code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
"""simple docstring""" def _UpperCamelCase ( UpperCamelCase ) -> bool: """simple docstring""" if not isinstance(UpperCamelCase , UpperCamelCase ): raise ValueError("check_bouncy() accepts only integer arguments" ) __UpperCAmelCase : Optional[int] = str(UpperCamelCase ) __UpperCAmelCase : List[Any] = "".join(sorted(UpperCamelCase ) ) return sorted_str_n != str_n and sorted_str_n[::-1] != str_n def _UpperCamelCase ( UpperCamelCase = 99 ) -> int: """simple docstring""" if not 0 < percent < 100: raise ValueError("solution() only accepts values from 0 to 100" ) __UpperCAmelCase : List[Any] = 0 __UpperCAmelCase : List[Any] = 1 while True: if check_bouncy(UpperCamelCase ): bouncy_num += 1 if (bouncy_num / num) * 100 >= percent: return num num += 1 if __name__ == "__main__": from doctest import testmod testmod() print(f'''{solution(99)}''')
77
"""simple docstring""" from typing import Any class a__ : def __init__( self : List[str] , UpperCamelCase_ : Any): """simple docstring""" __UpperCAmelCase : str = data __UpperCAmelCase : Optional[Any] = None class a__ : def __init__( self : Any): """simple docstring""" __UpperCAmelCase : Optional[int] = None def a_ ( self : Union[str, Any]): """simple docstring""" __UpperCAmelCase : Optional[Any] = self.head while temp is not None: print(temp.data , end=" ") __UpperCAmelCase : Tuple = temp.next print() def a_ ( self : int , UpperCamelCase_ : Any): """simple docstring""" __UpperCAmelCase : List[str] = Node(UpperCamelCase_) __UpperCAmelCase : str = self.head __UpperCAmelCase : Optional[int] = new_node def a_ ( self : str , UpperCamelCase_ : List[Any] , UpperCamelCase_ : str): """simple docstring""" if node_data_a == node_data_a: return else: __UpperCAmelCase : int = self.head while node_a is not None and node_a.data != node_data_a: __UpperCAmelCase : Tuple = node_a.next __UpperCAmelCase : List[Any] = self.head while node_a is not None and node_a.data != node_data_a: __UpperCAmelCase : Optional[Any] = node_a.next if node_a is None or node_a is None: return __UpperCAmelCase , __UpperCAmelCase : Any = node_a.data, node_a.data if __name__ == "__main__": A = LinkedList() for i in range(5, 0, -1): ll.push(i) ll.print_list() ll.swap_nodes(1, 4) print("""After swapping""") ll.print_list()
77
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __A : Any = { """configuration_blenderbot_small""": [ """BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BlenderbotSmallConfig""", """BlenderbotSmallOnnxConfig""", ], """tokenization_blenderbot_small""": ["""BlenderbotSmallTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[Any] = ["""BlenderbotSmallTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : str = [ """BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST""", """BlenderbotSmallForCausalLM""", """BlenderbotSmallForConditionalGeneration""", """BlenderbotSmallModel""", """BlenderbotSmallPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : int = [ """TFBlenderbotSmallForConditionalGeneration""", """TFBlenderbotSmallModel""", """TFBlenderbotSmallPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[str] = [ """FlaxBlenderbotSmallForConditionalGeneration""", """FlaxBlenderbotSmallModel""", """FlaxBlenderbotSmallPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotSmallConfig, BlenderbotSmallOnnxConfig, ) from .tokenization_blenderbot_small import BlenderbotSmallTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_small_fast import BlenderbotSmallTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotSmallForCausalLM, BlenderbotSmallForConditionalGeneration, BlenderbotSmallModel, BlenderbotSmallPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot_small import ( TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel, TFBlenderbotSmallPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, FlaxBlenderbotSmallPreTrainedModel, ) else: import sys __A : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
187
'''simple docstring''' from __future__ import annotations def lowerCamelCase_ ( lowercase__ , lowercase__ , lowercase__): lowerCamelCase__ = list(range(len(lowercase__))) lowerCamelCase__ = [v / w for v, w in zip(lowercase__ , lowercase__)] index.sort(key=lambda lowercase__: ratio[i] , reverse=lowercase__) lowerCamelCase__ = 0 lowerCamelCase__ = [0] * len(lowercase__) for i in index: if weight[i] <= capacity: lowerCamelCase__ = 1 max_value += value[i] capacity -= weight[i] else: lowerCamelCase__ = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
187
1
"""simple docstring""" import os from tempfile import TemporaryDirectory from unittest import TestCase import pytest from absl.testing import parameterized from datasets import config from datasets.arrow_reader import HF_GCP_BASE_URL from datasets.builder import DatasetBuilder from datasets.dataset_dict import IterableDatasetDict from datasets.iterable_dataset import IterableDataset from datasets.load import dataset_module_factory, import_main_class from datasets.utils.file_utils import cached_path _UpperCAmelCase = [ {"""dataset""": """wikipedia""", """config_name""": """20220301.de"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.en"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.fr"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.frr"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.it"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.simple"""}, {"""dataset""": """snli""", """config_name""": """plain_text"""}, {"""dataset""": """eli5""", """config_name""": """LFQA_reddit"""}, {"""dataset""": """wiki40b""", """config_name""": """en"""}, {"""dataset""": """wiki_dpr""", """config_name""": """psgs_w100.nq.compressed"""}, {"""dataset""": """wiki_dpr""", """config_name""": """psgs_w100.nq.no_index"""}, {"""dataset""": """wiki_dpr""", """config_name""": """psgs_w100.multiset.no_index"""}, {"""dataset""": """natural_questions""", """config_name""": """default"""}, ] def __magic_name__ ( lowercase=True ): if with_config: return [ { "testcase_name": d["dataset"] + "/" + d["config_name"], "dataset": d["dataset"], "config_name": d["config_name"], } for d in DATASETS_ON_HF_GCP ] else: return [ {"testcase_name": dataset, "dataset": dataset} for dataset in {d["dataset"] for d in DATASETS_ON_HF_GCP} ] @parameterized.named_parameters(list_datasets_on_hf_gcp_parameters(with_config=__lowerCamelCase ) ) class a ( __lowerCamelCase ): UpperCamelCase : Union[str, Any] = None UpperCamelCase : Optional[Any] = None def lowerCamelCase__ ( self : List[str] , lowerCAmelCase : str , lowerCAmelCase : List[Any] ) -> Any: '''simple docstring''' with TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE_: Optional[int] =dataset_module_factory(_lowerCAmelCase , cache_dir=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_: int =import_main_class(dataset_module.module_path , dataset=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_: DatasetBuilder =builder_cls( cache_dir=_lowerCAmelCase , config_name=_lowerCAmelCase , hash=dataset_module.hash , ) SCREAMING_SNAKE_CASE_: str ="""/""".join( [ HF_GCP_BASE_URL, builder_instance._relative_data_dir(with_hash=_lowerCAmelCase ).replace(os.sep , """/""" ), config.DATASET_INFO_FILENAME, ] ) SCREAMING_SNAKE_CASE_: List[str] =cached_path(_lowerCAmelCase , cache_dir=_lowerCAmelCase ) self.assertTrue(os.path.exists(_lowerCAmelCase ) ) @pytest.mark.integration def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: Dict =tmp_path_factory.mktemp("""test_hf_gcp""" ) / """test_wikipedia_simple""" SCREAMING_SNAKE_CASE_: List[str] =dataset_module_factory("""wikipedia""" , cache_dir=__lowerCamelCase ) SCREAMING_SNAKE_CASE_: Optional[int] =import_main_class(dataset_module.module_path ) SCREAMING_SNAKE_CASE_: DatasetBuilder =builder_cls( cache_dir=__lowerCamelCase , config_name="""20220301.frr""" , hash=dataset_module.hash , ) # use the HF cloud storage, not the original download_and_prepare that uses apache-beam SCREAMING_SNAKE_CASE_: Dict =None builder_instance.download_and_prepare() SCREAMING_SNAKE_CASE_: int =builder_instance.as_dataset() assert ds @pytest.mark.integration def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: Tuple =dataset_module_factory("""wikipedia""" , cache_dir=__lowerCamelCase ) SCREAMING_SNAKE_CASE_: int =import_main_class(dataset_module.module_path , dataset=__lowerCamelCase ) SCREAMING_SNAKE_CASE_: DatasetBuilder =builder_cls( cache_dir=__lowerCamelCase , config_name="""20220301.frr""" , hash=dataset_module.hash , ) SCREAMING_SNAKE_CASE_: Dict =builder_instance.as_streaming_dataset() assert ds assert isinstance(__lowerCamelCase , __lowerCamelCase ) assert "train" in ds assert isinstance(ds["""train"""] , __lowerCamelCase ) assert next(iter(ds["""train"""] ) )
409
from __future__ import annotations import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTForImageClassification, TFViTModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class UpperCAmelCase_ : def __init__( self , _lowerCAmelCase , _lowerCAmelCase=13 , _lowerCAmelCase=30 , _lowerCAmelCase=2 , _lowerCAmelCase=3 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=32 , _lowerCAmelCase=2 , _lowerCAmelCase=4 , _lowerCAmelCase=37 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=10 , _lowerCAmelCase=0.0_2 , _lowerCAmelCase=3 , _lowerCAmelCase=None , ): UpperCAmelCase__ : Tuple = parent UpperCAmelCase__ : Optional[int] = batch_size UpperCAmelCase__ : Union[str, Any] = image_size UpperCAmelCase__ : int = patch_size UpperCAmelCase__ : str = num_channels UpperCAmelCase__ : int = is_training UpperCAmelCase__ : List[str] = use_labels UpperCAmelCase__ : List[Any] = hidden_size UpperCAmelCase__ : int = num_hidden_layers UpperCAmelCase__ : Tuple = num_attention_heads UpperCAmelCase__ : Optional[int] = intermediate_size UpperCAmelCase__ : Optional[Any] = hidden_act UpperCAmelCase__ : int = hidden_dropout_prob UpperCAmelCase__ : int = attention_probs_dropout_prob UpperCAmelCase__ : List[str] = type_sequence_label_size UpperCAmelCase__ : Optional[int] = initializer_range UpperCAmelCase__ : Any = scope # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCAmelCase__ : Any = (image_size // patch_size) ** 2 UpperCAmelCase__ : Tuple = num_patches + 1 def __UpperCAmelCase ( self ): UpperCAmelCase__ : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase__ : List[str] = None if self.use_labels: UpperCAmelCase__ : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase__ : Union[str, Any] = self.get_config() return config, pixel_values, labels def __UpperCAmelCase ( self ): return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , ) def __UpperCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): UpperCAmelCase__ : str = TFViTModel(config=_lowerCAmelCase ) UpperCAmelCase__ : str = model(_lowerCAmelCase , training=_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # Test with an image with different size than the one specified in config. UpperCAmelCase__ : Optional[Any] = self.image_size // 2 UpperCAmelCase__ : List[str] = pixel_values[:, :, :image_size, :image_size] UpperCAmelCase__ : List[Any] = model(_lowerCAmelCase , interpolate_pos_encoding=_lowerCAmelCase , training=_lowerCAmelCase ) UpperCAmelCase__ : str = (image_size // self.patch_size) ** 2 + 1 self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, seq_length, self.hidden_size) ) def __UpperCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): UpperCAmelCase__ : Tuple = self.type_sequence_label_size UpperCAmelCase__ : List[Any] = TFViTForImageClassification(_lowerCAmelCase ) UpperCAmelCase__ : List[str] = model(_lowerCAmelCase , labels=_lowerCAmelCase , training=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # Test with an image with different size than the one specified in config. UpperCAmelCase__ : Tuple = self.image_size // 2 UpperCAmelCase__ : Union[str, Any] = pixel_values[:, :, :image_size, :image_size] UpperCAmelCase__ : List[str] = model(_lowerCAmelCase , interpolate_pos_encoding=_lowerCAmelCase , training=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCAmelCase__ : Union[str, Any] = 1 UpperCAmelCase__ : Optional[Any] = TFViTForImageClassification(_lowerCAmelCase ) UpperCAmelCase__ : List[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase__ : List[str] = model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __UpperCAmelCase ( self ): UpperCAmelCase__ : Optional[Any] = self.prepare_config_and_inputs() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : int = config_and_inputs UpperCAmelCase__ : int = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class UpperCAmelCase_ ( __lowerCamelCase , __lowerCamelCase , unittest.TestCase ): __lowerCamelCase = (TFViTModel, TFViTForImageClassification) if is_tf_available() else () __lowerCamelCase = ( {'feature-extraction': TFViTModel, 'image-classification': TFViTForImageClassification} if is_tf_available() else {} ) __lowerCamelCase = False __lowerCamelCase = False __lowerCamelCase = False def __UpperCAmelCase ( self ): UpperCAmelCase__ : Any = TFViTModelTester(self ) UpperCAmelCase__ : int = ConfigTester(self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase , hidden_size=37 ) def __UpperCAmelCase ( self ): self.config_tester.run_common_tests() @unittest.skip(reason="""ViT does not use inputs_embeds""" ) def __UpperCAmelCase ( self ): pass @unittest.skip(reason="""ViT does not use inputs_embeds""" ) def __UpperCAmelCase ( self ): pass def __UpperCAmelCase ( self ): UpperCAmelCase__ , UpperCAmelCase__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : str = model_class(_lowerCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) UpperCAmelCase__ : Dict = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowerCAmelCase , tf.keras.layers.Layer ) ) def __UpperCAmelCase ( self ): UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : Optional[int] = model_class(_lowerCAmelCase ) UpperCAmelCase__ : Union[str, Any] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase__ : Tuple = [*signature.parameters.keys()] UpperCAmelCase__ : str = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) def __UpperCAmelCase ( self ): UpperCAmelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def __UpperCAmelCase ( self ): UpperCAmelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCAmelCase ) @slow def __UpperCAmelCase ( self ): UpperCAmelCase__ : List[Any] = TFViTModel.from_pretrained("""google/vit-base-patch16-224""" ) self.assertIsNotNone(_lowerCAmelCase ) def _lowerCamelCase ( ) -> Tuple: '''simple docstring''' UpperCAmelCase__ : List[str] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class UpperCAmelCase_ ( unittest.TestCase ): @cached_property def __UpperCAmelCase ( self ): return ViTImageProcessor.from_pretrained("""google/vit-base-patch16-224""" ) if is_vision_available() else None @slow def __UpperCAmelCase ( self ): UpperCAmelCase__ : Optional[int] = TFViTForImageClassification.from_pretrained("""google/vit-base-patch16-224""" ) UpperCAmelCase__ : List[Any] = self.default_image_processor UpperCAmelCase__ : Union[str, Any] = prepare_img() UpperCAmelCase__ : Optional[Any] = image_processor(images=_lowerCAmelCase , return_tensors="""tf""" ) # forward pass UpperCAmelCase__ : int = model(**_lowerCAmelCase ) # verify the logits UpperCAmelCase__ : Tuple = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) UpperCAmelCase__ : int = tf.constant([-0.2_7_4_4, 0.8_2_1_5, -0.0_8_3_6] ) tf.debugging.assert_near(outputs.logits[0, :3] , _lowerCAmelCase , atol=1e-4 )
79
0
import copy import fnmatch import json import os import pickle as pkl import shutil import sys import tarfile import tempfile from collections import OrderedDict from contextlib import contextmanager from functools import partial from hashlib import shaaaa from io import BytesIO from pathlib import Path from urllib.parse import urlparse from zipfile import ZipFile, is_zipfile import cva import numpy as np import requests import wget from filelock import FileLock from PIL import Image from tqdm.auto import tqdm from yaml import Loader, dump, load try: import torch lowerCAmelCase__ = True except ImportError: lowerCAmelCase__ = False try: from torch.hub import _get_torch_home lowerCAmelCase__ = _get_torch_home() except ImportError: lowerCAmelCase__ = os.path.expanduser( os.getenv("""TORCH_HOME""", os.path.join(os.getenv("""XDG_CACHE_HOME""", """~/.cache"""), """torch""")) ) lowerCAmelCase__ = os.path.join(torch_cache_home, """transformers""") lowerCAmelCase__ = """https://cdn.huggingface.co""" lowerCAmelCase__ = """https://s3.amazonaws.com/models.huggingface.co/bert""" lowerCAmelCase__ = """/""".join(str(Path(__file__).resolve()).split("""/""")[:-1]) lowerCAmelCase__ = os.path.join(PATH, """config.yaml""") lowerCAmelCase__ = os.path.join(PATH, """attributes.txt""") lowerCAmelCase__ = os.path.join(PATH, """objects.txt""") lowerCAmelCase__ = os.getenv("""PYTORCH_PRETRAINED_BERT_CACHE""", default_cache_path) lowerCAmelCase__ = os.getenv("""PYTORCH_TRANSFORMERS_CACHE""", PYTORCH_PRETRAINED_BERT_CACHE) lowerCAmelCase__ = os.getenv("""TRANSFORMERS_CACHE""", PYTORCH_TRANSFORMERS_CACHE) lowerCAmelCase__ = """pytorch_model.bin""" lowerCAmelCase__ = """config.yaml""" def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Union[str, Any]=OBJECTS , SCREAMING_SNAKE_CASE_: Any=ATTRIBUTES ) -> int: '''simple docstring''' A__ = [] with open(SCREAMING_SNAKE_CASE_ ) as f: for object in f.readlines(): vg_classes.append(object.split("," )[0].lower().strip() ) A__ = [] with open(SCREAMING_SNAKE_CASE_ ) as f: for object in f.readlines(): vg_attrs.append(object.split("," )[0].lower().strip() ) return vg_classes, vg_attrs def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: List[str] ) -> str: '''simple docstring''' A__ = OrderedDict() with open(SCREAMING_SNAKE_CASE_ , "rb" ) as f: A__ = pkl.load(SCREAMING_SNAKE_CASE_ )["model"] for k in copy.deepcopy(list(ckp.keys() ) ): A__ = ckp.pop(SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , np.ndarray ): A__ = torch.tensor(SCREAMING_SNAKE_CASE_ ) else: assert isinstance(SCREAMING_SNAKE_CASE_ , torch.tensor ), type(SCREAMING_SNAKE_CASE_ ) A__ = v return r class a__ : """simple docstring""" __lowerCamelCase = {} def __init__( self , lowercase , lowercase = "root" , lowercase=0 ) -> Union[str, Any]: '''simple docstring''' A__ = name A__ = level A__ = {} for k, v in dictionary.items(): if v is None: raise ValueError() A__ = copy.deepcopy(lowercase ) A__ = copy.deepcopy(lowercase ) if isinstance(lowercase , lowercase ): A__ = Config(lowercase , name=lowercase , level=level + 1 ) A__ = v setattr(self , lowercase , lowercase ) A__ = d def __repr__( self ) -> List[Any]: '''simple docstring''' return str(list((self._pointer.keys()) ) ) def __setattr__( self , lowercase , lowercase ) -> Dict: '''simple docstring''' A__ = val A__ = val A__ = key.split("." ) A__ = len(lowercase ) - 1 A__ = self._pointer if len(lowercase ) > 1: for i, l in enumerate(lowercase ): if hasattr(self , lowercase ) and isinstance(getattr(self , lowercase ) , lowercase ): setattr(getattr(self , lowercase ) , ".".join(levels[i:] ) , lowercase ) if l == last_level: A__ = val else: A__ = pointer[l] def UpperCamelCase ( self ) -> List[str]: '''simple docstring''' return self._pointer def UpperCamelCase ( self , lowercase , lowercase ) -> Optional[Any]: '''simple docstring''' with open(F'{file_name}' , "w" ) as stream: dump(lowercase , lowercase ) def UpperCamelCase ( self , lowercase , lowercase ) -> List[str]: '''simple docstring''' with open(F'{file_name}' , "w" ) as stream: json.dump(lowercase , lowercase ) @staticmethod def UpperCamelCase ( lowercase ) -> Optional[int]: '''simple docstring''' with open(lowercase ) as stream: A__ = load(lowercase , Loader=lowercase ) return data def __str__( self ) -> Optional[int]: '''simple docstring''' A__ = " " if self._name != "root": A__ = F'{t * (self._level-1)}{self._name}:\n' else: A__ = "" A__ = self._level for i, (k, v) in enumerate(self._pointer.items() ): if isinstance(lowercase , lowercase ): r += F'{t * (self._level)}{v}\n' self._level += 1 else: r += F'{t * (self._level)}{k}: {v} ({type(lowercase ).__name__})\n' A__ = level return r[:-1] @classmethod def UpperCamelCase ( cls , lowercase , **lowercase ) -> Optional[Any]: '''simple docstring''' A__ , A__ = cls.get_config_dict(lowercase , **lowercase ) return cls(lowercase ) @classmethod def UpperCamelCase ( cls , lowercase , **lowercase ) -> List[str]: '''simple docstring''' A__ = kwargs.pop("cache_dir" , lowercase ) A__ = kwargs.pop("force_download" , lowercase ) A__ = kwargs.pop("resume_download" , lowercase ) A__ = kwargs.pop("proxies" , lowercase ) A__ = kwargs.pop("local_files_only" , lowercase ) if os.path.isdir(lowercase ): A__ = os.path.join(lowercase , lowercase ) elif os.path.isfile(lowercase ) or is_remote_url(lowercase ): A__ = pretrained_model_name_or_path else: A__ = hf_bucket_url(lowercase , filename=lowercase , use_cdn=lowercase ) try: # Load from URL or cache if already cached A__ = cached_path( lowercase , cache_dir=lowercase , force_download=lowercase , proxies=lowercase , resume_download=lowercase , local_files_only=lowercase , ) # Load config dict if resolved_config_file is None: raise EnvironmentError A__ = Config.load_yaml(lowercase ) except EnvironmentError: A__ = "Can't load config for" raise EnvironmentError(lowercase ) if resolved_config_file == config_file: print("loading configuration file from path" ) else: print("loading configuration file cache" ) return Config.load_yaml(lowercase ), kwargs def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Union[str, Any] ) -> List[str]: '''simple docstring''' A__ = torch.load("dump.pt" , map_location=in_tensor.device ) A__ = in_tensor.numpy() A__ = out_tensor.numpy()[0] print(na.shape , na[0, 0, :5] ) print(na.shape , na[0, 0, :5] ) assert np.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , rtol=0.01 , atol=0.1 ), ( F'{sum([1 for x in np.isclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , rtol=0.01 , atol=0.1 ).flatten() if x is False] )/len(na.flatten() )*1_0_0:.4f} %' " element-wise mismatch" ) raise Exception("tensors are all good" ) # Hugging face functions below def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Union[str, Any] ) -> List[str]: '''simple docstring''' A__ = urlparse(SCREAMING_SNAKE_CASE_ ) return parsed.scheme in ("http", "https") def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: str , SCREAMING_SNAKE_CASE_: str , SCREAMING_SNAKE_CASE_: Any=True ) -> str: '''simple docstring''' A__ = CLOUDFRONT_DISTRIB_PREFIX if use_cdn else S3_BUCKET_PREFIX A__ = "/" not in model_id if legacy_format: return F'{endpoint}/{model_id}-{filename}' else: return F'{endpoint}/{model_id}/{filename}' def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: int , SCREAMING_SNAKE_CASE_: Union[str, Any] , SCREAMING_SNAKE_CASE_: Union[str, Any]=None , SCREAMING_SNAKE_CASE_: Union[str, Any]=0 , SCREAMING_SNAKE_CASE_: Union[str, Any]=None , ) -> Dict: '''simple docstring''' A__ = "python/{}".format(sys.version.split()[0] ) if _torch_available: ua += "; torch/{}".format(torch.__version__ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): ua += "; " + "; ".join("{}/{}".format(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for k, v in user_agent.items() ) elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): ua += "; " + user_agent A__ = {"user-agent": ua} if resume_size > 0: A__ = "bytes=%d-" % (resume_size,) A__ = requests.get(SCREAMING_SNAKE_CASE_ , stream=SCREAMING_SNAKE_CASE_ , proxies=SCREAMING_SNAKE_CASE_ , headers=SCREAMING_SNAKE_CASE_ ) if response.status_code == 4_1_6: # Range not satisfiable return A__ = response.headers.get("Content-Length" ) A__ = resume_size + int(SCREAMING_SNAKE_CASE_ ) if content_length is not None else None A__ = tqdm( unit="B" , unit_scale=SCREAMING_SNAKE_CASE_ , total=SCREAMING_SNAKE_CASE_ , initial=SCREAMING_SNAKE_CASE_ , desc="Downloading" , ) for chunk in response.iter_content(chunk_size=1_0_2_4 ): if chunk: # filter out keep-alive new chunks progress.update(len(SCREAMING_SNAKE_CASE_ ) ) temp_file.write(SCREAMING_SNAKE_CASE_ ) progress.close() def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: List[str] , SCREAMING_SNAKE_CASE_: str=None , SCREAMING_SNAKE_CASE_: str=False , SCREAMING_SNAKE_CASE_: Optional[int]=None , SCREAMING_SNAKE_CASE_: Union[str, Any]=1_0 , SCREAMING_SNAKE_CASE_: str=False , SCREAMING_SNAKE_CASE_: str=None , SCREAMING_SNAKE_CASE_: Tuple=False , ) -> str: '''simple docstring''' if cache_dir is None: A__ = TRANSFORMERS_CACHE if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): A__ = str(SCREAMING_SNAKE_CASE_ ) os.makedirs(SCREAMING_SNAKE_CASE_ , exist_ok=SCREAMING_SNAKE_CASE_ ) A__ = None if not local_files_only: try: A__ = requests.head(SCREAMING_SNAKE_CASE_ , allow_redirects=SCREAMING_SNAKE_CASE_ , proxies=SCREAMING_SNAKE_CASE_ , timeout=SCREAMING_SNAKE_CASE_ ) if response.status_code == 2_0_0: A__ = response.headers.get("ETag" ) except (EnvironmentError, requests.exceptions.Timeout): # etag is already None pass A__ = url_to_filename(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # get cache path to put the file A__ = os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # etag is None = we don't have a connection, or url doesn't exist, or is otherwise inaccessible. # try to get the last downloaded one if etag is None: if os.path.exists(SCREAMING_SNAKE_CASE_ ): return cache_path else: A__ = [ file for file in fnmatch.filter(os.listdir(SCREAMING_SNAKE_CASE_ ) , filename + ".*" ) if not file.endswith(".json" ) and not file.endswith(".lock" ) ] if len(SCREAMING_SNAKE_CASE_ ) > 0: return os.path.join(SCREAMING_SNAKE_CASE_ , matching_files[-1] ) else: # If files cannot be found and local_files_only=True, # the models might've been found if local_files_only=False # Notify the user about that if local_files_only: raise ValueError( "Cannot find the requested files in the cached path and outgoing traffic has been" " disabled. To enable model look-ups and downloads online, set 'local_files_only'" " to False." ) return None # From now on, etag is not None. if os.path.exists(SCREAMING_SNAKE_CASE_ ) and not force_download: return cache_path # Prevent parallel downloads of the same file with a lock. A__ = cache_path + ".lock" with FileLock(SCREAMING_SNAKE_CASE_ ): # If the download just completed while the lock was activated. if os.path.exists(SCREAMING_SNAKE_CASE_ ) and not force_download: # Even if returning early like here, the lock will be released. return cache_path if resume_download: A__ = cache_path + ".incomplete" @contextmanager def _resumable_file_manager(): with open(SCREAMING_SNAKE_CASE_ , "a+b" ) as f: yield f A__ = _resumable_file_manager if os.path.exists(SCREAMING_SNAKE_CASE_ ): A__ = os.stat(SCREAMING_SNAKE_CASE_ ).st_size else: A__ = 0 else: A__ = partial(tempfile.NamedTemporaryFile , dir=SCREAMING_SNAKE_CASE_ , delete=SCREAMING_SNAKE_CASE_ ) A__ = 0 # Download to temporary file, then copy to cache dir once finished. # Otherwise you get corrupt cache entries if the download gets interrupted. with temp_file_manager() as temp_file: print( "%s not found in cache or force_download set to True, downloading to %s" , SCREAMING_SNAKE_CASE_ , temp_file.name , ) http_get( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , proxies=SCREAMING_SNAKE_CASE_ , resume_size=SCREAMING_SNAKE_CASE_ , user_agent=SCREAMING_SNAKE_CASE_ , ) os.replace(temp_file.name , SCREAMING_SNAKE_CASE_ ) A__ = {"url": url, "etag": etag} A__ = cache_path + ".json" with open(SCREAMING_SNAKE_CASE_ , "w" ) as meta_file: json.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return cache_path def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Dict , SCREAMING_SNAKE_CASE_: Any=None ) -> int: '''simple docstring''' A__ = url.encode("utf-8" ) A__ = shaaaa(SCREAMING_SNAKE_CASE_ ) A__ = url_hash.hexdigest() if etag: A__ = etag.encode("utf-8" ) A__ = shaaaa(SCREAMING_SNAKE_CASE_ ) filename += "." + etag_hash.hexdigest() if url.endswith(".h5" ): filename += ".h5" return filename def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Optional[int] , SCREAMING_SNAKE_CASE_: List[Any]=None , SCREAMING_SNAKE_CASE_: Dict=False , SCREAMING_SNAKE_CASE_: List[str]=None , SCREAMING_SNAKE_CASE_: str=False , SCREAMING_SNAKE_CASE_: int=None , SCREAMING_SNAKE_CASE_: Optional[int]=False , SCREAMING_SNAKE_CASE_: str=False , SCREAMING_SNAKE_CASE_: Optional[Any]=False , ) -> Tuple: '''simple docstring''' if cache_dir is None: A__ = TRANSFORMERS_CACHE if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): A__ = str(SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): A__ = str(SCREAMING_SNAKE_CASE_ ) if is_remote_url(SCREAMING_SNAKE_CASE_ ): # URL, so get it from the cache (downloading if necessary) A__ = get_from_cache( SCREAMING_SNAKE_CASE_ , cache_dir=SCREAMING_SNAKE_CASE_ , force_download=SCREAMING_SNAKE_CASE_ , proxies=SCREAMING_SNAKE_CASE_ , resume_download=SCREAMING_SNAKE_CASE_ , user_agent=SCREAMING_SNAKE_CASE_ , local_files_only=SCREAMING_SNAKE_CASE_ , ) elif os.path.exists(SCREAMING_SNAKE_CASE_ ): # File, and it exists. A__ = url_or_filename elif urlparse(SCREAMING_SNAKE_CASE_ ).scheme == "": # File, but it doesn't exist. raise EnvironmentError("file {} not found".format(SCREAMING_SNAKE_CASE_ ) ) else: # Something unknown raise ValueError("unable to parse {} as a URL or as a local path".format(SCREAMING_SNAKE_CASE_ ) ) if extract_compressed_file: if not is_zipfile(SCREAMING_SNAKE_CASE_ ) and not tarfile.is_tarfile(SCREAMING_SNAKE_CASE_ ): return output_path # Path where we extract compressed archives # We avoid '.' in dir name and add "-extracted" at the end: "./model.zip" => "./model-zip-extracted/" A__ , A__ = os.path.split(SCREAMING_SNAKE_CASE_ ) A__ = output_file.replace("." , "-" ) + "-extracted" A__ = os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if os.path.isdir(SCREAMING_SNAKE_CASE_ ) and os.listdir(SCREAMING_SNAKE_CASE_ ) and not force_extract: return output_path_extracted # Prevent parallel extractions A__ = output_path + ".lock" with FileLock(SCREAMING_SNAKE_CASE_ ): shutil.rmtree(SCREAMING_SNAKE_CASE_ , ignore_errors=SCREAMING_SNAKE_CASE_ ) os.makedirs(SCREAMING_SNAKE_CASE_ ) if is_zipfile(SCREAMING_SNAKE_CASE_ ): with ZipFile(SCREAMING_SNAKE_CASE_ , "r" ) as zip_file: zip_file.extractall(SCREAMING_SNAKE_CASE_ ) zip_file.close() elif tarfile.is_tarfile(SCREAMING_SNAKE_CASE_ ): A__ = tarfile.open(SCREAMING_SNAKE_CASE_ ) tar_file.extractall(SCREAMING_SNAKE_CASE_ ) tar_file.close() else: raise EnvironmentError("Archive format of {} could not be identified".format(SCREAMING_SNAKE_CASE_ ) ) return output_path_extracted return output_path def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Optional[int] , SCREAMING_SNAKE_CASE_: Optional[Any]="," ) -> int: '''simple docstring''' assert isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if os.path.isfile(SCREAMING_SNAKE_CASE_ ): with open(SCREAMING_SNAKE_CASE_ ) as f: A__ = eval(f.read() ) else: A__ = requests.get(SCREAMING_SNAKE_CASE_ ) try: A__ = requests.json() except Exception: A__ = req.content.decode() assert data is not None, "could not connect" try: A__ = eval(SCREAMING_SNAKE_CASE_ ) except Exception: A__ = data.split("\n" ) req.close() return data def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Optional[int] ) -> List[str]: '''simple docstring''' A__ = requests.get(SCREAMING_SNAKE_CASE_ ) A__ = np.array(Image.open(BytesIO(response.content ) ) ) return img def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: List[Any] ) -> Optional[Any]: '''simple docstring''' A__ = url.split("/" )[-1] if fn not in os.listdir(os.getcwd() ): wget.download(SCREAMING_SNAKE_CASE_ ) with open(SCREAMING_SNAKE_CASE_ , "rb" ) as stream: A__ = pkl.load(SCREAMING_SNAKE_CASE_ ) A__ = weights.pop("model" ) A__ = {} for k, v in model.items(): A__ = torch.from_numpy(SCREAMING_SNAKE_CASE_ ) if "running_var" in k: A__ = torch.tensor([0] ) A__ = k.replace("running_var" , "num_batches_tracked" ) A__ = zero return new def lowerCAmelCase__ ( ) -> Union[str, Any]: '''simple docstring''' print(F'{os.path.abspath(os.path.join(SCREAMING_SNAKE_CASE_ , os.pardir ) )}/demo.ipynb' ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: str , SCREAMING_SNAKE_CASE_: Union[str, Any]="RGB" ) -> Tuple: '''simple docstring''' assert isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if os.path.isfile(SCREAMING_SNAKE_CASE_ ): A__ = cva.imread(SCREAMING_SNAKE_CASE_ ) else: A__ = get_image_from_url(SCREAMING_SNAKE_CASE_ ) assert img is not None, F'could not connect to: {im}' A__ = cva.cvtColor(SCREAMING_SNAKE_CASE_ , cva.COLOR_BGR2RGB ) if input_format == "RGB": A__ = img[:, :, ::-1] return img def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: List[Any] , SCREAMING_SNAKE_CASE_: Dict=1 ) -> Optional[int]: '''simple docstring''' return (images[i : i + batch] for i in range(0 , len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ))
626
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class a__ ( unittest.TestCase ): """simple docstring""" @slow def UpperCamelCase ( self ) -> int: '''simple docstring''' A__ = TFCamembertModel.from_pretrained("jplu/tf-camembert-base" ) A__ = tf.convert_to_tensor( [[5, 121, 11, 660, 16, 730, 25543, 110, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" A__ = model(lowercase )["last_hidden_state"] A__ = tf.TensorShape((1, 10, 768) ) self.assertEqual(output.shape , lowercase ) # compare the actual values for a slice. A__ = tf.convert_to_tensor( [[[-0.0254, 0.0235, 0.1027], [0.0606, -0.1811, -0.0418], [-0.1561, -0.1127, 0.2687]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
626
1
"""simple docstring""" import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def lowerCAmelCase_ (_SCREAMING_SNAKE_CASE :Tuple , _SCREAMING_SNAKE_CASE :Tuple , _SCREAMING_SNAKE_CASE :List[Any] , _SCREAMING_SNAKE_CASE :Union[str, Any] , _SCREAMING_SNAKE_CASE :Tuple=True , _SCREAMING_SNAKE_CASE :int="pt" ) -> int: a_ : List[str] = {"add_prefix_space": True} if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and not line.startswith(" " ) else {} a_ : Union[str, Any] = padding_side return tokenizer( [line] , max_length=_SCREAMING_SNAKE_CASE , padding="max_length" if pad_to_max_length else None , truncation=_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) def lowerCAmelCase_ (_SCREAMING_SNAKE_CASE :str , _SCREAMING_SNAKE_CASE :Dict , _SCREAMING_SNAKE_CASE :str=None , ) -> Any: a_ : str = input_ids.ne(_SCREAMING_SNAKE_CASE ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class UpperCAmelCase__ ( __lowerCamelCase ): """simple docstring""" def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE="train" , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE="" , ) -> Optional[Any]: super().__init__() a_ : Any = Path(_SCREAMING_SNAKE_CASE ).joinpath(type_path + ".source" ) a_ : Optional[int] = Path(_SCREAMING_SNAKE_CASE ).joinpath(type_path + ".target" ) a_ : List[str] = self.get_char_lens(self.src_file ) a_ : List[str] = max_source_length a_ : Optional[int] = max_target_length assert min(self.src_lens ) > 0, f'''found empty line in {self.src_file}''' a_ : List[str] = tokenizer a_ : Optional[int] = prefix if n_obs is not None: a_ : Dict = self.src_lens[:n_obs] a_ : Optional[Any] = src_lang a_ : str = tgt_lang def __len__( self ) -> Dict: return len(self.src_lens ) def __getitem__( self , _SCREAMING_SNAKE_CASE ) -> Dict[str, torch.Tensor]: a_ : Any = index + 1 # linecache starts at 1 a_ : str = self.prefix + linecache.getline(str(self.src_file ) , _SCREAMING_SNAKE_CASE ).rstrip("\n" ) a_ : List[str] = linecache.getline(str(self.tgt_file ) , _SCREAMING_SNAKE_CASE ).rstrip("\n" ) assert source_line, f'''empty source line for index {index}''' assert tgt_line, f'''empty tgt line for index {index}''' # Need to add eos token manually for T5 if isinstance(self.tokenizer , _SCREAMING_SNAKE_CASE ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right a_ : Tuple = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , _SCREAMING_SNAKE_CASE ) else self.tokenizer ) a_ : Any = self.tokenizer.generator if isinstance(self.tokenizer , _SCREAMING_SNAKE_CASE ) else self.tokenizer a_ : Optional[Any] = encode_line(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , self.max_source_length , "right" ) a_ : Any = encode_line(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , self.max_target_length , "right" ) a_ : str = source_inputs["input_ids"].squeeze() a_ : int = target_inputs["input_ids"].squeeze() a_ : Union[str, Any] = source_inputs["attention_mask"].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def A ( _SCREAMING_SNAKE_CASE ) -> Dict: return [len(_SCREAMING_SNAKE_CASE ) for x in Path(_SCREAMING_SNAKE_CASE ).open().readlines()] def A ( self , _SCREAMING_SNAKE_CASE ) -> Dict[str, torch.Tensor]: a_ : Dict = torch.stack([x["input_ids"] for x in batch] ) a_ : List[Any] = torch.stack([x["attention_mask"] for x in batch] ) a_ : str = torch.stack([x["decoder_input_ids"] for x in batch] ) a_ : Union[str, Any] = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , _SCREAMING_SNAKE_CASE ) else self.tokenizer.pad_token_id ) a_ : Union[str, Any] = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , _SCREAMING_SNAKE_CASE ) else self.tokenizer.pad_token_id ) a_ : List[Any] = trim_batch(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) a_ , a_ : Union[str, Any] = trim_batch(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE ) a_ : str = { "input_ids": source_ids, "attention_mask": source_mask, "decoder_input_ids": y, } return batch UpperCamelCase = getLogger(__name__) def lowerCAmelCase_ (_SCREAMING_SNAKE_CASE :List[List] ) -> Tuple: return list(itertools.chain.from_iterable(_SCREAMING_SNAKE_CASE ) ) def lowerCAmelCase_ (_SCREAMING_SNAKE_CASE :str ) -> None: a_ : Tuple = get_git_info() save_json(_SCREAMING_SNAKE_CASE , os.path.join(_SCREAMING_SNAKE_CASE , "git_log.json" ) ) def lowerCAmelCase_ (_SCREAMING_SNAKE_CASE :int , _SCREAMING_SNAKE_CASE :Any , _SCREAMING_SNAKE_CASE :Tuple=4 , **_SCREAMING_SNAKE_CASE :Optional[int] ) -> Dict: with open(_SCREAMING_SNAKE_CASE , "w" ) as f: json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , indent=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def lowerCAmelCase_ (_SCREAMING_SNAKE_CASE :Optional[int] ) -> int: with open(_SCREAMING_SNAKE_CASE ) as f: return json.load(_SCREAMING_SNAKE_CASE ) def lowerCAmelCase_ () -> str: a_ : Union[str, Any] = git.Repo(search_parent_directories=_SCREAMING_SNAKE_CASE ) a_ : List[str] = { "repo_id": str(_SCREAMING_SNAKE_CASE ), "repo_sha": str(repo.head.object.hexsha ), "repo_branch": str(repo.active_branch ), "hostname": str(socket.gethostname() ), } return repo_infos def lowerCAmelCase_ (_SCREAMING_SNAKE_CASE :Callable , _SCREAMING_SNAKE_CASE :Iterable ) -> List: return list(map(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) def lowerCAmelCase_ (_SCREAMING_SNAKE_CASE :Optional[int] , _SCREAMING_SNAKE_CASE :Union[str, Any] ) -> Union[str, Any]: with open(_SCREAMING_SNAKE_CASE , "wb" ) as f: return pickle.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def lowerCAmelCase_ (_SCREAMING_SNAKE_CASE :Dict ) -> Dict: def remove_articles(_SCREAMING_SNAKE_CASE :List[Any] ): return re.sub(r"\b(a|an|the)\b" , " " , _SCREAMING_SNAKE_CASE ) def white_space_fix(_SCREAMING_SNAKE_CASE :Tuple ): return " ".join(text.split() ) def remove_punc(_SCREAMING_SNAKE_CASE :Optional[int] ): a_ : Any = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_SCREAMING_SNAKE_CASE :List[str] ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_SCREAMING_SNAKE_CASE ) ) ) ) def lowerCAmelCase_ (_SCREAMING_SNAKE_CASE :Tuple , _SCREAMING_SNAKE_CASE :List[str] ) -> Union[str, Any]: a_ : Tuple = normalize_answer(_SCREAMING_SNAKE_CASE ).split() a_ : Any = normalize_answer(_SCREAMING_SNAKE_CASE ).split() a_ : Optional[Any] = Counter(_SCREAMING_SNAKE_CASE ) & Counter(_SCREAMING_SNAKE_CASE ) a_ : str = sum(common.values() ) if num_same == 0: return 0 a_ : Any = 1.0 * num_same / len(_SCREAMING_SNAKE_CASE ) a_ : Any = 1.0 * num_same / len(_SCREAMING_SNAKE_CASE ) a_ : List[Any] = (2 * precision * recall) / (precision + recall) return fa def lowerCAmelCase_ (_SCREAMING_SNAKE_CASE :Any , _SCREAMING_SNAKE_CASE :Any ) -> int: return normalize_answer(_SCREAMING_SNAKE_CASE ) == normalize_answer(_SCREAMING_SNAKE_CASE ) def lowerCAmelCase_ (_SCREAMING_SNAKE_CASE :List[str] , _SCREAMING_SNAKE_CASE :List[str] ) -> Dict: assert len(_SCREAMING_SNAKE_CASE ) == len(_SCREAMING_SNAKE_CASE ) a_ : Optional[Any] = 0 for hypo, pred in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): em += exact_match_score(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) > 0: em /= len(_SCREAMING_SNAKE_CASE ) return {"em": em} def lowerCAmelCase_ (_SCREAMING_SNAKE_CASE :Optional[Any] ) -> Tuple: return model_prefix.startswith("rag" ) def lowerCAmelCase_ (_SCREAMING_SNAKE_CASE :int , _SCREAMING_SNAKE_CASE :Union[str, Any] , _SCREAMING_SNAKE_CASE :Union[str, Any] ) -> Union[str, Any]: a_ : List[str] = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead a_ : Optional[Any] = "dropout_rate" for p in extra_params: if getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if not hasattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and not hasattr(_SCREAMING_SNAKE_CASE , equivalent_param[p] ): logger.info("config doesn't have a `{}` attribute".format(_SCREAMING_SNAKE_CASE ) ) delattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) continue a_ : Tuple = p if hasattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else equivalent_param[p] setattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) delattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return hparams, config
473
"""simple docstring""" from __future__ import annotations def lowerCAmelCase_ (_SCREAMING_SNAKE_CASE :tuple[int, int] , _SCREAMING_SNAKE_CASE :int ) -> list[tuple[int, int]]: a_ , a_ : Optional[int] = position a_ : Optional[Any] = [ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] a_ : List[str] = [] for position in positions: a_ , a_ : List[Any] = position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(_SCREAMING_SNAKE_CASE ) return permissible_positions def lowerCAmelCase_ (_SCREAMING_SNAKE_CASE :list[list[int]] ) -> bool: return not any(elem == 0 for row in board for elem in row ) def lowerCAmelCase_ (_SCREAMING_SNAKE_CASE :list[list[int]] , _SCREAMING_SNAKE_CASE :tuple[int, int] , _SCREAMING_SNAKE_CASE :int ) -> bool: if is_complete(_SCREAMING_SNAKE_CASE ): return True for position in get_valid_pos(_SCREAMING_SNAKE_CASE , len(_SCREAMING_SNAKE_CASE ) ): a_ , a_ : int = position if board[y][x] == 0: a_ : Any = curr + 1 if open_knight_tour_helper(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , curr + 1 ): return True a_ : Optional[Any] = 0 return False def lowerCAmelCase_ (_SCREAMING_SNAKE_CASE :int ) -> list[list[int]]: a_ : int = [[0 for i in range(_SCREAMING_SNAKE_CASE )] for j in range(_SCREAMING_SNAKE_CASE )] for i in range(_SCREAMING_SNAKE_CASE ): for j in range(_SCREAMING_SNAKE_CASE ): a_ : Optional[int] = 1 if open_knight_tour_helper(_SCREAMING_SNAKE_CASE , (i, j) , 1 ): return board a_ : Dict = 0 a_ : Union[str, Any] = F'''Open Kight Tour cannot be performed on a board of size {n}''' raise ValueError(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
473
1
'''simple docstring''' from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging a_ = logging.get_logger(__name__) class UpperCAmelCase_ ( snake_case__ ): UpperCAmelCase_ = ["""pixel_values"""] def __init__( self , lowercase_ = True , lowercase_ = 1 / 2_55 , lowercase_ = True , lowercase_ = 8 , **lowercase_ , ): super().__init__(**lowercase_) snake_case_ : int = do_rescale snake_case_ : Dict = rescale_factor snake_case_ : Any = do_pad snake_case_ : Dict = pad_size def snake_case__ ( self , lowercase_ , lowercase_ , lowercase_ = None , **lowercase_): return rescale(lowercase_ , scale=lowercase_ , data_format=lowercase_ , **lowercase_) def snake_case__ ( self , lowercase_ , lowercase_ , lowercase_ = None): snake_case_ : int = get_image_size(lowercase_) snake_case_ : Optional[Any] = (old_height // size + 1) * size - old_height snake_case_ : Any = (old_width // size + 1) * size - old_width return pad(lowercase_ , ((0, pad_height), (0, pad_width)) , mode="symmetric" , data_format=lowercase_) def snake_case__ ( self , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = ChannelDimension.FIRST , **lowercase_ , ): snake_case_ : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale snake_case_ : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case_ : int = do_pad if do_pad is not None else self.do_pad snake_case_ : int = pad_size if pad_size is not None else self.pad_size snake_case_ : Optional[int] = make_list_of_images(lowercase_) if not valid_images(lowercase_): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray.") if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True.") # All transformations expect numpy arrays. snake_case_ : Union[str, Any] = [to_numpy_array(lowercase_) for image in images] if do_rescale: snake_case_ : List[Any] = [self.rescale(image=lowercase_ , scale=lowercase_) for image in images] if do_pad: snake_case_ : str = [self.pad(lowercase_ , size=lowercase_) for image in images] snake_case_ : int = [to_channel_dimension_format(lowercase_ , lowercase_) for image in images] snake_case_ : Dict = {"pixel_values": images} return BatchFeature(data=lowercase_ , tensor_type=lowercase_)
703
'''simple docstring''' import argparse from typing import List import evaluate import numpy as np import torch from datasets import DatasetDict, load_dataset # New Code # # We'll be using StratifiedKFold for this example from sklearn.model_selection import StratifiedKFold from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to perform Cross Validation, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## a_ = 16 a_ = 32 def UpperCamelCase_ ( __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE = 1_6 ): """simple docstring""" snake_case_ : Union[str, Any] = AutoTokenizer.from_pretrained("bert-base-cased" ) snake_case_ : int = DatasetDict( { "train": dataset["train"].select(__SCREAMING_SNAKE_CASE ), "validation": dataset["train"].select(__SCREAMING_SNAKE_CASE ), "test": dataset["validation"], } ) def tokenize_function(__SCREAMING_SNAKE_CASE ): # max_length=None => use the model max length (it's actually the default) snake_case_ : str = tokenizer(examples["sentence1"], examples["sentence2"], truncation=__SCREAMING_SNAKE_CASE, max_length=__SCREAMING_SNAKE_CASE ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): snake_case_ : List[Any] = datasets.map( __SCREAMING_SNAKE_CASE, batched=__SCREAMING_SNAKE_CASE, remove_columns=["idx", "sentence1", "sentence2"], ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library snake_case_ : Dict = tokenized_datasets.rename_column("label", "labels" ) def collate_fn(__SCREAMING_SNAKE_CASE ): # On TPU it's best to pad everything to the same length or training will be very slow. snake_case_ : Dict = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": snake_case_ : Optional[int] = 1_6 elif accelerator.mixed_precision != "no": snake_case_ : Tuple = 8 else: snake_case_ : Union[str, Any] = None return tokenizer.pad( __SCREAMING_SNAKE_CASE, padding="longest", max_length=__SCREAMING_SNAKE_CASE, pad_to_multiple_of=__SCREAMING_SNAKE_CASE, return_tensors="pt", ) # Instantiate dataloaders. snake_case_ : Optional[int] = DataLoader( tokenized_datasets["train"], shuffle=__SCREAMING_SNAKE_CASE, collate_fn=__SCREAMING_SNAKE_CASE, batch_size=__SCREAMING_SNAKE_CASE ) snake_case_ : int = DataLoader( tokenized_datasets["validation"], shuffle=__SCREAMING_SNAKE_CASE, collate_fn=__SCREAMING_SNAKE_CASE, batch_size=__SCREAMING_SNAKE_CASE ) snake_case_ : Tuple = DataLoader( tokenized_datasets["test"], shuffle=__SCREAMING_SNAKE_CASE, collate_fn=__SCREAMING_SNAKE_CASE, batch_size=__SCREAMING_SNAKE_CASE ) return train_dataloader, eval_dataloader, test_dataloader def UpperCamelCase_ ( __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE ): """simple docstring""" snake_case_ : Optional[Any] = [] # Download the dataset snake_case_ : Tuple = load_dataset("glue", "mrpc" ) # Create our splits snake_case_ : Union[str, Any] = StratifiedKFold(n_splits=int(args.num_folds ) ) # Initialize accelerator snake_case_ : Optional[Any] = Accelerator(cpu=args.cpu, mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs snake_case_ : Optional[Any] = config["lr"] snake_case_ : str = int(config["num_epochs"] ) snake_case_ : Tuple = int(config["seed"] ) snake_case_ : Optional[Any] = int(config["batch_size"] ) snake_case_ : List[Any] = evaluate.load("glue", "mrpc" ) # If the batch size is too big we use gradient accumulation snake_case_ : List[str] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: snake_case_ : Union[str, Any] = batch_size // MAX_GPU_BATCH_SIZE snake_case_ : Union[str, Any] = MAX_GPU_BATCH_SIZE set_seed(__SCREAMING_SNAKE_CASE ) # New Code # # Create our folds: snake_case_ : int = kfold.split(np.zeros(datasets["train"].num_rows ), datasets["train"]["label"] ) snake_case_ : Optional[int] = [] # Iterate over them for i, (train_idxs, valid_idxs) in enumerate(__SCREAMING_SNAKE_CASE ): snake_case_ , snake_case_ , snake_case_ : Tuple = get_fold_dataloaders( __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) snake_case_ : Optional[int] = AutoModelForSequenceClassification.from_pretrained("bert-base-cased", return_dict=__SCREAMING_SNAKE_CASE ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). snake_case_ : Union[str, Any] = model.to(accelerator.device ) # Instantiate optimizer snake_case_ : Any = AdamW(params=model.parameters(), lr=__SCREAMING_SNAKE_CASE ) # Instantiate scheduler snake_case_ : List[str] = get_linear_schedule_with_warmup( optimizer=__SCREAMING_SNAKE_CASE, num_warmup_steps=1_0_0, num_training_steps=(len(__SCREAMING_SNAKE_CASE ) * num_epochs) // gradient_accumulation_steps, ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ : str = accelerator.prepare( __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE ) # Now we train the model for epoch in range(__SCREAMING_SNAKE_CASE ): model.train() for step, batch in enumerate(__SCREAMING_SNAKE_CASE ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) snake_case_ : List[Any] = model(**__SCREAMING_SNAKE_CASE ) snake_case_ : Union[str, Any] = outputs.loss snake_case_ : Union[str, Any] = loss / gradient_accumulation_steps accelerator.backward(__SCREAMING_SNAKE_CASE ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__SCREAMING_SNAKE_CASE ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): snake_case_ : Dict = model(**__SCREAMING_SNAKE_CASE ) snake_case_ : str = outputs.logits.argmax(dim=-1 ) snake_case_ , snake_case_ : Dict = accelerator.gather_for_metrics((predictions, batch["labels"]) ) metric.add_batch( predictions=__SCREAMING_SNAKE_CASE, references=__SCREAMING_SNAKE_CASE, ) snake_case_ : str = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'epoch {epoch}:', __SCREAMING_SNAKE_CASE ) # New Code # # We also run predictions on the test set at the very end snake_case_ : Any = [] for step, batch in enumerate(__SCREAMING_SNAKE_CASE ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): snake_case_ : int = model(**__SCREAMING_SNAKE_CASE ) snake_case_ : Tuple = outputs.logits snake_case_ , snake_case_ : List[Any] = accelerator.gather_for_metrics((predictions, batch["labels"]) ) fold_predictions.append(predictions.cpu() ) if i == 0: # We need all of the test predictions test_references.append(references.cpu() ) # Use accelerator.print to print only on the main process. test_predictions.append(torch.cat(__SCREAMING_SNAKE_CASE, dim=0 ) ) # We now need to release all our memory and get rid of the current model, optimizer, etc accelerator.free_memory() # New Code # # Finally we check the accuracy of our folded results: snake_case_ : List[Any] = torch.cat(__SCREAMING_SNAKE_CASE, dim=0 ) snake_case_ : Any = torch.stack(__SCREAMING_SNAKE_CASE, dim=0 ).sum(dim=0 ).div(int(args.num_folds ) ).argmax(dim=-1 ) snake_case_ : Tuple = metric.compute(predictions=__SCREAMING_SNAKE_CASE, references=__SCREAMING_SNAKE_CASE ) accelerator.print("Average test metrics from all folds:", __SCREAMING_SNAKE_CASE ) def UpperCamelCase_ ( ): """simple docstring""" snake_case_ : Tuple = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision", type=__SCREAMING_SNAKE_CASE, default=__SCREAMING_SNAKE_CASE, choices=["no", "fp16", "bf16", "fp8"], help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU.", ) parser.add_argument("--cpu", action="store_true", help="If passed, will train on the CPU." ) # New Code # parser.add_argument("--num_folds", type=__SCREAMING_SNAKE_CASE, default=3, help="The number of splits to perform across the dataset" ) snake_case_ : List[Any] = parser.parse_args() snake_case_ : Optional[Any] = {"lr": 2E-5, "num_epochs": 3, "seed": 4_2, "batch_size": 1_6} training_function(__SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
92
0
'''simple docstring''' import argparse import logging import pickle from collections import Counter logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) _UpperCAmelCase : Optional[int] = logging.getLogger(__name__) if __name__ == "__main__": _UpperCAmelCase : Tuple = argparse.ArgumentParser( description='''Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)''' ) parser.add_argument( '''--data_file''', type=str, default='''data/dump.bert-base-uncased.pickle''', help='''The binarized dataset.''' ) parser.add_argument( '''--token_counts_dump''', type=str, default='''data/token_counts.bert-base-uncased.pickle''', help='''The dump file.''' ) parser.add_argument('''--vocab_size''', default=3_05_22, type=int) _UpperCAmelCase : int = parser.parse_args() logger.info(F'''Loading data from {args.data_file}''') with open(args.data_file, '''rb''') as fp: _UpperCAmelCase : str = pickle.load(fp) logger.info('''Counting occurrences for MLM.''') _UpperCAmelCase : Optional[int] = Counter() for tk_ids in data: counter.update(tk_ids) _UpperCAmelCase : Union[str, Any] = [0] * args.vocab_size for k, v in counter.items(): _UpperCAmelCase : Union[str, Any] = v logger.info(F'''Dump to {args.token_counts_dump}''') with open(args.token_counts_dump, '''wb''') as handle: pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
107
"""simple docstring""" from ..utils import ( OptionalDependencyNotAvailable, is_flax_available, is_scipy_available, is_torch_available, is_torchsde_available, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_pt_objects import * # noqa F403 else: from .scheduling_consistency_models import CMStochasticIterativeScheduler from .scheduling_ddim import DDIMScheduler from .scheduling_ddim_inverse import DDIMInverseScheduler from .scheduling_ddim_parallel import DDIMParallelScheduler from .scheduling_ddpm import DDPMScheduler from .scheduling_ddpm_parallel import DDPMParallelScheduler from .scheduling_deis_multistep import DEISMultistepScheduler from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler from .scheduling_euler_discrete import EulerDiscreteScheduler from .scheduling_heun_discrete import HeunDiscreteScheduler from .scheduling_ipndm import IPNDMScheduler from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler from .scheduling_karras_ve import KarrasVeScheduler from .scheduling_pndm import PNDMScheduler from .scheduling_repaint import RePaintScheduler from .scheduling_sde_ve import ScoreSdeVeScheduler from .scheduling_sde_vp import ScoreSdeVpScheduler from .scheduling_unclip import UnCLIPScheduler from .scheduling_unipc_multistep import UniPCMultistepScheduler from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin from .scheduling_vq_diffusion import VQDiffusionScheduler try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_flax_objects import * # noqa F403 else: from .scheduling_ddim_flax import FlaxDDIMScheduler from .scheduling_ddpm_flax import FlaxDDPMScheduler from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler from .scheduling_pndm_flax import FlaxPNDMScheduler from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler from .scheduling_utils_flax import ( FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, broadcast_to_shape_from_left, ) try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .scheduling_lms_discrete import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
626
0
import unittest import numpy as np from diffusers import OnnxStableDiffusionInpaintPipelineLegacy from diffusers.utils.testing_utils import ( is_onnx_available, load_image, load_numpy, nightly, require_onnxruntime, require_torch_gpu, ) if is_onnx_available(): import onnxruntime as ort @nightly @require_onnxruntime @require_torch_gpu class _a ( unittest.TestCase ): '''simple docstring''' @property def _A ( self ): """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def _A ( self ): """simple docstring""" a__ : List[str] = ort.SessionOptions() a__ : int = False return options def _A ( self ): """simple docstring""" a__ : Any = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo.png" ) a__ : Tuple = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo_mask.png" ) a__ : Any = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/red_cat_sitting_on_a_park_bench_onnx.npy" ) # using the PNDM scheduler by default a__ : int = OnnxStableDiffusionInpaintPipelineLegacy.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="onnx" , safety_checker=__UpperCAmelCase , feature_extractor=__UpperCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) a__ : Union[str, Any] = "A red cat sitting on a park bench" a__ : int = np.random.RandomState(0 ) a__ : List[str] = pipe( prompt=__UpperCAmelCase , image=__UpperCAmelCase , mask_image=__UpperCAmelCase , strength=0.7_5 , guidance_scale=7.5 , num_inference_steps=15 , generator=__UpperCAmelCase , output_type="np" , ) a__ : Any = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 1E-2
207
def SCREAMING_SNAKE_CASE( __UpperCamelCase ) -> float: a__ : Optional[Any] = 0 while len(__UpperCamelCase ) > 1: a__ : str = 0 # Consider two files with minimum cost to be merged for _ in range(2 ): a__ : List[str] = files.index(min(__UpperCamelCase ) ) temp += files[min_index] files.pop(__UpperCamelCase ) files.append(__UpperCamelCase ) optimal_merge_cost += temp return optimal_merge_cost if __name__ == "__main__": import doctest doctest.testmod()
207
1
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def lowerCAmelCase__(self ): '''simple docstring''' __a : Optional[Any] = { """task_specific_params""": { """summarization""": {"""length_penalty""": 1.0, """max_length""": 128, """min_length""": 12, """num_beams""": 4}, """summarization_cnn""": {"""length_penalty""": 2.0, """max_length""": 142, """min_length""": 56, """num_beams""": 4}, """summarization_xsum""": {"""length_penalty""": 1.0, """max_length""": 62, """min_length""": 11, """num_beams""": 6}, } } __a : List[Any] = { """task_specific_params.summarization.length_penalty""": 1.0, """task_specific_params.summarization.max_length""": 128, """task_specific_params.summarization.min_length""": 12, """task_specific_params.summarization.num_beams""": 4, """task_specific_params.summarization_cnn.length_penalty""": 2.0, """task_specific_params.summarization_cnn.max_length""": 142, """task_specific_params.summarization_cnn.min_length""": 56, """task_specific_params.summarization_cnn.num_beams""": 4, """task_specific_params.summarization_xsum.length_penalty""": 1.0, """task_specific_params.summarization_xsum.max_length""": 62, """task_specific_params.summarization_xsum.min_length""": 11, """task_specific_params.summarization_xsum.num_beams""": 6, } self.assertEqual(flatten_dict(_lowercase ) , _lowercase ) def lowerCAmelCase__(self ): '''simple docstring''' __a : Union[str, Any] = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(transpose(_lowercase ) , x.transpose() ) ) __a : Union[str, Any] = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(transpose(_lowercase , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) ) @require_torch def lowerCAmelCase__(self ): '''simple docstring''' __a : int = np.random.randn(3 , 4 ) __a : Optional[Any] = torch.tensor(_lowercase ) self.assertTrue(np.allclose(transpose(_lowercase ) , transpose(_lowercase ).numpy() ) ) __a : Optional[Any] = np.random.randn(3 , 4 , 5 ) __a : Any = torch.tensor(_lowercase ) self.assertTrue(np.allclose(transpose(_lowercase , axes=(1, 2, 0) ) , transpose(_lowercase , axes=(1, 2, 0) ).numpy() ) ) @require_tf def lowerCAmelCase__(self ): '''simple docstring''' __a : Optional[Any] = np.random.randn(3 , 4 ) __a : int = tf.constant(_lowercase ) self.assertTrue(np.allclose(transpose(_lowercase ) , transpose(_lowercase ).numpy() ) ) __a : Any = np.random.randn(3 , 4 , 5 ) __a : List[str] = tf.constant(_lowercase ) self.assertTrue(np.allclose(transpose(_lowercase , axes=(1, 2, 0) ) , transpose(_lowercase , axes=(1, 2, 0) ).numpy() ) ) @require_flax def lowerCAmelCase__(self ): '''simple docstring''' __a : Union[str, Any] = np.random.randn(3 , 4 ) __a : Union[str, Any] = jnp.array(_lowercase ) self.assertTrue(np.allclose(transpose(_lowercase ) , np.asarray(transpose(_lowercase ) ) ) ) __a : Optional[int] = np.random.randn(3 , 4 , 5 ) __a : Union[str, Any] = jnp.array(_lowercase ) self.assertTrue(np.allclose(transpose(_lowercase , axes=(1, 2, 0) ) , np.asarray(transpose(_lowercase , axes=(1, 2, 0) ) ) ) ) def lowerCAmelCase__(self ): '''simple docstring''' __a : Tuple = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(reshape(_lowercase , (4, 3) ) , np.reshape(_lowercase , (4, 3) ) ) ) __a : Optional[int] = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(reshape(_lowercase , (12, 5) ) , np.reshape(_lowercase , (12, 5) ) ) ) @require_torch def lowerCAmelCase__(self ): '''simple docstring''' __a : List[Any] = np.random.randn(3 , 4 ) __a : List[Any] = torch.tensor(_lowercase ) self.assertTrue(np.allclose(reshape(_lowercase , (4, 3) ) , reshape(_lowercase , (4, 3) ).numpy() ) ) __a : List[str] = np.random.randn(3 , 4 , 5 ) __a : Any = torch.tensor(_lowercase ) self.assertTrue(np.allclose(reshape(_lowercase , (12, 5) ) , reshape(_lowercase , (12, 5) ).numpy() ) ) @require_tf def lowerCAmelCase__(self ): '''simple docstring''' __a : str = np.random.randn(3 , 4 ) __a : Dict = tf.constant(_lowercase ) self.assertTrue(np.allclose(reshape(_lowercase , (4, 3) ) , reshape(_lowercase , (4, 3) ).numpy() ) ) __a : Tuple = np.random.randn(3 , 4 , 5 ) __a : Optional[Any] = tf.constant(_lowercase ) self.assertTrue(np.allclose(reshape(_lowercase , (12, 5) ) , reshape(_lowercase , (12, 5) ).numpy() ) ) @require_flax def lowerCAmelCase__(self ): '''simple docstring''' __a : str = np.random.randn(3 , 4 ) __a : Tuple = jnp.array(_lowercase ) self.assertTrue(np.allclose(reshape(_lowercase , (4, 3) ) , np.asarray(reshape(_lowercase , (4, 3) ) ) ) ) __a : Tuple = np.random.randn(3 , 4 , 5 ) __a : Optional[int] = jnp.array(_lowercase ) self.assertTrue(np.allclose(reshape(_lowercase , (12, 5) ) , np.asarray(reshape(_lowercase , (12, 5) ) ) ) ) def lowerCAmelCase__(self ): '''simple docstring''' __a : Tuple = np.random.randn(1 , 3 , 4 ) self.assertTrue(np.allclose(squeeze(_lowercase ) , np.squeeze(_lowercase ) ) ) __a : Optional[Any] = np.random.randn(1 , 4 , 1 , 5 ) self.assertTrue(np.allclose(squeeze(_lowercase , axis=2 ) , np.squeeze(_lowercase , axis=2 ) ) ) @require_torch def lowerCAmelCase__(self ): '''simple docstring''' __a : Optional[int] = np.random.randn(1 , 3 , 4 ) __a : List[Any] = torch.tensor(_lowercase ) self.assertTrue(np.allclose(squeeze(_lowercase ) , squeeze(_lowercase ).numpy() ) ) __a : Optional[Any] = np.random.randn(1 , 4 , 1 , 5 ) __a : str = torch.tensor(_lowercase ) self.assertTrue(np.allclose(squeeze(_lowercase , axis=2 ) , squeeze(_lowercase , axis=2 ).numpy() ) ) @require_tf def lowerCAmelCase__(self ): '''simple docstring''' __a : int = np.random.randn(1 , 3 , 4 ) __a : Tuple = tf.constant(_lowercase ) self.assertTrue(np.allclose(squeeze(_lowercase ) , squeeze(_lowercase ).numpy() ) ) __a : Any = np.random.randn(1 , 4 , 1 , 5 ) __a : List[str] = tf.constant(_lowercase ) self.assertTrue(np.allclose(squeeze(_lowercase , axis=2 ) , squeeze(_lowercase , axis=2 ).numpy() ) ) @require_flax def lowerCAmelCase__(self ): '''simple docstring''' __a : Tuple = np.random.randn(1 , 3 , 4 ) __a : Union[str, Any] = jnp.array(_lowercase ) self.assertTrue(np.allclose(squeeze(_lowercase ) , np.asarray(squeeze(_lowercase ) ) ) ) __a : Any = np.random.randn(1 , 4 , 1 , 5 ) __a : Optional[Any] = jnp.array(_lowercase ) self.assertTrue(np.allclose(squeeze(_lowercase , axis=2 ) , np.asarray(squeeze(_lowercase , axis=2 ) ) ) ) def lowerCAmelCase__(self ): '''simple docstring''' __a : List[Any] = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(expand_dims(_lowercase , axis=1 ) , np.expand_dims(_lowercase , axis=1 ) ) ) @require_torch def lowerCAmelCase__(self ): '''simple docstring''' __a : Any = np.random.randn(3 , 4 ) __a : Any = torch.tensor(_lowercase ) self.assertTrue(np.allclose(expand_dims(_lowercase , axis=1 ) , expand_dims(_lowercase , axis=1 ).numpy() ) ) @require_tf def lowerCAmelCase__(self ): '''simple docstring''' __a : int = np.random.randn(3 , 4 ) __a : str = tf.constant(_lowercase ) self.assertTrue(np.allclose(expand_dims(_lowercase , axis=1 ) , expand_dims(_lowercase , axis=1 ).numpy() ) ) @require_flax def lowerCAmelCase__(self ): '''simple docstring''' __a : Tuple = np.random.randn(3 , 4 ) __a : Optional[Any] = jnp.array(_lowercase ) self.assertTrue(np.allclose(expand_dims(_lowercase , axis=1 ) , np.asarray(expand_dims(_lowercase , axis=1 ) ) ) )
581
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available lowercase__ = { "configuration_longt5": ["LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP", "LongT5Config", "LongT5OnnxConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ "LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST", "LongT5EncoderModel", "LongT5ForConditionalGeneration", "LongT5Model", "LongT5PreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ "FlaxLongT5ForConditionalGeneration", "FlaxLongT5Model", "FlaxLongT5PreTrainedModel", ] if TYPE_CHECKING: from .configuration_longta import LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP, LongTaConfig, LongTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longta import ( LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST, LongTaEncoderModel, LongTaForConditionalGeneration, LongTaModel, LongTaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_longta import ( FlaxLongTaForConditionalGeneration, FlaxLongTaModel, FlaxLongTaPreTrainedModel, ) else: import sys lowercase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
581
1
'''simple docstring''' import bza import gzip import lzma import os import shutil import struct import tarfile import warnings import zipfile from abc import ABC, abstractmethod from pathlib import Path from typing import Dict, List, Optional, Type, Union from .. import config from .filelock import FileLock from .logging import get_logger UpperCamelCase__ : List[Any] = get_logger(__name__) class _lowercase : '''simple docstring''' def __init__( self ,lowerCamelCase_ = None ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase__ : Any = ( os.path.join(lowerCamelCase_ ,config.EXTRACTED_DATASETS_DIR ) if cache_dir else config.EXTRACTED_DATASETS_PATH ) UpperCAmelCase__ : Any = Extractor def lowerCAmelCase__ ( self ,lowerCamelCase_ ) -> str: '''simple docstring''' from .file_utils import hash_url_to_filename # Path where we extract compressed archives # We extract in the cache dir, and get the extracted path name by hashing the original path" UpperCAmelCase__ : Any = os.path.abspath(lowerCamelCase_ ) return os.path.join(self.extract_dir ,hash_url_to_filename(lowerCamelCase_ ) ) def lowerCAmelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ ) -> bool: '''simple docstring''' return force_extract or ( not os.path.isfile(lowerCamelCase_ ) and not (os.path.isdir(lowerCamelCase_ ) and os.listdir(lowerCamelCase_ )) ) def lowerCAmelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ = False ) -> str: '''simple docstring''' UpperCAmelCase__ : int = self.extractor.infer_extractor_format(lowerCamelCase_ ) if not extractor_format: return input_path UpperCAmelCase__ : str = self._get_output_path(lowerCamelCase_ ) if self._do_extract(lowerCamelCase_ ,lowerCamelCase_ ): self.extractor.extract(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) return output_path class _lowercase ( lowerCAmelCase ): '''simple docstring''' @classmethod @abstractmethod def lowerCAmelCase__ ( cls ,lowerCamelCase_ ,**lowerCamelCase_ ) -> bool: '''simple docstring''' ... @staticmethod @abstractmethod def lowerCAmelCase__ ( lowerCamelCase_ ,lowerCamelCase_ ) -> None: '''simple docstring''' ... class _lowercase ( lowerCAmelCase ,lowerCAmelCase ): '''simple docstring''' UpperCAmelCase_ : List[bytes] = [] @staticmethod def lowerCAmelCase__ ( lowerCamelCase_ ,lowerCamelCase_ ) -> List[Any]: '''simple docstring''' with open(lowerCamelCase_ ,'''rb''' ) as f: return f.read(lowerCamelCase_ ) @classmethod def lowerCAmelCase__ ( cls ,lowerCamelCase_ ,lowerCamelCase_ = b"" ) -> bool: '''simple docstring''' if not magic_number: UpperCAmelCase__ : Union[str, Any] = max(len(lowerCamelCase_ ) for cls_magic_number in cls.magic_numbers ) try: UpperCAmelCase__ : Any = cls.read_magic_number(lowerCamelCase_ ,lowerCamelCase_ ) except OSError: return False return any(magic_number.startswith(lowerCamelCase_ ) for cls_magic_number in cls.magic_numbers ) class _lowercase ( lowerCAmelCase ): '''simple docstring''' @classmethod def lowerCAmelCase__ ( cls ,lowerCamelCase_ ,**lowerCamelCase_ ) -> bool: '''simple docstring''' return tarfile.is_tarfile(lowerCamelCase_ ) @staticmethod def lowerCAmelCase__ ( lowerCamelCase_ ,lowerCamelCase_ ) -> Any: '''simple docstring''' def resolved(lowerCamelCase_ ) -> str: return os.path.realpath(os.path.abspath(lowerCamelCase_ ) ) def badpath(lowerCamelCase_ ,lowerCamelCase_ ) -> bool: # joinpath will ignore base if path is absolute return not resolved(os.path.join(lowerCamelCase_ ,lowerCamelCase_ ) ).startswith(lowerCamelCase_ ) def badlink(lowerCamelCase_ ,lowerCamelCase_ ) -> bool: # Links are interpreted relative to the directory containing the link UpperCAmelCase__ : List[Any] = resolved(os.path.join(lowerCamelCase_ ,os.path.dirname(info.name ) ) ) return badpath(info.linkname ,base=lowerCamelCase_ ) UpperCAmelCase__ : Optional[Any] = resolved(lowerCamelCase_ ) for finfo in members: if badpath(finfo.name ,lowerCamelCase_ ): logger.error(f'''Extraction of {finfo.name} is blocked (illegal path)''' ) elif finfo.issym() and badlink(lowerCamelCase_ ,lowerCamelCase_ ): logger.error(f'''Extraction of {finfo.name} is blocked: Symlink to {finfo.linkname}''' ) elif finfo.islnk() and badlink(lowerCamelCase_ ,lowerCamelCase_ ): logger.error(f'''Extraction of {finfo.name} is blocked: Hard link to {finfo.linkname}''' ) else: yield finfo @staticmethod def lowerCAmelCase__ ( lowerCamelCase_ ,lowerCamelCase_ ) -> None: '''simple docstring''' os.makedirs(lowerCamelCase_ ,exist_ok=lowerCamelCase_ ) UpperCAmelCase__ : Dict = tarfile.open(lowerCamelCase_ ) tar_file.extractall(lowerCamelCase_ ,members=TarExtractor.safemembers(lowerCamelCase_ ,lowerCamelCase_ ) ) tar_file.close() class _lowercase ( lowerCAmelCase ): '''simple docstring''' UpperCAmelCase_ : List[Any] = [b'''\x1F\x8B'''] @staticmethod def lowerCAmelCase__ ( lowerCamelCase_ ,lowerCamelCase_ ) -> None: '''simple docstring''' with gzip.open(lowerCamelCase_ ,'''rb''' ) as gzip_file: with open(lowerCamelCase_ ,'''wb''' ) as extracted_file: shutil.copyfileobj(lowerCamelCase_ ,lowerCamelCase_ ) class _lowercase ( lowerCAmelCase ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = [ b'''PK\x03\x04''', b'''PK\x05\x06''', # empty archive b'''PK\x07\x08''', # spanned archive ] @classmethod def lowerCAmelCase__ ( cls ,lowerCamelCase_ ,lowerCamelCase_ = b"" ) -> bool: '''simple docstring''' if super().is_extractable(lowerCamelCase_ ,magic_number=lowerCamelCase_ ): return True try: # Alternative version of zipfile.is_zipfile that has less false positives, but misses executable zip archives. # From: https://github.com/python/cpython/pull/5053 from zipfile import ( _CD_SIGNATURE, _ECD_DISK_NUMBER, _ECD_DISK_START, _ECD_ENTRIES_TOTAL, _ECD_OFFSET, _ECD_SIZE, _EndRecData, sizeCentralDir, stringCentralDir, structCentralDir, ) with open(lowerCamelCase_ ,'''rb''' ) as fp: UpperCAmelCase__ : Union[str, Any] = _EndRecData(lowerCamelCase_ ) if endrec: if endrec[_ECD_ENTRIES_TOTAL] == 0 and endrec[_ECD_SIZE] == 0 and endrec[_ECD_OFFSET] == 0: return True # Empty zipfiles are still zipfiles elif endrec[_ECD_DISK_NUMBER] == endrec[_ECD_DISK_START]: fp.seek(endrec[_ECD_OFFSET] ) # Central directory is on the same disk if fp.tell() == endrec[_ECD_OFFSET] and endrec[_ECD_SIZE] >= sizeCentralDir: UpperCAmelCase__ : Union[str, Any] = fp.read(lowerCamelCase_ ) # CD is where we expect it to be if len(lowerCamelCase_ ) == sizeCentralDir: UpperCAmelCase__ : Dict = struct.unpack(lowerCamelCase_ ,lowerCamelCase_ ) # CD is the right size if centdir[_CD_SIGNATURE] == stringCentralDir: return True # First central directory entry has correct magic number return False except Exception: # catch all errors in case future python versions change the zipfile internals return False @staticmethod def lowerCAmelCase__ ( lowerCamelCase_ ,lowerCamelCase_ ) -> None: '''simple docstring''' os.makedirs(lowerCamelCase_ ,exist_ok=lowerCamelCase_ ) with zipfile.ZipFile(lowerCamelCase_ ,'''r''' ) as zip_file: zip_file.extractall(lowerCamelCase_ ) zip_file.close() class _lowercase ( lowerCAmelCase ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = [b'''\xFD\x37\x7A\x58\x5A\x00'''] @staticmethod def lowerCAmelCase__ ( lowerCamelCase_ ,lowerCamelCase_ ) -> None: '''simple docstring''' with lzma.open(lowerCamelCase_ ) as compressed_file: with open(lowerCamelCase_ ,'''wb''' ) as extracted_file: shutil.copyfileobj(lowerCamelCase_ ,lowerCamelCase_ ) class _lowercase ( lowerCAmelCase ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = [b'''Rar!\x1a\x07\x00''', b'''Rar!\x1a\x07\x01\x00'''] # RAR_ID # RAR5_ID @staticmethod def lowerCAmelCase__ ( lowerCamelCase_ ,lowerCamelCase_ ) -> None: '''simple docstring''' if not config.RARFILE_AVAILABLE: raise ImportError('''Please pip install rarfile''' ) import rarfile os.makedirs(lowerCamelCase_ ,exist_ok=lowerCamelCase_ ) UpperCAmelCase__ : List[Any] = rarfile.RarFile(lowerCamelCase_ ) rf.extractall(lowerCamelCase_ ) rf.close() class _lowercase ( lowerCAmelCase ): '''simple docstring''' UpperCAmelCase_ : List[Any] = [b'''\x28\xb5\x2F\xFD'''] @staticmethod def lowerCAmelCase__ ( lowerCamelCase_ ,lowerCamelCase_ ) -> None: '''simple docstring''' if not config.ZSTANDARD_AVAILABLE: raise ImportError('''Please pip install zstandard''' ) import zstandard as zstd UpperCAmelCase__ : Union[str, Any] = zstd.ZstdDecompressor() with open(lowerCamelCase_ ,'''rb''' ) as ifh, open(lowerCamelCase_ ,'''wb''' ) as ofh: dctx.copy_stream(lowerCamelCase_ ,lowerCamelCase_ ) class _lowercase ( lowerCAmelCase ): '''simple docstring''' UpperCAmelCase_ : int = [b'''\x42\x5A\x68'''] @staticmethod def lowerCAmelCase__ ( lowerCamelCase_ ,lowerCamelCase_ ) -> None: '''simple docstring''' with bza.open(lowerCamelCase_ ,'''rb''' ) as compressed_file: with open(lowerCamelCase_ ,'''wb''' ) as extracted_file: shutil.copyfileobj(lowerCamelCase_ ,lowerCamelCase_ ) class _lowercase ( lowerCAmelCase ): '''simple docstring''' UpperCAmelCase_ : Tuple = [b'''\x37\x7A\xBC\xAF\x27\x1C'''] @staticmethod def lowerCAmelCase__ ( lowerCamelCase_ ,lowerCamelCase_ ) -> None: '''simple docstring''' if not config.PY7ZR_AVAILABLE: raise ImportError('''Please pip install py7zr''' ) import pyazr os.makedirs(lowerCamelCase_ ,exist_ok=lowerCamelCase_ ) with pyazr.SevenZipFile(lowerCamelCase_ ,'''r''' ) as archive: archive.extractall(lowerCamelCase_ ) class _lowercase ( lowerCAmelCase ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = [b'''\x04\x22\x4D\x18'''] @staticmethod def lowerCAmelCase__ ( lowerCamelCase_ ,lowerCamelCase_ ) -> None: '''simple docstring''' if not config.LZ4_AVAILABLE: raise ImportError('''Please pip install lz4''' ) import lza.frame with lza.frame.open(lowerCamelCase_ ,'''rb''' ) as compressed_file: with open(lowerCamelCase_ ,'''wb''' ) as extracted_file: shutil.copyfileobj(lowerCamelCase_ ,lowerCamelCase_ ) class _lowercase : '''simple docstring''' UpperCAmelCase_ : Dict[str, Type[BaseExtractor]] = { "tar": TarExtractor, "gzip": GzipExtractor, "zip": ZipExtractor, "xz": XzExtractor, "rar": RarExtractor, "zstd": ZstdExtractor, "bz2": BzipaExtractor, "7z": SevenZipExtractor, # <Added version="2.4.0"/> "lz4": LzaExtractor, # <Added version="2.4.0"/> } @classmethod def lowerCAmelCase__ ( cls ) -> Optional[Any]: '''simple docstring''' return max( len(lowerCamelCase_ ) for extractor in cls.extractors.values() if issubclass(lowerCamelCase_ ,lowerCamelCase_ ) for extractor_magic_number in extractor.magic_numbers ) @staticmethod def lowerCAmelCase__ ( lowerCamelCase_ ,lowerCamelCase_ ) -> Union[str, Any]: '''simple docstring''' try: return MagicNumberBaseExtractor.read_magic_number(lowerCamelCase_ ,magic_number_length=lowerCamelCase_ ) except OSError: return b"" @classmethod def lowerCAmelCase__ ( cls ,lowerCamelCase_ ,lowerCamelCase_ = False ) -> bool: '''simple docstring''' warnings.warn( '''Method \'is_extractable\' was deprecated in version 2.4.0 and will be removed in 3.0.0. ''' '''Use \'infer_extractor_format\' instead.''' ,category=lowerCamelCase_ ,) UpperCAmelCase__ : Union[str, Any] = cls.infer_extractor_format(lowerCamelCase_ ) if extractor_format: return True if not return_extractor else (True, cls.extractors[extractor_format]) return False if not return_extractor else (False, None) @classmethod def lowerCAmelCase__ ( cls ,lowerCamelCase_ ) -> str: # <Added version="2.4.0"/> '''simple docstring''' UpperCAmelCase__ : Dict = cls._get_magic_number_max_length() UpperCAmelCase__ : Optional[Any] = cls._read_magic_number(lowerCamelCase_ ,lowerCamelCase_ ) for extractor_format, extractor in cls.extractors.items(): if extractor.is_extractable(lowerCamelCase_ ,magic_number=lowerCamelCase_ ): return extractor_format @classmethod def lowerCAmelCase__ ( cls ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ = None ,lowerCamelCase_ = "deprecated" ,) -> None: '''simple docstring''' os.makedirs(os.path.dirname(lowerCamelCase_ ) ,exist_ok=lowerCamelCase_ ) # Prevent parallel extractions UpperCAmelCase__ : List[str] = str(Path(lowerCamelCase_ ).with_suffix('''.lock''' ) ) with FileLock(lowerCamelCase_ ): shutil.rmtree(lowerCamelCase_ ,ignore_errors=lowerCamelCase_ ) if extractor_format or extractor != "deprecated": if extractor != "deprecated" or not isinstance(lowerCamelCase_ ,lowerCamelCase_ ): # passed as positional arg warnings.warn( '''Parameter \'extractor\' was deprecated in version 2.4.0 and will be removed in 3.0.0. ''' '''Use \'extractor_format\' instead.''' ,category=lowerCamelCase_ ,) UpperCAmelCase__ : Dict = extractor if extractor != '''deprecated''' else extractor_format else: UpperCAmelCase__ : List[str] = cls.extractors[extractor_format] return extractor.extract(lowerCamelCase_ ,lowerCamelCase_ ) else: warnings.warn( '''Parameter \'extractor_format\' was made required in version 2.4.0 and not passing it will raise an ''' '''exception in 3.0.0.''' ,category=lowerCamelCase_ ,) for extractor in cls.extractors.values(): if extractor.is_extractable(lowerCamelCase_ ): return extractor.extract(lowerCamelCase_ ,lowerCamelCase_ )
496
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _lowercase ( lowerCAmelCase ): '''simple docstring''' UpperCAmelCase_ : Tuple = ['''image_processor''', '''tokenizer'''] UpperCAmelCase_ : str = '''CLIPImageProcessor''' UpperCAmelCase_ : Dict = ('''CLIPTokenizer''', '''CLIPTokenizerFast''') def __init__( self ,lowerCamelCase_=None ,lowerCamelCase_=None ,**lowerCamelCase_ ) -> Any: '''simple docstring''' UpperCAmelCase__ : Any = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' ,lowerCamelCase_ ,) UpperCAmelCase__ : str = kwargs.pop('''feature_extractor''' ) UpperCAmelCase__ : Optional[Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(lowerCamelCase_ ,lowerCamelCase_ ) def __call__( self ,lowerCamelCase_=None ,lowerCamelCase_=None ,lowerCamelCase_=None ,**lowerCamelCase_ ) -> Dict: '''simple docstring''' if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: UpperCAmelCase__ : Tuple = self.tokenizer(lowerCamelCase_ ,return_tensors=lowerCamelCase_ ,**lowerCamelCase_ ) if images is not None: UpperCAmelCase__ : Optional[int] = self.image_processor(lowerCamelCase_ ,return_tensors=lowerCamelCase_ ,**lowerCamelCase_ ) if text is not None and images is not None: UpperCAmelCase__ : str = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowerCamelCase_ ) ,tensor_type=lowerCamelCase_ ) def lowerCAmelCase__ ( self ,*lowerCamelCase_ ,**lowerCamelCase_ ) -> Tuple: '''simple docstring''' return self.tokenizer.batch_decode(*lowerCamelCase_ ,**lowerCamelCase_ ) def lowerCAmelCase__ ( self ,*lowerCamelCase_ ,**lowerCamelCase_ ) -> Tuple: '''simple docstring''' return self.tokenizer.decode(*lowerCamelCase_ ,**lowerCamelCase_ ) @property def lowerCAmelCase__ ( self ) -> List[str]: '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.tokenizer.model_input_names UpperCAmelCase__ : Optional[Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def lowerCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' ,lowerCamelCase_ ,) return self.image_processor_class @property def lowerCAmelCase__ ( self ) -> List[str]: '''simple docstring''' warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' ,lowerCamelCase_ ,) return self.image_processor
496
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available a_ = { 'configuration_pix2struct': [ 'PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Pix2StructConfig', 'Pix2StructTextConfig', 'Pix2StructVisionConfig', ], 'processing_pix2struct': ['Pix2StructProcessor'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['Pix2StructImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST', 'Pix2StructPreTrainedModel', 'Pix2StructForConditionalGeneration', 'Pix2StructVisionModel', 'Pix2StructTextModel', ] if TYPE_CHECKING: from .configuration_pixastruct import ( PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP, PixaStructConfig, PixaStructTextConfig, PixaStructVisionConfig, ) from .processing_pixastruct import PixaStructProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_pixastruct import PixaStructImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pixastruct import ( PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST, PixaStructForConditionalGeneration, PixaStructPreTrainedModel, PixaStructTextModel, PixaStructVisionModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
685
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { 'uclanlp/visualbert-vqa': 'https://huggingface.co/uclanlp/visualbert-vqa/resolve/main/config.json', 'uclanlp/visualbert-vqa-pre': 'https://huggingface.co/uclanlp/visualbert-vqa-pre/resolve/main/config.json', 'uclanlp/visualbert-vqa-coco-pre': ( 'https://huggingface.co/uclanlp/visualbert-vqa-coco-pre/resolve/main/config.json' ), 'uclanlp/visualbert-vcr': 'https://huggingface.co/uclanlp/visualbert-vcr/resolve/main/config.json', 'uclanlp/visualbert-vcr-pre': 'https://huggingface.co/uclanlp/visualbert-vcr-pre/resolve/main/config.json', 'uclanlp/visualbert-vcr-coco-pre': ( 'https://huggingface.co/uclanlp/visualbert-vcr-coco-pre/resolve/main/config.json' ), 'uclanlp/visualbert-nlvr2': 'https://huggingface.co/uclanlp/visualbert-nlvr2/resolve/main/config.json', 'uclanlp/visualbert-nlvr2-pre': 'https://huggingface.co/uclanlp/visualbert-nlvr2-pre/resolve/main/config.json', 'uclanlp/visualbert-nlvr2-coco-pre': ( 'https://huggingface.co/uclanlp/visualbert-nlvr2-coco-pre/resolve/main/config.json' ) # See all VisualBERT models at https://huggingface.co/models?filter=visual_bert } class SCREAMING_SNAKE_CASE__ ( lowercase_ ): _UpperCAmelCase ='''visual_bert''' def __init__( self: Union[str, Any] , a: List[Any]=3_05_22 , a: List[Any]=7_68 , a: Union[str, Any]=5_12 , a: List[str]=12 , a: Tuple=12 , a: Optional[Any]=30_72 , a: int="gelu" , a: Union[str, Any]=0.1 , a: int=0.1 , a: str=5_12 , a: Optional[int]=2 , a: List[str]=0.02 , a: Optional[int]=1e-12 , a: str=False , a: Any=True , a: Tuple=1 , a: Dict=0 , a: Any=2 , **a: Optional[Any] , ) ->str: '''simple docstring''' super().__init__(pad_token_id=a , bos_token_id=a , eos_token_id=a , **a) a_ = vocab_size a_ = max_position_embeddings a_ = hidden_size a_ = visual_embedding_dim a_ = num_hidden_layers a_ = num_attention_heads a_ = intermediate_size a_ = hidden_act a_ = hidden_dropout_prob a_ = attention_probs_dropout_prob a_ = initializer_range a_ = type_vocab_size a_ = layer_norm_eps a_ = bypass_transformer a_ = special_visual_initialize
685
1
