epoch so files are named properly lowerCamelCase_ : Any = 0 lowerCamelCase_ : Tuple = evaluate.load('glue' ,'mrpc' ) lowerCamelCase_ : List[Any] = num_epochs if args.partial_train_epoch is not None: lowerCamelCase_ : Any = args.partial_train_epoch if args.resume_from_checkpoint: accelerator.load_state(args.resume_from_checkpoint ) lowerCamelCase_ : List[Any] = args.resume_from_checkpoint.split('epoch_' )[1] lowerCamelCase_ : str = '' for char in epoch_string: if char.isdigit(): state_epoch_num += char else: break lowerCamelCase_ : List[str] = int(lowerCAmelCase__ ) + 1 lowerCamelCase_ : Optional[Any] = evaluation_loop(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) accelerator.print('resumed checkpoint performance:' ,lowerCAmelCase__ ) accelerator.print('resumed checkpoint\'s scheduler\'s lr:' ,lr_scheduler.get_lr()[0] ) accelerator.print('resumed optimizers\'s lr:' ,optimizer.param_groups[0]['lr'] ) with open(os.path.join(args.output_dir ,F"state_{starting_epoch-1}.json" ) ,'r' ) as f: lowerCamelCase_ : Union[str, Any] = json.load(lowerCAmelCase__ ) assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed" assert ( resumed_state["lr"] == lr_scheduler.get_lr()[0] ), "Scheduler learning rate mismatch, loading from checkpoint failed" assert ( resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"] ), "Optimizer learning rate mismatch, loading from checkpoint failed" assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed" return # Now we train the model lowerCamelCase_ : str = {} for epoch in range(lowerCAmelCase__ ,lowerCAmelCase__ ): model.train() for step, batch in enumerate(lowerCAmelCase__ ): lowerCamelCase_ : List[Any] = model(**lowerCAmelCase__ ) lowerCamelCase_ : Tuple = outputs.loss lowerCamelCase_ : str = loss / gradient_accumulation_steps accelerator.backward(lowerCAmelCase__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 lowerCamelCase_ : int = F"epoch_{epoch}" lowerCamelCase_ : Optional[int] = os.path.join(args.output_dir ,lowerCAmelCase__ ) accelerator.save_state(lowerCAmelCase__ ) lowerCamelCase_ : Optional[Any] = evaluation_loop(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCamelCase_ : List[str] = accuracy lowerCamelCase_ : List[str] = lr_scheduler.get_lr()[0] lowerCamelCase_ : str = optimizer.param_groups[0]['lr'] lowerCamelCase_ : Any = epoch lowerCamelCase_ : Union[str, Any] = overall_step accelerator.print(F"epoch {epoch}:" ,lowerCAmelCase__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir ,F"state_{epoch}.json" ) ,'w' ) as f: json.dump(lowerCAmelCase__ ,lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( ): lowerCamelCase_ : Any = argparse.ArgumentParser(description='Simple example of training script tracking peak GPU memory usage.' ) parser.add_argument( '--model_name_or_path' ,type=lowerCAmelCase__ ,default='bert-base-cased' ,help='Path to pretrained model or model identifier from huggingface.co/models.' ,required=lowerCAmelCase__ ,) parser.add_argument( '--output_dir' ,type=lowerCAmelCase__ ,default='.' ,help='Optional save directory where all checkpoint folders will be stored. Default is the current working directory.' ,) parser.add_argument( '--resume_from_checkpoint' ,type=lowerCAmelCase__ ,default=lowerCAmelCase__ ,help='If the training should continue from a checkpoint folder.' ,) parser.add_argument( '--partial_train_epoch' ,type=lowerCAmelCase__ ,default=lowerCAmelCase__ ,help='If passed, the training will stop after this number of epochs.' ,) parser.add_argument( '--num_epochs' ,type=lowerCAmelCase__ ,default=2 ,help='Number of train epochs.' ,) lowerCamelCase_ : Optional[Any] = parser.parse_args() lowerCamelCase_ : List[Any] = {'lr': 2e-5, 'num_epochs': args.num_epochs, 'seed': 42, 'batch_size': 16} training_function(lowerCAmelCase__ ,lowerCAmelCase__ ) if __name__ == "__main__": main()
364
0
'''simple docstring''' def UpperCAmelCase_ (__a : list[int] ): """simple docstring""" _a : List[str] = len(__a ) for i in range(__a ): for j in range(i + 1 , __a ): if numbers[j] < numbers[i]: _a, _a : int = numbers[j], numbers[i] return numbers if __name__ == "__main__": __lowerCAmelCase = input("""Enter numbers separated by a comma:\n""").strip() __lowerCAmelCase = [int(item) for item in user_input.split(""",""")] print(exchange_sort(unsorted))
319
'''simple docstring''' import unittest from transformers import GPTSwaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin __lowerCAmelCase = get_tests_dir("""fixtures/test_sentencepiece_with_bytefallback.model""") @require_sentencepiece @require_tokenizers class UpperCAmelCase__ ( lowercase__ , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : int = GPTSwaTokenizer __UpperCAmelCase : Any = False __UpperCAmelCase : Any = True __UpperCAmelCase : List[Any] = False def __lowercase ( self : Dict ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing _a : Any = GPTSwaTokenizer(_a ,eos_token='<unk>' ,bos_token='<unk>' ,pad_token='<unk>' ) tokenizer.save_pretrained(self.tmpdirname ) def __lowercase ( self : Optional[Any] ,_a : Any ): '''simple docstring''' _a : Optional[int] = 'This is a test' _a : str = 'This is a test' return input_text, output_text def __lowercase ( self : Optional[Any] ): '''simple docstring''' _a : Tuple = '<s>' _a : Optional[int] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_a ) ,_a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_a ) ,_a ) def __lowercase ( self : List[Any] ): '''simple docstring''' _a : Optional[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,'<unk>' ) self.assertEqual(vocab_keys[1] ,'<s>' ) self.assertEqual(vocab_keys[-1] ,'j' ) self.assertEqual(len(_a ) ,2000 ) def __lowercase ( self : List[str] ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size ,2000 ) def __lowercase ( self : List[str] ): '''simple docstring''' _a : Optional[Any] = GPTSwaTokenizer(_a ) _a : int = tokenizer.tokenize('This is a test' ) self.assertListEqual(_a ,['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) ,[465, 287, 265, 631, 842] ) _a : Optional[Any] = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) # fmt: off self.assertListEqual( _a ,['▁I', '▁was', '▁bor', 'n', '▁in', '▁', '<0x39>', '2', '0', '0', '0', ',', '▁and', '▁this', '▁is', '▁f', 'al', 's', '<0xC3>', '<0xA9>', '.'] ,) # fmt: on _a : str = tokenizer.convert_tokens_to_ids(_a ) self.assertListEqual( _a ,[262, 272, 1525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260] ,) _a : str = tokenizer.convert_ids_to_tokens(_a ) # fmt: off self.assertListEqual( _a ,['▁I', '▁was', '▁bor', 'n', '▁in', '▁', '<0x39>', '2', '0', '0', '0', ',', '▁and', '▁this', '▁is', '▁f', 'al', 's', '<0xC3>', '<0xA9>', '.'] ) # fmt: on def __lowercase ( self : Union[str, Any] ): '''simple docstring''' _a : str = GPTSwaTokenizer(_a ) _a : List[Any] = ['This is a test', 'I was born in 92000, and this is falsé.'] _a : Optional[Any] = [ [465, 287, 265, 631, 842], [262, 272, 1525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260], ] # Test that encode_fast returns the same as tokenize + convert_tokens_to_ids for text, expected_ids in zip(_a ,_a ): self.assertListEqual(tokenizer.encode_fast(_a ) ,_a ) # Test that decode_fast returns the input text for text, token_ids in zip(_a ,_a ): self.assertEqual(tokenizer.decode_fast(_a ) ,_a ) @slow def __lowercase ( self : Tuple ): '''simple docstring''' _a : Dict = [ '<|python|>def fibonacci(n)\n if n < 0:\n print(\'Incorrect input\')', 'Hey there, how are you doing this fine day?', 'This is a text with a trailing spaces followed by a dot .', 'Häj sväjs lillebrör! =)', 'Det är inget fel på Mr. Cool', ] # fmt: off _a : Union[str, Any] = {'input_ids': [[6_3423, 5, 6811, 1_4954, 282, 816, 3821, 6_3466, 6_3425, 6_3462, 18, 6_3978, 678, 301, 1320, 6_3423, 6_3455, 6_3458, 18, 6_3982, 4246, 3940, 1901, 4_7789, 5547, 1_8994], [1_9630, 1100, 6_3446, 1342, 633, 544, 4488, 593, 5102, 2416, 6_3495, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1652, 428, 268, 1936, 515, 268, 5_8593, 2_2413, 9106, 546, 268, 3_3213, 6_3979, 698, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_5130, 6_3450, 924, 6_3449, 2249, 4062, 1558, 318, 6_3504, 2_1498, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [509, 377, 2827, 2559, 332, 6575, 6_3443, 2_6801, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # fmt: on self.tokenizer_integration_test_util( expected_encoding=_a ,model_name='AI-Sweden/gpt-sw3-126m' ,sequences=_a ,)
319
1
'''simple docstring''' import argparse import os import jax as jnp import numpy as onp import torch import torch.nn as nn from music_spectrogram_diffusion import inference from tax import checkpoints from diffusers import DDPMScheduler, OnnxRuntimeModel, SpectrogramDiffusionPipeline from diffusers.pipelines.spectrogram_diffusion import SpectrogramContEncoder, SpectrogramNotesEncoder, TaFilmDecoder UpperCAmelCase__ = '''base_with_context''' def UpperCAmelCase__( _SCREAMING_SNAKE_CASE : Union[str, Any],_SCREAMING_SNAKE_CASE : Dict ): """simple docstring""" __A= nn.Parameter(torch.FloatTensor(weights['token_embedder']['embedding'] ) ) __A= nn.Parameter( torch.FloatTensor(weights['Embed_0']['embedding'] ),requires_grad=_SCREAMING_SNAKE_CASE ) for lyr_num, lyr in enumerate(model.encoders ): __A= weights[f"""layers_{lyr_num}"""] __A= nn.Parameter( torch.FloatTensor(ly_weight['pre_attention_layer_norm']['scale'] ) ) __A= ly_weight['attention'] __A= nn.Parameter(torch.FloatTensor(attention_weights['query']['kernel'].T ) ) __A= nn.Parameter(torch.FloatTensor(attention_weights['key']['kernel'].T ) ) __A= nn.Parameter(torch.FloatTensor(attention_weights['value']['kernel'].T ) ) __A= nn.Parameter(torch.FloatTensor(attention_weights['out']['kernel'].T ) ) __A= nn.Parameter(torch.FloatTensor(ly_weight['pre_mlp_layer_norm']['scale'] ) ) __A= nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_0']['kernel'].T ) ) __A= nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_1']['kernel'].T ) ) __A= nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wo']['kernel'].T ) ) __A= nn.Parameter(torch.FloatTensor(weights['encoder_norm']['scale'] ) ) return model def UpperCAmelCase__( _SCREAMING_SNAKE_CASE : Dict,_SCREAMING_SNAKE_CASE : int ): """simple docstring""" __A= nn.Parameter(torch.FloatTensor(weights['input_proj']['kernel'].T ) ) __A= nn.Parameter( torch.FloatTensor(weights['Embed_0']['embedding'] ),requires_grad=_SCREAMING_SNAKE_CASE ) for lyr_num, lyr in enumerate(model.encoders ): __A= weights[f"""layers_{lyr_num}"""] __A= ly_weight['attention'] __A= nn.Parameter(torch.FloatTensor(attention_weights['query']['kernel'].T ) ) __A= nn.Parameter(torch.FloatTensor(attention_weights['key']['kernel'].T ) ) __A= nn.Parameter(torch.FloatTensor(attention_weights['value']['kernel'].T ) ) __A= nn.Parameter(torch.FloatTensor(attention_weights['out']['kernel'].T ) ) __A= nn.Parameter( torch.FloatTensor(ly_weight['pre_attention_layer_norm']['scale'] ) ) __A= nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_0']['kernel'].T ) ) __A= nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_1']['kernel'].T ) ) __A= nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wo']['kernel'].T ) ) __A= nn.Parameter(torch.FloatTensor(ly_weight['pre_mlp_layer_norm']['scale'] ) ) __A= nn.Parameter(torch.FloatTensor(weights['encoder_norm']['scale'] ) ) return model def UpperCAmelCase__( _SCREAMING_SNAKE_CASE : List[str],_SCREAMING_SNAKE_CASE : str ): """simple docstring""" __A= nn.Parameter(torch.FloatTensor(weights['time_emb_dense0']['kernel'].T ) ) __A= nn.Parameter(torch.FloatTensor(weights['time_emb_dense1']['kernel'].T ) ) __A= nn.Parameter( torch.FloatTensor(weights['Embed_0']['embedding'] ),requires_grad=_SCREAMING_SNAKE_CASE ) __A= nn.Parameter( torch.FloatTensor(weights['continuous_inputs_projection']['kernel'].T ) ) for lyr_num, lyr in enumerate(model.decoders ): __A= weights[f"""layers_{lyr_num}"""] __A= nn.Parameter( torch.FloatTensor(ly_weight['pre_self_attention_layer_norm']['scale'] ) ) __A= nn.Parameter( torch.FloatTensor(ly_weight['FiLMLayer_0']['DenseGeneral_0']['kernel'].T ) ) __A= ly_weight['self_attention'] __A= nn.Parameter(torch.FloatTensor(attention_weights['query']['kernel'].T ) ) __A= nn.Parameter(torch.FloatTensor(attention_weights['key']['kernel'].T ) ) __A= nn.Parameter(torch.FloatTensor(attention_weights['value']['kernel'].T ) ) __A= nn.Parameter(torch.FloatTensor(attention_weights['out']['kernel'].T ) ) __A= ly_weight['MultiHeadDotProductAttention_0'] __A= nn.Parameter(torch.FloatTensor(attention_weights['query']['kernel'].T ) ) __A= nn.Parameter(torch.FloatTensor(attention_weights['key']['kernel'].T ) ) __A= nn.Parameter(torch.FloatTensor(attention_weights['value']['kernel'].T ) ) __A= nn.Parameter(torch.FloatTensor(attention_weights['out']['kernel'].T ) ) __A= nn.Parameter( torch.FloatTensor(ly_weight['pre_cross_attention_layer_norm']['scale'] ) ) __A= nn.Parameter(torch.FloatTensor(ly_weight['pre_mlp_layer_norm']['scale'] ) ) __A= nn.Parameter( torch.FloatTensor(ly_weight['FiLMLayer_1']['DenseGeneral_0']['kernel'].T ) ) __A= nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_0']['kernel'].T ) ) __A= nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_1']['kernel'].T ) ) __A= nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wo']['kernel'].T ) ) __A= nn.Parameter(torch.FloatTensor(weights['decoder_norm']['scale'] ) ) __A= nn.Parameter(torch.FloatTensor(weights['spec_out_dense']['kernel'].T ) ) return model def UpperCAmelCase__( _SCREAMING_SNAKE_CASE : Any ): """simple docstring""" __A= checkpoints.load_tax_checkpoint(args.checkpoint_path ) __A= jnp.tree_util.tree_map(onp.array,_SCREAMING_SNAKE_CASE ) __A= [ 'from __gin__ import dynamic_registration', 'from music_spectrogram_diffusion.models.diffusion import diffusion_utils', 'diffusion_utils.ClassifierFreeGuidanceConfig.eval_condition_weight = 2.0', 'diffusion_utils.DiffusionConfig.classifier_free_guidance = @diffusion_utils.ClassifierFreeGuidanceConfig()', ] __A= os.path.join(args.checkpoint_path,'..','config.gin' ) __A= inference.parse_training_gin_file(_SCREAMING_SNAKE_CASE,_SCREAMING_SNAKE_CASE ) __A= inference.InferenceModel(args.checkpoint_path,_SCREAMING_SNAKE_CASE ) __A= DDPMScheduler(beta_schedule='squaredcos_cap_v2',variance_type='fixed_large' ) __A= SpectrogramNotesEncoder( max_length=synth_model.sequence_length['inputs'],vocab_size=synth_model.model.module.config.vocab_size,d_model=synth_model.model.module.config.emb_dim,dropout_rate=synth_model.model.module.config.dropout_rate,num_layers=synth_model.model.module.config.num_encoder_layers,num_heads=synth_model.model.module.config.num_heads,d_kv=synth_model.model.module.config.head_dim,d_ff=synth_model.model.module.config.mlp_dim,feed_forward_proj='gated-gelu',) __A= SpectrogramContEncoder( input_dims=synth_model.audio_codec.n_dims,targets_context_length=synth_model.sequence_length['targets_context'],d_model=synth_model.model.module.config.emb_dim,dropout_rate=synth_model.model.module.config.dropout_rate,num_layers=synth_model.model.module.config.num_encoder_layers,num_heads=synth_model.model.module.config.num_heads,d_kv=synth_model.model.module.config.head_dim,d_ff=synth_model.model.module.config.mlp_dim,feed_forward_proj='gated-gelu',) __A= TaFilmDecoder( input_dims=synth_model.audio_codec.n_dims,targets_length=synth_model.sequence_length['targets_context'],max_decoder_noise_time=synth_model.model.module.config.max_decoder_noise_time,d_model=synth_model.model.module.config.emb_dim,num_layers=synth_model.model.module.config.num_decoder_layers,num_heads=synth_model.model.module.config.num_heads,d_kv=synth_model.model.module.config.head_dim,d_ff=synth_model.model.module.config.mlp_dim,dropout_rate=synth_model.model.module.config.dropout_rate,) __A= load_notes_encoder(ta_checkpoint['target']['token_encoder'],_SCREAMING_SNAKE_CASE ) __A= load_continuous_encoder(ta_checkpoint['target']['continuous_encoder'],_SCREAMING_SNAKE_CASE ) __A= load_decoder(ta_checkpoint['target']['decoder'],_SCREAMING_SNAKE_CASE ) __A= OnnxRuntimeModel.from_pretrained('kashif/soundstream_mel_decoder' ) __A= SpectrogramDiffusionPipeline( notes_encoder=_SCREAMING_SNAKE_CASE,continuous_encoder=_SCREAMING_SNAKE_CASE,decoder=_SCREAMING_SNAKE_CASE,scheduler=_SCREAMING_SNAKE_CASE,melgan=_SCREAMING_SNAKE_CASE,) if args.save: pipe.save_pretrained(args.output_path ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() parser.add_argument('''--output_path''', default=None, type=str, required=True, help='''Path to the converted model.''') parser.add_argument( '''--save''', default=True, type=bool, required=False, help='''Whether to save the converted model or not.''' ) parser.add_argument( '''--checkpoint_path''', default=F"""{MODEL}/checkpoint_500000""", type=str, required=False, help='''Path to the original jax model checkpoint.''', ) UpperCAmelCase__ = parser.parse_args() main(args)
186
'''simple docstring''' import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class a__ ( unittest.TestCase ): '''simple docstring''' def __init__( self : str , lowerCAmelCase_ : str , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Dict[str, int] = None , lowerCAmelCase_ : int = 32 , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Union[int, float] = 1 / 255 , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Optional[Union[float, List[float]]] = [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73] , lowerCAmelCase_ : Optional[Union[float, List[float]]] = [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11] , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : str=7 , lowerCAmelCase_ : Union[str, Any]=30 , lowerCAmelCase_ : str=400 , lowerCAmelCase_ : int=3 , ) -> str: __A= parent __A= do_resize __A= size if size is not None else {'shortest_edge': 288} __A= size_divisor __A= do_rescale __A= rescale_factor __A= do_normalize __A= do_center_crop __A= image_mean __A= image_std __A= do_pad __A= batch_size __A= num_channels __A= min_resolution __A= max_resolution def lowerCAmelCase ( self : Union[str, Any] ) -> int: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def lowerCAmelCase ( self : Dict , lowerCAmelCase_ : str , lowerCAmelCase_ : str=False ) -> str: if not batched: __A= self.size['shortest_edge'] __A= image_inputs[0] if isinstance(lowerCAmelCase_ , Image.Image ): __A, __A= image.size else: __A, __A= image.shape[1], image.shape[2] __A= size / min(lowerCAmelCase_ , lowerCAmelCase_ ) if h < w: __A, __A= size, scale * w else: __A, __A= scale * h, size __A= int((1_333 / 800) * size ) if max(lowerCAmelCase_ , lowerCAmelCase_ ) > max_size: __A= max_size / max(lowerCAmelCase_ , lowerCAmelCase_ ) __A= newh * scale __A= neww * scale __A, __A= int(newh + 0.5 ), int(neww + 0.5 ) __A, __A= ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: __A= [] for image in image_inputs: __A, __A= self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __A= max(lowerCAmelCase_ , key=lambda lowerCAmelCase_ : item[0] )[0] __A= max(lowerCAmelCase_ , key=lambda lowerCAmelCase_ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class a__ ( a_ , unittest.TestCase ): '''simple docstring''' A : int = BridgeTowerImageProcessor if is_vision_available() else None def lowerCAmelCase ( self : Dict ) -> Optional[int]: __A= BridgeTowerImageProcessingTester(self ) @property def lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase ( self : Tuple ) -> List[Any]: __A= self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase_ , 'image_mean' ) ) self.assertTrue(hasattr(lowerCAmelCase_ , 'image_std' ) ) self.assertTrue(hasattr(lowerCAmelCase_ , 'do_normalize' ) ) self.assertTrue(hasattr(lowerCAmelCase_ , 'do_resize' ) ) self.assertTrue(hasattr(lowerCAmelCase_ , 'size' ) ) self.assertTrue(hasattr(lowerCAmelCase_ , 'size_divisor' ) ) def lowerCAmelCase ( self : Optional[Any] ) -> str: pass def lowerCAmelCase ( self : Union[str, Any] ) -> Any: # Initialize image processor __A= self.image_processing_class(**self.image_processor_dict ) # create random PIL images __A= prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase_ , Image.Image ) # Test not batched input __A= image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values __A, __A= self.image_processor_tester.get_expected_values(lowerCAmelCase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __A= image_processing(lowerCAmelCase_ , return_tensors='pt' ).pixel_values __A, __A= self.image_processor_tester.get_expected_values(lowerCAmelCase_ , batched=lowerCAmelCase_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCAmelCase ( self : Any ) -> Any: # Initialize image processor __A= self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __A= prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase_ , numpify=lowerCAmelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase_ , np.ndarray ) # Test not batched input __A= image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values __A, __A= self.image_processor_tester.get_expected_values(lowerCAmelCase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __A= image_processing(lowerCAmelCase_ , return_tensors='pt' ).pixel_values __A, __A= self.image_processor_tester.get_expected_values(lowerCAmelCase_ , batched=lowerCAmelCase_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCAmelCase ( self : List[Any] ) -> Tuple: # Initialize image processor __A= self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __A= prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase_ , torchify=lowerCAmelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase_ , torch.Tensor ) # Test not batched input __A= image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values __A, __A= self.image_processor_tester.get_expected_values(lowerCAmelCase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __A= image_processing(lowerCAmelCase_ , return_tensors='pt' ).pixel_values __A, __A= self.image_processor_tester.get_expected_values(lowerCAmelCase_ , batched=lowerCAmelCase_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , )