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) _UpperCamelCase = logging.getLogger(__name__) @dataclass class SCREAMING_SNAKE_CASE_ : """simple docstring""" __snake_case : str = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) __snake_case : Optional[str] = field( default=snake_case__ , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) __snake_case : Optional[str] = field( default=snake_case__ , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) __snake_case : Optional[str] = field( default=snake_case__ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) __snake_case : bool = field(default=snake_case__ , metadata={"""help""": """Whether tp freeze the encoder."""} ) __snake_case : bool = field(default=snake_case__ , metadata={"""help""": """Whether to freeze the embeddings."""} ) @dataclass class SCREAMING_SNAKE_CASE_ : """simple docstring""" __snake_case : str = field( metadata={"""help""": """The input data dir. Should contain the .tsv files (or other data files) for the task."""} ) __snake_case : Optional[str] = field( default="""summarization""" , metadata={"""help""": """Task name, summarization (or summarization_{dataset} for pegasus) or translation"""} , ) __snake_case : Optional[int] = field( default=10_24 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) __snake_case : Optional[int] = field( default=1_28 , metadata={ """help""": ( """The maximum total sequence length for target text after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) __snake_case : Optional[int] = field( default=1_42 , metadata={ """help""": ( """The maximum total sequence length for validation target text after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded. """ """This argument is also used to override the ``max_length`` param of ``model.generate``, which is used """ """during ``evaluate`` and ``predict``.""" ) } , ) __snake_case : Optional[int] = field( default=1_42 , metadata={ """help""": ( """The maximum total sequence length for test target text after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) __snake_case : Optional[int] = field(default=-1 , metadata={"""help""": """# training examples. -1 means use all."""} ) __snake_case : Optional[int] = field(default=-1 , metadata={"""help""": """# validation examples. -1 means use all."""} ) __snake_case : Optional[int] = field(default=-1 , metadata={"""help""": """# test examples. -1 means use all."""} ) __snake_case : Optional[str] = field(default=snake_case__ , metadata={"""help""": """Source language id for translation."""} ) __snake_case : Optional[str] = field(default=snake_case__ , metadata={"""help""": """Target language id for translation."""} ) __snake_case : Optional[int] = field(default=snake_case__ , metadata={"""help""": """# num_beams to use for evaluation."""} ) __snake_case : bool = field( default=snake_case__ , metadata={"""help""": """If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined."""} , ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' logger.info(F'***** {split} metrics *****' ) for key in sorted(metrics.keys() ): logger.info(F' {key} = {metrics[key]}' ) save_json(SCREAMING_SNAKE_CASE , os.path.join(SCREAMING_SNAKE_CASE , F'{split}_results.json' ) ) def lowerCAmelCase_ ( ): '''simple docstring''' __lowerCamelCase : Optional[int] =HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __lowerCamelCase : Optional[int] =parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __lowerCamelCase : Tuple =parser.parse_args_into_dataclasses() check_output_dir(SCREAMING_SNAKE_CASE ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('''Training/evaluation parameters %s''' , SCREAMING_SNAKE_CASE ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __lowerCamelCase : Optional[Any] =AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __lowerCamelCase : Union[str, Any] =('''encoder_layerdrop''', '''decoder_layerdrop''', '''dropout''', '''attention_dropout''') for p in extra_model_params: if getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): assert hasattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ), F'({config.__class__.__name__}) doesn\'t have a `{p}` attribute' setattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) __lowerCamelCase : Union[str, Any] =AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __lowerCamelCase : List[str] =AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf='''.ckpt''' in model_args.model_name_or_path , config=SCREAMING_SNAKE_CASE , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(SCREAMING_SNAKE_CASE , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: __lowerCamelCase : List[str] =model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(SCREAMING_SNAKE_CASE , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): __lowerCamelCase : Union[str, Any] =tokenizer.lang_code_to_id[data_args.tgt_lang] else: __lowerCamelCase : Optional[int] =tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(SCREAMING_SNAKE_CASE ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) __lowerCamelCase : Tuple =SeqaSeqDataset # Get datasets __lowerCamelCase : List[str] =( dataset_class( SCREAMING_SNAKE_CASE , type_path='''train''' , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , ) if training_args.do_train else None ) __lowerCamelCase : Optional[Any] =( dataset_class( SCREAMING_SNAKE_CASE , type_path='''val''' , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) __lowerCamelCase : Any =( dataset_class( SCREAMING_SNAKE_CASE , type_path='''test''' , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , ) if training_args.do_predict else None ) # Initialize our Trainer __lowerCamelCase : str =( build_compute_metrics_fn(data_args.task , SCREAMING_SNAKE_CASE ) if training_args.predict_with_generate else None ) __lowerCamelCase : Dict =SeqaSeqTrainer( model=SCREAMING_SNAKE_CASE , args=SCREAMING_SNAKE_CASE , data_args=SCREAMING_SNAKE_CASE , train_dataset=SCREAMING_SNAKE_CASE , eval_dataset=SCREAMING_SNAKE_CASE , data_collator=SeqaSeqDataCollator( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=SCREAMING_SNAKE_CASE , tokenizer=SCREAMING_SNAKE_CASE , ) __lowerCamelCase : Union[str, Any] ={} # Training if training_args.do_train: logger.info('''*** Train ***''' ) __lowerCamelCase : Dict =trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) __lowerCamelCase : Dict =train_result.metrics __lowerCamelCase : Optional[Any] =data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics('''train''' , SCREAMING_SNAKE_CASE , training_args.output_dir ) all_metrics.update(SCREAMING_SNAKE_CASE ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , '''trainer_state.json''' ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) __lowerCamelCase : Any =trainer.evaluate(metric_key_prefix='''val''' ) __lowerCamelCase : int =data_args.n_val __lowerCamelCase : Tuple =round(metrics['''val_loss'''] , 4 ) if trainer.is_world_process_zero(): handle_metrics('''val''' , SCREAMING_SNAKE_CASE , training_args.output_dir ) all_metrics.update(SCREAMING_SNAKE_CASE ) if training_args.do_predict: logger.info('''*** Predict ***''' ) __lowerCamelCase : Tuple =trainer.predict(test_dataset=SCREAMING_SNAKE_CASE , metric_key_prefix='''test''' ) __lowerCamelCase : Optional[int] =test_output.metrics __lowerCamelCase : List[Any] =data_args.n_test if trainer.is_world_process_zero(): __lowerCamelCase : Any =round(metrics['''test_loss'''] , 4 ) handle_metrics('''test''' , SCREAMING_SNAKE_CASE , training_args.output_dir ) all_metrics.update(SCREAMING_SNAKE_CASE ) if training_args.predict_with_generate: __lowerCamelCase : int =tokenizer.batch_decode( test_output.predictions , skip_special_tokens=SCREAMING_SNAKE_CASE , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE ) __lowerCamelCase : Dict =lmap(str.strip , SCREAMING_SNAKE_CASE ) write_txt_file(SCREAMING_SNAKE_CASE , os.path.join(training_args.output_dir , '''test_generations.txt''' ) ) if trainer.is_world_process_zero(): save_json(SCREAMING_SNAKE_CASE , os.path.join(training_args.output_dir , '''all_results.json''' ) ) return all_metrics def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' main() if __name__ == "__main__": main()
714
"""simple docstring""" from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) _UpperCamelCase = logging.get_logger(__name__) # pylint: disable=invalid-name _UpperCamelCase = '\n Examples:\n ```py\n >>> import torch\n >>> import numpy as np\n\n >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline\n >>> from transformers import pipeline\n >>> from diffusers.utils import load_image\n\n\n >>> def make_hint(image, depth_estimator):\n ... image = depth_estimator(image)["depth"]\n ... image = np.array(image)\n ... image = image[:, :, None]\n ... image = np.concatenate([image, image, image], axis=2)\n ... detected_map = torch.from_numpy(image).float() / 255.0\n ... hint = detected_map.permute(2, 0, 1)\n ... return hint\n\n\n >>> depth_estimator = pipeline("depth-estimation")\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16\n ... )\n >>> pipe_prior = pipe_prior.to("cuda")\n\n >>> pipe = KandinskyV22ControlnetPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-controlnet-depth", torch_dtype=torch.float16\n ... )\n >>> pipe = pipe.to("cuda")\n\n\n >>> img = load_image(\n ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"\n ... "/kandinsky/cat.png"\n ... ).resize((768, 768))\n\n >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to("cuda")\n\n >>> prompt = "A robot, 4k photo"\n >>> negative_prior_prompt = "lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature"\n\n >>> generator = torch.Generator(device="cuda").manual_seed(43)\n\n >>> image_emb, zero_image_emb = pipe_prior(\n ... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator\n ... ).to_tuple()\n\n >>> images = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... hint=hint,\n ... num_inference_steps=50,\n ... generator=generator,\n ... height=768,\n ... width=768,\n ... ).images\n\n >>> images[0].save("robot_cat.png")\n ```\n' def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Tuple=8 ): '''simple docstring''' __lowerCamelCase : Tuple =height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 __lowerCamelCase : Tuple =width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class SCREAMING_SNAKE_CASE_ ( snake_case__ ): """simple docstring""" def __init__( self :Union[str, Any] , __lowercase :UNetaDConditionModel , __lowercase :DDPMScheduler , __lowercase :VQModel , ): super().__init__() self.register_modules( unet=__lowercase , scheduler=__lowercase , movq=__lowercase , ) __lowerCamelCase : Any =2 ** (len(self.movq.config.block_out_channels ) - 1) def __lowercase ( self :int , __lowercase :Tuple , __lowercase :Dict , __lowercase :str , __lowercase :Dict , __lowercase :Union[str, Any] , __lowercase :Dict ): if latents is None: __lowerCamelCase : str =randn_tensor(__lowercase , generator=__lowercase , device=__lowercase , dtype=__lowercase ) else: if latents.shape != shape: raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {shape}' ) __lowerCamelCase : str =latents.to(__lowercase ) __lowerCamelCase : Any =latents * scheduler.init_noise_sigma return latents def __lowercase ( self :Dict , __lowercase :Any=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) __lowerCamelCase : Any =torch.device(f'cuda:{gpu_id}' ) __lowerCamelCase : Dict =[ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(__lowercase , __lowercase ) def __lowercase ( self :Optional[int] , __lowercase :List[Any]=0 ): if is_accelerate_available() and is_accelerate_version('''>=''' , '''0.17.0.dev0''' ): from accelerate import cpu_offload_with_hook else: raise ImportError('''`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.''' ) __lowerCamelCase : str =torch.device(f'cuda:{gpu_id}' ) if self.device.type != "cpu": self.to('''cpu''' , silence_dtype_warnings=__lowercase ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) __lowerCamelCase : Optional[Any] =None for cpu_offloaded_model in [self.unet, self.movq]: __lowerCamelCase , __lowerCamelCase : Union[str, Any] =cpu_offload_with_hook(__lowercase , __lowercase , prev_module_hook=__lowercase ) # We'll offload the last model manually. __lowerCamelCase : Dict =hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def __lowercase ( self :Tuple ): if not hasattr(self.unet , '''_hf_hook''' ): return self.device for module in self.unet.modules(): if ( hasattr(__lowercase , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(__lowercase ) def __call__( self :Union[str, Any] , __lowercase :Union[torch.FloatTensor, List[torch.FloatTensor]] , __lowercase :Union[torch.FloatTensor, List[torch.FloatTensor]] , __lowercase :torch.FloatTensor , __lowercase :int = 512 , __lowercase :int = 512 , __lowercase :int = 100 , __lowercase :float = 4.0 , __lowercase :int = 1 , __lowercase :Optional[Union[torch.Generator, List[torch.Generator]]] = None , __lowercase :Optional[torch.FloatTensor] = None , __lowercase :Optional[str] = "pil" , __lowercase :bool = True , ): __lowerCamelCase : Any =self._execution_device __lowerCamelCase : Dict =guidance_scale > 1.0 if isinstance(__lowercase , __lowercase ): __lowerCamelCase : Any =torch.cat(__lowercase , dim=0 ) if isinstance(__lowercase , __lowercase ): __lowerCamelCase : Dict =torch.cat(__lowercase , dim=0 ) if isinstance(__lowercase , __lowercase ): __lowerCamelCase : Dict =torch.cat(__lowercase , dim=0 ) __lowerCamelCase : List[Any] =image_embeds.shape[0] * num_images_per_prompt if do_classifier_free_guidance: __lowerCamelCase : Optional[int] =image_embeds.repeat_interleave(__lowercase , dim=0 ) __lowerCamelCase : Any =negative_image_embeds.repeat_interleave(__lowercase , dim=0 ) __lowerCamelCase : List[Any] =hint.repeat_interleave(__lowercase , dim=0 ) __lowerCamelCase : List[str] =torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=__lowercase ) __lowerCamelCase : List[str] =torch.cat([hint, hint] , dim=0 ).to(dtype=self.unet.dtype , device=__lowercase ) self.scheduler.set_timesteps(__lowercase , device=__lowercase ) __lowerCamelCase : str =self.scheduler.timesteps __lowerCamelCase : Tuple =self.movq.config.latent_channels __lowerCamelCase , __lowerCamelCase : List[str] =downscale_height_and_width(__lowercase , __lowercase , self.movq_scale_factor ) # create initial latent __lowerCamelCase : Optional[int] =self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , __lowercase , __lowercase , __lowercase , self.scheduler , ) for i, t in enumerate(self.progress_bar(__lowercase ) ): # expand the latents if we are doing classifier free guidance __lowerCamelCase : int =torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __lowerCamelCase : List[Any] ={'''image_embeds''': image_embeds, '''hint''': hint} __lowerCamelCase : Union[str, Any] =self.unet( sample=__lowercase , timestep=__lowercase , encoder_hidden_states=__lowercase , added_cond_kwargs=__lowercase , return_dict=__lowercase , )[0] if do_classifier_free_guidance: __lowerCamelCase , __lowerCamelCase : Dict =noise_pred.split(latents.shape[1] , dim=1 ) __lowerCamelCase , __lowerCamelCase : int =noise_pred.chunk(2 ) __lowerCamelCase , __lowerCamelCase : Tuple =variance_pred.chunk(2 ) __lowerCamelCase : Tuple =noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) __lowerCamelCase : Any =torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , '''variance_type''' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): __lowerCamelCase , __lowerCamelCase : Any =noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 __lowerCamelCase : Tuple =self.scheduler.step( __lowercase , __lowercase , __lowercase , generator=__lowercase , )[0] # post-processing __lowerCamelCase : List[str] =self.movq.decode(__lowercase , force_not_quantize=__lowercase )['''sample'''] if output_type not in ["pt", "np", "pil"]: raise ValueError(f'Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}' ) if output_type in ["np", "pil"]: __lowerCamelCase : List[str] =image * 0.5 + 0.5 __lowerCamelCase : Optional[int] =image.clamp(0 , 1 ) __lowerCamelCase : Union[str, Any] =image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": __lowerCamelCase : Optional[Any] =self.numpy_to_pil(__lowercase ) if not return_dict: return (image,) return ImagePipelineOutput(images=__lowercase )
363
0
"""simple docstring""" def lowerCamelCase_( _lowerCamelCase ) -> bool: '''simple docstring''' if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise ValueError("check_bouncy() accepts only integer arguments" ) _lowerCamelCase : Any = str(_lowerCamelCase ) _lowerCamelCase : List[str] = "".join(sorted(_lowerCamelCase ) ) return sorted_str_n != str_n and sorted_str_n[::-1] != str_n def lowerCamelCase_( _lowerCamelCase = 99 ) -> int: '''simple docstring''' if not 0 < percent < 100: raise ValueError("solution() only accepts values from 0 to 100" ) _lowerCamelCase : Optional[Any] = 0 _lowerCamelCase : List[Any] = 1 while True: if check_bouncy(_lowerCamelCase ): bouncy_num += 1 if (bouncy_num / num) * 100 >= percent: return num num += 1 if __name__ == "__main__": from doctest import testmod testmod() print(f'''{solution(99)}''')
46
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( BertTokenizer, ViltConfig, ViltForImageAndTextRetrieval, ViltForImagesAndTextClassification, ViltForMaskedLM, ViltForQuestionAnswering, ViltImageProcessor, ViltProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase : Tuple = logging.get_logger(__name__) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=False , _lowerCamelCase=False , _lowerCamelCase=False ) -> int: '''simple docstring''' _lowerCamelCase : Any = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""transformer.blocks.{i}.norm1.weight""", F"""vilt.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""transformer.blocks.{i}.norm1.bias""", F"""vilt.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (F"""transformer.blocks.{i}.attn.proj.weight""", F"""vilt.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append( (F"""transformer.blocks.{i}.attn.proj.bias""", F"""vilt.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""transformer.blocks.{i}.norm2.weight""", F"""vilt.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""transformer.blocks.{i}.norm2.bias""", F"""vilt.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append( (F"""transformer.blocks.{i}.mlp.fc1.weight""", F"""vilt.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""transformer.blocks.{i}.mlp.fc1.bias""", F"""vilt.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""transformer.blocks.{i}.mlp.fc2.weight""", F"""vilt.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""transformer.blocks.{i}.mlp.fc2.bias""", F"""vilt.encoder.layer.{i}.output.dense.bias""") ) # embeddings rename_keys.extend( [ # text embeddings ("text_embeddings.word_embeddings.weight", "vilt.embeddings.text_embeddings.word_embeddings.weight"), ( "text_embeddings.position_embeddings.weight", "vilt.embeddings.text_embeddings.position_embeddings.weight", ), ("text_embeddings.position_ids", "vilt.embeddings.text_embeddings.position_ids"), ( "text_embeddings.token_type_embeddings.weight", "vilt.embeddings.text_embeddings.token_type_embeddings.weight", ), ("text_embeddings.LayerNorm.weight", "vilt.embeddings.text_embeddings.LayerNorm.weight"), ("text_embeddings.LayerNorm.bias", "vilt.embeddings.text_embeddings.LayerNorm.bias"), # patch embeddings ("transformer.cls_token", "vilt.embeddings.cls_token"), ("transformer.patch_embed.proj.weight", "vilt.embeddings.patch_embeddings.projection.weight"), ("transformer.patch_embed.proj.bias", "vilt.embeddings.patch_embeddings.projection.bias"), ("transformer.pos_embed", "vilt.embeddings.position_embeddings"), # token type embeddings ("token_type_embeddings.weight", "vilt.embeddings.token_type_embeddings.weight"), ] ) # final layernorm + pooler rename_keys.extend( [ ("transformer.norm.weight", "vilt.layernorm.weight"), ("transformer.norm.bias", "vilt.layernorm.bias"), ("pooler.dense.weight", "vilt.pooler.dense.weight"), ("pooler.dense.bias", "vilt.pooler.dense.bias"), ] ) # classifier head(s) if vqa_model: # classification head rename_keys.extend( [ ("vqa_classifier.0.weight", "classifier.0.weight"), ("vqa_classifier.0.bias", "classifier.0.bias"), ("vqa_classifier.1.weight", "classifier.1.weight"), ("vqa_classifier.1.bias", "classifier.1.bias"), ("vqa_classifier.3.weight", "classifier.3.weight"), ("vqa_classifier.3.bias", "classifier.3.bias"), ] ) elif nlvr_model: # classification head rename_keys.extend( [ ("nlvr2_classifier.0.weight", "classifier.0.weight"), ("nlvr2_classifier.0.bias", "classifier.0.bias"), ("nlvr2_classifier.1.weight", "classifier.1.weight"), ("nlvr2_classifier.1.bias", "classifier.1.bias"), ("nlvr2_classifier.3.weight", "classifier.3.weight"), ("nlvr2_classifier.3.bias", "classifier.3.bias"), ] ) else: pass return rename_keys def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Optional[Any]: '''simple docstring''' for i in range(config.num_hidden_layers ): _lowerCamelCase : Tuple = "vilt." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _lowerCamelCase : Tuple = state_dict.pop(F"""transformer.blocks.{i}.attn.qkv.weight""" ) _lowerCamelCase : List[Any] = state_dict.pop(F"""transformer.blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase : str = in_proj_weight[ : config.hidden_size, : ] _lowerCamelCase : Any = in_proj_bias[: config.hidden_size] _lowerCamelCase : Optional[int] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _lowerCamelCase : List[str] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _lowerCamelCase : List[str] = in_proj_weight[ -config.hidden_size :, : ] _lowerCamelCase : Dict = in_proj_bias[-config.hidden_size :] def lowerCamelCase_( _lowerCamelCase ) -> int: '''simple docstring''' _lowerCamelCase : Optional[int] = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Any: '''simple docstring''' _lowerCamelCase : List[Any] = dct.pop(_lowerCamelCase ) _lowerCamelCase : Optional[int] = val @torch.no_grad() def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Optional[int]: '''simple docstring''' _lowerCamelCase : int = ViltConfig(image_size=384 , patch_size=32 , tie_word_embeddings=_lowerCamelCase ) _lowerCamelCase : Optional[int] = False _lowerCamelCase : Tuple = False _lowerCamelCase : Union[str, Any] = False _lowerCamelCase : str = False if "vqa" in checkpoint_url: _lowerCamelCase : str = True _lowerCamelCase : Union[str, Any] = 3129 _lowerCamelCase : str = "huggingface/label-files" _lowerCamelCase : Optional[Any] = "vqa2-id2label.json" _lowerCamelCase : Union[str, Any] = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type="dataset" ) , "r" ) ) _lowerCamelCase : Any = {int(_lowerCamelCase ): v for k, v in idalabel.items()} _lowerCamelCase : Optional[int] = idalabel _lowerCamelCase : int = {v: k for k, v in idalabel.items()} _lowerCamelCase : Any = ViltForQuestionAnswering(_lowerCamelCase ) elif "nlvr" in checkpoint_url: _lowerCamelCase : Tuple = True _lowerCamelCase : List[str] = 2 _lowerCamelCase : Optional[Any] = {0: "False", 1: "True"} _lowerCamelCase : int = {v: k for k, v in config.idalabel.items()} _lowerCamelCase : Optional[Any] = 3 _lowerCamelCase : Optional[Any] = ViltForImagesAndTextClassification(_lowerCamelCase ) elif "irtr" in checkpoint_url: _lowerCamelCase : Tuple = True _lowerCamelCase : Union[str, Any] = ViltForImageAndTextRetrieval(_lowerCamelCase ) elif "mlm_itm" in checkpoint_url: _lowerCamelCase : Dict = True _lowerCamelCase : Optional[int] = ViltForMaskedLM(_lowerCamelCase ) else: raise ValueError("Unknown model type" ) # load state_dict of original model, remove and rename some keys _lowerCamelCase : List[Any] = torch.hub.load_state_dict_from_url(_lowerCamelCase , map_location="cpu" )["state_dict"] _lowerCamelCase : str = create_rename_keys(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) for src, dest in rename_keys: rename_key(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) read_in_q_k_v(_lowerCamelCase , _lowerCamelCase ) if mlm_model or irtr_model: _lowerCamelCase : Dict = ["itm_score.fc.weight", "itm_score.fc.bias"] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase ) # load state dict into HuggingFace model model.eval() if mlm_model: _lowerCamelCase, _lowerCamelCase : List[str] = model.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase ) assert missing_keys == ["mlm_score.decoder.bias"] else: model.load_state_dict(_lowerCamelCase ) # Define processor _lowerCamelCase : int = ViltImageProcessor(size=384 ) _lowerCamelCase : Union[str, Any] = BertTokenizer.from_pretrained("bert-base-uncased" ) _lowerCamelCase : Optional[int] = ViltProcessor(_lowerCamelCase , _lowerCamelCase ) # Forward pass on example inputs (image + text) if nlvr_model: _lowerCamelCase : int = Image.open(requests.get("https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg" , stream=_lowerCamelCase ).raw ) _lowerCamelCase : Union[str, Any] = Image.open(requests.get("https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg" , stream=_lowerCamelCase ).raw ) _lowerCamelCase : str = ( "The left image contains twice the number of dogs as the right image, and at least two dogs in total are" " standing." ) _lowerCamelCase : List[str] = processor(_lowerCamelCase , _lowerCamelCase , return_tensors="pt" ) _lowerCamelCase : Optional[int] = processor(_lowerCamelCase , _lowerCamelCase , return_tensors="pt" ) _lowerCamelCase : int = model( input_ids=encoding_a.input_ids , pixel_values=encoding_a.pixel_values , pixel_values_a=encoding_a.pixel_values , ) else: _lowerCamelCase : str = Image.open(requests.get("http://images.cocodataset.org/val2017/000000039769.jpg" , stream=_lowerCamelCase ).raw ) if mlm_model: _lowerCamelCase : Any = "a bunch of [MASK] laying on a [MASK]." else: _lowerCamelCase : List[str] = "How many cats are there?" _lowerCamelCase : Union[str, Any] = processor(_lowerCamelCase , _lowerCamelCase , return_tensors="pt" ) _lowerCamelCase : Union[str, Any] = model(**_lowerCamelCase ) # Verify outputs if mlm_model: _lowerCamelCase : List[str] = torch.Size([1, 11, 30522] ) _lowerCamelCase : Dict = torch.tensor([-1_2.5_0_6_1, -1_2.5_1_2_3, -1_2.5_1_7_4] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , _lowerCamelCase , atol=1e-4 ) # verify masked token prediction equals "cats" _lowerCamelCase : List[Any] = outputs.logits[0, 4, :].argmax(-1 ).item() assert tokenizer.decode([predicted_id] ) == "cats" elif vqa_model: _lowerCamelCase : List[str] = torch.Size([1, 3129] ) _lowerCamelCase : List[str] = torch.tensor([-1_5.9_4_9_5, -1_8.1_4_7_2, -1_0.3_0_4_1] ) assert torch.allclose(outputs.logits[0, :3] , _lowerCamelCase , atol=1e-4 ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , _lowerCamelCase , atol=1e-4 ) # verify vqa prediction equals "2" _lowerCamelCase : Union[str, Any] = outputs.logits.argmax(-1 ).item() assert model.config.idalabel[predicted_idx] == "2" elif nlvr_model: _lowerCamelCase : List[str] = torch.Size([1, 2] ) _lowerCamelCase : Optional[Any] = torch.tensor([-2.8_7_2_1, 2.1_2_9_1] ) assert torch.allclose(outputs.logits[0, :3] , _lowerCamelCase , atol=1e-4 ) assert outputs.logits.shape == expected_shape Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) print(F"""Saving model and processor to {pytorch_dump_folder_path}""" ) model.save_pretrained(_lowerCamelCase ) processor.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": _lowerCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt''', type=str, help='''URL of the checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) _lowerCAmelCase : Union[str, Any] = parser.parse_args() convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
46
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowerCAmelCase : str = logging.get_logger(__name__) __lowerCAmelCase : Dict = { "facebook/xlm-roberta-xl": "https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json", "facebook/xlm-roberta-xxl": "https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json", # See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl } class __lowerCAmelCase ( lowerCAmelCase_ ): """simple docstring""" A__ : List[Any] = '''xlm-roberta-xl''' def __init__( self : Union[str, Any] , _snake_case : Any=25_0880 , _snake_case : Optional[Any]=2560 , _snake_case : Any=36 , _snake_case : Union[str, Any]=32 , _snake_case : int=1_0240 , _snake_case : int="gelu" , _snake_case : Dict=0.1 , _snake_case : Any=0.1 , _snake_case : Optional[int]=514 , _snake_case : int=1 , _snake_case : Optional[Any]=0.02 , _snake_case : str=1E-0_5 , _snake_case : Tuple=1 , _snake_case : str=0 , _snake_case : str=2 , _snake_case : int="absolute" , _snake_case : Any=True , _snake_case : Dict=None , **_snake_case : Dict , ): super().__init__(pad_token_id=_snake_case , bos_token_id=_snake_case , eos_token_id=_snake_case , **_snake_case ) __lowercase : Union[str, Any] = vocab_size __lowercase : Dict = hidden_size __lowercase : Optional[int] = num_hidden_layers __lowercase : str = num_attention_heads __lowercase : Optional[Any] = hidden_act __lowercase : Any = intermediate_size __lowercase : Optional[int] = hidden_dropout_prob __lowercase : Any = attention_probs_dropout_prob __lowercase : Union[str, Any] = max_position_embeddings __lowercase : Optional[int] = type_vocab_size __lowercase : Union[str, Any] = initializer_range __lowercase : Union[str, Any] = layer_norm_eps __lowercase : List[str] = position_embedding_type __lowercase : Optional[Any] = use_cache __lowercase : List[str] = classifier_dropout class __lowerCAmelCase ( lowerCAmelCase_ ): """simple docstring""" @property def snake_case_ ( self : Optional[Any] ): if self.task == "multiple-choice": __lowercase : str = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __lowercase : Tuple = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
284
from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
284
1
import shutil import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_tf_cross_test, require_tf, require_torch, require_torchvision, require_vision, ) from transformers.utils import is_tf_available, is_torch_available, is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, SamImageProcessor, SamProcessor if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf @require_vision @require_torchvision class a ( unittest.TestCase ): def UpperCAmelCase__ ( self : List[Any] ): """simple docstring""" __lowerCAmelCase = tempfile.mkdtemp() __lowerCAmelCase = SamImageProcessor() __lowerCAmelCase = SamProcessor(lowerCamelCase_ ) processor.save_pretrained(self.tmpdirname ) def UpperCAmelCase__ ( self : Union[str, Any] , **snake_case__ : List[str] ): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **lowerCamelCase_ ).image_processor def UpperCAmelCase__ ( self : Any ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def UpperCAmelCase__ ( self : Optional[Any] ): """simple docstring""" __lowerCAmelCase = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] __lowerCAmelCase = [Image.fromarray(np.moveaxis(lowerCamelCase_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCAmelCase__ ( self : List[str] ): """simple docstring""" __lowerCAmelCase = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __lowerCAmelCase = self.get_image_processor(do_normalize=lowerCamelCase_ , padding_value=1.0 ) __lowerCAmelCase = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=lowerCamelCase_ , padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowerCamelCase_ ) def UpperCAmelCase__ ( self : Tuple ): """simple docstring""" __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = SamProcessor(image_processor=lowerCamelCase_ ) __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = image_processor(lowerCamelCase_ , return_tensors="np" ) __lowerCAmelCase = processor(images=lowerCamelCase_ , return_tensors="np" ) input_feat_extract.pop("original_sizes" ) # pop original_sizes as it is popped in the processor input_feat_extract.pop("reshaped_input_sizes" ) # pop original_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) @require_torch def UpperCAmelCase__ ( self : Optional[int] ): """simple docstring""" __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = SamProcessor(image_processor=lowerCamelCase_ ) __lowerCAmelCase = [torch.ones((1, 3, 5, 5) )] __lowerCAmelCase = [[1_764, 2_646]] __lowerCAmelCase = [[683, 1_024]] __lowerCAmelCase = processor.post_process_masks(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) self.assertEqual(masks[0].shape , (1, 3, 1_764, 2_646) ) __lowerCAmelCase = processor.post_process_masks( lowerCamelCase_ , torch.tensor(lowerCamelCase_ ) , torch.tensor(lowerCamelCase_ ) ) self.assertEqual(masks[0].shape , (1, 3, 1_764, 2_646) ) # should also work with np __lowerCAmelCase = [np.ones((1, 3, 5, 5) )] __lowerCAmelCase = processor.post_process_masks(lowerCamelCase_ , np.array(lowerCamelCase_ ) , np.array(lowerCamelCase_ ) ) self.assertEqual(masks[0].shape , (1, 3, 1_764, 2_646) ) __lowerCAmelCase = [[1, 0], [0, 1]] with self.assertRaises(lowerCamelCase_ ): __lowerCAmelCase = processor.post_process_masks(lowerCamelCase_ , np.array(lowerCamelCase_ ) , np.array(lowerCamelCase_ ) ) @require_vision @require_tf class a ( unittest.TestCase ): def UpperCAmelCase__ ( self : Optional[int] ): """simple docstring""" __lowerCAmelCase = tempfile.mkdtemp() __lowerCAmelCase = SamImageProcessor() __lowerCAmelCase = SamProcessor(lowerCamelCase_ ) processor.save_pretrained(self.tmpdirname ) def UpperCAmelCase__ ( self : Dict , **snake_case__ : List[Any] ): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **lowerCamelCase_ ).image_processor def UpperCAmelCase__ ( self : int ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def UpperCAmelCase__ ( self : List[str] ): """simple docstring""" __lowerCAmelCase = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] __lowerCAmelCase = [Image.fromarray(np.moveaxis(lowerCamelCase_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCAmelCase__ ( self : List[str] ): """simple docstring""" __lowerCAmelCase = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __lowerCAmelCase = self.get_image_processor(do_normalize=lowerCamelCase_ , padding_value=1.0 ) __lowerCAmelCase = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=lowerCamelCase_ , padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowerCamelCase_ ) def UpperCAmelCase__ ( self : List[str] ): """simple docstring""" __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = SamProcessor(image_processor=lowerCamelCase_ ) __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = image_processor(lowerCamelCase_ , return_tensors="np" ) __lowerCAmelCase = processor(images=lowerCamelCase_ , return_tensors="np" ) input_feat_extract.pop("original_sizes" ) # pop original_sizes as it is popped in the processor input_feat_extract.pop("reshaped_input_sizes" ) # pop reshaped_input_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) @require_tf def UpperCAmelCase__ ( self : Optional[Any] ): """simple docstring""" __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = SamProcessor(image_processor=lowerCamelCase_ ) __lowerCAmelCase = [tf.ones((1, 3, 5, 5) )] __lowerCAmelCase = [[1_764, 2_646]] __lowerCAmelCase = [[683, 1_024]] __lowerCAmelCase = processor.post_process_masks(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , return_tensors="tf" ) self.assertEqual(masks[0].shape , (1, 3, 1_764, 2_646) ) __lowerCAmelCase = processor.post_process_masks( lowerCamelCase_ , tf.convert_to_tensor(lowerCamelCase_ ) , tf.convert_to_tensor(lowerCamelCase_ ) , return_tensors="tf" , ) self.assertEqual(masks[0].shape , (1, 3, 1_764, 2_646) ) # should also work with np __lowerCAmelCase = [np.ones((1, 3, 5, 5) )] __lowerCAmelCase = processor.post_process_masks( lowerCamelCase_ , np.array(lowerCamelCase_ ) , np.array(lowerCamelCase_ ) , return_tensors="tf" ) self.assertEqual(masks[0].shape , (1, 3, 1_764, 2_646) ) __lowerCAmelCase = [[1, 0], [0, 1]] with self.assertRaises(tf.errors.InvalidArgumentError ): __lowerCAmelCase = processor.post_process_masks( lowerCamelCase_ , np.array(lowerCamelCase_ ) , np.array(lowerCamelCase_ ) , return_tensors="tf" ) @require_vision @require_torchvision class a ( unittest.TestCase ): def UpperCAmelCase__ ( self : Union[str, Any] ): """simple docstring""" __lowerCAmelCase = tempfile.mkdtemp() __lowerCAmelCase = SamImageProcessor() __lowerCAmelCase = SamProcessor(lowerCamelCase_ ) processor.save_pretrained(self.tmpdirname ) def UpperCAmelCase__ ( self : Union[str, Any] , **snake_case__ : Union[str, Any] ): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **lowerCamelCase_ ).image_processor def UpperCAmelCase__ ( self : List[str] ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def UpperCAmelCase__ ( self : int ): """simple docstring""" __lowerCAmelCase = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] __lowerCAmelCase = [Image.fromarray(np.moveaxis(lowerCamelCase_ , 0 , -1 ) ) for x in image_inputs] return image_inputs @is_pt_tf_cross_test def UpperCAmelCase__ ( self : List[str] ): """simple docstring""" __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = SamProcessor(image_processor=lowerCamelCase_ ) __lowerCAmelCase = np.random.randint(0 , 2 , size=(1, 3, 5, 5) ).astype(np.floataa ) __lowerCAmelCase = [tf.convert_to_tensor(lowerCamelCase_ )] __lowerCAmelCase = [torch.tensor(lowerCamelCase_ )] __lowerCAmelCase = [[1_764, 2_646]] __lowerCAmelCase = [[683, 1_024]] __lowerCAmelCase = processor.post_process_masks( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , return_tensors="tf" ) __lowerCAmelCase = processor.post_process_masks( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , return_tensors="pt" ) self.assertTrue(np.all(tf_masks[0].numpy() == pt_masks[0].numpy() ) ) @is_pt_tf_cross_test def UpperCAmelCase__ ( self : Optional[Any] ): """simple docstring""" __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = SamProcessor(image_processor=lowerCamelCase_ ) __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = image_processor(lowerCamelCase_ , return_tensors="pt" )['''pixel_values'''].numpy() __lowerCAmelCase = processor(images=lowerCamelCase_ , return_tensors="pt" )['''pixel_values'''].numpy() __lowerCAmelCase = image_processor(lowerCamelCase_ , return_tensors="tf" )['''pixel_values'''].numpy() __lowerCAmelCase = processor(images=lowerCamelCase_ , return_tensors="tf" )['''pixel_values'''].numpy() self.assertTrue(np.allclose(lowerCamelCase_ , lowerCamelCase_ ) ) self.assertTrue(np.allclose(lowerCamelCase_ , lowerCamelCase_ ) ) self.assertTrue(np.allclose(lowerCamelCase_ , lowerCamelCase_ ) )
611
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase__ : List[str] = logging.get_logger(__name__) UpperCamelCase__ : str = { 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/config.json', 'umberto-commoncrawl-cased-v1': ( 'https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json' ), 'umberto-wikipedia-uncased-v1': ( 'https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json' ), } class _lowercase ( lowerCAmelCase ): '''simple docstring''' UpperCAmelCase_ : Dict = '''camembert''' def __init__( self ,lowerCamelCase_=30522 ,lowerCamelCase_=768 ,lowerCamelCase_=12 ,lowerCamelCase_=12 ,lowerCamelCase_=3072 ,lowerCamelCase_="gelu" ,lowerCamelCase_=0.1 ,lowerCamelCase_=0.1 ,lowerCamelCase_=512 ,lowerCamelCase_=2 ,lowerCamelCase_=0.02 ,lowerCamelCase_=1e-12 ,lowerCamelCase_=1 ,lowerCamelCase_=0 ,lowerCamelCase_=2 ,lowerCamelCase_="absolute" ,lowerCamelCase_=True ,lowerCamelCase_=None ,**lowerCamelCase_ ,) -> str: '''simple docstring''' super().__init__(pad_token_id=lowerCamelCase_ ,bos_token_id=lowerCamelCase_ ,eos_token_id=lowerCamelCase_ ,**lowerCamelCase_ ) UpperCAmelCase__ : int = vocab_size UpperCAmelCase__ : List[Any] = hidden_size UpperCAmelCase__ : Tuple = num_hidden_layers UpperCAmelCase__ : List[str] = num_attention_heads UpperCAmelCase__ : int = hidden_act UpperCAmelCase__ : Tuple = intermediate_size UpperCAmelCase__ : List[Any] = hidden_dropout_prob UpperCAmelCase__ : Tuple = attention_probs_dropout_prob UpperCAmelCase__ : str = max_position_embeddings UpperCAmelCase__ : Union[str, Any] = type_vocab_size UpperCAmelCase__ : int = initializer_range UpperCAmelCase__ : Optional[Any] = layer_norm_eps UpperCAmelCase__ : Optional[Any] = position_embedding_type UpperCAmelCase__ : str = use_cache UpperCAmelCase__ : List[Any] = classifier_dropout class _lowercase ( lowerCAmelCase ): '''simple docstring''' @property def lowerCAmelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": UpperCAmelCase__ : Tuple = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: UpperCAmelCase__ : Union[str, Any] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
614
0
'''simple docstring''' import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class lowercase__ ( unittest.TestCase ): '''simple docstring''' def __init__( self , lowerCamelCase__ , lowerCamelCase__=7 , lowerCamelCase__=3 , lowerCamelCase__=3_0 , lowerCamelCase__=4_0_0 , lowerCamelCase__=True , lowerCamelCase__=None , lowerCamelCase__=True , lowerCamelCase__=[0.5, 0.5, 0.5] , lowerCamelCase__=[0.5, 0.5, 0.5] , lowerCamelCase__=True , lowerCamelCase__=1 / 2_5_5 , lowerCamelCase__=True , ): '''simple docstring''' UpperCamelCase = size if size is not None else {'''shortest_edge''': 1_8, '''longest_edge''': 1_3_3_3} UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = num_channels UpperCamelCase = min_resolution UpperCamelCase = max_resolution UpperCamelCase = do_resize UpperCamelCase = size UpperCamelCase = do_normalize UpperCamelCase = image_mean UpperCamelCase = image_std UpperCamelCase = do_rescale UpperCamelCase = rescale_factor UpperCamelCase = do_pad def UpperCAmelCase ( self ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def UpperCAmelCase ( self , lowerCamelCase__ , lowerCamelCase__=False ): '''simple docstring''' if not batched: UpperCamelCase = image_inputs[0] if isinstance(lowerCamelCase__ , Image.Image ): UpperCamelCase , UpperCamelCase = image.size else: UpperCamelCase , UpperCamelCase = image.shape[1], image.shape[2] if w < h: UpperCamelCase = int(self.size['''shortest_edge'''] * h / w ) UpperCamelCase = self.size['''shortest_edge'''] elif w > h: UpperCamelCase = self.size['''shortest_edge'''] UpperCamelCase = int(self.size['''shortest_edge'''] * w / h ) else: UpperCamelCase = self.size['''shortest_edge'''] UpperCamelCase = self.size['''shortest_edge'''] else: UpperCamelCase = [] for image in image_inputs: UpperCamelCase , UpperCamelCase = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) UpperCamelCase = max(lowerCamelCase__ , key=lambda lowerCamelCase__ : item[0] )[0] UpperCamelCase = max(lowerCamelCase__ , key=lambda lowerCamelCase__ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class lowercase__ ( snake_case_, unittest.TestCase ): '''simple docstring''' _snake_case = DeformableDetrImageProcessor if is_vision_available() else None def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase = DeformableDetrImageProcessingTester(self ) @property def UpperCAmelCase ( self ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase__ , '''image_mean''' ) ) self.assertTrue(hasattr(lowerCamelCase__ , '''image_std''' ) ) self.assertTrue(hasattr(lowerCamelCase__ , '''do_normalize''' ) ) self.assertTrue(hasattr(lowerCamelCase__ , '''do_resize''' ) ) self.assertTrue(hasattr(lowerCamelCase__ , '''do_rescale''' ) ) self.assertTrue(hasattr(lowerCamelCase__ , '''do_pad''' ) ) self.assertTrue(hasattr(lowerCamelCase__ , '''size''' ) ) def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 1_8, '''longest_edge''': 1_3_3_3} ) self.assertEqual(image_processor.do_pad , lowerCamelCase__ ) UpperCamelCase = self.image_processing_class.from_dict( self.image_processor_dict , size=4_2 , max_size=8_4 , pad_and_return_pixel_mask=lowerCamelCase__ ) self.assertEqual(image_processor.size , {'''shortest_edge''': 4_2, '''longest_edge''': 8_4} ) self.assertEqual(image_processor.do_pad , lowerCamelCase__ ) def UpperCAmelCase ( self ): '''simple docstring''' pass def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ , Image.Image ) # Test not batched input UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values UpperCamelCase , UpperCamelCase = self.image_processor_tester.get_expected_values(lowerCamelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCamelCase , UpperCamelCase = self.image_processor_tester.get_expected_values(lowerCamelCase__ , batched=lowerCamelCase__ ) UpperCamelCase = image_processing(lowerCamelCase__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase__ , numpify=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ , np.ndarray ) # Test not batched input UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values UpperCamelCase , UpperCamelCase = self.image_processor_tester.get_expected_values(lowerCamelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCamelCase = image_processing(lowerCamelCase__ , return_tensors='''pt''' ).pixel_values UpperCamelCase , UpperCamelCase = self.image_processor_tester.get_expected_values(lowerCamelCase__ , batched=lowerCamelCase__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase__ , torchify=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ , torch.Tensor ) # Test not batched input UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values UpperCamelCase , UpperCamelCase = self.image_processor_tester.get_expected_values(lowerCamelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCamelCase = image_processing(lowerCamelCase__ , return_tensors='''pt''' ).pixel_values UpperCamelCase , UpperCamelCase = self.image_processor_tester.get_expected_values(lowerCamelCase__ , batched=lowerCamelCase__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: UpperCamelCase = json.loads(f.read() ) UpperCamelCase = {'''image_id''': 3_9_7_6_9, '''annotations''': target} # encode them UpperCamelCase = DeformableDetrImageProcessor() UpperCamelCase = image_processing(images=lowerCamelCase__ , annotations=lowerCamelCase__ , return_tensors='''pt''' ) # verify pixel values UpperCamelCase = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding['''pixel_values'''].shape , lowerCamelCase__ ) UpperCamelCase = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , lowerCamelCase__ , atol=1e-4 ) ) # verify area UpperCamelCase = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , lowerCamelCase__ ) ) # verify boxes UpperCamelCase = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , lowerCamelCase__ ) UpperCamelCase = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , lowerCamelCase__ , atol=1e-3 ) ) # verify image_id UpperCamelCase = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , lowerCamelCase__ ) ) # verify is_crowd UpperCamelCase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , lowerCamelCase__ ) ) # verify class_labels UpperCamelCase = torch.tensor([7_5, 7_5, 6_3, 6_5, 1_7, 1_7] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , lowerCamelCase__ ) ) # verify orig_size UpperCamelCase = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , lowerCamelCase__ ) ) # verify size UpperCamelCase = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , lowerCamelCase__ ) ) @slow def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: UpperCamelCase = json.loads(f.read() ) UpperCamelCase = {'''file_name''': '''000000039769.png''', '''image_id''': 3_9_7_6_9, '''segments_info''': target} UpperCamelCase = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them UpperCamelCase = DeformableDetrImageProcessor(format='''coco_panoptic''' ) UpperCamelCase = image_processing(images=lowerCamelCase__ , annotations=lowerCamelCase__ , masks_path=lowerCamelCase__ , return_tensors='''pt''' ) # verify pixel values UpperCamelCase = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding['''pixel_values'''].shape , lowerCamelCase__ ) UpperCamelCase = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , lowerCamelCase__ , atol=1e-4 ) ) # verify area UpperCamelCase = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , lowerCamelCase__ ) ) # verify boxes UpperCamelCase = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , lowerCamelCase__ ) UpperCamelCase = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , lowerCamelCase__ , atol=1e-3 ) ) # verify image_id UpperCamelCase = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , lowerCamelCase__ ) ) # verify is_crowd UpperCamelCase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , lowerCamelCase__ ) ) # verify class_labels UpperCamelCase = torch.tensor([1_7, 1_7, 6_3, 7_5, 7_5, 9_3] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , lowerCamelCase__ ) ) # verify masks UpperCamelCase = 8_2_2_8_7_3 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , lowerCamelCase__ ) # verify orig_size UpperCamelCase = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , lowerCamelCase__ ) ) # verify size UpperCamelCase = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , lowerCamelCase__ ) )
709
'''simple docstring''' def __snake_case ( _UpperCAmelCase : Optional[int]): UpperCamelCase = [] UpperCamelCase = [] UpperCamelCase = { '''^''': 3, '''*''': 2, '''/''': 2, '''%''': 2, '''+''': 1, '''-''': 1, } # Priority of each operator UpperCamelCase = len(_UpperCAmelCase) if (len(_UpperCAmelCase) > 7) else 7 # Print table header for output print( '''Symbol'''.center(8), '''Stack'''.center(_UpperCAmelCase), '''Postfix'''.center(_UpperCAmelCase), sep=''' | ''', ) print('''-''' * (print_width * 3 + 7)) for x in infix: if x.isalpha() or x.isdigit(): post_fix.append(_UpperCAmelCase) # if x is Alphabet / Digit, add it to Postfix elif x == "(": stack.append(_UpperCAmelCase) # if x is "(" push to Stack elif x == ")": # if x is ")" pop stack until "(" is encountered while stack[-1] != "(": post_fix.append(stack.pop()) # Pop stack & add the content to Postfix stack.pop() else: if len(_UpperCAmelCase) == 0: stack.append(_UpperCAmelCase) # If stack is empty, push x to stack else: # while priority of x is not > priority of element in the stack while len(_UpperCAmelCase) > 0 and priority[x] <= priority[stack[-1]]: post_fix.append(stack.pop()) # pop stack & add to Postfix stack.append(_UpperCAmelCase) # push x to stack print( x.center(8), (''''''.join(_UpperCAmelCase)).ljust(_UpperCAmelCase), (''''''.join(_UpperCAmelCase)).ljust(_UpperCAmelCase), sep=''' | ''', ) # Output in tabular format while len(_UpperCAmelCase) > 0: # while stack is not empty post_fix.append(stack.pop()) # pop stack & add to Postfix print( ''' '''.center(8), (''''''.join(_UpperCAmelCase)).ljust(_UpperCAmelCase), (''''''.join(_UpperCAmelCase)).ljust(_UpperCAmelCase), sep=''' | ''', ) # Output in tabular format return "".join(_UpperCAmelCase) # return Postfix as str def __snake_case ( _UpperCAmelCase : str): UpperCamelCase = list(infix[::-1]) # reverse the infix equation for i in range(len(_UpperCAmelCase)): if infix[i] == "(": UpperCamelCase = ''')''' # change "(" to ")" elif infix[i] == ")": UpperCamelCase = '''(''' # change ")" to "(" return (infix_2_postfix(''''''.join(_UpperCAmelCase)))[ ::-1 ] # call infix_2_postfix on Infix, return reverse of Postfix if __name__ == "__main__": snake_case_ : str = input('\nEnter an Infix Equation = ') # Input an Infix equation snake_case_ : Union[str, Any] = ''.join(Infix.split()) # Remove spaces from the input print('\n\t', Infix, '(Infix) -> ', infix_2_prefix(Infix), '(Prefix)')
350
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from diffusers import DDIMScheduler, KandinskyVaaPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowerCamelCase__ ( UpperCAmelCase_ , unittest.TestCase ): lowerCAmelCase = KandinskyVaaPipeline lowerCAmelCase = [ """image_embeds""", """negative_image_embeds""", ] lowerCAmelCase = ["""image_embeds""", """negative_image_embeds"""] lowerCAmelCase = [ """generator""", """height""", """width""", """latents""", """guidance_scale""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] lowerCAmelCase = False @property def __a ( self : Optional[Any] ): return 32 @property def __a ( self : Optional[int] ): return 32 @property def __a ( self : Any ): return self.time_input_dim @property def __a ( self : int ): return self.time_input_dim * 4 @property def __a ( self : Dict ): return 100 @property def __a ( self : int ): torch.manual_seed(0 ) A = { 'in_channels': 4, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'image', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } A = UNetaDConditionModel(**_lowercase ) return model @property def __a ( self : Any ): return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def __a ( self : Dict ): torch.manual_seed(0 ) A = VQModel(**self.dummy_movq_kwargs ) return model def __a ( self : str ): A = self.dummy_unet A = self.dummy_movq A = DDIMScheduler( num_train_timesteps=1_000 , beta_schedule='linear' , beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , clip_sample=_lowercase , set_alpha_to_one=_lowercase , steps_offset=1 , prediction_type='epsilon' , thresholding=_lowercase , ) A = { 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def __a ( self : int , _lowercase : List[str] , _lowercase : str=0 ): A = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_lowercase ) ).to(_lowercase ) A = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( _lowercase ) if str(_lowercase ).startswith('mps' ): A = torch.manual_seed(_lowercase ) else: A = torch.Generator(device=_lowercase ).manual_seed(_lowercase ) A = { 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'generator': generator, 'height': 64, 'width': 64, 'guidance_scale': 4.0, 'num_inference_steps': 2, 'output_type': 'np', } return inputs def __a ( self : str ): A = 'cpu' A = self.get_dummy_components() A = self.pipeline_class(**_lowercase ) A = pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) A = pipe(**self.get_dummy_inputs(_lowercase ) ) A = output.images A = pipe( **self.get_dummy_inputs(_lowercase ) , return_dict=_lowercase , )[0] A = image[0, -3:, -3:, -1] A = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) A = np.array( [0.6_2_3_7_9_7_6, 1.0, 0.3_6_4_4_1_3_3_2, 1.0, 0.7_0_6_3_9_6_3_4, 0.2_9_8_7_7_1_8_6, 0.8_5_6_5_2_1_2_5, 0.5_2_1_6_8_4_3, 0.5_4_4_5_4_0_4_6] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' @slow @require_torch_gpu class lowerCamelCase__ ( unittest.TestCase ): def __a ( self : List[Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self : Optional[Any] ): A = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/kandinskyv22_text2img_cat_fp16.npy' ) A = KandinskyVaaPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-prior' , torch_dtype=torch.floataa ) pipe_prior.to(_lowercase ) A = KandinskyVaaPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-decoder' , torch_dtype=torch.floataa ) A = pipeline.to(_lowercase ) pipeline.set_progress_bar_config(disable=_lowercase ) A = 'red cat, 4k photo' A = torch.Generator(device='cuda' ).manual_seed(0 ) A , A = pipe_prior( _lowercase , generator=_lowercase , num_inference_steps=5 , negative_prompt='' , ).to_tuple() A = torch.Generator(device='cuda' ).manual_seed(0 ) A = pipeline( image_embeds=_lowercase , negative_image_embeds=_lowercase , generator=_lowercase , num_inference_steps=100 , output_type='np' , ) A = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(_lowercase , _lowercase )
690
"""simple docstring""" from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
690
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE = {'configuration_vit_msn': ['VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ViTMSNConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ 'VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST', 'ViTMSNModel', 'ViTMSNForImageClassification', 'ViTMSNPreTrainedModel', ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
710
'''simple docstring''' import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def A__ ( self : int ) -> Any: '''simple docstring''' lowercase : Union[str, Any] =0 def A__ ( self : str ) -> Union[str, Any]: '''simple docstring''' lowercase : Tuple =AutoImageProcessor.from_pretrained('''openai/clip-vit-base-patch32''' ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) def A__ ( self : Any ) -> int: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: lowercase : int =Path(UpperCAmelCase ) / '''preprocessor_config.json''' lowercase : str =Path(UpperCAmelCase ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(UpperCAmelCase , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(UpperCAmelCase , '''w''' ) ) lowercase : str =AutoImageProcessor.from_pretrained(UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) def A__ ( self : Any ) -> Union[str, Any]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: lowercase : int =Path(UpperCAmelCase ) / '''preprocessor_config.json''' lowercase : int =Path(UpperCAmelCase ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(UpperCAmelCase , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(UpperCAmelCase , '''w''' ) ) lowercase : Optional[Any] =AutoImageProcessor.from_pretrained(UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) def A__ ( self : Optional[Any] ) -> Any: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: lowercase : str =CLIPConfig() # Create a dummy config file with image_proceesor_type lowercase : Optional[int] =Path(UpperCAmelCase ) / '''preprocessor_config.json''' lowercase : Optional[Any] =Path(UpperCAmelCase ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(UpperCAmelCase , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(UpperCAmelCase , '''w''' ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally lowercase : Dict =AutoImageProcessor.from_pretrained(UpperCAmelCase ).to_dict() config_dict.pop('''image_processor_type''' ) lowercase : str =CLIPImageProcessor(**UpperCAmelCase ) # save in new folder model_config.save_pretrained(UpperCAmelCase ) config.save_pretrained(UpperCAmelCase ) lowercase : Optional[int] =AutoImageProcessor.from_pretrained(UpperCAmelCase ) # make sure private variable is not incorrectly saved lowercase : int =json.loads(config.to_json_string() ) self.assertTrue('''_processor_class''' not in dict_as_saved ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) def A__ ( self : str ) -> List[str]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: lowercase : Dict =Path(UpperCAmelCase ) / '''preprocessor_config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(UpperCAmelCase , '''w''' ) , ) lowercase : Optional[Any] =AutoImageProcessor.from_pretrained(UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) def A__ ( self : int ) -> List[str]: '''simple docstring''' with self.assertRaisesRegex( UpperCAmelCase , '''clip-base is not a local folder and is not a valid model identifier''' ): lowercase : Union[str, Any] =AutoImageProcessor.from_pretrained('''clip-base''' ) def A__ ( self : List[Any] ) -> List[str]: '''simple docstring''' with self.assertRaisesRegex( UpperCAmelCase , R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): lowercase : Any =AutoImageProcessor.from_pretrained(UpperCAmelCase , revision='''aaaaaa''' ) def A__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' with self.assertRaisesRegex( UpperCAmelCase , '''hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.''' , ): lowercase : Optional[int] =AutoImageProcessor.from_pretrained('''hf-internal-testing/config-no-model''' ) def A__ ( self : List[str] ) -> str: '''simple docstring''' with self.assertRaises(UpperCAmelCase ): lowercase : Dict =AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(UpperCAmelCase ): lowercase : List[str] =AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=UpperCAmelCase ) lowercase : Union[str, Any] =AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=UpperCAmelCase ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(UpperCAmelCase ) lowercase : Any =AutoImageProcessor.from_pretrained(UpperCAmelCase , trust_remote_code=UpperCAmelCase ) self.assertEqual(reloaded_image_processor.__class__.__name__ , '''NewImageProcessor''' ) def A__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' try: AutoConfig.register('''custom''' , UpperCAmelCase ) AutoImageProcessor.register(UpperCAmelCase , UpperCAmelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(UpperCAmelCase ): AutoImageProcessor.register(UpperCAmelCase , UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmpdirname: lowercase : Any =Path(UpperCAmelCase ) / '''preprocessor_config.json''' lowercase : str =Path(UpperCAmelCase ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(UpperCAmelCase , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(UpperCAmelCase , '''w''' ) ) lowercase : Optional[int] =CustomImageProcessor.from_pretrained(UpperCAmelCase ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(UpperCAmelCase ) lowercase : Dict =AutoImageProcessor.from_pretrained(UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def A__ ( self : Any ) -> Any: '''simple docstring''' class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = True try: AutoConfig.register('''custom''' , UpperCAmelCase ) AutoImageProcessor.register(UpperCAmelCase , UpperCAmelCase ) # If remote code is not set, the default is to use local lowercase : List[str] =AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. lowercase : Tuple =AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=UpperCAmelCase ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub lowercase : Dict =AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=UpperCAmelCase ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(not hasattr(UpperCAmelCase , '''is_local''' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
8
0
"""simple docstring""" def lowerCamelCase_( _lowerCamelCase ) -> bool: '''simple docstring''' if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise ValueError("check_bouncy() accepts only integer arguments" ) _lowerCamelCase : Any = str(_lowerCamelCase ) _lowerCamelCase : List[str] = "".join(sorted(_lowerCamelCase ) ) return sorted_str_n != str_n and sorted_str_n[::-1] != str_n def lowerCamelCase_( _lowerCamelCase = 99 ) -> int: '''simple docstring''' if not 0 < percent < 100: raise ValueError("solution() only accepts values from 0 to 100" ) _lowerCamelCase : Optional[Any] = 0 _lowerCamelCase : List[Any] = 1 while True: if check_bouncy(_lowerCamelCase ): bouncy_num += 1 if (bouncy_num / num) * 100 >= percent: return num num += 1 if __name__ == "__main__": from doctest import testmod testmod() print(f'''{solution(99)}''')
46
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer a_ : Optional[int] = logging.get_logger(__name__) a_ : Dict = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} a_ : int = { """vocab_file""": { """junnyu/roformer_chinese_small""": """https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt""", """junnyu/roformer_chinese_base""": """https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt""", """junnyu/roformer_chinese_char_small""": ( """https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt""" ), """junnyu/roformer_chinese_char_base""": ( """https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt""" ), """junnyu/roformer_small_discriminator""": ( """https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt""" ), """junnyu/roformer_small_generator""": ( """https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt""" ), } } a_ : Any = { """junnyu/roformer_chinese_small""": 1536, """junnyu/roformer_chinese_base""": 1536, """junnyu/roformer_chinese_char_small""": 512, """junnyu/roformer_chinese_char_base""": 512, """junnyu/roformer_small_discriminator""": 128, """junnyu/roformer_small_generator""": 128, } a_ : List[Any] = { """junnyu/roformer_chinese_small""": {"""do_lower_case""": True}, """junnyu/roformer_chinese_base""": {"""do_lower_case""": True}, """junnyu/roformer_chinese_char_small""": {"""do_lower_case""": True}, """junnyu/roformer_chinese_char_base""": {"""do_lower_case""": True}, """junnyu/roformer_small_discriminator""": {"""do_lower_case""": True}, """junnyu/roformer_small_generator""": {"""do_lower_case""": True}, } class snake_case ( lowercase ): """simple docstring""" _lowerCamelCase = VOCAB_FILES_NAMES _lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase = PRETRAINED_INIT_CONFIGURATION _lowerCamelCase = RoFormerTokenizer def __init__( self , UpperCamelCase=None , UpperCamelCase=None , UpperCamelCase=True , UpperCamelCase="[UNK]" , UpperCamelCase="[SEP]" , UpperCamelCase="[PAD]" , UpperCamelCase="[CLS]" , UpperCamelCase="[MASK]" , UpperCamelCase=True , UpperCamelCase=None , **UpperCamelCase , ): """simple docstring""" super().__init__( UpperCamelCase , tokenizer_file=UpperCamelCase , do_lower_case=UpperCamelCase , unk_token=UpperCamelCase , sep_token=UpperCamelCase , pad_token=UpperCamelCase , cls_token=UpperCamelCase , mask_token=UpperCamelCase , tokenize_chinese_chars=UpperCamelCase , strip_accents=UpperCamelCase , **UpperCamelCase , ) lowerCamelCase_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( pre_tok_state.get("lowercase" , UpperCamelCase ) != do_lower_case or pre_tok_state.get("strip_accents" , UpperCamelCase ) != strip_accents ): lowerCamelCase_ = getattr(UpperCamelCase , pre_tok_state.pop("type" ) ) lowerCamelCase_ = do_lower_case lowerCamelCase_ = strip_accents lowerCamelCase_ = pre_tok_class(**UpperCamelCase ) lowerCamelCase_ = do_lower_case def __getstate__( self ): """simple docstring""" lowerCamelCase_ = self.__dict__.copy() lowerCamelCase_ = BertPreTokenizer() return state def __setstate__( self , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = d lowerCamelCase_ = self.__dict__["_tokenizer"].get_vocab() lowerCamelCase_ = PreTokenizer.custom(JiebaPreTokenizer(UpperCamelCase ) ) def snake_case ( self , UpperCamelCase , UpperCamelCase=None ): """simple docstring""" lowerCamelCase_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def snake_case ( self , UpperCamelCase , UpperCamelCase = None ): """simple docstring""" lowerCamelCase_ = [self.sep_token_id] lowerCamelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def snake_case ( self , UpperCamelCase , UpperCamelCase = None ): """simple docstring""" lowerCamelCase_ = self._tokenizer.model.save(UpperCamelCase , name=UpperCamelCase ) return tuple(UpperCamelCase ) def snake_case ( self , UpperCamelCase , UpperCamelCase=None , UpperCamelCase=None , UpperCamelCase=False , **UpperCamelCase , ): """simple docstring""" lowerCamelCase_ = BertPreTokenizer() return super().save_pretrained(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , **UpperCamelCase )
675
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available A__: Optional[int] = { '''configuration_tapas''': ['''TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TapasConfig'''], '''tokenization_tapas''': ['''TapasTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__: List[Any] = [ '''TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TapasForMaskedLM''', '''TapasForQuestionAnswering''', '''TapasForSequenceClassification''', '''TapasModel''', '''TapasPreTrainedModel''', '''load_tf_weights_in_tapas''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__: Optional[Any] = [ '''TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFTapasForMaskedLM''', '''TFTapasForQuestionAnswering''', '''TFTapasForSequenceClassification''', '''TFTapasModel''', '''TFTapasPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig from .tokenization_tapas import TapasTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tapas import ( TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasPreTrainedModel, load_tf_weights_in_tapas, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_tapas import ( TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TFTapasForMaskedLM, TFTapasForQuestionAnswering, TFTapasForSequenceClassification, TFTapasModel, TFTapasPreTrainedModel, ) else: import sys A__: List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
719
from __future__ import annotations def lowerCAmelCase_ ( A_ ,A_ ,A_): if (voltage, current, resistance).count(0) != 1: raise ValueError("One and only one argument must be 0") if resistance < 0: raise ValueError("Resistance cannot be negative") if voltage == 0: return {"voltage": float(current * resistance)} elif current == 0: return {"current": voltage / resistance} elif resistance == 0: return {"resistance": voltage / current} else: raise ValueError("Exactly one argument must be 0") if __name__ == "__main__": import doctest doctest.testmod()
221
0
'''simple docstring''' from __future__ import annotations def A (__lowerCamelCase :str ): return [ord(__lowerCamelCase ) - 96 for elem in plain] def A (__lowerCamelCase :list[int] ): return "".join(chr(elem + 96 ) for elem in encoded ) def A (): _lowerCAmelCase = encode(input("""-> """ ).strip().lower() ) print("""Encoded: """ , __lowerCamelCase ) print("""Decoded:""" , decode(__lowerCamelCase ) ) if __name__ == "__main__": main()
5
'''simple docstring''' import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print("""Googling.....""") _lowercase = """https://www.google.com/search?q=""" + """ """.join(sys.argv[1:]) _lowercase = requests.get(url, headers={"""UserAgent""": UserAgent().random}) # res.raise_for_status() with open("""project1a.html""", """wb""") as out_file: # only for knowing the class for data in res.iter_content(10000): out_file.write(data) _lowercase = BeautifulSoup(res.text, """html.parser""") _lowercase = list(soup.select(""".eZt8xd"""))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get("""href""")) else: webbrowser.open(F"""https://google.com{link.get('href')}""")
5
1
from __future__ import annotations import inspect import unittest import numpy as np from transformers import DeiTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, ) from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class snake_case__ : '''simple docstring''' def __init__( self , a__ , a__=13 , a__=30 , a__=2 , a__=3 , a__=True , a__=True , a__=32 , a__=2 , a__=4 , a__=37 , a__="gelu" , a__=0.1 , a__=0.1 , a__=10 , a__=0.02 , a__=3 , a__=None , a__=2 , ) -> str: '''simple docstring''' __snake_case :List[Any] = parent __snake_case :Dict = batch_size __snake_case :List[str] = image_size __snake_case :Dict = patch_size __snake_case :List[Any] = num_channels __snake_case :Optional[int] = is_training __snake_case :Tuple = use_labels __snake_case :Any = hidden_size __snake_case :Optional[Any] = num_hidden_layers __snake_case :Optional[Any] = num_attention_heads __snake_case :Any = intermediate_size __snake_case :Dict = hidden_act __snake_case :str = hidden_dropout_prob __snake_case :Optional[Any] = attention_probs_dropout_prob __snake_case :Optional[Any] = type_sequence_label_size __snake_case :Union[str, Any] = initializer_range __snake_case :List[str] = scope __snake_case :Dict = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) __snake_case :List[Any] = (image_size // patch_size) ** 2 __snake_case :Any = num_patches + 2 def __lowercase ( self ) -> List[str]: '''simple docstring''' __snake_case :Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case :Union[str, Any] = None if self.use_labels: __snake_case :str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case :List[Any] = self.get_config() return config, pixel_values, labels def __lowercase ( self ) -> List[Any]: '''simple docstring''' return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=a__ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def __lowercase ( self , a__ , a__ , a__ ) -> Tuple: '''simple docstring''' __snake_case :Tuple = TFDeiTModel(config=a__ ) __snake_case :Any = model(a__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowercase ( self , a__ , a__ , a__ ) -> Any: '''simple docstring''' __snake_case :Any = TFDeiTForMaskedImageModeling(config=a__ ) __snake_case :List[str] = model(a__ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images __snake_case :List[str] = 1 __snake_case :int = TFDeiTForMaskedImageModeling(a__ ) __snake_case :Any = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __snake_case :List[Any] = model(a__ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def __lowercase ( self , a__ , a__ , a__ ) -> Dict: '''simple docstring''' __snake_case :Any = self.type_sequence_label_size __snake_case :str = TFDeiTForImageClassification(a__ ) __snake_case :List[str] = model(a__ , labels=a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __snake_case :Tuple = 1 __snake_case :List[str] = TFDeiTForImageClassification(a__ ) __snake_case :Tuple = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __snake_case :Optional[Any] = model(a__ , labels=a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __lowercase ( self ) -> List[str]: '''simple docstring''' __snake_case :Dict = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case :str = config_and_inputs __snake_case :List[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class snake_case__ ( lowercase_ , lowercase_ , unittest.TestCase): '''simple docstring''' lowerCamelCase : Dict = ( ( TFDeiTModel, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, ) if is_tf_available() else () ) lowerCamelCase : Optional[int] = ( { "feature-extraction": TFDeiTModel, "image-classification": (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher), } if is_tf_available() else {} ) lowerCamelCase : Union[str, Any] = False lowerCamelCase : List[Any] = False lowerCamelCase : Optional[int] = False lowerCamelCase : List[Any] = False def __lowercase ( self ) -> Any: '''simple docstring''' __snake_case :Optional[int] = TFDeiTModelTester(self ) __snake_case :Dict = ConfigTester(self , config_class=a__ , has_text_modality=a__ , hidden_size=37 ) def __lowercase ( self ) -> Any: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="""DeiT does not use inputs_embeds""" ) def __lowercase ( self ) -> str: '''simple docstring''' pass def __lowercase ( self ) -> Optional[int]: '''simple docstring''' __snake_case , __snake_case :Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case :List[str] = model_class(a__ ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) __snake_case :str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(a__ , tf.keras.layers.Dense ) ) def __lowercase ( self ) -> str: '''simple docstring''' __snake_case , __snake_case :str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case :Tuple = model_class(a__ ) __snake_case :Optional[int] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case :Any = [*signature.parameters.keys()] __snake_case :Any = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , a__ ) def __lowercase ( self ) -> str: '''simple docstring''' __snake_case :List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a__ ) def __lowercase ( self ) -> Optional[Any]: '''simple docstring''' __snake_case :Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*a__ ) def __lowercase ( self ) -> Dict: '''simple docstring''' __snake_case :List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*a__ ) def __lowercase ( self , a__ , a__ , a__=False ) -> Any: '''simple docstring''' __snake_case :Tuple = super()._prepare_for_class(a__ , a__ , return_labels=a__ ) if return_labels: if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters: del inputs_dict["labels"] return inputs_dict @slow def __lowercase ( self ) -> List[str]: '''simple docstring''' for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case :Union[str, Any] = TFDeiTModel.from_pretrained(a__ ) self.assertIsNotNone(a__ ) def UpperCamelCase ( ): '''simple docstring''' __snake_case :Dict = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class snake_case__ ( unittest.TestCase): '''simple docstring''' @cached_property def __lowercase ( self ) -> Optional[Any]: '''simple docstring''' return ( DeiTImageProcessor.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ) if is_vision_available() else None ) @slow def __lowercase ( self ) -> str: '''simple docstring''' __snake_case :Any = TFDeiTForImageClassificationWithTeacher.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ) __snake_case :Dict = self.default_image_processor __snake_case :List[Any] = prepare_img() __snake_case :Optional[Any] = image_processor(images=a__ , return_tensors="""tf""" ) # forward pass __snake_case :Optional[int] = model(**a__ ) # verify the logits __snake_case :Tuple = tf.TensorShape((1, 10_00) ) self.assertEqual(outputs.logits.shape , a__ ) __snake_case :Tuple = tf.constant([-1.02_66, 0.19_12, -1.28_61] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , a__ , atol=1e-4 ) )
291
import copy import os from typing import TYPE_CHECKING, List, Union if TYPE_CHECKING: pass from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { """kakaobrain/align-base""": """https://huggingface.co/kakaobrain/align-base/resolve/main/config.json""", } class snake_case__ ( lowercase_): '''simple docstring''' lowerCamelCase : Union[str, Any] = "align_text_model" def __init__( self , a__=3_05_22 , a__=7_68 , a__=12 , a__=12 , a__=30_72 , a__="gelu" , a__=0.1 , a__=0.1 , a__=5_12 , a__=2 , a__=0.02 , a__=1e-12 , a__=0 , a__="absolute" , a__=True , **a__ , ) -> List[str]: '''simple docstring''' super().__init__(**a__ ) __snake_case :Optional[int] = vocab_size __snake_case :List[str] = hidden_size __snake_case :Optional[Any] = num_hidden_layers __snake_case :int = num_attention_heads __snake_case :Optional[Any] = hidden_act __snake_case :Union[str, Any] = intermediate_size __snake_case :int = hidden_dropout_prob __snake_case :Optional[Any] = attention_probs_dropout_prob __snake_case :List[str] = max_position_embeddings __snake_case :List[str] = type_vocab_size __snake_case :Union[str, Any] = initializer_range __snake_case :str = layer_norm_eps __snake_case :Any = position_embedding_type __snake_case :List[str] = use_cache __snake_case :Optional[int] = pad_token_id @classmethod def __lowercase ( cls , a__ , **a__ ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(a__ ) __snake_case , __snake_case :Tuple = cls.get_config_dict(a__ , **a__ ) # get the text config dict if we are loading from AlignConfig if config_dict.get("""model_type""" ) == "align": __snake_case :Any = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(a__ , **a__ ) class snake_case__ ( lowercase_): '''simple docstring''' lowerCamelCase : Optional[int] = "align_vision_model" def __init__( self , a__ = 3 , a__ = 6_00 , a__ = 2.0 , a__ = 3.1 , a__ = 8 , a__ = [3, 3, 5, 3, 5, 5, 3] , a__ = [32, 16, 24, 40, 80, 1_12, 1_92] , a__ = [16, 24, 40, 80, 1_12, 1_92, 3_20] , a__ = [] , a__ = [1, 2, 2, 2, 1, 2, 1] , a__ = [1, 2, 2, 3, 3, 4, 1] , a__ = [1, 6, 6, 6, 6, 6, 6] , a__ = 0.25 , a__ = "swish" , a__ = 25_60 , a__ = "mean" , a__ = 0.02 , a__ = 0.0_01 , a__ = 0.99 , a__ = 0.2 , **a__ , ) -> List[Any]: '''simple docstring''' super().__init__(**a__ ) __snake_case :Union[str, Any] = num_channels __snake_case :List[str] = image_size __snake_case :int = width_coefficient __snake_case :int = depth_coefficient __snake_case :List[Any] = depth_divisor __snake_case :Any = kernel_sizes __snake_case :Optional[int] = in_channels __snake_case :Optional[int] = out_channels __snake_case :int = depthwise_padding __snake_case :List[str] = strides __snake_case :Union[str, Any] = num_block_repeats __snake_case :Dict = expand_ratios __snake_case :Union[str, Any] = squeeze_expansion_ratio __snake_case :Any = hidden_act __snake_case :Optional[Any] = hidden_dim __snake_case :Union[str, Any] = pooling_type __snake_case :Union[str, Any] = initializer_range __snake_case :Optional[Any] = batch_norm_eps __snake_case :List[Any] = batch_norm_momentum __snake_case :Optional[int] = drop_connect_rate __snake_case :Union[str, Any] = sum(a__ ) * 4 @classmethod def __lowercase ( cls , a__ , **a__ ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(a__ ) __snake_case , __snake_case :int = cls.get_config_dict(a__ , **a__ ) # get the vision config dict if we are loading from AlignConfig if config_dict.get("""model_type""" ) == "align": __snake_case :str = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(a__ , **a__ ) class snake_case__ ( lowercase_): '''simple docstring''' lowerCamelCase : str = "align" lowerCamelCase : Union[str, Any] = True def __init__( self , a__=None , a__=None , a__=6_40 , a__=1.0 , a__=0.02 , **a__ , ) -> Dict: '''simple docstring''' super().__init__(**a__ ) if text_config is None: __snake_case :Union[str, Any] = {} logger.info("""text_config is None. Initializing the AlignTextConfig with default values.""" ) if vision_config is None: __snake_case :str = {} logger.info("""vision_config is None. Initializing the AlignVisionConfig with default values.""" ) __snake_case :List[Any] = AlignTextConfig(**a__ ) __snake_case :Tuple = AlignVisionConfig(**a__ ) __snake_case :Tuple = projection_dim __snake_case :int = temperature_init_value __snake_case :Any = initializer_range @classmethod def __lowercase ( cls , a__ , a__ , **a__ ) -> str: '''simple docstring''' return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **a__ ) def __lowercase ( self ) -> Dict: '''simple docstring''' __snake_case :Optional[Any] = copy.deepcopy(self.__dict__ ) __snake_case :Dict = self.text_config.to_dict() __snake_case :Union[str, Any] = self.vision_config.to_dict() __snake_case :List[Any] = self.__class__.model_type return output
291
1
"""simple docstring""" def _UpperCamelCase ( _A = 1_0_0_0 ) -> int: """simple docstring""" _UpperCAmelCase ,_UpperCAmelCase = 1, 1 _UpperCAmelCase = 2 while True: _UpperCAmelCase = 0 _UpperCAmelCase = fa + fa _UpperCAmelCase ,_UpperCAmelCase = fa, f index += 1 for _ in str(_A ): i += 1 if i == n: break return index if __name__ == "__main__": print(solution(int(str(input()).strip())))
555
"""simple docstring""" def _UpperCamelCase ( _A = 1_0_0_0 ) -> int: """simple docstring""" _UpperCAmelCase ,_UpperCAmelCase = 1, 1 _UpperCAmelCase = 2 while True: _UpperCAmelCase = 0 _UpperCAmelCase = fa + fa _UpperCAmelCase ,_UpperCAmelCase = fa, f index += 1 for _ in str(_A ): i += 1 if i == n: break return index if __name__ == "__main__": print(solution(int(str(input()).strip())))
555
1
import argparse import torch from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt if __name__ == "__main__": _lowerCamelCase : List[Any] = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.''' ) # !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml parser.add_argument( '''--original_config_file''', default=None, type=str, help='''The YAML config file corresponding to the original architecture.''', ) parser.add_argument( '''--num_in_channels''', default=None, type=int, help='''The number of input channels. If `None` number of input channels will be automatically inferred.''', ) parser.add_argument( '''--scheduler_type''', default='''pndm''', type=str, help='''Type of scheduler to use. Should be one of [\'pndm\', \'lms\', \'ddim\', \'euler\', \'euler-ancestral\', \'dpm\']''', ) parser.add_argument( '''--pipeline_type''', default=None, type=str, help=( '''The pipeline type. One of \'FrozenOpenCLIPEmbedder\', \'FrozenCLIPEmbedder\', \'PaintByExample\'''' '''. If `None` pipeline will be automatically inferred.''' ), ) parser.add_argument( '''--image_size''', default=None, type=int, help=( '''The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2''' ''' Base. Use 768 for Stable Diffusion v2.''' ), ) parser.add_argument( '''--prediction_type''', default=None, type=str, help=( '''The prediction type that the model was trained on. Use \'epsilon\' for Stable Diffusion v1.X and Stable''' ''' Diffusion v2 Base. Use \'v_prediction\' for Stable Diffusion v2.''' ), ) parser.add_argument( '''--extract_ema''', action='''store_true''', help=( '''Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights''' ''' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield''' ''' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.''' ), ) parser.add_argument( '''--upcast_attention''', action='''store_true''', help=( '''Whether the attention computation should always be upcasted. This is necessary when running stable''' ''' diffusion 2.1.''' ), ) parser.add_argument( '''--from_safetensors''', action='''store_true''', help='''If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.''', ) parser.add_argument( '''--to_safetensors''', action='''store_true''', help='''Whether to store pipeline in safetensors format or not.''', ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument('''--device''', type=str, help='''Device to use (e.g. cpu, cuda:0, cuda:1, etc.)''') parser.add_argument( '''--stable_unclip''', type=str, default=None, required=False, help='''Set if this is a stable unCLIP model. One of \'txt2img\' or \'img2img\'.''', ) parser.add_argument( '''--stable_unclip_prior''', type=str, default=None, required=False, help='''Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.''', ) parser.add_argument( '''--clip_stats_path''', type=str, help='''Path to the clip stats file. Only required if the stable unclip model\'s config specifies `model.params.noise_aug_config.params.clip_stats_path`.''', required=False, ) parser.add_argument( '''--controlnet''', action='''store_true''', default=None, help='''Set flag if this is a controlnet checkpoint.''' ) parser.add_argument('''--half''', action='''store_true''', help='''Save weights in half precision.''') parser.add_argument( '''--vae_path''', type=str, default=None, required=False, help='''Set to a path, hub id to an already converted vae to not convert it again.''', ) _lowerCamelCase : List[Any] = parser.parse_args() _lowerCamelCase : Optional[Any] = download_from_original_stable_diffusion_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, prediction_type=args.prediction_type, model_type=args.pipeline_type, extract_ema=args.extract_ema, scheduler_type=args.scheduler_type, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, stable_unclip=args.stable_unclip, stable_unclip_prior=args.stable_unclip_prior, clip_stats_path=args.clip_stats_path, controlnet=args.controlnet, vae_path=args.vae_path, ) if args.half: pipe.to(torch_dtype=torch.floataa) if args.controlnet: # only save the controlnet model pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) else: pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
516
import argparse import torch from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt if __name__ == "__main__": _lowerCamelCase : List[Any] = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.''' ) # !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml parser.add_argument( '''--original_config_file''', default=None, type=str, help='''The YAML config file corresponding to the original architecture.''', ) parser.add_argument( '''--num_in_channels''', default=None, type=int, help='''The number of input channels. If `None` number of input channels will be automatically inferred.''', ) parser.add_argument( '''--scheduler_type''', default='''pndm''', type=str, help='''Type of scheduler to use. Should be one of [\'pndm\', \'lms\', \'ddim\', \'euler\', \'euler-ancestral\', \'dpm\']''', ) parser.add_argument( '''--pipeline_type''', default=None, type=str, help=( '''The pipeline type. One of \'FrozenOpenCLIPEmbedder\', \'FrozenCLIPEmbedder\', \'PaintByExample\'''' '''. If `None` pipeline will be automatically inferred.''' ), ) parser.add_argument( '''--image_size''', default=None, type=int, help=( '''The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2''' ''' Base. Use 768 for Stable Diffusion v2.''' ), ) parser.add_argument( '''--prediction_type''', default=None, type=str, help=( '''The prediction type that the model was trained on. Use \'epsilon\' for Stable Diffusion v1.X and Stable''' ''' Diffusion v2 Base. Use \'v_prediction\' for Stable Diffusion v2.''' ), ) parser.add_argument( '''--extract_ema''', action='''store_true''', help=( '''Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights''' ''' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield''' ''' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.''' ), ) parser.add_argument( '''--upcast_attention''', action='''store_true''', help=( '''Whether the attention computation should always be upcasted. This is necessary when running stable''' ''' diffusion 2.1.''' ), ) parser.add_argument( '''--from_safetensors''', action='''store_true''', help='''If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.''', ) parser.add_argument( '''--to_safetensors''', action='''store_true''', help='''Whether to store pipeline in safetensors format or not.''', ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument('''--device''', type=str, help='''Device to use (e.g. cpu, cuda:0, cuda:1, etc.)''') parser.add_argument( '''--stable_unclip''', type=str, default=None, required=False, help='''Set if this is a stable unCLIP model. One of \'txt2img\' or \'img2img\'.''', ) parser.add_argument( '''--stable_unclip_prior''', type=str, default=None, required=False, help='''Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.''', ) parser.add_argument( '''--clip_stats_path''', type=str, help='''Path to the clip stats file. Only required if the stable unclip model\'s config specifies `model.params.noise_aug_config.params.clip_stats_path`.''', required=False, ) parser.add_argument( '''--controlnet''', action='''store_true''', default=None, help='''Set flag if this is a controlnet checkpoint.''' ) parser.add_argument('''--half''', action='''store_true''', help='''Save weights in half precision.''') parser.add_argument( '''--vae_path''', type=str, default=None, required=False, help='''Set to a path, hub id to an already converted vae to not convert it again.''', ) _lowerCamelCase : List[Any] = parser.parse_args() _lowerCamelCase : Optional[Any] = download_from_original_stable_diffusion_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, prediction_type=args.prediction_type, model_type=args.pipeline_type, extract_ema=args.extract_ema, scheduler_type=args.scheduler_type, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, stable_unclip=args.stable_unclip, stable_unclip_prior=args.stable_unclip_prior, clip_stats_path=args.clip_stats_path, controlnet=args.controlnet, vae_path=args.vae_path, ) if args.half: pipe.to(torch_dtype=torch.floataa) if args.controlnet: # only save the controlnet model pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) else: pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
516
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() __SCREAMING_SNAKE_CASE : List[str] =logging.get_logger(__name__) def UpperCamelCase__ ( lowerCAmelCase__ ,lowerCAmelCase__=False ,lowerCAmelCase__=False ): lowercase = """backbone.""" if is_semantic else """""" lowercase = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"""{prefix}blocks.{i}.norm1.weight""", f"""beit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((f"""{prefix}blocks.{i}.norm1.bias""", f"""beit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (f"""{prefix}blocks.{i}.attn.proj.weight""", f"""beit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append( (f"""{prefix}blocks.{i}.attn.proj.bias""", f"""beit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((f"""{prefix}blocks.{i}.norm2.weight""", f"""beit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((f"""{prefix}blocks.{i}.norm2.bias""", f"""beit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((f"""{prefix}blocks.{i}.mlp.fc1.weight""", f"""beit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((f"""{prefix}blocks.{i}.mlp.fc1.bias""", f"""beit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((f"""{prefix}blocks.{i}.mlp.fc2.weight""", f"""beit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((f"""{prefix}blocks.{i}.mlp.fc2.bias""", f"""beit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ (f"""{prefix}cls_token""", """beit.embeddings.cls_token"""), (f"""{prefix}patch_embed.proj.weight""", """beit.embeddings.patch_embeddings.projection.weight"""), (f"""{prefix}patch_embed.proj.bias""", """beit.embeddings.patch_embeddings.projection.bias"""), (f"""{prefix}pos_embed""", """beit.embeddings.position_embeddings"""), ] ) if has_lm_head: # mask token + layernorm rename_keys.extend( [ ("""mask_token""", """beit.embeddings.mask_token"""), ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ] ) else: # layernorm + classification head rename_keys.extend( [ ("""fc_norm.weight""", """beit.pooler.layernorm.weight"""), ("""fc_norm.bias""", """beit.pooler.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) return rename_keys def UpperCamelCase__ ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__=False ,lowerCAmelCase__=False ): for i in range(config.num_hidden_layers ): lowercase = """backbone.""" if is_semantic else """""" # queries, keys and values lowercase = state_dict.pop(f"""{prefix}blocks.{i}.attn.qkv.weight""" ) lowercase = state_dict.pop(f"""{prefix}blocks.{i}.attn.q_bias""" ) lowercase = state_dict.pop(f"""{prefix}blocks.{i}.attn.v_bias""" ) lowercase = in_proj_weight[ : config.hidden_size, : ] lowercase = q_bias lowercase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowercase = in_proj_weight[ -config.hidden_size :, : ] lowercase = v_bias # gamma_1 and gamma_2 # we call them lambda because otherwise they are renamed when using .from_pretrained lowercase = state_dict.pop(f"""{prefix}blocks.{i}.gamma_1""" ) lowercase = state_dict.pop(f"""{prefix}blocks.{i}.gamma_2""" ) lowercase = gamma_a lowercase = gamma_a def UpperCamelCase__ ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ): lowercase = dct.pop(lowerCAmelCase__ ) lowercase = val def UpperCamelCase__ ( ): lowercase = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowercase = Image.open(requests.get(lowerCAmelCase__ ,stream=lowerCAmelCase__ ).raw ) return im @torch.no_grad() def UpperCamelCase__ ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__=False ): lowercase = False if """rvlcdip""" in checkpoint_url else True lowercase = BeitConfig(use_absolute_position_embeddings=lowerCAmelCase__ ,use_mask_token=lowerCAmelCase__ ) # size of the architecture if "large" in checkpoint_url or "dit-l" in checkpoint_url: lowercase = 1_024 lowercase = 4_096 lowercase = 24 lowercase = 16 # labels if "rvlcdip" in checkpoint_url: lowercase = 16 lowercase = """huggingface/label-files""" lowercase = """rvlcdip-id2label.json""" lowercase = json.load(open(hf_hub_download(lowerCAmelCase__ ,lowerCAmelCase__ ,repo_type="""dataset""" ) ,"""r""" ) ) lowercase = {int(lowerCAmelCase__ ): v for k, v in idalabel.items()} lowercase = idalabel lowercase = {v: k for k, v in idalabel.items()} # load state_dict of original model, remove and rename some keys lowercase = torch.hub.load_state_dict_from_url(lowerCAmelCase__ ,map_location="""cpu""" )["""model"""] lowercase = create_rename_keys(lowerCAmelCase__ ,has_lm_head=lowerCAmelCase__ ) for src, dest in rename_keys: rename_key(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) read_in_q_k_v(lowerCAmelCase__ ,lowerCAmelCase__ ,has_lm_head=lowerCAmelCase__ ) # load HuggingFace model lowercase = BeitForMaskedImageModeling(lowerCAmelCase__ ) if has_lm_head else BeitForImageClassification(lowerCAmelCase__ ) model.eval() model.load_state_dict(lowerCAmelCase__ ) # Check outputs on an image lowercase = BeitImageProcessor( size=config.image_size ,resample=PILImageResampling.BILINEAR ,do_center_crop=lowerCAmelCase__ ) lowercase = prepare_img() lowercase = image_processor(images=lowerCAmelCase__ ,return_tensors="""pt""" ) lowercase = encoding["""pixel_values"""] lowercase = model(lowerCAmelCase__ ) lowercase = outputs.logits # verify logits lowercase = [1, 16] if """rvlcdip""" in checkpoint_url else [1, 196, 8_192] assert logits.shape == torch.Size(lowerCAmelCase__ ), "Shape of logits not as expected" Path(lowerCAmelCase__ ).mkdir(exist_ok=lowerCAmelCase__ ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowerCAmelCase__ ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(lowerCAmelCase__ ) if push_to_hub: if has_lm_head: lowercase = """dit-base""" if """base""" in checkpoint_url else """dit-large""" else: lowercase = """dit-base-finetuned-rvlcdip""" if """dit-b""" in checkpoint_url else """dit-large-finetuned-rvlcdip""" image_processor.push_to_hub( repo_path_or_name=Path(lowerCAmelCase__ ,lowerCAmelCase__ ) ,organization="""nielsr""" ,commit_message="""Add image processor""" ,use_temp_dir=lowerCAmelCase__ ,) model.push_to_hub( repo_path_or_name=Path(lowerCAmelCase__ ,lowerCAmelCase__ ) ,organization="""nielsr""" ,commit_message="""Add model""" ,use_temp_dir=lowerCAmelCase__ ,) if __name__ == "__main__": __SCREAMING_SNAKE_CASE : int =argparse.ArgumentParser() parser.add_argument( '''--checkpoint_url''', default='''https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth''', type=str, help='''URL to the original PyTorch checkpoint (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', ) __SCREAMING_SNAKE_CASE : Any =parser.parse_args() convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
428
import hashlib import unittest from typing import Dict import numpy as np from transformers import ( MODEL_FOR_MASK_GENERATION_MAPPING, TF_MODEL_FOR_MASK_GENERATION_MAPPING, is_vision_available, pipeline, ) from transformers.pipelines import MaskGenerationPipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) if is_vision_available(): from PIL import Image else: class A_ : @staticmethod def SCREAMING_SNAKE_CASE__ ( *snake_case__ : str , **snake_case__ : Dict ): pass def UpperCamelCase__ ( lowerCAmelCase__ ): lowercase = hashlib.mda(image.tobytes() ) return m.hexdigest()[:10] def UpperCamelCase__ ( lowerCAmelCase__ ): lowercase = np.array(lowerCAmelCase__ ) lowercase = npimg.shape return {"hash": hashimage(lowerCAmelCase__ ), "shape": shape} @is_pipeline_test @require_vision @require_torch class A_ ( unittest.TestCase ): _A :Optional[int] = dict( (list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) ) _A :str = dict( (list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] , snake_case__ : Optional[Any] , snake_case__ : Optional[Any] , snake_case__ : List[str] ): lowercase = MaskGenerationPipeline(model=snake_case__ , image_processor=snake_case__ ) return image_segmenter, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def SCREAMING_SNAKE_CASE__ ( self : Tuple , snake_case__ : Tuple , snake_case__ : Union[str, Any] ): pass @require_tf @unittest.skip("""Image segmentation not implemented in TF""" ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ): pass @slow @require_torch def SCREAMING_SNAKE_CASE__ ( self : Dict ): lowercase = pipeline("""mask-generation""" , model="""facebook/sam-vit-huge""" ) lowercase = image_segmenter("""http://images.cocodataset.org/val2017/000000039769.jpg""" , points_per_batch=2_56 ) # Shortening by hashing lowercase = [] for i, o in enumerate(outputs["""masks"""] ): new_outupt += [{"mask": mask_to_test_readable(snake_case__ ), "scores": outputs["scores"][i]}] # fmt: off self.assertEqual( nested_simplify(snake_case__ , decimals=4 ) , [ {"""mask""": {"""hash""": """115ad19f5f""", """shape""": (4_80, 6_40)}, """scores""": 1.0_444}, {"""mask""": {"""hash""": """6affa964c6""", """shape""": (4_80, 6_40)}, """scores""": 1.021}, {"""mask""": {"""hash""": """dfe28a0388""", """shape""": (4_80, 6_40)}, """scores""": 1.0_167}, {"""mask""": {"""hash""": """c0a5f4a318""", """shape""": (4_80, 6_40)}, """scores""": 1.0_132}, {"""mask""": {"""hash""": """fe8065c197""", """shape""": (4_80, 6_40)}, """scores""": 1.0_053}, {"""mask""": {"""hash""": """e2d0b7a0b7""", """shape""": (4_80, 6_40)}, """scores""": 0.9_967}, {"""mask""": {"""hash""": """453c7844bd""", """shape""": (4_80, 6_40)}, """scores""": 0.993}, {"""mask""": {"""hash""": """3d44f2926d""", """shape""": (4_80, 6_40)}, """scores""": 0.9_909}, {"""mask""": {"""hash""": """64033ddc3f""", """shape""": (4_80, 6_40)}, """scores""": 0.9_879}, {"""mask""": {"""hash""": """801064ff79""", """shape""": (4_80, 6_40)}, """scores""": 0.9_834}, {"""mask""": {"""hash""": """6172f276ef""", """shape""": (4_80, 6_40)}, """scores""": 0.9_716}, {"""mask""": {"""hash""": """b49e60e084""", """shape""": (4_80, 6_40)}, """scores""": 0.9_612}, {"""mask""": {"""hash""": """a811e775fd""", """shape""": (4_80, 6_40)}, """scores""": 0.9_599}, {"""mask""": {"""hash""": """a6a8ebcf4b""", """shape""": (4_80, 6_40)}, """scores""": 0.9_552}, {"""mask""": {"""hash""": """9d8257e080""", """shape""": (4_80, 6_40)}, """scores""": 0.9_532}, {"""mask""": {"""hash""": """32de6454a8""", """shape""": (4_80, 6_40)}, """scores""": 0.9_516}, {"""mask""": {"""hash""": """af3d4af2c8""", """shape""": (4_80, 6_40)}, """scores""": 0.9_499}, {"""mask""": {"""hash""": """3c6db475fb""", """shape""": (4_80, 6_40)}, """scores""": 0.9_483}, {"""mask""": {"""hash""": """c290813fb9""", """shape""": (4_80, 6_40)}, """scores""": 0.9_464}, {"""mask""": {"""hash""": """b6f0b8f606""", """shape""": (4_80, 6_40)}, """scores""": 0.943}, {"""mask""": {"""hash""": """92ce16bfdf""", """shape""": (4_80, 6_40)}, """scores""": 0.943}, {"""mask""": {"""hash""": """c749b25868""", """shape""": (4_80, 6_40)}, """scores""": 0.9_408}, {"""mask""": {"""hash""": """efb6cab859""", """shape""": (4_80, 6_40)}, """scores""": 0.9_335}, {"""mask""": {"""hash""": """1ff2eafb30""", """shape""": (4_80, 6_40)}, """scores""": 0.9_326}, {"""mask""": {"""hash""": """788b798e24""", """shape""": (4_80, 6_40)}, """scores""": 0.9_262}, {"""mask""": {"""hash""": """abea804f0e""", """shape""": (4_80, 6_40)}, """scores""": 0.8_999}, {"""mask""": {"""hash""": """7b9e8ddb73""", """shape""": (4_80, 6_40)}, """scores""": 0.8_986}, {"""mask""": {"""hash""": """cd24047c8a""", """shape""": (4_80, 6_40)}, """scores""": 0.8_984}, {"""mask""": {"""hash""": """6943e6bcbd""", """shape""": (4_80, 6_40)}, """scores""": 0.8_873}, {"""mask""": {"""hash""": """b5f47c9191""", """shape""": (4_80, 6_40)}, """scores""": 0.8_871} ] , ) # fmt: on @require_torch @slow def SCREAMING_SNAKE_CASE__ ( self : str ): lowercase = """facebook/sam-vit-huge""" lowercase = pipeline("""mask-generation""" , model=snake_case__ ) lowercase = image_segmenter( """http://images.cocodataset.org/val2017/000000039769.jpg""" , pred_iou_thresh=1 , points_per_batch=2_56 ) # Shortening by hashing lowercase = [] for i, o in enumerate(outputs["""masks"""] ): new_outupt += [{"mask": mask_to_test_readable(snake_case__ ), "scores": outputs["scores"][i]}] self.assertEqual( nested_simplify(snake_case__ , decimals=4 ) , [ {"""mask""": {"""hash""": """115ad19f5f""", """shape""": (4_80, 6_40)}, """scores""": 1.0_444}, {"""mask""": {"""hash""": """6affa964c6""", """shape""": (4_80, 6_40)}, """scores""": 1.0_210}, {"""mask""": {"""hash""": """dfe28a0388""", """shape""": (4_80, 6_40)}, """scores""": 1.0_167}, {"""mask""": {"""hash""": """c0a5f4a318""", """shape""": (4_80, 6_40)}, """scores""": 1.0_132}, {"""mask""": {"""hash""": """fe8065c197""", """shape""": (4_80, 6_40)}, """scores""": 1.0_053}, ] , )
428
1
"""simple docstring""" import unittest from transformers import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TextaTextGenerationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_tf, require_torch from transformers.utils import is_torch_available from .test_pipelines_common import ANY if is_torch_available(): import torch @is_pipeline_test class __A ( unittest.TestCase ): UpperCAmelCase__ = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING UpperCAmelCase__ = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING def lowerCamelCase__ ( self : Tuple , __snake_case : int , __snake_case : List[Any] , __snake_case : List[str] ) -> Any: __magic_name__: Optional[Any] = TextaTextGenerationPipeline(model=__snake_case , tokenizer=__snake_case ) return generator, ["Something to write", "Something else"] def lowerCamelCase__ ( self : int , __snake_case : List[str] , __snake_case : List[Any] ) -> Optional[Any]: __magic_name__: Dict = generator("""Something there""" ) self.assertEqual(__snake_case , [{"""generated_text""": ANY(__snake_case )}] ) # These are encoder decoder, they don't just append to incoming string self.assertFalse(outputs[0]["""generated_text"""].startswith("""Something there""" ) ) __magic_name__: List[Any] = generator(["""This is great !""", """Something else"""] , num_return_sequences=2 , do_sample=__snake_case ) self.assertEqual( __snake_case , [ [{"""generated_text""": ANY(__snake_case )}, {"""generated_text""": ANY(__snake_case )}], [{"""generated_text""": ANY(__snake_case )}, {"""generated_text""": ANY(__snake_case )}], ] , ) __magic_name__: List[Any] = generator( ["""This is great !""", """Something else"""] , num_return_sequences=2 , batch_size=2 , do_sample=__snake_case ) self.assertEqual( __snake_case , [ [{"""generated_text""": ANY(__snake_case )}, {"""generated_text""": ANY(__snake_case )}], [{"""generated_text""": ANY(__snake_case )}, {"""generated_text""": ANY(__snake_case )}], ] , ) with self.assertRaises(__snake_case ): generator(4 ) @require_torch def lowerCamelCase__ ( self : Any ) -> Dict: __magic_name__: List[str] = pipeline("""text2text-generation""" , model="""patrickvonplaten/t5-tiny-random""" , framework="""pt""" ) # do_sample=False necessary for reproducibility __magic_name__: Any = generator("""Something there""" , do_sample=__snake_case ) self.assertEqual(__snake_case , [{"""generated_text""": """"""}] ) __magic_name__: Optional[Any] = 3 __magic_name__: Optional[Any] = generator( """Something there""" , num_return_sequences=__snake_case , num_beams=__snake_case , ) __magic_name__: Union[str, Any] = [ {"""generated_text""": """Beide Beide Beide Beide Beide Beide Beide Beide Beide"""}, {"""generated_text""": """Beide Beide Beide Beide Beide Beide Beide Beide"""}, {"""generated_text""": """"""}, ] self.assertEqual(__snake_case , __snake_case ) __magic_name__: Optional[int] = generator("""This is a test""" , do_sample=__snake_case , num_return_sequences=2 , return_tensors=__snake_case ) self.assertEqual( __snake_case , [ {"""generated_token_ids""": ANY(torch.Tensor )}, {"""generated_token_ids""": ANY(torch.Tensor )}, ] , ) __magic_name__: Optional[int] = generator.model.config.eos_token_id __magic_name__: int = """<pad>""" __magic_name__: Tuple = generator( ["""This is a test""", """This is a second test"""] , do_sample=__snake_case , num_return_sequences=2 , batch_size=2 , return_tensors=__snake_case , ) self.assertEqual( __snake_case , [ [ {"""generated_token_ids""": ANY(torch.Tensor )}, {"""generated_token_ids""": ANY(torch.Tensor )}, ], [ {"""generated_token_ids""": ANY(torch.Tensor )}, {"""generated_token_ids""": ANY(torch.Tensor )}, ], ] , ) @require_tf def lowerCamelCase__ ( self : List[Any] ) -> Tuple: __magic_name__: Optional[Any] = pipeline("""text2text-generation""" , model="""patrickvonplaten/t5-tiny-random""" , framework="""tf""" ) # do_sample=False necessary for reproducibility __magic_name__: List[str] = generator("""Something there""" , do_sample=__snake_case ) self.assertEqual(__snake_case , [{"""generated_text""": """"""}] )
717
"""simple docstring""" import os from collections import namedtuple import pytest from datasets import ClassLabel, Features, Sequence, Value from datasets.commands.test import TestCommand from datasets.info import DatasetInfo, DatasetInfosDict __lowerCamelCase = namedtuple( '_TestCommandArgs', [ 'dataset', 'name', 'cache_dir', 'data_dir', 'all_configs', 'save_infos', 'ignore_verifications', 'force_redownload', 'clear_cache', ], defaults=[None, None, None, False, False, False, False, False], ) def a ( __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : int ) -> Union[str, Any]: return (abs(source - target ) / target) < 0.01 @pytest.mark.integration def a ( __UpperCAmelCase : int ) -> Tuple: __magic_name__: int = _TestCommandArgs(dataset=__UpperCAmelCase , all_configs=__UpperCAmelCase , save_infos=__UpperCAmelCase ) __magic_name__: List[str] = TestCommand(*__UpperCAmelCase ) test_command.run() __magic_name__: Union[str, Any] = os.path.join(__UpperCAmelCase , """README.md""" ) assert os.path.exists(__UpperCAmelCase ) __magic_name__: str = DatasetInfosDict.from_directory(__UpperCAmelCase ) __magic_name__: Optional[int] = DatasetInfosDict( { """default""": DatasetInfo( features=Features( { """tokens""": Sequence(Value("""string""" ) ), """ner_tags""": Sequence( ClassLabel(names=["""O""", """B-PER""", """I-PER""", """B-ORG""", """I-ORG""", """B-LOC""", """I-LOC"""] ) ), """langs""": Sequence(Value("""string""" ) ), """spans""": Sequence(Value("""string""" ) ), } ) , splits=[ { """name""": """train""", """num_bytes""": 2_3_5_1_5_6_3, """num_examples""": 1_0_0_0_0, }, { """name""": """validation""", """num_bytes""": 2_3_8_4_1_8, """num_examples""": 1_0_0_0, }, ] , download_size=3_9_4_0_6_8_0 , dataset_size=2_5_8_9_9_8_1 , ) } ) assert dataset_infos.keys() == expected_dataset_infos.keys() for key in DatasetInfo._INCLUDED_INFO_IN_YAML: __magic_name__, __magic_name__: Tuple = getattr(dataset_infos["""default"""] , __UpperCAmelCase ), getattr(expected_dataset_infos["""default"""] , __UpperCAmelCase ) if key == "num_bytes": assert is_apercent_close(__UpperCAmelCase , __UpperCAmelCase ) elif key == "splits": assert list(__UpperCAmelCase ) == list(__UpperCAmelCase ) for split in result: assert result[split].name == expected[split].name assert result[split].num_examples == expected[split].num_examples assert is_apercent_close(result[split].num_bytes , expected[split].num_bytes ) else: result == expected
213
0
def lowerCamelCase_ ( _UpperCamelCase ) -> int: """simple docstring""" if not grid or not grid[0]: raise TypeError('''The grid does not contain the appropriate information''' ) for cell_n in range(1 , len(grid[0] ) ): grid[0][cell_n] += grid[0][cell_n - 1] snake_case_ : Dict = grid[0] for row_n in range(1 , len(_UpperCamelCase ) ): snake_case_ : List[Any] = grid[row_n] snake_case_ : List[Any] = fill_row(_UpperCamelCase , _UpperCamelCase ) snake_case_ : Optional[int] = grid[row_n] return grid[-1][-1] def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> list: """simple docstring""" current_row[0] += row_above[0] for cell_n in range(1 , len(_UpperCamelCase ) ): current_row[cell_n] += min(current_row[cell_n - 1] , row_above[cell_n] ) return current_row if __name__ == "__main__": import doctest doctest.testmod()
60
'''simple docstring''' from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case_ : int = logging.get_logger(__name__) snake_case_ : Tuple = { 'huggingface/time-series-transformer-tourism-monthly': ( 'https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json' ), # See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer } class lowercase__ ( snake_case_ ): '''simple docstring''' _snake_case = '''time_series_transformer''' _snake_case = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', '''num_hidden_layers''': '''encoder_layers''', } def __init__( self , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = "student_t" , lowerCamelCase__ = "nll" , lowerCamelCase__ = 1 , lowerCamelCase__ = [1, 2, 3, 4, 5, 6, 7] , lowerCamelCase__ = "mean" , lowerCamelCase__ = 0 , lowerCamelCase__ = 0 , lowerCamelCase__ = 0 , lowerCamelCase__ = 0 , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = 3_2 , lowerCamelCase__ = 3_2 , lowerCamelCase__ = 2 , lowerCamelCase__ = 2 , lowerCamelCase__ = 2 , lowerCamelCase__ = 2 , lowerCamelCase__ = True , lowerCamelCase__ = "gelu" , lowerCamelCase__ = 6_4 , lowerCamelCase__ = 0.1 , lowerCamelCase__ = 0.1 , lowerCamelCase__ = 0.1 , lowerCamelCase__ = 0.1 , lowerCamelCase__ = 0.1 , lowerCamelCase__ = 1_0_0 , lowerCamelCase__ = 0.02 , lowerCamelCase__=True , **lowerCamelCase__ , ): '''simple docstring''' UpperCamelCase = prediction_length UpperCamelCase = context_length or prediction_length UpperCamelCase = distribution_output UpperCamelCase = loss UpperCamelCase = input_size UpperCamelCase = num_time_features UpperCamelCase = lags_sequence UpperCamelCase = scaling UpperCamelCase = num_dynamic_real_features UpperCamelCase = num_static_real_features UpperCamelCase = num_static_categorical_features if cardinality and num_static_categorical_features > 0: if len(lowerCamelCase__ ) != num_static_categorical_features: raise ValueError( '''The cardinality should be a list of the same length as `num_static_categorical_features`''' ) UpperCamelCase = cardinality else: UpperCamelCase = [0] if embedding_dimension and num_static_categorical_features > 0: if len(lowerCamelCase__ ) != num_static_categorical_features: raise ValueError( '''The embedding dimension should be a list of the same length as `num_static_categorical_features`''' ) UpperCamelCase = embedding_dimension else: UpperCamelCase = [min(5_0 , (cat + 1) // 2 ) for cat in self.cardinality] UpperCamelCase = num_parallel_samples # Transformer architecture configuration UpperCamelCase = input_size * len(lowerCamelCase__ ) + self._number_of_features UpperCamelCase = d_model UpperCamelCase = encoder_attention_heads UpperCamelCase = decoder_attention_heads UpperCamelCase = encoder_ffn_dim UpperCamelCase = decoder_ffn_dim UpperCamelCase = encoder_layers UpperCamelCase = decoder_layers UpperCamelCase = dropout UpperCamelCase = attention_dropout UpperCamelCase = activation_dropout UpperCamelCase = encoder_layerdrop UpperCamelCase = decoder_layerdrop UpperCamelCase = activation_function UpperCamelCase = init_std UpperCamelCase = use_cache super().__init__(is_encoder_decoder=lowerCamelCase__ , **lowerCamelCase__ ) @property def UpperCAmelCase ( self ): '''simple docstring''' return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
212
0
from collections import deque from .hash_table import HashTable class UpperCamelCase__( lowerCAmelCase__ ): """simple docstring""" def __init__( self : Optional[int] , *snake_case__ : Optional[int] , **snake_case__ : str ): """simple docstring""" super().__init__(*snake_case__ , **snake_case__ ) def _a ( self : List[str] , snake_case__ : str , snake_case__ : List[str] ): """simple docstring""" A =deque([] ) if self.values[key] is None else self.values[key] self.values[key].appendleft(snake_case__ ) A =self.values[key] def _a ( self : Dict ): """simple docstring""" return ( sum(self.charge_factor - len(snake_case__ ) for slot in self.values ) / self.size_table * self.charge_factor ) def _a ( self : Dict , snake_case__ : Dict , snake_case__ : Union[str, Any]=None ): """simple docstring""" if not ( len(self.values[key] ) == self.charge_factor and self.values.count(snake_case__ ) == 0 ): return key return super()._collision_resolution(snake_case__ , snake_case__ )
689
import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __a = logging.get_logger(__name__) __a = {"""vocab_file""": """vocab.txt"""} __a = { """vocab_file""": { """openbmb/cpm-ant-10b""": """https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt""", }, } __a = { """openbmb/cpm-ant-10b""": 1_0_2_4, } def UpperCamelCase_ ( a_ ) ->List[Any]: A =collections.OrderedDict() with open(a_ , "r" , encoding="utf-8" ) as reader: A =reader.readlines() for index, token in enumerate(a_ ): A =token.rstrip("\n" ) A =index return vocab class UpperCamelCase__( lowerCAmelCase__ ): """simple docstring""" def __init__( self : Tuple , snake_case__ : int , snake_case__ : int="<unk>" , snake_case__ : Optional[Any]=2_00 ): """simple docstring""" A =vocab A =unk_token A =max_input_chars_per_word def _a ( self : Optional[Any] , snake_case__ : Tuple ): """simple docstring""" A =list(snake_case__ ) if len(snake_case__ ) > self.max_input_chars_per_word: return [self.unk_token] A =0 A =[] while start < len(snake_case__ ): A =len(snake_case__ ) A =None while start < end: A ="".join(chars[start:end] ) if substr in self.vocab: A =substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token ) start += 1 else: sub_tokens.append(snake_case__ ) A =end return sub_tokens class UpperCamelCase__( lowerCAmelCase__ ): """simple docstring""" _A = VOCAB_FILES_NAMES _A = PRETRAINED_VOCAB_FILES_MAP _A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A = ["input_ids", "attention_mask"] _A = False def __init__( self : Dict , snake_case__ : Union[str, Any] , snake_case__ : Any="<d>" , snake_case__ : Optional[int]="</d>" , snake_case__ : Optional[int]="<s>" , snake_case__ : Union[str, Any]="</s>" , snake_case__ : List[str]="<pad>" , snake_case__ : Any="<unk>" , snake_case__ : List[str]="</n>" , snake_case__ : Any="</_>" , snake_case__ : List[str]="left" , **snake_case__ : Optional[int] , ): """simple docstring""" requires_backends(self , ["jieba"] ) super().__init__( bod_token=snake_case__ , eod_token=snake_case__ , bos_token=snake_case__ , eos_token=snake_case__ , pad_token=snake_case__ , unk_token=snake_case__ , line_token=snake_case__ , space_token=snake_case__ , padding_side=snake_case__ , **snake_case__ , ) A =bod_token A =eod_token A =load_vocab(snake_case__ ) A =self.encoder[space_token] A =self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] A =collections.OrderedDict(sorted(self.encoder.items() , key=lambda snake_case__ : x[1] ) ) A ={v: k for k, v in self.encoder.items()} A =WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token ) @property def _a ( self : Dict ): """simple docstring""" return self.encoder[self.bod_token] @property def _a ( self : List[str] ): """simple docstring""" return self.encoder[self.eod_token] @property def _a ( self : Any ): """simple docstring""" return self.encoder["\n"] @property def _a ( self : List[str] ): """simple docstring""" return len(self.encoder ) def _a ( self : Tuple ): """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def _a ( self : Tuple , snake_case__ : int ): """simple docstring""" A =[] for x in jieba.cut(snake_case__ , cut_all=snake_case__ ): output_tokens.extend(self.wordpiece_tokenizer.tokenize(snake_case__ ) ) return output_tokens def _a ( self : List[Any] , snake_case__ : List[Any] , **snake_case__ : str ): """simple docstring""" A =[i for i in token_ids if i >= 0] A =[ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(snake_case__ , **snake_case__ ) def _a ( self : List[Any] , snake_case__ : int ): """simple docstring""" return token in self.encoder def _a ( self : Optional[Any] , snake_case__ : List[str] ): """simple docstring""" return "".join(snake_case__ ) def _a ( self : List[Any] , snake_case__ : Optional[Any] ): """simple docstring""" return self.encoder.get(snake_case__ , self.encoder.get(self.unk_token ) ) def _a ( self : Dict , snake_case__ : Optional[int] ): """simple docstring""" return self.decoder.get(snake_case__ , self.unk_token ) def _a ( self : Optional[int] , snake_case__ : str , snake_case__ : Optional[str] = None ): """simple docstring""" if os.path.isdir(snake_case__ ): A =os.path.join( snake_case__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) else: A =(filename_prefix + "-" if filename_prefix else "") + save_directory A =0 if " " in self.encoder: A =self.encoder[" "] del self.encoder[" "] if "\n" in self.encoder: A =self.encoder["\n"] del self.encoder["\n"] A =collections.OrderedDict(sorted(self.encoder.items() , key=lambda snake_case__ : x[1] ) ) with open(snake_case__ , "w" , encoding="utf-8" ) as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( f'''Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.''' " Please check that the vocabulary is not corrupted!" ) A =token_index writer.write(token + "\n" ) index += 1 return (vocab_file,) def _a ( self : Any , snake_case__ : List[int] , snake_case__ : List[int] = None ): """simple docstring""" if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def _a ( self : Optional[int] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None , snake_case__ : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case__ , token_ids_a=snake_case__ , already_has_special_tokens=snake_case__ ) if token_ids_a is not None: return [1] + ([0] * len(snake_case__ )) + [1] + ([0] * len(snake_case__ )) return [1] + ([0] * len(snake_case__ ))
689
1
'''simple docstring''' import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartTokenizer, MBartTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin _lowercase = get_tests_dir('fixtures/test_sentencepiece.model') if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right _lowercase = 250_004 _lowercase = 250_020 @require_sentencepiece @require_tokenizers class _lowercase ( __a , unittest.TestCase ): _UpperCAmelCase = MBartTokenizer _UpperCAmelCase = MBartTokenizerFast _UpperCAmelCase = True _UpperCAmelCase = True def UpperCamelCase ( self ) -> str: super().setUp() # We have a SentencePiece fixture for testing snake_case = MBartTokenizer(A__ , keep_accents=A__ ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase ( self ) -> int: snake_case = MBartTokenizer(A__ , keep_accents=A__ ) snake_case = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(A__ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(A__ ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) snake_case = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( A__ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) snake_case = tokenizer.convert_tokens_to_ids(A__ ) self.assertListEqual( A__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) snake_case = tokenizer.convert_ids_to_tokens(A__ ) self.assertListEqual( A__ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) def UpperCamelCase ( self ) -> Dict: if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return snake_case = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-random-mbart''', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): snake_case = self.rust_tokenizer_class.from_pretrained(A__ , **A__ ) snake_case = self.tokenizer_class.from_pretrained(A__ , **A__ ) snake_case = tempfile.mkdtemp() snake_case = tokenizer_r.save_pretrained(A__ ) snake_case = tokenizer_p.save_pretrained(A__ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) snake_case = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f ) self.assertSequenceEqual(A__ , A__ ) # Checks everything loads correctly in the same way snake_case = tokenizer_r.from_pretrained(A__ ) snake_case = tokenizer_p.from_pretrained(A__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(A__ , A__ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(A__ ) # Save tokenizer rust, legacy_format=True snake_case = tempfile.mkdtemp() snake_case = tokenizer_r.save_pretrained(A__ , legacy_format=A__ ) snake_case = tokenizer_p.save_pretrained(A__ ) # Checks it save with the same files self.assertSequenceEqual(A__ , A__ ) # Checks everything loads correctly in the same way snake_case = tokenizer_r.from_pretrained(A__ ) snake_case = tokenizer_p.from_pretrained(A__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(A__ , A__ ) ) shutil.rmtree(A__ ) # Save tokenizer rust, legacy_format=False snake_case = tempfile.mkdtemp() snake_case = tokenizer_r.save_pretrained(A__ , legacy_format=A__ ) snake_case = tokenizer_p.save_pretrained(A__ ) # Checks it saved the tokenizer.json file self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way snake_case = tokenizer_r.from_pretrained(A__ ) snake_case = tokenizer_p.from_pretrained(A__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(A__ , A__ ) ) shutil.rmtree(A__ ) @require_torch @require_sentencepiece @require_tokenizers class _lowercase ( unittest.TestCase ): _UpperCAmelCase = '''facebook/mbart-large-en-ro''' _UpperCAmelCase = [ ''' UN Chief Says There Is No Military Solution in Syria''', ''' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.''', ] _UpperCAmelCase = [ '''Şeful ONU declară că nu există o soluţie militară în Siria''', '''Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei''' ''' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor''' ''' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.''', ] _UpperCAmelCase = [8_274, 127_873, 25_916, 7, 8_622, 2_071, 438, 67_485, 53, 187_895, 23, 51_712, 2, EN_CODE] @classmethod def UpperCamelCase ( cls ) -> Optional[Any]: snake_case = MBartTokenizer.from_pretrained( cls.checkpoint_name , src_lang='''en_XX''' , tgt_lang='''ro_RO''' ) snake_case = 1 return cls def UpperCamelCase ( self ) -> List[Any]: self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ar_AR'''] , 25_00_01 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''en_EN'''] , 25_00_04 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ro_RO'''] , 25_00_20 ) def UpperCamelCase ( self ) -> Optional[Any]: snake_case = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , A__ ) def UpperCamelCase ( self ) -> Union[str, Any]: self.assertIn(A__ , self.tokenizer.all_special_ids ) snake_case = [RO_CODE, 8_84, 90_19, 96, 9, 9_16, 8_67_92, 36, 1_87_43, 1_55_96, 5, 2] snake_case = self.tokenizer.decode(A__ , skip_special_tokens=A__ ) snake_case = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=A__ ) self.assertEqual(A__ , A__ ) self.assertNotIn(self.tokenizer.eos_token , A__ ) def UpperCamelCase ( self ) -> Tuple: snake_case = ['''this is gunna be a long sentence ''' * 20] assert isinstance(src_text[0] , A__ ) snake_case = 10 snake_case = self.tokenizer(A__ , max_length=A__ , truncation=A__ ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , A__ ) self.assertEqual(len(A__ ) , A__ ) def UpperCamelCase ( self ) -> Union[str, Any]: self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['''<mask>''', '''ar_AR'''] ) , [25_00_26, 25_00_01] ) def UpperCamelCase ( self ) -> Dict: snake_case = tempfile.mkdtemp() snake_case = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(A__ ) snake_case = MBartTokenizer.from_pretrained(A__ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , A__ ) @require_torch def UpperCamelCase ( self ) -> Dict: snake_case = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=A__ , return_tensors='''pt''' ) snake_case = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][-2:].tolist() == [2, EN_CODE] assert batch.decoder_input_ids[1][0].tolist() == RO_CODE assert batch.decoder_input_ids[1][-1] == 2 assert batch.labels[1][-2:].tolist() == [2, RO_CODE] @require_torch def UpperCamelCase ( self ) -> List[Any]: snake_case = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=A__ , truncation=A__ , max_length=len(self.expected_src_tokens ) , return_tensors='''pt''' , ) snake_case = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) self.assertIsInstance(A__ , A__ ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) snake_case = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , A__ ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, EN_CODE] ) def UpperCamelCase ( self ) -> Dict: snake_case = self.tokenizer(self.src_text , padding=A__ , truncation=A__ , max_length=3 , return_tensors='''pt''' ) snake_case = self.tokenizer( text_target=self.tgt_text , padding=A__ , truncation=A__ , max_length=10 , return_tensors='''pt''' ) snake_case = targets['''input_ids'''] snake_case = shift_tokens_right(A__ , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def UpperCamelCase ( self ) -> Union[str, Any]: snake_case = self.tokenizer._build_translation_inputs( '''A test''' , return_tensors='''pt''' , src_lang='''en_XX''' , tgt_lang='''ar_AR''' ) self.assertEqual( nested_simplify(A__ ) , { # A, test, EOS, en_XX '''input_ids''': [[62, 30_34, 2, 25_00_04]], '''attention_mask''': [[1, 1, 1, 1]], # ar_AR '''forced_bos_token_id''': 25_00_01, } , )
342
'''simple docstring''' _lowercase = { "joule": 1.0, "kilojoule": 1_000, "megajoule": 1_000_000, "gigajoule": 1_000_000_000, "wattsecond": 1.0, "watthour": 3_600, "kilowatthour": 3_600_000, "newtonmeter": 1.0, "calorie_nutr": 4_186.8, "kilocalorie_nutr": 4_186_800.00, "electronvolt": 1.6_0217_6634E-19, "britishthermalunit_it": 1_055.05_585, "footpound": 1.35_58_18, } def __UpperCamelCase ( a : str , a : str , a : float ) ->float: if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: snake_case = ( f"""Incorrect 'from_type' or 'to_type' value: {from_type!r}, {to_type!r}\n""" f"""Valid values are: {', '.join(a )}""" ) raise ValueError(a ) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
342
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tensorflow_text_available, is_torch_available lowerCAmelCase : int ={ 'configuration_ernie': ['ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ErnieConfig', 'ErnieOnnxConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Union[str, Any] =[ 'ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST', 'ErnieForCausalLM', 'ErnieForMaskedLM', 'ErnieForMultipleChoice', 'ErnieForNextSentencePrediction', 'ErnieForPreTraining', 'ErnieForQuestionAnswering', 'ErnieForSequenceClassification', 'ErnieForTokenClassification', 'ErnieModel', 'ErniePreTrainedModel', ] if TYPE_CHECKING: from .configuration_ernie import ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP, ErnieConfig, ErnieOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ernie import ( ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST, ErnieForCausalLM, ErnieForMaskedLM, ErnieForMultipleChoice, ErnieForNextSentencePrediction, ErnieForPreTraining, ErnieForQuestionAnswering, ErnieForSequenceClassification, ErnieForTokenClassification, ErnieModel, ErniePreTrainedModel, ) else: import sys lowerCAmelCase : Any =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
693
import torch from diffusers import DiffusionPipeline class _a ( snake_case_ ): def __init__( self , lowercase_ , lowercase_ ) -> int: super().__init__() self.register_modules(unet=lowercase_ , scheduler=lowercase_ ) def __call__( self ) -> List[Any]: lowerCAmelCase : Union[str, Any] = torch.randn( (1, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , ) lowerCAmelCase : Union[str, Any] = 1 lowerCAmelCase : Dict = self.unet(lowercase_ , lowercase_ ).sample lowerCAmelCase : str = self.scheduler.step(lowercase_ , lowercase_ , lowercase_ ).prev_sample lowerCAmelCase : Dict = scheduler_output - scheduler_output + torch.ones_like(lowercase_ ) return result
693
1
import torch from diffusers import KDPMaDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class lowerCAmelCase__ ( __lowerCamelCase ): """simple docstring""" __UpperCAmelCase : int = (KDPMaDiscreteScheduler,) __UpperCAmelCase : Optional[int] = 10 def _UpperCamelCase ( self , **a_ ): lowerCamelCase_ : str = { "num_train_timesteps": 1100, "beta_start": 0.00_01, "beta_end": 0.02, "beta_schedule": "linear", } config.update(**a_ ) return config def _UpperCamelCase ( self ): for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=a_ ) def _UpperCamelCase ( self ): for beta_start, beta_end in zip([0.0_00_01, 0.00_01, 0.0_01] , [0.00_02, 0.0_02, 0.02] ): self.check_over_configs(beta_start=a_ , beta_end=a_ ) def _UpperCamelCase ( self ): for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=a_ ) def _UpperCamelCase ( self ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=a_ ) def _UpperCamelCase ( self ): lowerCamelCase_ : Tuple = self.scheduler_classes[0] lowerCamelCase_ : Optional[int] = self.get_scheduler_config(prediction_type="v_prediction" ) lowerCamelCase_ : List[Any] = scheduler_class(**a_ ) scheduler.set_timesteps(self.num_inference_steps ) lowerCamelCase_ : List[Any] = self.dummy_model() lowerCamelCase_ : Optional[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma lowerCamelCase_ : List[Any] = sample.to(a_ ) for i, t in enumerate(scheduler.timesteps ): lowerCamelCase_ : Optional[Any] = scheduler.scale_model_input(a_ , a_ ) lowerCamelCase_ : int = model(a_ , a_ ) lowerCamelCase_ : Optional[int] = scheduler.step(a_ , a_ , a_ ) lowerCamelCase_ : Optional[Any] = output.prev_sample lowerCamelCase_ : Union[str, Any] = torch.sum(torch.abs(a_ ) ) lowerCamelCase_ : str = torch.mean(torch.abs(a_ ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 4.6934E-07 ) < 1E-2 assert abs(result_mean.item() - 6.1112E-10 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 4.693_4286_5017_0972E-07 ) < 1E-2 assert abs(result_mean.item() - 0.00_02 ) < 1E-3 def _UpperCamelCase ( self ): if torch_device == "mps": return lowerCamelCase_ : int = self.scheduler_classes[0] lowerCamelCase_ : List[str] = self.get_scheduler_config() lowerCamelCase_ : Optional[Any] = scheduler_class(**a_ ) scheduler.set_timesteps(self.num_inference_steps ) lowerCamelCase_ : Any = self.dummy_model() lowerCamelCase_ : str = self.dummy_sample_deter * scheduler.init_noise_sigma lowerCamelCase_ : List[Any] = sample.to(a_ ) for i, t in enumerate(scheduler.timesteps ): lowerCamelCase_ : Optional[Any] = scheduler.scale_model_input(a_ , a_ ) lowerCamelCase_ : Optional[int] = model(a_ , a_ ) lowerCamelCase_ : Tuple = scheduler.step(a_ , a_ , a_ ) lowerCamelCase_ : Dict = output.prev_sample lowerCamelCase_ : Dict = torch.sum(torch.abs(a_ ) ) lowerCamelCase_ : int = torch.mean(torch.abs(a_ ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 20.41_25 ) < 1E-2 assert abs(result_mean.item() - 0.02_66 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 20.41_25 ) < 1E-2 assert abs(result_mean.item() - 0.02_66 ) < 1E-3 def _UpperCamelCase ( self ): if torch_device == "mps": return lowerCamelCase_ : Tuple = self.scheduler_classes[0] lowerCamelCase_ : int = self.get_scheduler_config() lowerCamelCase_ : int = scheduler_class(**a_ ) scheduler.set_timesteps(self.num_inference_steps , device=a_ ) lowerCamelCase_ : Any = self.dummy_model() lowerCamelCase_ : Any = self.dummy_sample_deter.to(a_ ) * scheduler.init_noise_sigma for t in scheduler.timesteps: lowerCamelCase_ : Tuple = scheduler.scale_model_input(a_ , a_ ) lowerCamelCase_ : Union[str, Any] = model(a_ , a_ ) lowerCamelCase_ : List[Any] = scheduler.step(a_ , a_ , a_ ) lowerCamelCase_ : Dict = output.prev_sample lowerCamelCase_ : str = torch.sum(torch.abs(a_ ) ) lowerCamelCase_ : List[str] = torch.mean(torch.abs(a_ ) ) if str(a_ ).startswith("cpu" ): # The following sum varies between 148 and 156 on mps. Why? assert abs(result_sum.item() - 20.41_25 ) < 1E-2 assert abs(result_mean.item() - 0.02_66 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 20.41_25 ) < 1E-2 assert abs(result_mean.item() - 0.02_66 ) < 1E-3
250
import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" @property def _UpperCamelCase ( self ): torch.manual_seed(0 ) lowerCamelCase_ : Any = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("DownBlock2D", "AttnDownBlock2D") , up_block_types=("AttnUpBlock2D", "UpBlock2D") , ) return model def _UpperCamelCase ( self ): lowerCamelCase_ : Dict = self.dummy_uncond_unet lowerCamelCase_ : Union[str, Any] = KarrasVeScheduler() lowerCamelCase_ : Any = KarrasVePipeline(unet=a_ , scheduler=a_ ) pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) lowerCamelCase_ : List[Any] = torch.manual_seed(0 ) lowerCamelCase_ : List[str] = pipe(num_inference_steps=2 , generator=a_ , output_type="numpy" ).images lowerCamelCase_ : Any = torch.manual_seed(0 ) lowerCamelCase_ : Union[str, Any] = pipe(num_inference_steps=2 , generator=a_ , output_type="numpy" , return_dict=a_ )[0] lowerCamelCase_ : Tuple = image[0, -3:, -3:, -1] lowerCamelCase_ : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowerCamelCase_ : List[Any] = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" def _UpperCamelCase ( self ): lowerCamelCase_ : int = "google/ncsnpp-celebahq-256" lowerCamelCase_ : Optional[int] = UNetaDModel.from_pretrained(a_ ) lowerCamelCase_ : Any = KarrasVeScheduler() lowerCamelCase_ : Dict = KarrasVePipeline(unet=a_ , scheduler=a_ ) pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) lowerCamelCase_ : str = torch.manual_seed(0 ) lowerCamelCase_ : Optional[Any] = pipe(num_inference_steps=20 , generator=a_ , output_type="numpy" ).images lowerCamelCase_ : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) lowerCamelCase_ : Union[str, Any] = np.array([0.5_78, 0.58_11, 0.59_24, 0.58_09, 0.5_87, 0.58_86, 0.58_61, 0.58_02, 0.5_86] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
250
1
from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 lowercase : List[Any] = { # 1536-bit 5: { """prime""": int( """FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1""" + """29024E088A67CC74020BBEA63B139B22514A08798E3404DD""" + """EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245""" + """E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED""" + """EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D""" + """C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F""" + """83655D23DCA3AD961C62F356208552BB9ED529077096966D""" + """670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF""", base=1_6, ), """generator""": 2, }, # 2048-bit 1_4: { """prime""": int( """FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1""" + """29024E088A67CC74020BBEA63B139B22514A08798E3404DD""" + """EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245""" + """E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED""" + """EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D""" + """C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F""" + """83655D23DCA3AD961C62F356208552BB9ED529077096966D""" + """670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B""" + """E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9""" + """DE2BCBF6955817183995497CEA956AE515D2261898FA0510""" + """15728E5A8AACAA68FFFFFFFFFFFFFFFF""", base=1_6, ), """generator""": 2, }, # 3072-bit 1_5: { """prime""": int( """FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1""" + """29024E088A67CC74020BBEA63B139B22514A08798E3404DD""" + """EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245""" + """E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED""" + """EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D""" + """C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F""" + """83655D23DCA3AD961C62F356208552BB9ED529077096966D""" + """670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B""" + """E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9""" + """DE2BCBF6955817183995497CEA956AE515D2261898FA0510""" + """15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64""" + """ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7""" + """ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B""" + """F12FFA06D98A0864D87602733EC86A64521F2B18177B200C""" + """BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31""" + """43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF""", base=1_6, ), """generator""": 2, }, # 4096-bit 1_6: { """prime""": int( """FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1""" + """29024E088A67CC74020BBEA63B139B22514A08798E3404DD""" + """EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245""" + """E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED""" + """EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D""" + """C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F""" + """83655D23DCA3AD961C62F356208552BB9ED529077096966D""" + """670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B""" + """E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9""" + """DE2BCBF6955817183995497CEA956AE515D2261898FA0510""" + """15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64""" + """ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7""" + """ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B""" + """F12FFA06D98A0864D87602733EC86A64521F2B18177B200C""" + """BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31""" + """43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7""" + """88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA""" + """2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6""" + """287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED""" + """1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9""" + """93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199""" + """FFFFFFFFFFFFFFFF""", base=1_6, ), """generator""": 2, }, # 6144-bit 1_7: { """prime""": int( """FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08""" + """8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B""" + """302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9""" + """A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6""" + """49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8""" + """FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D""" + """670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C""" + """180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718""" + """3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D""" + """04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D""" + """B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226""" + """1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C""" + """BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC""" + """E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26""" + """99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB""" + """04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2""" + """233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127""" + """D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492""" + """36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406""" + """AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918""" + """DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151""" + """2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03""" + """F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F""" + """BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA""" + """CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B""" + """B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632""" + """387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E""" + """6DCC4024FFFFFFFFFFFFFFFF""", base=1_6, ), """generator""": 2, }, # 8192-bit 1_8: { """prime""": int( """FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1""" + """29024E088A67CC74020BBEA63B139B22514A08798E3404DD""" + """EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245""" + """E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED""" + """EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D""" + """C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F""" + """83655D23DCA3AD961C62F356208552BB9ED529077096966D""" + """670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B""" + """E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9""" + """DE2BCBF6955817183995497CEA956AE515D2261898FA0510""" + """15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64""" + """ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7""" + """ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B""" + """F12FFA06D98A0864D87602733EC86A64521F2B18177B200C""" + """BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31""" + """43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7""" + """88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA""" + """2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6""" + """287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED""" + """1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9""" + """93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492""" + """36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD""" + """F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831""" + """179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B""" + """DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF""" + """5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6""" + """D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3""" + """23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA""" + """CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328""" + """06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C""" + """DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE""" + """12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4""" + """38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300""" + """741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568""" + """3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9""" + """22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B""" + """4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A""" + """062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36""" + """4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1""" + """B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92""" + """4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47""" + """9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71""" + """60C980DD98EDD3DFFFFFFFFFFFFFFFFF""", base=1_6, ), """generator""": 2, }, } class a__ : def __init__( self : str , A_ : int = 14 ) -> None: """simple docstring""" if group not in primes: raise ValueError("""Unsupported Group""" ) lowerCamelCase_: str = primes[group]["""prime"""] lowerCamelCase_: Dict = primes[group]["""generator"""] lowerCamelCase_: Union[str, Any] = int(hexlify(urandom(32 ) ) , base=16 ) def lowerCAmelCase ( self : List[Any] ) -> str: """simple docstring""" return hex(self.__private_key )[2:] def lowerCAmelCase ( self : List[Any] ) -> str: """simple docstring""" lowerCamelCase_: Any = pow(self.generator , self.__private_key , self.prime ) return hex(A_ )[2:] def lowerCAmelCase ( self : Any , A_ : int ) -> bool: """simple docstring""" # check if the other public key is valid based on NIST SP800-56 return ( 2 <= key <= self.prime - 2 and pow(A_ , (self.prime - 1) // 2 , self.prime ) == 1 ) def lowerCAmelCase ( self : Tuple , A_ : str ) -> str: """simple docstring""" lowerCamelCase_: int = int(A_ , base=16 ) if not self.is_valid_public_key(A_ ): raise ValueError("""Invalid public key""" ) lowerCamelCase_: List[Any] = pow(A_ , self.__private_key , self.prime ) return shaaaa(str(A_ ).encode() ).hexdigest() @staticmethod def lowerCAmelCase ( A_ : int , A_ : int ) -> bool: """simple docstring""" # check if the other public key is valid based on NIST SP800-56 return ( 2 <= remote_public_key_str <= prime - 2 and pow(A_ , (prime - 1) // 2 , A_ ) == 1 ) @staticmethod def lowerCAmelCase ( A_ : str , A_ : str , A_ : int = 14 ) -> str: """simple docstring""" lowerCamelCase_: List[str] = int(A_ , base=16 ) lowerCamelCase_: Any = int(A_ , base=16 ) lowerCamelCase_: Optional[int] = primes[group]["""prime"""] if not DiffieHellman.is_valid_public_key_static(A_ , A_ ): raise ValueError("""Invalid public key""" ) lowerCamelCase_: List[str] = pow(A_ , A_ , A_ ) return shaaaa(str(A_ ).encode() ).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
584
from transformers import DistilBertTokenizer, DistilBertTokenizerFast from transformers.testing_utils import require_tokenizers, slow from ..bert.test_tokenization_bert import BertTokenizationTest @require_tokenizers class a__ ( __SCREAMING_SNAKE_CASE ): _A = DistilBertTokenizer _A = DistilBertTokenizerFast _A = True @slow def lowerCAmelCase ( self : int ) -> Dict: """simple docstring""" lowerCamelCase_: Any = DistilBertTokenizer.from_pretrained("""distilbert-base-uncased""" ) lowerCamelCase_: str = tokenizer.encode("""sequence builders""" , add_special_tokens=A_ ) lowerCamelCase_: List[str] = tokenizer.encode("""multi-sequence build""" , add_special_tokens=A_ ) lowerCamelCase_: int = tokenizer.build_inputs_with_special_tokens(A_ ) lowerCamelCase_: Union[str, Any] = tokenizer.build_inputs_with_special_tokens(A_ , A_ ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ]
584
1
"""simple docstring""" from math import sqrt def A_ ( snake_case__ = 1_00_00_00 ) -> int: _UpperCamelCase :int = 0 _UpperCamelCase :int = 0 _UpperCamelCase :int while num_cuboids <= limit: max_cuboid_size += 1 for sum_shortest_sides in range(2 , 2 * max_cuboid_size + 1 ): if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer(): num_cuboids += ( min(snake_case__ , sum_shortest_sides // 2 ) - max(1 , sum_shortest_sides - max_cuboid_size ) + 1 ) return max_cuboid_size if __name__ == "__main__": print(F"""{solution() = }""")
355
"""simple docstring""" def A_ ( snake_case__ , snake_case__ = " " ) -> list: _UpperCamelCase :List[str] = [] _UpperCamelCase :int = 0 for index, char in enumerate(snake_case__ ): if char == separator: split_words.append(string[last_index:index] ) _UpperCamelCase :Dict = index + 1 elif index + 1 == len(snake_case__ ): split_words.append(string[last_index : index + 1] ) return split_words if __name__ == "__main__": from doctest import testmod testmod()
355
1
'''simple docstring''' import pytest from datasets.utils.sharding import _distribute_shards, _number_of_shards_in_gen_kwargs, _split_gen_kwargs @pytest.mark.parametrize( '''kwargs, expected''' , [ ({'''num_shards''': 0, '''max_num_jobs''': 1}, []), ({'''num_shards''': 10, '''max_num_jobs''': 1}, [range(10)]), ({'''num_shards''': 10, '''max_num_jobs''': 10}, [range(lowerCAmelCase , i + 1) for i in range(10)]), ({'''num_shards''': 1, '''max_num_jobs''': 10}, [range(1)]), ({'''num_shards''': 10, '''max_num_jobs''': 3}, [range(0 , 4), range(4 , 7), range(7 , 10)]), ({'''num_shards''': 3, '''max_num_jobs''': 10}, [range(0 , 1), range(1 , 2), range(2 , 3)]), ] , ) def lowercase ( lowerCAmelCase : List[str] , lowerCAmelCase : List[Any]): """simple docstring""" _A : Optional[Any] = _distribute_shards(**lowerCAmelCase) assert out == expected @pytest.mark.parametrize( '''gen_kwargs, max_num_jobs, expected''' , [ ({'''foo''': 0}, 10, [{'''foo''': 0}]), ({'''shards''': [0, 1, 2, 3]}, 1, [{'''shards''': [0, 1, 2, 3]}]), ({'''shards''': [0, 1, 2, 3]}, 4, [{'''shards''': [0]}, {'''shards''': [1]}, {'''shards''': [2]}, {'''shards''': [3]}]), ({'''shards''': [0, 1]}, 4, [{'''shards''': [0]}, {'''shards''': [1]}]), ({'''shards''': [0, 1, 2, 3]}, 2, [{'''shards''': [0, 1]}, {'''shards''': [2, 3]}]), ] , ) def lowercase ( lowerCAmelCase : str , lowerCAmelCase : Any , lowerCAmelCase : Optional[int]): """simple docstring""" _A : Union[str, Any] = _split_gen_kwargs(lowerCAmelCase , lowerCAmelCase) assert out == expected @pytest.mark.parametrize( '''gen_kwargs, expected''' , [ ({'''foo''': 0}, 1), ({'''shards''': [0]}, 1), ({'''shards''': [0, 1, 2, 3]}, 4), ({'''shards''': [0, 1, 2, 3], '''foo''': 0}, 4), ({'''shards''': [0, 1, 2, 3], '''other''': (0, 1)}, 4), ({'''shards''': [0, 1, 2, 3], '''shards2''': [0, 1]}, RuntimeError), ] , ) def lowercase ( lowerCAmelCase : List[str] , lowerCAmelCase : int): """simple docstring""" if expected is RuntimeError: with pytest.raises(lowerCAmelCase): _number_of_shards_in_gen_kwargs(lowerCAmelCase) else: _A : Tuple = _number_of_shards_in_gen_kwargs(lowerCAmelCase) assert out == expected
417
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) __UpperCamelCase : Optional[Any] = { '''configuration_convnext''': ['''CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ConvNextConfig''', '''ConvNextOnnxConfig'''] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Tuple = ['''ConvNextFeatureExtractor'''] __UpperCamelCase : Union[str, Any] = ['''ConvNextImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Union[str, Any] = [ '''CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ConvNextForImageClassification''', '''ConvNextModel''', '''ConvNextPreTrainedModel''', '''ConvNextBackbone''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Dict = [ '''TFConvNextForImageClassification''', '''TFConvNextModel''', '''TFConvNextPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_convnext import ConvNextFeatureExtractor from .image_processing_convnext import ConvNextImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convnext import ( CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvNextBackbone, ConvNextForImageClassification, ConvNextModel, ConvNextPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel else: import sys __UpperCamelCase : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
417
1
'''simple docstring''' import unittest from transformers.testing_utils import require_bsa from transformers.utils import is_bsa_available from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin if is_bsa_available(): from transformers import MarkupLMFeatureExtractor class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : Any , __UpperCAmelCase : List[str] ): '''simple docstring''' _A = parent def lowerCAmelCase ( self : str ): '''simple docstring''' return {} def __lowercase ( ) -> int: '''simple docstring''' _A = "<HTML>\n\n <HEAD>\n <TITLE>sample document</TITLE>\n </HEAD>\n\n <BODY BGCOLOR=\"FFFFFF\">\n <HR>\n <a href=\"http://google.com\">Goog</a>\n <H1>This is one header</H1>\n <H2>This is a another Header</H2>\n <P>Travel from\n <P>\n <B>SFO to JFK</B>\n <BR>\n <B><I>on May 2, 2015 at 2:00 pm. For details go to confirm.com </I></B>\n <HR>\n <div style=\"color:#0000FF\">\n <h3>Traveler <b> name </b> is\n <p> John Doe </p>\n </div>" _A = "\n <!DOCTYPE html>\n <html>\n <body>\n\n <h1>My First Heading</h1>\n <p>My first paragraph.</p>\n\n </body>\n </html>\n " return [html_string_a, html_string_a] @require_bsa class _UpperCAmelCase ( snake_case_ , unittest.TestCase ): """simple docstring""" snake_case = MarkupLMFeatureExtractor if is_bsa_available() else None def lowerCAmelCase ( self : int ): '''simple docstring''' _A = MarkupLMFeatureExtractionTester(self ) @property def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' return self.feature_extract_tester.prepare_feat_extract_dict() def lowerCAmelCase ( self : Any ): '''simple docstring''' _A = self.feature_extraction_class() # Test not batched input _A = get_html_strings()[0] _A = feature_extractor(__UpperCAmelCase ) # fmt: off _A = [["sample document", "Goog", "This is one header", "This is a another Header", "Travel from", "SFO to JFK", "on May 2, 2015 at 2:00 pm. For details go to confirm.com", "Traveler", "name", "is", "John Doe"]] _A = [["/html/head/title", "/html/body/a", "/html/body/h1", "/html/body/h2", "/html/body/p", "/html/body/p/p/b[1]", "/html/body/p/p/b[2]/i", "/html/body/p/p/div/h3", "/html/body/p/p/div/h3/b", "/html/body/p/p/div/h3", "/html/body/p/p/div/h3/p"]] # fmt: on self.assertEqual(encoding.nodes , __UpperCAmelCase ) self.assertEqual(encoding.xpaths , __UpperCAmelCase ) # Test batched _A = get_html_strings() _A = feature_extractor(__UpperCAmelCase ) # fmt: off _A = expected_nodes + [["My First Heading", "My first paragraph."]] _A = expected_xpaths + [["/html/body/h1", "/html/body/p"]] self.assertEqual(len(encoding.nodes ) , 2 ) self.assertEqual(len(encoding.xpaths ) , 2 ) self.assertEqual(encoding.nodes , __UpperCAmelCase ) self.assertEqual(encoding.xpaths , __UpperCAmelCase )
330
'''simple docstring''' import numpy as np import torch from torch.utils.data import Dataset, IterableDataset from ..utils.generic import ModelOutput class _UpperCAmelCase ( snake_case_ ): """simple docstring""" def __init__( self : int , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : int , __UpperCAmelCase : List[Any] ): '''simple docstring''' _A = dataset _A = process _A = params def __len__( self : Tuple ): '''simple docstring''' return len(self.dataset ) def __getitem__( self : str , __UpperCAmelCase : Union[str, Any] ): '''simple docstring''' _A = self.dataset[i] _A = self.process(__UpperCAmelCase , **self.params ) return processed class _UpperCAmelCase ( snake_case_ ): """simple docstring""" def __init__( self : List[Any] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Any , __UpperCAmelCase : str , __UpperCAmelCase : Tuple=None ): '''simple docstring''' _A = loader _A = infer _A = params if loader_batch_size == 1: # Let's spare some time by deactivating altogether _A = None _A = loader_batch_size # Internal bookkeeping _A = None _A = None def __len__( self : Dict ): '''simple docstring''' return len(self.loader ) def __iter__( self : List[Any] ): '''simple docstring''' _A = iter(self.loader ) return self def lowerCAmelCase ( self : str ): '''simple docstring''' if isinstance(self._loader_batch_data , torch.Tensor ): # Batch data is simple tensor, just fetch the slice _A = self._loader_batch_data[self._loader_batch_index] else: # Batch data is assumed to be BaseModelOutput (or dict) _A = {} for k, element in self._loader_batch_data.items(): if isinstance(__UpperCAmelCase , __UpperCAmelCase ): # Convert ModelOutput to tuple first _A = element.to_tuple() if isinstance(element[0] , torch.Tensor ): _A = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): _A = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if k in {"hidden_states", "past_key_values", "attentions"} and isinstance(__UpperCAmelCase , __UpperCAmelCase ): # Those are stored as lists of tensors so need specific unbatching. if isinstance(element[0] , torch.Tensor ): _A = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): _A = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if element is None: # This can happen for optional data that get passed around _A = None elif isinstance(element[self._loader_batch_index] , torch.Tensor ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers _A = element[self._loader_batch_index].unsqueeze(0 ) elif isinstance(element[self._loader_batch_index] , np.ndarray ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers _A = np.expand_dims(element[self._loader_batch_index] , 0 ) else: # This is typically a list, so no need to `unsqueeze`. _A = element[self._loader_batch_index] # Recreate the element by reusing the original class to make it look # batch_size=1 _A = self._loader_batch_data.__class__(__UpperCAmelCase ) self._loader_batch_index += 1 return result def lowerCAmelCase ( self : Dict ): '''simple docstring''' if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: # We are currently unrolling a batch so we just need to return # the current item within a batch return self.loader_batch_item() # We're out of items within a batch _A = next(self.iterator ) _A = self.infer(__UpperCAmelCase , **self.params ) # We now have a batch of "inferred things". if self.loader_batch_size is not None: # Try to infer the size of the batch if isinstance(__UpperCAmelCase , torch.Tensor ): _A = processed else: _A = list(processed.keys() )[0] _A = processed[key] if isinstance(__UpperCAmelCase , __UpperCAmelCase ): _A = len(__UpperCAmelCase ) else: _A = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. _A = observed_batch_size # Setting internal index to unwrap the batch _A = processed _A = 0 return self.loader_batch_item() else: # We're not unrolling batches return processed class _UpperCAmelCase ( snake_case_ ): """simple docstring""" def __init__( self : List[Any] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Tuple , __UpperCAmelCase : List[str] , __UpperCAmelCase : List[Any]=None ): '''simple docstring''' super().__init__(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def __iter__( self : List[str] ): '''simple docstring''' _A = iter(self.loader ) _A = None return self def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' if self.subiterator is None: _A = self.infer(next(self.iterator ) , **self.params ) try: # Try to return next item _A = next(self.subiterator ) except StopIteration: # When a preprocess iterator ends, we can start lookig at the next item # ChunkIterator will keep feeding until ALL elements of iterator # all have created their subiterator and have been iterating against. # # Another way to look at it, is we're basically flattening lists of lists # into a single list, but with generators _A = self.infer(next(self.iterator ) , **self.params ) _A = next(self.subiterator ) return processed class _UpperCAmelCase ( snake_case_ ): """simple docstring""" def __iter__( self : Union[str, Any] ): '''simple docstring''' _A = iter(self.loader ) return self def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' _A = False _A = [] if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: while self._loader_batch_index < self.loader_batch_size: _A = self.loader_batch_item() _A = item.pop("is_last" ) accumulator.append(__UpperCAmelCase ) if is_last: return accumulator while not is_last: _A = self.infer(next(self.iterator ) , **self.params ) if self.loader_batch_size is not None: if isinstance(__UpperCAmelCase , torch.Tensor ): _A = processed else: _A = list(processed.keys() )[0] _A = processed[key] if isinstance(__UpperCAmelCase , __UpperCAmelCase ): _A = len(__UpperCAmelCase ) else: _A = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. _A = observed_batch_size _A = processed _A = 0 while self._loader_batch_index < self.loader_batch_size: _A = self.loader_batch_item() _A = item.pop("is_last" ) accumulator.append(__UpperCAmelCase ) if is_last: return accumulator else: _A = processed _A = item.pop("is_last" ) accumulator.append(__UpperCAmelCase ) return accumulator class _UpperCAmelCase ( snake_case_ ): """simple docstring""" def __init__( self : str , __UpperCAmelCase : Dataset , __UpperCAmelCase : str ): '''simple docstring''' _A = dataset _A = key def __len__( self : str ): '''simple docstring''' return len(self.dataset ) def __getitem__( self : Tuple , __UpperCAmelCase : str ): '''simple docstring''' return self.dataset[i][self.key] class _UpperCAmelCase ( snake_case_ ): """simple docstring""" def __init__( self : int , __UpperCAmelCase : Dataset , __UpperCAmelCase : str , __UpperCAmelCase : str ): '''simple docstring''' _A = dataset _A = keya _A = keya def __len__( self : List[str] ): '''simple docstring''' return len(self.dataset ) def __getitem__( self : int , __UpperCAmelCase : Tuple ): '''simple docstring''' return {"text": self.dataset[i][self.keya], "text_pair": self.dataset[i][self.keya]}
330
1
import doctest import glob import importlib import inspect import os import re from contextlib import contextmanager from functools import wraps from unittest.mock import patch import numpy as np import pytest from absl.testing import parameterized import datasets from datasets import load_metric from .utils import for_all_test_methods, local, slow # mark all tests as integration a__ = pytest.mark.integration a__ = {"""comet"""} a__ = importlib.util.find_spec("""fairseq""") is not None a__ = {"""code_eval"""} a__ = os.name == """nt""" a__ = {"""bertscore""", """frugalscore""", """perplexity"""} a__ = importlib.util.find_spec("""transformers""") is not None def _UpperCAmelCase ( a : Any ): @wraps(a ) def wrapper(self : int , a : Tuple ): if not _has_fairseq and metric_name in REQUIRE_FAIRSEQ: self.skipTest("""\"test requires Fairseq\"""" ) else: test_case(self , a ) return wrapper def _UpperCAmelCase ( a : Tuple ): @wraps(a ) def wrapper(self : Optional[int] , a : List[Any] ): if not _has_transformers and metric_name in REQUIRE_TRANSFORMERS: self.skipTest("""\"test requires transformers\"""" ) else: test_case(self , a ) return wrapper def _UpperCAmelCase ( a : Any ): @wraps(a ) def wrapper(self : List[Any] , a : Optional[Any] ): if _on_windows and metric_name in UNSUPPORTED_ON_WINDOWS: self.skipTest("""\"test not supported on Windows\"""" ) else: test_case(self , a ) return wrapper def _UpperCAmelCase ( ): snake_case__ = [metric_dir.split(os.sep )[-2] for metric_dir in glob.glob("""./metrics/*/""" )] return [{"testcase_name": x, "metric_name": x} for x in metrics if x != "gleu"] # gleu is unfinished @parameterized.named_parameters(get_local_metric_names() ) @for_all_test_methods( lowercase_ , lowercase_ , lowercase_ ) @local class _lowerCAmelCase ( parameterized.TestCase ): """simple docstring""" _lowercase : Optional[Any] = {} _lowercase : Optional[int] = None @pytest.mark.filterwarnings("""ignore:metric_module_factory is deprecated:FutureWarning""") @pytest.mark.filterwarnings("""ignore:load_metric is deprecated:FutureWarning""") def __magic_name__ ( self : Union[str, Any] , UpperCamelCase__ : Dict): '''simple docstring''' snake_case__ = """[...]""" snake_case__ = importlib.import_module( datasets.load.metric_module_factory(os.path.join("""metrics""" , UpperCamelCase__)).module_path) snake_case__ = datasets.load.import_main_class(metric_module.__name__ , dataset=UpperCamelCase__) # check parameters snake_case__ = inspect.signature(metric._compute).parameters self.assertTrue(all(p.kind != p.VAR_KEYWORD for p in parameters.values())) # no **kwargs # run doctest with self.patch_intensive_calls(UpperCamelCase__ , metric_module.__name__): with self.use_local_metrics(): try: snake_case__ = doctest.testmod(UpperCamelCase__ , verbose=UpperCamelCase__ , raise_on_error=UpperCamelCase__) except doctest.UnexpectedException as e: raise e.exc_info[1] # raise the exception that doctest caught self.assertEqual(results.failed , 0) self.assertGreater(results.attempted , 1) @slow def __magic_name__ ( self : Any , UpperCamelCase__ : Dict): '''simple docstring''' snake_case__ = """[...]""" snake_case__ = importlib.import_module( datasets.load.metric_module_factory(os.path.join("""metrics""" , UpperCamelCase__)).module_path) # run doctest with self.use_local_metrics(): snake_case__ = doctest.testmod(UpperCamelCase__ , verbose=UpperCamelCase__ , raise_on_error=UpperCamelCase__) self.assertEqual(results.failed , 0) self.assertGreater(results.attempted , 1) @contextmanager def __magic_name__ ( self : int , UpperCamelCase__ : int , UpperCamelCase__ : List[str]): '''simple docstring''' if metric_name in self.INTENSIVE_CALLS_PATCHER: with self.INTENSIVE_CALLS_PATCHER[metric_name](UpperCamelCase__): yield else: yield @contextmanager def __magic_name__ ( self : List[Any]): '''simple docstring''' def load_local_metric(UpperCamelCase__ : Optional[Any] , *UpperCamelCase__ : Dict , **UpperCamelCase__ : Union[str, Any]): return load_metric(os.path.join("""metrics""" , UpperCamelCase__) , *UpperCamelCase__ , **UpperCamelCase__) with patch("""datasets.load_metric""") as mock_load_metric: snake_case__ = load_local_metric yield @classmethod def __magic_name__ ( cls : Optional[Any] , UpperCamelCase__ : Optional[Any]): '''simple docstring''' def wrapper(UpperCamelCase__ : Dict): snake_case__ = contextmanager(UpperCamelCase__) snake_case__ = patcher return patcher return wrapper @LocalMetricTest.register_intensive_calls_patcher("""bleurt""" ) def _UpperCAmelCase ( a : Dict ): import tensorflow.compat.va as tf from bleurt.score import Predictor tf.flags.DEFINE_string("""sv""" , """""" , """""" ) # handle pytest cli flags class _lowerCAmelCase ( lowercase_ ): """simple docstring""" def __magic_name__ ( self : Any , UpperCamelCase__ : Dict): '''simple docstring''' assert len(input_dict["""input_ids"""]) == 2 return np.array([1.03, 1.04]) # mock predict_fn which is supposed to do a forward pass with a bleurt model with patch("""bleurt.score._create_predictor""" ) as mock_create_predictor: snake_case__ = MockedPredictor() yield @LocalMetricTest.register_intensive_calls_patcher("""bertscore""" ) def _UpperCAmelCase ( a : str ): import torch def bert_cos_score_idf(a : Optional[Any] , a : int , *a : Dict , **a : Any ): return torch.tensor([[1.0, 1.0, 1.0]] * len(a ) ) # mock get_model which is supposed to do download a bert model # mock bert_cos_score_idf which is supposed to do a forward pass with a bert model with patch("""bert_score.scorer.get_model""" ), patch( """bert_score.scorer.bert_cos_score_idf""" ) as mock_bert_cos_score_idf: snake_case__ = bert_cos_score_idf yield @LocalMetricTest.register_intensive_calls_patcher("""comet""" ) def _UpperCAmelCase ( a : Optional[Any] ): def load_from_checkpoint(a : int ): class _lowerCAmelCase : """simple docstring""" def __magic_name__ ( self : Union[str, Any] , UpperCamelCase__ : Optional[int] , *UpperCamelCase__ : Optional[Any] , **UpperCamelCase__ : str): '''simple docstring''' assert len(UpperCamelCase__) == 2 snake_case__ = [0.19, 0.92] return scores, sum(UpperCamelCase__) / len(UpperCamelCase__) return Model() # mock load_from_checkpoint which is supposed to do download a bert model # mock load_from_checkpoint which is supposed to do download a bert model with patch("""comet.download_model""" ) as mock_download_model: snake_case__ = None with patch("""comet.load_from_checkpoint""" ) as mock_load_from_checkpoint: snake_case__ = load_from_checkpoint yield def _UpperCAmelCase ( ): snake_case__ = load_metric(os.path.join("""metrics""" , """seqeval""" ) ) snake_case__ = """ERROR""" snake_case__ = F'''Scheme should be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU], got {wrong_scheme}''' with pytest.raises(a , match=re.escape(a ) ): metric.compute(predictions=[] , references=[] , scheme=a )
717
from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_torch_available, is_torch_tpu_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_torch_available(): import torch if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm a__ = logging.get_logger(__name__) @dataclass class _lowerCAmelCase ( lowercase_ ): """simple docstring""" _lowercase : Dict = [ '''no_inference''', '''no_cuda''', '''no_tpu''', '''no_speed''', '''no_memory''', '''no_env_print''', '''no_multi_process''', ] def __init__( self : str , **UpperCamelCase__ : Dict): '''simple docstring''' for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: snake_case__ = deprecated_arg[3:] setattr(self , UpperCamelCase__ , not kwargs.pop(UpperCamelCase__)) logger.warning( F'''{deprecated_arg} is depreciated. Please use --no_{positive_arg} or''' F''' {positive_arg}={kwargs[positive_arg]}''') snake_case__ = kwargs.pop("""torchscript""" , self.torchscript) snake_case__ = kwargs.pop("""torch_xla_tpu_print_metrics""" , self.torch_xla_tpu_print_metrics) snake_case__ = kwargs.pop("""fp16_opt_level""" , self.fpaa_opt_level) super().__init__(**UpperCamelCase__) _lowercase : bool = field(default=lowercase_ , metadata={'''help''': '''Trace the models using torchscript'''} ) _lowercase : bool = field(default=lowercase_ , metadata={'''help''': '''Print Xla/PyTorch tpu metrics'''} ) _lowercase : str = field( default='''O1''' , metadata={ '''help''': ( '''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\']. ''' '''See details at https://nvidia.github.io/apex/amp.html''' ) } , ) @cached_property def __magic_name__ ( self : Tuple): '''simple docstring''' requires_backends(self , ["""torch"""]) logger.info("""PyTorch: setting up devices""") if not self.cuda: snake_case__ = torch.device("""cpu""") snake_case__ = 0 elif is_torch_tpu_available(): snake_case__ = xm.xla_device() snake_case__ = 0 else: snake_case__ = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""") snake_case__ = torch.cuda.device_count() return device, n_gpu @property def __magic_name__ ( self : Union[str, Any]): '''simple docstring''' return is_torch_tpu_available() and self.tpu @property def __magic_name__ ( self : List[str]): '''simple docstring''' requires_backends(self , ["""torch"""]) # TODO(PVP): currently only single GPU is supported return torch.cuda.current_device() @property def __magic_name__ ( self : Union[str, Any]): '''simple docstring''' requires_backends(self , ["""torch"""]) return self._setup_devices[0] @property def __magic_name__ ( self : str): '''simple docstring''' requires_backends(self , ["""torch"""]) return self._setup_devices[1] @property def __magic_name__ ( self : str): '''simple docstring''' return self.n_gpu > 0
99
0
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( ImageTextPipelineOutput, UniDiffuserPipeline, ) else: from .modeling_text_decoder import UniDiffuserTextDecoder from .modeling_uvit import UniDiffuserModel, UTransformeraDModel from .pipeline_unidiffuser import ImageTextPipelineOutput, UniDiffuserPipeline
44
'''simple docstring''' import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) UpperCAmelCase_ : Dict = [ ('bert.bert', 'visual_bert'), ('bert.cls', 'cls'), ('bert.classifier', 'cls'), ('token_type_embeddings_visual', 'visual_token_type_embeddings'), ('position_embeddings_visual', 'visual_position_embeddings'), ('projection', 'visual_projection'), ] UpperCAmelCase_ : int = [ 'nlvr2_coco_pre_trained.th', 'nlvr2_fine_tuned.th', 'nlvr2_pre_trained.th', 'vcr_coco_pre_train.th', 'vcr_fine_tune.th', 'vcr_pre_train.th', 'vqa_coco_pre_trained.th', 'vqa_fine_tuned.th', 'vqa_pre_trained.th', ] def A_ ( _lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : Optional[int] = torch.load(_lowerCAmelCase , map_location="cpu" ) return sd def A_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : Tuple=rename_keys_prefix ): """simple docstring""" _lowerCamelCase : Any = OrderedDict() _lowerCamelCase : str = torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue _lowerCamelCase : Any = key for name_pair in rename_keys_prefix: _lowerCamelCase : Dict = new_key.replace(name_pair[0] , name_pair[1] ) _lowerCamelCase : Any = d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately _lowerCamelCase : List[str] = new_d["cls.predictions.bias"] return new_d @torch.no_grad() def A_ ( _lowerCAmelCase : str , _lowerCAmelCase : Dict ): """simple docstring""" assert ( checkpoint_path.split("/" )[-1] in ACCEPTABLE_CHECKPOINTS ), F'The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.' # Get Config if "pre" in checkpoint_path: _lowerCamelCase : Optional[int] = "pretraining" if "vcr" in checkpoint_path: _lowerCamelCase : Union[str, Any] = {"visual_embedding_dim": 512} elif "vqa_advanced" in checkpoint_path: _lowerCamelCase : List[str] = {"visual_embedding_dim": 2048} elif "vqa" in checkpoint_path: _lowerCamelCase : int = {"visual_embedding_dim": 2048} elif "nlvr" in checkpoint_path: _lowerCamelCase : List[str] = {"visual_embedding_dim": 1024} else: raise NotImplementedError(F'No implementation found for `{checkpoint_path}`.' ) else: if "vcr" in checkpoint_path: _lowerCamelCase : Any = {"visual_embedding_dim": 512} _lowerCamelCase : List[Any] = "multichoice" elif "vqa_advanced" in checkpoint_path: _lowerCamelCase : Tuple = {"visual_embedding_dim": 2048} _lowerCamelCase : Dict = "vqa_advanced" elif "vqa" in checkpoint_path: _lowerCamelCase : Union[str, Any] = {"visual_embedding_dim": 2048, "num_labels": 3129} _lowerCamelCase : Optional[int] = "vqa" elif "nlvr" in checkpoint_path: _lowerCamelCase : Tuple = { "visual_embedding_dim": 1024, "num_labels": 2, } _lowerCamelCase : Optional[Any] = "nlvr" _lowerCamelCase : str = VisualBertConfig(**_lowerCAmelCase ) # Load State Dict _lowerCamelCase : str = load_state_dict(_lowerCAmelCase ) _lowerCamelCase : List[str] = get_new_dict(_lowerCAmelCase , _lowerCAmelCase ) if model_type == "pretraining": _lowerCamelCase : List[Any] = VisualBertForPreTraining(_lowerCAmelCase ) elif model_type == "vqa": _lowerCamelCase : Dict = VisualBertForQuestionAnswering(_lowerCAmelCase ) elif model_type == "nlvr": _lowerCamelCase : Tuple = VisualBertForVisualReasoning(_lowerCAmelCase ) elif model_type == "multichoice": _lowerCamelCase : str = VisualBertForMultipleChoice(_lowerCAmelCase ) model.load_state_dict(_lowerCAmelCase ) # Save Checkpoints Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) model.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": UpperCAmelCase_ : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument('orig_checkpoint_path', type=str, help='A path to .th on local filesystem.') parser.add_argument('pytorch_dump_folder_path', type=str, help='Path to the output PyTorch model.') UpperCAmelCase_ : Tuple = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
44
1
from math import ceil, sqrt def __lowerCAmelCase ( UpperCamelCase = 1000000 ) -> int: lowerCAmelCase__ : Dict = 0 for outer_width in range(3 , (limit // 4) + 2 ): if outer_width**2 > limit: lowerCAmelCase__ : Optional[int] = max(ceil(sqrt(outer_width**2 - limit ) ) , 1 ) else: lowerCAmelCase__ : List[Any] = 1 if (outer_width - hole_width_lower_bound) % 2: hole_width_lower_bound += 1 answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1 return answer if __name__ == "__main__": print(F"""{solution() = }""")
700
from datetime import datetime import matplotlib.pyplot as plt import torch def __lowerCAmelCase ( UpperCamelCase ) -> str: for param in module.parameters(): lowerCAmelCase__ : int = False def __lowerCAmelCase ( ) -> Optional[Any]: lowerCAmelCase__ : List[Any] = '''cuda''' if torch.cuda.is_available() else '''cpu''' if torch.backends.mps.is_available() and torch.backends.mps.is_built(): lowerCAmelCase__ : Optional[Any] = '''mps''' if device == "mps": print( '''WARNING: MPS currently doesn\'t seem to work, and messes up backpropagation without any visible torch''' ''' errors. I recommend using CUDA on a colab notebook or CPU instead if you\'re facing inexplicable issues''' ''' with generations.''' ) return device def __lowerCAmelCase ( UpperCamelCase ) -> List[Any]: lowerCAmelCase__ : str = plt.imshow(UpperCamelCase ) fig.axes.get_xaxis().set_visible(UpperCamelCase ) fig.axes.get_yaxis().set_visible(UpperCamelCase ) plt.show() def __lowerCAmelCase ( ) -> str: lowerCAmelCase__ : Dict = datetime.now() lowerCAmelCase__ : Optional[int] = current_time.strftime('''%H:%M:%S''' ) return timestamp
470
0
'''simple docstring''' import logging import torch from accelerate import Accelerator from arguments import EvaluationArguments from datasets import load_dataset from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed class _lowercase( _lowerCamelCase ): """simple docstring""" def __init__( self: str ,a: List[str] ,a: Tuple ,a: Optional[Any]=1024 ,a: Optional[Any]=1024 ,a: Union[str, Any]=3.6 ): __UpperCAmelCase = tokenizer __UpperCAmelCase = tokenizer.bos_token_id __UpperCAmelCase = dataset __UpperCAmelCase = seq_length __UpperCAmelCase = seq_length * chars_per_token * num_of_sequences def __iter__( self: Dict ): __UpperCAmelCase = iter(self.dataset ) __UpperCAmelCase = True while more_examples: __UpperCAmelCase , __UpperCAmelCase = [], 0 while True: if buffer_len >= self.input_characters: break try: buffer.append(next(a )['content'] ) buffer_len += len(buffer[-1] ) except StopIteration: __UpperCAmelCase = False break __UpperCAmelCase = tokenizer(a ,truncation=a )['input_ids'] __UpperCAmelCase = [] for tokenized_input in tokenized_inputs: all_token_ids.extend(tokenized_input + [self.concat_token_id] ) for i in range(0 ,len(a ) ,self.seq_length ): __UpperCAmelCase = all_token_ids[i : i + self.seq_length] if len(a ) == self.seq_length: yield torch.tensor(a ) def __snake_case ( lowerCAmelCase : Optional[Any] ): __UpperCAmelCase = {'streaming': True} __UpperCAmelCase = load_dataset(args.dataset_name , split='train' , **lowerCAmelCase ) __UpperCAmelCase = ConstantLengthDataset(lowerCAmelCase , lowerCAmelCase , seq_length=args.seq_length ) __UpperCAmelCase = DataLoader(lowerCAmelCase , batch_size=args.batch_size ) return eval_dataloader def __snake_case ( lowerCAmelCase : Optional[Any] ): model.eval() __UpperCAmelCase = [] for step, batch in enumerate(lowerCAmelCase ): with torch.no_grad(): __UpperCAmelCase = model(lowerCAmelCase , labels=lowerCAmelCase ) __UpperCAmelCase = outputs.loss.repeat(args.batch_size ) losses.append(accelerator.gather(lowerCAmelCase ) ) if args.max_eval_steps > 0 and step >= args.max_eval_steps: break __UpperCAmelCase = torch.mean(torch.cat(lowerCAmelCase ) ) try: __UpperCAmelCase = torch.exp(lowerCAmelCase ) except OverflowError: __UpperCAmelCase = float('inf' ) return loss.item(), perplexity.item() # Setup Accelerator _UpperCamelCase : int = Accelerator() # Parse configuration _UpperCamelCase : Dict = HfArgumentParser(EvaluationArguments) _UpperCamelCase : List[Any] = parser.parse_args() set_seed(args.seed) # Logging _UpperCamelCase : int = logging.getLogger(__name__) logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) # Load model and tokenizer _UpperCamelCase : List[str] = AutoModelForCausalLM.from_pretrained(args.model_ckpt) _UpperCamelCase : str = AutoTokenizer.from_pretrained(args.model_ckpt) # Load dataset and dataloader _UpperCamelCase : Any = create_dataloader(args) # Prepare everything with our `accelerator`. _UpperCamelCase , _UpperCamelCase : Optional[int] = accelerator.prepare(model, eval_dataloader) # Evaluate and save the last checkpoint logger.info('Evaluating and saving model after training') _UpperCamelCase , _UpperCamelCase : Dict = evaluate(args) logger.info(f"loss/eval: {eval_loss}, perplexity: {perplexity}")