186
1
'''simple docstring''' import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ConditionalDetrImageProcessor class lowercase ( unittest.TestCase ): """simple docstring""" def __init__( self , UpperCamelCase_ , UpperCamelCase_=7 , UpperCamelCase_=3 , UpperCamelCase_=30 , UpperCamelCase_=400 , UpperCamelCase_=True , UpperCamelCase_=None , UpperCamelCase_=True , UpperCamelCase_=[0.5, 0.5, 0.5] , UpperCamelCase_=[0.5, 0.5, 0.5] , UpperCamelCase_=True , UpperCamelCase_=1 / 255 , UpperCamelCase_=True , ): '''simple docstring''' UpperCamelCase__ :Any = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 1333} UpperCamelCase__ :List[Any] = parent UpperCamelCase__ :Any = batch_size UpperCamelCase__ :Dict = num_channels UpperCamelCase__ :str = min_resolution UpperCamelCase__ :Optional[Any] = max_resolution UpperCamelCase__ :Optional[Any] = do_resize UpperCamelCase__ :Any = size UpperCamelCase__ :Any = do_normalize UpperCamelCase__ :Any = image_mean UpperCamelCase__ :Dict = image_std UpperCamelCase__ :Tuple = do_rescale UpperCamelCase__ :int = rescale_factor UpperCamelCase__ :int = do_pad def lowerCAmelCase__ ( self ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_=False ): '''simple docstring''' if not batched: UpperCamelCase__ :Any = image_inputs[0] if isinstance(UpperCamelCase_ , Image.Image ): UpperCamelCase__ , UpperCamelCase__ :List[str] = image.size else: UpperCamelCase__ , UpperCamelCase__ :Optional[int] = image.shape[1], image.shape[2] if w < h: UpperCamelCase__ :List[str] = int(self.size['''shortest_edge'''] * h / w ) UpperCamelCase__ :Any = self.size['''shortest_edge'''] elif w > h: UpperCamelCase__ :Union[str, Any] = self.size['''shortest_edge'''] UpperCamelCase__ :List[Any] = int(self.size['''shortest_edge'''] * w / h ) else: UpperCamelCase__ :Tuple = self.size['''shortest_edge'''] UpperCamelCase__ :Union[str, Any] = self.size['''shortest_edge'''] else: UpperCamelCase__ :Tuple = [] for image in image_inputs: UpperCamelCase__ , UpperCamelCase__ :Tuple = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) UpperCamelCase__ :str = max(UpperCamelCase_ , key=lambda UpperCamelCase_ : item[0] )[0] UpperCamelCase__ :int = max(UpperCamelCase_ , key=lambda UpperCamelCase_ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class lowercase ( A__ , unittest.TestCase ): """simple docstring""" _a = ConditionalDetrImageProcessor if is_vision_available() else None def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Optional[int] = ConditionalDetrImageProcessingTester(self ) @property def lowerCAmelCase__ ( self ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase_ , '''image_mean''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''image_std''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''do_normalize''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''do_resize''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''size''' ) ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Dict = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 1333} ) self.assertEqual(image_processor.do_pad , UpperCamelCase_ ) UpperCamelCase__ :Union[str, Any] = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=UpperCamelCase_ ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42, '''longest_edge''': 84} ) self.assertEqual(image_processor.do_pad , UpperCamelCase_ ) def lowerCAmelCase__ ( self ): '''simple docstring''' pass def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase__ :Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase_ , Image.Image ) # Test not batched input UpperCamelCase__ :str = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values UpperCamelCase__ , UpperCamelCase__ :Tuple = self.image_processor_tester.get_expected_values(UpperCamelCase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCamelCase__ , UpperCamelCase__ :Tuple = self.image_processor_tester.get_expected_values(UpperCamelCase_ , batched=UpperCamelCase_ ) UpperCamelCase__ :List[Any] = image_processing(UpperCamelCase_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :int = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase__ :Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase_ , numpify=UpperCamelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase_ , np.ndarray ) # Test not batched input UpperCamelCase__ :Tuple = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values UpperCamelCase__ , UpperCamelCase__ :Optional[Any] = self.image_processor_tester.get_expected_values(UpperCamelCase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCamelCase__ :Dict = image_processing(UpperCamelCase_ , return_tensors='''pt''' ).pixel_values UpperCamelCase__ , UpperCamelCase__ :Tuple = self.image_processor_tester.get_expected_values(UpperCamelCase_ , batched=UpperCamelCase_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :str = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase__ :Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase_ , torchify=UpperCamelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase_ , torch.Tensor ) # Test not batched input UpperCamelCase__ :str = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values UpperCamelCase__ , UpperCamelCase__ :str = self.image_processor_tester.get_expected_values(UpperCamelCase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCamelCase__ :Union[str, Any] = image_processing(UpperCamelCase_ , return_tensors='''pt''' ).pixel_values UpperCamelCase__ , UpperCamelCase__ :Any = self.image_processor_tester.get_expected_values(UpperCamelCase_ , batched=UpperCamelCase_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Union[str, Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: UpperCamelCase__ :Any = json.loads(f.read() ) UpperCamelCase__ :Tuple = {'''image_id''': 39769, '''annotations''': target} # encode them UpperCamelCase__ :Dict = ConditionalDetrImageProcessor.from_pretrained('''microsoft/conditional-detr-resnet-50''' ) UpperCamelCase__ :int = image_processing(images=UpperCamelCase_ , annotations=UpperCamelCase_ , return_tensors='''pt''' ) # verify pixel values UpperCamelCase__ :Optional[int] = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['''pixel_values'''].shape , UpperCamelCase_ ) UpperCamelCase__ :Union[str, Any] = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , UpperCamelCase_ , atol=1e-4 ) ) # verify area UpperCamelCase__ :int = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , UpperCamelCase_ ) ) # verify boxes UpperCamelCase__ :Optional[Any] = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , UpperCamelCase_ ) UpperCamelCase__ :Dict = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , UpperCamelCase_ , atol=1e-3 ) ) # verify image_id UpperCamelCase__ :Optional[Any] = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , UpperCamelCase_ ) ) # verify is_crowd UpperCamelCase__ :List[Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , UpperCamelCase_ ) ) # verify class_labels UpperCamelCase__ :List[Any] = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , UpperCamelCase_ ) ) # verify orig_size UpperCamelCase__ :Union[str, Any] = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , UpperCamelCase_ ) ) # verify size UpperCamelCase__ :List[Any] = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , UpperCamelCase_ ) ) @slow def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :List[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: UpperCamelCase__ :Optional[int] = json.loads(f.read() ) UpperCamelCase__ :Union[str, Any] = {'''file_name''': '''000000039769.png''', '''image_id''': 39769, '''segments_info''': target} UpperCamelCase__ :Optional[int] = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them UpperCamelCase__ :Optional[int] = ConditionalDetrImageProcessor(format='''coco_panoptic''' ) UpperCamelCase__ :str = image_processing(images=UpperCamelCase_ , annotations=UpperCamelCase_ , masks_path=UpperCamelCase_ , return_tensors='''pt''' ) # verify pixel values UpperCamelCase__ :Dict = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['''pixel_values'''].shape , UpperCamelCase_ ) UpperCamelCase__ :int = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , UpperCamelCase_ , atol=1e-4 ) ) # verify area UpperCamelCase__ :Union[str, Any] = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , UpperCamelCase_ ) ) # verify boxes UpperCamelCase__ :int = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , UpperCamelCase_ ) UpperCamelCase__ :Tuple = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , UpperCamelCase_ , atol=1e-3 ) ) # verify image_id UpperCamelCase__ :Optional[int] = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , UpperCamelCase_ ) ) # verify is_crowd UpperCamelCase__ :Optional[Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , UpperCamelCase_ ) ) # verify class_labels UpperCamelCase__ :str = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , UpperCamelCase_ ) ) # verify masks UpperCamelCase__ :Optional[Any] = 822873 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , UpperCamelCase_ ) # verify orig_size UpperCamelCase__ :Optional[Any] = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , UpperCamelCase_ ) ) # verify size UpperCamelCase__ :Tuple = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , UpperCamelCase_ ) )
280
'''simple docstring''' import qiskit def a ( __a , __a ) -> qiskit.result.counts.Counts: '''simple docstring''' UpperCamelCase__ :int = qiskit.Aer.get_backend('''aer_simulator''' ) # Create a Quantum Circuit acting on the q register UpperCamelCase__ :Any = qiskit.QuantumCircuit(__a , __a ) # Map the quantum measurement to the classical bits circuit.measure([0] , [0] ) # Execute the circuit on the simulator UpperCamelCase__ :Optional[int] = qiskit.execute(__a , __a , shots=1000 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(__a ) if __name__ == "__main__": print(F"""Total count for various states are: {single_qubit_measure(1, 1)}""")
280
1