396
'''simple docstring''' import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class _lowercase( _lowerCamelCase ,_lowerCamelCase ,unittest.TestCase ): """simple docstring""" __lowerCamelCase = IFInpaintingSuperResolutionPipeline __lowerCamelCase = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''width''', '''height'''} __lowerCamelCase = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({'''original_image'''} ) __lowerCamelCase = PipelineTesterMixin.required_optional_params - {'''latents'''} def snake_case ( self: Optional[Any] ): return self._get_superresolution_dummy_components() def snake_case ( self: List[str] ,a: str ,a: Tuple=0 ): if str(a ).startswith('mps' ): __UpperCAmelCase = torch.manual_seed(a ) else: __UpperCAmelCase = torch.Generator(device=a ).manual_seed(a ) __UpperCAmelCase = floats_tensor((1, 3, 16, 16) ,rng=random.Random(a ) ).to(a ) __UpperCAmelCase = floats_tensor((1, 3, 32, 32) ,rng=random.Random(a ) ).to(a ) __UpperCAmelCase = floats_tensor((1, 3, 32, 32) ,rng=random.Random(a ) ).to(a ) __UpperCAmelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'original_image': original_image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() ,reason='XFormers attention is only available with CUDA and `xformers` installed' ,) def snake_case ( self: Any ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def snake_case ( self: int ): self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' ,reason='float16 requires CUDA' ) def snake_case ( self: Any ): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def snake_case ( self: Tuple ): self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def snake_case ( self: List[Any] ): self._test_save_load_local() def snake_case ( self: Tuple ): self._test_inference_batch_single_identical( expected_max_diff=1e-2 ,)
396
1
import requests from bsa import BeautifulSoup def lowerCamelCase ( UpperCamelCase : str = "https://www.worldometers.info/coronavirus" ) -> dict: _lowerCamelCase = BeautifulSoup(requests.get(UpperCamelCase ).text , 'html.parser' ) _lowerCamelCase = soup.findAll('h1' ) _lowerCamelCase = soup.findAll('div' , {'class': 'maincounter-number'} ) keys += soup.findAll('span' , {'class': 'panel-title'} ) values += soup.findAll('div' , {'class': 'number-table-main'} ) return {key.text.strip(): value.text.strip() for key, value in zip(UpperCamelCase , UpperCamelCase )} if __name__ == "__main__": print('\033[1m' + 'COVID-19 Status of the World' + '\033[0m\n') for key, value in world_covidaa_stats().items(): print(F'''{key}\n{value}\n''')
702
from itertools import product def lowerCamelCase ( UpperCamelCase : int , UpperCamelCase : int ) -> list[int]: _lowerCamelCase = sides_number _lowerCamelCase = max_face_number * dice_number _lowerCamelCase = [0] * (max_total + 1) _lowerCamelCase = 1 _lowerCamelCase = range(UpperCamelCase , max_face_number + 1 ) for dice_numbers in product(UpperCamelCase , repeat=UpperCamelCase ): _lowerCamelCase = sum(UpperCamelCase ) totals_frequencies[total] += 1 return totals_frequencies def lowerCamelCase ( ) -> float: _lowerCamelCase = total_frequency_distribution( sides_number=4 , dice_number=9 ) _lowerCamelCase = total_frequency_distribution( sides_number=6 , dice_number=6 ) _lowerCamelCase = 0 _lowerCamelCase = 9 _lowerCamelCase = 4 * 9 _lowerCamelCase = 6 for peter_total in range(UpperCamelCase , max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) _lowerCamelCase = (4**9) * (6**6) _lowerCamelCase = peter_wins_count / total_games_number _lowerCamelCase = round(UpperCamelCase , ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(F'''{solution() = }''')
234
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { """microsoft/cvt-13""": """https://huggingface.co/microsoft/cvt-13/resolve/main/config.json""", # See all Cvt models at https://huggingface.co/models?filter=cvt } class UpperCAmelCase ( A_ ): A__ : Optional[int] = "cvt" def __init__(self : Union[str, Any] , snake_case__ : Union[str, Any]=3 , snake_case__ : Any=[7, 3, 3] , snake_case__ : int=[4, 2, 2] , snake_case__ : List[Any]=[2, 1, 1] , snake_case__ : int=[64, 1_92, 3_84] , snake_case__ : Optional[Any]=[1, 3, 6] , snake_case__ : Union[str, Any]=[1, 2, 10] , snake_case__ : Any=[4.0, 4.0, 4.0] , snake_case__ : Union[str, Any]=[0.0, 0.0, 0.0] , snake_case__ : Optional[int]=[0.0, 0.0, 0.0] , snake_case__ : Any=[0.0, 0.0, 0.1] , snake_case__ : Any=[True, True, True] , snake_case__ : int=[False, False, True] , snake_case__ : Optional[int]=["dw_bn", "dw_bn", "dw_bn"] , snake_case__ : Optional[Any]=[3, 3, 3] , snake_case__ : Tuple=[1, 1, 1] , snake_case__ : Optional[int]=[2, 2, 2] , snake_case__ : Dict=[1, 1, 1] , snake_case__ : List[Any]=[1, 1, 1] , snake_case__ : List[str]=0.02 , snake_case__ : str=1e-12 , **snake_case__ : Dict , ) -> Optional[Any]: '''simple docstring''' super().__init__(**snake_case__ ) snake_case : Tuple = num_channels snake_case : Optional[int] = patch_sizes snake_case : List[str] = patch_stride snake_case : Optional[int] = patch_padding snake_case : List[str] = embed_dim snake_case : int = num_heads snake_case : str = depth snake_case : Optional[Any] = mlp_ratio snake_case : Tuple = attention_drop_rate snake_case : Union[str, Any] = drop_rate snake_case : Tuple = drop_path_rate snake_case : int = qkv_bias snake_case : Tuple = cls_token snake_case : List[str] = qkv_projection_method snake_case : Optional[int] = kernel_qkv snake_case : Optional[Any] = padding_kv snake_case : int = stride_kv snake_case : Union[str, Any] = padding_q snake_case : List[str] = stride_q snake_case : Optional[Any] = initializer_range snake_case : Dict = layer_norm_eps
204
import math_equivalence # From: git+https://github.com/hendrycks/math.git import datasets __lowerCamelCase = """\ @article{hendrycksmath2021, title={Measuring Mathematical Problem Solving With the MATH Dataset}, author={Dan Hendrycks and Collin Burns and Saurav Kadavath and Akul Arora and Steven Basart and Eric Tang and Dawn Song and Jacob Steinhardt}, journal={arXiv preprint arXiv:2103.03874}, year={2021} } """ __lowerCamelCase = """\ This metric is used to assess performance on the Mathematics Aptitude Test of Heuristics (MATH) dataset. It first canonicalizes the inputs (e.g., converting \"1/2\" to \"\\frac{1}{2}\") and then computes accuracy. """ __lowerCamelCase = R""" Calculates accuracy after canonicalizing inputs. Args: predictions: list of predictions to score. Each prediction is a string that contains natural language and LaTex. references: list of reference for each prediction. Each reference is a string that contains natural language and LaTex. Returns: accuracy: accuracy after canonicalizing inputs (e.g., converting \"1/2\" to \"\\frac{1}{2}\") Examples: >>> metric = datasets.load_metric(\"competition_math\") >>> results = metric.compute(references=[\"\\frac{1}{2}\"], predictions=[\"1/2\"]) >>> print(results) {'accuracy': 1.0} """ @datasets.utils.file_utils.add_end_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class UpperCAmelCase ( datasets.Metric ): def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> Optional[Any]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" ), "references": datasets.Value("string" ), } ) , homepage="https://github.com/hendrycks/math" , codebase_urls=["https://github.com/hendrycks/math"] , ) def _SCREAMING_SNAKE_CASE (self : Optional[int] , snake_case__ : str , snake_case__ : List[Any] ) -> Optional[Any]: '''simple docstring''' snake_case : Optional[int] = 0.0 for i, j in zip(snake_case__ , snake_case__ ): n_correct += 1.0 if math_equivalence.is_equiv(snake_case__ , snake_case__ ) else 0.0 snake_case : Optional[int] = n_correct / len(snake_case__ ) return { "accuracy": accuracy, }
204
1
from argparse import ArgumentParser from datasets.commands.convert import ConvertCommand from datasets.commands.dummy_data import DummyDataCommand from datasets.commands.env import EnvironmentCommand from datasets.commands.run_beam import RunBeamCommand from datasets.commands.test import TestCommand from datasets.utils.logging import set_verbosity_info def __lowerCAmelCase ( A ): return {key.lstrip("-" ): value for key, value in zip(unknown_args[::2] , unknown_args[1::2] )} def __lowerCAmelCase ( ): UpperCAmelCase_ = ArgumentParser( "HuggingFace Datasets CLI tool" , usage="datasets-cli <command> [<args>]" , allow_abbrev=A ) UpperCAmelCase_ = parser.add_subparsers(help="datasets-cli command helpers" ) set_verbosity_info() # Register commands ConvertCommand.register_subcommand(A ) EnvironmentCommand.register_subcommand(A ) TestCommand.register_subcommand(A ) RunBeamCommand.register_subcommand(A ) DummyDataCommand.register_subcommand(A ) # Parse args UpperCAmelCase_ , UpperCAmelCase_ = parser.parse_known_args() if not hasattr(A , "func" ): parser.print_help() exit(1 ) UpperCAmelCase_ = parse_unknown_args(A ) # Run UpperCAmelCase_ = args.func(A , **A ) service.run() if __name__ == "__main__": main()
712
import unittest from transformers import SPIECE_UNDERLINE, ReformerTokenizer, ReformerTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _a: str = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece @require_tokenizers class __UpperCamelCase ( lowercase , unittest.TestCase ): SCREAMING_SNAKE_CASE__ = ReformerTokenizer SCREAMING_SNAKE_CASE__ = ReformerTokenizerFast SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = True def __A ( self : Dict ): '''simple docstring''' super().setUp() UpperCAmelCase_ = ReformerTokenizer(lowerCAmelCase , keep_accents=lowerCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def __A ( self : List[Any] ): '''simple docstring''' UpperCAmelCase_ = "<s>" UpperCAmelCase_ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase ) , lowerCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase ) , lowerCAmelCase ) def __A ( self : Dict ): '''simple docstring''' UpperCAmelCase_ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<unk>" ) self.assertEqual(vocab_keys[1] , "<s>" ) self.assertEqual(vocab_keys[-1] , "j" ) self.assertEqual(len(lowerCAmelCase ) , 1_000 ) def __A ( self : List[Any] ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1_000 ) def __A ( self : str ): '''simple docstring''' if not self.test_rust_tokenizer: return UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = self.get_rust_tokenizer() UpperCAmelCase_ = "I was born in 92000, and this is falsé." UpperCAmelCase_ = tokenizer.tokenize(lowerCAmelCase ) UpperCAmelCase_ = rust_tokenizer.tokenize(lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase_ = tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) UpperCAmelCase_ = rust_tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase_ = self.get_rust_tokenizer() UpperCAmelCase_ = tokenizer.encode(lowerCAmelCase ) UpperCAmelCase_ = rust_tokenizer.encode(lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) def __A ( self : List[Any] , lowerCAmelCase : Optional[int]=15 ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): UpperCAmelCase_ = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase , **lowerCAmelCase ) # Simple input UpperCAmelCase_ = "This is a simple input" UpperCAmelCase_ = ["This is a simple input 1", "This is a simple input 2"] UpperCAmelCase_ = ("This is a simple input", "This is a pair") UpperCAmelCase_ = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests self.assertRaises(lowerCAmelCase , tokenizer_r.encode , lowerCAmelCase , max_length=lowerCAmelCase , padding="max_length" ) # Simple input self.assertRaises(lowerCAmelCase , tokenizer_r.encode_plus , lowerCAmelCase , max_length=lowerCAmelCase , padding="max_length" ) # Simple input self.assertRaises( lowerCAmelCase , tokenizer_r.batch_encode_plus , lowerCAmelCase , max_length=lowerCAmelCase , padding="max_length" , ) # Pair input self.assertRaises(lowerCAmelCase , tokenizer_r.encode , lowerCAmelCase , max_length=lowerCAmelCase , padding="max_length" ) # Pair input self.assertRaises(lowerCAmelCase , tokenizer_r.encode_plus , lowerCAmelCase , max_length=lowerCAmelCase , padding="max_length" ) # Pair input self.assertRaises( lowerCAmelCase , tokenizer_r.batch_encode_plus , lowerCAmelCase , max_length=lowerCAmelCase , padding="max_length" , ) def __A ( self : Union[str, Any] ): '''simple docstring''' pass def __A ( self : Dict ): '''simple docstring''' UpperCAmelCase_ = ReformerTokenizer(lowerCAmelCase , keep_accents=lowerCAmelCase ) UpperCAmelCase_ = tokenizer.tokenize("This is a test" ) self.assertListEqual(lowerCAmelCase , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase ) , [285, 46, 10, 170, 382] , ) UpperCAmelCase_ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( lowerCAmelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) UpperCAmelCase_ = tokenizer.convert_tokens_to_ids(lowerCAmelCase ) self.assertListEqual( lowerCAmelCase , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) UpperCAmelCase_ = tokenizer.convert_ids_to_tokens(lowerCAmelCase ) self.assertListEqual( lowerCAmelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) @cached_property def __A ( self : int ): '''simple docstring''' return ReformerTokenizer.from_pretrained("google/reformer-crime-and-punishment" ) @slow def __A ( self : str ): '''simple docstring''' UpperCAmelCase_ = "Hello World!" UpperCAmelCase_ = [126, 32, 262, 152, 38, 72, 287] self.assertListEqual(lowerCAmelCase , self.big_tokenizer.encode(lowerCAmelCase ) ) @slow def __A ( self : int ): '''simple docstring''' UpperCAmelCase_ = ( "This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will" " add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth" ) UpperCAmelCase_ = [ 108, 265, 24, 111, 4, 258, 156, 35, 28, 275, 3, 259, 297, 260, 84, 4, 35, 110, 44, 8, 259, 91, 268, 21, 11, 209, 274, 109, 266, 277, 117, 86, 93, 315, 258, 278, 258, 277, 258, 0, 258, 288, 258, 319, 258, 0, 258, 0, 258, 0, 258, 0, 258, 287, 258, 315, 258, 289, 258, 278, 99, 269, 266, 262, 8, 259, 241, 4, 217, 230, 268, 266, 55, 168, 106, 75, 193, 266, 223, 27, 49, 26, 282, 25, 264, 299, 19, 26, 0, 258, 277, 117, 86, 93, 176, 183, 270, 11, 262, 42, 61, 265, ] self.assertListEqual(lowerCAmelCase , self.big_tokenizer.encode(lowerCAmelCase ) ) @require_torch @slow def __A ( self : Tuple ): '''simple docstring''' import torch from transformers import ReformerConfig, ReformerModel # Build sequence UpperCAmelCase_ = list(self.big_tokenizer.get_vocab().keys() )[:10] UpperCAmelCase_ = " ".join(lowerCAmelCase ) UpperCAmelCase_ = self.big_tokenizer.encode_plus(lowerCAmelCase , return_tensors="pt" ) UpperCAmelCase_ = self.big_tokenizer.batch_encode_plus([sequence, sequence] , return_tensors="pt" ) UpperCAmelCase_ = ReformerConfig() # The input gets padded during training so adjust the axial position encodings from the pretrained model value of (512, 1024) UpperCAmelCase_ = encoded_sequence["input_ids"].shape UpperCAmelCase_ = ReformerModel(lowerCAmelCase ) # Reformer has config.vocab_size == tokenizer.vocab_size == len(tokenizer) - 1 = 320; len(tokenizer) is 321 (including a pad token with id 320) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**lowerCAmelCase ) model(**lowerCAmelCase ) @slow def __A ( self : Any ): '''simple docstring''' UpperCAmelCase_ = {"input_ids": [[108, 265, 24, 111, 4, 258, 156, 7, 51, 279, 58, 7, 76, 25, 69, 278], [140, 243, 264, 134, 17, 267, 77, 263, 22, 262, 297, 258, 304, 177, 279, 266, 14, 89, 13, 35, 261, 299, 272, 137, 275, 278]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # This tokenizer does not know some characters like ")". # That is the reason why we use very simple texts here. # Also see https://github.com/huggingface/transformers/pull/11737#issuecomment-850769064 UpperCAmelCase_ = [ "This is a very simple sentence.", "The quick brown fox jumps over the lazy dog.", ] self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase , model_name="google/reformer-crime-and-punishment" , revision="0e6c3decb8211d49bf881013425dc8b0448b3f5a" , padding=lowerCAmelCase , sequences=lowerCAmelCase , )
268
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = { '''facebook/levit-128S''': '''https://huggingface.co/facebook/levit-128S/resolve/main/config.json''', # See all LeViT models at https://huggingface.co/models?filter=levit } class lowerCAmelCase_ ( snake_case_ ): '''simple docstring''' _snake_case = '''levit''' def __init__( self , snake_case_=224 , snake_case_=3 , snake_case_=3 , snake_case_=2 , snake_case_=1 , snake_case_=16 , snake_case_=[128, 256, 384] , snake_case_=[4, 8, 12] , snake_case_=[4, 4, 4] , snake_case_=[16, 16, 16] , snake_case_=0 , snake_case_=[2, 2, 2] , snake_case_=[2, 2, 2] , snake_case_=0.02 , **snake_case_ , ) -> List[Any]: super().__init__(**snake_case_ ) __lowerCAmelCase = image_size __lowerCAmelCase = num_channels __lowerCAmelCase = kernel_size __lowerCAmelCase = stride __lowerCAmelCase = padding __lowerCAmelCase = hidden_sizes __lowerCAmelCase = num_attention_heads __lowerCAmelCase = depths __lowerCAmelCase = key_dim __lowerCAmelCase = drop_path_rate __lowerCAmelCase = patch_size __lowerCAmelCase = attention_ratio __lowerCAmelCase = mlp_ratio __lowerCAmelCase = initializer_range __lowerCAmelCase = [ ["""Subsample""", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ["""Subsample""", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class lowerCAmelCase_ ( snake_case_ ): '''simple docstring''' _snake_case = version.parse('''1.11''' ) @property def A__ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def A__ ( self ) -> float: return 1e-4
465
'''simple docstring''' def lowerCamelCase ( __lowerCamelCase : int = 1000 ) ->int: return sum(2 * a * ((a - 1) // 2) for a in range(3 , n + 1 ) ) if __name__ == "__main__": print(solution())
314
0
'''simple docstring''' # Imports import numpy as np class __snake_case : def __init__( self, A=None, A=None, A=None, A=None, A=None ): """simple docstring""" self.set_matricies(red=A, green=A, blue=A, red_edge=A, nir=A ) def UpperCAmelCase_ ( self, A=None, A=None, A=None, A=None, A=None ): """simple docstring""" if red is not None: lowerCamelCase : Optional[int] = red if green is not None: lowerCamelCase : Optional[int] = green if blue is not None: lowerCamelCase : List[str] = blue if red_edge is not None: lowerCamelCase : Tuple = red_edge if nir is not None: lowerCamelCase : Any = nir return True def UpperCAmelCase_ ( self, A="", A=None, A=None, A=None, A=None, A=None ): """simple docstring""" self.set_matricies(red=A, green=A, blue=A, red_edge=A, nir=A ) lowerCamelCase : Optional[int] = { 'ARVI2': self.arvaa, 'CCCI': self.ccci, 'CVI': self.cvi, 'GLI': self.gli, 'NDVI': self.ndvi, 'BNDVI': self.bndvi, 'redEdgeNDVI': self.red_edge_ndvi, 'GNDVI': self.gndvi, 'GBNDVI': self.gbndvi, 'GRNDVI': self.grndvi, 'RBNDVI': self.rbndvi, 'PNDVI': self.pndvi, 'ATSAVI': self.atsavi, 'BWDRVI': self.bwdrvi, 'CIgreen': self.ci_green, 'CIrededge': self.ci_rededge, 'CI': self.ci, 'CTVI': self.ctvi, 'GDVI': self.gdvi, 'EVI': self.evi, 'GEMI': self.gemi, 'GOSAVI': self.gosavi, 'GSAVI': self.gsavi, 'Hue': self.hue, 'IVI': self.ivi, 'IPVI': self.ipvi, 'I': self.i, 'RVI': self.rvi, 'MRVI': self.mrvi, 'MSAVI': self.m_savi, 'NormG': self.norm_g, 'NormNIR': self.norm_nir, 'NormR': self.norm_r, 'NGRDI': self.ngrdi, 'RI': self.ri, 'S': self.s, 'IF': self._if, 'DVI': self.dvi, 'TVI': self.tvi, 'NDRE': self.ndre, } try: return funcs[index]() except KeyError: print('Index not in the list!' ) return False def UpperCAmelCase_ ( self ): """simple docstring""" return -0.18 + (1.17 * ((self.nir - self.red) / (self.nir + self.red))) def UpperCAmelCase_ ( self ): """simple docstring""" return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / ( (self.nir - self.red) / (self.nir + self.red) ) def UpperCAmelCase_ ( self ): """simple docstring""" return self.nir * (self.red / (self.green**2)) def UpperCAmelCase_ ( self ): """simple docstring""" return (2 * self.green - self.red - self.blue) / ( 2 * self.green + self.red + self.blue ) def UpperCAmelCase_ ( self ): """simple docstring""" return (self.nir - self.red) / (self.nir + self.red) def UpperCAmelCase_ ( self ): """simple docstring""" return (self.nir - self.blue) / (self.nir + self.blue) def UpperCAmelCase_ ( self ): """simple docstring""" return (self.redEdge - self.red) / (self.redEdge + self.red) def UpperCAmelCase_ ( self ): """simple docstring""" return (self.nir - self.green) / (self.nir + self.green) def UpperCAmelCase_ ( self ): """simple docstring""" return (self.nir - (self.green + self.blue)) / ( self.nir + (self.green + self.blue) ) def UpperCAmelCase_ ( self ): """simple docstring""" return (self.nir - (self.green + self.red)) / ( self.nir + (self.green + self.red) ) def UpperCAmelCase_ ( self ): """simple docstring""" return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red)) def UpperCAmelCase_ ( self ): """simple docstring""" return (self.nir - (self.green + self.red + self.blue)) / ( self.nir + (self.green + self.red + self.blue) ) def UpperCAmelCase_ ( self, A=0.08, A=1.22, A=0.03 ): """simple docstring""" return a * ( (self.nir - a * self.red - b) / (a * self.nir + self.red - a * b + x * (1 + a**2)) ) def UpperCAmelCase_ ( self ): """simple docstring""" return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue) def UpperCAmelCase_ ( self ): """simple docstring""" return (self.nir / self.green) - 1 def UpperCAmelCase_ ( self ): """simple docstring""" return (self.nir / self.redEdge) - 1 def UpperCAmelCase_ ( self ): """simple docstring""" return (self.red - self.blue) / self.red def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : Union[str, Any] = self.ndvi() return ((ndvi + 0.5) / (abs(ndvi + 0.5 ))) * (abs(ndvi + 0.5 ) ** (1 / 2)) def UpperCAmelCase_ ( self ): """simple docstring""" return self.nir - self.green def UpperCAmelCase_ ( self ): """simple docstring""" return 2.5 * ( (self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1) ) def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : str = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / ( self.nir + self.red + 0.5 ) return n * (1 - 0.25 * n) - (self.red - 0.125) / (1 - self.red) def UpperCAmelCase_ ( self, A=0.16 ): """simple docstring""" return (self.nir - self.green) / (self.nir + self.green + y) def UpperCAmelCase_ ( self, A=0.5 ): """simple docstring""" return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n) def UpperCAmelCase_ ( self ): """simple docstring""" return np.arctan( ((2 * self.red - self.green - self.blue) / 30.5) * (self.green - self.blue) ) def UpperCAmelCase_ ( self, A=None, A=None ): """simple docstring""" return (self.nir - b) / (a * self.red) def UpperCAmelCase_ ( self ): """simple docstring""" return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1) def UpperCAmelCase_ ( self ): """simple docstring""" return (self.red + self.green + self.blue) / 30.5 def UpperCAmelCase_ ( self ): """simple docstring""" return self.nir / self.red def UpperCAmelCase_ ( self ): """simple docstring""" return (self.rvi() - 1) / (self.rvi() + 1) def UpperCAmelCase_ ( self ): """simple docstring""" return ( (2 * self.nir + 1) - ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2) ) / 2 def UpperCAmelCase_ ( self ): """simple docstring""" return self.green / (self.nir + self.red + self.green) def UpperCAmelCase_ ( self ): """simple docstring""" return self.nir / (self.nir + self.red + self.green) def UpperCAmelCase_ ( self ): """simple docstring""" return self.red / (self.nir + self.red + self.green) def UpperCAmelCase_ ( self ): """simple docstring""" return (self.green - self.red) / (self.green + self.red) def UpperCAmelCase_ ( self ): """simple docstring""" return (self.red - self.green) / (self.red + self.green) def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : Optional[Any] = np.max([np.max(self.red ), np.max(self.green ), np.max(self.blue )] ) lowerCamelCase : Tuple = np.min([np.min(self.red ), np.min(self.green ), np.min(self.blue )] ) return (max_value - min_value) / max_value def UpperCAmelCase_ ( self ): """simple docstring""" return (2 * self.red - self.green - self.blue) / (self.green - self.blue) def UpperCAmelCase_ ( self ): """simple docstring""" return self.nir / self.red def UpperCAmelCase_ ( self ): """simple docstring""" return (self.ndvi() + 0.5) ** (1 / 2) def UpperCAmelCase_ ( self ): """simple docstring""" return (self.nir - self.redEdge) / (self.nir + self.redEdge)
449
'''simple docstring''' import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() A = logging.get_logger(__name__) def UpperCAmelCase ( UpperCAmelCase__ : str): lowerCamelCase : Union[str, Any] = SwinConfig.from_pretrained( 'microsoft/swin-tiny-patch4-window7-224' , out_features=['stage1', 'stage2', 'stage3', 'stage4']) lowerCamelCase : Dict = MaskFormerConfig(backbone_config=UpperCAmelCase__) lowerCamelCase : Dict = 'huggingface/label-files' if "ade20k-full" in model_name: # this should be ok lowerCamelCase : Union[str, Any] = 8_47 lowerCamelCase : Any = 'maskformer-ade20k-full-id2label.json' elif "ade" in model_name: # this should be ok lowerCamelCase : str = 1_50 lowerCamelCase : Union[str, Any] = 'ade20k-id2label.json' elif "coco-stuff" in model_name: # this should be ok lowerCamelCase : int = 1_71 lowerCamelCase : List[Any] = 'maskformer-coco-stuff-id2label.json' elif "coco" in model_name: # TODO lowerCamelCase : int = 1_33 lowerCamelCase : List[str] = 'coco-panoptic-id2label.json' elif "cityscapes" in model_name: # this should be ok lowerCamelCase : str = 19 lowerCamelCase : Union[str, Any] = 'cityscapes-id2label.json' elif "vistas" in model_name: # this should be ok lowerCamelCase : Union[str, Any] = 65 lowerCamelCase : List[Any] = 'mapillary-vistas-id2label.json' lowerCamelCase : List[str] = json.load(open(hf_hub_download(UpperCAmelCase__ , UpperCAmelCase__ , repo_type='dataset') , 'r')) lowerCamelCase : str = {int(UpperCAmelCase__): v for k, v in idalabel.items()} return config def UpperCAmelCase ( UpperCAmelCase__ : List[str]): lowerCamelCase : List[Any] = [] # stem # fmt: off rename_keys.append(('backbone.patch_embed.proj.weight', 'model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight')) rename_keys.append(('backbone.patch_embed.proj.bias', 'model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias')) rename_keys.append(('backbone.patch_embed.norm.weight', 'model.pixel_level_module.encoder.model.embeddings.norm.weight')) rename_keys.append(('backbone.patch_embed.norm.bias', 'model.pixel_level_module.encoder.model.embeddings.norm.bias')) # stages for i in range(len(config.backbone_config.depths)): for j in range(config.backbone_config.depths[i]): rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.norm1.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''')) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.norm1.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''')) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''')) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.attn.relative_position_index''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''')) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.attn.proj.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''')) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.attn.proj.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''')) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.norm2.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''')) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.norm2.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''')) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.mlp.fc1.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''')) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.mlp.fc1.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''')) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.mlp.fc2.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight''')) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.mlp.fc2.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias''')) if i < 3: rename_keys.append((F'''backbone.layers.{i}.downsample.reduction.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight''')) rename_keys.append((F'''backbone.layers.{i}.downsample.norm.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight''')) rename_keys.append((F'''backbone.layers.{i}.downsample.norm.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias''')) rename_keys.append((F'''backbone.norm{i}.weight''', F'''model.pixel_level_module.encoder.hidden_states_norms.{i}.weight''')) rename_keys.append((F'''backbone.norm{i}.bias''', F'''model.pixel_level_module.encoder.hidden_states_norms.{i}.bias''')) # FPN rename_keys.append(('sem_seg_head.layer_4.weight', 'model.pixel_level_module.decoder.fpn.stem.0.weight')) rename_keys.append(('sem_seg_head.layer_4.norm.weight', 'model.pixel_level_module.decoder.fpn.stem.1.weight')) rename_keys.append(('sem_seg_head.layer_4.norm.bias', 'model.pixel_level_module.decoder.fpn.stem.1.bias')) for source_index, target_index in zip(range(3 , 0 , -1) , range(0 , 3)): rename_keys.append((F'''sem_seg_head.adapter_{source_index}.weight''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight''')) rename_keys.append((F'''sem_seg_head.adapter_{source_index}.norm.weight''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight''')) rename_keys.append((F'''sem_seg_head.adapter_{source_index}.norm.bias''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias''')) rename_keys.append((F'''sem_seg_head.layer_{source_index}.weight''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight''')) rename_keys.append((F'''sem_seg_head.layer_{source_index}.norm.weight''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight''')) rename_keys.append((F'''sem_seg_head.layer_{source_index}.norm.bias''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias''')) rename_keys.append(('sem_seg_head.mask_features.weight', 'model.pixel_level_module.decoder.mask_projection.weight')) rename_keys.append(('sem_seg_head.mask_features.bias', 'model.pixel_level_module.decoder.mask_projection.bias')) # Transformer decoder for idx in range(config.decoder_config.decoder_layers): # self-attention out projection rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight''', F'''model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight''')) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias''', F'''model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias''')) # cross-attention out projection rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight''', F'''model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight''')) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias''', F'''model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias''')) # MLP 1 rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight''', F'''model.transformer_module.decoder.layers.{idx}.fc1.weight''')) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias''', F'''model.transformer_module.decoder.layers.{idx}.fc1.bias''')) # MLP 2 rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight''', F'''model.transformer_module.decoder.layers.{idx}.fc2.weight''')) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias''', F'''model.transformer_module.decoder.layers.{idx}.fc2.bias''')) # layernorm 1 (self-attention layernorm) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight''', F'''model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight''')) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias''', F'''model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias''')) # layernorm 2 (cross-attention layernorm) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight''', F'''model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight''')) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias''', F'''model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias''')) # layernorm 3 (final layernorm) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight''', F'''model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight''')) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias''', F'''model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias''')) rename_keys.append(('sem_seg_head.predictor.transformer.decoder.norm.weight', 'model.transformer_module.decoder.layernorm.weight')) rename_keys.append(('sem_seg_head.predictor.transformer.decoder.norm.bias', 'model.transformer_module.decoder.layernorm.bias')) # heads on top rename_keys.append(('sem_seg_head.predictor.query_embed.weight', 'model.transformer_module.queries_embedder.weight')) rename_keys.append(('sem_seg_head.predictor.input_proj.weight', 'model.transformer_module.input_projection.weight')) rename_keys.append(('sem_seg_head.predictor.input_proj.bias', 'model.transformer_module.input_projection.bias')) rename_keys.append(('sem_seg_head.predictor.class_embed.weight', 'class_predictor.weight')) rename_keys.append(('sem_seg_head.predictor.class_embed.bias', 'class_predictor.bias')) for i in range(3): rename_keys.append((F'''sem_seg_head.predictor.mask_embed.layers.{i}.weight''', F'''mask_embedder.{i}.0.weight''')) rename_keys.append((F'''sem_seg_head.predictor.mask_embed.layers.{i}.bias''', F'''mask_embedder.{i}.0.bias''')) # fmt: on return rename_keys def UpperCAmelCase ( UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Optional[Any]): lowerCamelCase : List[str] = dct.pop(UpperCAmelCase__) lowerCamelCase : Tuple = val def UpperCAmelCase ( UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Union[str, Any]): lowerCamelCase : Union[str, Any] = [int(backbone_config.embed_dim * 2**i) for i in range(len(backbone_config.depths))] for i in range(len(backbone_config.depths)): lowerCamelCase : str = num_features[i] for j in range(backbone_config.depths[i]): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) lowerCamelCase : Union[str, Any] = state_dict.pop(F'''backbone.layers.{i}.blocks.{j}.attn.qkv.weight''') lowerCamelCase : int = state_dict.pop(F'''backbone.layers.{i}.blocks.{j}.attn.qkv.bias''') # next, add query, keys and values (in that order) to the state dict lowerCamelCase : Dict = in_proj_weight[:dim, :] lowerCamelCase : Dict = in_proj_bias[: dim] lowerCamelCase : List[Any] = in_proj_weight[ dim : dim * 2, : ] lowerCamelCase : Dict = in_proj_bias[ dim : dim * 2 ] lowerCamelCase : List[str] = in_proj_weight[ -dim :, : ] lowerCamelCase : int = in_proj_bias[-dim :] # fmt: on def UpperCAmelCase ( UpperCAmelCase__ : str , UpperCAmelCase__ : Union[str, Any]): # fmt: off lowerCamelCase : Tuple = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) lowerCamelCase : Optional[Any] = state_dict.pop(F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight''') lowerCamelCase : List[Any] = state_dict.pop(F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias''') # next, add query, keys and values (in that order) to the state dict lowerCamelCase : List[str] = in_proj_weight[: hidden_size, :] lowerCamelCase : str = in_proj_bias[:config.hidden_size] lowerCamelCase : int = in_proj_weight[hidden_size : hidden_size * 2, :] lowerCamelCase : List[str] = in_proj_bias[hidden_size : hidden_size * 2] lowerCamelCase : List[Any] = in_proj_weight[-hidden_size :, :] lowerCamelCase : Optional[int] = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) lowerCamelCase : Tuple = state_dict.pop(F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight''') lowerCamelCase : List[str] = state_dict.pop(F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias''') # next, add query, keys and values (in that order) to the state dict lowerCamelCase : Dict = in_proj_weight[: hidden_size, :] lowerCamelCase : Any = in_proj_bias[:config.hidden_size] lowerCamelCase : List[Any] = in_proj_weight[hidden_size : hidden_size * 2, :] lowerCamelCase : Optional[Any] = in_proj_bias[hidden_size : hidden_size * 2] lowerCamelCase : Union[str, Any] = in_proj_weight[-hidden_size :, :] lowerCamelCase : List[Any] = in_proj_bias[-hidden_size :] # fmt: on def UpperCAmelCase ( ): lowerCamelCase : Union[str, Any] = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowerCamelCase : Tuple = Image.open(requests.get(UpperCAmelCase__ , stream=UpperCAmelCase__).raw) return im @torch.no_grad() def UpperCAmelCase ( UpperCAmelCase__ : str , UpperCAmelCase__ : str , UpperCAmelCase__ : str , UpperCAmelCase__ : bool = False): lowerCamelCase : Optional[Any] = get_maskformer_config(UpperCAmelCase__) # load original state_dict with open(UpperCAmelCase__ , 'rb') as f: lowerCamelCase : Tuple = pickle.load(UpperCAmelCase__) lowerCamelCase : str = data['model'] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys lowerCamelCase : Optional[Any] = create_rename_keys(UpperCAmelCase__) for src, dest in rename_keys: rename_key(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__) read_in_swin_q_k_v(UpperCAmelCase__ , config.backbone_config) read_in_decoder_q_k_v(UpperCAmelCase__ , UpperCAmelCase__) # update to torch tensors for key, value in state_dict.items(): lowerCamelCase : List[str] = torch.from_numpy(UpperCAmelCase__) # load 🤗 model lowerCamelCase : str = MaskFormerForInstanceSegmentation(UpperCAmelCase__) model.eval() for name, param in model.named_parameters(): print(UpperCAmelCase__ , param.shape) lowerCamelCase , lowerCamelCase : Optional[Any] = model.load_state_dict(UpperCAmelCase__ , strict=UpperCAmelCase__) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(UpperCAmelCase__) == 0, F'''Unexpected keys: {unexpected_keys}''' # verify results lowerCamelCase : Union[str, Any] = prepare_img() if "vistas" in model_name: lowerCamelCase : Optional[int] = 65 elif "cityscapes" in model_name: lowerCamelCase : Any = 6_55_35 else: lowerCamelCase : List[Any] = 2_55 lowerCamelCase : str = True if 'ade' in model_name else False lowerCamelCase : List[Any] = MaskFormerImageProcessor(ignore_index=UpperCAmelCase__ , reduce_labels=UpperCAmelCase__) lowerCamelCase : str = image_processor(UpperCAmelCase__ , return_tensors='pt') lowerCamelCase : Dict = model(**UpperCAmelCase__) print('Logits:' , outputs.class_queries_logits[0, :3, :3]) if model_name == "maskformer-swin-tiny-ade": lowerCamelCase : List[str] = torch.tensor( [[3.6_3_5_3, -4.4_7_7_0, -2.6_0_6_5], [0.5_0_8_1, -4.2_3_9_4, -3.5_3_4_3], [2.1_9_0_9, -5.0_3_5_3, -1.9_3_2_3]]) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , UpperCAmelCase__ , atol=1E-4) print('Looks ok!') if pytorch_dump_folder_path is not None: print(F'''Saving model and image processor to {pytorch_dump_folder_path}''') Path(UpperCAmelCase__).mkdir(exist_ok=UpperCAmelCase__) model.save_pretrained(UpperCAmelCase__) image_processor.save_pretrained(UpperCAmelCase__) if push_to_hub: print('Pushing model and image processor to the hub...') model.push_to_hub(F'''nielsr/{model_name}''') image_processor.push_to_hub(F'''nielsr/{model_name}''') if __name__ == "__main__": A = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='maskformer-swin-tiny-ade', type=str, help=('Name of the MaskFormer model you\'d like to convert',), ) parser.add_argument( '--checkpoint_path', default='/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl', type=str, help='Path to the original state dict (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) A = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
449
1
"""simple docstring""" def lowerCamelCase_ ( __lowerCAmelCase , __lowerCAmelCase ) -> List[str]: '''simple docstring''' assert x is not None assert y is not None lowerCamelCase__ =len(__lowerCAmelCase ) lowerCamelCase__ =len(__lowerCAmelCase ) # declaring the array for storing the dp values lowerCamelCase__ =[[0] * (n + 1) for _ in range(m + 1 )] # noqa: E741 for i in range(1 , m + 1 ): for j in range(1 , n + 1 ): lowerCamelCase__ =1 if x[i - 1] == y[j - 1] else 0 lowerCamelCase__ =max(l[i - 1][j] , l[i][j - 1] , l[i - 1][j - 1] + match ) lowerCamelCase__ ="" lowerCamelCase__ , lowerCamelCase__ =m, n while i > 0 and j > 0: lowerCamelCase__ =1 if x[i - 1] == y[j - 1] else 0 if l[i][j] == l[i - 1][j - 1] + match: if match == 1: lowerCamelCase__ =x[i - 1] + seq i -= 1 j -= 1 elif l[i][j] == l[i - 1][j]: i -= 1 else: j -= 1 return l[m][n], seq if __name__ == "__main__": a ='AGGTAB' a ='GXTXAYB' a =4 a ='GTAB' a , a =longest_common_subsequence(a, b) print('len =', ln, ', sub-sequence =', subseq) import doctest doctest.testmod()
530
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING a =logging.get_logger(__name__) a ={ 'ut/deta': 'https://huggingface.co/ut/deta/resolve/main/config.json', } class __UpperCAmelCase ( __lowerCAmelCase ): A__ : str = '''deta''' A__ : List[str] = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', } def __init__( self , _lowerCamelCase=None , _lowerCamelCase=900 , _lowerCamelCase=2048 , _lowerCamelCase=6 , _lowerCamelCase=2048 , _lowerCamelCase=8 , _lowerCamelCase=6 , _lowerCamelCase=1024 , _lowerCamelCase=8 , _lowerCamelCase=0.0 , _lowerCamelCase=True , _lowerCamelCase="relu" , _lowerCamelCase=256 , _lowerCamelCase=0.1 , _lowerCamelCase=0.0 , _lowerCamelCase=0.0 , _lowerCamelCase=0.0_2 , _lowerCamelCase=1.0 , _lowerCamelCase=True , _lowerCamelCase=False , _lowerCamelCase="sine" , _lowerCamelCase=5 , _lowerCamelCase=4 , _lowerCamelCase=4 , _lowerCamelCase=True , _lowerCamelCase=300 , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=1 , _lowerCamelCase=5 , _lowerCamelCase=2 , _lowerCamelCase=1 , _lowerCamelCase=1 , _lowerCamelCase=5 , _lowerCamelCase=2 , _lowerCamelCase=0.1 , _lowerCamelCase=0.2_5 , **_lowerCamelCase , ): if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) lowerCamelCase__ =CONFIG_MAPPING["resnet"](out_features=["stage2", "stage3", "stage4"] ) else: if isinstance(_lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ =backbone_config.pop("model_type" ) lowerCamelCase__ =CONFIG_MAPPING[backbone_model_type] lowerCamelCase__ =config_class.from_dict(_lowerCamelCase ) lowerCamelCase__ =backbone_config lowerCamelCase__ =num_queries lowerCamelCase__ =max_position_embeddings lowerCamelCase__ =d_model lowerCamelCase__ =encoder_ffn_dim lowerCamelCase__ =encoder_layers lowerCamelCase__ =encoder_attention_heads lowerCamelCase__ =decoder_ffn_dim lowerCamelCase__ =decoder_layers lowerCamelCase__ =decoder_attention_heads lowerCamelCase__ =dropout lowerCamelCase__ =attention_dropout lowerCamelCase__ =activation_dropout lowerCamelCase__ =activation_function lowerCamelCase__ =init_std lowerCamelCase__ =init_xavier_std lowerCamelCase__ =encoder_layerdrop lowerCamelCase__ =auxiliary_loss lowerCamelCase__ =position_embedding_type # deformable attributes lowerCamelCase__ =num_feature_levels lowerCamelCase__ =encoder_n_points lowerCamelCase__ =decoder_n_points lowerCamelCase__ =two_stage lowerCamelCase__ =two_stage_num_proposals lowerCamelCase__ =with_box_refine lowerCamelCase__ =assign_first_stage if two_stage is True and with_box_refine is False: raise ValueError("If two_stage is True, with_box_refine must be True." ) # Hungarian matcher lowerCamelCase__ =class_cost lowerCamelCase__ =bbox_cost lowerCamelCase__ =giou_cost # Loss coefficients lowerCamelCase__ =mask_loss_coefficient lowerCamelCase__ =dice_loss_coefficient lowerCamelCase__ =bbox_loss_coefficient lowerCamelCase__ =giou_loss_coefficient lowerCamelCase__ =eos_coefficient lowerCamelCase__ =focal_alpha super().__init__(is_encoder_decoder=_lowerCamelCase , **_lowerCamelCase ) @property def _a ( self ): return self.encoder_attention_heads @property def _a ( self ): return self.d_model def _a ( self ): lowerCamelCase__ =copy.deepcopy(self.__dict__ ) lowerCamelCase__ =self.backbone_config.to_dict() lowerCamelCase__ =self.__class__.model_type return output
530
1
import glob import os import random from string import ascii_lowercase, digits import cva __lowerCAmelCase : Any ="" __lowerCAmelCase : Optional[Any] ="" __lowerCAmelCase : Tuple ="" __lowerCAmelCase : List[Any] =1 # (0 is vertical, 1 is horizontal) def _UpperCamelCase ( ): __SCREAMING_SNAKE_CASE : Union[str, Any] = get_dataset(_lowerCamelCase , _lowerCamelCase ) print('''Processing...''' ) __SCREAMING_SNAKE_CASE : List[Any] = update_image_and_anno(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) for index, image in enumerate(_lowerCamelCase ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' __SCREAMING_SNAKE_CASE : Dict = random_chars(32 ) __SCREAMING_SNAKE_CASE : Optional[Any] = paths[index].split(os.sep )[-1].rsplit('''.''' , 1 )[0] __SCREAMING_SNAKE_CASE : Union[str, Any] = F'''{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}''' cva.imwrite(F'''/{file_root}.jpg''' , _lowerCamelCase , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(F'''Success {index+1}/{len(_lowerCamelCase )} with {file_name}''' ) __SCREAMING_SNAKE_CASE : Union[str, Any] = [] for anno in new_annos[index]: __SCREAMING_SNAKE_CASE : Union[str, Any] = F'''{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}''' annos_list.append(_lowerCamelCase ) with open(F'''/{file_root}.txt''' , '''w''' ) as outfile: outfile.write('''\n'''.join(line for line in annos_list ) ) def _UpperCamelCase ( lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : str = [] __SCREAMING_SNAKE_CASE : Optional[Any] = [] for label_file in glob.glob(os.path.join(_lowerCamelCase , '''*.txt''' ) ): __SCREAMING_SNAKE_CASE : Optional[Any] = label_file.split(os.sep )[-1].rsplit('''.''' , 1 )[0] with open(_lowerCamelCase ) as in_file: __SCREAMING_SNAKE_CASE : List[str] = in_file.readlines() __SCREAMING_SNAKE_CASE : Optional[int] = os.path.join(_lowerCamelCase , F'''{label_name}.jpg''' ) __SCREAMING_SNAKE_CASE : List[str] = [] for obj_list in obj_lists: __SCREAMING_SNAKE_CASE : Optional[int] = obj_list.rstrip('''\n''' ).split(''' ''' ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(_lowerCamelCase ) labels.append(_lowerCamelCase ) return img_paths, labels def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ = 1 ): __SCREAMING_SNAKE_CASE : Dict = [] __SCREAMING_SNAKE_CASE : List[Any] = [] __SCREAMING_SNAKE_CASE : str = [] for idx in range(len(_lowerCamelCase ) ): __SCREAMING_SNAKE_CASE : Optional[int] = [] __SCREAMING_SNAKE_CASE : Union[str, Any] = img_list[idx] path_list.append(_lowerCamelCase ) __SCREAMING_SNAKE_CASE : int = anno_list[idx] __SCREAMING_SNAKE_CASE : List[str] = cva.imread(_lowerCamelCase ) if flip_type == 1: __SCREAMING_SNAKE_CASE : str = cva.flip(_lowerCamelCase , _lowerCamelCase ) for bbox in img_annos: __SCREAMING_SNAKE_CASE : Optional[Any] = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: __SCREAMING_SNAKE_CASE : int = cva.flip(_lowerCamelCase , _lowerCamelCase ) for bbox in img_annos: __SCREAMING_SNAKE_CASE : Optional[int] = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(_lowerCamelCase ) new_imgs_list.append(_lowerCamelCase ) return new_imgs_list, new_annos_lists, path_list def _UpperCamelCase ( lowercase__ = 32 ): assert number_char > 1, "The number of character should greater than 1" __SCREAMING_SNAKE_CASE : List[str] = ascii_lowercase + digits return "".join(random.choice(_lowerCamelCase ) for _ in range(_lowerCamelCase ) ) if __name__ == "__main__": main() print('DONE ✅')
704
import gc import unittest from parameterized import parameterized from diffusers import FlaxUNetaDConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class _lowercase ( unittest.TestCase ): '''simple docstring''' def __magic_name__( self :Union[str, Any] , lowerCAmelCase__ :str , lowerCAmelCase__ :int ) -> Optional[int]: return f'''gaussian_noise_s={seed}_shape={'_'.join([str(lowerCAmelCase__ ) for s in shape] )}.npy''' def __magic_name__( self :List[str] ) -> Any: # clean up the VRAM after each test super().tearDown() gc.collect() def __magic_name__( self :Optional[Any] , lowerCAmelCase__ :int=0 , lowerCAmelCase__ :Any=(4, 4, 64, 64) , lowerCAmelCase__ :List[Any]=False ) -> List[str]: __SCREAMING_SNAKE_CASE : Optional[int] = jnp.bfloataa if fpaa else jnp.floataa __SCREAMING_SNAKE_CASE : Optional[int] = jnp.array(load_hf_numpy(self.get_file_format(lowerCAmelCase__ , lowerCAmelCase__ ) ) , dtype=lowerCAmelCase__ ) return image def __magic_name__( self :Tuple , lowerCAmelCase__ :Tuple=False , lowerCAmelCase__ :int="CompVis/stable-diffusion-v1-4" ) -> Tuple: __SCREAMING_SNAKE_CASE : Optional[Any] = jnp.bfloataa if fpaa else jnp.floataa __SCREAMING_SNAKE_CASE : Optional[int] = '''bf16''' if fpaa else None __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Any = FlaxUNetaDConditionModel.from_pretrained( lowerCAmelCase__ , subfolder='''unet''' , dtype=lowerCAmelCase__ , revision=lowerCAmelCase__ ) return model, params def __magic_name__( self :Any , lowerCAmelCase__ :str=0 , lowerCAmelCase__ :Optional[int]=(4, 77, 768) , lowerCAmelCase__ :str=False ) -> Optional[Any]: __SCREAMING_SNAKE_CASE : str = jnp.bfloataa if fpaa else jnp.floataa __SCREAMING_SNAKE_CASE : Any = jnp.array(load_hf_numpy(self.get_file_format(lowerCAmelCase__ , lowerCAmelCase__ ) ) , dtype=lowerCAmelCase__ ) return hidden_states @parameterized.expand( [ # fmt: off [83, 4, [-0.2323, -0.1304, 0.0813, -0.3093, -0.0919, -0.1571, -0.1125, -0.5806]], [17, 0.55, [-0.0831, -0.2443, 0.0901, -0.0919, 0.3396, 0.0103, -0.3743, 0.0701]], [8, 0.89, [-0.4863, 0.0859, 0.0875, -0.1658, 0.9199, -0.0114, 0.4839, 0.4639]], [3, 1_000, [-0.5649, 0.2402, -0.5518, 0.1248, 1.1328, -0.2443, -0.0325, -1.0078]], # fmt: on ] ) def __magic_name__( self :str , lowerCAmelCase__ :str , lowerCAmelCase__ :str , lowerCAmelCase__ :Optional[int] ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : int = self.get_unet_model(model_id='''CompVis/stable-diffusion-v1-4''' , fpaa=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = self.get_latents(lowerCAmelCase__ , fpaa=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : int = self.get_encoder_hidden_states(lowerCAmelCase__ , fpaa=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = model.apply( {'''params''': params} , lowerCAmelCase__ , jnp.array(lowerCAmelCase__ , dtype=jnp.intaa ) , encoder_hidden_states=lowerCAmelCase__ , ).sample assert sample.shape == latents.shape __SCREAMING_SNAKE_CASE : int = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) __SCREAMING_SNAKE_CASE : Tuple = jnp.array(lowerCAmelCase__ , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-2 ) @parameterized.expand( [ # fmt: off [83, 4, [0.1514, 0.0807, 0.1624, 0.1016, -0.1896, 0.0263, 0.0677, 0.2310]], [17, 0.55, [0.1164, -0.0216, 0.0170, 0.1589, -0.3120, 0.1005, -0.0581, -0.1458]], [8, 0.89, [-0.1758, -0.0169, 0.1004, -0.1411, 0.1312, 0.1103, -0.1996, 0.2139]], [3, 1_000, [0.1214, 0.0352, -0.0731, -0.1562, -0.0994, -0.0906, -0.2340, -0.0539]], # fmt: on ] ) def __magic_name__( self :List[Any] , lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :str ) -> str: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Optional[Any] = self.get_unet_model(model_id='''stabilityai/stable-diffusion-2''' , fpaa=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Any = self.get_latents(lowerCAmelCase__ , shape=(4, 4, 96, 96) , fpaa=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Any = self.get_encoder_hidden_states(lowerCAmelCase__ , shape=(4, 77, 1_024) , fpaa=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = model.apply( {'''params''': params} , lowerCAmelCase__ , jnp.array(lowerCAmelCase__ , dtype=jnp.intaa ) , encoder_hidden_states=lowerCAmelCase__ , ).sample assert sample.shape == latents.shape __SCREAMING_SNAKE_CASE : Optional[Any] = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) __SCREAMING_SNAKE_CASE : str = jnp.array(lowerCAmelCase__ , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-2 )
260
0
'''simple docstring''' import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input A_ = "Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine" def A_ ( ): SCREAMING_SNAKE_CASE:int = _ask_options( "In which compute environment are you running?" , ["This machine", "AWS (Amazon SageMaker)"] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: SCREAMING_SNAKE_CASE:Optional[int] = get_sagemaker_input() else: SCREAMING_SNAKE_CASE:int = get_cluster_input() return config def A_ ( snake_case=None ): if subparsers is not None: SCREAMING_SNAKE_CASE:List[str] = subparsers.add_parser("config" , description=snake_case ) else: SCREAMING_SNAKE_CASE:int = argparse.ArgumentParser("Accelerate config command" , description=snake_case ) parser.add_argument( "--config_file" , default=snake_case , help=( "The path to use to store the config file. Will default to a file named default_config.yaml in the cache " "location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have " "such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed " "with 'huggingface'." ) , ) if subparsers is not None: parser.set_defaults(func=snake_case ) return parser def A_ ( snake_case ): SCREAMING_SNAKE_CASE:Optional[int] = get_user_input() if args.config_file is not None: SCREAMING_SNAKE_CASE:int = args.config_file else: if not os.path.isdir(snake_case ): os.makedirs(snake_case ) SCREAMING_SNAKE_CASE:List[Any] = default_yaml_config_file if config_file.endswith(".json" ): config.to_json_file(snake_case ) else: config.to_yaml_file(snake_case ) print(F'''accelerate configuration saved at {config_file}''' ) def A_ ( ): SCREAMING_SNAKE_CASE:Optional[int] = config_command_parser() SCREAMING_SNAKE_CASE:List[str] = parser.parse_args() config_command(snake_case ) if __name__ == "__main__": main()
143
"""simple docstring""" from __future__ import annotations def _A( lowerCAmelCase ): if len(lowerCAmelCase ) == 0: return [] A__ , A__ : Dict = min(lowerCAmelCase ), max(lowerCAmelCase ) A__ : List[Any] = int(max_value - min_value ) + 1 A__ : list[list] = [[] for _ in range(lowerCAmelCase )] for i in my_list: buckets[int(i - min_value )].append(lowerCAmelCase ) return [v for bucket in buckets for v in sorted(lowerCAmelCase )] if __name__ == "__main__": from doctest import testmod testmod() assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bucket_sort([0, 1, -10, 15, 2, -2]) == [-10, -2, 0, 1, 2, 15]
363
0
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { 'microsoft/unispeech-sat-base-100h-libri-ft': ( 'https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json' ), # See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat } class UpperCAmelCase_ ( snake_case ): UpperCamelCase ="unispeech-sat" def __init__( self , UpperCamelCase_=32 , UpperCamelCase_=7_68 , UpperCamelCase_=12 , UpperCamelCase_=12 , UpperCamelCase_=30_72 , UpperCamelCase_="gelu" , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=0.0 , UpperCamelCase_=0.0 , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=0.0_2 , UpperCamelCase_=1E-5 , UpperCamelCase_="group" , UpperCamelCase_="gelu" , UpperCamelCase_=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , UpperCamelCase_=(5, 2, 2, 2, 2, 2, 2) , UpperCamelCase_=(10, 3, 3, 3, 3, 2, 2) , UpperCamelCase_=False , UpperCamelCase_=1_28 , UpperCamelCase_=16 , UpperCamelCase_=False , UpperCamelCase_=True , UpperCamelCase_=0.0_5 , UpperCamelCase_=10 , UpperCamelCase_=2 , UpperCamelCase_=0.0 , UpperCamelCase_=10 , UpperCamelCase_=0 , UpperCamelCase_=3_20 , UpperCamelCase_=2 , UpperCamelCase_=0.1 , UpperCamelCase_=1_00 , UpperCamelCase_=2_56 , UpperCamelCase_=2_56 , UpperCamelCase_=0.1 , UpperCamelCase_="mean" , UpperCamelCase_=False , UpperCamelCase_=False , UpperCamelCase_=2_56 , UpperCamelCase_=(5_12, 5_12, 5_12, 5_12, 15_00) , UpperCamelCase_=(5, 3, 3, 1, 1) , UpperCamelCase_=(1, 2, 3, 1, 1) , UpperCamelCase_=5_12 , UpperCamelCase_=0 , UpperCamelCase_=1 , UpperCamelCase_=2 , UpperCamelCase_=5_04 , **UpperCamelCase_ , ) -> List[Any]: super().__init__(**UpperCamelCase_ , pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ ) __lowercase : Dict = hidden_size __lowercase : Optional[int] = feat_extract_norm __lowercase : List[Any] = feat_extract_activation __lowercase : List[str] = list(UpperCamelCase_ ) __lowercase : Dict = list(UpperCamelCase_ ) __lowercase : Optional[int] = list(UpperCamelCase_ ) __lowercase : Optional[int] = conv_bias __lowercase : List[Any] = num_conv_pos_embeddings __lowercase : Union[str, Any] = num_conv_pos_embedding_groups __lowercase : int = len(self.conv_dim ) __lowercase : Union[str, Any] = num_hidden_layers __lowercase : Dict = intermediate_size __lowercase : List[str] = hidden_act __lowercase : Any = num_attention_heads __lowercase : Any = hidden_dropout __lowercase : int = attention_dropout __lowercase : Optional[int] = activation_dropout __lowercase : List[Any] = feat_proj_dropout __lowercase : List[Any] = final_dropout __lowercase : Tuple = layerdrop __lowercase : Any = layer_norm_eps __lowercase : str = initializer_range __lowercase : int = vocab_size __lowercase : List[str] = num_clusters __lowercase : Union[str, Any] = do_stable_layer_norm __lowercase : Optional[int] = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' F""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" F""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __lowercase : int = apply_spec_augment __lowercase : Union[str, Any] = mask_time_prob __lowercase : Dict = mask_time_length __lowercase : str = mask_time_min_masks __lowercase : Union[str, Any] = mask_feature_prob __lowercase : int = mask_feature_length __lowercase : List[Any] = mask_feature_min_masks # parameters for pretraining with codevector quantized representations __lowercase : Dict = num_codevectors_per_group __lowercase : List[str] = num_codevector_groups __lowercase : Tuple = contrastive_logits_temperature __lowercase : Any = feat_quantizer_dropout __lowercase : Union[str, Any] = num_negatives __lowercase : Tuple = codevector_dim __lowercase : str = proj_codevector_dim __lowercase : int = diversity_loss_weight # ctc loss __lowercase : Any = ctc_loss_reduction __lowercase : Tuple = ctc_zero_infinity # SequenceClassification-specific parameter. Feel free to ignore for other classes. __lowercase : str = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. __lowercase : Dict = list(UpperCamelCase_ ) __lowercase : int = list(UpperCamelCase_ ) __lowercase : Dict = list(UpperCamelCase_ ) __lowercase : Optional[int] = xvector_output_dim @property def _lowerCamelCase ( self ) -> int: return functools.reduce(operator.mul , self.conv_stride , 1 )
703
"""simple docstring""" def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase ): __lowercase : List[Any] = len(__UpperCamelCase ) __lowercase : Optional[Any] = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): __lowercase : Optional[Any] = True # sum is not zero and set is empty then false for i in range(1 , required_sum + 1 ): __lowercase : Tuple = False for i in range(1 , arr_len + 1 ): for j in range(1 , required_sum + 1 ): if arr[i - 1] > j: __lowercase : Optional[Any] = subset[i - 1][j] if arr[i - 1] <= j: __lowercase : Dict = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
523
0
def UpperCamelCase_( ) -> list[list[int]]: return [list(range(10_00 - i , -10_00 - i , -1 ) ) for i in range(10_00 )] _UpperCamelCase = generate_large_matrix() _UpperCamelCase = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def UpperCamelCase_( snake_case__: list[list[int]] ) -> None: assert all(row == sorted(snake_case__ , reverse=snake_case__ ) for row in grid ) assert all(list(snake_case__ ) == sorted(snake_case__ , reverse=snake_case__ ) for col in zip(*snake_case__ ) ) def UpperCamelCase_( snake_case__: list[int] ) -> int: UpperCAmelCase__ = 0 UpperCAmelCase__ = len(snake_case__ ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: UpperCAmelCase__ = (left + right) // 2 UpperCAmelCase__ = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: UpperCAmelCase__ = mid + 1 else: UpperCAmelCase__ = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(snake_case__ ) def UpperCamelCase_( snake_case__: list[list[int]] ) -> int: UpperCAmelCase__ = 0 UpperCAmelCase__ = len(grid[0] ) for i in range(len(snake_case__ ) ): UpperCAmelCase__ = find_negative_index(grid[i][:bound] ) total += bound return (len(snake_case__ ) * len(grid[0] )) - total def UpperCamelCase_( snake_case__: list[list[int]] ) -> int: return len([number for row in grid for number in row if number < 0] ) def UpperCamelCase_( snake_case__: list[list[int]] ) -> int: UpperCAmelCase__ = 0 for row in grid: for i, number in enumerate(snake_case__ ): if number < 0: total += len(snake_case__ ) - i break return total def UpperCamelCase_( ) -> None: from timeit import timeit print('Running benchmarks' ) UpperCAmelCase__ = ( 'from __main__ import count_negatives_binary_search, ' 'count_negatives_brute_force, count_negatives_brute_force_with_break, grid' ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): UpperCAmelCase__ = timeit(f"{func}(grid=grid)" , setup=snake_case__ , number=5_00 ) print(f"{func}() took {time:0.4f} seconds" ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
146
from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class lowercase : '''simple docstring''' def __init__(self , __a , __a=12 , __a=7 , __a=True , __a=True , __a=True , __a=99 , __a=32 , __a=32 , __a=2 , __a=4 , __a=37 , __a=0.1 , __a=0.1 , __a=512 , __a=0.02 , __a=0 , __a=None , ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = parent UpperCAmelCase__ = batch_size UpperCAmelCase__ = seq_length UpperCAmelCase__ = is_training UpperCAmelCase__ = use_input_mask UpperCAmelCase__ = use_labels UpperCAmelCase__ = vocab_size UpperCAmelCase__ = hidden_size UpperCAmelCase__ = projection_dim UpperCAmelCase__ = num_hidden_layers UpperCAmelCase__ = num_attention_heads UpperCAmelCase__ = intermediate_size UpperCAmelCase__ = dropout UpperCAmelCase__ = attention_dropout UpperCAmelCase__ = max_position_embeddings UpperCAmelCase__ = initializer_range UpperCAmelCase__ = scope UpperCAmelCase__ = bos_token_id def UpperCamelCase__ (self ) -> str: """simple docstring""" UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase__ = None if self.use_input_mask: UpperCAmelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) if input_mask is not None: UpperCAmelCase__ = input_mask.numpy() UpperCAmelCase__ , UpperCAmelCase__ = input_mask.shape UpperCAmelCase__ = np.random.randint(1 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(__a ): UpperCAmelCase__ = 1 UpperCAmelCase__ = 0 UpperCAmelCase__ = self.get_config() return config, input_ids, tf.convert_to_tensor(__a ) def UpperCamelCase__ (self ) -> Any: """simple docstring""" return BlipTextConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , projection_dim=self.projection_dim , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , dropout=self.dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , bos_token_id=self.bos_token_id , ) def UpperCamelCase__ (self , __a , __a , __a ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = TFBlipTextModel(config=__a ) UpperCAmelCase__ = model(__a , attention_mask=__a , training=__a ) UpperCAmelCase__ = model(__a , training=__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCamelCase__ (self ) -> Tuple: """simple docstring""" UpperCAmelCase__ = self.prepare_config_and_inputs() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = config_and_inputs UpperCAmelCase__ = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class lowercase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = (TFBlipTextModel,) if is_tf_available() else () __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False def UpperCamelCase__ (self ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = BlipTextModelTester(self ) UpperCAmelCase__ = ConfigTester(self , config_class=__a , hidden_size=37 ) def UpperCamelCase__ (self ) -> List[Any]: """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def UpperCamelCase__ (self ) -> Union[str, Any]: """simple docstring""" pass def UpperCamelCase__ (self ) -> int: """simple docstring""" pass @unittest.skip(reason='Blip does not use inputs_embeds' ) def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" pass @unittest.skip(reason='BlipTextModel has no base class and is not available in MODEL_MAPPING' ) def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" pass @unittest.skip(reason='BlipTextModel has no base class and is not available in MODEL_MAPPING' ) def UpperCamelCase__ (self ) -> Union[str, Any]: """simple docstring""" pass @slow def UpperCamelCase__ (self ) -> Optional[Any]: """simple docstring""" for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ = TFBlipTextModel.from_pretrained(__a ) self.assertIsNotNone(__a ) def UpperCamelCase__ (self , __a=True ) -> str: """simple docstring""" super().test_pt_tf_model_equivalence(allow_missing_keys=__a )
146
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import _LazyModule lowerCAmelCase_ : List[Any] = {'tokenization_byt5': ['ByT5Tokenizer']} if TYPE_CHECKING: from .tokenization_byta import ByTaTokenizer else: import sys lowerCAmelCase_ : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
521
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase_ : List[Any] = { 'configuration_blip_2': [ 'BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Blip2Config', 'Blip2QFormerConfig', 'Blip2VisionConfig', ], 'processing_blip_2': ['Blip2Processor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : str = [ 'BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST', 'Blip2Model', 'Blip2QFormerModel', 'Blip2PreTrainedModel', 'Blip2ForConditionalGeneration', 'Blip2VisionModel', ] if TYPE_CHECKING: from .configuration_blip_a import ( BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipaConfig, BlipaQFormerConfig, BlipaVisionConfig, ) from .processing_blip_a import BlipaProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip_a import ( BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST, BlipaForConditionalGeneration, BlipaModel, BlipaPreTrainedModel, BlipaQFormerModel, BlipaVisionModel, ) else: import sys lowerCAmelCase_ : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
521
1
"""simple docstring""" from collections.abc import Sequence def _lowercase ( __lowerCAmelCase , __lowerCAmelCase = False ) -> Optional[int]: if not arr: return 0 SCREAMING_SNAKE_CASE__ : List[str] = 0 if allow_empty_subarrays else float("""-inf""" ) SCREAMING_SNAKE_CASE__ : str = 0.0 for num in arr: SCREAMING_SNAKE_CASE__ : List[Any] = max(0 if allow_empty_subarrays else num , curr_sum + num ) SCREAMING_SNAKE_CASE__ : Dict = max(_snake_case , _snake_case ) return max_sum if __name__ == "__main__": from doctest import testmod testmod() a :Tuple = [-2, 1, -3, 4, -1, 2, 1, -5, 4] print(f'{max_subarray_sum(nums) = }')
680
"""simple docstring""" def lowercase_ ( _snake_case ): if not head: return True # split the list to two parts SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Dict = head.next, head while fast and fast.next: SCREAMING_SNAKE_CASE__ : Tuple = fast.next.next SCREAMING_SNAKE_CASE__ : Optional[int] = slow.next SCREAMING_SNAKE_CASE__ : List[Any] = slow.next SCREAMING_SNAKE_CASE__ : int = None # Don't forget here! But forget still works! # reverse the second part SCREAMING_SNAKE_CASE__ : int = None while second: SCREAMING_SNAKE_CASE__ : List[str] = second.next SCREAMING_SNAKE_CASE__ : List[str] = node SCREAMING_SNAKE_CASE__ : List[Any] = second SCREAMING_SNAKE_CASE__ : List[Any] = nxt # compare two parts # second part has the same or one less node while node: if node.val != head.val: return False SCREAMING_SNAKE_CASE__ : Optional[Any] = node.next SCREAMING_SNAKE_CASE__ : Any = head.next return True def lowercase_ ( _snake_case ): if not head or not head.next: return True # 1. Get the midpoint (slow) SCREAMING_SNAKE_CASE__ : Union[str, Any] = head while fast and fast.next: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Any = fast.next.next, slow.next # 2. Push the second half into the stack SCREAMING_SNAKE_CASE__ : Optional[int] = [slow.val] while slow.next: SCREAMING_SNAKE_CASE__ : Any = slow.next stack.append(slow.val ) # 3. Comparison while stack: if stack.pop() != cur.val: return False SCREAMING_SNAKE_CASE__ : int = cur.next return True def lowercase_ ( _snake_case ): if not head or not head.next: return True SCREAMING_SNAKE_CASE__ : Optional[Any] = {} SCREAMING_SNAKE_CASE__ : Any = 0 while head: if head.val in d: d[head.val].append(_snake_case ) else: SCREAMING_SNAKE_CASE__ : Optional[Any] = [pos] SCREAMING_SNAKE_CASE__ : str = head.next pos += 1 SCREAMING_SNAKE_CASE__ : Optional[int] = pos - 1 SCREAMING_SNAKE_CASE__ : Dict = 0 for v in d.values(): if len(_snake_case ) % 2 != 0: middle += 1 else: SCREAMING_SNAKE_CASE__ : str = 0 for i in range(0 ,len(_snake_case ) ): if v[i] + v[len(_snake_case ) - 1 - step] != checksum: return False step += 1 if middle > 1: return False return True
223
0
'''simple docstring''' from __future__ import annotations _A : List[str] ='''Muhammad Umer Farooq''' _A : List[Any] ='''MIT''' _A : Union[str, Any] ='''1.0.0''' _A : str ='''Muhammad Umer Farooq''' _A : Tuple ='''contact@muhammadumerfarooq.me''' _A : Union[str, Any] ='''Alpha''' import re from html.parser import HTMLParser from urllib import parse import requests class _lowercase ( _lowercase ): def __init__( self: Optional[Any] , UpperCamelCase__: str ): super().__init__() lowerCamelCase__ : list[str] = [] lowerCamelCase__ : str = domain def lowerCamelCase_ ( self: int , UpperCamelCase__: str , UpperCamelCase__: list[tuple[str, str | None]] ): # Only parse the 'anchor' tag. if tag == "a": # Check the list of defined attributes. for name, value in attrs: # If href is defined, and not empty nor # print it. if name == "href" and value != "#" and value != "": # If not already in urls. if value not in self.urls: lowerCamelCase__ : int = parse.urljoin(self.domain , UpperCamelCase__ ) self.urls.append(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ (UpperCamelCase ) -> str: return ".".join(get_sub_domain_name(UpperCamelCase ).split(""".""" )[-2:] ) def SCREAMING_SNAKE_CASE_ (UpperCamelCase ) -> str: return parse.urlparse(UpperCamelCase ).netloc def SCREAMING_SNAKE_CASE_ (UpperCamelCase = "https://github.com" ) -> list[str]: lowerCamelCase__ : int = get_domain_name(UpperCamelCase ) # Initialize the parser lowerCamelCase__ : Union[str, Any] = Parser(UpperCamelCase ) try: # Open URL lowerCamelCase__ : Union[str, Any] = requests.get(UpperCamelCase ) # pass the raw HTML to the parser to get links parser.feed(r.text ) # Get links and loop through lowerCamelCase__ : Any = set() for link in parser.urls: # open URL. # read = requests.get(link) try: lowerCamelCase__ : Dict = requests.get(UpperCamelCase ) # Get the valid email. lowerCamelCase__ : Any = re.findall("""[a-zA-Z0-9]+@""" + domain , read.text ) # If not in list then append it. for email in emails: valid_emails.add(UpperCamelCase ) except ValueError: pass except ValueError: raise SystemExit(1 ) # Finally return a sorted list of email addresses with no duplicates. return sorted(UpperCamelCase ) if __name__ == "__main__": _A : Optional[Any] =emails_from_url('''https://github.com''') print(F'{len(emails)} emails found:') print('''\n'''.join(sorted(emails)))
631
'''simple docstring''' _A : List[str] ='''0.21.0''' from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
631
1
'''simple docstring''' def a_ ( __snake_case : str , __snake_case : str ) -> int: """simple docstring""" if len(__snake_case ) != len(__snake_case ): raise ValueError('''String lengths must match!''' ) lowerCamelCase_ =0 for chara, chara in zip(__snake_case , __snake_case ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
676
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_camembert import CamembertTokenizer else: lowercase__ : Optional[int] = None lowercase__ : List[str] = logging.get_logger(__name__) lowercase__ : Optional[Any] = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} lowercase__ : List[str] = { '''vocab_file''': { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model''', }, '''tokenizer_file''': { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/tokenizer.json''', }, } lowercase__ : Dict = { '''camembert-base''': 5_12, } lowercase__ : str = '''▁''' class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = VOCAB_FILES_NAMES lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase = ['''input_ids''', '''attention_mask'''] lowerCAmelCase = CamembertTokenizer def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase="<s>" , _UpperCAmelCase="</s>" , _UpperCAmelCase="</s>" , _UpperCAmelCase="<s>" , _UpperCAmelCase="<unk>" , _UpperCAmelCase="<pad>" , _UpperCAmelCase="<mask>" , _UpperCAmelCase=["<s>NOTUSED", "</s>NOTUSED"] , **_UpperCAmelCase , ): '''simple docstring''' __A : int = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase) if isinstance(_UpperCAmelCase , _UpperCAmelCase) else mask_token super().__init__( _UpperCAmelCase , tokenizer_file=_UpperCAmelCase , bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , additional_special_tokens=_UpperCAmelCase , **_UpperCAmelCase , ) __A : List[str] = vocab_file __A : Optional[int] = False if not self.vocab_file else True def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase = None): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __A : Optional[Any] = [self.cls_token_id] __A : Optional[int] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase = None): '''simple docstring''' __A : Optional[int] = [self.sep_token_id] __A : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase = None): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.') if not os.path.isdir(_UpperCAmelCase): logger.error(F'Vocabulary path ({save_directory}) should be a directory') return __A : List[Any] = os.path.join( _UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(_UpperCAmelCase): copyfile(self.vocab_file , _UpperCAmelCase) return (out_vocab_file,)
8
0
from argparse import ArgumentParser from .env import EnvironmentCommand def SCREAMING_SNAKE_CASE__ ( ) -> List[str]: _lowercase = ArgumentParser('Diffusers CLI tool' , usage='diffusers-cli <command> [<args>]' ) _lowercase = parser.add_subparsers(help='diffusers-cli command helpers' ) # Register commands EnvironmentCommand.register_subcommand(snake_case__ ) # Let's go _lowercase = parser.parse_args() if not hasattr(snake_case__ , 'func' ): parser.print_help() exit(1 ) # Run _lowercase = args.func(snake_case__ ) service.run() if __name__ == "__main__": main()
535
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tensorflow_text_available, is_tf_available, is_tokenizers_available, is_torch_available, ) snake_case = { """configuration_bert""": ["""BERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BertConfig""", """BertOnnxConfig"""], """tokenization_bert""": ["""BasicTokenizer""", """BertTokenizer""", """WordpieceTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = ["""BertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = [ """BERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """BertForMaskedLM""", """BertForMultipleChoice""", """BertForNextSentencePrediction""", """BertForPreTraining""", """BertForQuestionAnswering""", """BertForSequenceClassification""", """BertForTokenClassification""", """BertLayer""", """BertLMHeadModel""", """BertModel""", """BertPreTrainedModel""", """load_tf_weights_in_bert""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = [ """TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFBertEmbeddings""", """TFBertForMaskedLM""", """TFBertForMultipleChoice""", """TFBertForNextSentencePrediction""", """TFBertForPreTraining""", """TFBertForQuestionAnswering""", """TFBertForSequenceClassification""", """TFBertForTokenClassification""", """TFBertLMHeadModel""", """TFBertMainLayer""", """TFBertModel""", """TFBertPreTrainedModel""", ] try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = ["""TFBertTokenizer"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = [ """FlaxBertForCausalLM""", """FlaxBertForMaskedLM""", """FlaxBertForMultipleChoice""", """FlaxBertForNextSentencePrediction""", """FlaxBertForPreTraining""", """FlaxBertForQuestionAnswering""", """FlaxBertForSequenceClassification""", """FlaxBertForTokenClassification""", """FlaxBertModel""", """FlaxBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_fast import BertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bert import ( BERT_PRETRAINED_MODEL_ARCHIVE_LIST, BertForMaskedLM, BertForMultipleChoice, BertForNextSentencePrediction, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertForTokenClassification, BertLayer, BertLMHeadModel, BertModel, BertPreTrainedModel, load_tf_weights_in_bert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_bert import ( TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFBertEmbeddings, TFBertForMaskedLM, TFBertForMultipleChoice, TFBertForNextSentencePrediction, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertForTokenClassification, TFBertLMHeadModel, TFBertMainLayer, TFBertModel, TFBertPreTrainedModel, ) try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_tf import TFBertTokenizer try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_bert import ( FlaxBertForCausalLM, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, FlaxBertPreTrainedModel, ) else: import sys snake_case = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
535
1
"""simple docstring""" import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class __lowerCAmelCase : '''simple docstring''' @staticmethod def _a ( *a , **a ): """simple docstring""" pass def A ( _A ): """simple docstring""" return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. __UpperCAmelCase : int = ( 'https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png' ) @is_pipeline_test @require_torch @require_vision class __lowerCAmelCase (unittest.TestCase ): '''simple docstring''' a__ = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def _a ( self , a , a , a ): """simple docstring""" snake_case_ :int = pipeline( "document-question-answering" , model=__lowercase , tokenizer=__lowercase , image_processor=__lowercase ) snake_case_ :int = INVOICE_URL snake_case_ :Dict = list(zip(*apply_tesseract(load_image(__lowercase ) , __lowercase , "" ) ) ) snake_case_ :Tuple = '''What is the placebo?''' snake_case_ :Tuple = [ { '''image''': load_image(__lowercase ), '''question''': question, }, { '''image''': image, '''question''': question, }, { '''image''': image, '''question''': question, '''word_boxes''': word_boxes, }, ] return dqa_pipeline, examples def _a ( self , a , a ): """simple docstring""" snake_case_ :int = dqa_pipeline(__lowercase , top_k=2 ) self.assertEqual( __lowercase , [ [ {"score": ANY(__lowercase ), "answer": ANY(__lowercase ), "start": ANY(__lowercase ), "end": ANY(__lowercase )}, {"score": ANY(__lowercase ), "answer": ANY(__lowercase ), "start": ANY(__lowercase ), "end": ANY(__lowercase )}, ] ] * 3 , ) @require_torch @require_detectrona @require_pytesseract def _a ( self ): """simple docstring""" snake_case_ :Dict = pipeline("document-question-answering" , model="hf-internal-testing/tiny-random-layoutlmv2" ) snake_case_ :List[Any] = INVOICE_URL snake_case_ :int = '''How many cats are there?''' snake_case_ :List[Any] = [ {'''score''': 0.0001, '''answer''': '''oy 2312/2019''', '''start''': 38, '''end''': 39}, {'''score''': 0.0001, '''answer''': '''oy 2312/2019 DUE''', '''start''': 38, '''end''': 40}, ] snake_case_ :Union[str, Any] = dqa_pipeline(image=__lowercase , question=__lowercase , top_k=2 ) self.assertEqual(nested_simplify(__lowercase , decimals=4 ) , __lowercase ) snake_case_ :Any = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual(nested_simplify(__lowercase , decimals=4 ) , __lowercase ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably snake_case_ :Optional[Any] = '''./tests/fixtures/tests_samples/COCO/000000039769.png''' snake_case_ :Optional[Any] = dqa_pipeline(image=__lowercase , question=__lowercase , top_k=2 ) self.assertEqual(__lowercase , [] ) # We can optionnally pass directly the words and bounding boxes snake_case_ :Tuple = '''./tests/fixtures/tests_samples/COCO/000000039769.png''' snake_case_ :Optional[int] = [] snake_case_ :Optional[int] = [] snake_case_ :str = dqa_pipeline(image=__lowercase , question=__lowercase , words=__lowercase , boxes=__lowercase , top_k=2 ) self.assertEqual(__lowercase , [] ) @slow @require_torch @require_detectrona @require_pytesseract def _a ( self ): """simple docstring""" snake_case_ :Optional[int] = pipeline( "document-question-answering" , model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa" , revision="9977165" , ) snake_case_ :Union[str, Any] = INVOICE_URL snake_case_ :Union[str, Any] = '''What is the invoice number?''' snake_case_ :Optional[Any] = dqa_pipeline(image=__lowercase , question=__lowercase , top_k=2 ) self.assertEqual( nested_simplify(__lowercase , decimals=4 ) , [ {"score": 0.9944, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0009, "answer": "us-001", "start": 16, "end": 16}, ] , ) snake_case_ :Union[str, Any] = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(__lowercase , decimals=4 ) , [ {"score": 0.9944, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0009, "answer": "us-001", "start": 16, "end": 16}, ] , ) snake_case_ :int = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(__lowercase , decimals=4 ) , [ [ {"score": 0.9944, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0009, "answer": "us-001", "start": 16, "end": 16}, ], ] * 2 , ) @slow @require_torch @require_detectrona @require_pytesseract def _a ( self ): """simple docstring""" snake_case_ :List[str] = pipeline( "document-question-answering" , model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa" , revision="9977165" , max_seq_len=50 , ) snake_case_ :List[Any] = INVOICE_URL snake_case_ :List[str] = '''What is the invoice number?''' snake_case_ :List[Any] = dqa_pipeline(image=__lowercase , question=__lowercase , top_k=2 ) self.assertEqual( nested_simplify(__lowercase , decimals=4 ) , [ {"score": 0.9974, "answer": "1110212019", "start": 23, "end": 23}, {"score": 0.9948, "answer": "us-001", "start": 16, "end": 16}, ] , ) snake_case_ :Any = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(__lowercase , decimals=4 ) , [ {"score": 0.9974, "answer": "1110212019", "start": 23, "end": 23}, {"score": 0.9948, "answer": "us-001", "start": 16, "end": 16}, ] , ) snake_case_ :List[str] = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(__lowercase , decimals=4 ) , [ [ {"score": 0.9974, "answer": "1110212019", "start": 23, "end": 23}, {"score": 0.9948, "answer": "us-001", "start": 16, "end": 16}, ] ] * 2 , ) @slow @require_torch @require_pytesseract @require_vision def _a ( self ): """simple docstring""" snake_case_ :Optional[Any] = AutoTokenizer.from_pretrained( "impira/layoutlm-document-qa" , revision="3dc6de3" , add_prefix_space=__lowercase ) snake_case_ :List[str] = pipeline( "document-question-answering" , model="impira/layoutlm-document-qa" , tokenizer=__lowercase , revision="3dc6de3" , ) snake_case_ :Optional[Any] = INVOICE_URL snake_case_ :Union[str, Any] = '''What is the invoice number?''' snake_case_ :Dict = dqa_pipeline(image=__lowercase , question=__lowercase , top_k=2 ) self.assertEqual( nested_simplify(__lowercase , decimals=4 ) , [ {"score": 0.4251, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0819, "answer": "1110212019", "start": 23, "end": 23}, ] , ) snake_case_ :List[str] = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(__lowercase , decimals=4 ) , [ {"score": 0.4251, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0819, "answer": "1110212019", "start": 23, "end": 23}, ] , ) snake_case_ :Tuple = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(__lowercase , decimals=4 ) , [ [ {"score": 0.4251, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0819, "answer": "1110212019", "start": 23, "end": 23}, ] ] * 2 , ) snake_case_ :Any = list(zip(*apply_tesseract(load_image(__lowercase ) , __lowercase , "" ) ) ) # This model should also work if `image` is set to None snake_case_ :Optional[Any] = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(__lowercase , decimals=4 ) , [ {"score": 0.4251, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0819, "answer": "1110212019", "start": 23, "end": 23}, ] , ) @slow @require_torch @require_pytesseract @require_vision def _a ( self ): """simple docstring""" snake_case_ :Any = AutoTokenizer.from_pretrained( "impira/layoutlm-document-qa" , revision="3dc6de3" , add_prefix_space=__lowercase ) snake_case_ :Any = pipeline( "document-question-answering" , model="impira/layoutlm-document-qa" , tokenizer=__lowercase , revision="3dc6de3" , max_seq_len=50 , ) snake_case_ :Any = INVOICE_URL snake_case_ :Optional[int] = '''What is the invoice number?''' snake_case_ :Dict = dqa_pipeline(image=__lowercase , question=__lowercase , top_k=2 ) self.assertEqual( nested_simplify(__lowercase , decimals=4 ) , [ {"score": 0.9999, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.9998, "answer": "us-001", "start": 16, "end": 16}, ] , ) snake_case_ :Dict = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(__lowercase , decimals=4 ) , [ [ {"score": 0.9999, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.9998, "answer": "us-001", "start": 16, "end": 16}, ] ] * 2 , ) snake_case_ :Dict = list(zip(*apply_tesseract(load_image(__lowercase ) , __lowercase , "" ) ) ) # This model should also work if `image` is set to None snake_case_ :List[Any] = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(__lowercase , decimals=4 ) , [ {"score": 0.9999, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.9998, "answer": "us-001", "start": 16, "end": 16}, ] , ) @slow @require_torch def _a ( self ): """simple docstring""" snake_case_ :Union[str, Any] = pipeline( "document-question-answering" , model="naver-clova-ix/donut-base-finetuned-docvqa" , tokenizer=AutoTokenizer.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa" ) , feature_extractor="naver-clova-ix/donut-base-finetuned-docvqa" , ) snake_case_ :List[str] = INVOICE_URL snake_case_ :int = '''What is the invoice number?''' snake_case_ :Any = dqa_pipeline(image=__lowercase , question=__lowercase , top_k=2 ) self.assertEqual(nested_simplify(__lowercase , decimals=4 ) , [{"answer": "us-001"}] ) @require_tf @unittest.skip("Document question answering not implemented in TF" ) def _a ( self ): """simple docstring""" pass
584