'''simple docstring''' from __future__ import annotations from collections.abc import Iterator class _snake_case : """simple docstring""" def __init__( self , UpperCAmelCase__ ) -> None: a_ = value a_ = None a_ = None class _snake_case : """simple docstring""" def __init__( self , UpperCAmelCase__ ) -> None: a_ = tree def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase__ ) -> int: if node is None: return 0 return node.value + ( self.depth_first_search(node.left ) + self.depth_first_search(node.right ) ) def __iter__( self ) -> Iterator[int]: yield self.depth_first_search(self.tree ) if __name__ == "__main__": import doctest doctest.testmod()
697
'''simple docstring''' import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def a ( _UpperCAmelCase ) -> int: """simple docstring""" if ( (cp >= 0X4_e00 and cp <= 0X9_fff) or (cp >= 0X3_400 and cp <= 0X4_dbf) # or (cp >= 0X20_000 and cp <= 0X2a_6df) # or (cp >= 0X2a_700 and cp <= 0X2b_73f) # or (cp >= 0X2b_740 and cp <= 0X2b_81f) # or (cp >= 0X2b_820 and cp <= 0X2c_eaf) # or (cp >= 0Xf_900 and cp <= 0Xf_aff) or (cp >= 0X2f_800 and cp <= 0X2f_a1f) # ): # return True return False def a ( _UpperCAmelCase ) -> Union[str, Any]: """simple docstring""" for char in word: a_ = ord(_UpperCAmelCase ) if not _is_chinese_char(_UpperCAmelCase ): return 0 return 1 def a ( _UpperCAmelCase ) -> Tuple: """simple docstring""" a_ = set() for token in tokens: a_ = len(_UpperCAmelCase ) > 1 and is_chinese(_UpperCAmelCase ) if chinese_word: word_set.add(_UpperCAmelCase ) a_ = list(_UpperCAmelCase ) return word_list def a ( _UpperCAmelCase , _UpperCAmelCase ) -> List[Any]: """simple docstring""" if not chinese_word_set: return bert_tokens a_ = max([len(_UpperCAmelCase ) for w in chinese_word_set] ) a_ = bert_tokens a_ , a_ = 0, len(_UpperCAmelCase ) while start < end: a_ = True if is_chinese(bert_word[start] ): a_ = min(end - start , _UpperCAmelCase ) for i in range(_UpperCAmelCase , 1 , -1 ): a_ = ''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): a_ = '##' + bert_word[j] a_ = start + i a_ = False break if single_word: start += 1 return bert_word def a ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Any: """simple docstring""" a_ = [] for i in range(0 , len(_UpperCAmelCase ) , 1_0_0 ): a_ = ltp_tokenizer.pipeline(lines[i : i + 1_0_0] , tasks=['cws'] ).cws a_ = [get_chinese_word(_UpperCAmelCase ) for r in res] ltp_res.extend(_UpperCAmelCase ) assert len(_UpperCAmelCase ) == len(_UpperCAmelCase ) a_ = [] for i in range(0 , len(_UpperCAmelCase ) , 1_0_0 ): a_ = bert_tokenizer(lines[i : i + 1_0_0] , add_special_tokens=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=5_1_2 ) bert_res.extend(res['input_ids'] ) assert len(_UpperCAmelCase ) == len(_UpperCAmelCase ) a_ = [] for input_ids, chinese_word in zip(_UpperCAmelCase , _UpperCAmelCase ): a_ = [] for id in input_ids: a_ = bert_tokenizer._convert_id_to_token(_UpperCAmelCase ) input_tokens.append(_UpperCAmelCase ) a_ = add_sub_symbol(_UpperCAmelCase , _UpperCAmelCase ) a_ = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(_UpperCAmelCase ): if token[:2] == "##": a_ = token[2:] # save chinese tokens' pos if len(_UpperCAmelCase ) == 1 and _is_chinese_char(ord(_UpperCAmelCase ) ): ref_id.append(_UpperCAmelCase ) ref_ids.append(_UpperCAmelCase ) assert len(_UpperCAmelCase ) == len(_UpperCAmelCase ) return ref_ids def a ( _UpperCAmelCase ) -> Optional[Any]: """simple docstring""" with open(args.file_name , 'r' , encoding='utf-8' ) as f: a_ = f.readlines() a_ = [line.strip() for line in data if len(_UpperCAmelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' a_ = LTP(args.ltp ) # faster in GPU device a_ = BertTokenizer.from_pretrained(args.bert ) a_ = prepare_ref(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) with open(args.save_path , 'w' , encoding='utf-8' ) as f: a_ = [json.dumps(_UpperCAmelCase ) + '\n' for ref in ref_ids] f.writelines(_UpperCAmelCase ) if __name__ == "__main__": __lowerCAmelCase =argparse.ArgumentParser(description="prepare_chinese_ref") parser.add_argument( "--file_name", required=False, type=str, default="./resources/chinese-demo.txt", help="file need process, same as training data in lm", ) parser.add_argument( "--ltp", required=False, type=str, default="./resources/ltp", help="resources for LTP tokenizer, usually a path", ) parser.add_argument( "--bert", required=False, type=str, default="./resources/robert", help="resources for Bert tokenizer", ) parser.add_argument( "--save_path", required=False, type=str, default="./resources/ref.txt", help="path to save res", ) __lowerCAmelCase =parser.parse_args() main(args)
697
1
SCREAMING_SNAKE_CASE : List[Any] = 256 # Modulus to hash a string SCREAMING_SNAKE_CASE : Union[str, Any] = 100_0003 def __A ( _A , _A ): """simple docstring""" __a = len(_A ) __a = len(_A ) if p_len > t_len: return False __a = 0 __a = 0 __a = 1 # Calculating the hash of pattern and substring of text for i in range(_A ): __a = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus __a = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue __a = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash __a = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def __A ( ): """simple docstring""" __a = '''abc1abc12''' __a = '''alskfjaldsabc1abc1abc12k23adsfabcabc''' __a = '''alskfjaldsk23adsfabcabc''' assert rabin_karp(_A , _A ) and not rabin_karp(_A , _A ) # Test 2) __a = '''ABABX''' __a = '''ABABZABABYABABX''' assert rabin_karp(_A , _A ) # Test 3) __a = '''AAAB''' __a = '''ABAAAAAB''' assert rabin_karp(_A , _A ) # Test 4) __a = '''abcdabcy''' __a = '''abcxabcdabxabcdabcdabcy''' assert rabin_karp(_A , _A ) # Test 5) __a = '''Lü''' __a = '''Lüsai''' assert rabin_karp(_A , _A ) __a = '''Lue''' assert not rabin_karp(_A , _A ) print("Success." ) if __name__ == "__main__": test_rabin_karp()
718
import unittest from transformers import AutoTokenizer, is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, slow if is_flax_available(): import jax.numpy as jnp from transformers import FlaxXLMRobertaModel @require_sentencepiece @require_tokenizers @require_flax class A_ ( unittest.TestCase ): @slow def _UpperCAmelCase ( self : Dict ): __a = FlaxXLMRobertaModel.from_pretrained("xlm-roberta-base" ) __a = AutoTokenizer.from_pretrained("xlm-roberta-base" ) __a = "The dog is cute and lives in the garden house" __a = jnp.array([tokenizer.encode(__SCREAMING_SNAKE_CASE )] ) __a = (1, 12, 7_68) # batch_size, sequence_length, embedding_vector_dim __a = jnp.array( [[-0.01_01, 0.12_18, -0.08_03, 0.08_01, 0.13_27, 0.07_76, -0.12_15, 0.23_83, 0.33_38, 0.31_06, 0.03_00, 0.02_52]] ) __a = model(__SCREAMING_SNAKE_CASE )["last_hidden_state"] self.assertEqual(output.shape , __SCREAMING_SNAKE_CASE ) # compare the actual values for a slice of last dim self.assertTrue(jnp.allclose(output[:, :, -1] , __SCREAMING_SNAKE_CASE , atol=1E-3 ) )
525
0
from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class _lowercase ( UpperCAmelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE: Dict = '' SCREAMING_SNAKE_CASE: Dict = 'hf-legacy' # "hf://"" is reserved for hffs def __init__( self , lowerCamelCase__ = None , lowerCamelCase__ = None , **lowerCamelCase__ , ): super().__init__(self , **lowerCamelCase__ ) lowerCAmelCase_: Any = repo_info lowerCAmelCase_: Any = token lowerCAmelCase_: int = None def _a ( self ): if self.dir_cache is None: lowerCAmelCase_: int = {} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes lowerCAmelCase_: Optional[int] = { "name": hf_file.rfilename, "size": None, "type": "file", } self.dir_cache.update( { str(lowerCamelCase__ ): {"name": str(lowerCamelCase__ ), "size": None, "type": "directory"} for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1] } ) def _a ( self , lowerCamelCase__ , lowerCamelCase__ = "rb" , **lowerCamelCase__ , ): if not isinstance(self.repo_info , lowerCamelCase__ ): raise NotImplementedError(F'''Open is only implemented for dataset repositories, but got {self.repo_info}''' ) lowerCAmelCase_: Union[str, Any] = hf_hub_url(self.repo_info.id , lowerCamelCase__ , revision=self.repo_info.sha ) return fsspec.open( lowerCamelCase__ , mode=lowerCamelCase__ , headers=get_authentication_headers_for_url(lowerCamelCase__ , use_auth_token=self.token ) , client_kwargs={"trust_env": True} , ).open() def _a ( self , lowerCamelCase__ , **lowerCamelCase__ ): self._get_dirs() lowerCAmelCase_: int = self._strip_protocol(lowerCamelCase__ ) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(lowerCamelCase__ ) def _a ( self , lowerCamelCase__ , lowerCamelCase__=False , **lowerCamelCase__ ): self._get_dirs() lowerCAmelCase_: int = PurePosixPath(path.strip("/" ) ) lowerCAmelCase_: Optional[int] = {} for p, f in self.dir_cache.items(): lowerCAmelCase_: Optional[Any] = PurePosixPath(p.strip("/" ) ) lowerCAmelCase_: Union[str, Any] = p.parent if root == path: lowerCAmelCase_: List[Any] = f lowerCAmelCase_: Any = list(paths.values() ) if detail: return out else: return sorted(f["name"] for f in out )
613
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class _lowercase ( UpperCAmelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE: torch.FloatTensor class _lowercase ( UpperCAmelCase__ , UpperCAmelCase__ ): '''simple docstring''' @register_to_config def __init__( self , lowerCamelCase__ = 65_536 , lowerCamelCase__ = None , lowerCamelCase__ = 2 , lowerCamelCase__ = 2 , lowerCamelCase__ = 0 , lowerCamelCase__ = "fourier" , lowerCamelCase__ = True , lowerCamelCase__ = False , lowerCamelCase__ = 0.0 , lowerCamelCase__ = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , lowerCamelCase__ = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , lowerCamelCase__ = "UNetMidBlock1D" , lowerCamelCase__ = None , lowerCamelCase__ = (32, 32, 64) , lowerCamelCase__ = None , lowerCamelCase__ = 8 , lowerCamelCase__ = 1 , lowerCamelCase__ = False , ): super().__init__() lowerCAmelCase_: Optional[Any] = sample_size # time if time_embedding_type == "fourier": lowerCAmelCase_: Dict = GaussianFourierProjection( embedding_size=8 , set_W_to_weight=lowerCamelCase__ , log=lowerCamelCase__ , flip_sin_to_cos=lowerCamelCase__ ) lowerCAmelCase_: List[str] = 2 * block_out_channels[0] elif time_embedding_type == "positional": lowerCAmelCase_: Tuple = Timesteps( block_out_channels[0] , flip_sin_to_cos=lowerCamelCase__ , downscale_freq_shift=lowerCamelCase__ ) lowerCAmelCase_: Dict = block_out_channels[0] if use_timestep_embedding: lowerCAmelCase_: Tuple = block_out_channels[0] * 4 lowerCAmelCase_: Any = TimestepEmbedding( in_channels=lowerCamelCase__ , time_embed_dim=lowerCamelCase__ , act_fn=lowerCamelCase__ , out_dim=block_out_channels[0] , ) lowerCAmelCase_: str = nn.ModuleList([] ) lowerCAmelCase_: Dict = None lowerCAmelCase_: Optional[Any] = nn.ModuleList([] ) lowerCAmelCase_: int = None # down lowerCAmelCase_: List[str] = in_channels for i, down_block_type in enumerate(lowerCamelCase__ ): lowerCAmelCase_: Optional[int] = output_channel lowerCAmelCase_: Optional[Any] = block_out_channels[i] if i == 0: input_channel += extra_in_channels lowerCAmelCase_: List[str] = i == len(lowerCamelCase__ ) - 1 lowerCAmelCase_: List[str] = get_down_block( lowerCamelCase__ , num_layers=lowerCamelCase__ , in_channels=lowerCamelCase__ , out_channels=lowerCamelCase__ , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , ) self.down_blocks.append(lowerCamelCase__ ) # mid lowerCAmelCase_: Optional[int] = get_mid_block( lowerCamelCase__ , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=lowerCamelCase__ , add_downsample=lowerCamelCase__ , ) # up lowerCAmelCase_: Dict = list(reversed(lowerCamelCase__ ) ) lowerCAmelCase_: Any = reversed_block_out_channels[0] if out_block_type is None: lowerCAmelCase_: str = out_channels else: lowerCAmelCase_: Any = block_out_channels[0] for i, up_block_type in enumerate(lowerCamelCase__ ): lowerCAmelCase_: Dict = output_channel lowerCAmelCase_: int = ( reversed_block_out_channels[i + 1] if i < len(lowerCamelCase__ ) - 1 else final_upsample_channels ) lowerCAmelCase_: Optional[int] = i == len(lowerCamelCase__ ) - 1 lowerCAmelCase_: Union[str, Any] = get_up_block( lowerCamelCase__ , num_layers=lowerCamelCase__ , in_channels=lowerCamelCase__ , out_channels=lowerCamelCase__ , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , ) self.up_blocks.append(lowerCamelCase__ ) lowerCAmelCase_: str = output_channel # out lowerCAmelCase_: List[str] = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 32 ) lowerCAmelCase_: int = get_out_block( out_block_type=lowerCamelCase__ , num_groups_out=lowerCamelCase__ , embed_dim=block_out_channels[0] , out_channels=lowerCamelCase__ , act_fn=lowerCamelCase__ , fc_dim=block_out_channels[-1] // 4 , ) def _a ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = True , ): lowerCAmelCase_: Any = timestep if not torch.is_tensor(lowerCamelCase__ ): lowerCAmelCase_: Optional[Any] = torch.tensor([timesteps] , dtype=torch.long , device=sample.device ) elif torch.is_tensor(lowerCamelCase__ ) and len(timesteps.shape ) == 0: lowerCAmelCase_: List[Any] = timesteps[None].to(sample.device ) lowerCAmelCase_: Union[str, Any] = self.time_proj(lowerCamelCase__ ) if self.config.use_timestep_embedding: lowerCAmelCase_: Any = self.time_mlp(lowerCamelCase__ ) else: lowerCAmelCase_: Any = timestep_embed[..., None] lowerCAmelCase_: str = timestep_embed.repeat([1, 1, sample.shape[2]] ).to(sample.dtype ) lowerCAmelCase_: Dict = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:]) ) # 2. down lowerCAmelCase_: Dict = () for downsample_block in self.down_blocks: lowerCAmelCase_ , lowerCAmelCase_: Optional[int] = downsample_block(hidden_states=lowerCamelCase__ , temb=lowerCamelCase__ ) down_block_res_samples += res_samples # 3. mid if self.mid_block: lowerCAmelCase_: int = self.mid_block(lowerCamelCase__ , lowerCamelCase__ ) # 4. up for i, upsample_block in enumerate(self.up_blocks ): lowerCAmelCase_: Any = down_block_res_samples[-1:] lowerCAmelCase_: str = down_block_res_samples[:-1] lowerCAmelCase_: List[str] = upsample_block(lowerCamelCase__ , res_hidden_states_tuple=lowerCamelCase__ , temb=lowerCamelCase__ ) # 5. post-process if self.out_block: lowerCAmelCase_: Any = self.out_block(lowerCamelCase__ , lowerCamelCase__ ) if not return_dict: return (sample,) return UNetaDOutput(sample=lowerCamelCase__ )
613
1
"""simple docstring""" def a_ ( lowerCamelCase ): if not isinstance(snake_case_ , snake_case_ ): raise ValueError('multiplicative_persistence() only accepts integral values' ) if num < 0: raise ValueError('multiplicative_persistence() does not accept negative values' ) UpperCAmelCase__ = 0 UpperCAmelCase__ = str(snake_case_ ) while len(snake_case_ ) != 1: UpperCAmelCase__ = [int(snake_case_ ) for i in num_string] UpperCAmelCase__ = 1 for i in range(0 , len(snake_case_ ) ): total *= numbers[i] UpperCAmelCase__ = str(snake_case_ ) steps += 1 return steps def a_ ( lowerCamelCase ): if not isinstance(snake_case_ , snake_case_ ): raise ValueError('additive_persistence() only accepts integral values' ) if num < 0: raise ValueError('additive_persistence() does not accept negative values' ) UpperCAmelCase__ = 0 UpperCAmelCase__ = str(snake_case_ ) while len(snake_case_ ) != 1: UpperCAmelCase__ = [int(snake_case_ ) for i in num_string] UpperCAmelCase__ = 0 for i in range(0 , len(snake_case_ ) ): total += numbers[i] UpperCAmelCase__ = str(snake_case_ ) steps += 1 return steps if __name__ == "__main__": import doctest doctest.testmod()
703
"""simple docstring""" import argparse import os import jax as jnp import numpy as onp import torch import torch.nn as nn from music_spectrogram_diffusion import inference from tax import checkpoints from diffusers import DDPMScheduler, OnnxRuntimeModel, SpectrogramDiffusionPipeline from diffusers.pipelines.spectrogram_diffusion import SpectrogramContEncoder, SpectrogramNotesEncoder, TaFilmDecoder lowerCAmelCase__ : str = 'base_with_context' def a_ ( lowerCamelCase , lowerCamelCase ): UpperCAmelCase__ = nn.Parameter(torch.FloatTensor(weights['token_embedder']['embedding'] ) ) UpperCAmelCase__ = nn.Parameter( torch.FloatTensor(weights['Embed_0']['embedding'] ) , requires_grad=lowerCamelCase ) for lyr_num, lyr in enumerate(model.encoders ): UpperCAmelCase__ = weights[f'''layers_{lyr_num}'''] UpperCAmelCase__ = nn.Parameter( torch.FloatTensor(ly_weight['pre_attention_layer_norm']['scale'] ) ) UpperCAmelCase__ = ly_weight['attention'] UpperCAmelCase__ = nn.Parameter(torch.FloatTensor(attention_weights['query']['kernel'].T ) ) UpperCAmelCase__ = nn.Parameter(torch.FloatTensor(attention_weights['key']['kernel'].T ) ) UpperCAmelCase__ = nn.Parameter(torch.FloatTensor(attention_weights['value']['kernel'].T ) ) UpperCAmelCase__ = nn.Parameter(torch.FloatTensor(attention_weights['out']['kernel'].T ) ) UpperCAmelCase__ = nn.Parameter(torch.FloatTensor(ly_weight['pre_mlp_layer_norm']['scale'] ) ) UpperCAmelCase__ = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_0']['kernel'].T ) ) UpperCAmelCase__ = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_1']['kernel'].T ) ) UpperCAmelCase__ = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wo']['kernel'].T ) ) UpperCAmelCase__ = nn.Parameter(torch.FloatTensor(weights['encoder_norm']['scale'] ) ) return model def a_ ( lowerCamelCase , lowerCamelCase ): UpperCAmelCase__ = nn.Parameter(torch.FloatTensor(weights['input_proj']['kernel'].T ) ) UpperCAmelCase__ = nn.Parameter( torch.FloatTensor(weights['Embed_0']['embedding'] ) , requires_grad=lowerCamelCase ) for lyr_num, lyr in enumerate(model.encoders ): UpperCAmelCase__ = weights[f'''layers_{lyr_num}'''] UpperCAmelCase__ = ly_weight['attention'] UpperCAmelCase__ = nn.Parameter(torch.FloatTensor(attention_weights['query']['kernel'].T ) ) UpperCAmelCase__ = nn.Parameter(torch.FloatTensor(attention_weights['key']['kernel'].T ) ) UpperCAmelCase__ = nn.Parameter(torch.FloatTensor(attention_weights['value']['kernel'].T ) ) UpperCAmelCase__ = nn.Parameter(torch.FloatTensor(attention_weights['out']['kernel'].T ) ) UpperCAmelCase__ = nn.Parameter( torch.FloatTensor(ly_weight['pre_attention_layer_norm']['scale'] ) ) UpperCAmelCase__ = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_0']['kernel'].T ) ) UpperCAmelCase__ = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_1']['kernel'].T ) ) UpperCAmelCase__ = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wo']['kernel'].T ) ) UpperCAmelCase__ = nn.Parameter(torch.FloatTensor(ly_weight['pre_mlp_layer_norm']['scale'] ) ) UpperCAmelCase__ = nn.Parameter(torch.FloatTensor(weights['encoder_norm']['scale'] ) ) return model def a_ ( lowerCamelCase , lowerCamelCase ): UpperCAmelCase__ = nn.Parameter(torch.FloatTensor(weights['time_emb_dense0']['kernel'].T ) ) UpperCAmelCase__ = nn.Parameter(torch.FloatTensor(weights['time_emb_dense1']['kernel'].T ) ) UpperCAmelCase__ = nn.Parameter( torch.FloatTensor(weights['Embed_0']['embedding'] ) , requires_grad=lowerCamelCase ) UpperCAmelCase__ = nn.Parameter( torch.FloatTensor(weights['continuous_inputs_projection']['kernel'].T ) ) for lyr_num, lyr in enumerate(model.decoders ): UpperCAmelCase__ = weights[f'''layers_{lyr_num}'''] UpperCAmelCase__ = nn.Parameter( torch.FloatTensor(ly_weight['pre_self_attention_layer_norm']['scale'] ) ) UpperCAmelCase__ = nn.Parameter( torch.FloatTensor(ly_weight['FiLMLayer_0']['DenseGeneral_0']['kernel'].T ) ) UpperCAmelCase__ = ly_weight['self_attention'] UpperCAmelCase__ = nn.Parameter(torch.FloatTensor(attention_weights['query']['kernel'].T ) ) UpperCAmelCase__ = nn.Parameter(torch.FloatTensor(attention_weights['key']['kernel'].T ) ) UpperCAmelCase__ = nn.Parameter(torch.FloatTensor(attention_weights['value']['kernel'].T ) ) UpperCAmelCase__ = nn.Parameter(torch.FloatTensor(attention_weights['out']['kernel'].T ) ) UpperCAmelCase__ = ly_weight['MultiHeadDotProductAttention_0'] UpperCAmelCase__ = nn.Parameter(torch.FloatTensor(attention_weights['query']['kernel'].T ) ) UpperCAmelCase__ = nn.Parameter(torch.FloatTensor(attention_weights['key']['kernel'].T ) ) UpperCAmelCase__ = nn.Parameter(torch.FloatTensor(attention_weights['value']['kernel'].T ) ) UpperCAmelCase__ = nn.Parameter(torch.FloatTensor(attention_weights['out']['kernel'].T ) ) UpperCAmelCase__ = nn.Parameter( torch.FloatTensor(ly_weight['pre_cross_attention_layer_norm']['scale'] ) ) UpperCAmelCase__ = nn.Parameter(torch.FloatTensor(ly_weight['pre_mlp_layer_norm']['scale'] ) ) UpperCAmelCase__ = nn.Parameter( torch.FloatTensor(ly_weight['FiLMLayer_1']['DenseGeneral_0']['kernel'].T ) ) UpperCAmelCase__ = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_0']['kernel'].T ) ) UpperCAmelCase__ = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_1']['kernel'].T ) ) UpperCAmelCase__ = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wo']['kernel'].T ) ) UpperCAmelCase__ = nn.Parameter(torch.FloatTensor(weights['decoder_norm']['scale'] ) ) UpperCAmelCase__ = nn.Parameter(torch.FloatTensor(weights['spec_out_dense']['kernel'].T ) ) return model def a_ ( lowerCamelCase ): UpperCAmelCase__ = checkpoints.load_tax_checkpoint(args.checkpoint_path ) UpperCAmelCase__ = jnp.tree_util.tree_map(onp.array , lowerCamelCase ) UpperCAmelCase__ = [ 'from __gin__ import dynamic_registration', 'from music_spectrogram_diffusion.models.diffusion