"""simple docstring""" from __future__ import annotations def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE : list[int | str] ): '''simple docstring''' create_state_space_tree(SCREAMING_SNAKE_CASE , [] , 0 , [0 for i in range(len(SCREAMING_SNAKE_CASE ) )] ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE : list[int | str] , SCREAMING_SNAKE_CASE : list[int | str] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : list[int] , ): '''simple docstring''' if index == len(SCREAMING_SNAKE_CASE ): print(SCREAMING_SNAKE_CASE ) return for i in range(len(SCREAMING_SNAKE_CASE ) ): if not index_used[i]: current_sequence.append(sequence[i] ) __lowerCamelCase : List[Any] =True create_state_space_tree(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , index + 1 , SCREAMING_SNAKE_CASE ) current_sequence.pop() __lowerCamelCase : List[Any] =False _UpperCamelCase = [3, 1, 2, 4] generate_all_permutations(sequence) _UpperCamelCase = ["A", "B", "C"] generate_all_permutations(sequence_a)
179
0
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A_ = { "configuration_mgp_str": ["MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP", "MgpstrConfig"], "processing_mgp_str": ["MgpstrProcessor"], "tokenization_mgp_str": ["MgpstrTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ "MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST", "MgpstrModel", "MgpstrPreTrainedModel", "MgpstrForSceneTextRecognition", ] if TYPE_CHECKING: from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig from .processing_mgp_str import MgpstrProcessor from .tokenization_mgp_str import MgpstrTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mgp_str import ( MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST, MgpstrForSceneTextRecognition, MgpstrModel, MgpstrPreTrainedModel, ) else: import sys A_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
707
from __future__ import annotations from collections.abc import MutableSequence class __lowercase : def __init__( self : Optional[Any] , __lowerCamelCase : int , __lowerCamelCase : MutableSequence[float] ) -> None: '''simple docstring''' if len(__lowerCamelCase ) != degree + 1: raise ValueError( '''The number of coefficients should be equal to the degree + 1.''' ) lowercase = list(__lowerCamelCase ) lowercase = degree def __add__( self : Any , __lowerCamelCase : Polynomial ) -> Polynomial: '''simple docstring''' if self.degree > polynomial_a.degree: lowercase = self.coefficients[:] for i in range(polynomial_a.degree + 1 ): coefficients[i] += polynomial_a.coefficients[i] return Polynomial(self.degree , __lowerCamelCase ) else: lowercase = polynomial_a.coefficients[:] for i in range(self.degree + 1 ): coefficients[i] += self.coefficients[i] return Polynomial(polynomial_a.degree , __lowerCamelCase ) def __sub__( self : str , __lowerCamelCase : Polynomial ) -> Polynomial: '''simple docstring''' return self + polynomial_a * Polynomial(0 , [-1] ) def __neg__( self : str ) -> Polynomial: '''simple docstring''' return Polynomial(self.degree , [-c for c in self.coefficients] ) def __mul__( self : List[str] , __lowerCamelCase : Polynomial ) -> Polynomial: '''simple docstring''' lowercase = [0] * (self.degree + polynomial_a.degree + 1) for i in range(self.degree + 1 ): for j in range(polynomial_a.degree + 1 ): coefficients[i + j] += ( self.coefficients[i] * polynomial_a.coefficients[j] ) return Polynomial(self.degree + polynomial_a.degree , __lowerCamelCase ) def __a ( self : List[str] , __lowerCamelCase : int | float ) -> int | float: '''simple docstring''' lowercase = 0 for i in range(self.degree + 1 ): result += self.coefficients[i] * (substitution**i) return result def __str__( self : str ) -> str: '''simple docstring''' lowercase = '''''' for i in range(self.degree , -1 , -1 ): if self.coefficients[i] == 0: continue elif self.coefficients[i] > 0: if polynomial: polynomial += " + " else: polynomial += " - " if i == 0: polynomial += str(abs(self.coefficients[i] ) ) elif i == 1: polynomial += str(abs(self.coefficients[i] ) ) + "x" else: polynomial += str(abs(self.coefficients[i] ) ) + "x^" + str(__lowerCamelCase ) return polynomial def __repr__( self : Tuple ) -> str: '''simple docstring''' return self.__str__() def __a ( self : Union[str, Any] ) -> Polynomial: '''simple docstring''' lowercase = [0] * self.degree for i in range(self.degree ): lowercase = self.coefficients[i + 1] * (i + 1) return Polynomial(self.degree - 1 , __lowerCamelCase ) def __a ( self : Union[str, Any] , __lowerCamelCase : int | float = 0 ) -> Polynomial: '''simple docstring''' lowercase = [0] * (self.degree + 2) lowercase = constant for i in range(self.degree + 1 ): lowercase = self.coefficients[i] / (i + 1) return Polynomial(self.degree + 1 , __lowerCamelCase ) def __eq__( self : Tuple , __lowerCamelCase : object ) -> bool: '''simple docstring''' if not isinstance(__lowerCamelCase , __lowerCamelCase ): return False if self.degree != polynomial_a.degree: return False for i in range(self.degree + 1 ): if self.coefficients[i] != polynomial_a.coefficients[i]: return False return True def __ne__( self : Tuple , __lowerCamelCase : object ) -> bool: '''simple docstring''' return not self.__eq__(__lowerCamelCase )
479
0
'''simple docstring''' import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def UpperCAmelCase ( UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Dict): # Initialise PyTorch model lowerCamelCase : Union[str, Any] = MobileBertConfig.from_json_file(UpperCAmelCase__) print(F'''Building PyTorch model from configuration: {config}''') lowerCamelCase : int = MobileBertForPreTraining(UpperCAmelCase__) # Load weights from tf checkpoint lowerCamelCase : Union[str, Any] = load_tf_weights_in_mobilebert(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''') torch.save(model.state_dict() , UpperCAmelCase__) if __name__ == "__main__": A = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--mobilebert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained MobileBERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) A = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
320
'''simple docstring''' def __snake_case ( lowercase : int = 1_000_000 ): snake_case_ = set(range(3 , lowercase , 2 ) ) primes.add(2 ) for p in range(3 , lowercase , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , lowercase , lowercase ) ) ) snake_case_ = [float(lowercase ) for n in range(limit + 1 )] for p in primes: for n in range(lowercase , limit + 1 , lowercase ): phi[n] *= 1 - 1 / p return int(sum(phi[2:] ) ) if __name__ == "__main__": print(f"""{solution() = }""")
508
0
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class _lowercase ( unittest.TestCase): """simple docstring""" @slow def lowerCAmelCase ( self : Any ): '''simple docstring''' lowerCamelCase__ : Dict = TFCamembertModel.from_pretrained("jplu/tf-camembert-base" ) lowerCamelCase__ : str = tf.convert_to_tensor( [[5, 121, 11, 660, 16, 730, 25543, 110, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" lowerCamelCase__ : Any = model(__lowerCamelCase )["last_hidden_state"] lowerCamelCase__ : List[str] = tf.TensorShape((1, 10, 768) ) self.assertEqual(output.shape , __lowerCamelCase ) # compare the actual values for a slice. lowerCamelCase__ : str = tf.convert_to_tensor( [[[-0.0_2_5_4, 0.0_2_3_5, 0.1_0_2_7], [0.0_6_0_6, -0.1_8_1_1, -0.0_4_1_8], [-0.1_5_6_1, -0.1_1_2_7, 0.2_6_8_7]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
5
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A : int = logging.get_logger(__name__) A : Optional[int] = { "facebook/xmod-base": "https://huggingface.co/facebook/xmod-base/resolve/main/config.json", "facebook/xmod-large-prenorm": "https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json", "facebook/xmod-base-13-125k": "https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json", "facebook/xmod-base-30-125k": "https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json", "facebook/xmod-base-30-195k": "https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json", "facebook/xmod-base-60-125k": "https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json", "facebook/xmod-base-60-265k": "https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json", "facebook/xmod-base-75-125k": "https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json", "facebook/xmod-base-75-269k": "https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json", } class _lowercase ( lowercase__): """simple docstring""" A__ = "xmod" def __init__( self : int , __lowerCamelCase : Any=30522 , __lowerCamelCase : Any=768 , __lowerCamelCase : str=12 , __lowerCamelCase : Any=12 , __lowerCamelCase : List[str]=3072 , __lowerCamelCase : List[Any]="gelu" , __lowerCamelCase : Union[str, Any]=0.1 , __lowerCamelCase : int=0.1 , __lowerCamelCase : Tuple=512 , __lowerCamelCase : str=2 , __lowerCamelCase : List[str]=0.0_2 , __lowerCamelCase : List[str]=1E-1_2 , __lowerCamelCase : str=1 , __lowerCamelCase : Optional[int]=0 , __lowerCamelCase : Optional[Any]=2 , __lowerCamelCase : str="absolute" , __lowerCamelCase : List[str]=True , __lowerCamelCase : Dict=None , __lowerCamelCase : Optional[Any]=False , __lowerCamelCase : Optional[Any]=2 , __lowerCamelCase : Tuple=False , __lowerCamelCase : Tuple=True , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : str=("en_XX",) , __lowerCamelCase : Union[str, Any]=None , **__lowerCamelCase : Optional[int] , ): '''simple docstring''' super().__init__(pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = vocab_size lowerCamelCase__ : Union[str, Any] = hidden_size lowerCamelCase__ : Optional[int] = num_hidden_layers lowerCamelCase__ : List[Any] = num_attention_heads lowerCamelCase__ : Union[str, Any] = hidden_act lowerCamelCase__ : Optional[int] = intermediate_size lowerCamelCase__ : Optional[int] = hidden_dropout_prob lowerCamelCase__ : List[Any] = attention_probs_dropout_prob lowerCamelCase__ : Any = max_position_embeddings lowerCamelCase__ : List[Any] = type_vocab_size lowerCamelCase__ : int = initializer_range lowerCamelCase__ : Tuple = layer_norm_eps lowerCamelCase__ : Union[str, Any] = position_embedding_type lowerCamelCase__ : str = use_cache lowerCamelCase__ : Union[str, Any] = classifier_dropout lowerCamelCase__ : Any = pre_norm lowerCamelCase__ : Tuple = adapter_reduction_factor lowerCamelCase__ : Tuple = adapter_layer_norm lowerCamelCase__ : List[Any] = adapter_reuse_layer_norm lowerCamelCase__ : Dict = ln_before_adapter lowerCamelCase__ : List[Any] = list(__lowerCamelCase ) lowerCamelCase__ : Optional[Any] = default_language class _lowercase ( lowercase__): """simple docstring""" @property def lowerCAmelCase ( self : Tuple ): '''simple docstring''' if self.task == "multiple-choice": lowerCamelCase__ : Dict = {0: "batch", 1: "choice", 2: "sequence"} else: lowerCamelCase__ : List[str] = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
5
1
"""simple docstring""" import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE__:Optional[int] = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) SCREAMING_SNAKE_CASE__:List[Any] = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', F'''encoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', F'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.weight''', F'''encoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.bias''', F'''encoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.weight''', F'''encoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.bias''', F'''encoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm1.weight''', F'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm1.bias''', F'''encoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.weight''', F'''encoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.bias''', F'''encoder.layers.{i}.final_layer_norm.bias''')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', F'''decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', F'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.cross_attn.out_proj.weight''', F'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.cross_attn.out_proj.bias''', F'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.weight''', F'''decoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.bias''', F'''decoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.weight''', F'''decoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.bias''', F'''decoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm1.weight''', F'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm1.bias''', F'''decoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.weight''', F'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.bias''', F'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.weight''', F'''decoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.bias''', F'''decoder.layers.{i}.final_layer_norm.bias''')) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qcontent_proj.weight''', F'''decoder.layers.{i}.sa_qcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kcontent_proj.weight''', F'''decoder.layers.{i}.sa_kcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qpos_proj.weight''', F'''decoder.layers.{i}.sa_qpos_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kpos_proj.weight''', F'''decoder.layers.{i}.sa_kpos_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_v_proj.weight''', F'''decoder.layers.{i}.sa_v_proj.weight''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qcontent_proj.weight''', F'''decoder.layers.{i}.ca_qcontent_proj.weight''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kcontent_proj.weight''', F'''decoder.layers.{i}.ca_kcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kpos_proj.weight''', F'''decoder.layers.{i}.ca_kpos_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_v_proj.weight''', F'''decoder.layers.{i}.ca_v_proj.weight''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight''', F'''decoder.layers.{i}.ca_qpos_sine_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qcontent_proj.bias''', F'''decoder.layers.{i}.sa_qcontent_proj.bias''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kcontent_proj.bias''', F'''decoder.layers.{i}.sa_kcontent_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_qpos_proj.bias''', F'''decoder.layers.{i}.sa_qpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_kpos_proj.bias''', F'''decoder.layers.{i}.sa_kpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_v_proj.bias''', F'''decoder.layers.{i}.sa_v_proj.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qcontent_proj.bias''', F'''decoder.layers.{i}.ca_qcontent_proj.bias''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kcontent_proj.bias''', F'''decoder.layers.{i}.ca_kcontent_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_kpos_proj.bias''', F'''decoder.layers.{i}.ca_kpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_v_proj.bias''', F'''decoder.layers.{i}.ca_v_proj.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias''', F'''decoder.layers.{i}.ca_qpos_sine_proj.bias''') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ("""input_proj.weight""", """input_projection.weight"""), ("""input_proj.bias""", """input_projection.bias"""), ("""query_embed.weight""", """query_position_embeddings.weight"""), ("""transformer.decoder.norm.weight""", """decoder.layernorm.weight"""), ("""transformer.decoder.norm.bias""", """decoder.layernorm.bias"""), ("""class_embed.weight""", """class_labels_classifier.weight"""), ("""class_embed.bias""", """class_labels_classifier.bias"""), ("""bbox_embed.layers.0.weight""", """bbox_predictor.layers.0.weight"""), ("""bbox_embed.layers.0.bias""", """bbox_predictor.layers.0.bias"""), ("""bbox_embed.layers.1.weight""", """bbox_predictor.layers.1.weight"""), ("""bbox_embed.layers.1.bias""", """bbox_predictor.layers.1.bias"""), ("""bbox_embed.layers.2.weight""", """bbox_predictor.layers.2.weight"""), ("""bbox_embed.layers.2.bias""", """bbox_predictor.layers.2.bias"""), ("""transformer.decoder.ref_point_head.layers.0.weight""", """decoder.ref_point_head.layers.0.weight"""), ("""transformer.decoder.ref_point_head.layers.0.bias""", """decoder.ref_point_head.layers.0.bias"""), ("""transformer.decoder.ref_point_head.layers.1.weight""", """decoder.ref_point_head.layers.1.weight"""), ("""transformer.decoder.ref_point_head.layers.1.bias""", """decoder.ref_point_head.layers.1.bias"""), ("""transformer.decoder.query_scale.layers.0.weight""", """decoder.query_scale.layers.0.weight"""), ("""transformer.decoder.query_scale.layers.0.bias""", """decoder.query_scale.layers.0.bias"""), ("""transformer.decoder.query_scale.layers.1.weight""", """decoder.query_scale.layers.1.weight"""), ("""transformer.decoder.query_scale.layers.1.bias""", """decoder.query_scale.layers.1.bias"""), ("""transformer.decoder.layers.0.ca_qpos_proj.weight""", """decoder.layers.0.ca_qpos_proj.weight"""), ("""transformer.decoder.layers.0.ca_qpos_proj.bias""", """decoder.layers.0.ca_qpos_proj.bias"""), ] ) def _lowerCamelCase( a , a , a ): __a = state_dict.pop(a ) __a = val def _lowerCamelCase( a ): __a = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: __a = key.replace("backbone.0.body" , "backbone.conv_encoder.model" ) __a = value else: __a = value return new_state_dict def _lowerCamelCase( a , a=False ): __a = "" if is_panoptic: __a = "conditional_detr." # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) __a = state_dict.pop(F"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight" ) __a = state_dict.pop(F"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias" ) # next, add query, keys and values (in that order) to the state dict __a = in_proj_weight[:2_5_6, :] __a = in_proj_bias[:2_5_6] __a = in_proj_weight[2_5_6:5_1_2, :] __a = in_proj_bias[2_5_6:5_1_2] __a = in_proj_weight[-2_5_6:, :] __a = in_proj_bias[-2_5_6:] def _lowerCamelCase( ): __a = "http://images.cocodataset.org/val2017/000000039769.jpg" __a = Image.open(requests.get(a , stream=a ).raw ) return im @torch.no_grad() def _lowerCamelCase( a , a ): __a = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: __a = "resnet101" if "dc5" in model_name: __a = True __a = "panoptic" in model_name if is_panoptic: __a = 2_5_0 else: __a = 9_1 __a = "huggingface/label-files" __a = "coco-detection-id2label.json" __a = json.load(open(hf_hub_download(a , a , repo_type="dataset" ) , "r" ) ) __a = {int(a ): v for k, v in idalabel.items()} __a = idalabel __a = {v: k for k, v in idalabel.items()} # load image processor __a = "coco_panoptic" if is_panoptic else "coco_detection" __a = ConditionalDetrImageProcessor(format=a ) # prepare image __a = prepare_img() __a = image_processor(images=a , return_tensors="pt" ) __a = encoding["pixel_values"] logger.info(F"Converting model {model_name}..." ) # load original model from torch hub __a = torch.hub.load("DeppMeng/ConditionalDETR" , a , pretrained=a ).eval() __a = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: __a = "conditional_detr." + src rename_key(a , a , a ) __a = rename_backbone_keys(a ) # query, key and value matrices need special treatment read_in_q_k_v(a , is_panoptic=a ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them __a = "conditional_detr.model." if is_panoptic else "model." for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("conditional_detr" ) and not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ) ): __a = state_dict.pop(a ) __a = val elif "class_labels_classifier" in key or "bbox_predictor" in key: __a = state_dict.pop(a ) __a = val elif key.startswith("bbox_attention" ) or key.startswith("mask_head" ): continue else: __a = state_dict.pop(a ) __a = val else: if not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ): __a = state_dict.pop(a ) __a = val # finally, create HuggingFace model and load state dict __a = ConditionalDetrForSegmentation(a ) if is_panoptic else ConditionalDetrForObjectDetection(a ) model.load_state_dict(a ) model.eval() model.push_to_hub(repo_id=a , organization="DepuMeng" , commit_message="Add model" ) # verify our conversion __a = conditional_detr(a ) __a = model(a ) assert torch.allclose(outputs.logits , original_outputs["pred_logits"] , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes , original_outputs["pred_boxes"] , atol=1E-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs["pred_masks"] , atol=1E-4 ) # Save model and image processor logger.info(F"Saving PyTorch model and image processor to {pytorch_dump_folder_path}..." ) Path(a ).mkdir(exist_ok=a ) model.save_pretrained(a ) image_processor.save_pretrained(a ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__:int = argparse.ArgumentParser() parser.add_argument( """--model_name""", default="""conditional_detr_resnet50""", type=str, help="""Name of the CONDITIONAL_DETR model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) SCREAMING_SNAKE_CASE__:List[str] = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
528
"""simple docstring""" import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class snake_case__ ( unittest.TestCase ): def a__ ( self ): __a = [ "safety_checker/pytorch_model.bin", "safety_checker/model.safetensors", "vae/diffusion_pytorch_model.bin", "vae/diffusion_pytorch_model.safetensors", "text_encoder/pytorch_model.bin", "text_encoder/model.safetensors", "unet/diffusion_pytorch_model.bin", "unet/diffusion_pytorch_model.safetensors", ] self.assertTrue(is_safetensors_compatible(lowerCamelCase ) ) def a__ ( self ): __a = [ "unet/diffusion_pytorch_model.bin", "unet/diffusion_pytorch_model.safetensors", ] self.assertTrue(is_safetensors_compatible(lowerCamelCase ) ) def a__ ( self ): __a = [ "safety_checker/pytorch_model.bin", "safety_checker/model.safetensors", "vae/diffusion_pytorch_model.bin", "vae/diffusion_pytorch_model.safetensors", "text_encoder/pytorch_model.bin", "text_encoder/model.safetensors", "unet/diffusion_pytorch_model.bin", # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(lowerCamelCase ) ) def a__ ( self ): __a = [ "text_encoder/pytorch_model.bin", "text_encoder/model.safetensors", ] self.assertTrue(is_safetensors_compatible(lowerCamelCase ) ) def a__ ( self ): __a = [ "safety_checker/pytorch_model.bin", "safety_checker/model.safetensors", "vae/diffusion_pytorch_model.bin", "vae/diffusion_pytorch_model.safetensors", "text_encoder/pytorch_model.bin", # Removed: 'text_encoder/model.safetensors', "unet/diffusion_pytorch_model.bin", "unet/diffusion_pytorch_model.safetensors", ] self.assertFalse(is_safetensors_compatible(lowerCamelCase ) ) def a__ ( self ): __a = [ "safety_checker/pytorch_model.fp16.bin", "safety_checker/model.fp16.safetensors", "vae/diffusion_pytorch_model.fp16.bin", "vae/diffusion_pytorch_model.fp16.safetensors", "text_encoder/pytorch_model.fp16.bin", "text_encoder/model.fp16.safetensors", "unet/diffusion_pytorch_model.fp16.bin", "unet/diffusion_pytorch_model.fp16.safetensors", ] __a = "fp16" self.assertTrue(is_safetensors_compatible(lowerCamelCase , variant=lowerCamelCase ) ) def a__ ( self ): __a = [ "unet/diffusion_pytorch_model.fp16.bin", "unet/diffusion_pytorch_model.fp16.safetensors", ] __a = "fp16" self.assertTrue(is_safetensors_compatible(lowerCamelCase , variant=lowerCamelCase ) ) def a__ ( self ): # pass variant but use the non-variant filenames __a = [ "unet/diffusion_pytorch_model.bin", "unet/diffusion_pytorch_model.safetensors", ] __a = "fp16" self.assertTrue(is_safetensors_compatible(lowerCamelCase , variant=lowerCamelCase ) ) def a__ ( self ): __a = [ "safety_checker/pytorch_model.fp16.bin", "safety_checker/model.fp16.safetensors", "vae/diffusion_pytorch_model.fp16.bin", "vae/diffusion_pytorch_model.fp16.safetensors", "text_encoder/pytorch_model.fp16.bin", "text_encoder/model.fp16.safetensors", "unet/diffusion_pytorch_model.fp16.bin", # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] __a = "fp16" self.assertFalse(is_safetensors_compatible(lowerCamelCase , variant=lowerCamelCase ) ) def a__ ( self ): __a = [ "text_encoder/pytorch_model.fp16.bin", "text_encoder/model.fp16.safetensors", ] __a = "fp16" self.assertTrue(is_safetensors_compatible(lowerCamelCase , variant=lowerCamelCase ) ) def a__ ( self ): # pass variant but use the non-variant filenames __a = [ "text_encoder/pytorch_model.bin", "text_encoder/model.safetensors", ] __a = "fp16" self.assertTrue(is_safetensors_compatible(lowerCamelCase , variant=lowerCamelCase ) ) def a__ ( self ): __a = [ "safety_checker/pytorch_model.fp16.bin", "safety_checker/model.fp16.safetensors", "vae/diffusion_pytorch_model.fp16.bin", "vae/diffusion_pytorch_model.fp16.safetensors", "text_encoder/pytorch_model.fp16.bin", # 'text_encoder/model.fp16.safetensors', "unet/diffusion_pytorch_model.fp16.bin", "unet/diffusion_pytorch_model.fp16.safetensors", ] __a = "fp16" self.assertFalse(is_safetensors_compatible(lowerCamelCase , variant=lowerCamelCase ) )
528
1
'''simple docstring''' import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class UpperCamelCase ( nn.Module ): """simple docstring""" snake_case = 4_2 snake_case = 4_2 snake_case = 0.0 snake_case = 1 snake_case = 1 snake_case = True snake_case = False snake_case = False snake_case = False snake_case = jnp.floataa def A( self : int ) -> int: '''simple docstring''' A = [] A = [] for i in range(self.num_layers ): A = self.in_channels if i == 0 else self.out_channels A = FlaxResnetBlockaD( in_channels=UpperCAmelCase__ ,out_channels=self.out_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) resnets.append(UpperCAmelCase__ ) A = FlaxTransformeraDModel( in_channels=self.out_channels ,n_heads=self.num_attention_heads ,d_head=self.out_channels // self.num_attention_heads ,depth=1 ,use_linear_projection=self.use_linear_projection ,only_cross_attention=self.only_cross_attention ,use_memory_efficient_attention=self.use_memory_efficient_attention ,dtype=self.dtype ,) attentions.append(UpperCAmelCase__ ) A = resnets A = attentions if self.add_downsample: A = FlaxDownsampleaD(self.out_channels ,dtype=self.dtype ) def __call__( self : Optional[int] ,_SCREAMING_SNAKE_CASE : Any ,_SCREAMING_SNAKE_CASE : str ,_SCREAMING_SNAKE_CASE : List[Any] ,_SCREAMING_SNAKE_CASE : str=True ) -> Any: '''simple docstring''' A = () for resnet, attn in zip(self.resnets ,self.attentions ): A = resnet(UpperCAmelCase__ ,UpperCAmelCase__ ,deterministic=UpperCAmelCase__ ) A = attn(UpperCAmelCase__ ,UpperCAmelCase__ ,deterministic=UpperCAmelCase__ ) output_states += (hidden_states,) if self.add_downsample: A = self.downsamplers_a(UpperCAmelCase__ ) output_states += (hidden_states,) return hidden_states, output_states class UpperCamelCase ( nn.Module ): """simple docstring""" snake_case = 4_2 snake_case = 4_2 snake_case = 0.0 snake_case = 1 snake_case = True snake_case = jnp.floataa def A( self : Dict ) -> Union[str, Any]: '''simple docstring''' A = [] for i in range(self.num_layers ): A = self.in_channels if i == 0 else self.out_channels A = FlaxResnetBlockaD( in_channels=UpperCAmelCase__ ,out_channels=self.out_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) resnets.append(UpperCAmelCase__ ) A = resnets if self.add_downsample: A = FlaxDownsampleaD(self.out_channels ,dtype=self.dtype ) def __call__( self : Union[str, Any] ,_SCREAMING_SNAKE_CASE : Optional[Any] ,_SCREAMING_SNAKE_CASE : Tuple ,_SCREAMING_SNAKE_CASE : List[str]=True ) -> Union[str, Any]: '''simple docstring''' A = () for resnet in self.resnets: A = resnet(UpperCAmelCase__ ,UpperCAmelCase__ ,deterministic=UpperCAmelCase__ ) output_states += (hidden_states,) if self.add_downsample: A = self.downsamplers_a(UpperCAmelCase__ ) output_states += (hidden_states,) return hidden_states, output_states class UpperCamelCase ( nn.Module ): """simple docstring""" snake_case = 4_2 snake_case = 4_2 snake_case = 4_2 snake_case = 0.0 snake_case = 1 snake_case = 1 snake_case = True snake_case = False snake_case = False snake_case = False snake_case = jnp.floataa def A( self : Dict ) -> Union[str, Any]: '''simple docstring''' A = [] A = [] for i in range(self.num_layers ): A = self.in_channels if (i == self.num_layers - 1) else self.out_channels A = self.prev_output_channel if i == 0 else self.out_channels A = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels ,out_channels=self.out_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) resnets.append(UpperCAmelCase__ ) A = FlaxTransformeraDModel( in_channels=self.out_channels ,n_heads=self.num_attention_heads ,d_head=self.out_channels // self.num_attention_heads ,depth=1 ,use_linear_projection=self.use_linear_projection ,only_cross_attention=self.only_cross_attention ,use_memory_efficient_attention=self.use_memory_efficient_attention ,dtype=self.dtype ,) attentions.append(UpperCAmelCase__ ) A = resnets A = attentions if self.add_upsample: A = FlaxUpsampleaD(self.out_channels ,dtype=self.dtype ) def __call__( self : Optional[Any] ,_SCREAMING_SNAKE_CASE : Optional[int] ,_SCREAMING_SNAKE_CASE : Optional[int] ,_SCREAMING_SNAKE_CASE : int ,_SCREAMING_SNAKE_CASE : List[Any] ,_SCREAMING_SNAKE_CASE : Optional[Any]=True ) -> Any: '''simple docstring''' for resnet, attn in zip(self.resnets ,self.attentions ): # pop res hidden states A = res_hidden_states_tuple[-1] A = res_hidden_states_tuple[:-1] A = jnp.concatenate((hidden_states, res_hidden_states) ,axis=-1 ) A = resnet(UpperCAmelCase__ ,UpperCAmelCase__ ,deterministic=UpperCAmelCase__ ) A = attn(UpperCAmelCase__ ,UpperCAmelCase__ ,deterministic=UpperCAmelCase__ ) if self.add_upsample: A = self.upsamplers_a(UpperCAmelCase__ ) return hidden_states class UpperCamelCase ( nn.Module ): """simple docstring""" snake_case = 4_2 snake_case = 4_2 snake_case = 4_2 snake_case = 0.0 snake_case = 1 snake_case = True snake_case = jnp.floataa def A( self : Any ) -> Dict: '''simple docstring''' A = [] for i in range(self.num_layers ): A = self.in_channels if (i == self.num_layers - 1) else self.out_channels A = self.prev_output_channel if i == 0 else self.out_channels A = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels ,out_channels=self.out_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) resnets.append(UpperCAmelCase__ ) A = resnets if self.add_upsample: A = FlaxUpsampleaD(self.out_channels ,dtype=self.dtype ) def __call__( self : Optional[int] ,_SCREAMING_SNAKE_CASE : int ,_SCREAMING_SNAKE_CASE : List[str] ,_SCREAMING_SNAKE_CASE : Any ,_SCREAMING_SNAKE_CASE : str=True ) -> int: '''simple docstring''' for resnet in self.resnets: # pop res hidden states A = res_hidden_states_tuple[-1] A = res_hidden_states_tuple[:-1] A = jnp.concatenate((hidden_states, res_hidden_states) ,axis=-1 ) A = resnet(UpperCAmelCase__ ,UpperCAmelCase__ ,deterministic=UpperCAmelCase__ ) if self.add_upsample: A = self.upsamplers_a(UpperCAmelCase__ ) return hidden_states class UpperCamelCase ( nn.Module ): """simple docstring""" snake_case = 4_2 snake_case = 0.0 snake_case = 1 snake_case = 1 snake_case = False snake_case = False snake_case = jnp.floataa def A( self : str ) -> int: '''simple docstring''' A = [ FlaxResnetBlockaD( in_channels=self.in_channels ,out_channels=self.in_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) ] A = [] for _ in range(self.num_layers ): A = FlaxTransformeraDModel( in_channels=self.in_channels ,n_heads=self.num_attention_heads ,d_head=self.in_channels // self.num_attention_heads ,depth=1 ,use_linear_projection=self.use_linear_projection ,use_memory_efficient_attention=self.use_memory_efficient_attention ,dtype=self.dtype ,) attentions.append(UpperCAmelCase__ ) A = FlaxResnetBlockaD( in_channels=self.in_channels ,out_channels=self.in_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) resnets.append(UpperCAmelCase__ ) A = resnets A = attentions def __call__( self : List[str] ,_SCREAMING_SNAKE_CASE : Dict ,_SCREAMING_SNAKE_CASE : str ,_SCREAMING_SNAKE_CASE : List[str] ,_SCREAMING_SNAKE_CASE : int=True ) -> Union[str, Any]: '''simple docstring''' A = self.resnets[0](UpperCAmelCase__ ,UpperCAmelCase__ ) for attn, resnet in zip(self.attentions ,self.resnets[1:] ): A = attn(UpperCAmelCase__ ,UpperCAmelCase__ ,deterministic=UpperCAmelCase__ ) A = resnet(UpperCAmelCase__ ,UpperCAmelCase__ ,deterministic=UpperCAmelCase__ ) return hidden_states
700
import argparse import torch from transformers import YosoConfig, YosoForMaskedLM def snake_case ( UpperCAmelCase : List[Any] ): if "model" in orig_key: A = orig_key.replace('model.', '' ) if "norm1" in orig_key: A = orig_key.replace('norm1', 'attention.output.LayerNorm' ) if "norm2" in orig_key: A = orig_key.replace('norm2', 'output.LayerNorm' ) if "norm" in orig_key: A = orig_key.replace('norm', 'LayerNorm' ) if "transformer" in orig_key: A = orig_key.split('.' )[0].split('_' )[-1] A = orig_key.replace(f'transformer_{layer_num}', f'encoder.layer.{layer_num}' ) if "mha.attn" in orig_key: A = orig_key.replace('mha.attn', 'attention.self' ) if "mha" in orig_key: A = orig_key.replace('mha', 'attention' ) if "W_q" in orig_key: A = orig_key.replace('W_q', 'self.query' ) if "W_k" in orig_key: A = orig_key.replace('W_k', 'self.key' ) if "W_v" in orig_key: A = orig_key.replace('W_v', 'self.value' ) if "ff1" in orig_key: A = orig_key.replace('ff1', 'intermediate.dense' ) if "ff2" in orig_key: A = orig_key.replace('ff2', 'output.dense' ) if "ff" in orig_key: A = orig_key.replace('ff', 'output.dense' ) if "mlm_class" in orig_key: A = orig_key.replace('mlm.mlm_class', 'cls.predictions.decoder' ) if "mlm" in orig_key: A = orig_key.replace('mlm', 'cls.predictions.transform' ) if "cls" not in orig_key: A = 'yoso.' + orig_key return orig_key def snake_case ( UpperCAmelCase : Tuple, UpperCAmelCase : str ): for key in orig_state_dict.copy().keys(): A = orig_state_dict.pop(UpperCAmelCase ) if ("pooler" in key) or ("sen_class" in key): continue else: A = val A = orig_state_dict['cls.predictions.decoder.bias'] A = torch.arange(UpperCAmelCase ).expand((1, -1) ) + 2 return orig_state_dict def snake_case ( UpperCAmelCase : int, UpperCAmelCase : Union[str, Any], UpperCAmelCase : str ): A = torch.load(UpperCAmelCase, map_location='cpu' )['model_state_dict'] A = YosoConfig.from_json_file(UpperCAmelCase ) A = YosoForMaskedLM(UpperCAmelCase ) A = convert_checkpoint_helper(config.max_position_embeddings, UpperCAmelCase ) print(model.load_state_dict(UpperCAmelCase ) ) model.eval() model.save_pretrained(UpperCAmelCase ) print(f'Checkpoint successfuly converted. Model saved at {pytorch_dump_path}' ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--pytorch_model_path', default=None, type=str, required=True, help='Path to YOSO pytorch checkpoint.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The json file for YOSO model config.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) lowerCAmelCase_ = parser.parse_args() convert_yoso_checkpoint(args.pytorch_model_path, args.config_file, args.pytorch_dump_path)
110
0
import logging import os from dataclasses import dataclass, field from functools import partial from pathlib import Path from tempfile import TemporaryDirectory from typing import List, Optional import faiss import torch from datasets import Features, Sequence, Value, load_dataset from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser lowerCAmelCase = logging.getLogger(__name__) torch.set_grad_enabled(False) lowerCAmelCase = """cuda""" if torch.cuda.is_available() else """cpu""" def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_=100 , lowercase_=" " ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Optional[int] = text.split(lowercase_ ) return [character.join(text[i : i + n] ).strip() for i in range(0 , len(lowercase_ ) , lowercase_ )] def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> dict: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : int = [], [] for title, text in zip(documents['''title'''] , documents['''text'''] ): if text is not None: for passage in split_text(lowercase_ ): titles.append(title if title is not None else '''''' ) texts.append(lowercase_ ) return {"title": titles, "text": texts} def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> dict: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = ctx_tokenizer( documents['''title'''] , documents['''text'''] , truncation=lowercase_ , padding='''longest''' , return_tensors='''pt''' )['''input_ids'''] __UpperCAmelCase : str = ctx_encoder(input_ids.to(device=lowercase_ ) , return_dict=lowercase_ ).pooler_output return {"embeddings": embeddings.detach().cpu().numpy()} def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , ) -> Tuple: '''simple docstring''' logger.info('''Step 1 - Create the dataset''' ) ###################################### # The dataset needed for RAG must have three columns: # - title (string): title of the document # - text (string): text of a passage of the document # - embeddings (array of dimension d): DPR representation of the passage # Let's say you have documents in tab-separated csv files with columns "title" and "text" assert os.path.isfile(rag_example_args.csv_path ), "Please provide a valid path to a csv file" # You can load a Dataset object this way __UpperCAmelCase : List[str] = load_dataset( '''csv''' , data_files=[rag_example_args.csv_path] , split='''train''' , delimiter='''\t''' , column_names=['''title''', '''text'''] ) # More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files # Then split the documents into passages of 100 words __UpperCAmelCase : Dict = dataset.map(lowercase_ , batched=lowercase_ , num_proc=processing_args.num_proc ) # And compute the embeddings __UpperCAmelCase : Optional[Any] = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ).to(device=lowercase_ ) __UpperCAmelCase : Any = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ) __UpperCAmelCase : List[Any] = Features( {'''text''': Value('''string''' ), '''title''': Value('''string''' ), '''embeddings''': Sequence(Value('''float32''' ) )} ) # optional, save as float32 instead of float64 to save space __UpperCAmelCase : Any = dataset.map( partial(lowercase_ , ctx_encoder=lowercase_ , ctx_tokenizer=lowercase_ ) , batched=lowercase_ , batch_size=processing_args.batch_size , features=lowercase_ , ) # And finally save your dataset __UpperCAmelCase : List[str] = os.path.join(rag_example_args.output_dir , '''my_knowledge_dataset''' ) dataset.save_to_disk(lowercase_ ) # from datasets import load_from_disk # dataset = load_from_disk(passages_path) # to reload the dataset ###################################### logger.info('''Step 2 - Index the dataset''' ) ###################################### # Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search __UpperCAmelCase : str = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT ) dataset.add_faiss_index('''embeddings''' , custom_index=lowercase_ ) # And save the index __UpperCAmelCase : List[str] = os.path.join(rag_example_args.output_dir , '''my_knowledge_dataset_hnsw_index.faiss''' ) dataset.get_index('''embeddings''' ).save(lowercase_ ) # dataset.load_faiss_index("embeddings", index_path) # to reload the index @dataclass class lowerCamelCase : _lowerCAmelCase : str = field( default=str(Path(_UpperCamelCase ).parent / '''test_run''' / '''dummy-kb''' / '''my_knowledge_dataset.csv''' ) , metadata={'''help''': '''Path to a tab-separated csv file with columns \'title\' and \'text\''''} , ) _lowerCAmelCase : Optional[str] = field( default=_UpperCamelCase , metadata={'''help''': '''Question that is passed as input to RAG. Default is \'What does Moses\' rod turn into ?\'.'''} , ) _lowerCAmelCase : str = field( default='''facebook/rag-sequence-nq''' , metadata={'''help''': '''The RAG model to use. Either \'facebook/rag-sequence-nq\' or \'facebook/rag-token-nq\''''} , ) _lowerCAmelCase : str = field( default='''facebook/dpr-ctx_encoder-multiset-base''' , metadata={ '''help''': ( '''The DPR context encoder model to use. Either \'facebook/dpr-ctx_encoder-single-nq-base\' or''' ''' \'facebook/dpr-ctx_encoder-multiset-base\'''' ) } , ) _lowerCAmelCase : Optional[str] = field( default=str(Path(_UpperCamelCase ).parent / '''test_run''' / '''dummy-kb''' ) , metadata={'''help''': '''Path to a directory where the dataset passages and the index will be saved'''} , ) @dataclass class lowerCamelCase : _lowerCAmelCase : Optional[int] = field( default=_UpperCamelCase , metadata={ '''help''': '''The number of processes to use to split the documents into passages. Default is single process.''' } , ) _lowerCAmelCase : int = field( default=1_6 , metadata={ '''help''': '''The batch size to use when computing the passages embeddings using the DPR context encoder.''' } , ) @dataclass class lowerCamelCase : _lowerCAmelCase : int = field( default=7_6_8 , metadata={'''help''': '''The dimension of the embeddings to pass to the HNSW Faiss index.'''} , ) _lowerCAmelCase : int = field( default=1_2_8 , metadata={ '''help''': ( '''The number of bi-directional links created for every new element during the HNSW index construction.''' ) } , ) if __name__ == "__main__": logging.basicConfig(level=logging.WARNING) logger.setLevel(logging.INFO) lowerCAmelCase = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments)) lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = parser.parse_args_into_dataclasses() with TemporaryDirectory() as tmp_dir: lowerCAmelCase = rag_example_args.output_dir or tmp_dir main(rag_example_args, processing_args, index_hnsw_args)
462
import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset lowerCAmelCase = random.Random() def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_=1.0 , lowercase_=None , lowercase_=None ) -> Union[str, Any]: '''simple docstring''' if rng is None: __UpperCAmelCase : str = global_rng __UpperCAmelCase : List[Any] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class lowerCamelCase ( unittest.TestCase ): def __init__( self , lowercase__ , lowercase__=7 , lowercase__=4_0_0 , lowercase__=2_0_0_0 , lowercase__=2_0_4_8 , lowercase__=1_2_8 , lowercase__=1 , lowercase__=5_1_2 , lowercase__=3_0 , lowercase__=4_4_1_0_0 , ): __UpperCAmelCase : Optional[Any] = parent __UpperCAmelCase : Any = batch_size __UpperCAmelCase : int = min_seq_length __UpperCAmelCase : List[str] = max_seq_length __UpperCAmelCase : Dict = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) __UpperCAmelCase : Any = spectrogram_length __UpperCAmelCase : List[Any] = feature_size __UpperCAmelCase : Union[str, Any] = num_audio_channels __UpperCAmelCase : Optional[int] = hop_length __UpperCAmelCase : Tuple = chunk_length __UpperCAmelCase : Any = sampling_rate def A( self): return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def A( self , lowercase__=False , lowercase__=False): def _flatten(lowercase__): return list(itertools.chain(*lowercase__)) if equal_length: __UpperCAmelCase : str = [floats_list((self.max_seq_length, self.feature_size)) for _ in range(self.batch_size)] else: # make sure that inputs increase in size __UpperCAmelCase : List[str] = [ floats_list((x, self.feature_size)) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff) ] if numpify: __UpperCAmelCase : List[str] = [np.asarray(lowercase__) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class lowerCamelCase ( _UpperCamelCase , unittest.TestCase ): _lowerCAmelCase : Optional[int] = TvltFeatureExtractor def A( self): __UpperCAmelCase : Dict = TvltFeatureExtractionTester(self) def A( self): __UpperCAmelCase : Optional[int] = self.feature_extraction_class(**self.feat_extract_dict) self.assertTrue(hasattr(lowercase__ , '''spectrogram_length''')) self.assertTrue(hasattr(lowercase__ , '''feature_size''')) self.assertTrue(hasattr(lowercase__ , '''num_audio_channels''')) self.assertTrue(hasattr(lowercase__ , '''hop_length''')) self.assertTrue(hasattr(lowercase__ , '''chunk_length''')) self.assertTrue(hasattr(lowercase__ , '''sampling_rate''')) def A( self): __UpperCAmelCase : str = self.feature_extraction_class(**self.feat_extract_dict) with tempfile.TemporaryDirectory() as tmpdirname: __UpperCAmelCase : str = feat_extract_first.save_pretrained(lowercase__)[0] check_json_file_has_correct_format(lowercase__) __UpperCAmelCase : Optional[int] = self.feature_extraction_class.from_pretrained(lowercase__) __UpperCAmelCase : List[Any] = feat_extract_first.to_dict() __UpperCAmelCase : Union[str, Any] = feat_extract_second.to_dict() __UpperCAmelCase : Union[str, Any] = dict_first.pop('''mel_filters''') __UpperCAmelCase : Union[str, Any] = dict_second.pop('''mel_filters''') self.assertTrue(np.allclose(lowercase__ , lowercase__)) self.assertEqual(lowercase__ , lowercase__) def A( self): __UpperCAmelCase : Optional[int] = self.feature_extraction_class(**self.feat_extract_dict) with tempfile.TemporaryDirectory() as tmpdirname: __UpperCAmelCase : Union[str, Any] = os.path.join(lowercase__ , '''feat_extract.json''') feat_extract_first.to_json_file(lowercase__) __UpperCAmelCase : str = self.feature_extraction_class.from_json_file(lowercase__) __UpperCAmelCase : Any = feat_extract_first.to_dict() __UpperCAmelCase : Union[str, Any] = feat_extract_second.to_dict() __UpperCAmelCase : Tuple = dict_first.pop('''mel_filters''') __UpperCAmelCase : List[str] = dict_second.pop('''mel_filters''') self.assertTrue(np.allclose(lowercase__ , lowercase__)) self.assertEqual(lowercase__ , lowercase__) def A( self): # Initialize feature_extractor __UpperCAmelCase : Optional[int] = self.feature_extraction_class(**self.feat_extract_dict) # create three inputs of length 800, 1000, and 1200 __UpperCAmelCase : Optional[int] = [floats_list((1, x))[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0)] __UpperCAmelCase : int = [np.asarray(lowercase__) for speech_input in speech_inputs] # Test not batched input __UpperCAmelCase : Dict = feature_extractor(np_speech_inputs[0] , return_tensors='''np''' , sampling_rate=4_4_1_0_0).audio_values self.assertTrue(encoded_audios.ndim == 4) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels) # Test batched __UpperCAmelCase : List[str] = feature_extractor(lowercase__ , return_tensors='''np''' , sampling_rate=4_4_1_0_0).audio_values self.assertTrue(encoded_audios.ndim == 4) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels) # Test audio masking __UpperCAmelCase : Tuple = feature_extractor( lowercase__ , return_tensors='''np''' , sampling_rate=4_4_1_0_0 , mask_audio=lowercase__).audio_values self.assertTrue(encoded_audios.ndim == 4) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels) # Test 2-D numpy arrays are batched. __UpperCAmelCase : Any = [floats_list((1, x))[0] for x in (8_0_0, 8_0_0, 8_0_0)] __UpperCAmelCase : Optional[Any] = np.asarray(lowercase__) __UpperCAmelCase : Tuple = feature_extractor(lowercase__ , return_tensors='''np''' , sampling_rate=4_4_1_0_0).audio_values self.assertTrue(encoded_audios.ndim == 4) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels) def A( self , lowercase__): __UpperCAmelCase : Optional[int] = load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''') # automatic decoding with librispeech __UpperCAmelCase : int = ds.sort('''id''').select(range(lowercase__))[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] def A( self): __UpperCAmelCase : Optional[Any] = self._load_datasamples(1) __UpperCAmelCase : Tuple = TvltFeatureExtractor() __UpperCAmelCase : Tuple = feature_extractor(lowercase__ , return_tensors='''pt''').audio_values self.assertEquals(audio_values.shape , (1, 1, 1_9_2, 1_2_8)) __UpperCAmelCase : int = torch.tensor([[-0.3_0_3_2, -0.2_7_0_8], [-0.4_4_3_4, -0.4_0_0_7]]) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] , lowercase__ , atol=1e-4))
462
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { """andreasmadsen/efficient_mlm_m0.40""": ( """https://huggingface.co/andreasmadsen/efficient_mlm_m0.40/resolve/main/config.json""" ), } class A_(SCREAMING_SNAKE_CASE_ ): """simple docstring""" a_ : int = """roberta-prelayernorm""" def __init__( self , A=5_0265 , A=768 , A=12 , A=12 , A=3072 , A="gelu" , A=0.1 , A=0.1 , A=512 , A=2 , A=0.0_2 , A=1E-12 , A=1 , A=0 , A=2 , A="absolute" , A=True , A=None , **A , ): super().__init__(pad_token_id=A , bos_token_id=A , eos_token_id=A , **A ) _lowerCamelCase : Any = vocab_size _lowerCamelCase : str = hidden_size _lowerCamelCase : List[Any] = num_hidden_layers _lowerCamelCase : Dict = num_attention_heads _lowerCamelCase : Optional[int] = hidden_act _lowerCamelCase : Tuple = intermediate_size _lowerCamelCase : Any = hidden_dropout_prob _lowerCamelCase : str = attention_probs_dropout_prob _lowerCamelCase : Union[str, Any] = max_position_embeddings _lowerCamelCase : int = type_vocab_size _lowerCamelCase : Dict = initializer_range _lowerCamelCase : int = layer_norm_eps _lowerCamelCase : List[str] = position_embedding_type _lowerCamelCase : Any = use_cache _lowerCamelCase : Tuple = classifier_dropout class A_(SCREAMING_SNAKE_CASE_ ): """simple docstring""" @property def _lowerCAmelCase ( self ): if self.task == "multiple-choice": _lowerCamelCase : Tuple = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _lowerCamelCase : Dict = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
718
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class A_(SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" a_ : Optional[int] = ShapEImgaImgPipeline a_ : Union[str, Any] = ["""image"""] a_ : Union[str, Any] = ["""image"""] a_ : Optional[Any] = [ """num_images_per_prompt""", """num_inference_steps""", """generator""", """latents""", """guidance_scale""", """frame_size""", """output_type""", """return_dict""", ] a_ : int = False @property def _lowerCAmelCase ( self ): return 32 @property def _lowerCAmelCase ( self ): return 32 @property def _lowerCAmelCase ( self ): return self.time_input_dim * 4 @property def _lowerCAmelCase ( self ): return 8 @property def _lowerCAmelCase ( self ): torch.manual_seed(0 ) _lowerCamelCase : int = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) _lowerCamelCase : int = CLIPVisionModel(A ) return model @property def _lowerCAmelCase ( self ): _lowerCamelCase : str = CLIPImageProcessor( crop_size=224 , do_center_crop=A , do_normalize=A , do_resize=A , image_mean=[0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] , image_std=[0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] , resample=3 , size=224 , ) return image_processor @property def _lowerCAmelCase ( self ): torch.manual_seed(0 ) _lowerCamelCase : Union[str, Any] = { 'num_attention_heads': 2, 'attention_head_dim': 16, 'embedding_dim': self.time_input_dim, 'num_embeddings': 32, 'embedding_proj_dim': self.text_embedder_hidden_size, 'time_embed_dim': self.time_embed_dim, 'num_layers': 1, 'clip_embed_dim': self.time_input_dim * 2, 'additional_embeddings': 0, 'time_embed_act_fn': 'gelu', 'norm_in_type': 'layer', 'embedding_proj_norm_type': 'layer', 'encoder_hid_proj_type': None, 'added_emb_type': None, } _lowerCamelCase : Optional[Any] = PriorTransformer(**A ) return model @property def _lowerCAmelCase ( self ): torch.manual_seed(0 ) _lowerCamelCase : Tuple = { 'param_shapes': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), 'd_latent': self.time_input_dim, 'd_hidden': self.renderer_dim, 'n_output': 12, 'background': ( 0.1, 0.1, 0.1, ), } _lowerCamelCase : Any = ShapERenderer(**A ) return model def _lowerCAmelCase ( self ): _lowerCamelCase : Tuple = self.dummy_prior _lowerCamelCase : Union[str, Any] = self.dummy_image_encoder _lowerCamelCase : Optional[int] = self.dummy_image_processor _lowerCamelCase : str = self.dummy_renderer _lowerCamelCase : List[Any] = HeunDiscreteScheduler( beta_schedule='exp' , num_train_timesteps=1024 , prediction_type='sample' , use_karras_sigmas=A , clip_sample=A , clip_sample_range=1.0 , ) _lowerCamelCase : List[str] = { 'prior': prior, 'image_encoder': image_encoder, 'image_processor': image_processor, 'renderer': renderer, 'scheduler': scheduler, } return components def _lowerCAmelCase ( self , A , A=0 ): _lowerCamelCase : Any = floats_tensor((1, 3, 64, 64) , rng=random.Random(A ) ).to(A ) if str(A ).startswith('mps' ): _lowerCamelCase : Any = torch.manual_seed(A ) else: _lowerCamelCase : Union[str, Any] = torch.Generator(device=A ).manual_seed(A ) _lowerCamelCase : Optional[int] = { 'image': input_image, 'generator': generator, 'num_inference_steps': 1, 'frame_size': 32, 'output_type': 'np', } return inputs def _lowerCAmelCase ( self ): _lowerCamelCase : int = 'cpu' _lowerCamelCase : Union[str, Any] = self.get_dummy_components() _lowerCamelCase : int = self.pipeline_class(**A ) _lowerCamelCase : Tuple = pipe.to(A ) pipe.set_progress_bar_config(disable=A ) _lowerCamelCase : Optional[Any] = pipe(**self.get_dummy_inputs(A ) ) _lowerCamelCase : Tuple = output.images[0] _lowerCamelCase : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) _lowerCamelCase : List[Any] = np.array( [ 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _lowerCAmelCase ( self ): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def _lowerCAmelCase ( self ): _lowerCamelCase : List[Any] = torch_device == 'cpu' _lowerCamelCase : Optional[int] = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=A , relax_max_difference=A , ) def _lowerCAmelCase ( self ): _lowerCamelCase : str = self.get_dummy_components() _lowerCamelCase : int = self.pipeline_class(**A ) _lowerCamelCase : Union[str, Any] = pipe.to(A ) pipe.set_progress_bar_config(disable=A ) _lowerCamelCase : List[Any] = 1 _lowerCamelCase : Tuple = 2 _lowerCamelCase : Union[str, Any] = self.get_dummy_inputs(A ) for key in inputs.keys(): if key in self.batch_params: _lowerCamelCase : List[Any] = batch_size * [inputs[key]] _lowerCamelCase : int = pipe(**A , num_images_per_prompt=A )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class A_(unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCAmelCase ( self ): _lowerCamelCase : List[str] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/shap_e/corgi.png' ) _lowerCamelCase : str = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/shap_e/test_shap_e_img2img_out.npy' ) _lowerCamelCase : List[str] = ShapEImgaImgPipeline.from_pretrained('openai/shap-e-img2img' ) _lowerCamelCase : Optional[Any] = pipe.to(A ) pipe.set_progress_bar_config(disable=A ) _lowerCamelCase : Dict = torch.Generator(device=A ).manual_seed(0 ) _lowerCamelCase : List[Any] = pipe( A , generator=A , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type='np' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(A , A )
349
0
import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class snake_case_ : '''simple docstring''' def __init__( self : Union[str, Any] , _UpperCamelCase : str , _UpperCamelCase : List[Any]=2 , _UpperCamelCase : Tuple=3 , _UpperCamelCase : Union[str, Any]=4 , _UpperCamelCase : Optional[Any]=2 , _UpperCamelCase : Any=7 , _UpperCamelCase : int=True , _UpperCamelCase : Any=True , _UpperCamelCase : Tuple=True , _UpperCamelCase : Optional[int]=True , _UpperCamelCase : Any=9_9 , _UpperCamelCase : int=3_6 , _UpperCamelCase : str=3 , _UpperCamelCase : str=4 , _UpperCamelCase : List[str]=3_7 , _UpperCamelCase : Optional[int]="gelu" , _UpperCamelCase : Dict=0.1 , _UpperCamelCase : Optional[int]=0.1 , _UpperCamelCase : Dict=5_1_2 , _UpperCamelCase : str=1_6 , _UpperCamelCase : Optional[int]=2 , _UpperCamelCase : int=0.02 , _UpperCamelCase : Any=6 , _UpperCamelCase : Optional[Any]=6 , _UpperCamelCase : Optional[int]=3 , _UpperCamelCase : Any=4 , _UpperCamelCase : List[Any]=None , _UpperCamelCase : List[Any]=1_0_0_0 , ) ->Dict: snake_case_ = parent snake_case_ = batch_size snake_case_ = num_channels snake_case_ = image_size snake_case_ = patch_size snake_case_ = text_seq_length snake_case_ = is_training snake_case_ = use_input_mask snake_case_ = use_token_type_ids snake_case_ = use_labels snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = max_position_embeddings snake_case_ = type_vocab_size snake_case_ = type_sequence_label_size snake_case_ = initializer_range snake_case_ = coordinate_size snake_case_ = shape_size snake_case_ = num_labels snake_case_ = num_choices snake_case_ = scope snake_case_ = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) snake_case_ = text_seq_length snake_case_ = (image_size // patch_size) ** 2 + 1 snake_case_ = self.text_seq_length + self.image_seq_length def snake_case__( self : str ) ->Optional[Any]: snake_case_ = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) snake_case_ = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: snake_case_ = bbox[i, j, 3] snake_case_ = bbox[i, j, 1] snake_case_ = t if bbox[i, j, 2] < bbox[i, j, 0]: snake_case_ = bbox[i, j, 2] snake_case_ = bbox[i, j, 0] snake_case_ = t snake_case_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case_ = None if self.use_input_mask: snake_case_ = random_attention_mask([self.batch_size, self.text_seq_length] ) snake_case_ = None if self.use_token_type_ids: snake_case_ = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) snake_case_ = None snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) snake_case_ = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def snake_case__( self : Optional[int] , _UpperCamelCase : Dict , _UpperCamelCase : List[Any] , _UpperCamelCase : Optional[int] , _UpperCamelCase : List[str] , _UpperCamelCase : Any , _UpperCamelCase : Dict , _UpperCamelCase : Optional[Any] , _UpperCamelCase : int ) ->Any: snake_case_ = LayoutLMvaModel(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() # text + image snake_case_ = model(_UpperCamelCase , pixel_values=_UpperCamelCase ) snake_case_ = model( _UpperCamelCase , bbox=_UpperCamelCase , pixel_values=_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase ) snake_case_ = model(_UpperCamelCase , bbox=_UpperCamelCase , pixel_values=_UpperCamelCase , token_type_ids=_UpperCamelCase ) snake_case_ = model(_UpperCamelCase , bbox=_UpperCamelCase , pixel_values=_UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only snake_case_ = model(_UpperCamelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only snake_case_ = model(pixel_values=_UpperCamelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def snake_case__( self : List[Any] , _UpperCamelCase : Dict , _UpperCamelCase : Any , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Tuple , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : List[str] , _UpperCamelCase : str ) ->Dict: snake_case_ = self.num_labels snake_case_ = LayoutLMvaForSequenceClassification(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() snake_case_ = model( _UpperCamelCase , bbox=_UpperCamelCase , pixel_values=_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , labels=_UpperCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case__( self : Tuple , _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Optional[int] , _UpperCamelCase : int , _UpperCamelCase : List[str] , _UpperCamelCase : List[Any] , _UpperCamelCase : List[str] ) ->List[Any]: snake_case_ = self.num_labels snake_case_ = LayoutLMvaForTokenClassification(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() snake_case_ = model( _UpperCamelCase , bbox=_UpperCamelCase , pixel_values=_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , labels=_UpperCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def snake_case__( self : Any , _UpperCamelCase : List[str] , _UpperCamelCase : Dict , _UpperCamelCase : List[Any] , _UpperCamelCase : str , _UpperCamelCase : List[Any] , _UpperCamelCase : Optional[int] , _UpperCamelCase : Optional[int] , _UpperCamelCase : Any ) ->Any: snake_case_ = LayoutLMvaForQuestionAnswering(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() snake_case_ = model( _UpperCamelCase , bbox=_UpperCamelCase , pixel_values=_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , start_positions=_UpperCamelCase , end_positions=_UpperCamelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def snake_case__( self : List[str] ) ->List[str]: snake_case_ = self.prepare_config_and_inputs() ( ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ) = config_and_inputs snake_case_ = { '''input_ids''': input_ids, '''bbox''': bbox, '''pixel_values''': pixel_values, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class snake_case_ ( __A , __A , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = False SCREAMING_SNAKE_CASE : Any = False SCREAMING_SNAKE_CASE : Optional[Any] = False SCREAMING_SNAKE_CASE : Any = ( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE : List[Any] = ( {"document-question-answering": LayoutLMvaForQuestionAnswering, "feature-extraction": LayoutLMvaModel} if is_torch_available() else {} ) def snake_case__( self : Any , _UpperCamelCase : Optional[Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Any , _UpperCamelCase : List[str] ) ->int: # `DocumentQuestionAnsweringPipeline` is expected to work with this model, but it combines the text and visual # embedding along the sequence dimension (dim 1), which causes an error during post-processing as `p_mask` has # the sequence dimension of the text embedding only. # (see the line `embedding_output = torch.cat([embedding_output, visual_embeddings], dim=1)`) return True def snake_case__( self : Union[str, Any] ) ->Any: snake_case_ = LayoutLMvaModelTester(self ) snake_case_ = ConfigTester(self , config_class=_UpperCamelCase , hidden_size=3_7 ) def snake_case__( self : List[str] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Optional[int] , _UpperCamelCase : int=False ) ->List[str]: snake_case_ = copy.deepcopy(_UpperCamelCase ) if model_class in get_values(_UpperCamelCase ): snake_case_ = { k: v.unsqueeze(1 ).expand(-1 , self.model_tester.num_choices , -1 ).contiguous() if isinstance(_UpperCamelCase , torch.Tensor ) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(_UpperCamelCase ): snake_case_ = torch.ones(self.model_tester.batch_size , dtype=torch.long , device=_UpperCamelCase ) elif model_class in get_values(_UpperCamelCase ): snake_case_ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_UpperCamelCase ) snake_case_ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_UpperCamelCase ) elif model_class in [ *get_values(_UpperCamelCase ), ]: snake_case_ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_UpperCamelCase ) elif model_class in [ *get_values(_UpperCamelCase ), ]: snake_case_ = torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=torch.long , device=_UpperCamelCase , ) return inputs_dict def snake_case__( self : Tuple ) ->List[str]: self.config_tester.run_common_tests() def snake_case__( self : Any ) ->Optional[int]: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCamelCase ) def snake_case__( self : int ) ->Optional[int]: snake_case_ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: snake_case_ = type self.model_tester.create_and_check_model(*_UpperCamelCase ) def snake_case__( self : Union[str, Any] ) ->str: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_UpperCamelCase ) def snake_case__( self : Optional[Any] ) ->Any: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_UpperCamelCase ) def snake_case__( self : str ) ->Optional[Any]: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_UpperCamelCase ) @slow def snake_case__( self : Tuple ) ->Optional[Any]: for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ = LayoutLMvaModel.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) def __SCREAMING_SNAKE_CASE (): snake_case_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch class snake_case_ ( unittest.TestCase ): '''simple docstring''' @cached_property def snake_case__( self : Optional[int] ) ->str: return LayoutLMvaImageProcessor(apply_ocr=_UpperCamelCase ) if is_vision_available() else None @slow def snake_case__( self : Dict ) ->int: snake_case_ = LayoutLMvaModel.from_pretrained('''microsoft/layoutlmv3-base''' ).to(_UpperCamelCase ) snake_case_ = self.default_image_processor snake_case_ = prepare_img() snake_case_ = image_processor(images=_UpperCamelCase , return_tensors='''pt''' ).pixel_values.to(_UpperCamelCase ) snake_case_ = torch.tensor([[1, 2]] ) snake_case_ = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 ) # forward pass snake_case_ = model( input_ids=input_ids.to(_UpperCamelCase ) , bbox=bbox.to(_UpperCamelCase ) , pixel_values=pixel_values.to(_UpperCamelCase ) , ) # verify the logits snake_case_ = torch.Size((1, 1_9_9, 7_6_8) ) self.assertEqual(outputs.last_hidden_state.shape , _UpperCamelCase ) snake_case_ = torch.tensor( [[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] ).to(_UpperCamelCase ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , _UpperCamelCase , atol=1e-4 ) )
39
"""simple docstring""" import operator def snake_case ( lowerCAmelCase_ , lowerCAmelCase_ = False , lowerCAmelCase_ = None ) -> list: _snake_case = operator.lt if reverse else operator.gt _snake_case = solution or [] if not arr: return solution _snake_case = [arr.pop(0 )] for i, item in enumerate(lowerCAmelCase_ ): if _operator(lowerCAmelCase_ , sublist[-1] ): sublist.append(lowerCAmelCase_ ) arr.pop(lowerCAmelCase_ ) # merging sublist into solution list if not solution: solution.extend(lowerCAmelCase_ ) else: while sublist: _snake_case = sublist.pop(0 ) for i, xx in enumerate(lowerCAmelCase_ ): if not _operator(lowerCAmelCase_ , lowerCAmelCase_ ): solution.insert(lowerCAmelCase_ , lowerCAmelCase_ ) break else: solution.append(lowerCAmelCase_ ) strand_sort(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) return solution if __name__ == "__main__": assert strand_sort([4, 3, 5, 1, 2]) == [1, 2, 3, 4, 5] assert strand_sort([4, 3, 5, 1, 2], reverse=True) == [5, 4, 3, 2, 1]
103
0
import unittest from transformers.testing_utils import CaptureStdout from transformers.tools.python_interpreter import evaluate def __lowercase( __snake_case : Union[str, Any] ) -> Union[str, Any]: return x + 2 class _lowerCamelCase (unittest.TestCase ): def __lowerCamelCase ( self ): __snake_case = 'x = 3' __snake_case = {} __snake_case = evaluate(SCREAMING_SNAKE_CASE_ , {} , state=SCREAMING_SNAKE_CASE_ ) assert result == 3 self.assertDictEqual(SCREAMING_SNAKE_CASE_ , {'x': 3} ) __snake_case = 'x = y' __snake_case = {'y': 5} __snake_case = evaluate(SCREAMING_SNAKE_CASE_ , {} , state=SCREAMING_SNAKE_CASE_ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(SCREAMING_SNAKE_CASE_ , {'x': 5, 'y': 5} ) def __lowerCamelCase ( self ): __snake_case = 'y = add_two(x)' __snake_case = {'x': 3} __snake_case = evaluate(SCREAMING_SNAKE_CASE_ , {'add_two': add_two} , state=SCREAMING_SNAKE_CASE_ ) assert result == 5 self.assertDictEqual(SCREAMING_SNAKE_CASE_ , {'x': 3, 'y': 5} ) # Won't work without the tool with CaptureStdout() as out: __snake_case = evaluate(SCREAMING_SNAKE_CASE_ , {} , state=SCREAMING_SNAKE_CASE_ ) assert result is None assert "tried to execute add_two" in out.out def __lowerCamelCase ( self ): __snake_case = 'x = 3' __snake_case = {} __snake_case = evaluate(SCREAMING_SNAKE_CASE_ , {} , state=SCREAMING_SNAKE_CASE_ ) assert result == 3 self.assertDictEqual(SCREAMING_SNAKE_CASE_ , {'x': 3} ) def __lowerCamelCase ( self ): __snake_case = 'test_dict = {\'x\': x, \'y\': add_two(x)}' __snake_case = {'x': 3} __snake_case = evaluate(SCREAMING_SNAKE_CASE_ , {'add_two': add_two} , state=SCREAMING_SNAKE_CASE_ ) self.assertDictEqual(SCREAMING_SNAKE_CASE_ , {'x': 3, 'y': 5} ) self.assertDictEqual(SCREAMING_SNAKE_CASE_ , {'x': 3, 'test_dict': {'x': 3, 'y': 5}} ) def __lowerCamelCase ( self ): __snake_case = 'x = 3\ny = 5' __snake_case = {} __snake_case = evaluate(SCREAMING_SNAKE_CASE_ , {} , state=SCREAMING_SNAKE_CASE_ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(SCREAMING_SNAKE_CASE_ , {'x': 3, 'y': 5} ) def __lowerCamelCase ( self ): __snake_case = 'text = f\'This is x: {x}.\'' __snake_case = {'x': 3} __snake_case = evaluate(SCREAMING_SNAKE_CASE_ , {} , state=SCREAMING_SNAKE_CASE_ ) # evaluate returns the value of the last assignment. assert result == "This is x: 3." self.assertDictEqual(SCREAMING_SNAKE_CASE_ , {'x': 3, 'text': 'This is x: 3.'} ) def __lowerCamelCase ( self ): __snake_case = 'if x <= 3:\n y = 2\nelse:\n y = 5' __snake_case = {'x': 3} __snake_case = evaluate(SCREAMING_SNAKE_CASE_ , {} , state=SCREAMING_SNAKE_CASE_ ) # evaluate returns the value of the last assignment. assert result == 2 self.assertDictEqual(SCREAMING_SNAKE_CASE_ , {'x': 3, 'y': 2} ) __snake_case = {'x': 8} __snake_case = evaluate(SCREAMING_SNAKE_CASE_ , {} , state=SCREAMING_SNAKE_CASE_ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(SCREAMING_SNAKE_CASE_ , {'x': 8, 'y': 5} ) def __lowerCamelCase ( self ): __snake_case = 'test_list = [x, add_two(x)]' __snake_case = {'x': 3} __snake_case = evaluate(SCREAMING_SNAKE_CASE_ , {'add_two': add_two} , state=SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , [3, 5] ) self.assertDictEqual(SCREAMING_SNAKE_CASE_ , {'x': 3, 'test_list': [3, 5]} ) def __lowerCamelCase ( self ): __snake_case = 'y = x' __snake_case = {'x': 3} __snake_case = evaluate(SCREAMING_SNAKE_CASE_ , {} , state=SCREAMING_SNAKE_CASE_ ) assert result == 3 self.assertDictEqual(SCREAMING_SNAKE_CASE_ , {'x': 3, 'y': 3} ) def __lowerCamelCase ( self ): __snake_case = 'test_list = [x, add_two(x)]\ntest_list[1]' __snake_case = {'x': 3} __snake_case = evaluate(SCREAMING_SNAKE_CASE_ , {'add_two': add_two} , state=SCREAMING_SNAKE_CASE_ ) assert result == 5 self.assertDictEqual(SCREAMING_SNAKE_CASE_ , {'x': 3, 'test_list': [3, 5]} ) __snake_case = 'test_dict = {\'x\': x, \'y\': add_two(x)}\ntest_dict[\'y\']' __snake_case = {'x': 3} __snake_case = evaluate(SCREAMING_SNAKE_CASE_ , {'add_two': add_two} , state=SCREAMING_SNAKE_CASE_ ) assert result == 5 self.assertDictEqual(SCREAMING_SNAKE_CASE_ , {'x': 3, 'test_dict': {'x': 3, 'y': 5}} ) def __lowerCamelCase ( self ): __snake_case = 'x = 0\nfor i in range(3):\n x = i' __snake_case = {} __snake_case = evaluate(SCREAMING_SNAKE_CASE_ , {'range': range} , state=SCREAMING_SNAKE_CASE_ ) assert result == 2 self.assertDictEqual(SCREAMING_SNAKE_CASE_ , {'x': 2, 'i': 2} )
345
from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
345
1
"""simple docstring""" def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' print("\nThe shortest path matrix using Floyd Warshall algorithm\n" ) for i in range(_a ): for j in range(_a ): if dist[i][j] != float("inf" ): print(int(dist[i][j] ) , end="\t" ) else: print("INF" , end="\t" ) print() def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = [[float("inf" ) for _ in range(_a )] for _ in range(_a )] for i in range(_a ): for j in range(_a ): __SCREAMING_SNAKE_CASE = graph[i][j] # check vertex k against all other vertices (i, j) for k in range(_a ): # looping through rows of graph array for i in range(_a ): # looping through columns of graph array for j in range(_a ): if ( dist[i][k] != float("inf" ) and dist[k][j] != float("inf" ) and dist[i][k] + dist[k][j] < dist[i][j] ): __SCREAMING_SNAKE_CASE = dist[i][k] + dist[k][j] _print_dist(_a , _a ) return dist, v if __name__ == "__main__": a__ : List[str] = int(input('''Enter number of vertices: ''')) a__ : Any = int(input('''Enter number of edges: ''')) a__ : Tuple = [[float('''inf''') for i in range(v)] for j in range(v)] for i in range(v): a__ : List[Any] = 0.0 # src and dst are indices that must be within the array size graph[e][v] # failure to follow this will result in an error for i in range(e): print('''\nEdge ''', i + 1) a__ : int = int(input('''Enter source:''')) a__ : Any = int(input('''Enter destination:''')) a__ : List[str] = float(input('''Enter weight:''')) a__ : Any = weight floyd_warshall(graph, v) # Example Input # Enter number of vertices: 3 # Enter number of edges: 2 # # generated graph from vertex and edge inputs # [[inf, inf, inf], [inf, inf, inf], [inf, inf, inf]] # [[0.0, inf, inf], [inf, 0.0, inf], [inf, inf, 0.0]] # specify source, destination and weight for edge #1 # Edge 1 # Enter source:1 # Enter destination:2 # Enter weight:2 # specify source, destination and weight for edge #2 # Edge 2 # Enter source:2 # Enter destination:1 # Enter weight:1 # # Expected Output from the vertice, edge and src, dst, weight inputs!! # 0 INF INF # INF 0 2 # INF 1 0
682
"""simple docstring""" import os import unittest from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer from transformers.testing_utils import get_tests_dir from ...test_tokenization_common import TokenizerTesterMixin UpperCAmelCase =get_tests_dir("fixtures/test_sentencepiece_bpe.model") class lowerCamelCase__ ( SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' _lowerCamelCase = BartphoTokenizer _lowerCamelCase = False _lowerCamelCase = True def UpperCamelCase__ ( self ) -> str: super().setUp() A = ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] A = dict(zip(lowerCamelCase_ ,range(len(lowerCamelCase_ ) ) ) ) A = {"""unk_token""": """<unk>"""} A = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""monolingual_vocab_file"""] ) with open(self.monolingual_vocab_file ,"""w""" ,encoding="""utf-8""" ) as fp: for token in vocab_tokens: fp.write(f'{token} {vocab_tokens[token]}\n' ) A = BartphoTokenizer(lowerCamelCase_ ,self.monolingual_vocab_file ,**self.special_tokens_map ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase__ ( self ,**lowerCamelCase_ ) -> Tuple: kwargs.update(self.special_tokens_map ) return BartphoTokenizer.from_pretrained(self.tmpdirname ,**lowerCamelCase_ ) def UpperCamelCase__ ( self ,lowerCamelCase_ ) -> Optional[Any]: A = """This is a là test""" A = """This is a<unk><unk> test""" return input_text, output_text def UpperCamelCase__ ( self ) -> int: A = BartphoTokenizer(lowerCamelCase_ ,self.monolingual_vocab_file ,**self.special_tokens_map ) A = """This is a là test""" A = """▁This ▁is ▁a ▁l à ▁t est""".split() A = tokenizer.tokenize(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ ,lowerCamelCase_ ) A = tokens + [tokenizer.unk_token] A = [4, 5, 6, 3, 3, 7, 8, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) ,lowerCamelCase_ )
617
0
import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _A( snake_case__ , unittest.TestCase ): """simple docstring""" UpperCamelCase : Tuple = DanceDiffusionPipeline UpperCamelCase : Tuple = UNCONDITIONAL_AUDIO_GENERATION_PARAMS UpperCamelCase : Optional[int] = PipelineTesterMixin.required_optional_params - { '''callback''', '''latents''', '''callback_steps''', '''output_type''', '''num_images_per_prompt''', } UpperCamelCase : Tuple = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS UpperCamelCase : Dict = False UpperCamelCase : Optional[Any] = False def UpperCAmelCase_ ( self ): torch.manual_seed(0 ) __A : Tuple = UNetaDModel( block_out_channels=(32, 32, 64) , extra_in_channels=16 , sample_size=512 , sample_rate=16000 , in_channels=2 , out_channels=2 , flip_sin_to_cos=__UpperCamelCase , use_timestep_embedding=__UpperCamelCase , time_embedding_type='fourier' , mid_block_type='UNetMidBlock1D' , down_block_types=('DownBlock1DNoSkip', 'DownBlock1D', 'AttnDownBlock1D') , up_block_types=('AttnUpBlock1D', 'UpBlock1D', 'UpBlock1DNoSkip') , ) __A : int = IPNDMScheduler() __A : int = { 'unet': unet, 'scheduler': scheduler, } return components def UpperCAmelCase_ ( self , _A , _A=0 ): if str(__UpperCamelCase ).startswith('mps' ): __A : str = torch.manual_seed(__UpperCamelCase ) else: __A : Dict = torch.Generator(device=__UpperCamelCase ).manual_seed(__UpperCamelCase ) __A : List[str] = { 'batch_size': 1, 'generator': generator, 'num_inference_steps': 4, } return inputs def UpperCAmelCase_ ( self ): __A : List[Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator __A : List[str] = self.get_dummy_components() __A : str = DanceDiffusionPipeline(**__UpperCamelCase ) __A : List[Any] = pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) __A : List[str] = self.get_dummy_inputs(__UpperCamelCase ) __A : int = pipe(**__UpperCamelCase ) __A : Optional[Any] = output.audios __A : Tuple = audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) __A : List[Any] = np.array([-0.7_2_6_5, 1.0_0_0_0, -0.8_3_8_8, 0.1_1_7_5, 0.9_4_9_8, -1.0_0_0_0] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def UpperCAmelCase_ ( self ): return super().test_save_load_local() @skip_mps def UpperCAmelCase_ ( self ): return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) @skip_mps def UpperCAmelCase_ ( self ): return super().test_save_load_optional_components() @skip_mps def UpperCAmelCase_ ( self ): return super().test_attention_slicing_forward_pass() def UpperCAmelCase_ ( self ): super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class _A( unittest.TestCase ): """simple docstring""" def UpperCAmelCase_ ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase_ ( self ): __A : Optional[Any] = torch_device __A : Optional[int] = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' ) __A : List[Any] = pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) __A : int = torch.manual_seed(0 ) __A : str = pipe(generator=__UpperCamelCase , num_inference_steps=100 , audio_length_in_s=4.0_9_6 ) __A : List[Any] = output.audios __A : str = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) __A : Any = np.array([-0.0_1_9_2, -0.0_2_3_1, -0.0_3_1_8, -0.0_0_5_9, 0.0_0_0_2, -0.0_0_2_0] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCAmelCase_ ( self ): __A : Optional[Any] = torch_device __A : Union[str, Any] = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' , torch_dtype=torch.floataa ) __A : List[str] = pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) __A : Optional[int] = torch.manual_seed(0 ) __A : Dict = pipe(generator=__UpperCamelCase , num_inference_steps=100 , audio_length_in_s=4.0_9_6 ) __A : Union[str, Any] = output.audios __A : str = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) __A : Any = np.array([-0.0_3_6_7, -0.0_4_8_8, -0.0_7_7_1, -0.0_5_2_5, -0.0_4_4_4, -0.0_3_4_1] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2
714
from abc import ABC, abstractmethod from argparse import ArgumentParser class _A( snake_case__ ): """simple docstring""" @staticmethod @abstractmethod def UpperCAmelCase_ ( _A ): raise NotImplementedError() @abstractmethod def UpperCAmelCase_ ( self ): raise NotImplementedError()
77
0
"""simple docstring""" import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() __UpperCamelCase = logging.get_logger(__name__) def lowercase (SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Dict=False ) -> List[str]: SCREAMING_SNAKE_CASE = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'blocks.{i}.norm1.weight', F'vit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((F'blocks.{i}.norm1.bias', F'vit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append((F'blocks.{i}.attn.proj.weight', F'vit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append((F'blocks.{i}.attn.proj.bias', F'vit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((F'blocks.{i}.norm2.weight', F'vit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((F'blocks.{i}.norm2.bias', F'vit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((F'blocks.{i}.mlp.fc1.weight', F'vit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((F'blocks.{i}.mlp.fc1.bias', F'vit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((F'blocks.{i}.mlp.fc2.weight', F'vit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((F'blocks.{i}.mlp.fc2.bias', F'vit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ ('cls_token', 'vit.embeddings.cls_token'), ('patch_embed.proj.weight', 'vit.embeddings.patch_embeddings.projection.weight'), ('patch_embed.proj.bias', 'vit.embeddings.patch_embeddings.projection.bias'), ('pos_embed', 'vit.embeddings.position_embeddings'), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('norm.weight', 'layernorm.weight'), ('norm.bias', 'layernorm.bias'), ('pre_logits.fc.weight', 'pooler.dense.weight'), ('pre_logits.fc.bias', 'pooler.dense.bias'), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" SCREAMING_SNAKE_CASE = [(pair[0], pair[1][4:]) if pair[1].startswith('vit' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('norm.weight', 'vit.layernorm.weight'), ('norm.bias', 'vit.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) return rename_keys def lowercase (SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Optional[Any]=False ) -> Any: for i in range(config.num_hidden_layers ): if base_model: SCREAMING_SNAKE_CASE = '''''' else: SCREAMING_SNAKE_CASE = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) SCREAMING_SNAKE_CASE = state_dict.pop(F'blocks.{i}.attn.qkv.weight' ) SCREAMING_SNAKE_CASE = state_dict.pop(F'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE = in_proj_weight[ : config.hidden_size, : ] SCREAMING_SNAKE_CASE = in_proj_bias[: config.hidden_size] SCREAMING_SNAKE_CASE = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] SCREAMING_SNAKE_CASE = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] SCREAMING_SNAKE_CASE = in_proj_weight[ -config.hidden_size :, : ] SCREAMING_SNAKE_CASE = in_proj_bias[-config.hidden_size :] def lowercase (SCREAMING_SNAKE_CASE_ : Any ) -> List[Any]: SCREAMING_SNAKE_CASE = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def lowercase (SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Tuple: SCREAMING_SNAKE_CASE = dct.pop(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = val def lowercase () -> str: SCREAMING_SNAKE_CASE = '''http://images.cocodataset.org/val2017/000000039769.jpg''' SCREAMING_SNAKE_CASE = Image.open(requests.get(SCREAMING_SNAKE_CASE_ , stream=SCREAMING_SNAKE_CASE_ ).raw ) return im @torch.no_grad() def lowercase (SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : List[str] ) -> Tuple: SCREAMING_SNAKE_CASE = ViTConfig() SCREAMING_SNAKE_CASE = False # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size if vit_name[-5:] == "in21k": SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = int(vit_name[-12:-10] ) SCREAMING_SNAKE_CASE = int(vit_name[-9:-6] ) else: SCREAMING_SNAKE_CASE = 10_00 SCREAMING_SNAKE_CASE = '''huggingface/label-files''' SCREAMING_SNAKE_CASE = '''imagenet-1k-id2label.json''' SCREAMING_SNAKE_CASE = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , repo_type='dataset' ) , 'r' ) ) SCREAMING_SNAKE_CASE = {int(SCREAMING_SNAKE_CASE_ ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE = idalabel SCREAMING_SNAKE_CASE = {v: k for k, v in idalabel.items()} SCREAMING_SNAKE_CASE = int(vit_name[-6:-4] ) SCREAMING_SNAKE_CASE = int(vit_name[-3:] ) # size of the architecture if "deit" in vit_name: if vit_name[9:].startswith('tiny' ): SCREAMING_SNAKE_CASE = 1_92 SCREAMING_SNAKE_CASE = 7_68 SCREAMING_SNAKE_CASE = 12 SCREAMING_SNAKE_CASE = 3 elif vit_name[9:].startswith('small' ): SCREAMING_SNAKE_CASE = 3_84 SCREAMING_SNAKE_CASE = 15_36 SCREAMING_SNAKE_CASE = 12 SCREAMING_SNAKE_CASE = 6 else: pass else: if vit_name[4:].startswith('small' ): SCREAMING_SNAKE_CASE = 7_68 SCREAMING_SNAKE_CASE = 23_04 SCREAMING_SNAKE_CASE = 8 SCREAMING_SNAKE_CASE = 8 elif vit_name[4:].startswith('base' ): pass elif vit_name[4:].startswith('large' ): SCREAMING_SNAKE_CASE = 10_24 SCREAMING_SNAKE_CASE = 40_96 SCREAMING_SNAKE_CASE = 24 SCREAMING_SNAKE_CASE = 16 elif vit_name[4:].startswith('huge' ): SCREAMING_SNAKE_CASE = 12_80 SCREAMING_SNAKE_CASE = 51_20 SCREAMING_SNAKE_CASE = 32 SCREAMING_SNAKE_CASE = 16 # load original model from timm SCREAMING_SNAKE_CASE = timm.create_model(SCREAMING_SNAKE_CASE_ , pretrained=SCREAMING_SNAKE_CASE_ ) timm_model.eval() # load state_dict of original model, remove and rename some keys SCREAMING_SNAKE_CASE = timm_model.state_dict() if base_model: remove_classification_head_(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = create_rename_keys(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for src, dest in rename_keys: rename_key(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) read_in_q_k_v(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # load HuggingFace model if vit_name[-5:] == "in21k": SCREAMING_SNAKE_CASE = ViTModel(SCREAMING_SNAKE_CASE_ ).eval() else: SCREAMING_SNAKE_CASE = ViTForImageClassification(SCREAMING_SNAKE_CASE_ ).eval() model.load_state_dict(SCREAMING_SNAKE_CASE_ ) # Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor if "deit" in vit_name: SCREAMING_SNAKE_CASE = DeiTImageProcessor(size=config.image_size ) else: SCREAMING_SNAKE_CASE = ViTImageProcessor(size=config.image_size ) SCREAMING_SNAKE_CASE = image_processor(images=prepare_img() , return_tensors='pt' ) SCREAMING_SNAKE_CASE = encoding['''pixel_values'''] SCREAMING_SNAKE_CASE = model(SCREAMING_SNAKE_CASE_ ) if base_model: SCREAMING_SNAKE_CASE = timm_model.forward_features(SCREAMING_SNAKE_CASE_ ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(SCREAMING_SNAKE_CASE_ , outputs.pooler_output , atol=1E-3 ) else: SCREAMING_SNAKE_CASE = timm_model(SCREAMING_SNAKE_CASE_ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(SCREAMING_SNAKE_CASE_ , outputs.logits , atol=1E-3 ) Path(SCREAMING_SNAKE_CASE_ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE_ ) print(F'Saving model {vit_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--vit_name''', default='''vit_base_patch16_224''', type=str, help='''Name of the ViT timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) __UpperCamelCase = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
247
"""simple docstring""" import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def UpperCAmelCase ( snake_case : BertModel , snake_case : str , snake_case : str ): _lowerCAmelCase:Dict = ('''dense.weight''', '''attention.self.query''', '''attention.self.key''', '''attention.self.value''') _lowerCAmelCase:Optional[int] = ( ('''layer.''', '''layer_'''), ('''word_embeddings.weight''', '''word_embeddings'''), ('''position_embeddings.weight''', '''position_embeddings'''), ('''token_type_embeddings.weight''', '''token_type_embeddings'''), ('''.''', '''/'''), ('''LayerNorm/weight''', '''LayerNorm/gamma'''), ('''LayerNorm/bias''', '''LayerNorm/beta'''), ('''weight''', '''kernel'''), ) if not os.path.isdir(snake_case ): os.makedirs(snake_case ) _lowerCAmelCase:Dict = model.state_dict() def to_tf_var_name(snake_case : str ): for patt, repl in iter(snake_case ): _lowerCAmelCase:Any = name.replace(snake_case , snake_case ) return F'bert/{name}' def create_tf_var(snake_case : np.ndarray , snake_case : str , snake_case : tf.Session ): _lowerCAmelCase:Optional[Any] = tf.dtypes.as_dtype(tensor.dtype ) _lowerCAmelCase:Any = tf.get_variable(dtype=snake_case , shape=tensor.shape , name=snake_case , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(snake_case ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: _lowerCAmelCase:List[str] = to_tf_var_name(snake_case ) _lowerCAmelCase:int = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): _lowerCAmelCase:int = torch_tensor.T _lowerCAmelCase:int = create_tf_var(tensor=snake_case , name=snake_case , session=snake_case ) tf.keras.backend.set_value(snake_case , snake_case ) _lowerCAmelCase:Any = session.run(snake_case ) print(F'Successfully created {tf_name}: {np.allclose(snake_case , snake_case )}' ) _lowerCAmelCase:Optional[Any] = tf.train.Saver(tf.trainable_variables() ) saver.save(snake_case , os.path.join(snake_case , model_name.replace('''-''' , '''_''' ) + '''.ckpt''' ) ) def UpperCAmelCase ( snake_case : Optional[int]=None ): _lowerCAmelCase:Optional[Any] = argparse.ArgumentParser() parser.add_argument('''--model_name''' , type=snake_case , required=snake_case , help='''model name e.g. bert-base-uncased''' ) parser.add_argument( '''--cache_dir''' , type=snake_case , default=snake_case , required=snake_case , help='''Directory containing pytorch model''' ) parser.add_argument('''--pytorch_model_path''' , type=snake_case , required=snake_case , help='''/path/to/<pytorch-model-name>.bin''' ) parser.add_argument('''--tf_cache_dir''' , type=snake_case , required=snake_case , help='''Directory in which to save tensorflow model''' ) _lowerCAmelCase:Tuple = parser.parse_args(snake_case ) _lowerCAmelCase:Union[str, Any] = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=snake_case , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
227
0
'''simple docstring''' _snake_case : Dict = { """A""": """.-""", """B""": """-...""", """C""": """-.-.""", """D""": """-..""", """E""": """.""", """F""": """..-.""", """G""": """--.""", """H""": """....""", """I""": """..""", """J""": """.---""", """K""": """-.-""", """L""": """.-..""", """M""": """--""", """N""": """-.""", """O""": """---""", """P""": """.--.""", """Q""": """--.-""", """R""": """.-.""", """S""": """...""", """T""": """-""", """U""": """..-""", """V""": """...-""", """W""": """.--""", """X""": """-..-""", """Y""": """-.--""", """Z""": """--..""", """1""": """.----""", """2""": """..---""", """3""": """...--""", """4""": """....-""", """5""": """.....""", """6""": """-....""", """7""": """--...""", """8""": """---..""", """9""": """----.""", """0""": """-----""", """&""": """.-...""", """@""": """.--.-.""", """:""": """---...""", """,""": """--..--""", """.""": """.-.-.-""", """'""": """.----.""", """\"""": """.-..-.""", """?""": """..--..""", """/""": """-..-.""", """=""": """-...-""", """+""": """.-.-.""", """-""": """-....-""", """(""": """-.--.""", """)""": """-.--.-""", """!""": """-.-.--""", """ """: """/""" } # Exclamation mark is not in ITU-R recommendation # fmt: on _snake_case : Tuple = {value: key for key, value in MORSE_CODE_DICT.items()} def _a ( _SCREAMING_SNAKE_CASE : str ): return " ".join(MORSE_CODE_DICT[char] for char in message.upper() ) def _a ( _SCREAMING_SNAKE_CASE : str ): return "".join(REVERSE_DICT[char] for char in message.split() ) def _a ( ): _SCREAMING_SNAKE_CASE = "Morse code here!" print(_SCREAMING_SNAKE_CASE ) _SCREAMING_SNAKE_CASE = encrypt(_SCREAMING_SNAKE_CASE ) print(_SCREAMING_SNAKE_CASE ) _SCREAMING_SNAKE_CASE = decrypt(_SCREAMING_SNAKE_CASE ) print(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
493
'''simple docstring''' import warnings from ...utils import logging from .image_processing_dpt import DPTImageProcessor _snake_case : List[Any] = logging.get_logger(__name__) class lowerCAmelCase ( __UpperCAmelCase ): def __init__( self , *UpperCamelCase , **UpperCamelCase ): warnings.warn( "The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use DPTImageProcessor instead." , UpperCamelCase , ) super().__init__(*UpperCamelCase , **UpperCamelCase )
493
1
"""simple docstring""" def lowercase_ ( _lowerCamelCase: List[str] ) -> Any: '''simple docstring''' __lowerCamelCase : Optional[int] = [] __lowerCamelCase : str = set({"(", "[", "{"} ) __lowerCamelCase : List[str] = set({")", "]", "}"} ) __lowerCamelCase : Tuple = {"{": "}", "[": "]", "(": ")"} for i in range(len(_lowerCamelCase ) ): if s[i] in open_brackets: stack.append(s[i] ) elif s[i] in closed_brackets and ( len(_lowerCamelCase ) == 0 or (len(_lowerCamelCase ) > 0 and open_to_closed[stack.pop()] != s[i]) ): return False return len(_lowerCamelCase ) == 0 def lowercase_ ( ) -> Optional[int]: '''simple docstring''' __lowerCamelCase : int = input("Enter sequence of brackets: " ) if is_balanced(_lowerCamelCase ): print(_lowerCamelCase , "is balanced" ) else: print(_lowerCamelCase , "is not balanced" ) if __name__ == "__main__": main()
646
"""simple docstring""" class lowerCAmelCase__ : def __init__( self , UpperCamelCase__ , UpperCamelCase__=None , UpperCamelCase__=None ): '''simple docstring''' A__ = data A__ = previous A__ = next_node def __str__( self ): '''simple docstring''' return f"""{self.data}""" def lowercase_ ( self ): '''simple docstring''' return self.data def lowercase_ ( self ): '''simple docstring''' return self.next def lowercase_ ( self ): '''simple docstring''' return self.previous class lowerCAmelCase__ : def __init__( self , UpperCamelCase__ ): '''simple docstring''' A__ = head def __iter__( self ): '''simple docstring''' return self def lowercase_ ( self ): '''simple docstring''' if not self.current: raise StopIteration else: A__ = self.current.get_data() A__ = self.current.get_next() return value class lowerCAmelCase__ : def __init__( self ): '''simple docstring''' A__ = None # First node in list A__ = None # Last node in list def __str__( self ): '''simple docstring''' A__ = self.head A__ = [] while current is not None: nodes.append(current.get_data() ) A__ = current.get_next() return " ".join(str(UpperCamelCase__ ) for node in nodes ) def __contains__( self , UpperCamelCase__ ): '''simple docstring''' A__ = self.head while current: if current.get_data() == value: return True A__ = current.get_next() return False def __iter__( self ): '''simple docstring''' return LinkedListIterator(self.head ) def lowercase_ ( self ): '''simple docstring''' if self.head: return self.head.get_data() return None def lowercase_ ( self ): '''simple docstring''' if self.tail: return self.tail.get_data() return None def lowercase_ ( self , UpperCamelCase__ ): '''simple docstring''' if self.head is None: A__ = node A__ = node else: self.insert_before_node(self.head , UpperCamelCase__ ) def lowercase_ ( self , UpperCamelCase__ ): '''simple docstring''' if self.head is None: self.set_head(UpperCamelCase__ ) else: self.insert_after_node(self.tail , UpperCamelCase__ ) def lowercase_ ( self , UpperCamelCase__ ): '''simple docstring''' A__ = Node(UpperCamelCase__ ) if self.head is None: self.set_head(UpperCamelCase__ ) else: self.set_tail(UpperCamelCase__ ) def lowercase_ ( self , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' A__ = node A__ = node.previous if node.get_previous() is None: A__ = node_to_insert else: A__ = node_to_insert A__ = node_to_insert def lowercase_ ( self , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' A__ = node A__ = node.next if node.get_next() is None: A__ = node_to_insert else: A__ = node_to_insert A__ = node_to_insert def lowercase_ ( self , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' A__ = 1 A__ = Node(UpperCamelCase__ ) A__ = self.head while node: if current_position == position: self.insert_before_node(UpperCamelCase__ , UpperCamelCase__ ) return current_position += 1 A__ = node.next self.insert_after_node(self.tail , UpperCamelCase__ ) def lowercase_ ( self , UpperCamelCase__ ): '''simple docstring''' A__ = self.head while node: if node.get_data() == item: return node A__ = node.get_next() raise Exception("Node not found" ) def lowercase_ ( self , UpperCamelCase__ ): '''simple docstring''' if (node := self.get_node(UpperCamelCase__ )) is not None: if node == self.head: A__ = self.head.get_next() if node == self.tail: A__ = self.tail.get_previous() self.remove_node_pointers(UpperCamelCase__ ) @staticmethod def lowercase_ ( UpperCamelCase__ ): '''simple docstring''' if node.get_next(): A__ = node.previous if node.get_previous(): A__ = node.next A__ = None A__ = None def lowercase_ ( self ): '''simple docstring''' return self.head is None def __a ( ) -> None: '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
337
0
'''simple docstring''' import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed __a = { 'distilbert': (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), 'roberta': (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), 'bert': (BertConfig, BertForMaskedLM, BertTokenizer), 'gpt2': (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def __UpperCAmelCase ( a_: Dict ): assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def __UpperCAmelCase ( a_: Union[str, Any], a_: List[Any] ): if args.student_type == "roberta": _UpperCAmelCase : List[Any] = False elif args.student_type == "gpt2": _UpperCAmelCase : Dict = False def __UpperCAmelCase ( a_: List[Any], a_: Any ): if args.student_type == "roberta": _UpperCAmelCase : List[Any] = False def __UpperCAmelCase ( ): _UpperCAmelCase : Any = argparse.ArgumentParser(description="Training" ) parser.add_argument("--force", action="store_true", help="Overwrite dump_path if it already exists." ) parser.add_argument( "--dump_path", type=a_, required=a_, help="The output directory (log, checkpoints, parameters, etc.)" ) parser.add_argument( "--data_file", type=a_, required=a_, help="The binarized file (tokenized + tokens_to_ids) and grouped by sequence.", ) parser.add_argument( "--student_type", type=a_, choices=["distilbert", "roberta", "gpt2"], required=a_, help="The student type (DistilBERT, RoBERTa).", ) parser.add_argument("--student_config", type=a_, required=a_, help="Path to the student configuration." ) parser.add_argument( "--student_pretrained_weights", default=a_, type=a_, help="Load student initialization checkpoint." ) parser.add_argument( "--teacher_type", choices=["bert", "roberta", "gpt2"], required=a_, help="Teacher type (BERT, RoBERTa)." ) parser.add_argument("--teacher_name", type=a_, required=a_, help="The teacher model." ) parser.add_argument("--temperature", default=2.0, type=a_, help="Temperature for the softmax temperature." ) parser.add_argument( "--alpha_ce", default=0.5, type=a_, help="Linear weight for the distillation loss. Must be >=0." ) parser.add_argument( "--alpha_mlm", default=0.0, type=a_, help="Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.", ) parser.add_argument("--alpha_clm", default=0.5, type=a_, help="Linear weight for the CLM loss. Must be >=0." ) parser.add_argument("--alpha_mse", default=0.0, type=a_, help="Linear weight of the MSE loss. Must be >=0." ) parser.add_argument( "--alpha_cos", default=0.0, type=a_, help="Linear weight of the cosine embedding loss. Must be >=0." ) parser.add_argument( "--mlm", action="store_true", help="The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM." ) parser.add_argument( "--mlm_mask_prop", default=0.15, type=a_, help="Proportion of tokens for which we need to make a prediction.", ) parser.add_argument("--word_mask", default=0.8, type=a_, help="Proportion of tokens to mask out." ) parser.add_argument("--word_keep", default=0.1, type=a_, help="Proportion of tokens to keep." ) parser.add_argument("--word_rand", default=0.1, type=a_, help="Proportion of tokens to randomly replace." ) parser.add_argument( "--mlm_smoothing", default=0.7, type=a_, help="Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).", ) parser.add_argument("--token_counts", type=a_, help="The token counts in the data_file for MLM." ) parser.add_argument( "--restrict_ce_to_mask", action="store_true", help="If true, compute the distillation loss only the [MLM] prediction distribution.", ) parser.add_argument( "--freeze_pos_embs", action="store_true", help="Freeze positional embeddings during distillation. For student_type in ['roberta', 'gpt2'] only.", ) parser.add_argument( "--freeze_token_type_embds", action="store_true", help="Freeze token type embeddings during distillation if existent. For student_type in ['roberta'] only.", ) parser.add_argument("--n_epoch", type=a_, default=3, help="Number of pass on the whole dataset." ) parser.add_argument("--batch_size", type=a_, default=5, help="Batch size (for each process)." ) parser.add_argument( "--group_by_size", action="store_false", help="If true, group sequences that have similar length into the same batch. Default is true.", ) parser.add_argument( "--gradient_accumulation_steps", type=a_, default=50, help="Gradient accumulation for larger training batches.", ) parser.add_argument("--warmup_prop", default=0.05, type=a_, help="Linear warmup proportion." ) parser.add_argument("--weight_decay", default=0.0, type=a_, help="Weight decay if we apply some." ) parser.add_argument("--learning_rate", default=5e-4, type=a_, help="The initial learning rate for Adam." ) parser.add_argument("--adam_epsilon", default=1e-6, type=a_, help="Epsilon for Adam optimizer." ) parser.add_argument("--max_grad_norm", default=5.0, type=a_, help="Max gradient norm." ) parser.add_argument("--initializer_range", default=0.02, type=a_, help="Random initialization range." ) parser.add_argument( "--fp16", action="store_true", help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit", ) parser.add_argument( "--fp16_opt_level", type=a_, default="O1", help=( "For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']." "See details at https://nvidia.github.io/apex/amp.html" ), ) parser.add_argument("--n_gpu", type=a_, default=1, help="Number of GPUs in the node." ) parser.add_argument("--local_rank", type=a_, default=-1, help="Distributed training - Local rank" ) parser.add_argument("--seed", type=a_, default=56, help="Random seed" ) parser.add_argument("--log_interval", type=a_, default=500, help="Tensorboard logging interval." ) parser.add_argument("--checkpoint_interval", type=a_, default=4_000, help="Checkpoint interval." ) _UpperCAmelCase : Any = parser.parse_args() sanity_checks(a_ ) # ARGS # init_gpu_params(a_ ) set_seed(a_ ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( f"""Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite""" " itUse `--force` if you want to overwrite it" ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(f"""Experiment will be dumped and logged in {args.dump_path}""" ) # SAVE PARAMS # logger.info(f"""Param: {args}""" ) with open(os.path.join(args.dump_path, "parameters.json" ), "w" ) as f: json.dump(vars(a_ ), a_, indent=4 ) git_log(args.dump_path ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = MODEL_CLASSES[args.student_type] _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = MODEL_CLASSES[args.teacher_type] # TOKENIZER # _UpperCAmelCase : Optional[int] = teacher_tokenizer_class.from_pretrained(args.teacher_name ) _UpperCAmelCase : List[str] = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): _UpperCAmelCase : Tuple = tokenizer.all_special_tokens.index(a_ ) _UpperCAmelCase : int = tokenizer.all_special_ids[idx] logger.info(f"""Special tokens {special_tok_ids}""" ) _UpperCAmelCase : Tuple = special_tok_ids _UpperCAmelCase : Dict = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(f"""Loading data from {args.data_file}""" ) with open(args.data_file, "rb" ) as fp: _UpperCAmelCase : Dict = pickle.load(a_ ) if args.mlm: logger.info(f"""Loading token counts from {args.token_counts} (already pre-computed)""" ) with open(args.token_counts, "rb" ) as fp: _UpperCAmelCase : Optional[Any] = pickle.load(a_ ) _UpperCAmelCase : Union[str, Any] = np.maximum(a_, 1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): _UpperCAmelCase : Tuple = 0.0 # do not predict special tokens _UpperCAmelCase : Any = torch.from_numpy(a_ ) else: _UpperCAmelCase : Optional[Any] = None _UpperCAmelCase : Union[str, Any] = LmSeqsDataset(params=a_, data=a_ ) logger.info("Data loader created." ) # STUDENT # logger.info(f"""Loading student config from {args.student_config}""" ) _UpperCAmelCase : int = student_config_class.from_pretrained(args.student_config ) _UpperCAmelCase : Optional[Any] = True if args.student_pretrained_weights is not None: logger.info(f"""Loading pretrained weights from {args.student_pretrained_weights}""" ) _UpperCAmelCase : str = student_model_class.from_pretrained(args.student_pretrained_weights, config=a_ ) else: _UpperCAmelCase : str = student_model_class(a_ ) if args.n_gpu > 0: student.to(f"""cuda:{args.local_rank}""" ) logger.info("Student loaded." ) # TEACHER # _UpperCAmelCase : List[Any] = teacher_model_class.from_pretrained(args.teacher_name, output_hidden_states=a_ ) if args.n_gpu > 0: teacher.to(f"""cuda:{args.local_rank}""" ) logger.info(f"""Teacher loaded from {args.teacher_name}.""" ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(a_, a_ ) if args.freeze_token_type_embds: freeze_token_type_embeddings(a_, a_ ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() _UpperCAmelCase : List[str] = Distiller( params=a_, dataset=a_, token_probs=a_, student=a_, teacher=a_ ) distiller.train() logger.info("Let's go get some drinks." ) if __name__ == "__main__": main()
257
'''simple docstring''' import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __a = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class A__ ( UpperCamelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : List[str] = XGLMTokenizer UpperCamelCase_ : int = XGLMTokenizerFast UpperCamelCase_ : Union[str, Any] = True UpperCamelCase_ : Tuple = True def _lowerCAmelCase ( self : Dict ) -> Dict: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing _UpperCAmelCase : List[str] = XGLMTokenizer(lowerCAmelCase__ , keep_accents=lowerCAmelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) def _lowerCAmelCase ( self : List[Any] ) -> List[str]: """simple docstring""" _UpperCAmelCase : Dict = "<pad>" _UpperCAmelCase : Any = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase__ ) , lowerCAmelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase__ ) , lowerCAmelCase__ ) def _lowerCAmelCase ( self : Dict ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Tuple = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<s>" ) self.assertEqual(vocab_keys[1] , "<pad>" ) self.assertEqual(len(lowerCAmelCase__ ) , 1_0_0_8 ) def _lowerCAmelCase ( self : Tuple ) -> str: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1_0_0_8 ) def _lowerCAmelCase ( self : int ) -> str: """simple docstring""" _UpperCAmelCase : Dict = XGLMTokenizer(lowerCAmelCase__ , keep_accents=lowerCAmelCase__ ) _UpperCAmelCase : Optional[Any] = tokenizer.tokenize("This is a test" ) self.assertListEqual(lowerCAmelCase__ , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , ) _UpperCAmelCase : List[str] = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( lowerCAmelCase__ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) _UpperCAmelCase : int = tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) self.assertListEqual( lowerCAmelCase__ , [ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 2, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 2, 4] ] , ) _UpperCAmelCase : List[Any] = tokenizer.convert_ids_to_tokens(lowerCAmelCase__ ) self.assertListEqual( lowerCAmelCase__ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) @cached_property def _lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" return XGLMTokenizer.from_pretrained("facebook/xglm-564M" ) def _lowerCAmelCase ( self : List[str] ) -> Dict: """simple docstring""" with tempfile.NamedTemporaryFile() as f: shutil.copyfile(lowerCAmelCase__ , f.name ) _UpperCAmelCase : Union[str, Any] = XGLMTokenizer(f.name , keep_accents=lowerCAmelCase__ ) _UpperCAmelCase : List[str] = pickle.dumps(lowerCAmelCase__ ) pickle.loads(lowerCAmelCase__ ) def _lowerCAmelCase ( self : int ) -> Dict: """simple docstring""" if not self.test_rust_tokenizer: return _UpperCAmelCase : Tuple = self.get_tokenizer() _UpperCAmelCase : str = self.get_rust_tokenizer() _UpperCAmelCase : List[str] = "I was born in 92000, and this is falsé." _UpperCAmelCase : List[Any] = tokenizer.tokenize(lowerCAmelCase__ ) _UpperCAmelCase : Dict = rust_tokenizer.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Tuple = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) _UpperCAmelCase : Any = rust_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Optional[Any] = self.get_rust_tokenizer() _UpperCAmelCase : Optional[Any] = tokenizer.encode(lowerCAmelCase__ ) _UpperCAmelCase : Optional[Any] = rust_tokenizer.encode(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) @slow def _lowerCAmelCase ( self : Optional[int] ) -> List[Any]: """simple docstring""" _UpperCAmelCase : Dict = "Hello World!" _UpperCAmelCase : Union[str, Any] = [2, 3_1_2_2_7, 4_4_4_7, 3_5] self.assertListEqual(lowerCAmelCase__ , self.big_tokenizer.encode(lowerCAmelCase__ ) ) @slow def _lowerCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" _UpperCAmelCase : Any = ( "This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will" " add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth" ) # fmt: off _UpperCAmelCase : Dict = [2, 1_0_1_8, 6_7, 1_1, 1_9_8_8, 2_6_1_7, 5_6_3_1, 2_7_8, 1_1, 3_4_0_7, 4_8, 7_1_6_3_0, 2_8_0_8_5, 4, 3_2_3_4, 1_5_7, 1_3, 6, 5, 6, 4, 3_5_2_6, 7_6_8, 1_5, 6_5_9, 5_7, 2_9_8, 3_9_8_3, 8_6_4, 1_2_9, 2_1, 6, 5, 1_3_6_7_5, 3_7_7, 6_5_2, 7_5_8_0, 1_0_3_4_1, 1_5_5, 2_8_1_7, 4_2_2, 1_6_6_6, 7, 1_6_7_4, 5_3, 1_1_3, 2_0_2_2_7_7, 1_7_8_9_2, 3_3, 6_0, 8_7, 4, 3_2_3_4, 1_5_7, 6_1, 2_6_6_7, 5_2_3_7_6, 1_9, 8_8, 2_3, 7_3_5] # fmt: on self.assertListEqual(lowerCAmelCase__ , self.big_tokenizer.encode(lowerCAmelCase__ ) ) @slow def _lowerCAmelCase ( self : Dict ) -> str: """simple docstring""" _UpperCAmelCase : Optional[int] = { "input_ids": [[2, 1_0_8_8_2_5, 1_1_6_3, 1_5, 8_8_0_1_0, 4_7_3, 1_5_8_9_8, 1_5_7, 1_3_6_7_2, 1_8_5_7, 3_1_2, 8, 2_3_8_0_2_1, 1_1_6_3, 5_3, 1_3_6_7_2, 1_8_5_7, 3_1_2, 8, 5_3_2_8_3, 1_8_2_3_9_6, 8, 1_8_5_6_6, 1_6, 3_6_7_3_3, 4_1_0_1, 8, 2_3_0, 2_4_4_0_1_7, 1_2_2_5_5_3, 7, 1_5, 1_3_2_5_9_7, 4, 2_9_3, 1_2_5_1_1, 7_6_1_0, 4, 3_4_1_4, 1_3_2_5_9_7, 9, 4, 3_2_3_6_1, 3_6_2, 4, 7_3_4, 2_8_5_1_2, 3_2_5_6_9, 1_8, 4, 3_2_3_6_1, 2_6_0_9_6, 1_4_9_8_2, 7_3, 1_8_7_1_5, 2_1_4_3_3, 2_3_5_2_6_1, 1_5, 4_9_2, 1_2_4_2_7, 1_6, 5_3, 1_8_7_1_5, 2_1_4_3_3, 6_5_4_5_4, 1_5, 2_3_6_5_9, 5_6_3, 1_6, 2_7_8, 5_9_7, 2_8_4_3, 5_9_5, 7_9_3_1, 1_8_2_3_9_6, 6_4_1_8_6, 2_2, 8_8_6, 5_9_5, 1_3_2_9_8_1, 5_3, 2_5_5_4_0, 3_4_4_9, 4_3_9_8_2, 3_9_9_0_1, 5_9_5_1, 8_7_8, 3_3_0, 4, 2_7_6_9_4, 8_0_2_6_9, 3_1_2, 5_3, 6_5_1_7, 1_1_7_8_0, 6_1_1, 2_0_4_0_8, 5], [2, 6, 1_3_2_5_9_7, 6_7, 4_2_8_9_7, 3_3, 5_9_2, 8, 1_6_3_7_2_9, 2_5_5_4_0, 3_6_1, 1_3_6_9_9_7, 1_0_9_5_1_4, 1_7_3_2_3_0, 7, 5_0_1, 6_0, 1_0_2_9_1_3, 1_9_6, 5_6_3_1, 2_3_5, 6_3_2_4_3, 4_7_3, 6, 2_3_1_7_5_7, 7_4, 5_2_7_7, 7_9_0_5, 5_3, 3_0_9_5, 3_7_3_1_7, 2_2, 4_5_4, 1_8_3_8_7_4, 5], [2, 2_6_8, 3_1_2_9_8, 4_6_5_3_0, 6, 1_3_2_9_3_5, 4_3_8_3_1, 7, 5_9_7, 3_2, 2_4, 3_6_8_8, 9_8_6_5, 5]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase__ , model_name="facebook/xglm-564M" , padding=lowerCAmelCase__ , )
257
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __A = { """configuration_vision_encoder_decoder""": ["""VisionEncoderDecoderConfig""", """VisionEncoderDecoderOnnxConfig"""] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ["""VisionEncoderDecoderModel"""] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ["""TFVisionEncoderDecoderModel"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ["""FlaxVisionEncoderDecoderModel"""] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys __A = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
93
"""simple docstring""" def __A (_SCREAMING_SNAKE_CASE ) ->str: """simple docstring""" lowerCAmelCase__ :List[Any] = int(_SCREAMING_SNAKE_CASE ) if decimal in (0, 1): # Exit cases for the recursion return str(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ , lowerCAmelCase__ :int = divmod(_SCREAMING_SNAKE_CASE , 2 ) return binary_recursive(_SCREAMING_SNAKE_CASE ) + str(_SCREAMING_SNAKE_CASE ) def __A (_SCREAMING_SNAKE_CASE ) ->str: """simple docstring""" lowerCAmelCase__ :str = str(_SCREAMING_SNAKE_CASE ).strip() if not number: raise ValueError('No input value was provided' ) lowerCAmelCase__ :Dict = '-' if number.startswith('-' ) else '' lowerCAmelCase__ :int = number.lstrip('-' ) if not number.isnumeric(): raise ValueError('Input value is not an integer' ) return F"{negative}0b{binary_recursive(int(_SCREAMING_SNAKE_CASE ) )}" if __name__ == "__main__": from doctest import testmod testmod()
93
1
"""simple docstring""" from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging lowercase = logging.get_logger(__name__) lowercase = { '''google/umt5-small''': '''https://huggingface.co/google/umt5-small/resolve/main/config.json''', # See all umt5 models at https://huggingface.co/models?filter=umt5 } class lowercase__ ( A ): '''simple docstring''' _UpperCAmelCase = '''umt5''' _UpperCAmelCase = ['''past_key_values'''] def __init__( self , snake_case=250112 , snake_case=512 , snake_case=64 , snake_case=1024 , snake_case=8 , snake_case=None , snake_case=6 , snake_case=32 , snake_case=128 , snake_case=0.1 , snake_case=1E-6 , snake_case=1.0 , snake_case="gated-gelu" , snake_case=True , snake_case=True , snake_case="T5Tokenizer" , snake_case=True , snake_case=0 , snake_case=1 , snake_case=0 , **snake_case , ) -> List[Any]: super().__init__( is_encoder_decoder=snake_case , tokenizer_class=snake_case , tie_word_embeddings=snake_case , pad_token_id=snake_case , eos_token_id=snake_case , decoder_start_token_id=snake_case , **snake_case , ) _UpperCAmelCase = vocab_size _UpperCAmelCase = d_model _UpperCAmelCase = d_kv _UpperCAmelCase = d_ff _UpperCAmelCase = num_layers _UpperCAmelCase = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry _UpperCAmelCase = num_heads _UpperCAmelCase = relative_attention_num_buckets _UpperCAmelCase = relative_attention_max_distance _UpperCAmelCase = dropout_rate _UpperCAmelCase = layer_norm_epsilon _UpperCAmelCase = initializer_factor _UpperCAmelCase = feed_forward_proj _UpperCAmelCase = use_cache _UpperCAmelCase = self.feed_forward_proj.split('-' ) _UpperCAmelCase = act_info[-1] _UpperCAmelCase = act_info[0] == 'gated' if len(snake_case ) > 1 and act_info[0] != "gated" or len(snake_case ) > 2: raise ValueError( f'`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.' 'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ' '\'gated-gelu\' or \'relu\'' ) if feed_forward_proj == "gated-gelu": _UpperCAmelCase = 'gelu_new' @property def lowerCamelCase_ ( self ) -> Union[str, Any]: return self.d_model @property def lowerCamelCase_ ( self ) -> Tuple: return self.num_heads @property def lowerCamelCase_ ( self ) -> Optional[int]: return self.num_layers class lowercase__ ( A ): '''simple docstring''' @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs def lowerCamelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: _UpperCAmelCase = { 'input_ids': {0: 'batch', 1: 'encoder_sequence'}, 'attention_mask': {0: 'batch', 1: 'encoder_sequence'}, } if self.use_past: _UpperCAmelCase = 'past_encoder_sequence + sequence' _UpperCAmelCase = {0: 'batch'} _UpperCAmelCase = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: _UpperCAmelCase = {0: 'batch', 1: 'decoder_sequence'} _UpperCAmelCase = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(snake_case , direction='inputs' ) return common_inputs @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset def lowerCamelCase_ ( self ) -> int: return 13 @property def lowerCamelCase_ ( self ) -> float: return 5E-4
24
"""simple docstring""" import logging import os import sys from pathlib import Path from unittest.mock import patch from parameterized import parameterized from run_eval import run_generate from run_eval_search import run_search from transformers.testing_utils import CaptureStdout, TestCasePlus, slow from utils import ROUGE_KEYS logging.basicConfig(level=logging.DEBUG) lowercase = logging.getLogger() def UpperCAmelCase ( A : Path , A : list ): '''simple docstring''' _UpperCAmelCase = '\n'.join(A ) Path(A ).open('w' ).writelines(A ) lowercase = '''patrickvonplaten/t5-tiny-random''' lowercase = '''sshleifer/bart-tiny-random''' lowercase = '''sshleifer/tiny-mbart''' lowercase = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) logging.disable(logging.CRITICAL) # remove noisy download output from tracebacks class lowercase__ ( A ): '''simple docstring''' def lowerCamelCase_ ( self , snake_case ) -> str: _UpperCAmelCase = Path(self.get_auto_remove_tmp_dir() ) / 'utest_input.source' _UpperCAmelCase = input_file_name.parent / 'utest_output.txt' assert not output_file_name.exists() _UpperCAmelCase = [' New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County.'] _dump_articles(snake_case , snake_case ) _UpperCAmelCase = str(Path(self.get_auto_remove_tmp_dir() ) / 'scores.json' ) _UpperCAmelCase = 'translation_en_to_de' if model == T5_TINY else 'summarization' _UpperCAmelCase = f'\n run_eval_search.py\n {model}\n {input_file_name}\n {output_file_name}\n --score_path {score_path}\n --task {task}\n --num_beams 2\n --length_penalty 2.0\n '.split() with patch.object(snake_case , 'argv' , snake_case ): run_generate() assert Path(snake_case ).exists() # os.remove(Path(output_file_name)) def lowerCamelCase_ ( self ) -> str: self.run_eval_tester(snake_case ) @parameterized.expand([BART_TINY, MBART_TINY] ) @slow def lowerCamelCase_ ( self , snake_case ) -> List[Any]: self.run_eval_tester(snake_case ) @parameterized.expand([T5_TINY, MBART_TINY] ) @slow def lowerCamelCase_ ( self , snake_case ) -> Dict: _UpperCAmelCase = Path(self.get_auto_remove_tmp_dir() ) / 'utest_input.source' _UpperCAmelCase = input_file_name.parent / 'utest_output.txt' assert not output_file_name.exists() _UpperCAmelCase = { 'en': ['Machine learning is great, isn\'t it?', 'I like to eat bananas', 'Tomorrow is another great day!'], 'de': [ 'Maschinelles Lernen ist großartig, oder?', 'Ich esse gerne Bananen', 'Morgen ist wieder ein toller Tag!', ], } _UpperCAmelCase = Path(self.get_auto_remove_tmp_dir() ) _UpperCAmelCase = str(tmp_dir / 'scores.json' ) _UpperCAmelCase = str(tmp_dir / 'val.target' ) _dump_articles(snake_case , text['en'] ) _dump_articles(snake_case , text['de'] ) _UpperCAmelCase = 'translation_en_to_de' if model == T5_TINY else 'summarization' _UpperCAmelCase = f'\n run_eval_search.py\n {model}\n {str(snake_case )}\n {str(snake_case )}\n --score_path {score_path}\n --reference_path {reference_path}\n --task {task}\n '.split() testargs.extend(['--search', 'num_beams=1:2 length_penalty=0.9:1.0'] ) with patch.object(snake_case , 'argv' , snake_case ): with CaptureStdout() as cs: run_search() _UpperCAmelCase = [' num_beams | length_penalty', model, 'Best score args'] _UpperCAmelCase = ['Info'] if "translation" in task: expected_strings.append('bleu' ) else: expected_strings.extend(snake_case ) for w in expected_strings: assert w in cs.out for w in un_expected_strings: assert w not in cs.out assert Path(snake_case ).exists() os.remove(Path(snake_case ) )
24
1
'''simple docstring''' import math import os import sys def lowercase (_A ): """simple docstring""" _lowerCAmelCase : Union[str, Any] = '' try: with open(_A , 'rb' ) as binary_file: _lowerCAmelCase : str = binary_file.read() for dat in data: _lowerCAmelCase : Dict = f'{dat:08b}' result += curr_byte return result except OSError: print('File not accessible' ) sys.exit() def lowercase (_A , _A , _A , _A ): """simple docstring""" lexicon.pop(_A ) _lowerCAmelCase : Optional[Any] = last_match_id if math.loga(_A ).is_integer(): for curr_key in lexicon: _lowerCAmelCase : int = '0' + lexicon[curr_key] _lowerCAmelCase : int = bin(_A )[2:] def lowercase (_A ): """simple docstring""" _lowerCAmelCase : str = {'0': '0', '1': '1'} _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = '', '' _lowerCAmelCase : int = len(_A ) for i in range(len(_A ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue _lowerCAmelCase : Dict = lexicon[curr_string] result += last_match_id add_key_to_lexicon(_A , _A , _A , _A ) index += 1 _lowerCAmelCase : int = '' while curr_string != "" and curr_string not in lexicon: curr_string += "0" if curr_string != "": _lowerCAmelCase : Any = lexicon[curr_string] result += last_match_id return result def lowercase (_A , _A ): """simple docstring""" _lowerCAmelCase : int = os.path.getsize(_A ) _lowerCAmelCase : int = bin(_A )[2:] _lowerCAmelCase : Any = len(_A ) return "0" * (length_length - 1) + file_length_binary + compressed def lowercase (_A , _A ): """simple docstring""" _lowerCAmelCase : int = 8 try: with open(_A , 'wb' ) as opened_file: _lowerCAmelCase : Tuple = [ to_write[i : i + byte_length] for i in range(0 , len(_A ) , _A ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append('10000000' ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array: opened_file.write(int(_A , 2 ).to_bytes(1 , byteorder='big' ) ) except OSError: print('File not accessible' ) sys.exit() def lowercase (_A , _A ): """simple docstring""" _lowerCAmelCase : int = read_file_binary(_A ) _lowerCAmelCase : Any = compress_data(_A ) _lowerCAmelCase : Tuple = add_file_length(_A , _A ) write_file_binary(_A , _A ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
444
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) lowerCAmelCase : int = { """configuration_owlvit""": [ """OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """OwlViTConfig""", """OwlViTOnnxConfig""", """OwlViTTextConfig""", """OwlViTVisionConfig""", ], """processing_owlvit""": ["""OwlViTProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Dict = ["""OwlViTFeatureExtractor"""] lowerCAmelCase : int = ["""OwlViTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Optional[Any] = [ """OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """OwlViTModel""", """OwlViTPreTrainedModel""", """OwlViTTextModel""", """OwlViTVisionModel""", """OwlViTForObjectDetection""", ] if TYPE_CHECKING: from .configuration_owlvit import ( OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, OwlViTConfig, OwlViTOnnxConfig, OwlViTTextConfig, OwlViTVisionConfig, ) from .processing_owlvit import OwlViTProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_owlvit import OwlViTFeatureExtractor from .image_processing_owlvit import OwlViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_owlvit import ( OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST, OwlViTForObjectDetection, OwlViTModel, OwlViTPreTrainedModel, OwlViTTextModel, OwlViTVisionModel, ) else: import sys lowerCAmelCase : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
444
1
'''simple docstring''' UpperCAmelCase = [0, 2, 4, 6, 8] UpperCAmelCase = [1, 3, 5, 7, 9] def __lowerCAmelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )-> int: """simple docstring""" if remaining_length == 0: if digits[0] == 0 or digits[-1] == 0: return 0 for i in range(length // 2 - 1 , -1 , -1 ): remainder += digits[i] + digits[length - i - 1] if remainder % 2 == 0: return 0 remainder //= 10 return 1 if remaining_length == 1: if remainder % 2 == 0: return 0 snake_case_ = 0 for digit in range(10 ): snake_case_ = digit result += reversible_numbers( 0 , (remainder + 2 * digit) // 10 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return result snake_case_ = 0 for digita in range(10 ): snake_case_ = digita if (remainder + digita) % 2 == 0: snake_case_ = ODD_DIGITS else: snake_case_ = EVEN_DIGITS for digita in other_parity_digits: snake_case_ = digita result += reversible_numbers( remaining_length - 2 , (remainder + digita + digita) // 10 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ) return result def __lowerCAmelCase (SCREAMING_SNAKE_CASE = 9 )-> int: """simple docstring""" snake_case_ = 0 for length in range(1 , max_power + 1 ): result += reversible_numbers(SCREAMING_SNAKE_CASE , 0 , [0] * length , SCREAMING_SNAKE_CASE ) return result if __name__ == "__main__": print(f'''{solution() = }''')
720
def __lowerCAmelCase (SCREAMING_SNAKE_CASE = 3 , SCREAMING_SNAKE_CASE = 7 , SCREAMING_SNAKE_CASE = 100_0000 )-> int: """simple docstring""" snake_case_ = 0 snake_case_ = 1 for current_denominator in range(1 , limit + 1 ): snake_case_ = current_denominator * numerator // denominator if current_denominator % denominator == 0: current_numerator -= 1 if current_numerator * max_denominator > current_denominator * max_numerator: snake_case_ = current_numerator snake_case_ = current_denominator return max_numerator if __name__ == "__main__": print(solution(numerator=3, denominator=7, limit=100_0000))
531
0
'''simple docstring''' def _a (lowercase__ : int , lowercase__ : int ) -> float: """simple docstring""" return base * power(lowercase__ , (exponent - 1) ) if exponent else 1 if __name__ == "__main__": print("Raise base to the power of exponent using recursion...") _a : Union[str, Any] = int(input("Enter the base: ").strip()) _a : Any = int(input("Enter the exponent: ").strip()) _a : List[str] = power(base, abs(exponent)) if exponent < 0: # power() does not properly deal w/ negative exponents _a : List[Any] = 1 / result print(f'''{base} to the power of {exponent} is {result}''')
56
from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCamelCase : Optional[int] =logging.get_logger(__name__) _UpperCamelCase : Tuple ={ 'google/canine-s': 'https://huggingface.co/google/canine-s/resolve/main/config.json', # See all CANINE models at https://huggingface.co/models?filter=canine } class UpperCAmelCase__ ( __snake_case ): __snake_case : Any = "canine" def __init__( self ,A__=768 ,A__=12 ,A__=12 ,A__=3072 ,A__="gelu" ,A__=0.1 ,A__=0.1 ,A__=16384 ,A__=16 ,A__=0.02 ,A__=1E-12 ,A__=0 ,A__=0xE_000 ,A__=0xE_001 ,A__=4 ,A__=4 ,A__=8 ,A__=16384 ,A__=128 ,**A__ ,): super().__init__(pad_token_id=A__ ,bos_token_id=A__ ,eos_token_id=A__ ,**A__ ) _A : int = max_position_embeddings _A : Dict = hidden_size _A : List[str] = num_hidden_layers _A : Optional[Any] = num_attention_heads _A : Optional[Any] = intermediate_size _A : Optional[Any] = hidden_act _A : str = hidden_dropout_prob _A : Optional[int] = attention_probs_dropout_prob _A : Union[str, Any] = initializer_range _A : Dict = type_vocab_size _A : Optional[Any] = layer_norm_eps # Character config: _A : Union[str, Any] = downsampling_rate _A : List[str] = upsampling_kernel_size _A : str = num_hash_functions _A : Optional[Any] = num_hash_buckets _A : Optional[Any] = local_transformer_stride
206
0
import functools import logging import os import sys import threading from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional import huggingface_hub.utils as hf_hub_utils from tqdm import auto as tqdm_lib UpperCAmelCase_ : List[Any] = threading.Lock() UpperCAmelCase_ : Optional[int] = None UpperCAmelCase_ : int = { "debug": logging.DEBUG, "info": logging.INFO, "warning": logging.WARNING, "error": logging.ERROR, "critical": logging.CRITICAL, } UpperCAmelCase_ : Dict = logging.WARNING UpperCAmelCase_ : Tuple = True def lowerCAmelCase_ ( ): __magic_name__ : Tuple =os.getenv("""TRANSFORMERS_VERBOSITY""" , a_ ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( F"Unknown option TRANSFORMERS_VERBOSITY={env_level_str}, " F"has to be one of: { ', '.join(log_levels.keys() ) }" ) return _default_log_level def lowerCAmelCase_ ( ): return __name__.split(""".""" )[0] def lowerCAmelCase_ ( ): return logging.getLogger(_get_library_name() ) def lowerCAmelCase_ ( ): global _default_handler with _lock: if _default_handler: # This library has already configured the library root logger. return __magic_name__ : Tuple =logging.StreamHandler() # Set sys.stderr as stream. __magic_name__ : Union[str, Any] =sys.stderr.flush # Apply our default configuration to the library root logger. __magic_name__ : List[str] =_get_library_root_logger() library_root_logger.addHandler(_default_handler ) library_root_logger.setLevel(_get_default_logging_level() ) __magic_name__ : Tuple =False def lowerCAmelCase_ ( ): global _default_handler with _lock: if not _default_handler: return __magic_name__ : Optional[Any] =_get_library_root_logger() library_root_logger.removeHandler(_default_handler ) library_root_logger.setLevel(logging.NOTSET ) __magic_name__ : int =None def lowerCAmelCase_ ( ): return log_levels def lowerCAmelCase_ ( lowerCamelCase = None ): if name is None: __magic_name__ : List[Any] =_get_library_name() _configure_library_root_logger() return logging.getLogger(a_ ) def lowerCAmelCase_ ( ): _configure_library_root_logger() return _get_library_root_logger().getEffectiveLevel() def lowerCAmelCase_ ( lowerCamelCase ): _configure_library_root_logger() _get_library_root_logger().setLevel(a_ ) def lowerCAmelCase_ ( ): return set_verbosity(a_ ) def lowerCAmelCase_ ( ): return set_verbosity(a_ ) def lowerCAmelCase_ ( ): return set_verbosity(a_ ) def lowerCAmelCase_ ( ): return set_verbosity(a_ ) def lowerCAmelCase_ ( ): _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().removeHandler(_default_handler ) def lowerCAmelCase_ ( ): _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().addHandler(_default_handler ) def lowerCAmelCase_ ( lowerCamelCase ): _configure_library_root_logger() assert handler is not None _get_library_root_logger().addHandler(a_ ) def lowerCAmelCase_ ( lowerCamelCase ): _configure_library_root_logger() assert handler is not None and handler not in _get_library_root_logger().handlers _get_library_root_logger().removeHandler(a_ ) def lowerCAmelCase_ ( ): _configure_library_root_logger() __magic_name__ : List[str] =False def lowerCAmelCase_ ( ): _configure_library_root_logger() __magic_name__ : str =True def lowerCAmelCase_ ( ): __magic_name__ : Union[str, Any] =_get_library_root_logger().handlers for handler in handlers: __magic_name__ : Any =logging.Formatter("""[%(levelname)s|%(filename)s:%(lineno)s] %(asctime)s >> %(message)s""" ) handler.setFormatter(a_ ) def lowerCAmelCase_ ( ): __magic_name__ : Optional[Any] =_get_library_root_logger().handlers for handler in handlers: handler.setFormatter(a_ ) def lowerCAmelCase_ ( self , *lowerCamelCase , **lowerCamelCase ): __magic_name__ : str =os.getenv("""TRANSFORMERS_NO_ADVISORY_WARNINGS""" , a_ ) if no_advisory_warnings: return self.warning(*a_ , **a_ ) UpperCAmelCase_ : Tuple = warning_advice @functools.lru_cache(a_ ) def lowerCAmelCase_ ( self , *lowerCamelCase , **lowerCamelCase ): self.warning(*a_ , **a_ ) UpperCAmelCase_ : List[Any] = warning_once class __A : def __init__( self :Any , *__snake_case :str , **__snake_case :List[str] ): # pylint: disable=unused-argument '''simple docstring''' __magic_name__ : Union[str, Any] =args[0] if args else None def __iter__( self :Optional[int] ): '''simple docstring''' return iter(self._iterator ) def __getattr__( self :Optional[int] , __snake_case :Dict ): '''simple docstring''' def empty_fn(*__snake_case :List[Any] , **__snake_case :Union[str, Any] ): # pylint: disable=unused-argument return return empty_fn def __enter__( self :Union[str, Any] ): '''simple docstring''' return self def __exit__( self :Optional[int] , __snake_case :Any , __snake_case :List[str] , __snake_case :Optional[Any] ): '''simple docstring''' return class __A : def __call__( self :Optional[int] , *__snake_case :Dict , **__snake_case :Optional[Any] ): '''simple docstring''' if _tqdm_active: return tqdm_lib.tqdm(*__snake_case , **__snake_case ) else: return EmptyTqdm(*__snake_case , **__snake_case ) def A__ ( self :int , *__snake_case :Union[str, Any] , **__snake_case :Union[str, Any] ): '''simple docstring''' __magic_name__ : Union[str, Any] =None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*__snake_case , **__snake_case ) def A__ ( self :Tuple ): '''simple docstring''' if _tqdm_active: return tqdm_lib.tqdm.get_lock() UpperCAmelCase_ : Tuple = _tqdm_cls() def lowerCAmelCase_ ( ): global _tqdm_active return bool(_tqdm_active ) def lowerCAmelCase_ ( ): global _tqdm_active __magic_name__ : List[str] =True hf_hub_utils.enable_progress_bars() def lowerCAmelCase_ ( ): global _tqdm_active __magic_name__ : List[Any] =False hf_hub_utils.disable_progress_bars()
705
import numpy as np def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase = 1E-12 , lowerCamelCase = 100 , ): assert np.shape(lowerCamelCase )[0] == np.shape(lowerCamelCase )[1] # Ensure proper dimensionality. assert np.shape(lowerCamelCase )[0] == np.shape(lowerCamelCase )[0] # Ensure inputs are either both complex or both real assert np.iscomplexobj(lowerCamelCase ) == np.iscomplexobj(lowerCamelCase ) __magic_name__ : List[Any] =np.iscomplexobj(lowerCamelCase ) if is_complex: # Ensure complex input_matrix is Hermitian assert np.array_equal(lowerCamelCase , input_matrix.conj().T ) # Set convergence to False. Will define convergence when we exceed max_iterations # or when we have small changes from one iteration to next. __magic_name__ : List[Any] =False __magic_name__ : List[Any] =0 __magic_name__ : List[str] =0 __magic_name__ : str =1E12 while not convergence: # Multiple matrix by the vector. __magic_name__ : Dict =np.dot(lowerCamelCase , lowerCamelCase ) # Normalize the resulting output vector. __magic_name__ : List[str] =w / np.linalg.norm(lowerCamelCase ) # Find rayleigh quotient # (faster than usual b/c we know vector is normalized already) __magic_name__ : Any =vector.conj().T if is_complex else vector.T __magic_name__ : List[str] =np.dot(lowerCamelCase , np.dot(lowerCamelCase , lowerCamelCase ) ) # Check convergence. __magic_name__ : List[str] =np.abs(lambda_ - lambda_previous ) / lambda_ iterations += 1 if error <= error_tol or iterations >= max_iterations: __magic_name__ : int =True __magic_name__ : Optional[Any] =lambda_ if is_complex: __magic_name__ : Union[str, Any] =np.real(lambda_ ) return lambda_, vector def lowerCAmelCase_ ( ): __magic_name__ : Optional[int] =np.array([[41, 4, 20], [4, 26, 30], [20, 30, 50]] ) __magic_name__ : Any =np.array([41, 4, 20] ) __magic_name__ : Optional[Any] =real_input_matrix.astype(np.complexaaa ) __magic_name__ : str =np.triu(1J * complex_input_matrix , 1 ) complex_input_matrix += imag_matrix complex_input_matrix += -1 * imag_matrix.T __magic_name__ : List[Any] =np.array([41, 4, 20] ).astype(np.complexaaa ) for problem_type in ["real", "complex"]: if problem_type == "real": __magic_name__ : Union[str, Any] =real_input_matrix __magic_name__ : List[Any] =real_vector elif problem_type == "complex": __magic_name__ : Optional[Any] =complex_input_matrix __magic_name__ : Tuple =complex_vector # Our implementation. __magic_name__ , __magic_name__ : Any =power_iteration(lowerCamelCase , lowerCamelCase ) # Numpy implementation. # Get eigenvalues and eigenvectors using built-in numpy # eigh (eigh used for symmetric or hermetian matrices). __magic_name__ , __magic_name__ : int =np.linalg.eigh(lowerCamelCase ) # Last eigenvalue is the maximum one. __magic_name__ : List[str] =eigen_values[-1] # Last column in this matrix is eigenvector corresponding to largest eigenvalue. __magic_name__ : Dict =eigen_vectors[:, -1] # Check our implementation and numpy gives close answers. assert np.abs(eigen_value - eigen_value_max ) <= 1E-6 # Take absolute values element wise of each eigenvector. # as they are only unique to a minus sign. assert np.linalg.norm(np.abs(lowerCamelCase ) - np.abs(lowerCamelCase ) ) <= 1E-6 if __name__ == "__main__": import doctest doctest.testmod() test_power_iteration()
367
0
'''simple docstring''' import inspect import unittest from transformers import ConvNextConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextBackbone, ConvNextForImageClassification, ConvNextModel from transformers.models.convnext.modeling_convnext import CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowercase__ : def __init__( self : Tuple ,lowerCamelCase__ : Optional[int] ,lowerCamelCase__ : Tuple=13 ,lowerCamelCase__ : int=32 ,lowerCamelCase__ : List[str]=3 ,lowerCamelCase__ : int=4 ,lowerCamelCase__ : Any=[10, 20, 30, 40] ,lowerCamelCase__ : Tuple=[2, 2, 3, 2] ,lowerCamelCase__ : List[str]=True ,lowerCamelCase__ : Dict=True ,lowerCamelCase__ : Any=37 ,lowerCamelCase__ : Optional[Any]="gelu" ,lowerCamelCase__ : Optional[int]=10 ,lowerCamelCase__ : Any=0.0_2 ,lowerCamelCase__ : Union[str, Any]=["stage2", "stage3", "stage4"] ,lowerCamelCase__ : Optional[int]=[2, 3, 4] ,lowerCamelCase__ : int=None ,): '''simple docstring''' _UpperCamelCase : List[Any] = parent _UpperCamelCase : Tuple = batch_size _UpperCamelCase : Tuple = image_size _UpperCamelCase : Any = num_channels _UpperCamelCase : List[Any] = num_stages _UpperCamelCase : Optional[int] = hidden_sizes _UpperCamelCase : Optional[int] = depths _UpperCamelCase : Union[str, Any] = is_training _UpperCamelCase : Optional[int] = use_labels _UpperCamelCase : Dict = intermediate_size _UpperCamelCase : List[Any] = hidden_act _UpperCamelCase : Optional[int] = num_labels _UpperCamelCase : Any = initializer_range _UpperCamelCase : str = out_features _UpperCamelCase : Dict = out_indices _UpperCamelCase : Dict = scope def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' _UpperCamelCase : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCamelCase : Tuple = None if self.use_labels: _UpperCamelCase : int = ids_tensor([self.batch_size] ,self.num_labels ) _UpperCamelCase : Dict = self.get_config() return config, pixel_values, labels def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' return ConvNextConfig( num_channels=self.num_channels ,hidden_sizes=self.hidden_sizes ,depths=self.depths ,num_stages=self.num_stages ,hidden_act=self.hidden_act ,is_decoder=lowerCamelCase__ ,initializer_range=self.initializer_range ,out_features=self.out_features ,out_indices=self.out_indices ,num_labels=self.num_labels ,) def UpperCamelCase_ ( self : Dict ,lowerCamelCase__ : List[str] ,lowerCamelCase__ : Tuple ,lowerCamelCase__ : Tuple ): '''simple docstring''' _UpperCamelCase : Tuple = ConvNextModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() _UpperCamelCase : List[Any] = model(lowerCamelCase__ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) ,) def UpperCamelCase_ ( self : Tuple ,lowerCamelCase__ : Union[str, Any] ,lowerCamelCase__ : Optional[Any] ,lowerCamelCase__ : List[str] ): '''simple docstring''' _UpperCamelCase : List[str] = ConvNextForImageClassification(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() _UpperCamelCase : int = model(lowerCamelCase__ ,labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self : int ,lowerCamelCase__ : Tuple ,lowerCamelCase__ : List[Any] ,lowerCamelCase__ : Optional[int] ): '''simple docstring''' _UpperCamelCase : Optional[int] = ConvNextBackbone(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() _UpperCamelCase : Union[str, Any] = model(lowerCamelCase__ ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) ,len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) ,[self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) ,len(config.out_features ) ) self.parent.assertListEqual(model.channels ,config.hidden_sizes[1:] ) # verify backbone works with out_features=None _UpperCamelCase : Optional[int] = None _UpperCamelCase : List[str] = ConvNextBackbone(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() _UpperCamelCase : int = model(lowerCamelCase__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) ,1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) ,[self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) ,1 ) self.parent.assertListEqual(model.channels ,[config.hidden_sizes[-1]] ) def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' _UpperCamelCase : Tuple = self.prepare_config_and_inputs() _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : int = config_and_inputs _UpperCamelCase : List[str] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowercase__ ( lowercase , lowercase , unittest.TestCase ): lowercase__ = ( ( ConvNextModel, ConvNextForImageClassification, ConvNextBackbone, ) if is_torch_available() else () ) lowercase__ = ( {"""feature-extraction""": ConvNextModel, """image-classification""": ConvNextForImageClassification} if is_torch_available() else {} ) lowercase__ = True lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False def UpperCamelCase_ ( self : Any ): '''simple docstring''' _UpperCamelCase : Optional[int] = ConvNextModelTester(self ) _UpperCamelCase : Union[str, Any] = ConfigTester(self ,config_class=lowerCamelCase__ ,has_text_modality=lowerCamelCase__ ,hidden_size=37 ) def UpperCamelCase_ ( self : int ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCamelCase_ ( self : int ): '''simple docstring''' return @unittest.skip(reason='ConvNext does not use inputs_embeds' ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' pass @unittest.skip(reason='ConvNext does not support input and output embeddings' ) def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' pass @unittest.skip(reason='ConvNext does not use feedforward chunking' ) def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' pass def UpperCamelCase_ ( self : int ): '''simple docstring''' _UpperCamelCase , _UpperCamelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase : Dict = model_class(lowerCamelCase__ ) _UpperCamelCase : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCamelCase : Any = [*signature.parameters.keys()] _UpperCamelCase : Union[str, Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] ,lowerCamelCase__ ) def UpperCamelCase_ ( self : str ): '''simple docstring''' _UpperCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase__ ) def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' _UpperCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*lowerCamelCase__ ) def UpperCamelCase_ ( self : Any ): '''simple docstring''' def check_hidden_states_output(lowerCamelCase__ : Optional[int] ,lowerCamelCase__ : Any ,lowerCamelCase__ : int ): _UpperCamelCase : Tuple = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() with torch.no_grad(): _UpperCamelCase : Tuple = model(**self._prepare_for_class(lowerCamelCase__ ,lowerCamelCase__ ) ) _UpperCamelCase : List[str] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _UpperCamelCase : str = self.model_tester.num_stages self.assertEqual(len(lowerCamelCase__ ) ,expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[self.model_tester.image_size // 4, self.model_tester.image_size // 4] ,) _UpperCamelCase , _UpperCamelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase : List[str] = True check_hidden_states_output(lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCamelCase : Optional[Any] = True check_hidden_states_output(lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ) def UpperCamelCase_ ( self : str ): '''simple docstring''' _UpperCamelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase__ ) @slow def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' for model_name in CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase : str = ConvNextModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def A__ ( ): _UpperCamelCase : Any = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class lowercase__ ( unittest.TestCase ): @cached_property def UpperCamelCase_ ( self : str ): '''simple docstring''' return AutoImageProcessor.from_pretrained('facebook/convnext-tiny-224' ) if is_vision_available() else None @slow def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' _UpperCamelCase : List[Any] = ConvNextForImageClassification.from_pretrained('facebook/convnext-tiny-224' ).to(lowerCamelCase__ ) _UpperCamelCase : str = self.default_image_processor _UpperCamelCase : int = prepare_img() _UpperCamelCase : int = image_processor(images=lowerCamelCase__ ,return_tensors='pt' ).to(lowerCamelCase__ ) # forward pass with torch.no_grad(): _UpperCamelCase : Tuple = model(**lowerCamelCase__ ) # verify the logits _UpperCamelCase : Optional[Any] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape ,lowerCamelCase__ ) _UpperCamelCase : Tuple = torch.tensor([-0.0_2_6_0, -0.4_7_3_9, 0.1_9_1_1] ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,lowerCamelCase__ ,atol=1E-4 ) ) @require_torch class lowercase__ ( unittest.TestCase , lowercase ): lowercase__ = (ConvNextBackbone,) if is_torch_available() else () lowercase__ = ConvNextConfig lowercase__ = False def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _UpperCamelCase : Tuple = ConvNextModelTester(self )
195
'''simple docstring''' def A__ ( UpperCAmelCase_ = 1_0_0_0 ): _UpperCamelCase : List[str] = 3 _UpperCamelCase : Any = 0 while a < n: if a % 3 == 0 or a % 5 == 0: result += a elif a % 1_5 == 0: result -= a a += 1 return result if __name__ == "__main__": print(F"""{solution() = }""")
195
1
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline else: from .camera import create_pan_cameras from .pipeline_shap_e import ShapEPipeline from .pipeline_shap_e_img2img import ShapEImgaImgPipeline from .renderer import ( BoundingBoxVolume, ImportanceRaySampler, MLPNeRFModelOutput, MLPNeRSTFModel, ShapEParamsProjModel, ShapERenderer, StratifiedRaySampler, VoidNeRFModel, )
16
"""simple docstring""" from __future__ import annotations from collections.abc import Callable _lowerCAmelCase = list[list[float | int]] def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = len(_lowerCamelCase ) _lowerCAmelCase : Matrix = [[0 for _ in range(size + 1 )] for _ in range(_lowerCamelCase )] _lowerCAmelCase : int _lowerCAmelCase : int _lowerCAmelCase : int _lowerCAmelCase : int _lowerCAmelCase : int _lowerCAmelCase : float for row in range(_lowerCamelCase ): for col in range(_lowerCamelCase ): _lowerCAmelCase : Union[str, Any] = matrix[row][col] _lowerCAmelCase : Tuple = vector[row][0] _lowerCAmelCase : Dict = 0 _lowerCAmelCase : Any = 0 while row < size and col < size: # pivoting _lowerCAmelCase : Optional[int] = max((abs(augmented[rowa][col] ), rowa) for rowa in range(_lowerCamelCase , _lowerCamelCase ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: _lowerCAmelCase, _lowerCAmelCase : Tuple = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , _lowerCamelCase ): _lowerCAmelCase : Dict = augmented[rowa][col] / augmented[row][col] _lowerCAmelCase : Optional[Any] = 0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , _lowerCamelCase ): for row in range(_lowerCamelCase ): _lowerCAmelCase : int = augmented[row][col] / augmented[col][col] for cola in range(_lowerCamelCase , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(_lowerCamelCase ) ] def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = len(_lowerCamelCase ) _lowerCAmelCase : Matrix = [[0 for _ in range(_lowerCamelCase )] for _ in range(_lowerCamelCase )] _lowerCAmelCase : Matrix = [[0] for _ in range(_lowerCamelCase )] _lowerCAmelCase : Matrix _lowerCAmelCase : int _lowerCAmelCase : int _lowerCAmelCase : int for x_val, y_val in enumerate(_lowerCamelCase ): for col in range(_lowerCamelCase ): _lowerCAmelCase : Union[str, Any] = (x_val + 1) ** (size - col - 1) _lowerCAmelCase : Optional[int] = y_val _lowerCAmelCase : List[Any] = solve(_lowerCamelCase , _lowerCamelCase ) def interpolated_func(_lowerCamelCase ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(_lowerCamelCase ) ) return interpolated_func def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def lowerCamelCase__ ( _lowerCamelCase = question_function , _lowerCamelCase = 10 ): '''simple docstring''' _lowerCAmelCase : list[int] = [func(_lowerCamelCase ) for x_val in range(1 , order + 1 )] _lowerCAmelCase : list[Callable[[int], int]] = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] _lowerCAmelCase : int = 0 _lowerCAmelCase : Callable[[int], int] _lowerCAmelCase : int for poly in polynomials: _lowerCAmelCase : Any = 1 while func(_lowerCamelCase ) == poly(_lowerCamelCase ): x_val += 1 ret += poly(_lowerCamelCase ) return ret if __name__ == "__main__": print(F'''{solution() = }''')
16
1
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers import ( TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, BertConfig, DPRConfig, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) class A : def __init__(self : Optional[Any] , __UpperCAmelCase : str , __UpperCAmelCase : int=1_3 , __UpperCAmelCase : Union[str, Any]=7 , __UpperCAmelCase : int=True , __UpperCAmelCase : Dict=True , __UpperCAmelCase : Tuple=True , __UpperCAmelCase : Any=True , __UpperCAmelCase : List[str]=9_9 , __UpperCAmelCase : Optional[Any]=3_2 , __UpperCAmelCase : Dict=2 , __UpperCAmelCase : List[str]=4 , __UpperCAmelCase : List[str]=3_7 , __UpperCAmelCase : Dict="gelu" , __UpperCAmelCase : Dict=0.1 , __UpperCAmelCase : Any=0.1 , __UpperCAmelCase : str=5_1_2 , __UpperCAmelCase : Union[str, Any]=1_6 , __UpperCAmelCase : Optional[Any]=2 , __UpperCAmelCase : Any=0.02 , __UpperCAmelCase : List[str]=3 , __UpperCAmelCase : List[str]=4 , __UpperCAmelCase : Optional[int]=None , __UpperCAmelCase : List[str]=0 , ) -> Dict: """simple docstring""" UpperCAmelCase__ = parent UpperCAmelCase__ = batch_size UpperCAmelCase__ = seq_length UpperCAmelCase__ = is_training UpperCAmelCase__ = use_input_mask UpperCAmelCase__ = use_token_type_ids UpperCAmelCase__ = use_labels UpperCAmelCase__ = vocab_size UpperCAmelCase__ = hidden_size UpperCAmelCase__ = num_hidden_layers UpperCAmelCase__ = num_attention_heads UpperCAmelCase__ = intermediate_size UpperCAmelCase__ = hidden_act UpperCAmelCase__ = hidden_dropout_prob UpperCAmelCase__ = attention_probs_dropout_prob UpperCAmelCase__ = max_position_embeddings UpperCAmelCase__ = type_vocab_size UpperCAmelCase__ = type_sequence_label_size UpperCAmelCase__ = initializer_range UpperCAmelCase__ = num_labels UpperCAmelCase__ = num_choices UpperCAmelCase__ = scope UpperCAmelCase__ = projection_dim def lowercase_ (self : List[Any] ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase__ = None if self.use_input_mask: # follow test_modeling_tf_ctrl.py UpperCAmelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase__ = None if self.use_token_type_ids: UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = None if self.use_labels: UpperCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase__ = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase__ = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase__ , initializer_range=self.initializer_range , ) UpperCAmelCase__ = DPRConfig(projection_dim=self.projection_dim , **config.to_dict() ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase_ (self : Union[str, Any] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : str , __UpperCAmelCase : List[Any] , __UpperCAmelCase : int , __UpperCAmelCase : Tuple , __UpperCAmelCase : Dict ) -> Dict: """simple docstring""" UpperCAmelCase__ = TFDPRContextEncoder(config=lowerCAmelCase__ ) UpperCAmelCase__ = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ ) UpperCAmelCase__ = model(lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ ) UpperCAmelCase__ = model(lowerCAmelCase__ ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def lowercase_ (self : Tuple , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : int , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Dict , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Tuple , __UpperCAmelCase : List[Any] ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = TFDPRQuestionEncoder(config=lowerCAmelCase__ ) UpperCAmelCase__ = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ ) UpperCAmelCase__ = model(lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ ) UpperCAmelCase__ = model(lowerCAmelCase__ ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def lowercase_ (self : List[str] , __UpperCAmelCase : Tuple , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Tuple , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : List[Any] ) -> str: """simple docstring""" UpperCAmelCase__ = TFDPRReader(config=lowerCAmelCase__ ) UpperCAmelCase__ = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.relevance_logits.shape , (self.batch_size,) ) def lowercase_ (self : str ) -> Tuple: """simple docstring""" UpperCAmelCase__ = self.prepare_config_and_inputs() ( UpperCAmelCase__ ) = config_and_inputs UpperCAmelCase__ = {"input_ids": input_ids} return config, inputs_dict @require_tf class A ( a__ , a__ , unittest.TestCase ): __UpperCAmelCase : Optional[Any] = ( ( TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) if is_tf_available() else () ) __UpperCAmelCase : Any = {"""feature-extraction""": TFDPRQuestionEncoder} if is_tf_available() else {} __UpperCAmelCase : int = False __UpperCAmelCase : Optional[int] = False __UpperCAmelCase : str = False __UpperCAmelCase : Any = False __UpperCAmelCase : Optional[int] = False def lowercase_ (self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = TFDPRModelTester(self ) UpperCAmelCase__ = ConfigTester(self , config_class=lowerCAmelCase__ , hidden_size=3_7 ) def lowercase_ (self : Optional[int] ) -> str: """simple docstring""" self.config_tester.run_common_tests() def lowercase_ (self : Optional[int] ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_context_encoder(*lowerCAmelCase__ ) def lowercase_ (self : int ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_question_encoder(*lowerCAmelCase__ ) def lowercase_ (self : List[str] ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_reader(*lowerCAmelCase__ ) @slow def lowercase_ (self : Union[str, Any] ) -> Any: """simple docstring""" for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ = TFDPRContextEncoder.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ = TFDPRContextEncoder.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) for model_name in TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ = TFDPRQuestionEncoder.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) for model_name in TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ = TFDPRReader.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) @require_tf class A ( unittest.TestCase ): @slow def lowercase_ (self : List[str] ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = TFDPRQuestionEncoder.from_pretrained("facebook/dpr-question_encoder-single-nq-base" ) UpperCAmelCase__ = tf.constant( [[1_0_1, 7_5_9_2, 1_0_1_0, 2_0_0_3, 2_0_2_6, 3_8_9_9, 1_0_1_4_0, 1_0_2_9, 1_0_2]] ) # [CLS] hello, is my dog cute? [SEP] UpperCAmelCase__ = model(lowerCAmelCase__ )[0] # embedding shape = (1, 768) # compare the actual values for a slice. UpperCAmelCase__ = tf.constant( [ [ 0.03236253, 0.12753335, 0.16818509, 0.00279786, 0.3896933, 0.24264945, 0.2178971, -0.02335227, -0.08481959, -0.14324117, ] ] ) self.assertTrue(numpy.allclose(output[:, :1_0].numpy() , expected_slice.numpy() , atol=1E-4 ) )
486
"""simple docstring""" from ..utils import ( OptionalDependencyNotAvailable, is_flax_available, is_scipy_available, is_torch_available, is_torchsde_available, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_pt_objects import * # noqa F403 else: from .scheduling_consistency_models import CMStochasticIterativeScheduler from .scheduling_ddim import DDIMScheduler from .scheduling_ddim_inverse import DDIMInverseScheduler from .scheduling_ddim_parallel import DDIMParallelScheduler from .scheduling_ddpm import DDPMScheduler from .scheduling_ddpm_parallel import DDPMParallelScheduler from .scheduling_deis_multistep import DEISMultistepScheduler from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler from .scheduling_euler_discrete import EulerDiscreteScheduler from .scheduling_heun_discrete import HeunDiscreteScheduler from .scheduling_ipndm import IPNDMScheduler from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler from .scheduling_karras_ve import KarrasVeScheduler from .scheduling_pndm import PNDMScheduler from .scheduling_repaint import RePaintScheduler from .scheduling_sde_ve import ScoreSdeVeScheduler from .scheduling_sde_vp import ScoreSdeVpScheduler from .scheduling_unclip import UnCLIPScheduler from .scheduling_unipc_multistep import UniPCMultistepScheduler from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin from .scheduling_vq_diffusion import VQDiffusionScheduler try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_flax_objects import * # noqa F403 else: from .scheduling_ddim_flax import FlaxDDIMScheduler from .scheduling_ddpm_flax import FlaxDDPMScheduler from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler from .scheduling_pndm_flax import FlaxPNDMScheduler from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler from .scheduling_utils_flax import ( FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, broadcast_to_shape_from_left, ) try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .scheduling_lms_discrete import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
633
0
'''simple docstring''' import unittest from transformers import MPNetConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) class _lowercase : def __init__( self , A__ , A__=13 , A__=7 , A__=True , A__=True , A__=False , A__=True , A__=99 , A__=64 , A__=5 , A__=4 , A__=64 , A__="gelu" , A__=0.1 , A__=0.1 , A__=5_12 , A__=16 , A__=2 , A__=0.0_2 , A__=3 , A__=4 , A__=None , ) -> Tuple: snake_case = parent snake_case = batch_size snake_case = seq_length snake_case = is_training snake_case = use_input_mask snake_case = use_token_type_ids snake_case = use_labels snake_case = vocab_size snake_case = hidden_size snake_case = num_hidden_layers snake_case = num_attention_heads snake_case = intermediate_size snake_case = hidden_act snake_case = hidden_dropout_prob snake_case = attention_probs_dropout_prob snake_case = max_position_embeddings snake_case = type_vocab_size snake_case = type_sequence_label_size snake_case = initializer_range snake_case = num_labels snake_case = num_choices snake_case = scope def UpperCamelCase ( self ) -> Tuple: return MPNetConfig.from_pretrained('''microsoft/mpnet-base''' ) def UpperCamelCase ( self ) -> Dict: snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case = None if self.use_input_mask: snake_case = random_attention_mask([self.batch_size, self.seq_length] ) snake_case = None snake_case = None snake_case = None if self.use_labels: snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case = ids_tensor([self.batch_size] , self.num_choices ) snake_case = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase ( self ) -> List[Any]: return MPNetConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def UpperCamelCase ( self , A__ , A__ , A__ , A__ , A__ , A__ ) -> Any: snake_case = MPNetModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() snake_case = model(snake_case__ , snake_case__ ) snake_case = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCamelCase ( self , A__ , A__ , A__ , A__ , A__ , A__ ) -> Dict: snake_case = MPNetForQuestionAnswering(config=snake_case__ ) model.to(snake_case__ ) model.eval() snake_case = model( snake_case__ , attention_mask=snake_case__ , start_positions=snake_case__ , end_positions=snake_case__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase ( self , A__ , A__ , A__ , A__ , A__ , A__ ) -> Optional[Any]: snake_case = self.num_labels snake_case = MPNetForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() snake_case = model(snake_case__ , attention_mask=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase ( self , A__ , A__ , A__ , A__ , A__ , A__ ) -> Any: snake_case = self.num_choices snake_case = MPNetForMultipleChoice(config=snake_case__ ) model.to(snake_case__ ) model.eval() snake_case = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case = model( snake_case__ , attention_mask=snake_case__ , labels=snake_case__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCamelCase ( self , A__ , A__ , A__ , A__ , A__ , A__ ) -> Tuple: snake_case = self.num_labels snake_case = MPNetForTokenClassification(config=snake_case__ ) model.to(snake_case__ ) model.eval() snake_case = model(snake_case__ , attention_mask=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase ( self ) -> int: snake_case = self.prepare_config_and_inputs() (snake_case) = config_and_inputs snake_case = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class _lowercase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): _UpperCAmelCase = ( ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) if is_torch_available() else () ) _UpperCAmelCase = ( { '''feature-extraction''': MPNetModel, '''fill-mask''': MPNetForMaskedLM, '''question-answering''': MPNetForQuestionAnswering, '''text-classification''': MPNetForSequenceClassification, '''token-classification''': MPNetForTokenClassification, '''zero-shot''': MPNetForSequenceClassification, } if is_torch_available() else {} ) _UpperCAmelCase = False _UpperCAmelCase = True def UpperCamelCase ( self ) -> List[str]: snake_case = MPNetModelTester(self ) snake_case = ConfigTester(self , config_class=snake_case__ , hidden_size=37 ) def UpperCamelCase ( self ) -> Optional[int]: self.config_tester.run_common_tests() def UpperCamelCase ( self ) -> Union[str, Any]: snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_model(*snake_case__ ) def UpperCamelCase ( self ) -> List[str]: snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_sequence_classification(*snake_case__ ) def UpperCamelCase ( self ) -> Tuple: snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_multiple_choice(*snake_case__ ) def UpperCamelCase ( self ) -> Optional[int]: snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_token_classification(*snake_case__ ) def UpperCamelCase ( self ) -> Dict: snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_question_answering(*snake_case__ ) @require_torch class _lowercase ( unittest.TestCase ): @slow def UpperCamelCase ( self ) -> List[Any]: snake_case = MPNetModel.from_pretrained('''microsoft/mpnet-base''' ) snake_case = torch.tensor([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) snake_case = model(snake_case__ )[0] snake_case = torch.Size((1, 11, 7_68) ) self.assertEqual(output.shape , snake_case__ ) snake_case = torch.tensor( [[[-0.0_5_5_0, 0.1_9_4_3, -0.0_7_4_0], [-0.0_5_6_2, 0.2_2_1_1, -0.0_5_7_9], [-0.0_4_3_7, 0.3_3_3_7, -0.0_6_4_1]]] ) # compare the actual values for a slice. self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case__ , atol=1e-4 ) )
718
'''simple docstring''' from __future__ import annotations from collections.abc import Iterator class _lowercase : def __init__( self , A__ ) -> None: snake_case = value snake_case = None snake_case = None class _lowercase : def __init__( self , A__ ) -> None: snake_case = tree def UpperCamelCase ( self , A__ ) -> int: if node is None: return 0 return node.value + ( self.depth_first_search(node.left ) + self.depth_first_search(node.right ) ) def __iter__( self ) -> Iterator[int]: yield self.depth_first_search(self.tree ) if __name__ == "__main__": import doctest doctest.testmod()
44
0
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { 'google/fnet-base': 'https://huggingface.co/google/fnet-base/resolve/main/config.json', 'google/fnet-large': 'https://huggingface.co/google/fnet-large/resolve/main/config.json' # See all FNet models at https://huggingface.co/models?filter=fnet } class UpperCAmelCase__ ( A_ ): '''simple docstring''' UpperCAmelCase_ = '''fnet''' def __init__( self : Optional[Any] , UpperCamelCase : Optional[int]=3_20_00 , UpperCamelCase : int=7_68 , UpperCamelCase : List[str]=12 , UpperCamelCase : Tuple=30_72 , UpperCamelCase : Tuple="gelu_new" , UpperCamelCase : str=0.1 , UpperCamelCase : int=5_12 , UpperCamelCase : List[str]=4 , UpperCamelCase : Union[str, Any]=0.02 , UpperCamelCase : List[Any]=1E-12 , UpperCamelCase : List[str]=False , UpperCamelCase : int=5_12 , UpperCamelCase : Any=3 , UpperCamelCase : Union[str, Any]=1 , UpperCamelCase : Any=2 , **UpperCamelCase : Any , ): """simple docstring""" super().__init__(pad_token_id=UpperCamelCase , bos_token_id=UpperCamelCase , eos_token_id=UpperCamelCase , **UpperCamelCase ) _lowercase : List[str] = vocab_size _lowercase : Union[str, Any] = max_position_embeddings _lowercase : int = hidden_size _lowercase : Optional[Any] = num_hidden_layers _lowercase : Optional[int] = intermediate_size _lowercase : Optional[int] = hidden_act _lowercase : str = hidden_dropout_prob _lowercase : str = initializer_range _lowercase : Any = type_vocab_size _lowercase : str = layer_norm_eps _lowercase : Union[str, Any] = use_tpu_fourier_optimizations _lowercase : int = tpu_short_seq_length
322
import argparse import json from tqdm import tqdm def UpperCamelCase__ ( ) -> Union[str, Any]: '''simple docstring''' _lowercase : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--src_path''' , type=UpperCAmelCase_ , default='''biencoder-nq-dev.json''' , help='''Path to raw DPR training data''' , ) parser.add_argument( '''--evaluation_set''' , type=UpperCAmelCase_ , help='''where to store parsed evaluation_set file''' , ) parser.add_argument( '''--gold_data_path''' , type=UpperCAmelCase_ , help='''where to store parsed gold_data_path file''' , ) _lowercase : Dict = parser.parse_args() with open(args.src_path , '''r''' ) as src_file, open(args.evaluation_set , '''w''' ) as eval_file, open( args.gold_data_path , '''w''' ) as gold_file: _lowercase : str = json.load(UpperCAmelCase_ ) for dpr_record in tqdm(UpperCAmelCase_ ): _lowercase : Optional[Any] = dpr_record['''question'''] _lowercase : Union[str, Any] = [context['''title'''] for context in dpr_record['''positive_ctxs''']] eval_file.write(question + '''\n''' ) gold_file.write('''\t'''.join(UpperCAmelCase_ ) + '''\n''' ) if __name__ == "__main__": main()
322
1
"""simple docstring""" from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. UpperCamelCase__ = 2_00 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. UpperCamelCase__ = 50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. UpperCamelCase__ = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 10_00)) def lowerCamelCase ( _snake_case ,_snake_case ): UpperCAmelCase__ : Optional[Any] = len([g for position, g in enumerate(_snake_case ) if g == main_target[position]] ) return (item, float(_snake_case )) def lowerCamelCase ( _snake_case ,_snake_case ): UpperCAmelCase__ : str = random.randint(0 ,len(_snake_case ) - 1 ) UpperCAmelCase__ : str = parent_a[:random_slice] + parent_a[random_slice:] UpperCAmelCase__ : int = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def lowerCamelCase ( _snake_case ,_snake_case ): UpperCAmelCase__ : Tuple = list(_snake_case ) if random.uniform(0 ,1 ) < MUTATION_PROBABILITY: UpperCAmelCase__ : int = random.choice(_snake_case ) return "".join(_snake_case ) def lowerCamelCase ( _snake_case ,_snake_case ,_snake_case ,): UpperCAmelCase__ : Tuple = [] # Generate more children proportionally to the fitness score. UpperCAmelCase__ : int = int(parent_a[1] * 100 ) + 1 UpperCAmelCase__ : Any = 10 if child_n >= 10 else child_n for _ in range(_snake_case ): UpperCAmelCase__ : Any = population_score[random.randint(0 ,_snake_case )][0] UpperCAmelCase__ : Union[str, Any] = crossover(parent_a[0] ,_snake_case ) # Append new string to the population list. pop.append(mutate(_snake_case ,_snake_case ) ) pop.append(mutate(_snake_case ,_snake_case ) ) return pop def lowerCamelCase ( _snake_case ,_snake_case ,_snake_case = True ): # Verify if N_POPULATION is bigger than N_SELECTED if N_POPULATION < N_SELECTED: UpperCAmelCase__ : int = F'''{N_POPULATION} must be bigger than {N_SELECTED}''' raise ValueError(_snake_case ) # Verify that the target contains no genes besides the ones inside genes variable. UpperCAmelCase__ : Tuple = sorted({c for c in target if c not in genes} ) if not_in_genes_list: UpperCAmelCase__ : str = F'''{not_in_genes_list} is not in genes list, evolution cannot converge''' raise ValueError(_snake_case ) # Generate random starting population. UpperCAmelCase__ : Any = [] for _ in range(_snake_case ): population.append(''.join([random.choice(_snake_case ) for i in range(len(_snake_case ) )] ) ) # Just some logs to know what the algorithms is doing. UpperCAmelCase__ : List[str] = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(_snake_case ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. UpperCAmelCase__ : Union[str, Any] = [evaluate(_snake_case ,_snake_case ) for item in population] # Check if there is a matching evolution. UpperCAmelCase__ : List[str] = sorted(_snake_case ,key=lambda _snake_case : x[1] ,reverse=_snake_case ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( F'''\nGeneration: {generation}''' F'''\nTotal Population:{total_population}''' F'''\nBest score: {population_score[0][1]}''' F'''\nBest string: {population_score[0][0]}''' ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. UpperCAmelCase__ : int = population[: int(N_POPULATION / 3 )] population.clear() population.extend(_snake_case ) # Normalize population score to be between 0 and 1. UpperCAmelCase__ : List[Any] = [ (item, score / len(_snake_case )) for item, score in population_score ] # This is selection for i in range(_snake_case ): population.extend(select(population_score[int(_snake_case )] ,_snake_case ,_snake_case ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(_snake_case ) > N_POPULATION: break if __name__ == "__main__": UpperCamelCase__ = ( 'This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!' ) UpperCamelCase__ = list( ' ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm' 'nopqrstuvwxyz.,;!?+-*#@^\'èéòà€ù=)(&%$£/\\' ) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = basic(target_str, genes_list) print( f'\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}' )
717
"""simple docstring""" from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging UpperCamelCase__ = logging.get_logger(__name__) class a ( lowercase ): UpperCamelCase : Optional[int] = ["""pixel_values"""] def __init__( self , UpperCamelCase_ = True , UpperCamelCase_ = None , UpperCamelCase_ = PILImageResampling.BICUBIC , UpperCamelCase_ = True , UpperCamelCase_ = None , UpperCamelCase_ = True , UpperCamelCase_ = 1 / 255 , UpperCamelCase_ = True , UpperCamelCase_ = IMAGENET_DEFAULT_MEAN , UpperCamelCase_ = IMAGENET_DEFAULT_STD , **UpperCamelCase_ , ): super().__init__(**UpperCamelCase_ ) UpperCAmelCase__ : Optional[int] = size if size is not None else {'shortest_edge': 224} UpperCAmelCase__ : Tuple = get_size_dict(UpperCamelCase_ , default_to_square=UpperCamelCase_ ) UpperCAmelCase__ : Tuple = crop_size if crop_size is not None else {'height': 224, 'width': 224} UpperCAmelCase__ : str = get_size_dict(UpperCamelCase_ , param_name='crop_size' ) UpperCAmelCase__ : Dict = do_resize UpperCAmelCase__ : Any = size UpperCAmelCase__ : Tuple = resample UpperCAmelCase__ : List[str] = do_center_crop UpperCAmelCase__ : Optional[Any] = crop_size UpperCAmelCase__ : Optional[Any] = do_rescale UpperCAmelCase__ : List[Any] = rescale_factor UpperCAmelCase__ : str = do_normalize UpperCAmelCase__ : Union[str, Any] = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN UpperCAmelCase__ : List[str] = image_std if image_std is not None else IMAGENET_DEFAULT_STD def __snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = PILImageResampling.BICUBIC , UpperCamelCase_ = None , **UpperCamelCase_ , ): UpperCAmelCase__ : Tuple = get_size_dict(UpperCamelCase_ , default_to_square=UpperCamelCase_ ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: UpperCAmelCase__ : List[Any] = int((256 / 224) * size['shortest_edge'] ) UpperCAmelCase__ : str = get_resize_output_image_size(UpperCamelCase_ , size=UpperCamelCase_ , default_to_square=UpperCamelCase_ ) UpperCAmelCase__ : Dict = {'height': output_size[0], 'width': output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( F'''Size dict must have keys \'height\' and \'width\' or \'shortest_edge\'. Got {size_dict.keys()}''' ) return resize( UpperCamelCase_ , size=(size_dict['height'], size_dict['width']) , resample=UpperCamelCase_ , data_format=UpperCamelCase_ , **UpperCamelCase_ ) def __snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = None , **UpperCamelCase_ , ): UpperCAmelCase__ : Any = get_size_dict(UpperCamelCase_ ) if "height" not in size or "width" not in size: raise ValueError(F'''Size dict must have keys \'height\' and \'width\'. Got {size.keys()}''' ) return center_crop(UpperCamelCase_ , size=(size['height'], size['width']) , data_format=UpperCamelCase_ , **UpperCamelCase_ ) def __snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = None , **UpperCamelCase_ , ): return rescale(UpperCamelCase_ , scale=UpperCamelCase_ , data_format=UpperCamelCase_ , **UpperCamelCase_ ) def __snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = None , **UpperCamelCase_ , ): return normalize(UpperCamelCase_ , mean=UpperCamelCase_ , std=UpperCamelCase_ , data_format=UpperCamelCase_ , **UpperCamelCase_ ) def __snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = ChannelDimension.FIRST , **UpperCamelCase_ , ): UpperCAmelCase__ : Dict = do_resize if do_resize is not None else self.do_resize UpperCAmelCase__ : List[Any] = resample if resample is not None else self.resample UpperCAmelCase__ : int = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase__ : List[Any] = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase__ : str = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase__ : Any = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase__ : List[str] = image_mean if image_mean is not None else self.image_mean UpperCAmelCase__ : Optional[Any] = image_std if image_std is not None else self.image_std UpperCAmelCase__ : Union[str, Any] = size if size is not None else self.size UpperCAmelCase__ : Union[str, Any] = get_size_dict(UpperCamelCase_ , default_to_square=UpperCamelCase_ ) UpperCAmelCase__ : Any = crop_size if crop_size is not None else self.crop_size UpperCAmelCase__ : Dict = get_size_dict(UpperCamelCase_ , param_name='crop_size' ) UpperCAmelCase__ : List[str] = make_list_of_images(UpperCamelCase_ ) if not valid_images(UpperCamelCase_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. UpperCAmelCase__ : Union[str, Any] = [to_numpy_array(UpperCamelCase_ ) for image in images] if do_resize: UpperCAmelCase__ : List[str] = [self.resize(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) for image in images] if do_center_crop: UpperCAmelCase__ : Optional[Any] = [self.center_crop(UpperCamelCase_ , UpperCamelCase_ ) for image in images] if do_rescale: UpperCAmelCase__ : int = [self.rescale(UpperCamelCase_ , UpperCamelCase_ ) for image in images] if do_normalize: UpperCAmelCase__ : int = [self.normalize(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) for image in images] UpperCAmelCase__ : Any = [to_channel_dimension_format(UpperCamelCase_ , UpperCamelCase_ ) for image in images] UpperCAmelCase__ : List[str] = {'pixel_values': images} return BatchFeature(data=UpperCamelCase_ , tensor_type=UpperCamelCase_ )
254
0