import diffusion_utils', 'diffusion_utils.ClassifierFreeGuidanceConfig.eval_condition_weight = 2.0', 'diffusion_utils.DiffusionConfig.classifier_free_guidance = @diffusion_utils.ClassifierFreeGuidanceConfig()', ] UpperCAmelCase__ = os.path.join(args.checkpoint_path , '..' , 'config.gin' ) UpperCAmelCase__ = inference.parse_training_gin_file(lowerCamelCase , lowerCamelCase ) UpperCAmelCase__ = inference.InferenceModel(args.checkpoint_path , lowerCamelCase ) UpperCAmelCase__ = DDPMScheduler(beta_schedule='squaredcos_cap_v2' , variance_type='fixed_large' ) UpperCAmelCase__ = SpectrogramNotesEncoder( max_length=synth_model.sequence_length['inputs'] , vocab_size=synth_model.model.module.config.vocab_size , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj='gated-gelu' , ) UpperCAmelCase__ = SpectrogramContEncoder( input_dims=synth_model.audio_codec.n_dims , targets_context_length=synth_model.sequence_length['targets_context'] , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj='gated-gelu' , ) UpperCAmelCase__ = TaFilmDecoder( input_dims=synth_model.audio_codec.n_dims , targets_length=synth_model.sequence_length['targets_context'] , max_decoder_noise_time=synth_model.model.module.config.max_decoder_noise_time , d_model=synth_model.model.module.config.emb_dim , num_layers=synth_model.model.module.config.num_decoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , dropout_rate=synth_model.model.module.config.dropout_rate , ) UpperCAmelCase__ = load_notes_encoder(ta_checkpoint['target']['token_encoder'] , lowerCamelCase ) UpperCAmelCase__ = load_continuous_encoder(ta_checkpoint['target']['continuous_encoder'] , lowerCamelCase ) UpperCAmelCase__ = load_decoder(ta_checkpoint['target']['decoder'] , lowerCamelCase ) UpperCAmelCase__ = OnnxRuntimeModel.from_pretrained('kashif/soundstream_mel_decoder' ) UpperCAmelCase__ = SpectrogramDiffusionPipeline( notes_encoder=lowerCamelCase , continuous_encoder=lowerCamelCase , decoder=lowerCamelCase , scheduler=lowerCamelCase , melgan=lowerCamelCase , ) if args.save: pipe.save_pretrained(args.output_path ) if __name__ == "__main__": lowerCAmelCase__ : Tuple = argparse.ArgumentParser() parser.add_argument('--output_path', default=None, type=str, required=True, help='Path to the converted model.') parser.add_argument( '--save', default=True, type=bool, required=False, help='Whether to save the converted model or not.' ) parser.add_argument( '--checkpoint_path', default=F"""{MODEL}/checkpoint_500000""", type=str, required=False, help='Path to the original jax model checkpoint.', ) lowerCAmelCase__ : List[str] = parser.parse_args() main(args)
632
0
def A_ ( lowercase_ ) -> str: _snake_case : str = len(lowercase_ ) for i in range(length - 1 ): _snake_case : Any = i for k in range(i + 1 , lowercase_ ): if collection[k] < collection[least]: _snake_case : Optional[Any] = k if least != i: _snake_case , _snake_case : List[Any] = (collection[i], collection[least]) return collection if __name__ == "__main__": lowerCAmelCase_ = input("Enter numbers separated by a comma:\n").strip() lowerCAmelCase_ = [int(item) for item in user_input.split(",")] print(selection_sort(unsorted))
326
import argparse import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert from transformers.utils import logging logging.set_verbosity_info() def A_ ( lowercase_ , lowercase_ , lowercase_ ) -> Dict: # Initialise PyTorch model _snake_case : List[str] = BertConfig.from_json_file(lowercase_ ) print(f'''Building PyTorch model from configuration: {config}''' ) _snake_case : Dict = BertForPreTraining(lowercase_ ) # Load weights from tf checkpoint load_tf_weights_in_bert(lowercase_ , lowercase_ , lowercase_ ) # Save pytorch-model print(f'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , lowercase_ ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--bert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained BERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) lowerCAmelCase_ = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
326
1
"""simple docstring""" import argparse import datetime def UpperCAmelCase__ ( _UpperCAmelCase ): """simple docstring""" A_ : str = { """0""": """Sunday""", """1""": """Monday""", """2""": """Tuesday""", """3""": """Wednesday""", """4""": """Thursday""", """5""": """Friday""", """6""": """Saturday""", } A_ : Optional[int] = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(_UpperCAmelCase ) < 11: raise ValueError('Must be 10 characters long' ) # Get month A_ : int = int(date_input[0] + date_input[1] ) # Validate if not 0 < m < 13: raise ValueError('Month must be between 1 - 12' ) A_ : str = date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError('Date separator must be \'-\' or \'/\'' ) # Get day A_ : int = int(date_input[3] + date_input[4] ) # Validate if not 0 < d < 32: raise ValueError('Date must be between 1 - 31' ) # Get second separator A_ : str = date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError('Date separator must be \'-\' or \'/\'' ) # Get year A_ : int = int(date_input[6] + date_input[7] + date_input[8] + date_input[9] ) # Arbitrary year range if not 45 < y < 8500: raise ValueError( 'Year out of range. There has to be some sort of limit...right?' ) # Get datetime obj for validation A_ : Union[str, Any] = datetime.date(int(_UpperCAmelCase ) , int(_UpperCAmelCase ) , int(_UpperCAmelCase ) ) # Start math if m <= 2: A_ : Any = y - 1 A_ : List[Any] = m + 12 # maths var A_ : int = int(str(_UpperCAmelCase )[:2] ) A_ : int = int(str(_UpperCAmelCase )[2:] ) A_ : int = int(2.6 * m - 5.39 ) A_ : int = int(c / 4 ) A_ : int = int(k / 4 ) A_ : int = int(d + k ) A_ : int = int(t + u + v + x ) A_ : int = int(z - (2 * c) ) A_ : int = round(w % 7 ) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError('The date was evaluated incorrectly. Contact developer.' ) # Response A_ : str = f"""Your date {date_input}, is a {days[str(_UpperCAmelCase )]}!""" return response if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase_ : List[Any] = argparse.ArgumentParser( description=( 'Find out what day of the week nearly any date is or was. Enter ' 'date as a string in the mm-dd-yyyy or mm/dd/yyyy format' ) ) parser.add_argument( 'date_input', type=str, help='Date as a string (mm-dd-yyyy or mm/dd/yyyy)' ) lowerCamelCase_ : Union[str, Any] = parser.parse_args() zeller(args.date_input)
705
"""simple docstring""" import numpy as np import skfuzzy as fuzz if __name__ == "__main__": # Create universe of discourse in Python using linspace () lowerCamelCase_ : Union[str, Any] = np.linspace(start=0, stop=75, num=75, endpoint=True, retstep=False) # Create two fuzzy sets by defining any membership function # (trapmf(), gbellmf(), gaussmf(), etc). lowerCamelCase_ : Optional[int] = [0, 25, 50] lowerCamelCase_ : Union[str, Any] = [25, 50, 75] lowerCamelCase_ : List[Any] = fuzz.membership.trimf(X, abca) lowerCamelCase_ : Optional[Any] = fuzz.membership.trimf(X, abca) # Compute the different operations using inbuilt functions. lowerCamelCase_ : Optional[int] = np.ones(75) lowerCamelCase_ : Optional[int] = np.zeros((75,)) # 1. Union = max(µA(x), µB(x)) lowerCamelCase_ : Dict = fuzz.fuzzy_or(X, young, X, middle_aged)[1] # 2. Intersection = min(µA(x), µB(x)) lowerCamelCase_ : Union[str, Any] = fuzz.fuzzy_and(X, young, X, middle_aged)[1] # 3. Complement (A) = (1- min(µA(x)) lowerCamelCase_ : List[Any] = fuzz.fuzzy_not(young) # 4. Difference (A/B) = min(µA(x),(1- µB(x))) lowerCamelCase_ : Tuple = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1] # 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))] lowerCamelCase_ : Any = young + middle_aged - (young * middle_aged) # 6. Algebraic Product = (µA(x) * µB(x)) lowerCamelCase_ : Tuple = young * middle_aged # 7. Bounded Sum = min[1,(µA(x), µB(x))] lowerCamelCase_ : List[Any] = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1] # 8. Bounded difference = min[0,(µA(x), µB(x))] lowerCamelCase_ : List[Any] = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1] # max-min composition # max-product composition # Plot each set A, set B and each operation result using plot() and subplot(). from matplotlib import pyplot as plt plt.figure() plt.subplot(4, 3, 1) plt.plot(X, young) plt.title('Young') plt.grid(True) plt.subplot(4, 3, 2) plt.plot(X, middle_aged) plt.title('Middle aged') plt.grid(True) plt.subplot(4, 3, 3) plt.plot(X, union) plt.title('union') plt.grid(True) plt.subplot(4, 3, 4) plt.plot(X, intersection) plt.title('intersection') plt.grid(True) plt.subplot(4, 3, 5) plt.plot(X, complement_a) plt.title('complement_a') plt.grid(True) plt.subplot(4, 3, 6) plt.plot(X, difference) plt.title('difference a/b') plt.grid(True) plt.subplot(4, 3, 7) plt.plot(X, alg_sum) plt.title('alg_sum') plt.grid(True) plt.subplot(4, 3, 8) plt.plot(X, alg_product) plt.title('alg_product') plt.grid(True) plt.subplot(4, 3, 9) plt.plot(X, bdd_sum) plt.title('bdd_sum') plt.grid(True) plt.subplot(4, 3, 10) plt.plot(X, bdd_difference) plt.title('bdd_difference') plt.grid(True) plt.subplots_adjust(hspace=0.5) plt.show()
302