import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class a_ : def __init__( self : Union[str, Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Any=13 , UpperCAmelCase__ : Optional[Any]=7 , UpperCAmelCase__ : List[str]=True , UpperCAmelCase__ : int=True , UpperCAmelCase__ : Dict=True , UpperCAmelCase__ : Optional[int]=True , UpperCAmelCase__ : Optional[int]=99 , UpperCAmelCase__ : Optional[int]=24 , UpperCAmelCase__ : List[str]=2 , UpperCAmelCase__ : Dict=6 , UpperCAmelCase__ : List[str]=37 , UpperCAmelCase__ : Optional[int]="gelu" , UpperCAmelCase__ : List[str]=0.1 , UpperCAmelCase__ : Dict=0.1 , UpperCAmelCase__ : Optional[Any]=512 , UpperCAmelCase__ : str=16 , UpperCAmelCase__ : Union[str, Any]=2 , UpperCAmelCase__ : str=0.02 , UpperCAmelCase__ : Any=3 , UpperCAmelCase__ : Optional[Any]=None , UpperCAmelCase__ : Dict=1_000 , ): """simple docstring""" snake_case : Tuple = parent snake_case : Dict = batch_size snake_case : Tuple = seq_length snake_case : int = is_training snake_case : Any = use_input_mask snake_case : Any = use_token_type_ids snake_case : int = use_labels snake_case : str = vocab_size snake_case : Tuple = hidden_size snake_case : str = num_hidden_layers snake_case : Union[str, Any] = num_attention_heads snake_case : List[str] = intermediate_size snake_case : int = hidden_act snake_case : Dict = hidden_dropout_prob snake_case : Union[str, Any] = attention_probs_dropout_prob snake_case : Dict = max_position_embeddings snake_case : List[str] = type_vocab_size snake_case : str = type_sequence_label_size snake_case : Any = initializer_range snake_case : int = num_labels snake_case : List[str] = scope snake_case : List[str] = range_bbox def lowerCAmelCase( self : int ): """simple docstring""" snake_case : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case : Dict = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: snake_case : Optional[int] = bbox[i, j, 3] snake_case : List[Any] = bbox[i, j, 1] snake_case : List[str] = t if bbox[i, j, 2] < bbox[i, j, 0]: snake_case : List[Any] = bbox[i, j, 2] snake_case : Optional[int] = bbox[i, j, 0] snake_case : str = t snake_case : Union[str, Any] = None if self.use_input_mask: snake_case : Tuple = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) snake_case : Optional[Any] = None if self.use_token_type_ids: snake_case : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case : List[Any] = None snake_case : List[str] = None if self.use_labels: snake_case : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case : Union[str, Any] = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def lowerCAmelCase( self : Dict ): """simple docstring""" return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def lowerCAmelCase( self : List[Any] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : int , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Tuple , ): """simple docstring""" snake_case : Dict = LiltModel(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() snake_case : Optional[int] = model(UpperCAmelCase_ , bbox=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ ) snake_case : Union[str, Any] = model(UpperCAmelCase_ , bbox=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ ) snake_case : List[str] = model(UpperCAmelCase_ , bbox=UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowerCAmelCase( self : Tuple , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : Any , UpperCAmelCase__ : int , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Optional[Any] , ): """simple docstring""" snake_case : Optional[Any] = self.num_labels snake_case : List[Any] = LiltForTokenClassification(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() snake_case : Optional[Any] = model( UpperCAmelCase_ , bbox=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase( self : Union[str, Any] , UpperCAmelCase__ : int , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Union[str, Any] , ): """simple docstring""" snake_case : Tuple = LiltForQuestionAnswering(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() snake_case : Tuple = model( UpperCAmelCase_ , bbox=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , start_positions=UpperCAmelCase_ , end_positions=UpperCAmelCase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase( self : Tuple ): """simple docstring""" snake_case : Dict = self.prepare_config_and_inputs() ( ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ) : Optional[int] = config_and_inputs snake_case : Optional[int] = { '''input_ids''': input_ids, '''bbox''': bbox, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class a_ ( a , a , a , unittest.TestCase ): A__ : Optional[Any] = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) A__ : int = ( { "feature-extraction": LiltModel, "question-answering": LiltForQuestionAnswering, "text-classification": LiltForSequenceClassification, "token-classification": LiltForTokenClassification, "zero-shot": LiltForSequenceClassification, } if is_torch_available() else {} ) A__ : Any = False A__ : Tuple = False def lowerCAmelCase( self : List[str] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Any , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : int ): """simple docstring""" return True def lowerCAmelCase( self : Union[str, Any] ): """simple docstring""" snake_case : Optional[Any] = LiltModelTester(self ) snake_case : Tuple = ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=37 ) def lowerCAmelCase( self : Optional[int] ): """simple docstring""" self.config_tester.run_common_tests() def lowerCAmelCase( self : Optional[int] ): """simple docstring""" snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def lowerCAmelCase( self : List[str] ): """simple docstring""" snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: snake_case : str = type self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def lowerCAmelCase( self : Dict ): """simple docstring""" snake_case : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase_ ) def lowerCAmelCase( self : List[str] ): """simple docstring""" snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase_ ) @slow def lowerCAmelCase( self : Optional[Any] ): """simple docstring""" for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case : Union[str, Any] = LiltModel.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) @require_torch @slow class a_ ( unittest.TestCase ): def lowerCAmelCase( self : Optional[int] ): """simple docstring""" snake_case : Any = LiltModel.from_pretrained('''SCUT-DLVCLab/lilt-roberta-en-base''' ).to(UpperCAmelCase_ ) snake_case : List[str] = torch.tensor([[1, 2]] , device=UpperCAmelCase_ ) snake_case : Optional[int] = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=UpperCAmelCase_ ) # forward pass with torch.no_grad(): snake_case : str = model(input_ids=UpperCAmelCase_ , bbox=UpperCAmelCase_ ) snake_case : Union[str, Any] = torch.Size([1, 2, 768] ) snake_case : Optional[Any] = torch.tensor( [[-0.0653, 0.0950, -0.0061], [-0.0545, 0.0926, -0.0324]] , device=UpperCAmelCase_ , ) self.assertTrue(outputs.last_hidden_state.shape , UpperCAmelCase_ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , UpperCAmelCase_ , atol=1e-3 ) )
598
'''simple docstring''' import gc import unittest from transformers import CTRLConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, ) class snake_case : def __init__( self ,UpperCAmelCase_ ,UpperCAmelCase_=14 ,UpperCAmelCase_=7 ,UpperCAmelCase_=True ,UpperCAmelCase_=True ,UpperCAmelCase_=True ,UpperCAmelCase_=True ,UpperCAmelCase_=True ,UpperCAmelCase_=99 ,UpperCAmelCase_=32 ,UpperCAmelCase_=5 ,UpperCAmelCase_=4 ,UpperCAmelCase_=37 ,UpperCAmelCase_="gelu" ,UpperCAmelCase_=0.1 ,UpperCAmelCase_=0.1 ,UpperCAmelCase_=512 ,UpperCAmelCase_=16 ,UpperCAmelCase_=2 ,UpperCAmelCase_=0.02 ,UpperCAmelCase_=3 ,UpperCAmelCase_=4 ,UpperCAmelCase_=None ,) -> Dict: lowercase__ = parent lowercase__ = batch_size lowercase__ = seq_length lowercase__ = is_training lowercase__ = use_token_type_ids lowercase__ = use_input_mask lowercase__ = use_labels lowercase__ = use_mc_token_ids lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = type_sequence_label_size lowercase__ = initializer_range lowercase__ = num_labels lowercase__ = num_choices lowercase__ = scope lowercase__ = self.vocab_size - 1 def _a ( self ) -> Any: lowercase__ = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) lowercase__ = None if self.use_input_mask: lowercase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ = None if self.use_token_type_ids: lowercase__ = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) lowercase__ = None if self.use_mc_token_ids: lowercase__ = ids_tensor([self.batch_size, self.num_choices] ,self.seq_length ) lowercase__ = None lowercase__ = None lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) lowercase__ = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) lowercase__ = ids_tensor([self.batch_size] ,self.num_choices ) lowercase__ = self.get_config() lowercase__ = ids_tensor([self.num_hidden_layers, self.num_attention_heads] ,2 ) return ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) def _a ( self ) -> Optional[int]: return CTRLConfig( vocab_size=self.vocab_size ,n_embd=self.hidden_size ,n_layer=self.num_hidden_layers ,n_head=self.num_attention_heads ,n_positions=self.max_position_embeddings ,pad_token_id=self.pad_token_id ,) def _a ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,*UpperCAmelCase_ ) -> List[Any]: lowercase__ = CTRLModel(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() model(UpperCAmelCase_ ,token_type_ids=UpperCAmelCase_ ,head_mask=UpperCAmelCase_ ) model(UpperCAmelCase_ ,token_type_ids=UpperCAmelCase_ ) lowercase__ = model(UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(len(result.past_key_values ) ,config.n_layer ) def _a ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,*UpperCAmelCase_ ) -> Optional[int]: lowercase__ = CTRLLMHeadModel(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() lowercase__ = model(UpperCAmelCase_ ,token_type_ids=UpperCAmelCase_ ,labels=UpperCAmelCase_ ) self.parent.assertEqual(result.loss.shape ,() ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _a ( self ) -> Union[str, Any]: lowercase__ = self.prepare_config_and_inputs() ( ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ) = config_and_inputs lowercase__ = {"input_ids": input_ids, "token_type_ids": token_type_ids, "head_mask": head_mask} return config, inputs_dict def _a ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,*UpperCAmelCase_ ) -> Optional[int]: lowercase__ = self.num_labels lowercase__ = CTRLForSequenceClassification(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() lowercase__ = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) lowercase__ = model(UpperCAmelCase_ ,token_type_ids=UpperCAmelCase_ ,labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) @require_torch class snake_case (UpperCamelCase , UpperCamelCase , UpperCamelCase , unittest.TestCase ): lowerCAmelCase__ :Union[str, Any] = (CTRLModel, CTRLLMHeadModel, CTRLForSequenceClassification) if is_torch_available() else () lowerCAmelCase__ :Dict = (CTRLLMHeadModel,) if is_torch_available() else () lowerCAmelCase__ :int = ( { "feature-extraction": CTRLModel, "text-classification": CTRLForSequenceClassification, "text-generation": CTRLLMHeadModel, "zero-shot": CTRLForSequenceClassification, } if is_torch_available() else {} ) lowerCAmelCase__ :str = True lowerCAmelCase__ :Tuple = False lowerCAmelCase__ :List[Any] = False def _a ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ) -> Tuple: if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `CTRLConfig` was never used in pipeline tests, either because of a missing checkpoint or because a tiny # config could not be created. return True return False def _a ( self ) -> str: lowercase__ = CTRLModelTester(self ) lowercase__ = ConfigTester(self ,config_class=UpperCAmelCase_ ,n_embd=37 ) def _a ( self ) -> List[Any]: super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() def _a ( self ) -> Tuple: self.config_tester.run_common_tests() def _a ( self ) -> Any: lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_ctrl_model(*UpperCAmelCase_ ) def _a ( self ) -> Optional[Any]: lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*UpperCAmelCase_ ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def _a ( self ) -> Tuple: pass @slow def _a ( self ) -> List[str]: for model_name in CTRL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ = CTRLModel.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) @unittest.skip("The model doesn't support left padding" ) # and it's not used enough to be worth fixing :) def _a ( self ) -> Tuple: pass @require_torch class snake_case (unittest.TestCase ): def _a ( self ) -> int: super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() @slow def _a ( self ) -> int: lowercase__ = CTRLLMHeadModel.from_pretrained("ctrl" ) model.to(UpperCAmelCase_ ) lowercase__ = torch.tensor( [[11_859, 0, 1_611, 8]] ,dtype=torch.long ,device=UpperCAmelCase_ ) # Legal the president is lowercase__ = [ 11_859, 0, 1_611, 8, 5, 150, 26_449, 2, 19, 348, 469, 3, 2_595, 48, 20_740, 246_533, 246_533, 19, 30, 5, ] # Legal the president is a good guy and I don't want to lose my job. \n \n I have a lowercase__ = model.generate(UpperCAmelCase_ ,do_sample=UpperCAmelCase_ ) self.assertListEqual(output_ids[0].tolist() ,UpperCAmelCase_ )
267
0
"""simple docstring""" def lowercase ( lowerCAmelCase__ : int ) -> bool: __a = (1 + 24 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def lowercase ( lowerCAmelCase__ : int = 5000 ) -> int: __a = [(i * (3 * i - 1)) // 2 for i in range(1 , lowerCAmelCase__ )] for i, pentagonal_i in enumerate(lowerCAmelCase__ ): for j in range(lowerCAmelCase__ , len(lowerCAmelCase__ ) ): __a = pentagonal_nums[j] __a = pentagonal_i + pentagonal_j __a = pentagonal_j - pentagonal_i if is_pentagonal(lowerCAmelCase__ ) and is_pentagonal(lowerCAmelCase__ ): return b return -1 if __name__ == "__main__": print(F'''{solution() = }''')
702
"""simple docstring""" import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.text import TextDatasetReader from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def lowercase ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[Any] ) -> str: assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : int ) -> Tuple: __a = tmp_path / '''cache''' __a = {'''text''': '''string'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __a = TextDatasetReader(lowerCAmelCase__ , cache_dir=lowerCAmelCase__ , keep_in_memory=lowerCAmelCase__ ).read() _check_text_dataset(lowerCAmelCase__ , lowerCAmelCase__ ) @pytest.mark.parametrize( '''features''' , [ None, {'''text''': '''string'''}, {'''text''': '''int32'''}, {'''text''': '''float32'''}, ] , ) def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Union[str, Any] ) -> Optional[int]: __a = tmp_path / '''cache''' __a = {'''text''': '''string'''} __a = features.copy() if features else default_expected_features __a = ( Features({feature: Value(lowerCAmelCase__ ) for feature, dtype in features.items()} ) if features is not None else None ) __a = TextDatasetReader(lowerCAmelCase__ , features=lowerCAmelCase__ , cache_dir=lowerCAmelCase__ ).read() _check_text_dataset(lowerCAmelCase__ , lowerCAmelCase__ ) @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def lowercase ( lowerCAmelCase__ : int , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Dict ) -> Optional[Any]: __a = tmp_path / '''cache''' __a = {'''text''': '''string'''} __a = TextDatasetReader(lowerCAmelCase__ , cache_dir=lowerCAmelCase__ , split=lowerCAmelCase__ ).read() _check_text_dataset(lowerCAmelCase__ , lowerCAmelCase__ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('''path_type''' , [str, list] ) def lowercase ( lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[Any] ) -> Dict: if issubclass(lowerCAmelCase__ , lowerCAmelCase__ ): __a = text_path elif issubclass(lowerCAmelCase__ , lowerCAmelCase__ ): __a = [text_path] __a = tmp_path / '''cache''' __a = {'''text''': '''string'''} __a = TextDatasetReader(lowerCAmelCase__ , cache_dir=lowerCAmelCase__ ).read() _check_text_dataset(lowerCAmelCase__ , lowerCAmelCase__ ) def lowercase ( lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Union[str, Any]=("train",) ) -> Optional[Any]: assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) for split in splits: __a = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def lowercase ( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : str , lowerCAmelCase__ : List[Any] ) -> Union[str, Any]: __a = tmp_path / '''cache''' __a = {'''text''': '''string'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __a = TextDatasetReader({'''train''': text_path} , cache_dir=lowerCAmelCase__ , keep_in_memory=lowerCAmelCase__ ).read() _check_text_datasetdict(lowerCAmelCase__ , lowerCAmelCase__ ) @pytest.mark.parametrize( '''features''' , [ None, {'''text''': '''string'''}, {'''text''': '''int32'''}, {'''text''': '''float32'''}, ] , ) def lowercase ( lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[Any] ) -> str: __a = tmp_path / '''cache''' # CSV file loses col_1 string dtype information: default now is "int64" instead of "string" __a = {'''text''': '''string'''} __a = features.copy() if features else default_expected_features __a = ( Features({feature: Value(lowerCAmelCase__ ) for feature, dtype in features.items()} ) if features is not None else None ) __a = TextDatasetReader({'''train''': text_path} , features=lowerCAmelCase__ , cache_dir=lowerCAmelCase__ ).read() _check_text_datasetdict(lowerCAmelCase__ , lowerCAmelCase__ ) @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def lowercase ( lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Tuple ) -> Dict: if split: __a = {split: text_path} else: __a = '''train''' __a = {'''train''': text_path, '''test''': text_path} __a = tmp_path / '''cache''' __a = {'''text''': '''string'''} __a = TextDatasetReader(lowerCAmelCase__ , cache_dir=lowerCAmelCase__ ).read() _check_text_datasetdict(lowerCAmelCase__ , lowerCAmelCase__ , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() )
65
0
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = '▁' _SCREAMING_SNAKE_CASE = {'vocab_file': 'sentencepiece.bpe.model'} _SCREAMING_SNAKE_CASE = { 'vocab_file': { 'facebook/xglm-564M': 'https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model', } } _SCREAMING_SNAKE_CASE = { 'facebook/xglm-564M': 2_0_4_8, } class __lowercase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' a : Optional[int] = VOCAB_FILES_NAMES a : Any = PRETRAINED_VOCAB_FILES_MAP a : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a : Dict = ["input_ids", "attention_mask"] def __init__(self ,_lowerCamelCase ,_lowerCamelCase="<s>" ,_lowerCamelCase="</s>" ,_lowerCamelCase="</s>" ,_lowerCamelCase="<s>" ,_lowerCamelCase="<unk>" ,_lowerCamelCase="<pad>" ,_lowerCamelCase = None ,**_lowerCamelCase ,) -> None: '''simple docstring''' __lowercase = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer __lowercase = 7 __lowercase = [f"<madeupword{i}>" for i in range(self.num_madeup_words )] __lowercase = kwargs.get('''additional_special_tokens''' ,[] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=_SCREAMING_SNAKE_CASE ,eos_token=_SCREAMING_SNAKE_CASE ,unk_token=_SCREAMING_SNAKE_CASE ,sep_token=_SCREAMING_SNAKE_CASE ,cls_token=_SCREAMING_SNAKE_CASE ,pad_token=_SCREAMING_SNAKE_CASE ,sp_model_kwargs=self.sp_model_kwargs ,**_SCREAMING_SNAKE_CASE ,) __lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_SCREAMING_SNAKE_CASE ) ) __lowercase = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab __lowercase = 1 # Mimic fairseq token-to-id alignment for the first 4 token __lowercase = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} __lowercase = len(self.sp_model ) __lowercase = {f"<madeupword{i}>": sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(_SCREAMING_SNAKE_CASE ) __lowercase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__(self ) -> Union[str, Any]: '''simple docstring''' __lowercase = self.__dict__.copy() __lowercase = None __lowercase = self.sp_model.serialized_model_proto() return state def __setstate__(self ,_lowerCamelCase ) -> Any: '''simple docstring''' __lowercase = d # for backward compatibility if not hasattr(self ,'''sp_model_kwargs''' ): __lowercase = {} __lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.sep_token_id] + token_ids_a __lowercase = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = None ,_lowerCamelCase = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_SCREAMING_SNAKE_CASE ,token_ids_a=_SCREAMING_SNAKE_CASE ,already_has_special_tokens=_SCREAMING_SNAKE_CASE ) if token_ids_a is None: return [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) return [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1, 1] + ([0] * len(_SCREAMING_SNAKE_CASE )) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = None ) -> List[int]: '''simple docstring''' __lowercase = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def _UpperCAmelCase (self ) -> str: '''simple docstring''' return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def _UpperCAmelCase (self ) -> Optional[int]: '''simple docstring''' __lowercase = {self.convert_ids_to_tokens(_SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _UpperCAmelCase (self ,_lowerCamelCase ) -> List[str]: '''simple docstring''' return self.sp_model.encode(_SCREAMING_SNAKE_CASE ,out_type=_SCREAMING_SNAKE_CASE ) def _UpperCAmelCase (self ,_lowerCamelCase ) -> Tuple: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] __lowercase = self.sp_model.PieceToId(_SCREAMING_SNAKE_CASE ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _UpperCAmelCase (self ,_lowerCamelCase ) -> Union[str, Any]: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _UpperCAmelCase (self ,_lowerCamelCase ) -> str: '''simple docstring''' __lowercase = "".join(_SCREAMING_SNAKE_CASE ).replace(_SCREAMING_SNAKE_CASE ,''' ''' ).strip() return out_string def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(_SCREAMING_SNAKE_CASE ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return __lowercase = os.path.join( _SCREAMING_SNAKE_CASE ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,_SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.vocab_file ): with open(_SCREAMING_SNAKE_CASE ,'''wb''' ) as fi: __lowercase = self.sp_model.serialized_model_proto() fi.write(_SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
502
"""simple docstring""" from ..utils import DummyObject, requires_backends class A__ ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' SCREAMING_SNAKE_CASE = ['torch', 'transformers', 'onnx'] def __init__( self: Union[str, Any] , *_SCREAMING_SNAKE_CASE: Any , **_SCREAMING_SNAKE_CASE: int) -> List[Any]: """simple docstring""" requires_backends(self , ["torch", "transformers", "onnx"]) @classmethod def _SCREAMING_SNAKE_CASE ( cls: Union[str, Any] , *_SCREAMING_SNAKE_CASE: List[Any] , **_SCREAMING_SNAKE_CASE: Union[str, Any]) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["torch", "transformers", "onnx"]) @classmethod def _SCREAMING_SNAKE_CASE ( cls: int , *_SCREAMING_SNAKE_CASE: Any , **_SCREAMING_SNAKE_CASE: str) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["torch", "transformers", "onnx"]) class A__ ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' SCREAMING_SNAKE_CASE = ['torch', 'transformers', 'onnx'] def __init__( self: Tuple , *_SCREAMING_SNAKE_CASE: Optional[Any] , **_SCREAMING_SNAKE_CASE: List[str]) -> Optional[int]: """simple docstring""" requires_backends(self , ["torch", "transformers", "onnx"]) @classmethod def _SCREAMING_SNAKE_CASE ( cls: Dict , *_SCREAMING_SNAKE_CASE: Optional[Any] , **_SCREAMING_SNAKE_CASE: int) -> List[Any]: """simple docstring""" requires_backends(cls , ["torch", "transformers", "onnx"]) @classmethod def _SCREAMING_SNAKE_CASE ( cls: Optional[Any] , *_SCREAMING_SNAKE_CASE: Dict , **_SCREAMING_SNAKE_CASE: Optional[Any]) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["torch", "transformers", "onnx"]) class A__ ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' SCREAMING_SNAKE_CASE = ['torch', 'transformers', 'onnx'] def __init__( self: int , *_SCREAMING_SNAKE_CASE: List[Any] , **_SCREAMING_SNAKE_CASE: int) -> List[str]: """simple docstring""" requires_backends(self , ["torch", "transformers", "onnx"]) @classmethod def _SCREAMING_SNAKE_CASE ( cls: Dict , *_SCREAMING_SNAKE_CASE: Any , **_SCREAMING_SNAKE_CASE: Any) -> str: """simple docstring""" requires_backends(cls , ["torch", "transformers", "onnx"]) @classmethod def _SCREAMING_SNAKE_CASE ( cls: List[Any] , *_SCREAMING_SNAKE_CASE: List[str] , **_SCREAMING_SNAKE_CASE: int) -> int: """simple docstring""" requires_backends(cls , ["torch", "transformers", "onnx"]) class A__ ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' SCREAMING_SNAKE_CASE = ['torch', 'transformers', 'onnx'] def __init__( self: Tuple , *_SCREAMING_SNAKE_CASE: List[str] , **_SCREAMING_SNAKE_CASE: List[str]) -> Optional[Any]: """simple docstring""" requires_backends(self , ["torch", "transformers", "onnx"]) @classmethod def _SCREAMING_SNAKE_CASE ( cls: List[str] , *_SCREAMING_SNAKE_CASE: Tuple , **_SCREAMING_SNAKE_CASE: int) -> int: """simple docstring""" requires_backends(cls , ["torch", "transformers", "onnx"]) @classmethod def _SCREAMING_SNAKE_CASE ( cls: Optional[int] , *_SCREAMING_SNAKE_CASE: str , **_SCREAMING_SNAKE_CASE: Any) -> int: """simple docstring""" requires_backends(cls , ["torch", "transformers", "onnx"]) class A__ ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' SCREAMING_SNAKE_CASE = ['torch', 'transformers', 'onnx'] def __init__( self: Optional[Any] , *_SCREAMING_SNAKE_CASE: Union[str, Any] , **_SCREAMING_SNAKE_CASE: Optional[int]) -> str: """simple docstring""" requires_backends(self , ["torch", "transformers", "onnx"]) @classmethod def _SCREAMING_SNAKE_CASE ( cls: Optional[int] , *_SCREAMING_SNAKE_CASE: List[Any] , **_SCREAMING_SNAKE_CASE: Tuple) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["torch", "transformers", "onnx"]) @classmethod def _SCREAMING_SNAKE_CASE ( cls: int , *_SCREAMING_SNAKE_CASE: str , **_SCREAMING_SNAKE_CASE: Any) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["torch", "transformers", "onnx"]) class A__ ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' SCREAMING_SNAKE_CASE = ['torch', 'transformers', 'onnx'] def __init__( self: List[Any] , *_SCREAMING_SNAKE_CASE: List[str] , **_SCREAMING_SNAKE_CASE: List[str]) -> int: """simple docstring""" requires_backends(self , ["torch", "transformers", "onnx"]) @classmethod def _SCREAMING_SNAKE_CASE ( cls: Union[str, Any] , *_SCREAMING_SNAKE_CASE: Optional[int] , **_SCREAMING_SNAKE_CASE: Optional[Any]) -> List[Any]: """simple docstring""" requires_backends(cls , ["torch", "transformers", "onnx"]) @classmethod def _SCREAMING_SNAKE_CASE ( cls: str , *_SCREAMING_SNAKE_CASE: Optional[int] , **_SCREAMING_SNAKE_CASE: Dict) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["torch", "transformers", "onnx"])
293
0
import os from collections.abc import Iterator def lowerCamelCase__ ( UpperCamelCase__ : str = "." ) -> Iterator[str]: '''simple docstring''' for dir_path, dir_names, filenames in os.walk(UpperCamelCase__ ): _snake_case = [d for d in dir_names if d != 'scripts' and d[0] not in '._'] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(UpperCamelCase__ )[1] in (".py", ".ipynb"): yield os.path.join(UpperCamelCase__ , UpperCamelCase__ ).lstrip('./' ) def lowerCamelCase__ ( UpperCamelCase__ : Optional[int] ) -> List[str]: '''simple docstring''' return F'''{i * " "}*''' if i else "\n##" def lowerCamelCase__ ( UpperCamelCase__ : str , UpperCamelCase__ : str ) -> str: '''simple docstring''' _snake_case = old_path.split(os.sep ) for i, new_part in enumerate(new_path.split(os.sep ) ): if (i + 1 > len(UpperCamelCase__ ) or old_parts[i] != new_part) and new_part: print(F'''{md_prefix(UpperCamelCase__ )} {new_part.replace("_" , " " ).title()}''' ) return new_path def lowerCamelCase__ ( UpperCamelCase__ : str = "." ) -> None: '''simple docstring''' _snake_case = '' for filepath in sorted(good_file_paths(UpperCamelCase__ ) ): _snake_case , _snake_case = os.path.split(UpperCamelCase__ ) if filepath != old_path: _snake_case = print_path(UpperCamelCase__ , UpperCamelCase__ ) _snake_case = (filepath.count(os.sep ) + 1) if filepath else 0 _snake_case = F'''{filepath}/{filename}'''.replace(' ' , '%20' ) _snake_case = os.path.splitext(filename.replace('_' , ' ' ).title() )[0] print(F'''{md_prefix(UpperCamelCase__ )} [{filename}]({url})''' ) if __name__ == "__main__": print_directory_md(""".""")
541
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCAmelCase_ = {"""configuration_swin""": ["""SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SwinConfig""", """SwinOnnxConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ """SWIN_PRETRAINED_MODEL_ARCHIVE_LIST""", """SwinForImageClassification""", """SwinForMaskedImageModeling""", """SwinModel""", """SwinPreTrainedModel""", """SwinBackbone""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ """TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFSwinForImageClassification""", """TFSwinForMaskedImageModeling""", """TFSwinModel""", """TFSwinPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_swin import SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinConfig, SwinOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swin import ( SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, SwinBackbone, SwinForImageClassification, SwinForMaskedImageModeling, SwinModel, SwinPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_swin import ( TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, TFSwinForImageClassification, TFSwinForMaskedImageModeling, TFSwinModel, TFSwinPreTrainedModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
541
1
def lowerCamelCase__ ( a : int ) -> int: """simple docstring""" a__ :int = (1 + 24 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def lowerCamelCase__ ( a : int = 5_000 ) -> int: """simple docstring""" a__ :int = [(i * (3 * i - 1)) // 2 for i in range(1 , SCREAMING_SNAKE_CASE_ )] for i, pentagonal_i in enumerate(SCREAMING_SNAKE_CASE_ ): for j in range(SCREAMING_SNAKE_CASE_ , len(SCREAMING_SNAKE_CASE_ ) ): a__ :Tuple = pentagonal_nums[j] a__ :Union[str, Any] = pentagonal_i + pentagonal_j a__ :int = pentagonal_j - pentagonal_i if is_pentagonal(SCREAMING_SNAKE_CASE_ ) and is_pentagonal(SCREAMING_SNAKE_CASE_ ): return b return -1 if __name__ == "__main__": print(f'''{solution() = }''')
395
from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case_ = logging.get_logger(__name__) snake_case_ = { '''studio-ousia/luke-base''': '''https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json''', '''studio-ousia/luke-large''': '''https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json''', } class SCREAMING_SNAKE_CASE__ (__snake_case ): __lowerCamelCase : Dict = """luke""" def __init__( self , a=5_0267 , a=50_0000 , a=768 , a=256 , a=12 , a=12 , a=3072 , a="gelu" , a=0.1 , a=0.1 , a=512 , a=2 , a=0.02 , a=1e-12 , a=True , a=None , a=1 , a=0 , a=2 , **a , ): super().__init__(pad_token_id=a , bos_token_id=a , eos_token_id=a , **a) lowercase__ : Tuple = vocab_size lowercase__ : Optional[Any] = entity_vocab_size lowercase__ : Optional[int] = hidden_size lowercase__ : List[str] = entity_emb_size lowercase__ : Union[str, Any] = num_hidden_layers lowercase__ : Any = num_attention_heads lowercase__ : List[str] = hidden_act lowercase__ : Any = intermediate_size lowercase__ : str = hidden_dropout_prob lowercase__ : List[Any] = attention_probs_dropout_prob lowercase__ : List[Any] = max_position_embeddings lowercase__ : Dict = type_vocab_size lowercase__ : Tuple = initializer_range lowercase__ : Any = layer_norm_eps lowercase__ : Optional[Any] = use_entity_aware_attention lowercase__ : Union[str, Any] = classifier_dropout
164
0
"""simple docstring""" import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TextClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. a_ = {'''LayoutLMv2Config''', '''LayoutLMv3Config'''} @is_pipeline_test class __lowercase ( unittest.TestCase): """simple docstring""" _A : List[Any] = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING _A : Tuple = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: _A : Tuple = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: _A : Dict = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } @require_torch def __UpperCamelCase (self ): snake_case_ : str = pipeline( task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""pt""" ) snake_case_ : Any = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(lowercase__ ) , [{"""label""": """LABEL_0""", """score""": 0.504}] ) snake_case_ : Dict = text_classifier("""This is great !""" , top_k=2 ) self.assertEqual( nested_simplify(lowercase__ ) , [{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}] ) snake_case_ : int = text_classifier(["""This is great !""", """This is bad"""] , top_k=2 ) self.assertEqual( nested_simplify(lowercase__ ) , [ [{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}], [{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}], ] , ) snake_case_ : Tuple = text_classifier("""This is great !""" , top_k=1 ) self.assertEqual(nested_simplify(lowercase__ ) , [{"""label""": """LABEL_0""", """score""": 0.504}] ) # Legacy behavior snake_case_ : Optional[Any] = text_classifier("""This is great !""" , return_all_scores=lowercase__ ) self.assertEqual(nested_simplify(lowercase__ ) , [{"""label""": """LABEL_0""", """score""": 0.504}] ) snake_case_ : List[Any] = text_classifier("""This is great !""" , return_all_scores=lowercase__ ) self.assertEqual( nested_simplify(lowercase__ ) , [[{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}]] ) snake_case_ : Any = text_classifier(["""This is great !""", """Something else"""] , return_all_scores=lowercase__ ) self.assertEqual( nested_simplify(lowercase__ ) , [ [{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}], [{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}], ] , ) snake_case_ : Optional[int] = text_classifier(["""This is great !""", """Something else"""] , return_all_scores=lowercase__ ) self.assertEqual( nested_simplify(lowercase__ ) , [ {"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_0""", """score""": 0.504}, ] , ) @require_torch def __UpperCamelCase (self ): import torch snake_case_ : Optional[int] = pipeline( task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""pt""" , device=torch.device("""cpu""" ) , ) snake_case_ : Optional[Any] = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(lowercase__ ) , [{"""label""": """LABEL_0""", """score""": 0.504}] ) @require_tf def __UpperCamelCase (self ): snake_case_ : str = pipeline( task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""tf""" ) snake_case_ : Optional[int] = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(lowercase__ ) , [{"""label""": """LABEL_0""", """score""": 0.504}] ) @slow @require_torch def __UpperCamelCase (self ): snake_case_ : Tuple = pipeline("""text-classification""" ) snake_case_ : str = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(lowercase__ ) , [{"""label""": """POSITIVE""", """score""": 1.0}] ) snake_case_ : List[Any] = text_classifier("""This is bad !""" ) self.assertEqual(nested_simplify(lowercase__ ) , [{"""label""": """NEGATIVE""", """score""": 1.0}] ) snake_case_ : List[str] = text_classifier("""Birds are a type of animal""" ) self.assertEqual(nested_simplify(lowercase__ ) , [{"""label""": """POSITIVE""", """score""": 0.988}] ) @slow @require_tf def __UpperCamelCase (self ): snake_case_ : int = pipeline("""text-classification""" , framework="""tf""" ) snake_case_ : Optional[int] = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(lowercase__ ) , [{"""label""": """POSITIVE""", """score""": 1.0}] ) snake_case_ : List[Any] = text_classifier("""This is bad !""" ) self.assertEqual(nested_simplify(lowercase__ ) , [{"""label""": """NEGATIVE""", """score""": 1.0}] ) snake_case_ : Optional[int] = text_classifier("""Birds are a type of animal""" ) self.assertEqual(nested_simplify(lowercase__ ) , [{"""label""": """POSITIVE""", """score""": 0.988}] ) def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ ): snake_case_ : int = TextClassificationPipeline(model=lowercase__ , tokenizer=lowercase__ ) return text_classifier, ["HuggingFace is in", "This is another test"] def __UpperCamelCase (self , lowercase__ , lowercase__ ): snake_case_ : Dict = text_classifier.model # Small inputs because BartTokenizer tiny has maximum position embeddings = 22 snake_case_ : Union[str, Any] = """HuggingFace is in""" snake_case_ : str = text_classifier(lowercase__ ) self.assertEqual(nested_simplify(lowercase__ ) , [{"""label""": ANY(lowercase__ ), """score""": ANY(lowercase__ )}] ) self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() ) snake_case_ : Optional[int] = ["""HuggingFace is in """, """Paris is in France"""] snake_case_ : List[str] = text_classifier(lowercase__ ) self.assertEqual( nested_simplify(lowercase__ ) , [{"""label""": ANY(lowercase__ ), """score""": ANY(lowercase__ )}, {"""label""": ANY(lowercase__ ), """score""": ANY(lowercase__ )}] , ) self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() ) self.assertTrue(outputs[1]["""label"""] in model.config.idalabel.values() ) # Forcing to get all results with `top_k=None` # This is NOT the legacy format snake_case_ : List[Any] = text_classifier(lowercase__ , top_k=lowercase__ ) snake_case_ : int = len(model.config.idalabel.values() ) self.assertEqual( nested_simplify(lowercase__ ) , [[{"""label""": ANY(lowercase__ ), """score""": ANY(lowercase__ )}] * N, [{"""label""": ANY(lowercase__ ), """score""": ANY(lowercase__ )}] * N] , ) snake_case_ : List[str] = {"""text""": """HuggingFace is in """, """text_pair""": """Paris is in France"""} snake_case_ : Optional[int] = text_classifier(lowercase__ ) self.assertEqual( nested_simplify(lowercase__ ) , {"""label""": ANY(lowercase__ ), """score""": ANY(lowercase__ )} , ) self.assertTrue(outputs["""label"""] in model.config.idalabel.values() ) # This might be used a text pair, but tokenizer + pipe interaction # makes it hard to understand that it's not using the pair properly # https://github.com/huggingface/transformers/issues/17305 # We disabled this usage instead as it was outputting wrong outputs. snake_case_ : Optional[int] = [["""HuggingFace is in """, """Paris is in France"""]] with self.assertRaises(lowercase__ ): text_classifier(lowercase__ ) # This used to be valid for doing text pairs # We're keeping it working because of backward compatibility snake_case_ : Union[str, Any] = text_classifier([[["""HuggingFace is in """, """Paris is in France"""]]] ) self.assertEqual( nested_simplify(lowercase__ ) , [{"""label""": ANY(lowercase__ ), """score""": ANY(lowercase__ )}] , ) self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() )
48
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING a_ = logging.get_logger(__name__) class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Optional[int] = """upernet""" def __init__(self , lowercase__=None , lowercase__=5_12 , lowercase__=0.02 , lowercase__=[1, 2, 3, 6] , lowercase__=True , lowercase__=0.4 , lowercase__=3_84 , lowercase__=2_56 , lowercase__=1 , lowercase__=False , lowercase__=2_55 , **lowercase__ , ): super().__init__(**lowercase__ ) if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) snake_case_ : List[Any] = CONFIG_MAPPING["""resnet"""](out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] ) elif isinstance(lowercase__ , lowercase__ ): snake_case_ : Tuple = backbone_config.get("""model_type""" ) snake_case_ : List[str] = CONFIG_MAPPING[backbone_model_type] snake_case_ : List[Any] = config_class.from_dict(lowercase__ ) snake_case_ : List[Any] = backbone_config snake_case_ : Optional[Any] = hidden_size snake_case_ : Any = initializer_range snake_case_ : str = pool_scales snake_case_ : Dict = use_auxiliary_head snake_case_ : str = auxiliary_loss_weight snake_case_ : List[str] = auxiliary_in_channels snake_case_ : Optional[Any] = auxiliary_channels snake_case_ : Any = auxiliary_num_convs snake_case_ : List[Any] = auxiliary_concat_input snake_case_ : List[str] = loss_ignore_index def __UpperCamelCase (self ): snake_case_ : Dict = copy.deepcopy(self.__dict__ ) snake_case_ : Union[str, Any] = self.backbone_config.to_dict() snake_case_ : Any = self.__class__.model_type return output
48
1
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DetrConfig, DetrForObjectDetection, DetrForSegmentation, DetrImageProcessor, ResNetConfig from transformers.utils import logging logging.set_verbosity_info() A__: int = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Dict ) -> int: # initialize config if "resnet-50" in model_name: _a : List[Any] =ResNetConfig.from_pretrained("""microsoft/resnet-50""" ) elif "resnet-101" in model_name: _a : Any =ResNetConfig.from_pretrained("""microsoft/resnet-101""" ) else: raise ValueError("""Model name should include either resnet50 or resnet101""" ) _a : Dict =DetrConfig(use_timm_backbone=_UpperCAmelCase ,backbone_config=_UpperCAmelCase ) # set label attributes _a : Dict ="""panoptic""" in model_name if is_panoptic: _a : str =250 else: _a : Optional[int] =91 _a : Union[str, Any] ="""huggingface/label-files""" _a : List[Any] ="""coco-detection-id2label.json""" _a : Tuple =json.load(open(hf_hub_download(_UpperCAmelCase ,_UpperCAmelCase ,repo_type="""dataset""" ) ,"""r""" ) ) _a : List[str] ={int(_UpperCAmelCase ): v for k, v in idalabel.items()} _a : Any =idalabel _a : Optional[Any] ={v: k for k, v in idalabel.items()} return config, is_panoptic def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int ) -> int: # here we list all keys to be renamed (original name on the left, our name on the right) _a : str =[] # stem # fmt: off rename_keys.append(("""backbone.0.body.conv1.weight""", """backbone.conv_encoder.model.embedder.embedder.convolution.weight""") ) rename_keys.append(("""backbone.0.body.bn1.weight""", """backbone.conv_encoder.model.embedder.embedder.normalization.weight""") ) rename_keys.append(("""backbone.0.body.bn1.bias""", """backbone.conv_encoder.model.embedder.embedder.normalization.bias""") ) rename_keys.append(("""backbone.0.body.bn1.running_mean""", """backbone.conv_encoder.model.embedder.embedder.normalization.running_mean""") ) rename_keys.append(("""backbone.0.body.bn1.running_var""", """backbone.conv_encoder.model.embedder.embedder.normalization.running_var""") ) # stages for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): # shortcut if layer_idx == 0: rename_keys.append( ( F"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.0.weight", F"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.convolution.weight", ) ) rename_keys.append( ( F"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.weight", F"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.weight", ) ) rename_keys.append( ( F"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.bias", F"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.bias", ) ) rename_keys.append( ( F"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_mean", F"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_mean", ) ) rename_keys.append( ( F"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_var", F"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_var", ) ) # 3 convs for i in range(3 ): rename_keys.append( ( F"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.conv{i+1}.weight", F"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.convolution.weight", ) ) rename_keys.append( ( F"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.weight", F"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.weight", ) ) rename_keys.append( ( F"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.bias", F"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.bias", ) ) rename_keys.append( ( F"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_mean", F"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_mean", ) ) rename_keys.append( ( F"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_var", F"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_var", ) ) # fmt: on for i in range(config.encoder_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( ( F"transformer.encoder.layers.{i}.self_attn.out_proj.weight", F"encoder.layers.{i}.self_attn.out_proj.weight", ) ) rename_keys.append( (F"transformer.encoder.layers.{i}.self_attn.out_proj.bias", F"encoder.layers.{i}.self_attn.out_proj.bias") ) rename_keys.append((F"transformer.encoder.layers.{i}.linear1.weight", F"encoder.layers.{i}.fc1.weight") ) rename_keys.append((F"transformer.encoder.layers.{i}.linear1.bias", F"encoder.layers.{i}.fc1.bias") ) rename_keys.append((F"transformer.encoder.layers.{i}.linear2.weight", F"encoder.layers.{i}.fc2.weight") ) rename_keys.append((F"transformer.encoder.layers.{i}.linear2.bias", F"encoder.layers.{i}.fc2.bias") ) rename_keys.append( (F"transformer.encoder.layers.{i}.norm1.weight", F"encoder.layers.{i}.self_attn_layer_norm.weight") ) rename_keys.append( (F"transformer.encoder.layers.{i}.norm1.bias", F"encoder.layers.{i}.self_attn_layer_norm.bias") ) rename_keys.append( (F"transformer.encoder.layers.{i}.norm2.weight", F"encoder.layers.{i}.final_layer_norm.weight") ) rename_keys.append((F"transformer.encoder.layers.{i}.norm2.bias", F"encoder.layers.{i}.final_layer_norm.bias") ) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( ( F"transformer.decoder.layers.{i}.self_attn.out_proj.weight", F"decoder.layers.{i}.self_attn.out_proj.weight", ) ) rename_keys.append( (F"transformer.decoder.layers.{i}.self_attn.out_proj.bias", F"decoder.layers.{i}.self_attn.out_proj.bias") ) rename_keys.append( ( F"transformer.decoder.layers.{i}.multihead_attn.out_proj.weight", F"decoder.layers.{i}.encoder_attn.out_proj.weight", ) ) rename_keys.append( ( F"transformer.decoder.layers.{i}.multihead_attn.out_proj.bias", F"decoder.layers.{i}.encoder_attn.out_proj.bias", ) ) rename_keys.append((F"transformer.decoder.layers.{i}.linear1.weight", F"decoder.layers.{i}.fc1.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.linear1.bias", F"decoder.layers.{i}.fc1.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.linear2.weight", F"decoder.layers.{i}.fc2.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.linear2.bias", F"decoder.layers.{i}.fc2.bias") ) rename_keys.append( (F"transformer.decoder.layers.{i}.norm1.weight", F"decoder.layers.{i}.self_attn_layer_norm.weight") ) rename_keys.append( (F"transformer.decoder.layers.{i}.norm1.bias", F"decoder.layers.{i}.self_attn_layer_norm.bias") ) rename_keys.append( (F"transformer.decoder.layers.{i}.norm2.weight", F"decoder.layers.{i}.encoder_attn_layer_norm.weight") ) rename_keys.append( (F"transformer.decoder.layers.{i}.norm2.bias", F"decoder.layers.{i}.encoder_attn_layer_norm.bias") ) rename_keys.append( (F"transformer.decoder.layers.{i}.norm3.weight", F"decoder.layers.{i}.final_layer_norm.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.norm3.bias", F"decoder.layers.{i}.final_layer_norm.bias") ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ("""input_proj.weight""", """input_projection.weight"""), ("""input_proj.bias""", """input_projection.bias"""), ("""query_embed.weight""", """query_position_embeddings.weight"""), ("""transformer.decoder.norm.weight""", """decoder.layernorm.weight"""), ("""transformer.decoder.norm.bias""", """decoder.layernorm.bias"""), ("""class_embed.weight""", """class_labels_classifier.weight"""), ("""class_embed.bias""", """class_labels_classifier.bias"""), ("""bbox_embed.layers.0.weight""", """bbox_predictor.layers.0.weight"""), ("""bbox_embed.layers.0.bias""", """bbox_predictor.layers.0.bias"""), ("""bbox_embed.layers.1.weight""", """bbox_predictor.layers.1.weight"""), ("""bbox_embed.layers.1.bias""", """bbox_predictor.layers.1.bias"""), ("""bbox_embed.layers.2.weight""", """bbox_predictor.layers.2.weight"""), ("""bbox_embed.layers.2.bias""", """bbox_predictor.layers.2.bias"""), ] ) return rename_keys def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : str ,_UpperCAmelCase : int ,_UpperCAmelCase : Dict ) -> str: _a : Optional[int] =state_dict.pop(_UpperCAmelCase ) _a : List[str] =val def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Dict ,_UpperCAmelCase : Any=False ) -> Optional[Any]: _a : Optional[Any] ="""""" if is_panoptic: _a : Union[str, Any] ="""detr.""" # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) _a : List[Any] =state_dict.pop(F"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight" ) _a : Tuple =state_dict.pop(F"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias" ) # next, add query, keys and values (in that order) to the state dict _a : int =in_proj_weight[:256, :] _a : Tuple =in_proj_bias[:256] _a : Union[str, Any] =in_proj_weight[256:512, :] _a : List[Any] =in_proj_bias[256:512] _a : Dict =in_proj_weight[-256:, :] _a : Optional[int] =in_proj_bias[-256:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention _a : Optional[int] =state_dict.pop(F"{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight" ) _a : List[str] =state_dict.pop(F"{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias" ) # next, add query, keys and values (in that order) to the state dict _a : str =in_proj_weight[:256, :] _a : List[str] =in_proj_bias[:256] _a : List[Any] =in_proj_weight[256:512, :] _a : Optional[Any] =in_proj_bias[256:512] _a : Union[str, Any] =in_proj_weight[-256:, :] _a : Optional[Any] =in_proj_bias[-256:] # read in weights + bias of input projection layer of cross-attention _a : Optional[Any] =state_dict.pop( F"{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight" ) _a : Union[str, Any] =state_dict.pop(F"{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias" ) # next, add query, keys and values (in that order) of cross-attention to the state dict _a : List[Any] =in_proj_weight_cross_attn[:256, :] _a : int =in_proj_bias_cross_attn[:256] _a : Optional[Any] =in_proj_weight_cross_attn[256:512, :] _a : List[str] =in_proj_bias_cross_attn[256:512] _a : List[str] =in_proj_weight_cross_attn[-256:, :] _a : Optional[int] =in_proj_bias_cross_attn[-256:] def SCREAMING_SNAKE_CASE_ ( ) -> List[Any]: _a : Optional[Any] ="""http://images.cocodataset.org/val2017/000000039769.jpg""" _a : str =Image.open(requests.get(_UpperCAmelCase ,stream=_UpperCAmelCase ).raw ) return im @torch.no_grad() def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : List[str] ,_UpperCAmelCase : Tuple=None ,_UpperCAmelCase : Union[str, Any]=False ) -> Optional[Any]: _a , _a : Optional[int] =get_detr_config(_UpperCAmelCase ) # load original model from torch hub _a : List[str] ={ """detr-resnet-50""": """detr_resnet50""", """detr-resnet-101""": """detr_resnet101""", } logger.info(F"Converting model {model_name}..." ) _a : Tuple =torch.hub.load("""facebookresearch/detr""" ,model_name_to_original_name[model_name] ,pretrained=_UpperCAmelCase ).eval() _a : List[Any] =detr.state_dict() # rename keys for src, dest in create_rename_keys(_UpperCAmelCase ): if is_panoptic: _a : Tuple ="""detr.""" + src rename_key(_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ) # query, key and value matrices need special treatment read_in_q_k_v(_UpperCAmelCase ,is_panoptic=_UpperCAmelCase ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them _a : List[str] ="""detr.model.""" if is_panoptic else """model.""" for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("""detr""" ) and not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ) ): _a : List[str] =state_dict.pop(_UpperCAmelCase ) _a : int =val elif "class_labels_classifier" in key or "bbox_predictor" in key: _a : Dict =state_dict.pop(_UpperCAmelCase ) _a : int =val elif key.startswith("""bbox_attention""" ) or key.startswith("""mask_head""" ): continue else: _a : Tuple =state_dict.pop(_UpperCAmelCase ) _a : Optional[Any] =val else: if not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ): _a : Any =state_dict.pop(_UpperCAmelCase ) _a : Optional[Any] =val # finally, create HuggingFace model and load state dict _a : List[str] =DetrForSegmentation(_UpperCAmelCase ) if is_panoptic else DetrForObjectDetection(_UpperCAmelCase ) model.load_state_dict(_UpperCAmelCase ) model.eval() # verify our conversion on an image _a : Tuple ="""coco_panoptic""" if is_panoptic else """coco_detection""" _a : Optional[Any] =DetrImageProcessor(format=_UpperCAmelCase ) _a : Any =processor(images=prepare_img() ,return_tensors="""pt""" ) _a : int =encoding["""pixel_values"""] _a : Union[str, Any] =detr(_UpperCAmelCase ) _a : Dict =model(_UpperCAmelCase ) assert torch.allclose(outputs.logits ,original_outputs["""pred_logits"""] ,atol=1e-3 ) assert torch.allclose(outputs.pred_boxes ,original_outputs["""pred_boxes"""] ,atol=1e-3 ) if is_panoptic: assert torch.allclose(outputs.pred_masks ,original_outputs["""pred_masks"""] ,atol=1e-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(F"Saving PyTorch model and image processor to {pytorch_dump_folder_path}..." ) Path(_UpperCAmelCase ).mkdir(exist_ok=_UpperCAmelCase ) model.save_pretrained(_UpperCAmelCase ) processor.save_pretrained(_UpperCAmelCase ) if push_to_hub: # Upload model and image processor to the hub logger.info("""Uploading PyTorch model and image processor to the hub...""" ) model.push_to_hub(F"nielsr/{model_name}" ) processor.push_to_hub(F"nielsr/{model_name}" ) if __name__ == "__main__": A__: int = argparse.ArgumentParser() parser.add_argument( '''--model_name''', default='''detr-resnet-50''', type=str, choices=['''detr-resnet-50''', '''detr-resnet-101'''], help='''Name of the DETR model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Whether to push the model to the hub or not.''') A__: Tuple = parser.parse_args() convert_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
694
'''simple docstring''' from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
694
1
"""simple docstring""" import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class _lowerCamelCase (unittest.TestCase ): def __init__( self : Any , lowerCamelCase_ : int , lowerCamelCase_ : Tuple=7 , lowerCamelCase_ : Optional[Any]=3 , lowerCamelCase_ : Tuple=1_8 , lowerCamelCase_ : str=3_0 , lowerCamelCase_ : Tuple=4_0_0 , lowerCamelCase_ : List[Any]=True , lowerCamelCase_ : List[Any]=None , lowerCamelCase_ : int=True , lowerCamelCase_ : List[Any]=None , lowerCamelCase_ : Union[str, Any]=True , lowerCamelCase_ : Optional[Any]=[0.5, 0.5, 0.5] , lowerCamelCase_ : Optional[int]=[0.5, 0.5, 0.5] , lowerCamelCase_ : Union[str, Any]=False , ): """simple docstring""" _lowercase : Union[str, Any] = size if size is not None else {'height': 2_0, 'width': 2_0} _lowercase : str = crop_size if crop_size is not None else {'height': 1_8, 'width': 1_8} _lowercase : List[str] = parent _lowercase : int = batch_size _lowercase : Optional[int] = num_channels _lowercase : List[str] = image_size _lowercase : Union[str, Any] = min_resolution _lowercase : Any = max_resolution _lowercase : Tuple = do_resize _lowercase : int = size _lowercase : List[Any] = do_center_crop _lowercase : str = crop_size _lowercase : Optional[Any] = do_normalize _lowercase : Dict = image_mean _lowercase : Tuple = image_std _lowercase : Union[str, Any] = do_reduce_labels def __UpperCAmelCase ( self : Optional[Any] ): """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_reduce_labels": self.do_reduce_labels, } def __lowerCAmelCase( ): """simple docstring""" _lowercase : Optional[Any] = load_dataset('hf-internal-testing/fixtures_ade20k' ,split='test' ) _lowercase : List[Any] = Image.open(dataset[0]['file'] ) _lowercase : Union[str, Any] = Image.open(dataset[1]['file'] ) return image, map def __lowerCAmelCase( ): """simple docstring""" _lowercase : List[str] = load_dataset('hf-internal-testing/fixtures_ade20k' ,split='test' ) _lowercase : Union[str, Any] = Image.open(ds[0]['file'] ) _lowercase : List[Any] = Image.open(ds[1]['file'] ) _lowercase : Union[str, Any] = Image.open(ds[2]['file'] ) _lowercase : Dict = Image.open(ds[3]['file'] ) return [imagea, imagea], [mapa, mapa] @require_torch @require_vision class _lowerCamelCase (__lowerCamelCase , unittest.TestCase ): _snake_case = BeitImageProcessor if is_vision_available() else None def __UpperCAmelCase ( self : Tuple ): """simple docstring""" _lowercase : Tuple = BeitImageProcessingTester(self ) @property def __UpperCAmelCase ( self : str ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def __UpperCAmelCase ( self : str ): """simple docstring""" _lowercase : Any = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase_ , 'do_resize' ) ) self.assertTrue(hasattr(lowerCamelCase_ , 'size' ) ) self.assertTrue(hasattr(lowerCamelCase_ , 'do_center_crop' ) ) self.assertTrue(hasattr(lowerCamelCase_ , 'center_crop' ) ) self.assertTrue(hasattr(lowerCamelCase_ , 'do_normalize' ) ) self.assertTrue(hasattr(lowerCamelCase_ , 'image_mean' ) ) self.assertTrue(hasattr(lowerCamelCase_ , 'image_std' ) ) def __UpperCAmelCase ( self : Tuple ): """simple docstring""" _lowercase : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 2_0, 'width': 2_0} ) self.assertEqual(image_processor.crop_size , {'height': 1_8, 'width': 1_8} ) self.assertEqual(image_processor.do_reduce_labels , lowerCamelCase_ ) _lowercase : Tuple = self.image_processing_class.from_dict( self.image_processor_dict , size=4_2 , crop_size=8_4 , reduce_labels=lowerCamelCase_ ) self.assertEqual(image_processor.size , {'height': 4_2, 'width': 4_2} ) self.assertEqual(image_processor.crop_size , {'height': 8_4, 'width': 8_4} ) self.assertEqual(image_processor.do_reduce_labels , lowerCamelCase_ ) def __UpperCAmelCase ( self : Optional[Any] ): """simple docstring""" pass def __UpperCAmelCase ( self : Optional[Any] ): """simple docstring""" _lowercase : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _lowercase : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase_ , Image.Image ) # Test not batched input _lowercase : Optional[Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _lowercase : Optional[int] = image_processing(lowerCamelCase_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def __UpperCAmelCase ( self : Dict ): """simple docstring""" _lowercase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowercase : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase_ , numpify=lowerCamelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase_ , np.ndarray ) # Test not batched input _lowercase : Optional[int] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _lowercase : Dict = image_processing(lowerCamelCase_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def __UpperCAmelCase ( self : int ): """simple docstring""" _lowercase : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowercase : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase_ , torchify=lowerCamelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase_ , torch.Tensor ) # Test not batched input _lowercase : List[Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _lowercase : List[Any] = image_processing(lowerCamelCase_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def __UpperCAmelCase ( self : List[Any] ): """simple docstring""" _lowercase : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowercase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase_ , torchify=lowerCamelCase_ ) _lowercase : int = [] for image in image_inputs: self.assertIsInstance(lowerCamelCase_ , torch.Tensor ) maps.append(torch.zeros(image.shape[-2:] ).long() ) # Test not batched input _lowercase : int = image_processing(image_inputs[0] , maps[0] , return_tensors='pt' ) self.assertEqual( encoding['pixel_values'].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) self.assertEqual( encoding['labels'].shape , ( 1, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) self.assertEqual(encoding['labels'].dtype , torch.long ) self.assertTrue(encoding['labels'].min().item() >= 0 ) self.assertTrue(encoding['labels'].max().item() <= 2_5_5 ) # Test batched _lowercase : List[str] = image_processing(lowerCamelCase_ , lowerCamelCase_ , return_tensors='pt' ) self.assertEqual( encoding['pixel_values'].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) self.assertEqual( encoding['labels'].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) self.assertEqual(encoding['labels'].dtype , torch.long ) self.assertTrue(encoding['labels'].min().item() >= 0 ) self.assertTrue(encoding['labels'].max().item() <= 2_5_5 ) # Test not batched input (PIL images) _lowercase , _lowercase : List[str] = prepare_semantic_single_inputs() _lowercase : Optional[int] = image_processing(lowerCamelCase_ , lowerCamelCase_ , return_tensors='pt' ) self.assertEqual( encoding['pixel_values'].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) self.assertEqual( encoding['labels'].shape , ( 1, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) self.assertEqual(encoding['labels'].dtype , torch.long ) self.assertTrue(encoding['labels'].min().item() >= 0 ) self.assertTrue(encoding['labels'].max().item() <= 2_5_5 ) # Test batched input (PIL images) _lowercase , _lowercase : Optional[Any] = prepare_semantic_batch_inputs() _lowercase : Any = image_processing(lowerCamelCase_ , lowerCamelCase_ , return_tensors='pt' ) self.assertEqual( encoding['pixel_values'].shape , ( 2, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) self.assertEqual( encoding['labels'].shape , ( 2, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) self.assertEqual(encoding['labels'].dtype , torch.long ) self.assertTrue(encoding['labels'].min().item() >= 0 ) self.assertTrue(encoding['labels'].max().item() <= 2_5_5 ) def __UpperCAmelCase ( self : Tuple ): """simple docstring""" _lowercase : Dict = self.image_processing_class(**self.image_processor_dict ) # ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150 _lowercase , _lowercase : Union[str, Any] = prepare_semantic_single_inputs() _lowercase : Optional[Any] = image_processing(lowerCamelCase_ , lowerCamelCase_ , return_tensors='pt' ) self.assertTrue(encoding['labels'].min().item() >= 0 ) self.assertTrue(encoding['labels'].max().item() <= 1_5_0 ) _lowercase : Union[str, Any] = True _lowercase : Any = image_processing(lowerCamelCase_ , lowerCamelCase_ , return_tensors='pt' ) self.assertTrue(encoding['labels'].min().item() >= 0 ) self.assertTrue(encoding['labels'].max().item() <= 2_5_5 )
283
"""simple docstring""" def __lowerCAmelCase( __UpperCAmelCase ): """simple docstring""" stooge(__UpperCAmelCase ,0 ,len(__UpperCAmelCase ) - 1 ) return arr def __lowerCAmelCase( __UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ): """simple docstring""" if i >= h: return # If first element is smaller than the last then swap them if arr[i] > arr[h]: _lowercase , _lowercase : List[str] = arr[h], arr[i] # If there are more than 2 elements in the array if h - i + 1 > 2: _lowercase : Optional[int] = (int)((h - i + 1) / 3 ) # Recursively sort first 2/3 elements stooge(__UpperCAmelCase ,__UpperCAmelCase ,(h - t) ) # Recursively sort last 2/3 elements stooge(__UpperCAmelCase ,i + t ,(__UpperCAmelCase) ) # Recursively sort first 2/3 elements stooge(__UpperCAmelCase ,__UpperCAmelCase ,(h - t) ) if __name__ == "__main__": SCREAMING_SNAKE_CASE = input('Enter numbers separated by a comma:\n').strip() SCREAMING_SNAKE_CASE = [int(item) for item in user_input.split(',')] print(stooge_sort(unsorted))
283
1
from collections import OrderedDict from typing import List, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase__ : List[Any] = logging.get_logger(__name__) lowerCamelCase__ : List[str] = { 'google/efficientnet-b7': 'https://huggingface.co/google/efficientnet-b7/resolve/main/config.json', } class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "efficientnet" def __init__( self : List[Any] , _lowerCAmelCase : int = 3 , _lowerCAmelCase : int = 600 , _lowerCAmelCase : float = 2.0 , _lowerCAmelCase : float = 3.1 , _lowerCAmelCase : int = 8 , _lowerCAmelCase : List[int] = [3, 3, 5, 3, 5, 5, 3] , _lowerCAmelCase : List[int] = [32, 16, 24, 40, 80, 112, 192] , _lowerCAmelCase : List[int] = [16, 24, 40, 80, 112, 192, 320] , _lowerCAmelCase : List[int] = [] , _lowerCAmelCase : List[int] = [1, 2, 2, 2, 1, 2, 1] , _lowerCAmelCase : List[int] = [1, 2, 2, 3, 3, 4, 1] , _lowerCAmelCase : List[int] = [1, 6, 6, 6, 6, 6, 6] , _lowerCAmelCase : float = 0.25 , _lowerCAmelCase : str = "swish" , _lowerCAmelCase : int = 2_560 , _lowerCAmelCase : str = "mean" , _lowerCAmelCase : float = 0.02 , _lowerCAmelCase : float = 0.001 , _lowerCAmelCase : float = 0.99 , _lowerCAmelCase : float = 0.5 , _lowerCAmelCase : float = 0.2 , **_lowerCAmelCase : str , ): super().__init__(**_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = num_channels SCREAMING_SNAKE_CASE_ = image_size SCREAMING_SNAKE_CASE_ = width_coefficient SCREAMING_SNAKE_CASE_ = depth_coefficient SCREAMING_SNAKE_CASE_ = depth_divisor SCREAMING_SNAKE_CASE_ = kernel_sizes SCREAMING_SNAKE_CASE_ = in_channels SCREAMING_SNAKE_CASE_ = out_channels SCREAMING_SNAKE_CASE_ = depthwise_padding SCREAMING_SNAKE_CASE_ = strides SCREAMING_SNAKE_CASE_ = num_block_repeats SCREAMING_SNAKE_CASE_ = expand_ratios SCREAMING_SNAKE_CASE_ = squeeze_expansion_ratio SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = hidden_dim SCREAMING_SNAKE_CASE_ = pooling_type SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = batch_norm_eps SCREAMING_SNAKE_CASE_ = batch_norm_momentum SCREAMING_SNAKE_CASE_ = dropout_rate SCREAMING_SNAKE_CASE_ = drop_connect_rate SCREAMING_SNAKE_CASE_ = sum(_lowerCAmelCase ) * 4 class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = version.parse("1.11" ) @property def lowerCAmelCase_ ( self : Union[str, Any] ): return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def lowerCAmelCase_ ( self : List[Any] ): return 1E-5
31
import inspect import os import re from transformers.configuration_utils import PretrainedConfig from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py __lowercase = """src/transformers""" # This is to make sure the transformers module imported is the one in the repo. __lowercase = direct_transformers_import(PATH_TO_TRANSFORMERS) __lowercase = transformers.models.auto.configuration_auto.CONFIG_MAPPING __lowercase = { # used to compute the property `self.chunk_length` """EncodecConfig""": ["""overlap"""], # used as `self.bert_model = BertModel(config, ...)` """DPRConfig""": True, # not used in modeling files, but it's an important information """FSMTConfig""": ["""langs"""], # used internally in the configuration class file """GPTNeoConfig""": ["""attention_types"""], # used internally in the configuration class file """EsmConfig""": ["""is_folding_model"""], # used during training (despite we don't have training script for these models yet) """Mask2FormerConfig""": ["""ignore_value"""], # `ignore_value` used during training (despite we don't have training script for these models yet) # `norm` used in conversion script (despite not using in the modeling file) """OneFormerConfig""": ["""ignore_value""", """norm"""], # used during preprocessing and collation, see `collating_graphormer.py` """GraphormerConfig""": ["""spatial_pos_max"""], # used internally in the configuration class file """T5Config""": ["""feed_forward_proj"""], # used internally in the configuration class file # `tokenizer_class` get default value `T5Tokenizer` intentionally """MT5Config""": ["""feed_forward_proj""", """tokenizer_class"""], """UMT5Config""": ["""feed_forward_proj""", """tokenizer_class"""], # used internally in the configuration class file """LongT5Config""": ["""feed_forward_proj"""], # used internally in the configuration class file """SwitchTransformersConfig""": ["""feed_forward_proj"""], # having default values other than `1e-5` - we can't fix them without breaking """BioGptConfig""": ["""layer_norm_eps"""], # having default values other than `1e-5` - we can't fix them without breaking """GLPNConfig""": ["""layer_norm_eps"""], # having default values other than `1e-5` - we can't fix them without breaking """SegformerConfig""": ["""layer_norm_eps"""], # having default values other than `1e-5` - we can't fix them without breaking """CvtConfig""": ["""layer_norm_eps"""], # having default values other than `1e-5` - we can't fix them without breaking """PerceiverConfig""": ["""layer_norm_eps"""], # used internally to calculate the feature size """InformerConfig""": ["""num_static_real_features""", """num_time_features"""], # used internally to calculate the feature size """TimeSeriesTransformerConfig""": ["""num_static_real_features""", """num_time_features"""], # used internally to calculate the feature size """AutoformerConfig""": ["""num_static_real_features""", """num_time_features"""], # used internally to calculate `mlp_dim` """SamVisionConfig""": ["""mlp_ratio"""], # For (head) training, but so far not implemented """ClapAudioConfig""": ["""num_classes"""], # Not used, but providing useful information to users """SpeechT5HifiGanConfig""": ["""sampling_rate"""], } # TODO (ydshieh): Check the failing cases, try to fix them or move some cases to the above block once we are sure SPECIAL_CASES_TO_ALLOW.update( { """CLIPSegConfig""": True, """DeformableDetrConfig""": True, """DetaConfig""": True, """DinatConfig""": True, """DonutSwinConfig""": True, """EfficientFormerConfig""": True, """FSMTConfig""": True, """JukeboxConfig""": True, """LayoutLMv2Config""": True, """MaskFormerSwinConfig""": True, """MT5Config""": True, """NatConfig""": True, """OneFormerConfig""": True, """PerceiverConfig""": True, """RagConfig""": True, """SpeechT5Config""": True, """SwinConfig""": True, """Swin2SRConfig""": True, """Swinv2Config""": True, """SwitchTransformersConfig""": True, """TableTransformerConfig""": True, """TapasConfig""": True, """TransfoXLConfig""": True, """UniSpeechConfig""": True, """UniSpeechSatConfig""": True, """WavLMConfig""": True, """WhisperConfig""": True, # TODO: @Arthur (for `alignment_head` and `alignment_layer`) """JukeboxPriorConfig""": True, # TODO: @Younes (for `is_decoder`) """Pix2StructTextConfig""": True, } ) def _lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' A_ = False for attribute in attributes: for modeling_source in source_strings: # check if we can find `config.xxx`, `getattr(config, "xxx", ...)` or `getattr(self.config, "xxx", ...)` if ( f"config.{attribute}" in modeling_source or f"getattr(config, \"{attribute}\"" in modeling_source or f"getattr(self.config, \"{attribute}\"" in modeling_source ): A_ = True # Deal with multi-line cases elif ( re.search( Rf"getattr[ \t\v\n\r\f]*\([ \t\v\n\r\f]*(self\.)?config,[ \t\v\n\r\f]*\"{attribute}\"" , SCREAMING_SNAKE_CASE , ) is not None ): A_ = True # `SequenceSummary` is called with `SequenceSummary(config)` elif attribute in [ "summary_type", "summary_use_proj", "summary_activation", "summary_last_dropout", "summary_proj_to_labels", "summary_first_dropout", ]: if "SequenceSummary" in modeling_source: A_ = True if attribute_used: break if attribute_used: break # common and important attributes, even if they do not always appear in the modeling files A_ = [ '''bos_index''', '''eos_index''', '''pad_index''', '''unk_index''', '''mask_index''', '''image_size''', '''use_cache''', '''out_features''', '''out_indices''', ] A_ = ['''encoder_no_repeat_ngram_size'''] # Special cases to be allowed A_ = True if not attribute_used: A_ = False for attribute in attributes: # Allow if the default value in the configuration class is different from the one in `PretrainedConfig` if attribute in ["is_encoder_decoder"] and default_value is True: A_ = True elif attribute in ["tie_word_embeddings"] and default_value is False: A_ = True # Allow cases without checking the default value in the configuration class elif attribute in attributes_to_allow + attributes_used_in_generation: A_ = True elif attribute.endswith('''_token_id''' ): A_ = True # configuration class specific cases if not case_allowed: A_ = SPECIAL_CASES_TO_ALLOW.get(config_class.__name__ , [] ) A_ = allowed_cases is True or attribute in allowed_cases return attribute_used or case_allowed def _lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' A_ = dict(inspect.signature(config_class.__init__ ).parameters ) A_ = [x for x in list(signature.keys() ) if x not in ['''self''', '''kwargs''']] A_ = [signature[param].default for param in parameter_names] # If `attribute_map` exists, an attribute can have different names to be used in the modeling files, and as long # as one variant is used, the test should pass A_ = {} if len(config_class.attribute_map ) > 0: A_ = {v: k for k, v in config_class.attribute_map.items()} # Get the path to modeling source files A_ = inspect.getsourcefile(SCREAMING_SNAKE_CASE ) A_ = os.path.dirname(SCREAMING_SNAKE_CASE ) # Let's check against all frameworks: as long as one framework uses an attribute, we are good. A_ = [os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for fn in os.listdir(SCREAMING_SNAKE_CASE ) if fn.startswith('''modeling_''' )] # Get the source code strings A_ = [] for path in modeling_paths: if os.path.isfile(SCREAMING_SNAKE_CASE ): with open(SCREAMING_SNAKE_CASE ) as fp: modeling_sources.append(fp.read() ) A_ = [] for config_param, default_value in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): # `attributes` here is all the variant names for `config_param` A_ = [config_param] # some configuration classes have non-empty `attribute_map`, and both names could be used in the # corresponding modeling files. As long as one of them appears, it is fine. if config_param in reversed_attribute_map: attributes.append(reversed_attribute_map[config_param] ) if not check_attribute_being_used(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): unused_attributes.append(attributes[0] ) return sorted(SCREAMING_SNAKE_CASE ) def _lowerCamelCase ( ): '''simple docstring''' A_ = {} for _config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in _config_class.__module__: continue # Some config classes are not in `CONFIG_MAPPING` (e.g. `CLIPVisionConfig`, `Blip2VisionConfig`, etc.) A_ = [ cls for name, cls in inspect.getmembers( inspect.getmodule(_config_class ) , lambda SCREAMING_SNAKE_CASE : inspect.isclass(SCREAMING_SNAKE_CASE ) and issubclass(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and inspect.getmodule(SCREAMING_SNAKE_CASE ) == inspect.getmodule(_config_class ) , ) ] for config_class in config_classes_in_module: A_ = check_config_attributes_being_used(SCREAMING_SNAKE_CASE ) if len(SCREAMING_SNAKE_CASE ) > 0: A_ = unused_attributes if len(SCREAMING_SNAKE_CASE ) > 0: A_ = '''The following configuration classes contain unused attributes in the corresponding modeling files:\n''' for name, attributes in configs_with_unused_attributes.items(): error += f"{name}: {attributes}\n" raise ValueError(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": check_config_attributes()
203
0
"""simple docstring""" from __future__ import annotations from collections import deque class _lowerCAmelCase : def __init__( self , UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' snake_case : list[dict] = [] self.adlist.append( {"value": "", "next_states": [], "fail_state": 0, "output": []} ) for keyword in keywords: self.add_keyword(UpperCamelCase__ ) self.set_fail_transitions() def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ ) -> int | None: '''simple docstring''' for state in self.adlist[current_state]["next_states"]: if char == self.adlist[state]["value"]: return state return None def lowerCamelCase ( self , UpperCamelCase__ ) -> None: '''simple docstring''' snake_case : str = 0 for character in keyword: snake_case : Optional[int] = self.find_next_state(UpperCamelCase__ , UpperCamelCase__ ) if next_state is None: self.adlist.append( { "value": character, "next_states": [], "fail_state": 0, "output": [], } ) self.adlist[current_state]["next_states"].append(len(self.adlist ) - 1 ) snake_case : Optional[Any] = len(self.adlist ) - 1 else: snake_case : int = next_state self.adlist[current_state]["output"].append(UpperCamelCase__ ) def lowerCamelCase ( self ) -> None: '''simple docstring''' snake_case : deque = deque() for node in self.adlist[0]["next_states"]: q.append(UpperCamelCase__ ) snake_case : Any = 0 while q: snake_case : List[str] = q.popleft() for child in self.adlist[r]["next_states"]: q.append(UpperCamelCase__ ) snake_case : Dict = self.adlist[r]["fail_state"] while ( self.find_next_state(UpperCamelCase__ , self.adlist[child]["value"] ) is None and state != 0 ): snake_case : Union[str, Any] = self.adlist[state]["fail_state"] snake_case : Optional[int] = self.find_next_state( UpperCamelCase__ , self.adlist[child]["value"] ) if self.adlist[child]["fail_state"] is None: snake_case : int = 0 snake_case : int = ( self.adlist[child]["output"] + self.adlist[self.adlist[child]["fail_state"]]["output"] ) def lowerCamelCase ( self , UpperCamelCase__ ) -> dict[str, list[int]]: '''simple docstring''' snake_case : dict = {} # returns a dict with keywords and list of its occurrences snake_case : Optional[Any] = 0 for i in range(len(UpperCamelCase__ ) ): while ( self.find_next_state(UpperCamelCase__ , string[i] ) is None and current_state != 0 ): snake_case : Tuple = self.adlist[current_state]["fail_state"] snake_case : Tuple = self.find_next_state(UpperCamelCase__ , string[i] ) if next_state is None: snake_case : Optional[Any] = 0 else: snake_case : Dict = next_state for key in self.adlist[current_state]["output"]: if key not in result: snake_case : Any = [] result[key].append(i - len(UpperCamelCase__ ) + 1 ) return result if __name__ == "__main__": import doctest doctest.testmod()
117
"""simple docstring""" import json import os import pickle import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers import is_faiss_available from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bart.tokenization_bart import BartTokenizer from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.dpr.tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.retrieval_rag import CustomHFIndex, RagRetriever from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_sentencepiece, require_tokenizers, require_torch if is_faiss_available(): import faiss @require_faiss class _lowerCAmelCase ( snake_case_ ): def lowerCamelCase ( self ) -> Any: '''simple docstring''' snake_case : List[Any] = tempfile.mkdtemp() snake_case : Union[str, Any] = 8 # DPR tok snake_case : str = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] snake_case : Union[str, Any] = os.path.join(self.tmpdirname , "dpr_tokenizer" ) os.makedirs(UpperCamelCase__ , exist_ok=UpperCamelCase__ ) snake_case : Union[str, Any] = os.path.join(UpperCamelCase__ , DPR_VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) # BART tok snake_case : Union[str, Any] = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] snake_case : Tuple = dict(zip(UpperCamelCase__ , range(len(UpperCamelCase__ ) ) ) ) snake_case : List[Any] = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] snake_case : Optional[Any] = {"unk_token": "<unk>"} snake_case : Tuple = os.path.join(self.tmpdirname , "bart_tokenizer" ) os.makedirs(UpperCamelCase__ , exist_ok=UpperCamelCase__ ) snake_case : Optional[Any] = os.path.join(UpperCamelCase__ , BART_VOCAB_FILES_NAMES["vocab_file"] ) snake_case : int = os.path.join(UpperCamelCase__ , BART_VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(UpperCamelCase__ ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(UpperCamelCase__ ) ) def lowerCamelCase ( self ) -> DPRQuestionEncoderTokenizer: '''simple docstring''' return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , "dpr_tokenizer" ) ) def lowerCamelCase ( self ) -> DPRContextEncoderTokenizer: '''simple docstring''' return DPRContextEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , "dpr_tokenizer" ) ) def lowerCamelCase ( self ) -> BartTokenizer: '''simple docstring''' return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , "bart_tokenizer" ) ) def lowerCamelCase ( self ) -> Union[str, Any]: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def lowerCamelCase ( self ) -> Dict: '''simple docstring''' snake_case : Dict = Dataset.from_dict( { "id": ["0", "1"], "text": ["foo", "bar"], "title": ["Foo", "Bar"], "embeddings": [np.ones(self.retrieval_vector_size ), 2 * np.ones(self.retrieval_vector_size )], } ) dataset.add_faiss_index("embeddings" , string_factory="Flat" , metric_type=faiss.METRIC_INNER_PRODUCT ) return dataset def lowerCamelCase ( self ) -> Union[str, Any]: '''simple docstring''' snake_case : List[str] = self.get_dummy_dataset() snake_case : int = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , ) with patch("transformers.models.rag.retrieval_rag.load_dataset" ) as mock_load_dataset: snake_case : int = dataset snake_case : int = RagRetriever( UpperCamelCase__ , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) return retriever def lowerCamelCase ( self , UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' snake_case : List[str] = self.get_dummy_dataset() snake_case : Any = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name="custom" , ) if from_disk: snake_case : str = os.path.join(self.tmpdirname , "dataset" ) snake_case : Any = os.path.join(self.tmpdirname , "index.faiss" ) dataset.get_index("embeddings" ).save(os.path.join(self.tmpdirname , "index.faiss" ) ) dataset.drop_index("embeddings" ) dataset.save_to_disk(os.path.join(self.tmpdirname , "dataset" ) ) del dataset snake_case : Any = RagRetriever( UpperCamelCase__ , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) else: snake_case : str = RagRetriever( UpperCamelCase__ , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , index=CustomHFIndex(config.retrieval_vector_size , UpperCamelCase__ ) , ) return retriever def lowerCamelCase ( self ) -> Optional[Any]: '''simple docstring''' snake_case : Optional[int] = Dataset.from_dict( { "id": ["0", "1"], "text": ["foo", "bar"], "title": ["Foo", "Bar"], "embeddings": [np.ones(self.retrieval_vector_size + 1 ), 2 * np.ones(self.retrieval_vector_size + 1 )], } ) dataset.add_faiss_index("embeddings" , string_factory="Flat" , metric_type=faiss.METRIC_INNER_PRODUCT ) snake_case : Dict = os.path.join(self.tmpdirname , "hf_bert_base.hnswSQ8_correct_phi_128.c_index" ) dataset.save_faiss_index("embeddings" , index_file_name + ".index.dpr" ) pickle.dump(dataset["id"] , open(index_file_name + ".index_meta.dpr" , "wb" ) ) snake_case : int = os.path.join(self.tmpdirname , "psgs_w100.tsv.pkl" ) snake_case : Any = {sample["id"]: [sample["text"], sample["title"]] for sample in dataset} pickle.dump(UpperCamelCase__ , open(UpperCamelCase__ , "wb" ) ) snake_case : List[Any] = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name="legacy" , index_path=self.tmpdirname , ) snake_case : Dict = RagRetriever( UpperCamelCase__ , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() ) return retriever def lowerCamelCase ( self ) -> str: '''simple docstring''' snake_case : str = 1 snake_case : Any = self.get_dummy_canonical_hf_index_retriever() snake_case : Dict = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) snake_case ,snake_case ,snake_case : Any = retriever.retrieve(UpperCamelCase__ , n_docs=UpperCamelCase__ ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(UpperCamelCase__ ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ["embeddings", "id", "text", "title"] ) self.assertEqual(len(doc_dicts[0]["id"] ) , UpperCamelCase__ ) self.assertEqual(doc_dicts[0]["id"][0] , "1" ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["id"][0] , "0" ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def lowerCamelCase ( self ) -> List[str]: '''simple docstring''' snake_case : List[str] = self.get_dummy_canonical_hf_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: with patch("transformers.models.rag.retrieval_rag.load_dataset" ) as mock_load_dataset: snake_case : List[str] = self.get_dummy_dataset() retriever.save_pretrained(UpperCamelCase__ ) snake_case : Union[str, Any] = RagRetriever.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) snake_case : Union[str, Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) snake_case : List[Any] = retriever.retrieve(UpperCamelCase__ , n_docs=1 ) self.assertTrue(out is not None ) def lowerCamelCase ( self ) -> Union[str, Any]: '''simple docstring''' snake_case : Dict = 1 snake_case : Union[str, Any] = self.get_dummy_custom_hf_index_retriever(from_disk=UpperCamelCase__ ) snake_case : int = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) snake_case ,snake_case ,snake_case : Any = retriever.retrieve(UpperCamelCase__ , n_docs=UpperCamelCase__ ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(UpperCamelCase__ ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ["embeddings", "id", "text", "title"] ) self.assertEqual(len(doc_dicts[0]["id"] ) , UpperCamelCase__ ) self.assertEqual(doc_dicts[0]["id"][0] , "1" ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["id"][0] , "0" ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def lowerCamelCase ( self ) -> Union[str, Any]: '''simple docstring''' snake_case : Dict = self.get_dummy_custom_hf_index_retriever(from_disk=UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(UpperCamelCase__ ) snake_case : int = RagRetriever.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) snake_case : Optional[int] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) snake_case : int = retriever.retrieve(UpperCamelCase__ , n_docs=1 ) self.assertTrue(out is not None ) def lowerCamelCase ( self ) -> Optional[Any]: '''simple docstring''' snake_case : List[str] = 1 snake_case : int = self.get_dummy_custom_hf_index_retriever(from_disk=UpperCamelCase__ ) snake_case : int = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) snake_case ,snake_case ,snake_case : List[str] = retriever.retrieve(UpperCamelCase__ , n_docs=UpperCamelCase__ ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(UpperCamelCase__ ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ["embeddings", "id", "text", "title"] ) self.assertEqual(len(doc_dicts[0]["id"] ) , UpperCamelCase__ ) self.assertEqual(doc_dicts[0]["id"][0] , "1" ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["id"][0] , "0" ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def lowerCamelCase ( self ) -> Tuple: '''simple docstring''' snake_case : Tuple = self.get_dummy_custom_hf_index_retriever(from_disk=UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(UpperCamelCase__ ) snake_case : Any = RagRetriever.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) snake_case : Optional[Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) snake_case : Any = retriever.retrieve(UpperCamelCase__ , n_docs=1 ) self.assertTrue(out is not None ) def lowerCamelCase ( self ) -> Union[str, Any]: '''simple docstring''' snake_case : Union[str, Any] = 1 snake_case : Tuple = self.get_dummy_legacy_index_retriever() snake_case : str = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) snake_case ,snake_case ,snake_case : Any = retriever.retrieve(UpperCamelCase__ , n_docs=UpperCamelCase__ ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(UpperCamelCase__ ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ["text", "title"] ) self.assertEqual(len(doc_dicts[0]["text"] ) , UpperCamelCase__ ) self.assertEqual(doc_dicts[0]["text"][0] , "bar" ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["text"][0] , "foo" ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def lowerCamelCase ( self ) -> List[str]: '''simple docstring''' snake_case : int = self.get_dummy_legacy_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(UpperCamelCase__ ) snake_case : Tuple = RagRetriever.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) snake_case : int = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) snake_case : Optional[Any] = retriever.retrieve(UpperCamelCase__ , n_docs=1 ) self.assertTrue(out is not None ) @require_torch @require_tokenizers @require_sentencepiece def lowerCamelCase ( self ) -> Optional[Any]: '''simple docstring''' import torch snake_case : str = 1 snake_case : Dict = self.get_dummy_canonical_hf_index_retriever() snake_case : str = [[5, 7], [10, 11]] snake_case : Any = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) snake_case : int = retriever(UpperCamelCase__ , UpperCamelCase__ , prefix=retriever.config.generator.prefix , n_docs=UpperCamelCase__ ) snake_case ,snake_case ,snake_case : Dict = ( out["context_input_ids"], out["context_attention_mask"], out["retrieved_doc_embeds"], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , np.ndarray ) snake_case : Tuple = retriever( UpperCamelCase__ , UpperCamelCase__ , prefix=retriever.config.generator.prefix , n_docs=UpperCamelCase__ , return_tensors="pt" , ) snake_case ,snake_case ,snake_case ,snake_case : str = ( # noqa: F841 out["context_input_ids"], out["context_attention_mask"], out["retrieved_doc_embeds"], out["doc_ids"], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(UpperCamelCase__ , torch.Tensor ) self.assertIsInstance(UpperCamelCase__ , torch.Tensor ) self.assertIsInstance(UpperCamelCase__ , torch.Tensor ) @require_torch @require_tokenizers @require_sentencepiece def lowerCamelCase ( self ) -> Any: '''simple docstring''' snake_case : Tuple = self.get_dpr_ctx_encoder_tokenizer() snake_case : Union[str, Any] = 1 snake_case : List[str] = self.get_dummy_custom_hf_index_retriever(from_disk=UpperCamelCase__ ) retriever.set_ctx_encoder_tokenizer(UpperCamelCase__ ) snake_case : str = [[5, 7], [10, 11]] snake_case : str = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) snake_case : Dict = retriever(UpperCamelCase__ , UpperCamelCase__ , prefix=retriever.config.generator.prefix , n_docs=UpperCamelCase__ ) self.assertEqual( len(UpperCamelCase__ ) , 6 ) # check whether the retriever output consist of 6 attributes including tokenized docs self.assertEqual( all(k in out for k in ("tokenized_doc_ids", "tokenized_doc_attention_mask") ) , UpperCamelCase__ ) # check for doc token related keys in dictionary.
117
1
'''simple docstring''' import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCAmelCase_ : '''simple docstring''' def __init__( self , _lowercase , _lowercase=13 , _lowercase=7 , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=99 , _lowercase=16 , _lowercase=36 , _lowercase=6 , _lowercase=6 , _lowercase=6 , _lowercase=37 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=512 , _lowercase=16 , _lowercase=2 , _lowercase=0.02 , _lowercase=3 , _lowercase=4 , _lowercase=None , ): """simple docstring""" _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = seq_length _lowerCAmelCase = is_training _lowerCAmelCase = use_input_mask _lowerCAmelCase = use_token_type_ids _lowerCAmelCase = use_labels _lowerCAmelCase = vocab_size _lowerCAmelCase = embedding_size _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_hidden_groups _lowerCAmelCase = num_attention_heads _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_act _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = type_vocab_size _lowerCAmelCase = type_sequence_label_size _lowerCAmelCase = initializer_range _lowerCAmelCase = num_labels _lowerCAmelCase = num_choices _lowerCAmelCase = scope def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase = None if self.use_input_mask: _lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCAmelCase = None if self.use_token_type_ids: _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = None if self.use_labels: _lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) _lowerCAmelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowercase ( self ): """simple docstring""" return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def _lowercase ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ): """simple docstring""" _lowerCAmelCase = AlbertModel(config=_lowercase ) model.to(_lowercase ) model.eval() _lowerCAmelCase = model(_lowercase , attention_mask=_lowercase , token_type_ids=_lowercase ) _lowerCAmelCase = model(_lowercase , token_type_ids=_lowercase ) _lowerCAmelCase = model(_lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _lowercase ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ): """simple docstring""" _lowerCAmelCase = AlbertForPreTraining(config=_lowercase ) model.to(_lowercase ) model.eval() _lowerCAmelCase = model( _lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , labels=_lowercase , sentence_order_label=_lowercase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) ) def _lowercase ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ): """simple docstring""" _lowerCAmelCase = AlbertForMaskedLM(config=_lowercase ) model.to(_lowercase ) model.eval() _lowerCAmelCase = model(_lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , labels=_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowercase ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ): """simple docstring""" _lowerCAmelCase = AlbertForQuestionAnswering(config=_lowercase ) model.to(_lowercase ) model.eval() _lowerCAmelCase = model( _lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , start_positions=_lowercase , end_positions=_lowercase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowercase ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ): """simple docstring""" _lowerCAmelCase = self.num_labels _lowerCAmelCase = AlbertForSequenceClassification(_lowercase ) model.to(_lowercase ) model.eval() _lowerCAmelCase = model(_lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , labels=_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowercase ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ): """simple docstring""" _lowerCAmelCase = self.num_labels _lowerCAmelCase = AlbertForTokenClassification(config=_lowercase ) model.to(_lowercase ) model.eval() _lowerCAmelCase = model(_lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , labels=_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowercase ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ): """simple docstring""" _lowerCAmelCase = self.num_choices _lowerCAmelCase = AlbertForMultipleChoice(config=_lowercase ) model.to(_lowercase ) model.eval() _lowerCAmelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCAmelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCAmelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCAmelCase = model( _lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , labels=_lowercase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.prepare_config_and_inputs() ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) = config_and_inputs _lowerCAmelCase = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' _lowercase : Optional[int] = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) _lowercase : Union[str, Any] = ( { '''feature-extraction''': AlbertModel, '''fill-mask''': AlbertForMaskedLM, '''question-answering''': AlbertForQuestionAnswering, '''text-classification''': AlbertForSequenceClassification, '''token-classification''': AlbertForTokenClassification, '''zero-shot''': AlbertForSequenceClassification, } if is_torch_available() else {} ) _lowercase : Any = True def _lowercase ( self , _lowercase , _lowercase , _lowercase=False ): """simple docstring""" _lowerCAmelCase = super()._prepare_for_class(_lowercase , _lowercase , return_labels=_lowercase ) if return_labels: if model_class in get_values(_lowercase ): _lowerCAmelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=_lowercase ) _lowerCAmelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_lowercase ) return inputs_dict def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = AlbertModelTester(self ) _lowerCAmelCase = ConfigTester(self , config_class=_lowercase , hidden_size=37 ) def _lowercase ( self ): """simple docstring""" self.config_tester.run_common_tests() def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _lowerCAmelCase = type self.model_tester.create_and_check_model(*_lowercase ) @slow def _lowercase ( self ): """simple docstring""" for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase = AlbertModel.from_pretrained(_lowercase ) self.assertIsNotNone(_lowercase ) @require_torch class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = AlbertModel.from_pretrained("""albert-base-v2""" ) _lowerCAmelCase = torch.tensor([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] ) _lowerCAmelCase = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): _lowerCAmelCase = model(_lowercase , attention_mask=_lowercase )[0] _lowerCAmelCase = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , _lowercase ) _lowerCAmelCase = torch.tensor( [[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _lowercase , atol=1e-4 ) )
5
'''simple docstring''' import warnings from ...utils import logging from .image_processing_donut import DonutImageProcessor _lowercase = logging.get_logger(__name__) class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , *_lowercase , **_lowercase ): """simple docstring""" warnings.warn( """The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use DonutImageProcessor instead.""" , _lowercase , ) super().__init__(*_lowercase , **_lowercase )
5
1
"""simple docstring""" import glob import os import random from string import ascii_lowercase, digits import cva import numpy as np # Parrameters A_ : Any = (7_20, 12_80) # Height, Width A_ : List[Any] = (0.4, 0.6) # if height or width lower than this scale, drop it. A_ : int = 1 / 1_00 A_ : Dict = "" A_ : List[str] = "" A_ : str = "" A_ : int = 2_50 def lowerCamelCase_ ( ): lowerCamelCase__ , lowerCamelCase__ : Tuple = get_dataset(_lowerCamelCase , _lowerCamelCase ) for index in range(_lowerCamelCase ): lowerCamelCase__ : Dict = random.sample(range(len(_lowerCamelCase ) ) , 4 ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Dict = update_image_and_anno( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , filter_scale=_lowerCamelCase , ) # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' lowerCamelCase__ : int = random_chars(32 ) lowerCamelCase__ : Optional[Any] = path.split(os.sep )[-1].rsplit('.' , 1 )[0] lowerCamelCase__ : Optional[Any] = f'''{OUTPUT_DIR}/{file_name}_MOSAIC_{letter_code}''' cva.imwrite(f'''{file_root}.jpg''' , _lowerCamelCase , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(f'''Succeeded {index+1}/{NUMBER_IMAGES} with {file_name}''' ) lowerCamelCase__ : Union[str, Any] = [] for anno in new_annos: lowerCamelCase__ : List[Any] = anno[3] - anno[1] lowerCamelCase__ : Any = anno[4] - anno[2] lowerCamelCase__ : Any = anno[1] + width / 2 lowerCamelCase__ : List[Any] = anno[2] + height / 2 lowerCamelCase__ : List[str] = f'''{anno[0]} {x_center} {y_center} {width} {height}''' annos_list.append(_lowerCamelCase ) with open(f'''{file_root}.txt''' , 'w' ) as outfile: outfile.write('\n'.join(line for line in annos_list ) ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : Union[str, Any] = [] lowerCamelCase__ : Dict = [] for label_file in glob.glob(os.path.join(_lowerCamelCase , '*.txt' ) ): lowerCamelCase__ : Union[str, Any] = label_file.split(os.sep )[-1].rsplit('.' , 1 )[0] with open(_lowerCamelCase ) as in_file: lowerCamelCase__ : List[Any] = in_file.readlines() lowerCamelCase__ : Tuple = os.path.join(_lowerCamelCase , f'''{label_name}.jpg''' ) lowerCamelCase__ : Optional[Any] = [] for obj_list in obj_lists: lowerCamelCase__ : List[Any] = obj_list.rstrip('\n' ).split(' ' ) lowerCamelCase__ : str = float(obj[1] ) - float(obj[3] ) / 2 lowerCamelCase__ : Optional[int] = float(obj[2] ) - float(obj[4] ) / 2 lowerCamelCase__ : Optional[int] = float(obj[1] ) + float(obj[3] ) / 2 lowerCamelCase__ : int = float(obj[2] ) + float(obj[4] ) / 2 boxes.append([int(obj[0] ), xmin, ymin, xmax, ymax] ) if not boxes: continue img_paths.append(_lowerCamelCase ) labels.append(_lowerCamelCase ) return img_paths, labels def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 0.0 , ): lowerCamelCase__ : str = np.zeros([output_size[0], output_size[1], 3] , dtype=np.uinta ) lowerCamelCase__ : List[Any] = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) lowerCamelCase__ : Optional[Any] = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) lowerCamelCase__ : Any = int(scale_x * output_size[1] ) lowerCamelCase__ : Dict = int(scale_y * output_size[0] ) lowerCamelCase__ : int = [] lowerCamelCase__ : Tuple = [] for i, index in enumerate(_lowerCamelCase ): lowerCamelCase__ : Any = all_img_list[index] path_list.append(_lowerCamelCase ) lowerCamelCase__ : Dict = all_annos[index] lowerCamelCase__ : Tuple = cva.imread(_lowerCamelCase ) if i == 0: # top-left lowerCamelCase__ : int = cva.resize(_lowerCamelCase , (divid_point_x, divid_point_y) ) lowerCamelCase__ : Dict = img for bbox in img_annos: lowerCamelCase__ : List[Any] = bbox[1] * scale_x lowerCamelCase__ : str = bbox[2] * scale_y lowerCamelCase__ : Optional[int] = bbox[3] * scale_x lowerCamelCase__ : Any = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 1: # top-right lowerCamelCase__ : Tuple = cva.resize(_lowerCamelCase , (output_size[1] - divid_point_x, divid_point_y) ) lowerCamelCase__ : Optional[int] = img for bbox in img_annos: lowerCamelCase__ : Optional[int] = scale_x + bbox[1] * (1 - scale_x) lowerCamelCase__ : Optional[Any] = bbox[2] * scale_y lowerCamelCase__ : Optional[int] = scale_x + bbox[3] * (1 - scale_x) lowerCamelCase__ : Optional[Any] = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 2: # bottom-left lowerCamelCase__ : List[str] = cva.resize(_lowerCamelCase , (divid_point_x, output_size[0] - divid_point_y) ) lowerCamelCase__ : int = img for bbox in img_annos: lowerCamelCase__ : Any = bbox[1] * scale_x lowerCamelCase__ : Optional[Any] = scale_y + bbox[2] * (1 - scale_y) lowerCamelCase__ : Optional[int] = bbox[3] * scale_x lowerCamelCase__ : str = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) else: # bottom-right lowerCamelCase__ : Union[str, Any] = cva.resize( _lowerCamelCase , (output_size[1] - divid_point_x, output_size[0] - divid_point_y) ) lowerCamelCase__ : Optional[int] = img for bbox in img_annos: lowerCamelCase__ : List[Any] = scale_x + bbox[1] * (1 - scale_x) lowerCamelCase__ : Any = scale_y + bbox[2] * (1 - scale_y) lowerCamelCase__ : int = scale_x + bbox[3] * (1 - scale_x) lowerCamelCase__ : Tuple = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) # Remove bounding box small than scale of filter if filter_scale > 0: lowerCamelCase__ : List[Any] = [ anno for anno in new_anno if filter_scale < (anno[3] - anno[1]) and filter_scale < (anno[4] - anno[2]) ] return output_img, new_anno, path_list[0] def lowerCamelCase_ ( _lowerCamelCase ): assert number_char > 1, "The number of character should greater than 1" lowerCamelCase__ : Any = ascii_lowercase + digits return "".join(random.choice(_lowerCamelCase ) for _ in range(_lowerCamelCase ) ) if __name__ == "__main__": main() print("DONE ✅")
696
"""simple docstring""" import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class a_ ( unittest.TestCase ): '''simple docstring''' def a__ (self ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights lowerCamelCase__ : Tuple = FlaxDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-pipe', safety_checker=lowerCamelCase_, cache_dir=lowerCamelCase_ ) lowerCamelCase__ : List[str] = [t[-1] for t in os.walk(os.path.join(lowerCamelCase_, os.listdir(lowerCamelCase_ )[0], 'snapshots' ) )] lowerCamelCase__ : Optional[int] = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith('.bin' ) for f in files ) @slow @require_flax class a_ ( unittest.TestCase ): '''simple docstring''' def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : Any = FlaxStableDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-pipe', safety_checker=lowerCamelCase_ ) lowerCamelCase__ : Any = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) lowerCamelCase__ : Optional[int] = jax.random.PRNGKey(0 ) lowerCamelCase__ : Any = 4 lowerCamelCase__ : Any = jax.device_count() lowerCamelCase__ : List[Any] = num_samples * [prompt] lowerCamelCase__ : Optional[int] = pipeline.prepare_inputs(lowerCamelCase_ ) # shard inputs and rng lowerCamelCase__ : int = replicate(lowerCamelCase_ ) lowerCamelCase__ : Any = jax.random.split(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] = shard(lowerCamelCase_ ) lowerCamelCase__ : int = pipeline(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, jit=lowerCamelCase_ ).images assert images.shape == (num_samples, 1, 6_4, 6_4, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:], dtype=np.floataa ).sum() - 4.1_514_745 ) < 1e-3 assert np.abs(np.abs(lowerCamelCase_, dtype=np.floataa ).sum() - 49_947.875 ) < 5e-1 lowerCamelCase__ : Union[str, Any] = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) ) assert len(lowerCamelCase_ ) == num_samples def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : List[Any] = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4', revision='flax', safety_checker=lowerCamelCase_ ) lowerCamelCase__ : int = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) lowerCamelCase__ : List[str] = jax.random.PRNGKey(0 ) lowerCamelCase__ : int = 5_0 lowerCamelCase__ : List[str] = jax.device_count() lowerCamelCase__ : Dict = num_samples * [prompt] lowerCamelCase__ : List[str] = pipeline.prepare_inputs(lowerCamelCase_ ) # shard inputs and rng lowerCamelCase__ : Dict = replicate(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = jax.random.split(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = shard(lowerCamelCase_ ) lowerCamelCase__ : str = pipeline(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, jit=lowerCamelCase_ ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:], dtype=np.floataa ).sum() - 0.05_652_401) ) < 1e-3 assert np.abs((np.abs(lowerCamelCase_, dtype=np.floataa ).sum() - 2_383_808.2) ) < 5e-1 def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : Optional[int] = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4', revision='bf16', dtype=jnp.bfloataa, safety_checker=lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) lowerCamelCase__ : List[Any] = jax.random.PRNGKey(0 ) lowerCamelCase__ : Union[str, Any] = 5_0 lowerCamelCase__ : Any = jax.device_count() lowerCamelCase__ : Tuple = num_samples * [prompt] lowerCamelCase__ : List[str] = pipeline.prepare_inputs(lowerCamelCase_ ) # shard inputs and rng lowerCamelCase__ : Any = replicate(lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] = jax.random.split(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : int = shard(lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = pipeline(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, jit=lowerCamelCase_ ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:], dtype=np.floataa ).sum() - 0.04_003_906) ) < 1e-3 assert np.abs((np.abs(lowerCamelCase_, dtype=np.floataa ).sum() - 2_373_516.75) ) < 5e-1 def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : Tuple = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4', revision='bf16', dtype=jnp.bfloataa ) lowerCamelCase__ : Tuple = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) lowerCamelCase__ : Union[str, Any] = jax.random.PRNGKey(0 ) lowerCamelCase__ : Optional[Any] = 5_0 lowerCamelCase__ : Tuple = jax.device_count() lowerCamelCase__ : Optional[int] = num_samples * [prompt] lowerCamelCase__ : str = pipeline.prepare_inputs(lowerCamelCase_ ) # shard inputs and rng lowerCamelCase__ : Optional[int] = replicate(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = jax.random.split(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = shard(lowerCamelCase_ ) lowerCamelCase__ : List[str] = pipeline(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, jit=lowerCamelCase_ ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:], dtype=np.floataa ).sum() - 0.04_003_906) ) < 1e-3 assert np.abs((np.abs(lowerCamelCase_, dtype=np.floataa ).sum() - 2_373_516.75) ) < 5e-1 def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = FlaxDDIMScheduler( beta_start=0.00_085, beta_end=0.012, beta_schedule='scaled_linear', set_alpha_to_one=lowerCamelCase_, steps_offset=1, ) lowerCamelCase__ , lowerCamelCase__ : List[str] = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4', revision='bf16', dtype=jnp.bfloataa, scheduler=lowerCamelCase_, safety_checker=lowerCamelCase_, ) lowerCamelCase__ : List[str] = scheduler.create_state() lowerCamelCase__ : int = scheduler_state lowerCamelCase__ : Any = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) lowerCamelCase__ : Optional[Any] = jax.random.PRNGKey(0 ) lowerCamelCase__ : int = 5_0 lowerCamelCase__ : Optional[Any] = jax.device_count() lowerCamelCase__ : Any = num_samples * [prompt] lowerCamelCase__ : Any = pipeline.prepare_inputs(lowerCamelCase_ ) # shard inputs and rng lowerCamelCase__ : Union[str, Any] = replicate(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = jax.random.split(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : Dict = shard(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = pipeline(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, jit=lowerCamelCase_ ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:], dtype=np.floataa ).sum() - 0.045_043_945) ) < 1e-3 assert np.abs((np.abs(lowerCamelCase_, dtype=np.floataa ).sum() - 2_347_693.5) ) < 5e-1 def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) lowerCamelCase__ : int = jax.device_count() lowerCamelCase__ : Dict = num_samples * [prompt] lowerCamelCase__ : str = jax.random.split(jax.random.PRNGKey(0 ), lowerCamelCase_ ) lowerCamelCase__ , lowerCamelCase__ : List[str] = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4', revision='bf16', dtype=jnp.bfloataa, safety_checker=lowerCamelCase_, ) lowerCamelCase__ : Union[str, Any] = replicate(lowerCamelCase_ ) lowerCamelCase__ : Dict = pipeline.prepare_inputs(lowerCamelCase_ ) lowerCamelCase__ : Tuple = shard(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = pipeline(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, jit=lowerCamelCase_ ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) lowerCamelCase__ : int = images[2, 0, 2_5_6, 1_0:1_7, 1] # With memory efficient attention lowerCamelCase__ , lowerCamelCase__ : str = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4', revision='bf16', dtype=jnp.bfloataa, safety_checker=lowerCamelCase_, use_memory_efficient_attention=lowerCamelCase_, ) lowerCamelCase__ : Dict = replicate(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = pipeline.prepare_inputs(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = shard(lowerCamelCase_ ) lowerCamelCase__ : Any = pipeline(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, jit=lowerCamelCase_ ).images assert images_eff.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) lowerCamelCase__ : Any = images[2, 0, 2_5_6, 1_0:1_7, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice ).max() < 1e-2
696
1
import argparse import re import numpy as np import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SamConfig, SamImageProcessor, SamModel, SamProcessor, SamVisionConfig, ) SCREAMING_SNAKE_CASE = { 'iou_prediction_head.layers.0': 'iou_prediction_head.proj_in', 'iou_prediction_head.layers.1': 'iou_prediction_head.layers.0', 'iou_prediction_head.layers.2': 'iou_prediction_head.proj_out', 'mask_decoder.output_upscaling.0': 'mask_decoder.upscale_conv1', 'mask_decoder.output_upscaling.1': 'mask_decoder.upscale_layer_norm', 'mask_decoder.output_upscaling.3': 'mask_decoder.upscale_conv2', 'mask_downscaling.0': 'mask_embed.conv1', 'mask_downscaling.1': 'mask_embed.layer_norm1', 'mask_downscaling.3': 'mask_embed.conv2', 'mask_downscaling.4': 'mask_embed.layer_norm2', 'mask_downscaling.6': 'mask_embed.conv3', 'point_embeddings': 'point_embed', 'pe_layer.positional_encoding_gaussian_matrix': 'shared_embedding.positional_embedding', 'image_encoder': 'vision_encoder', 'neck.0': 'neck.conv1', 'neck.1': 'neck.layer_norm1', 'neck.2': 'neck.conv2', 'neck.3': 'neck.layer_norm2', 'patch_embed.proj': 'patch_embed.projection', '.norm': '.layer_norm', 'blocks': 'layers', } def a (lowerCAmelCase__ ): __a = {} state_dict.pop("""pixel_mean""" , lowerCAmelCase__ ) state_dict.pop("""pixel_std""" , lowerCAmelCase__ ) __a = r""".*.output_hypernetworks_mlps.(\d+).layers.(\d+).*""" for key, value in state_dict.items(): for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: __a = key.replace(lowerCAmelCase__ , lowerCAmelCase__ ) if re.match(lowerCAmelCase__ , lowerCAmelCase__ ): __a = int(re.match(lowerCAmelCase__ , lowerCAmelCase__ ).group(2 ) ) if layer_nb == 0: __a = key.replace("""layers.0""" , """proj_in""" ) elif layer_nb == 1: __a = key.replace("""layers.1""" , """layers.0""" ) elif layer_nb == 2: __a = key.replace("""layers.2""" , """proj_out""" ) __a = value __a = model_state_dict[ """prompt_encoder.shared_embedding.positional_embedding""" ] return model_state_dict def a (lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__="ybelkada/segment-anything" ): __a = hf_hub_download(lowerCAmelCase__ , f'''checkpoints/{model_name}.pth''' ) if "sam_vit_b" in model_name: __a = SamConfig() elif "sam_vit_l" in model_name: __a = SamVisionConfig( hidden_size=1_024 , num_hidden_layers=24 , num_attention_heads=16 , global_attn_indexes=[5, 11, 17, 23] , ) __a = SamConfig( vision_config=lowerCAmelCase__ , ) elif "sam_vit_h" in model_name: __a = SamVisionConfig( hidden_size=1_280 , num_hidden_layers=32 , num_attention_heads=16 , global_attn_indexes=[7, 15, 23, 31] , ) __a = SamConfig( vision_config=lowerCAmelCase__ , ) __a = torch.load(lowerCAmelCase__ , map_location="""cpu""" ) __a = replace_keys(lowerCAmelCase__ ) __a = SamImageProcessor() __a = SamProcessor(image_processor=lowerCAmelCase__ ) __a = SamModel(lowerCAmelCase__ ) hf_model.load_state_dict(lowerCAmelCase__ ) __a = hf_model.to("""cuda""" ) __a = """https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png""" __a = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ).convert("""RGB""" ) __a = [[[400, 650]]] __a = [[1]] __a = processor(images=np.array(lowerCAmelCase__ ) , return_tensors="""pt""" ).to("""cuda""" ) with torch.no_grad(): __a = hf_model(**lowerCAmelCase__ ) __a = output.iou_scores.squeeze() if model_name == "sam_vit_h_4b8939": assert scores[-1].item() == 0.5_7_9_8_9_0_2_5_1_1_5_9_6_6_8 __a = processor( images=np.array(lowerCAmelCase__ ) , input_points=lowerCAmelCase__ , input_labels=lowerCAmelCase__ , return_tensors="""pt""" ).to("""cuda""" ) with torch.no_grad(): __a = hf_model(**lowerCAmelCase__ ) __a = output.iou_scores.squeeze() assert scores[-1].item() == 0.9_7_1_2_6_0_3_0_9_2_1_9_3_6_0_4 __a = ((75, 275, 1_725, 850),) __a = processor(images=np.array(lowerCAmelCase__ ) , input_boxes=lowerCAmelCase__ , return_tensors="""pt""" ).to("""cuda""" ) with torch.no_grad(): __a = hf_model(**lowerCAmelCase__ ) __a = output.iou_scores.squeeze() assert scores[-1].item() == 0.8_6_8_6_0_1_5_6_0_5_9_2_6_5_1_4 # Test with 2 points and 1 image. __a = [[[400, 650], [800, 650]]] __a = [[1, 1]] __a = processor( images=np.array(lowerCAmelCase__ ) , input_points=lowerCAmelCase__ , input_labels=lowerCAmelCase__ , return_tensors="""pt""" ).to("""cuda""" ) with torch.no_grad(): __a = hf_model(**lowerCAmelCase__ ) __a = output.iou_scores.squeeze() assert scores[-1].item() == 0.9_9_3_6_0_4_7_7_9_2_4_3_4_6_9_2 if __name__ == "__main__": SCREAMING_SNAKE_CASE = argparse.ArgumentParser() SCREAMING_SNAKE_CASE = ['sam_vit_b_01ec64', 'sam_vit_h_4b8939', 'sam_vit_l_0b3195'] parser.add_argument( '--model_name', default='sam_vit_h_4b8939', choices=choices, type=str, help='Path to hf config.json of model to convert', ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub after converting', ) parser.add_argument( '--model_hub_id', default='ybelkada/segment-anything', choices=choices, type=str, help='Path to hf config.json of model to convert', ) SCREAMING_SNAKE_CASE = parser.parse_args() convert_sam_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub, args.model_hub_id)
99
import inspect import unittest from transformers import YolosConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import YolosForObjectDetection, YolosModel from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _lowerCamelCase : """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase=13 , UpperCAmelCase=[30, 30] , UpperCAmelCase=2 , UpperCAmelCase=3 , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=32 , UpperCAmelCase=5 , UpperCAmelCase=4 , UpperCAmelCase=37 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=10 , UpperCAmelCase=0.02 , UpperCAmelCase=3 , UpperCAmelCase=None , UpperCAmelCase=8 , UpperCAmelCase=10 , ) -> str: '''simple docstring''' __snake_case : Optional[Any] = parent __snake_case : List[Any] = batch_size __snake_case : Optional[int] = image_size __snake_case : Tuple = patch_size __snake_case : Any = num_channels __snake_case : Dict = is_training __snake_case : Dict = use_labels __snake_case : Any = hidden_size __snake_case : Optional[int] = num_hidden_layers __snake_case : Tuple = num_attention_heads __snake_case : Union[str, Any] = intermediate_size __snake_case : Optional[Any] = hidden_act __snake_case : Optional[Any] = hidden_dropout_prob __snake_case : int = attention_probs_dropout_prob __snake_case : Optional[Any] = type_sequence_label_size __snake_case : Optional[int] = initializer_range __snake_case : Union[str, Any] = num_labels __snake_case : Optional[Any] = scope __snake_case : Tuple = n_targets __snake_case : str = num_detection_tokens # we set the expected sequence length (which is used in several tests) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens __snake_case : Dict = (image_size[1] // patch_size) * (image_size[0] // patch_size) __snake_case : Any = num_patches + 1 + self.num_detection_tokens def UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' __snake_case : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]] ) __snake_case : Any = None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) __snake_case : Any = [] for i in range(self.batch_size ): __snake_case : Dict = {} __snake_case : Optional[Any] = torch.randint( high=self.num_labels , size=(self.n_targets,) , device=UpperCAmelCase ) __snake_case : Union[str, Any] = torch.rand(self.n_targets , 4 , device=UpperCAmelCase ) labels.append(UpperCAmelCase ) __snake_case : Union[str, Any] = self.get_config() return config, pixel_values, labels def UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' return YolosConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCAmelCase , initializer_range=self.initializer_range , num_detection_tokens=self.num_detection_tokens , num_labels=self.num_labels , ) def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> int: '''simple docstring''' __snake_case : Optional[int] = YolosModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __snake_case : int = model(UpperCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.expected_seq_len, self.hidden_size) ) def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' __snake_case : Optional[int] = YolosForObjectDetection(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __snake_case : Any = model(pixel_values=UpperCAmelCase ) __snake_case : List[str] = model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) __snake_case : int = model(pixel_values=UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) def UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' __snake_case : List[Any] = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case : List[Any] = config_and_inputs __snake_case : Union[str, Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class _lowerCamelCase ( a , a , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ : Dict =(YolosModel, YolosForObjectDetection) if is_torch_available() else () UpperCAmelCase_ : List[Any] =( {"feature-extraction": YolosModel, "object-detection": YolosForObjectDetection} if is_torch_available() else {} ) UpperCAmelCase_ : Optional[int] =False UpperCAmelCase_ : List[Any] =False UpperCAmelCase_ : str =False UpperCAmelCase_ : List[Any] =False def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=False ) -> Tuple: '''simple docstring''' __snake_case : Any = super()._prepare_for_class(UpperCAmelCase , UpperCAmelCase , return_labels=UpperCAmelCase ) if return_labels: if model_class.__name__ == "YolosForObjectDetection": __snake_case : int = [] for i in range(self.model_tester.batch_size ): __snake_case : Dict = {} __snake_case : int = torch.ones( size=(self.model_tester.n_targets,) , device=UpperCAmelCase , dtype=torch.long ) __snake_case : Union[str, Any] = torch.ones( self.model_tester.n_targets , 4 , device=UpperCAmelCase , dtype=torch.float ) labels.append(UpperCAmelCase ) __snake_case : Any = labels return inputs_dict def UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' __snake_case : Dict = YolosModelTester(self ) __snake_case : Union[str, Any] = ConfigTester(self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase , hidden_size=37 ) def UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' pass def UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' __snake_case , __snake_case : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : int = model_class(UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __snake_case : Dict = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCAmelCase , nn.Linear ) ) def UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' __snake_case , __snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : List[Any] = model_class(UpperCAmelCase ) __snake_case : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case : Optional[int] = [*signature.parameters.keys()] __snake_case : Optional[Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] , UpperCAmelCase ) def UpperCAmelCase ( self ) -> int: '''simple docstring''' __snake_case : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def UpperCAmelCase ( self ) -> int: '''simple docstring''' __snake_case , __snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __snake_case : Optional[Any] = True # in YOLOS, the seq_len is different __snake_case : Dict = self.model_tester.expected_seq_len for model_class in self.all_model_classes: __snake_case : Union[str, Any] = True __snake_case : Optional[Any] = False __snake_case : int = True __snake_case : Any = model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() with torch.no_grad(): __snake_case : Optional[Any] = model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) __snake_case : int = outputs.attentions self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __snake_case : str = True __snake_case : Union[str, Any] = model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() with torch.no_grad(): __snake_case : Optional[int] = model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) __snake_case : Tuple = outputs.attentions self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) __snake_case : str = len(UpperCAmelCase ) # Check attention is always last and order is fine __snake_case : Union[str, Any] = True __snake_case : List[Any] = True __snake_case : Tuple = model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() with torch.no_grad(): __snake_case : Tuple = model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) __snake_case : List[str] = 1 self.assertEqual(out_len + added_hidden_states , len(UpperCAmelCase ) ) __snake_case : int = outputs.attentions self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def UpperCAmelCase ( self ) -> Dict: '''simple docstring''' def check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): __snake_case : Tuple = model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() with torch.no_grad(): __snake_case : Dict = model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) __snake_case : List[Any] = outputs.hidden_states __snake_case : Dict = getattr( self.model_tester , "expected_num_hidden_layers" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase ) # YOLOS has a different seq_length __snake_case : Tuple = self.model_tester.expected_seq_len self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) __snake_case , __snake_case : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : List[str] = True check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __snake_case : Optional[Any] = True check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase ( self ) -> str: '''simple docstring''' __snake_case : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_object_detection(*UpperCAmelCase ) @slow def UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : Optional[int] = YolosModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) def lowerCAmelCase__( ) -> List[Any]: __snake_case : Union[str, Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" @cached_property def UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' return AutoImageProcessor.from_pretrained("hustvl/yolos-small" ) if is_vision_available() else None @slow def UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' __snake_case : int = YolosForObjectDetection.from_pretrained("hustvl/yolos-small" ).to(UpperCAmelCase ) __snake_case : Any = self.default_image_processor __snake_case : Optional[int] = prepare_img() __snake_case : int = image_processor(images=UpperCAmelCase , return_tensors="pt" ).to(UpperCAmelCase ) # forward pass with torch.no_grad(): __snake_case : Dict = model(inputs.pixel_values ) # verify outputs __snake_case : int = torch.Size((1, 100, 92) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase ) __snake_case : Tuple = torch.tensor( [[-24.0_248, -10.3_024, -14.8_290], [-42.0_392, -16.8_200, -27.4_334], [-27.2_743, -11.8_154, -18.7_148]] , device=UpperCAmelCase , ) __snake_case : Optional[Any] = torch.tensor( [[0.2_559, 0.5_455, 0.4_706], [0.2_989, 0.7_279, 0.1_875], [0.7_732, 0.4_017, 0.4_462]] , device=UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , UpperCAmelCase , atol=1E-4 ) ) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] , UpperCAmelCase , atol=1E-4 ) ) # verify postprocessing __snake_case : Union[str, Any] = image_processor.post_process_object_detection( UpperCAmelCase , threshold=0.3 , target_sizes=[image.size[::-1]] )[0] __snake_case : List[str] = torch.tensor([0.9_994, 0.9_790, 0.9_964, 0.9_972, 0.9_861] ).to(UpperCAmelCase ) __snake_case : List[Any] = [75, 75, 17, 63, 17] __snake_case : Tuple = torch.tensor([335.0_609, 79.3_848, 375.4_216, 187.2_495] ).to(UpperCAmelCase ) self.assertEqual(len(results["scores"] ) , 5 ) self.assertTrue(torch.allclose(results["scores"] , UpperCAmelCase , atol=1E-4 ) ) self.assertSequenceEqual(results["labels"].tolist() , UpperCAmelCase ) self.assertTrue(torch.allclose(results["boxes"][0, :] , UpperCAmelCase ) )
243
0
"""simple docstring""" from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ ): """simple docstring""" A__ = [] for part_id in partition_order: A__ = df.where(F'''SPARK_PARTITION_ID() = {part_id}''' ).collect() for row_idx, row in enumerate(UpperCamelCase__ ): expected_row_ids_and_row_dicts.append((F'''{part_id}_{row_idx}''', row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def UpperCAmelCase ( ): """simple docstring""" A__ = pyspark.sql.SparkSession.builder.master('local[*]' ).appName('pyspark' ).getOrCreate() A__ = spark.range(100 ).repartition(1 ) A__ = Spark(UpperCamelCase__ ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def UpperCAmelCase ( ): """simple docstring""" A__ = pyspark.sql.SparkSession.builder.master('local[*]' ).appName('pyspark' ).getOrCreate() A__ = spark.range(10 ).repartition(2 ) A__ = [1, 0] A__ = _generate_iterable_examples(UpperCamelCase__ , UpperCamelCase__ ) # Reverse the partitions. A__ = _get_expected_row_ids_and_row_dicts_for_partition_order(UpperCamelCase__ , UpperCamelCase__ ) for i, (row_id, row_dict) in enumerate(generate_fn() ): A__ , A__ = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def UpperCAmelCase ( ): """simple docstring""" A__ = pyspark.sql.SparkSession.builder.master('local[*]' ).appName('pyspark' ).getOrCreate() A__ = spark.range(10 ).repartition(1 ) A__ = SparkExamplesIterable(UpperCamelCase__ ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(UpperCamelCase__ ): assert row_id == F'''0_{i}''' assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def UpperCAmelCase ( ): """simple docstring""" A__ = pyspark.sql.SparkSession.builder.master('local[*]' ).appName('pyspark' ).getOrCreate() A__ = spark.range(30 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch('numpy.random.Generator' ) as generator_mock: A__ = lambda UpperCamelCase__ : x.reverse() A__ = _get_expected_row_ids_and_row_dicts_for_partition_order(UpperCamelCase__ , [2, 1, 0] ) A__ = SparkExamplesIterable(UpperCamelCase__ ).shuffle_data_sources(UpperCamelCase__ ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(UpperCamelCase__ ): A__ , A__ = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def UpperCAmelCase ( ): """simple docstring""" A__ = pyspark.sql.SparkSession.builder.master('local[*]' ).appName('pyspark' ).getOrCreate() A__ = spark.range(20 ).repartition(4 ) # Partitions 0 and 2 A__ = SparkExamplesIterable(UpperCamelCase__ ).shard_data_sources(worker_id=0 , num_workers=2 ) assert shard_it_a.n_shards == 2 A__ = _get_expected_row_ids_and_row_dicts_for_partition_order(UpperCamelCase__ , [0, 2] ) for i, (row_id, row_dict) in enumerate(UpperCamelCase__ ): A__ , A__ = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 A__ = SparkExamplesIterable(UpperCamelCase__ ).shard_data_sources(worker_id=1 , num_workers=2 ) assert shard_it_a.n_shards == 2 A__ = _get_expected_row_ids_and_row_dicts_for_partition_order(UpperCamelCase__ , [1, 3] ) for i, (row_id, row_dict) in enumerate(UpperCamelCase__ ): A__ , A__ = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def UpperCAmelCase ( ): """simple docstring""" A__ = pyspark.sql.SparkSession.builder.master('local[*]' ).appName('pyspark' ).getOrCreate() A__ = spark.range(100 ).repartition(1 ) A__ = Spark(UpperCamelCase__ ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 100
706
"""simple docstring""" import os import unittest from transformers.models.cpmant.tokenization_cpmant import VOCAB_FILES_NAMES, CpmAntTokenizer from transformers.testing_utils import require_jieba, tooslow from ...test_tokenization_common import TokenizerTesterMixin @require_jieba class UpperCamelCase__( __A , unittest.TestCase ): lowerCAmelCase__ : Optional[int] = CpmAntTokenizer lowerCAmelCase__ : List[str] = False def snake_case__ ( self ) -> Dict: super().setUp() A__ = [ '<d>', '</d>', '<s>', '</s>', '</_>', '<unk>', '<pad>', '</n>', '我', '是', 'C', 'P', 'M', 'A', 'n', 't', ] A__ = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file ,'w' ,encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) @tooslow def snake_case__ ( self ) -> List[Any]: A__ = CpmAntTokenizer.from_pretrained('openbmb/cpm-ant-10b' ) A__ = '今天天气真好!' A__ = ['今天', '天气', '真', '好', '!'] A__ = tokenizer.tokenize(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase ,__UpperCAmelCase ) A__ = '今天天气真好!' A__ = [tokenizer.bos_token] + tokens A__ = [6, 98_02, 1_49_62, 20_82, 8_31, 2_44] self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) ,__UpperCAmelCase ) A__ = tokenizer.decode(__UpperCAmelCase ) self.assertEqual(__UpperCAmelCase ,__UpperCAmelCase )
536
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE_: Union[str, Any] =logging.get_logger(__name__) SCREAMING_SNAKE_CASE_: List[Any] ={ 'hustvl/yolos-small': 'https://huggingface.co/hustvl/yolos-small/resolve/main/config.json', # See all YOLOS models at https://huggingface.co/models?filter=yolos } class __A ( UpperCamelCase__ ): a__ : List[Any] = """yolos""" def __init__(self : Optional[Any] , __a : Tuple=768 , __a : Tuple=12 , __a : Tuple=12 , __a : Dict=3072 , __a : Optional[int]="gelu" , __a : Optional[Any]=0.0 , __a : Dict=0.0 , __a : List[str]=0.02 , __a : str=1E-12 , __a : str=[512, 864] , __a : Optional[int]=16 , __a : int=3 , __a : Dict=True , __a : int=100 , __a : Optional[int]=True , __a : Any=False , __a : str=1 , __a : int=5 , __a : Any=2 , __a : List[str]=5 , __a : Optional[Any]=2 , __a : List[Any]=0.1 , **__a : Optional[Any] , ): super().__init__(**__a ) UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_act UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = initializer_range UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = image_size UpperCAmelCase_ = patch_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = qkv_bias UpperCAmelCase_ = num_detection_tokens UpperCAmelCase_ = use_mid_position_embeddings UpperCAmelCase_ = auxiliary_loss # Hungarian matcher UpperCAmelCase_ = class_cost UpperCAmelCase_ = bbox_cost UpperCAmelCase_ = giou_cost # Loss coefficients UpperCAmelCase_ = bbox_loss_coefficient UpperCAmelCase_ = giou_loss_coefficient UpperCAmelCase_ = eos_coefficient class __A ( UpperCamelCase__ ): a__ : Optional[Any] = version.parse("""1.11""" ) @property def _lowercase (self : Tuple ): return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def _lowercase (self : Tuple ): return 1E-4 @property def _lowercase (self : Any ): return 12
78
"""simple docstring""" import unittest from transformers import AlbertTokenizer, AlbertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin a_ = get_tests_dir("""fixtures/spiece.model""") @require_sentencepiece @require_tokenizers class __snake_case ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _lowerCamelCase = AlbertTokenizer _lowerCamelCase = AlbertTokenizerFast _lowerCamelCase = True _lowerCamelCase = True _lowerCamelCase = True def UpperCamelCase__( self ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing __A : str = AlbertTokenizer(__lowerCamelCase ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase__( self , __lowerCamelCase ): '''simple docstring''' __A : Tuple = '''this is a test''' __A : Union[str, Any] = '''this is a test''' return input_text, output_text def UpperCamelCase__( self ): '''simple docstring''' __A : int = '''<pad>''' __A : Optional[int] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowerCamelCase ) , __lowerCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowerCamelCase ) , __lowerCamelCase ) def UpperCamelCase__( self ): '''simple docstring''' __A : str = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<pad>''' ) self.assertEqual(vocab_keys[1] , '''<unk>''' ) self.assertEqual(vocab_keys[-1] , '''▁eloquent''' ) self.assertEqual(len(__lowerCamelCase ) , 3_0000 ) def UpperCamelCase__( self ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 3_0000 ) def UpperCamelCase__( self ): '''simple docstring''' if not self.test_rust_tokenizer: return __A : Dict = self.get_tokenizer() __A : List[Any] = self.get_rust_tokenizer() __A : int = '''I was born in 92000, and this is falsé.''' __A : Any = tokenizer.tokenize(__lowerCamelCase ) __A : Dict = rust_tokenizer.tokenize(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) __A : List[Any] = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) __A : List[str] = rust_tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) __A : List[Any] = self.get_rust_tokenizer() __A : Union[str, Any] = tokenizer.encode(__lowerCamelCase ) __A : List[Any] = rust_tokenizer.encode(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) def UpperCamelCase__( self ): '''simple docstring''' __A : List[str] = AlbertTokenizer(__lowerCamelCase , keep_accents=__lowerCamelCase ) __A : Optional[int] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(__lowerCamelCase , ['''▁this''', '''▁is''', '''▁a''', '''▁test'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowerCamelCase ) , [48, 25, 21, 1289] ) __A : Tuple = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( __lowerCamelCase , ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''é''', '''.'''] ) __A : Optional[Any] = tokenizer.convert_tokens_to_ids(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , [31, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] ) __A : Optional[Any] = tokenizer.convert_ids_to_tokens(__lowerCamelCase ) self.assertListEqual( __lowerCamelCase , ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.'''] , ) def UpperCamelCase__( self ): '''simple docstring''' __A : Optional[Any] = AlbertTokenizer(__lowerCamelCase ) __A : List[Any] = tokenizer.encode('''sequence builders''' ) __A : str = tokenizer.encode('''multi-sequence build''' ) __A : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(__lowerCamelCase ) __A : Optional[int] = tokenizer.build_inputs_with_special_tokens(__lowerCamelCase , __lowerCamelCase ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ] @slow def UpperCamelCase__( self ): '''simple docstring''' __A : Dict = {'''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''input_ids''': [[2, 2_1970, 13, 5, 6092, 167, 28, 7103, 2153, 673, 8, 7028, 1_2051, 18, 17, 7103, 2153, 673, 8, 3515, 1_8684, 8, 4461, 6, 1927, 297, 8, 1_2060, 2607, 18, 13, 5, 4461, 15, 1_0538, 38, 8, 135, 15, 822, 58, 15, 993, 1_0363, 15, 1460, 8005, 4461, 15, 993, 255, 2328, 9, 9, 9, 6, 26, 1112, 816, 3260, 13, 5, 103, 2377, 6, 17, 1112, 816, 2782, 13, 5, 103, 1_0641, 6, 29, 84, 2512, 2430, 782, 1_8684, 2761, 19, 808, 2430, 2556, 17, 855, 1480, 9477, 4091, 128, 1_1712, 15, 7103, 2153, 673, 17, 2_4883, 9990, 9, 3], [2, 1_1502, 25, 1006, 20, 782, 8, 1_1809, 855, 1732, 1_9393, 1_8667, 37, 367, 2_1018, 69, 1854, 34, 1_1860, 1_9124, 27, 156, 225, 17, 193, 4141, 19, 65, 9124, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 14, 2231, 886, 2385, 1_7659, 84, 14, 1_6792, 1952, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__lowerCamelCase , model_name='''albert-base-v2''' , revision='''6b6560eaf5ff2e250b00c50f380c5389a9c2d82e''' , )
177
0
import os import re import warnings from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer if TYPE_CHECKING: from ...tokenization_utils_base import TextInput from ...utils import logging __snake_case : List[str] = logging.get_logger(__name__) __snake_case : Tuple = {'vocab_file': 'spiece.model'} __snake_case : Any = { 'vocab_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/spiece.model', 't5-base': 'https://huggingface.co/t5-base/resolve/main/spiece.model', 't5-large': 'https://huggingface.co/t5-large/resolve/main/spiece.model', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/spiece.model', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/spiece.model', } } # TODO(PVP) - this should be removed in Transformers v5 __snake_case : int = { 't5-small': 512, 't5-base': 512, 't5-large': 512, 't5-3b': 512, 't5-11b': 512, } __snake_case : List[Any] = '▁' class UpperCamelCase__ ( UpperCAmelCase__): '''simple docstring''' __a : Optional[Any] = VOCAB_FILES_NAMES __a : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP __a : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __a : Optional[int] = ["""input_ids""", """attention_mask"""] def __init__( self , A , A="</s>" , A="<unk>" , A="<pad>" , A=1_00 , A=None , A = None , A=True , **A , ) ->None: # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: UpperCAmelCase__ :List[str] = [F"""<extra_id_{i}>""" for i in range(A )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens UpperCAmelCase__ :Optional[Any] = len(set(filter(lambda A : bool('extra_id' in str(A ) ) , A ) ) ) if extra_tokens != extra_ids: raise ValueError( F"""Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are""" ' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids' ' tokens' ) if legacy: logger.warning_once( F"""You are using the legacy behaviour of the {self.__class__}. This means that tokens that come after special tokens will not be properly handled. We recommend you to""" ' read the related pull request available at https://github.com/huggingface/transformers/pull/24565' ) UpperCAmelCase__ :Dict = legacy UpperCAmelCase__ :Any = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=A , unk_token=A , pad_token=A , extra_ids=A , additional_special_tokens=A , sp_model_kwargs=self.sp_model_kwargs , legacy=A , **A , ) UpperCAmelCase__ :Optional[int] = vocab_file UpperCAmelCase__ :str = extra_ids UpperCAmelCase__ :str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(A ) @staticmethod def A__ ( A , A , A ) ->Tuple: if pretrained_model_name_or_path in TaTokenizer.max_model_input_sizes: UpperCAmelCase__ :str = TaTokenizer.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( 'This tokenizer was incorrectly instantiated with a model max length of' F""" {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this""" ' behavior is kept to avoid breaking backwards compatibility when padding/encoding with' ' `truncation is True`.\n- Be aware that you SHOULD NOT rely on' F""" {pretrained_model_name_or_path} automatically truncating your input to""" F""" {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences""" F""" longer than {deprecated_max_model_length} you can either instantiate this tokenizer with""" ' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please' ' instantiate this tokenizer with `model_max_length` set to your preferred value.' , A , ) return max_model_length @property def A__ ( self ) ->Any: return self.sp_model.get_piece_size() + self._extra_ids def A__ ( self ) ->Optional[int]: UpperCAmelCase__ :Union[str, Any] = {self.convert_ids_to_tokens(A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def A__ ( self , A , A = None , A = False ) ->List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A , token_ids_a=A , already_has_special_tokens=A ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(A )) + [1] return ([0] * len(A )) + [1] + ([0] * len(A )) + [1] def A__ ( self ) ->str: return list( set(filter(lambda A : bool(re.search(r'<extra_id_\d+>' , A ) ) is not None , self.additional_special_tokens ) ) ) def A__ ( self ) ->List[str]: return [self._convert_token_to_id(A ) for token in self.get_sentinel_tokens()] def A__ ( self , A ) ->List[int]: if len(A ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( F"""This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated""" ' eos tokens being added.' ) return token_ids else: return token_ids + [self.eos_token_id] def A__ ( self , A , A = None ) ->List[int]: UpperCAmelCase__ :Tuple = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def A__ ( self , A , A = None ) ->List[int]: UpperCAmelCase__ :str = self._add_eos_if_not_present(A ) if token_ids_a is None: return token_ids_a else: UpperCAmelCase__ :Optional[Any] = self._add_eos_if_not_present(A ) return token_ids_a + token_ids_a def __getstate__( self ) ->Optional[int]: UpperCAmelCase__ :List[str] = self.__dict__.copy() UpperCAmelCase__ :int = None return state def __setstate__( self , A ) ->Any: UpperCAmelCase__ :Any = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): UpperCAmelCase__ :Optional[Any] = {} UpperCAmelCase__ :List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def A__ ( self , A , **A ) ->List[str]: # Replace the SPIECE_UNDERLINE with a space to make sure SPIECE_UNDERLINE is only used at # the beginning of the text if not self.legacy: UpperCAmelCase__ :str = SPIECE_UNDERLINE + text.replace(A , ' ' ) return super().tokenize(A , **A ) def A__ ( self , A , **A ) ->Dict: if not self.legacy: UpperCAmelCase__ :Dict = text.startswith(A ) if is_first: UpperCAmelCase__ :Optional[int] = text[1:] UpperCAmelCase__ :List[str] = self.sp_model.encode(A , out_type=A ) if not self.legacy and not is_first and not text.startswith(' ' ) and tokens[0].startswith(A ): UpperCAmelCase__ :Dict = ([tokens[0][1:]] if len(tokens[0] ) > 1 else []) + tokens[1:] return tokens def A__ ( self , A ) ->Optional[int]: if token.startswith('<extra_id_' ): UpperCAmelCase__ :Tuple = re.match(r'<extra_id_(\d+)>' , A ) UpperCAmelCase__ :Dict = int(match.group(1 ) ) return self.vocab_size - num - 1 return self.sp_model.piece_to_id(A ) def A__ ( self , A ) ->Optional[Any]: if index < self.sp_model.get_piece_size(): UpperCAmelCase__ :Tuple = self.sp_model.IdToPiece(A ) else: UpperCAmelCase__ :Union[str, Any] = F"""<extra_id_{self.vocab_size - 1 - index}>""" return token def A__ ( self , A ) ->List[str]: UpperCAmelCase__ :List[str] = [] UpperCAmelCase__ :List[str] = '' UpperCAmelCase__ :Union[str, Any] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(A ) + token UpperCAmelCase__ :List[str] = True UpperCAmelCase__ :List[str] = [] else: current_sub_tokens.append(A ) UpperCAmelCase__ :Optional[Any] = False out_string += self.sp_model.decode(A ) return out_string.strip() def A__ ( self , A , A = None ) ->Tuple[str]: if not os.path.isdir(A ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase__ :Union[str, Any] = os.path.join( A , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , A ) elif not os.path.isfile(self.vocab_file ): with open(A , 'wb' ) as fi: UpperCAmelCase__ :Optional[int] = self.sp_model.serialized_model_proto() fi.write(A ) return (out_vocab_file,)
433
import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCamelCase__ : '''simple docstring''' def __init__( self , A , A=13 , A=7 , A=True , A=True , A=True , A=True , A=99 , A=24 , A=2 , A=6 , A=37 , A="gelu" , A=0.1 , A=0.1 , A=5_12 , A=16 , A=2 , A=0.02 , A=3 , A=None , A=10_00 , ) ->Any: UpperCAmelCase__ :Tuple = parent UpperCAmelCase__ :List[str] = batch_size UpperCAmelCase__ :Optional[int] = seq_length UpperCAmelCase__ :str = is_training UpperCAmelCase__ :Tuple = use_input_mask UpperCAmelCase__ :Optional[int] = use_token_type_ids UpperCAmelCase__ :int = use_labels UpperCAmelCase__ :Tuple = vocab_size UpperCAmelCase__ :int = hidden_size UpperCAmelCase__ :Any = num_hidden_layers UpperCAmelCase__ :List[Any] = num_attention_heads UpperCAmelCase__ :Tuple = intermediate_size UpperCAmelCase__ :List[str] = hidden_act UpperCAmelCase__ :Any = hidden_dropout_prob UpperCAmelCase__ :Optional[Any] = attention_probs_dropout_prob UpperCAmelCase__ :List[str] = max_position_embeddings UpperCAmelCase__ :str = type_vocab_size UpperCAmelCase__ :int = type_sequence_label_size UpperCAmelCase__ :int = initializer_range UpperCAmelCase__ :str = num_labels UpperCAmelCase__ :Tuple = scope UpperCAmelCase__ :int = range_bbox def A__ ( self ) ->Union[str, Any]: UpperCAmelCase__ :Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase__ :Union[str, Any] = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: UpperCAmelCase__ :List[Any] = bbox[i, j, 3] UpperCAmelCase__ :Union[str, Any] = bbox[i, j, 1] UpperCAmelCase__ :str = t if bbox[i, j, 2] < bbox[i, j, 0]: UpperCAmelCase__ :Any = bbox[i, j, 2] UpperCAmelCase__ :Dict = bbox[i, j, 0] UpperCAmelCase__ :Optional[Any] = t UpperCAmelCase__ :int = None if self.use_input_mask: UpperCAmelCase__ :List[str] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) UpperCAmelCase__ :int = None if self.use_token_type_ids: UpperCAmelCase__ :Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase__ :List[str] = None UpperCAmelCase__ :List[str] = None if self.use_labels: UpperCAmelCase__ :Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase__ :List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase__ :List[str] = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def A__ ( self ) ->Optional[int]: return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def A__ ( self , A , A , A , A , A , A , A , ) ->Any: UpperCAmelCase__ :Any = LiltModel(config=A ) model.to(A ) model.eval() UpperCAmelCase__ :Tuple = model(A , bbox=A , attention_mask=A , token_type_ids=A ) UpperCAmelCase__ :List[str] = model(A , bbox=A , token_type_ids=A ) UpperCAmelCase__ :int = model(A , bbox=A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def A__ ( self , A , A , A , A , A , A , A , ) ->Dict: UpperCAmelCase__ :List[str] = self.num_labels UpperCAmelCase__ :Optional[Any] = LiltForTokenClassification(config=A ) model.to(A ) model.eval() UpperCAmelCase__ :Tuple = model( A , bbox=A , attention_mask=A , token_type_ids=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A__ ( self , A , A , A , A , A , A , A , ) ->Union[str, Any]: UpperCAmelCase__ :str = LiltForQuestionAnswering(config=A ) model.to(A ) model.eval() UpperCAmelCase__ :str = model( A , bbox=A , attention_mask=A , token_type_ids=A , start_positions=A , end_positions=A , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A__ ( self ) ->Dict: UpperCAmelCase__ :List[Any] = self.prepare_config_and_inputs() ( ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ) :Dict = config_and_inputs UpperCAmelCase__ :Optional[Any] = { 'input_ids': input_ids, 'bbox': bbox, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_torch class UpperCamelCase__ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase): '''simple docstring''' __a : Union[str, Any] = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) __a : Optional[Any] = ( { """feature-extraction""": LiltModel, """question-answering""": LiltForQuestionAnswering, """text-classification""": LiltForSequenceClassification, """token-classification""": LiltForTokenClassification, """zero-shot""": LiltForSequenceClassification, } if is_torch_available() else {} ) __a : Optional[Any] = False __a : int = False def A__ ( self , A , A , A , A , A ) ->str: return True def A__ ( self ) ->List[Any]: UpperCAmelCase__ :Dict = LiltModelTester(self ) UpperCAmelCase__ :Optional[int] = ConfigTester(self , config_class=A , hidden_size=37 ) def A__ ( self ) ->Optional[Any]: self.config_tester.run_common_tests() def A__ ( self ) ->List[str]: UpperCAmelCase__ :str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def A__ ( self ) ->Optional[int]: UpperCAmelCase__ :Optional[Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCAmelCase__ :Optional[int] = type self.model_tester.create_and_check_model(*A ) def A__ ( self ) ->Any: UpperCAmelCase__ :List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*A ) def A__ ( self ) ->Optional[int]: UpperCAmelCase__ :List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*A ) @slow def A__ ( self ) ->int: for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ :Union[str, Any] = LiltModel.from_pretrained(A ) self.assertIsNotNone(A ) @require_torch @slow class UpperCamelCase__ ( unittest.TestCase): '''simple docstring''' def A__ ( self ) ->int: UpperCAmelCase__ :int = LiltModel.from_pretrained('SCUT-DLVCLab/lilt-roberta-en-base' ).to(A ) UpperCAmelCase__ :List[Any] = torch.tensor([[1, 2]] , device=A ) UpperCAmelCase__ :Optional[Any] = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=A ) # forward pass with torch.no_grad(): UpperCAmelCase__ :Union[str, Any] = model(input_ids=A , bbox=A ) UpperCAmelCase__ :Tuple = torch.Size([1, 2, 7_68] ) UpperCAmelCase__ :Any = torch.tensor( [[-0.0653, 0.0950, -0.0061], [-0.0545, 0.0926, -0.0324]] , device=A , ) self.assertTrue(outputs.last_hidden_state.shape , A ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , A , atol=1e-3 ) )
433
1
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging __snake_case : int = logging.get_logger(__name__) __snake_case : Tuple = { 'Helsinki-NLP/opus-mt-en-de': 'https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/config.json', # See all Marian models at https://huggingface.co/models?filter=marian } class A ( a ): __UpperCAmelCase : List[str] = """marian""" __UpperCAmelCase : int = ["""past_key_values"""] __UpperCAmelCase : Any = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self , snake_case_=5_8_1_0_1 , snake_case_=None , snake_case_=1_0_2_4 , snake_case_=1_2 , snake_case_=4_0_9_6 , snake_case_=1_6 , snake_case_=1_2 , snake_case_=4_0_9_6 , snake_case_=1_6 , snake_case_=0.0 , snake_case_=0.0 , snake_case_=True , snake_case_=True , snake_case_="gelu" , snake_case_=1_0_2_4 , snake_case_=0.1 , snake_case_=0.0 , snake_case_=0.0 , snake_case_=0.02 , snake_case_=5_8_1_0_0 , snake_case_=False , snake_case_=5_8_1_0_0 , snake_case_=0 , snake_case_=0 , snake_case_=True , **snake_case_ , ) -> Dict: _a = vocab_size _a = decoder_vocab_size or vocab_size _a = max_position_embeddings _a = d_model _a = encoder_ffn_dim _a = encoder_layers _a = encoder_attention_heads _a = decoder_ffn_dim _a = decoder_layers _a = decoder_attention_heads _a = dropout _a = attention_dropout _a = activation_dropout _a = activation_function _a = init_std _a = encoder_layerdrop _a = decoder_layerdrop _a = use_cache _a = encoder_layers _a = scale_embedding # scale factor will be sqrt(d_model) if True _a = share_encoder_decoder_embeddings super().__init__( pad_token_id=snake_case_ , eos_token_id=snake_case_ , is_encoder_decoder=snake_case_ , decoder_start_token_id=snake_case_ , forced_eos_token_id=snake_case_ , **snake_case_ , ) class A ( a ): @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.inputs def __lowerCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: _a = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: _a = {0: '''batch'''} _a = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: _a = {0: '''batch''', 1: '''decoder_sequence'''} _a = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(snake_case_ , direction="inputs" ) elif self.task == "causal-lm": # TODO: figure this case out. _a = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: _a = self.num_layers for i in range(snake_case_ ): _a = {0: '''batch''', 2: '''past_sequence + sequence'''} _a = {0: '''batch''', 2: '''past_sequence + sequence'''} else: _a = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ("decoder_input_ids", {0: "batch", 1: "decoder_sequence"}), ("decoder_attention_mask", {0: "batch", 1: "decoder_sequence"}), ] ) return common_inputs @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.outputs def __lowerCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: _a = super().outputs else: _a = super(snake_case_ , self ).outputs if self.use_past: _a = self.num_layers for i in range(snake_case_ ): _a = {0: '''batch''', 2: '''past_sequence + sequence'''} _a = {0: '''batch''', 2: '''past_sequence + sequence'''} return common_outputs def __lowerCAmelCase ( self , snake_case_ , snake_case_ = -1 , snake_case_ = -1 , snake_case_ = False , snake_case_ = None , ) -> Mapping[str, Any]: _a = self._generate_dummy_inputs_for_encoder_and_decoder( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) # Generate decoder inputs _a = seq_length if not self.use_past else 1 _a = self._generate_dummy_inputs_for_encoder_and_decoder( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) _a = {F'''decoder_{name}''': tensor for name, tensor in decoder_inputs.items()} _a = dict(**snake_case_ , **snake_case_ ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch _a = common_inputs['''input_ids'''].shape _a = common_inputs['''decoder_input_ids'''].shape[1] _a = self.num_attention_heads _a = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) _a = decoder_seq_length + 3 _a = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) _a = torch.cat( [common_inputs["decoder_attention_mask"], torch.ones(snake_case_ , snake_case_ )] , dim=1 ) _a = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered _a = self.num_layers _a = min(snake_case_ , snake_case_ ) _a = max(snake_case_ , snake_case_ ) - min_num_layers _a = '''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder''' for _ in range(snake_case_ ): common_inputs["past_key_values"].append( ( torch.zeros(snake_case_ ), torch.zeros(snake_case_ ), torch.zeros(snake_case_ ), torch.zeros(snake_case_ ), ) ) # TODO: test this. _a = encoder_shape if remaining_side_name == '''encoder''' else decoder_shape for _ in range(snake_case_ , snake_case_ ): common_inputs["past_key_values"].append((torch.zeros(snake_case_ ), torch.zeros(snake_case_ )) ) return common_inputs def __lowerCAmelCase ( self , snake_case_ , snake_case_ = -1 , snake_case_ = -1 , snake_case_ = False , snake_case_ = None , ) -> Mapping[str, Any]: _a = self._generate_dummy_inputs_for_encoder_and_decoder( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch _a = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values _a = seqlen + 2 _a = self.num_layers _a = self.num_attention_heads _a = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) _a = common_inputs['''attention_mask'''].dtype _a = torch.cat( [common_inputs["attention_mask"], torch.ones(snake_case_ , snake_case_ , dtype=snake_case_ )] , dim=1 ) _a = [ (torch.zeros(snake_case_ ), torch.zeros(snake_case_ )) for _ in range(snake_case_ ) ] return common_inputs def __lowerCAmelCase ( self , snake_case_ , snake_case_ = -1 , snake_case_ = -1 , snake_case_ = False , snake_case_ = None , ) -> Mapping[str, Any]: # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX _a = compute_effective_axis_dimension( snake_case_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX _a = tokenizer.num_special_tokens_to_add(snake_case_ ) _a = compute_effective_axis_dimension( snake_case_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=snake_case_ ) # Generate dummy inputs according to compute batch and sequence _a = [''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size _a = dict(tokenizer(snake_case_ , return_tensors=snake_case_ ) ) return common_inputs def __lowerCAmelCase ( self , snake_case_ , snake_case_ = -1 , snake_case_ = -1 , snake_case_ = False , snake_case_ = None , ) -> Mapping[str, Any]: if self.task in ["default", "seq2seq-lm"]: _a = self._generate_dummy_inputs_for_default_and_seqaseq_lm( snake_case_ , batch_size=snake_case_ , seq_length=snake_case_ , is_pair=snake_case_ , framework=snake_case_ ) else: _a = self._generate_dummy_inputs_for_causal_lm( snake_case_ , batch_size=snake_case_ , seq_length=snake_case_ , is_pair=snake_case_ , framework=snake_case_ ) return common_inputs def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> int: if self.task in ["default", "seq2seq-lm"]: _a = super()._flatten_past_key_values_(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) else: _a = super(snake_case_ , self )._flatten_past_key_values_( snake_case_ , snake_case_ , snake_case_ , snake_case_ ) @property def __lowerCAmelCase ( self ) -> float: return 1E-4
131
"""simple docstring""" import qiskit def lowerCamelCase_ (UpperCamelCase__ : int , UpperCamelCase__ : int ): _UpperCAmelCase : Any = qiskit.Aer.get_backend('''aer_simulator''' ) # Create a Quantum Circuit acting on the q register _UpperCAmelCase : Tuple = qiskit.QuantumCircuit(UpperCamelCase__ , UpperCamelCase__ ) # Apply X (NOT) Gate to Qubits 0 & 1 circuit.x(0 ) circuit.x(1 ) # Map the quantum measurement to the classical bits circuit.measure([0, 1] , [0, 1] ) # Execute the circuit on the qasm simulator _UpperCAmelCase : Dict = qiskit.execute(UpperCamelCase__ , UpperCamelCase__ , shots=1000 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(UpperCamelCase__ ) if __name__ == "__main__": _lowerCAmelCase :Tuple = single_qubit_measure(2, 2) print(f"Total count for various states are: {counts}")
506
0
import os from datetime import datetime as dt from github import Github lowercase : Optional[Any] = [ """good first issue""", """good second issue""", """good difficult issue""", """enhancement""", """new pipeline/model""", """new scheduler""", """wip""", ] def snake_case__ ( ): A : Tuple = Github(os.environ['''GITHUB_TOKEN'''] ) A : Tuple = g.get_repo('''huggingface/diffusers''' ) A : int = repo.get_issues(state='''open''' ) for issue in open_issues: A : Any = sorted(issue.get_comments() , key=lambda lowerCamelCase_ : i.created_at , reverse=snake_case_ ) A : Optional[int] = comments[0] if len(snake_case_ ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state='''closed''' ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state='''open''' ) issue.remove_from_labels('''stale''' ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( '''This issue has been automatically marked as stale because it has not had ''' '''recent activity. If you think this still needs to be addressed ''' '''please comment on this thread.\n\nPlease note that issues that do not follow the ''' '''[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) ''' '''are likely to be ignored.''' ) issue.add_to_labels('''stale''' ) if __name__ == "__main__": main()
703
class __lowercase : """simple docstring""" def __init__( self ) -> Optional[Any]: A : Tuple = {} def snake_case ( self ) -> None: print(self.vertex ) for i in self.vertex: print(__UpperCAmelCase , ''' -> ''' , ''' -> '''.join([str(__UpperCAmelCase ) for j in self.vertex[i]] ) ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase ) -> None: # check if vertex is already present, if from_vertex in self.vertex: self.vertex[from_vertex].append(__UpperCAmelCase ) else: # else make a new vertex A : str = [to_vertex] def snake_case ( self ) -> None: # visited array for storing already visited nodes A : int = [False] * len(self.vertex ) # call the recursive helper function for i in range(len(self.vertex ) ): if not visited[i]: self.dfs_recursive(__UpperCAmelCase , __UpperCAmelCase ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase ) -> None: # mark start vertex as visited A : List[Any] = True print(__UpperCAmelCase , end=''' ''' ) # Recur for all the vertices that are adjacent to this node for i in self.vertex: if not visited[i]: self.dfs_recursive(__UpperCAmelCase , __UpperCAmelCase ) if __name__ == "__main__": lowercase : Dict = Graph() g.add_edge(0, 1) g.add_edge(0, 2) g.add_edge(1, 2) g.add_edge(2, 0) g.add_edge(2, 3) g.add_edge(3, 3) g.print_graph() print("DFS:") g.dfs() # OUTPUT: # 0 -> 1 -> 2 # 1 -> 2 # 2 -> 0 -> 3 # 3 -> 3 # DFS: # 0 1 2 3
423
0