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class SCREAMING_SNAKE_CASE__ : __SCREAMING_SNAKE_CASE = XGLMConfig __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = """gelu""" def __init__( self : int , a_ : List[Any] , a_ : Dict=14 , a_ : int=7 , a_ : List[Any]=True , a_ : Optional[int]=True , a_ : Optional[int]=True , a_ : int=99 , a_ : Optional[int]=32 , a_ : Tuple=2 , a_ : Any=4 , a_ : Union[str, Any]=37 , a_ : Any="gelu" , a_ : str=0.1 , a_ : Any=0.1 , a_ : str=512 , a_ : List[Any]=0.02 , ): """simple docstring""" __snake_case = parent __snake_case = batch_size __snake_case = seq_length __snake_case = is_training __snake_case = use_input_mask __snake_case = use_labels __snake_case = vocab_size __snake_case = d_model __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = ffn_dim __snake_case = activation_function __snake_case = activation_dropout __snake_case = attention_dropout __snake_case = max_position_embeddings __snake_case = initializer_range __snake_case = None __snake_case = 0 __snake_case = 2 __snake_case = 1 def A ( self : Union[str, Any] ): """simple docstring""" return XGLMConfig.from_pretrained("facebook/xglm-564M" ) def A ( self : Optional[Any] ): """simple docstring""" __snake_case = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 ) __snake_case = None if self.use_input_mask: __snake_case = random_attention_mask([self.batch_size, self.seq_length] ) __snake_case = self.get_config() __snake_case = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, ) def A ( self : str ): """simple docstring""" return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=a_ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=a_ , ) def A ( self : List[str] ): """simple docstring""" __snake_case = self.prepare_config_and_inputs() ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) = config_and_inputs __snake_case = { "input_ids": input_ids, "head_mask": head_mask, } return config, inputs_dict @require_tf class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () __SCREAMING_SNAKE_CASE = (TFXGLMForCausalLM,) if is_tf_available() else () __SCREAMING_SNAKE_CASE = ( {"""feature-extraction""": TFXGLMModel, """text-generation""": TFXGLMForCausalLM} if is_tf_available() else {} ) __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False def A ( self : Optional[int] ): """simple docstring""" __snake_case = TFXGLMModelTester(self ) __snake_case = ConfigTester(self , config_class=a_ , n_embd=37 ) def A ( self : str ): """simple docstring""" self.config_tester.run_common_tests() @slow def A ( self : Tuple ): """simple docstring""" for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case = TFXGLMModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) @unittest.skip(reason="Currently, model embeddings are going to undergo a major refactor." ) def A ( self : Dict ): """simple docstring""" super().test_resize_token_embeddings() @require_tf class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @slow def A ( self : List[Any] , a_ : Dict=True ): """simple docstring""" __snake_case = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) __snake_case = tf.convert_to_tensor([[2, 268, 9_865]] , dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off __snake_case = [2, 268, 9_865, 67, 11, 1_988, 57_252, 9_865, 5, 984, 67, 1_988, 213_838, 1_658, 53, 70_446, 33, 6_657, 278, 1_581] # fmt: on __snake_case = model.generate(a_ , do_sample=a_ , num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , a_ ) @slow def A ( self : Any ): """simple docstring""" __snake_case = XGLMTokenizer.from_pretrained("facebook/xglm-564M" ) __snake_case = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) tf.random.set_seed(0 ) __snake_case = tokenizer("Today is a nice day and" , return_tensors="tf" ) __snake_case = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(":/CPU:0" ): __snake_case = model.generate(a_ , do_sample=a_ , seed=[7, 0] ) __snake_case = tokenizer.decode(output_ids[0] , skip_special_tokens=a_ ) __snake_case = ( "Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due" ) self.assertEqual(a_ , a_ ) @slow def A ( self : List[str] ): """simple docstring""" __snake_case = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) __snake_case = XGLMTokenizer.from_pretrained("facebook/xglm-564M" ) __snake_case = "left" # use different length sentences to test batching __snake_case = [ "This is an extremelly long sentence that only exists to test the ability of the model to cope with " "left-padding, such as in batched generation. The output for the sequence below should be the same " "regardless of whether left padding is applied or not. When", "Hello, my dog is a little", ] __snake_case = tokenizer(a_ , return_tensors="tf" , padding=a_ ) __snake_case = inputs["input_ids"] __snake_case = model.generate(input_ids=a_ , attention_mask=inputs["attention_mask"] , max_new_tokens=12 ) __snake_case = tokenizer(sentences[0] , return_tensors="tf" ).input_ids __snake_case = model.generate(input_ids=a_ , max_new_tokens=12 ) __snake_case = tokenizer(sentences[1] , return_tensors="tf" ).input_ids __snake_case = model.generate(input_ids=a_ , max_new_tokens=12 ) __snake_case = tokenizer.batch_decode(a_ , skip_special_tokens=a_ ) __snake_case = tokenizer.decode(output_non_padded[0] , skip_special_tokens=a_ ) __snake_case = tokenizer.decode(output_padded[0] , skip_special_tokens=a_ ) __snake_case = [ "This is an extremelly long sentence that only exists to test the ability of the model to cope with " "left-padding, such as in batched generation. The output for the sequence below should be the same " "regardless of whether left padding is applied or not. When left padding is applied, the sequence will be " "a single", "Hello, my dog is a little bit of a shy one, but he is very friendly", ] self.assertListEqual(a_ , a_ ) self.assertListEqual(a_ , [non_padded_sentence, padded_sentence] )
69
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPanoramaPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() @skip_mps class _a ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase): __magic_name__ = StableDiffusionPanoramaPipeline __magic_name__ = TEXT_TO_IMAGE_PARAMS __magic_name__ = TEXT_TO_IMAGE_BATCH_PARAMS __magic_name__ = TEXT_TO_IMAGE_IMAGE_PARAMS __magic_name__ = TEXT_TO_IMAGE_IMAGE_PARAMS def __lowercase ( self : Optional[int] ) -> int: torch.manual_seed(0 ) snake_case : Optional[Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) snake_case : Tuple = DDIMScheduler() torch.manual_seed(0 ) snake_case : List[Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) torch.manual_seed(0 ) snake_case : str = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) snake_case : int = CLIPTextModel(_lowercase ) snake_case : Union[str, Any] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) snake_case : Any = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def __lowercase ( self : List[str] , _lowercase : int , _lowercase : Dict=0 ) -> Optional[int]: snake_case : Union[str, Any] = torch.manual_seed(_lowercase ) snake_case : str = { "prompt": "a photo of the dolomites", "generator": generator, # Setting height and width to None to prevent OOMs on CPU. "height": None, "width": None, "num_inference_steps": 1, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def __lowercase ( self : str ) -> List[str]: snake_case : Any = "cpu" # ensure determinism for the device-dependent torch.Generator snake_case : Dict = self.get_dummy_components() snake_case : Any = StableDiffusionPanoramaPipeline(**_lowercase ) snake_case : List[Any] = sd_pipe.to(_lowercase ) sd_pipe.set_progress_bar_config(disable=_lowercase ) snake_case : Optional[Any] = self.get_dummy_inputs(_lowercase ) snake_case : Union[str, Any] = sd_pipe(**_lowercase ).images snake_case : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case : List[Any] = np.array([0.6186, 0.5374, 0.4915, 0.4135, 0.4114, 0.4563, 0.5128, 0.4977, 0.4757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __lowercase ( self : int ) -> Union[str, Any]: super().test_inference_batch_consistent(batch_sizes=[1, 2] ) def __lowercase ( self : Tuple ) -> Tuple: super().test_inference_batch_single_identical(batch_size=2 , expected_max_diff=3.25E-3 ) def __lowercase ( self : Any ) -> List[Any]: snake_case : Any = "cpu" # ensure determinism for the device-dependent torch.Generator snake_case : Union[str, Any] = self.get_dummy_components() snake_case : Tuple = StableDiffusionPanoramaPipeline(**_lowercase ) snake_case : Tuple = sd_pipe.to(_lowercase ) sd_pipe.set_progress_bar_config(disable=_lowercase ) snake_case : List[str] = self.get_dummy_inputs(_lowercase ) snake_case : int = "french fries" snake_case : Union[str, Any] = sd_pipe(**_lowercase , negative_prompt=_lowercase ) snake_case : str = output.images snake_case : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case : Union[str, Any] = np.array([0.6187, 0.5375, 0.4915, 0.4136, 0.4114, 0.4563, 0.5128, 0.4976, 0.4757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __lowercase ( self : str ) -> Any: snake_case : Optional[Any] = "cpu" # ensure determinism for the device-dependent torch.Generator snake_case : List[Any] = self.get_dummy_components() snake_case : List[Any] = StableDiffusionPanoramaPipeline(**_lowercase ) snake_case : int = sd_pipe.to(_lowercase ) sd_pipe.set_progress_bar_config(disable=_lowercase ) snake_case : Tuple = self.get_dummy_inputs(_lowercase ) snake_case : str = sd_pipe(**_lowercase , view_batch_size=2 ) snake_case : Optional[Any] = output.images snake_case : int = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case : str = np.array([0.6187, 0.5375, 0.4915, 0.4136, 0.4114, 0.4563, 0.5128, 0.4976, 0.4757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __lowercase ( self : int ) -> Optional[Any]: snake_case : Dict = "cpu" # ensure determinism for the device-dependent torch.Generator snake_case : List[str] = self.get_dummy_components() snake_case : Any = EulerAncestralDiscreteScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="scaled_linear" ) snake_case : List[str] = StableDiffusionPanoramaPipeline(**_lowercase ) snake_case : List[str] = sd_pipe.to(_lowercase ) sd_pipe.set_progress_bar_config(disable=_lowercase ) snake_case : List[Any] = self.get_dummy_inputs(_lowercase ) snake_case : Optional[Any] = sd_pipe(**_lowercase ).images snake_case : int = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case : Tuple = np.array([0.4024, 0.6510, 0.4901, 0.5378, 0.5813, 0.5622, 0.4795, 0.4467, 0.4952] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __lowercase ( self : Tuple ) -> Union[str, Any]: snake_case : str = "cpu" # ensure determinism for the device-dependent torch.Generator snake_case : str = self.get_dummy_components() snake_case : Optional[int] = PNDMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="scaled_linear" , skip_prk_steps=_lowercase ) snake_case : Dict = StableDiffusionPanoramaPipeline(**_lowercase ) snake_case : Dict = sd_pipe.to(_lowercase ) sd_pipe.set_progress_bar_config(disable=_lowercase ) snake_case : Dict = self.get_dummy_inputs(_lowercase ) snake_case : Optional[int] = sd_pipe(**_lowercase ).images snake_case : str = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case : Optional[int] = np.array([0.6391, 0.6291, 0.4861, 0.5134, 0.5552, 0.4578, 0.5032, 0.5023, 0.4539] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class _a ( unittest.TestCase): def __lowercase ( self : Union[str, Any] ) -> str: super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowercase ( self : Dict , _lowercase : Any=0 ) -> Optional[Any]: snake_case : Any = torch.manual_seed(_lowercase ) snake_case : Any = { "prompt": "a photo of the dolomites", "generator": generator, "num_inference_steps": 3, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def __lowercase ( self : Optional[Any] ) -> Union[str, Any]: snake_case : List[Any] = "stabilityai/stable-diffusion-2-base" snake_case : Dict = DDIMScheduler.from_pretrained(_lowercase , subfolder="scheduler" ) snake_case : Any = StableDiffusionPanoramaPipeline.from_pretrained(_lowercase , scheduler=_lowercase , safety_checker=_lowercase ) pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) pipe.enable_attention_slicing() snake_case : str = self.get_inputs() snake_case : List[Any] = pipe(**_lowercase ).images snake_case : Optional[int] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2048, 3) snake_case : List[str] = np.array( [ 0.36968392, 0.27025372, 0.32446766, 0.28379387, 0.36363274, 0.30733347, 0.27100027, 0.27054125, 0.25536096, ] ) assert np.abs(expected_slice - image_slice ).max() < 1E-2 def __lowercase ( self : Tuple ) -> List[str]: snake_case : List[str] = StableDiffusionPanoramaPipeline.from_pretrained( "stabilityai/stable-diffusion-2-base" , safety_checker=_lowercase ) snake_case : int = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) pipe.enable_attention_slicing() snake_case : Dict = self.get_inputs() snake_case : int = pipe(**_lowercase ).images snake_case : Optional[Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2048, 3) snake_case : List[str] = np.array( [ [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ] ] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def __lowercase ( self : str ) -> Any: snake_case : Any = 0 def callback_fn(_lowercase : int , _lowercase : int , _lowercase : torch.FloatTensor ) -> None: snake_case : List[Any] = True nonlocal number_of_steps number_of_steps += 1 if step == 1: snake_case : List[Any] = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) snake_case : int = latents[0, -3:, -3:, -1] snake_case : Tuple = np.array( [ 0.18681869, 0.33907816, 0.5361276, 0.14432865, -0.02856611, -0.73941123, 0.23397987, 0.47322682, -0.37823164, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 elif step == 2: snake_case : Union[str, Any] = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) snake_case : Tuple = latents[0, -3:, -3:, -1] snake_case : Tuple = np.array( [ 0.18539645, 0.33987248, 0.5378559, 0.14437142, -0.02455261, -0.7338317, 0.23990755, 0.47356272, -0.3786505, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 snake_case : Dict = False snake_case : List[Any] = "stabilityai/stable-diffusion-2-base" snake_case : List[str] = DDIMScheduler.from_pretrained(_lowercase , subfolder="scheduler" ) snake_case : Optional[Any] = StableDiffusionPanoramaPipeline.from_pretrained(_lowercase , scheduler=_lowercase , safety_checker=_lowercase ) snake_case : Any = pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) pipe.enable_attention_slicing() snake_case : Tuple = self.get_inputs() pipe(**_lowercase , callback=_lowercase , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def __lowercase ( self : Any ) -> Tuple: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() snake_case : Optional[int] = "stabilityai/stable-diffusion-2-base" snake_case : Tuple = DDIMScheduler.from_pretrained(_lowercase , subfolder="scheduler" ) snake_case : Any = StableDiffusionPanoramaPipeline.from_pretrained(_lowercase , scheduler=_lowercase , safety_checker=_lowercase ) snake_case : Tuple = pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() snake_case : Any = self.get_inputs() snake_case : Optional[int] = pipe(**_lowercase ) snake_case : int = torch.cuda.max_memory_allocated() # make sure that less than 5.2 GB is allocated assert mem_bytes < 5.5 * 10**9
449
0
'''simple docstring''' from __future__ import annotations __snake_case : str = { 'A': ['B', 'C', 'E'], 'B': ['A', 'D', 'E'], 'C': ['A', 'F', 'G'], 'D': ['B'], 'E': ['A', 'B', 'D'], 'F': ['C'], 'G': ['C'], } class __UpperCAmelCase : '''simple docstring''' def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> None: A_ = graph # mapping node to its parent in resulting breadth first tree A_ = {} A_ = source_vertex def __A ( self ) -> None: A_ = {self.source_vertex} A_ = None A_ = [self.source_vertex] # first in first out queue while queue: A_ = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(_SCREAMING_SNAKE_CASE ) A_ = vertex queue.append(_SCREAMING_SNAKE_CASE ) def __A ( self , _SCREAMING_SNAKE_CASE ) -> str: if target_vertex == self.source_vertex: return self.source_vertex A_ = self.parent.get(_SCREAMING_SNAKE_CASE ) if target_vertex_parent is None: A_ = ( F'''No path from vertex: {self.source_vertex} to vertex: {target_vertex}''' ) raise ValueError(_SCREAMING_SNAKE_CASE ) return self.shortest_path(_SCREAMING_SNAKE_CASE ) + F'''->{target_vertex}''' if __name__ == "__main__": __snake_case : List[Any] = Graph(graph, 'G') g.breath_first_search() print(g.shortest_path('D')) print(g.shortest_path('G')) print(g.shortest_path('Foo'))
174
'''simple docstring''' from typing import Dict import numpy as np from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException if is_tf_available(): import tensorflow as tf from ..tf_utils import stable_softmax if is_torch_available(): import torch __snake_case : str = logging.get_logger(__name__) @add_end_docstrings( _UpperCamelCase , R'\n top_k (`int`, defaults to 5):\n The number of predictions to return.\n targets (`str` or `List[str]`, *optional*):\n When passed, the model will limit the scores to the passed targets instead of looking up in the whole\n vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting\n token will be used (with a warning, and that might be slower).\n\n ' , ) class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' def __A ( self , _SCREAMING_SNAKE_CASE ) -> np.ndarray: if self.framework == "tf": A_ = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy() elif self.framework == "pt": A_ = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=_SCREAMING_SNAKE_CASE ) else: raise ValueError('''Unsupported framework''' ) return masked_index def __A ( self , _SCREAMING_SNAKE_CASE ) -> np.ndarray: A_ = self.get_masked_index(_SCREAMING_SNAKE_CASE ) A_ = np.prod(masked_index.shape ) if numel < 1: raise PipelineException( '''fill-mask''' , self.model.base_model_prefix , F'''No mask_token ({self.tokenizer.mask_token}) found on the input''' , ) def __A ( self , _SCREAMING_SNAKE_CASE ) -> int: if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): for model_input in model_inputs: self._ensure_exactly_one_mask_token(model_input['''input_ids'''][0] ) else: for input_ids in model_inputs["input_ids"]: self._ensure_exactly_one_mask_token(_SCREAMING_SNAKE_CASE ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE ) -> Dict[str, GenericTensor]: if return_tensors is None: A_ = self.framework A_ = self.tokenizer(_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE ) self.ensure_exactly_one_mask_token(_SCREAMING_SNAKE_CASE ) return model_inputs def __A ( self , _SCREAMING_SNAKE_CASE ) -> Dict: A_ = self.model(**_SCREAMING_SNAKE_CASE ) A_ = model_inputs['''input_ids'''] return model_outputs def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=5 , _SCREAMING_SNAKE_CASE=None ) -> Tuple: # Cap top_k if there are targets if target_ids is not None and target_ids.shape[0] < top_k: A_ = target_ids.shape[0] A_ = model_outputs['''input_ids'''][0] A_ = model_outputs['''logits'''] if self.framework == "tf": A_ = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()[:, 0] A_ = outputs.numpy() A_ = outputs[0, masked_index, :] A_ = stable_softmax(_SCREAMING_SNAKE_CASE , axis=-1 ) if target_ids is not None: A_ = tf.gather_nd(tf.squeeze(_SCREAMING_SNAKE_CASE , 0 ) , target_ids.reshape(-1 , 1 ) ) A_ = tf.expand_dims(_SCREAMING_SNAKE_CASE , 0 ) A_ = tf.math.top_k(_SCREAMING_SNAKE_CASE , k=_SCREAMING_SNAKE_CASE ) A_ ,A_ = topk.values.numpy(), topk.indices.numpy() else: A_ = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=_SCREAMING_SNAKE_CASE ).squeeze(-1 ) # Fill mask pipeline supports only one ${mask_token} per sample A_ = outputs[0, masked_index, :] A_ = logits.softmax(dim=-1 ) if target_ids is not None: A_ = probs[..., target_ids] A_ ,A_ = probs.topk(_SCREAMING_SNAKE_CASE ) A_ = [] A_ = values.shape[0] == 1 for i, (_values, _predictions) in enumerate(zip(values.tolist() , predictions.tolist() ) ): A_ = [] for v, p in zip(_values , _predictions ): # Copy is important since we're going to modify this array in place A_ = input_ids.numpy().copy() if target_ids is not None: A_ = target_ids[p].tolist() A_ = p # Filter padding out: A_ = tokens[np.where(tokens != self.tokenizer.pad_token_id )] # Originally we skip special tokens to give readable output. # For multi masks though, the other [MASK] would be removed otherwise # making the output look odd, so we add them back A_ = self.tokenizer.decode(_SCREAMING_SNAKE_CASE , skip_special_tokens=_SCREAMING_SNAKE_CASE ) A_ = {'''score''': v, '''token''': p, '''token_str''': self.tokenizer.decode([p] ), '''sequence''': sequence} row.append(_SCREAMING_SNAKE_CASE ) result.append(_SCREAMING_SNAKE_CASE ) if single_mask: return result[0] return result def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> Union[str, Any]: if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): A_ = [targets] try: A_ = self.tokenizer.get_vocab() except Exception: A_ = {} A_ = [] for target in targets: A_ = vocab.get(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if id_ is None: A_ = self.tokenizer( _SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE , return_attention_mask=_SCREAMING_SNAKE_CASE , return_token_type_ids=_SCREAMING_SNAKE_CASE , max_length=1 , truncation=_SCREAMING_SNAKE_CASE , )['''input_ids'''] if len(_SCREAMING_SNAKE_CASE ) == 0: logger.warning( F'''The specified target token `{target}` does not exist in the model vocabulary. ''' '''We cannot replace it with anything meaningful, ignoring it''' ) continue A_ = input_ids[0] # XXX: If users encounter this pass # it becomes pretty slow, so let's make sure # The warning enables them to fix the input to # get faster performance. logger.warning( F'''The specified target token `{target}` does not exist in the model vocabulary. ''' F'''Replacing with `{self.tokenizer.convert_ids_to_tokens(id_ )}`.''' ) target_ids.append(id_ ) A_ = list(set(_SCREAMING_SNAKE_CASE ) ) if len(_SCREAMING_SNAKE_CASE ) == 0: raise ValueError('''At least one target must be provided when passed.''' ) A_ = np.array(_SCREAMING_SNAKE_CASE ) return target_ids def __A ( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ) -> Dict: A_ = {} if targets is not None: A_ = self.get_target_ids(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) A_ = target_ids if top_k is not None: A_ = top_k if self.tokenizer.mask_token_id is None: raise PipelineException( '''fill-mask''' , self.model.base_model_prefix , '''The tokenizer does not define a `mask_token`.''' ) return {}, {}, postprocess_params def __call__( self , _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Tuple: A_ = super().__call__(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and len(_SCREAMING_SNAKE_CASE ) == 1: return outputs[0] return outputs
174
1